
Singleton Acyclic Mechanisms and their
Applications to Scheduling Problems?

Janina Brenner and Guido Schäfer

Institute of Mathematics, Technical University Berlin, Germany
{brenner,schaefer}@math.tu-berlin.de

Abstract. Mehta, Roughgarden, and Sundararajan recently introduced
a new class of cost sharing mechanisms called acyclic mechanisms. These
mechanisms achieve a slightly weaker notion of truthfulness than the
well-known Moulin mechanisms, but provide additional freedom to im-
prove budget balance and social cost approximation guarantees. In this
paper, we investigate the potential of acyclic mechanisms for combinato-
rial optimization problems. In particular, we study a subclass of acyclic
mechanisms which we term singleton acyclic mechanisms. We show that
every ρ-approximate algorithm whose induced cost function is partially
increasing can be turned into a singleton acyclic mechanism that is
weakly group-strategyproof and ρ-budget balanced. Based on this result,
we develop singleton acyclic mechanisms for parallel machine scheduling
problems with completion time objectives, which perform extremely well
both with respect to budget balance and social cost.

Keywords: cooperative game theory, mechanism design, cost sharing mecha-
nisms, combinatorial optimization, scheduling problems.

1 Introduction

We consider the problem of designing truthful mechanisms for binary demand
cost sharing games. We are given a universe U of players that are interested in a
common service, and a cost function C : 2U → R+ that specifies the cost C(S)
to serve player set S ⊆ U . We require that the cost function C is increasing,
i.e., C(T) ≤ C(S) for every T ⊆ S ⊆ U , and satisfies C(∅) = 0. In this paper,
we assume that C is given implicitly by the cost of an optimal solution to an
underlying combinatorial optimization problem P. Every player i ∈ U has a
private, non-negative valuation vi and a non-negative bid bi for receiving the
service.

A cost sharing mechanism M takes the bid vector b := (bi)i∈U as input,
and computes a binary allocation vector x := (xi)i∈U and a payment vector
p := (pi)i∈U . Let SM be the subset of players associated with the allocation

? This work was supported by the DFG Research Center Matheon “Mathematics for
key technologies”.

vector x, i.e., i ∈ SM iff xi = 1. We say that SM is the player set that re-
ceives service. We assume that a cost sharing mechanism complies with the
following two standard assumptions: pi = 0 if i /∈ SM and pi ≤ bi if i ∈ SM

(individual rationality) and pi ≥ 0 for all i ∈ SM (no positive transfer). In
addition, the mechanism has to compute a (potentially suboptimal) feasible so-
lution to the underlying optimization problem P on the player set SM . We
denote the cost of the computed solution by C̄(SM). M is β-budget balanced if
C̄(SM) ≤

∑
i∈SM pi ≤ β · C(SM).

We assume that players act strategically and each player’s goal is to maximize
his own utility. The utility ui of player i is defined as ui(x,p) := vixi− pi. Since
the outcome (x,p) computed by the mechanism M solely depends on the bids
b of the players, a player may have an incentive to declare a bid bi that differs
from his valuation vi. We say that M is strategyproof if bidding truthfully is a
dominant strategy for every player.

In this paper, we consider cooperative cost sharing games, i.e., players are
enabled to form coalitions in order to coordinate their bids. A mechanism is
group-strategyproof if no coordinated bidding of a coalition S ⊆ U can ever
strictly increase the utility of some player in S without strictly decreasing the
utility of another player in S.

In recent years, considerable progress has been made in devising truthful
mechanisms for cost sharing games. Most notably, Moulin [13] proposed a gen-
eral framework for designing so-called Moulin mechanisms that are truthful and
(approximately) budget balance. The strength of Moulin’s framework lies in the
fact that the resulting mechanisms achieve one of the strongest notions of truth-
fulness, i.e., group-strategyproofness. Most of the mechanisms for cooperative
cost sharing games that are currently prevailing in literature are Moulin mech-
anisms (e.g., [1, 2, 4, 8, 11, 15, 16]).

Recent negative results [1, 2, 9, 11, 15] show that for several fundamental cost
sharing games, Moulin mechanisms can only achieve a very poor budget balance
factor. This effect is further amplified if approximate social cost is desired as
additional objective. The social cost [15] of a set S ⊆ U is defined as Π(S) :=
C̄(S) +

∑
i/∈S vi. A mechanism M is said to be α-approximate if the social cost

of the served set SM satisfies Π(SM) ≤ α · Π∗, where Π∗ := minS⊆U (C(S) +∑
i/∈S vi) denotes the optimal social cost.

Very recently, Mehta, Roughgarden, and Sundararajan [12] introduced a
more general framework for designing truthful cost sharing mechanisms termed
acyclic mechanisms. Acyclic mechanisms implement a slightly weaker notion of
truthfulness, called weak group-strategyproofness, but therefore leave more flex-
ibility to improve upon the approximation guarantees with respect to budget
balance and social cost. A mechanism is weakly group-strategyproof [5, 12] if no
coordinated bidding of a coalition S ⊆ U can ever strictly increase the utility of
every player in S.

