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Generic model for tunable colloidal aggregation
in multidirectional fields

Florian Kogler,*a Orlin D. Velev,b Carol K. Hallb and Sabine H. L. Klappa

Based on Brownian Dynamics computer simulations in two dimensions we investigate aggregation

scenarios of colloidal particles with directional interactions induced by multiple external fields. To this end

we propose a model which allows continuous change in the particle interactions from point-dipole-like to

patchy-like (with four patches). We show that, as a result of this change, the non-equilibrium aggregation

occurring at low densities and temperatures transforms from conventional diffusion-limited cluster

aggregation (DLCA) to slippery DLCA involving rotating bonds; this is accompanied by a pronounced

change of the underlying lattice structure of the aggregates from square-like to hexagonal ordering.

Increasing the temperature we find a transformation to a fluid phase, consistent with results of a simple

mean-field density functional theory.

1 Introduction

Recent progress in the synthesis and directional binding of
nanometer to micrometer sized patchy and anisotropic particles
makes possible the assembly of colloidal structures with multiple
directed bonds.1–3 The directional bonding can also be achieved by
permanently embedded or field-induced dipole and/or multipole
moments allowing directional and selective particle bonding.4–8

Within this class, particles with field-induced dipolar inter-
actions8–12 are especially interesting because switching the fields
on and off is equivalent to switching the particle interactions on
and off. This means that aggregation mechanisms13,14 can be
‘dialed in’. Furthermore, the orientation of inductive fields may
be used to direct particle aggregation.9–12,15,16 In consequence,
such directed self-assembly processes may be exploited for the
formation of new functional materials with specific and/or
adjustable properties. Hence, understanding the interplay
between externally induced particle properties, external fields
and thermodynamic conditions, e.g., temperature, is of fundamental
interest in modern material science, but also from a statistical
physics point of view.

An important subset of the many classes of self-assembled
structures are percolated colloidal networks, which are characterized
by system-spanning cross-linked (patchy) particle clusters that are
realizable even at low volume fractions.12,17–21 Such network-like
aggregates are considered to be the underlying micro-structures of
gels and have been intensively investigated in experiment and theory

under equilibrium as well as non-equilibrium conditions.22–24

In the latter, qualitatively different aggregation mechanisms
can be identified, namely diffusion limited cluster aggregation
(DLCA)25,26 and reaction limited cluster aggregation (RLCA).27

In the DLCA regime each particle collision leads to the formation
of a rigid and essentially (on the timescale of the experiment)
unbreakable bond with fixed spatial orientation. In contrast, in
the RLCA regime the probability to form a rigid bond at collision
is small. Systems with DLCA undergo irreversible dynamics and
form fractal aggregates with specific fractal dimensions Df E
1.71 in continuous two-dimensional space.26,28 Such colloidal
systems are considered to be ‘chemical gels’ and can be realized
by having particle interactions that are much stronger than kBT,
preventing particles from dissociating due to thermal fluctuations.
This leads to a pronounced hindrance of structural reconfiguration
of large particle aggregates.22,29 However, at higher temperatures
these systems become ‘physical gels’ where single particles and
larger substructures start to connect and disconnect frequently.
This strongly affects (increases) the fractal dimension23,30 and
finally allows the system to achieve its equilibrium state.

A recently introduced new type of DLCA, which accounts for
local rearrangements via flexible bonds, is slippery diffusion
limited cluster aggregation (sDLCA).31,32 Slippery bonds allow
particles to move or rotate around each other as long as they
stay in contact, meaning that bonds are still unbreakable but
can change their orientation. This additional degree of freedom
generates, at least in three-dimensional simulations,31,32 aggregates
of the same fractal dimension as classical DLCA but with a larger
coordination number.

DLCA processes have been studied extensively in systems
with isotropically attractive particles25,28 but also in systems with
patchy particles bearing permanent and/or locally restricted
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interaction sites on their surfaces.23,33–38 In the latter, the
spatial orientations of interaction sites can either be free to
rotate23,33,38 or fixed in space.17,37,39,40 When the orientations of
interaction sites are fixed in space, the associated ‘chemical
gels’ undergo anisotropic diffusion limited aggregation which
yields a fractal dimension of Df E 1.5,37–41 lower than for the
isotropic case. This situation occurs, e.g., due to the presence of
external fields16,37 or in lattice models,39–41 where motion is
naturally restricted to certain directions.

In the present paper we are particulary interested in the
aggregation of colloids with field-induced multipolar interactions.
Examples are capped (metal-coated) dielectric particles studied
earlier by some of us,12,17 where time-dependent electric fields
can induce quadrupolar-like interactions. Here we consider
even more complex interactions caused by crossed (orthogonal)
fields. We briefly mention two examples of possible experimental
realizations of such systems. The first one is a quasi two-dimensional
system of suspended colloidal particles, each composed of super-
paramagnetic iron-oxide aggregates embedded in a polymer matrix,
which has been investigated experimentally by one of us.9,42 In this
case crossed external electric and magnetic fields, oriented in plane
but perpendicular to each other, can be used to induce independent
electric and magnetic dipole moments in the colloids leading to
a directed self-assembly process resulting in two-dimensional
single-particle chain networks. A second possible experimental
and quasi two-dimensional system consists of suspended colloidal
particles under the influence of two in-plane orthogonal AC
electric fields with a phase shift of p. The fields will polarize the
particles’ ionic layer periodically but at different times due to their
phase shift. By adjusting the field frequencies and phases to the
relevant timescales governing particle diffusion and the relaxa-
tional dynamics of the polarized ionic layer, two decoupled
orthogonal dipole moments in each particle can in principle be
generated by this setup. In both cases, the crossed dipole moments
might be characterized as point-like or having a finite distance
between their constitutive charges (or microscopic dipole moment
distributions in the magnetic case).

