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Kurzfassung

Stereoskopische 3-D Technologien haben sich mittlerweile im Mainstream etabliert. Viele Kinos
zeigen bereits Filme in 3-D. Aufgrund des hohen visuellen Informationsgehaltes werden 3-D Video
Technologien zudem immer häufiger in medizinische und logistische Applikationen integriert. Die
Notwendigkeit, eine zusätzliche Brille tragen zu müssen, um einen 3-D Eindruck beim Betrachter
zu erzeugen, wird jedoch als großes Hindernis für die Etablierung von 3-D Video im Heimbereich
betrachtet. Ähnliches gilt für die Medizintechnik, wo Operationsgeräte oder Schutzbrillen die
Verwendung zusätzlicher 3-D Brillen behindern. Neue Technologien, wie autostereoskopische Dis-
plays, ermöglichen es dem Zuschauer mittlerweile einen 3-D Eindruck zu vermitteln, ohne dass
dieser eine zusätzliche Brille tragen muss. Hierbei werden mehrere Ansichten (derzeit 5-32) einer
Szene aus leicht verschobenen Blickwinkeln ausgestrahlt. Da oft nur wenige (1-3) originale Kam-
erapositionen vorliegen, müssen die Ansichten für die fehlenden Positionen errechnet werden.
Hierfür können Depth Image-based Rendering (DIBR) Verfahren verwendet werden. Diese syn-
thetisieren eine Anzahl von unterschiedlichen Perspektiven der gleichen Szene, beispielsweise für
das Multiview-Video-plus-Tiefe (MVD) Format. Das MVD Format besteht aus einer begrenzten
Anzahl von Videosequenzen derselben Szene und deren zugehörigen Tiefenkarten. Ein Kern-
problem beim Rendern mit wenigen Ansichten und den zugehörigen Tiefenkarten besteht jedoch
darin, dass in den virtuellen Ansichten Bereiche sichtbar werden, die in allen Originalansichten
verdeckt sind. Die vorgestellten Ansätze synthetisieren diese aufgedeckten Bereiche. Die Synthe-
sizer berechnen die neuen Texturen unter Berücksichtigung räumlicher und zeitlicher Kohären-
zen. Es werden Syntheseverfahren für Sequenzen mit statischen und dynamischen Hintergründen
vorgestellt. Detaillierte Experimente zeigen, dass die vorgestellten Verfahren erhebliche objektive
und subjektive Gewinne im Vergleich zu Verfahren erzielen, die dem aktuellen Stand der Technik
entsprechen.





Abstract

Stereoscopic Three Dimensional (3-D) video technologies have been established in the mainstream.
Many cinemas already show movies in 3-D. Due to the higher visual information, 3-D video tech-
nology is increasingly used in other application areas, e.g. medical and logistical applications.
However, the need to wear additional glasses to create a 3-D impression for the viewer is regarded
as a major obstacle for 3-D video in home environments. The same applies to medical technology
where surgery devices or safety goggles hinder the use of additional 3-D glasses. New technologies
such as autostereoscopic displays, however, allow the viewer to receive a 3-D impression without
the need to wear additional glasses by showing a number of slightly different views (currently 5-32)
simultaneously. Since usually only a few real cameras (1-3) are available, the missing views must
be calculated. For this purpose, Depth Image-based Rendering (DIBR) can be used to synthesize
a number of different perspectives of the same scene, e.g., from a Multiview Video plus Depth
(MVD) representation. This MVD format consists of video and depth sequences for a limited
number of original camera views of the same natural scene. An inherent problem of the view
synthesis concept is the fact that image information which is occluded in the original views may
become visible, especially in extrapolated views beyond the viewing range of the original cam-
eras. The presented approaches synthesize these disoccluded textures. The synthesizers achieve
visually satisfying results by taking spatial and temporal consistency measures into account. For
this purpose, solutions for sequences with both static and dynamic backgrounds are presented.
Detailed experiments show significant objective and subjective gains of the proposed methods in
comparison to state-of-the-art approaches.
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Glossary

General

Scalar values x, y are written in italic lowercase. Coordinate values are scalars and denoted as
px, yq. Vectors v are bold lowercase and matrices M are bold capitals.

Basic Definitions

px, yq Position in an image or a depth map
F A single frame
Fn Frame with frame number n of a sequence, with n P N
Fc,n A frame of a sequence at the spatial camera position c and with the frame number n,

with c P R and n P N
Ω Unknown area in a frame
δΩ The outer boundary of the hole in the frame
F o Original texture in a frame with F o Ă F zΩ
F s Synthesized texture in a frame
disp Disparity value
D A single depth map
Dn Depth map with frame number n of a sequence, with n P N
Dc,n A depth map of a sequence at the spatial camera position c and with the frame

number n, with c P R and n P N
Γ Unknown area in a depth map
δΓ The outer boundary of the hole in the depth map
Do Original depth values in a depth map with Do Ă DzΓ
b Camera baseline
l Focal length
N Number of frames in a sequence
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View Synthesis Method for Sequences with Static Background

m Size of the squared neighborhood pm ˆ mq used in the k-means depth map clustering
S Background sprite
G Depth map sprite
β Parameter to allow some variance in the local background depth value comparison
f˚ A known scalar function over the domain F

f An unknown scalar function defined over Ω
R Texture source to be (partially) mapped onto Ω
g A function defined over the texture source R to be (partially) mapped onto Ω
∆ Laplace operator
γ Parameter to identify small holes
P px, yq Patch Priority of the patch centered at px, yq

TConfpx, yq Confidence Term of the patch centered at px, yq

TDatapx, yq Data Term of the patch centered at px, yq

upx, yq Unit vector at position px, yq orthogonal to δΩ
∇K Direction of the isophotes
Ψpx,yq Patch with unknown sample positions and its center in δΩ
Ψppx,pyq Patch with the highest priority
Ψpu,vq Candidate patches centered at pu, vq

ψpu,vq Vectorized version of Ψpu,vq

ψppx,pyq Vectorized version of Ψppx,pyq

Ψppu,pvq The best candidate patch with its center in ppu, pvq

A Source area
s Sub-sampling factor

View Synthesis Method for Sequences with Global Background
Motion

Np Number of frames in a sequence that can be computed using the
Group-of-Pictures structure

z Number of frames in a Group-of-Pictures
hpx, y, tq Image registration: source image
hpx̂, ŷ, t ´ 1q Image registration: target image
φ1, φ2, φ3, φ4 Affine parameters
φ5, φ6 Translation parameters
φ7, φ8 Parameters that model the change of contrast and brightness
ι Small spatial neighborhood

xiv



Hybrid View Synthesis Method

D Total variation in a window
L The overall spatial variation
ν A very small value to prevent divisions by zero
H The pre-processed image
pF px, yq Synthesized sample at position px, yq

ymin, ymax, xmin, xmax Order of the model
αi,j The prediction coefficients with j P rymin, ymaxs and i P rxmin, xmaxs

ϵ White noise process with zero mean and variance
σ2 Variance
Ωy Height of the hole
bx, by Training area divided into blocks of size bx ˆ by

Nby Number of blocks in vertical direction
µblock Mean value of the pixels in the block
σ2

block Variance of the pixels in the block
C Causal neighborhood
S Number of samples in the sub-training area

Experimental Results

Mn Motion difference between frame n and n ´ 1
maxtime Maximum over a set of frames
stdspace Standard deviation over space
κn Average changes of the inter-frame samples in the hole regions in frame n

κ Flickering of the whole sequence
|Ω| Total number of hole pixels in a frame
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2-D Two Dimensional

3-D Three Dimensional

3DV 3-D Video

AR Autoregressive

ARMA Autoregressive Moving Average

DIBR Depth Image-based Rendering
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FDF Frame Differential Flicker

GOP Group-of-Pictures

IBR Image-based Rendering

ITU International Telecommunication Union
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MMTC Multimedia Communications Technical Committee
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1 Introduction

1.1 Motivation

In the last years, 3-D Video (3DV) has become popular in the mainstream. Nowadays, most
cinemas show stereoscopic Three Dimensional (3-D) movies and they are well accepted by the
audience. In recent years, visual 3-D devices, such as displays and sensors, are also frequently
utilized in logistic and medical devices [ZRDdWPHN12]. In order to produce a 3-D impression for
the viewers, it is necessary for observers to receive different views for each eye. These views have
to show the scene from slightly different viewpoints. The 3-D displays emit two or more different
images captured from distinct viewpoints, which are often separated by a baseline corresponding
to the human eye distance. In order to separate the two views for the left and the right eye,
anaglyph 3-D glasses have been used in the past. Nevertheless, such glasses only provide an
inadequate quality since they only utilize a color subset for each image. Nowadays, shutter or
polarized glasses are used, because they provide full-colored images. However, the need to wear
additional glasses is often seen as a disadvantage for a broader acceptance of stereoscopic 3DV in
a home environment. This is also true for medical or logistic use cases, since surgery equipment
or safety goggles can hinder the usage of additional 3-D glasses. To overcome this disadvantage,
new multiview autostereoscopic displays have been developed in recent years.

Autostereoscopic displays provide a 3-D impression to several observers simultaneously with-
out the necessity to wear additional glasses. They emit many views of one scene from slightly
different viewpoints, e.g. 8, 9, 28 or 32 [Ali13, Tos13, Dim13] different views at the same time.
Nevertheless, it is expected that future autostereoscopic displays will provide significantly more
views simultaneously (e.g. 50 or more views) [DSW`13]. Thus, the viewer can observe the scene
from different viewpoints having a realistic viewing experience.

There exist two main ways of realizing the spatial separation of the views for autostereoscopic
displays (cf. Fig. 1.1) (1) An array of cylindrical lenslets is placed in front of the pixel raster,
directing the light from adjacent pixel columns to different viewing slots at the ideal viewing
distance such that each of the observers eyes sees light only from every second pixel column [cf.
Fig. 1.1 (a)]. (2) A parallax barrier mask is placed in front of the pixel raster so that each eye
sees light only from every second pixel column [Dod05] [cf. Fig. 1.1 (b)].

However, transmitting or storing all of the required videos would be extremely inefficient.
Therefore, a generic transmission format, the MVD format, was specified [ISO11], comprising
video data and their associated depth information for a few views (usually two to three views).
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Figure 1.1: Methods of manufacturing autostereoskopic displays. (a) An array of cylindrical
lenslets is placed in front of the pixel raster. (b) Parallax barrier. A barrier mask
is placed in front of the pixel raster.

Joint video and depth coding methods for the MVD format were standardized in the joint JCT-3V
group of ISO/IEC Moving Picture Experts Group (MPEG) and the ITU-T Video Coding Experts
Group (VCEG). Here, additional virtual views for each individual display need to be calculated
from the limited set of original cameras.

Recently, Depth Image-based Rendering (DIBR) techniques have become popular for this pur-
pose. Based on the principles of projective geometry, arbitrary virtual views can be generated
via 3-D projection or 2-D warping. The position of a warped virtual camera can be between
(interpolation) or beside (extrapolation) the viewing range of the original cameras (cf. Fig. 1.2
and 1.3). Nevertheless, DIBR methods still show some shortcomings. One of the most significant
problems in DIBR is the handling of uncovered areas (holes) in the virtual views, especially in
extrapolated views beyond the viewing range of the original cameras (cf. Fig. 1.2 and 1.3). In
the extrapolated views, large image regions may become visible, which are covered by foreground
objects or are out-of region in the original cameras. However, the usage of extrapolated views is
of fundamental importance, because, if the virtual views are only interpolated within the original
views, the 3D impression is flattened. By also using extrapolated views, the full stereo sensation
can be supported for both current and future viewing devices [Vid10, MJ11]. Hence, in this thesis,
different approaches are proposed which can be used to synthesize the large uncovered texture
areas in the extrapolated virtual views in a visually plausible manner.

1.2 Main Contributions to the State-of-the-Art

This thesis presents new methods for handling uncovered areas in synthesized views for 3-D
video. Hereby, solutions for one of the most challenging problem in DIBR are presented. It is
shown that disocclusions, which especially occur in extrapolated views with large baselines, can be
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Figure 1.2: Extrapolated virtual camera views from original views. © [2012] IEEE.

successfully reconstructed in a visually plausible manner. In the proposed approaches, uncovered
areas in extrapolated virtual views are specifically targeted because the uncovered areas are large.
In an interpolation scenario where the virtual view is placed in-between two original cameras,
the uncovered areas are rather small and original texture information is usually available from
both sides, i.e. from a left and right original view. In the following the main contributions to the
state-of-the-art achieved in this thesis are summarized:

• For sequences with a static background, a new method based on sprites is presented that
takes image information from preceding frames into account. By using the sprite technology,
temporally consistent synthesis results are obtained. The sprite stores background infor-
mation from processed frames and is updated with the background image information from
the current frame. The holes in the actual processed picture are updated from the back-
ground sprite. In order to account for illumination variation, the covariant cloning method
is utilized to fit the background sprite samples to the intensity distribution in the relevant
neighborhood of the current picture. The boundary condition of the cloning method is
modified in such a way that only background samples are considered (cf. Sec. 3.3).

• An effective method to fill the uncovered areas in the virtual depth map is presented.
Hereby, the spatial neighborhood of the unknown samples is clustered in order to enable
an appropriate depth value selection. This ensures a consistent recovery of the uncovered
areas in the depth map. During the texture synthesis stage, the virtual depth map is used
to steer the filling procedure. By using this method, both the virtual depth map and the
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Figure 1.3: Disoccluded areas. The virtual cameras are warped from the original ones using the
associated depth values. The disoccluded areas are marked green. © [2016] IEEE.

synthesized view contain fewer synthesis artifacts (cf. Sec. 3.2).

• To fill uncovered areas in the virtual view, a new texture synthesis method is presented.
First, the missing textures are roughly estimated using an initialization method, which is
based on the statistical properties of known samples in the vicinity of the hole. Then,
patch-based texture synthesis is utilized to refine the initialized areas with optimal patches
from background regions. To ensure smooth transitions between adjacent patches, an effi-
cient post-processing method, based on covariant cloning, is utilized. The post-processing
approach is adapted to the synthesis method in such a new manner that foreground objects
are not considered as boundary samples. The new synthesis algorithm ensures an appropri-
ate filling of unknown textures and reduces artifacts such as garbage-growing and blocking
artifacts (cf. Sec. 3.4 and 3.5).

• A new warping structure is proposed, which improves the spatial consistency between ad-
jacent virtual views. First, the original views are extrapolated to the left and to the right
outermost virtual positions. Then, the uncovered areas in these outermost views are synthe-
sized using a complex approach to achieve visually pleasing results. The remaining virtual
views beyond the original camera range are interpolated between the outermost view and
the original view utilizing classical, fast, synthesis methods. By using the new warping struc-
ture, the spatial consistency between adjacent extrapolated views is substantially improved
and the overall complexity is reduced (cf. Sec. 4.2).

• For sequences which contain global background motion, a novel method to access the avail-
able image information from neighboring frames is presented. Temporal consistency in vir-
tual sequences is achieved by considering a set of frames in a Group-of-Pictures (GOP)-like
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structure derived from video coding. The global background motion is compensated utiliz-
ing a robust image registration method. High objective and subjective gains are achived by
the proposed method compared to the state-of-the-art (cf. Sec. 4.4).

• To fill uncovered areas in the virtual view, a new hybrid texture synthesis approach is
developed. This method combines the advantages of parametric and non-parametric (patch-
based) algorithms. Patch-based texture synthesis is computationally expensive but is able
to reconstruct a wide range of texture classes, while parametric approaches are faster but
can reconstruct only a particular texture with a trained parameter set. Hence, an optimized
patch-based texture synthesis method is used to separate different texture classes. Then, a
fast Autoregressive (AR) parametric synthesis approach reconstructs each separate texture
class. The proposed hybrid synthesis method computes a frame much faster than state-
of-the-art patched-based texture synthesis providing similar subjective gains. Additionally,
artifacts such as garbage-growing, caused by patch-based texture synthesis, are reduced (cf.
Sec. 5.3).

• An effective method to select an appropriate texture area to train the parameters of the
AR parametric synthesis method is presented. In order to select the optimal training area,
a stationarity criterion, which discards unreliable parts, is developed. It is shown that
significant visual improvements can be achieved, when gross instationarities are discarded
(cf. Sec. 5.3.3).

• A new method for assessing the synthesis quality of parametrically reconstructed textures
is presented. In case of detected errors, patch-based texture synthesis is used as fallback
(cf. Sec. 5.3.7).

The approaches and results described in this thesis have been published in well known conference
proceedings [NNKDW08, KDNN09, LNNK`09, LKNNW10, KNND`10, NNKD`10, BPLC`11b,
BKP`11, KWD`12b, KWD`12a, KMNN13, KMMNN13, RKDNN14, RDKNN14] and journals
[NNKD`11, BPLC`11a, KDR`15, KMW16]. The publication [KWD`12a] was presented in 2012
at the IEEE International Workshop on Multimedia Signal Processing and was counted as one
of the best contributions of the conference. Therefore, the work was honored with the “Top
10 % paper award”. Furthermore, the IEEE Multimedia Communications Technical Committee
(MMTC) recognized the journal paper [NNKD`11] as an outstanding contribution. Thus, the
publication received the “MMTC Best Journal Paper Award” in 2013.

1.3 Overview

This thesis is organized as follows. In Ch. 2 state-of-the-art view synthesis and texture synthesis
methods are presented.

5
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The proposed framework for virtual view generation with time-consistent texture synthesis for
sequences with static background is outlined in Ch. 3. The goal of the new view synthesis
algorithm is to fill the disocclusions in both the virtual images and the virtual depth maps. The
temporally consistency is achieved by using a background sprite which stores the original and the
synthesized textures and depth values from previous frames.

In Ch. 4 a new spatial and temporal consistent view synthesis method is presented. The
temporal consistency is achieved, by utilizing image information from previous and subsequent
frames. By incorporating a robust image registration method into the framework, global back-
ground motion between temporally neighboring frame can be compensated. Additionally, a new
method to improve the spatial consistency in the MVD format is developed.

A new hybrid view synthesis framework is presented in Ch. 5. In this approach, the advantages
of parametric and non-parametric texture synthesis approaches are combined in a hybrid method.
Patch-based texture synthesis is used to separate different classes of textures from each other.
Then, a fast parametric method is applied to all separated textures individually. This method
shows run-time, objective and subjective gains compared to state-of-the-art methods.
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In this chapter, state-of-the-art technologies are described. First, inpainting and texture synthesis
methods are presented in Sec. 2.2. Then, Image-based Rendering (IBR) and DIBR techniques
are reviewed in Sec. 2.2. Finally, the warping procedure used in this thesis is described in Sec.
2.3.

2.1 Texture Completion Methods

The aim of texture completion algorithms is whether to fill an unknown region in an image/video
(cf. Fig. 2.1) or to compute a large texture from a small input sample [EL99, WL00, KEBK05,
TLD07, BCMS12, WLKT09]. Texture completion algorithms can be divided into three main
categories: (1) Parametric, (2) Partial Differential Equation (PDE)-based, and (3) non-parametric
algorithms. An overview of texture completion categories is given in Tab. 2.1 [NNDK`12].

Parametric completion approaches approximate the probability density function of the texture
source using a compact model with a fixed parameter set [PS00, HB95, DCWS03, CK85, Deg86,
Tug94, JBS09, Kok04, SP96, KMA05, CSS08]. These methods extract statistics from the given
input texture that are modeled based on a compact parameter set. Such approaches also provide
information of the underlying texture properties, which can be relevant in identification and
recognition applications. Some of the most commonly used parametric methods are based on
the AR, Moving Average (MA) and the Autoregressive Moving Average (ARMA) models. The
disadvantage of these methods is that they can only be applied to reconstruct texture classes on
which the parameter set is trained on. This limits the usage to uniform texture classes. Texture
transitions, boundaries or arbitrary texture classes can not be synthesized with a visual pleasing
outcome.

The second texture completion methods category, termed PDE-based algorithms, employs a
diffusion process to fill the missing image parts in a visually plausible manner. These techniques
commonly use non-linear or high order PDEs to propagate information from the boundary towards
the interior of the unknown area. Several approaches based on PDE have been developed in the
last decade [BSCB00, BBC`01, LZW03, BVSO03, BCMS12]. The advantage of these methods is
that they consider gradients impinging on the hole. However, PDE based approaches introduce
blur into the new texture. Hence, these methods are mainly used to reconstruct small scratches
or homogenous textures [NN08].

The last class of methods, non-parametric completion approaches, do not explicitly model the
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(a) (b) (c)

Figure 2.1: Generic texture synthesis. (a) Input image. (b) The area to be removed is marked
black. (c) The missing region is synthesized using texture from the known sample
positions.

