Hoo-CONTROL OF DISCRETE-TIME DESCRIPTOR SYSTEMS

LISA KATRIN POPPE*f

Abstract. We consider the (sub)optimal Heo-control problem for discrete time descriptor sys-
tems. Necessary and sufficient optimality conditions are derived in terms of deflating subspaces of
palindromic matrix pencils. This approach allows the use of structure preserving matrix techniques
which lead to a more robust method compared with currently used algorithms. The approach is
suitable for standard systems as well as for index one and higher index systems. We illustrate the
results by a numerical example.

1. Introduction. The H,-control problem has been a point of research in many
publications [15,16,27,36,38]. For standard state space systems, where the dynamics of
the system is modeled by a linear constant coefficient ordinary differential equation,
the analysis of this problem is well studied [12] and numerical methods have been
developed and integrated in control software packages [2,5,17,28]. The standard
discrete-time case is considered in [34].

Most of these methods work well for a wide range of problems in computing
suboptimal controllers but the exact computation of the optimal value v in H., control
is usually difficult [10]. In [3,4] several improvements of the previously known methods
were presented to avoid some of the numerical difficulties that arise when approaching
the optimum. These methods are based on the solution of structured eigenvalue
problems with structured methods.

In this paper we consider a more general situation where the dynamics of the
system is constrained, i.e., described by differential-algebraic-equations or descriptor
systems. Descriptor systems arise in various applications such as mechanical systems
[1, 18,30, 31, 33] and electric circuit simulation [13]. The Hoo-control problem for
continous-time descriptor systems has been studied in [22] and a numerical robust
method for the y-iteration has been proposed. In this paper we focus on the Hoo-
control problem for discrete-time descriptor systems and provide a numerically robust
method for the ~y-iteration. We see that there are some major differences in the
contrast to the continous-time case. These differences are discussed in full detail in
Section 5.

We consider systems of the form

Expi1 = Axp + Biwy, + Bauy, zo = 2°,
2z = Cray + Diiwy + Digug, (1.1)
yr = Cozxy, + Doywy, + Doguy,

where E, A € R™", B; € R™™ (C; € RP*" and D;; € RP™i for i,j = 1,2. (Here,
by R¥! we denote the set of real k x [ matrices.) In this system, {z;} € R™ is the
sequence of state vectors, {u;} € R™2 is the sequence of control input vectors, and
{wi} € R™ is the sequence of exogenous inputs that may include noise, linearization
errors and un-modelled dynamics. The sequence of vectors {yx} € RP? contains mea-
sured outputs, while {2z} € RP* describes regulated outputs or estimation errors. To
simplify the notation, throughout the paper we will frequently use xg, ug, wg, yi and
zp instead.
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We define the Hoo-norm by

[Flloc = sup UmaX(F(eje))a
oe(—m,m]

where opax(F(e7%)) denotes the maximal singular value of the matrix F(e/?).
In robust control, ||F|o is used as a measure of the worst case influence of the
disturbances w on the output z, where in this case F' is the transfer function mapping
noise or disturbance inputs to error signals [38].

The optimal H., control problem is the task of designing a dynamic controller
that minimizes (or at least approximately minimizes) this measure.

DEFINITION 1.1 (The Optimal H, control problem.). For the descriptor system
(1.1), determine a controller (dynamic compensator)

Eiyy1 = Ady, + Byy, (1.2)
uy, = Cay, + Dyy, .

ujithAEA, AAE ]RJAV’N, AB e RN»2 ¢ e R™N | D e R™P2 gnd transfer function K(s) =
C(sE — A)™'B + D such that the closed-loop system resulting from the combination
of (1.1) and (1.2), that is given by

Exiy1 = (A4 BoDZ,Co)xy + (B2 ZoC)ay, + (B + BoDZy Doy )wy,
Ei#y, = BZ,Coxy, 4+ (A 4+ BZyD9yC) iy, + BZy Daywy,, (1.3)
2E = (Cl + D1222b02)$k + DlQZQé‘%k + (D11 + Dlgblegl)wk7

with Z1 = (I — Dgzﬁ)_l and Zy = (I — szz)_l, has the following properties.
1. System (1.3) is internally stable, i.e., the solution { ;k } of the system with
k

w = 0 is asymptotically stable, i.e. limg_, ;z =0.
2. The closed-loop transfer function T..,(s) from w to z is minimized in the
Hoo-norm.

Since it is in general very difficult to minimize over the complicated set of sta-
bilizing controllers we study two closely related problems, the modified optimal Hoo
control problem and the suboptimal Hoo control problem.

DEFINITION 1.2 (The Modified optimal Ho, control problem). For the descriptor
system (1.1) let T' be the set of positive real numbers v for which there exists an
internally stabilizing dynamic controller of the form (1.2) so that the transfer function
T, (s) of the closed loop system (1.3) satisfies | Towlloco < -

In the modified optimal Hoo control problem we want to determine v;,, = inf I’
and a corresponding controller (1.2) such that ||T.w|lco = Ymo-

Since it is in general possible that there does not exist an internally stabilizing
dynamic controller with the property that ||Tew|lcc = Ymo, (in this case T' = 0 and
Ymo = 00) one studies the suboptimal H., control problem.

DEFINITION 1.3 (The Suboptimal H, control problem). For the descriptor sys-
tem (1.1) and v € T with v > v determine an internally stabilizing dynamic con-
troller of the form (1.2) such that the closed loop transfer function satisfies || Towl|co <
v. We call such a controller v-suboptimal controller or simply suboptimal controller.
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The outline of the paper is as follows:

In the next section we present the notation and several definitions that are used
throughout the paper. Then we discuss the arising difficulties of current methods in
discrete-time Hoo control theory and motivate the use of (structured) matrix pencils
in this context. In Section 3 we develop the theoretical results for discrete-time
Hoo control for descriptor systems using so called BVD-pencils [9] that extend the
idea of the extended symplectic pencil (ESP) that is used for the standard case in
[19,25]. We will see that the discrete-time H, control can be solved by calculating
appropriate deflating subspaces of certain matrix pencils similar to the continuous-
time case that is treated in [22]. In order to further improve the numerical treatment
of this problem and to make use of structure preserving algorithms we reformulate the
results in terms of palindromic matrix pencils, since these allow structure preserving
numerical calculations. We show different ways how this reformulation can be carried
out without losing necessary information on the eigenvalues and deflating subspaces.
In the last section we verify our results by a numerical example.

2. Preliminaries. In this section we introduce some notation and definitions.
For symmetric matrices A and B, by A > B and A > B we denote that A — B
is positive semidefinite and positive definite, respectively. The spectral radius of a
matrix A € R™" is denoted by p(A). The set of complex numbers with positive real
part is denoted by C* and the set of positive real numbers by RT.

