PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000-000

S 0002-9939(XX)0000-0

M-MATRICES SATISFY NEWTON’S INEQUALITIES
OLGA HOLTZ

ABSTRACT. Newton’s inequalities c% > cp—1¢n+1 are shown to hold for the
normalized coefficients ¢, of the characteristic polynomial of any M- or inverse
M-matrix. They are derived by establishing first an auxiliary set of inequalities
also valid for both of these classes.

1. INTRODUCTION

The goal of the paper is to prove a conjecture made in [4] on a set of inequalities
satisfied by (the elementary symmetric functions of) the eigenvalues of any M- or
inverse M-matrix.

Let (n) denote the collection of all increasing sequences with elements from
the set {1,2,...,n}, let #a denote the size of the sequence «, and let o/ denote
the complementary or ‘dual’ sequence whose elements are all the integers from
{1,2,...,n} not in a. Given a matrix A € C"*", the notation A(a) (A[a]) will
be used for the principal submatrix (minor) of A whose rows and columns are
indexed by «. A matrix A is called a P-matrix if Ala] > 0 for all @ € (n). A
is called a (nonsingular) M-matrix if it is a P-matrix and its off-diagonal entries
are nonpositive. If in this definition the positivity of all principal minors is relaxed
to nonnegativity, one obtains the class of all M-matrices, including the singular
ones. The class of inverse M-matrices consists of matrices whose inverses are M-
matrices. The M-matrices are an important class arising in many contexts (see, for
example, [2, Chapter 6]).

Given a matrix A, let ¢;(A) denote the normalized coefficients of its characteristic

polynomial:
n .
cita)= 3 aal/(?) j=0.n.
#a=j J
The inequalities

(1) C?(A) Z Cj_l(A)Cj+1(A), ] = 1, e, — 1

are known for real diagonal matrices, i.e., simply for sequences of real numbers
(see [7] and references therein), as was first proved by Newton. Since the numbers
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¢; are invariant under similarity, Newton’s inequalities (1) also hold for all diago-
nalizable matrices with real spectrum, and therefore also for the closure of this set,
viz. for all matrices with real spectrum.

It was conjectured in [4] that Newton’s inequalities are also satisfied by M- and
inverse M-matrices (and by matrices similar to those). The next section contains
proofs of several results on M-matrices and symmetric functions culminating in the
proof of this fact.

2. RESULTS

Let us begin by establishing a set of auxiliary inequalities first. Given an n x n-
matrix A and nonnegative integers m;, ms, k, define functions Sy, m,,k as follows

(2) Simymo k(A) = > Ala]A[5].
ac(n),#a=my,
Be(n), #B=mo,#anNpB=k
Theorem 1. For any M- or inverse M-matriz A of order n and nonnegative
integers m < n, k <m,

(3) Sm,m7k(A)/Sm7m,k(In) 2 Serl,mfl,k(A)/Serl,mfl,k(L’L)a
where I, denote the identity matrix of order n.

Proof. by induction.

Case 1 (induction base). If k = 0, n = 2m, then (3) is a special case of Theo-
rem 1.3 from [6]. Indeed, since n = 2m, the functions Sy, m,0 and Sp41,m—1,0 are
immanants, A:=(m,m) and p:=(m -+ 1,m — 1) are partitions of n, and u majorizes
A. Then the normalized immanant corresponding to y does not exceed the one cor-
responding to A (beware a typo in [6], where the sign is reversed). If an M-matrix
A is nonsingular, then A=1[a] = A[a’]/det A (see, e.g., [3, Section 1.4]), hence
Smm0(A™Y) = S m,0(A)/(det A)?, Spy1,m—1,0(A7") = Smt1,m—1,0(4)/(det A)?,
so the inequality (3) holds for the matrix A~! as well.

Now assume (3) holds for all M- and inverse M-matrices of order smaller than
n.

Case 2. Suppose 2m — k < n and A is an M- or inverse M-matrix. Then both
normalized functions Sp, m.k(A)/Sm,m.k(In) and Smi1,m—1.6(A4)/Smt+1,m-1,6In)
can be obtained by averaging the terms A[a]A[S] first over submatrices of order
n — 1

Spmad) _ 15~ SnnalA(a)

m m k(In) n ac(n),Fa=n—1 Sm,m,k(jn—l)
Smprm-1k(4) 1 3 Smt1,m—1,k(A())
m+1m 1k(In) n m+1m 1k(In 1)

a€(n),#a=n—1

But principal submatrices of M- (inverse M-) matrices are again M- (inverse M-)
matrices ([5, p.113, p.119]), therefore the inductive assumption holds for all sub-
matrices A(w), #a =n — 1. This implies (3) for the matrix A itself.

