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M-MATRICES SATISFY NEWTON’S INEQUALITIES

OLGA HOLTZ

Abstract. Newton’s inequalities c2n ≥ cn−1cn+1 are shown to hold for the
normalized coefficients cn of the characteristic polynomial of any M - or inverse
M -matrix. They are derived by establishing first an auxiliary set of inequalities
also valid for both of these classes.

1. Introduction

The goal of the paper is to prove a conjecture made in [4] on a set of inequalities
satisfied by (the elementary symmetric functions of) the eigenvalues of any M - or
inverse M -matrix.

Let 〈n〉 denote the collection of all increasing sequences with elements from
the set {1, 2, . . . , n}, let #α denote the size of the sequence α, and let α′ denote
the complementary or ‘dual’ sequence whose elements are all the integers from
{1, 2, . . . , n} not in α. Given a matrix A ∈ Cn×n, the notation A(α) (A[α]) will
be used for the principal submatrix (minor) of A whose rows and columns are
indexed by α. A matrix A is called a P -matrix if A[α] > 0 for all α ∈ 〈n〉. A
is called a (nonsingular) M -matrix if it is a P -matrix and its off-diagonal entries
are nonpositive. If in this definition the positivity of all principal minors is relaxed
to nonnegativity, one obtains the class of all M -matrices, including the singular
ones. The class of inverse M -matrices consists of matrices whose inverses are M -
matrices. The M -matrices are an important class arising in many contexts (see, for
example, [2, Chapter 6]).

Given a matrix A, let cj(A) denote the normalized coefficients of its characteristic
polynomial:

cj(A) :=
∑

#α=j

A[α]/

(
n

j

)
, j = 0, . . . , n.

The inequalities

(1) c2
j(A) ≥ cj−1(A)cj+1(A), j = 1, . . . , n − 1

are known for real diagonal matrices, i.e., simply for sequences of real numbers
(see [7] and references therein), as was first proved by Newton. Since the numbers
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cj are invariant under similarity, Newton’s inequalities (1) also hold for all diago-
nalizable matrices with real spectrum, and therefore also for the closure of this set,
viz. for all matrices with real spectrum.

It was conjectured in [4] that Newton’s inequalities are also satisfied by M - and
inverse M -matrices (and by matrices similar to those). The next section contains
proofs of several results on M -matrices and symmetric functions culminating in the
proof of this fact.

2. Results

Let us begin by establishing a set of auxiliary inequalities first. Given an n× n-
matrix A and nonnegative integers m1, m2, k, define functions Sm1,m2,k as follows

(2) Sm1,m2,k(A) :=
∑

α∈〈n〉,#α=m1,

β∈〈n〉,#β=m2,#α∩β=k

A[α]A[β].

Theorem 1. For any M - or inverse M -matrix A of order n and nonnegative
integers m < n, k < m,

(3) Sm,m,k(A)/Sm,m,k(In) ≥ Sm+1,m−1,k(A)/Sm+1,m−1,k(In),

where In denote the identity matrix of order n.

Proof. by induction.
Case 1 (induction base). If k = 0, n = 2m, then (3) is a special case of Theo-

rem 1.3 from [6]. Indeed, since n = 2m, the functions Sm.m,0 and Sm+1,m−1,0 are
immanants, λ :=(m, m) and µ :=(m+1, m−1) are partitions of n, and µ majorizes
λ. Then the normalized immanant corresponding to µ does not exceed the one cor-
responding to λ (beware a typo in [6], where the sign is reversed). If an M -matrix
A is nonsingular, then A−1[α] = A[α′]/ detA (see, e.g., [3, Section 1.4]), hence
Sm,m,0(A

−1) = Sm,m,0(A)/(det A)2, Sm+1,m−1,0(A
−1) = Sm+1,m−1,0(A)/(det A)2,

so the inequality (3) holds for the matrix A−1 as well.
Now assume (3) holds for all M - and inverse M -matrices of order smaller than

n.
Case 2. Suppose 2m − k < n and A is an M - or inverse M -matrix. Then both

normalized functions Sm,m,k(A)/Sm,m,k(In) and Sm+1,m−1,k(A)/Sm+1,m−1,k(In)
can be obtained by averaging the terms A[α]A[β] first over submatrices of order
n − 1:

Sm,m,k(A)

Sm,m,k(In)
=

1

n

∑

α∈〈n〉,#α=n−1

Sm,m,k(A(α))

Sm,m,k(In−1)

Sm+1,m−1,k(A)

Sm+1,m−1,k(In)
=

1

n

∑

α∈〈n〉,#α=n−1

Sm+1,m−1,k(A(α))

Sm+1,m−1,k(In−1)
.

But principal submatrices of M - (inverse M -) matrices are again M - (inverse M -)
matrices ([5, p.113, p.119]), therefore the inductive assumption holds for all sub-
matrices A(α), #α = n − 1. This implies (3) for the matrix A itself.