Let AE — A be a matrix pencil with F, A € R™™, Then \FE — A is called regular
if det(AE — A) # 0 for some A € C. If A\EF — A is not regular, then it is said to be
singular. A pencil P(\) = AE — A is called symplectic if EJ,ET = AJ,AT with

J, = [ 0 In } . A pencil of the form

~I, 0
0 E 0 0 A B
PN=Xx| AT 0 o|-| ET Q Y
BT 0 0 0o YT R

is called BVD-pencil [9]. For regular pencils, generalized eigenvalues are the pairs
(o, B) € C?\ {(0,0)} for which det(aE — BA) = 0. If B # 0, then the pair represents
the finite eigenvalue A = «/S. If 8 = 0, then («, 8) represent the eigenvalue infinity.
The solution and many properties of the free descriptor system (with ug, wy = 0,
for all k) can be characterized in terms of the Weierstrafi canonical form (WCF).
THEOREM 2.1. [14] If AE' — A is a regular pencil, then there exist nonsingular
matrices W = [ Wy W | €R™ and V =[ V; Vi | € R™" so that

w7t [ I,, 0
WTEV_{W::TJE[VJC Vm]:_ o N}, (2.1a)
and
wrk [ Ay 0
WTAV = { Wé; }A[ Vi Ve | = _ Of I ] (2.1b)

where Ay is a nonsingular matrix in real Jordan canonical form, whose eigenvalues
are the finite eigenvalues of the pencil and N is a nilpotent matrix, also in Jordan
canonical form. (Here nys,n denote the number of finite or infinite eigenvalues,
respectively.)



The index of nilpotency of the nilpotent matrix N in (2.1a) is called the indez of
the system and if E is nonsingular, then the pencil is said to have indez zero.

DEFINITION 2.2. A subspace L C R"™ is called deflating subspace for the pencil
AE — A if for a matriz Xy € R™* with full column rank and Im X = L there exists
matrices Y, € R"*k, R, € Rk’k, and Up € RF* such that

EX;=Y:R:, AX;=Y:Up.. (2.2)

A deflating subspace L of A\E — A is called stable (semi-stable) if all finite eigenvalues
of ARz — U are in the open (closed) unit disc.

DEFINITION 2.3. A subspace L C R?" is called Lagrangian if it has dimension
n and if x7J,y = 0 for all x,y € L. A subspace L C R?" is called generalized
Lagrangian if it is a subspace of a Lagrangian. In the notation of (2.1a)—(2.1b) with

Bij =W} Bi, Bi.=WZLB,

| (2.3)
Ciy=CVy, Cinn=0CiVy, 1=12,
classical solutions of (1.2) take the form
zp = Viwgp + VeoThoo, @0 = Vizor + VooTo,00
where 1, r and xp oo satisfy
Trt1,f = Afzr r + Biy wi + B pug, (2.4a)
NZpt1,00 = Thoo + BiooWk + B2 ook (2.4b)

for all k. If the pencil AE — A has index v, then this system has the explicit solution
sequences [6]

k—1
w.p = Akwo p + 3 AN (B pw; + Ba sows) (2.52)
i=0
v—1
Thk,oo = — Z N* (Bl,oowi + BQ,ooui) . (25b)
i=k

In contrast to standard state space systems where E = I, this shows that the
initial condition x(to) is restricted by (2.5b). Discrete-time descriptor systems may
possess noncausal behavior, i.e. the solution may depend on future values of the
sequences Ty, Uy, Wg. This corresponds to the concept of impulsive behavior in the
continuous-time case.

Note further that for the closed loop system (1.3) to be internally stable, the
controller has to be designed in such a way that both x; and z, are asymptotically
stable. While for the finite part this can be guaranteed if the spectrum of the matrix
Ay lies in the open unit circle, for the infinite part this has to be explicitly ensured
by the construction of the controller.

Asin the case of standard state space systems certain conditions will be needed to
guarantee the existence of optimal H, controls. Thus we need to define stabilizability,
detectability and controllability conditions, for discrete-time descriptor systems.

DEFINITION 2.4. Let E, A € R B € R™™ and C € RP™. Further, let T, Seo
be matrices with Im T, = ker ET and Im S, = ker E.
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i) The triple (E, A, B) is called finite dynamics stabilizable if rank[\E— A, B] =
n for all |\ > 1;

i) (E, A, B) is impulse controllable if rank[E, AS, B] = n;

i) (E, A, B) is strongly stabilizable if it is both finite dynamics stabilizable and

impulse controllable;

i) The triple (E, A, C) is finite dynamics detectable if rank[A\ET — AT CT] =n

for all |\ > 1;
v) (E,A,C) is impulse observable if rank|ET, AT  CT]| = n;

vi) (AE—A, () is strongly detectable if it is both is both finite dynamics detectable

and impulse observable.

After introducing the notation and preliminary results, we derive the theoretical
basis for the optimal H control problem for discrete-time descriptor systems in the
next section. We proceed in several steps. First we recall the well known results
in discrete-time Hoo control for standard systems (E = I). These results usually
make use of the discrete algebraic Riccati equation (DARE) which can be solved by
finding deflating subspaces of a symplectic matrix pencils under strong assumptions
on the invertibility of certain matrices. It was noticed in [19] that this problem in
solving discrete algebraic Riccati equations can be circumvented by using the so called
Extended Symplectic Pencil. We will adapt and slightly modify this approach. As a
next step we will extend these results to descriptor systems of index one by making
use of the Weierstrass canonical form (WCF) and to higher index systems by using
a preliminary output feedback. Since palindromic matrix pencils can be well treated
by efficient structure preserving algorithms we will show how these can be used to
further enhance the numerical treatment of the discrete Hoo- control problem.

3. Hoo-control for discrete-time descriptor systems. In this section we
discuss the theoretical background for the modified optimal Ho, problem. As in the
case of standard state space systems, see [15,16,27,38], we need several assumptions
on the system matrices of (1.1).

Assumptions:
A1) Thetriple (E, A, Bs) is strongly stabilizable and the triple (E, A, Cs) is strongly
detectable, see Definition 2.4.

_ et
A2) rank [A ¢E BQ] = n+ mq for all 6 € [0, 27].
Ch D
— eJf
A3) rank A—eE B _ n + po for all § € [0, 27].
Co Doy
A4) For matrices T, Seo With Im Sy, = ker E and Im7T,, = ker ET the rank
conditions
TLAS., TLIB,
rank [ Cy S D | = n +mg —rank F,
TTAS. TIB]
rank [ ChSen Doy | = n+p; —rank B

hold.

Note that assumption A; is in fact stronger than necessary, but it rules out the
possibility of having non-causal systems. It is actually sufficient to assume finite
dynamics stabilizability and the existence of an equivalent system that is controllable
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at infinity. But for now we restrict ourselves to systems that satisfy Assumption A;
which is not a restriction in general, since non-causal systems usually only appear if
the modeling of the problem is not performed correctly [7]. In Ho- control theory we
usually consider the following two subsystems of (1.1), see [34]

Exii1 = Axp + Biwg + Bouy, zo = 2P, (3.1a)
2k = Crzg + Driywy + Digug, (3.1b)

and the dual system

ETal = ATzl +Clwy +CJ g, zo = 1°, (3.2a)
vk = Bizy + Dijwy + Dyyuj. (3.2b)

First we consider subsystem (3.1). Since we want to minimize the influence of the
disturbance wy on the output zx by using a control input ux, we minimize the following
objective function. Note that uy does not appear explicitly in the sequence, but zx
depends on uy.

