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The role of local and remote 
amino acid substitutions for 
optimizing fluorescence in 
bacteriophytochromes: A case 
study on iRFP
David Buhrke, Francisco Velazquez Escobar, Luisa Sauthof, Svea Wilkening, Nico Herder, 
Neslihan N. Tavraz, Mario Willoweit, Anke Keidel, Tillmann Utesch, Maria-Andrea Mroginski, 
Franz-Josef Schmitt, Peter Hildebrandt & Thomas Friedrich

Bacteriophytochromes are promising tools for tissue microscopy and imaging due to their fluorescence 
in the near-infrared region. These applications require optimization of the originally low fluorescence 
quantum yields via genetic engineering. Factors that favour fluorescence over other non-radiative 
excited state decay channels are yet poorly understood. In this work we employed resonance Raman 
and fluorescence spectroscopy to analyse the consequences of multiple amino acid substitutions on 
fluorescence of the iRFP713 benchmark protein. Two groups of mutations distinguishing iRFP from its 
precursor, the PAS-GAF domain of the bacteriophytochrome P2 from Rhodopseudomonas palustris, 
have qualitatively different effects on the biliverdin cofactor, which exists in a fluorescent (state II) and 
a non-fluorescent conformer (state I). Substitution of three critical amino acids in the chromophore 
binding pocket increases the intrinsic fluorescence quantum yield of state II from 1.7 to 5.0% due to 
slight structural changes of the tetrapyrrole chromophore. Whereas these changes are accompanied 
by an enrichment of state II from ~40 to ~50%, a major shift to ~88% is achieved by remote amino acid 
substitutions. Additionally, an increase of the intrinsic fluorescence quantum yield of this conformer 
by ~34% is achieved. The present results have important implications for future design strategies of 
biofluorophores.

The development of fluorescence microscopy has opened novel possibilities for monitoring biochemical processes 
in cellular systems1–5. The availability of genetically encoded fluorescent proteins including photoswitchable vari-
ants provided new insights into the organization of living cells on the nanoscale by super-resolution fluorescence 
microscopy6–9. These techniques have a strong impact on fundamental research and are important diagnostic 
tools in medical science. In particular for high resolution imaging genetically encoded rather than synthetic flu-
orescence markers are preferred, because they can be expressed directly in the target cell and fused to the desired 
protein.

Fluorescent proteins emitting in the red or near-infrared spectral region gain increasing importance because 
they ensure a high penetration depth in tissues. Genetic engineering of the green fluorescent protein (GFP)10 and 
its homologues from other species afforded numerous variants with emission maxima covering nearly the entire 
visible spectrum2. However, red-emitting biofluorophores suffer from limited photostability and low brightness11. 
Bacterial phytochromes may overcome these drawbacks, since the tetrapyrrole cofactor exhibits a strong elec-
tronic transition between 660 and 700 nm. Furthermore, biliverdin (BV) is ubiquitous in mammalian cells as 
an intermediate of the heme degradation pathway. Due to their function as sensory photoreceptors, bacterio-
phytochromes exhibit only a low fluorescence quantum yield (Фfl, ~1%) but instead undergo a photoisomerisa-
tion upon electronic excitation. However, the approach to raise Фfl by blocking the photocycle is not necessarily 
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straightforward, since the photochemical conversion for BV-binding phytochromes of less than 10%12 is still low 
compared to the non-radiative excited-state decay pathways. Nevertheless, a bacteriophytochrome variant with 
strongly reduced photochemical quantum yield, that is for instance achieved by substituting the highly conserved 
Asp-202 (amino acid [AA] numbering refers to Rhodopseudomonas palustris bacteriophytochrome photore-
ceptor 2, RpBphP2)13, served as a starting point for the development of bacteriophytochromes with improved 
fluorescence by using evolutionary mutagenesis. Promising results were obtained by genetic engineering of the 
chromophore-binding domain of RpBphP2, which produced an efficient phytofluor denoted iRFP71311,14 (termed 
iRFP for brevity herein). This variant differs from the truncated wild-type (WT) protein RpBphP2 (including only 
the GAF and PAS domains, termed P2PG in the following) by a total of 13 mutations. These substitutions resulted 
in a Фfl of 5.9% compared to 0.7% for P2PG. Meanwhile, similar engineering strategies, also based on other bacte-
riophytochromes, have afforded variants with further improved fluorescence properties14–16, and the application 
as sensitive fluorescence probes for in vivo imaging has been demonstrated for some variants including iRFP11,17.

In parallel, attempts have been made to elucidate the structural basis for the altered photophysical properties 
in fluorescent bacteriophytochromes. Crystallographic and spectroscopic studies have consistently shown that an 
increased rigidity of the chromophore embedment in the protein matrix is one of the key parameters that favours 
fluorescence as the decay route of the electronically excited state15,16,18–21.

In this work, we continued our spectroscopic studies on iRFP18 to specifically analyze the contributions of 
individual AA substitutions on the ground- and excited-state properties of the BV cofactor. We focused on three 
highly conserved AAs in the chromophore-binding pocket (CBP), Asp202, Ile203, and Tyr258, which in iRFP 
are replaced by Thr, Val, and Phe, respectively. Mutagenesis followed two main routes via stepwise substitutions 
(route A) in the truncated WT P2PG and (route B) the corresponding back substitutions in iRFP (Fig. 1). The 
variants along route A include single, double (with two out of three possible combinations), and triple mutations. 

