M-MATRICES SATISFY NEWTON'S INEQUALITIES

OLGA HOLTZ

Abstract

Newton's inequalities $c_{n}^{2} \geq c_{n-1} c_{n+1}$ are shown to hold for the normalized coefficients c_{n} of the characteristic polynomial of any M - or inverse M-matrix. They are derived by establishing first an auxiliary set of inequalities also valid for both of these classes.

1. Introduction

The goal of the paper is to prove a conjecture made in [4] on a set of inequalities satisfied by (the elementary symmetric functions of) the eigenvalues of any M - or inverse M-matrix.

Let $\langle n\rangle$ denote the collection of all increasing sequences with elements from the set $\{1,2, \ldots, n\}$, let $\# \alpha$ denote the size of the sequence α, and let α^{\prime} denote the complementary or 'dual' sequence whose elements are all the integers from $\{1,2, \ldots, n\}$ not in α. Given a matrix $A \in \mathbb{C}^{n \times n}$, the notation $A(\alpha)(A[\alpha])$ will be used for the principal submatrix (minor) of A whose rows and columns are indexed by α. A matrix A is called a P-matrix if $A[\alpha]>0$ for all $\alpha \in\langle n\rangle$. A is called a (nonsingular) M-matrix if it is a P-matrix and its off-diagonal entries are nonpositive. If in this definition the positivity of all principal minors is relaxed to nonnegativity, one obtains the class of all M-matrices, including the singular ones. The class of inverse M-matrices consists of matrices whose inverses are M matrices. The M-matrices are an important class arising in many contexts (see, for example, [2, Chapter 6]).

Given a matrix A, let $c_{j}(A)$ denote the normalized coefficients of its characteristic polynomial:

$$
c_{j}(A):=\sum_{\# \alpha=j} A[\alpha] /\binom{n}{j}, \quad j=0, \ldots, n
$$

The inequalities

$$
\begin{equation*}
c_{j}^{2}(A) \geq c_{j-1}(A) c_{j+1}(A), \quad j=1, \ldots, n-1 \tag{1}
\end{equation*}
$$

are known for real diagonal matrices, i.e., simply for sequences of real numbers (see [7] and references therein), as was first proved by Newton. Since the numbers

[^0]c_{j} are invariant under similarity, Newton's inequalities (1) also hold for all diagonalizable matrices with real spectrum, and therefore also for the closure of this set, viz. for all matrices with real spectrum.

It was conjectured in [4] that Newton's inequalities are also satisfied by M - and inverse M-matrices (and by matrices similar to those). The next section contains proofs of several results on M-matrices and symmetric functions culminating in the proof of this fact.

2. Results

Let us begin by establishing a set of auxiliary inequalities first. Given an $n \times n$ matrix A and nonnegative integers m_{1}, m_{2}, k, define functions $S_{m_{1}, m_{2}, k}$ as follows

$$
\begin{equation*}
S_{m_{1}, m_{2}, k}(A):=\sum_{\substack{\alpha \in\langle n\rangle, \# \alpha=m_{1}, \beta \in\langle n\rangle, \# \beta=m_{2}, \neq \alpha \cap \beta=k}} A[\alpha] A[\beta] . \tag{2}
\end{equation*}
$$

Theorem 1. For any M - or inverse M-matrix A of order n and nonnegative integers $m<n, k<m$,

$$
\begin{equation*}
S_{m, m, k}(A) / S_{m, m, k}\left(I_{n}\right) \geq S_{m+1, m-1, k}(A) / S_{m+1, m-1, k}\left(I_{n}\right) \tag{3}
\end{equation*}
$$

where I_{n} denote the identity matrix of order n.
Proof. by induction.
Case 1 (induction base). If $k=0, n=2 m$, then (3) is a special case of Theorem 1.3 from [6]. Indeed, since $n=2 m$, the functions $S_{m . m, 0}$ and $S_{m+1, m-1,0}$ are immanants, $\lambda:=(m, m)$ and $\mu:=(m+1, m-1)$ are partitions of n, and μ majorizes λ. Then the normalized immanant corresponding to μ does not exceed the one corresponding to λ (beware a typo in [6], where the sign is reversed). If an M-matrix A is nonsingular, then $A^{-1}[\alpha]=A\left[\alpha^{\prime}\right] / \operatorname{det} A$ (see, e.g., $[3$, Section 1.4]), hence $S_{m, m, 0}\left(A^{-1}\right)=S_{m, m, 0}(A) /(\operatorname{det} A)^{2}, S_{m+1, m-1,0}\left(A^{-1}\right)=S_{m+1, m-1,0}(A) /(\operatorname{det} A)^{2}$, so the inequality (3) holds for the matrix A^{-1} as well.

Now assume (3) holds for all M - and inverse M-matrices of order smaller than n.