J({zr}s {wn} {ur}) = % DMzl = AP e (3-3)
k=0

Then (3.3) can be rewritten as

1 o] Z‘g T OlTC1 ClTDH OlTDlg Tk
J{zrh {wed, {un}) = 5 S| wi D},C1 D{;Dn —~* Di;Diy wy
k=0 UI{ D{ch D%;Dll D%;Dlg Uk

We define two matrices to describe the oo-stage descriptor process for (3.1a).

[ A B, By —-E
A By By —F

A By By —FE

with
) crey  ofbn OfDyp
L= | D{,Ci D{|Diy—~* D{ Dy (3.5)
DG, D{,Dyy D{,Dys
and the infinite variable & by

T T T T T T T 1T
& =lxg,wh Uy, Ty, Wy LU .-

and rewrite (3.1a) and (3.3) as an optimization problem [23]

1
Minimize 5gTLg, subject to M¢ = f. (3.6)
6



Define the Lagrangian of the optimization problem by

L6 1) = 56716 + " (ME - ), (37)

where
ph = [, po, s, -]

is the infinite vector of the Lagrangian multipliers. Differentiating the Lagrangian
(3.7) leads to the following conditions for the optimal control

LE+uMTp =0, (3.8)
ME = f. (3.9)
We introduce the artificial variable p19 = 0. Then (3.8) can be rewritten as
0 = CTCyxy, + Cf Dyywy + Oy Dyguy, + AT i1 — ET g,
0 = DY, Cixy + (DY, D11 — v*)wy, + D11 Digug + By pegr,
0 = D{,C1zy + DI, Diywy, + DYy Disuy + By pe1,

0=FT .
Together with equation (3.1b), we can rewrite this as
0 —E O 0 O ,uk+1 O A B1 BQ 0
AT 0 0 0 0 Tl —-ET cfcy CT D1 C{fDi» 0
BY 0 000 Wet1 | + o DLc, DEDn—~%IT DEDi, 0
BFf 0 o0 00 Uk+1 0 DL,y DT,D1, DLDis 0
0 0 0 0 O Zk41 0 Ch D1y D12 —I
(3.10)

Using the last column for eliminations in the second to fourth column yields the
equivalent system

0 —E|0 0 O Pr+1 0 A By By 0 i
AT 0 |0 0 O Tht1 —-ET 0 0 0 ct T
BT 0 [0 0 0 wryr | + 0 0% 0 DT wy | =
BI 00 0 0 Uk41 0 0 0 0 DI U,
0 0 0 0 O Zk+1 0 Cl D11 D12 —1 Zk
and we introduce the matrix pencil
g+ Vy(y) =
0 —-E|0 0 O 0 A By By 0
AT 0 |0 0 O —-ET 0 0 0 ct
A Bf 0 [0 0 0|+ 0 0| 0 DT |. (3.11)
B 0|0 0 0 0 0 0 0 DI,
0 0 {0 0 O 0 Ci| Din Dy -1
Similar calculations for the second subsystem (3.2) lead to the pencil
AU+ Vi(y) =
0 —-ET|0 0 O 0o AT | ¢t cf 0
A 0 0 0 O -FE 0 0 0 By
A G 0 [0o0O0|+] 0 O0][|—* 0 Dn | (3.12)
Cy 0 0 0 O 0 0 0 0 Doy
0 0 0 0 O o BY| b, DI -I
7



Remark: These pencils have the form of the BVD-pencils introduced in [9]. In the next
sections we will use these pencils to develop the theory for discrete-time descriptor
systems starting with the standard case.

4. Standard Case (E = I). First we consider the standard case where F = I
and make the following assumptions that are typical in Hoo-theory, see for example

[38].
Agl) (A, By) is stabilizable and (A, Cs) is detectable.
A — Ejef BQ
Ag2) rank =n + my for all 6 € [0, 27],
Ch Dy
A— Bjel Bl

Cy Dy,
Ast4) rank D12 = ma, rank D21 = P1-

Note that A1) — A4) reduce to Agl) — Ag4) when setting F = I. For the standard

system the matrix pencils (3.11) and (3.12) have the forms

Ag3) rank [ } =n+ po for all € [0, 27],

~

AUvH,st + VH,st (’Y

0 —-I/0 0 0 0 A| B By 0
A 00 0 0 I 0 0 0o cf
AM B 0]0 0 O0|+| 0 0] 0 DI (4.1)
BI 00 0 0 0 0 0 0 DL
0 01]0 00 0 Ci| Diin Do —I

and

)\U,],st + VJ,st (7) =

0 —-I|0 0 0 o AT | ocf c¢cf o
A 0[]0 0 0 -1 0 0 0 B
AMCi 000 O0[+] 0 0 |2 0 Dy | (4.2)
Cy 00 0 0 0 0 0 0 Do
0 01]0 00 o -BT| ph DI -1

DEFINITION 4.1. [20] A solution X of the discrete-time algebraic Riccati equation
X=AT"XA+Q—-(C+B"XA)T(R+B"XB)"'(C+BTXA)
is said to be stabilizing if all eigenvalues of
A—-B[R+B'XB)"Y(BTXA+C)

are inside the unit circle.
THEOREM 4.2. [34] Consider a system (1.1) and assume that Ag1) — As4) are
satisfied. Then the following statements are equivalent:
(i) There exists a dynamic controller of the form (1.2) such that the transfer
matrix T%,, from w to z of the resulting closed loop system satisfies ||T%. || <1
and such that the resulting closed loop system is internally stable.

(ii) There exist positive semi-definite symmetric matrices P and @ such that
(a) U > 0, where

U :=I-D{,D1,—Bf PB1+(BT PBy+D{,D12)(B3 PBa+D1,D12) (B3 PB14+Di,D11).
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(b) P is a stabilizing solution of the discrete time algebraic Riccati equation

BTPA+ DLy 1" 4 BTPA+ DT,.C
_ 7T T 1 111 1 1 11+1
P=A"PA+C; Cy |:BgPA+D¥;C1:| RH(P,'Y) BgPA—f—D{QCl )
(4.3)
where
. DL Dy, —~%T DL D BT
Ry(P,y) = | "1l —=7 11712 LIpPl B Bl.
H( 'V) |: D{2D11 D%;Dlg + Bg [ 1 2 ]

(¢) V >0, where
V= I*DuDﬂ*01Q01T+(C1QCQT+D11D2T1)(D21D2T1+C2QC;[)71(C2QC1T+D21D?1)~

(d) @ is a stabilizing solution of the discrete algebraic Riccati equation

C1QAT + Dy, BT T 21Q,7) C1QAT + Dy, BT
CQQAT + Dng? J ’ CQQAT + D21B%1 ’
(4.4)

Q= AQAT+BlBlT—[

where

T
~ o DllDa — ’VZI Dlngl Cl Cl
RJ(Q» 7) - [ Dngfl D21D%"1 + 02 P 02 .