Figure 1. Top, structure of the chromophore binding pocket of P2PG (left) and iRFP (right), indicating the 
amino acid variations between both variants. The structural models18 were derived from the crystal structure 
of the chromophore binding domain of RpBphP2 obtained by homologue-directed mutagenesis, which was 
termed RpBphP2-CBD*  29. Bottom, schematic presentation of the step-wise amino acid substitutions starting 
from P2PG WT (route A) and from iRFP (route B).
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Each of the variants obtained by the corresponding back substitutions along route B also included the addi-
tional 10 substitutions of iRFP that are more remote from the CBP. The objective was to correlate chromophore 
structural changes determined by resonance Raman (RR) spectroscopy with the properties of the static and 
time-resolved fluorescence of the individual variants. The results demonstrate the coexistence of a fluorescent 
and a non-fluorescent conformer. The intrinsic fluorescence quantum yields for the former and its relative pop-
ulation are affected by both, the AA substitutions in the CBP and the remote mutations, albeit in a qualitatively 
different manner. The findings have implications for optimizing strategies towards generating highly fluorescent 
bacteriophytochromes.

Results
Absorption and Fluorescence Properties. In general, the electronic absorption spectra of the Pr state 
of all investigated P2PG and iRFP variants show very similar characteristics of the Q and Soret bands (see 
Supplementary Fig. S1), with variations in the Q band absorption maxima from 707 to 692 nm (Table 1). Among 
the P2PG-derived variants, mutations D202T and Y258F and their combination in D202T/Y258F had only a 
small impact on the absorption maximum, whereas the double D202T/I203V and triple D202T/I203V/Y258F 
mutation displayed a blue-shift by 3 and 6 nm, respectively. In a similar way, iRFP-T202D and others from route B 
including mutant V203I, showed markedly red-shifted absorption maxima compared to iRFP (Table 1).

The Фfl values of all investigated mutants were between those of native P2PG (0.7%) and iRFP (5.9%) (Tables 1 
and 2, Supplementary Fig. S2). Interestingly, an increased Фfl seems to be accompanied with a blue-shift in the 
Q-band absorption maximum and an increasing Stokes shift (Table 1, Supplementary Figs S1 and S2).

None of the variants studied in this work can undergo a phototransformation to the Pfr state, but some are 
arrested at the Meta-R state as typically observed for phytochrome variants with substitutions of highly conserved 
AAs close to the chromophore22,23. Since the Qband transition of the Meta-R state exhibits reduced oscillator 
strength and its maximum nearly coincides with that of the parent state (Supplementary Fig. S1), IR differ-
ence spectroscopy is more reliable to detect even low photoconversion than UV-Vis absorption spectroscopy 
(Supplementary Fig. S5). Except for the triple mutant P2PG-D202T/I203V/Y258F, all variants generated from 
P2PG via route A are capable to undergo photoisomerisation to a small extent (Table 1, Supplementary Fig. S1). 
This observation suggests that the triple mutation D202T/I203V/Y258F represents a minimal set to completely 
inhibit photoconversion of P2PG, although Фfl is still relatively low. The reverse mutations starting from iRFP 
along route B represent a mirror image of this tendency, since the triple substitution T202D/V203I/F258Y in the 
CBP of iRFP is sufficient to recover photoactivity, irrespective of the 10 remote substitutions. However, blocking 
photoconversion alone is insufficient to optimize Фfl, since the 10 remote substitutions still exhibit a profound 
effect: Compared to the P2PG triple mutant D202T/I203V/Y258F, Фfl increases ~2.4-fold upon introduction of 
the additional 10 remote substitutions in iRFP. Conversely, the iRFP triple mutant T202D/V203I/F258Y, which 
comprises only the 10 remote substitutions, still has a more than 2-fold larger Фfl than P2PG.

protein variant
absorption 

(nm)
fluorescence 

(nm) Φfl (%)
photo- 
activity

ring D str. 
(cm−1)

A-B str. (cm−1) Intensity ratio A-B 
str., conformer II/

conformer I (R = III/II)conformer I conformer II

P2-PG variants derived from P2-PG WT (route A)

WT P2-PG 707 712 0.7 yes 1625 1651 1641 0.64

D202T 707 717 1.4 yes 1628 1655 1644 0.78

Y258F 706 717 1.9 very weak 1627 1656 1644 1.11

D202T/I203V 704 716 1.3 yes 1628 1655 1644 0.82

D202T/Y258F 707 719 2.2 very weak 1628 1655 1646 0.99

D202T/I203V/Y258F 701 715 2.5 no 1629 1655 1646 1.01

P2-PG variants derived from iRFP (route B)

iRFP 692 708 5.9 no 1629 1656 1642 7.20

T202D 697 714 3.4 no 1627 1654 1642 3.81

F258Y 693 710 3.6 no 1628 1654 1642 7.22

T202D/V203I 702 716 3.0 no 1627 1655 1642 2.64

T202D/F258Y 697 710 2.8 no 1627 1652 1642 n.a.