Here, we investigate the structure formation in such systems
in a conceptional fashion by means of two-dimensional Brownian
dynamics (BD) simulations of a generic particle model. The idea is
to mimick externally-induced dipole moments via two pairs of
screened Coulomb potentials that are decoupled to account either
for magnetic and electric interactions or for two temporarily
present electric interactions. The two charges associated with each
pair are shifted outward from the particle center, one parallel to the
corresponding field and the other one anti-parallel. A sketch of
such a particle with its internal arrangement of interaction
centers is shown in Fig. 1. By changing the charge separation,
we systematically investigate the (transient) structural ordering
and aggregation behavior predicted by this model.

Highlights of our results are the following: at very high
interaction energies and large charge separations we find that
the particles undergo anisotropic diffusion limited cluster aggre-
gation with rectangular local particle arrangements. Lowering
the charge separation shifts the model behavior to a slippery
diffusion limited aggregation (sDLCA) regime accompanied by a

sharp transition of the lattice structure from rectangular to
hexagonal. In the proximity of this transition we observe long-lived
or arrested frustrated structures consisting of strongly inter-
connected hexagonal and rectangular lattice domains connected
with each other. We also show that, upon increase of the tempera-
ture, the systems enter a fluid state. The corresponding ‘fluidization’
temperature turns out to be very close to the spinodal temperatures
obtained from a mean-field density functional theory.

The rest of this paper is organized as follows. In Section 2 we
present our model. Corresponding target quantities calculated
from the simulations are described in the appendix. Numerical
results are described in Section 3, where we discuss first a
specific low-temperature, low-density, state and then turn to
the role of temperature and density. Finally, our conclusions
are summarized in Section 4.

2 Theoretical model

In the present section our aim is to construct a model which
captures essential features of the interactions between colloids
in crossed fields. However, we do not claim to model one
specific (electric and/or magnetic) system in its details, but
rather provide a generic and computationally convenient
model. To this end, we consider a two-dimensional system of
N soft spheres of equal diameter s. The soft sphere interactions
are repulsive and are modeled by a shifted and truncated (12,6)
Lennard-Jones Potential

USS(rij) = 4e((s/rij)
12 � (s/rij)

6 + 1/4) (1)

which is cut off at rc,SS
ij = 21/6s. Here, rij = |rj � ri| is the particle

center-to-center distance and e sets the unit of energy.
The crossed orthogonal external fields induce orthogonal

dipole moments lm = mem and le = mee which we term for
simplicity as ‘magnetic’ and ‘electric’ dipoles (although the
model is also appropriate for two electric moments). The
coordinate frame is adjusted to coincide with the directions
of these moments so that em = ex and ee = ey. In general these
moments could have different absolute values but for simplicity

Fig. 1 Distribution of externally induced fictitious ‘‘charges’’ q inside a particle.
Positions of charges are determined by the vectors dak A [�dex,dex, �dey,dey]
pointing either parallel or anti-parallel to the corresponding fields.
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they are assumed to be equal. The two types of dipole moments
are also assumed to be independent from each other and
interact only with dipole moments of the same type on other
particles.

Intuitively, one would model the interaction energy between
dipoles of particles 1 and 2 by the point-dipole potential

Ua
dip r12ð Þ ¼ ma1 � ma2

r123
� 3

ma1 � r12
� �

ma2 � r12
� �

r125
; (2)

where a indicates the dipole type as being either e or m. Due to
the constraint la1Jl

a
2 it follows that

Ua
dip r12ð Þ ¼ ma1m

a
2

r123
1� 3

r12 � eað Þ2

r122

 !
: (3)

The resulting total dipolar interaction between two particles is
the sum of the dipolar potentials stemming from the magnetic
and electric dipoles, respectively. Using m = |lai | and the relation
(r12�ee + r12�em)2 = r12

2 (which holds since le and lm are
orthogonal) we obtain

Ue
dip r12ð Þ þUm

dip r12ð Þ ¼ � m2

r123
: (4)

The resulting interaction on the right side of eqn (4) is an
isotropic, purely attractive interaction that lacks any kind of
directional character. Therefore, the potential defined in
eqn (4) can not generate any rectangular structures as observed
in experiments.9,42 Underlying reasons for the more complex
character of the true interactions might be many-body effects
like mutual depolarization,43–45 and/or nonuniform intraparti-
cle properties e.g., the distribution of magnetic material inside
particles.46 Nevertheless, the occurrence of rectangular particle
arrangements in experiments9 suggests an effective ‘four-fold
valency’ of pair interactions, irrespective of other details. Here
we want to take into account the four-fold valency but also the
overall attractiveness (no repulsion) of the crossed point-dipole
setup [see eqn (4)]. We thus introduce, as detailed below,
artificial ‘dipole moments’ composed of charges with short-
ranged interactions. Note that the fixed orientation of dipole
moments and the overall attractiveness contrasts the ‘classical’
theoretical concepts of patchy particles,2,19–21,24 which are able
to rotate and are characterized by localized attractive and
repulsive interactions.