Case 3. Let 2m − k = n and k > 0, and let A be a nonsingular M - or inverse
M -matrix. Switch to the dual case: Each A[α]A[β] in the right-hand side of (2)
equals A−1[α′]A−1[β′]/(detA)2, the index sets α′ and β′ do not intersect, and
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#α′ + #β′ = 2(n − m) < n. Hence

Sm,m,k(A) =
Sn−m,n−m,0(A

−1)

(det A)2
, Sm+1,m−1,k(A) =

Sn−m+1,n−m−1,0(A
−1)

(detA)2

and the functions Sn−m,n−m,0(A
−1), Sn−m+1,n−m−1,0(A

−1) are as in Case 2 above.
Thus (3) holds for the matrix A−1 and hence for the matrix A. Finally, the set of
all M - matrices is the closure of the set of nonsingular M -matrices (see, e.g., [5,
p.119]), so the inequality (3) holds for singular M -matrices too.

With all possible cases considered, the theorem is proved. �

Now let us see what it implies.

Lemma 2. Let Ψ denote the quadratic form
(4)

t :=(tα)α∈〈n〉 7→ t∗Ψt :=

m∑

j=0

(m(n−m)−(m+1)(n−m+1)
m − j

m− j + 1
)

∑

#α=#β=m
#α∩β=j

tαtβ.

If Ψ is nonnegative definite, then the inequalities (3) imply Newton’s inequali-
ties (1).

Proof. Expanding both sides of Newton’s inequality yields

c2
m(A) =

m∑

j=0

Sm,m,j(A)/

(
n

m

)2

, m = 1, . . . , n − 1.

cm−1(A)cm+1(A) =

m−1∑

j=0

Sm+1,m−1,j(A)/

(
n

m + 1

)(
n

m − 1

)
,

So, Newton’s inequalities are equivalent to
(5)

m(n−m)

m∑

j=0

Sm,m,j(A) ≥ (m+1)(n−m+1)

m−1∑

j=0

Sm+1,m−1,j(A), m = 1, . . . , n−1.

On the other hand, straightforward counting gives

Sm,m,j(In) =

(
n

j

)(
n − j

m − j

)(
n − m

m − j

)
,

Sm+1,m−1,j(In) =

(
n

j

)(
n − j

m − j − 1

)(
n − m + 1

m − j + 1

)
,

hence the inequalities (3) are equivalent to

(m − j)Sm,m,j(A) ≥ (m − j + 1)Sm+1,m−1,j(A).

Thus, upon replacing each Sm+1,m−1,j in the right-hand side of (5) by (m−j)/(m−
j + 1)Sm,m,j, one obtains a set of inequalities stronger than Newton’s. Precisely,
these stronger inequalities assert that

a∗Ψa ≥ 0 where a :=(A[α])#α=m.

So, if Ψ is nonnegative definite, it follows that Newton’s inequalities are satisfied.
�

Thus, it remains to prove the following.
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Lemma 3. t∗Ψt ≥ 0 for all t.

Proof. Consider first the quadratic form

Φ : (tα)#α=m 7→ t∗Φt :=

m∑

j=0

j
∑

#α=#β=m
#α∩β=j

tαtβ.

The matrix of this quadratic form is the Gramian for the system of vectors (vα)α

where

vα(i) :=

{
1 if i ∈ α

0 otherwise,

hence is nonnegative definite. Moreover, the vector e of all ones is an eigenvector
of Φ. The form

Φ̃ : (tα)#α=m 7→ t∗Φ̃t :=

m∑

j=0

(m − j + 1)
∑

#α=#β=m

#α∩β=j

tαtβ

is obtained by subtracting Φ from a positive multiple of the Hermitian rank-one
matrix ee∗ (precisely (m + 1)ee∗), therefore all of its eigenvalues are nonpositive
except for the one corresponding to the eigenvector e, which is strictly positive.

Therefore, by [1], the Hadamard inverse Ψ̃ of the matrix Φ̃, i.e., the matrix
(

1

m − #α ∩ β + 1

)

α,β

is nonnegative definite. Finally, Ψ is obtained from (m + 1)(n − m + 1)Ψ̃ by sub-
tracting the rank-one matrix ee∗ this time multiplied by (n + 1). The eigenvalue of
Ψ corresponding to e is equal to zero, since

e
∗Ψe = m(n − m)

m
X

j=0

Sm,m,j(In) − (m + 1)(n − m + 1)
m

X

j=0

m − j

m − j + 1
Sm,m,j(In)

= m(n − m)

m
X

j=0

Sm,m,j(In) − (m + 1)(n − m + 1)

m−1
X

j=0

Sm+1,m−1,j(In) = 0.

All the other eigenvalues of Ψ are nonnegative, so Ψ is nonnegative definite. �

Note that a by-product of this Lemma is a binomial identity:

Corollary 4.
∑m

j=0(m(n − m) − (m + 1)(n − m + 1) m−j

m−j+1
)
(

m

j

)(
n−m

m−j

)
= 0.

More importantly, Lemma 3 finishes the proof of Newton’s inequalities.

Theorem 5. Let A be similar to an M - or inverse M -matrix. Then the normalized
coefficients of its characteristic polynomial satisfy Newton’s inequalities (1).

As possible applications of Theorem 5 one can envision eigenvalue localization
for M - and inverse M -matrices as well as inverse eigenvalue problems.
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