Category models Completion of Limitations Complexity
texture classes

Parametric AR, MA, Rigid and Structures Medium
ARMA non-rigid

PDE-Based PDE Rigid, thin, Structures, Medium
elongated regions smooth results

Non- MRF Rigid and Prone to error High
parametric non-rigid

Table 2.1: Overview on texture completion approaches [NNDK`12], visual quality and complexity
limitations.

probability density function, but instead measure it from an available texture sample. In general,
in this completion category, a best match is determined from a source region and copied to a target
region [WL00, CPT04, Ash01, KSE`03, NNSW07, NNKDW08, KA11, SYJS05]. The texture to
be filled into the unknown area can be taken from the original texture in the same image or from
an image database [HE07].

2.1.1 Texture Completion Problem

The major problems that have to be tackled in any texture completion process are roughly two-
fold. The first one relates to the proper estimation of the underlying stochastic process of a
given texture based only on a finite sample of it. The second task refers to the formulation of
an efficient procedure (model) for generating new textures from a sample [WL00]. The former
challenge steers the accuracy of the synthesized textures. The latter challenge determines the
computational complexity of the texture generation procedure, also referred to as probability
density function sampling.

A variety of texture models have been developed in the last years, the most successful models
for imaging applications are based on the Markov Random Field (MRF) assumptions. The MRF
model is characterized by statistical inter-relations within local vicinities. Thus the underlying
generative stochastic process of the texture source is assumed to be both local and stationary. That
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means, each sample of a texture pattern is characterized by a small set of spatially neighboring
samples, and this characterization is the same for all samples. This can be formalized as:

ppTi|I´iq “ ppTi|Ψiq (2.1)

The assumption is that any texture pattern Ti extracted from a given sample I, i.e. the image
area, at location i can be predicted from the corresponding neighborhood Ψi and is independent
of the rest of the texture. The homogeneity property of the MRF assumes that the conditional
probability ppTi|Ψiq is independent of the pixel location.

2.1.2 Autoregressive Modelling

Three decades ago, the AR model, traditionally used on temporal signals, started being utilized
for image processing, e.g. in the area of image and video texture completion. In the work of
Chellappa et al. [CK85], a Two Dimensional (2-D), Non-Causal Autoregressive (NCAR) model
was used to synthesize different texture samples, sized 64 ˆ 64 with several neighbor sets and
parameters. The authors show that the AR model can reproduce natural textures. A similar
contribution by Deguchi [Deg86] focuses on texture characterization and completion of gray-level
textures, using the same NCAR model as [CK85]. The basic properties of the model, the algorithm
and the model identification problem are discussed. Furthermore, the work of Deguchi was at the
time an innovative texture segmentation approach, where blocks with similar AR parameters were
merged iteratively. In [Tug94], Tugnait investigated the applicability of 2-D NCAR models with
asymmetric support for the completion of 128ˆ128 real life textures. Here, the AR model is fitted
to textures with abstracted mean value, i.e. with zero mean. The removed mean is finally added
back into the synthetic image. In [JBS09], the authors used causal and non-causal neighborhoods
for AR parameter estimation and texture pattern generation. Thus, different image textures were
successfully synthesized using a given set of models and parameters.

In computer vision, the AR model has also been used in image and video reconstruction appli-
cations. A statistical framework for filling gaps in images is presented in [Kok04]. The method
proposed in that paper relies on an iterative algorithm with a block based model estimation
and pixel based filling. Visual results show effective reconstructions of images with thin elon-
gated holes. In [KP94], Kokaram and Rayner proposed a 3-D AR model which is utilized to
remove blotches in old film material. They developed an interpolation method which considers
all texture areas in the extended boundary of the hole. In such a way the hole is filled with
data that corresponds to the boundary. Furthermore, an improved version of this interpolation
method [KP94] was proposed in [Kok98]. Janssen et al. [JVV86] developed a deterministic ap-
proach to fill missing samples given the AR coefficients. To determine the coefficients, Janssen
et al. [JVV86] considered all known samples in the boundary region of the hole. In the work
of Szummer [SP96], the temporal textures were modeled by a spatio-temporal AR model. The
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authors show that the AR model can be used to synthesize video sequences, using large causal
neighborhoods containing over 1000 parameters. The approach reproduces the dynamics of most
input sequences effectively. The algorithm proposed in [SP96] is also used to recognize the type
of content of temporal textures, by applying a purely spatial AR model. During the recognition
tests, textures were correctly categorized at 95% as belonging to a certain texture class.

2.1.3 Non-Parametric Texture Synthesis

Non-parametric texture synthesis is based on the seminal work on texture synthesis proposed
by Efros et al. [EL99] and Wei et al. [WL00]. The aim of the methods was to improve the
recovery of missing texture in images. Non-parametric texture synthesis methods have been
largely inspired by local region growing methods that grow a texture one pixel or one patch per
step while maintaining coherency with the neighboring samples [GLM14]. Most non-parametric
synthesis techniques rely on MRFs. But instead of running a complex probabilistic inference
on the graphical model of the MRF, Efros and Leung [EL99] proposed a simpler and faster
approximate solution. They rely on two assumptions, i.e. the color of the sample depends only on
its neighborhood and not on the whole image and second that the dependency is independent of the
pixel location (cf. Sec. 2.1.1). Then, the missing samples are obtained by sampling and copying
the central pixel of a patch from the sample texture that best matches the known neighborhood of
the input samples to be synthesized, according to a certain distance [EL99]. The most widely used
distance metric to search for similar patches is the Sum of Squared Differences (SSD). However, as
observed in [BBCS10] SSD introduces some bias towards uniform regions. This means, that SSD
favors the copy of pixels from uniform texture regions. Hence, a weighted combination of SSD
and the Bhattacharya distance have been proposed in [BBCS10]. The Bhattacharya distance is a
statistics-based metrics and measures the similarity of two probability distributions. An example
for patch-based texture synthesis is shown in Fig. 2.2.

Similarly, in a pixel-based texture synthesis method [WL00], the output image is generated
pixel-per-pixel in a raster scan order choosing at each step a pixel from the known input texture of
the neighborhood, which is most similar to the actually considered neighborhood of the sample to
be filled. Pixel-based methods perform usually better than PDE based methods. However, they
suffer from synthesis error propagation and repetitive patterns, especially in case of stochastic
textures. On the other hand, approaches that synthesizes entire patches mostly overcome the
drawbacks of pixel-based methods.

The missing regions in an image are often composed of both textures and structures. Criminisi
et al. observed in [CPT04] that it is important to consider these two components separately in
the filling routine, starting with the structures. They determine the processing order based on a
patch priority measure which consists of a data and a confidence term. The data term reflects the
presence of structures in the frame, while the confidence term accounts for the amount of known
samples in the patch (for more details see Sec. 3.5.1). In [XS10] Xu and Sun propose a sparsity-

10



2.2 View Synthesis Methods

Distance Metric 
(SSD, MSE, PSNR)

Unknown Area
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Figure 2.2: The center of the squared window, named patch, is placed at the border of the hole
(cf. Patch A). The patch covers both, an unknown and a known sample position and
the size of the patch is a free parameter that specifies how stochastic the user believes
this texture to be. Next, the available texture is examined. For that, a patch is
placed at several/all positions in the original texture (cf. Patch B). Then, the known
samples in Patch A are compared to the corresponding positions in Patch B. For this
purpose a comparative measure can be used. The unknown areas in Patch A are then
copied from the corresponding positions of the continuation patch (cf. Patch B) that
minimizes a cost function.

based term to measure the structural confidence. They assume that the structural patches have
sparser nonzero similarities with its neighboring patches compared to textural patches. This
assumption is derived from the observation that structures (corners, edges) are usually sparsely
distributed in an image.

Filling the unknown parts of the input patch can lead to inconsistencies in terms of color and
contrast since the new pixels may not fit into the existing texture. In [EF01], Efros and Freeman
introduced a quilting method to find an optimal path in the overlapping region of the existing
texture and the new samples. An energy function is defined to evaluate the contrast of the current
pixel with respect to its neighbors. The best path is then searched using dynamic programming
[EF01] or graph cuts [AS07], [KSE`03]. Furthermore, blending methods such as feathering, alpha
blending, pyramid blending and cloning methods [Geo04] can also be used to seamlessly merge
new patches.

The outcome of the texture synthesis approach can be further improved by introducing a priori
knowledge in the patch search routine. In [DDY03], Drori et al. approximate the missing region
using some guidance from coarse to fine levels.

2.2 View Synthesis Methods

The goal of view synthesis techniques is to generate virtual views from original camera perspec-
tives. These methods can be used in applications such as 3DV, free viewpoint video, 2-D to 3-D
conversion, and virtual reality. Given a set of captured images of a real scene, the synthesis of
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photo-realistic virtual views of the same scene at slightly different viewpoints processed from the
original images is also referred to as IBR [BM95]. State-of-the-art 3-D world IBR representation
methods can be classified into three categories according to the amount of geometric informa-
tion used [SK00]: (1) rendering without geometry, (2) rendering with implicit geometry and (3)
rendering with explicit geometry. Methods belonging to category (1) utilize several aligned im-
ages from different viewing angles in a scene to generate virtual views using ray-space geometry,
without requiring geometric information [LH96]. The methods belonging to category (2) rely on
implicit geometry. Such implicit geometries are typically expressed in terms of feature correspon-
dences among the known images [CW93]. The methods belonging to category (3) utilize explicit
geometry information. Such information is often available in form of depth maps or 3-D geometry
[DSF`12]. Methods of category (3) usually offer the highest flexibility in view synthesis, as they
allow to compute almost any virtual view independently of camera position and camera angle. If
depth information is used as explicit 3-D geometry, the methods of category (3) are also called
DIBR. The methods proposed in this thesis (cf. Ch. 3-5) utilize dense depth information as ex-
plicit 3-D geometry and thus belong to the DIBR methods. The depth information of the scene
is usually stored as inverted real world depth data in a depth map. The depth map is represented
as an 8-bit gray-scale image with values between 0 and 255 [MMW10, SSN07, SS02, Bha12]. The
advantage of this storage method is that nearby objects achieve a high resolution, while objects
that are farther away only receive a coarse depth resolution. This directly corresponds to the
perception of the human visual system [Whe38].

A fundamental problem in the DIBR concept is the fact that not every sample in the virtual
view necessarily exists in the original textured image. Therefore, unknown image regions be-
come uncovered in the virtual view, especially in the extrapolation scenarios. But due to the
enhancement of the depth experience through extrapolation in 3DV, experiments for exploring
the extrapolation capabilities of DIBR algorithms have been carried out [MJ11, Vid10] by MPEG.

Several methods have been proposed in the literature in order to address the disocclusion
problem. They can be classified into three main categories: (1) depth map pre-processing
[DSF`12, ZT05], (2) image domain warping [FWL`11], and (3) disocclusion/hole filling [MFY`08,
MFY`09, TFS08, MSD`08].

Methods belonging to the first category pre-process the depth maps in a way that no disocclu-
sions occur. Usually, the depth map is smoothed, using a symmetric [Feh04] or asymmetric filter
[ZT05], to reduce depth gradients in the depth map. These methods show good results when small
baselines need to be compensated. On the other hand, geometrical distortions can be observed
in both foreground and background texture regions. In order to minimize filter-induced distor-
tions, new adaptive filter methods have been proposed [DSF`12, LH09, KMNN13, KMMNN13].
These filters smooth the depth map only in the vicinity of strong depth gradients that are able
to uncover holes in the virtual view. Hence, filter-induced artifacts are diminished.

Methods belonging to the second category utilize image domain warping to overcome the disoc-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Depth image-based rendering results for frame 95 of the “Book Arrival” sequence. A
baseline of 130 mm is used. (a) Original view. (b) Corresponding depth map. (d)
Virtual camera view computed with (c) the Gaussian filtered depth map. (e) Warped
virtual view generated based on the original depth map in (b). (f) Corresponding
warped depth map with disocclusions (marked black). (g) Result of line-wise filling
approach (see artifacts at the person’s back). (h) Result of the proposed view synthesis
method for static backgrounds (cf. Ch. 3)

clusion problem. Plath et al. [PKGS13], Farre et al. [FWL`11] and Stefanoski et al. [SWL`13]
superimpose and deform a regular structured grid over an image and solve an optimization prob-
lem in a way that the holes in a synthesized view are covered. However, these technologies can
only be used to compensate small baseline shifts in an extrapolation scenario and they further
introduce distortion artifact in the virtual view.

Methods belonging to the third category fill the disocclusions with plausible, known image in-
formation. Müller et al. [MSD`08] utilize line-wise filling to synthesize the uncovered areas. For
each hole in the image, the background pixels at the hole boundaries are identified and copied
line-wise into the unknown area. The drawback is that this filling method can only reconstruct
uniform textures and horizontal edges. Ye et al. [YYH`14] propose a low-rank matrix restoration
model to inpaint disocclusion regions. Mori et al. [MFY`08, MFY`09, TFS08] and Bang et
al. [BKY`11] utilize classical image inpainting methods [BSCB00, Tel03] to cover the unknown
areas. Lee et al. [LH11] and Ko et al. [KKY13, KY14] applied weighted average filtering in order
to fill the uncovered areas. Do et al. [DBZdWPHN11, DBZdWPHN12] proposed a weighted
interpolation which considers the background samples alone. The drawback of simple inpaint-
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ing [MFY`08, MFY`09, TFS08], average filtering [KKY13, KY14], and interpolation methods
[DBZdWPHN11, DBZdWPHN12] is that the synthesized textures are blurred. However, these
algorithms are run-time efficient. Wenxiu et al. [WAX`14] consider the filling of the uncovered
areas as an optimization problem and use a Gauss-Seidel-based iterative approach to minimize
an energy function. Hsu et al. [HAXH14] proposed a method that enforces the spatial and tem-
poral consistency in the disocclusion regions by formulating the hole filling task as an energy
minimization problem in a MRF framework. However, both approaches [HAXH14, WAX`14]
are very complex and can just be utilized for holes within the virtual view and not for the large
out-of-region area at the border of the virtual frame.

Ahn et al. [AK13], Ma et al. [MDdWPHN12], Daribo et al. [DS11] and Xi et al. [XWY`13]
utilize patch-based texture synthesis [CPT04, KDNN09, DKNNW10, NNKDW08, GLM14] to fill
the unknown areas in the virtual view. However, appropriate pre- and post-processing steps are
not applied [AK13, MDdWPHN12, XWY`13, DS11]. Hence, these filling approaches can lead
to garbage-growing and blocking artifacts. Nevertheless, patch-based texture synthesis methods
usually result in visually pleasing synthesis outcome but are rather complex and time-consuming.

Another problem of hole filling methods for DIBR is to maintain the temporal consistency in the
virtual views, particularly in the uncovered areas. In extrapolation scenarios large portions of the
texture may become uncovered and the temporal consistency in the computed region is important
for a visually pleasing outcome. Therefore, methods that tackle this issue are presented in the
following. Yao et al. [YTZ`14] first compute a stable background image using the Gaussian
Mixture Model (GMM). This background image is then used to fill the disocclusions. Areas
that cannot be covered from the background image are filled using a regular texture synthesis
method [CPT04]. However, Yao et al. [YTZ`14] report, that the GMM introduces blur into
the background. Xi et al. [XWY`13] and Schmeing et al. [SJ10] use a mosaic/sprite to store
background information from neighboring frames for further reuse during the filling process. The
drawback of the methods proposed in [YTZ`14, SJ10, XWY`13] is that they are restricted to
sequences with static background. Furthermore, the method proposed by [SJ10] et al. requires
manual disocclusion correction. Chen et al. [CTL`10] assume that the original views are encoded
with H.264/AVC and use the motion vectors from the bit stream to find appropriate information
in temporally shifted frames. However, the motion vectors in H.264/AVC are sparse and encoder
optimized. This can yield motion vectors that are different from the real motion. Hence, only
small objective and subjective gains are reported in [CTL`10]. Stefanoski et al. [SWL`13] apply
a temporal smoothness constraint in their image-domain warping approach to minimize temporal
artifacts. Hsu et al. [HAXH14] use a temporal term in their energy function while they solve a
minimization problem in a MRF. Ko et al. [KKY13, KY14] consider the image information of a
previous frame in their weighted average algorithm. In such a way, temporal artifacts are reduced
but the synthesized textures become blurrier.
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Figure 2.4: Extrapolated and interpolated virtual camera views from two original views.

2.3 General Formulation of the View Synthesis

In this section, the general warping is described for rectified MVD data material as provided by
MPEG for 3D video standardization. A detailed description for other setups and arbitrary view
synthesis can be found in [AK13, Feh03, HZ03]. The MPEG test data provides several textured
views and the associated depth maps showing a scene from slightly different viewing points (cf.
Appx. A).

In the following, the image to be filled is denoted as Fc,n and the associated depth map as Dc,n.
The subscript c denotes the spatial camera position (cf. Fig. 2.4), with c P R and n denotes
the actual frame number of the sequence with n P N. (c.f. Fig 2.4). Hence, Fc,n refers to the
nth frame at the cth spatial camera position in a sequence. In the proposed frameworks the
two view MVD format is utilized. The outermost virtual left camera position (cf. Fig. 2.4, left
grey camera) is set to c “ 0. The baseline between two adjacent original views corresponds to
an increment of c by one. Consequently, c is set to one, two and three for the remaining views,
i.e. the original left (cf. Fig. 2.4, left black camera), the original right (cf. Fig. 2.4, right black
camera) and the outermost virtual right camera (cf. Fig. 2.4, right grey camera). Holes in a
textured image and in a depth map are referred to as Ω and Γ, respectively. The original texture
in a frame is referred to as F o with F o Ă F zΩ and the synthesized texture in a frame is referred
to as F s. A pixel position in a textured image or in a depth map is denoted as px, yq.
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Figure 2.5: Disparity shifts for the extrapolation scenario. A line of pixels in the reference view
(top line) is shifted to the virtual views (middle line, bottom line) using the disparity
values (2,4). The lower the disparity values, the higher the real distance. © [2016]
IEEE.

2.3.1 Rectified Camera Setup

The sample shifts which are necessary for the warping routine can be obtained by computing
disparity values disp from the inversely quantized depth data stored in D:

disppx, yq “ l ¨ b
Dpx, yq

255 ¨

ˆ

1
zmin

´
1

zmax

˙

`
1

zmax
, (2.2)

where the focal length l and the camera baseline b have to be known. b represents the spatial dis-
tance between two original cameras. The variable disppx, yq is the disparity value which specifies
the distances of a sample in the first camera to the same sample in the second camera. For vir-
tual intermediate or extrapolated views the disparity values have to be adapted according to the
distance of the virtual view to the original view. zmin and zmax represent the original minimum
and maximum depth values which have to be signaled with the 3DV format. For a half-baseline
distance, the disparity values need to be scaled to 0.5 ¨ disppx, yq. For rectified camera setups, the
vertical position in the virtual view is the same as in the original image.

Considering two original cameras F1,n and F2,n with a baseline distance of one, then the sample
position in an intermediate virtual view Fc,n at position c “ 1 ` k and k P r0, 1s are related to the
original views as follows [MMW10]:

Fc,npx ` k ¨ disppx, yq, yq “ p1 ´ kq ¨ F1,npx, yq ` k ¨ F2,npx ` disppx, yq, y2q, (2.3)

where the variable disppx, yq describes the disparity value from a sample in the left camera px, yq

to the same sample in the right original pxr, yrq in a way that x ` disppx, yq “ xr.
Considering the extrapolation scenario, where the virtual view is located outside the range of

the two original views than the virtual views F0,n and F3,n (cf. Fig. 2.4, grey cameras) can be
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2.3 General Formulation of the View Synthesis

related to the original cameras as follows (cf. Fig. 2.5):

F0,npx ´ k ¨ disppx, yq, yq “ F1,npx, yq, (2.4)

F3,npx ` k ¨ disppx, yq, yq “ F2,npx, yq. (2.5)

By choosing a value for the parameter k, the distance between the original and the virtual camera
is selected. Usually, k is set to the viewing distance between original views, so that k “ 1 represents
the original camera baseline (c.f. Fig. 2.5). Accordingly, for classical view interpolation between
original views, k ranges between 0 and 1. In an extrapolation scenario, the parameter k can
receive higher values than one or even negative values. For example, if k “ 1.5, the distance is
set to one and a half baseline (cf. Fig. 2.5).
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3 View Synthesis Method for Sequences with
Static Background

In this chapter, a new view synthesis method is described. This method is designed to synthesize
temporally consistent virtual views from sequences with a static background and their associated
depth maps.

The proposed view synthesis method for sequences with static background [NNKD`11] is out-
lined in Sec. 5.1. The new depth map filling is explained in Sec. 3.2. The novel sprite and image
updating routine is presented in Sec. 3.3. In Sec. 3.4 and 3.5, the new initialization and texture
synthesis approaches are outlined. In Sec. 6, experimental results are shown.