Our Results. In this paper, we investigate the potential of acyclic mechanisms
for combinatorial optimization problems, with a particular focus on scheduling
problems. Our contributions are threefold:

1. Singleton Acyclic Mechanisms. We study a subclass of acyclic mechanisms
that we call singleton acylcic mechanisms. We show that a ρ-approximation
algorithm for the underlying optimization problem P yields a singleton acyclic
mechanism that is ρ-budget balanced and weakly group-strategyproof if the cost
function C̄ induced by the approximation algorithm is increasing. In fact, a
weaker condition suffices, namely that the induced cost function is only partially
increasing (definition will be given in Section 3). Our proof is constructive, i.e.,
we provide a framework that enables to turn any such approximation algorithm
into a corresponding singleton acyclic mechanism. We also provide a means to
prove approximate social cost for singleton mechanisms that fulfill an additional
weak monotonicity property.

A direct consequence of this result is that several lower bounds on the bud-
get balance factor for Moulin mechanisms can be overcome by acyclic mecha-
nisms. For example, Graham’s largest processing time algorithm [7] gives rise to a
4/3-budget balanced acyclic mechanism for P | |Cmax, improving upon the lower
bound of essentially 2 for Moulin mechanisms [1]. Moreover, using the shortest
remaining processing time rule, we obtain a 2-budget balanced acyclic mecha-
nism for P |ri, pmtn|

∑
Ci [6], and a 1-budget balanced acyclic mechanism for

1|ri, pmtn|
∑
Fi [17], both outperforming the lower bounds of Ω(n) for Moulin

mechanisms [2].

2. Singleton Acyclic Mechanisms for Completion Time Scheduling. We develop
acyclic mechanisms for completion time scheduling, both with and without
release dates and preemption. Namely, we achieve 1-budget balance and 2-
approximate social cost for P | |

∑
Ci, 1.21-budget balance and 2.42-approximate

social cost for P | |
∑
wiCi, and 1-budget balance and 4-approximate social cost

for 1|ri, pmtn|
∑
Ci. Not only are these the first cost sharing mechanisms to

achieve constant social cost approximation factors, but we also overcome the
strong lower bound of Ω(n) on the budget balance factor of any Moulin mecha-
nism for all completion time related objectives [2].

3. Approximation Algorithms for Scheduling Problems with Rejection. Every
acyclic mechanism that approximates social cost defines an approximation al-
gorithm for the price-collecting variant of the underlying optimization problem.
As a by-product of the results mentioned above, we therefore obtain constant
approximation algorithms for the respective machine scheduling problems with
rejection; a formal definition will be given in Section 2.

Previous and Related Work. In the theoretical computer science literature,
the cost sharing framework of Moulin [13] has been applied to game-theoretic
variants of many classical optimization problems. Recently, the performance of

Moulin mechanisms has also been studied with respect to social cost, e.g. for
Steiner tree and forest, facility location, single-source rent-or-buy network de-
sign and machine scheduling; see [2, 4, 8, 15, 16]. However, there exist strong lower
bounds on the budget balance and social cost approximation factors that are
achievable by Moulin mechanisms [1, 2, 9, 11]. Consequently, Mehta, Roughgar-
den, and Sundararajan introduced a new class of cost sharing mechanisms called
acyclic mechanisms [12], which they studied mainly in relation to primal-dual
algorithms.

Most of the standard parallel machine scheduling settings are well under-
stood. Lenstra [3] proves that the minimum weighted completion time problem
P | |

∑
i wiCi is NP-complete. Graham’s rule [10] approximates the problem by a

factor of 1
2 ·(1+

√
2) ≈ 1.21. For unit processing times or equal weights, Graham’s

rule delivers an optimal solution.
With release dates and preemption, minimizing the sum of completion times

P |ri, pmtn|
∑

i Ci becomes NP-hard [14]. Only the single machine case is solved
optimally by the shortest remaining processing time (srpt) algorithm [17]. srpt
is a 2-approximation algorithm for the parallel machine case [6].

2 Preliminaries

2.1 Acyclic Mechanisms

The general mechanism design setting that we consider in this paper has been
described in the introduction. We briefly review the definition of acyclic mech-
anisms introduced by Mehta, Roughgarden, and Sundararajan in this section;
the reader is referred to [12] for a more detailed description.

An acyclic mechanism is defined in terms of a cost sharing method ξ and
an offer function τ . A cost sharing method ξ : U × 2U → R+ specifies for every
subset S ⊆ U and every player i ∈ S a non-negative cost share ξi(S); we define
ξi(S) := 0 for all i /∈ S. ξ is β-budget balanced if for every subset S ⊆ U we
have C̄(S) ≤

∑
i∈S ξi(S) ≤ β ·C(S). An offer function τ defines for every subset

S ⊆ U and every player i ∈ S a non-negative time τ(i, S).
The acyclic mechanism M(ξ, τ) induced by ξ and τ receives the bid vector b

as input and proceeds as follows:

1. Initialize S := U .
2. If ξi(S) ≤ bi for every player i ∈ S, then halt. Output the characteristic

vector x of S and payments p := (ξi(S))i∈U .
3. Among all players in S with ξi(S) > bi, let i∗ be one with minimum τ(i, S)

(breaking ties arbitrarily).
4. Set S := S \ {i∗} and return to Step 2.

