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Abstract 

Cycling is increasing in popularity in urban areas due to its individual, social and environmental benefits. 

However, cyclists are among the most vulnerable road users. Especially at intersections, many bicycles collide 

with passenger cars despite the control of traffic signals. This thesis focuses on car-bicycle safety at signalized 

intersections. Various factors contribute to the occurrence of road accidents, namely factors from the human, 

vehicle and environment aspects. The aim of this thesis is to explore potential measures to reduce car-bicycle 

accidents at signalized intersection from multi-aspects. 

In accident prevention, one must know the world of accidents. Given that few accident analysis has specifically 

focused on car-bicycle accidents at signalized intersections, this thesis analyze two accident databases. The 

analysis deals with the characteristics of car-bicycle accidents at signalized intersections. It reveals possible 

accident scenarios, frequencies of each scenario and common accident causes of accidents. 

Naturalistic Driving Observation (NDO) is a fast-growing method for traffic safety studies. Despite of many NDO 

studies, few have particularly investigated interactions between car drivers and bicyclists at signalized 

intersections. This thesis carries out a Quasi-NDO study in order to investigate the interactions between car 

drivers and cyclists at signalized intersections from perspective of car drivers. A car is instrumented with 

various sensors. The instrumented car is used to collect the data of driving behaviors and environment, while 

twenty-two participants separately drive this car in real traffic. The collected driving behaviors include dynamic 

driving data, drivers´ body movements and eye movements. A self-programmed Graphical User Interface and a 

video annotation tool are used for data analysis in order to detect car-bicycle conflicts. In addition, the 

collected eye movement data is analyzed in the scenario (i.e. right-hook scenario), where car turns right and 

bicycle goes through. With 146 detected right-hook events, the analysis reveals bicycle-scanning strategies of 

car drivers. According to the bicycle-scanning strategies, potential suggestions are proposed to mitigate the risk 

of this scenario. 

Road users´ perceived risk influences individual behaviors, and therefore it plays an important role in traffic 

safety. Through an online survey, the perceived risk of car drivers and cyclists (no matter the consequences of 

the crash) are investigated for seventeen common car-bicycle scenarios at signalized intersections. A 

comparison between the subjective perceived risk und the objective risk shows that a discrepancy exists among 

both car drivers and cyclists. Moreover, it shows that cyclists tend to perceive less risk than car drivers do. The 

implications of these results are vital for improvement of car-bicycle safety at signalized intersections.  

Safety effects of bicycle facilities are controversial, especially at intersections. By use of the Negative Binomial 

model, safety effects of bicycle facilities on car-bicycle crash risk at signalized intersections are estimated. The 

effects of other intersection factors are simultaneously considered. The estimation results shows that bicycle 

lanes have positive safety effects, while bicycle paths have negative safety effects. 
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Kurzfassung 

Aufgrund seiner Vorteile für Individuum, Gesellschaft und Umweltnutzen nutzen immer mehr Menschen das 

Fahrrad in Innenstädten als Verkehrsmittel. Fahrradfahrer gehören jedoch zu den am meisten gefährdeten 

Verkehrsteilnehmern. Besonders an Knotenpunkten treten trotz der Steuerung durch Lichtsignalanlagen (LSA) 

zahlreiche Unfälle zwischen Pkw und Fahrrädern auf. Im Rahmen der vorliegenden Arbeit wird die Sicherheit 

von Pkw- und Fahrradfahrern an Knotenpunkten mit LSA fokussiert. Verschiedene Faktoren von Menschen, 

Fahrzeug und Umwelt könnten Verkehrsunfälle verursachen. Ziel dieser Arbeit ist, aus den diversen Aspekten 

mögliche Maßnahmen zur Reduzierung von Unfällen zwischen Pkw und Fahrrädern an Knotenpunkten mit LSA 

zu ermitteln. 

Für die Unfallprävention muss man die Details der Unfälle kennen. Wegen fehlender Unfallforschung, die 

speziell Unfälle zwischen Pkw und Fahrrad an Kontenpunkten mit LSA betrachtet, analysiert diese Arbeit zwei 

Unfalldatenbanken. Diese Analyse konzentriert sich auf die Merkmale der Unfälle zwischen Pkw und 

Fahrrädern an Kontenpunkten mit LSA. Hierbei werden die möglichen Unfallszenarien, Häufigkeiten jedes 

Szenarios und häufige Unfallursachen aufgezeigt. 

Naturalistic Driving Observation (NDO) ist eine stark wachsende Methode im Bereich der Verkehrssicherheit. 

Obwohl viele NDO-Studien durchgeführt wurden, hat keine insbesondere die Interaktionen zwischen Pkw-

Fahrern und Radfahrern an Knotenpunkten mit LSA untersucht. Eine Quasi-NDO-Studie wird in dieser Arbeit 

durchgeführt, um aus Sicht der Pkw-Fahrer die Interaktionen zwischen Pkw- und Radfahrern an Knotenpunkten 

mit LSA zu untersuchen. Ein Auto wird mit verschiedenen Sensoren ausgerüstet. Mit diesem Auto werden die 

Fahrerverhaltens- und Umgebungsdaten von 22 Teilnehmern im Realverkehr erhoben. Die aufgezeichneten 

Fahrerverhaltensdaten enthalten dynamische Fahrdaten, Köperbewegungen und Augenbewegungen der 

Fahrer. Eine selbstprogrammierte grafische Benutzeroberfläche und eine Software zur Videoannotation 

werden zur Datenanalyse verwendet, um Konflikte zwischen Pkw und Fahrrad zu identifizieren. Zusätzlich 

werden die erhobenen Augenbewegungsdaten in dem Szenario bzw. Rechtsabbiege-Szenario analysiert, in dem 

der Pkw rechts abbiegt und das Fahrrad geradeaus fährt. Mit 146 erkannten Rechtsabbiege-Ereignissen zeigt 

diese Analyse auf, wie die Pkw-Fahrer die Radfahrer erkennen. Basierend auf diesen Fahrrad-Scan-Strategien 

werden Möglichkeiten zur Verringerung des Risikos in dem Szenario abgeleitet. 

Risikowahrnehmung der Verkehrsteilnehmer beeinflusst ihr Verhalten und spielt eine wichtige Rolle für die 

Verkehrssicherheit. Mit Hilfe einer Online-Umfrage wird die Risikowahrnehmung der Pkw- und Radfahrer 

(unabhängig von den Unfallfolgen) für 17 häufige Konflikt-Szenarien zwischen Pkw und Fahrrad erforscht. Ein 

Vergleich zwischen dem subjektiv wahrgenommenen Risiko und dem objektiven Risiko zeigt, dass eine 

Diskrepanz sowohl bei Pkw-Fahrern als auch bei Radfahrern besteht. Weiterhin zeigt sich, dass Radfahrer dazu 

neigen, ein geringeres Risiko als Pkw-Fahrer wahrzunehmen. Diese Ergebnisse sind für die Verbesserung der 

Sicherheit von Pkw- und Fahrradfahrern an Knotenpunkten mit LSA von großer Bedeutung. 

Es ist umstritten, wie Radverkehrsanlagen vor allem an Knotenpunkten die Verkehrssicherheit beeinflussen. 

Mittels des negativen Binomialmodells werden die Auswirkungen von Radstreifen und Radwegen auf Pkw-
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Fahrrad-Unfallrisiko an Knotenpunkten mit LSA beurteilt. Dabei werden auch die Auswirkungen anderer 

Kreuzungsfaktoren berücksichtigt. Radstreifen gehen den Ergebnissen zufolge mit einem positiven 

Sicherheitseffekt einher, während Radwege eher negative Auswirkungen auf die Sicherheit haben.  
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1. Motivation and thesis structure 

1.1. Motivation: cycling safety at signalized intersections 

Cycling, recognized as an excellent transport mode, is beneficial to the individual, environment and society. For 

individuals, cycling is a cheap form of transport, and is proven to be a physical activity that has positive 

influence on health and fitness [1]. Cycling is sometimes more efficient than other transport modes in urban 

areas by allowing bicyclists to avoid traffic jams. Environment and society benefit from the fact that cycling 

helps to develop more sustainable transportation. It decreases air pollution, green house gas emissions and 

noise pollution, enhances major public-health and requires only cheap infrastructure [2,3].  

For these reasons, cycling has attracted increasing attention in European, American, and Australian major cities 

over the last two decades [4]. Figure 1-1 presents bicycle modal shares for all journeys per country. The 

Netherlands have the highest bicycle modal share with 26%, followed by Denmark with 19% and Germany with 

10% [5]. The three European countries are among the most successful countries at promoting cycling for daily 

trips. The thriving of cycling in the three countries depends on the bicycle-friendly policies and good weather 

conditions. The national and local policy-makers have implemented a series of measures to make cycling safer, 

more convenient and more attractive. These measures include improvement of bicycle infrastructure (e.g. 

construction of separated bicycle facilities and parking facilities), promotion of inter-modality for cyclists, 

organization of traffic education and training programs as well as introduction of bicycle sharing system [6]. 

Compared to European countries, cycling levels in Canada, the USA and Australia are far lower with bicycle use 

shares of 2%, 1% and 1%, respectively [7,8]. Due to the values of cycling being recognized, these countries have 

started to develop cycling plans and strategies to promote cycling mobility, learning from European successful 

practices. It is predictable that more people will cycle for commuting as well as for leisure and tourism.  

 

Figure 1-1  Bicycle modal shares for all journeys per country (self-built figure according to bicycle share data of European 
countries in 2006 [5], Canada in 2006 [7], USA in 2009 [7], and Australia in 2006 [8]) 

Along with the benefits and popularity of cycling, cycling features a critical merit of safety. Cyclists are among 

the most vulnerable road users due to the characteristics and nature of cycling. Cyclists often share roads with 
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motorized vehicles, resulting in potential collisions. If a collision between cyclists and vehicles sharing the road 

happens, the kinetic energy of vehicles is impressive, and cyclists have no outer protective cells. In summary, 

the vulnerability of cyclists is reflected both in terms of the probability of being involved in a crash, and the 

possible consequences that result from a crash [9].  

To improve cycling safety, European countries have adopted a number of measures, e.g. extensive system of 

separate cycling facilities, intersection modifications, priority traffic signals, bicycle-friendly traffic laws and 

enhanced traffic education and training for cyclists and motorists [10]. The measures have indeed played an 

effective role in promoting safer cycling. While the number of all road fatalities in the EU is decreasing every 

year, the downward trend in the number of fatalities among cyclists is also observable. Figure 1-2 shows the 

number of cyclist fatalities and the proportion among total road fatalities in the EU between 2004 and 2013, 

indicating a decrease in the number of cyclist facilities by 32%. However, this figure also clearly shows the 

proportion of cyclist fatalities among all road fatalities is increasing. In other words, the trend for cyclists is not 

decreasing at the same rate as for all road fatalities. This trend is believed to be the result of the strongly 

increasing popularity of cycling and the consequently increasing number of cyclists in Europe [6]. Of all traffic 

fatalities, the average proportion of cyclist fatalities makes up 7.8% in the EU counties in 2013. In countries like 

the Netherlands, Denmark and Germany, where cycling is an important daily mode of transport and safer 

cycling environment is provided, the proportion of cyclist fatalities is even higher, up to 23.5%, 17.3% and 10.6% 

respectively [11]. These data suggests that more efforts are needed to improve the cycling safety.  

 

Figure 1-2  Number of cyclist fatalities and proportion among all road fatalities in EU 2004-2013 [12] 

Germany is one of the top three European countries in terms of bicycle use. The issue of cyclist safety in traffic 

deserves more attention. In 2014, an amount of 78,296 cyclists was involved in road accidents with injuries or 

fatalities in the whole country [13]. Among them, 354 death and 13,206 severely injured. They accounted for 

11.7% of total road fatalities and 21.4% of severe road injuries. Looking back at bicycle-accident records in this 

country from 2001 to 2014 as shown in Figure 1-3, no decrease can be observed in the total number of cyclist 

injuries [14]. Although the number of cyclist fatalities decreased in recent years as shown in Figure 1-3, the 

proportion among all road fatalities is in a trend of increase, similar to the status in the entire EU as shown in 

Figure 1-2. 
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Figure 1-3  Number of cyclist injuries (top), and number and proportion of fatalities (bottom) in Germany from 2001 to 

2014 (self-made figure according to [14]) 

 

Figure 1-4  Collision partner distribution of bicycle-accidents in Berlin from 2004 to 2008 
 (self-made figure according to [15]) 

In bicycle accidents, bicycles may collide with different modes of transport, such as cars, trucks, pedestrians 

and other bicycles. Cars were the most frequent collision partners. In Berlin from 2004 to 2008, 33,766 bicycle-

accidents (even without injuries) were registered by the Berlin Police [15]. The collision partner distribution in 

these bicycle-accidents is presented in Figure 1-4. Bicycles collided with cars in 72% of bicycle-accidents. The 

reason is that passenger cars are the most widely used mode of transport that share roads with bicycles. 
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Figure 1-5  Road location distribution of bicycle-accidents in Berlin from 2004 to 2008 (self-made figure according to [16]) 

Concerning accident locations, intersections are undoubtedly among the most dangerous road locations for 

bicycles. The analysis of bicycle-accidents in Berlin from 2004 to 2008 indicates that 58.2% of bicycle accidents 

took place at intersections, as shown in Figure 1-5 [16]. Intersections could be also classified according to the 

types of control types. The common intersection control types are the basic rules of road, yield or stop signs 

and traffic signals [17]. Traffic signals, as the ultimate form of traffic control, can generally avoid some conflicts, 

and therefore substantially decrease bicycle accidents. However, a considerable number of accidents occurred 

at intersections controlled by traffic signals, known as signalized intersections. Statistic shows that up to 22.4% 

of bicycle accidents occurred at signalized intersections in Berlin in 2013, accounting for nearly half of bicycle 

accidents at intersections [18]. On the one hand, accidents might happen due to red-light violation, and rear-

end accidents might happen due to the phenomenon of amber dilemma [17,19,20]. On the other hand, not all 

conflicts could be avoided under the control of traffic signals, even if road users obey the signal indication. 

Development of some conflicts is depending on the interpretation of the right of way rule. Road users need to 

evaluate traffic conditions and negotiate with each other to avoid accidents, if they have to cross each other. 

The extra requirements of human efforts often result in accidents. 

The cycling safety issue has different features in collisions with different types of road users and at different 

road locations, such as collision types, frequency, causation, consequences, etc. In this work, focus is specially 

on cycling safety concerning cars, who are the most frequent collision partners in bicycle accidents, at 

signalized intersections, where road users are controlled in the highest level, and however, still a considerable 

number of bicycle accidents occur. 

1.2. Motivation: study from multi-aspects 

The aim of this thesis is to explore possible implications and countermeasures to decrease car-bicycle accidents 

at signalized intersections. According to the General Systems Theory, the complex and dynamic process in road 

traffic system is described as the interactions and relationships among road users, vehicles and environment 

[21]. An accident happens, when the interactions between the components in the road traffic system is 

inappropriate or unsafe. In other words, road accidents are viewed as failures of the human-vehicle-road 
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system rather than failure of any single components. Similar to the General Systems Theory, human, vehicles 

and infrastructure are considered the three main causes of road traffic accidents in the principle of triple E, 

namely Education, Enforcement and Engineering [22]. A large number of accident investigation studies provide 

pictures of accidents causes. For example, Figure 1-6 shows the varied contribution strengths of three factors in 

the traffic system. 

 

Figure 1-6  Distribution of accident contribution factors [23] 

Under the guidance of the General systems Theory and the principle of triple E, a multi-disciplinary study is 

applied to resolve the problems of car-bicycle safety at signalized intersections. That is to find out possibilities 

to improve the safety from multi-aspects by looking into the elementary components in road traffic system. 

In accident prevention, an important step is to know the world of accidents. Accident data analysis is the 

traditional way to address traffic safety. Accident analysis can generally tell what types of accidents happen, 

how often they happen and what the accident consequences are. The official national accidents registered by 

the police are the main information source for accident analysis. In-depth accidents are another essential 

source for improving traffic safety. They could provide extensive data in a wide range of fields before, after and 

at that moment of crashes. As the foundational work in safety study, accident data could be analyzed to 

investigate the characteristics of car-bicycle accidents at signalized intersections. 

The method to understand the underlying causes of accidents based on historical accident data analysis has 

limitations. For example, accidents are rare events; accident data lacks detailed information on the chain of 

events preceding an accident [24,25]. Traffic conflicts are an effective surrogate for accident data analysis for 

safety diagnosis [26]. The traditional way to collect traffic conflicts relies on human observation by on-site 

observation [27]. This way is challenged on issues regarding the repeatability and consistency of results. 

Moreover, this kind of observation is restrained in limited locations, making the results sensitive to site-specific 

factors. Overcoming these shortcomings of conflict collection by the traditional way, Naturalistic Driving 

Observation (NDO) that combines cameras, radars, eye-tracking devices and other sensors is becoming a new 

promising approach to capture, store and analyze traffic conflicts [26,28]. In conflicts collected by use of NDO, 

the behavioral and situational aspects that are not covered in accident data could be recorded and analyzed. In 

this way, car-bicycle safety at signalized intersections could be investigated from the human aspect, i.e. 

behaviors of road users.  
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At signalized intersections, bicycles collide with cars in different scenarios, with regard to movement directions 

of road users, their relative location and road layouts. Due to different collision mechanisms that underlie an 

accident scenario, accidents of different scenarios occur with different frequencies. Car-bicycle accident 

analysis could reveal the real frequencies of each accident scenario, measuring the objective risk. According to 

the driving behavior models of Klebelsberg [29], it is an ideal situation for safety when road users maintain a 

stable balance between subjective perceived risk and objective safety. It is stated that dangerous situations 

might emerge, if the subjective safety is higher than the objective safety. When people underestimate risk in a 

given situation, they are more likely to adopt risky behaviors and therefore to be involved in crashes. Road 

users´ subjective perceived risk of car-bicycle accidents scenarios at signalized intersections is still largely 

unexplored. The present work could therefore address if and how far the subjective perceived risk deviates 

from the objective risk. Any discrepancy between them might play a role in crash occurrence. Such a study is 

investigating car-bicycle safety at signalized intersections also from the human aspect, i.e. risk perception. 

Bicycle facilities are one of most important bicycle-specific bicycle infrastructures to promote cycling. However, 

their effects on cycling safety are controversial especially at intersections [30]. It is argued that the most 

probable explanation for the confusion on the safety effects of bicycle facilities is that the safety effects of 

bicycle facilities depend very much on the context into which they are introduced [31]. That is, the safety 

effects of bicycle facilities should be investigated while simultaneously considering factors to describe the 

bicycle facility context, such as the traffic mode volume, geometric design and other road infrastructures. The 

frequent methods for the safety effects of bicycle facilities are the before-after study and the case-control 

study. The two methods have their own limitations in considering a combined set of intersection factors. Most 

of the before-after studies only controlled for the bicycle traffic volume, while in case-control studies, only a 

limited number of factors were controlled for in selecting a comparison group ( the first-stage study in [32]), or 

only a very small sample were available when too many factors were controlled for [33]. Accident Prediction 

Models (AMPs), which are multivariable formulas to describe the statistical relationship between the safety 

level of roads and road factors, allow for investigation of safety effects of bicycle facilities combining the effects 

of other intersection factors. Such a study by use of AMP is considering car-bicycle safety at signalized 

intersections from the environmental/infrastructural aspect. 

1.3. Thesis structure 

This thesis is to look into the three elementary components in road traffic system, namely human, 

infrastructural and vehicular factors, and their interactions, which are all potential factors resulting in 

occurrence of car-bicycle accidents at signalized intersections. To explore possible implications and 

countermeasures to decrease car-bicycle accidents at signalized intersections, different methodologies are 

employed. 

In Chapter 2, the current state of scientific and technological knowledge concerning road traffic safety, 

especially concerning safety issues between cars and bicycles at signalized intersections, are discussed.  

Historical accidents between cars and bicycles at signalized intersections are analyzed to understand their 
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characteristics, including car-bicycle accident scenarios, frequency of different scenarios and accident causes. 

The analyzed accident databases include the accidents registered by the Police in Berlin, which is a typical 

bicycle city and the German In-Depth Accident Study (GIDAS) accident data that is regarded as being 

representative for German. This part of work is described in Chapter 3. 

An instrumented car records car drivers´ driving behaviors, including driving dynamic behaviors, body 

movements, eye movements and the environment. From the collected data, car-bicycle conflicts are detected 

and analyzed, aiming to investigate interactions between car drivers and cyclists at signalized intersections. In 

addition, eye movement data is analyzed to investigate how car drivers visually detect and observe bicyclists in 

the most frequent car-bicycle scenario. This work is presented in Chapter 4.  

An online-survey is carried out to gather risk perception of road users in seventeen selected car-bicycle 

accident scenarios at signalized intersections. The aim is to examine if they could accurately evaluate the risk in 

these scenarios. Chapter 5 introduces the online-survey, statistical analysis and results.  

A suitable Accident Prediction Model (AMP) is selected to assess safety effects of bicycle facilities at signalized 

intersections. Bicycle facilities as well as variables related to intersection design are selected and put into the 

assessment. The effect coefficients of each selected variables are obtained, indicating the effects of each 

variables: negative or positive. The applied model, considered intersection factors and resulting effect 

coefficients are represented in Chapter 6. 

In Chapter 7, results from different aspects are integrated to discuss comprehensively the safety issues 

between cars and bicycles at signalized intersections. Appropriate countermeasures for safety improvements 

are proposed. 

Figure 1-7 illustrates the structure of the work in this thesis. 
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Figure 1-7  Thesis structure 
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2. State of scientific and technical knowledge 

This chapter introduces the methodologies and terminologies of road safety used in this thesis. The 

methodologies include historical accident data analysis, in-depth accident analysis, Traffic Conflict Techniques 

(TCT), Naturalistic Driving Observation (NDO), and Accident Prediction Models (APM). The terminologies 

involve eye-tracking and perceived risk perception. The introduction focuses mainly on the scientific and 

technical knowledge concerning these methodologies and terminologies, their advantages and disadvantages 

and their application.  

2.1. Historical accident data analysis 

The traditional way to measure traffic safety depends on accident data analysis. It concerns with the number of 

traffic accidents and their consequences. Accident data is believed to be able to build a foundation for traffic 

safety based on a logical assumption "that history repeats itself and that circumstances which cause one 

accident may well cause another" [34]. The approach based on historical accident data is proven useful to 

generally evaluate traffic safety and identify specific traffic safety problems.  

There are several accident data sources for traffic safety research. The official national accidents registered by 

the police are the main information source. Insurance company data and hospital data are often only used as 

additional sources. However, the police accident data is not set up entirely for traffic safety purpose. Thus, 

there are availability and quality problems when approaching to traffic safety by accident data analysis. The 

problems have been discussed in several studies [24,25] and can be summarized as followed: 

 Accident data rarely includes detailed information on the chain of events preceding an accident, and 

contains mostly only the accident causes that are oriented at criminal offences and irregularities. The 

behavioral and situational aspects concerning accidents are rarely covered in the accident data. 

Therefore, it is often difficult to derive useful inferences for the underlying causes of accidents. This 

point limits the use of accident data for the purposes of determining suitable safety enhanced 

measures.  

 Another drawback of this approach concerns the quality of accident data. Accident data itself is 

incomplete suffering from under-reporting. Not all road accidents are reported. Furthermore, the level 

of reporting varies with e.g. road user types involved, and severity of injuries. It is illustrated that the 

more serious the injury, the more likely it is to be registered with the police, according to estimations 

in the Netherland [35]. In light of reports [36,37], there are several times more cycling injuries than 

reported by the police in many countries. This is partially because cycling injuries only from crashes 

with motor vehicles are likely to be included in the police data. 

 Although the number of deaths caused by road accidents is high, accidents are still rare events when 

accident frequencies are segregated by location, time and type.  

 Before hazardous sites and situations are identified or safety-enhancing measures are evaluated, a 

large number of serious accidents are expected to take place first, and therefore a long period of 

accident recording is required. This raises concern about ethical problems. 



10 
 

To overcome these drawbacks, other methods have been suggested in traffic safety research. In-depth 

accident analysis is one of them, where detailed information about accidents is collected. Another method is 

the Traffic Conflict Techniques (TCT), which concerns non-accident data, i.e. traffic conflicts. Naturalistic Driving 

Observation (NDO) is a recently developed method that can integrate human behavioral, vehicular and 

environmental situations before, after and during accidents or critical events. These three methods are 

introduced in the following sections.  

2.2. In-depth accident analysis 

The National Transportation Safety in USA initiated the concept of in-depth accident study. In such an 

investigation, extensive data in a wide range of fields before, after and at the moment of crashes can be 

collected and analyzed. Over the years, this approach has been recognized to be essential for improving traffic 

safety, and respective investigation teams were built in several countries.  

In Germany, in-depth data collection was first used in 1973. The collected data included information on failure 

and behavior patterns in accidents. Data was collected by questioning persons involved in accidents at site. 

Medical University of Hanover, supported by the Federal Road Research Institute, organized this work. Based 

on this work, a joint project German In-Depth investigation Accident Study (GIDAS) was established in 1999, 

financed by the German Government and automobile industries. GIDAS is the largest investigation project in 

Germany and presumably the leading representative road traffic accident investigation in Europe [38].  

The geographical investigation regions of GIDAS cover Hannover and Dresden areas. In the two cities, 

approximately 2000 traffic accidents are annually selected and documented [39]. In investigations, a specialist 

team, consisting of a technical team and a medical team, goes directly to the accident site immediately after 

the accident occurs. In addition to investigations at site, surveys and hospital examinations are further 

administered. In this way, the team can collect large amounts of information concerning accidents, such as 

environmental conditions, road design, traffic control, accident consequences (e.g. degrees of deformation, 

impact contact points for passengers or pedestrians) and so on [40]. These data allow the reconstruction of 

accidents and documentation of injuries. Various stakeholders benefit from the collected data to improve road 

traffic safety within their respective fields. For instance, legislator can recognize negative effects of current 

traffic laws and identify future legislation areas by studying accident cases in detail; road design can be more 

protective in accordance with feedbacks regarding road traffic engineering; contributions of in-vehicle active 

safety systems to accident avoidance can be evaluated by including variables associated with active safety 

techniques[38].  

In Sweden, there is also a policy to conduct in-depth investigations, which are carried on in three levels in 

terms of scopes of involved accidents and executive departments [41]. The Swedish Accident Investigation 

performs in-depth studies of the first level. They cover fatal accidents with more than five victims or with 

principal system problems with two to three road traffic accidents being investigated each year. In the second 

level, fatal accidents that are selected by the Swedish National Road Administration together with Regional 

Road Administration (RRA) are studied, and about 50 studies are conducted each year. In-depth studies of all 
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fatal accident are performed in the third level by RRA offices, involving about 450 accidents each year. The 

United Kingdom (UK) has a long tradition of in-depth accident investigations. The Co-operative Crash Injury 

Study (CCIS) and the One-The-Spot (OTS) are two layers in the multi-layer accident collection system in the UK. 

The Project CCIS, funded by Department for Transport and automotive industries, has investigated motor 

vehicle accidents since its inception in 1983 with aim to provide an insight into how people injured in road 

traffic accidents [42]. The project OTS was commissioned by the Department for Transport and the Highways 

Agency and was aimed to collect high-quality crash data for better understanding accident causation 

concerning various factors and injury mechanisms by investing 1,500 road traffic accidents covering all road 

user types [43]. 

In other EU countries, such as France, Finland, Holland and Denmark, and in the USA, there are also in-depth 

accident investigation or study centers [40,41,44]. In-depth accident investigations are implemented around 

the world with various focuses. These work indicates that this approach has the capability to collect detailed 

and comprehensive accident information, making it possible to uncover accident causations, reconstruct 

accident proceeding and study the consequences of accidents. However, it is very expensive to obtain such 

abundant data that can generate representative conclusions regarding safety. Each in-depth accident study 

requires financial support from public or private sponsors.  

2.3. Traffic Conflict Techniques (TCT) 

Due to the limitations of road accident analysis, traffic conflicts have been advocated as non-accident data to 

analyze road traffic safety. Perkins and Harris originally developed a formal procedure in 1967 for observing 

traffic conflicts in order to research safety problems related to motor vehicle construction [45]. 

The approach used in this research was called Traffic Conflict Techniques (TCT). The technique TCT concerns 

observing, recording and evaluating the frequency and severity of traffic conflicts at specific locations by a 

team of trained observers. 

In the first traffic conflict study by Perkins and Harris, a conflict was defined as any potential accident situation 

resulting in evasive actions, such as braking and swerving that were identified by appearances of brake lights 

and sudden lane changes. The simple definition has since been refined to incorporate categories of road users 

and measures of time and space between road users [46].The internally accepted definition of a traffic conflict 

was established in the first International Traffic Conflicts Workshop in 1977 [47]:  

"A conflict is an observable situation where two or more road users approach each other in time and space to 

such an extent that a collision is imminent if their movements remain unchanged. "  

The use of traffic conflicts to evaluate traffic safety is based on the hypothesis that there is a close relationship 

between conflicts and accidents. On the one hand, it is assumed that there is a causal relationship between 

conflicts and accidents. Since most accidents involve evasive actions, it is believed that similar processes are 

involved for accidents and conflicts, especially serious conflicts, and therefore accidents and conflicts represent 

measures of the same process. In other words, conflicts and accidents should share similar temporal and 
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spatial characteristics. Zimolong illustrated the sequences of events resulting in accidents and conflicts as 

shown in Figure 2-1, indicating that a conflict resulted from the same type of evasive actions as an accident 

does [48]. 

 

Figure 2-1  Sequence of events resulting in conflicts and accidents [48] 

On the other hand, there is an assumption of a statistical relationship between conflict and accident 

occurrence. It is believed that the more frequently conflicts occur, the larger the number of accidents must be. 

Traffic conflicts occur considerably more frequently than traffic accidents. For this reason, a significantly 

shorter study period is needed to establish statistically reliable results, which is the most appealing aspect of 

the use of conflict data compared to accident data. Furthermore, traffic conflict analysis also implies a 

"proactive" approach in contrast with accident data analysis as "reactive", eliminating the ethical problem 

associated with the need of many injuries and fatalities before safety problems are resolved [49]. With regard 

to the relationship between accidents and conflicts in terms of occurrence frequency, Hydén employed a 

pyramid as shown in Figure 2-2, and indicated that there would be continuous increase in the number of events 

with the decreasing severity levels. This was based on the principle that the interaction between road-users can 

be described as a continuum of safety-related events with varying severity levels [50]. In this pyramid, 

accidents are found at the very top and the safe events at the bottom. The majority of events are undisturbed 

passages, in which road users pass independently of each other. A small portion of events results in conflicts. In 

conflicts, road users approach each other on a collision course and some degrees of evasive actions are 

required. Conflict events range from potential, slight and serious with the increasing severities of evasive 

actions. A smaller portion of events is accidents resulted from situations where evasive actions start too late, or 

there is no time for evasive actions at all. Accidents include injury accidents and fatal accidents. 