3.1 Proposed View Synthesis Framework for Sequences with Static
Background

The proposed framework for virtual view generation with time-consistent texture synthesis is
outlined in Fig. 3.1. The textured images and the associated depth maps of a MVD sequence are
taken as input. Depth maps are provided with the test data. Next, the original views are warped
towards the virtual positions using the information in the depth maps. For this, an algorithm
similar to [TFS08] is utilized. The warped image shows holes in the disoccluded background
areas [cf. in Fig. 2.3 (e)]. In addition, the depth maps are also projected [cf. Fig. 2.3 (f)] for a
foreground-background separation in the texture synthesis stage. According to the original scene
capturing setup, background motion in all views may occur. These cases are tackled in Ch. 4.
However, this framework is focused on sequences with static backgrounds similarly to Schmeing
and Jiang [SJ10]. Note, that the proposed algorithm is fully automatic, i.e. in comparison to
[SJ10] no manual disocclusion correction is required and illumination changes can be seamlessly
compensated. The goal of the new view synthesis algorithm is to fill the disocclusions (holes)
resulting from the warping process. They become visible in both the virtual depth map and
the textured image and must be filled in a visually plausible manner. For video sequences this
includes a temporally stable synthesis process, i.e. information from temporally neighboring
frames should be taken into account. For minimizing the processing delay, only causal neighbors
are considered in this chapter. Temporal consistency is achieved with a background sprite, which
stores background information from processed frames. In a first step, the disoccluded areas in
the depth map are filled with a new method as shown in Sec. 3.2. The background sprite is
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Projection Projection

Depth Map Filling
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Figure 3.1: Block diagram of the proposed view synthesis framework for sequences with static
backgrounds.

then updated with known background information from the current picture. Next, the holes in
the current picture are updated from the background sprite (cf. Sec. 3.3). The remaining holes
are first initializing from spatially adjacent original texture, providing an estimate of the missing
information (cf. Sec. 3.4). In the next step, patch-based texture synthesis is used to refine the
initialized areas (cf. Sec. 3.5). The background sprite is finally updated with the synthesized
image information for temporal consistency during the filling of holes in the subsequent pictures.

3.2 Filling Disocclusions in the Depth Map

Given the properties of the depth-based image warping, larger uncovered areas mostly belong
to background objects. The depth map is represented as an 8 bit gray scale image, denoted as
D in the following (cf. Sec. 2). The continuous depth range of the scene is quantitized to the
discrete depth values, assigning the value 255 to the point that is closest to the camera and 0 to
the most distant point. In Fig. 3.2 (a) the uncovered area in the depth map is denoted as Γ and
the corresponding boundary is denoted as δΓ. δΓ corresponds to the outer boundary of Γ and
consists of known background depth values. Due to inaccuracies in depth estimation, foreground
object boundary samples may be warped into Γ [denoted as “blobs” in the following, Fig. 3.2
(a)]. One possibility to proceed is to fill the last known background depth value Dpx, yq, with
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3.2 Filling Disocclusions in the Depth Map

Γ

Blob

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Results for picture 1 of the ”Newspaper” sequence for the proposed depth map and
texture filling approach. (a) Depth map with disoccluded area marked black (filling
direction given by white arrows). (b) Line-wise filling of depth map without blob
removal. (c) Result of proposed depth map filling approach. (d) Original reference
image. (e) Result of MPEG VSRS. (f) Result of the proposed approach.

px, yq P δΓ, line-wise into δΓ, as proposed in [MSD`08] [cf. Fig. 3.2 (c)].

In this work a different approach is proposed. First, small blobs in Γ are assigned to Γ, as
they are assumed to correspond to noise and may otherwise lead to noticeable inaccuracies in
the filled depth map [cf. Fig. 3.2 (b) and (c)]. Subsequently, a verified Dpx, yq value is copied
line-wise into Γ. It is assumed that relying on a single value of Dpx, yq can be error-prone.
Hence, the spatial neighborhood surrounding location px, yq is clustered into two depth classes,
whose centroids are represented by c

px,yq

min and c
px,yq
max . They represent foreground and background

depth values respectively (cf. Fig. 3.3). The neighborhood is given by a squared area of m ˆ m

samples (m P N) and centered at location px, yq. c
px,yq

min and c
px,yq
max are computed via k-means

clustering [Bis06] determining two different clusters. After c
px,yq

min and c
px,yq
max are estimated, the

depth information at locations pu, vq P Γ are extrapolated along the row (i.e. y “ v). The
selection criterion for the depth values to be filled at locations pu, vq is defined as follows:

Dpu, vq “

$

&

%

Dpx, yq, if Dpx, yq ď c
px,yq

min

c
px,yq

min , otherwise
, pu, vq P Γ ^ v “ y, px, yq P δΓ, (3.1)

where y and v correspond to the row coordinates of locations pu, vq and px, yq respectively.
Background-foreground clustering and subsequent line-wise filling is done for all px, yq P δΓ. By
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m

m

(a) (b)

Figure 3.3: (a) Depth map with highlighted neighborhood (square) centered at px, yq. (b) His-
togram of considered neighborhood with the two centroids c

px,yq

min and c
px,yq
max , clustered

via k-means. Please note that hole samples [black in (a)] are not considered in the
histogram.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: DIBR results for the “Book Arrival” sequence. (a) Original reference image 52. (b)
Rendered image with disoccluded area marked white. (c) Final background sprite
with unknown areas marked white and its associated depth map (d). (e) Result
of VSRS_alpha_ETRI [BKY`11]. (f) Result of the proposed approach. (g) and
(h) Magnified results. Left, VSRS_alpha_ETRI [BKY`11] and right, the proposed
approach.

using the proposed depth map filling method, the robustness to artifacts in depth map filling
is increased. The computed

!

c
px,yq

min

)

values are stored in order to be used for image and sprite
updating as explained in the next section.
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3.3 Sprite and Image Updating

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: DIBR results for the “Mobile” sequence. (a) Original reference image 185. (b) Ren-
dered image with disoccluded area marked black. (c) Final background sprite with
unknown area marked black and its associated depth map (unknown area marked
white) (d). (e) Result of Ahn et al. [AK13]. (e) Result of the proposed approach. (g)
and (h) magnified results. (g) Ahn et al. [AK13] and (h) proposed approach.

3.3 Sprite and Image Updating

The background image information and its associated depth values are stored in a background
sprite, denoted as S [cf. Fig. 3.4 (c) and Fig. 3.5 (c)] and a depth map sprite, denoted as G

[cf. Fig. 3.4 (d) and Fig. 3.5 (d)]. These sprites accumulate valuable information for rendering
textured images. In fact, by referencing the sprite samples for filling unknown area in the current
picture, the synthesis is temporally stabilized.

3.3.1 Sprite Update

For each new picture, denoted as F , the depth values of all sample positions pm, nq P DzΓ are
examined to determine the samples that can be considered for the sprite update. For that, the
following content-adaptive threshold is computed:

cmin “

$

&

%

c
px,yq

min

´

|δΓ|`1
2

¯

, if |δΓ| is odd
1
2

”

c
px,yq

min

´

|δΓ|

2

¯

` c
px,yq

min p
|δΓ|

2 ` 1q

ı

, if |δΓ| is even
, (3.2)

where cmin is the median value of the sorted c
px,yq

min values denoted as c
px,yq

min p1q ... c
px,yq

min p|δΓ|q.
Hence, all samples with a depth value below cmin are eligible for a sprite update.
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Figure 3.6: (a) Seamless cloning principle. (b) Cloning application of the view synthesis frame-
work.

Depth values below cmin are assumed to describe the background, while the remaining values are
assigned to the foreground. Due to the mentioned inaccuracies in the depth estimation step, depth
estimates along background-foreground transitions and within the uncovered area in P , denoted
as Ω, are considered as being unreliable. Therefore, a two sample wide area around the unreliable
regions is not considered for a sprite update. The remaining locations with Dpm, nq ă cmin are
stored in the background sprite S, and depth map sprite G, respectively. Previously assigned
color or depth information is overwritten in S and G. After the synthesis step (cf. Sec. 3.4 and
3.5), novel synthesized textures and depths are incorporated into the sprites as well.

3.3.2 Textured Image Update

The disoccluded regions of every frame F , are updated from the background sprite S. Sample
positions corresponding to samples in the background sprite with unknown background informa-
tion are ignored. The sample positions in S to be used for the update of the current frame F, are
selected as follows:

F px, yq “

$

&

%

Spx, yq, if Dpx, yq ă Gpx, yq ` β

F px, yq, otherwise
, @px, yq P Ω, (3.3)

where F px, yq and Spx, yq represent the intensity value at location px, yq in the current picture
and the background sprite respectively. Dpx, yq and Gpx, yq represent the depth value at location
px, yq in the extrapolated depth map and the depth map sprite respectively. The parameter β

allows some variance in the local background depth value. β is evaluated in Ch. 6. Note that Eq.
3.3 is applied to the chroma channels in the same way.

In order to take illumination variations into account, the covariant cloning method [Geo04,
Geo06, NNKDW08] is utilized to fit the background sprite samples to the intensity distribution
of the relevant neighborhood of the current picture. The term “cloning” or “seamless cloning”
denotes the process of replacing a region of a given picture by another content (often from a
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3.3 Sprite and Image Updating

different picture), such that subjective impairments are minimized. In [SYJS05], Poisson cloning
is used in texture synthesis to reduce the photometric seams in the gradient domain.

In order to explain the cloning principle, a known scalar function f˚ is define over the domain
F (F P R2). As indicated in Fig. 3.6 (a), δΩ represents the boundary of the unknown area
Ω P F . g is a function defined over the texture source R to be (partially) mapped onto Ω. f is
an unknown scalar function defined over Ω. The aim is to find f using the source function g and
the information available in δΩ. With covariant derivatives, the interpolated version f of f˚ can
be determined by minimizing the following cost function:

min
f

ż ż

Ω

˜

ˆ

B

Bx
` Ax

˙2
f2 `

ˆ

B

By
` Ay

˙2
f2

¸

dxdy, (3.4)

where B
Bx `Ax and B

By `Ay are called covariant derivatives [Geo06]. Ax and Ay represent matrices
that model adaptation properties of the human visual system.Solutions of Eq. 3.4 also satisfy the
Euler-Lagrange equation:

∆f “ ∆g
f

g
(3.5)

with the Dirichlet boundary condition:

f |δΩ “ f˚|δΩ (3.6)

where ∆ represents the Laplacian operator:

∆. “
B2.

B2x2 `
B2.

B2y2 “ 0 (3.7)

In this way, information on the boundary δΩ is diffused into Ω, such that the transition between
the source function g and F is smooth. Please note that for simplifying the cloning approach,
the quotient f{g from Eq. 3.5 is approximated by a constant. The quotient is set to f{g “ 1,
which transforms Eq. 3.5 exactly to the corresponding one in the work by Pérez et al. [PGB03].
The notations of covariant cloning, in the context of the proposed view synthesis framework, are
illustrated in Fig. 3.6 (b). It can be seen that boundaries of the area covered by the background
sprite, when mapped onto Ω in the current frame F , are either adjacent to the non-reconstructed
area Ω or adjacent to the foreground object [not shown in Fig. 3.6 (b)]. In this case the background
sprite area is represented by g. The cloned background sprite area then corresponds to f . As can
be seen in Fig. 3.6 (b), Ω may remain partially unknown. The current image is denoted as f˚ and
the boundary δΩ comprises the spatial neighbors of the background sprite samples. Due to the
presence of uncovered areas (foreground objects), the boundary conditions Eq. 3.6 for the region
Ω are incomplete, i.e. δΩ is undefined at these edges. Therefore the cloning method is adapted
to the given view synthesis framework by ensuring that only background samples in the current
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picture are considered as valid boundary conditions:
$

&

%

f |δΩ “ f˚|δΩ default

f |δΩ “ g|δΩ if δΩ undefined
. (3.8)

This modified boundary condition implies that the color information is only diffused into the
background sprite samples from those boundaries for which δΩ is defined. This diffusion process
is also called photometric correction.

The advantages of using information from previous frames is illustrated in Fig. 3.4 (e)-(h) and
Fig. 3.5 (e)-(h). The textures patterns remain their details.

3.4 Initialization of Textured Images

The remaining disocclusions after sprite and image updating are pre-processed with a new texture
initialization algorithm. First of all, the Laplacian equation [PGB03] is used to fill small holes in
the current image [cf. Fig. 3.7 (a) and (c)]. For the reconstruction of smooth regions this method
gives satisfactory results [cf. Fig. 3.7 (b) and (d)]. Good visual results are observed for holes
smaller than γ samples (e.g. γ is set to γ “ 50 samples), where Laplace cloning is about 10 times
faster than patch-based texture synthesis (cf. Sec. 3.5). Hence, after Laplace cloning, small holes
are regarded as finally filled and are not considered in the texture refinement step. For holes
larger than γ samples, the visual results of texture synthesis can be improved by using an initial
estimate of sample values (cf. Sec. 6.2.2). In this thesis, a new initialization method is proposed
that is based on the statistical properties of known samples in the vicinity of Ω. Generally, the
known samples constitute valid background samples, but in some cases the depth values at the
foreground-background transition are not reliable. Hence, the probability distribution of known
background sample values in the spatial neighborhood of the hole area is observed to be skewed.
In order to determine the background value from spatially adjacent samples, the median estimator
is used, which is the standard measure of end value location used in case of skewed distributions. A
window of samples sized 32ˆ32 and centered around the sample to be filled is considered. For each
unknown sample, a measure ζBG is set equal to the number of known samples that are classified
as background in the current window. The unknown samples are considered in decreasing order
of ζBG. A 2D median filter operates on the background samples in the current window and the
filtered output is used to initialize the unknown sample. The filtering operation can be viewed as
the process of extracting a valid background value from the spatially neighboring samples. This
serves as a coarse estimate that can be used at the texture synthesis stage to recover the details in
the unknown region. Using the described initialization scheme, the sensitivity of the patch-based
texture synthesis to outliers is fundamentally reduced (cf. Sec. 6.2.2).
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3.5 Texture Refinement via Synthesis

(a) (b) (c) (d)

Figure 3.7: Results for hole filling with Laplacian cloning. (a) (c) disoccluded areas black (a) or
white (c). (b) (d) Filled disocclusions. © [2011] IEEE.

3.5 Texture Refinement via Synthesis

In texture synthesis techniques the unknown region is synthesized by copying content from the
known parts (F o “ F ´ Ω) to the missing parts (Ω) of the image. Patch-based texture synthesis
is used in this work to refine the initialized areas. The patch filling order criterion introduced
by Criminisi et al. [CPT04] is utilized and extended in this work. Hence, the texture synthesis
method proposed by Criminisi et al. [CPT04] is reviewed in the next section.

3.5.1 The Texture Synthesis Method of Criminisi, Perez and Toyama

Criminisi et al. [CPT04] suggested to fill the unknown texture according to the content of the
image. They noticed that the success of the structure propagation highly depends on the filling
order. A patch is symbolized as Ψpx,yq centered at px, yq. The patch filling priority is computed
for all sample positions in δΩ and defined as the product of two terms:

P px, yq “ TConfpx, yq ¨ TDatapx, yq. (3.9)

The priority P of a sample px, yq is the product of the confidence term [TConfpx, yq] and the data
term [TDatapx, yq]. The confidence term indicates the reliability of the current patch and enforces
a concentric filling order while the data term encourages linear structures to be synthesized first.
The terms are computed as follows [cf. Fig. 3.8 (a)]:

TConfpx, yq “
1

|Ψpx,yq|
¨

ÿ

pu,vqPΨpx,yqXpF ´Ωq

TConfpu, vq, (3.10)

TDatapx, yq “

ˇ

ˇ∇KF px, yq ¨ upx, yq
ˇ

ˇ

η
, (3.11)

where |Ψpx,yq| is the area of Ψpx,yq. η is a normalization factor and set to η “ 255 for an 8-bit
image. upx, yq is a unit vector orthogonal to δΩ at the sample position px, yq. ∇K “ p´δy, δxq is
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Figure 3.8: Texture synthesis. (a) Notation, (b) Hole filling order from background data at the
texture refinement step.

the direction of the isophotes [cf. Fig. 3.8 (a)] and derived from the gradients in x and y direction.
The confidence term represents a measure of the amount of reliable pixels in the patch and

is initialized as follows: TConfpx, yq “ 1, @px, yq P F o and TConfpx, yq “ 0, @px, yq P Ω. The
data term is a function of the strength of the isophothes hitting the boundary of the hole. Hence,
broken lines tend to reconnect and thus realizing the “Connectivity Principle” of vision psychology
[CS01, Kan79]. Once all the priorities for the sample values in δΩ have been determined, the
patch with the highest priority (denoted as Ψppx,pyq) is selected for filling. Then, a block-matching
algorithm determines the best candidate patch (denoted as Ψppu,pvq) from the source region by
minimizing a distance measure (SSD) for the known sample positions in Ψppx,pyq. After finding the
best continuation patch, the unknown sample positions in Ψppx,pyq are filled with the sample values
from the corresponding known position in the continuation patch. Finally, the confidence term is
updated in the unknown region delimited by Ψppx,pyq:

TConfpx, yq “ TConfppx, pyq, @px, yq P Ψppx,pyq X Ω. (3.12)

The data term is updated by copying the data values from the best candidate patch to the
corresponding unknown sample positions in the highest priority patch.

3.5.2 Proposed Texture Synthesis Method

The approach of Criminisi et al. [CPT04] is enhanced in two ways in this work in order to meet
the new requirements of the DIBR framework. First, the gradients are calculated for the original
as well as the initialized samples (cf. Fig. 3.8 (b), Ωinit). This leads to a better isophote direction
compared to [CPT04]. Secondly, the filling order is steered in such a way that the synthesis starts
from the background area towards the foreground objects. For steering the filling direction, only
the border sample positions located in the background are assigned filling priorities according to
[CPT04] (cf. Fig. 3.8 (b), δΩ sample positions). When all priorities on δΩ are computed, a block
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3.6 Chapter Summary and Limitations

matching algorithm determines the best exemplar patch Ψppu,pvq to fill the missing samples in the
highest priority patch Ψppx,pyq. Ψppu,pvq is selected from all possible candidate patches Ψpu,vq in a
source area. An area A around the patch with the highest priority centered at ppx, pyq is defined
to be the source area. In the matching routine only the luminance channel is considered. Given
the filled depth map, the depth value of Ψpx,yq’s center is always known. All sample positions
in A with depth values higher than Dpx,yq ` β are excluded from the source area, i.e. they are
not considered as center position pu, vq of the candidate patches Ψpu,vq Therefore, the patches
are selected from corresponding depth regions, excluding foreground objects. To speed-up the
matching procedure, the source area is sub-sampled by a factor s. A and s are determined in
Sec. 6.2.4. The remaining source positions are used as center positions of the candidate patches
(Ψpu,vqq. The best continuation patch out of all candidate patches in the source area is obtained
by minimizing the following distance measure:

Ψppu,pvq “ arg min
Ψpu,vqPF 0

d
`

Ψppx,pyq, Ψpu,vq

˘

. (3.13)

Assuming that ψpu,vq and ψppx,pyq are vectorized versions of Ψpu,vq and Ψppx,pyq, then d p..., ...q is
defined as follows:

d
`

Ψppx,pyq, Ψpu,vq

˘

“

K
ÿ

i“1

´

ψ
pu,vq

i ´ψ
ppx,pyq

i

¯2
` ωΩ

KΩinit
ÿ

i“1

´

ψ
pu,vq

i ´ψ
ppx,pyq

i

¯2
, (3.14)

where K is the number of original and KΩ the number of initialized samples in ψpx,yq. ωΩ is a
weighting factor that regularizes the influence of the initialized samples on the overall cost. ωΩ

is determined in Sec. 6.2.2. To ensure smooth transitions between adjacent patches, an efficient
post-processing method, based on covariant cloning and similar to the photometric correction
method described in Sec. 3.3.2, is utilized. This post-processing approach is adapted to the
framework in such a manner that foreground objects are not considered as boundary samples (cf.
Sec. 3.3.2). Hereby, the selection of valid boundary samples based on the depth information is
novel.

3.6 Chapter Summary and Limitations

In this chapter a new hole filling approach which uses advanced texture synthesis methods
for DIBR is proposed. The algorithm works for large baseline extensions and generates spatio-
temporally consistent rendering results for 3-D sequences with a static camera setup. Each virtual
view image that shows disocclusions is compensated using image information from a causal picture
neighborhood via a background sprite. According to the scene capturing setup, background
motion may occur. However, this setup cannot be considered since the framework is lacking
a motion estimation stage. This issue is tackled in the framework presented in Ch. 4. The
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3 View Synthesis Method for Sequences with Static Background

residual uncovered areas that cannot be filled from the sprite are initially coarsely estimated and
then refined using a novel texture synthesis method. The visual outcome of the new synthesis
method highly depends on the quality of the depth map. Hence, depth estimation inconsistencies
especially at foreground-background transitions can lead to obvious degradation of the rendering
results.