To be specific, each dipole moment la (with a = e, m) is
replaced by two opposite charges �qa1 = qa2 which are shifted
out of the particle center by a vector dak = (�1)kdea, with k = 1, 2.
The vector dak points either parallel (k = 2) or antiparallel (k = 1)
along the corresponding point dipole moment la. Independent
of their type, all charges have the same absolute value q = |qak| =
2.5(e/s)�1/2 and shift |d| for the sake of simplicity. In principle
though, this ‘extended’ dipole model allows also to vary the
values of q and d for different interaction types. Also, the choice
of the value q = 2.5 is essentially arbitrary, as we will later
normalize the interaction energy to eliminate the dependence
of its magnitude on the charge separation d [see eqn (8) below].
A schematic representation of the model with its internal

arrangement of ‘charges’ is shown in Fig. 1. Mimicking magnetic
dipoles via spatially separated ‘charges’ is clearly artificial from a
physical point of view, but in the spirit of the generic character of
our model.

Charges k and l on different particles i and j interact via a
Yukawa potential

U
akal
ij rij
� �

¼ �q2
exp �krakalij

� �
r
akal
ij

(5)

with r
akal
ij ¼ rj � ri þ dal � dak

�� ��. The inverse screening length is

chosen to k = 4.0s�1 and a radial cutoff rc = 4.0s is applied,
which ensures interaction energies smaller than 10�6 at cut-off
distance. Using a screened potential between the charges has
mostly computational reasons; correct treatment of the true,
long-ranged coulomb potential requires specific simulation
methods.47 In the present model the effort is enhanced by
the fact that each particle has four charges. Still, the directional
dependence of the interactions does not change due to the
screening. We also note that some of us previously used similar
models with comparable interaction ranges to describe dipolar
colloids in the framework of discontinuous molecular
dynamics simulations.18,48 The arrangement of charges inside
particles then results in a pair-interaction UDIP(rij) given by

UDIP rij
� �

¼
X2
k;l¼1

U
ekel
ij rij
� �
þU

mkml
ij rij

� �h i
: (6)

In principle, UDIP(rij) is a function of q and d. To facilitate the
comparison between the interactions at different d (q is chosen
to be constant), we normalize UDIP(rij) according to

ŨDIP(rij) = UDIP(rij) � u/UDIP(sea) (7)

where the constant u =�2.804e is calculated from the unnormalized
energy UDIP(sea) with model parameters d = 0.3s and q = 2.5(e/s)�1/2.
This procedure ensures that the normalized energy between two
particles at contact (rij = s) and direction rij = sea (pointing along
one of the fields) has the constant value u for all d, that is

ŨDIP(sea) = u. (8)

The full pair interaction of our model is then given by

U(rij) = USS(rij) + ŨDIP(rij). (9)

The resulting potential is illustrated in Fig. 2(a)–(c) for a
particle in the center of the coordinate frame and a second
particle at various distances rij and angles f = arccos(r12�ex/r12)
with ‘charge’ separations d = 0.1, 0.21, 0.3s. The value d = 0.21s
is motivated by our simulation results presented in Section 3.1.
Sterically-excluded areas are shown in white and energy values
are color coded in units of e. The weak anisotropy of the resulting
particle interactions at small d (where one essentially adds two
dipolar potentials, see eqn (4)) transforms to a patchy-like
pattern20,21 by increasing d. Energy minima become more and
more locally restricted and interactions reveal an increasing
four-fold (i.e., ‘patchy’) character, although remaining their
attractiveness in general. This is also seen in Fig. 2(d) which
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gives the energy between two particles in contact as function of f
for different d. From Fig. 2(d) we also see that, independent of
the ‘charge’ separation d, the minima of the full interaction
potential [see eqn (9)] occur for connection vectors rij = see and
rij = sem (i.e., pointing along the fields). Note that this already
holds for the unnormalized energy given in eqn (6).

Simulations are performed with N = 1800 to 3200 particles at
a range of reduced number densities r* = rs2 and temperatures
T* = kBT/e, in a square-shaped simulation cell with periodic
boundary conditions. The equations of motion

g_ri ¼ �
XN
j¼1
rU rij

� �
þ ziðtÞ (10)

are solved via the Euler scheme with an integration stepwidth
Dt = 10�4tb, where tb = s2g/kBT is the Brownian timescale, g is

the friction constant and zi(t) is a Gaussian noise vector which
acts on particle i and fulfills the relations hzii = 0 and hzi(t)zj (t0)i =
2gkBTdijd(t � t0).50 We perform simulations for up to 103tb.

3 Results

Our large-scale Brownian dynamics simulations show that the
system is very sensitive to changes in temperature T*, number
density r*, and charge separation d. In this large parameter
space we find a variety of different states ranging from small
fractal aggregates and single-chain structures at low tempera-
tures to coarser, isolated or interconnected clusters at higher
temperatures. In the following Sections 3.1–3.3 we first discuss
the structure, the time correlation functions and the fractal
dimensions at a low temperature and an intermediate density,
focussing on the impact of the model parameter d. In Sections
3.4 and 3.5 we then turn to the impact of temperature and
density.