(e) p(PQ) <. ) .

Note that in contrast to the continuous-time case Ry and Rj; depend on the
solutions P and @ of the discrete-time algebraic Riccati equation. Conditions (a)
and (c) in Theroem 4.2 ensure that Ry and Ry are invertible. To find a stabilizing
solution of the discrete algebraic Riccati equation we can make use of the relation to
deflating subspaces of symplectic matrix pencils. This means that we can calculate
the stabilizing positive semi-definite solution of (4.3) and (4.4) by finding a basis of
the stable deflating subspace of the symplectic matrix pencils associated with (4.3)
and (4.4), respectively [24,26,35]. Then, with

DfiDi1 —+*I D{,Di» } Ry = [ DD, —+*I DuDy (4.5)

Ry = ,
f [ DiyDn Di,D1o Dy DY Dy1 D3,

we can replace conditions (b) and (d) in Theroem 4.2 by the following two conditions.
(b’) There exist matrices Xp 1, X2 € R™" with X1 nonsingular such that the
Xma
Xm,2
of the matrix pencil

columns of } span an n-dimensional semi-stable deflating subspace

T
0 A-[B BR[| PnO
D1y Cy
A T T T -1 DﬂCl (4.6)
-1 CiCi— [ Ci{ Dy1 Cf Do }RH [ D,{QCI ]
_ BT
A BQ}RHl[BlT] -1
+ 2 BT
—AT+ [ CTDy CTDyy | Ry { B;T } 0
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(d’) There exist matrices X1, Xj2 € R™" with X ;1 nonsingular such that the

X . . . .
columns of [ XJ o1 } span an n-dimensional semi-stable deflating subspace of
J,2

the matrix pencﬂ

T
0 AT [l of ryt| Py
Dy By

A T T T 1 DllB? (47)

—I BB — [ BiD{, BiD3, | R} [ Dy BT ]

et CE}RJI[? -1
+ 2
_ C
~A+[ BDf, BiDj | Ry C;] ’

Similar to [22] we can now show that conditions (b’) and (d’) are equivalent to the
existence of a semi-stable deflating subspace of (4.1) and (4.2).

LEMMA 4.3. If the columns of the matrices

Qm1 Qa1
Qmpe Q2
Qr=| Qusz |, Q=1 Qus |, (4.8)
QHa QJa
Qms Qs

partitioned conformably with (4.1) and (4.2), span a semi-stable deflating subspace of
the pencils (4.1) and (4.2), respectively, then the columns of

_ | Qua _ | Qi
Qn = [ Qu,2 ]  @r= { Q2 } (4.9)

span a semi-stable deflating subspace of (4.6) and (4.7).

Proof. We assume that the columns of Qg span a semi-stable deflating subspace
of the pencil in (3.10), i.e.

0 A B B 0 Qs 0 I 0 0 0 Qra
-1 cfoy CT Dy, CTDy, 0 Qo -AT 0 0 0 O Qu.o
o0 DLc, DLEDuy—~*T DD, 0 Qus |=| -Bf 0 0 0 0 Q.3
0 DLC: DL,Dy, DLDs 0 QH,4 -Bf 0 0 0 0 Qua
0 C1 D11 D12 —I QH,s 0 0 0 0 0 QH,5

for Ty with |X;(Tw)| < 1, for all 4. After some permutations and eliminations we
obtain

0 A By By Qm1 0 1|00 Qm,1
1 CTC,| CTDy CTDu || Qus | | —AT 0]0 0 || Qus
0 D{,Ci | D{\Diy—~°I Di,Diy Qus | | —BL 0]0 0 Qnu3
0 DLGY D{,D1 Di,Dys Qua -BY 0|0 0 QH 4

10
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Since Ry is assumed to be invertible, we can use it to eliminate the upper right 2 x 2
block in Vg (v) and we get

[ DEC
_ 1 1141
0 A-] B BQ]RH{DlTQQ] 0 0
I CFC—[ CTDy CPDy Ry | 20O 0 0
1 1 1 11 1 12 H D{QCI
0 DlTlCl D’{1D11 — ’}/21 DﬁDlg
0 DLy DL Dy, DI, Dy
L[ B
B1 B; | Ry -110 0
LB Ba [ Ry {Bg} Qua
= | —AT+[ C{Du CfDiy | Ry { By w 0o o9 r,
By Qugs
—-BT 00 0 Qa4
-BY 010 O
Thus { 8H’1 spans a semi-stable deflating subspace of (4.6). The calculations for
H;2

(4.7) are equivalent. O
Similarly to [4,22] we replace condition (e) in Theorem 4.2 by
(¢’) The matrix

V() = { _WXIE,Q(V)XHJ(W) XITI,Q(’V)XJJ(’Y)

X7, Xua2(y) = X52(1)"X51(7) (4.10)

is positive semidefinite and satisfies rank V() = kg + k7, where

]A{H = I‘aIlkXH,Q(’yH)l) = rankXH,2(’7H72)v
ky =rank Xj2(ys1) = rank Xj2(y7.2)-

Using these results we can reformulate the set of conditions in Theorem 4.2 that needs
to be checked for the existence of a suitable controller:
Cstl) There exists a matrix X (7y) as in (4.8) such that
Csila) the columns of X (y) span a semi-stable deflating subspace of AUy s +
VH,st (7)7
Cy1b) rank Xg1(y) = n.
Cst2) There exists a matrix X () as in (4.8) such that
Cst2a) the columns of X ;(7y) span a semi-stable deflating subspace of AU s +
VJ,st (’Y)a
Cysi2b) rank Xj1(7y) = n.
C«3) Condition (e’) is satisfied.
In the modified optimal H., control problem we want to find the smallest value 7.,
such that all these conditions are satisfied.

REMARK 4.4. Note that condition (a) and (c) in Theorem 4.2 are only needed to
ensure that the inverse in the discrete-time algebraic Riccati Equation exists. Since we
found an alternative formulation by using matriz pencils, we do not need the existence
of the inverse as an extra condition.

5. Descriptor Systems. In this section we will show that the following gener-
alization of Conditions Cy;1) — Cg:3) is sufficient for the existence of an appropriate
controller in the descriptor system case:
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C1) There exists a matrix X () as in (4.8) such that
Cla) the columns of Xy (7) span a semi-stable deflating subspace of AUy +
V(7).
C1b) rank EXp1(7y) = .
C2) There exists a matrix X () as in (4.8) such that
C2a) the columns of X ;(v) span a semi-stable deflating subspace of A\U; +

VJ (’Y)a
C2b) rank ET X j1(y) = 7.
C3) The matrix

V() = X (MEXm1(v)  Xfo(1)EX2(7)
7 X7 ME" Xt2(7) 7 Xs2()TETX51(7)

is positive semidefinite and satisfies rank () = kg + k7, where

,IACH = rank ETXH_VQ(’YHJ) = I‘&Ilk ETXH,2(7H72),
]%J = rank EXJ,Q(’YJ71) = rank EX'LQ('YJ’Q).