30



4 View Synthesis Method for Sequences with
Global Background Motion

In the following, an extension of the view synthesis method described in Ch. 3 is described. In
comparison to the approach outlined in Ch. 3, the method proposed in this chapter can also be
applied for sequences with global background motion.

The proposed view synthesis method for sequences with global background motion [KWD`12a]
is outlined in Sec. 4.1. In Sec. 4.2 the novel warping routine is presented. The new method to
compensate global background motion is explained in Sec. 4.4 and 4.5. Experimental results are
shown in Sec. 6.

4.1 Proposed View Synthesis Framework for Sequences with Global
Background Motion

The proposed framework for DIBR with spatially and temporally consistent texture synthesis is
outlined in Fig. 4.1. The textured images and the associated depth maps are taken as input. Then
a new warping routine is applied which enhances both the spatial consistency and the run-time
efficiency. First, the original views and the associated depth maps are warped to the outermost left
and right positions beyond the original camera range. For this, an algorithm similar to [TFS08]
is used [cf. Fig. 4.2 (a)]. When the outermost views are synthesized, the remaining virtual
view in-between the available original and virtual camera positions, i.e. c “ 0 (virtual view),
c “ 1 (original view), c “ 2 (original view), c “ 3 (virtual view), are interpolated by applying an
extended version of the warping method proposed in [TFS08]. Hence, only the outermost views
need to be synthesized with a complex approach and the remaining virtual positions beyond the
original camera range can be interpolated using simple methods, since disocclusions are typically
reflected by small holes.

The goal of the new synthesis algorithm applied to the outermost views is to synthesize the
uncovered areas in a visually pleasing manner. In a first synthesis step, the virtual depth maps are
filled using the method proposed in Sec. 3.2. The filled depth information is used during image
registration, frame update and texture synthesis. Then, the uncovered areas in the textured
frames are tackled. In order to maintain the temporal consistency the texture information of
neighboring frames at the same spatial position is referenced. Since global background motion may
be present, the available information is registered to the coordinate system of the current frame
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Figure 4.1: Block diagram of the proposed view synthesis framework for sequences with global
background motion.

to be processed using a general-purpose registration method [PF06] [cf. Fig. 4.2 (d)]. When the
neighboring frames are registered to the new coordinate system, the holes in the current textured
frame are updated with reliable image information from the registered background textures [cf.
Fig. 4.2 (e)]. Hence, the temporal consistency in the unknown areas is improved, compared to
frame-wise filling. The incorporation of image registration into a view synthesis application to
compensate global motion is a new concept. Furthermore, a new hierarchical pattern is introduced
to determine both the processing order and the background texture source images registered to
the current coordinate system of the frame to be processed.

Since, the left and right outermost views are synthesized accordingly, the spatial camera position
of Fc,n (cf. Sec. 2.3) can be set to c “ 0 or c “ 3 during the descriptions in Sec. 4.4 and
4.5. Furthermore, the original texture in a frame is referred to as F o with F o Ă F zΩ and the
synthesized texture in a frame is referred to as F s. Fc,np and Fc,nf denote a previous and a
subsequent frame (in processing order) of Fc,n with its associated depth maps Dc,np and Dc,nf ,
respectively (cf. Fig. 4.5). Note that Fc,np and Fc,nf are not necessarily adjacent to Fc,n.

4.2 Warping Routine

In Fig. 4.3 the new warping routine, subdivided into initial and final warping, is outlined. Initially,
the original views and the associated depth maps are warped to the outermost left and right
camera positions (Fig. 4.3, gray cameras). Then, the disocclusions in these views are individually
filled applying the novel method presented in Sec. 4.4.2-4.5. The remaining virtual position
(cf. Fig. 4.3, white cameras) are interpolated during a final warping step from the available
synthesized (Fig. 4.3, gray cameras) and original cameras (cf. Fig. 4.3, black cameras). For
that reason, the work of Tanimoto et al. [TFS08] is extended in a way that it takes original (cf.
Fig. 4.3, black cameras) as well as virtual views (cf. Fig. 4.3, gray cameras) and the associated
depth maps as input. Employing the new warping routine improves the spatial consistency among
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4.2 Warping Routine

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: Frame 153 of the “GT-Fly" sequence, virtual view 1 rendered from camera 5. (a)
Current frame 153 to be processed, the disocclusions are marked white. (b) Filled
source frame 154. (c) Frame information that is used to register frame 154 to frame
153. Unused foreground regions are marked white. (d) Registered result of frame
154 with a PSNR value of 23.42 dB. (e) Information from frame 154 used to update
153 (green area is not used). (f) Frame 153 filled from the registered source frame.
Remaining disocclusions are marked green. (g) Final synthesized result of frame 153.
(h) Result of frame 153 rendered with VSRS-Alpha-Gist. © [2012] IEEE.
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Final Warping

Initial Warping Initial Warping

c=0 c=1 c=2 c=3

Figure 4.3: Illustration of initial and final warping.

adjacent views, especially in the synthesized areas. Due to the fact that only the outermost virtual
cameras (cf. Fig. 4.3, gray cameras) need to be rendered with a complex approach to achieve
visually pleasing results, the overall complexity decreases. Note that the complexity stems from
the fact that time-consuming patch-based texture synthesis operations are used for rendering of
the outermost views (cf. Sec. 4.5).

In Fig. 4.3 three intermediate cameras (cf. Fig. 4.3, white cameras) are interpolated. Never-
theless, depending on the application scenario, the number of interpolated views can be adjusted.

4.3 Depth Map Filling

The uncovered areas in the outermost virtual depth maps are filled using the method proposed
in Sec. 3.2. During the depth map filling procedure, an adaptive threshold (cmin) is automati-
cally computed. This threshold constitutes valuable information used to separate foreground and
background regions in the image, based on local depths (cf. Sec. 3.2).

4.4 Image Registration Pattern

The outermost views are utilized as anchor cameras for the computation of the remaining extrap-
olated virtual views (cf. Sec. 4.2). They are thus tremendously important for the overall visual
outcome. Therefore, the outermost views are processed with powerful but complex methods.
During the synthesis step, image registration is used to compensate global camera motion. The
incorporated image registration tool is outlined in the following section.

4.4.1 Image Registration with Partial Data

Image registration is a process of transforming different sets of data onto one common coordinate
system through geometrical mapping. The registration method used in this thesis is a general-
purpose registration, which can be applied in a broad application field [PF06]. The method works
intensity-based, which avoids the problem of choosing a proper feature descriptor and yields a
consistent transformation across the entire image. A local affine transformation with a global
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4.4 Image Registration Pattern

smoothness constrain is used to model the transformation between source and target images.
Furthermore, this registration framework allows content with missing or partial data.

Denote hpx, y, tq and hpx̂, ŷ, t´1q as the source and the target image with a temporal parameter
t. The basic local affine transformation is then modeled as:

hpx, y, tq “ hpφ1x ` φ2y ` φ5, φ3x ` φ4y ` φ6, t ´ 1q, (4.1)

where φ1, φ2, φ3, φ4 are the linear affine parameter and φ5 and φ6 are the translation parameters.
In order to estimate φ1, ..., φ6, a quadratic energy function is minimized:

Ebpφq “
ÿ

x,yPι

rhpx, y, tq ´ hpφ1x ` φ2y ` φ5, φ3x ` φ4y ` φ6, t ´ 1qs
2, (4.2)

where φ “ pφ1, ..., φ6qT and ι denotes a small spatial neighborhood.

Inherent to the model shown in Eq. 4.1 is the assumption that the sample intensities between
the source and the target image are similar. In order to take intensity variations into account an
explicit change of local contrast and brightness is incorporated into the original model (cf. Eq.
4.1):

φ7hpx, y, tq ` φ8 “ hpφ1x ` φ2y ` φ5, φ3x ` φ4y ` φ6, t ´ 1q, (4.3)

where φ7 and φ8 are new parameters that model the change of contrast and brightness. The
vector φ is modified to φ “ pφ1, ..., φ8qT .

Until now it is assumed, that the parameter are constant within a small spatial neighborhood.
However, there is a natural trade-off in choosing the size of this neighborhood. A solution for this
is to replace the assumption of constancy with a smoothness assumption. This means, that the
model parameter φ vary smoothly across the space. Hence, the smoothness constraint [Espφq] is
integrated in the energy function:

Epφq “ Espφq ` Ebpφq, (4.4)

where the smoothness constraint is defined as follows:

Espφq “

8
ÿ

i“1
λi

«

ˆ

Bφi

Bx

˙2
`

ˆ

Bφi

By

˙2
ff

. (4.5)

λi is a positive constant that controls the relative weight given to the smoothness constraint on
parameter φi. Subsequently, φ can be calculated in an iterative manner. Finally, a local affine
and smooth transformation is achieved.

Inherent to the model explained above is the assumption that each region in the source image
has a corresponding region in the target image. However, this is not always the case. In the
following, the image registration method is extended in order to handle partial or missing data.
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4 View Synthesis Method for Sequences with Global Background Motion

First, it is assumed that pixels in the source and target image are either related according to Eq.
4.3, denoted as model H1, or cannot be explained by this transformation and therefore belong
to an outlier model H2. Since there is no clear classification for each pixel at the beginning, the
likelihood function is applied in this model. Assuming that the pixels are spatially independent
and identically distributed the likelihood of observing a pair of images is given by:

Lpφq “ P pqpx, yqq, (4.6)

where, qpx, yq denotes the image intensities of the source φ7hpx, y, tq ` φ8 and the target hpφ1x `

φ2y ` φ5, φ3x ` φ4y ` φ6, t ´ 1q. To simplify the optimization of the likelihood function, the
log-likelihood function is considered with the priors on the models P pH1q and P pH2q:

log rLpφqs “
ÿ

x,yPι

log rwrP pqpx, yq|H1qP pH1q ` P pqpx, yq|H2qP pH2qs, (4.7)

where the weight wr is proportional to the likelihood of pixels which belong to model H1. Finally,
the Expectation-Maximization (EM) algorithm is used to estimate φ and proceeds as follows:

1. Initialization: initialize the estimated affine transformation matrix φ.

2. E-step: compute the weights wr.

3. M-step: estimate the model parameters φ.

4. Repeat steps 2 and 3 until the difference between successive estimates of φ is below a
specified threshold.

The EM algorithm allows a simultaneous segmentation and registration. Therefore, this model
still works even if image data is only partially available or missing. A heavy computational load
is one of the main issues of area-based approaches. Hence, a differential multi-scale framework is
implemented to improve it. Furthermore, a course-to-fine scheme is adopted in order to contend
with large motion.

In the method proposed in this chapter, global motion in the background areas should be com-
pensated. An area-based method is appropriate for this application. Another reason for choosing
this registration method is its ability of dealing with missing data, since partial information in
the images is unavailable after the warping procedure.

4.4.2 Hierarchical Prediction Structures

A pattern derived from the hierarchical prediction structure originally utilized in video coding
[SMW06] is used to determine the temporal frame processing order in the method proposed in
this chapter. Therefore, the general hierarchical prediction structure is outlined in this section
and the novel proposed pattern is explained in Sec. 4.4.3.
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4.4 Image Registration Pattern

A general hierarchical prediction structure has several hierarchical stages depending on the
GOP size, i.e. four for a GOP size of eight frames [SMW06] (cf. Fig. 4.4) and three in the
proposed framework (cf. Fig. 4.5). In Fig. 4.4, the black frames represent the first, the blue
frames the second, the red frames the third, and the green frames the fourth hierarchical stage. In
regular intervals, pictures of a sequence are assigned as key pictures (cf. Fig. 4.4, black frames).
All pictures that are located in-between the current key frame and the previous key frame are
used to build a GOP in [SMW06] (cf. Fig. 4.4). All pictures of a GOP, except the key frame, are
computed using the bi-hierarchical syntax and each of them has two reference pictures [SMW06]
(cf. Fig. 4.5).

Group-of-Pictures

1 2 3 4 5 6 7 8
Display Order

Coding Order
Time

0

4 3 5 2 7 6 8 10

Group-of-Pictures

9 10 11 12 13 14 15 16

12 11 13 10 15 14 16 9

Figure 4.4: Hierarchical coding structure with four temporal levels [SMW06].

Group-of-Pictures
Group-of-Pictures

1 2 3 4 5 6 7 8 9
Display Order
1 4 3 5 2 8 7 9 6
Processing Order

Time

Figure 4.5: Proposed hierarchical pattern used to determined both the temporal processing order
and the neighboring frames considered for the texture update routine.
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4 View Synthesis Method for Sequences with Global Background Motion

4.4.3 Proposed Image Registration Pattern

In coding scenarios, the key frames have the highest quality of the GOP, i.e. the lower the
stage, the lower the reconstruction quality. In the proposed method, this quality separation is
not considered.

Here, the hierarchical pattern is applied to determined both the temporal processing order and
the neighboring frames considered for the texture update routine (cf. Sec. 4.5). As an example,
Fig. 4.5 shows the processing order for the first nine frames of a sequence. In the proposed
framework, an overlapping GOP structure is introduced to connect the individual GOPs, leading
to global consistency within a virtual sequence. Each GOP structure considers five frames and
the associated depth maps loaded and processed as a unit. Images in one GOP are classified into
three temporal levels, as shown by three different colors in Fig. 4.5, i.e. the red frames represent
the first, the blue frames the second, and the green frames the third hierarchical stage. Images
marked in the same color belong to the same temporal level. The frames that point to the current
image to be processed (cf. Fig. 4.5) are registered to the actual coordinate system in order to
use existing original and/or synthesized textures. The key frame is the first frame of each GOP
as well as the last frame in previous GOP. The key frames are processed first as they are directly
or indirectly used as references. Furthermore, it is supposed that frames with large temporal
distance also show larger spatial differences, i.e. more image information can be used to fill the
holes.

According to the size of one GOP, each time a predefined number of frames are loaded and
processed. The number of frames in a sequence that can be computed using the GOP structure
(Np) is thus determined as follows:

Np “

$

&

%

Y

N
z´1

]

¨ pz ´ 1q ` 1, if
Y

N
z´1

]

¨ pz ´ 1q ` 1 ď N
´Y

N
z´1

]

´ 1
¯

¨ pz ´ 1q ` 1, otherwise
, Np, N P N, (4.8)

where N is the number of all frames in the sequence. z is the number of frames in a GOP and set
to z “ 5 (cf. Fig. 4.5). Furthermore, it is assumed that z ă N . The remaining frames (Fc,Np`1,
..., Fc,N ) are filled frame-wise utilizing patch-based texture synthesis (cf. Ch. 3).

In general, the disoccluded areas belong to the background textures (cf. Fig. 1.2). Therefore,
the affine transformation matrix is estimated in the background regions of the luminance signal
(Y) and then applied to all channels (YUV). Background and foreground textures are separated,
examining the depth values in the depth map with the automatically computed threshold cmin

(cf. Sec 3.2)
To decide whether the image registration was successful, the PSNR between Fc,n and the

registered frame Fc,np or Fc,nf is determined for the image region used in the registration step
[cf. Fig. 4.2 (c)]. If the PSNR measured in the luminance channel lies above a chosen threshold
(tpsnr), the registered frame is considered for updating frame Fc,n.

38



4.5 Frame Update and Texture Filling

However, in a set of objective evaluations, it was found that at least 80% percent of the image
information needs to be present to compute a reliable affine transformation matrix. Thus, if
necessary cmin is refined until 80% percent of the image information is available [cf. Fig. 4.2 (c)].
This means, that in some rare cases image locations from foreground/background transitions or
parts of foreground objects are considered during the transformation estimation.

4.5 Frame Update and Texture Filling

The registered frames [cf. Sec. 4.4.3 and Fig. 4.5, Fig. 4.2 (e)] provide valuable information for
frame updating. By referencing the registered samples for filling unknown areas in the current
picture, the synthesis is temporally stabilized.

The uncovered frames are processed in the temporal order depicted in Fig. 4.2. The pseudo
code of this procedure is shown in Algorithm 1. The outcome of the Update function, is a
synthesized frame. The Update function takes the current frame to be processed and one or two
registered images, i.e. Fc,np, Fc,nf , as input. The pseudo code for the Update function is shown
in Algorithm 2.

Algorithm 1: Pseudo code for GOP update
Data: Frames and associated depth maps.
Result: Synthesized frames.
begin

for i Ð 1 : 4 : Np do
if i ““ 1 then

Fc,iÐUpdate(Fc,i, [], Fc,i`4, Dc,i, [], Dc,i`4);
Fc,i`4ÐUpdate(Fc,i`4, Fc,i, [], Dc,i`4, Dc,i, []);
Fc,i`2ÐUpdate(Fc,i`2, Fc,i, Fc,i`4, Dc,i`2, Dc,i, Dc,i`4);
Fc,i`1ÐUpdate(Fc,i`1, Fc,i, Fc,i`2, Dc,i`1, Dc,i, Dc,i`2);
Fc,i`3ÐUpdate(Fc,i`3, Fc,i`2, Fc,i`4, Dc,i`3, Dc,i`2, Dc,i`4);

The samples from the registered frames corresponding to the hole positions in the actual frame
are considered as candidates for the update (cf. Algorithm 2). Original texture is used primarily
and synthesized data as fall-back. An available pixel position Fc,nppx, yq or Fc,nf px, yq in a reg-
istered frame is used to fill Fc,npx, yq, px, yq P Ω in Fc,n, if the associated registered depth value
Dc,nppx, yq or Dc,nf px, yq, is in the depth range of Dc,npx, yq (cf. Algorithm 2). The depth values
indicate the relative distance of an object to the camera. Therefore, they can be considered as a
valid criterion to decide whether the texture belong to the same depth range. This is formalized
as follows:

Dc,npx, yq ´ β ă Dc,np{nf px, yq ă Dc,npx, yq ` β, (4.9)

where β is a parameter to account for small variations in different depth maps (cf. Sec. 3.3.2).
If two values Fc,nppx, yq and Fc,nf px, yq qualify for updating Fc,npx, yq then the following applies
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Algorithm 2: Pseudo code for the Update function
Data: Fc,n, Fc,np, Fc,nf , Dc,n, Dc,np and Dc,nf .
Result: Updated and subsequently synthesized frame Fc,n.
begin

for each pixel position p in Ω in Fc,n do
if F o

c,nppx, yq and F o
c,nf px, yq are in depth range (cf. Eq. 4.9) then

Compute new texture value (cf. Eq. 4.10);
else if F o

c,nppx, yq or F o
c,nf px, yq is in depth range (cf. Eq. 4.9) then

Choose texture value in depth range;
else

Take no action;

for each remaining pixel position p in Ω in Fc,n do
if F s

c,nppx, yq and F s
c,nf px, yq are in depth range (cf. Eq. 4.9) then

Compute new texture value (similar to Eq. 4.10);
else if F s

c,nppx, yq or F s
c,nf px, yq is in depth range (cf. Eq. 4.9) then

Choose texture value in depth range;
else

Take no action;

Fill remaining holes in Fc,n using texture synthesis.

(cf. Algoritm 2):

Fc,npx, yq “
Fc,nppx, yq ` Fc,nf px, yq

2 , Fc,npx, yq P Ω. (4.10)

In order to fill the remaining disocclusions Fc,n that can not be copied from Fc,np or Fc,nf , the
method proposed in Sec. 3.4-3.5 is applied. First, small blobs are closed with Laplace PDE. Then,
the large holes are initialized and subsequently optimized with patch-based texture synthesis [cf.
Fig. 4.2 (g)]. To account for intensity variations between adjacent patches, covariant cloning is
used.

4.6 Chapter Summary and Limitations

In this chapter a new method to handle the disocclusion problem in DIBR is introduced, especially
for the extrapolation scenario. First, a new warping scheme is presented, which is divided in two
steps, i.e. initial and final warping. In the initial warping step, the outermost virtual cameras
beyond the viewing range of the original cameras are synthesized with a new approach. Then, all
remaining views are computed in the final warping step between the original and rendered out-
ermost cameras using a fast state-of-the-art method. Hence, the overall complexity is minimized
and spatial consistency between adjacent extrapolated views is maintained, particularly in the
synthesized areas.

The new synthesis approach uses image information from previous and subsequent frames to
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reduce artifacts in unknown areas. To compensate global motion in a sequence, image regis-
tration is incorporated into the framework. Hereby, a novel strategy derived from the general
GOP structure is utilized to take the image content from temporally surrounding frames into
consideration. The image registration method estimates affine global transformation parameters
between the source and the target image. However, if several distinct motions are present in the
background of the sequence, the registration tool is unable to represent all of them, leading to
falsely estimated transformation parameters.

