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Abstract

The effect of vehicle active safety systems is subject to the friction force arising from the

contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road

friction coefficient is of great importance to achieve a good performance of these control

systems. This paper presents a tire-road friction coefficient estimation method for an

advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longi-

tudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed

estimation design. An upper estimator is developed based on unscented Kalman filter to

estimate vehicle state information, while a hybrid estimation method is applied as the

lower estimator to identify the tire-road friction coefficient using general regression neural

network (GRNN) and Bayes’ theorem. GRNN aims at detecting road friction coefficient

under small excitations, which are the most common situations in daily driving. GRNN is

able to accurately create a mapping from input parameters to the friction coefficient, avoid-

ing storing an entire complex tire model. As for large excitations, the estimation algorithm

is based on Bayes’ theorem and a simplified “magic formula” tire model. The integrated

estimation method is established by the combination of the above-mentioned estimators.

Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on

different road surfaces and driving maneuvers to verify the effectiveness of the proposed

estimation method.

Introduction

Many advanced vehicle control systems, such as the anti-lock braking system (ABS), the accel-

eration slip regulation (ASR), and the electronic stability programming (ESP), have become

standard equipment on automobiles nowadays to guarantee the vehicle stability under critical

conditions [1–3]. The performance of them relies heavily on the accurate knowledge of tire-

road friction coefficient (TRFC). For example, electronic stability programming (ESP) can pre-

cisely compute the control boundary with the awareness of TRFC in order to make full use of

available traction and braking torque. Besides, regarding adaptive cruise control system a

known friction coefficient enables it to make the braking decision timely and accurately. How-

ever for the reason of technical or cost, such an important parameter cannot be directly

PLOS ONE | DOI:10.1371/journal.pone.0171085 February 8, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS
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measured. Therefore, in order to obtain a relatively ideal dynamic control effect, the TRFC

should be estimated precisely and robustly.

Quite a few studies have been carried out to work out different estimation approaches. Gen-

erally speaking, these estimation methods are mainly classified into two categories: “cause-

based” and “effect-based” approaches [4]. “Cause-based” approaches estimate the TRFC by

detecting road coverings (water, snow, ice, oil etc.) using special sensors like optical camera

and temperature sensors, etc. F. Holzmann [5] proposed a predictive methodology for the esti-

mation of friction coefficient by using a camera and a microphone. The road surface is

deduced through matching the current specimen with the prestored specimens. In [6], a

method for detection of ice formation on road surfaces was presented. It used infrared ther-

mometers to detect heat energy emitted during freezing, which was verified in field conditions.

These caused-based methods make it possible to estimation TRFC without physical excitation.

However, these friction condition recognition methods are conducted only from the aspect of

road conditions. The other factors such as tire state (new or worn, winter tire or summer tire)

or tire pressure are not taken into account.

“Effect-based” approaches use vehicle and tire dynamic effects such as tire-tread deforma-

tion, vehicle dynamics, and so on. Tire-tread deformation measurement relies heavily on the

sensor capability. Therefore it is difficult to be applied on production vehicles due to the cost

and the technical challenges of the sensors [7]. Resulting from the fairly easy and cost-effective

implementation, the estimation approaches using vehicle dynamic response information has

drawn increasing interest in recent years [8–12]. In [13], an estimation method of TRFC was

introduced based on extend Kalman filter and neural network. Simulation results show that

under uncritical driving conditions it has a good performance. Y. J. Hsu and J. Gerdes [14]

proposed an algorithm to obtain the friction coefficient using readily available steering torque

information and measured sideslip angle from GPS device. G. Xsin [15] presented a maximum

TRFC estimator by comparing the samples of the estimated TRFC with the standard TRFC of

each typical road, and using the minimum statistical error as the recognition principle to

improve identification robustness. Aiming at four-wheel independently actuated electric vehi-

cles, a TRFC estimation method was developed with the assistance of the additional yaw

moment induced by the longitudinal tire force difference [16, 17].

In this study, the presented hierarchical estimation method focuses on the dynamic charac-

teristics of a four-motorized-wheels electric vehicle to achieve the TRFC estimation and con-

tributes in the following aspects: first, an estimator based on unscented Kalman filter (UKF) is

applied to identify vehicle motion states as well as tire forces. These estimated values are used

as inputs of the TRFC estimation algorithm. Subsequently, according to the different levels of

dynamic excitation, a hybrid TRFC estimator is developed by means of artificial neural net-

work (ANN) and Bayesian theorem. Finally, the vehicle state estimator and TRFC estimator

are able to simultaneously communicate and correct each other throughout the whole estima-

tion process.