Case 2. Suppose $2 m-k<n$ and A is an M - or inverse M-matrix. Then both normalized functions $S_{m, m, k}(A) / S_{m, m, k}\left(I_{n}\right)$ and $S_{m+1, m-1, k}(A) / S_{m+1, m-1, k}\left(I_{n}\right)$ can be obtained by averaging the terms $A[\alpha] A[\beta]$ first over submatrices of order $n-1$:

$$
\begin{aligned}
\frac{S_{m, m, k}(A)}{S_{m, m, k}\left(I_{n}\right)} & =\frac{1}{n} \sum_{\alpha \in\langle n\rangle, \# \alpha=n-1} \frac{S_{m, m, k}(A(\alpha))}{S_{m, m, k}\left(I_{n-1}\right)} \\
\frac{S_{m+1, m-1, k}(A)}{S_{m+1, m-1, k}\left(I_{n}\right)} & =\frac{1}{n} \sum_{\alpha \in\langle n\rangle, \# \alpha=n-1} \frac{S_{m+1, m-1, k}(A(\alpha))}{S_{m+1, m-1, k}\left(I_{n-1}\right)} .
\end{aligned}
$$

But principal submatrices of M - (inverse $M-$) matrices are again M - (inverse M-) matrices ([5, p.113, p.119]), therefore the inductive assumption holds for all submatrices $A(\alpha), \# \alpha=n-1$. This implies (3) for the matrix A itself.

Case 3. Let $2 m-k=n$ and $k>0$, and let A be a nonsingular M - or inverse M-matrix. Switch to the dual case: Each $A[\alpha] A[\beta]$ in the right-hand side of (2) equals $A^{-1}\left[\alpha^{\prime}\right] A^{-1}\left[\beta^{\prime}\right] /(\operatorname{det} A)^{2}$, the index sets α^{\prime} and β^{\prime} do not intersect, and

$$
\# \alpha^{\prime}+\# \beta^{\prime}=2(n-m)<n . \text { Hence }
$$

$$
S_{m, m, k}(A)=\frac{S_{n-m, n-m, 0}\left(A^{-1}\right)}{(\operatorname{det} A)^{2}}, \quad S_{m+1, m-1, k}(A)=\frac{S_{n-m+1, n-m-1,0}\left(A^{-1}\right)}{(\operatorname{det} A)^{2}}
$$

and the functions $S_{n-m, n-m, 0}\left(A^{-1}\right), S_{n-m+1, n-m-1,0}\left(A^{-1}\right)$ are as in Case 2 above. Thus (3) holds for the matrix A^{-1} and hence for the matrix A. Finally, the set of all M - matrices is the closure of the set of nonsingular M-matrices (see, e.g., [5, p.119]), so the inequality (3) holds for singular M-matrices too.

With all possible cases considered, the theorem is proved.
Now let us see what it implies.
Lemma 2. Let Ψ denote the quadratic form
$t:=\left(t_{\alpha}\right)_{\alpha \in\langle n\rangle} \mapsto t^{*} \Psi t:=\sum_{j=0}^{m}\left(m(n-m)-(m+1)(n-m+1) \frac{m-j}{m-j+1}\right) \sum_{\substack{\begin{subarray}{c}{\alpha=\# \beta=m \\ \# \alpha \cap \beta=j} }}\end{subarray}} \overline{t_{\alpha}} t_{\beta}$.
If Ψ is nonnegative definite, then the inequalities (3) imply Newton's inequalities (1).

Proof. Expanding both sides of Newton's inequality yields

$$
\begin{aligned}
c_{m}^{2}(A) & =\sum_{j=0}^{m} S_{m, m, j}(A) /\binom{n}{m}^{2}, \quad m=1, \ldots, n-1 . \\
c_{m-1}(A) c_{m+1}(A) & =\sum_{j=0}^{m-1} S_{m+1, m-1, j}(A) /\binom{n}{m+1}\binom{n}{m-1},
\end{aligned}
$$

So, Newton's inequalities are equivalent to

$$
\begin{equation*}
m(n-m) \sum_{j=0}^{m} S_{m, m, j}(A) \geq(m+1)(n-m+1) \sum_{j=0}^{m-1} S_{m+1, m-1, j}(A), \quad m=1, \ldots, n-1 \tag{5}
\end{equation*}
$$

On the other hand, straightforward counting gives

$$
\begin{aligned}
S_{m, m, j}\left(I_{n}\right) & =\binom{n}{j}\binom{n-j}{m-j}\binom{n-m}{m-j}, \\
S_{m+1, m-1, j}\left(I_{n}\right) & =\binom{n}{j}\binom{n-j}{m-j-1}\binom{n-m+1}{m-j+1},
\end{aligned}
$$

hence the inequalities (3) are equivalent to

$$
(m-j) S_{m, m, j}(A) \geq(m-j+1) S_{m+1, m-1, j}(A)
$$

Thus, upon replacing each $S_{m+1, m-1, j}$ in the right-hand side of (5) by $(m-j) /(m-$ $j+1) S_{m, m, j}$, one obtains a set of inequalities stronger than Newton's. Precisely, these stronger inequalities assert that

$$
a^{*} \Psi a \geq 0 \quad \text { where } \quad a:=(A[\alpha])_{\# \alpha=m}
$$

So, if Ψ is nonnegative definite, it follows that Newton's inequalities are satisfied.

Thus, it remains to prove the following.