3.1 Effect of charge separation on local order

At first we study the system at low temperature T* = 0.05 and
intermediate density r* = 0.3 for different charge separations d.
In Fig. 3 simulation snapshots for d = 0.1s, 0.21s, 0.3s at t =
300tb [see eqn (10) below] are shown, where tb is the Brownian
timescale. The colorcode reflects the orientational bond order
parameter fi

4 of each particle i. All three cases are characterized by
clusters with irregular shapes. However, local particle arrangements
differ strongly. While for d = 0.1s the particles aggregate in a
hexagonal fashion, at d = 0.3s they aggregate into rectangular
structures. At the intermediate charge separation d = 0.21s,
hexagonal order dominates the system; however, some clusters
also reveal subsets of particles in rectangular arrangements. A
more quantitative description is given by the orientational
bond order parameters F4(6) shown in Fig. 4(a) as functions
of d. By increasing d, one observes a sharp transition at d E
0.21s from hexagonal towards rectangular (square) order. This
transition turned out to be independent of the considered
particle numbers as test simulations revealed. Physically, it

Fig. 2 Normalized direction-dependent pair interaction U(rij) [see eqn (9)]
between a particle in the center of the coordinate frame and a second
particle (indicated as black circle in (a)) at various positions rij for three
different charge separations d = 0.1, 0.21, 0.3s corresponding to (a)–(c).
Sterically excluded areas are indicated by white circles. (d) Interaction
energy at distance rij = s as function of f, the angle measured in multiples
of p against the x-axis, for d = 0.1s (yellow), d = 0.21s (purple) and d = 0.3s
(black).

Fig. 3 Simulation snapshots at r* = 0.3 and T* = 0.05 for (a) d = 0.1s, (b) d = 0.21s and (c) d = 0.3s. Particles are colored according to their value of fi
4.
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can be interpreted as a reduction in valency of a ‘patchy’
particle from six-fold (isotropic interaction) to four-fold.

The very presence of such a sharp transition can be
explained via energy arguments based on the d-dependent pair
potential plotted in Fig. 2(a)–(d). To this end, we calculate the

energy Uhex
i ðdÞ ¼

P6
j¼1

U rij
� �

of a particle i with six neighbors j,

which are located in a hexagonal arrangement at ‘contact’
distance s around i. Note that not all hexagonal configurations
do have the same contact energy. This is due to the anisotropy
of interactions, see Fig. 2(d). Therefore we consider a hexagonal
configuration in which the contact energy is as low as possible
(this configuration was found numerically). The dependence of
this lowest contact energy Uhex

i (d) on the charge separation
parameter is plotted in Fig. 5. Also shown is the corresponding

energy Usq
i ðdÞ ¼

P4
j¼1

U rij
� �
¼ 4� u of a particle with four neighbors

j located at distance s in a rectangular arrangement, i.e., in the
energy minima around i (the quantity u was defined below eqn (7)).
Note that the energy U sq

i (d) does not depend on d according to
eqn (8). As shown in Fig. 5, the two curves intersect at a ‘‘critical’’
value of d = 0.24s. Thus, the simple energy arguments already
suggest a transition between states with local hexagonal and square
order, even though the predicted critical value is somewhat larger
than the value of d = 0.21s seen in the actual simulations at finite
temperature and density [see Fig. 4(a)].

Further information is gained from the behavior of the
mean coordination number as a function of d plotted in
Fig. 4(b) for three different times t = 100tb, 200tb and 300tb.
At all times considered, %z undergoes a steep decrease at d E
0.21s from a nearly constant value, %zhex E 4.5, to a value %zsq E
3.5. This behavior reflects, on the one hand, again the presence

of a sharp transition; on the other hand, the actual values of
%zhex(%zsq) reveal the ‘‘non-ideal’’ character of the aggregates in
terms of coordination numbers. For example, for d 4 0.21s we
find that %z and F4 decrease with d, while F6 increases. However,
this does not indicate a decline of the rectangular order; it
rather results from an increasing amount of particles residing
in chains oriented either in x- or y-direction. The coordination
number zi of a particle i in such a chain is r2, leading to a
mean coordination number %z o 4. Furthermore, the para-
meters fi

4 and fi
6 [see eqn (15)] become unity for a particle

forming exactly two bonds under an angle of p (straight chain).
This does not affect F4, which is already large at d 4 0.21s, but
significantly increases F6. Finally, the counter-intuitive
decrease of F4 with d results from the increasing amount of
particles with only one neighbor (e.g., ends of chains appearing
white in Fig. 3(c)). These particles yield no contribution to F4

[see eqn (15)].
The ‘‘non-ideal’’ values of %zhex and %zsq also explain why our

energy argument for the location of the hexagonal-to-square
transition, which was based on ideal arrangements with six and
four neighbors, respectively, does yield the transition value
d = 0.24s rather than d = 0.21s obtained from simulation. We
can now reformulate the argument by using the actual mean
coordination numbers extracted from our simulations, %zsq =
3.5 (instead of 4) and %zhex = 4.5 (instead of 6). Following the
calculations for the ideal arrangements described before, the
energy of the square-like arrangement is Usq = 3.5 � u. For the
hexagonal arrangement, we use the average minimum energy
with either zi = 4 or zi = 5 neighbors, yielding Ūh(%zhex, d) =
(Uhex(4, d) + Uhex(5, d))/2. The resulting critical value of the
charge separation is d E 0.21s, which coincides nicely with the
transition value observed in our simulations.

3.2 Transient character of aggregates

Although the local structures characterized by %z and F4(6)

persist, in general, over the simulation times considered, we are
still facing a transient (out-of-equilibrium) structure formation as
seen, e.g., from the slight increase of %z with time in Fig. 4(b). This
raises a question about the typical ‘‘lifetime’’ of the aggregates.