T202D/V203I/F258Y 699 712 1.5 yes 1627 1652 1642 7.38

Table 1.  Absorption and fluorescence maxima, and fluorescence quantum yields of various P2-PG 
variants. The variants (route A and B) are defined in Fig. 1. Absorption and fluorescence maxima were taken 
from Supplementary Figs S1 and S2 (Supporting Information); the fluorescence quantum yields (Φ fl in %) were 
determined experimentally (see materials and methods). The stretching mode frequencies of the A-B methine 
bridge and of ring D as well as the intensity ratio R (intensity of the high [conformer II] vs. the low frequency 
component [conformer I] of the A-B mode) were determined from second derivatives of the RR spectra in 
Figs 5 and 6 (left panels). For the iRFP-T202D/F258Y variant, the error in the intensity determination was 
too large due to a close overlap of the respective bands (Fig. 5, left) and a very low intensity of the conformer I 
component (thus denoted as “n.a.” =  not applicable).
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Fluorescence dynamics. The fluorescence decays of all variants could consistently be approximated by 
three exponential decay components with distinct spectral dependence of the resulting decay-associated spectra 
(DAS, Fig. 2). The longest fluorescence lifetime was found to decrease along mutational route B from 910 ps in 
iRFP (Fig. 2a) to 440 ps in iRFP-T202D/V203I/F258Y (Fig. 2f). In addition, a short fluorescence decay time exists, 
which shortens from 350 ps in iRFP to 180 ps in iRFP-T202D/V203I/F258Y. A third component with ~100 ps 
present in iRFP and all route B samples without significant variations, exhibits a negative amplitude for iRFP and 
iRFP-F258Y in the whole spectral range (Fig. 2a,b, black curves). Such exclusively negative components in DAS 
are assigned to fluorescence rise effects in time24, representing population processes of excited states that occur 
in the 100 ps time regime. Since this value is close to the resolution limit of the employed TWCSPC setup, this 
component might be even faster than 100 ps.

Considering that decay and rise components have similar spectral characteristics, iRFP exhibits a rather 
homogenous excited state (Fig. 2a) with two decay components that possibly carry (phonon) sidebands at 715 
and 725 nm. Such biexponential excited-state relaxations are typical for pigment-protein-complexes and do not 
necessarily indicate different chromophore configurations24. However, the iRFP-F258Y mutant already shows a 
heterogeneous spectral distribution of both decay components with reduced lifetimes (Fig. 2b). This feature indi-
cates a substructure of the ground- and/or excited-state potential surface that is, in the simplest case, described 
by a double-well potential24. However, since the 90 ps component does not exhibit a transition from positive to 
negative amplitude (vide infra), it cannot be attributed to a transition between two states within the lifetime of 
the excited state. The two spectrally distinguishable decay components might simply represent two non-coupled 
excited-state subpopulations.

DAS heterogeneity is even more pronounced in iRFP-T202D and iRFP-T202D/V203I (Fig. 2c,e). Here, the 
fastest component (130 ps) exhibits a transition from positive values (up to about 700 nm) to negative values 
above 710 nm representing a novel feature not observed in iRFP and iRFP-F258Y: During the excited-state life-
time, a red-shifted emitting state is populated at the expense of a blue-shifted one. This biphasic behaviour sug-
gests an interconversion of two chromophore configurations in the excited state. The subsequent fluorescence 
decay occurs with 290 ps (705 nm), and 680 ps (715 nm) (Fig. 2c). In iRFP-T202D/F258Y (Fig. 2d), the DAS 
heterogeneity is reduced compared to iRFP-T202D, although the emission spectrum of its longest decay com-
ponent shows a more profound shoulder at 740 nm compared to iRFP. Notably, the biphasic nature of the 70 ps 
component is absent suggesting that the effects of both mutations on the DAS partially neutralize each other.

A further dissection into several spectrally distinguishable states is observed in the triple mutant iRFP-T202D/
V203I/F258Y, still carrying all remote substitutions of iRFP. Besides a remarkable acceleration of all fluorescence 
decay components, which accounts for the small Фfl, the DAS of this mutant distinguishes at least four spectral 
bands at ~695, ~705, ~715 and ~730 nm (Fig. 2f), indicating radiative decays from four distinct excited states or 
chromophore configurations. The pronounced biphasic nature of the 100 ps component indicates strong coupling 
and interconversion between the electronic states at 695 nm and at 715 nm, followed by a ~440 ps decay. Thus, 
already single back-substitutions in the CBP of iRFP entail substantial excited-state heterogeneity, which gradu-
ally increases with the number of mutations.

Notably, the DAS of iRFP-T202D/V203I/F258Y is similar to that of the parental P2PG (Fig. 2g), which also 
exhibits a biphasic component (180 ps) and two further decay components (280 ps and 690 ps). Among them, 
the faster one dominates in amplitude, in line with the lowest Фfl of P2PG. In total, four spectral features at 710, 
730, 750, and 780 nm can be discriminated for P2PG. In contrast, the double mutant P2PG-D202T/F258Y, which 
only carries two CBP substitutions, already shows rather homogenous DAS (Fig. 2h), essentially similar to iRFP, 
despite the fact that the mutant still shows photoconversion. Figure 3a summarizes the average lifetimes and 
Fig. 3b compares the fast and slow fluorescence decay time constants of the constructs from Fig. 2.