Lemma 3. $t^{*} \Psi t \geq 0$ for all t.
Proof. Consider first the quadratic form

$$
\Phi:\left(t_{\alpha}\right)_{\# \alpha=m} \mapsto t^{*} \Phi t:=\sum_{j=0}^{m} j \sum_{\substack{\# \alpha=\# \beta=m \\ \# \alpha \cap \beta=j}} \overline{t_{\alpha}} t_{\beta} .
$$

The matrix of this quadratic form is the Gramian for the system of vectors $\left(v_{\alpha}\right)_{\alpha}$ where

$$
v_{\alpha}(i):= \begin{cases}1 & \text { if } \quad i \in \alpha \\ 0 & \text { otherwise }\end{cases}
$$

hence is nonnegative definite. Moreover, the vector e of all ones is an eigenvector of Φ. The form

$$
\widetilde{\Phi}:\left(t_{\alpha}\right)_{\# \alpha=m} \mapsto t^{*} \widetilde{\Phi} t:=\sum_{j=0}^{m}(m-j+1) \sum_{\substack{\neq \alpha=\# \beta=m \\ \# \alpha \cap \beta=j}} \overline{t_{\alpha}} t_{\beta}
$$

is obtained by subtracting Φ from a positive multiple of the Hermitian rank-one matrix $e e^{*}$ (precisely $(m+1) e e^{*}$), therefore all of its eigenvalues are nonpositive except for the one corresponding to the eigenvector e, which is strictly positive. Therefore, by [1], the Hadamard inverse $\widetilde{\Psi}$ of the matrix $\widetilde{\Phi}$, i.e., the matrix

$$
\left(\frac{1}{m-\# \alpha \cap \beta+1}\right)_{\alpha, \beta}
$$

is nonnegative definite. Finally, Ψ is obtained from $(m+1)(n-m+1) \widetilde{\Psi}$ by subtracting the rank-one matrix $e e^{*}$ this time multiplied by $(n+1)$. The eigenvalue of Ψ corresponding to e is equal to zero, since

$$
\begin{aligned}
e^{*} \Psi e & =m(n-m) \sum_{j=0}^{m} S_{m, m, j}\left(I_{n}\right)-(m+1)(n-m+1) \sum_{j=0}^{m} \frac{m-j}{m-j+1} S_{m, m, j}\left(I_{n}\right) \\
& =m(n-m) \sum_{j=0}^{m} S_{m, m, j}\left(I_{n}\right)-(m+1)(n-m+1) \sum_{j=0}^{m-1} S_{m+1, m-1, j}\left(I_{n}\right)=0
\end{aligned}
$$

All the other eigenvalues of Ψ are nonnegative, so Ψ is nonnegative definite.
Note that a by-product of this Lemma is a binomial identity:
Corollary 4. $\sum_{j=0}^{m}\left(m(n-m)-(m+1)(n-m+1) \frac{m-j}{m-j+1}\right)\binom{m}{j}\binom{n-m}{m-j}=0$.
More importantly, Lemma 3 finishes the proof of Newton's inequalities.
Theorem 5. Let A be similar to an M - or inverse M-matrix. Then the normalized coefficients of its characteristic polynomial satisfy Newton's inequalities (1).

As possible applications of Theorem 5 one can envision eigenvalue localization for M - and inverse M-matrices as well as inverse eigenvalue problems.

Acknowledgements

I am grateful to Hans Schneider for his critical reading of the manuscript.

References

[1] Bapat, R. B. Multinomial probabilities, permanents and a conjecture of Karlin and Rinott. Proc. Amer. Math. Soc. 102 (1988), no. 3, 467-472.
[2] Berman, Abraham; Plemmons, Robert J. Nonnegative matrices in the mathematical sciences. Computer Science and Applied Mathematics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.
[3] Gantmacher, F. R. The theory of matrices. Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998.
[4] Holtz, Olga; Schneider, Hans. Open problems on GKK τ-matrices. Linear Algebra Appl. 345 (2002), 263-267.
[5] Horn, Roger A.; Johnson, Charles R. Topics in matrix analysis. Corrected reprint of the 1991 original. Cambridge University Press, Cambridge, 1994.
[6] James, Gordon; Johnson, Charles; Pierce, Stephen. Generalized matrix function inequalities on M-matrices. J. London Math. Soc. (2) 57 (1998), no. 3, 562-582.
[7] Niculescu, Constantin P. A new look at Newton's inequalities. JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), no. 2, Article 17, 14 pp. (electronic).

Institut für Mathematik, MA 4-5, Technische Universität Berlin, D-10623 Berlin, Germany

E-mail address: holtz@math.TU-Berlin.DE

[^0]: Received by the editors March 4, 2003.
 2000 Mathematics Subject Classification. Primary 15A42; Secondary 15A15, 15A45, 15A48, 15A63. 05E05, 05A10, 05A17, 05A19, 26D05.

 Key words and phrases. M-matrices, Newton's inequalities, immanantal inequalities, generalized matrix functions, quadratic forms, binomial identities.

 On leave from CS Department, Univ. of Wisconsin, Madison, WI 53706, USA. Supported by Alexander von Humboldt Foundation.