REMARK 5.1. Note that in the continuous-time case (both for standard and de-
scriptor systems) one has the additional condition that the pencils XUy + Vi () and
AUy +Vi() in (3.11) and (8.12) have index one, [22]. This is not necessary here,
since the following example shows that even a pencil of higher index can still have the
desired number of (semi-)stable eigenvalues.

EXAMPLE 5.2. Let

L9 1 0 1 10
<[4 4] 4= (3 2] =[] e [d 1] o=n=0

Then
0 0[1 0]0 0 0]% 0]1
0 0[0 1]0 0 0]0 2|2
ANg+Vg=XA| % 0[]0 0[0|+]1 0[1 00
0 2/0 010 0 1]0 1/0
1 20 0]0 0 00 0]0

is not of index one, but it has rank E = r = 2 eigenvalues inside the uni circle, namely
A= % and A = 0.

5.1. The Index 1 Case. To extend the result for the standard case to descrip-
tor systems, where (E, A) is of index one, we can use the WCF to reformulate the
descriptor system as a system in standard form and then apply Theorem 4.2. Trans-
forming system (1.1) and using the notation introduced in (2.3), the explicit solution
(2.5b) reduces to oo = —B1,00w — Ba oot and using this, we obtain the standard state
space system

Epy1,p = Afxry+ Bijwr + B puk,
2k, = Ch, 52k, 5 + (D11 — C1,00B1,00) Wk + (D12 — C1,00 B2 00 ) Uk, (5.2)
yr = Co pxp f + (D1 — C2,00B1,00) Wk + (D22 — C2 06 B2 00 ) Uk
LEMMA 5.3. Consider system (1.1) and suppose that the index of \E — A is at
most one. Then for i € {1,2,3,4}, system (1.1) satisfies Ai) if and only if (5.2)
satisfies Asti).
12



Proof. The proof is completely equivalent to the continuous-time case treated
in [22] (Lemma 4.2) and is therefore omitted. O
Next we need to show that the set ' of all values for v that satisfy C'% for i = 1,2,3
is invariant under transformation to WCF.

LEMMA 5.4. Consider the system (1.1) and assume that the index of \E — A is
at most one. Let XUy — V() and \Uy — Vjy(v) be the pencils as in (4.1) and (4.2)
and let N\Up st — Vst (7), AUgst — Vise(y) be the corresponding pencils constructed
from the data of the system (5.2).

Let Ty, T'y be the set of y-values that satisfy conditions C1) and C2) and let
Y(7) be the matriz introduced in (5.1).

Let analogously Ty o1, Ty st and Vsi(y) be correspondingly defined for the standard
state space system (5.2). Then,

lagse=Tw, Tjsa=1y,
rank V() = rank Vs (7y).

Proof. We only prove the statement for the sets associated with AUy — Vg (7).
The proof for the sets associated with AUy — V() is analogous.
Introducing the transformation matrix

[ vf 0 0O 0 0
0 wF 0O 0 0
0 0 Im, O 0
P=1 o0 0 0 Im, O (5.3)
0 —CiooWZ 0 0 I,
vZ 0 0 0 0
0 wZ o 0 0 |

we obtain that
MPTUP — PTVy(y)P = 0 I, 0 |. (5.4)

This directly implies that I'g s; = I'gr. Furthermore, we can conclude that the columns

of a matrix
_ T T T T T T T T
XH,st - [ XH,st,l XH,st,Q XH,st,B XH,st,4 XH,st,S XH,st,ﬁ XH,st,7 ]

partitioned conformably to the block structure of (5.4) span a semi-stable invariant
subspace if and only if the columns of

XH,l VfXH,st,l + VooXH,st,G

XH,2 WfXH,st,2 - WOOCEOQXH,stﬁ + WooXH,st,7
Xus3 | = Xm,st,3

X4 X st

Xms XH,st5

span the semi-stable invariant subspace of A\Ug — Vg (7). Using the fact that EV,, = 0,
it follows that [ EXpy1(7)" Xwma(y)" ]T is a generalized Lagrangian subspace if

andonly if [ Xu w1(7)T Xmst2(7)” ]T is a Lagrangian subspace. This also implies
that rank EX g 1 = rank Xg 1. Thus, we have I'g s, = 'y

13



Since an analogous result holds for the pencils AUy — V;(7y) and AUy ot — Vs (7),
we conclude that also rank V() = rank Vg (7). O
With these preparations we have the following result for systems of index one.

PROPOSITION 5.5. Consider system (1.1) such that the index of the pencil \E— A
is at most one, and the pencils \Ug + Vi () and NUy + V() are as in (3.11) and
(8.12), respectively. Suppose that assumptions Al)-A4) hold.

Then there exists an internally stabilizing controller such that the transfer function
from w to z satisfies |Towl|loo < v if and only if v is such that the conditions C1),
C2) and C3) hold.

Proof. The closed-loop transfer function T (s) of the system (5.2) with a con-
troller of the form (1.2) is equal to the closed-loop transfer function of the system
(1.1) with the same controller.

Since (1.1) is strongly stabilizable (strongly detectable), if and only if system (5.2)
is stabilizable (detectable), a controller that internally stabilizes (5.2) also stabilizes
the finite dynamics of (1.1).

Therefore the existence of a controller with desired properties for (1.1) is equiva-
lent to the existence of such a controller for (5.2). Since by Lemma 5.3 the validity of
assumptions Al)-A4) for (5.2) is equivalent to those of (1.1) and, furthermore, also by
Lemma 5.4 the corresponding conditions C'1)-C3) of these two systems are equivalent
and thus the statement follows. O
We have seen so far that the the index one case follows from the standard case by
some simple transformation. To extend the results to descriptor systems of arbitrary
index we study the general case in the following section.

5.2. The General Case. To extend the previous results to general descriptor
systems we will use an a-priori feedback that transforms the general system to an
index one system such that we can apply the previous results. Using a feedback of
the form v = K'Yy + uy, leads to the system

Expq = (A + BQKCQ)xk; + (B1 + BQKDQl)wk + By, o = CEO,
2z, = (C1 + D12 KCy)xy + (D11 + D12 K Dot )wy, + Diatiy, (5.5)
yr = Coxy, + Dojwy,.

The feedback matrix K will be constructed in a way that system (5.5) has index
one. Under the assumption that the system is controllable and observable at oo,
such a feedback always exists [8]. After applying such a feedback we can construct a
controller (1.2) for (5.5). A controller for the overall system is then given by

Etpiq f}lk + B:Ukv (5.6)
up = C2p + (D + K)ys.