For a given subset S ⊆ U and a player i ∈ S, we partition the player set S into
three sets with respect to the offer time of i: let L(i, S), E(i, S) and G(i, S) be
the sets of players with offer times τ(·, S) strictly less than, equal to, or strictly
greater than τ(i, S), respectively. The following definition is crucial to achieve
weakly group-strategyproofness.

Definition 1. Let ξ and τ be a cost sharing method and an offer function on U .
The offer function τ is valid for ξ if the following two properties hold for every
subset S ⊆ U and player i ∈ S:

(P1) ξi(S \ T) = ξi(S) for every subset T ⊆ G(i, S);
(P2) ξi(S \ T) ≥ ξi(S) for every subset T ⊆ G(i, S) ∪ (E(i, S) \ {i}).

We summarize the main result of Mehta, Roughgarden, and Sundarara-
jan [12] in the following theorem:

Theorem 1 ([12]). Let ξ be a β-budget balanced cost sharing method on U and
let τ be an offer function on U that is valid for ξ. Then, the induced acyclic
mechanism M(ξ, τ) is β-budget balanced and weakly group-strategyproof.

2.2 Parallel Machine Scheduling

In a parallel machine scheduling problem, we are given a set U of n jobs that are
to be scheduled on m identical machines. Every job i ∈ U has a non-negative
release date ri and a positive processing time pi. The release date ri specifies the
time when job i becomes available for execution. The processing time describes
the time needed to execute i on one of the machines. We may also associate
a non-negative weight wi with every job i ∈ U . Every machine can execute
at most one job at a time. In the preemptive setting, the execution of a job
can be interrupted at any point of time and resumed later; in contrast, in the
non-preemptive setting, job interruption is not allowed.

Given a scheduling algorithm alg, we denote by Calg
i (S) the completion

time of job i ∈ S in the schedule for the set of jobs S ⊆ U output by alg. We
omit the superscript alg if it is clear from the context to which schedule we
refer. Depending on the underlying application, there are different objectives for
machine scheduling problems. Among the most common objectives are the mini-
mization of the total weighted completion time, i.e.,

∑
i wiCi, and the makespan,

i.e., maxi Ci, over all feasible schedules.
In our game-theoretic view of machine scheduling problems, each job is iden-

tified with a player who wants his job to be processed on one of the m machines.

Machine Scheduling with Rejection. Consider an arbitrary scheduling prob-
lem P with job set U and objective function C. A natural variant of this problem
is as follows. Suppose every job i ∈ U has a non-negative penalty zi. We now have
the option to either schedule a job i ∈ U and pay its respective contribution to
the objective function value, or to not schedule job i an pay its penalty zi. More
formally, the goal is to compute a subset S ⊆ U of jobs such that the overall
cost C(S) +

∑
i∈U\S zi is minimized. We call the resulting problem scheduling

problem with rejection. (Similar variants for network design problems are usually
called price-collecting ; in the scheduling context with due dates, these variants
are sometimes called scheduling with penalties.)

It is easy to verify that every cost sharing mechanism that approximates
social cost by a factor of α defines an α-approximate algorithm for the underlying
optimization problem with rejections.

3 Singleton Acyclic Mechanisms

When thinking about acyclic mechanisms and their offer functions, we like to
think of clusters. By a cluster we mean a maximal set of players that have the
same offer time with respect to a set S, i.e., two players i, j are in the same
cluster iff τ(i, S) = τ(j, S). With this view, it becomes clear to which extent
acyclic mechanisms generalize Moulin mechanisms: To one end, if there is only
one cluster that contains all players, Definition 1 requires cross-monotonicity,
leading to Moulin mechanisms. To the other end, if all clusters are singletons,
i.e., every player has a unique offer time, then (P2) of Definition 1 reduces to (P1)
and once a cost share is announced to a player, it can never be changed again.
Between these two extremes, there is a great range of other acyclic mechanisms.

However, in this section, we concentrate on the subclass of acyclic mecha-
nisms that result from singleton offer functions, i.e., offer functions that induce
singleton clusters. We call these mechanisms singleton acylcic mechanisms, or
simply singleton mechanisms.

Let τ be a singleton offer function. In the following, we assume that the
elements of a subset S ⊆ U are ordered according to non-decreasing offer times,
i.e., S =: {i1, . . . , iq} with τ(il, S) < τ(ik, S) for all 1 ≤ l < k ≤ q. Moreover,
we define Sk := {i1, . . . , ik} ⊆ S as the set of the first 1 ≤ k ≤ q elements in S.
We slightly abuse notation and let for every i ∈ S, Si refer to the set Sk with
ik = i. We are particularly interested in singleton offer functions that satisfy the
following consistency property.