Since the first application of TCT in 1967, this method has generated immediate interest and spread in many 

countries, e.g. France, Britain, Germany, Holland and Sweden. Different TCTs have been developed in countries 

where the researchers consider TCT as a possible complement to the traditional accident data analysis for 

safety evaluation. A literature review in 1983 listed as many as two hundred related studies [51]. However, 

researches soon revealed some weaknesses of this approach and some researchers were skeptical of this 

approach. This has limited its practical use and hindered its general development and acceptability [25,52]. Its 

problems primarily concern the validity of TCT and the reliability of conflict measurement. 

The validity of TCT mainly focuses on the level of statistical correlation between observed conflicts and 
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accident data. The need for validation stems from the long-standing tradition of using accident data for safety 

measure [25]. According to TCT studies in the early years, a part of studies suggested the existence of 

acceptable level of correlation, while another part indicated poor correlation level [52]. While the debate 

prevails, studies using US TCT and Swedish TCT have shown that observed conflicts could successfully predict 

the number of accidents in an acceptable level, indicating that traffic conflicts are good surrogates of accidents 

[53,54]. 

Undisturbed Passages

Potential Conflicts

Slight Conflicts

Serious Conflicts

Accidents

Fatalities

Injuries

Accidents:

 

Figure 2-2  Safety pyramid consisting of a continuum of events with varying severity levels [50] 

Criticism concerning reliability issues is related to subjective judgment of speed and distance by trained 

observers [55]. There are generally two aspects of unreliability in subjective judgment: "intra-rater variation" 

and "inter-rater variation" [25]. "Intra-rater variation" arises out of the inconsistencies of an individual 

observer for reasons of e.g. lack of training, fatigue, excessive numbers of conflicts, poor definition of conflicts 

and complexity of conflict types [56]. To remedy this problem, video recording can be used to verify the 

observation results [57]. "Inter-rater variation" is related to variability in interpretation of a given situation 

between different observers, particularly between observers of different countries or teams. The first 

international comparative study incorporating four teams of observers [58,59] and a full-scale conflict study 

involving traffic safety teams in twelve countries [60] revealed differences in frequencies of conflicts observed 

by different teams. The studies suggested that the differences were probably caused by that conflicts were 

differently defined and observed. It is also argued that variations in subjective observation may still exist, even 

if conflicts are well defined and observers are well trained [25].  

In TCT application, different safety indicators have been developed to evaluate safety severities. In subjective 

observations, Time-to-Accident (TA) is used to distinguish serious conflicts from slight conflicts. TA means the 

time remaining from when evasive action is taken until the collision would have taken place if involved road 

users had not changed speed and direction. TA values are calculated based on speed and distance estimated by 

trained conflict observers. For the purpose of determining severity, TA values must be used in conjunction with 

estimated speed [50].  

Given that the subjective measure is a frequent subject of criticism in TCT method as described above, 
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alternative indicators of more objective measures were proposed, such as Time-To-Collision (TTC) and Post-

Encroachment-Time (PET). TTC was originally suggested by Hayward who described TTC as "the time that 

remains until a collision between two vehicles would have occurred if the collision course and speed difference 

are maintained" [61]. In calculating TTC values, the evasive action is not considered. Instead, once a conflict 

course is determined, a series of TTC values will be obtained during this conflict course. The minimum TTC 

value is regarded as the final TTC value of a collision course. In practical studies, a threshold of TTC value is 

preset to determine the severity level of conflicts, and the factor of speed is not taken into account. PET is one 

variation of TTC and is used to measure a process in which two road users do not involve in a collision course, 

but pass over a point with a slight temporal difference [62]. Compared to TTC, PET values are easier to obtain, 

as no speed and distance data is required. However, the PET concept is only applicable to critical events 

involving road users in transversal or crossing trajectories. Many other derivatives of TTC and PET have been 

proposed in recent studies with specific research purposes, such as, Time-Exposed-TTC and Time-Integrate-TTC 

[63], Time-to-Zebra [64], and Gap-Time, Encroachment-Time and Initially-Attempted-PET [65]. Which safety 

indicator to use depends on what the research aims are and to what extent resources are available for a 

research. The objective measures largely rely on video data analysis rather than on-site observation. The use of 

video-analysis allows repeated observation of difficult and complex conflict situations, and guarantees precise 

measures of speed and distance as well. With the fast development of information technologies, processing of 

video data is being less time-consuming and less laborious. The introduction of video recording analysis is a 

huge progress of TCT, conforming to the TCT development needs exactly as suggested by Chin and Queck [25].  

2.4. Naturalistic Driving Observation (NDO) 

The TCT method is applicable for variant research purposes. It is mainly used to assess safety changes caused 

by safety enhancement measures in device, layout, design and procedure through before-and-after study [66]. 

It can also be used to study interactions of specific road user types. However, in most studies, conflicts were 

collected at a specific location, whether by on-site observation or by video recording analysis. The observation 

restrained in limited locations make the results sensitive to site-specific factors related to roadway design, 

average speeds and traffic flows, especially when specific conflict types or conflicts between specific road user 

types are aimed to be collected [21]. This limitation raises the need to collect conflicts in a dynamic process 

where the environment is changing. This would largely extend the application of traffic conflicts in safety 

research. Naturalistic Driving Observation (NDO) is such a method to meet this need [67]. It can collect and 

evaluate conflicts as well as interactions of road users in a spatially changing process.  

2.4.1. NDO and its advantages 

Naturalistic Driving Observation (NDO) is a relatively new approach within traffic research. It can be defined as 

"a study undertaken to provide insight into driver behavior during every day trips by recording details of the 

driver, the vehicle and the surroundings through unobtrusive data gathering equipment and without 

experimental control" [68]. In a typical NDO study, passenger cars, generally the subjects´ own cars, are 

equipped with cameras and various sensors. The subjects can decide where and when to drive, and drive the 

equipped cars in their usual way without specific instructions and interventions. For a long period of time 

ranging from several weeks to several years, the installed data acquiring devices record vehicle movements 
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(such as driving speed, acceleration/ deceleration, direction and geographical positions), driver behaviors (such 

as eye, head and hand maneuvers) and environmental conditions (such as traffic densities, time headway, road 

conditions and weather characteristics). The collected data allows the observation and analysis of 

interrelationship between driver, vehicle and environment (including road, traffic conditions and weather) in 

normal driving conditions, conflicts and even crashes. 

The NDO conduction procedure might slightly vary in different studies. There is no standard guideline to follow. 

However, an Implementation Plan that was modified from the Implementation Plan for Field Operational Test 

(FOT) can be used as a reference [69]. This NDO Implementation Plan includes all steps that have to be 

considered in conducting NDO studies, such as planning, preparing, executing, analyzing and reporting a NDO 

study, and gives information relevant for legal and ethical issues. 

There are a number of traditional approaches for road safety research, such as historical accident analysis, in-

depth accident investigation, driving simulators, instrumented vehicles and self-reports. Whereas these 

methods could greatly contribute to the understanding of road user behaviors, they concern several limitations 

[70,71]. The first two traditional methods have been discussed previously. A main downside of them is the lack 

of direct observation of accident events and the lack of sufficient information to derive causal explanation for 

accidents. Driving simulator is widely used and appreciated for investigating road user behaviors. It allows 

studying variables leading to specific behaviors, eliminating influences of external confounding variables that 

can be strictly controlled. However, the results from driving simulator studies are not always easily transferred 

to real traffic situations, as both traffic environment and the vehicle characteristics are artificial and only 

approximations of reality. In field experiments with instrumented vehicles, participants drive real cars in real 

traffic environment. However, they are often asked to perform specific behaviors, for example talk on a mobile 

phone or perform a "cognitive task". The consequence of performed specific task is observed for behavior 

measures. Moreover, such studies normally involve a researcher present in the car. The presence of observers 

and equipment makes participants aware of being observed and affect their driving behaviors. Therefore, field 

experiments with instrumented cars cannot get access to the daily "natural" driving behaviors. Self-report is 

also a widely used method to study driving behaviors by means of questionnaires with relation to driving 

exposure ("how long do you drive annually?"), risky driving behaviors ("how often do you talk on mobile phone 

while driving?") or the frequency of crashes in driving. Such a method can more easily reach a representative 

sample and make generalization of the results to a larger population possible. However, it concerns indirect 

observation and relies on the subjective reports of road users´ own behaviors. The results from self-reports are 

subject to various biases.  

The approach method NDO can overcome these problems associated with traditional methods, as it can 

provide direct, objective and comprehensive observation of road users´ "natural" daily behaviors in both 

normal and critical situations. Compared to the traditional methods, NDO has larger potential to get insight 

into how critical situations take place and find out possibilities to make the traffic system safer. 

2.4.2. Review of NDO studies 

The Virginia Tech Transportation Institute (VTTI) pioneered NDO in the project 100-Car Naturalistic Driving 
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Study. Since then, many NDO studies have been undertaken for different research targets. A literature review 

of NDO studies was made in the project PROLOGUE, aiming to assess the feasibility and usefulness of a large-

scale NDO study in Europe and to provide recommendations for such a large-scale study [70]. Review of NDO 

studies were also made in the first stages of large-scale NDO studies in Australia and in Europe [72,73]. Large-

scale NDO studies have been or are being conducted in some countries, such as "100-car NDS" and SHRP2 in 

the USA, "Australian 400-car NDS" in Australia and "UDRIVE" in the EU. Large-scale studies normally involve a 

great number of cars (more than 100 cars), cover national or international regions and last a long period. 

100-car NDO is the ground-breaking NDO study that was conducted by VTTI in the USA [74]. In this study, data 

was collected on 241 drivers who drove 104 fully equipped cars in Northern Virginia/Washington, DC 

metropolitan area for twelve to thirteen months. It generated approximately 2 million vehicle miles and forty-

three thousand hours of data. This study was initiated with several research goals in mind. A primary goal was 

to provide a high level of detail concerning driver behaviors, vehicle dynamics, driving context and other factors 

associated with crashes and conflicts. From the data, an event database was built up, including 15 police-

reported crashes, 67 non-reported crashes, 761 near-crashes and 8,295 incidents. A near-crash in 100-car NDO 

study was defined as a conflict event where "a rapid evasive maneuver" was conducted, such as steering, 

braking, acceleration or any combination. The definition was quantified by e.g. a longitudinal deceleration of at 

least 0.5 g. The concept of near-crashes was similar to the serious conflicts in TCT. Incidents included the 

slighter conflicts and "proximity conflicts" in which avoidance actions were not observed, but the absence of 

avoidance actions was inappropriate for the driving safety. One of the most important outcomes of this study 

was that distraction and inattention were found to play a role in almost 80 percent of all the observed crashes. 

Besides, the 100-car NDO data have been analyzed from other perspectives. For example, the light vehicle-

heavy vehicle interaction events were identified from the data set in order to investigate the interactions 

between light vehicles and heavy vehicles; the causal factors were analyzed for rear-end crashes/conflicts 

[67,75]. 

Another large-scale NDO study SHRP2 is the follow-up project of 100-car NDO [76]. SHRP2 NDO is the largest 

and most comprehensive NDO study ever undertaken. The data collection started in 2012. It was completed in 

2014. Two petabytes of data were produced from 3,147 drivers in six American states for three years (most for 

one to two years), covering 50 million vehicle miles and 1 million hours of data recording. The recorded data 

included vehicle speed, acceleration, braking, vehicle controls, lane position, vehicle headway, forward and 

rear views of vehicles, and drivers´ face and hands. The central goal of the study was to produce unique data 

that could be used to study the role of driver performance and behaviors in traffic safety and how they affect 

the risk of crashes. The current results from the data analysis were related to rear-end crashes, focusing on 

understanding the relationship between rear-end crash risk and driver inattention. The inattention was 

measured by distracting activities (e.g. answering a cell phone, monitoring the radio), glance location, and 

timing of Eyes off Path. A set of 46 rear-end events and 211 near-crash events was detected. For analysis 

control, 257 matched baseline events and 260 random baseline events were selected. The analysis of these 

selected events generated several findings: "While some activity types (like Texting) significantly increased risk, 

a strong significant decrease in risk was found for talking/listening on cell phone compared with not engaging 
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in a phone conversation "; "Glances that lead to crashes may not necessarily have to be long"; "Dangerous 

glances are those during which the driver gets exposed to the risk of a rapidly changing situation"; and "Lead-

vehicle crashes can be understood as the mismatch between glance duration and the lead-vehicle closure rate". 

The results provide supports for vehicle design, driving education and road and infrastructure design. The data 

processing is ongoing and years are needed to output more results given the vast data size. 

UDRIVE is the first large-scale European NDO study [73]. Data collection was conducted in seven EU member 

states. It involved 290 participants. UDRIVE put its focuses on crash causation and risk, such as distraction and 

inattention as well as interactions between drivers and other road users. In addition, it aimed at quantifying 

driving style, road characteristics and traffic conditions in relation to fuel consumption and emission levels. 

Furthermore, this study investigated not only behaviors of car drivers but also that of truck drivers and 

motorcycle riders. That is, trucks and motorcycles were instrumented by data logging sensors to record daily 

driving or riding behaviors and surrounding environment.  

In Australia, a large-scale NDO study started in 2013 [72,77]. This study planned to recruit 400 volunteers to 

drive their own car for 6 months. It has raised eight questions in relation to thematic areas, such as driver 

personal characteristics, driving behaviors, exposure to collision risk, and causal factors to crashes/safety-

critical events. Data collection and analysis focused on finding out the answers to these questions and studying 

the relationship between these thematic areas. From the answers, countermeasures were expected for 

improving intersection safety, reducing crashes concerning speeding, vulnerable road users and fatigue and 

inattention, and improving intelligent vehicle safety technologies.  

From a large-scale NDO study, several research problems can be addressed. Besides large-scale studies, many 

small-scale NDO studies were undertaken to concentrate on specific research issues. NDO provides information 

that would be difficult to obtain by other methods. The research issues that NDO as an ideal method was used 

to handle can be summarized as follows: 

 Identification of crash contributing factors, e.g. distraction, and fatigue or drowsiness ; 

 Driving behaviors of specific driver groups, e.g. novice drivers, older drivers and drivers with diseases; 

 Effects of road design and weather conditions on driving behaviors; 

 Interactions between car drivers and other road users; 

 Effects of in-vehicle information devices or advanced driving assistance system on driving behaviors; 

 And relationship between driving patterns, fuel consumption and vehicle emissions. 

Distraction 

Distraction has been found to be a major contribution factor to road accidents [78,79]. Distraction in driving 

was the primary research focus in the majority of NDO studies. The four large-scale NDO projects described 

above all involved research on driver distraction. NDO is a multifaceted method within the field of driving 

distraction. It is suitable for investigating the prevalence of distraction in accidents. Particularly in large-scale 

NDO studies, a lot of accident- and conflict-events might be obtained. Results from the "100-car NDO" 

indicated that secondary task distraction and eye glances from the forward roadway were involved in a vast 
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majority of lead-vehicle crashes [80]. The distractions of truck drivers and combined data in two earlier NDO 

studies were investigated: in one study, vehicle kinematic, video and audio data were collected from a group of 

103 truck drivers for twelve weeks [81]; in another study, the driving data of a group of 100 truck drivers were 

observed for four weeks [82]. The key finding from the first study was that drivers were engaged in secondary 

tasks in 71 percent of crashes, 46 percent of near-crashes, and 60 percent of all safety-critical events. In the 

second study where 41 long-haul truck drivers were observed, 2,737 serious conflicts (no crashes were 

recorded in this study) were detected and examined. 178 of them were attributed to driver distraction. 

In addition to the research on distraction prevalence in crashes and conflicts, the recorded information before, 

during and after events allows for identification and description of distraction patterns and how often drivers 

being engaged in distraction. Such a NDO study for estimation of distraction exposure was conducted by 

observing 70 drivers for one week using a continuous video recording system [83]. This short-term study 

showed that distraction was a common component of everyday driving and the most common distraction 

pattern was conversing accounting for 15.3% of the observed distraction duration, followed successively by 

(preparing for) eating and drinking (4.61%), smoking (1.55%) and using a mobile phone (1.3%). In a similar 

study, twelve drivers with young children were monitored for three weeks in order to investigate child-

occupant-related distractions [84]. It was found that the child-related distraction activities included looking at 

the rear seated children (76.4%), conversing with the children (16%), assisting the children (7%) and playing 

with them (1%). 

Fatigue or drowsiness 

Drowsiness or fatigue is also a significant contrition factor in road accidents. This factor is in particular 

interesting for commercial drivers, as they often drive for long time and at night. The reviewed relevant studies 

were all conducted in the United States. Safety-critical events associated with fatigue issues among long haul 

(LH) truck drivers were studied in a study of Dingus et al. [75]. In this study, sensor and video data were 

collected from 56 LH truck drivers, including 13 team drivers (2 drivers per team) and 30 single drivers. Fatigue 

was found to be a critical issue in LH truck safety. In addition, single drivers had more critical events than team 

drivers did; the critical events of team drivers due to "very drowsy" occurred mostly at night, while critical 

events of single drivers occurred mostly in the afternoon.  

Fatigue associated with LH truck safety was also addressed in a study of Hanowski et al. [85]. The objective of 

this study was to investigate fatigue related to the revised Hour-of-Service (HOS)-regulation in the US. The 

revision of HOS-regulation included a two-hour extension of off-duty time from eight to ten hours, and a one-

hour extension of maximum daily driving time from 10 to 11 hours. The fatigue was not measured directly but 

estimated based on the daily sleeping hours of the drivers. In order to test the effects of the revision, eighty-

two LH truck drivers were observed for sixteen weeks by use of instrumented trucks and sleep monitors. No 

increase in occurrence of critical events was found in the eleventh hour. This finding indicated that the one-

hour extension of driving time in HOS regulation had no detrimental impact on driving safety.  

In another study of Hanowski et al., local/short-haul (L/SH) trucks were instrumented to observe 42 L/SH truck 

drivers for two weeks by a video recorder, a driver alertness measure, and driver attention and performance 
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measures [86]. L/SH-driver-at-fault critical events were of primary interest in data reduction. The results from 

data analysis indicated that fatigue was present immediately prior to driver involvement in at-fault critical 

incidents. A further analysis of the data from this study was aimed to identify factors associated with 

drowsiness or fatigue [87]. By investigation of the 2,745 drowsy events, younger and less experienced drivers 

were found to be more frequently drowsy. In addition, a strong relation was found between drowsiness and 

time of day: drowsiness was more likely to occur in the early morning and within the first hour of work shift.  

Driver characteristics 

According to the epidemiological research, it consistently shows that novice and older drivers are at increased 

accident risk, more than the drivers in other ages are, likewise are drivers with chronic diseases. Some NDO 

studies have been undertaken to investigate behaviors and accident risk of such groups of drivers. 

Regarding the group of young drivers, a study used an in-vehicle data acquisition system, consisting of cameras, 

vehicle position sensors and vehicle status sensors, to record behaviors of 42 newly-licensed teenagers and 

their parents for eighteen months [88]. One primary finding was that crashes and near-crashes among 

teenagers were significant higher in the first six months, and decreased in the following twelve months. 

Another important finding was that the number of crashes and near-crashes of teenage participants were 

significantly higher when compared with the number of crashes involving adults. This finding was consistent 

with the previous studies based on self-report data and accident data analysis. Driving behaviors of teen drivers 

were also studied in another study [89].This study tested a program, in which it was required to accompany a 

teen driver in the first three months after licensure. Sixty-two novice drivers and their parents voluntarily 

participated in this study. Vehicle speed, acceleration and derivers´ behaviors were recorded and used to 

measure risk-taking indices. The results showed that the risk-taking behavior of the teen drivers was related to 

various factors, such as gender, sensation-seeking tendency, driving behaviors of their parents and supervision 

amount. The relation between risk-taking behavior and drivers´ low driving experience during accompanied 

driving period highlighted the importance of the tested program. A study of McGehee et al. also focused on 

driving behaviors of novice young drivers by monitoring a group of twenty-six novice young drivers using event-

trigger video recording system [90]. Two different behavior patterns were observed in these young drivers: 

drivers of one pattern rarely involved in safety-critical events, and drivers of another pattern often involved in 

critical events.  

Behaviors of the older driver group were studied by use of NDO in two reviewed studies. The two studies 

focused on the driving exposure and driving patterns. The first study recorded driving trip information of 61 

older drivers for one week, including time of day, driving areas and night driving [91]. Significant discrepancy 

was found regarding driving exposure and patterns between self-report of daily diaries and the recording data 

by NDO, indicating that a significant number of trips were missed in the diaries. This result highlighted 

disadvantages of the self-report as a method to study driving behaviors of older drivers and the benefits of 

combining NDO and self-report in this field. The second NDO study was conducted to investigate the driving 

patterns of older drivers in winter. Forty-seven older adult drivers were observed for two weeks, to record 

when, where and under what weather conditions they drive [92]. Older drivers´ travel exposure and patterns 
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were found to be associated with many factors, such as weather, road conditions and self-rating of driving 

comfort. 

In-vehicle driving support system test 

Naturalistic driving data allow for investigation of driving behaviors associated with in-vehicle systems in 

question, to understand how drivers compensate and adapt to the systems. The standard method for in-vehicle 

system test is Field Operational Test (FOT). A FOT is defined as "a study undertaken to evaluate a function, or 

functions, under normal operating conditions in road traffic environments typically encountered by the 

participants using study design so as to identify real world effects and benefits" [103]. FOT is a different method 

from NDO. However, NDO use the same observation equipment, techniques and even conditions as 

"naturalistic FOT", in which unobtrusive observation is conducted when participants drive their own cars in real 

traffic context following their daily traffic routine. In this case, it is hard to distinguish the two methods, and 

therefore naturalistic driving data collected by either NDO or FOT can be used for the same research purposes 

[69]. With regard to test of in-vehicle support system, a lot of interesting questions could be addressed, for 

example, how and when driver use the system to be tested, whether it generates any side effects, and whether 

it changes and affects drivers´ behaviors. A NDO study was carried out to verify the unintended side effects on 

drivers´ behaviors of Forward Collision Warning (FCW) and Adaptive Cruise Control (ACC), with the hypothesis 

that there would be an increase in secondary activities due to the presence of the two assistance systems [93]. 

The result did not support the hypothesis. In another NDO study, naturalistic driving data was collected, from 

which avoidance response time points in crashes and near-crashes were abstracted in order to evaluate and 

develop the performance of Collision Avoidance Systems (CAS) [94].  

Interaction between different road user types 

Two studies were reviewed to focus on the interactions between light vehicles (i.e. passenger cars) and heavy 

vehicles. The two studies investigated the interactions between light vehicles and heavy vehicles from the 

perspective of the light vehicle drivers [74] and the heavy vehicle drivers [95], respectively. The first study 

analyzed the data set in "100-car NDO". The second study instrumented heavy vehicles with the same data 

collection device set as in the "100-car NDO" and observed the drivers for one to two weeks. In the two studies, 

safety-critical events between light vehicles and heavy vehicles were identified and analyzed. The results from 

both studies indicated that light vehicle drivers were responsible for the majority of detected events. Moreover, 

the most frequent contributing factors to critical situations by light vehicle drivers were difficulties of 

decelerating and stopping, whereas by heavy vehicle drivers´ contributions factors were difficulties when 

changing and crossing lanes. The studies implied the possibilities to study interactions between different types 

of road users by use of NDO. However, challenges exist in interpretation of behaviors of road users in the 

vehicles that are not instrumented.  

Other NDO studies 

Besides the research issues discussed above, other issues could also be studied by use of NDO. NDO studies 

have been carried out to investigate the behaviors and driving capabilities of drivers with various disease and 

health conditions, such as dementia [96,97] and visual impairments[98]. In standard NDO studies, recoded 
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environmental information by cameras and GPS logger offers potentials for studies concerning relationship 

between environment factor and traffic safety. Although no NDO studies are reviewed especially for this 

purpose, environmental conditions were, for instance, combined to analyze the contributing factors to drivers´ 

inattention in "100-car NDO" [75]. In addition to the study issues relevant for traffic safety, environment-

friendly driving, i.e. eco-driving, was also considered in NDO studies. In studies within this field, driving styles 

were investigated associated with fuel consumption and green-house emission [99-101]. 

2.4.3. Review of Naturalistic Cycling (NC) studies 

Naturalistic data could be collected not only from equipped motorized vehicles (such as cars, trucks and buses), 

but also from instrumented bicycles. While cycling safety is receiving more attention in the area of traffic safety, 

a number of naturalistic cycling (NC) or quasi-naturalistic cycling studies have been conducted to understand 

cycling dynamics, bicyclist behaviors and cyclists´ interactions with other road users. 

The naturalistic driving method was first adapted to investigate riding experience and behaviors of bicyclists in 

Australia [102]. In this study, helmet-mounted cameras were used to observe six commuter bicyclists. From 46 

hours of video footage, 36 near-collision events were identified. Although no contribution was made for 

suggestions to improve cycling safety due to the limited sampling data, this work proved the feasibility of 

collection and analysis of naturalistic cycling data. Another naturalistic study of commuter cyclists was 

conducted in Greater Stockholm, Sweden [103]. Besides video cameras, GPS logging devices were used to 

collect GPS-coordinate data. Sixteen commuter cyclists were observed in their daily cycling, generating 240 

hours of cycling data. From these data, 506 problems were identified and described in terms of safety, mobility 

and accessibility in cycle network. These problems were served as useful input in improvement of cycling plan 

in Greater Stockholm. A naturalistic cycling study was carried out by Dozza M. et al. with more complicated 

equipment, including cameras, inertial sensors, GPS loggers and brake force sensors [104]. The daily cycling 

data of twenty cyclists were recorded, offering a set of naturalistic cycling data unique in quantity and quality. 

By analyzing the collected 114 hours of cycling data, sixty-three critical events were identified, of which six 

were crashes. Comparing the selected 126 baseline events and 63 detected critical events, the statistical 

associations were verified between critical events occurrences and factors concerning weather, environment, 

location and infrastructures. 

The studies aforementioned focused on the general critical situations or problems in the cycling trip. Some 

reviewed studies particularly concerned interactions between motorized vehicles and bicycles. The interactions 

were studied primarily when motorized vehicles overtake bicycles. A study used instrumented bicycles to 

observe overtaking events on rural roads [105]. The lateral passing distances were measured, showing that 

vehicles passed too closely to bicycles only in 0.5% of the detected overtaking events. Another study recruited 

34 participants to implement an experimental riding in a planned urban route with different bicycle facilities 

[106]. Overtaking events were also detected from the recorded data. These events were used to study factors 

that influence motorists´ overtaking distance and bicyclists´ positions, wheel angle and speed control behaviors, 

such as types of motorized vehicles and road features. A more complicated set was built to instrument bicycles 

by Llorca C. et al., which could not only measure the lateral passing distances, but also motor vehicles´ speed 
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while passing [107]. By analyzing the about 2,000 overtaking events, it was suggested that a combine factor of 

passing distance, vehicle type and vehicle speed had significant influence on cyclists´ risk perception, rather 

than the factor of passing distance alone.  

2.4.4. Weakness of Naturalistic Driving/Cycling studies 

Despite the potentials of naturalistic driving/cycling methods to address questions that other traditional 

approaches cannot answer, there are some problems and limitations associated with this method.  

First, driving/cycling behaviors are expected to be unobtrusively observed in naturalistic observation studies. 

However, observation is always accompanied by some sort of intrusion [108]. Although equipment is mounted 

as inconspicuously as possible, there are still some clues making participants aware of being under observation, 

which would result in some level of behavioral modification. In addition, participants are at times required to 

use instrumented vehicles instead of their own, when only a few instrument sets are available due to their high 

cost [104]. Moreover, some studies have only access to limited resources. In this case, in order to capture an 

adequate amount of valid data, studies are organized at the expense of natural properties. For instance, the 

participants were instructed to ride on specific routes at specific time period and comply with road regulations 

and rules [103]. For these reasons, it is argued that any naturalistic observation study can hardly be viewed as 

purely naturalistic [108]. However, this promising method still could address traffic safety issues, when studies 

are designed as naturalistic as possible by balancing study requirements and resource limitations, and careful 

analysis is made to understand which elements are actually natural and which are not. 

Another typical problem in most naturalistic studies is that data storage and analysis are resource demanding. 

Since not only numerical data but also video data might be included in naturalistic data, an enormous amount 

of data could be generated in a study. For instance, the 100-car NDO study resulted in six terabyte of data, 

while the project SHRP2 resulted in two petabytes of data. The huge database puts forward a very high 

demand on storage capability of the network, especially considering that several researchers could analyze 

these data at the same time. Video data in naturalistic studies could consist of up to several years of 

continuous video images. Safety-critical events are the most common interesting events in naturalistic data 

analysis. The critical events can be identified by kinematic triggers (by searching for deceleration or yaw rates 

above thresholds), interview or push buttons. In studies where critical events are of interest, merely the video 

fragment containing useful information about the detected events are positioned and watched. However, in 

naturalistic studies with respect to e.g. lane-change events and bicycle facility usage, it is necessary to review 

manually all video data. Manual evaluation of video data is very time-consuming, even in small-scale studies 

[109]. Moreover, manual reviewing procedure is based on subjective decisions, facing personal variation and 

low accuracy. To solve this problem, (semi-) automatic video processing is being introduced in naturalistic video 

data analysis. For instance, the study of Dozza M. et al. tested several algorithms to recognize objectively 

safety-critical events by automatically detecting sudden body motion of drivers [106]. The application of 

automatic video processing techniques in naturalistic video data analysis would reduce resource expenses, and 

extend the naturalistic study possibilities. 

The naturalistic data application is limited by the fact that crashes that are of main interest in data analysis are 
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rare events. Statistics shows that an average driver needs 62 million miles of travel for an accident occurrence 

[110]. Statistical analysis only using crash data is limited. In previous naturalistic studies, less severe safety-

critical events were used as surrogates for crashes. Less severe safety-critical events were defined differently in 

terms of terminology and magnitude of evasive actions. In the 100-car NDO study, near-crashes, crash-relevant 

conflicts and proximity conflicts were defined to represent critical events in descending levels of severity. This 

definition or its modification was applied in a great number of naturalistic studies. Less severe safety-critical 

events happen more frequently than crashes. For example, in the 100-car NDO study, 761 near-crashes and 

8,295 incidents (including crash-relevant conflicts and proximity conflicts) were identified, while only 69 

crashes were identified [67]. In fact, less severe safety-critical events are the same concept as traffic conflicts in 

the method of Traffic Conflict Techniques (TCT). As TCT has a longer history, it has formed a solid scientific basis 

for conflict severity classification, which can be cited in naturalistic data analysis.  

2.5. Eye-tracking 

While driving is considered as an information processing task, the most critical component of the information 

processing model is attention [67]. In many driver behavior researches, it is important to measure driver 

attention. It is critical to know how well drivers execute secondary tasks, and if certain tasks or interfaces are 

more distracting than others [111]. Numerous studies indicate that inattention and distraction are major 

contributing factors for motor vehicle crashes [112]. Many definitions of driver distraction have been published. 

The definitions could range from "driver distraction occurs when a driver is delayed in the recognition of 

information needed to safely accomplish the driving task because some event, activity, object or person within 

or outside the vehicle compelled or tended to induce the driver´s shifting attention away from the driving task" 

to "a shift in attention away from stimuli critical to safe driving toward stimuli that are not related to safe 

driving" [113]. Most of these definitions embrace four diversions of distraction: visual, auditory, physical and 

cognitive distraction.  