We now need to show that this static output feedback does not change the assumptions

Al1)—-A4). The proof is similar to the continuous-time case discussed in |22].

LEMMA 5.6. Consider system (1.1) and let K € R™2P2 such that the pencil
AE — (A+ B2 KC5) is regular. Then for every i € {1,2,3,4} the system (1.1) satisfies
Ai) if and only if the system (5.5) satisfies Ai).

Proof. The invariance of strong stabilizability and strong detectability under
output feedback is proved in [11]. The proof for the equivalence of the conditions A2)

14



and A3) follows from the identities

A—iwE Bz I 0 o A+BQKCQ—iWE BQ
Ch Diy| |KCy I| | Ci+D12KCy Do’

I BK||A—iwE By| [A+BKCy,—iwE DBy
0 I Cs Doi1| | C1+ D12KCs Dis|”

The remaining assertions follows from

{TOCQASOO T;;BQH I 0}

oo

(C1 + D12KC3)Tse  Da2

TT(A+ ByKCy)Sse T B,
C1See  Dio | |KCySeo I )

{TO:’;ASOO TOToBlH T 0}

C98+ Doy KCyS I
_ TL(A+ ByKCs)Soo TEI(By + BoKDay)
o S Do,y '

0
As in the index one case we need to show the set I' of all suitable ~-parameters is
invariant under the preliminary feedback.

LeEMMA 5.7. Consider the system (1.1) and let K € R™2P2 be such that the
pencil \E — (A + BKC) is regular. Let Ty, T'y be the sets of vy-values such that
condition C1). and C2), respectively, are satisfied. Furthermore, let Ty ¢, Ty x be
the corresponding quantities for the system (5.5). Then

Tyx =Ty, Iy =Ty, rank Y(v) = rank Vi (7).

Proof. We only show the result for the the sets associated with AUy — Vg (7), the
proof for \Uyg — Vi (7) is completely analogous.

Let AUy — V& be the BVD-pencil [9] formed from the data of system (5.5). Then,
with the transformation matrices

I 00 0 0 I I 000
0o7 0 0 0 0 I 00 0
Tix=10 0 I DLK” 0|, T,yu=10 0 I 0 0f,
000 I 0 0 —KCy 0 I 0
000 0 I 0 0 00 I

we have the identity
Nk Un Ty — Thx Vi ()T = Ng — Vi (7).

Thus we have that both the index and eigenvalues of AUy — Vi () and AUy — VE (v)
coincide. This directly implies that I'y x = I'y. The remaining relations follow from
the fact that

[ Xhy Xk Xha Xha Xhs ]
is a semi-stable invariant subspace of AUy — V£ (v) if and only if

[ Xia Xho Xfs (Xpa—KCoXpa+KDunXus)' Xjs
15
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is a semi-stable invariant subspace of \Ug — Vg () . O With these auxiliary results,
we are now in a position to prove the general Theorem.

THEOREM 5.8. Consider system (1.1) and the associated pencils \Ug — Vi ()
and AUy — Vy(v) as in (3.11) and (3.12), respectively. Suppose that assumptions
Al)-A4) hold.

Then there exists an internally stabilizing controller such that the transfer function
from w to z satisfies ||Tewllco < v if and only if v is such that the conditions C1),
C2) and C3) hold.

Proof. There exists a matrix K € R™2P2 guch that the system (5.5) has index at
most one. Lemma 5.6 implies that (5.5) satisfies A1)-A4) as well. Furthermore, by
Lemma 5.7, the validity of the conditions C'1)-C3) for the system (1.1) are equivalent
to the respective conditions for system (5.5).

Proposition 5.5 then implies that conditions C1)-C4) for (5.5) are fulfilled if and
only if there exists a desired controller for (5.5).

Since an application of the controller (1.2) to (5.5) results in the same closed loop
system as controlling (5.5) with (5.6), the desired result follows immediately. O
Since we want to calculate the optimal value for v as accurate as possible we should
use structured methods for the arising matrix pencils.

6. Palindromic Pencils. In this section we will reformulate the results to make
use of structure preserving numerical methods.

DEFINITION 6.1. A matriz pencil NA — B is called T-palindromic if B = AT,
In the following we will just use the term palindromic pencil for a T-palindromic
pencil. We want to find a reformulation of (3.11) and (3.12) that has palindromic
structure and preserves the information on eigenvalues and deflating subspaces [9]. In
this chapter we introduce two techniques that carry out this transformation and we
discuss the advantages and disadvantages of both approaches. The first approach can
be found in [32] for the linear-quadratic optimal control problem.

We introduce the new sequences

k k k k
i’k:E Tk, 'ak:E Uk, wk:E W, ZkZE 2k,
j=0 j=0 j=0 j=0
and rewrite subsystem (3.1) as

E.%k+1 = A%, + Biwy + Boiiy,
Zr = C1&p + Diiwy + Dioty,
and with o = JNS’(), wo = ’LZ)(), ug = o and xXr; = 1~77 757;_1, w; = ’LZ)Z‘*’LI)i_l, U; = 11,;711,;_1
for ¢ > 0 we can formulate the cost functional as

r T

1 .io 0?01 ClTDH ClTDlg .i‘o
J = Z ’LI)O D1T16’1 D,{lDll - ’}/2 D,lrlDlQ 12)0
L ’ELO D,{ch D?Q.Dll D{QDlg ’ELQ
oo [ @n—dnq |7 [ CTCy,  CTDy CTDy Pk — ipo1
+ Z Wy — Th—1 DT,Cy DY ,Dy; —~+* D% Dy Wy — Tp—1
k=0 L ﬁk — ’&,k,1 D’,ll"QCl DEDH DEDlQ ’llk — i‘k,1
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After regrouping we get
T
cte, CTDyy CTDys

PR R
J = 5(2 wy, DT,Ccy DI Dyy—~* DLDio Wy,
k=0 ’&,k D?ch D?QDH DTQDIQ ’&,k
. AT -
Tl C;Cl C?Du ClTDlg Th+1
— | Wk Df,C1 D{;Di1 —~* Di;Diy Tre1 |)-
Up, D, Di,Dyy Di,Dy, Tpq1

Let the matrices M and L be defined as in (3.4) and (3.5) respectively and define

L -

e
Il

Define a new variable & by
fT = [‘%gawo 711,(1;,.@1 y Wy, Uy -
and rewrite the optimization problem (3.6) as

1 o m ~ -
Minimize §£TL§, subject to M¢& = 0.

Define the Lagrangian of the optimization problem by

£(E ) = 5E7 EE+ T (019)

with
pt = (11, p2s .