41





5 Hybrid View Synthesis Method

In the previous chapters and in several recent publications [AK13, MDdWPHN12, DS11, KNND`10,
KWD`12b, KWD`12a, NNKD`10, NNKD`11, XWY`13], it was shown, that patch-based non-
parametric texture synthesis is a proper technique to synthesize missing regions in virtual views in
a visually plausible manner. However, these methods are very complex and thus time-consuming.
In this chapter, a novel hybrid synthesis framework is described that overcomes this complexity
issue providing a similar or even better visual outcome. A new patch-based and a novel fast para-
metric texture synthesis method are combined in an innovative way to compute the uncovered
image areas.

The proposed hybrid framework [KMW16] is presented in Sec. 5.1. The pre-processing is
explained in Sec. 5.2. The hybrid texture synthesis approach is outlined in Sec. 5.3. Finally, in
Sec. 5.4 this chapter this summarized. In Ch. 6, experimental results are shown.

5.1 Proposed Framework

The proposed framework is outlined in Fig. 5.1. The framework takes the original frames and the
associated depth maps as input signals (cf. Fig. 1.3). A state-of-the-art warping routine, similar
to the method proposed in [TFS08] is utilized to shift the original images, the pre-processed images
and the depth maps to the extrapolated virtual camera position (cf. Fig. 1.3). To fill the uncovered
areas in the virtual views, a new hybrid texture synthesis method is proposed. The proposed
approach combines the advantages of parametric and patch-based texture synthesis. As explained
in Sec. 2.1, parametric texture synthesis is faster than patch-based synthesis, but is efficient only
for textures with similar appearance and fails in the presence of a heterogeneous texture segment,
i.e. when the segment is composed of several texture sources. Hence, a new patch-based texture
synthesis is first used at texture boundaries to split the hole into several homogeneous texture
segments. Then, a fast parametric approach is applied to synthesize the separated texture regions
with an improved likelihood to generate better results. Furthermore, new quality assessment tools
are introduced to identify an appropriate training area and to rate the quality of the parametrically
synthesized area. To utilize the hybrid texture synthesis method properly, it is important to
identify appropriate structures and object boundaries. This is a challenging task, especially when
texture patterns appear. Such patterns could be regular, near regular or irregular [XYXJ12] and
can be falsely identified as boundaries. In order to improve the detection of the relevant texture
transitions, a pre-processing step [XYXJ12] is incorporated into the framework and applied on the
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Figure 5.1: Block diagram of the proposed hybrid view synthesis framework. © [2016] IEEE.

textured images prior to the warping routine. The pre-processing step improves the distinction
of heterogeneous texture segment tremendously. In detailed experiments (cf. Ch. 6), it is shown
that the proposed hybrid view synthesis approach is faster than patched-based state-of-the-art
methods and provides similar or even better subjective and objective results.

5.2 Pre-Processing

In the pre-processing step, texture separation is used to separate the structure and object bound-
aries from texture areas. The aim is to preserve the main borders of objects and edges, while
smoothing the remaining parts. This is due to the fact that in the synthesis step the texture
transitions are determined based on the isophotes. The isophotes are derived from the gradients
in X and Y direction. Hence, a simple low-pass filter can not be applied to meet the requirements.
Therefore, an edge preserving filtering method is incorporated. The approach proposed by Xu
et al. [XYXJ12] is chosen due to the fact that the authors outperform alternative state-of-the-
art methods and provide promising results. However, other edge preserving smooth filters may
further improve the performance of the new hybrid method. The filter proposed by Xu et al.
[XYXJ12] is applied frame-by-frame. But, in experiments (cf. Sec. 6.4.1) it was figured out that
the filter separates the texture classes better in a bi-cubic down-sampled image [cf. Fig. 6.7 (e)].
The proposed pre-processing method is shown in Fig. 5.2 and evaluated in Sec. 6.4.1. The filtered
image is denoted as H with its sample locations p “ px, yq. The filtering approach, applied to
the down-sampled frames, is presented in the following.
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Pre-
Processing

Down-Sampling Up-Sampling

Figure 5.2: Pre-processing method used in the hybrid texture synthesis framework. The input
image is bi-cubically, down-sampled to half resolution. Then the filter proposed by
Xu et al. is applied [XYXJ12] to the image. The filtered outcome is subsequently
bi-cubically up-sampled to full resolution. © [2016] IEEE.

5.2.1 Relative Total Variation Smoothing

Xu et al. proposed a method for the extraction of contours from images by taking the Relative
Total Variation (RTV) into account [XYXJ12]. RTV is defined as follows:

Dxppq

Lxppq ` ν
`

Dyppq

Lyppq ` ν
, (5.1)

where
Dp.qppq “

ÿ

pPRppq

gpp,qq ¨ }pBp.qHqq} (5.2)

is the total variation in a window R centered at p and

Lp.q “ }
ÿ

pPRppq

gpp,qq ¨ pBp.qHqq} (5.3)

measures the overall spatial variation. gpp,qq is a weighting function defined according to the
spatial affinity. ν is a very small value to prevent divisions by zero. The structure layer of the
separation is supposed to have a small RTV, leading to the following function:

arg min
H

#

ÿ

p
pHp ´ Fpq2 ` λ ¨

Dxppq

Lxppq ` ν
`

Dyppq

Lyppq ` ν

+

. (5.4)

This function is non-convex. Hence, the authors suggested an iterative numerical solution.

In the next step, the pre-processed frame, the original frame and the depth map are warped to
the extrapolated virtual position. In the virtual frames, unknown regions become uncovered [cf.
Fig. 1.3 and Fig. 6.12 (a)].
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Figure 5.3: Utilized notation. F denotes the frame. The area to be filled is indicated by Ω, and
its contour is denoted as δΩ. ∇KHpx, yq “ p´By, Bxq represents the strength of the
isophotes measured in the pre-processed image H. Ψppx,pyq is the patch to be filled
having the highest priority. Ψppu,pvq is the best candidate patch.

5.3 Synthesizing Textures

As mentioned in Sec. 2.2, an appropriate technology for filling missing image regions with known
information is texture synthesis [CPT04, NNKDW08]. As proposed in the former chapters, the
unknown texture regions in the shifted pre-processed image and in the virtual frame are initialized.
For that, the initialization method proposed in Sec. 3.4 is utilized. The virtual depth maps are
filled applying the method outlined in Sec. 3.2.

In the following, a detailed description of the new hybrid synthesis approach will be given.

5.3.1 Proposed Dominant Structure Synthesis

In the proposed hybrid approach, a new patch-based texture synthesis method is utilized to
synthesize the dominant structures only. The method is a modification of the texture synthesis
approach outlined in Sec. 3.5.1. It is assumed that different classes of textures are separated by
dominant edges in the image. Hence, the remaining areas, which mostly contain texture patterns,
remain unfilled and can be subsequently computed using fast parametric texture synthesis. The
filling direction is steered from the background towards the foreground areas (cf. Fig. 5.3).
Based on the warping direction, the holes are either on the left (warping to the left) or on the
right (warping to the right) side of foreground objects, such that the background area can be
determined accordingly (cf. Fig. 1.3). Only background samples are considered as elements of δΩ
(cf. Fig. 5.3). In the proposed work, the filling priority (P ) of a sample px, yq P δΩ is computed
with the data term [CPT04] alone. Furthermore, the strength of the isophotes is measured in the
pre-processed image. In such a way, texture patterns are not considered as boundaries (cf. Fig.
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6.7). Hence, the priority can be computed as follows:

P px, yq “

ˇ

ˇ∇K
g Hpx, yq ¨ upx, yq

ˇ

ˇ

η
, (5.5)

where upx, yq is a unit vector orthogonal to δΩ at the sample location px, yq and ∇K
g C is the

strength of the isophotes in the pre-processed image. η is a normalization factor, which is set to
255 for an 8-bit image. In contrast to [CPT04], the isophote strength ∇KHpx, yq “ p´By, Bxq [cf.
Fig. 5.3 (a)] is computed separately for the RGB channels

`

∇K
R, ∇K

G, ∇K
B

˘

and only the highest
isophote magnitude is selected for a specific sample location px, yq:

∇K
g Hpx, yq “ max

“

∇K
RHpx, yq, ∇K

GHpx, yq, ∇K
BHpx, yq

‰

. (5.6)

Note, that experimental results were also carried out using the luminance information, i.e. the
Y-channel in YUV color space. However, they did not lead to satisfying results, as also color
edges play an important role. Hence, by using the highest isophote strength selected in the RGB
color space, the texture transitions are detected more reliably.

After computing all priorities of the sample positions in δΩ, a block matching algorithm de-
termines the best exemplar patch Ψppu,pvq to fill the missing samples in the highest priority patch
Ψppx,pyq. Ψppx,pyq is a squared patch centered at ppx, pyq with ppx, pyq P δΩ [cf. Fig. 5.3 (a)]. Ψppu,pvq is then
selected from all possible reference patches Ψpu,vq by minimizing a distance measure according
to Eq. 3.13. Assuming that ψpu,vq and ψppx,pyq are vectorized versions of the patches Ψpu,vq and
Ψppx,pyq, the cost function to find the minimal distance d

`

Ψppx,pyq, Ψpu,vq

˘

is defined as follows:

d
`

Ψppx,pyq, Ψpu,vq

˘

“

Q
ÿ

i“1

´

ψ
pu,vq

i ´ψ
ppx,pyq

i

¯2
` ωΩ

QΩ
ÿ

i“1

´

ψ
pu,vq

i ´ψ
ppx,pyq

i

¯2

`ωprev

Q`QΩ
ÿ

i“1

´

ψ
pu,vq

n´1,i ´ψ
ppx,pyq

n´1,i

¯2
,

(5.7)

where Q is the number of original and QΩ the number of initialized samples in ψppx,pyq. ωΩ is
a weighting factor that regularizes the influence of the initialized samples on the overall cost.
ψ

pu,vq

n´1,i and ψppx,pyq

n´1,i are the vectorized versions of the patches centered at pu, vq and ppx, pyq in the
previous frame n ´ 1. ωprev is a weighting factor that regularizes the influence of the samples
of the previous image. By including the third term in Eq. 5.7, the temporal consistency of the
synthesized outcome is improved.

When the best candidate patch is found, the unknown positions in Ψppx,pyq are filled from the
corresponding positions in Ψppu,pvq [cf. Fig. 5.3 (b)]. To smooth the transitions between adjacent
patches the post-processing step outlined in Sec. 3.5 is applied. P is updated accordingly by
copying the isophote magnitudes from the positions in Ψppu,pvq to the corresponding hole positions
in Ψppx,pyq. The filling process is conducted until all isophote magnitudes [P px, yq] of the samples
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Figure 5.4: Examples of AR models with different neighborhoods: (a-left) non-causal, (b-middle)
semi-causal and (c-right) causal.

in δΩ lie below a threshold tp. The value for tp is selected empirically in a way that all main
structures in the virtual view are synthesized. After computing the dominant isophotes, it is
assumed that the remaining texture segments to be filled are homogeneous and separated from
each other [cf. Fig. 6.7 (f)].

5.3.2 Spatial Auto Regressive Model

To reconstruct the remaining homogeneous texture areas, an auto-regressive model is used. The
AR model is a linear prediction model that attempts to express each value of a sequence as a
linear combination of preceding terms. In this thesis a two dimensional AR model is applied. The
general definition of a 2-D AR model can be expressed as follows:

pF px, yq “

ymax
ÿ

i“ymin

xmax
ÿ

i“xmin

αi,j ¨ F px ´ i, y ´ jq ` ϵpx, yq

with ϵpx, yq « Np0, σ2q and pi, jq ‰ p0, 0q,

(5.8)

where pF px, yq represents a synthesized sample at location px, yq in the current frame F . F px, yq

corresponds to known spatial neighbors. ymin, ymax, xmin and xmax characterize the order of the
model (cf. Fig. 5.4 and 5.5 ) and αi,j are the prediction coefficients with j P rymin, ymaxs and
i P rxmin, xmaxs. The function ϵpx, yq is a white noise process with zero mean and variance σ2, i.e.
Np0, σ2q, and denotes the innovation signal which drives (innervates) the AR model. Commonly,
white noise models can be represented by Gaussian, Laplacian, Poisson, Cauchy and Uniform
noises [HHH09], among others. Due to the fact that the (additive) Gaussian noise provides a
good noise approximation of many real-world applications (e.g. imaging systems) and generates
mathematically tractable models, the innovation term ϵpx, yq is typically represented by white
Gaussian noise. However, the white noise driven AR process is only a subset of a general set
of AR models [Kas80]. Hence, for other AR models different noise classes may also be a good
choice [Kok98], [LL89] (cf. Fig. 5.4). Fig. 5.4 illustrates AR models (non-causal, semi-causal and
causal) with different neighborhood structures. The pixel F̂ px, yq to be estimated is depicted in
red. Note that the “semi-causal” neighborhood can be extended in horizontal [cf. Fig. 5.4 (b)]
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Figure 5.5: 2-D causal coefficient model used in the proposed framework. © [2016] IEEE.

as well as in vertical directions. In the view synthesis application the filling is driven from the
background towards the foreground. Therefore, the image information is only available either on
the right or on the left side of the hole. Furthermore, the shape of the hole can vary, i.e. if the hole
is synthesized in a raster-scan order only the image information above the pixel to be synthesized
is certainly available. Hence, the causal AR model is chosen (cf. Fig. 5.5). With respect to Fig.
5.5 and Eq. 5.8, ymin “ xmin “ 0, xmax “ cx and ymax “ cy, where cx, cy represent the horizontal
and vertical orders of the AR model used in this thesis.

Before Ω can be filled, the model parameters have to be determined. According to Eq. 5.8,
there are three sets of unknown parameters: the samples pF px, yq, the coefficients αi,j and the
variance σ2 of the innovation process ϵ. pF px, yq will be obtained in the final completion step (cf.
Sec. 5.3.6). The first objectives are (1) to define a training area, (2) to estimate the optimal model
coefficients and (3) to calculate the variance σ2 of the white Gaussian noise.

5.3.3 Defining the Training Area

In order to select the optimal training area, a stationnarity criterion, which discards unreliable
parts, is presented. Unreliable textures are defined as causes of instationarities in a given training
area. The training area is defined adjacent to the hole in the background area (cf. Fig. 5.6) and
should be large enough. The training region is divided into blocks of size bx ˆ by (cf. Fig. 5.6).
Two blocks are considered in the horizontal direction (tx “ 2 ¨ bx). In the vertical direction, the
number of blocks (Nby ) is adapted to the hole size and thus calculated as follows:

Nby “

Z

Ωy

by

^

, (5.9)

where Ωy represents the height of the hole [cf. Fig. 5.6 (a)]. The height of the training area can
then be computed as follows: ty “ by ¨ Nby . The first block of the training area starts at the same
height (y position), as the hole occurs in the image.

The mean µblock and variance σ2
block of the samples in each block is calculated. µblock,j and

σ2
block,j pj “ 1, ..., 2 ¨ Nby q are used for outlier identification. If the absolute mean and variance

between the sample values of the two blocks is smaller than tµblock and tσ2
block

respectively, these

49



5 Hybrid View Synthesis Method

Hole (Ω)

ty

tx

by

bx

Ωy

Ωx
Training Area (T)

 

F Hole (Ω)

by

bx

Training Area (T)

 

F

Discarded 
Blocks

Fo
re

gr
ou

nd
 O

bj
ec

t

Fo
re

gr
ou

nd
 O

bj
ec

t

1 2

18

5

(a)

Hole (Ω)

ty

tx

by

bx

Ωy

Ωx
Training Area (T)

 

F Hole (Ω)

by

bx

Training Area (T)

 

F

Discarded 
Blocks

Fo
re

gr
ou

nd
 O

bj
ec

t

Fo
re

gr
ou

nd
 O

bj
ec

t

1 2

18

5

(b)

Figure 5.6: Illustration of the stationarity criterion for a training area adjacent to the unknown
area Ω. (a) The training region is divided into blocks (numbered from 1 to 18 in
this example) of size (bx ˆ by). (b) Using our stationarity criterion, certain blocks are
discarded from the training area. © [2016] IEEE.

two blocks are considered as neighbors, which contain statistically similar textures. tµblock and
tσ2

block
are selectable parameters (cf. Sec. 6.4). As a result, a set of segments is obtained. The

largest region is chosen as the validated training area [cf. Fig. 5.6 (b)]. Synthesis results are
shown in Fig. 5.7. It can be seen that significant visual improvements become visible, when gross
instationarities are discarded.

5.3.4 Estimating the AR Coeffecients

The optimal AR coefficients can be estimated as the solution to the following least square problem:

αCˆ1 “ arg min
α

}ySˆ1 ´ XSˆCαCˆ1}2 (5.10)

where α
`

α P RC
˘

is a vector containing the AR coefficients (cf. Fig. 5.5).

α “ rα1,0, α2,0, ¨ ¨ ¨ , αcx,cy sT . (5.11)

y py P RSq denotes the known samples F in the sub-training area [cf. Fig. 5.8 (b)]

y “ rF px0, y0q, ¨ ¨ ¨ , F px0 ` sx ´ 1, y0 ` sy ´ 1qsT . (5.12)
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5.7: Undo Dancer (virtual view 9 rendered from original view 5), Frame 1 (a)-(f) and
Newspaper (virtual view 4 rendered from original view 6) Frame 6 (g)-(l). (a), (g) Ω
is marked in green. (b), (h) The synthesis result, if the complete training area (c), (i)
is used. (d), (j) Synthesis result, if the validated trainings area (e), (k) is used. (f),
(l) The original reference image. © [2016] IEEE.
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Figure 5.8: Notation of the 2D-AR approach. For a better visualization the training area is placed
in the top-left corner.

and X
`

X P RSˆC
˘

represents the neighboring sample matrix for each of the samples in y:

X “

»

—

—

–

F pxo ´ 1, y0q F pxo ´ cx, y0 ´ cyq

... . . . ...
F pxo ` sx ´ 2, y0 ` sy ´ 1q F pxo ` sx ´ cx ´ 1, y0 ` sy ´ cy ´ 1q

fi

ffi

ffi

fl

(5.13)
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Furthermore, the subscripts in Eq. 5.10 represent the dimension of the vectors and matrices,
where C is the number of prediction coefficients. The causal neighborhood C is determined as
follows (cf. Fig. 5.5):

C “ pcx ` 1qpcy ` 1q ´ 1. (5.14)

S denotes the number of samples in the sub-training area (the number of linear equations), e.g.
using the neighborhood example in Fig. 5.8: S “ sxsy.

Hence, Eq. 5.10 can be solved with the closed-form solution:

α “ pXT Xq´1pXT yq. (5.15)

As the set of coefficients α minimizes the model error in a least-square sense, samples that
are unsuitable for completion in the current training area are assigned smaller coefficients, i.e.,
the AR model adapts to the local texture characteristics. In case Eq. 5.15 cannot be solved due
to non-invertible matrices XT X that are bound to appear, a pseudo inverse of the matrix XT X
can be determined [GK65]. The optimal coefficients are determined in the luminance signal of
an image. During the completion of the hole (cf. Sec. 5.3.6) these optimal coefficients are then
applied to all channels of the image. However, there exist also other efficient ways to estimate
the AR coefficients. Alternatively, the covariance method (Yule-Walker equations) can be used
[SP96].

5.3.5 Estimation of the Innovation Term

Once the AR coefficients have been estimated, the standard deviation σ2 of the innovation term
ϵpx, yq can be calculated using the completion error:

Err “
›

›ySˆ1 ´XSˆCαCˆ1
›

›

2 (5.16)

which is normalized by the size of the training area [SP96]:

σ2 “
Err

S
(5.17)

Note that Err is estimated on the same area as the one used to learn the AR coefficients,
i.e. the validated training area. The error term Err is determined by simulating a completion
Xα of the validated training area [cf. Fig. 5.6 (b)]. During the simulation, F is not modified.
This is done to ensure that the completion error only stems from the imperfectly predicted AR
coefficients and not from the use of synthesized samples in the completion (simulation) procedure.
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5.3.6 Completion of the Missing Area

Finally, all the model parameters have been estimated and Ω can be completed in a raster-scan
way. Hence, Eq. 5.8 is applied to each sample px, yq P Ω.