To this end we now consider dynamical properties, namely
the bond and bond-angle auto-correlation functions, cb(t) and
ca(t). It is not reasonable to extract decay rates from these

Fig. 4 Results for simulations with N = 1800 at temperature T* = 0.05 and
density r* = 0.3. (a) Orientational bond order parameters F4 for square
(black) and F6 (yellow) for hexagonal particle arrangements. (b) Mean
coordination number %z as function of charge separation d at times t =
100, 200, 300tb.

Fig. 5 Minimum energy of a particle with six neighbors in hexagonal
arrangement as function of d (black) and energy for a particle in rectan-
gular arrangement with 4 neighbors (red).
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functions (as it is usually done) because in transient states,
decay rates are, strictly speaking, functions of time themselves.
Still, it is interesting to see whether the temporal correlation of
bonds (bond angles) for different d allows us to distinguish
between qualitatively different aggregation regimes.

Numerical results for cb(t) and ca(t) are plotted in Fig. 6(a)
and (b), respectively, where we consider a large time range up to
t E 103tb. The time axis starts at the finite time when all the
systems have formed stable aggregates. The data in Fig. 6(a)
and (b) pertain to three representative values of the charge
separation parameter related to the hexagonal structures
(d = 0.1s), rectangular structures (d = 0.3s), and to the transition
region (d = 0.21s). In the square regime (d = 0.3s) the decay of
both cb(t) and ca(t) is almost identical and very slow. From this
we conclude that the square regime is characterized by almost
unbreakable bonds with fixed orientations. This is different in
the hexagonal regime (d = 0.1s) where cb(t) remains nearly
constant even after long times (meaning that bond-breaking is
very unlikely), while ca(t) decays much faster. Thus, the direc-
tions of bonds are less restricted. We interpret this behavior as
evidence that two particles, though being bonded, are still able
to rotate around each other to some extent. This is a character-
istic feature of slippery bonds. Finally, in the transition regime
(d = 0.21s) both functions cb(t) and ca(t) decay significantly
faster than in the other cases, with the decay of the bond-angle
correlation function being even more pronounced. In that
sense we may consider the bonds in the transition region also
as slippery (although less long-lived than in the other cases).

We conclude that the different structural regimes identified
in the preceding section are indeed characterized by different
relaxational dynamics. Moreover, all of the observed aggregates
have lifetimes of at least several hundred tb. Such long-lived
bonds are indicative of diffusion limited cluster–cluster aggre-
gation. In the next section we therefore consider the fractal
dimension.

3.3 Diffusion limited aggregation

In Fig. 7 the fractal dimension Df is shown as a function of d at
time t = 250tb, density r* = 0.3 and temperature T* = 0.05. We
find that Df increases slightly with d but remains in a range
between 1.4 and 1.5, except at d = 0.21s. There, the fractal

dimension exhibits a bimodal distribution, taking values
between Df E 1.48 and Df E 1.6 (dashed line in Fig. 7).

Despite these variations and taking into account the error
range, the values of Df found here are significantly smaller than
the fractal dimension Df = 1.71 observed in earlier studies of
DLCA in two-dimensional continuous (off-lattice) systems.25,28

Except for the case d = 0.21s, the values in Fig. 7 are comparable
with previous findings for DLCA in two-dimensional lattice
systems and systems with spatial or interaction anisotropies.39–41

The present system is indeed anisotropic in the sense that the
external fields impose preferences on the directions of particle
bonds and therefore also on the orientations of aggregates. This
effect is most pronounced in the rectangular regime (d = 0.3s).
Therefore, it is plausible that our system undergoes a special case
of anisotropic DLCA, in (quantitative) accordance with experi-
mental results37 and theoretical predictions.26,33,39,40 We should
note that, due to our simulation method, the cluster sizes (typically
involving 101–103 particles) are relatively small compared to the
particle numbers considered in the literature (106 particles)26,28,49

and therefore most probably subject to finite size effects. A more
accurate study of (the impact of anisotropic interactions on) the
fractal dimension is beyond the scope of this study. Still, our results
do indicate a non-typical diffusion limited aggregation behavior.

We also relate our findings to the newer concept of slippery
DLCA,31,32 where the bonds are essentially unbreakable but
able to rotate. Indeed, as discussed in Section 3.2, bonds are
slippery in nature for small d in the hexagonal regime. For
three-dimensional systems it has been reported31,32 that the
fractal dimension Df remains the same for slippery and classi-
cal DLCA, while the mean coordination number %z differs.
Specifically, %z is significantly higher for sDLCA.31,32 The same
observation emerges when we consider our values of %z plotted
in Fig. 4(b), from which one sees a pronounced decrease of %z
upon entering the square (DLCA) regime. However, in contrast
to earlier studies we find Df to slightly increase with d, espe-
cially in the hexagonal regime. We interpret this behavior as a
consequence of the fact that binding energies in the hexagonal
regime decrease with increasing values of d, while they remain
constant in the square regime (see Fig. 5). The corresponding
stability of bonds should be correlated to the binding energies
which explains the slightly increasing values of Df in the

Fig. 6 Time correlation functions obtained from simulations with N =
1800 at temperature T* = 0.05 and density r* = 0.3. (a) [(b)] Time evolution
of the bond [angle] autocorrelation function cb(t) [ca(t)] for three different
charge separations d = 0.1s, 0.21s and 0.3s colored in yellow, purple and
black respectively.