Variants without remote substitutions Variants with remote substitutions
Intrinsic fluorescence 

quantum yields ΦII

Route A variants Φfl (%) R Route B variants Φfl R ΦII(A) (%) ΦII(B) (%)

P2-PG 0.7 0.64 T202D/V203I/F258Y 1.5 7.38 1.7 1.7

D202T 1.4 0.78 — — — 3.2 —

Y258F 1.9 1.11 T202D/V203I 3.0 2.64 3.6 4.1

D202T/I203V 1.3 0.82 F258Y 3.6 7.72 2.9 4.1

D202T/Y258F 2.2 0.99 — — — 4.4 —

D202T/I203V/Y258F 2.5 1.01 iRFP 5.9 7.20 5.0 6.7

— — — T202D 3.4 3.81 — 4.3

— — — T202D/F258Y 2.8 n.a. — —

Table 2. Intrinsic fluorescence quantum yields of conformer II. The intrinsic fluorescence quantum yields 
Φ II were evaluated according to eq. (4) using the experimentally observed fluorescence quantum yields Φ fl and 
the intensity ratio R (see Table 1), taken to be equal to the population ratio of the conformers II and I. Φ II(A) 
and Φ II(B) refer to values determined for the variants of route A and B, given in the same row of the table. For 
the iRFP-T202D/F258Y variant, the error in the intensity determination was too large due to a close overlap 
of the respective bands (Fig. 5, left) and a very low intensity of the conformer I component (thus denoted as 
“n.a.” =  not applicable).
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Figure 2. Decay associated spectra (DAS) and fluorescence lifetimes of iRFP, P2PG and selected mutants 
from route A and B. (a–h) The DAS were obtained from global fitting of the wavelength-resolved fluorescence 
decays recorded at 10 K with a sum of three exponentials. The relative amplitudes of the individual decay 
components (ultrafast: black; fast: blue; slow: red) from these fits are depicted for each wavelength channel, with 
time constants as given in the insets. The black, blue and red curves are included to guide the eye. Superimposed 
to the DAS are the corresponding fluorescence emission spectra (magenta) of the protein variants measured at 
room temperature.
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Resonance Raman Spectroscopy. All phytochrome variants studied in this work were in the Pr state 
as reflected by the characteristic vibrational band pattern of the chromophore in the ZZZssa configuration (see 
Supplementary Information). For a detailed vibrational assignment we therefore refer to previous analyses25,26. 
In this work we focus on the identification of selected modes that correlate with specific structural parameters 
of the tetrapyrrole. Between 1565 and 1580 cm−1, the protonation marker band of the Pr state is observed27,28. It 
is due to the in-phase N-H in-plane bending (N-H ip) of the ring B and C N-H groups and thus indicates that 
all pyrrole nitrogen atoms carry a proton and rings B and C share a positive charge (Figs 4 and 5). In P2PG and 
iRFP, this band is observed between 1571 and 1575 cm−1, and it shifts down to 1075 and 1079 cm–1 in D2O18, 
indicating a cationic (protonated) chromophore in each case. The same conclusion can be drawn for all P2PG or 
iRFP variants. Small frequency variations observed for the N-H ip indicate minor changes of the hydrogen bond 
interactions of the ring B and C N-H groups25.

The most intense peak in the Pr state of all variants is observed around 1620 cm−1 (Figs 4 and 5, left). It is actu-
ally composed of two overlapping bands, which are more clearly discriminated in the second-derivatives (grey 
traces in Figs 4 and 5). The underlying modes include mainly the C= C stretching coordinates of the C-D methine 
bridge (C-D stretching) and of ring D and its vinyl substituent, albeit with different relative contributions. Since 
the C-D stretching couples with the N-H ip of rings C and D, the main character of the two modes can be distin-
guished on the basis of the H/D isotopic shifts (Figs 4 and 5). In all cases, the frequency downshifts of the band 
components at 1620 and 1627 cm−1 is about 7 and 2 cm−1, respectively. Thus, the lower and higher frequency 
components may be considered as C-D stretching and ring D C= C stretching modes, respectively.

The corresponding C= C stretching mode of the A-B methine bridge (A-B stretching) is observed between 
1640 and 1660 cm−1. In the Pr state of many BV-binding phytochromes including P2PG, this mode is split into 
two components, corresponding to two conformational sub-states. We denote the states represented by the 
low- and high-frequency component as state I and II, respectively. For P2PG these bands are found at 1641 and 
1651 cm−1 (Fig. 4, left). Due to the coupling of the A-B stretching with the N-H ip coordinates of rings A and B, 
these modes shift down by ~10 cm−1 upon D2O exchange. Thus, only one of these modes can be safely detected in 
the RR spectra measured in D2O (i.e., 1641 cm−1; Fig. 4, right), whereas the lower-frequency component overlaps 
with the (largely H/D-insensitve) C= C stretching mode of ring D.

Among the modes in the region between 1550 and 1670 cm−1, the A-B stretching and the ring D C= C stretch-
ing display the most notable differences between P2PG and iRFP. First, the two A-B stretching modes are of nearly 
equal intensity in P2PG, but the intensity of the high frequency component strongly increases in iRFP along with 
a frequency upshift from 1651 to 1656 cm−1. Inspection of the protein variants of route A (Fig. 4) indicates that 
the single substitution of either Asp202 or Tyr258 (D202T, Y258F) already causes this frequency upshift while 
the intensity ratio III/II (= R; Table 1) of the two A-B stretching modes varies only slightly by the individual AA 
replacements in the CBP. However, the 10 remote substitutions that afford the iRFP variant cause a major inten-
sity redistribution of the two bands. The latter effect appears to be independent of the CBP substitutions since all 
variants from route B, each involving the 10 remote substitutions, display very high III/II intensity ratios of the 
two A-B stretching modes (Fig. 5). Note that the low-frequency component at 1641 cm−1 in P2PG also shifts up to 
higher frequencies upon substitutions in the CBP (1646 cm−1 in P2PG-D202T/I203V/Y258F) but the additional 
remote substitutions revert this shift and keep the band position at 1642 cm−1 (Figs 4 and 5; Table 1).