This paper proceeds as follows. Section 2 presents a mathematical vehicle dynamic model.

Estimation algorithms including vehicle state estimation and TRFC estimation are described

in section 3. The results of computer simulation are shown and analyzed in Section 4. At last,

Section 5 concludes this paper.

Vehicle modeling

The section presents a 3-DOFs vehicle motion model, which serves as a basis of the UKF esti-

mator. Subsequently, in order to estimate longitudinal and lateral tire forces, the wheel dynam-

ics equation and “Pacejka 2002” tire model are used.

Tire-road friction coefficient estimation
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Vehicle motion submodel

There exists a contradictory relationship between the complexity of vehicle dynamics model

and performance of the estimator. A model with high DOF is precise and contains more

dynamic information, however requires a larger number of parameters that are difficult to

acquire. If inappropriate parameters are used, the model containing high DOF would generate

further errors when compared to the model with low DOF. Therefore, there is a need of bal-

ance and compromise between the modelling complexity and estimator performance. This

paper has selected the 3 DOFs vehicle model as the basis of the estimator mainly by consider-

ing the following aspects:

1. The vertical DOFs of the vehicle body and suspension system mainly affect the vehicle

smoothness and comfort but have little effect on the vehicle stability. Thus they are con-

sciously omitted in the mathematical modelling.

2. The normal load of each tire is constantly altered, which is caused by the lateral and longitu-

dinal vehicle load transfer during the steering, acceleration and deceleration. Meanwhile,

the tire normal load has a directly effect on tire cornering stiffness and longitudinal stiff-

ness, which also leads to the control boundary changing of the controller [10, 18]. There-

fore, it is very essential to take into account the load transfer for a better analysis about the

vehicle characteristics. Two main reasons may lead to vehicle load transfer: one is the iner-

tial force generated by the longitudinal or lateral acceleration. It is the decisive factor that

causes whole vehicle load transfer; the other is the pitch and the roll dynamics that results

in the change of center of gravity and causes load transfer. It has very little influence on the

vehicle load transfer. As a consequence, during the development of the estimator, we should

ignore the pitch and roll dynamics and only focus on the load transfer due to the inertial

force in order to improve the computational efficiency.

From the reasons discussed above, the vehicle modelling starts from a vehicle motion sub-

model with 3 DOF, the longitudinal velocity u, the lateral velocity v, and the yaw rate r. It is

assumed that the vehicle is moving on a flat horizontal plane. Additionally, the vertical, roll

and pitch dynamics are omitted in order to reduce the state variables and computational

effort.

Fig 1 shows a typical schematic diagram of vehicle model. The wheel positions is numbered

with the subscript ij = fl,rl,fr,rr denoting front left, rear left, front right and rear right

respectively.

The vehicle motion equations can be expressed as follows. Longitudinal and lateral motions

along the x and y-axis:

m � ax ¼
X

Fx ij þ
1

2
CDAf ru2 ð1Þ

m � ay ¼
X

Fy ij ð2Þ

Rotational motions of yaw about z-axis:

Iz � _r ¼ aðFy fl þ Fy frÞ � bðFy rl þ Fy rrÞ þ T=2ðFx fl þ Fx rlÞ � T=2ðFx fr þ Fx rrÞ ð3Þ

where ax is the longitudinal acceleration; ay is the lateral acceleration and r is the yaw rate; Cd,

A and ρ denote the air resistance coefficient, the frontal projected area and the air density,

Tire-road friction coefficient estimation
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respectively. Moreover, the acceleration terms are defined as

ax ¼ _u � vr ð4Þ

ay ¼ _v þ ur ð5Þ

The forces Fx_ij and Fy_ij are the tire forces along the x and y axis, which could be expressed

as functions of the tire longitudinal and lateral forces by the following equations

Fx ij ¼ Ft ij � cos dT ij � Fs ij � sin dT ij ð6Þ

Fy ij ¼ Ft ij � sin dT ij þ Fs ij � cos dT ij ð7Þ

where δT_ij is the steering angle of wheel ij; Ft_ij and Fs_ij denote the longitudinal and lateral

forces of tire.