5.3.7 AR Verification Criterion and Fall-Back

Completion methods always have to deal with the issue that the example texture surrounding Ω
is finite. Hence, the best AR settings may still be an unsatisfactory compromise. In fact, it may
happen that no good fit (training area) is found for the current neighborhood. Furthermore, it is
possible that the estimated AR coefficients overfit the training data. If such wrong AR parameters
are used to complete the unknown area, an erroneous extrapolation of the existing texture will
be the consequence. Hence, an AR verification criterion is proposed in this work. Since the
completion process is derived from the initialization samples, i.e. the samples adjacent to Ω, the
statistical properties of the extrapolated and the training texture should be similar. If Fmin and
Fmax are the lowest and highest sample intensity values in the background neighborhood of the
hole, the synthesis is considered as unsuccessful if:

$

’

’

’

&

’

’

’

%

Fmin ´ τ ą pF px, yq

or with px, yq P Ω

Fmax ` τ ă pF px, yq

(5.18)

where τ is a threshold value that allows a small deviation from Fmin and Fmax. This effective
criterion is motivated by the observation that AR distortions typically lead to gross luma and
chroma variations that extremely deviate from the spatial context. In case the criterion Eq. 5.18
detects a failed synthesis, the patch-based texture synthesis approach proposed in Sec. 3.4 and 3.5
is used as a fall-back to reconstruct the missing area. The main difference of the method proposed
in Sec. 3.4 and 3.5 and the new hybrid synthesis approach (cf. 5.3.1) is that the former method
(cf. Sec. 3.4 and 3.5) considers both structure and texture in the patch-based filling routine.

5.3.8 Post-Processing

Finally, a specific post-processing filter is applied. In the texture synthesis steps (cf. Sec. 5.3),
the texture filling starts from the background towards the foreground objects. Due to this fact,
obvious transitions may occur between the boundary of the foreground object and the synthesized
area. To conceal these transitions, a Gaussian filter (window size: 3 ˆ 3, sigma: 0.5) is applied on
the foreground and synthesized background transitions. A transition boundary of four pixels is
considered. By applying the post-processing method, unnaturally sharp edges that occasionally
appear in the background/foreground transitions are blurred and thus invisible to observers.
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5.4 Chapter Summary and Limitations

In this chapter, a new method to fill uncovered areas in a DIBR framework is introduced. The
holes in the virtual views are reconstructed using a new hybrid texture synthesis approach com-
bining the advantages of patch-based and parametric methods. First, a new patch-based texture
synthesis is utilized to separate different texture classes, where only the transitions between several
homogeneous texture patterns are synthesized. To improve the detection of the important texture
transitions, an enhanced pre-processing module is incorporated into the framework. Subsequently,
a fast autoregressive parametric synthesis approach reconstructs the separated homogeneous tex-
ture classes by training its parameters in validated known texture regions. To select an appropriate
training area, a new stationarity criterion is proposed that is based on statistical texture simi-
larity. The parametric synthesis results are subsequently evaluated with a new quality criterion.
In case of identified errors in the parametrically synthesized areas, the texture synthesis method
proposed in Sec. 3.4 is used as a fall-back. Finally, a post-processing step is applied to improve
the background-foreground transitions in the virtual view. The proposed method computes the
uncovered textures frame-wise. This can lead to temporal inconsistencies. Hence, this framework
should be combined with the motion compensation methods proposed in Ch. 3 and Ch. 4.
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In this chapter, detailed experiments are described. In Sec. 6.1, the data set as well as the used
evaluation measures are defined. Then, the individual parts of the proposed frameworks presented
in Ch. 3, 4 and 5 are evaluated in Sec. 6.2, 6.3 and 6.4, respectively. Finally, in Sec. 6.5 the
overall experiments are shown.

6.1 Data Set and Quality Measures

For evaluating the proposed algorithms, eight MVD test sequences (textured images and depth
maps), provided by MPEG are used: “Book Arrival” (S1, 100 frames), “Lovebird1” (S2, 150
frames), “Newspaper” (S3, 200 frames), “Mobile” (S4, 200 frames), “Undo Dancer” (S5, 250
frames), “Ghost Town Fly” (S6, 250 frames), “Poznan Hall2” (S7, 198 frames) and “Balloons”
(S8, 300 frames). S1, S2, S3 and S8 have a resolution of 1024 ˆ 768 samples, S5, S6 and S7 have
a resolution of 1920 ˆ 1088 samples and S4 has a resolution of 720 ˆ 540 samples (cf. Appx. A).
The data set consists of real world (S1, S2, S3, S7 and S8) and computer graphic scenes (S4, S5,
S6) captured with a stationary (S1-S4) or a dynamic camera (S5-S8). The depth maps of the real
world scenes are estimated while the depth maps of the computer graphic scenes are computer
generated. The texture in the sequences varies from simple (S1, S7) to complex (S2, S3, S6, S8)
to very complex (S4, S5) (cf. Appx. A).

For each sequence, the rectified videos of several views with slightly different camera perspec-
tives are available. The baseline between two adjacent cameras corresponds to the eye distance
(« 65 mm) or the double eye distance (« 130 mm) for all test sequences. To assess the perfor-
mance of the proposed approaches one or two original, but not necessarily adjacent, cameras (left
and right view) are considered. The following two scenarios are evaluated, which are relevant for
multiview content:

• View extrapolation with a small baseline (« eye distance).

• View extrapolation with a large baseline (« double eye distance).

The extrapolation capabilities of the proposed approaches are evaluated as follows: an out-
ermost virtual view is rendered from an original sequence with its associated depth map. The
outermost views are evaluated by measuring the PSNR and the Structural Similarity (SSIM)
[WBSS04] in the luminance channel (Y-channel) [WBSS04] between the rendered frames and the
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original data. SSIM is provided in addition to PSNR, since PSNR is not always a reliable measure
to judge the quality of texture completion results [WBSS04]. A higher PSNR value is related to
a higher similarity between the original and the synthesized image. SSIM is normalized to values
between 0-1. Here, a value of one corresponds to identical images and thus maximum similarity.
In order to determine the temporal consistency of the virtual sequences, the temporal consistency
measure proposed by Schmeing and Jiang [SJ11] is used (cf. Sec. 6.5.2).

The proposed approaches are compared to five state-of-the-art methods (M1-M5) that have
been especially developed for the filling of uncovered areas in extrapolated virtual views:

• Two extensions of the MPEG View Synthesis Reference Software (VSRS) that have been
proposed for the extrapolation of virtual views: VSRS-alpha-Gist [LH11] (M1) and VSRS-
alpha-Etri [BKY`11] (M2). In M1 a weighted average filtering method is used to fill the
unknown areas while in M2 an inpainting method is applied.

• Two frameworks developed by Daribo et al. that either use patch-based texture synthesis
[DS11] (M3) or pre-process the depth maps [DSF`12] (M4) to fill the disocclusions.

• A framework proposed by Ahn et al. that utilizes patch-based texture synthesis to fill the
holes in the virtual view [AK13] (M5).

In the following, the methods proposed in this thesis (cf. Ch. 3-5) are abbreviated as follows:

• The view synthesis method for sequences with static background (cf. Ch. 3) is denoted as
P1.

• The view synthesis method for sequences with global background motion (cf. Ch. 4) is
denoted as P2.

• The hybrid view synthesis framework (cf. Ch. 5) is denoted as P3.

6.2 Assessment of the View Synthesis Method for Static Backgrounds

In Sec. 6.2.1, 6.2.2 and 6.2.3, relevant modules of the proposed view synthesis framework ap-
proach for sequences with static background (cf. Ch. 3, P1), i.e. the depth map filling algorithm,
the texture synthesis method and the sprite updating module, are evaluated to assess their con-
tribution to the overall system performance. Since P1 was developed for sequences with a static
camera setup, only S1-S4 are used for evaluation.

6.2.1 Assessment of the Depth Map Filling Algorithm

First, the new depth map filling method as described in Sec. 3.2 is analyzed. As mentioned
in Sec. 3.2, the most important depth map filling parameter is the k-means clustering window
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Influence of the proposed depth map filling method on the filling results. Average
values for (a) PSNR and (b) SSIM, over the whole test set. Objective results for
the sequence “Book Arrival” with (d) PSNR and (e) SSIM. Subjective differences
between (c) line-wise method without blob removal (LW) and (f) k-means clustering
with M “ 32 (KM32). © [2011] IEEE.

sized m ˆ m. Experiments were conducted for all video sequences assuming a square window.
Furthermore, all tests were performed using a large baseline (« double eye distance) in order to
access larger disoccluded areas. Please note that PSNR and SSIM are measured in the luminance
channel of the textured images. Fig. 6.1 (a), (b) depict the average values that were achieved
for PSNR and SSIM over the whole test set. It can be seen that all filling methods [line-wise
without blob removal (LW) and k-means clustering with different window sizes (32 ˆ 32, 48 ˆ 48,
64 ˆ 64)] perform similarly in terms of PSNR and SSIM. Some objective results for the “Book
Arrival” (S1) sequence are shown in Fig. 6.1 (d), (e). In the next step, visual results are taken into
consideration to find the optimal filling method. As shown in Fig. 6.1 (c), (f), for “Book Arrival”
(S1), distortions can be observed for the LW approach, while k-means clustering generates good
results. Therefore, visual results of the test sequences leaded to the conclusion that the k-means
clustering method with window size m “ 32 produces the best results [cf. Fig. 6.1(c), (f)].
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(a) (b)

(c) (d)

Figure 6.2: Influence of the patch size on the view synthesis accuracy. Overall values for (a) PSNR
and (b) SSIM, over the whole test set. Subjective differences between the results after
filling the disoccluded area with a patch of size (c) 25 ˆ 25 and (d) 9 ˆ 9. © [2011]
IEEE.

6.2.2 Assessment of the Texture Synthesis Algorithm

In the following, the parameter used during the texture synthesis routine are evaluated. The most
important texture synthesis parameters (cf. Sec. 3.4 and 3.5) are:

• The search area A and its corresponding sub-sampling factor s

• The patch size q

• The weighting factor ωΩ (3.13)

Again, all tests were performed using the scenario with twice the regular baseline in order to
have larger disoccluded areas. For reducing the complexity of estimating the texture synthesis
parameters, a set of five key frames from each sequence and view (left and right) is used. The
key frames were selected manually to ensure that all of the relevant scene content as well as
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 6.3: Influence of the initialization step on the view synthesis accuracy. Overall values for
(a) PSNR and (b) SSIM, for patch size of 9 ˆ 9 over the entire test set. The objective
results for the sequence “Book Arrival” with (c) PSNR and (d) SSIM. Result after
filling the disoccluded area (e) without initialization. (f) Result using the initialization
step (ωΩ=0.2) without texture synthesis and (g) result using the initialization step
(ωΩ=0.2) before texture synthesis. © [2011] IEEE.

large disocclusions were considered. Furthermore, the depth map was filled using the optimized
k-means clustering settings determined in the previous section.

The search area A is an important parameter, which mainly depends on the content of the
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considered image. It has been observed that for the test sequences analyzed in this work, the
view synthesis performance is not very sensitive to the size of the search area. This may, however,
be different for other sequences. It is possible to decrease the search complexity by sub-sampling
A with a factor s P N. Increasing s decreases run-time and reduces the quality of the results.
It was found that it is adequate to set A “ 80 ˆ 80 samples and s “ 2, so that a reasonable
compromise between complexity and sufficient quality is achieved.

Next, the optimal patch size is determined. Patches are assumed to be squares to simplify the
evaluation. Moreover, the initialization step is disabled in this experiment, i.e. only the texture
synthesis approach is taken into account in this experiment. The influence of the patch size on
the view synthesis results is shown in Fig. 6.2 (a), (b). No significant difference can be observed
between the diverse patch size selections. However, visual results of synthesized views, show that
a patch size of 9 ˆ 9 (q “ 9) yields better subjective results than larger patches, e.g. 25 ˆ 25.
The larger the block size is, the more likely artifacts occur. Fig. 6.2 (c) and (d) illustrate the
difference between the results obtained after the disoccluded area was filled with a patch size of
9 ˆ 9 and 25 ˆ 25. It can be seen that foreground colors have been copied into the background
area with a patch size of 25 ˆ 25.

In the next experiment, the texture initialization step is evaluated (cf. Sec. 3.4). The impact
of the initialization of the uncovered regions in the textured images is depicted in Fig. 6.3. Note
that the texture synthesis step realized after the initialization is performed with the optimized
patch size and search area q “ 9, A “ 80ˆ80 and s “ 2. It can be seen that for both measures
[cf. Fig. 11 (a) and (b)], a quality improvement can be achieved by setting ωΩ ‰ 0 (3.13). When
ωΩ is set to 0.2 instead of 0.0, the PSNR is increased by approximately 3dB on average, while
SSIM rises by 0.02. The gains are even larger for “Book Arrival” (S1) as shown in Fig. 6.3 (c),
(d). Increasing ωΩ further does, however, not yield further gains. Therefore the final setting for
this parameter is selected to be 0.2. Fig. 6.3 (e)-(g) further show visual results for “Book Arrival”
(S1).

6.2.3 Assessment of the Sprite Updating Algorithm

By using a background sprite, the temporal consistency is improved in the virtual view. The
impact of the sprite is further evaluated in Sec. 6.5.2. Nevertheless, the updating process highly
depends on the quality of the depth map (cf. Sec. 3.3). If unreliable depth maps are used,
inappropriate image information can be falsely copied into the sprite and propagated to subsequent
frames. Therefore, the quality of the results can suffer. Vice versa, in the case of high quality
depth maps, the sprite updating works efficiently and leads to accurate temporally consistent
synthesis results.
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Figure 6.4: Evaluation of the run-time using different patch sizes. © [2011] IEEE.

Parameter Value

A 80ˆ80
s 2
β 15
m 32
q 9

ωΩ 0.2

Table 6.1: Parameter settings for P1.

6.2.4 Complexity Assessment

The complexity and thus the run-time of the proposed algorithm is mainly dominated by the
following three aspects:

• The search area A with the corresponding sub-sampling factor s, of the texture synthesis
approach.

• The patch size used in the texture refinement step.

• The utilized cloning method used in the updating process.

The other functions are less time consuming and their contribution to the overall complexity is
rather small. A PC with an Intel Xeon CPU and 4 GB RAM was used in the experiments to
evaluate P1 (cf. Sec. 6.2). The software is currently implemented in MATLAB. To evaluate the
complexity of the optimized settings for β, m, q and ωΩ given in TABLE 6.1 are used. According to
the results obtained, varying the search area A and the sub-sampling factor s, strongly influences
the complexity of the proposed approach. The complexity increases by a factor of approximately
1.5 when A is doubled. On the other hand, when s is increased from 1 to 2, the complexity
reduces by a factor of approximately 1.31. Increasing s from 1 to 4 yields a complexity reduction
of approximately 3.24. To update the current frame from the background sprite, the covariant
cloning is used to fit the background data into the frame (cf. Sec. 6.2.1). For every sample
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position to be updated from the background, a linear equation has to be solved. Hence, the
complexity is proportional to the number of samples which are copied from the background sprite
to the actual frame, which corresponds to a linear growth of complexity Fig. 6.4 depicts the
results obtained by varying the patch size. Furthermore, the results are generated with the key
frames used in Sec. 6.2.2, i.e. the run-time represents the mean processing time of the different
single images (no time consistency is available) evaluated with the same patch size. It can be seen
that the complexity is approximately inversely proportional to the patch size growth. This relates
to the fact that larger patches cover more unknown pixels. Hence, fewer search iterations have to
be run. If texture synthesis with time consistency (using sprite update) is applied with a patch
of size 9 ˆ 9, the run-time decreases by a factor of « 3.2 compared to texture synthesis without
time consistency (cf. Fig. 6.4). However, in applications where run-time is of more importance
than quality, a patch size of 25 ˆ 25 appears to be the better choice.

6.3 Evaluation of the View Synthesis Method for Sequences with
Global Background Motion

In Sec. 6.3.4 and 6.5.2 relevant modules of the proposed view synthesis framework approach for
sequences with global background motion (cf. Ch. 4, P2), i.e. the new warping routine and the
motion compensation method, are evaluated to assess their contribution to the overall system
performance. In section 6.3.4, the new warping routine of P2 (cf. Sec. 4.2, P2) is evaluated.
First, the proposed metric used to judge the spatial consistency of neighboring views is outlined
in Sec. 6.3.3-6.3.3.

6.3.1 Measuring of the Spatial Consistency

Autostereoscopic displays support parallax head motions. Therefore, the spatial consistency of
the virtual views is important for the visual 3-D experience and the received quality. However,
classical full-reference quality assessment tools cannot be applied for this purpose, since only a
limited number of original camera views is available. In this work, a no-reference assessment
tool [ITU00] proposed by the International Telecommunication Union (ITU) is considered for this
purpose. Originally, the measure is used to judge the temporal consistency. Here, the metric is
extended for measuring the spatial consistency between neighboring views

First, the no-reference metric, namely the Temporal perceptual Information (TI) measure, as
proposed in [ITU00] is outlined in Sec. 6.3.2. Subsequently, the proposed Spatial Consistency
Metric (SCM) derived from the TI is explained in Sec. 6.3.3.

6.3.2 Temporal Perceptual Information Measurement

The TI metric [ITU00] was developed to determine the temporal perception of a sequence. The TI
is based on the motion difference Mnpx, yq between the sample values at the same spatial location
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Mk,n M2k,n M4k,n M2+2k,nM2+k,n M2+3k,n M2+4k,n TIn=N

TIn=2

TIn=1

SCM
n=1

n=2

n=N

M3k,n

Mk,n M2k,n M4k,n M2+2k,nM2+k,n M2+3k,n M2+4k,nM3k,n

Mk,n M2k,n M4k,n M2+2k,nM2+k,n M2+3k,n M2+4k,nM3k,n

Figure 6.5: Measuring of the spatial consistency.

at successive frames, i.e. Fnpx, yq and Fn´1px, yq. The motion difference is then computed as
follows:

Mnpx, yq “ Fnpx, yq ´ Fn´1px, yq, (6.1)

The TI is then computed as the maximum over a set of frames (maxtime) of the standard deviation
over space(stdspace):

TI “ maxtimetstdspacerMnpx, yqsu. (6.2)

Higher TI values indicate that a higher motion flow is present between successive frames.

6.3.3 Proposed Spacial Consistency Measure

In the test scenario, two original cameras are utilized to synthesize all remaining virtual views (cf.
Fig. 4.3, 2-view MVD). In interpolated virtual views in-between the original cameras, only small
areas become uncovered, since the missing textures can either be filled from the left or the right
original camera. Therefore, the spatial consistency is measured in the extrapolated views alone.
Here, large portions of the texture are synthesized. The main assumption is that the spatial
consistency is higher when the changes in the textures of spatial neighboring frames are small.
Therefore, these changes are measured in-between spatially adjacent images. Fig. 6.5 shows the
functionality of the proposed SCM. First, the motion differences between slightly parallax shifted
virtual and/or original camera locations at a specific frame-position n is measured using Eq. 6.1
(cf. Fig. 6.5), i.e. from Mk,n to M1,n and from M2`k,n to M3,n (cf. Fig. 6.5), where k represents
the distance between two adjacent views (cf. Sec. 2.3.1). For the scenarios illustrated in Fig. 4.3
and Fig. 6.5, k is set to k “ 0.25 since three intermediate views are chosen. Then, the TIn of
a frame number n is determined by applying Eq. 6.2 considering all measured motion difference
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Parameter Value

z 5
tdr 15

tpsnr 21

Table 6.2: Parameter settings for P2.

Seq. SCM
P2Ex P2

S1 19.6617 19.0060
S2 9.5626 8.8739
S3 29.0741 28.4993
S4 18.8547 18.6808
S5 20.3011 20.1300
S6 8.7785 8.7448
S7 10.2127 10.1736
S8 15.1206 15.1201

Table 6.3: SCM results by a state-of-the-art warping method (P2Ex) and the proposed novel
warping method (P2).

(M) at the time instance as shown in Fig. 6.5. The spatial consistency for the whole sequence, is
then computed as follows:

SCM “
1
N

N
ÿ

n“1
TIn. (6.3)

where smaller SCM values indicate a higher spatial consistency of neighboring views.