Definition 2. A singleton offer function τ is called consistent if for all subsets
P ⊆ S ⊆ U , ordered as P =: {j1, j2, . . . , jp} and S =: {i1, i2, . . . , iq}, the
following holds: If k is minimal with ik /∈ P , then il = jl for all l < k.

Let alg be a ρ-approximate algorithm for P and let C̄ denote the cost
function induced by alg, i.e., C̄(S) is the cost of the solution computed by
alg for player set S ⊆ U . We say that C̄ is partially increasing with respect to a
singleton offer function τ if for every S ⊆ U and i ∈ S, we have C̄(Si) ≥ C̄(Si−1).
The main result of this section is the following:

Theorem 2. Let alg be a ρ-approximate algorithm for an optimization prob-
lem P. If there exists a consistent singleton offer function with respect to which
the cost function induced by alg is partially increasing, then there is a singleton
acyclic mechanism that is weakly group-strategyproof and ρ-budget balanced.

Truthfulness and Budget Balance. A singleton offer function τ combined
with an approximation algorithm alg whose cost function is partially increasing
with respect to τ give rise to the following natural cost sharing method. Note
that the partial increase property ensures that the cost shares are non-negative.

Definition 3. The cost sharing method ξ induced by alg and a singleton offer
function τ is defined as ξi(S) := C̄(Si)− C̄(Si−1) for every S ⊆ U and i ∈ S.

Together with Theorem 1, the following lemma proves Theorem 2.

Lemma 1. Let τ be a singleton offer function and alg be a ρ-approximate
algorithm that is partially increasing with respect to τ . Moreover, let ξ be the
cost sharing method induced by alg and τ . Then the following holds:

1. ξ is ρ-budget balanced.
2. If τ is consistent, then τ is valid for ξ.

Proof. By definition of ξ, we have
∑

i∈S ξi(S) =
∑

i∈S(C̄(Si) − C̄(Si−1)) =
C̄(S)− C̄(∅) = C̄(S) for all S ⊆ U , proving that ξ is ρ-budget balanced.

We next show that τ is valid for ξ. Fix S ⊆ U and i ∈ S. Since τ is a singleton
offer function, E(i, S) \ {i} = ∅, and so (P2) of Definition 1 reduces to (P1). To
prove (P1), let P := S \T for some subset T ⊆ G(i, S) and consider the ordered
sets S =: {i1, i2, . . . , iq} and P =: {j1, j2, . . . , jp}. Let k be minimal with ik /∈ P .
Then, by Definition 2, for all l < k, il = jl and hence Pl = Sl. Since T ⊆ G(i, S),
we have τ(i, S) < τ(ik, S). We conclude that ξi(P) = C̄(Pi)−C̄(Pi−1) = C̄(Si)−
C̄(Si−1) = ξi(S). ut

From now on, for a consistent singleton offer function τ and an approxima-
tion algorithm alg whose cost function is partially increasing with respect to τ ,
we call the mechanism M := M(ξ, τ) the singleton mechanism induced by alg
and τ . Given an approximation algorithm alg, we remark that the budget bal-
ance factor of M is independent of the consistent singleton offer function used.
However, the choice of the singleton offer function may very well influence the
social cost of the solution output by the mechanism. Hence, if the cost function
induced by alg is increasing, i.e., C(T) ≤ C(S) for all T ⊆ S ⊆ U , we can
choose τ solely to achieve a good social cost approximation factor. If not, the no
positive transfer property restricts the choice of τ to offer functions with respect
to which C̄ is partially increasing.

Social Cost. The social cost analysis of singleton mechanisms can be alleviated
if the induced cost sharing method has the following property:

Definition 4. Let ξ be the cost sharing method induced by alg and τ . We call ξ
weakly monotone if for all subsets T ⊆ S ⊆ U ,

∑
i∈T ξi(S) ≥ C̄(T).

Theorem 3. Let M = M(ξ, τ) be the singleton mechanism induced by alg and
a consistent singleton offer function τ . Suppose that ξ is weakly monotone. Then,
M approximates social cost by a factor of α if

C̄(SM ∪ S∗)
C(S∗) + C(SM \ S∗)

≤ α.

Proof. We need to upper bound the ratio between the social cost of the set SM

chosen by the mechanism and a set S∗ := arg minS⊆U (C(S)+
∑

i/∈S vi). We have

Π(SM)
Π∗

=
C̄(SM) +

∑
i∈S∗\SM vi +

∑
i/∈SM∪S∗ vi

C(S∗) +
∑

i∈SM\S∗ vi +
∑

i/∈SM∪S∗ vi
≤
C̄(SM) +

∑
i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ vi

≤
C̄(SM) +

∑
i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ ξi(SM)
≤
C̄(SM) +

∑
i∈S∗\SM vi

C(S∗) + C(SM \ S∗)
.