Fig 1. Schematic diagram of a vehicle model.

doi:10.1371/journal.pone.0171085.g001
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According to the longitudinal and lateral load transfer, the normal load expressions can be

written as

Fz fl ¼ mg
b
2l
� max

h
2l
þmay

b
l
h
T

ð8Þ

Fz rl ¼ mg
b
2l
þmax

h
2l
þmay

a
l
h
T

ð9Þ

Fz fr ¼ mg
b
2l
� max

h
2l
� may

b
l
h
T

ð10Þ

Fz rr ¼ mg
b
2l
þmax

h
2l
� may

a
l
h
T

ð11Þ

Wheel dynamics

As for the 4-motorized-wheels EV, the torque signal of each tire can be measured directly.

Thus the longitudinal force can be calculated by the rotational dynamic equation instead of

complicated tire models, which is shown below:

Ft ij ¼
Tm ij � beta � Jw � _wij

R
; ij ¼ fl; fr; rl; rr ð12Þ

where wij is the wheel rotational speed; Jw is the wheel rotational inertia; beta is the transmis-

sion ratio; Tm_ij denotes the motor torque output. Besides, R is the tire loaded radius and in

this study it is assumed to be a constant.

“Pacejka 2002” tire model

In this study, the well-known semi-empirical “Pacejka 2002” tire model [19] is employed for

lateral tire force calculation and also for the artificial neural network data collecting. The dif-

ference of the two applications is that for lateral tire force calculation, only the related parame-

ters and equations are used, which reduces the computational effort, however all the

parameters and equations involved in tire model are taken into consideration for artificial neu-

ral network training.

Longitudinal and lateral forces are calculated by “Pacejka 2002” in two steps. First for pure

slip condition [19]:

Ft0 ¼ Dxsin Cx arctan Bxl � Ex½Bxl � arctanðBxlÞ�f gf g þ SVx ð13Þ

Fs0 ¼ Dy sin Cy arctan Bya � Ey½Bya � arctanðByaÞ�
n on o

þ SVy ð14Þ

Subsequently for the combined slip condition [19]:

Ft ¼ GxFt0 ð15Þ

Fs ¼ GyFs0 þ SVyk ð16Þ

where Gx and Gy are the weighting functions if the longitudinal and lateral force for pure slip

which always have the values between 0 and 1. The lateral and longitudinal slip ratio of each

Tire-road friction coefficient estimation
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tire are given as

aij ¼ df � arctan
v þ ar

u� 1

2
Tr

� �

; ij ¼ fl; fr ð17Þ

aij ¼ � arctan
v � br

u� 1

2
Tr

� �

; ij ¼ rl; rr ð18Þ

lij ¼ �
uwij
� R � oij

uwij

; ij ¼ fl; fr; rl; rr ð19Þ

The wheel center speed uw_ij is given by

uw ij ¼ u�
1

2
Tr

� �

cosdf þ ð v þ arÞsindf ; ij ¼ fl; fr ð20Þ

uw ij ¼ u�
1

2
Tr ; ij ¼ rl; rr ð21Þ

For the sake of simplicity, the wheel camber is neglected as a low-effect parameter. Addi-

tionally, the self-aligning torque also is not taken into account, for the artificial network aims

at establish the relationship only between longitudinal and lateral tire forces and road friction

coefficient.

Hierarchical estimation algorithm design

The block diagram of Fig 2 shows the hierarchical estimation system. The driver desired torque

and steering angle are the control input for the detailed vehicle model in CarSim and the UKF

estimator. Moreover, the CarSim model also provides the measurement input of the wheel rota-

tional speed, the yaw rate, the longitudinal and lateral acceleration. Since motor torque and

Fig 2. Block diagram of the proposed hierarchical estimator.

doi:10.1371/journal.pone.0171085.g002
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wheel rotational speed signals can be directly acquired from the motor controller, the longitudi-

nal tire force is calculated based on Eq (12). According to Eq (14) of “Pacejka 2002” tire model

with an initial friction coefficient 0.8, after identifying the vehicle motion states x = [u, v, r]T

using UKF estimator, the lateral tire force is also obtained. These estimated values from UKF

estimator are used as the inputs of the hybrid TRFC estimator. Meanwhile, the friction coeffi-

cient, which is the output of the hybrid TRFC estimator, in turn is taken as the input of the UKF

estimator. Throughout the whole estimation process, the two estimators simultaneously com-

municate and correct each other to accurately achieve combined state and TRFC estimation.