6.3.4 Evaluation of the new Warping Routine

The improved spatial consistency of the new warping method is evaluated using the following
cameras setups for the sequences S1-S8: S1: 12, 10, 6, 8. S2: 4, 6, 8, 10. S3: 2, 4, 6, 8. S4:
3, 5, 5, 7. S5: 1, 3, 5, 7. S6: 7, 5, 3, 1. S7: 4, 5, 6, 7. S8: 1, 3, 5, 7. The first number
represents the virtual left camera (c=0), the second number, the original left camera (c=1), the
third number, the original right camera (c=2) and the last number, the virtual right camera
(c=3). The distance between the original cameras corresponds to a large baseline (double eye
distance). Note that only the extrapolated outermost cameras are computed from an original
view. The remaining virtual views are computed utilizing two anchor cameras, i.e. an outermost
virtual and an original cameras (cf. Sec. 4.2). The distance k between two spatial neighboring
views is set to 1{4 ¨ b for S1, S2, S3, S4, S5, S6 and S8 and to 1{8 ¨ b for S7 [ISO11]

For evaluation purposes all extrapolated virtual views have been additionally computed from the
original views alone, using the background motion compensation and texture synthesis methods
of P2. This method is denoted as P2Ex in the following. This means, the new warping routine

64



6.3 Evaluation of the View Synthesis Method for Sequences with Global Background Motion

0 20 40 60 80 100
17

18

19

20

21

22

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

BOOK ARRIVAL

 

 

Proposed Approach

Extrapolation Framework

(a)

0 50 100 150 200 250
7

8

9

10

11

12

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

LOVEBIRD1

 

 

Proposed Approach

Extrapolation Framework

(b)

0 50 100 150 200 250 300
25

26

27

28

29

30

31

32

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

NEWSPAPER

 

 

Proposed Approach

Extrapolation Framework

(c)

0 50 100 150 200
17.5

18

18.5

19

19.5

20

20.5

21

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

MOBIL

 

 

Proposed Approach

Extrapolation Framework

(d)

0 50 100 150 200 250
18.5

19

19.5

20

20.5

21

21.5

22

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

UNDO DANCER

 

 

Proposed Approach

Extrapolation Framework

(e)

0 50 100 150 200 250
6

7

8

9

10

11

12

13

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

GHOST TOWN FLY

 

 

Proposed Approach

Extrapolation Framework

(f)

0 50 100 150 200

9.8

10

10.2

10.4

10.6

10.8

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

POZNAN HALL2

 

 

Proposed Approach

Extrapolation Framework

(g)

0 50 100 150 200 250 300
13.5

14

14.5

15

15.5

16

16.5

17

Frame number

M
e

a
s
u

re
d

 E
rr

o
r

BALLOONS

 

 

Proposed Approach

Extrapolation Framework

(h)

Figure 6.6: Objective results for the Spatial Consistency Measure (SCM).
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Parameter Value
tp 0.09
ωΩ 0.2

bx “ by 10
cx “ cy 4
tµblock 10
tσ2

block
10

τ 30

Table 6.4: Parameter settings for P3.

is not incorporated in P2Ex. In this way the improvements of the new warping scheme can be
determined by comparing P2 with P2Ex. To compute the results of P2 and P2Ex, the same
parameter settings shown in TABLE 6.2 have been used. The patch size of the patch-based
texture synthesis is chosen according to the resolution of the sequences. In Sec. 6.2.2 the patch
size was evaluated and set to 9 ˆ 9 for videos with a resolution of up to 1024 ˆ 768 samples.
However, for 3-D video sequences with higher resolution, i.e. 1920 ˆ 1088 samples, the patch size
is increased to 21 ˆ 21.

The objective results for the SCM are given in Table 6.3. The spatial consistency between
adjacent views are measured using SCM. Smaller SCM values indicate a higher spatial consistency.
The best result for every sequence among the two different warping methods is highlighted through
bold face type. For all sequences, the proposed warping routine performs better than the state-
of-the-art warping method (cf. Table 6.3), where all views are extrapolated from the original
cameras. The SCM differences shown in Table 6.3 are quite small. However, considering the fact
that the differences between the proposed method and the state-of-the-art approach are present
in the uncovered area of the frame, only small variations can be expected since the SCM is
determined for the entire image. In Fig. 4.2 (a), for example, the disoccluded areas cover only
« 6% of the entire image. Frame-wise objective results are shown in Fig. 6.6. As can bee seen,
the out-performance is achieved constantly over time [cf. Fig. 6.6].

6.4 Evaluation of the Hybrid View Synthesis Framework

In Sec. 6.4.1 and 6.4.2, relevant modules of the proposed hybrid view synthesis framework (cf.
Ch. 5, P3) are evaluated, i.e. the pre-processing method and the AR texture synthesis method.
The complexity of the proposed hybrid view synthesis framework is then assessed in Sec. 6.4.3.
The patch size of the patch-based texture synthesis is chosen according to the resolution of the
sequences (cf. Sec. 6.2.2 and 6.3.4).
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Undo Dancer, Frame 17 (virtual view 1 rendered from original view 5), (a) The un-
known area Ω is marked in green. (b) The warped pre-processed frame. (c) X ´ Y
gradients of the original warped frame (a). (d) X ´ Y gradients of the regularly
(without sub-sampling), pre-processed warped frame. (e) X ´ Y gradients of the
pre-processed warped frame (b). (f) The dominant structures are synthesized using
patch-based texture synthesis. The strength of the isophotes is determined based on
(e). Unfilled regions are marked green in (f). © [2016] IEEE.

6.4.1 Evaluation of the Pre-Processing Method

In this thesis, texture separation is utilized to smooth texture patterns while maintaining domi-
nant boundaries. In Fig. 6.7 (c)-(e), gradients in X and Y direction are pictured. Based on the
gradients, it is decided which areas are computed using a complex patch-based synthesis method.
The gradients in Fig. 6.7 (c) are computed on the warped image with initialized texture areas
(without pre-processing). As can be seen in Fig. 6.7 (c), all texture patterns are recognized as
strong gradients, and a separation of different classes of textures is impossible. Hence, the texture
patterns on the floor are entirely computed with the time-consuming patch-based texture syn-
thesis. Separating the different texture labels from the image filtered in full-resolution [XYXJ12]
is still challenging [cf. Fig. 6.7 (d)]. However, using the proposed pre-processing procedure (cf.
Sec. 5.2) the main boundaries, i.e. the transitions between homogeneous texture patterns, can
be separated reliably [cf. Fig. 6.7 (b), (e), (f)].
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6.4.2 Evaluation of the Auto Regressive Parameter Settings

In this section the optimal parameter settings for the AR synthesis framework are determined. In
order to cover a wide variety of textures the AR synthesis framework is evaluated on an extended
more general texture database [DVGNK99].

6.4.2.1 Data Set and Quality Measures for Assessing the Auto Regressive Parameters

To evaluate the proposed AR algorithm, 20 test images are used: rough plastic, plaster, rough
paper, artificial grass, cork, sponge, lettuce leaf, loofa, limestone, ribbed paper, straw, corduroy,
stones, corn husk, white bread, soleirolia, orange peel, peacock feather, tree bark and moss. The
AR model can be used to synthesize a class of texture with a parameter set that is trained in
the same texture class. The data set is therefore chosen to cover a broad spectrum of different
texture characteristics. All images have a resolution of 180 ˆ 180 (cropped from the original
resolution 640 ˆ 480) and are publicly available at the Columbia Utrecht Reflectance and Texture
Database (CUReT) [DVGNK99]. Furthermore, all tests are conducted with two different hole
sizes ( Ω “ 20 ˆ 20 and 40 ˆ 40, i.e. 1, 2% and 5% of the image size).

The performance of the proposed AR completion algorithm is assessed with PSNR and SSIM.
For the presented results, PSNR is computed locally only for Ω, while SSIM is determined for the
entire image as it is not suitable for arbitrarily small regions.

6.4.2.2 Assessment of the Training Area

As mentioned in Sec. 5.3.3, the first step of the AR process is to identify an appropriate training
area adjacent to Ω to be filled. Hence, two main parameters need to be assessed: (1) the size of
the sub-training area and (2) the stationarity of the training texture.

Assessment of the Size of the Sub-Training Area First, a proper value for size S of the sub-
training area needs to be selected. S corresponds to the number of linear equations (cf. Sec.
5.3.4). For this investigation, experiments were conducted for all test images assuming a square
training window, i.e. cx “ cy, sx “ sy (S “ sxsy) at the top-left corner of Ω (cf. Fig. 5.8)
without loss of generality. Furthermore, all tests were performed using a causal model [cf. Fig.
5.4 (c) and 5.5] with three different settings of C (C “ pcx ` 1qpcy ` 1q ´ 1, cf. Eq. 5.14) and the
two hole sizes (Ω) in order to draw reliable conclusions. Note that the PSNR and SSIM results
are measured using the original texture from Ω. Fig. 6.8 (a) and (b) depict the average values
that were achieved for PSNR and SSIM (blue lines) over the whole test set with Ω “ 40 ˆ 40
depending on the number of linear equations (S). Similar results are observed for Ω “ 20 ˆ 20.
Furthermore, the averaged run-time to synthesize the missing region in an image is also taken
into consideration and depicted on the y sub-axis [green lines in Fig. 6.8 (a) and (b)]. It can be
seen that all configurations of C (C “ 15, 63, 143) perform similarly although different training
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PS
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Number of linear equations (S) Number of linear equations (S)
(a) (b)

(c) (d) (e) (f)

Figure 6.8: Influence of the sub-training area size [number of linear equations (S)] on the filling
results. Average values for (a) PSNR vs. run-time (measured in seconds) and (b) SSIM
vs. run-time (measured in seconds) over the whole test set with Ω “ 40 ˆ 40. (c-d)
Visual differences for the test images Rough paper (top) and Cork (bottom). (c) Input
with Ω “ 40 ˆ 40. Results of the AR texture completion (without post-processing)
with C “ 15 and (d) S “ 36 (e) S “ 841 (f) S “ 3025
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(a) (b) (c) (d) (e)

Figure 6.9: Pruning of the training area for (a) orange peel, (b) peacock feather, (c) lettuce leaf,
(d) sponge, and (e) moss. Examples of (top to down) input with Ω “ 40 ˆ 40; the
non-stationary training area; the training area after applying the new block-based
clustering criterion; and the training area after applying k-means clustering.

sizes (from S “ C ` 1 “to” „ 5000) are considered. Small values of S yield low PSNR and SSIM
values. It appears that S should be larger than 300 for the utilized test set [cf. Fig. 6.8 (a), (b)] to
contain a sufficient amount of texture information to fit the model. On the other side, if S ą 1000,
there is a clear saturation of the quality of the final results although the computational costs and
thus the run-time progressively increase [green lines in Fig. 6.8 (a), (b)]. In general this means
that the training area should be sized to « 53% ´ 75% of the hole to be filled. The computational
time in Fig. 6.8 increase due to the rising number of linear equations that have to be solved.
Furthermore, in terms of visual evaluations, it was found that S should be approximately ten
times larger than C in order to have satisfying results. The visual influence of the sub-training
size is shown in Fig. 6.8 (d), (e) and (f). Considering the AR test set, S « 800 (sx “ sy “ 29) is a
reasonable compromise between complexity and quality. However, for smaller hole sizes, smaller
values for S lead also to satisfying results.
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(a)

(b)

(c)

Figure 6.10: Stationarity of the training area. Results using (a) the non-stationary training area.
(b) The results achieved using k-means clustering and (c) using the block-based
clustering to detect an appropriate training area. (cf. Fig. 6.9). Note that all results
are generated without a post-processing step.

6.4.2.3 Pruning of the Training Area

In this section, the proposed method to find the appropriate training area is evaluated (cf. Sec.
5.3.3). The impact of the content of the training area on the completion results is an important
investigation, which highly depends on the texture characteristics of the considered image. In
general, if the texture information in the training area is stationary and correlates with the un-
known texture in Ω, the missing texture will be more likely to be completed well. If the training
area is not well chosen, the method proposed in Sec. 5.3.3 can be applied. Fig. 6.9 illustrates
the effect of processing the training area using the new block-based stationarity criterion in com-
parison to the k-means clustering approach. It can be seen that both methods can successfully
recognize and remove the unstationary texture locations. K-means works sample wise and is an
iterative approach [Bis95], whereas the proposed method operates block wise and non-iteratively.
Therefore, the excluded regions of the final results have irregular boundaries after applying the
k-means method (cf. Fig. 6.9, bottom row). An essential disadvantage of k-means consists in
the problem of finding the global minimum, since it tends to converge towards a local minimum.
Commonly, this problem can be solved by a careful choice of starting conditions. Using several
replicates with random starting points typically results in a solution that is a global minimum.
In run-time evaluations, it was found that the new method is approximately three times faster
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Seq. P3 Daribo et al. [DS11] Ahn et al. [AK13]
S1 337 sec 783 sec 1685 sec
S2 522 sec 1740 sec 3480 sec
S3 279 sec 1992 sec 845 sec
S4 155 sec 738 sec 281 sec
S5 56 sec 186 sec 103 sec

Table 6.5: Complexity assessment: Run-times in seconds (sec) of the proposed hybrid approach,
Daribo et al. [DS11] and Ahn et al. [AK13]. © [2016] IEEE.

than k-means clustering. In a set of different simulations, it was found that the proposed criterion
works well within the following parameter range 10 ď tµ ď 20 and 10 ď tθ ď 20. Furthermore,
the computation of the training area with k-means (two clusters) was optimized. After apply-
ing the clustering procedure, small blobs (smaller than 20 samples) were removed. Hence, only
large texture segments were kept. Fig. 6.10 illustrates the influence of the stationarity criteria
on the filling results.Note that all results are generated with C “ 15, tµ “ tθ “ 20 and with-
out post-processing. It can be seen that the quality of the completion results increases when an
appropriate texture [cf. Fig. 6.10 (d) vs. (b),(c)] is selected for the training process. Hence, it
can be concluded, that pruning the training area is recommended when the texture consists of a
complex pattern.

6.4.3 Hybrid vs. Patch-based Texture Synthesis

In this section, the complexity of the novel hybrid view synthesis framework is compared with the
entirely patched-based texture synthesis methods proposed by Daribo et al. [DS11] (M3) and Ahn
et al. [AK13] (M5). A PC with an Intel Xeon CPU 3.33 GHz and 24 GB RAM was utilized in all
experiments presented in Sec. 6.4. The mean run-times in seconds of the proposed method and
patch-based view synthesis methods on the state-of-the-art are are given in Tab. 6.5. Please note
that all frameworks are prototypes developed in MATLAB. An implementation of the frameworks
in C/C++ can significantly accelerate all methods. However, MATLAB implementations have
been tested since the reference methods (M3 and M5) where also provided as MATLAB code.
The framework proposed by Daribo et al. [DS11] utilizes the same patch search routine as P3.
Hence, the run-time improvements by P3 can be evaluated directly. As can be seen in Tab. 6.5
(second and third row), the new hybrid texture synthesis method requires less processing time,
i.e. 14%-54%, of pure patch-based view synthesis frameworks. Additionally, in Fig. 6.12, 6.13
and Tab. 6.6, 6.7 it is shown that the proposed hybrid view synthesis method provides a similar
or better visual and objective outcome compared to entirely patch-based view synthesis methods.
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Seq. Cam. PSNR
M1 M2 M3 M4 M5 P1 P2 P3

S1 8 Ñ 10 19.24 30.24 27.22 25.87 24.99 29.58 28.42 29.12
S1 8 Ñ 9 23.11 33.30 30.28 29.48 28.66 33.06 31.21 32.45
S1 10 Ñ 8 23.97 28.86 27.44 25.84 28.32 29.16 28.24 28.49
S1 10 Ñ 9 28.77 31.97 30.29 29.39 31.46 32.39 31.93 32.11
S2 6 Ñ 8 27.32 27.52 27.57 27.57 28.25 28.27 28.50 28.27
S2 6 Ñ 7 26.17 26.17 26.53 26.61 26.64 26.71 26.68 26.60
S2 8 Ñ 6 25.97 26.13 27.36 27.33 27.52 27.90 27.73 27.76
S2 8 Ñ 7 28.48 28.41 27.42 27.15 27.45 27.59 27.51 27.54
S3 4 Ñ 6 23.45 23.19 22.79 21.83 20.49 23.75 23.56 23.63
S3 4 Ñ 5 27.65 28.66 26.58 26.31 23.37 28.51 28.08 28.76
S3 6 Ñ 4 25.83 26.22 25.00 23.47 24.99 26.95 25.43 27.21
S3 6 Ñ 5 28.77 28.93 26.93 26.55 27.34 29.25 27.91 29.62
S4 5 Ñ 3 35.30 34.39 27.78 29.83 28.29 36.54 35.19 36.11
S4 5 Ñ 4 37.46 36.67 28.41 33.30 28.81 38.38 37.26 38.48
S4 5 Ñ 6 34.17 35.08 27.74 31.84 27.76 35.88 34.58 36.06
S4 5 Ñ 7 31.80 31.57 26.59 28.13 26.35 33.05 31.32 32.43

Avg. S1-S4 27.96 29.83 27.24 27.53 26.91 30.43 29.59 30.29
S5 5 Ñ 1 31.34 30.51 29.46 26.84 31.98 - 32.74 32.63
S5 5 Ñ 9 29.80 28.66 26.00 26.16 30.79 - 31.25 31.77
S5 3 Ñ 1 32.56 33.32 32.00 29.81 34.98 - 36.00 35.68
S6 5 Ñ 1 32.91 35.61 33.44 32.01 36.13 - 37.99 35.65
S6 5 Ñ 9 34.88 35.64 33.29 31.84 36.29 - 38.24 35.60
S6 3 Ñ 1 35.12 37.21 35.30 34.76 38.05 - 39.71 37.42
S7 5 Ñ 4 32.57 32.74 31.93 31.66 32.41 - 32.75 32.84
S7 6 Ñ 7 32.94 33.72 32.74 31.93 33.23 - 33.76 33.64
S8 3 Ñ 5 28.14 28.98 28.80 27.46 29.33 - 29.65 30.05
S8 3 Ñ 4 32.33 33.74 31.97 31.26 32.24 - 32.59 33.52
S8 5 Ñ 3 29.08 31.16 29.00 28.52 29.64 - 31.11 31.16
S8 5 Ñ 4 31.95 34.33 31.91 31.63 32.62 - 34.46 34.45

Avg. S5-S8 31.96 32.96 31.32 30.32 33.14 - 34.18 34.11

Table 6.6: PSNR Results. The best result is highlighted through bold face type colored red. The
second best result is highlighted through bold face type colored blue and third best
result is highlighted through bold face type colored green.

6.5 Overall Experimental Results

Given the experiments conducted in the previous sections, optimized parameter settings have
been derived and summarized in Tab. 6.1, 6.2 and 6.4. The objective results given in Table 6.6
and 6.7 correspond to the mean PSNR and SSIM over all pictures of the rendered sequences. The
projection configuration (original and the virtual camera) is given in the second column (Cam.)
in Table 6.6, 6.7 and 6.8. Here, “3 Ñ 1" means: virtual camera 1 is rendered from the original
camera 3. The average results for S1-S4 and S5-S8 for all methods are given in the rows “Avg.
S1-S4" and “Avg. S5-S8", respectively. The best result for each sequence is highlighted through
bold face type colored red. The second best result for each sequence is highlighted through bold
face type colored blue and third best result for each sequence is highlighted through bold face
type colored green.

For S7 the distance between two original cameras corresponds to to a large baseline (« double
eye distance). Hence, only two virtual camera positions are computed.

6.5.1 Objective Results

On average the proposed approaches perform better than state-of-the-art methods in terms of
PSNR and SSIM (cf. Table 6.6 and 6.7).

73



6 Experimental Results

Seq. Cam. SSIM
M1 M2 M3 M4 M5 P1 P2 P3

S1 8 Ñ 10 0.9412 0.9651 0.9473 0.9046 0.9469 0.9598 0.9599 0.9626
S1 8 Ñ 9 0.9666 0.9803 0.9721 0.9570 0.9734 0.9790 0.9794 0.9806
S1 10 Ñ 8 0.9524 0.9642 0.9524 0.9152 0.9626 0.9603 0.9634 0.9664
S1 10 Ñ 9 0.9745 0.9785 0.9713 0.9588 0.9793 0.9777 0.9796 0.9812
S2 6 Ñ 8 0.9107 0.9128 0.9283 0.9211 0.9335 0.9352 0.9351 0.9334
S2 6 Ñ 7 0.8929 0.8933 0.9086 0.9078 0.9104 0.9113 0.9110 0.9105
S2 8 Ñ 6 0.8898 0.8907 0.9372 0.9292 0.9416 0.9422 0.9421 0.9414
S2 8 Ñ 7 0.9598 0.9592 0.9401 0.9334 0.9424 0.9424 0.9425 0.9425
S3 4 Ñ 6 0.8971 0.9060 0.8871 0.8684 0.8865 0.8881 0.8936 0.9051
S3 4 Ñ 5 0.9598 0.9659 0.9543 0.9424 0.9526 0.9544 0.9570 0.9645
S3 6 Ñ 4 0.9150 0.9220 0.9054 0.8812 0.9057 0.9171 0.9062 0.9278
S3 6 Ñ 5 0.9622 0.9653 0.9562 0.9423 0.9582 0.9609 0.9568 0.9667
S4 5 Ñ 3 0.9885 0.9861 0.9775 0.9516 0.9802 0.9911 0.9887 0.9905
S4 5 Ñ 4 0.9936 0.9922 0.9830 0.9694 0.9854 0.9948 0.9932 0.9948
S4 5 Ñ 6 0.9938 0.9923 0.9810 0.9681 0.9841 0.9945 0.9921 0.9940
S4 5 Ñ 7 0.9861 0.9830 0.9684 0.9438 0.9724 0.9870 0.9820 0.9845

Avg. S1-S4 0.9490 0.9536 0.9481 0.9309 0.9510 0.9560 0.9552 0.9592
S5 5 Ñ 1 0.9793 0.9742 0.9700 0.9556 0.9809 - 0.9832 0.9821
S5 5 Ñ 9 0.9814 0.9777 0.9651 0.9576 0.9850 - 0.9861 0.9867
S5 3 Ñ 1 0.9886 0.9886 0.9845 0.9794 0.9921 - 0.9939 0.9930
S6 5 Ñ 1 0.9884 0.9914 0.9830 0.9774 0.9924 - 0.9945 0.9894
S6 5 Ñ 9 0.9899 0.9909 0.9815 0.9753 0.9921 - 0.9944 0.9892
S6 3 Ñ 1 0.9943 0.9954 0.9895 0.9876 0.9955 - 0.9968 0.9935
S7 5 Ñ 4 0.9570 0.9575 0.9542 0.9511 0.9579 - 0.9567 0.9591
S7 6 Ñ 7 0.9641 0.9659 0.9607 0.9559 0.9632 - 0.9649 0.9646
S8 3 Ñ 5 0.9447 0.9468 0.9452 0.9284 0.9505 - 0.9532 0.9560
S8 3 Ñ 4 0.9765 0.9787 0.9732 0.9677 0.9754 - 0.9765 0.9786
S8 5 Ñ 3 0.9611 0.9680 0.9496 0.9351 0.9611 - 0.9680 0.9682
S8 5 Ñ 4 0.9799 0.9825 0.9742 0.9631 0.9796 - 0.9826 0.9828

Avg. S5-S8 0.9754 0.9765 0.9692 0.9612 0.9771 - 0.9792 0.9786

Table 6.7: SSIM Results. The best result is highlighted through bold face type colored red. The
second best result is highlighted through bold face type colored blue and third best
result is highlighted through bold face type colored green.