Also for the ring D C= C stretching, the frequency upshift from P2PG (1625 cm−1) to iRFP (1629 cm−1) is 
already complete in P2PG-D202T/I203V/Y258F, but not fully reversed in P2PG-D202T/I203V/Y258F. Further 
spectral data reflecting mutation-induced structural changes of the chromophore including the C-D methine 
bridges are provided in the Supporting Information (Supplementary Figs S3 and S4).

Discussion
Phytochrome variants that display enhanced fluorescence quantum yield include two groups of AA substitutions. 
The first group refers to positions in the immediate environment of the chromophore (CBP substitutions). These 
are specifically D202, I203, and Y258 which all have contacts with the BV cofactor or with the surrounding 
H-bond network. In P2PG, substitutions at these positions account for a Фfl increase from 0.7 to 2.5%. The further 
increase to 5.9% is only achieved by including a second group of 10 substitutions remote from the CBP.

Figure 3. Average fluorescence lifetimes (a) and overview about the lifetimes (b) of the fast (black columns) 
and slow (red columns) component for each construct from Fig. 2a–h.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:28444 | DOI: 10.1038/srep28444

The impact of substituting D202 and Y258 on the structure of the chromophore pocket has been recently 
analysed for the Pr state of the chromophore-binding domain CBD-DR15 of the Deinococcus radiodurans bacteri-
ophytochrome (AA numbering refers to P2PG). Crystal structures revealed a perturbation of the hydrogen bond 
network in the chromophore pocket, particularly affecting the interactions with the ring A carbonyl. This was 
suggested to impair excited-state proton transfer that competes with the radiative excited-state decay. As an addi-
tional factor responsible for the about 2-fold increased fluorescence in the D202H and Y258F single and D202H/
Y258F double mutants, the E configuration at the C-D methine bridge was proposed to be destabilized, corre-
sponding to a decrease of the photochemical quantum yield. Indeed, the structural changes of the chromophore 
refer to the A-B and C-D methine bridges. Specifically, the mutations cause an increase of the dihedral angle 
C(4)-C(5)-C(6)-N(B) from 6.7° (WT CBD-DR) to 10.4° and 14.0° in the D202H and D202H/Y258F mutants, 
respectively15. The dihedral angle C(14)-C(15)-C(16)-N(D) of the C-D methine bridge displays the opposite ten-
dency as it decreases from 35.8° to 0.5° and 12.6° in the D202H and D202H/Y258F mutants, respectively. This 
geometric change corresponds to a substantial decrease of the tilt angle of ring D with respect to ring C by ~15°.

In view of the far-reaching structural similarities between CBD-DR and P2PG, one may expect similar 
mutation-induced structural changes also for P2PG, although in the latter case the ring D tilt angle is already 
rather low in the WT protein29. In fact, the vibrational modes localized at the A-B methine bridge and in ring D 
respond to substitutions of D202 and Y258. Note that the correlation with the structural changes in the CBD-DR 
mutants are justified since control experiments with the D202H mutant of P2PG display the same tendency in 
the RR spectra as threonine substitution at this position studied in this work (Supplementary Fig. S6). The single 
mutants P2PG-D202T and -Y258F as well as P2PG-D202T/Y258F show essentially the same frequency upshifts 
of these modes compared to P2PG (Table 1), and the additional I203V substitution in the triple mutant causes 
only a further 1-cm−1 shift of the ring D mode. These findings may be rationalized in terms of an increased 
C(4)-C(5)-C(6)-N(B) dihedral angle at the A-B methine bridge and a reduced tilt angle of ring D. This conclu-
sion is also consistent with the concomitant increase of the frequency of the C-D HOOP mode (Supplementary 
Figs S3 and S4) that has been shown to exhibit a negative correlation with the C(14)-C(15)-C(16)-N(D) dihedral 
angle30, thereby indicating a reduced torsion of the C-D methine bridge upon mutations in the CBP, particularly 
of either D202 or Y258. These chromophore structural changes as revealed by the RR spectra account for an 
increase of Фfl from 0.7% (P2PG) to 2.5% (P2PG-D202T/I203V/Y258F) (Supplementary Fig. S7), in line with the 