Vehicle state estimation based on UKF

According to the vehicle model described in section 2, the dynamic system can be rewritten in

the form of discretization nonlinear transition equation as follows

xðkÞ ¼ f ðxðk � 1Þ; uðk � 1Þ;wðk � 1ÞÞ

yðkÞ ¼ hðxðk � 1Þ; vðk � 1ÞÞ
ð22Þ

where x(k) is the state at the sampling time k, x = [u, v, r]T; u(k) is the input to the system at the

sampling time k, u = [δ, Tm_ij]T; y(k) is a set of measurement output, u = [ax, ay, r, wij]T.

Besides, w and v are the process noise and measurement noise vectors, assuming to be white

Gaussian uncorrelated noises.

For the state estimation of nonlinear system, the extended Kalman filter (EKF) is a widely

used approach [20]. However the main drawback of the EKF is Jacobian matrices calculation,

which requires costly computation. Besides, EKF only employs the first order Taylor expan-

sion on nonlinear system, which may lead to great error or even divergence of the filter if the

model is serious nonlinear. Addressing these issues, the UKF utilizes a deterministic sampling

technique known as the unscented transform (UT) to pick a minimal set of sample points

(called sigma points) around the mean, which is a derivative-free alternative to EKF and mean-

while avoids the expensive update of the Jacobian matrix on each iteration. Additionally, UKF

achieves third order Taylor series expansion accuracy [21]. Thus in this study, UKF is applied

and elaborated as follows.

Considering a nonlinear time-discrete y = g(x) with mean �x and covariance Px, to calculate

the statistics of y, 2L+1 sigma points χi with its corresponding weighting factors is formulated

as following equations

w0 ¼ �x i ¼ 0

wi ¼ �x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ lÞPx

p

i i ¼ 1; . . . . . . ; L

wi ¼ �x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ lÞPx

p

i� L i ¼ Lþ 1; . . . . . . ; 2L

WðmÞ
0 ¼ l=ðLþ lÞ

WðcÞ
0 ¼ l=ðLþ lÞ þ 1 � a2 þ b

WðmÞ
i ¼WðcÞ

i ¼ 0:5=ðLþ lÞ i ¼ 1; 2; . . . ; 2L

8
>>>>>>>>>><

>>>>>>>>>>:

ð23Þ

where L is the dimension of x; λ = α2(L + κ) − L is a scaling parameter.α determines the spread

of the sigma points around �x and is usually set to a small positive value (e.g. 1e-3). κ is a sec-

ondary scaling parameter which is normally set to a positive value to ensure that the covariance

matrix is positive definite. β is used to incorporate prior knowledge of the distribution of x,

which affects the weighting of the zeroth sigma point for the calculation of the covariance. For

Gaussian distribution, β = 2 is optimal [22]. These sigma vectors are propagated through non-

linear function yi = g(χi), i = 0,1,. . .2L. The mean and covariance of y are estimated using the

Tire-road friction coefficient estimation
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weighted sample mean and covariance of the posterior sigma points as follows,

�y ¼
X2L

i¼0

WðmÞ
i yi ð24Þ

Py ¼
X2L

i¼0

WðcÞ
i ðyi � �yÞðyi � �yÞT ð25Þ

On the basis of unscented transform, the main steps of UKF are put forward:

1. Initialize vehicle state and covariance matrix at time step k = 0 with

x̂0 ¼ E½x0� ð26Þ

Px0 ¼ E½ðx0 � x̂0Þ � ðx0 � x̂0Þ
T

ð27Þ

2. For time step k = 1, 2 . . ., calculate sigma points in sigma vector

χðk � 1Þ ¼

x̂ðk � 1Þ

x̂ðk � 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ lÞPðk � 1Þ

p

x̂ðk � 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ lÞPðk � 1Þ

p

2

6
6
4

3

7
7
5

T

ð28Þ

3. Time update

• Propagate the sigma points through Eq (22).