Fig. 7 Fractal dimension Df as a function of charge separation at r* = 0.3
and T* = 0.05. At d = 0.21s we find a bimodal distribution of fractal
dimension with peaks at Df = 1.48 (solid line) and 1.6 (dashed line).
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hexagonal regime. Note that the increase of Df with d turns out to be
larger (but still comparable) than the error range in Fig. 7. Hence, the
interpretation given above remains somewhat speculative.

Finally, in the transition region (d = 0.21s) we found a
bimodal distribution of the fractal dimensions Df with maxima
at Df E 1.48 and Df E 1.6. This second maximum corresponds
to only E25% of the considered cases (twelve independent
simulation runs). The first maximum at Df E 1.48 therefore
clearly dominates and fits nicely to the functional dependence
of Df on d (see Fig. 7). We assume that the less frequent peak
results from a switching of the local structures between hexagonal
and rectangular arrangements, which is accompanied by a signifi-
cantly larger bond-breaking probability (see Fig. 6(c)). Again this
allows compactification of aggregates and increases the fractal
dimension in the transition regime.

3.4 Beyond DLCA – higher temperatures

Diffusion limited aggregation is restricted to systems with
attractive particle interactions much stronger than kBT. By
increasing the temperature sufficiently, thermal fluctuations
become able to break bonds which results in a faster decay of
the bond auto-correlation functions and a compactification of
aggregates. Indeed, for square lattice models it was found that
Df is a monotonically increasing function of temperature.38,41

In Fig. 8(a) the fractal dimension Df of the present model is
plotted as a function of temperature T* for charge separations
d = 0.1s, 0.21s and 0.3s.

We first concentrate on the case d = 0.3s, corresponding to
the square regime at low T*. In the range of very low tempera-
tures T* o 0.25, the fractal dimension is small and stays
essentially constant. Increasing T* towards slightly larger
values then leads to an increase of Df, reflecting the (expected)
compactification. This increase of Df is accompanied by an
increase of the mean coordination number %z [see Fig. 8(b)]
within the temperature range considered, indicating the growing
number of bonds due to local and global structural reconfigura-
tions. The corresponding changes in the stability of the bonds
are illustrated in Fig. 9, where we have plotted the time evolution
of cb(t) for several temperatures (at d = 0.3s). Clearly, the decay of
cb(t) becomes faster for higher temperatures. This is the reason
why structural reconfigurations and, in consequence, compacti-
fication of aggregates becomes possible.

These trends persist until Tf,sq* E 0.375, beyond which the
system at d = 0.3s starts to behave in a qualitatively different
way. The mean coordination number %z displays a maximum
and subsequently a rapid decay. We also find that the fractal
dimension has not yet reached its maximum value at Tf,sq*; this
maximum occurs at the slightly larger temperature T* E 0.42
(see Fig. 8(a)). This ‘delay’ of Df can be understood from the fact
that, upon the entrance of bond-breaking, filigree parts of the
aggregates are more likely affected than more compact ones.
Hence, the fraction of ‘compact’ small aggregates still grows.
Even more important, the function F4(T*) in Fig. 8(c) displays a
pronounced decay of rectangular order for T* 4 Tf,sq. From the
sum of these indications we conclude that, at temperatures
higher than Tf,sq* E 0.375, the system transforms into a (stable
or metastable) fluid phase. In this fluid phase, the overall
structure starts to become homogeneous and isotropic, while
the local structures involve only a small number of bonds with
short bond-life times.

For the system at d = 0.1s (hexagonal structure at low T*), an
estimate of the ‘‘fluidization’’ temperature Tf,hex* based on the
behavior of order parameters, coordination number and fractal
dimension is more speculative. Nevertheless, the data suggest
that Tf,hex* 4 Tf,sq*. This is indicated, first, by the fact that
F6(T*) decays only very slowly with temperature until T* E 0.6
(see Fig. 8(c)). Second, the mean coordination number shows
only a weak maximum (and no fast decay afterwards) compared
to the case d = 0.3s. Third, the fractal dimension keeps
increasing with T* for all considered temperatures T* o 0.6.
Therefore we conclude that Tf,hex* 4 0.6. We understand this
higher fluidization temperature at d = 0.1s from the fact that

Fig. 8 Temperature dependence of the system properties at density r* = 0.3 for charge separations d = 0.1, 0.21, 0.3s colored in yellow, purple and
black, respectively. (a) Fractal dimension Df evaluated at t E 250tb, (b) mean coordination number, (c) orientational order parameters F4 and F6.

Fig. 9 Bond auto correlation function cb(t) for different temperatures T*
at charge separation d = 0.3s and density r* = 0.3.
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binding energies in hexagonal structures are larger; therefore,
higher coupling energies must be overcome.