Case 3. Let 2m — k = n and k& > 0, and let A be a nonsingular M- or inverse
M-matrix. Switch to the dual case: Each A[a]A[f] in the right-hand side of (2)
equals A~1[/]A71[3]/(det A)?, the index sets o' and 3 do not intersect, and
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#a' + #5 =2(n —m) < n. Hence

Snfm,nfm,O(Ail) Snferl,nfmeO(Ail)
(det A)2 ’ (det A)2

and the functions Sy, —m n—m,0(A71), Sp—m+1,n—m—1,0(A7") are as in Case 2 above.
Thus (3) holds for the matrix A~! and hence for the matrix A. Finally, the set of
all M- matrices is the closure of the set of nonsingular M-matrices (see, e.g., [5,
p.119]), so the inequality (3) holds for singular M-matrices too.

With all possible cases considered, the theorem is proved. ([

Sm,m,k(A) -

Sm+1,m—1,k(A) =

Now let us see what it implies.

Lemma 2. Let ¥ denote the quadratic form
(4)

= (ta)aeqn = 10E=Y_(mln—m)—(mA Dn—mt ) Ttn) Y Tats,
=0 #oa=#p=m
#anp=j
If U is nonnegative definite, then the inequalities (3) imply Newton’s inequali-
ties (1).

Proof. Expanding both sides of Newton’s inequality yields

gsm,mg(fl)/(:l) , m=1,...,n—1
> Sm+1,m-1,j(A>/(m1 1) (m’i 1),

So, Newton’s inequalities are equivalent to

(5)

e (4)

Cm—1 (A)Cm+1 (A)

m m—1
m) Y Sm i (A) = (mA1)(n=m+1) Y Spyrm-15(A), m=1,... .01
j=0 7=0

On the other hand, straightforward counting gives

Sunstt) = () (:f_jj) ()
Smt1,m—1,jIn) = <§L> <mn_;]— 1) (:ﬂn—_ﬂji i)

hence the inequalities (3) are equivalent to
(m = 5)Sm,m,i(A) = (m = j + 1)Smi1,m-1,;(A).

Thus, upon replacing each Sy, +1,m—1,; in the right-hand side of (5) by (m—j)/(m—
J + 1)Sm,m,;, one obtains a set of inequalities stronger than Newton’s. Precisely,
these stronger inequalities assert that

a*Va >0 where a:=(A[a])ga=m.-

So, if ¥ is nonnegative definite, it follows that Newton’s inequalities are satisfied.
O

Thus, it remains to prove the following.
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Lemma 3. t*Wt > 0 for all t.

Proof. Consider first the quadratic form

m
O (ta)pamm — 0= 5 Y Tats
J=0 #a=#p=m
#anpB=j

The matrix of this quadratic form is the Gramian for the system of vectors (v4)a

where
1 if i€
V(i) = if 4 .a
0 otherwise,

hence is nonnegative definite. Moreover, the vector e of all ones is an eigenvector
of ®. The form

. . m

O (ta)pamm = P:=Y (m—j+1) > Ity

§=0 #a=#p=m
#anp=j

is obtained by subtracting ® from a positive multiple of the Hermitian rank-one
matrix ee* (precisely (m + 1)ee*), therefore all of its eigenvalues are nonpositive
except for the one corresponding to the eigenvector e, which is strictly positive.
Therefore, by [1], the Hadamard inverse U of the matrix Ci, i.e., the matrix

1
<m—#aﬂﬁ+1>aﬁ

is nonnegative definite. Finally, ¥ is obtained from (m 4 1)(n — m + 1)¥ by sub-
tracting the rank-one matrix ee* this time multiplied by (n 4+ 1). The eigenvalue of
U corresponding to e is equal to zero, since

Ve = m(n—m)Zsm,m,j(In)—(m+ 1)(n—m+ )ZTilsmm,J( )
j=0 7=0
m m—1

= m(n — m)zsm,m,](ln) - (m+ ’I’L -m+1 Z Sm+1 m— 1,] ) =0.
j=0 j=0

All the other eigenvalues of ¥ are nonnegative, so ¥ is nonnegative definite. O
Note that a by-product of this Lemma is a binomial identity:

Corollary 4. E;nzo(m(n —m) = (m+1)(n—m+1)-2J )(m) (n m) =0.

m—j+1 m—j

More importantly, Lemma 3 finishes the proof of Newton’s inequalities.

Theorem 5. Let A be similar to an M - or inverse M -matrixz. Then the normalized
coefficients of its characteristic polynomial satisfy Newton’s inequalities (1).

As possible applications of Theorem 5 one can envision eigenvalue localization

for M- and inverse M-matrices as well as inverse eigenvalue problems.
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