Eye movements are linked with attention, and are believed to give a good estimate of where driver´s attention 

is directed [111]. Therefore, the real-time driver distraction detection is often based on eye movements, with 

the definition that "distraction is assumed to occur, when the driver has glanced away from the forward 

roadway for a certain period of time, either continuously or with consecutive glances" [111]. Eye movements 

can gain access not only to visual distraction but also other diversions of distraction [114]. Eye-tracking 

technique is used to measure foveal vision direction either in driving simulators or in real traffic using an 

instrumented car. In recent years, many researchers have studied eye movements to examine drivers´ 

distraction caused by different stimuli. These stimuli include in-vehicle technologies [115], assigned secondary 

tasks [116-118], anger emotion state [119] and hands-free cell phone conversations [120]. With the advances 

in eye-tracking technology, eye movements were used in other applications besides studies regarding 

distraction. For example, eye movements were measured to investigate differences in visual scanning between 

experienced and inexperienced drivers [121]. Drivers´ visual scanning patterns were also assessed in specific 

road environment based on eye movements, such as at permissive left-turns [122] and at varied complexity of 

intersections [123]. As mentioned previously, eye movement data were also collected in some NDO studies 
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with the aim to identify causes of crashes or conflicts due to distraction [80,81]. The underlying hypothesis is 

that where and how long the driver looks at prior to a crash or a conflict can explain whether the driver or the 

environment is likely to be responsible for the event. 

2.5.1. Techniques for eye-tracking 

Eye-tracking systems are devices that can estimate the eye gaze direction and measure human eye movements. 

The first eye-tracking system using eye movement camera was developed in 1968 to monitor and record 

drivers´ on-road visual scanning behavior [124].  

Many eye-tracking techniques are intrusive, i.e. they require physical contact with users. These techniques 

include contact lenses, electrodes, and head mounted devices. They work based on different principles. Using 

contact lenses, into which a small coil is embedded, eye movements are estimated according to the voltage 

induced in the coil by an external electro-magnetic field [125]. By placing electrodes around eyes, it is possible 

to measure electrical signal changes of the muscles that correspond to the eye movements [126]. Although the 

two techniques provide high accuracy, they are only appropriate for scientific exploration in controlled 

environment but everyday use. Head mounted devices are mostly based on cameras or other optical devices. 

They require eyes to be very close to the optical devices. Camera-based eye-tracking methods utilize properties 

of human eyes, i.e. the boundary between different eye components. The limbus and the pupil are common 

properties used for eye-tracking. Limbus is the boundary between the sclera and the iris, while the pupil 

property refers to the pupil-iris boundary [127]. Since eyelids can negatively affect the limbus tracking 

technique, pupil tracking has better accuracy. Many camera-based eye-tracking devices apply an infrared light 

source in order to enhance the contrast of boundaries.  

In contrary to intrusive eye-tracking techniques, non-intrusive techniques, also known as remote techniques, 

can measure eye movements without direct contact with users. Non-intrusive devices are mostly vision-based, 

i.e. they capture images of eyes using camera aimed at users´ face. They also rely on eye component boundary-

tracking, similar to head-mounted camera-based eye-tracking devices. (Head-mounted or off-head) Camera-

based devices are the most widely used techniques for in-vehicle studies. However, camera-based eye-tracking 

techniques has limitations related to accuracy, sensitivity to illumination conditions and glasses use, calibration 

problem and so on [128].  

2.5.2.  Parameters for eye movements 

One of the most frequently used terms for eye movements in automotive contexts is the fixation. Fixation 

occurs, when the eye gaze, i.e. the line of sight of a person, is directed towards to a particular location and 

remains for a period of time [112]. The period of a fixation is generally between 200 ms and 2000 ms. In car 

driving, the majority of fixations are observed between 200 ms and 600 ms [129]. However, in some situations, 

for example, when a car driver is waiting at a red light with few driving tasks, a fixation can last much longer. 

Fixations are separated by rapid eye movements known as saccades, which are another frequent term in eye 

movement analysis. It is generally agreed upon that very little new information can be achieved during a 

saccade. The reason is the phenomenon of saccadic suppression, that is, people are unaware of the blurry 

moving image on the retina during the saccade [130]. Therefore, the actual paths travelled during saccades are 
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normally irrelevant in many research applications. Instead, the fixation is of primary measure of interest, since 

it retains the most essential characteristics for understanding cognitive and visual processing behaviors.  

In analysis of eye movements, spatial and temporal characteristics of fixations are often measured. Fixation 

location is a spatial parameter, providing information on which area or object is being processed. Driving is a 

dynamic process, in which the motorists have to monitor a series of objects, such as dashboards, rear view 

mirrors, roadways, traffic signals, other road users etc. Scan path is another spatial parameter, which is defined 

by the sequence of fixations on different areas or objects [112]. This parameter is a useful measure for fixation 

patterns or scan patterns for the purpose of comparison across groups or traffic conditions. Duration of 

fixations is one of frequently used temporal parameters of fixations. This parameter can serve as a measure for 

driving demand. Generally, situations that require longer fixation durations are more difficult to handle than 

those in which shorter fixation periods are measured [131]. The time proportion of fixations on an area or 

object is another temporal parameter. It can be also measured to compare visual behaviors between different 

road user groups or traffic conditions.  

2.6. Perceived risk 

Perceived risk is the subjective evaluation of the risk that people incur in a given situation [132]. Subjective 

perceived risk is considered to play an important role in traffic safety [133]. In the driving behavior models of 

Klebelsberg, it is stated that dangerous situations might emerge, if the subjective safety is higher than the 

objective safety [29]. Based on explanations concerning objective and subjective safety aspects, Klebelsberg 

drafted a model along the lines in Figure 2-3. The model shows that safety improves if an increase in objective 

safety is not paralleled by an increase in the subjective perceived safety; safety decreases if there is an increase 

in subjective safety without commensurate increases in objective safety. 

 
Figure 2-3  The model of objective and subjective safety 

The association between subjective perceived risk and the objective safety could be explained by the 

relationship between risk perception and behaviors. People are likely to behave more cautiously, when they 

perceive themselves as vulnerable to risk [134]. In the context of road traffic, road users often engage in 

protective behaviors, when they perceive a high risk [135]. In contrast, risk-taking behavior is significantly 

related to lower risk perception, which has been indicated in many researches (e.g. [136-138]). Although a 

great number of researches support the relationship between risk perception and behaviors, some controversy 
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about this relationship exists. For example, no significant correlation is found between risk perception and risky 

behavior among a sample of young drivers [139]; Horvath and Zuckerman indicate that risk perception is a 

consequence rather than a cause of risky behavior [140]. It is noted that the relationship between risk 

perception and behaviors is not as simplistic as described above. According to Fuller´s driving behavior model, 

the way how road users respond to a traffic situation depends on not only the risk perception, but also many 

other factors such as expectation, motivation and utilities [141]. Therefore, although risk perception is 

considered as a precursor of human behavior, and the understanding of risk perception is believed to be able 

to predict behavior [135], the relationship between risk perception and behaviors should be carefully used to 

explain the association between risk perception and safety. 

Researches to identify the predictors of perceived risk among car drivers are prolific [175-181]. Particular 

attention has been paid to comparison of perceived risk between young and older drivers, between male and 

female drivers and between drivers in different countries or cultures, with researches investigating the 

relationship between driving behaviors and risk perception. Perceived risk includes two aspects: the likelihood 

of the occurrence of an accident and the consequence associated with the accident [142]. In these researches, 

a single aspect or both aspects of perceived risk were assessed. The subjects could be asked to evaluate the risk 

involved in a given situation for both aspects, to evaluate the probability of injury due to a given accident (for 

the consequence aspect or to evaluate the probability to involve in an accident in a given situation for the 

likelihood aspect. 

While a great number of researches have focused on perceived risk among car drivers, there are only a few 

studies concerning perceived risk among cyclists [143-145]. These studies have focused on perceived risk of 

cycling itself or cyclists´ interactions with the environment. Risk perception in interactions between car drivers 

and cyclists has been reviewed only in the study of Chaurand and Delhomme [132]. In this study, participants 

were asked to measure the risk in six risky situations. Although four of the six risky situations in this study 

concern signalized intersections, they are not representative of car-bicycle accident scenarios at signalized 

intersections. 

2.7. Accident Prediction Models (APM) and their application in studies of 
bicycle crash risk 

An Accident Prediction Model (APM) usually denotes a multivariable formula to describe the statistical 

relationship between the safety level of roads and road factors that are believed to be related to this level. 

APMs are usually used to "predict" expected accident frequencies by fitting the model to the historical accident 

history on the investigated roads; APMs are also frequently used to identify e.g. geometric, environmental and 

operational factors that have a significant effect on occurrences of accidents.  

As one of effective methods for road safety management, different forms of models have been developed to 

estimate road safety performance, including Poisson regression models, negative binomial models, multiple 

logistic regression, multiple linear regression, random effects models, etc. [146]. The use of statistical 

techniques to the analysis of accident data originated from the use of the Poisson probability model.  
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Poisson regression models are suitable to describe the occurrence of accidents due to the non-negative, 

discrete and random features of accidents, and they are usually the first choice in modeling traffic accidents. 

However, Poisson models have one constraint that the mean must equal to the variance. In effect, a great 

number of literature suggests that most accident data are likely to be overdispersed, i.e. the variance is much 

greater than the mean [147]. If the mean is not approximately equal to the variance, the variances of the 

estimated Poisson model coefficients tend to be underestimated and the coefficients themselves will be biased 

[148]. To solve the problem of overdispersion, negative binomial regression models have been derived from 

Poisson models by introducing an overdispersion parameter into the relation of mean and the variance [148]. 

Negative binomial regression models are well suited to describe non-negative, discrete and random features of 

accidents, and relax the condition of mean equal to variance of Poisson regression models.  

APMs can be used for different road locations, such as road segments, intersections and routes within specific 

areas. Road intersections are especially focused, since intersections are a common place for accidents due to 

existence of several conflicting movements as well as different design characteristics. In studies by APMs, the 

estimated accidents could involve separately motor vehicles, cyclists, pedestrians, any combination of them or 

the entire population. Given the popularity of cycling and the vulnerability of cyclists, cyclist injury occurrences 

have been focused on with more attention in application of AMPs. Accident severity, i.e. fatal, injury, and 

property damage only, is also a factor in accident selection in assessing the safety level by use of APMs.  

The installation of bicycle facilities is a primary intersection treatment to promote cycling. However, their 

effects on the cycling safety are far from clear. Previous studies have reported wide disparities in safety effects 

of the bicycle facilities, especially bicycle paths. Two earlier studies in Sweden indicated that the changes in 

accident levels that had been caused by the cycle path introduction ranged from a reduction of 44% to an 

increase of 82% [149,150]. There have been also much discussion and debate about the safety effects of bicycle 

facilities [30,151,152]. Some studies separated their safety effects at intersections and between intersections. 

A study in Denmark found that the implementation of bicycle lanes worsened the safety both at intersections 

and along links, and the implementation of bicycle path could increase injuries at intersections, while injuries 

could be reduced along links. The author identified that bicycle paths that end at the stop line for motorized 

vehicles were risky for cycling [153]. A literature review, that primarily examined the studies in European 

countries, concluded that bicycle paths reduced collisions and injuries at intersections with the premise of 

special intersection modifications [154]. 

Given the importance and popularity of cycling, cyclist crashes at intersections become a topic that has started 

to receive more attention. Several studies have modeled the bicycle crash risk at signalized intersections by 

APMs, aiming to find out the contributory intersection factors to bicycle crashes. For example, negative 

binomial models were fitted to cyclist injury occurrence data based on a large sample of signalized 

intersections in Canada [155]. Two-equation Bayesian models was used to study cyclist injury occurrence also 

using an extensive inventory of a large sample of signalized intersections in Canada [156]. Negative binomial 

regression models were demonstrated using motor vehicle-bicycle accident data from 115 sample signalized 

intersections in Japan [157]. In these studies, the considered intersection factors included traffic flows of motor 
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vehicle and bicycles, traffic control (e.g. signal control phases), geometric design (e.g. number of intersection 

approaches) and built environment (e.g. presence of bus stop, presence of pedestrian overbridge). Few of 

them considered the safety effects of bicycle facilities. The bicycle facilities were investigated in the model in 

the study of [156]. However, no significant safety effects were found because very few bicycle facilities were 

installed at the sample intersections. 
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3. Car-bicycle accident analysis 

It is suggested by Leon G.G. that "for research in accident prevention, one must know the world of accidents and 

the appropriate world of research methodology" [158]. Although a great number of researchers have analyzed 

databases of car-bicycle accidents, few of them specifically focused on accidents at signalized intersections. 

This chapter brings insight into the characteristics of car-bicycle accidents at signalized intersections. Accident 

scenarios, as a widely used accident category for accident analysis, are first defined. Car-bicycle accidents at 

signalized intersections are analyzed concerning the scenario frequencies based on two databases. One 

database is police-reported accidents in Berlin that is a typical bicycle-city. The other database is German In-

Depth Accident Study (GIDAS) data, which is regarded as being representative for German [159]. Based on the 

Berlin police-reported database, accident causes, consequences and time are also analyzed. 

3.1. Cycling in Berlin 

Since the studies in this thesis are primarily carried out based on the context in Berlin, the cycling environment 

in Berlin is provided in this section. Berlin, the capital of Germany, has a population of 3 million. On an average 

working day, 88.4% of the resident population take part in road traffic in forms of private motorized transport, 

public transport, bicycle traffic or pedestrian traffic [160]. Among them, cycling is becoming more attractive. In 

the last years, the share of cycling in the routes traveled in the city has been increased by up to 50%. Around 

1.5 million journeys were undertaken by bicycle daily on working days in 2008. Cycling´s share of the overall 

number of local journeys undertaken by the inhabitants of Berlin was 13%. This figure is more than the average 

bicycle modal share of 10% in Germany. Figure 3-1 shows the share of journeys by bicycles in twelve districts in 

Berlin in 2008. 

 

Figure 3-1  Share of journeys of bicycle traffic by district in 2008 [160] 

The high cycling modal share is attributed to the bicycle-friendly politics. 1,400 km of bicycle facilities have 
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been constructed in Berlin, including bicycle paths, bicycle lanes, advised bicycle lane and shared bus lanes. 

Moreover, 590 km of bicycle route have been built up through parks, woods and alongside waterways in a 

radial shape, covering the whole area of Berlin. These bicycle facilities and bicycle routes form an attractive 

cycling network, increasing the cycling activity. This network is being extended under the guidance of cycling 

strategy that sets the goal to achieve 18% - 20% of cycling modal share by 2025 [161]. In the cycling strategy, 

many other measures are contained for supporting cycling, for example, by making bicycle parking spaces more 

easily accessible and linking cycling to the public transport. In addition, efforts have been made to improve 

cycling safety, which plays an important role in people´s decision to choose cycling as the transport mode. For 

example, a number of modifications in road design have been implemented at intersections, such as the 

installation of bicycle-specific traffic signals and staggered stop lines; a series of campaigns are planned to 

establish cycling safety in people´s mind.  

Despite these measures, the goal with regard to cycling safety is far from having been achieved. Averaged over 

the years 2003 to 2013, 6,797 bicycle accidents were annually registered and 12 bicyclists were killed in road 

accidents per year[162]. 22% among these accidents occurred at signalized intersections [18,162].  

3.2. General car-bicycle scenarios defined based on geometrical configuration 

 

Figure 3-2  Matrix of car-bicycle accident scenarios [163] 

The accident scenario is a widely used accident category to analyze accidents. While a combination of several 

variables, such as principal crash configuration (e.g. road user types and geometrical configuration), pre-crash 

dynamic parameters, road layout and basic surrounding conditions (e.g. lighting and weather), can be used to 

represent typical accident scenarios, a single variable can be also considered to describe accident scenarios. 

Geometrical configuration is one of such variables. Regarding accidents between cars and bicycles, the 

geometrical configuration contains the following information: the motion of car, the motion of bicycle and their 

relative location in the phase of pre-crash. A car or a bicycle could travel straight, turn right and turn left; in the 

view of a car, a bicycle can be considered to be going in the same direction, in the opposite direction, from the 

right or from the left. The matrix, as shown in Figure 3-2, contains all possible car-bicycle accident scenarios 
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based on the geometrical configuration [163].  

 

 

Figure 3-3  Diagrams of the scenarios (above); Distribution of accidents corresponding to scenarios, averaged over five 
countries (below) [164] 

Several accident analysis studies have been reviewed, in which car-bicycle scenarios were defined by the 

geometrical configuration. A study has analyzed car-bicycle accidents with fatalities and seriously injured in five 

European countries based on this kind of scenario definition [164]. Ten common scenarios were distinguished 

and identified. The percentages of accidents corresponding to each scenario slightly deviated between 

countries in numbers of both fatalities and seriously injured. The average percentages of accidents for each 

scenario are presented in Figure 3-3. The first five scenarios, namely C1, C2, L On and T3, were dominant. They 

covered 88% of all the fatal car-bicycle accidents and 74% of all serious car-bicycle accidents. The scenarios C1 

and C2 correspond to situations, where the car driver goes straight and the cyclist crosses from the right, and 

where the car driver goes straight and the cyclist crosses from the left, respectively. The two scenarios are 

latitude scenarios, in which the cyclist crosses the trajectory of the car in a perpendicular direction. Accidents 

of C1 and C1 occurred most frequently in all involved countries. The scenarios L, On and T3 are longitude 

scenarios. The scenario L corresponds to the situation where the car driver goes straight and the cyclist rides 

straight in the same direction (L1) or turns left (L2). The scenario On corresponds to the situation where the car 

driver goes straight and the cyclist turns left from the opposite direction. The scenarios T3 corresponds to the 

situation where the car turns left and the cyclist rides straight from the opposite. These three scenarios also 
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took up a large portion of the fatalities and serious accidents. 

A database documented by the German Insurance Association has also been analyzed based on scenarios 

defined by the geometrical configuration [165,166]. This database included 276 representative car-bicycle 

accidents that had been claimed to the vehicle insurance company and involved personal injuries. These 

accidents have been classified into four general scenarios, namely A, B, C and D. As shown in Figure 3-4, 

scenarios A, B, C and D represent, respectively, a collision between a (through or turning) car with a bicycle 

from the right (in the view of the car driver), from the left, from the opposite direction and in the same 

direction. Accidents of scenarios A and B were clearly more common than accidents of the others. For an in-

depth analysis, the scenario A has been further subdivided into scenarios A1, A2 and A3. They correspond to 

collisions between a left-turning, a straight-going and a right-turning car with a bicycle from the right, as shown 

in lower part of the Figure 3-4. Similarly, the scenario B has been further subdivided into scenarios B1, B2 and 

B3. They correspond to collisions between a left-turning, a straight-going and a right-turning car with a bicycle 

from the left. The proportions of their corresponding accidents are also presented in this figure. Scenarios A2, 

A3 and B2 were most common, accounting for 42% of all the car-bicycle accidents. 

 

Figure 3-4  Car-bicycle accident scenarios and their distribution in number of accidents based on the accident data of the 
German Insurance Association [165] 

3.3. Car-bicycle accident scenario definition at signalized intersections 

The accident analysis in the previous section focused on car-bicycle accident scenarios in the complete road 

networks, including on road segments and at different kinds of intersections. Car-bicycle scenarios at signalized 

intersections could be different.  
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At a four-way signalized intersection, a cyclist could travel in 16 possible motions in the view of a car, as shown 

in Figure 3-5. The car and the bicycle could go straight, turn right and turn left. These motions could produce 

more accident scenarios than those presented in Figure 3-2. One of the reasons is that the trajectories of 

bicycles are more flexible than that of cars. Travelling in the wrong direction is popular in daily riding behaviors. 

A study in Germany has revealed that about 10% of cyclists irregularly ride in the left side of the road [167]. In 

addition, the presence of two-way bicycle paths at intersections could also generate the bicycle flows "in the 

wrong direction". As a result, for example, the scenario, in which a straight-going car collides with a bicycle 

from the right (i.e. scenario C1 in Figure 3-3 and scenario A2 in Figure 3-4), could be subdivided into two 

scenarios at intersections. The first scenario would then concern a straight-travelling car with a bicycle from the 

right in the right direction (in motion 11 in Figure 3-5), while the second scenario would concern a straight-

travelling car with a bicycle from the right in the wrong direction (in motion 13 in Figure 3-5). That is, this 

scenario categorization approach considers the variable of road layout in addition to the geometrical 

configuration. 

 

Figure 3-5  Possible motions of the bicycle in the view of a car at a four-way signalized intersection 

The possible motions of bicycles are numbered as shown in Figure 3-5. They include travelling through 

intersections in the right direction in motions 11, 12, 16 or 20, travelling through in the wrong direction in 

motions 9, 13, 17 or 18, right-turning in motions 1, 3, 5 or 7, direct left-turning in motions 10, 14, 15 or 19 and 

indirect left-turning in the wrong direction in motions 2, 4, 6, or 8. In this thesis, the scenarios are denoted by 

the motion direction of the car, namely R (Right-turning), L (Left-turning) and T (Through-going), and the 

bicycle´s motion direction number. For instance, the accident scenario between a right-turning car and a 

through bicycle in the same direction is typed as R20. 

Based on this kind of scenario definition, two accident databases were analyzed in the following two sections. 

One database was police-reported database in Berlin. The other database was the data of GIDAS. 

3.4. Accident analysis based on police-reported database in Berlin 

The applied police database covered the registered car-bicycle accidents at signalized intersections in Berlin 
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from 2003 to 2013. In this database, there were 13,036 car-bicycle accidents. These accidents were 

documented by a set of variables, such as accident geographical locations, accident date and time, road user 

types, accident causes, and accident consequences (only in accident data in 2013).  

In this section, accidents in this database were classified into corresponding accident scenario according to the 

accident variable of symbols. Using the common symbols as examples, how accidents with different symbols 

were categorized into corresponding scenarios was introduced. The analysis reveals all possible car-bicycle 

accident scenarios and their frequencies. Based on this database, accidents were analyzed also concerning 

causes, consequences and time. The analysis results show the common causes of car drivers and bicyclists, the 

injury severity and accident distributions over months.  

3.4.1. Accident scenarios 

Two variables might be used to categorize accidents into scenarios as defined in section 3.3. One was "the type 

of accident" (Unfalltyp in Germany). This variable "describes the conflict situation which resulted in the accident, 

i.e. a phase in the traffic situation where the further course of events could no longer be controlled because of 

improper action or some other causes" and "indicates how the conflict was touched off before this possible 

collision" [13]. An accident type is normally labeled with three-digit codes. However, only single-digit codes 

have been used for the variable of "type of accident" in the police database. It is insufficient for accident 

scenario categorization.  

Another variable, which might be used to categorize accidents into scenarios, is the symbol system. Berlin 

police authority has developed the symbol system. It contains 205 symbols. Every accident is assigned a symbol 

in the accident document. A symbol consists of arrows, which represent road users. The arrow direction states 

the movement direction, the starting segment of an arrow states where the road user comes from and the 

arrow marked with a cross line represents the road user who is responsible for the accident. The symbols as 

well as their numbers and the meanings of their components are presented in Appendix 3.2. A symbol does not 

correspond to a fixed scenario. To which scenarios a symbol corresponds also depends on other variables, 

including the road user types that each arrow represents, accident causes, accident geographical location that 

are decided by the geographic coordinates and the symbol rotation angle in the geographical map. Together 

with these variables, the symbol system was used to categorize accidents of the police database in this work.  

This section uses the common symbols as examples to introduce how accidents with different symbols were 

categorized into the corresponding scenarios. Figure 3-6 shows the common symbols in the applied database. 

The most frequent symbol in the database was Symbol 56. This symbol involves a right-turning road user and a 

through moving one. The right-turning one is marked with a line in the symbol, representing the at-fault road 

user. 2,816 car-bicycle accidents were recorded with this symbol. In 2,805 accidents, the right-turning road 

users were car drivers. These accidents corresponded to the scenario R20 (as defined in section 3.3 and 

demonstrated in Figure 3-7). In the other accidents with symbol 56, the right-turning road users were cyclists. 

The corresponding accident scenario was T5 (as demonstrated in Figure 3-7). In this way, just according to the 

road user types of the right turning one in accidents, accidents with symbol 56 were categorized into scenario 
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R20 or T5.  

The second frequent used symbol was Symbol 17. Its proportion in the database was 12%, half of that of 

Symbol 56. This symbol concerns a left-turning road user and a through one. The left-turning one is responsible 

for accidents. 1,606 accidents with symbol 17 were recorded. In 1,463 accidents, the left-turning road users 

were car drivers and their causes were mistakes made when turning (Cause Nr. 35). The corresponding scenario 

was L12, as demonstrated in Figure 3-7. In this scenario, the road users are under control of the right of way. 

The left-turning road users were cyclists in the other accidents with symbol 17. These accidents were 

categorized into the scenario T15, as demonstrated in Figure 3-7. In this scenario, the direct left-turning cyclist 

has to yield to the through cars. In these accidents, the most common cause of cyclists was also mistakes made 

when turning (Cause Nr. 35). The accidents with symbol 17 were classified into scenarios L12 or T15, depending 

on the road user types of the left-turning one. 

Like accidents with symbol 17, the accidents with symbol 89, which was ranked in the eighth place in terms of 

the accident frequency as shown in Figure 3-6, were also distinguished between scenarios L12 and T15. In this 

symbol, the through moving road user is the at-fault one. 290 accidents were recorded. In 277 accidents, the 

through moving one was the cyclist. These accidents corresponded to the scenario L12. They occurred due to 

the cyclists´ red-light-violation (Cause Nr. 31), when the diagonal green arrow light was on for the left-turning 

cars to finish their turning. This scenario is denoted as L12_1 in Figure 3-7. In the other 13 recorded accidents, 

the through road user was the car driver. They corresponded to the scenario T15.  

The third frequent symbol was Symbol 50. It involves collisions between a road user and the cross traffic from 

the right or from the left. The symbols 49 and 15, which were ranked in the 4th and 7th places in terms of 

accident frequency as shown in Figure 3-6, represent the same situation as the symbol 50, i.e. collisions 

between the cross traffic. The difference is that the at-fault road user is from the left in symbol 50, from the 

right in the symbol 49 and both road users are responsible for the accidents in symbol 15. The accidents with 

these three symbols were mainly caused by the red-light-violation (Cause Nr. 31) of cyclists or car drivers. 

Another common cause was mistakes made when entering the flow of traffic (Cause Nr. 37). Regarding this 

cause, cyclists might illegally merge into the motorized traffic at intersections from the roadside or bicycle 

facilities, while car drivers might enter or exit from the properties or parking lots. Besides the three symbols, a 

number of other symbols are also related to collisions between the cross traffic. All symbols involving the cross 

traffic are shown in Appendix 3.3. The road users in these symbols could move through intersections or turn. In 

some symbols, more than two road users might be involved. 48% of accidents were caused by the red-light-

violation, and 32% were caused by the cause Nr. 37.  
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Figure 3-6  Distribution of common symbols. The symbol icons, symbol Nr., numbers of accidents, percentages among all 
accidents are presented. (self-made figure according to [34]) 

Another common symbol was Symbol 96. In all the recorded 524 accidents except two, the right-turning road 

users were car drivers. They corresponded to the scenario R17, i.e. collisions between right turning cars and 

through bicycles from the opposite direction on the same roadside, as demonstrated in Figure 3-7. In this 

scenario, cyclists are running in the wrong direction and yet have the right of way.  

Accidents with symbol 61 and symbol 69 took place also frequently. The two symbols both concern two road 

users that move straight through intersections, and correspond to the scenario T20, as demonstrated in Figure 

3-7. The two road users follow one another in symbol 69 and go in parallel in symbol 61. The police-recorded 

database included car-bicycle accidents inside signalized intersections contoured by the stop lines as well as 

within the boundary of one house number before and after intersections. Because the scenario T20 does not 

involve the turning road users, the recorded accidents might take place inside, before or after intersections. By 

integrating the accidents in the geographical map according to the accident geographical coordinates and the 

rotation angles, it could be easily determined where each accident exactly occurred. Among the 428 recorded 

accidents with symbol 61, 28 happened inside intersections, while 41 of 266 accidents with symbol 69 took 

place inside intersections.  
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Figure 3-7  Car-bicycle accident scenarios which correspond to the most frequent symbols in police-recorded data. These 
scenarios concern the movement direction, the relative location of the car and the bicycle, as well as the states of the 
traffic signals. 

In a similar way as the accidents with the above common symbols were classified into corresponding accident 

scenarios, the accidents with other symbols were also categorized combining the recorded accident variables, 

such as road user types, accident causation and geographical locations. Table 3-1 shows the classification 

results. It is observable that some symbols could be classified into more than one scenario. For example, the 

same set of symbols was incorporated into the scenarios L12 and T15, and the road user types were used to 

distinguish an accident between L12 and T15. Besides the normal scenarios defined in section 3.3, scenarios 

that involve only one road user (i.e. single accidents), road users who back up or turn over, and the stationary 

(or parked) vehicles are also included. 

As Table 3-1 shows, R20 is the most frequent accident scenario. 3,624 accidents of the type R20 were recorded, 

accounting for 27.8% of all accidents. The high frequency of R20 accidents is mainly due to the problem of 

"blind spot", related to the motorists´ constricted visibility. Motorists´ visual behavior can help understanding 

causal factors in this kind of accidents. Car drivers´ visual interaction with bicycles in this scenario is studied and 

discussed in Chapter 4. Some accidents of R20 occurred because cyclists run a red light that was specifically 

designated for bicycles, while the traffic light for the motorized vehicles was at the same time green. Cyclists´ 

violation of red lights for bicycles may be due to the design of bicycle-specific traffic lights, such as their 

visibility, their coordination with other traffic lights and cyclists´ adaption to them. Studies in this field are very 

few and it deserves more researches, given that the use of bicycle-specific lights is being strengthened 

according to the German road plan.  

The second most frequent scenario involved the cross traffic (from the right or from the left). Accidents of this 

scenario mainly occurred as the consequence of the red-light-violation (in 48% of 3,154 accidents) and illegal 

entries into the traffic flow (in 32% of accidents). The remaining 20% of cross-traffic accidents were attributed 

to various other causes. Following this scenario in frequency was the scenario L12, involving a left-turning car 

and a through moving bicycle from the opposite direction. 2,034 accidents of L12 were recorded. Accidents of 

L12 might occur, when the cyclist and car driver were both facing green lights. In this situation, car drivers were 

obliged to observe the existence of the bicycle and give the right of way. A considerable number of accidents of 
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L12 happened, when the traffic light was red for the through traffic, including for the through bicycles, and the 

diagonal arrow light for cars to finish left-turning was green. In these accidents, the cyclists were responsible 

due to red-light-violation. The scenario T20, another frequent scenario, accounted for 1,870 accidents. 

Accidents of T20 took place between a through bicycle and a through car that were going in parallel or 

following one another. The recorded accidents occurred inside, before or after intersections. In addition, 886 

accidents corresponded to the scenario R17. This scenario depicts a right-turning car and a through bicycle on 

the same roadside but in the wrong direction. Despite of the illegal behavior of cyclists (riding in the wrong 

direction), the car drivers are obliged to give the right of way to the cyclists in this scenario. 
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Table 3-1  Symbol classification into accident scenarios and numbers of accidents of different scenarios 

Scenarios  Car motion  
Bicycle 
motion  Symbol Nr.  