χðkjk � 1Þ ¼ f ðχðk � 1Þ; uðk � 1Þ;wðk � 1ÞÞ ð29Þ

• The propagated mean calculation

x̂ðkjk � 1Þ ¼
X2L

i¼0

WðmÞ
i � χiðkjk � 1Þ ð30Þ

• The propagated covariance calculation

Pxðkjk � 1Þ ¼
X2L

i¼0

WðcÞ
i � ½χiðkjk � 1Þ � x̂ðkjk � 1Þ� � ½χiðkjk � 1Þ � x̂ðkjk � 1Þ�

T
þ Qk ð31Þ

4. Measurement update

• Propagate sigma points through measurement function

yðkjk � 1Þ ¼ hðχðk � 1Þ; uðk � 1Þ; vðk � 1ÞÞ ð32Þ

• The propagated mean calculation

ŷðkjk � 1Þ ¼
X2n

i¼0

WðmÞ
i � yiðkjk � 1Þ ð33Þ

• The propagated covariance and the Kalman gain calculation

Pyðkjk � 1Þ ¼
X2n

i¼0

WðcÞ
i � ½yiðkjk � 1Þ � ŷðkjk � 1Þ� � ½yiðkjk � 1Þ � ŷðkjk � 1Þ�

T
þ Rk ð34Þ

Tire-road friction coefficient estimation

PLOS ONE | DOI:10.1371/journal.pone.0171085 February 8, 2017 8 / 21



Pxyðkjk � 1Þ ¼
X2n

i¼0

WðcÞ
i � ½χiðkjk � 1Þ � x̂ðkjk � 1Þ� � ½yiðkjk � 1Þ � ŷðkjk � 1Þ�

T
ð35Þ

KðkÞ ¼ Pxyðkjk � 1Þ � Pyyðkjk � 1Þ
� 1

ð36Þ

where K(k) is the Kalman gain matrix.

• Update the vehicle state estimation and state covariance

x̂ðkjkÞ ¼ x̂ðkjk � 1Þ þ KðkÞ � ½yðkÞ � ŷðkjk � 1Þ� ð37Þ

PxxðkjkÞ ¼ Pxðkjk � 1Þ � KðkÞ � Py � KðkÞ
T

ð38Þ

Hybrid estimator design for tire-road friction coefficient

The main objective of this section is to develop a robust TRFC estimator with a wide using

range. It is obvious that appropriate excitations are very important for a TRFC estimation algo-

rithm. However, since the excitation itself is just a response to road condition and driver

behavior, the type and degree of excitations in vehicle applications are random at some point.

Concerning this issue, a novel hybrid estimator consisting of two estimation algorithms is pro-

posed according to the excitation levels, as shown in Fig 3. The TRFC estimation here is

achieved through synthesizing the vehicle response to both longitudinal and lateral excitations

instead of just one of them.

The main objective of this section is to develop a robust TRFC estimator with a wide using

range. It is obvious that appropriate excitations are very important for a TRFC estimation algo-

rithm. However, since the excitation itself is just a response to road condition and driver

behavior, the type and degree of excitations in vehicle applications are random at some point.

Concerning this issue, a novel hybrid estimator consisting of two estimation algorithms is pro-

posed according to the excitation levels. As shown in Fig 3, ŝ, â, F̂x , F̂y and F̂z are the estimated

slip ratio, slip angle, longitudinal, lateral and vertical force, respectively, from UKF estimator.

Dynamic excitations acted on the vehicle are classified into small and large levels based on the

estimated slip ratio and slip angle. The TRFC estimation here is achieved through synthesizing

the vehicle response to both longitudinal and lateral excitations instead of just one of them.

GRNN-based estimator design. A GRNN is a powerful regression tool with a relatively

simple network [23]. In this section it is applied to detect TRFC under small excitations, which

are the most common situations in daily driving. Two main benefits from this method are that

firstly a GRNN can establish network connections between input and output instead of storing

an entire complex tire model in the controller, which can significantly reduce the computa-

tions and guarantee the real time performance; secondly because the GRNN is trained by mea-

sured data, it is able to accurately create a mapping from input parameters to the friction

coefficient [24]. Besides, it should be noted that a successful training of a neural network needs

a data set that traverses all driving conditions, which is difficult to be achieved. Nevertheless

since the proposed GRNN estimator only serves for small excitations conditions, the range of

input parameters is limited, which objectively makes it possible to acquire the data that just

comprises the relevant conditions to train the network.

