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Abstract. We consider the (sub)optimal H∞-control problem for discrete time descriptor sys-
tems. Necessary and su�cient optimality conditions are derived in terms of de�ating subspaces of
palindromic matrix pencils. This approach allows the use of structure preserving matrix techniques
which lead to a more robust method compared with currently used algorithms. The approach is
suitable for standard systems as well as for index one and higher index systems. We illustrate the
results by a numerical example.

1. Introduction. TheH∞-control problem has been a point of research in many
publications [15,16,27,36,38]. For standard state space systems, where the dynamics of
the system is modeled by a linear constant coe�cient ordinary di�erential equation,
the analysis of this problem is well studied [12] and numerical methods have been
developed and integrated in control software packages [2, 5, 17, 28]. The standard
discrete-time case is considered in [34].

Most of these methods work well for a wide range of problems in computing
suboptimal controllers but the exact computation of the optimal value γ inH∞ control
is usually di�cult [10]. In [3,4] several improvements of the previously known methods
were presented to avoid some of the numerical di�culties that arise when approaching
the optimum. These methods are based on the solution of structured eigenvalue
problems with structured methods.

In this paper we consider a more general situation where the dynamics of the
system is constrained, i.e., described by di�erential-algebraic-equations or descriptor
systems. Descriptor systems arise in various applications such as mechanical systems
[1, 18, 30, 31, 33] and electric circuit simulation [13]. The H∞-control problem for
continous-time descriptor systems has been studied in [22] and a numerical robust
method for the γ-iteration has been proposed. In this paper we focus on the H∞-
control problem for discrete-time descriptor systems and provide a numerically robust
method for the γ-iteration. We see that there are some major di�erences in the
contrast to the continous-time case. These di�erences are discussed in full detail in
Section 5.

We consider systems of the form

Exk+1 = Axk +B1wk +B2uk, x0 = x0,

zk = C1xk +D11wk +D12uk, (1.1)

yk = C2xk +D21wk +D22uk,

where E,A ∈ Rn,n, Bi ∈ Rn,mi , Ci ∈ Rpi,n, and Dij ∈ Rpi,mj for i, j = 1, 2. (Here,
by Rk,l we denote the set of real k × l matrices.) In this system, {xk} ∈ Rn is the
sequence of state vectors, {uk} ∈ Rm2 is the sequence of control input vectors, and
{wk} ∈ Rm1 is the sequence of exogenous inputs that may include noise, linearization
errors and un-modelled dynamics. The sequence of vectors {yk} ∈ Rp2 contains mea-
sured outputs, while {zk} ∈ Rp1 describes regulated outputs or estimation errors. To
simplify the notation, throughout the paper we will frequently use xk, uk, wk, yk and
zk instead.
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We de�ne the H∞-norm by

∥F∥∞ = sup
θ∈(−π,π]

σmax(F (ejθ)),

where σmax(F (ejθ)) denotes the maximal singular value of the matrix F (ejθ).
In robust control, ∥F∥∞ is used as a measure of the worst case in�uence of the
disturbances w on the output z, where in this case F is the transfer function mapping
noise or disturbance inputs to error signals [38].

The optimal H∞ control problem is the task of designing a dynamic controller
that minimizes (or at least approximately minimizes) this measure.

Definition 1.1 (The Optimal H∞ control problem.). For the descriptor system
(1.1), determine a controller (dynamic compensator)

K :
Ex̂k+1 = Âx̂k + B̂yk,

uk = Ĉx̂k + D̂yk,
(1.2)

with Ê, Â ∈ RN,N , B̂ ∈ RN,p2 , Ĉ ∈ Rm2,N , D̂ ∈ Rm2,p2 and transfer function K(s) =
Ĉ(sÊ − Â)−1B̂ + D̂ such that the closed-loop system resulting from the combination
of (1.1) and (1.2), that is given by

Exk+1 = (A+B2D̂Z1C2)xk + (B2Z2Ĉ)x̂k + (B1 +B2D̂Z1D21)wk,

Êx̂k = B̂Z1C2xk + (Â+ B̂Z1D22Ĉ)x̂k + B̂Z1D21wk,

zk = (C1 +D12Z2D̂C2)xk +D12Z2Ĉx̂k + (D11 +D12D̂Z1D21)wk,

(1.3)

with Z1 = (I −D22D̂)−1 and Z2 = (I − D̂D22)
−1, has the following properties.