Differentiating (6.1) leads to the following conditions for the optimal control
LE+uMT =0,
ME =0.
We introduce the artificial variable gy = 0. Then the first equation can be rewritten

as

0 = CTC131, + Cf D1yt + Oy Doy, — O C1Fp 41

— Cf Dyygy1 — C1Dioligr + A" X1 — ET
0 = D{,C1dy, + (DY, D11 — 7*)iy, + D11 Dyzily,

— D,C1&gy1 — (DY D1y — )Wk 41 — D11 Digtinr1 + B Mgy (6.3)
0 = DL,Ci@y, + DI Dyyivy, + DiaDioiig

— DL,C1&gy1 — DDy — DiaDiatigr 1 + Ba Ay (6.4)

17



and the final condition limy_, oo (Fizs 4+ Fowy, + Fyug) = limy_.oo ET )\ for ap-
propriate matrices Fy, Fy, F3. If we additionally use the system equations for zj in
terms of the new variables

Zk—2k—1 = C12,—C1 21+ D112k —D112g 1+ D122k — D122k -1, i=1,...,00, Zo = 20,
(6.5)
we can rewrite (6.2) - (6.5) as
0 -F 0 0 0 Ak41
AT *Cchl *ClTDll *ClTDlg 0 Th+1
Bf -D{,Ci —(Df;Du—~*I) —D{;Di» 0 W41
Bg —D?ch —D,{QDll —D,{QD12 0 Uk+1
0 Ch D11 Dy -1 Zk+1
0 A B1 B2 0 >‘k
—ET ClTCl ClTDll C?Du 0 Tk
+ 0 DﬂCl DﬂDn — "/21 D?lDlg 0 Wi = O
0 D{QCI DTQDH D?QDlg 0 Uk
0 -1 —Dq; —Dqs 1 2k
which is equivalent to
0O -E| 0 0 0 Aot
AT 0 0 0o -cf Tt
BT 0 | 7 0 -Df Wit
Bl 0| 0 0 -DL || uep
0 Cl D11 D12 —I Zk+1
O A Bl BQ 0 Ak
—-ET 0 0 o of T
+ 0 0 | % 0 D wy, | =0.
0 0 0 0 DI m
0 —C1 | —Dy1 —Diy -1 2k

This boundary value problem can be solved by considering the following palindromic
matrix pencil and its deflating subspace associated with the eigenvalues inside the
unit disk:

Nnp + Vip(v) =

0 —F 0 0 0 0 A By Bs 0
AT 0| o o —cf _ET 0 | o 0 cT
AM B o [T o -Df |+ 0 0 | —°T 0 DI |.(66)
Bl o | 0o o -DI o 0 | 0 0o DL
0 Ci | Du D I 0 —Ci|-Du —-Dip I

Similar calculations for the second subsystem (3.2) lead to

AUjp+ Vip (v) =

0 —ET] 0 0 0 0o AT | ¢t T o
A 0 0 0 By -F 0 0 0 By
A Cl 0 —’}/2_[ 0 —D11 + 0 0 —"/2I 0 D11 . (67)
Cs 0 0 0 —Dy 0 0 0 0 Dy,
o BT | DL, DL -—I 0 -BI|-pf, -DL, —I
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Since we are interested in calculating the semi-stable deflating subspaces, we need
the following Lemma to provide a connection of the semi-stable deflating subspaces
of (6.6) and (3.11) (and similarly for (6.7) and (3.12)).

X

LEMMA 6.2. Let X,

be a matriz partitioned conformably with the blocks

shown in (6.6). If X = { X } is a deflating subspace of (3.11), i.e.,

Xo
UnX = Vg XT,

where T is a matrix whose spectrum are the semi-stable eigenvalues, then X =
[ Xi(I+7T)

9. ] is the semi-stable deflating subspace of the palindromic pencil (6.6),
2

i.e.,

U pX = Virp XT.
Proof. The pencil AUg + Vi (7) in (3.11) has the block form

e o[ e 5]

F=[-E 0 0 0] (6.8)

with

and
G=[A B By 0] (6.9)

and we know from [37] that this pencil can be transformed to the following (even)
form by Cayley transformation and a “drop-procedure”,

0 F 0 G
)\UH’E_VH’QZA[ —FT O :|_|:FT D:| (610)

If X is a deflating subspace of AUy + Vi (7) associated with T' then (6.10) has the
deflating subspace X = X (I +T)
2X,

c(T) of T [37], i.e.,

} associated with the Cayley transformation

(6.11)

)

Uste { et } o(T) = Vi { I 4 T) ] |

Now we perform an inverse Cayley transformation (UH, VH) =1/2(Upe—Vi,e,Une+
Vi,e) and from (6.11) we get

1/2U,0 Xléﬁ; T) o(T) = 1/2Vir, [ X1(21X+2 T) }
©1/2Une XI(QIX—Z Dl a-nawsn— =12, { XI(QIXJ; " ]
©1/20s. Xl(i;g " (T—1)=1/2Vp, [ Xléﬁg " ] (T +1)
o[ M)
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Multiplying (U, ‘7) by (diag I, 21 +m,+m,) we find that X spans the deflating sub-
space of AUg, — Vi, associated with 7. O
0

Unfortunately, this approach of get palindromic matrix pencils has some draw-
backs which become clear when we lock at the transformations as an algebraic ma-
nipulation [9,32,37]. We find that this procedure adds m; + mo + p1 copies of the
eigenvalue 1 and -1 which is not desirable in our case. One reason for this is that
eigenvalues on the unit circle are usually critical in the numerical treatment. The
other drawback is that we are interested in the calculation of deflating subspaces that
are associated with the eigenvalues inside the open (closed) unit disk and thus would
have to distinguish between the eigenvalues inside the unit disc that are added by the
above procedure and the ones that have been there originally. This can be done by
considering the kernel of the matrix Uy in (3.11) since it provides the information on
the infinite eigenvalues of (3.11) that may have been transformed to 1 by the above
procedure. For more details see Section 7.

Another approach that reformulates the pencils (3.11) and (3.12) to a palindromic
form is the following adaption of [21] which we show for the pencil (3.11). The calcu-
lations for (3.12) are similar. We multiply (3.11) with the matrix

L,
Al
My,
Ay,
)‘Ipl

and obtain the quadratic palindromic matrix polynomial

0 0000
AT 00 0 0O
X1 B 0000
Bf 0000
0 00 00
0o —-E 0 0 0 0 A B By 0
-ET 0 0 0o Cf 00 0 0 0
+A| 0 0 —* 0 DL |+]|0 0 0 0 0].(6.12)
0 0 0 0 DY 00 0 0 0
0 -C; —-Dyy —-Dipp —I 00 0 0 0

By performing this multiplication we add n + mj + mo + p; eigenvalues at 0 and
n eigenvalues at oco. All other eigenvalues are preserved [9,21] and we now have
a palindromic standard formulation of (3.11) (and by similar calculations also for
(3.12)) which contains the desired information concerning the eigenvalues and as well
the deflating subspaces, see [9]. Just as in the first method of deriving a palindromic
representation we add eigenvalues inside the unit disc. Here we can easily distinguish
between the ones that have been there originally and the ones that we added by
performing the procedure by simply calculating the kernel of the matrix Vi, see
section 7 and [9]. We dis not add any critical eigenvalues, but on the other hand
we increased the degree of the matrix polynomial by one and thus it is a necessary
next step to reduce the degree back to 1 without changing the palindromic structure
or the information on eigenvalues, eigenvectors and deflating subspaces. There are
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several ways to carry out this linearization. A possible palindromic linearization of a
quadratic matrix polynomial N2UT + AV + U is given by