As previously stated, in this article the step of data collecting is conducted according to

“Pacejka 2002” tire model. In the data generation process, friction coefficient, normal tire load,

slip ratio, and slip angle are taken as the input of the tire model and then longitudinal and lat-

eral tire forces can be calculated. Under the precondition of small excitations, the range of

Tire-road friction coefficient estimation
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variation of the input parameters to the tire model is bounded as shown in Table 1. Addition-

ally, the distribution of the given inputs is independent with each other.

The GRNN regression formula is given as:

Ŷ ðXÞ ¼

Pn
i¼1

Yiexp � ðX� XiÞT ðX� XiÞ
2s2

� �

Pn
i¼1

exp � ðX� XiÞT ðX� XiÞ

2s2

� � ð39Þ

where X is the independent input variables and Y is corresponding output. Moreover, in the

network the smoothing factor σ is the only parameter that can be adjusted. It determines the

generalization ability of the network. When σ is made large, the estimated density is forced to

be smooth and in the limit becomes a multivariate Gaussian with covariance σ2 · I (unit

matrix), while a smaller σ allows the estimated density to assume non-Gaussian shapes, but

with the hazard that wild points may have a great effect on the estimate [23]. It is therefore nec-

essary for GRNN modeling to find the optimum smoothing factor. The whole process of

GRNN establishment is illustrated in Fig 5, where K-fold cross validation [25] is applied to

Fig 3. Structure of the hybrid estimator for TRFC.

doi:10.1371/journal.pone.0171085.g003

Tire-road friction coefficient estimation
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Table 1. Ranges of Input Parameters.

Input parameter Range of variation

Tire-road friction coefficient 0.1 to 1 at intervals of 0.1

Normal load Fz [1700 4500] N

Slip ratio λ [-2 2] %

Slip angle α [-0.05 0.05] rad

About 100,000 original data are obtained from data collecting stage. Two-thirds of the collected data are

randomly taken as the training set and the rest as the test set. The data of Fz, λ, α, Fx, and Fy are fed into the

neural network, while the TRFC is set as the output of the neural network. Fig 4 shows the GRNN

architecture used for the TRFC estimation.

doi:10.1371/journal.pone.0171085.t001

Fig 4. GRNN architecture used for the TRFC estimation.

doi:10.1371/journal.pone.0171085.g004

Fig 5. The process of GRNN establishment.

doi:10.1371/journal.pone.0171085.g005

Tire-road friction coefficient estimation
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calculate an appropriate smoothing parameter at which the mean absolute error (MAE) of the

network was the lowest [26]. As shown in Fig 6 the optimal smoothing factor is finally set as

0.082.

Bayesian theorem-based estimator design. The GRNN-based algorithm cannot perform

well if the tire slip ratio or slip angle is beyond the limited range. Bayes-based estimator is

designed to extend the range of RBF-based estimator. Estimated forces from UKF are firstly

normalized by their respective normal forces and then compared with those from a nominal

tire model to determine the most probable friction coefficient from a set of hypothesized val-

ues [12, 27].

The estimated forces of each wheel from UKF are normalized as follows,

φ̂i ¼
½ F̂ ti F̂ si �

T

F̂ zi

ð40Þ

i = fl, fr, rl and rr represents the front left, front right, rear left and rear right wheel.

In addition, the tire forces according to the nominal “Pacejka 2002” tire model is denoted

by ψ̂ i;j,

ψ̂ i;j ¼
PACðŝ; â; F̂ zi; mi;jÞ

T

F̂ zi

; j ¼ 1; 2; 3 . . . . . . 10 ð41Þ

where j represents the set of hypothesized friction coefficients.

Then likelihood function of μi,j is

Lðmi;jjφ̂iÞ ¼ pðφ̂ijmi;jÞ

¼ pðφ̂ijψ̂ i;jÞ ¼
1

2p � jΣj1=2
exp �

1

2
ðφ̂i � ψ̂ i;jÞ

TV � 1ðφ̂i � ψ̂ i;jÞ
� �

ð42Þ

Eq (42) describes the estimation of parameter μi,j for a given outcome φ̂i. In this equation ∑
is a 2 × 2 covariance matrix. pðφ̂ijmi;jÞ is the probability density of obtaining φ̂i under a given

TRFC μi,j.