To further justify these interpretations, particularly the
emergence of fluid phases, we performed a stability analysis of
the homogenous isotropic high temperature state based on mean-
field density functional theory (DFT). Specifically, we consider the
isothermal compressibility wT. Positive values of wT imply that the
homogeneous (fluid) phase is stable, whereas negative values
indicate that this phase is unstable. Specifically, the instability
arises against long-wavelength density fluctuations, i.e. conden-
sation. According to Kirkwood–Buff theory52 one has

wT
�1

p 1 � rc̃ (k = 0), (11)

where c̃ (0) is the Fourier transform of the direct correlation
function (DCF) c(r12) in the limit of long-wavelengths (k - 0).
We approximate the DCF for distances rij 4 s according to a
mean field (MF) approximation, that is

cMF(r12) = �(kBT)�1U(r12), r12 4 s, (12)

and use the Percus–Yevick DCF cHS(r12) of a pure hard-sphere
fluid53 for |r12| r s. The full DCF is then given by

c(r12) = cHS(r12) + cMF(r12). (13)

In Fig. 11 we present numerical results for the expression 1 �rc̃
(0) at r* = 0.3 as function of temperature. At low T*, all systems
are characterized by negative values of 1 �rc̃ (0). This indicates
that the homogeneous isotropic phase is unstable, consistent
with the results of our simulations. Upon increasing T* the
mean-field compressibility wT then becomes indeed positive for
all charge separations considered. Specifically, for d = 0.3s the
change of sign (related to a ‘‘spinodal point’’) occurs at Tf,sq* =
0.325 and for d = 0.1s at the much higher temperature Tf,hex* =
0.6. These values are in surprisingly good agreement with our
estimates for the ‘‘fluidization’’ temperatures based on the order
parameter plots.

The case d = 0.21s is again different. Here we find [see Fig. 8(b)]
that, starting from low temperatures inside the DLCA regime, the
mean coordination number monotonically decreases. However,
this does not indicate ‘‘fluidization’’ but rather a gradual transition

from a state with dominant hexagonal order towards a mixed state
comprised of coexisting clusters with local hexagonal and square-
like order. Indeed, [see Fig. 8(c)], the orientational order parameters
F4 and F6 reveal that the fraction of particles bound in square
clusters increases with T * and finally overtakes the fraction of
particles involved in hexagonal clusters at T * E 0.35. Corres-
ponding snapshots of simulation results are shown in Fig. 10. At
all temperatures considered one observes separated clusters. With
increasing temperature their shape becomes more regular, while
the local rectangular order becomes more pronounced. Finally, at
T * = 0.45 the fractal dimension Df and the square order parameter
F4 reach their maximum values, suggesting a ‘‘fluidization’’ similar
to the behavior observed at other values of d. Interestingly, our
stability analysis [see eqn (11)] indicates an instability at the same
temperature Tf* = 0.45. With this surprisingly accurate agreement
between theory and simulation, we conclude that in the transition
regime (d = 0.21s), increasing thermal fluctuations first push the
system from a dominantly hexagonal state into a rectangular one,
which then enters a metastable fluid phase after passing the
‘‘spinodal point’’.

3.5 Spotlight on higher densities

In this section we revisit the system behavior at the low
temperature T* = 0.05, but consider different densities in the
range r* r 0.7. Whereas low-density systems at T* = 0.05
display DLCA as discussed in Sections 3.1–3.3, this aggregation

Fig. 10 Simulation snapshots at r* = 0.3 with d = 0.21s at (a) T* = 0.15, (b) T* = 0.3, and (c) T* = 0.45. Particles are colored according to their value fi
4.

Fig. 11 Numerical solutions to eqn (11) as function of T* for density r* =
0.3 and charge separations d = 0.1, 0.21, 0.3s colored in yellow, purple and
black, respectively.
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mechanism is expected to disappear at higher densities: here,
the particles are just unable to diffuse sufficiently freely.
Rather, the particles will very frequently collide and then
immediately form rigid bonds. A typical structure at the highest
density considered, r* = 0.7, and separation parameter d =
0.21s is shown in Fig. 12. Clearly, the system is percolated,
that is, the particles form a single, system-spanning cluster.
Interestingly, this cluster is composed of extended regions
characterized by either square-like order or hexagonal order.
We note that, at d = 0.21s, simultaneous appearance of clusters
with both types of order also occurs at low densities and higher
temperatures (see Section 3.4). However, at the high density
considered here the regions of each type are larger and the
particle arrangements are much more regular (i.e., there are
less defects).

To better understand the impact of the density on the cluster
structures we plot in Fig. 13(a) the orientational bond order
parameters F4 and F6 as functions of r* for d = 0.21s (at d =
0.1s and d = 0.3s the order parameters are essentially indepen-
dent of the density). From Fig. 13(a) it is seen that the amount
of rectangular (hexagonal) order sharply increases (decreases)
at a density of r* E 0.45. This is a surprising result as one
would expect that, upon compressing the system, close-packed,
hexagonal structures rather become more likely. However, at

the low temperature considered here, structural reorganization
is strongly hindered.

We also note that all of the systems investigated at densities
r* 4 0.45 turned out to be percolated (suggesting that the value
r* = 0.45 is indeed related to the percolation transition). It thus
seems that the percolation tends to stabilize the initially
formed square-lattice symmetry, as the subsequent reorganiza-
tion is hindered by the lack of mobility. In effect, we are faced
with quenched states that could not densify within the time
domain studied. This interpretation is also consistent with the
decrease of the mean coordination number once the system is
percolated (r* 4 0.45) as shown in Fig. 13(b).

4 Conclusions

In this work we propose a new model for field-directed aggrega-
tion of colloidal particles with anisotropic interactions induced
by external fields. The model was inspired by recent experi-
mental work8–10,12,37,42 on novel colloidal particles in which
external fields can induce two, essentially decoupled, dipoles.