Here, the first inequality follows from Fact 1 below. The second inequality holds
because vi ≥ ξi(SM) for every player i ∈ SM . The last inequality follows from
weak monotonicity of ξ and the fact that C̄(S) ≥ C(S) for every set S.

Without loss of generality, number the players in S∗ \ SM in the order in
which they were rejected in the course of the mechanism M , i.e., S∗ \ SM =:
{1, . . . , `}. For every i ∈ S∗ \ SM , let Ri be the subset of players in S∗ ∪ SM

that were remaining in the iteration in which i was removed, i.e., Ri := SM ∪
{i, i + 1, . . . , `}. Since i rejected, we have vi < ξi(Ri). Moreover, by definition
of the sets Ri and weak monotonicity of ξ, we obtain C̄(Ri) =

∑
j∈Ri ξj(Ri) =

ξi(Ri) +
∑

j∈Ri+1 ξj(Ri) ≥ ξi(Ri) + C̄(Ri+1). Summing over all i ∈ {1, . . . , `}
yields

∑
i∈S∗\SM

vi ≤
∑̀
i=1

(
C̄(Ri)− C̄(Ri+1)

)
= C̄(SM ∪ S∗)− C̄(SM).

ut

The proof of Theorem 3 uses the following fact, which we state without proof.

Fact 1 For arbitrary real numbers a ≥ b > c > 0, we have a
b ≤

a−c
b−c .

4 Completion Time Scheduling

In this section, we study the performance of singleton mechanisms for total
completion time objectives. We distinguish between the model with weights, in
which all jobs arrive at time zero and no preemption is allowed, and the model
in which jobs have release dates and may be preempted.

4.1 Weighted Completion Time

We consider the problem P | |
∑
wiCi of scheduling a set of jobs U := [n] non-

preemptively on m parallel machines such that the total weighted completion
time is minimized. Even for the unweighted version, i.e. when wi ≡ 1, no Moulin
mechanism can achieve a budget balance factor better than n/2 [2]. However,
using singleton acyclic mechanisms, we can heavily improve upon this.

Let ρgr denote the approximation guarantee achieved by Graham’s rule,
i.e., ordering the jobs by non-increasing weight per processing time wi/pi. For

P | |
∑
wiCi, the produced schedule is (1 +

√
2)/2 ≈ 1.21-approximate, which is

best possible [10]. In the case of one machine, ρgr = 1. In the unweighted setting,
Graham’s rule reduces to the shortest processing time policy and also delivers
an optimal schedule.

Let Mwct := M(ξ, τ) be the singleton mechanism induced by Graham’s rule
and the offer function τ defined as follows:

Singleton offer function for Graham’s rule: Let σ be a non-increasing
weight per processing time order on U . If two jobs i, j ∈ U satisfy wi/pi =
wj/pj , we define σ(i) < σ(j) iff i < j. For every subset S ⊆ U , let τ(·, S) be
the order on S induced by σ.

One easily verifies that τ is a consistent singleton offer function. We have ξi(S) =
C̄(Si)− C̄(Si−1) = wiCi(S), where Ci(S) is the completion time of job i in the
schedule computed by Graham’s rule. Since wiCi(S) ≥ 0, Graham’s rule is
obviously partially increasing with respect to τ .

Theorem 4. The singleton mechanism Mwct = M(ξ, τ) induced by Graham’s
rule and τ is weakly group-strategyproof, ρgr-budget balanced and approximates
social cost by a factor of 2ρgr.

Proof. It follows from Theorem 2 that Mwct is weakly group-strategyproof and
ρgr-budget balanced. It remains to be shown that Mwct is 2ρgr-approximate with
respect to social cost. To see that the induced cost sharing method ξ is weakly
monotone, note that Ci(S) ≥ Ci(T) for every i ∈ T ⊆ S. Thus,

∑
i∈T ξi(S) ≥∑

i∈T ξi(T) = C̄(T). The social cost approximation factor now follows from
Theorem 3 and Lemma 2 given below. ut

Lemma 2. Let alg be an algorithm for P | |
∑
wiCi with cost function C̄. Let

A and B be two disjoint sets of jobs. Then, the cost of an optimal schedule for
A ∪B can be bounded by C(A ∪B) ≤ 2 ·

(
C̄(A) + C̄(B)

)
.

Proof. We prove the inequality individually for each machine M̂ . Consider the
jobs Â ⊆ A and B̂ ⊆ B scheduled on M̂ in the runs of alg on A and B,
respectively. We denote by ci the completion time of job i in his respective
schedule, i.e. ci := C̄i(A) for all i ∈ Â and ci := C̄i(B) for all i ∈ B̂.