Sequences with Static Background For sequences with static background, P1 performs best
in terms of PSNR and SSIM on average. P3 shows improvements concerning SSIM and PSNR
compared to M1-M5, too. For the majority of S1-S4, P2 performs worse than P1 and P3. The
reason for this is that the registration tool does not always work reliably. Local motion in the
background or a false foreground separation leads to small transformations of the whole image
and thus to poor objective results. Nevertheless, P2 reached higher gains then P1 and P3 in terms
of PSNR for S2 “6 → 8”. For some virtual views of S1, M2 achieves the highest gains in terms
of PSNR (S1 “8 → 10”, S2 “8 → 9”) and SSIM (S1 “8 → 10”). This is due to the fact that the
partly smooth background textures in these sequences can be synthesized reliably with classical
image inpainting methods (M2). For the sequence “Newspaper” (S3) P1 and P2 perform worse
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Seq. Cam. FDF
M1 M2 M3 M4 M5 P1 P2 P3

S1 8 Ñ 10 0.87 0.63 6.34 0.57 15.32 1.34 0.42 1.41
S1 8 Ñ 9 0.69 0.46 6.42 0.56 10.17 1.09 0.65 1.32
S1 10 Ñ 8 3.11 1.23 5.06 1.42 4.39 1.65 1.46 1.20
S1 10 Ñ 9 3.61 1.41 4.53 1.18 3.56 1.75 1.31 0.96
S2 6 Ñ 8 0.52 1.53 11.84 1.15 3.64 0.59 0.90 1.33
S2 6 Ñ 7 0.51 1.41 11.61 1.31 2.74 0.93 0.98 0.82
S2 8 Ñ 6 0.35 1.79 12.14 1.77 4.56 0.95 0.53 2.41
S2 8 Ñ 7 0.52 2.09 12.08 2.37 4.65 0.88 0.64 2.46
S3 4 Ñ 6 0.80 0.29 15.43 0.48 23.53 0.74 1.71 3.38
S3 4 Ñ 5 0.82 0.23 13.44 0.36 21.92 0.74 2.15 3.15
S3 6 Ñ 4 0.78 1.21 11.84 1.51 15.15 1.09 1.95 2.66
S3 6 Ñ 5 0.95 0.89 10.93 1.14 10.49 0.91 1.69 1.84
S4 5 Ñ 3 0.36 2.24 6.02 2.20 4.20 0.45 3.47 2.44
S4 5 Ñ 4 0.46 2.04 4.37 2.37 3.09 0.58 2.77 1.66
S4 5 Ñ 6 0.39 3.22 10.65 6.17 6.73 0.64 6.01 2.66
S4 5 Ñ 7 0.35 3.10 12.30 4.76 10.49 0.50 7.47 3.65

Avg. S1-S4 0.94 1.48 9.68 1.83 9.03 0.92 2.13 2.08
S5 5 Ñ 1 2.73 1.45 6.40 1.20 4.78 - 2.80 1.65
S5 5 Ñ 9 3.19 1.86 5.72 3.23 5.96 - 4.40 2.48
S5 3 Ñ 1 4.56 1.43 5.93 1.19 4.10 - 2.02 1.58
S6 5 Ñ 1 3.65 2.79 3.74 1.51 1.84 - 1.18 3.43
S6 5 Ñ 9 3.36 1.99 3.18 1.49 1.71 - 1.19 3.17
S6 3 Ñ 1 3.99 3.13 4.21 1.67 2.26 - 1.01 3.30
S7 5 Ñ 4 1.90 1.54 3.36 1.04 3.47 - 1.55 1.64
S7 6 Ñ 7 1.21 1.24 2.85 0.63 2.59 - 0.96 0.83
S8 3 Ñ 5 1.52 1.44 8.86 1.28 7.01 - 1.39 1.63
S8 3 Ñ 4 1.32 0.66 7.40 1.16 5.78 - 1.30 1.20
S8 5 Ñ 3 1.32 0.66 9.75 1.76 8.19 - 1.90 1.38
S8 5 Ñ 4 1.10 0.59 8.81 1.33 5.80 - 1.05 1.02

Avg. S5-S8 2.47 1.56 5.85 1.45 4.45 - 1.72 1.94

Table 6.8: FDF Results. The best result is highlighted through bold face type colored red. The
second best result is highlighted through bold face type colored blue and third best
result is highlighted through bold face type colored green.

than P3, M2 and/or M1 for “4 Ñ 5", “6 Ñ 4" and “6 Ñ 5". As all of the modules of P1 and P2
rely on the depth map and the depth map of “Newspaper” (S3) is particularly unreliable, visual
and objective losses occur for P1 and P2. On the other hand, P3 outperforms state-of-the-art
methods for these virtual views.

Sequences with Global Background Motion For sequences with global background motion
(S5-S8), both P2 and P3 perform better than the state-of-the-art in terms of PSNR and SSIM.
However, on average, P2 achieves slightly better results than P3. For the sequences “Balloons”
(S8), P3 performs better than P2. The reason for this is that the registration tool does not work
reliably for this sequence due to local movement in the background that is different from the
global background motion. Furthermore, for S8, “3 → 4” M2 achieves better results than P2 and
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(a) (b)

(c) (d)

Figure 6.11: Frame-wise objective results for “Mobile” (S4) (virtual camera 3 from original camera
5). (a) PSNR Results. (b) SSIM Results. Objective Results for “Undo Dancer” (S5)
(virtual camera 1 from original camera 5). (c) PSNR Results. (d) SSIM Results.

P3 for PSNR and SSIM. This is due to the fact, that S8 partly show smooth textures which can
be reliably synthesized using classical inpainting methods. For the sequence “Poznan Hall2” S7,
“6 → 7” M2 outperforms both P2 and P3 in terms SSIM and P3 in terms of PSNR. The reason
for this is that the depth map is partly unreliable and the background texture is mostly smooth

Fig. 6.11 shows frame-wise objective results for “Mobile” S4, “6 → 7” and for “Undo Dancer”
S5, “5 → 1”.

6.5.2 Temporal Quality Evaluation

In this section, the temporal consistency is evaluated. The unknown areas in P1 and P2 are filled
from a background sprite or from registered temporally surrounding frames. P3 only considers
the previous frame in the patch matching criterion (cf. Sec. 5.3.1). Hence, temporal correlations
are considered in all of the proposed frameworks P1-P3.

The human eyes are very sensitive to temporal inconsistencies, i.e. flickering artifacts. There-
fore, the flickering is measured using the Frame Differential Flicker (FDF) metric proposed in
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[SJ11]. This metric is computed as follows:

κn “
1

|Ω|

ÿ

px,yqPΩ
|Fnpx, yq ´ Fn´1px, yq|, (6.4)

where |Ω| represents the total number of hole pixels in a frame. The κn value measures the average
changes of the inter-frame samples in the hole regions of frame n. The average flickering for the
whole sequence is then computed as follows:

κ “
1
N

N
ÿ

n“2
κn, (6.5)

where κ measures the absolute amount of flickering in the disoccluded areas of a video. Since
different reference views also exhibit different a priori flickering (noise, compression artifacts, ...)
the κ value is furthermore normalized using the original view at the same position as the virtual
view. Then, the final FDF can be computed as follows:

FDF “ |κsynth ´ κorig| , (6.6)

where κsynth and κorig represent the κ result of the synthesized view and the original view at
the same spatial positions. Note that lower values for the FDF metric indicate fewer flickering
artifacts.

The FDF results are shown in Table 6.8. All proposed methods (P1-P3) perform better than
the state-of-of-the-art patch-based texture synthesis methods M3 and M5. This is due to the fact
that the proposed frameworks consider temporal correlations in the filling process, while M3 and
M5 synthesize the new textures frame-by-frame. However, P3 considers previous frames only in
the patch searching routine (cf. Sec. 5.3.1), thus P3 shows a higher amount of flickering artifacts
than P1 and P2. Since M1 and M2 mostly compute smooth new textures, flickering artifacts are
reduced. Therefore, M1 and M2 often provide the least amount of flickering in the synthesized
regions. However, the proposed methods are often close to these results. Furthermore, for S1,
“8 → 10” and for all virtual views of S6, P2 shows the lowest amount of flickering artifacts. For
S1, “10 → 8” and “10 → 9”, P3 shows the lowest amount of flickering artifacts. For the sequence
S4 the proposed method P2 has low temporal correlations between the inter-frame samples. Here,
the registration results of neighboring frames are often not considered for updating the synthesized
areas due to an unreliable estimated transformation matrix (cf. Sec. 4.4.3). This leads to partially
frame-by-frame filling. Hence, the FDF outcome for S4 is only slightly better than the FDF results
of M3 and M5.
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6.5.3 Visual Results

Visual results for some sub-frames are shown in Fig. 6.12 and 6.13. The first column in Fig. 6.12
shows results for S1 (“10 Ñ 8", frame 10), the second column for S2 (“8 Ñ 6", frame 106), the
third column for S3 (“6 Ñ 4", frame 1), and the last column for S4 (“5 Ñ 7", frame 32). The
first column in Fig. 6.13 shows results for S5 (“5 Ñ 1", frame 181), the second column for S6
(“5 Ñ 9", frame 145), the third column for S7 (“5 Ñ 4", frame 177), and the last column for S8
(“5 Ñ 3", frame 52).

In Fig. 6.12 and 6.13 (a), the warped sub-frames with the unknown areas marked green are
presented. Fig. 6.12 (b)-(f) shows the synthesis results for M1-M5. The results of P1-P3 are
shown in Fig. 6.12 (g)-(i) while Fig. 6.13 (g)-(h) show the results of P2 and P3. Finally, the
original sub-frames are depicted in Fig. 6.12 (j) and 6.13 (i)

M1 and M2 [cf. Fig. 6.12 and 6.13 (b) and (c)] smooth the synthesized textures. This is visually
annoying especially for sequences with complex texture patterns in the current background (cf.
S1, S2, S4-S6). On the other hand, the proposed methods, i.e. P1-P3, can maintain these texture
patterns. M3 [cf. Fig. 6.12 and 6.13 (d)] does not use an appropriate handling of the filling
routine. Hence, foreground texture is inserted into the unknown image regions. Since the proposed
methods consider the depth values and furthermore steer the filling routing from the background
to the foreground areas, only background textures are used to occlude the holes. M4 smooths
the depth maps in order to prevent holes in the virtual frame. Therefore, strong distortions can
appear in the results [cf. Fig. 6.12 and 6.13 (f)], while such distortions are prevented using P1-P3
[cf. Fig. 6.12 (g)-(i) and 6.13 (g),(h)]. The results of M5 are visually plausible, especially for the
very complex sequences. However, since M5 does not use appropriate post-processing methods,
blocking artifacts can appear (cf. Fig. 6.12 and 6.13 (f), S1, S3, S7 and S8).

P1 and P2 utilize the texture information of temporally neighboring frames. Therefore, uncov-
ered areas that require information from other time instances can be recovered reliably. On the
other hand, P3 utilizes only the texture from the frame to be filled. Hence, the subjective results
can be slightly worse (cf. Fig. 6.12, S1, the poster in the background, S2, the stairs and Fig.
6.13, S6, the house in the background).
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(a) Holes

(b) M1

(c) M2

(d) M3

(e) M4

(f) M5

(g) P1

(h) P2

(i) P3

(j) Original

Figure 6.12: Subjective results: static sequences (S1-S4, left to right). (a) Sub-frame with holes
marked green. (b) Results of VSRS-alpha-Gist [LH11] (M1) (c) Results of VSRS-
alpha-Etri [BKY`11] (M2) (d) Results of Daribo et al. [DS11] (M3) (e) Results of
Daribo et al. [DSF`12] (M4) (f) Results of Ahn et al. [AK13] (M5) (g) Results of
P1 (h) Results of P2 (i) Results of P3 (j) Original sub-frame.
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(a) Holes

(b) M1

(c) M2

(d) M3

(e) M4

(f) M5

(g) P2

(h) P3

(i) Original

Figure 6.13: Subjective Results: sequences with global motions (S5-S8, left to right). (a) Sub-
frame with holes marked green. (b) Results of VSRS-alpha-Gist [LH11] (M1) (c)
Results of VSRS-alpha-Etri [BKY`11] (M2) (d) Results of Daribo et al. [DS11]
(M3) (e) Results of Daribo et al. [DSF`12] (M4) (f) Results of Ahn et al. [AK13]
(M5) (g) Results of P2 (h) Results of P3 (i) Original sub-frame.
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7.1 Conclusion

Autostereoscopic multi-view displays provide 3-D depth perception without the need to wear
additional glasses by showing many different views of a scene from slightly different viewpoints
simultaneously. Nevertheless, only a limited number of original views can be recorded, stored and
transmitted. Consequently, the need to render additional virtual views arises, in order to support
autostereoscopic multi-view displays. DIBR is an appropriate technology for synthesizing virtual
images at a slightly different view perspective, using a textured image and its associated depth
map. A critical problem is that regions occluded by foreground objects in original views may
become visible in synthesized views. This is particularly problematic in the case of extrapolation
beyond the baseline of the original views, as there is no additional information from another
original camera.

In this thesis, new methods to fill disoccluded areas in a DIBR framework are proposed, espe-
cially for the extrapolation scenario. The algorithms are designed to compensate large baseline
extensions between the original and the virtual view and generate spatial-temporal consistent ren-
dering results for 3-D sequences. All of the presented methods utilize advanced texture synthesis
methods to compute unknown image regions.

The first proposed approach (P1) utilizes a static background sprite to recover background tex-
tures using image information from a causal picture neighborhood. Unknown texture regions that
cannot be filled from the background are roughly estimated and subsequently refined using novel
advanced texture synthesis. The proposed new patch-based texture synthesis method utilizes both
depth and luminance information to determine the filling order and to find the best continuation
patches. It could be shown that the synthesized results are fundamentally improved, if the texture
is initialized since garbage-growing due to misplaced textures is consequently diminished. Finally,
a novel post-processing module based on cloning methods is applied, in order to conceal transitions
between the synthesized and the original textures. The second framework (P2) recovers missing
background texture from temporally surrounding frames. In comparison to P1, P2 can also be
applied for videos which contain global motion. To compensate the global background motion,
image registration is incorporated into the framework. The frames are furthermore considered
as a GOP-structure for the computation. Hereby, a new processing order derived from the GOP
structure in video coding is presented. Disocclusions that can not be filled from the known texture
are synthesized using the patch-based completion method proposed in P1. Furthermore, a new
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warping routine is presented which improves the spatial consistency between adjacent virtual-
virtual or virtual-original views. The methods proposed in P1 and P2 synthesize missing regions
in the virtual views in a visual plausible manner using patch-based non-parametric texture syn-
thesis. However, these techniques are very complex and therefore time-consuming. Hence, the
third method (P3) describes a novel hybrid synthesis framework that overcomes this complexity
issue while providing a similar or even better visual outcome. First, a new patch-based synthesis
method is applied to synthesize the object-texture boundaries alone. Then, a fast parametric
method is utilized to recover the remaining texture segments. For this method, a new way to
find an appropriate texture region to train the parameters of the model is presented. It can be
shown that visual improvements become visible, when gross instationarities are discarded. Fur-
thermore, a new criteria to evaluate the parametrically synthesized textures is proposed. Finally,
a post-processing step is applied to improve the background-foreground transitions in the virtual
view. Due to the hybrid synthesis framework, P3 method requires less processing time, i.e. only
14%-54% of pure patch-based view synthesis methods.

In detailed experiments, it could be shown that all of the methods in average outperform state-
of-the-art approaches. High objective and subjective gains could be achieved. However, since P1
was designed for sequences with static background and P2 for sequences with global background
motion, the highest gains for P1 and P2 are especially shown for their respective application sce-
nario. The outcome of P3 is on average slightly worse than for P1 and P2. This is due to the fact,
that large texture portions of temporally surrounding frames are not considered during the filling
routine. However, all of the proposed methods (P1-P3) provide a better temporal consistency in
the synthesized views than state-of-the-art patch-based texture synthesis methods. Additionally,
it was figured out in the experiments that the highest gains can be achieved for sequences with
complex or very complex background textures. For videos with simple or uniform background
areas, recent approaches also provide promising results due to the fact that smooth background
textures in such sequences can be synthesized reliably with classical inpainting methods.

7.2 Future Work

In future work items the proposed hybrid synthesis approach (P3) could be incorporated into the
frameworks of P1 and P2 which also consider neighboring textures. Since P1 and P2 are designed
for different video contents, i.e. static backgrounds and backgrounds with global motion, a decision
criterion could be included, to decide whether to use P1 or P2 for synthesizing uncovered areas.

In [BPLC`11a] Bosc et al. show that human observers sometimes rate the quality of synthesized
virtual views different than the objective evaluation measures suggest. Furthermore, in [KMNN13,
KMMNN13] Köppel et al. show that the complexity of the view synthesis framework can be
reduced while providing a similar quality, if the depth map is partially smoothed. Hence, small
holes are closed, while the size of large holes can be reduced. However, the outcome can not
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7.2 Future Work

be evaluated with classical full-reference metrics such as PSNR and SSIM. Therefore, new full-
reference or no-reference metrics should be investigated in order to evaluate the quality of texture
synthesis approaches with slight image distortions according to the human visual system.
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A 3-D Test Sequences

In Tab. A.1, the characteristics of the utilized MVD data set, provided by MPEG, are presented.
The data set consists of real world and computer graphic scenes captured by a stationary or a
dynamic camera. The depth maps of the real world scenes are estimated while the depth maps
of the computer graphic scenes are computer generated (Ground truth). The texture in the
background varies from simple to very complex. One frame of each sequence is shown in Fig. A.1
and Fig. A.2.

Name Resolution Computed Scene Type Depth Type Camera Background
Frames Motion Texture

Book Arrival 1024 ˆ 768 1-100 Real world Estimated Stationary Simple
Lovebird1 1024 ˆ 768 1-150 Real world Estimated Stationary Complex
Newspaper 1024 ˆ 768 1-200 Real world Estimated Stationary Complex

Mobile 720 ˆ 540 1-200 Computer Ground truth Stationary Very Complex
Graphics

Undo 1920 ˆ 1088 1-250 Computer Ground truth Dynamic Very Complex
Dancer Graphics

Ghost Town 1920 ˆ 1088 1-250 Computer Ground truth Dynamic Complex
Fly Graphics

Poznan Hall2 1920 ˆ 1088 1-198 Real world Estimated Dynamic Simple
Balloons 1024 ˆ 768 1-300 Real world Estimated Dynamic Complex

Table A.1: Characteristics of the MVD data set.
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A 3-D Test Sequences

(a) (b)

(c) (d)

Figure A.1: Test sequences with static background. (a) “Newspaper”, camera 4, frame 29. (b)
“Book Arrival”, camera 10, frame 27. (c) “Lovebird1”, camera 6, frame 18. (d)
“Mobile”, camera 5, frame 20
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(a) (b)

(c) (d)

Figure A.2: Test sequences with global background motion. (a) “Balloons”, camera: 3, frame: 13.
(b) “Poznan Hall2”, camera: 5, frame: 60. (c) “Ghost Town Fly”, camera: 5, frame:
91. (d) “Undo Dancer”, camera: 5, frame:21
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