The formation of particle networks with multiple percolation
directions can find application in a range of new materials with
anisotropic electrical and thermal conduction, magnetic or electric
polarizability or unusual rheological properties. The aggregated
clusters can be dispersed in liquid, while the percolated networks
can be embedded in a polymer or gel medium.54 The key to the
fabrication of such novel classes of materials containing particle
clusters and networks is the control of the process parameters to
obtain the desired interconnectivity, density and structure.

Against this background, the focus of our theoretical study
was to understand the formation of transient, aggregated
structures appearing at low-temperatures. Performing large-
scale BD simulations we have found that, depending on the
patchyness of particles, which is governed by the distribution of
the field-induced attractive ‘‘sites’’ in the particles, different
aggregation mechanisms arise. These have been analyzed via
appropriate structural order parameters, bond time-correlation
functions as well as by the fractal dimension. Our BD results
demonstrate that by varying the charge separation parameter,
that is, the distribution of attractive sites, the systems trans-
form from DLCA (essentially rigid bonds) towards sDLCA
(slippery bonds). Moreover, we show that the change of aggre-
gation behavior is accompanied by significant changes of the
local cluster structure.

Indeed, the cluster structure can be easily manipulated by
exploiting the interplay between temperature, density and
model parameter d. This allows formation of unexpected struc-
tures e.g., pronounced rectangular packing instead of closed
packed hexagonal structures by increasing density. This unusual
behavior appears to be dictated by the inability of the originally
formed lattices with square symmetry to rearrange into more
dense hexagonal lattices. It has potentially important conse-
quences for colloidal assembly, as is points out the ability to
use mutidirectional field-driven assembly for the making of
lower-density, yet highly interconnected, phases.

Fig. 12 System at T* = 0.05, density r* = 0.7 and d = 0.21s. The colorcode
gives the orientational bond-order parameter fi

4 of each particle i.

Fig. 13 (a) Orientational bond order parameter F4 and F6 as function of
density r* for d = 0.21s at T* = 0.05. (b) Mean coordination number %z as
function of r* at T* = 0.05 for different d = 0.1s, 0.21s and 0.3s colored in
yellow, purple and black, respectively.
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Future research should focus on a more detailed investigation
of the interplay between the aggregation mechanisms observed
here (anisotropic and slippery DLCA), and the equilibrium phase
behavior, particularly the location of a condensation transition
and of percolation at higher densities. This includes investiga-
tion of the influence of entropy which we did not discuss but is
expected to strongly influence the aggregation behavior.55

Furthermore, connections to transient and directional cluster
formation mediated by DNA-links,56 long-ranged repulsion57 or
other non-equilibrium mechanisms such as activity58,59 and/or
hydrodynamics60 are of interest.

In conclusion, we studied structural and dynamical phenomena
accompanying self-assembly of complex colloids.19,23 In particular,
we have introduced a generic model describing colloids in multi-
directional fields yielding tunable multipolar interactions. Our
study thus contributes to a microscopic understanding of aggrega-
tion processes in such systems.

Appendix
Target quantities

To characterize the structure of the systems we consider several
quantities. The first one is the mean coordination number

�z ¼ 1

N

XN
i¼1

zi; (14)

where zi is the number of neighbors of particle i and the sum is
over all particles. In the following, two particles are considered
to be nearest neighbors if their center-to-center distance is
smaller than rb = 1.15s.

To identify local particle arrangements, the orientational
bond order parameter is of special importance. For particle k it
is given by

fn
k ¼

1

zk

Xzk
l¼1

exp inykll
� ��� �� (15)

with zk being the number of neighbors and ykl
l = arccos(rkl�rkl/

(rklrkl)) being the angle between the bond of particle k and its
neighbor l measured against a randomly chosen bond of
particle k to one of its neighbouring particles l. Hence, fn

k = 0
for zk o 2. The integer value n determines the type of order
which is detected by this parameter. We concentrate on f4 and
f6 to identify square (rectangular) and hexagonal lattice types.
Its ensemble average is calculated via

Fn ¼
1

N

XN
i¼1

fn
i : (16)

The reversibility of ‘bond’ formation and slipperyness of existing
bonds can be characterized by the bond and the bond-angle
auto-correlation functions cb(t) and ca(t). To evaluate cb(t) we
assign a variable bij(t) to each pair of particles at each time step
which is 1 if the particles i and j are nearest neighbors or zero
otherwise. The bond auto-correlation function is then defined as

cb(t) = hbij(t0)bij(t)i, (17)

where the brackets indicate an average over all pairs that are
bonded at time t0. The bond-angle auto-correlation function
ca(t) is defined similarly by defining the unit vector

aij(t) = rij(t)/rij(t), (18)

such that

ca(t) = h1 � arccos(aij(t)�aij(t0))/pi (19)

where we average again over all pairs. While cb gives the
information on how stable bonds are over time, ca tells how
stable their direction is over time. Note that in contrast to the
typical definition of correlation functions for stationary sys-
tems,51 here the functions cb(t) and ca(t) are not independent of
the time origin t0.

Finally, we consider the fractal dimension Df of particle
clusters, which is particularly important in the context of DLCA.
Clusters are defined as a set of particles with common next
neighbors. The size of a cluster is then quantified by its radius
of gyration

Rg
2 ¼ 1

Ncl

XNcl

i¼1
ri � �rð Þ2; (20)

where Ncl is the number of particles in the cluster, and %r is the
position of its center-of-mass. By plotting ln Rg against ln Ncl for
different clusters, we extract the fractal dimension Df via the

relationship Rg � N
1=Df

cl (see ref. 25 and 37).
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