Accident number 
(Proportion) 

R20  right turn  through  
13, 18, 24, 56, 98, 111, 112, 133, 139, 
146, 158, 110, 115, 154, 182  3,624 (27.8%) 

Collisions 
between the 
cross traffic  

through, 
right turn or 
left turn  

through, 
right 
turn or 
left turn  

6, 8, 14, 15, 16, 27, 28, 30, 38, 44, 49, 
50, 52, 60, 73, 90, 91, 97, 116, 118, 
135, 138, 140, 142, 143, 151, 155, 
159, 165  3,154 (24.2%) 

L12  left turn  
opposing 
through  

10, 17, 34, 89, 94, 132, 161, 167, 176, 
185  2,034 (15.6%) 

T20  through  through  

5, 11, 12, 35, 45, 51, 61, 67, 75, 120, 
141, 156, 175 (parallel); 64, 69, 70, 
71, 72, 84, 108, 121, 124, 126, 130, 
157 (lateral)  1,870 (14%) 

R17  right turn  

opposing 
through 
in wrong 
direction  76, 96, 101, 137, 163, 174  886 (6.8%) 

Collision 
concerning 
stationary 
traffic  -  -  3, 36, 2  346 (2.7%) 

T10  through  left turn  
48, 63, 66, 85, 92, 95, 107, 134, 144, 
148, 150, 162, 164, 194  281 (2.2%) 

L9  left turn  

through 
in wrong 
direction  

48, 63, 66, 85, 92, 95, 107, 134, 144, 
148, 150, 162, 164, 194  249 (1.9%) 

T15  through  
opposing 
left turn  

10, 17, 34, 89, 94, 132, 161, 167, 176, 
185  182 (1.4%) 

Collisions 
concerning 
backing up or 
turning over  -  -  

53, 54, 55, 57, 58, 59, 86, 87, 100, 
122, 149, 168, 177, 190, 192  148 (1.1%) 

L10  left turn  left turn  7, 21, 25, 77, 80, 104, 128, 102, 103  95 (0.7%) 

Single 
accident  -  -  32, 39, 42, 43, 421, 321, 401, 791  45 (0.3%) 

R5  right turn  
right 
turn  78, 81,105,129,127  39 (0.3%) 

T5  through  
right 
turn  

13, 18, 24, 56, 98, 111, 112, 133, 139, 
146, 158, 110, 115, 154, 182  25 (0.2%) 

L20  left turn  through  
48, 63, 66, 85, 92, 95, 107, 134, 144, 
148, 150, 162, 164, 194  15 (0.1%) 

R15  right turn  
opposing 
left turn  22, 82, 195  11 (< 0.1%) 

L15  left turn  
opposing 
left turn  20, 37, 113  11 (< 0.1%) 

L1  left turn  

opposing 
right 
turn  22, 82, 195  10 (< 0.1%) 

R10  right turn  left turn  4, 23, 173  8 (< 0.1%) 

T17  through  

opposing 
through 
in wrong 
direction  31, 47, 68, 65, 88, 99  2 (< 0.1%) 

L5  left turn  
right 
turn  4, 23, 173  1 (< 0.1%) 

Total  13036 
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3.4.2. Accident causation 

A list of accident causes is widely used in the accident recording in Germany. It is also applied by the Berlin 

police-reported accident data. This list consists of 79 causes as presented in Appendix 3.1. All these causes are 

classified into the following five categories: driving fitness, improper driving, technical or maintenance faults, 

improper behavior of pedestrians and general causes.  

The improper driving is further classified into different events (i.e. sub-categories) in relation to use of road, 

speed, distance, overtaking, driving fast, driving side by side, priority and precedence, turning, U-turn, reversing, 

entering the flow of traffic, starting off the edge of the road, improper behaviors towards pedestrians, 

stationary vehicles and safety measures, failure to observe lighting regulations, load and number of passengers 

and other mistakes made by drivers. The general causes refer to road surface conditions, influence of the 

weather and obstacles. 

In the applied police database, car drivers were mainly responsible for 59% of accidents, while bicyclists were 

mainly responsible for the other 41% of accidents. The road users who are mainly responsible, i.e. at-fault road 

users, are the persons who are chiefly to blame for the accidents in the opinion of the police. At least one cause 

is documented for an at-fault person. More than one road user might be responsible for an accident. Causes 

are attributed to car drivers and bicyclists in different frequencies as shown in Figure 3-8.  

For car drivers, the most common cause was mistakes made when turning (Cause Nr. 35 in Appendix 3.1). It 

resulted in 5,692 accidents (68% among the applied police database). This cause often concerns a turning car 

and a bicycle travelling in the same or opposite direction (, when both are assigned a green signal phase). In 

accordance with the traffic law, the car has to give the right of way to the bicycle in such a situation. Therefore, 

once the two parties collide with each other, the car driver should first be to blame. Regarding the accident 

scenarios, accidents due to this cause often occurred between a right-turning car and a through bicycle in the 

same direction, i.e. scenario R20 as defined in section 3.3 (amounting to 49% among all accidents caused by car 

drivers with cause Nr. 35), between a left-turning car and a through bicycle from the opposite direction, i.e. L12 

(amounting to 26%), and between a right-turning car and a through bicycle from the opposite direction in the 

wrong direction i.e. R17 (amounting to 9%),. In these accidents, the car drivers´ mistake might be that they do 

not perceive the presence of bicycles or incorrectly predict the trajectories of bicycles.  

The second most common accident cause by car drivers was failure to observe the traffic control by traffic light 

(Cause Nr. 31). Red-light-violation is the most overt illegal behavior at signalized intersections, and is a popular 

safety problem all over the world, since it concerns high-speed and high-severity collisions. 29,101 red light 

violations of motor vehicles were observed in Berlin in 2014 [168]. 7% (584) of accidents occurred due to this 

cause in the applied police data. Red-light-violation has been studied in a great number of researches. The 

study results have suggested that red light runners were more likely to be younger, male and risky drivers who 

had poorer driving records and less frequently wore seat belts [169-172]. Higher daily traffic volumes were 

suggested to be related to more red light running behaviors [173,174]. In order to decrease red light violation, 

timing the light cycle was regarded as one of the best engineering treatments. For example, by properly 

increasing the duration of the amber and red light intervals, the number of red light runners might be 
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decreased [175,176]. Other engineering treatments to decrease red light violations, such as improving the 

signal visibility, reducing speed limit near intersections and improving consecutive signal coordinates, were also 

suggested [177]. In addition to the engineering treatments, enforcement cameras have been installed and 

demonstrated to be effective to decrease red light violations [177,178]. Since the red-light-violation of car 

drivers has come under the focus of researchers, the relevant knowledge is continuously enhanced leading to 

improved treatments to decrease red light violations in practice.  

 

Figure 3-8  Distributions of common causes: Cause No., accident numbers and accident percentages. The common causes 
are: Cause 35, mistakes made when turning; Cause 31, failure to observe the traffic control by policemen or traffic lights; 
Cause 14, insufficient safety distance; Cause 45, behavior contrary to traffic regulations when getting on or off a vehicle, 
loading or unloading; Cause 49, other mistakes made by driver; Cause 22, other mistakes made when overtaking; Cause 

10, use of wrong carriageway (or lane) or unlawful use of other parts of the road; Cause 37, mistakes made when 
entering the flow of traffic; Cause 1, influence of alcohol.(self-made figure according to [34]) 

Another common accident cause by car drivers was insufficient safety distance (Cause Nr. 14). It corresponded 

to 461 accidents (6%). Insufficient safety distance often caused accidents in cases where a car was following a 

bicycle on the intersection entering approach. A disadvantage of traffic signal control is that it can lead to 

increases in rear-end accidents due to the cyclical stopping of traffic [17]. This leads not only to accidents 
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between motorized vehicles but also to accidents between motorized vehicles and bicycles. Besides, 

insufficient safety distance also often caused accidents when a car was running in parallel to a bicycle while 

crossing intersections. This might be due to the intersection space limitation as well as the improper behavior 

of drivers. 

 Following this cause, other common causes included: 

 behavior contrary to traffic regulation when getting on or off a vehicle, loading or unloading (Cause Nr. 

45) under the sub-category stationary vehicles and safety measures,  

 other mistakes made by driver (Cause Nr. 49) under the sub-category load and number of passengers, 

 and other mistakes made when overtaking (Cause Nr. 22) under the sub-category overtaking. 

The most common cause by cyclists was use of wrong carriageway (or lane) or unlawful use of other parts of 

the road (Cause Nr. 10). Cyclists made this kind of mistake in 1,941 accidents (26% among the applied police 

database). This cause mainly concerned the following situations: a bicycle running in the wrong direction 

collided with a (right- or left-) turning car; a bicycle that was using other road parts outside the bicycle crossing 

collided with a turning car; a bicycle running in the wrong direction collided with a car that run against the red 

light. However, in these scenarios, the turning car, which had to give the right of way to the bicycle or run 

against the red light, rather than the bicycle, should be mainly responsible for the accidents.  

For cyclists, the second most common cause was also the red-light-violation. In car-bicycle accidents, red light 

violations by cyclists caused more accidents than by car drivers: 1,423 (19%) to 584 (7%). Studies on cyclists´ 

red-light-violation have received attention only in recent years. The popular method was based on installed 

cameras at intersections. The cyclists were subdivided into three distinct types according to their behaviors 

facing red lights: those who stop and wait until the red light turns green (law-obeying), those who stop but do 

not wait until the light turns green (opportunistic) and those who never stop when the light is red (risk-taking) 

[179,180]. These studies have showed that the male cyclists were more likely than the female to run the red 

light, and the younger more likely than the older [181]. While cyclists were less likely to run the red light, when 

other cyclists were also present [182,183], the probabilities of red-light-violation were increased, when no or 

fewer cyclists were waiting and even when other cyclists were already crossing the red [184]. In addition, the 

likelihood of red-light-violation was found to be related to the red light duration [181].  

Red-light-violation of cyclists mostly caused collisions between bicycles and the cross traffic. There were two 

common exceptional collision scenarios. The first occurred when a bicycle that ran the red light collided with a 

left-turning car from the opposite direction. This kind of accidents occurred at intersections where a diagonal 

green arrow light was installed. The diagonal green light allows the left-turning cars who have already entered 

in the intersection to finish their left turning after the red light in their direction is on. Another occurred 

between a bicycle that ran the red light and a right-turning car in the same direction. In this situation, the lights 

that bicycles ran were bicycle-specific traffic lights. The cycle of bicycle traffic lights is coordinated with the 

normal traffic lights for motorized vehicles: they often turn red from green several seconds prior to the normal 

lights and turn green from red several seconds earlier than the normal lights. This aims to avoid the conflicts 
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between through bicycles and right-turning vehicles. According to the German Road Traffic Regulations, as a 

transitional regulation, bicycles should follow the normal traffic lights for motorized vehicles since 01.04.2013, 

when no bicycle traffic lights are present. With the popularity of bicycle traffic lights, it deserves more attention 

to study the factors related to the bicycle-traffic-light-violation. In particular, factors that the installation of 

bicycle traffic lights itself brings about should be noticed, such as the visibilities of traffic lights, their 

coordination with other traffic lights and road users´ adaption to them. At present, only one of the reviewed 

studies has focuses on the compliance at bicycle-specific traffic lights [185]. 

The third most common cause by cyclists was safety distance (Cause Nr. 14). It resulted in accidents due to 

insufficient lateral or longitudinal distance. The next common cause was mistakes made when entering the flow 

of traffic (e.g. from premises, from another part of the road or when starting off the edge of the road) (Cause Nr. 

37). Those mistakes were primarily related to cyclists´ merging into the motorized traffic flow from bicycle 

paths, bicycle lanes, sidewalks or just from the rightmost of roads. Another common cause is mistakes made 

when turning (Cause Nr. 35). It mainly concerned bicycles that failed to change lanes to the right side of roads 

in advance while right-turning and that failed to give the right of way to the through motorized vehicles from 

the opposite direction while direct-left-turning. Influence of alcohol (Cause Nr. 1) is also a common cause. This 

cause was documented as an indirect cause, and always recorded with other causes for an accident.  

3.4.3. Accident consequences 

The variable describing accident consequences is "categories of accidents" in the database. There are six 

categories of accidents. They are numbered according to the person or material damage severity (the smaller 

category number represents the higher severity):  

 Accident with persons killed (category1) 

 Accident with seriously injured persons (category 2) 

 Accident with slightly injured persons (category 3) 

 Severe accidents involving material damage in narrow sense (category 4) 

 Other accident involving material damage (category 5) 

 Other accident involving material damage under the influence of intoxicating substances (category 6).  

The later three categories (i.e. categories 4, 5 and 6) are related to only material damages, whereas the 

first three categories (i.e. categories 1, 2 and 3) are related to casualties, i.e. persons injured or killed in 

accidents. In the categories of accidents, the injury severity of casualties is defined as follows: 

 Person killed: persons who died within 30 days as a result of the accident 

 Person seriously injured: persons who were immediately taken to hospital for inpatient treatment (of 

at least 24 hours) 

 Person slightly injured: the other injured persons. 

In the applied police database, the accident consequences are available only for the accidents in 2013. Thus, 

the following analysis concerning accident consequences is based on the accident data in 2013. 
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1,043 car-bicycle accidents at signalized intersections were recorded in 2013. Among them, 34% (474) resulted 

in only material damages, while 66% (929) involved casualties. With regard to the injury severity of the 

casualties, 89.8% were slightly injured, while 10% were seriously injured. No person was killed.  

In addition, 98 of 99 casualties in category 2 and 850 of 874 casualties in category 3 were bicyclists, respectively. 

That is to say, 97% of casualties in the recorded car-bicycle accidents were bicyclists. This figure confirms the 

vulnerability of bicyclists.  

3.4.4. Accident distribution over months 

The distribution of car-bicycle accidents at signalized intersections over months (averaged over eleven year) is 

showed in Figure 3-9. The peak values of accident numbers (170 accidents) were recorded in August and 

September, followed by that in June (157) and July (154). A large number of accidents were also reported in 

October (133) and May (129). The accident numbers in these months were larger than the average value (110). 

Comparatively, fewer accidents (than the average value) were reported in January, February, December, March 

and November.  

The general bicycle accident database (all bicycle accidents with any other road users at any road location) 

suggests that bicycle use is greatly season-relevant and consequently results in much more bicycle accidents in 

spring and summer months [162]. The season of spring in Berlin starts normally between March and May, 

accompanied by better weather conditions, higher temperature and longer days. The season of summer ends 

normally between October and November. The distribution of car-bicycle accidents at signalized intersections 

is consistent with that of the general bicycle accident database. It suggests that the occurrence frequency of 

car-bicycle accidents at signalized intersections is also influenced by the season, because of the changing 

bicycle traffic volume.  

 

Figure 3-9  Distribution over month of car-bicycle accidents at signalized intersections in Berlin, averaged over 2003 to 
2013 (self-made figure according to [34]) 

3.5. Accident analysis based on GIDAS database 

GIDAS accident data is regarded as being representative for German. The selective perception is based on the 
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existing statistically representative sampling and revision of the data set [159]. In this section, the accidents in 

GIDAS were analyzed and assembled into scenarios as described in section 3.3. The analysis comprised car-

bicycle accidents at signalized intersections between 2005 and 2013. Totally 469 accidents were covered in this 

database.  

"The type of accident", one of the variables to document accidents, is defined according to movement 

directions, relative locations, and the road environment (e.g. road layouts, traffic controls, the presence of 

bicycle paths. In GIDAS data, "the type of accident" is recorded with three-digit codes. Thus, it is directly usable 

to class accidents into representative scenarios. There are seven categories of accident types. They are driving 

accident, accident caused by turning off the road, accident caused by turning into a road or by crossing it, 

accident caused by crossing the road, accident involving stationary vehicles, accident between vehicles moving 

along in carriageway and other accidents [13]. Every category consists of a number of accident types, ranging 

from thirty-two to fifty-four. The majority of accidents in this database do exist under the following two 

categories of accident types: accident caused by turning into a road or by crossing it and accident caused by 

crossing the road. The GIDAS codebook documents detailed information for all accident types. Like the accident 

symbols in the police-recorded database, the accident types are also illustrated by arrows, which represent the 

road users, as shown in Table 3-2. According to the type of accident, the accidents were classified into the 

corresponding scenarios with the help of experts on GIDAS data. The classification results are recorded in 

Appendix 3.4. 

Table 3-2 presents the first four most frequent scenarios and their corresponding accident types. The most 

frequent accidents corresponded to scenario R20, accounting for 19% of accidents in the applied GIDAS 

database. The second most frequent scenario was L12, involving a left turning car and an oncoming bicycle 

from the opposite direction. Sixty-nine accidents of L12 were recorded, coming up for 15% of all accidents. 

Following L12 was the scenario R17 with a share of 13%. This scenario occurs between a right turning car and 

an oncoming bicycle on the same roadside but in the wrong direction. The scenario T11 was the fourth most 

frequently recorded scenario. It is one of scenarios that involve the cross traffic. When all the accidents 

involving the cross traffic (i.e. T11, T16, T13, T18, L16, R16, R11and L11) were added up, the accident number 

was up to 175. The share among all accidents was 37%, even higher than the scenario R20. However, it was 

much lower, compared with the share of 76% based on the German Insurance Association. This might mainly 

be derived from the control of traffic lights, which could eliminate the conflict points between the cross traffic. 

Although the GIDAS accident causes were unavailable for this study, the information contained in the variable 

of "the type of accidents" indicated that bicycles´ illegal merging into the motorized traffic flow caused 19% (34) 

of the accidents involving the cross traffic. The most causes were supposed to red light violations for the other 

accidents 

This scenario analysis result was generally similar to that based on the Berlin police-reported data with respect 

to the first four most common scenarios, except that accidents of T20 account for a much larger proportion in 

the police-reported data. The reason might be that accidents within the boundary of one house number before 

and after intersections have also been considered as the accidents at intersections in the police database.  
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Table 3-2  The first four most frequent accident scenarios, their corresponding accident types and accident numbers 

Scenarios 
 

Types of accident (Diagram, Nr. and motion) 
 Accident 

numbers 

R20 

 

231: Right turning and longitudinally following 

232: Right turning and laterally following 

 243: Right turning and bicycles from bicycle paths from the same 
direction 
 

 

91 (19%) 

L12 

 

211: Left turning and oncoming straight 

  224: Left turning and oncoming bicycles from bicycle path 
 

 

69 (15%) 

R17 

 

244: Right turning and oncoming bicycles from bicycle paths 

 

61 (13%) 

T11 

 

 301: Privileged from the right and waiting-required straight 

321: Privileged from the right and straight  

344: Privileged bicycles from bicycle paths from the right and straight  
 

 

53 (11%) 

3.6. Conclusion and discussion 

To know accidents is necessary for accident prevention. Given that accident analysis particularly focusing on 

car-bicycle accidents at signalized intersections is absent in the past studies, this chapter analyzed two 

databases to explored the characteristics of car-bicycle accidents at signalized intersections.  
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The accident scenario is a widely used accident category for accident analysis. Car-bicycle scenarios at 

signalized intersections were first defined by the geometrical configuration as well as the road layout. Based on 

this scenario definition, two accident databases were analyzed concerning scenarios. They were the Berlin 

police-reported accident data over eleven years (13,036 accidents) and the GIDAS accident data over nine years 

(469 accidents).  

The analysis results of scenario frequencies based on the two databases were similar. The most common 

scenario was a right-turning car colliding with a through bicycle in the same direction (i.e. scenario R20) with a 

share of 28% in the Berlin police database and 19% in the GIDAS database. The next three most common 

scenarios included collisions between a left-turning car and an oncoming bicycle, between a through car and an 

oncoming bicycle in the wrong direction, and between a through car and a through bicycle in the same 

direction. These scenarios were normally controlled under the right of way.  

Based on the police database, the accident causes were analyzed. For car drivers, the most common cause was 

mistakes in their right turning. During right turning, car drivers were most of time obliged to yield to the 

conflicting cyclists under the control of the right of way. Once accidents happened, it should be car drivers´ 

responsibility. For cyclists, the most common cause was their unlawful use of roadways, including running in 

the wrong direction and using other parts outside the bicycle crossing in crossing intersections. Red-light-

violation was the second most frequently recorded accident cause for both car drivers and cyclists. Red-light-

violation of car drivers or cyclists amounted to 48% of accidents involving the cross traffic (12% among all 

accidents). 

Based on the police database, the accident consequences and time were also briefly analyzed. The vulnerability 

of cyclists in road traffic is highlighted by the large amount of 97% of bicyclists´ casualties within the overall 

number of recorded accidents. The frequency of car-bicycle accidents at signalized intersections over months 

was found to be strongly influenced by the season because of the change in bicycle traffic volume. 

Considering that Berlin is a bicycle-friendly city with a high bicycle modal share, and GIDAS accident data is 

regarded as being representative for German that is in the top three of European countries in terms of bicycle 

use, the analysis of the two databases presents a typical picture of car-bicycle accidents at signalized 

intersections in a bicycle city/country.  

Furthermore, the analysis results reveal implications for possibilities to decrease accidents. As indicated by the 

two databases, the most common car-bicycle scenario was the scenario R20. This scenario could be specifically 

focused on in studies, in order to find out e.g. how accidents of this scenario happen and what can be done to 

decrease the risk of this scenario. Following this implication, how car drivers detect and observe cyclists in the 

scenario R20 was studied in Chapter 4, by analyzing the eye movement data of car drivers collected in a Quasi-

NDO study. Another important implication concerns red-light-violation. For both car drivers and bicyclists, the 

second most frequently recorded accident cause was red-light-violation. Red-light-violation could cause not 

only lateral accidents, which is well-known and has been studied in many researches, but also longitudinal 

accidents. A longitudinal scenario caused by red-light-violation was a collision between a left-turning car and an 
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oncoming bicycle. It occurred at intersections where the diagonal green arrow was installed. When the green 

arrow was lightened, the oncoming bicycles lose the priority, and the cars were protected for their left turning. 

Another longitudinal scenario involved a right-turning car and a through bicycle in the same direction. It 

occurred, when cyclists violated the red light of the bicycle-specific traffic signal rather than the general traffic 

signal for motorized traffic. In Germany, the installation of bicycle-specific traffic lights is advocated and their 

deployment is being extended. More accidents of this scenario are expected. More attention and studies for 

bicycle-specific traffic light violation are suggested in future research work, e.g. on the aspects of light design, 

visibility, coordination with other traffic lights and road users´ adaption to the lights. 

In addition, the frequencies of accidents of different scenarios provide necessary statistics for the studies in 

Chapter 4 and Chapter 5. In Chapter 4, they were compared with the frequencies of the collected car-bicycle 

conflict of different scenarios. In Chapter 5, they were used to measure the objective risk of different scenarios 

and compared with the subjective risk.  
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4. Study of car driver-bicyclist interactions at signalized intersections 

by a Quasi-NDO study 

The potential to understand accident causality based on historical accident data analysis is limited, due to the 

lack of detailed information on the chain of events preceding an accident. The use of traffic conflicts is gaining 

acceptance as a surrogate for accident data analysis for safety diagnosis, as traffic conflicts can provide deeper 

insight into the failure mechanism that leads to accidents [26]. The traditional way to collect conflict data relies 

on human observation, challenged on several issues regarding the repeatability and consistency of results [27]. 

With the development of information technologies, Naturalistic Driving Observation (NDO) datasets that 

combine cameras, radars, eye-tracking devices and other sensors are now advocated and proved to be reliable 

and efficient to capture, store and analyze traffic conflicts [26,28]. Although there are considerable NDO 

studies with various focuses, such as distraction, fatigue or drowsiness, driver characteristics, and interactions 

between passenger cars and heavy vehicles etc., few NDO studies investigated particularly interactions 

between car drivers and bicyclists at signalized intersections. Several Naturalistic Cycling Observation (NCO) 

studies have been done to investigate interactions between car drivers and bicyclists, but from perspective of 

bicyclists [105-107]. The analysis based on the Berlin police-reported accident database indicates that car 

drivers took main responsibility in more car-bicycle accidents at signalized intersections than bicyclists did: 59% 

to 41%. 

This chapter develops a technical framework to study interactions between car drivers and bicyclists at 

signalized intersections from perspective of car drivers. A car is instrumented with various sensors and used to 

record car drivers´ driving behaviors, including car-operation behaviors, body movements and eye movements, 

as well as the environment. Car-bicycle conflicts are detected from the collected data using both automated 

method and manual method. The frequencies of conflicts are compared with that of accidents. 

As documented in the literature review, eye movement data can provide evidence about visual attention in 

most cases, which is directly related to crash causality. Therefore, eye movements of car drivers are analyzed in 

their interactions with bicycles at signalized intersections. The aim is to investigate how car drivers detect and 

observe bicyclists at signalized intersections. 

4.1. Methodology 

4.1.1.  Quasi-NDO: Data collection by an instrumented car 

To study interactions between cars and bicycles, people could instrument a car or a bicycle. In other words, 

either a Naturalistic Driving study or a Naturalistic Cycling study could be carried out. In most car-bicycle 

conflict points at signalized intersections, the bicycle has the right of way following traffic rules. Just for this 

reason, car drivers are responsible for more car-bicycle accidents than cyclists are, as indicated by the accident 

causation analysis in Chapter 3. How car drivers react to bicycles is more safety-relevant in a car-bicycle conflict 

than how cyclists do. Consequently, a car was instrumented and car drivers´ behaviors were primarily recorded 

in this work.  
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In this study, participants were recruited to drive an instrumented car through a preset route. A researcher in 

the car directed the drivers to follow the route while data was collected. The car drivers´ behaviors and the 

driving environment were recorded. Compared with an ideal naturalistic driving study, where participants drive 

their own cars and can decide when and where to drive, and no observer is present in the car, there were some 

non-naturalistic factors in this study. However, whether the collected behaviors are natural or not depends on 

what the research question is [108]. This study focused on interactions between car drivers and bicyclists, i.e. 

car drivers´ reactions in respond to bicyclists. In the uncontrolled real traffic, participants´ interactions with 

bicycles were task-oriented. Participants were aware that there were real hazards of crashes with bicycles, and 

therefore had to observe the existence of bicycles, judge potential risks and conduct necessary reactions 

combining the driving environment. Thus, this study was to a certain extent naturalistic for the participants. 

In the traditional methods for studying traffic behaviors, for example, in controlled experiments or simulator 

experiments, there is usually strict control over external confounding variables, and therefore they feature low 

ecological validity. In on-road studies or field experiments, participants are often instrumented to perform a 

specific behavior that is unrelated to driving task, such as talking on a cell phone, performing a cognitive task, 

etc [70,71]. In this study, contrary to the aforementioned, participants were exposed to the real traffic 

environment and were not assigned any specific task. Although there were some non-naturalistic factors in 

data collection, more naturalistic driving behaviors could be observed than in those traditional methods.  

4.1.2. Participants 

Considering both the basic study requirement and study resource limitation, 22 participants were recruited in 

this study. They were aged from 24 to 44 (Mean=31, Variance=5.6), and 20 men and 2 women were among 

them. These participants volunteered for this study and signed the informed agreement. All participants held 

valid driving licenses. The description of their individual driving experiences indicated that 30% of them drove 

at least three times every week, 40% four times every month, 15% twelve times every year and 15% seldom in 

the past year. Four participants were short-sighted and required to wear contact lenses instead of glasses, 

because the short-sighted glasses might obstruct the function of the eye tracking headset, one of data 

collection apparatus. 

4.1.3. Equipments 

                   

(a)                                                  (b)                                                     (c) 

Figure 4-1  Study equipments: Video Vbox (a), Eye tracking headset (b), GoPro camera (c) 

As an important merit of NDO, it can address behavioral and situational aspects of an accident or a safety-
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critical situation. This merit depends on various sensors. They should record what happened inside and outside 

the car. With regard to interactions between cars and bicycles, the following data are of great interest: car 

drivers´ operational behaviors (i.e. car dynamic data), body movements, status of bicycles, relative positions 

between cars and bicycles, traffic signal phases, presence of other road users, etc. Particularly, eye movements 

are a significant indicator of road users´ attention. In recent years, eye movements are considered in many 

studies to identify crash causation. In this study, eye movements of car drivers were also included. To record 

data aforementioned, the following devices were equipped in the experiment car.  

One of the measurement devices was RaceLogic Video VBox Pro (hereinafter VBox), as shown in Figure 4-1. The 

Vbox combined a GPS data logger and a four-camera video recorder [186]. The GPS data logger could record 

numerical data at a sampling rate of 10 Hz. The recorded data included GPS position (latitude, longitude and 

height), horizontal velocity, vertical velocity and heading. The GPS position measurement was generated with 

an accuracy of 2.5 m 95% CEP (Circle of Error Probable) and the velocity data was recorded with an accuracy of 

0.2 km/h [186]. The video recorder recorded the driving environment at a constant rate of 25 fps. The 

measured numerical and video data could be automatically synchronized corresponding to the local time. 

 

Figure 4-2  Layout of applied equipment 

Another apparatus was the Pupil Labs eye tracking headset, as shown in Figure 4-1. The drivers wore it like a 

pair of glasses. This headset had two cameras: The infrared spectrum eye camera recorded the right eye 

movements of the users at maximum 30 fps; the high resolution (1920 x 1080) world camera recorded the 

scenes in the users´ forward field of view of 90° at maximum 30 fps. It could provide an average gaze 

estimation accuracy of 0.6 degree of visual angle [187]. In data collection, the two cameras were connected to 

a laptop. Both video streams were saved by use of the Pupil software that could map the pupil position from 

the eye to scene space. As a result, a video stream consisting of scenes in car drivers´ forward field of view and 

eye gaze locations, represented by a red circular cursor, was generated, as shown in Figure 4-3. The circular 

cursor corresponded to a 50 pixel diameter and was equivalent to about 3.6° visual angle. 

A HD camera GoPro Hero 3+ was mounted in front of the front passenger seat facing the car driver. It was used 

to record the drivers´ body movements, including head movements and hand steering, as shown in Figure 4-3. 
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Figure 4-3  Video frames of VBox (top), eye tracking headset (middle) and GoPro camera (bottom) 

The layout of the applied equipment in the instrumented car is shown in Figure 4-2. The VBox GPS antenna was 

mounted on the car roof to receive GPS signals, while the power supply set was mounted in the luggage boot. 

The four VBox cameras with the view angle of 70° were used to record the forward, right front, right rear and 

rearward views of the instrumented car. The world camera of the eye tracking headset recorded the drivers´ 

Gaze circle Gaze circle 
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forward view. The GoPro camera recorded the scene on the left side and car drivers´ body movements. The 

suite of the six cameras offered a view of approximate 360° around the instrumented car, which greatly 

facilitated the future analysis of the driver behavior recording. Figure 4-3 shows the video views of the VBox, 

eye tracking headset and GoPro camera. The four VBox camera view windows were integrated in one video 

frame. The top left, top right, bottom left and bottom right windows corresponded to the forward, right front, 

right rear and rearward views of the car, respectively. In the center of the VBox video frame, a dashboard 

simulator displayed the real-time velocity and acceleration of the car. In the bottom left window, the real-time 

location of the car within the driving route was displayed in the driving route. The view frame of the eye 

tracking set showed the car drivers´ forward view with gaze locations. 