Consider the schedule which processes all jobs in Â ∪ B̂ on M̂ according to
non-decreasing ci. The completion time of a job i ∈ Â in this schedule is ci + ci∗ ,
where i∗ denotes the last job in B̂ that is processed before i. Since i∗ is processed
before i, we have ci + ci∗ ≤ 2ci. By exchanging the roles of A and B, we can
show the same for the completion time of every job i ∈ B̂.

Since the cost of an optimal schedule for A∪B is at most that of the schedule
produced by repeating the above procedure for each machine, we have

C(A ∪B) ≤
∑

i∈A∪B

wi · 2ci = 2 ·
(∑

i∈A

wici +
∑
i∈B

wici

)
= 2 ·

(
C̄(A) + C̄(B)

)
.

ut

The following example shows that our social cost analysis is tight.

Example 1. Consider an instance of 1|pi = 1|
∑
Ci on an even number of n

jobs with valuations vi = i for all i ∈ [n]. Assume that Mwct orders the jobs
according to increasing valuations (we can always enforce this by perturbing
the processing times appropriately) and thus accepts all jobs. Then, Π(SM) =
C̄([n]) = n(n+1)/2.. However, if we exclude the first n/2 jobs from the scheduled
set, we obtain a social cost of C([n

2])+
∑n/2

i=1 vi = n(n
2 +1)/2 = n(n+2)/4 ≥ Π∗,

yielding an approximation ratio of essentially 2.

The following theorem comes directly with the proof of Theorem 4 if we
identify the players’ valuations with the penalties for not scheduling a job.

Theorem 5. Graham’s rule is a 2ρgr-approximate algorithm for the weighted
completion time scheduling problem with rejection.

4.2 Completion Time with Release Dates and Preemption

Now, consider the problem 1|ri, pmtn|
∑
Ci of scheduling a set of jobs U := [n]

on a single machine such that the total completion time is minimized. Each job
i ∈ U has a non-negative release date ri, and preemption of jobs is allowed. The
shortest remaining processing time policy (srpt) delivers an optimal schedule
for this problem [17].

We introduce some more notation in order to give a formal definition of srpt.
Let ei(t) be the amount of time that has been spent on processing job i up to
time t. The remaining processing time xi(t) of job i at time t is xi(t) := pi−ei(t).
We call a job i active at time t if it has been released but not yet completed at
this time, i.e., ri ≤ t < Ci. Let A(t) be the set of jobs that are active at time t.
srpt works as follows: At any time t ≥ 0, srpt schedules an active job i ∈ A(t)
with minimum remaining processing time, i.e. xi(t) ≤ xk(t) for all k ∈ A(t). In
the following, we assume that srpt uses a consistent tie breaking rule, e.g., if
xi(t) = xk(t) for two different jobs i and k, then schedule the one with smaller
index. Throughout this section, let Ci(S) := Csrpt

i (S) for all S ⊆ U .
Let Mpct := M(ξ, τ) be the singleton mechanism induced by srpt and the

following singleton offer function τ :

Singleton offer function for srpt: For a given subset S ⊆ U , let τ(·, S) be
the order induced by increasing completion times of the jobs in S, i.e.,
τ(i, S) < τ(j, S) iff Ci(S) < Cj(S).

The offer function τ is consistent; we defer the proof to the end of this section.
Recall that srpt is an optimal scheduling policy and thus C̄(S) = C(S). We thus
have ξi(S) = C(Si)−C(Si−1) = Ci(S), where the latter follows from Lemma 5.
Remark that srpt is partially increasing with respect to τ because Ci(S) ≥ 0.

Theorem 6. The singleton mechanism Mpct = M(ξ, τ) induced by srpt and τ
is weakly group-strategyproof, budget balanced and approximates social cost by a
factor of 4.

Proof. It follows from Theorem 2 that Mpct is weakly group-strategyproof and
budget balanced. To prove that Mpct approximates social cost, we first show that
ξ is weakly monotone. Fix some set S and let T ⊆ S. Consider the srpt schedule
for S. If we remove from this schedule all jobs in S \ T , we obtain a feasible
schedule for T of cost at most

∑
i∈S\T Ci(S) ≥ C(T). Since ξi(S) = Ci(S), we

have weak monotonicity. Now, the bound on the social cost approximation factor
follows from Theorem 3, using Lemma 3 given below. ut

The following lemma is used to prove the social cost approximation factor.

Lemma 3. Let alg be an algorithm for P |ri, pmtn|
∑
Ci with cost function C̄.

Let A and B be two disjoint sets of jobs. Then, the cost of an optimal schedule
for A ∪B can be bounded by C(A ∪B) ≤ 4 ·

(
C̄(A) + C̄(B)

)
.