Figure 4. RR spectra of the P2PG variants obtained via route A (from bottom to top), compared to the 
spectra of P2PG WT and iRFP. The spectra, measured from the proteins in H2O (left) and D2O (right), display 
the region of the C= C stretching modes. Grey traces represent the second derivatives of the spectra.
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previously proposed mechanisms for promoting radiative excited state decay15,19,21. A decrease of the tilt angle as 
indicated by the frequency upshift of the ring D and the HOOP mode stabilizes the Z vs. the E configuration of 
the C-D methine bridge (vide supra), consistent with a complete inhibition of photoisomersiation in the P2PG 
triple mutant which displays the highest ring D stretching frequency. This remarkably critical and as yet unrecog-
nized influence of the rather conservative I203V mutation on photoconversion is reflected by the mutants from 
route B, since introduction of mutation V203I into iRFP-T202D/F258Y marks the transition between constructs 
that do or do not undergo photoconversion. Also, the concomitantly increased torsion of the A-B methine bridge 
may contribute to the stabilization of Z configuration of the chromophore, but – according to the crystallo-
graphic analyses15,16 – it has an additional effect on the H-bond network in the CBP involving the ring A carbonyl. 
However, the latter mode is rather weak in RR and, as far as the technique was applicable, also in the IR difference 
spectra precluding further analyses of mutation-induced effects (Supplementary Fig. S5).

In addition to the three CBP substitutions, 10 remote replacements account for a further increase of Фfl from 2.5 
to 5.9% (Table 1), which is not correlated with frequency shifts of the stretching modes (Supplementary Fig. S7).  
Instead, we note major intensity redistributions between the two conjugate A-B stretching modes such that the 
high-frequency component (conformer II) clearly dominates in the spectrum of iRFP, corresponding to a dis-
tinct decrease of the structural heterogeneity. The mole fractions of the two conformer states I and II (xI and xII) 
can be approximated from the ratio R =  III/II of the relative intensities II and III of the low- and high-frequency 
component of the A-B stretching mode, yielding R/(1 +  R) for the mole fraction xII of conformer II, which, e.g., 
rises from 50% (P2P2-D202T/I203V/Y258F) to 88% in iRFP. We therefore conclude that the remote substitutions 
primarily affect structural packing of the protein, which strongly favours conformer II.

The simplest explanation of the present results is based on a distribution between two conformers (I, II), 
which solely differ by their fluorescence quantum yields Φ I and Φ II, in analogy to a previous proposal for cyano-
bacterial phytochromes31. Then, the experimentally determined fluorescence quantum yield Φ fl is given by

Φ = Φ + Φx x (1)fl I I II II

Again, xI and xII are the mole fractions of the two conformer states as noted above. Assuming identical Raman 
cross sections for the conjugate A-B stretching modes, eq. (1) can be rewritten to

Figure 5. RR spectra of the P2PG variants obtained via route B (from bottom to top), compared with the 
spectra of P2PG WT and iRFP. The spectra, measured from the proteins in H2O (left) and D2O (right), display 
the region of the C= C stretching modes. Grey traces represent the second derivatives of the spectra.
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Φ + = Φ + ΦR R(1 ) (2)fl I II

The values for R were evaluated from the second derivatives in Figs 4 and 5 (left, grey traces; Table 1) to obtain 
a plot of Φ fl(1 +  R) vs. R (Fig. 6).

In fact, except for the iRFP triple mutant and the iRFP-F258Y mutant of route B (red points in Fig. 6), the data 
are correlated and indicate that Φ fl increases with increasing population of conformer II. However, in contrast to 
the simple expectation from eq. (2), the data follow a parabolic (blue line) rather than a linear function (red line), 
and a linear fit would afford a physically meaningless negative intercept. These deviations from linear behaviour 
can be rationalized since eq. (2) assumes that (i) the fluorescence quantum yields of each conformer remain 
unchanged in the individual protein variants, and (ii) the variations of the experimentally determined Фfl solely 
depend on the relative populations of the two conformers. However, the increase of Фfl from 0.7% (P2PG) to 2.5% 
in the P2PG triple mutant (route A) can only partly be attributed to a slightly larger population of the “fluores-
cent” conformer II (~50% vs. ~40% in P2PG). Instead, the CBP substitutions perturb the chromophore structure, 
as reflected by the changes of the A-B and ring D stretching modes, and thus affect the fluorescence properties 
including the fluorescence quantum yields. Additional evidence for this conclusion is derived from the DAS.

Unlike RR spectroscopy, which samples all conformers in the ground state, time-resolved fluorescence 
spectroscopy monitors radiative processes occurring within the lifetime of the chromophore’s excited state. 
Accordingly, the DAS spectra predominantly reflect the excited-state processes of the (fluorescent) conformer 
II, while those of the non-fluorescent conformer I remain largely invisible. Consequently, the substantial 
excited-state heterogeneity reflected by the DAS of P2PG does not primarily mirror the ground-state hetero-
geneity of this protein with the comparable populations of the states II (~40%) and I (~60%). Instead, the DAS 
reveal a variety of possible dissipative decay processes for conformer II. This excited-state heterogeneity is already 
largely removed by mutation of the two most important residues in the CBP (D202T/Y258F), while the con-
former ratio (45%/55%) remains nearly unchanged. Thus, the concomitant increase of Фfl by ~2 is mainly a 
consequence of the structural changes of conformer II, as discussed above. Following this interpretation, one can 
readily rationalize that iRFP is endowed with a spectrally homogenous fluorescence emission whereas the triple 
mutant iRFP-T202D/V203I/F258Y, which has the essential CBP residues of P2PG in place and comprises only 
the 10 remote mutations, shows a heterogeneous DAS closely resembling P2PG, in line with both having the same 
CBP residues. The Фfl value of 1.5% for the triple mutant is clearly higher than that of P2PG of (0.7%), which is 
attributed to the distinctly higher population of the fluorescent conformer II. This can be quantitatively verified 
by combining eq. (2) for P2PG (superscript “A”) and the triple mutant (superscript “B”) to afford Φ II according to

Φ + − Φ +

−
= Φ

R R

R R

(1 ) (1 )
(3)

fl
A A

fl
B B

A B II

Thus, one obtains Φ II =  1.7% and, with eq. (2), Φ I =  0.06%, which confirms the notion of a fluorescent con-
former II and a non-fluorescent conformer I.