4.1.4. Driving route 

An 11 km long driving route was selected in the district of Mitte in Berlin, as shown in Figure 4-4. Unlike the 

predetermined occurrences in controlled experiments, the number of bicycles that would appear in the driving 

route was random. To obtain as many bicycle-meeting events as possible, the driving route covered roadways 

with high or mediate daily bicycle traffic density. The bicycle volumes at the primary signalized intersections in 

the driving route were measured during traffic peak time periods (7:30-9:45 a.m., 16:00-18:30 p.m.) on 

weekdays while good weather conditions prevailed. The measurement results (in bicycle volume/ 30 minutes) 

are shown in Figure 4-4. 

 

Figure 4-4  Driving route with the detailed route information 

The selected route covered 25 signalized intersections. Fourteen right-turning, eight left-turning and six going-

through traffic motions had to be executed at these intersections. The route covered different bicycle facilities. 

It included 2.45 km of roadways with bicycle lanes/protective lanes, 4.6 km of roadways with bicycle paths, and 

4 km of roadways without specific bicycle facilities. The roadways with bicycle lanes had a traffic lane in each 
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direction. Most of them were undivided roadways. Only 620 m were divided by central medians. The roadways 

with bicycle path had two traffic lanes in each direction. About one-half of them were undivided and the other 

half was divided by central medians. Roadways without bicycle facilities existed mainly in residential tempo-30-

zone. They were mostly so narrow that only one direction of vehicle traffic could go through at the same time.  

4.1.5. Procedure of data collection 

The data collection was conducted in July and August 2014, representing the months with the highest number 

of bicycle accidents in Berlin [162]. The participants implemented the study in traffic peak periods on weekdays, 

ten of them in the morning peak time between 8:00, and 9:30 and twelve of them in the afternoon peak time 

between 16:00 and 17:30. Most driving took place in sunny or slightly overcast weather conditions, except that 

it rained unexpectedly during one set of data collection. 

A sum of fourteen hours of data was collected. Each driving lasted averagely 45 minutes. Each individual 

participant spent at least two hours, including the pre-study preparation and post-study data management. 

Prior to the driving part, the participants were supplied with study information. After that, participants 

answered a pre-survey check to provide their personal information, such as age and driving experience. 

Subsequently, the eye-tracking headset was adjusted in accordance with the participants´ height, eye and face 

geometry, and calibrated with a printed calibration marker. The calibration was carried out at least two times 

for the purpose of higher calibration accuracy. In the data collection process, an instructor sat in the front 

passenger seat to direct the driving route to the drivers. The participants drove the car in their natural driving 

way without any specific tasks. After the data collection, participants were required to answer a post-survey 

questionnaire, mainly to report if the installed instrument or the study as such had influenced their driving 

behaviors. 

4.2. Conflict detection 

Accident events collected in NDO studies could supply most direct information to address accident causation. 

However, accidents are rare events. According to statistics, for an accident to happen an average driver would 

need to travel 62 million miles [110]. In such a small-scale study, no accidents were expected to be collected. 

Therefore, conflicts were interesting events in this study. 

To detect and identify car-bicycle conflicts at signalized intersections in the collected data, two methods were 

applied: the automated conflict detection and the manual conflict detection. The automated conflict detection 

was based on a deceleration trigger. The deceleration trigger could automatically "pick" potential conflicts. 

However, video data should be reviewed to identify if they were real conflicts.  

The manual conflict detection depends on video review combining dynamic data. Manual video observation is 

normally very time-consuming. To detect conflicts at signalized intersections, it was unnecessary to review all 

video frames. As described previously, the real-time car location in the driving route was displayed in the Vbox 

video frames. According to the car location displayed in the VBox video, the driving data at signalized 

intersections could be easily positioned. This saved a great amount of time, and supplied potential for the semi-

automated method. 
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4.2.1. Automated conflict detection 

A major application of naturalistic driving studies is the analysis of safety-critical events, including crashes and 

conflicts. Detection of safety-critical events in naturalistic driving data is currently mainly based on the 

appearance of extreme values of vehicular dynamics recognized via kinematic triggers [67,75]. The events 

activating kinematic triggers could be longitudinal or lateral decelerations, Time-To-Collision or yaw rates 

within a certain threshold, or a combination of them. Any trigger activation would consequently lead to 

automatic detection of possible safety-critical events. 

 

Figure 4-5  Example of original and smoothed velocity-time curve (top) and acceleration-time curve (bottom) 

In data collection, velocities of the instrumented car were continuously recorded, from which 

decelerations/accelerations could be derived. The measured velocity value was highly accurate, and Kalman 

Filter already filtered the outputted data from VBox. However, there were two problems with the data, limiting 

its use in event detection. First, frequent vibration was observable in the velocity-time curves, with the 

vibration more obvious in the derived deceleration/acceleration-time curves, as shown in Figure 4-5. The 

frequent vibration primarily came from that it is impossible to keep absolute constant velocity or acceleration 
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even for a very short time in reality. Second, the velocity data was mixed with noises: data missing (zero-noise) 

and abnormal extreme high or low values. The velocity data from VBox was measured by a speed-sensor that 

worked based on GPS signals using Doppler Effect. The environment could affect the GPS signals, generating 

measurement noises. Looking into the driving environment, the noises were usually generated when the car 

was driving past high buildings, under trees, under bridges, on uneven grounds and in bad weather [188]. 

These two kinds of noises could wrongly report safety-critical events.  

 

Figure 4-6  Graphical User Interface (GUI) for automated conflict detection and revision 

Considering the existence of the frequent vibration and noises, the velocity data was firstly smoothed before it 

was used to detect safety-critical events, as shown in Figure 4-5. The average of five consecutive measured 

velocity values was regarded as one value in the smoothed velocity data. The sampling interval of velocity was 

0.1 s, and therefore the interval of the smoothed velocity data was 0.5 s. The deceleration data that was used 

to detect safety-critical events was derived from the smoothed velocity data. This smoothing process could not 

only smooth the velocity/deceleration curve but also effectively eliminate the abnormal high 

deceleration/acceleration values caused by noises, as shown in Figure 4-5. The verification by data from six 

participants indicated that no real high decelerations/accelerations corresponding to critical situations were 

filtered out.  

In event detection, a deceleration trigger of less than -0.4 g was used as the threshold. The kinematic trigger 

was set so low and simple as not to miss safety-critical events. Using this trigger, the possible safety-critical 

moments could be automatically detected, no matter who the involved parties were and where the events 

occurred. The events of interest in this study were concerned with cars and bicycles at signalized intersections. 

Thus, for each detected event, the video data and the dynamic data were revised in a time interval around the 

detected critical moments. Through this revision process, it could be determined if a detected event was a real 
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safety-critical event rather than a high-deceleration-value-event caused by noises, and if it concerned a bicycle 

at signalized intersections. A Graphical User Interface (GUI) was programmed with Matlab (Release R2012b) to 

implement this detection and revision process, as shown in Figure 4-6. 

This GUI program could load the recorded data of each individual participant. It could smooth the dynamic data, 

and detect and display the critical moments as well as the corresponding deceleration values. By clicking each 

critical moment, the VBox video data and eye-tracking video data could be synchronically played back around 

the detected critical moments. In this way, the researcher can easily learn what was happening inside and 

outside the car around the detected critical moments. While the dashboard simulator in the center of the VBox 

video frames displayed the real-time velocity change, the velocity curve could be also displayed in a separated 

window, so that it is observable how the velocity changed in the detected possible critical event. The eye-

tracking video presented what the car driver looked at, providing information to what the drivers reacted. 

 

Figure 4-7  An example of detected events: Vbox video data (upper-left), eye tracking data (lower-left) and 
velocity/acceleration curve (right) 

Figure 4-7 presents an example of a detected critical event. The driver met a bicycle waiting on a refuge island, 

ready to cross the road. As displayed in the video data, the driver did not detect the bicycle until he was very 

close to it. He conducted an urgent brake to give the right of way to the bicycle, as shown in the velocity-time 

curve. In this event, no noises were mixed in the data. It really concerned a high deceleration value. The car 

driver reacted (i.e. braked) to a bicycle. However, this event did not occur at a signalized intersection. 

By processing the recorded data of twenty-two participants, twenty-seven safety-critical events (no crashes) 

were detected. The detailed information about these detected events was documented in Appendix 4.1. Nine 

events among them were caused by noises. The majority of the detected events took place in normal driving 

situations, where the car drivers should brake or decelerate according to the traffic law, but only exhibited high 
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decelerations. For example, they braked or decelerated for turning, on red light or yielding to other road users 

at intersections. Only one detected event was related to a safety-critical situation, where the car driver had to 

brake to avoid a collision with a due-to-yield car from the right that did not follow the yield sign. Regarding the 

conflicting party and location, only one event involved a bicycle at signalized intersections. However, this event 

did not concern a safety-critical situation. 

The reason why few conflicts of interest were detected in this way could be that road users usually move at 

slow speed at intersections, and therefore few high deceleration values could appear even at safety-critical 

moments. In the application of TCT, the severity of conflicts is determined not only by the amount of braking 

power required, but also by vehicle speed and distance to a conflict point and a friction coefficient [21]. Not all 

conflicts are accompanied with an extreme dynamical value. Thus, safety-critical event detection based on 

extreme dynamics could miss possible conflicts at intersections. 

4.2.2. Manual conflict detection 

In this section, manual video observation combining the dynamical data and visual behaviors of car drivers was 

carried out to extract possible conflicts between cars and bicycles at signalized intersections.  

The manual conflict collection was accomplished by use of the professional video annotation tool ELAN, a free 

software developed by Max Planck Institutes for Psycholinguistics [189]. ELAN supported multi-video display. It 

could simultaneously display three video views from the three sets of data collection cameras, i.e. the VBox, 

eye tracking set and GoPro camera. Most of time, the observation of videos of the VBox and eye tracking 

headset was sufficient for conflict collection. The video of GoPro camera was only observed, when more 

information needed to be checked, such as the scene on the left side of the car and car drivers´ body 

movements. As described in section 4.1.3, the vehicular dynamics, including velocity and acceleration of the car, 

were integrated in the VBox video frames, and the gaze locations of car drivers were displayed in the video 

frame of the eye tracking set. Therefore, ELAN could combine the recorded videos, dynamics and visual 

behaviors in a single window for each detected event.  

The three sets of data collection cameras were independent of each other. They were not started at the same 

time in data collection. To overcome this flaw, the recorded three video streams were first synchronized in 

ELAN for each participant before conflict collection. The VBox videos and GoPro videos were recorded with the 

constant frame rates of 25 fps and 60 fps, respectively. The original videos of the eye tracking headset were 

generated with a variant frame rate. However, the exported videos that contained the gaze location 

information were accurately adjustable in time by use of the timestamp information. The synchronization of 

three video streams was accomplished by lining up partial movements of objects commonly existing in the 

three videos, e.g. the pedestrian steps or the change of traffic signal phases.  

For individual participant, the collected data at signalized intersections was played back and observed. All car-

bicycle meeting events were detected. That is, bicycles that crossed an intersection were detected while the 

subject car was also crossing the intersection. By use of ELAN, a scheme with several variables was coded for 

each car-bicycle meeting event:  
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 Intersection number: in which intersection in the driving route the subject car met a bicycle or a group 

of bicycles; 

 Movement directions of the subject car at intersections: the movement direction could be Rt (right-

turning), Lt (left-turning) or Gt (going through)); 

 Movement directions of bicycles at intersections, indicated with the movement numbers, as shown in 

Figure 3-5; 

 Bicycle numbers: A car-bicycle meeting event could be related to only one bicycle or a group of 

bicycles that moved in the same direction; 

 If the event was a possible conflict. According to DOCTOR (Dutch Objective Conflict Technique for 

Operation and Research) method, a possible conflict, i.e. encounter, will be present, if at least one 

part needs to do something to avoid a collision. In other words, a possible conflict is a traffic situation 

in which two road users approach each other in time and space and may influence each other´s 

behaviors [190]. In data analysis, a possible conflict was determined, if the car driver had to react to 

the relevant bicycles. The reaction included braking, accelerating, swerving, keeping low speed to 

follow bicyclists and keeping still /delaying to start in order to give way to bicyclists. The reactions of 

car drivers to bicycles were mainly considered. Noticeable evasive actions by bicyclists were also 

considered indicators for possible conflicts. 

Figure 4-8 shows the ELAN interface with an example of a detected car-bicycle meeting event. In this event, the 

subject car that turned right met a group of through bicycles in the red phase, and delayed to start to yield to 

the bicycles, after the traffic light turned green. It was a possible conflict, but was solved by the controlled 

behaviors of the car driver. Thus, it was not a safety-critical conflict. 

 

Figure 4-8  ELAN interface for the manual conflict detection 

At signalized intersections, road users approaching from different directions ultimately have to share the same 

space. They could be separated in time under the control of traffic lights. However, most of time, they have to 
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deal with each other, not supported by additional behavioral rules [190]. Therefore, possible conflicts 

frequently develop also at signalized intersections. From the collected data, 121 possible conflicts between the 

car and bicycles were detected. These possible conflicts were typed into car-bicycle scenarios as defined in 

section 3.3. Table 4-1 shows the numbers of detected possible conflicts corresponding to different scenarios. 

Considering that the numbers of movement directions (right turning, left turning and going through) in the 

preset driving route were different, the conflict numbers per movement type were calculated by dividing the 

number of possible conflicts by the corresponding movement numbers, and were shown in Table 4-1. The first 

three most frequent possible conflicts were R20, L12 and R17. This ranking was consistent with that of the 

accidents recorded in GIDAS, as shown in Table 3-2, and essentially with that of Berlin police-reported 

accidents, as shown in Table 3-1. 

Table 4-1  Types and numbers of detected possible conflicts 

Types  R20  L12  R17  R5  L10  L13  L14  L15  L16  L9  R16 

No.  83  12  13  5  2  1  1  1  1  1  1 

No. per 
movement  5.93  1.5  0.93  0.36  0.25  0.13  0.13  0.13  0.13  0.13  0.07 

 

For each of the detected possible conflicts, gaze locations of car drivers were observed. Car drivers conducted 

direct scanning for bicycles or scanned the rear mirror or side mirror to detect bicycles during crossing 

intersections. In the majority of possible conflicts, car drivers could timely detect the presence of relevant 

bicycles, and timely react to avoid collisions with the bicycles. Car drivers, bicycles or both of them solved the 

most possible conflicts in a controlled manner. 

Three events among these detected possible conflicts were involved in safety-critical situations, and they were 

conflicts. In the first conflict event, the car driver that intended to turn right did not detect the bicycle that was 

in parallel approaching the intersection behind the parked cars, until he entered the intersection. At the 

moment when the car driver first detected the presence of the bicycle, the car was moving at a relatively high 

speed. The car driver had to decelerate immediately to avoid collision with the bicycle. The second and third 

events concerned a similar situation. In approaching the intersection, the car driver that intended to turn right 

had scanned the intersection, driving at a relatively high speed because the right-turning route was clear; after 

the car entered the intersection, the driver detected a bicycle coming from the right road that intended to go 

through the intersection. The car had to brake immediately to avoid a collision. Figure 4-9 presents the 

situations of the three events at the moment when car drivers first detected the bicycles, i.e., first fixated on 

the bicycles.  

The severities of the three conflicts were indicated by the Time to Accident (TA) measure. The TA is defined as 

the time that is remaining from when the evasive action is taken until the collision would have occurred if the 

road users have continued with unchanged speeds and directions [50]. The TA measure can be calculated by 

dividing distance to the potential point of collision by speed at the start point when the evasive action is taken. 

For the three conflicts, the start points were those when the car drivers first fixated on bicycles and meanwhile 
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decelerated. Distance values were calculated by integrating the recorded velocity data based on time. Table 4-2 

presents the severity measures of the three conflicts. In accordance with the "uniform severity level" and 

"uniform severity zones" based on the relationship between TA values and speed at start points, which was 

developed in the application of the Traffic Conflict Technique [50], the event 2 was a serious conflict 

approximately in severity level 1, while the other two events were non-serious events. In the three conflicts, 

only low deceleration values (less than 0.3 g) were involved.  

 

Figure 4-9  Three detected safety-critical events, event 1, event 2 and event 3 (from top to bottom): Moments when car 
drivers first detected the presence of bicycles 
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Table 4-2  Severity measures of the three detected safety-critical conflicts 

Safety-critical 

conflicts  

Min. 

deceleration   

Distance to conflict 

point (m)  

Speed at start 

point (km/h)  
TA (s) 

Event 1  -2.53 g  14.29  23.84  
2.16 

Event 2  -2.32 g  5.04  9.86  
1.84 

Event 3  -1.15 g  11.92  18.49  
2.32 

4.3. Analysis of eye movements for events of R20 

Motorists´ eye movements and visual attention are directly related to crash causality [230]. With 

improvements in eye-tracking technology, eye behaviors are contributing significantly to identifying the cause 

of crashes, as described in Chapter 2. Eye movement data can provide direct empirical evidence of potential 

hazards. 

This section investigated the eye movements of car drivers in interactions with bicycles. This work was based 

on collected car-bicycle meeting events of R20, which is the most frequent car-bicycle conflicts/accidents at 

signalized intersections, indicated by both possible conflicts and accident data of Berlin Police and GIDAS. On 

the one hand, it was to demonstrate the bicycle-scanning strategies of car drivers in the scenario R20. On the 

other hand, it was to determine if car drivers´ visual attention on bicycles could be affected by changes in the 

traffic conditions.  

4.3.1.  Data analysis 

The scenario R20 could occur in six different situations on a basis of the sequences of the car´s and the bicycle´s 

arriving at intersections and the traffic light phases, as shown in Figure 4-10. In the situation R20_1, the car is in 

the period of approaching the intersection, while the bicycle has entered the intersection and is crossing the 

intersection in the green phase. In R20_2, the car is approaching the intersection, while the bicycle is waiting at 

a red light. In R20_3, the car and the bicycle are approaching the intersection at the same time, when the 

traffic light is green. In R20_4, the car and the bicycle are approaching the intersection at the same time, but 

they have to stop at a red light. In R20_5, the car is already at the intersection and waiting at a red light, while 

the bicycle is approaching. In R20_6, the motorist is ready for turning or is executing right-turning at a green 

light, while the bicyclist is approaching the intersection. In different R20 situations, the visibility of bicycles is 

different for motorists, and therefore the bicycle-scanning strategies of motorists are different.  

During a right-turning process, a car driver could generally go through three periods, namely approaching the 

intersection, waiting at red and turning. The period of turning started from the point when the car entered the 

intersection and ended when the car driver completed the turning. Car drivers might allocate visual attention 

to the relevant bicycles in any period. They might fixate directly on bicycles ahead of the car, while they might 

conduct shoulder check or fixate on interior or external rear view mirrors to observe bicycles approaching from 

behind. The bicycle-scanning strategies were reflected how car drivers allocated their visual attention to bicycle 

in different periods as well as by shoulder checks and mirror checks.  
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Figure 4-10  Six situations of R20 scenario on a basis of the sequences of the car´s and the bicycle´s arriving at 
intersections and the respective traffic light phases 

Visual attention of car drivers was measured by fixations. When the gaze was located on a bicycle or a group of 

bicycles in more than six consecutive frames (a frame corresponded to about 0.03 seconds), it was regarded as 

a fixation on bicycles. The duration of a fixation was measured and recorded by the number of frames in which 

the gaze was located on bicycles.  

The information collection about bicycle-scanning of car drivers was accomplished by ELAN. The analyzed car-

bicycle meeting events of R20 were those collected in 4.2.2. They were coded with the following variables: 

 R20 situations, as shown in Figure 4-10; 

 If it was a possible conflict (1) or not (0); 

 Bicycle number; 

 Presence of oncoming bicycles right (i.e. in motion 17, as shown in Figure 3-5): yes (1) or no (0); 

 Presence of right-turning bicycles (i.e. in motion 5, as shown in Figure 3-5) : yes (1) or no (0); 

 Presence of conflicting pedestrians in the crosswalk : yes (1) or no (0); 

 Presence of cars ahead of the subject car: yes (1) or no (0); 

 Numbers and durations of fixations on bicycles in the period of approaching; 

 Numbers and durations of fixations on bicycles in the period of waiting at red; 

 Numbers and durations of fixations on bicycles in the period of turning; 

 Numbers and durations of fixations on bicycles by shoulder checks; 

 Numbers and durations of fixations on bicycles by mirror checks. 
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4.3.2. Analysis results 

Bicycle-scanning strategies 

From the recorded data, 146 events of R20 were collected. For each event, the average fixation duration on per 

bicycle was documented in each period. The average duration was documented as well for fixations on bicycles 

that were made by shoulder checks and mirror checks. This information could provide a measure of bicycle-

scanning strategies of car drivers.  

Through fixations on bicycles, car drivers can complete two tasks. One task is to detect the existence of bicycles, 

i.e. fixation for detection. It usually refers to car drivers´ first fixation on bicycles. Another task is to observe the 

speed and relative location of bicycles to make appropriate decisions combining the surrounding traffic 

conditions, i.e. fixation for observation. A safe right-turning requires car drivers to complete at least the two 

independent tasks.  

Bicycle-scanning strategies were analyzed in different R20 situations and presented in box plots by use of SPSS. 

Figure 4-11 shows the bicycle-scanning strategy of car drivers in the scenario R20_1. In all events except the 

event outlier 1, fixations on bicycles only occurred in the period of approaching. In this situation, the task of 

fixation for detection could be easily completed, since bicycles were clearly presented in the forward field of 

view of car drivers. As described above, in events of R20_1, bicycles were crossing intersections, when the car 

was approaching intersections. In most cases, bicycles had crossed the intersection, when the car entered the 

intersection and started turning. Normally, car drivers did not have to take evasive actions to avoid crash with 

bicycles. Fourteen events of R20_1 were collected, only one of them involved in a possible conflict. Events of 

R20_1 were not likely to lead to a safety-critical situation or a crash.  

 
Figure 4-11  Bicycle-scanning strategy in R20_1 

Figure 4-12 shows the bicycle-scanning strategies of car drivers in situations R20_2, R20_4 and R20_5. A 

number of thirteen events of R20-2, nine events of R20-4 und thirty-five events of R20_5 were collected. In the 

three situations, no matter which party first arrived at intersections (the car or bicycles), they would go through 

a period, in which car drivers kept still and were charged with few driving tasks, and therefore had enough 

visual attention to scan bicycles, which were also not moving. In addition, due to the installation of the 

advanced bicycle-stop lines, car drivers could easily detect bicycles. Thus, in the three situations, the most 

fixations on bicycles occurred in the period of waiting-at-red. After the light turned green, car drivers had to 

yield to bicycles and fixate on bicycles to find the right time to cross. Therefore, a number of fixations on 
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bicycles occurred in the period of turning. For R20_2 and R20_4, bicycles were already at intersections or 

approaching intersections, when the car was approaching. As a result, some fixations also occurred in the 

approaching period in R20_2 and R20_4. In the events of the three R20 situations, bicycles could be easily 

detected, and the interactions between car drivers and bicyclists were easily handled. For example, car drivers 

who started from a (shortly) stationary position only needed to yield to cyclists who were easily detectable. 

Events in these R20 situations hardly developed into safety-critical situations or crashes. 

 

Figure 4-12  Bicycle-scanning strategies in R20_2 (top), R20_4 (middle) and R20_5 (bottom) 

In the situation R20_3, when the traffic light is green, bicycles are approaching the intersection at the same 

time as the car. There were two sub-situations for R20_3. In sub-situation 1, cyclists rode always in the forward 

view of car drivers. In sub-situation 2, the car overtook bicycles in approaching and arrived at the intersection 

prior to bicycles. Figure 4-13 shows the bicycle-scanning strategies of car drivers in the two sub-situations. In 

sub-situation 1, fixations on bicycles occurred only in approaching and turning periods. In this sub-situation, it 

was important that bicycles could be detected in the approaching period. If car drivers had not detected the 

bicycles until the turning period, the car would have entered the intersection at a relatively high speed (, since 
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the car driver most probably perceived that the intersection was clear). In this case, the situation could easily 

result in conflicts or even crashes.  

 

 
Figure 4-13  Bicycle-scanning strategies in R20_3: Sub-situation 1 (Top) and Sub-situation 2 (Bottom) 

In sub-situation 2 of R20_3, apart from periods of approaching and turning, car drivers conducted fixations on 

bicycles mainly by shoulder checks or mirror checks. The shoulder checks or mirror checks were executed to 

scan the bicycles that car drivers had passed by in the approaching period. Car drivers could have detected 

these bicycles during the approaching period. If yes, shoulder or mirror checks were explicitly made to observe 

the bicycles; if no, shoulder or mirror checks were made to both detect and observe the bicycles. Whatever the 

case was, it has to be emphasized that it is important to perform shoulder or mirror checks for a safe right 

turning in this sub-situation.  

The situation R20_3 corresponded to the most frequent events of R20. Forty-eight events of R20_3 were 

collected. Compared with the other scenarios, namely R20_1, R20_2, R20_4 and R20_5, road users involved in 

the situation R20_3 are more likely to be involved in safety-critical situations or crashes, especially if bicycles 

are undetected by car drivers in approaching period (in the sub-situation 1) or if no shoulder or mirror checked 

are carried out by car drivers before turning (in the sub-situation 2). The risk in the scenario R20-3 could be 

mitigated through appropriate installation and improvements of bicycle facilities at intersections (in the sub-

situation 1) and in the form of advanced road user education (in the sub-situation 2). 

In situation R20_6, the car is ready for right-turning or is turning at a certain amount of speed, when bicycles 

are approaching the intersection. The bicycles have the right of way. The car driver should detect the bicycles 

before turning, or else safety-critical events would occur. In this situation, the shoulder or mirror checks are of 

great importance. As shown in Figure 4-14, the fixations on bicycles were mainly performed by shoulder and 
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mirror checks. Through these fixations, car drivers detected the bicycles. Like the situation R20_3, this situation 

is also of high risk, and road user education (i.e. performance of shoulder and mirror check) might effectively 

mitigate crashes.  

 

Figure 4-14  Bicycle-scanning strategy in R20_6 

In these plot boxes, some outliers are observable, which are marked with circles or asterisks. They are 

abnormal values corresponding to special situations. The events that each outlier corresponded to were 

observed concerning the detailed situations, and stated in Appendix 4.2. 

Effects of traffic conditions 

In addition to the distribution of fixations on bicycles in different right-turning periods in the scenario R20, the 

changes of car drivers´ visual attention to bicycles was also studied in response to the changes of traffic 

conditions. In the scenario R20, car drivers might have to handle relationships with other road users besides 

the through bicycles, and allocate the limited visual attention to other road users. In other words, the other 

road users would compete with the through bicycles over the visual attention. These road users might be on-

coming bicycles in motion 17 (as shown in Figure 3-5), right-turning bicycles in motion 5 (as shown in Figure 

3-5), pedestrians in conflicting crosswalks and other motorized vehicles ahead of the subject car. Therefore, it 

was hypothesized that the presence of other road users might influence car drivers´ visual attention to the 

through bicycles.  

The mean total fixation duration on bicycles was used as the dependent variable to measure car drivers´ visual 

attention, i.e. the total fixation duration on per through-bicycle during a right-turning process. This variable 

excluded the fixations in waiting-at-red periods. The reason was that the majority of fixations in this period 

were invalid, and greatly depended on the duration of the red phases.  

The database of the mean total fixation duration on bicycles in each event was divided into two groups, 

according to five independent variables respectively. These independent variables were the presence of 

oncoming bicycles in motion 17 and not, presence of right-turning bicycles in motion 5 and not, presence of 

pedestrians in conflicting crosswalks and not, presence of cars ahead and not, and if the event was a possible 

conflict and not. Table 4-3 presents the event numbers in each group. The dependent variable was not 

normally distributed for any of these groups, indicated by a Kolmogorov-Smirnov test, which is a commonly 

used test for normality. Thus, the Mann-Whitney U test, which is a common non-parametric test for 
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comparison between two independent groups, was carried out to determine if there was any difference in the 

mean total fixation duration on bicycles with respect to these five independent variables, respectively.  

Table 4-3  Mann-Whitney U test of the mean total fixation duration on bicycles with respect to independent variables 

Independent 
variables 

 
No. of events in each 
group  Mann-Whitney U Test: Mean Total Fixation Duration on Bicycles  

 0 (No)  1 (Yes)  Mean Rank 0  Mean Rank 1  p-value  Significant 

If possible 
conflict  46  100  50.13  84.25  <0.001  Yes 

Presence of 
oncoming 
bicycles in 
motion 17  121  25  72.07  80.42  0.369  No 

Presence of 
right-turning 
bicycles in 
motion 5  95  51  70.03  79.96  0.176  No 

Presence of 
pedestrians 
in conflicting 
crosswalks  63  83  67.21  78.27  0.118  No 

Presence of 
cars ahead  102  44  73.03  74.58  0.839  No 

 

Table 4-3 presents the results of the Mann-Whitney U test. The statistical significant difference was found in 

the mean total fixation duration on bicycles between groups that were divided depending on the variable if an 

event was a possible conflict or not. This result indicated that the car drivers spent more time fixating on the 

through-bicycles, if he/she had to react to the through-bicycles to avoid collisions in an event. No statistical 

significant changes were identified in the mean total fixation duration on the through-bicycles in presence of 

oncoming bicycles in motion 17, right-turning bicycles in motion 5, pedestrians in conflicting crosswalks or cars 

ahead. Although fixations were made on the other road users in these events, it did not decrease the mean 

total fixation on the through-bicycles. The result does not support the hypothesis.  

4.4. Conclusion and discussion 

The method of NDO is proved reliable and efficient to address traffic safety. Despite considerable NDO studies, 

few have investigated interactions between car drivers and bicyclists. Several NCO studies that focused on 

interactions between car drivers and bicyclists, however, were conducted from perspective of bicyclists. This 

chapter carried out a Quasi-NDO study to investigate interactions between car drivers and bicyclists at 

signalized intersections from perspective of car drivers, who are responsible for more car-bicycle accidents at 

signalized intersections than bicyclists are. 

Participants were recruited to drive a car instrumented with a Video Vbox and a camera. They were requested 

to wear an eye tracking headset in driving the car in real traffic. Drivers´ driving behaviors, including car-

operation behaviors, body movements and eye movements, and the driving environment were recorded.  
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From the collected data, car-bicycle conflicts were detected and identified. By use of the automated conflict 

detection based on a deceleration trigger, only one car-bicycle conflict at signalized intersection was identified. 

Nevertheless, this conflict did not concern a safety-critical situation. In contrast, the manual conflict detection 

through video observation combining the dynamical data and eye movement data extracted up to 121 possible 

conflicts, in which car drivers needed to do something to avoid a collision with bicycles. Most possible conflicts 

were solved in a controlled manner. Three events among them were involved in safety-critical situations. The 

three events reveal two potential risky situations between cars and bicycles at signalized intersections: the first 

situation concerns a right-turning car and a through-bicycle behind parked cars; the second situation concerns 

a right-turning car and a bicycle coming from the right road. 