1. System (1.3) is internally stable, i.e., the solution

[
xk

x̂k

]
of the system with

w ≡ 0 is asymptotically stable, i.e. limk→∞

[
xk

x̂k

]
= 0.

2. The closed-loop transfer function Tzw(s) from w to z is minimized in the
H∞-norm.

Since it is in general very di�cult to minimize over the complicated set of sta-
bilizing controllers we study two closely related problems, the modi�ed optimal H∞
control problem and the suboptimal H∞ control problem.

Definition 1.2 (The Modi�ed optimal H∞ control problem). For the descriptor
system (1.1) let Γ be the set of positive real numbers γ for which there exists an
internally stabilizing dynamic controller of the form (1.2) so that the transfer function
Tzw(s) of the closed loop system (1.3) satis�es ∥Tzw∥∞ < γ.

In the modi�ed optimal H∞ control problem we want to determine γmo = inf Γ
and a corresponding controller (1.2) such that ∥Tzw∥∞ = γmo.

Since it is in general possible that there does not exist an internally stabilizing
dynamic controller with the property that ∥Tzw∥∞ = γmo, (in this case Γ = ∅ and
γmo = ∞) one studies the suboptimal H∞ control problem.

Definition 1.3 (The Suboptimal H∞ control problem). For the descriptor sys-
tem (1.1) and γ ∈ Γ with γ > γmo determine an internally stabilizing dynamic con-
troller of the form (1.2) such that the closed loop transfer function satis�es ∥Tzw∥∞ <
γ. We call such a controller γ-suboptimal controller or simply suboptimal controller.
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The outline of the paper is as follows:
In the next section we present the notation and several de�nitions that are used
throughout the paper. Then we discuss the arising di�culties of current methods in
discrete-time H∞ control theory and motivate the use of (structured) matrix pencils
in this context. In Section 3 we develop the theoretical results for discrete-time
H∞ control for descriptor systems using so called BVD-pencils [9] that extend the
idea of the extended symplectic pencil (ESP) that is used for the standard case in
[19, 25]. We will see that the discrete-time H∞ control can be solved by calculating
appropriate de�ating subspaces of certain matrix pencils similar to the continuous-
time case that is treated in [22]. In order to further improve the numerical treatment
of this problem and to make use of structure preserving algorithms we reformulate the
results in terms of palindromic matrix pencils, since these allow structure preserving
numerical calculations. We show di�erent ways how this reformulation can be carried
out without losing necessary information on the eigenvalues and de�ating subspaces.
In the last section we verify our results by a numerical example.

2. Preliminaries. In this section we introduce some notation and de�nitions.
For symmetric matrices A and B, by A ≥ B and A > B we denote that A − B
is positive semide�nite and positive de�nite, respectively. The spectral radius of a
matrix A ∈ Rn,n is denoted by ρ(A). The set of complex numbers with positive real
part is denoted by C+ and the set of positive real numbers by R+.

Let λE −A be a matrix pencil with E,A ∈ Rn,n. Then λE − A is called regular
if det(λE − A) ̸= 0 for some λ ∈ C. If λE − A is not regular, then it is said to be
singular. A pencil P (λ) = λE − A is called symplectic if EJnE

T = AJnA
T with

Jn =

[
0 In

−In 0

]
. A pencil of the form

P (λ) = λ

 0 E 0
AT 0 0
BT 0 0

−

 0 A B
ET Q Y
0 Y T R


is called BVD-pencil [9]. For regular pencils, generalized eigenvalues are the pairs
(α, β) ∈ C2 \ {(0, 0)} for which det(αE − βA) = 0. If β ̸= 0, then the pair represents
the �nite eigenvalue λ = α/β. If β = 0, then (α, β) represent the eigenvalue in�nity.

The solution and many properties of the free descriptor system (with uk, wk = 0,
for all k) can be characterized in terms of the Weierstraÿ canonical form (WCF).