A\ vt v-uU n U U
vt uTr v-Uul U

and exists whenever A2U7 + AV + U has no eigenvalue at —1. Using this linearization
we obtain the palindromic pencil

)\UH,lin - VH,lin (613)
0 00 00| 0 —A—E —-By —By 0 ]
AT 0 0 0 0|—ET 0 0 0 ct
B 00 00| 0 0 —~2T 0 Df
BY 000 0| 0 0 0 0 DL
1 0 000 0] O -Cy  —Dyy —Dip I
0 0 0 0 0] O 0 0 0 0
AT 0 0 0 0] AT 0 0 0 0
B 0 0 0 o| BF 0 0 0 0
B 0 0 0 0| BY 0 0 0 0
. 0 0 0 0 0] O 0 0 0 0 |
I 0 A B By 0 |0 A B By 0]
0 0 0 0 0|0 0O 0O 0 O
0 0 0 0 0|0 0O O 0 O
0 0 0 0 0|0 0O O 0 O
0 0 0 0 0l0 0 0 0 O
- 0 E 0 0 0 |0 A B B, 0
—ET —AT 0 0 0 ctrlio o 0 0 0
-BF 0 —2I 0 DLI0O 0 0 0 0
~BT 0 0 0 DLi0o 0 0 0 0
| 0 ~Cy -Dyy —-Dis 110 0 0 0 O]

In order to use this palindromic pencil for the verification the conditions C1), C3) and
C'3) we need to discuss the relationship of the deflating subspaces of (3.11) and (6.13).
LevMA 6.3. Let [XT,..., X])]T span a stable deflating subspace of the matriz
pencil \Up jin — Virjin. Then [(XT + XTI, X+ XT, XT + XTI, XT + XTI, xXT + XT)"
spans a stable deflating subspace of XU — Vi (7) in (3.11).
Proof. The result follows by some simple matrix calculations. O

7. Numerical Methods. In this section we discuss how we can use the results
from the previous sections to calculate the (sub-)optimal value 7,,,. We make use
of a procedure to verify if for a fixed value v the desired controller exists and then
proceed with a bisection procedure to find vyy,-

If we use the first approach of attaining a palindromic pencil, we need the follow-
ing steps that we have reached to verify v,0:

Procedure 1la (classification of )

Input: Data of system (1.1), value v > 0.
Output: Decision whether v < v Or v > Ypo-
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(1) Formulate palindromic pencil (6.6) and (6.7).

(2) Calculate the eigenvalues of (6.6) and (6.7) and let sy := dimker Uy and
sy = dimkerUj; be the number of stable eigenvalues of the two pencils
respectively that are not equal to one and let vy and vy be the number
of stable eigenvalues of the two pencils respectively including all eigenvalues
at one.

IF vy <7 or vy <r, then v < yp0, STOP.
ELSEIF sy < r and vy —min{dimker(Ug ), m1 +ma+p1} < r, then v < o
STOP.,
ELSEIF s; < r and vy — min{dimker(Uy),m1 + ma+p1} < r, then v < Yo
STOP.
ELSE
(2a) Use a structure preserving method to calculate the deflating subspaces
of (6.6) and (6.7) associated with the semi-stable eigenvalues.
IF rankEX g1 <7, then v < Y0, STOP.
ELSEIF rankET X ;1 < 7, then v < Y0, STOP.
ELSEIf ) is not positive semi-definite, then v < Y0, STOP.
ELSE 7 = Ymo.

If we use the second approach in the construction of the palindromic problem, we
perform the following steps

Procedure 1b (classification of )
Input: Data of system (1.1), value v > 0.
Output: Decision whether v < v Or 7 > Ypo-

(1) Formulate quadratic palindromic polynomials (6.12) from AUy + Vg () and
AU+ V().

(2) Use structure preserving linearization to formulate palindromic pencils.

(3) Use a structure preserving method to calculate the eigenvalues and let sy
and sy be the number of stable eigenvalues of the two pencils respectively
that are not equal to zero.

IF sy < r and dimker(Vy) < r — sg, then v < v, STOP.

ELSEIF s; < r and dimker(V;) < r — sy, then v < Ymo, STOP.

ELSE

(3a) Use a structure preserving method to calculate the deflating subspaces
of the linearized palindromic polynomials associated with the eigenval-
ues inside the unit disc. IF rankEXy 1 <7, then v < Ym0, STOP.
ELSEIF rankETXm < r, then v < Yo, STOP.
ELSEIf Y is not positive semi-definite, then v < 0, STOP.
ELSE v 2 Ymo.

To actually find 7,,,, we may use a bisection together with one of the above algorithms:

Procedure 2 (Bisection)
Input: 7up and i,
Output: Ymo
(1) IF Yup — V1o < d, d sufficiently small, then Yo = Yio-
(2) ELSEIF v < Yo, set vio =7 and v = (Ymo + Yup)/2 and run Algorithm 1.
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ELSE set vup =7 and ¥ = (Ymo + Yup)/2 and run Algorithm la/1b.

8. Example. To illustrate the functionality of our approach, we consider the
following example. Let the discrete-time system of the form (1.1) be given by

1 0 0 0 0 1 0 1
E=|010],A=l0 1 1|,Bi=|1]|,B=1|0],
0 0 O 0 -1 0 1 1
1 1 0 0
01:|:O 1 1:|,C12:[1 0 1},D12:|:1:|,D21:1

Using the pencils of the form (3.11) and (3.12) and the QZ-algorithm in MATLAB to
calculate the eigenvalues and the deflating subspaces associated with the eigenvalues
inside the unit disc and Procedure 2 to determine the optimal value for gamma, we
computed yopr = 4.7684. If we use the palindromic reformulation Procedure 1b and
make use of the palindromic structure with the methods from [29] when calculating
eigenvalues and deflating subspaces we obtain a smaller value o, = 4.4163. The
reason is that the matrices of the eigenvalue problem become more and more ill
conditioned when approaching the optimal value for v and algorithms that do not
take the special structure of the pencil into account will not get as closed to the
optimal value as methods that make use of the special structure of a matrix pencil.

9. Conclusion. In this paper we developed conditions for the existence of op-
timal Hoo-controllers for discrete-time descriptor systems of arbitrary index. The
conditions are expressed in terms of matrix pencils. Furthermore we used several ap-
proaches to reformulate the results in terms of palindromic matrix pencils that set us
in position to apply structured numerical methods which lead to even better results.
We illustrated our approach by a numerical example.
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