The identified possible conflicts were typed into car-bicycle scenarios. The first three most frequent possible 

conflict scenarios were essentially consistent with that indicated by the GIDAS data and Berlin Police-reported 

accident database. Both conflicts and accidents show that the most frequent scenario is R20, in which the car 

turns right and the bicycle goes through the intersection. Considering the eye movement data can provide 

safety-related evidence about visual attention, the collected eye movement data was analyzed for the scenario 

of R20. The analysis gave insight into how car drivers visually interact with bicycles.  

Based on 146 collected events of R20, bicycle-scanning strategies of car drivers were analyzed. The strategy 

involved the amount of bicycle-fixation time in three periods of a car´s right-turning process, namely 

approaching the intersection, waiting at red and turning, as well as duration of fixations made by shoulder 

checks and mirror checks. R20 scenarios were categorized into six situations on a basis of sequences of the 

car´s and the bicycle´s arriving at intersections and the traffic light phases. The strategies showed that in four of 

six R20 situations, car drivers could easily detect bicycles, and the interactions between car drivers and 

bicyclists were easily handled. Events in these R20 situations hardly developed into safety-critical situations or 

crashes. Events in the other two R20 situations could be more likely to result in conflicts or even crashes. The 

bicycle-scanning strategies indicated that the risk in the two situations could be mitigated through appropriate 

installation and improvements of bicycle facilities at intersections and in the form of advanced road user 

education (i.e. performance of shoulder and mirror check).  

Another analysis regarding eye movements focused on car drivers´ mean fixation durations on per through 

bicycle in the scenario R20. The result indicated that the car drivers spent more time fixating on the through-

bicycles, if they had to react to the through-bicycles to avoid collisions in an event. However, mean fixation 

durations were not influenced by the presence of other related road users, such as presence of oncoming 

bicycles, right-turning bicycles, pedestrians in conflicting crosswalks and cars ahead.  

The work in this chapter reveals potential risky situations between cars and bicycles at signalized intersections, 

with detailed information on the chain of events by conflict detection. This is one of the main findings in this 

work. Concerning conflict detection method, automated conflict detection based on a deceleration trigger 

could miss conflicts, because not all conflicts are accompanied with extreme values. In contrast, manual conflict 

detection could effectively identify conflicts through video observation combining the eye movement data and 
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dynamical data. The eye movement data facilitated the conflict detection/identification process, since it could 

supply information e.g. to whom and why the car drivers reacted. Normally, manual video observation is very 

time-consuming. However, the related data at signalized intersections could be easily positioned according to 

the geographical data. This could save a great amount of time. In addition, the analysis of the eye movement 

data implies measures to decrease the risk in R20 scenarios and reveals influence factors on bicycle-fixation 

durations of car drivers. This is the second important finding in the work.  

Nevertheless, the data collection time was very short, and therefore only two risky situations were detected. 

Moreover, due to the limited number of participants, the conclusions on eye movements need to be confirmed. 

A larger-scale study with longer data collection time and more participants is expected in the future work. The 

created framework could be used for such a study, but some improvements could be done:  

 The applied eye-tracking headset is sensitive to its position change relative to the eye. A slight change 

could generate errors in gaze location data. In the long-time data collection, even the mimics could 

easily change the relative position. An updated version of this eye-tracking headset or a new type of 

eye-tracking headset needs to be achieved for a larger-scale study.  

 The digital map with signalized intersection locations for areas in which the participants will drive 

should be available, so that the related driving information at intersection could be easily positioned 

for manual conflict detection. This could make the conflict detection semi-automated. 

 In this study, participants´ own cars could be instrumented and participants could decide where and 

when to drive, making the collected data more natural.  
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5. Risk perception for car-bicycle scenarios at signalized intersections  

Risk perception is believed to be a crucial indicator for human behaviors. It is an important contribution factor 

for traffic safety. The links between perceived risk and risk-taking behavior and between perceived risk and 

objective risk are well established. Generally, the less one perceives risk in a given situation, the more likely he 

or she is to adopt risky behaviors [191] and the more likely he or she is to be involved in crashes [192]. With 

regard to car-bicycle safety at signalized intersections, a study on risk perception of road users would tell 

whether car drivers and cyclists perceive risk accurately or in the same range in interaction with each other. 

This topic is interesting, because any discrepancy between perceived and objective risk could play a role in 

crash occurrence. Such a study could help in determining what to do to make perception more accurate and 

therefore avoid crashes and fatalities.  

In this chapter, car drivers´ and cyclists´ risk perception is investigated for common car-bicycle accident 

scenarios at signalized intersections by an online survey. There are four major aims. The first is to investigate 

risk perception of car drivers in the common car-bicycle accident scenarios. The second is to explore how 

cyclists perceive risk in these scenarios. The third is to compare perceived risk and objective risk, as to find out 

whether discrepancy exits between perceived risk and objective risk. The last is to compare perceived risk of 

the two road user types, in order to find out whether there is difference in perceived risk between cyclists and 

car drivers.  

The questionnaire design, data collection and part of data analysis in this chapter were carried out with the 

help of a bachelor. This bachelor thesis work was supervised by the writer of this dissertation, as presented in 

the bachelor thesis [193].  

5.1. Determination of car-bicycle scenarios to be evaluated 

Accident scenarios could be described based on the geometrical configuration, namely on the motion 

directions of cars and bicycles, and their relative locations, as described in section 3.3. However, not all the 

scenarios were to be evaluated in this work. In determining accident scenario to be evaluated, three factors 

were considered:  

 The first factor was common motions at intersections. Only those accident scenarios were selected, 

which concern common motions at intersections, including through-going, right-turning and left-

turning. Therefore, accident scenarios concerning vehicles that park, back up and turn over were 

excluded.  

 The second factor was bicycles that go through intersections in the wrong direction. Accident 

scenarios involving a bicycle that goes through intersections in the wrong direction were included, 

since bicycles often move in a more flexible way. 

 The third factor was red-light violation. Accident scenarios related to red-light violation were excluded, 

since red-light violation is obviously a type of highly dangerous behaviors.  

In accordance with the three factors, seventeen accident scenarios were selected, as illustrated in Figure 5-1. 
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These scenarios are denoted with a letter, namely R (Right-turning of car), L (Left-turning of car) or G (Going-

through of car), and numbers, the same as described in section 3.3. 

Accident frequencies of the determined scenarios has been obtained in Chapter 3, based on accident data 

reported in Berlin over eleven years (from 2003 to 2013). For reading comfort, the analysis result is listed again 

in Table 5-1. The accident frequencies were used to measure objective risk of these scenarios. 

In addition, traffic volume data was analyzed at 209 signalized intersections. The database was provided by the 

Senate Department for Urban Development and the Environment (Berlin). The analysis shows that 

approximately 10 times as many cars as bicycles cross signalized intersections in Berlin. It suggests that cyclists 

have a higher exposure rate to car-bicycle accidents at signalized intersections. In other words, objective risk at 

intersections is higher for bicycles than for cars. 
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Figure 5-1  Diagrams of common accident scenarios. Arrows indicate motion directions of cars and bicycles [193] 
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5.2. Method: online survey 

5.2.1. Sampling and administration 

An online survey was conducted to gather information on risk perception of road traffic participants in Berlin. 

The survey was submitted via the internet to reach specific groups associated with Berlin residents. These 

groups included "Berlin", "TU Berlin", "AutomarktBerlin", "ADFC Berlin (a bicycle club)" and Facebook 

friendship circles of the researchers. The members of these groups were invited to participate in this survey 

without financial incentives. This survey was active for a three-month period (November 2014 -January 2015).  

5.2.2. Questionnaire design 

A custom-designed web-based program was employed to design the questionnaire, and to save and manage 

the collected data. A pilot survey was carried out before the data collection, to examine clarity and face validity 

of the questionnaire. It was established that it took approximately 15 minutes to complete this questionnaire. 

The questionnaire comprised three parts. The first part was a short description about the survey background (a 

scientific study with the theme "accident scenarios between cars and bicycles at signalized intersections"), the 

objective (the respondents´ individual opinion is expected), the structure and the time requirement. The 

second part was related to the frequently used transport mode of the respondents. In accordance with the 

answers, the respondents were categorized into car drivers who have most frequently used passenger cars, 

bicyclists who have most frequently used bicycles and others, which included pedestrians and road users who 

have most frequently used the public transport.  

The third part was the main component of this questionnaire. In this part, the seventeen selected accident 

scenarios were illustrated by use of diagrams and text descriptions, as shown in Figure 5-2. The scenario 

diagrams were prepared in two versions, one for cyclists and one for car drivers, so that the road user type of 

respondents always came from the bottom approach in the diagram. This was aimed at making respondents to 

imagine better themselves in the given scenarios. Respondents were required to score these scenarios 

according to the frequencies of the accident scenarios. As a widely used measure of opinions with a great 

degree of munance, a five-point Likert scale was used to answer this question. The scales range from 1= never 

to 5= very frequently. These scored scales indicated their perceived risk for these scenarios (no matter the 

consequence of accidents). Figure 5-2 presents one example scenario (R32), showing how this part was 

structured. 
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Figure 5-2  An example scenario (R32) in the third part of the questionnaire, for assessing perceived risk (version for car 
drivers) [193] 
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5.2.3. Sample characteristics 

1,656 respondents have clicked the online questionnaire, and 603 of them have finished the survey. The data 

records were filtered out, when the respondents have completed the survey in a very short time or given the 

same score to all scenarios. Valid data records were finally obtained from 525 respondents. Categorizing the 

respondents in accordance with the most frequently used transport modes, the 525 respondents consisted of 

209 car drivers, 197 cyclists and 119 "other road users". Data records from "other road users" were excluded 

from data analysis, since they are not the direct participants in cycling and car driving.  

5.3. Data analysis 

Scales that the respondents have used to rate the frequencies of accident scenarios were used to indicate their 

risk perception. A higher score on the scales indicates higher perceived risk. Cronbach´s alpha coefficient was 

applied to evaluate the internal consistency of the risk perception scales. Cronbach´s alpha coefficients were 

0.75 for the cyclist sample, 0.78 for the car driver sample and 0.76 for the whole sample. It indicates that the 

reliability of risk perception is acceptable. To get an overview of the collected data, the frequencies of scales 

for perceived risk by the whole sample were counted for each scenario. The result is presented in Figure 5-3.  

The means and standard deviations (S.D.) of perceived risk scales were calculated for the car driver sample, the 

cyclist sample and the whole sample. The Kolmogorov-Smirnov test, which is a commonly used test for 

assessment of normality, indicated that scales for all scenarios did not follow a normal distribution (all p < 

0.001). Thus, the data analysis of risk scales was carried out by use of non-parametric tests. 

As stated previously, the means of perceived risk scales were used to measure the subjective risk of each 

scenario, while accident frequencies were used to measure the objective risk. The scenarios were ranked based 

on the means of risk perception scales (subjective ranking) and the accident frequencies (objective ranking). 

The ranking results are presented in Table 5-1. The subjective ranking and the objective ranking were 

compared by use of Spearman´s test, which is a common non-parametric measure of association between two 

ordinal variables. When regarding the accident frequency of each scenario (see Table 5-1), accident frequency 

differences are not distinct between some adjacent scenarios. Therefore, paired-sample t-test was carried out 

for accident distributions in years (from 2003 to 2013) for each two adjacent scenarios (, since the accident 

frequency for each scenario is normally distributed in years). Significant differences were found between: 

 the first and second scenarios (cut-off point 1, mean difference=146, p<0.001), 

 the second and third (cut-off point 2, mean difference=104, p<0.001),  

 the third and fourth (cut-off point 3, mean difference=55, p<0.001),  

 the fifth and sixth (cut-off point 4, mean difference=5, p<0.005),  

 the seventh and eighth (cut-off point 5, mean difference = 8, p<0.005)  

 and the eighth and ninth (cut-off point 6, mean difference = 5, p<0.005).  

The scenarios were categorized into seven classes in terms of objective risk at the six cut-off points. The 

classification result is also presented in Table 5-1 (see the item "Objective risk class"). 
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In order to explore the differences of risk perception between car drivers and cyclists, the means of perceived 

risk scales, as shown in Table 5-1, were first compared. In addition, Mann-Whitney U test, which is a commonly 

used non-parametric test for comparison between two independent groups, was used to compare the 

perceived risk scales of car drivers and cyclists for each scenario. 

5.4. Data analysis results and discussion 

5.4.1. General results 

Figure 5-3 presents the perceived risk of the whole sample for each scenario. Scales 1-5 rate the perceived risk. 

A higher scale indicates the higher perceived risk. Looking at the perceived risk scales for all scenarios, the 

scales 4 (an accident often happens) and 2 (an accident occasionally happens) were most frequently chosen. 

The extreme scales 1 (an accident never happens) and 5 (an accident very frequently happens) were least 

frequently chosen. 

 

Figure 5-3  Perceived risk scales of the whole sample for each scenario: The scales 1-5 are used to rate the perceived risk; 
A higher scale indicates the higher perceived risk. 

Among all scenarios, scenario R20 (right-turning car and through bicyclist) was assigned the most scale 5, 

followed by scenario L9 (left-turning car and through bicyclist in the wrong travel direction) and scenario L5 

(left-turning car and right-turning bicyclist). When the risk of scenarios is evaluated by the frequency of the 

greatest scale, i.e. the scale 5, it can be presumably expected that the more the scale 5 are chosen for a 

scenario, the higher the probability that an accident is perceived to occur in the scenario. Accordingly, R20 was 

regarded as the most dangerous, followed by L9 and L5. When the scenario risk is evaluated according to the 

frequency of the smallest scale, i.e. the scale 1, the following correlation is also observable: the fewer the 

number of scale 1 are chosen for a scenario, the higher the probability that an accident occur in the scenario. 

Accordingly, the first three most dangerous scenarios were L12 (left-turning car and through bicyclist from the 

opposite direction), R20 and L9. This result did not match that accorded to the frequency of the greatest scale.  

Not only the extreme scales but also the scales between them could be assigned to a scenario. The average 
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values could better represent the perceived risk of a sample than the frequency of extreme scales. Therefore, 

the means of scales were used to measure the subjective risk in the following analysis.  

5.4.2. Comparison between objective and subjective risk 

Figure 5-4 presents the mean values of perceived risk scales. In this figure, the scenarios were arranged from 

left to right according to the ranking of the objective risk as shown in Table 5-1. As can be seen in this figure, 

the ranking according to the mean values did not match well with the objective ranking. In this figure, the mean 

values for the whole sample was included. Due to different characteristics between car drivers and cyclists, 

their risk estimation could be different. Thus, risk estimation was subsequently viewed separately for the two 

samples.  

 

Figure 5-4 Mean of perceived risk scales of the whole sample  

Table 5-1 presents the means and standard deviations of perceived risk scales and the rankings based on the 

mean values (subjective ranking) for the car driver sample and the cyclist sample, respectively. It also presents 

the accident frequency, objective risk class, and the ranking based on the accident frequencies (objective 

ranking) and the differences between the subjective ranking and the objective ranking. 

As can be seen in Table 5-1, the subjective rankings did match well with the objective ranking for neither the 

car driver sample nor the bicycle sample. Scenario R20 was the only scenario, whose subjective ranking places 

by the two samples were consistent with the objective one. This scenario corresponded to the highest accident 

frequencies, while it corresponded to the greatest mean values of perceived risk scales by the two samples. 

Besides, the subjective ranking places of scenarios R5, L20 and R15 by the cyclist sample agreed with the 

objective ones. For all the other scenarios, there were some differences between the objective and subjective 

ranking places. In addition, the Spearman´s test revealed that there was no significant correlation between the 

subjective ranking and the objective ranking for the car driver sample (rho= 0.451, p = 0.069) and for the cyclist 

sample (rho= 0.331, p= 0.195). These results suggest that the perceived risk did not exactly match the objective 
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risk. This finding confirms the results in most studies, in which the accuracy of subjective risk perception has 

been tested [132,194,195].  

Table 5-1  Objective risk and subjective perceived risk of 17 car-bicycle scenarios 

Scenarios 

 Objective risk 
 

Subjective perceived risk (scales) 

 
Accident 

frequency 

Objective 
risk 

class* Ranking 
 

Cyclists (n=197) 
 

Car drivers (n=209) 

 Mean S.D. Ranking Diff.** 
 

Mean S.D. Ranking Diff**. 

R20  3642 1 1 

 

3.91 0.64 1 0 

 

3.91 0.67 1 0 

L12  2034 2 2 

 

3.38 0.7 4 2 

 

3.33 0.79 5 3 

R17  886 3 3 

 

3.31 0.88 5 2 

 

3.44 0.91 4 1 

T10  281 4 4 

 

3.13 0.82 6 2 

 

3.15 0.89 7 3 

L9  249 4 5 

 

3.66 0.71 2 -3 

 

3.85 0.74 2 -3 

T20  194 5 6 

 

2.37 1.07 16 10 

 

3.09 1.15 10 4 

T15  182 5 7 

 

2.68 0.81 12 5 

 

2.59 0.76 15 8 

L10  95 6 8 

 

2.51 0.75 15 7 

 

2.83 0.83 12 4 

R5  39 7 9 

 

2.79 0.96 9 0 

 

2.82 0.98 13 4 

T5  25 7 10 

 

2.58 1.01 14 4 

 

2.88 1.03 11 1 

L20  15 7 11 

 

2.72 1.15 11 0 

 

3.12 1.11 8 -3 

L15  11 7 12 

 

2.24 0.71 17 5 

 

2.27 0.68 17 5 

R15  11 7 13 

 

2.59 0.81 13 0 

 

2.69 0.79 14 1 

L1  10 7 14 

 

2.79 0.85 8 -6 

 

3.18 0.78 6 -8 

R10  8 7 15 

 

3.52 0.77 3 -12 

 

3.53 0.77 3 -12 

T17  2 7 16 

 

2.67 1.16 14 -9 

 

3.07 1.19 7 -9 

L5  1 7 17 

 

2.95 1.25 8 -7 

 

2.78 1.23 10 -7 

* The smaller class corresponds to the higher accident frequency or the higher objective risk. 

** Difference between the subjective ranking and the objective ranking. Negative numbers correspond to 
overestimation, while positive numbers correspond to underestimation. 

A discrepancy between perceived risk and objective risk has been found among cyclists and car drivers, when 

they were asked to assess whether bicycles or cars were more likely to be exposed to crashes [132]. Another 

inconsistency between perceived and actual risk has been found in assessing contribution factors for 

motorcycle accidents [194]. Lastly, only a moderate correlation has been demonstrated when comparing 

drivers´ risk assessments for selected locations on a driving route to the accident records at these locations 

[195]. An exception to these findings is the study of Carthy and Packham [196], in which there has been a 

statistically valid correlation between drivers´ perceptions of risk and overall accident frequencies, when the 

drivers assessed the risk of several routes that they had driven.  

With regard to the ranges of differences between the objective and subjective rankings and the difference 

direction (under- or overestimation), they varied with different scenarios. For the scenarios in the objective risk 

classes of 1 to 6, which correspond to relatively higher accident frequencies, even small differences between 

the subjective ranking and objective rankings, such as, -1 or 1, were considered indication of over- or 
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underestimation, since the accident frequency differences between these scenarios were mostly significant. 

The nine scenarios in the objective risk class 7 correspond to smaller accident frequencies (<100 over 11 years), 

and therefore the accident frequency differences between them were small. For these scenarios, the ranking 

difference of more than seven places was considered indication of over- or underestimation. 

As a result, the overestimated scenarios by both samples were L9 (in class 4), L1 (in class 7), R10 (in class 7), T17 

(in class 7, only by the cyclist sample) and L5 (in class 7). The scenarios, which were underestimated by both 

samples, included L12 (in class 2), R17 (in class 3), T15 (in class 5), T10 (in class 4), T20 (in class 5), and L10 (in 

class 6). 

The general tendency of risk perception was that the respondents tended to overestimate the risk of scenarios, 

which correspond to smaller accident frequencies or higher objective risk classes, while they tended to 

underestimate scenarios, which correspond to higher accident frequencies or smaller objective risk classes. 

Scenario L9 was an exception that does not follow this tendency. This tendency could be explained to a certain 

extend by the relationship between risk perception and risky behaviors as described in the following text. (For 

ease of understanding, it is suggested to refer to Figure 5-1 while reading the following text.) 

The overestimated scenarios, namely R10, L5, L1 and T17, all involve irregular/risky behaviors. Scenario R10 

concerns a right-turning car and a left-turning bicycle from the same road side; L5 concerns a left-turning car 

and a right-turning bicycle from the same road side; L1 involves a left-turning car and a right-turning bicycle 

from the opposite direction. In R10, the cyclist that aims to take direct left-turning should have changed the 

lane to the right side of the car in advance. Likely, in scenario L5, the right-turning cyclist should have changed 

the lane to the right side of the car in advance. However, the cyclist has not. This is an irregular behavior or a 

risky behavior that causes conflicts. For scenario L1, the bicycle should have its separate space after right 

turning, such as a bicycle lane. Even if no bicycle lane is installed, the bicycle should ride on the right roadside. 

However, in L1, the bicycle crosses the traffic flow of motorized vehicles after right turning. This is also a risky 

behavior. Scenario T17 has the same feature. It concerns a through car and a through bicycle from the opposite 

direction but riding in the wrong direction. The cyclist in this scenario displays also an irregular or a risky 

behavior: the bicycle not only moves in the wrong direction, but also goes to the left side of the car in the 

traffic flow of motorized vehicles. The respondents, as indicated by overestimation, estimated these risky 

behaviors in the four scenarios to be more likely to cause accidents. Road users might have consciously avoided 

these scenarios caused by these behaviors. This might the reason why the corresponding accidents have 

occurred less frequently.  

Some of the underestimated scenarios, such as L12, R17, T15 and T10, concern a common feature. That is, they 

are controlled by the right of way. A L12 accident occurs, when a left turning car crosses the path of a through 

bicycle from the opposite direction. In this scenario, the bicycle has the right of way. Scenario R17 concerns a 

right-turning car and a bicycle from the opposite direction but riding in the wrong travel direction. This scenario 

is evidently a conflict point. The bicycle, however, has the right of way following traffic rules, given that 

bicyclists are weaker and more likely to be injured in case of crashes with cars. The two scenarios have some 
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common features: all concern a turning car and a through bicycle; they are all car-bicycle conflict points where 

both parties have to cross each other; the bicycle has the right of way. T15 and T10 are similar scenarios. T15 

involves a through car and a left-turning bicycle from the opposite, and T10 involves a through car and a left-

turning bicycle from the same roadside. The two scenarios are also conflict points, and the right of way is also 

regulated (but the car has the right of way). The accident cause analysis shows that the most common cause of 

accidents corresponding to the four scenarios was "mistakes made when turning" (mainly failure of yielding, i.e. 

giving the right of way) [13]. Following the relationship between risk perception and behaviors, due to the 

underestimation of both parties, the car drivers or cyclists, who have to give the right of way, could have not 

paid enough attention to observe the existence of the other parties. At the same time, the other parities have 

not cautiously predicted the failure of yielding. Consequently, the corresponding accidents have occurred more 

frequently. 

In the other underestimated scenarios, i.e. T20 and L10, the car and the bicycle have to share the same space. 

Scenario T20 involves a through car and a through bicycle from the same roadside. In this situation, there 

should not be any conflict, when they go on their own paths. However, at intersections where bicycle crossings 

are not installed, the car and the bicycle have to share the space. This situation is not controlled by the right of 

way. The scenario L10 has the same feature. In L10, the car and the bicycle turn left from the same roadside. 

Normally, there is no separated space for direct-left-turning bicycles, and therefore they have to share the 

space. According to accident cause analysis, for scenario T20, the most common cause of cyclists in accidents 

was "incorrectly changing the lane when driving side by side or failure to observe the "zip method "", and that 

of car drivers was "mistakes made when overtaking (e.g. without sufficient lateral distance; at pedestrian 

crossings)" [13]. For L10, the most common cause for both cyclists and car drivers was "incorrectly changing the 

lane when driving side by side or failure to observe the "zip method"". Due to underestimation, one party 

might not have been cautious enough to choose accurate gaps in the traffic flow of the other party while going 

side-by-side or overtaking. Consequently, more corresponding accidents have occurred. Therefore, accidents 

corresponding to the underestimated scenarios might be decreased, when road users can more accurately 

perceive the risk of these scenarios, and thus behave more cautiously and take less risky behaviors. 

However, the relationship between risk perception and behaviors cannot explain the situation of scenario R20, 

which was accurately ranked as the most dangerous scenario by both car drivers and cyclists. According to this 

relationship, car drivers should have paid enough attention to observe the bicycles, and cyclists should have 

especially cautiously expected the failure of car drivers´ yielding. As a result, not so many R20 accidents should 

have occurred. This might indicate that even if road users perceive the high risk of a scenario, the accidents 

could not be effectively reduced by their behavior adaptation. In R10 and L5 that are featured with risky 

behaviors, road users can adapt their own behaviors to avoid conflicts in these scenarios. However, R20 as well 

as R17, L12, L9 and T10 are conflict points, where cars and bicycles have to cross each other. Even if road users 

might take cautious and protective behaviors with accurate risk perception, their behaviors are affected by 

many other factors, such as personal mental, emotional and psychological elements, environment and 

intersection design.  
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5.4.3. Comparison between car drivers´ and cyclists´ risk perception 

To compare the risk perception of the car driver sample and the cyclist sample, the mean values of perceived 

risk scales of the two samples are illustrated in Figure 5-5. As can be seen in this figure, car drivers estimated 

most scenarios, i.e. thirteen of seventeen, riskier than cyclists did. The scenarios, which car drivers estimated 

less risky than cyclists, were L12, T15 and T17. In scenario L12, the car turns left, and the cyclist goes straight 

over the crossroad from the opposite direction. The cyclist goes in the permitted travel direction. In T15, the 

car goes straight over the intersection, and the cyclist turns left from the opposite direction. The cyclist rides 

also in the permitted travel direction. In scenario T17, the car goes straight over the intersection, and the 

cyclist goes straight from the opposite direction. The cyclist goes on the left roadside opposite to the permitted 

travel direction. Simply according to the geometrical configuration and the traffic compliance status in the 

three scenarios, no reasonable explanation could be confirmed for why cyclists perceived higher risk for these 

three scenarios than car drivers did. 

 

Figure 5-5 Mean of perceived risk scales of the car driver sample and the bicyclist sample 

Among the thirteen scenarios that car drivers rated in a higher level in risk than cyclists, the differences were 

significant for eight scenarios as indicated by Mann-Whitney U test (p<0.01). Table 2 shows the Mann-Whitney 

U test results in comparing perceived risk scales of car drivers and cyclists for each scenario. 

These results indicate that at signalized intersections cyclists in general perceive lower risk than car drivers do. 

This finding is in agreement with that in the study of Chaurand and Delhomme (2013), which has suggested 

that, in six dangerous situations, cyclist perceived lower risk than car drivers did. Considering, as discussed in 

section 5.1, that cyclists are objectively more likely to involve in car-bicycle accidents than cars at signalized 

intersections, this finding indicates that cyclists underestimated their risk at signalized intersections. As 

mentioned in Chapter 3, the accident cause analysis shows that cyclists should take the main responsibility for 

more than 50% of the accidents because of their adopted risky behaviors. Following the relationship between 

risk perception and behaviors, due to underestimation, cyclists might have been less cautious in interactions 

with cars, e.g. failing to yield, not signaling when turning, not checking traffic and tailgating in crossing 
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signalized intersections. All of these behaviors presumably result in a higher probability of accident 

involvement. The high probability might be reducible, if cyclists could accurately perceive their risk at signalized 

intersections and thus take less risky behaviors. 

Table 5-2  Mann-Whitney U test results in comparing risk perception scales of car drivers and cyclists: Ranking mean, 
Mann-Whitney U values and p values 

Scenarios  MCar-driver  MCyclist  Mann-Whitney U  p values 

R20  202.67  204.38  20413  0.856 

L12  202.26  204.81  20328  0.812 

R17  212.35  194.11  18737  0.097 

G10  204.3  202.65  20419  0.88 

L9  217.78  188.35  17602  <0.01 

G20  237.93  166.97  13390  <0.001 

G15  196.94  210.46  19216  0.212 

L10  223.63  182.14  16379  <0.001 

R5  203.68  203.31  20549  0.973 

G5  218.45  187.64  17463  <0.01 

L20  222.38  183.47  16640  <0.01 

L15  205.27  201.62  20217  0.722 

R15  210.26  196.33  19175  0.2 

L1  228.36  177.12  15391  <0.001 

R10  201.71  205.4  20212  0.727 

G17  167.71  241.47  13106  <0.001 

L5  218.63  187.44  17424  <0.01 

5.5. Conclusion and discussion 

Risk perception (only for likelihood aspect) of car drivers and cyclists at signalized intersections was 

investigated in this chapter. Seventeen common car-bicycle interaction scenarios were first determined. An 

online survey was conducted to gather risk perception of a car driver sample and a bicyclist sample. Risk was 

rated based on a five-point Likert scale, which is a widely used measure of opinions in a great degree of nuance. 

The scales were used to indicate the subjective perceived risk for these scenarios. 

No matter whether the subjective risk was evaluated by the frequencies of extreme scales or the mean values 

of scales, the results indicated that neither car drivers nor cyclists could accurately perceive the risk of these 

scenarios. The general tendency was that they overestimated scenarios with lower objective risks, and at the 

same time underestimated scenarios with higher objective risks. The tendency could be well explained by the 

relationship between risk perception and risky behaviors. Furthermore, the perceived risk of the car driver 

sample was compared with that of the bicyclist sample. The comparison indicated that cyclists tended to 

perceive thirteen of seventeen scenarios less risky than car drivers did. The differences were statistically 

significant for eight scenarios. In other words, cyclists extensively underestimated their risk at signalized 

intersections, considering that cyclists are objectively more likely to be involved in car-bicycle accidents at 

signalized intersections.  
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Nevertheless, the confirmed discrepancy between perceived and objective risk might still imply a possibility to 

mitigate accidents at signalized intersections e.g. through enhanced road user education and training. In this 

context, it is worthwhile to make car drivers and cyclists accurately perceive the risk of certain traffic scenarios, 

especially the underestimated scenarios, and to make cyclists more accurately aware of their significantly high 

risk at signalized intersections.  

One limitation of this study is the fact whether the participants in the survey are a representative sample of 

Berlin traffic road users in terms of e.g. age, gender and driving/riding experiences is uncertain, although they 

were all from groups of Berlin residents. In the future work, a survey involving a representative sample is 

expected. Such a survey could be carried out in the city of Berlin, as well as in other countries or cities with 

different cycling cultures. Such a study allows not only the verification of the results from this study but also 

the study of influences of cycling cultures on risk perception. Another limitation is the fact that only the 

likelihood aspect of risk perception has been assessed. An additional survey is expected to cover risk 

assessment in relation to accident consequence aspect. In such a survey, possibilities of injuries instead of 

possibilities of collisions in the given scenarios should be rated. To obtain the objective risk, the data of both 

accident frequencies and accident consequences (i.e. injury severities of car drivers and bicyclists) should be 

analyzed.  
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6. Effects of bicycle facilities on car-bicycle crash risk at signalized 

intersections 

Various studies have investigated the link between intersection factors and the bicycle crash risk at signalized 

intersections [147]. Despite these efforts, gaps in the current literature still exist. Safety effects of bicycle 

facilities have been studied using methods of e.g. before-after studies and case-control studies, but the results 

from these studies were mixed. Their safety effects are controversial especially at intersections. The reason for 

this could be that the context of bicycle facilities, i.e. intersection factors, is not simultaneously considered [31]. 