The prior probability of road-tire coefficient μi,j is defined P0(μi,j) and equals to 1

10
.

Fig 6. The selection of the smoothing factor.

doi:10.1371/journal.pone.0171085.g006
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On basis of Bayes’ theorem, at sampling time tk, the conditional probability of μi,j under the

estimated φ̂k;i is given as

Pkþ1ðmi;jjφ̂kþ1;iÞ ¼
pðφ̂k;ijmi;jÞ � Pkðmi;jÞ

P10

j¼1
pðφ̂k;ijmi;jÞ � Pkðmi;jÞ

; k ¼ 0; 1; 2 . . . . . . ð43Þ

The current TRFC is calculated by a weighted sum

m̂k ¼
X10

j¼1
Pkþ1ðmi;jjφ̂kþ1;iÞ � mi;j ð44Þ

At the next sampling time tk+1, by repeating the above process, the online friction coeffi-

cient estimation for large excitations can be achieved.

Simulation results

The simulation presented in this section is carried out through the co-simulation of Matlab/

Simulink and CarSim. It should be noted that a detailed vehicle model in CarSim involves a

full-vehicle multibody dynamics model (including a closed-loop driver model, powertrain sys-

tem, brake system and “Pacejka 2002” tire model, etc.) that is much more complex and com-

plete than the model used for UKF estimator design. Therefore, the CarSim vehicle model is

used to simulate a real vehicle, provide reference vehicle state and measured signals, while the

estimation algorithms are built in Matlab/Simulink environment. Moreover, Gaussian noises

are added in the simulated measurements to realistically represent real application. The vehicle

parameters used in the simulation are listed in Table 2. 5% differences of these parameters are

added to the UKF 3-DOF vehicle model in the simulation to imitate modelling uncertainties.

Acceleration and brake maneuver

The longitudinal performance of the proposed estimation algorithm will be investigated and

analyzed under acceleration and brake maneuver. The road surface input in CarSim is set

according to Table 3. The driver model embedded in CarSim controls the vehicle to follow the

given target velocity as shown in Fig 7. For simplification, the driver desired driving and brak-

ing torque are distributed equally on four wheels as the control input shown in Fig 8(a). Fig 8

(b) and 8(c) show the estimation results of vehicle response. It can be seen that the longitudinal

Table 2. Vehicle parameters.

Parameter Unit Value

Gross Mass m (kg) 1280

Height of sprung mass center of gravity hg (m) 0.5

Distance from COG to front wheels a (m) 1.203

Distance from COG to rear wheels b (m) 1.217

Wheelbase l (m) 2.420

Wheel track T (m) 1.330

Wheel Radius R (m) 0.298

Vehicle rotational inertia about Z-axis Iz (kg�m2) 2500

Tire rotational inertia Ir (kg�m2) 2.5

Two maneuvers are conducted to evaluate the proposed TRFC estimation algorithm performance under

various vehicle movements such as acceleration, deceleration, constant speed, and steering.

doi:10.1371/journal.pone.0171085.t002
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velocity is estimated extremely well. The errors of lateral velocity and yaw rate are also

acceptable.

As this maneuver forces on vehicle longitudinal motion, the response of the right and left

side tires is similar to each other. Therefore here we only list the simulation results of the left

side tires. The estimated slip ratios, slip angles, and tire forces are illustrated in Figs 9 and 10.

Fig 11 presents the estimation results and reference values of the TRFC. When the road sur-

face changes, the estimation converges to the reference value accurately and rapidly, as can be

seen in Fig 11. Additionally, the changes of the road frictional conditions for the front and rear

wheels are sequentially identified. The simulation results clearly demonstrate that the proposed

estimation method is reliable and applicable on a straight ahead driving maneuver.

Double line change maneuver

The double change maneuver is conducted to verify the proposed estimation method on steer-

ing condition. In the simulation, the vehicle speed is maintained at 72 km/h and the TRFC in

CarSim is set according to Table 4. The driver desired torque from CarSim driver model is dis-

tributed equally on four wheels as shown in Fig 12(a). The estimation results of longitudinal

velocity, lateral velocity, yaw rate, slip ratio, slip angle, tire force are presented in Figs 13–15. It

is indicated that the estimation algorithm is reliable and accurate; the UKF estimator and the

TRFC estimator are able to mutually effect and correct each other.