We now assume that Φ I ≈  0 holds for all variants. Even if the CBP substitutions caused an increase of the 
intrinsic fluorescence quantum yields of both conformers by a similar factor, Φ I would remain distinctly smaller 
than 1%, such that the contribution of conformer I to the experimentally determined fluorescence quantum yield 
can be neglected. Then eq. (2) simplifies to

Φ
+

= Φ
R

R
(1 )

(4)fl II

Figure 6. Correlation of the experimentally determined fluorescence quantum yield Φfl and the 
relative population of conformer II according to eq. (2). The red line represents a linear fit of eq. (2) to the 
experimental data (except for iRFP-F258Y and iRFP-T202D/V203I/F258Y). The blue curve describes a second 
order polynomial fit to the data to illustrate the deviation from the linear behavior.
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such that the intrinsic fluorescence quantum yields of conformer II can be evaluated for each mutant (Table 2).
The stepwise substitution of the three CBP residues reveal the expected steady increase of Φ II, with the strong-

est increase (from 1.7% to 3.2% or 3.6%, respectively) for the single substitutions of D202 and Y258 (Table 2), 
in line with the most pronounced changes in the DAS and RR spectra. A further increase (to 4.4%) is noted for 
the P2PG-D202T/Y258F double mutant, although the contributions by the individual substitutions do not act 
simply additive. In concert with D202T, the I203V substitution has no effect on Φ II, but contributes to the further 
increase of Φ II (to 5%) in the triple mutant P2PG-D202T/I203V/Y258F.

We now compare the variants which only differ by the remote substitutions (Table 2, shaded grey). Except 
for P2PG and the triple mutant of route B, all other variant pairs reveal an increase of Φ II induced by the remote 
substitutions, particularly pronounced (~34%) for the pair P2PG-D202T/I203V/Y258F and iRFP. These results 
show that the remote substitutions exert a dual function: a shift of the conformational distribution towards 
the fluorescent conformer II and a further increase of Φ II. The latter effect is not reflected by distinct differ-
ences in the respective RR spectra and may be due to a more rigid fixation of conformer II within the protein 
which is likely to reduce non-radiative excited-state decays19. It is interesting to note that the latter effect is not 
observed for the conjugate pair P2PG and iRFP-T202D/V203I/F258Y. This may be related to the fact that the 
fluorescence-optimized iRFP was obtained by random mutagenesis starting from the D202H mutant instead of 
the WT P2PG11.

Conclusions
The present spectroscopic analysis revealed that the chromophore of P2PG-derived variants exists in fluores-
cent and non-fluorescent conformational states, probably a common feature of the Pr form of prototypical phy-
tochromes12. Generating highly fluorescent phytofluors thus requires shifting the conformational distribution 
towards the fluorescent conformer and optimizing its structure to raise the probability for radiative excited-state 
decay. This increase of the intrinsic fluorescence quantum yield primarily involves structural changes at the C-D 
and A-B methine bridges, induced by AA substitutions in the CBP. These structural changes reduce and eventu-
ally block photoconversion and might also abolish excited-state proton transfer as a competing decay channel15,19. 
Whereas such structural changes in CBP and their consequences on the excited-state processes may become 
predictable on the basis of crystallographic, spectroscopic, and theoretical analyses, this will be more difficult 
for remote substitutions, which in P2PG primarily enrich the population of the fluorescent conformer, but also 
further increase its intrinsic fluorescence quantum yield, presumably via enhancing the rigidity of the chromo-
phore packing, which lowers the yield for internal conversion. Since the effects particularly of critical remote 
substitutions are difficult to predict on the atomic level due to the limitations of current computational resources, 
the complexity of the optimization problem will, for quite some time, need to rely on combinatorial engineering, 
rather than rational design approaches.