Proof. Phillips et al. [14] prove that any preemptive schedule for P |ri, pmtn|
∑
Ci

can be turned into a non-preemptive schedule np with at most twice the cost.
With Lemma 2, we obtain C(A∪B) ≤ 2·

(
Cnp(A)+Cnp(B)

)
≤ 4·

(
C̄(A)+C̄(B)

)
.
ut

Consistency. In order to prove that τ is consistent, we need some more nota-
tion. Consider the srpt schedule for a set S ⊆ U . Let i, j ∈ A(t) be two jobs
that are active at time t. We define i ≺t j iff either xi(t) < xj(t) or xi(t) = xj(t)
and i ≤ j. Note that at any point of time t, srpt schedules the job i ∈ A(t) with
i ≺t j for all j ∈ A(t). Thus, if i ≺t j for some t, then i ≺t′ j for all t′ ∈ [t, Ci).
We therefore simply write i ≺ j iff there exists a time t with i ≺t j. Let σ(t)
denote the job that is executed at time t in the srpt schedule for S; we define
σ(t) = ∅ if A(t) = ∅.

Let j ∈ S be an arbitrary job and consider the time interval [rj , Cj). We
define the set Cj of jobs that are competing with j as

Cj := {i ∈ S \ {j} : [ri, Ci) ∩ [rj , Cj) 6= ∅}.

Note that j /∈ Cj . We partition the jobs in Cj into a setWj of winning jobs and a
set Lj of losing jobs with respect to j: Wj := {i ∈ Cj : i ≺ j} and Lj := Cj \Wj .
Intuitively, suppose i and j are both active at some time t. If i is a winning
job, then i prevents j from being executed by srpt. On the other hand, if i is a
losing job, then j prevents i from being executed.

We next investigate the effect of removing a job j from S. We use the super-
script T if we refer to the srpt schedule for T := S \ {j}.

Lemma 4. Consider the two srpt schedules on job sets S and T := S \ {j}.
For every job i ∈ Cj that is active at time t ∈ [rj , Cj),

xT
i (t) = xi(t) if i ∈ Wj and xT

i (t) ≥ xj(t) if i ∈ Lj .

Proof. We partition the time interval [rj , Cj) into a sequence of maximal subin-
tervals I1, I2, . . . , If such that the set of active jobs remains constant within

every subinterval I` := [s`, e`). We prove by induction over ` that the claim
holds for every t ∈ [rj , e`).

Note that both schedules are identical up to time rj = s1. If σ(s1) 6= j, then
both schedules process the same job during I1 and the claim follows. Suppose
σ(s1) = j. This implies that A(s1) ∩Wj = ∅ and thus all jobs in A(s1) \ {j} =
AT (s1) are losing jobs. If AT (s1) = ∅, the claim follows. Otherwise, let k :=
σT (s1) be the job that is processed in the schedule for T . Since k is a losing job,
we have xT

k (s1) = xk(s1) ≥ xj(s1). Since k and j receive the same processing
time during I1 in their respective schedules, the claim holds for all t ∈ [rj , e1).

Now, assume that the claim is true for every t ∈ [rj , e`−1) for some ` > 1.
We show that it remains true during the time interval I`. By the induction
hypothesis, xT

i (t) = xi(t) for every job i ∈ Wj that is active at time t ∈ [rj , e`−1).
This implies that a job j ∈ Wi is executed at time t ∈ [rj , e`−1) in the schedule
for S iff it is executed at time t in the schedule for T . We thus have AT (s`)∩Wj =
A(s`) ∩Wj . Moreover, xT

i (t) ≥ xj(t) for every job i ∈ Lj that is active at time
t ∈ [rj , e`−1). Since xj(t) > 0 for every t ∈ [rj , Cj), every job i ∈ Lj that is
active at time t ∈ [rj , e`−1) in the schedule for S must also be active at time t
in the schedule for T . Thus, AT (s`) ∩ Lj = A(s`) ∩ Lj . We now distinguish two
cases:

(i) First, assume σ(s`) =: k ∈ Wj . Job k then has smallest remaining pro-
cessing time, i.e., xk(s`) ≤ xi(s`) for all i ∈ A(s`). We conclude that

xT
k (s`) = xk(s`) ≤ xi(s`) = xT

i (s`) ∀i ∈ A(s`) ∩Wj = AT (s`) ∩Wj

xT
k (s`) = xk(s`) ≤ xj(s`) ≤ xT

i (s`) ∀i ∈ A(s`) ∩ Lj = AT (s`) ∩ Lj .

Since we assume that srpt uses a consistent tie breaking rule, this implies that
σT (s`) = k and the claim follows.

(ii) Now, suppose σ(s`) = j. (Note that σ(s`) ∈ Lj is impossible.) Then
xj(s`) ≤ xi(s`) for every i ∈ A(s`) and A(s`) ∩ Wj = ∅. But then we also
have AT (s`) ∩Wj = ∅ and thus AT (s`) ⊆ Lj . If AT (s`) = ∅, the claim follows.
Otherwise, let k := σT (s`) ∈ Lj be the job that is executed at time s` in the
schedule for T . Since xT

k (s`) ≥ xj(s`) and the remaining processing times of k
and j in their respective schedules reduce by the same amount during I`, the
claim follows. ut

Lemma 5. Let T ⊆ S ⊆ U and consider the srpt schedule for S \T . We have:

1. Ci(S \ T) = Ci(S) for every job i ∈ S \ T with Ci(S) < Cj(S) for all j ∈ T .
2. C`(S \ T) ≥ minj∈T Cj(S) for every job ` ∈ S \ T with C`(S) > Cj(S) for

some j ∈ T .