This chapter reviews Accident Prediction Models (APMs) for intersections. Comparing these models, the 

suitable regression model is chosen. It is used to associate intersection factors and the car-bicycle crash risk at 

signalized intersections based on the context in Berlin, where bicycle facilities have been widely installed. This 

work allows for estimation of safety effects of bicycle facilities at signalized intersections combining the effects 

of other intersection factors.  

6.1. Model selection 

With the application of APMs, different models have been developed. The following APMs were reviewed for 

intersections: the multiple logistic regression models, multiple linear regression models, Poisson regression 

models and negative binomial regression models [197]. All these models are used widely in traffic accident 

studies. However, they have their own limitations in their application.  

The multiple logistic regression model is used to analyze binary accident outcomes. For example, an accident is 

a rear-end accident or a non-rear-end accident. However, many studies are to describe continuous accident 

outcomes, i.e. numbers of accidents. The multiple linear regression model can be used to describe continuous 

outcomes. However, the numbers of accidents are count data that are nonnegative numbers, yet the response 

variable in multiple linear regression analysis covers all numbers on a real interval, including negative numbers. 

We would like to comment that the multiple linear regression model is limited in describing adequately the 

numbers of accidents.  

Due to the limitations of the two models aforementioned, this study chose the negative binomial regression 

model and the Poisson regression model, which are more suitable to describe nonnegative, discrete and 

random accidents events. The application of the Poisson regression model is also limited by the requirement of 

the equality of the expected value and the variance. Studies suggest that most accident data are over-dispersed. 

That is, the variance is significantly greater than the expected value. This limitation can be overcome by using 

the negative binomial distribution. The negative binomial model can be derived from the Poisson model. 

Whether the Poisson regression Model or the negative binomial regression model is more suitable in the 

assessment depends on the estimation result of the negative binomial dispersion parameter that is introduced 

in the process of derivation from the Poisson regression model to negative binomial regression model. The 

estimation result of the dispersion parameter is critical. If it is significantly different from zero, the negative 

binomial model is the appropriate choice; otherwise, a Poisson regression is suitable [148]. 
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This study first used the negative binomial regression model to create the association between car-bicycle 

accidents and intersection factors. Depending on the estimation result of the dispersion parameter, it was 

decided whether the Poisson regression model would be used or not. This section introduces the Poisson 

regression model and the negative binomial regression model.  

A Poisson distribution is expressed by  
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where i is the intersection index; ni is the number of car-bicycle accidents at the intersection i; P is the 

probability of having ni accidents. 
i

  is the Poisson Parameter, which is equal to the expected accident number 

for the intersection i, i.e. E(ni). That is, 
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where pi is the risk that a bicycle involves in an accident with a car, and fi is the traffic volume of bicycles across 

the intersection i. 

The negative binomial model can be derived from the Poisson model as shown in Equation (6.1) by adding an 

independently distributed error term ie
  to the log transformation of Equation (6.2) [148], so that it can be get 

that 

iiii
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Where ie
 follows the gamma distribution with the expected value of 1 and the variance of  . It generates a 

conditional probability by submitting Equation (6.3) to Equation (6.1): 
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According to the law of total probability, the unconditional distribution of ni is produced by integrating 
i

  out 

of Equation (6.4). This distribution can be formulated as follows:  
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where  /1 . This is a negative binomial distribution. Its expected value is equal to that of the Poisson 

distribution as shown in Equation (6.2). Its variance is  

)()()( 2

iii
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The negative binomial model allows that the expected value differs from the variance. In this way, the 

limitation of the Poisson model is eliminated. The variable   is the negative binomial dispersion parameter.  

The car-bicycle crash risk pi is specified to be a function of intersection factors by use of the logistic equation.  
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where Xi is the vector of the considered intersection factors, and   is the vector of the corresponding 

estimated coefficients for each factor. The application of the logistic equation can constrain the value of pi 

between 0 and 1. Furthermore, the sign of the estimated coefficient for each intersection factor corresponds to 

its effect direction. That is, a positive sign represents increasing effects and a negative sign represents 

decreasing effects on the crash risk.  

By submitting Equation (6.7) to Equation (6.5), the probabilities of having ni car-bicycle accidents at signalized 

intersections in relation to a set of intersection factors are obtained:
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The effect coefficients are estimated using the maximum likelihood estimation approach by specifying a loss 

function in the module NONLIN in SYSTAT. 

6.2. Intersection selection and dependent variable 

A number of 140 four-way signalized intersections in Berlin were used as the sample. The sample intersections 

were selected from 205 randomly selected intersections, by excluding intersections where the considered 

intersection factors had been changed by constructions during the period between 2008 and 2013. The chosen 

intersections across the area of Berlin, and most of them are situated in the central area of Berlin. 

The dependent variable, i.e. accident data, was obtained from the Berlin Police. It included all police-recorded 

car-bicycle accidents during the years from 2008 to 2013. The original database contained all bicycles accidents 

with different types of road users. Bicycle accidents involving passenger cars were extracted from the original 

database. 1,254 car-bicycle accidents were recorded at the 140 sample intersections. 

6.3. Explanatory variables 

A theoretical basis for choosing explanatory variables in application of APMs is rarely stated explicitly. In 

practice, analysis is constrained by data availability. However, the choice of variables should not be exclusively 

based on data availability. Normally, an analysis should include variables that  

 Have been found in previous studies to exert a major influence on the number of accidents; 

 Can be measured in a valid and reliable way; 

 Are not very highly correlated with other explanatory variables included [179]. 

Considering that this study focused on crashes between bicycles and cars, intersection factors for cars and 

bicycles were contemplated. The following intersection factors were included in the model estimation: 

 Car-specific factors: traffic volume of cars across intersections, speed limit on intersection approaches 

(for motorized vehicles), traffic signal phases, road markings (including centerlines/ raised medians, 

lane lines, left turning guide lines and directional arrows for turning ); 
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 Bicycle-specific factors: traffic volume of bicycles across intersections, bicycle facilities (including 

bicycle paths and (advised) bicycle lanes), bicycle crossings, bicycle-specific traffic signals; 

 Other factors: intersection size (measured by the number of traffic lanes), presence of trams and 

presence of bus stops.  

Traffic volumes of cars and bicycles 

The data of traffic volumes of cars and bicycles were provided by the Senate Department for Urban 

Development and the Environment (Berlin). The traffic volume measurement have been primarily conducted 

during the cycling season from March to November and lasted 12 hours from 7:00 to 19:00. The counts of 

traffic volume for an intersection have been carried out one to four times during the period between 2009 and 

2013. When more than one count was available for an intersection, an average value was calculated.  

In contrast to passenger cars, cycling activities are greatly dependent on weather situations, such as 

temperature, sunshine and rainfall. In order to make the bicycle volume data comparable, it is necessary to 

balance the data of bicycle traffic density according to weather conditions. The traffic volume data was 

balanced based on the standard weather situations, which was also provided by the Senate Department for 

Urban Development and the Environment (Berlin). The balancing factors included maximum temperature, 

sunshine duration, amount of rainfall, sunny days in the last week and rainy days in the last week. 

Values for the other intersection factors were collected from Google Street View and Google Map. Each factor 

has its own symbols, and therefore their values can be easily obtained in this way. 

Car-specific factors 

Speed limit for motorized vehicles could be 5, 10, 15, 20, 30, 40, 50 and 60 in urban areas in Berlin. They are all 

multiples of 5 km/h. 50 km/h, as a default speed limit value, applies to the most roads in urban areas. 30 km/h 

is another frequent speed limit, and often posted in 30-zones. Very occasionally, speed limit of more than 50 

km/h or less than 30 km/h is posted on intersection approaches. Therefore, 50 km/h and 30 km/h are two 

common speed limit values in data collection. Speed limit 50 km/h is default value, and generally not validated 

by speed limit signs. However, speed limit change (from 50 to 30 or from 30 to 50) is remarkably marked at 

intersections, as shown in Figure 6-1. Speed limit 30 km/h is widely posted in residential areas, and is validated 

by speed limit signs, as shown in Figure 6-1.  

http://www.stadtentwicklung.berlin.de/index_en.shtml
http://www.stadtentwicklung.berlin.de/index_en.shtml
http://www.stadtentwicklung.berlin.de/index_en.shtml
http://www.stadtentwicklung.berlin.de/index_en.shtml
http://www.stadtentwicklung.berlin.de/index_en.shtml
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Figure 6-1  Speed limit signs for 50 km/h and 30 km/h 

For each intersection approach, there is mostly only a signal phase with permissive left turns and permissive 

right turns. Sometimes, traffic light arrows are also set at intersections. Arrow lights assign the right of way, 

splitting the turning traffic from the through traffic and decreasing the conflict points in principle. An arrow 

light could be a right arrow, a left arrow or an up arrow, as shown in Figure 6-2. They indicate protected right-

turning phase, protected left-turning phase or protected through phase, respectively. In data collection, the 

presence of protected signal phase was recorded.  

 

Figure 6-2  Protected right-turning, protected left-turning or protected through signal phase 

Road markings guide road users to use the roadways with minimized confusion. Road markings include center 

lines, lane lines, directional arrows for turning and left-turning guide lines, as shown in Figure 6-3. Center lines 

are used to separate traffic traveling in opposite directions. Lines for center lines could be solid lines, dashed 

lines or their combination. Lane lines separate the traffic traveling in the same direction. Lane lines are 

normally dashed lines. Directional arrows are marked on turning lanes, guiding through-going, left-turning and 

right-turning traffic into their relevant lanes. Left-turning guide lines are marked in the intersection areas 

guiding the left-turning traffic. Similar to center lines, raised medians present physical barriers also to separate 
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the opposite motor vehicles, as shown in Figure 6-3. Raised medians could be vegetation, parking plot or tram 

tracks. In data collection, the number of approaches, on which different road lines have been marked and 

raised medians have been installed, were recorded.  

 

Figure 6-3  Road markings and raised median 

Bicycle-specific factors 

 

Figure 6-4  Bicycle facilities 

Bicycle facilities are relatively well developed in Berlin. The Berlin cycling network covers bicycle paths, bicycle 

lanes, advised safety lanes, shared bus/bike lanes and combined pedestrian/bike paths, as shown in Figure 6-4. 

When no bicycle facilities exist, bicycles share roadways with motor vehicles. Bicycle facility types are 

distinguished based on whether and how bicycles are separated from motor vehicles or pedestrians. Bicycle 

paths physically separate bicycles from motorized vehicles. Bicycle paths are exclusively for bicycles, featuring 

the biggest separation degree. Bicycle lanes visually separate bicycles from motorized vehicles by solid lines. 

Bicycle lanes are also exclusively for bicycles. Similar to bicycle lanes, advised safety lanes also visually separate 

bicycles from motorized vehicles but by broken lines. However, advised safety lanes are allowed to be driven 

on by motor vehicles in some conditions. On shared bus/bike lanes, bicycles are allowed to share road lanes 

with buses. Pedestrian/bike paths are built on sidewalks, on which bicycle and pedestrians share the same 

space. Furthermore, in some locations there exist short but dedicated lanes just prior to intersections, which is 

called "short advised safety lane". In data collection, bicycle facility types were recorded on both intersections 

entering and departure approaches.  

Bicycle crossings are located adjacent to pedestrian crossings, marked by dashed lines or red pavements, as 
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shown in Figure 6-5. In data collection, the presence of bicycle crossing was recorded for each entering 

approaches. 

 

Figure 6-5 Bicycle crossing and bicycle-specific traffic signal 

An independent traffic signal device indicates bicycle-specific traffic signals, as shown in Figure 6-5. The device 

is often installed besides the traffic signal for motor vehicles or pedestrians. It is relatively smaller than traffic 

light device for motor vehicles and pedestrians, and has three phases: red, yellow and green. In data collection, 

presence of bicycle-specific traffic light was recorded for each entering approach. 

Other factors 

Intersection size was simply measured by the number of road lanes on intersection approaches, including 

parking lanes, bicycle lanes, traffic lanes for motor-vehicles and raised medians. In data collection, road lane 

numbers were recorded for each intersection approach. When no center lines and lane lines were present, the 

intersection size was counted just by estimating how many motor vehicle flows are allowed go through in 

parallel at the same time. 

 

Figure 6-6  Bus stop and tram track 

Bus stops could be installed on both entering and departure approaches. In data collection, the presence of bus 

stops was recorded for each approach. Tram is an additional transport mode in Berlin. It takes charge of a 

considerable part of public traffic with convenience and lower environmental pollution. In data collection, the 

presence of tram is recorded for an intersection. Examples of bus stops and tram tracks are shown in Figure 6-6. 
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Table 6-1  Summary statistics for selected intersections 

No. Factors  Min  Max  Mean  S.D. 

 Dependent variable  
 

 
 

 
 

 
 

  Accident numbers from 2008 to 2013  0  33  9.02  8.09 

 
 

 
 

 
 

 
 

 
 

 Independent variables  
 

 
 

 
 

 
 

   Car-specific factors:  
 

 
 

 
 

 
 

1     Traffic volume of cars (Counts/12 h)  3705  62428  27605.17  11582.45 

2     Number of approaches with speed 

limit of 30 km/h 

 
0 

 
4 

 
0.43 

 
0.82 

3     Presence of protected signal phase 

(yes: 1; no: 0) 

 
0 

 
1 

 
0.24 

 
0.43 

4       Number of approaches with 

centerlines (including raised medias) 

 
0 

 
4 

 
3.71 

 
0.69 

5       Number of approaches with lane 

lines 

 
0 

 
4 

 
3.05 

 
1.39 

6       Number of approaches with left 

turning guide lines 

 
0 

 
4 

 
1.86 

 
1.53 

7       Number of turning lanes  0  4  2.12  1.46 

8       Number of approaches with raised 

medias 

 
0 

 
4 

 
2.51 

 
1.51 

 
 

 
 

 
 

 
 

 
 

   Bicycle-specific factors:  
 

 
 

 
 

 
 

9     Traffic volume of bicycles (Counts/12 

h) 

 
124 

 
9330 

 
2568.58 

 
1788.47 

10       Number of approaches with bicycle 

paths 

 
0 

 
8 

 
3.99 

 
2.90 

11       Number of approaches with bicycle 

lanes 

 
0 

 
6 

 
0.50 

 
1.27 

12     Number of bicycle crossings  0  4  2.50  1.62 

13     Number of approaches with bicycle-

specific traffic signals 

 
0 

 
4 

 
1.49 

 
1.64 

 
 

 
 

 
 

 
 

 
 

   Other factors:  
 

 
 

 
 

 
 

14     Intersection size (number of traffic 

lanes on four intersection approaches) 

 
8 

 
44 

 
24.41 

 
7.65 

15     Presence of trams (yes: 1; no: 0)  0  1  0.11  0.32 

16     Presence of bus stops (yes: 1; no: 0)  0  1  0.63  0.48 

 

To better understand the collected data in this study, the values of the dependent and independent variables 

are presented in Table 6-1.  

6.4. Correlation analysis 

In application of the multivariate analysis, it is assumed that the investigated factors are mutually independent. 
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This is aimed at avoiding the multicollinearity phenomenon [198]. To eliminate this problem, a correlation 

analysis was carried out between the selected factors as showed in Table 6-1. The analysis result indicated that 

all factors of road markings, except the number of central medians, and the intersection size, were subject to 

strong or moderate correlations (with correlation coefficients more than 0.4) with the traffic volume of cars. 

The number of bicycle crossings and the number of approaches with bicycle-specific signals were strongly 

correlated with the number of approaches with bicycle paths with coefficients more than 0.5. 

After eliminating the factor combination that could result in multicollinearity, the following factors were 

included in the final coefficient estimation:  

 traffic volume of cars (factor No. 1, correlated with factor No. 14, as indicated in Table 6-1 ) 

 number of approaches with speed limit 30 km/h (No.2)  

 presence of protected signal phase (No. 3) 

 number of central lines (including marked lines and raised medians) (No. 4, correlated with factors No. 

5, 6, 7 and 8) 

 number of approaches with bicycle paths (No. 10, correlated with factors No. 12 and 13) 

 number of approaches with (advised) bicycle lanes (No. 11) 

 presence of trams (No. 15) 

  presence of bus stops (No. 16) 

The correlations between these factors are shown in Table 6-2. It can be seen that they are weakly correlated 

with coefficients less than 0.4. 

Table 6-2  Correlation between the estimated intersection factors 

 No. 1 No. 2 No. 3 No. 4 No.10 No. 11 No. 15 No. 16 

Traffic volume of cars (No. 1, correlated with No. 14)  
 

1 
       

Number of approaches with speed limit of 30 km/h 
(No. 2) 
 

-0.331 1 
      

Presence of protected signal phases (No. 3) 
 

0.227 -0.146 1 
     

Number of central lines (No.4, correlated with No. 5,6, 
7 and 8) 

 
0.27 -0.207 0.162 1 

    

Number of approaches with bicycle paths (No. 10, 
correlated with factors No. 12 and 13) 

 
0.297 -0.246 0.258 0.267 1 

   

Number of approaches with bicycle lanes (No. 11) 
 

-0.003 -0.083 0.1 0.061 -0.267 1 
  

Presence of trams (No. 15) 
 

-0.049 0.031 0.277 0.087 0.032 0.071 1 
 

Presence of bus stops (No. 16) 0.118 -0.121 -0.026 0.102 -0.022 0.059 -0.096 1 

6.5. Results and discussion 

Eight independent variables were investigated in the negative binomial regression model. The estimated 

coefficients for each factor and the significance levels are presented in Table 6-3. The signs of the estimated 

coefficients directly state their effect directions on the crash risk pi. 
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The estimated value of the reciprocal of the negative binomial dispersion parameter, i.e.  /1 , is 2.975 at a 

significant level (p<0.001). This indicates that the negative binomial regression model is suitable for this study 

over the Poisson regression model.  

Table 6-3  Estimation results of the negative binomial regression 

Parameter  Estimated value    t  p-value 

Constant  -6.833  -17.277  <0.001 

Traffic volume of cars (Counts/12 h)  2.111E-4  3.528  <0.001 

Number of approaches with speed limit of 30 

km/h 

 
-0.103 

 
-1.194 

 
0.12 

Presence of protected signal phase  0.113  0.744  0.23 

Number of approaches with bicycle paths  0.043  1.768  <0.05 

Number of approaches with (advised) bicycle lanes  -0.084  -1.656  <0.05 

Presence of trams  0.009  0.049  0.48 

Presence of bus stops  -0.035  -0.266  0.395 

Number of central lines (including raised medians)  0.135  1.33  0.092 

 (Reciprocal of the negative binomial dispersion 

parameter  ) 

 
2.975 

 
5.605 

 
<0.001 

 
 

 
 

 
 

 
Number of observation  140  

 
 

 
Restricted log-likelihood (constant only)  -431.996  

 
 

 
Unrestricted log- likelihood  -411.624  

 
 

 
Likelihood ratio index  0.04  

 
 

 
 

Three of the eight factors are significantly related to the crash risk pi. Traffic volume of cars was found to 

increase car-bicycle crash risk. This result is consistent with studies that have modelled associations between 

intersection factors and bicycle accidents at signalized intersections [155-157]. The average daily numbers of 

motorized vehicles is an important predictor of bicycle crashes, since the traffic flows affect the accident 

frequency to a very large extend. This relationship has been also indicated by a summary of related studies 

[199]. Actually, there is a nonlinear relationship between the traffic volume of motorized vehicle flows and the 

cyclist crash risk. That is, the crash risk increases with the increment of traffic volume of motorized vehicles to a 

certain level and then decreases. However, due to the specific model structure in this study, this non-linear 

relationship cannot be illustrated. 

Regarding bicycle facilities, the factors of (advised) bicycle lanes and bicycle paths were found to be 

significantly associated with the crash risk. A bicycle is less likely to involve in an accident with cars, when more 

bicycle lanes are installed at intersections. The positive effects of bicycle lanes on cycling safety was also 

suggested by a study, in which safety effects of bicycle lanes were studied at intersections combining other 
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intersection factors (the second-stage study in [32]). In contrast, a bicycle is more likely to collide with cars, 

when more bicycle paths are installed on intersection approaches. Although safety effects of bicycle paths are 

controversial, it is commonly accepted that bicycle paths might hamper visual interactions between cyclists and 

motorized vehicle drivers at intersections. For this reason, a number of intersection modification measures for 

bicycle paths have been proposed and conducted. These intersection modification measures are summarized in 

a literature review [154]. In Berlin, some measures have been applied, such as coloured (red) bicycle crossings, 

conversion of bicycle paths to bicycle lanes in the immediate area of intersections, to bring bicycle paths closer 

to the motorized traffic before intersections, and an advanced ( i.e. forward moved) stop line for bicycles. At all 

sample intersections with bicycle paths, stop lines for bicycles have been placed in the front of stop lines for 

motorized vehicles. At most sample intersections, bicycle paths have been brought closer to motorized traffic 

lanes. The finding indicates that these bicycle-path modification measures cannot effectively decrease the 

negative effects of bicycle paths at intersections. To be able to assess effectiveness of different intersection 

modification measures for bicycle paths deserves further studies. 

The associations of the other five factors with the crash risk are not significant. More central lines (including 

raised medians), the presence of trams and the presence of protected signal phase increase the crash risk in an 

insignificant level, while the number of approaches with speed limits of 30km/h and the presence of bus stops 

are insignificantly positively associated with the cycling safety. 

Central lines of roads and raised medians guide the movements of cars. Moreover, raised medians provide 

bicyclists with refuges to stay on in crossing intersections. These views seem to add advantages on their safety 

effects. The insignificant effects could be explained by "risk compensation" of bicyclists, i.e. underestimation of 

the crossing task by cyclists [200]. Another explanation could be: At signalized intersections, a bicyclist on 

refuges usually needs to wait for a green phase to continue crossing the intersection. It usually lasts so long 

that a bicyclist is more likely to lose his patience and continues to proceed through at red light. Protected signal 

phases have both positive and negative safety effects: In protective signal phases, car drivers can better 

observe driving environment, especially the presence of bicycles. However, protected signal phases can extend 

the period of a phase cycle, which could increase possibilities of red-light-violation by bicyclists. For this reason, 

the effects of protected signal phases are insignificant. Intersections with bus stops are usually busier, with 

more complex traffic behaviours. The presence of bus stops seems to increase crash risk. However, the 

presence of a bus stop might make car drivers drive more slowly, increasing searching time and driving caution. 

Therefore, only insignificant effects of the presence of bus stops are found.  

Car drivers driving at lower speed, e.g. 30km/h, that is lower than the default speed limit of 50km/h, can better 

observe the presence of bicycles, and have more time to react to bicycles that they have to interact with. In the 

used intersection sample, only a small number of intersections have been posted with signs demanding speed 

limit of 30km/h (44 of 140). Therefore, there is not enough evidence to establish a positive or negative 

association. This may explain why significant effects of low speed limit were not found. Tram tracks could 

deteriorate road surface conditions, and tram cars could worsen visibilities between bicyclists and car drivers. It 

seems that presence of trams could increase the car-bicycle crash risk. The low proportion of sample 
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intersections with trams (16 of 140) might be also a reason why significant negative safety effects of trams 

were not found. At intersections with tram traffic in Berlin, all other traffic is assigned with red lights, while 

tram cars are crossing intersections. Under this kind of traffic signal control, the behaviors of car drivers and 

bicycles is be little affected by the tram traffic. This might be another possible reason for the non-significant 

safety effects of trams. 

6.6. Conclusion 

This chapter focused on 140 four-way signalized intersections in Berlin, providing a big range of car traffic, 

bicycle traffic as well as car-bicycle accident counts. This study proposed a negative binomial regression model 

by introducing a logistic equation. The aim was to determine safety effects of bicycling facilities on car-bicycle 

crashes combining other intersection factors. The coefficients of considered factors were estimated by use of 

the maximum likelihood approach. This study found that the negative binomial regression model was suitable 

over the Poisson regression model for estimating the probability of car-bicycle crashes, because the coefficient 

of over-dispersion was significantly different from zero. 

The estimation result indicated that higher traffic volumes of cars are significantly associated with a higher risk 

that a bicycle collides with a car. This finding is in accordance with past studies. Presence of bicycle facilities at 

intersections was found to have significant effects on the car-bicycle crash risk, too. Intersections with more 

approaches with bicycle lanes are associated with a lower crash risk. In contrast, intersections with more 

approaches with bicycle paths are associated with a higher crash risk, even if intersection modifications have 

been applied for bicycle paths. This finding means that further studies are deserved to investigate the 

effectiveness of different intersection modification measures for bicycle paths, such as coloured bicycle 

crossing, bike boxes and conversion of bicycle paths to bicycle lanes in advance of intersections. 

This study is presented within a limitation. Although this study used a considerable number of sample 

intersections, the sample was not representative of the total population of intersections. A representative 

sample of intersections is expected to be covered in future studies. This will help to generate more solid 

conclusions related to e.g. the effects of presence of trams and number of approaches with lower speed limit. 
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7. Conclusion and outlook 

Bicyclists are among the most vulnerable road users. Especially at intersections, a considerable number of 

bicycles collide with passenger cars despite the control of traffic signals. This thesis has been concerned with 

car-bicycle safety at signalized intersections. The objective of this thesis is to find out answers to the question: 

what can be done to improve car-bicycle safety at signalized intersections. To answer this question, a multi-

disciplinary study has been carried out based on the context of Berlin. That is to investigate car-bicycle safety at 

signalized intersections from multi-aspects. 

As the foundational work, historical accident data was first analyzed with regard to accident scenario 

frequencies, causation, consequences and time. From the human aspect, car-bicycle interactions at signalized 

intersections were recorded and analyzed by creating a Quasi-NDO framework. Also from the human aspect, 

risk perception of road users was investigated for common car-bicycle scenarios at signalized intersections by 

use of an online survey. From the infrastructural aspect, effects of bicycle facilities on car-bicycle crash risk at 

signalized intersections were evaluated using the negative regression model. The findings in these studies have 

delivered implications to improve car-bicycle safety at signalized intersections, which are summarized in this 

chapter. 

Car-bicycle safety at signalized intersections is a big theme. Besides the aspects that have been involved in this 

thesis, much other work could be carried out. In this chapter, additional work is recommended to address 

potential crash mitigation strategies from other aspects. 

7.1. Findings and implications in this research 

7.1.1. Car-bicycle accident analysis 

To prevent accidents, it is necessary to know accidents. Given that accident analysis particularly on car-bicycle 

accidents at signalized intersections is absent in the past studies, two databases were first analyzed in this 

thesis to investigate characteristics of car-bicycle accident at signalized intersections. The two databases were 

the Berlin police-reported accident data over eleven years (13,036 accidents) and the GIDAS accident data over 

nine years (469 accidents).  

Scenarios, which are a widely used accident category to analyze accidents, were defined for car-bicycle 

accidents at signalized intersections. Frequencies of each accident scenario were determined based on the two 

databases. The analysis results found that the most common accident scenario was a right-turning car colliding 

with a through bicycle in the same direction, with shares of 28% in the police database and 19% in the GIDAS 

database.  

The police-reported database was analyzed concerning causation. The causation analysis showed that: 

 The most common cause for car drivers was mistakes in right turning. That is, car drivers failed to give 

the right of way to bicycles.  

 The most common cause for cyclists was unlawful use of roadways, including running in the wrong 

direction and using other parts outside the bicycle crossing in crossing intersections. 
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 The second common accident cause was red-light-violation for both car drivers and cyclists.  

Bases on the police-reported database, analysis was conducted with regard to consequences and time. As 97% 

of observed casualties were found to be bicyclists, their vulnerability in road accidents seems undeniable. 

Furthermore, highly visible was the effect that the respective season had on the frequency of bicycle accidents. 

This was not so much due to a direct influence of a particular weather situation, but rather and on a grand 

scale, due to an observed seasonal oscillation in the density of bicycle traffic volume.  

The accident analysis in this work presents a typical picture of car-bicycle accidents at signalized intersections 

in a bicycle city/country. Berlin is a bicycle city with a high bicycle modal share of up to 13%. GIDAS accident 

data is regarded as being representative for German, which is in the top three of European countries in terms 

of bicycle use with a bicycle modal share of up to 10%. This is one important contribution of this work. As 

another important contribution, the analysis results provide necessary statistics for the other work in this 

thesis.  

Two implications can be extracted from the findings in this work. Both used databases indicated that the most 

frequent scenario was R20, in which the car turns right and the bicycle goes through the intersection. Specific 

studies focusing on the scenario R20 are suggested to be of great significance for the improvement of car-

bicycle safety. Motivated by this implication, visual interactions between car drivers and bicyclists in this 

scenario were studied in this thesis, which is introduced in the following section. Another important implication 

concerns the accident cause of red-light-violation. The analysis of accident causes showed that the second 

most frequently recorded accident cause was red-light-violation for both car drivers and bicyclists. The lateral 

accidents caused by red-light-violation are well-known and have been concerned in many researches. However, 

a considerable number of longitudinal accidents have occurred when bicyclists go through the red light of the 

bicycle-specific traffic signal. With the increasing installation of bicycle-specific traffic signals, more attention 

and studies for bicycle-specific traffic light violation are suggested in future research work, e.g. on the aspects 

of light design, visibility, coordination with other traffic lights and road users´ adaption to the lights.  

7.1.2. Quasi-NDO study 

The method of NDO is proved reliable and efficient to capture, store and analyze traffic conflicts. Traffic 

conflicts are regarded as a surrogate for accident data analysis for safety diagnosis. However, few NDO studies 

have investigated interactions between car drivers and bicyclists. Several NCO studies have focused on 

interactions between car drivers and bicyclists, but from perspective of bicyclists. The accident cause analysis 

indicated that car drivers were responsible for more accidents than bicyclists were. This thesis carried out a 

Quasi-NDO study to investigate interactions between car drivers and bicyclists at signalized intersections from 

perspective of car drivers.  

With the aid of an instrumented car, participants were recruited to drive a preset route in real traffic. 

Interactions between car drivers and bicyclists were recorded from perspective of car drivers. By use of both 

automated conflict detection based on a deceleration trigger and manual conflict detection through video 

observation combining the dynamical data and the eye movement data, car-bicycle conflicts at signalized 
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intersections were detected. By the automated conflict detection, only one conflict was detected. In contrast, 

the manual conflict detection identified 121 possible conflicts, in which car drivers or bicyclists had to react to 

the other to avoid unwanted consequences. Three events among these detected possible conflicts were found 

to be safety-critical, and revealed two safety-critical situations: the first situation concerns a right-turning car 

and a through-bicycle behind parked cars; the second situation concerns a right-turning car and a bicycle 

coming from the right road. This is one important finding in this work.  