Materials and Methods
Site directed mutagenesis, protein expression and purification. The cDNA templates used in 
this study were either the plasmid pQE81L containing the cDNA of the RpBphP2 PAS-GAF domains, which 
was obtained by artificial gene synthesis upon codon optimization for mammalian cells (GeneArt, Regensburg, 
Germany), or the plasmid pQE81L containing the iRFP cDNA, as described18. Mutagenesis was performed 
using the QuikChange®  Site-Directed Mutagenesis Kit (Stratagene, La Jolla, USA) according to manufactur-
er’s instructions, which resulted in the following constructs: P2PG-Y258F, P2PG-D202T, P2PG-D202T/Y258F, 
P2PG-D202T/I203V, P2PG-D202T/I203V/Y258F (for mutational route A, see Fig. 1), and iRFP-T202D, iRFP-
F258Y, iRFP-T202D/V203I, iRFP-T202D/F258Y iRFP-T202D/V203I/F258Y (for mutational route B, see Fig. 1). 
Oligonucleotides were obtained from MWG Eurofins Operon (Ebersberg, Germany) and cDNAs of all constructs 
were verified by sequencing (MWG Eurofins Operon). The various iRFP and P2PG construct plasmids were 
co-transformed in NEBturbo cells with the previously described pQE81L-Kan plasmid bearing the gene for the 
human heme oxygenase type 2 (hHOX2)18. The cells were grown overnight at 37 °C on LB-Agar plates con-
taining 100 μ g/mL ampicillin and 50 μ g/mL kanamycin. The more recently mutated clones (iRFP-T202D/F258Y, 
P2PG-D202T/I203V, P2PG-D202T/I203V/Y258F) were transformed in DH5 alpha cells with the gene for the 
hHOX2 stably integrated in the genome using the method described by Kuhlman and Cox32. Transformed cells 
were grown overnight at 37 °C on LB-Agar plates containing 100 μ g/mL ampicillin. Details of the protein expres-
sion and purification protocol are given elsewhere18. According to the SAR values, holoprotein assembly was 
comparable in the variants of both mutational routes (P2PG and iRFP). Purified proteins were frozen in liquid 
nitrogen and stored at − 80 °C. For spectroscopic measurements, phytochrome samples were prepared in H2O 
or D2O (99.95%, Deutero GmbH) Tris buffer (50 mM Tris/Cl, 5 mM EDTA, and 300 mM NaCl). The pH (pD) 
was adjusted to pH =  7.8 (pD =  7.8) using a 3 M HCl (DCl, 99% in D2O, Sigma-Aldrich, Deisenhofen, Germany) 
pH electrode. Final protein concentrations were ca. 500 μ M for RR and IR experiments, but distinctly lower for 
fluorescence measurements (vide infra).

Vibrational spectroscopy. RR spectroscopic measurements were carried out as described previously using 
a Fourier-transform (FT) Raman spectrometer with 1064-nm excitation18. All RR spectra shown in this work 
were measured at − 140 °C. Difference IR spectroscopy measurements of photochemically active P2PG and iRFP 
derivatives were performed at ambient temperature using an IFS28 spectrometer (Bruker) equipped with a liquid 
nitrogen-cooled MCT detector. Approximately 2–4 μ L of protein solution were placed in a 3 μ m cavity between 
two thin CaF2 windows (d =  20 mm) and sealed with silicone grease. Forward (reverse) conversion from the dark 
adapted state (photoproduct) was achieved by irradiation with a 660 nm (780 nm) LED array.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:28444 | DOI: 10.1038/srep28444

Absorption and static fluorescence spectroscopy. All measurements were performed at room temper-
ature under protective green light (502 nm). Protein samples were prepared in Tris buffer and measured in dis-
posable cuvettes (10 mm path length). UV/VIS measurements were performed immediately prior to fluorescence 
measurements with a Cary 1E Varian spectrophotometer (Agilent Technologies). In the case of photochemically 
active variants, the presence of only the parent Pr state was ensured by LED irradiation at 780 nm. Fluorescence 
measurements were performed using a Fluoromax 2 spectrometer (Horiba Scientific). Excitation was set to 20 nm 
blue-shifted from the Q band maximum of the absorption spectra (690–700 nm; see Supplementary Fig. S1). 
The fluorescence signal was collected, starting from 5 nm above excitation up to 900 nm, and corrected accord-
ing to the number of absorbed photons (absorbance at the excitation wavelength), using the molar extinction 
coefficient of iRFP (85,000 M−1 cm−1)18 as a reference. Standard solutions of the reference dyes Atto 680 in H2O 
(Attotech) and Nile Blue (Sigma Aldrich) in ethanol (Фfl =  0.3/0.27) were used to determine the iRFP quantum 
yield (Фfl =  0.059). Subsequently, iRFP was then used as a reference for determining the fluorescence quantum 
yields of the other phytochrome variants.

Time- and wavelength-correlated single photon counting (TWCSPC). Measurements were per-
formed with the setup as described33. Cooling of the measurement cuvette down to 10 K was performed using a 
metal alloy cuvette holder connected to a home-built variable-temperature cryostat (10–300 K, CTI-Cryogenics 
8001/8300) equipped with a thermocouple directly connected to the cooling head for temperature control. In 
the case of photochemically active variants, in particular P2PG WT, the presence of only the parental Pr state 
was ensured by continuous LED irradiation at 780 nm during freezing. For TWCSPC, a Hamamatsu R5900 
16-channel multi-anode photomultiplier tube (PML-16C, Becker & Hickl, Berlin, Germany) was employed 
and signals were registered with a SPC-130 (Becker&Hickl) measurement card. A polychromator with a 1200 
grooves/mm grating ensured a spectral bandwith of 6.25 nm per channel. A 632 nm pulsed laser diode (BHL-635, 
Becker&Hickl, Berlin) was used for excitation. The time- and wavelength-resolved fluorescence spectra were 
analysed by global fits using three exponentials for all decay curves measured in one spectrum affording common 
values of lifetimes τj (linked parameters) for all decay curves and wavelength-dependent pre-exponential factors 
aj(λ) (non-linked parameters), thus yielding the decay-associated spectra (DAS) of the individual decay compo-
nents. The quality of the fit was judged by the value of χ r2 and by the degree of randomness of residuals to check 
for the absence of any correlation of the deviations in a certain time interval (for further details, see Supporting 
Information).
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