It is noteworthy that a relatively large estimation error appears at the beginning of this

maneuver, which is believed to be caused by the inadequate excitation due to the uniform

straight line motion of the vehicle. As we know, when the vehicle is in straight line motion, the

excitation level is reflected only through slip ratio. Fig 16 is given showing the relationship

between the slip ratio and the normalized longitudinal tire force under different friction coeffi-

cient μ. It can be seen that in the dash line marked area the spacing between all the curves is

quite close. This spacing becomes even smaller as the slip ratio decreases. If the slip ratio is

approximate to zero, such as under the uniform straight line motion at the beginning of this

double line change maneuver, we will see basically no distinction between the vehicle

Table 3. Road surface in CarSim.

Station (m) Friction coefficient

0–30 0.9

30–40 0.3

40–80 0.5

80–140 0.7

140-end 0.4

doi:10.1371/journal.pone.0171085.t003

Fig 7. Target velocity in CarSim.

doi:10.1371/journal.pone.0171085.g007
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Fig 9. Slip ratio and slip angle estimation results. (The red dotted line is estimated value; continuous black

line is reference value).

doi:10.1371/journal.pone.0171085.g009

Fig 10. Tire force estimation results. (The red dotted line is estimated value; continuous black line is

reference value).

doi:10.1371/journal.pone.0171085.g010

Fig 8. Control input and vehicle state estimation. (The red dotted line is estimated value; continuous black

line is reference value; continuous blue line is sensor noise.)

doi:10.1371/journal.pone.0171085.g008
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longitudinal dynamic responses under different road conditions. Meanwhile, this vehicle does

not have any lateral dynamic response. Therefore, it is extremely difficult for the TRFC estima-

tor to distinguish the road surface conditions.

Despite this challenging testing situation, the estimation results are also acceptable. Once

the steering operation is implemented, the estimated friction coefficient quickly converges to

Fig 11. Tire-road friction coefficient estimation. (The red dotted line is estimated value; continuous black

line is reference value).

doi:10.1371/journal.pone.0171085.g011

Table 4. Road surface in CarSim.

Station (m) Friction coefficient

0–40 0.8

40–80 0.3

80-end 0.5

doi:10.1371/journal.pone.0171085.t004

Fig 12. Control input and vehicle state estimation. (The red dotted line is estimated value; continuous

black line is reference value; continuous blue line is sensor noise.)

doi:10.1371/journal.pone.0171085.g012
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the reference values, as can be seen in Fig 17. This quick convergence is due to the lateral

dynamic response of the vehicle led by steering maneuver. Then the TRFC estimation can be

carried out synthesizing both longitudinal and lateral excitations instead of just one of them,

which validates the effectiveness of the designed estimation method.

Conclusion

In this study, we presented a hierarchical TRFC estimation method based on a combination of

UKF estimator, GRNN and Bayes theorem, in which UKF estimator severs for vehicle

dynamic states estimation; GRNN and Bayes theorem are applied for TRFC estimation under

small and large excitation as a hybrid estimator, respectively. The overall estimation algorithm

was evaluated on varying road surfaces through the co-simulation environment of Matlab/

Simulink and CarSim. The simulation results show that the estimation has favorable coinci-

dence with the corresponding reference values.

Further research may focus in the following aspects:

1. The estimation of vehicle parameters (such as mass, rotational inertia, etc.) should be taken

into account in further research.

2. Since the proposed method is only analyzed theoretically and validated via simulation, an

actual bench or field test is needed in the future to verify the proposed approach.

Fig 13. Slip ratio estimation results. (The red dotted line is estimated value; continuous black line is

reference value).

doi:10.1371/journal.pone.0171085.g013

Fig 14. Slip angle estimation results. (The red dotted line is estimated value; continuous black line is

reference value).

doi:10.1371/journal.pone.0171085.g014
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Fig 15. Tire force estimation results. (The red dotted line is estimated value; continuous black line is reference value).

doi:10.1371/journal.pone.0171085.g015
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Fig 16. Relationship between slip ratio and normalized longitudinal tire force under different friction

coefficients.

doi:10.1371/journal.pone.0171085.g016

Fig 17. Tire-road friction coefficient estimation. (The red dotted line is estimated value; continuous black

line is reference value).

doi:10.1371/journal.pone.0171085.g017
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