Proof. Consider the srpt schedule for S and fix two jobs i, ` ∈ S \ T such that
i fulfills Ci(S) < Cj(S) for all j ∈ T , and ` does not. Let j be the job in T with
largest completion time among all jobs in T . Remove j from S and consider the
resulting srpt schedule for S \ {j}.

By Lemma 4, the completion times of i and all jobs in T \{j} in this schedule
remain the same, since none of these jobs lose against j by choice of j. We can
repeat this argument until all jobs in T are removed from S.

Now, consider the completion time of job ` during the same procedure. As
long as Cj(S) > C`(S) for the job j that is currently removed, the completion
time of ` remains equal. As soon as a job j with Cj(S) < C`(S) is removed, the
completion time of ` may change, but, again by Lemma 4, it stays greater or
equal to Cj(S). Hence, we have C`(S \ T) ≥ minj∈T Cj(S). ut

Lemma 6. The singleton offer function τ is consistent.

Proof. Consider two sets P ⊆ S ⊆ U , ordered by τ as P =: {j1, j2, . . . , jp} and
S =: {i1, i2, . . . , iq}. Let k be minimal with ik /∈ P . Then, for all l < k, we
have il ∈ P by minimality of k, and Cil

(S) < Cik
(S) by definition of τ . Also by

minimality of k, for all other i /∈ P , we have Cil
(S) < Cik

(S) < Ci(S). Hence,
Lemma 5 proves that Cil

(S) = Cil
(P) for all l < k.

For all other jobs j ∈ P , we have Cj(S) > Ck(S) and thus by Lemma 5,
Cj(P) ≥ Ck(S) > Ck−1(S) = Ck−1(P). Hence, we have il = jl for all l < k. ut

Treating the players’ valuations as penalties for not scheduling a job gives
the following theorem.

Theorem 7. srpt is a 4-approximate algorithm for the completion time schedul-
ing problem 1|ri, pmtn|

∑
Ci with rejection.

References

1. Y. Bleischwitz and B. Monien. Fair cost-sharing methods for scheduling jobs on
parallel machines. In Proc. of the 6th Int. Conf. on Algorithms and Complexity,
volume 3998 of Lecture Notes in Comput. Sci., pages 175–186. Springer, 2006.

2. J. Brenner and G. Schäfer. Cost sharing methods for makespan and completion
time scheduling. In Proc. of the 24th Int. Sympos. on Theoretical Aspects of Com-
puter Science, pages 670–681, 2007.

3. P. Brucker. Scheduling Algorithms. Springer, New York, USA, 1998.
4. S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal cost-sharing mecha-

nisms for Steiner forest problems. In Proc. of the 2nd Int. Workshop on Internet
and Network Economics, pages 112–123. Springer, 2006.

5. N. Devanur, M. Mihail, and V. Vazirani. Strategyproof cost-sharing mechanisms
for set cover and facility location games. In Proc. of the ACM Conference on
Electronic Commerce. ACM Press, 2003.

6. J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean flow time with release
time constraint. Theoretical Computer Science, 75(3):347–355, 1990.

7. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2):416–429, 1969.

8. A. Gupta, J. Könemann, S. Leonardi, R. Ravi, and G. Schäfer. An efficient cost-
sharing mechanism for the prize-collecting Steiner forest problem. In Proc. of the
18th ACM-SIAM Sympos. on Discrete Algorithms. ACM Press, 2007.

9. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic cost
sharing schemes. In Proc. of the16th ACM-SIAM Sympos. on Discrete Algorithms,
pages 602–611. ACM Press, 2005.

10. T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean
weighted flow time problem. SIAM Journal on Computing, 15(4):1119–1129, 1986.

11. J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to
cost shares and back: a stronger LP relaxation for the Steiner forest problem. In
Automata, Languages and Programming, volume 3580 of Lecture Notes in Com-
put. Sci., pages 930–942. Springer, 2005.

12. A. Mehta, T. Roughgarden, and M. Sundararajan. Beyond Moulin mechanisms.
In Proc. of the ACM Conference on Electronic Commerce, 2007.

13. H. Moulin. Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare, 16:279–320, 1999.

14. C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the
presence of release dates. Math. Program., 82:199 – 223, 1998.

15. T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mechanisms.
In Proc. of the 38th ACM Sympos. on Theory of Computing, pages 79–88, 2006.

16. T. Roughgarden and M. Sundararajan. Approximately efficient cost-sharing mech-
anisms. arXiv report, http://www.arxiv.org/pdf/cs.GT/0606127, June 2006.

17. L. Schrage. A proof of the optimality of the shortest remaining processing time
discipline. Operations Research, 16:687 – 690, 1968.