The detected possible conflicts were typed into car-bicycle scenarios. The first three most frequently occurring 

car-bicycle scenarios in these conflicts were essentially consistent with that indicated by the GIDAS accident 

data and that indicated by the Berlin police-reported accident database. As a reminder, the R20 scenario 

corresponds to the most frequent car-bicycle conflicts/accidents at signalized intersections. Considering that 

eye movement data can provide safety-related evidence about visual attention, the recorded eye movement 

data (i.e. gaze location) of car drivers was analyzed for 146 collected events of R20 scenario. The scenario R20 

was categorized into six R20 sub-situations on a basis of the sequences of the car´s and the bicycle´s arriving at 

intersections and the traffic light phases. According to the distribution of gaze locations in these sub-situations, 

two sub-situations were seen as more likely to result in conflicts or even crashes. By observing the gaze 

location distribution, it is suggested that the crash risk in the two sub-situations could be decreased by 

appropriate modifications of bicycle facilities at intersections (to make bicycles more visible for car drivers) and 

enhanced road user education (e.g. to emphasize the importance of shoulder and mirror check). The aim of 

these measures is to increase generally car drivers´ awareness of the co-existence of bicycles as road users. This 

is the second important finding in this work and the implication from this finding. 

Another finding regarding eye movements focused on car drivers´ mean fixation durations on per through 

bicycle in the scenario R20. It indicated that the car drivers spent more time fixating on the through-bicycles, if 

they were involved in a conflict. However, mean fixation durations were not influenced by the presence of 

oncoming bicycles, right-turning bicycles, pedestrians in conflicting crosswalks and cars ahead.  

This work created a framework for studies of car-bicycle interactions at signalized intersections. Concerning the 

conflict detection method, the automated conflict detection based on a trigger of an extreme value could miss 

conflicts, since not all conflicts are accompanied with extreme values. The manual conflict detection could 

effectively identify conflicts by observing videos with gaze location data and dynamic data. One reason was 

that the gaze location data supplied important information to understand the motivations of car drivers´ 

behaviors. Another reason was that the related data at signalized intersections could be easily positioned 

according to the geographical data, so that it was unnecessary to observe the videos frame-by-frame. It saved a 

great amount of time. 

However, only two safety-critical situations were revealed in this work, because this was a small-scale study. In 

addition, the conclusions on eye movements need to be confirmed due to the limited number of participants. 

Therefore, a larger-scale study is expected in the future work to involve longer data collection time and more 

participants. For such a study, the created framework can be applied. It can be said to be another important 
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contribution of this work. To obtain more achievements in the future work, some improvements are suggested 

for the framework:  

 A new version or a new type of the eye-tracking headset should be achieved due to the sensitivity of 

the used eye-tracking headset to its location change relative to the eye.  

 Digital maps with signalized intersection locations for areas in which participants drive should be 

available for the manual conflict detection.  

 The study should be organized in a more natural way: participants´ own cars could be instrumented 

and participants could decide where and when to drive. 

7.1.3. Risk perception for car-bicycle scenarios 

Risk perception is a crucial indicator for human behaviors. The general relationship is that the less one 

perceives risk in a given situation, the more likely he or she is to adopt risky behaviors and therefore the more 

likely he or she is to be involved in crashes. Through an online-survey, the risk of seventeen common car-

bicycle scenarios at signalized intersections were scaled by car drivers (N=209) and cyclists (N=197) alike. The 

responses from this survey were used to evaluate the subjective risk perception. Accident frequencies that 

were achieved in the work of accident analysis were used to evaluate the objective risk of these scenarios. 

The obtained values of subjective risk and objective risk were compared. The results indicated that both car 

drivers and cyclists inaccurately perceived the risk of these scenarios. The general tendency was that they 

overestimated most of the scenarios with lower objective risks, and underestimated most of scenarios with 

higher objective risks. This is the first important finding in this work. 

Furthermore, the obtained values of subjective risk of car drivers and cyclists were also compared. Astonishing, 

cyclists tended to perceive most scenarios less risky than car drivers. Considering that cyclists are objectively 

more likely to be involved in car-bicycle accidents at signalized intersections, they underestimated their risk at 

signalized intersections. This is another important finding in this work. 

The tendencies could be explained to a certain extent by the relationship between risk perception and 

behaviors. These discrepancies between perceived and objective risk could play a role in crash occurrence. It 

implies the possibility to reduce accidents by making both car drivers and cyclists more accurately perceive the 

risk of these scenarios and making cyclists more accurately perceive their risk at signalized intersections. One 

way of achieving this could be through enhanced road user education and training. 

Nevertheless, only likelihood aspect of risk was taken into account in risk evaluation. Given that perceived risk 

includes two aspects, namely likelihood and consequence of an accident, risk evaluation could be investigated 

also in relation to the consequence aspect in the future work. 

7.1.4. Safety effects of bicycle facilities 

Safety effects of bicycle facilities are controversial especially at intersections. One reason for that could be that 

the context of bicycle facilities, i.e. other intersection factors, is not simultaneously considered. The association 

between car-bicycle crash risk and intersection factors was described by use of the negative binomial 
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regression model. The negative binomial regression is a derived version of the Poisson model, which is usually 

the first choice in modelling traffic accidents, but can remove the constraint of the Poisson model. This 

association was created based on six-year accident history at 140 signalized intersections in Berlin. In this way, 

safety effects of bicycle lanes and bicycle paths at signalized intersections were evaluated combining the 

effects of other intersections factors, including traffic volume, geometric data and both bicycle-specific and car-

specific infrastructure.  

The estimation results showed that the intersections with more approaches with bicycle lanes resulted in a 

lower crash risk, while the intersections with more approaches with bicycle paths had a higher crash risk, even 

if intersection modifications have been applied for bicycle paths. This finding implies that further studies are 

deserved to investigate the effectiveness of different intersection modification measures for bicycle paths, such 

as coloured bicycle crossing, bike boxes and conversion of bicycle paths to bicycle lanes in advance of 

intersections.  

7.2. Limitation and future work 

The studies in this research were primarily based on the context in Berlin. The historical accident data analysis 

was based on the Berlin Police-reported accident data. The car-bicycle interaction data was collected while 

participants were driving in traffic of Berlin. The data of risk evaluation for common car-bicycle scenarios was 

gathered from traffic road users in Berlin. The model to associate car-bicycle risk and intersection factors was 

solved based on a sample of signalized intersections in Berlin. Berlin is a typical bicycle-city, equipped with well-

built bicycle facilities and advocated by cycling strategies. In Berlin, cycling is becoming more and more 

attractive. In the last years, the share of cycling in the routes traveled in the city has been increased by up to 

50%. In 2008, the bicycle modal share in Berlin was 13%, even higher than the average bicycle modal share of 

10% in Germany. It is uncertain whether the findings in this research are applicable to other cities or countries 

with different cycling culture. This is a big limitation of this research. However, it, at the same time, implies a 

good chance to carry out the same studies in other cities and countries. Such studies would verify the findings 

in this research and study the influences of different cycling culture on the corresponding research topics.  

In most accident models for road traffic, human, environment (including infrastructure) and vehicles are the 

elementary components of the road traffic system. This research has been concerned with the human aspect, 

such as car-bicycle interactions and perceived risk of road users, and the infrastructural aspect, such as safety 

effects of bicycle facilities. With regard to the vehicular aspect, much can be done for cycling safety 

improvement.  

The number of electric bicycles has increased in the last years, due to the ease of movement while driving an 

electric bicycle. The total number of electric bicycles in Germany has grown to 2.1 million, taking the market 

share of 12.5% in bicycles. Although it is not mandatory, electric bicycles often share infrastructure with 

conventional bicycles. Differences between conventional bicycles and electric bicycles in their use (such as 

speed, infrastructure choice and over-taking behaviors), critical situations and accident situations are of great 

interest in current research. However, to answer the questions, such as whether and how the mixed traffic with 



102 
 

electric bicycles would increase the risk of conventional bicycles, and whether it is necessary and what can be 

done to adapt existing infrastructure to the use of electric bicycles, deserves more efforts. 

With the popularity of electric bicycles, cycling assistance systems, such as Antilock Braking System (ABS) and 

Braking Dynamics Assistance system (BDA) that are commonplace for motorized vehicles, is being introduced 

for electric bicycles. These systems are promising to enhance cycling safety. However, adaptation of these 

systems is still needed for their effective application in bicycles.  

In recent years, Intelligent Transport Systems (ITS) have assisted in decreasing road traffic fatalities. Some ITS 

specially address cyclists, such as Blind Spot Detection, Intersection Safety, Pedestrian and Cyclist Detection 

System + Emergency Braking and VRU Beacon System. They have been assessed to affect cyclist safety in a 

positive way by preventing fatalities and injuries [197]. From a safety viewpoint, cyclists have, however, less 

benefited from ITS than passenger car occupants, since vulnerable road users have not been that much in focus 

when developing ITS. In the future development planning work, more consideration is recommended to 

address cyclist safety and to integrate cyclists in ITS on a higher level. Meanwhile, some questions should be 

taken into consideration in the development and adaptation process of ITS, such as: 

 What can be done to improve the reliability, utilities and efficiency of an innovative ITS solution? 

 How can the public and political acceptance of ITS be improved? 

 How do ITS impact road users´ behaviors? 

Autonomous cars are claimed to be inevitable, and to be promising to improve road traffic safety, supported by 

advanced sensor techniques and control systems. Nowadays, the development of autonomous cars is still 

facing the challenge in detecting and reacting to cyclists. The reasons are that bicycles are small and nimble, 

they have more variance in appearance, e.g. shape, color, people hang stuff on them, and bicyclists´ behaviors 

are unpredictable. Whether more machine learning, by putting more images of cyclists into the cars, could 

solve this problem, is for now unknown. One possible solution could be Bicycle to Vehicle communications, in 

which bicyclists also join the party by communicating their positions and intentions with autonomous cars. 

However, the posed financial and logistical questions should be first answered, such as who pay for the system, 

how it is developed and enforced, and whether traffic laws should be changed. In addition, the question 

whether and how cyclists respond differently to autonomous cars from manually-driven cars should be noted 

and answered. 

To improve cycling safety, the cooperation and coordination of stakeholders in different fields is indispensable. 

The stakeholders are to be found in the fields of Engineering, e.g. improvement of bicycle infrastructure, and 

development of Advanced Driver Assistance System, Education, e.g. driving and cycling training education for 

appropriate behaviors, and Enforcement, e.g. the formulation of traffic rules, and legislation. The practical 

implementation, however, requires not only substantial political and financial support, but also individual 

acceptance and adherence to it by all road users.  
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Appendix 3.1  

The List of accident causes applied by the Berlin police-reported accident database. 

Driving fitness: 

01 Influence of alcohol 

02 Influence of other intoxicating substances (e.g. drugs, narcotics) 

03 Overfatigue 

04 Other physical or mental faults 

Improper driving: 

Use of the road 

10 Use of wrong carriageway (or lane) or unlawful use of other parts of the road 

11 Violation of the rule of driving on the right side 

Speed 

12 Unadapted speed and exceeding at the same time the speed limit 

13 in other cases 

Distance 

14 Insufficient safety distance (Other causes leading to a traffic accident should be 

allocated to the respective positions, such as speed, overfatigue, etc.) 

15 Abrupt braking without compelling reason by the vehicle in front 

Overtaking 

16 Unlawful right-hand overtaking 

17 Overtaking in spite of oncoming traffic 

18 Overtaking in spite of unclear traffic situation 

19 Overtaking in spite of insufficient visibility 

20 Overtaking without observing the rear traffic and/or without timely and clearly indicating the intention to 

swerve out 

21 Mistake made when returning to right lane 

22 Other mistakes made when overtaking (e.g. without sufficient lateral distance; at pedestrian crossings, (cf. 

pos. 38, 39) 

23 Mistakes made when being overtaken 

Driving past 

24 Failure to observe the priority of oncoming cars when driving past stationary vehicles, barriers or obstacles 

(§ 6) (except pos. 32) 

25 Failure to observe the rear traffic when driving past stationary vehicles, barriers or obstacles and/or without 

timely and clearly indicating the intention to swerve out 

Driving side by side 

26 Incorrectly changing the lane when driving side by side or failure to observe the "zip method" (merging of 

two queues with alternate priority of the respective cars (§ 7) (except pos. 20, 25) 

Priority, precedence 
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27 Failure to observe the rule "right has priority over left" 

28 Failure to observe the traffic signs regulating the priority (§ 8) (except pos. 29) 

29 Failure to observe the priority of the passing traffic on motorways or motor vehicle roads (§ 18, para. 3) 

30 Failure to observe the priority by vehicles coming from dirt roads 

31 Failure to observe the traffic control by policemen or traffic lights (except pos. 39) 

32 Failure to observe the priority of oncoming vehicles (traffic sign No. 208 of Road Traffic Regulations) 

33 Failure to observe the priority of rail vehicles at railway crossings 

Turning, U-turn, reversing, entering the flow of traffic, starting off the edge of the road 

35 Mistakes made when turning (§ 9) (except pos. 33, 40) 

36 Mistakes made when making U-turn or reversing 

37 Mistakes made when entering the flow of traffic (e.g. from premises, from another part of the road or when 

starting off the edge of the road) 

Improper behaviour towards pedestrians 

38 at pedestrian crossings 

39 at central islands 

40 when turning 

41 at stops (also at school busses stopping with the warning flasher device flashing) 

42 at other places 

Stationary vehicles, safety measures 

43 Unlawful stopping or parking 

44 Insufficient safety measures in the case of vehicles stopping or broken down and accident sites or with 

regard to school busses with children getting on or off the bus 

45 Behaviour contrary to traffic regulations when getting on or off a vehicle, loading or unloading 

46 Failure to observe lighting regulations (except pos. 50)  

Load, number of passengers 

47 Overload, maximum number of passengers exceeded 

48 Insufficient safety measures with regard to load or vehicle accessories 

49 Other mistakes made by driver 

Technical or maintenance faults: 

50 Lighting 

51 Tyres 

52 Brakes 

53 Steering mechanism 

54 Towing equipment 

55 Other faults 

Improper behaviour of pedestrians: 

Improper behaviour when crossing the carriageway 

60 at places where the pedestrian traffic was controlled by policemen or traffic lights 

61 on pedestrian crossings without control by policemen or traffic lights 
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62 near junctions, traffic lights or pedestrian crossings with heavy traffic at other places: 

63 by suddenly emerging from behind obstacles obstructing the visibility 

64 without paying attention to the traffic 

65 by other improper behaviour 

66 Failure to use footway 

67 Failure to use proper side of the road 

68 Playing on or near carriageway 

69 Other improper behaviour of pedestrians 

General causes: 

Road surface conditions 

Slippery carriageway 

70 Impurity through oil leakage 

71 Other impurities caused by road users 

72 Snow, ice 

73 Rain 

74 Other influences (among others, leaves, loam washed up) 

Road condition 

75 Grooves in connection with rain, snow or ice 

76 Other road condition 

77 Irregular condition of traffic signs or installations 

78 Insufficient road lighting 

79 Insufficiently secured railway crossings 

Influence of the weather 

Obstruction of visibility by 

80 Fog 

81 Heavy rain, hail, flurry of snow and the like 

82 Dazzling sunshine 

83 Side wind 

84 Storm or other weather influences 

Obstacles 

85 Road construction site on carriageway not or not sufficiently secured 

86 Wild animals on the carriageway 

87 Other animal on the carriageway 

88 Other obstacle on the carriageway (except pos. 43, 44) 

89 Other causes (list and briefly describe) 
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Appendix 3.2 

 

Figure A.1  The 205 symbols used in the Belrin police-reported accident database. 

The meanings of components in the accident symbols that are used by the Berlin police are as follows: 

 Generally, an arrow represents a road user involved accidents. It could be a motorized vehicle, 
a bicycle and a pedestrian (thereafter a vehicle is collectively used.) 

 An arrow marked with a crossing line represents a vehicle that is responsible for the accident.  

 The arrow direcitons represent the movement directions of the vehicles, while the directions of 

the starting part of arrows state where the vehicles comes from. For example, represents 

vehicles that turn left; represents vehicles that go trough; represents vehicles that turn 

right;  represents vehicles that turn around. 

 represents parked (responsible) vehicles. 
 

  represents vehicles that keep stay due to requirements of the traffic.  
 

  represents vehicles that back up (and are responsible for accidents). 

 represents vehicles that change lanes or making the zipper merge (and are responsible for 
accidents). 

 represents vehicles that are running at inappropriate speed (and are responsible for the 
accident). 

  represents accidents at construction sites. 

 and represent accidents with animals. 
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Appendix 3.3 

Table A.1  Symbols involving the cross traffic in police-recorded accidents; the numbers of accidents that each symbol 
corresponded to and the accident causation. 

Symbols 
 

Symbol 
Nr. 

Accident 
number 

Causation 

Cause Nr. 
35

*
 by 

bicycles 

Cause Nr. 35 
by cars 

Cause Nr. 
37

**
 by 

bicycles 

Cause Nr. 
37 by cars 

Others 

 
6 14 1 0 1 0 12 

 
8 14 0 0 0 0 14 

 
14 23 11 5 2 1 4 

 
15 353 3 170 10 51 119 

 
16 18 3 1 6 2 6 

 
27 19 1 2 3 0 13 

 
28 5 0 0 0 0 5 

 
30 0 0 0 0 0 0 

 
38 5 1 1 1 0 2 

 
44 20 2 2 3 1 12 

 
49 1187 328 175 465 41 178 

 
50 1276 562 181 372 7 154 

 
52 4 3 0 1 0 0 

 
60 1 0 0 0 0 1 

 
73 1 0 0 0 0 1 

 
90 4 0 0 0 0 4 

 
91 66 1 0 3 0 62 

 
97 4 0 0 0 0 4 

 
116 19 3 3 1 0 12 

 
118 25 0 1 0 0 24 

 
135 1 0 0 1 0 0 

 
138 0 0 0 0 0 0 

 
140 2 0 0 0 0 2 

 
142 1 0 0 1 0 0 

 
143 60 27 0 29 0 4 

 
151 2 2 0 0 0 0 

 
153 27 19 0 8 0 0 

 
155 1 1 0 0 0 0 

 
159 1 1 0 0 0 0 

 
165 1 1 0 0 0 0 

Total 3154 970 541 907 103 633 
Ratio 1 0.31 0.17 0.29 0.03 0.20 

*
 Cause Nr. 35: Red-light-violation 

**
Cause Nr. 37: Mistakes made when entering the flow of traffic 
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Appendix 3.4 

Table A.2  GIDAS accident (2005-2013) classification into different scenarios according to the type of accidents. 

Scenarios Types of accident (Nr., motion and diagram) 
Accident 
numbers 

R20 

 

 

 

 

91 

L12 
 

 

 

69 

R17 

 

61 

T11 

  

 

  

53 
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T16 

  

 

  

 

   

 

52 

T13   

 

50 

L9 

 

20 

T18  13 
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unknown 

 

 

 

  

 

 

399: Sonstige Einbiegen/Kreuzen-Unfälle 

13 

T20 

 

12 
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T15 

 

6 

Collision 
concerning 
baking up 

 

 

5 



130 
 

 

L16 
 

 

  

3 

T19 

 

3 

Collision 
concerning 
turning 
over 

 

 

 

 

3 

R16 

 

 

 

2 
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L20 

 

2 

L1 

 

2 

T10 
 

 

2 

R11 

 

1 

R14 

 

1 

T12 

 

1 

T14 

 

 

 

1 
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L3 

 

1 

L11 

 

1 

Collision 
concerning 
stationary 
traffic 

 

1 
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Appendix 4.1 

Table A.3 Detected safety-critical events based on a deceleration trigger 

Participant 
Nr. 

Number of critical 
events (<= -0.4 g) 

Deceleration values 
(g) 

Event description 

1 2 0.48; 0.41 

1. Decelerated for right-turning;  
2. Braked on red light at a signalized 
intersection. 
 

2 3 0.48; 0.41; 0.40 

1. Caused by noises; 
2. Caused by noises;  
3. Caused by noises. 
 

3 1 0.46 
1. Decelerated for right-turning. 
 

4 3 0.43; 0.51; 0.70 

1. Braked to yield to a bicycle from a 
refuge island;  
2. Caused by noises;  
3. Decelerated for left-turning. 
 

5 2 0.52; 0.57 

1. Caused by (zero-) noises;  
2. Braked due to a car from the right 
that did not follow the yield sign.  
 

6 2 0.45; 0.44 

1. Decelerated in changing the lane 
for left-turning;  
2. Decelerated in approaching a yield-
sign intersection. 
 

7 4 0.43; 0.44; 0.41; 0.43 

1. Caused by noises;  
2. Braked in approaching a no-sign 
intersection to yield to the crossing 
pedestrians;  
3. Braked before right-turning at a 
signalized intersection to yield to a 
through bicycle;  
4. Decelerated for left-turning. 
 

8 1 0.44 
1. Caused by noises. 
 

9 4 0.45; 0.42; 0.54; 1.60 

1. Braked for left-turning;  
2. Decelerated in changing the lane;  
3. Braked on red light at a signalized 
intersection;  
4. Caused by (zero-) noises. 
 

10 0 \ \ 
11 0 \ \ 
12 0 \ \ 

13 1 0.43 
1. Braked in approaching a yield-sign 
intersection. 
 

14 1 0.65 
1. Caused by noises. 
 

15 0 \ \ 
16 0 \ \ 
17 0 \ \ 
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18 0 \ \ 

19 2 0.42; 0.41 

1. Decelerated by passing a car on a 
narrow road;  
2. Braked to yield to a car from the 
right at a no-sign intersection. 
 

20 1 0.52 
1. Caused by noises. 
 

21 0 \ \ 
22 0 \ \ 
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Appendix 4.2 

Events corresponding to outliers in the box plots of bicycle-scanning strategies. 

Outlier(s) in Figure 4-11 

Outlier 1 in the period of "turning": The traffic light turned green and the bicycle started from still, when the 

car was approaching the intersection. Therefore, the bicycles were still crossing the intersection and the car 

driver had to observe the bicycles, when the car arrived at the intersection and started turning. Actually, this 

event could be also classified in R20_3. 

Outliers in Figure 4-12 

For R20_2: 

Outlier 2 in "Waiting-at-red" period: In waiting-at-red period, the car driver had few driving tasks and just 

fixated on bicycles, or the red period lasted longer. 

Outlier 10 in "Turning" period: There was a (large) truck ahead of the car, and therefore there was certain of 

distance from the car to the intersection. The time that the car took to go from the stop location to the 

intersection (after the light turned green) was considered as the turning period. It lasted longer than when the 

car stopped directly in front of stop line, and thus the car driver took more fixations on bicycles. 

Outlier 7 by "Mirror check": This event involved six bikes. It was a combination of type R20_2 and R20_4. Only 

one bicycle was approaching together with the car (R20_2). After the car arrived at the intersection and 

stopped at red, the car driver fixated on the other coming bicycles by mirror checks (R20_4). Therefore, it took 

longer time for fixation by mirror check.  

For R20_4: 

Outlier 5 in "Approaching" period: The car driver observed the situation at the intersection as well as the 

bicycle in approaching. Normally, the car driver takes more time to observe the intersection rather than the 

bicycle, when the bicycle is approaching in a high speed along the road. However, the bicycle was going at a 

relatively lower speed in approaching the intersection. Therefore, the car driver made more fixations on the 

bicycle. 

Outlier 8 in "Waiting-at-red" period: In waiting-at-red period, the car driver had few driving tasks and just 

fixated on bicycles, or the red period lasted longer. 

Outlier 4 by "Mirror check": The car passed by the bicycle in approaching. After the car arrived at intersection 

and stopped at red, the car driver checked the side view mirror to observe the coming bicycle. In this case, the 

mirror check was unnecessary for the safe driving. Normally car drivers would not have made mirror checks. 

Outlier 9 by "Mirror check": The same as the above. 

For R20_5: 
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Outlier 8 in "Waiting-at-red" period: In waiting-at-red period, the car driver had few driving tasks and just 

fixated on bicycles, or the red period lasted longer.  

Outlier 9 in "Waiting-at-red" period : The same as the above. 

Outlier 21 in "Waiting-at-red" period: The same as the above. 

Outlier 30 in "Waiting-at-red" period: The same as the above. 

Outlier 3 in "Turning" period: The car driver had to wait to yield to bicycles in motion 17, had few driving tasks 

and just fixated on bicycles in motion 20 who, however, had already left the crossing route of the car. 

Outlier 24 in "Turning" period: The bicycle just arrived at the intersection and was not ready for starting, when 

the traffic light turned green. Normally, bicyclists would have stated immediately after the traffic light turned 

green. The car driver took longer to observe the bicyclist, because he had to give the right of way to the bicycle.  

Outlier 5 by "Shoulder check": The car driver made shoulder checks to observe actively bicycles coming behind 

in waiting-at-red period. Normally, the shoulder checks were unnecessary for the safe driving, since the 

bicycles would come in the forward field of view of the car drivers.  

Outlier 11 by "Shoulder check": The same as the above. 

Outlier 32 by "Shoulder check": The same as the above. 

Outlier 17 by "Shoulder check": After the traffic light turned green, the car started at the same time as bicycles. 

Normally, no shoulder checks were necessary, because the bicycles were clearly presented in the forward field 

of view of the car driver. However, since there were more than one bicycle and some were located behind the 

car driver, the car driver took shoulder checks to observe them. The shoulder checks occurred in turning period.  

Outlier 1 by "Mirror check": The car driver made mirror checks to observe actively bicycles coming behind in 

waiting-at-red period. Normally, the mirror checks were unnecessary for the safe driving, since the bicycles 

would come in the forward field of view of the car drivers.  

Outlier 5 by "Mirror check": The same as the above. 

Outlier 18 by "Mirror check": The same as the above. 

Outlier 23 by "Mirror check": The same as the above. 

Outlier 30 by "Mirror check": The same as the above. 

Outlier 32 by "Mirror check": The same as the above. 

Outliers in Figure 4-13 

For sub-situation 1:  
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Outlier 19 in "Turning" period: This event concerned a conflict. The bicycle was hidden behind the parked cars, 

and therefore was no detected by the car driver until the turning period. The car driver was driving the car at a 

high speed when he detected the bicycle and had to conduct hard brake, and therefore fixated longer on the 

bicycle in turning.  

Outlier 20 in "Turning" period Turning: When the car detected the bicycle in approaching, the bicycles just 

started because the traffic light turned green from red. The bicycles rode at a relatively lower speed and took 

longer to cross the intersection. Thus, the car driver fixated longer on bicycles. Normally (in this sub-situation), 

the bicycle would cross the intersection constantly at a relatively higher speed.  

For sub-situation 2: 

 Outlier 11 in "Approaching" period: There were three cars in front of the subject car. They were going at a slow 

speed, because the traffic light just turned green from red. Therefore, the car approached the intersection at a 

relatively lower speed. In addition, the bicycle was riding in parallel with the car and sharing the traffic lane 

with the car. Thus, the car had to observe the bicycle in the whole approaching period.  

Outlier 10 in "Turning" period: The car driver detected bicycles in approaching period and passed by them. 

After arriving at the intersection, the car driver just waited and observed the bicycles after they came in his 

forward field of view, and therefore fixated longer on bicycles in turning. Normally, the car driver would have 

conducted shoulder or mirror checks to observe the bicycles.  

Outliers in Figure 4-14 

Outlier 18 in "Turning" period: This event concerned a conflict. In approaching, the bicycle was not detected by 

the car driver, because the bicycle came from the right road. The car had to conduct hard brake to avoid a 

conflict with the bicycle, and fixated longer on the bicycle. 

Outlier 20 in "Turning" period: In front of the subject car, there was another car that also yielded to the bicycle. 

The car driver had to take longer to wait and fixate on the bicycle in turning period.  

 

 

 


	Title Page
	Acknowledgements
	Abstract
	Kurzfassung
	1. Motivation and thesis structure
	1.1.Motivation: cycling safety at signalized intersections
	1.2.Motivation: study from multi-aspects
	1.3.Thesis structure

	2. State of scientific and technical knowledge
	2.1.Historical accident data analysis
	2.2.In-depth accident analysis
	2.3.Traffic Conflict Techniques (TCT)
	2.4.Naturalistic Driving Observation (NDO)
	2.4.1.NDO and its advantages
	2.4.2.Review of NDO studies
	Distraction
	Fatigue or drowsiness
	Driver characteristics
	In-vehicle driving support system test
	Interaction between different road user types
	Other NDO studies

	2.4.3.Review of Naturalistic Cycling (NC) studies
	2.4.4.Weakness of Naturalistic Driving/Cycling studies

	2.5.Eye-tracking
	2.5.1.Techniques for eye-tracking
	2.5.2.Parameters for eye movements

	2.6.Perceived risk
	2.7.Accident Prediction Models (APM) and their application in studies of bicycle crash risk

	3. Car-bicycle accident analysis
	3.1.Cycling in Berlin
	3.2.General car-bicycle scenarios defined based on geometrical configuration
	3.3.Car-bicycle accident scenario definition at signalized intersections
	3.4.Accident analysis based on police-reported database in Berlin
	3.4.1.Accident scenarios
	3.4.2.Accident causation
	3.4.3.Accident consequences
	3.4.4.Accident distribution over months

	3.5.Accident analysis based on GIDAS database
	3.6.Conclusion and discussion

	4. Study of car driver-bicyclist interactions at signalized intersections by a Quasi-NDO study
	4.1.Methodology
	4.1.1.Quasi-NDO: Data collection by an instrumented car
	4.1.2.Participants
	4.1.3.Equipments
	4.1.4.Driving route
	4.1.5.Procedure of data collection

	4.2.Conflict detection
	4.2.1.Automated conflict detection
	4.2.2.Manual conflict detection

	4.3.Analysis of eye movements for events of R20
	4.3.1.Data analysis
	4.3.2.Analysis results
	Bicycle-scanning strategies
	Effects of traffic conditions


	4.4.Conclusion and discussion

	5. Risk perception for car-bicycle scenarios at signalized intersections
	5.1.Determination of car-bicycle scenarios to be evaluated
	5.2.Method: online survey
	5.2.1.Sampling and administration
	5.2.2.Questionnaire design
	5.2.3.Sample characteristics

	5.3.Data analysis
	5.4.Data analysis results and discussion
	5.4.1.General results
	5.4.2.Comparison between objective and subjective risk
	5.4.3.Comparison between car drivers´ and cyclists´ risk perception

	5.5.Conclusion and discussion

	6. Effects of bicycle facilities on car-bicycle crash risk at signalized intersections
	6.1.Model selection
	6.2.Intersection selection and dependent variable
	6.3.Explanatory variables
	Traffic volumes of cars and bicycles
	Car-specific factors
	Bicycle-specific factors
	Other factors

	6.4.Correlation analysis
	6.5.Results and discussion
	6.6.Conclusion

	7. Conclusion and outlook
	7.1Findings and implications in this research
	7.1.1.Car-bicycle accident analysis
	7.1.2.Quasi-NDO study
	7.1.3.Risk perception for car-bicycle scenarios
	7.1.4.Safety effects of bicycle facilities

	7.2.Limitation and future work

	References
	List of Figures
	List of Tables
	Appendix 3.1
	Appendix 3.2
	Appendix 3.3
	Appendix 3.4
	Appendix 4.1
	Appendix 4.2