Theorem 2.1. [14] If λE −A is a regular pencil, then there exist nonsingular
matrices W =

[
Wf W∞

]
∈ Rn,n and V =

[
Vf V∞

]
∈ Rn,n so that

WTEV =

[
WT

f

WT
∞

]
E
[
Vf V∞

]
=

[
Inf

0
0 N

]
, (2.1a)

and

WTAV =

[
WT

f

WT
∞

]
A
[
Vf V∞

]
=

[
Af 0
0 In∞

]
, (2.1b)

where Af is a nonsingular matrix in real Jordan canonical form, whose eigenvalues
are the �nite eigenvalues of the pencil and N is a nilpotent matrix, also in Jordan
canonical form. (Here nf , n∞ denote the number of �nite or in�nite eigenvalues,
respectively.)
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The index of nilpotency of the nilpotent matrix N in (2.1a) is called the index of
the system and if E is nonsingular, then the pencil is said to have index zero.

Definition 2.2. A subspace L ⊂ Rn is called de�ating subspace for the pencil
λE − A if for a matrix XL ∈ Rn,k with full column rank and ImXL = L there exists
matrices YL ∈ Rn,k, RL ∈ Rk,k, and UL ∈ Rk,k such that

EXL = YLRL, AXL = YLUL. (2.2)

A de�ating subspace L of λE−A is called stable (semi-stable) if all �nite eigenvalues
of λRL − UL are in the open (closed) unit disc.

Definition 2.3. A subspace L ⊂ R2n is called Lagrangian if it has dimension
n and if xTJny = 0 for all x, y ∈ L. A subspace L ⊂ R2n is called generalized
Lagrangian if it is a subspace of a Lagrangian. In the notation of (2.1a)�(2.1b) with

Bi,f = WT
f Bi, Bi,∞ = WT

∞Bi,

Ci,f = CiVf , Ci,∞ = CiV∞, i = 1, 2,
(2.3)

classical solutions of (1.2) take the form

xk = Vfxk,f + V∞xk,∞, x0 = Vfx0,f + V∞x0,∞

where xk,f and xk,∞ satisfy

xk+1,f = Afxk,f +B1,f wk +B2,fuk, (2.4a)

Nxk+1,∞ = xk,∞ +B1,∞wk +B2,∞uk (2.4b)

for all k. If the pencil λE −A has index ν, then this system has the explicit solution
sequences [6]

xk,f = Ak
fx0,f +

k−1∑
i=0

Ak−i−1
f (B1,fwi +B2,∞ui) , (2.5a)

xk,∞ = −
ν−1∑
i=k

N i (B1,∞wi +B2,∞ui) . (2.5b)

In contrast to standard state space systems where E = I, this shows that the
initial condition x∞(t0) is restricted by (2.5b). Discrete-time descriptor systems may
possess noncausal behavior, i.e. the solution may depend on future values of the
sequences xk, uk, wk. This corresponds to the concept of impulsive behavior in the
continuous-time case.

Note further that for the closed loop system (1.3) to be internally stable, the
controller has to be designed in such a way that both xf and x∞ are asymptotically
stable. While for the �nite part this can be guaranteed if the spectrum of the matrix
Af lies in the open unit circle, for the in�nite part this has to be explicitly ensured
by the construction of the controller.

As in the case of standard state space systems certain conditions will be needed to
guarantee the existence of optimalH∞ controls. Thus we need to de�ne stabilizability,
detectability and controllability conditions, for discrete-time descriptor systems.

Definition 2.4. Let E,A ∈ Rn,n, B ∈ Rn,m and C ∈ Rp,n. Further, let T∞, S∞
be matrices with ImT∞ = kerET and ImS∞ = kerE.
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i) The triple (E,A,B) is called �nite dynamics stabilizable if rank[λE−A,B] =
n for all |λ| ≥ 1;

ii) (E,A,B) is impulse controllable if rank[E,AS∞, B] = n;
iii) (E,A,B) is strongly stabilizable if it is both �nite dynamics stabilizable and

impulse controllable;
iv) The triple (E,A,C) is �nite dynamics detectable if rank[λET −AT , CT ] = n

for all |λ| ≥ 1;
v) (E,A,C) is impulse observable if rank[ET , AT

∞, CT ] = n;
vi) (λE−A,C) is strongly detectable if it is both is both �nite dynamics detectable

and impulse observable.
After introducing the notation and preliminary results, we derive the theoretical

basis for the optimal H∞ control problem for discrete-time descriptor systems in the
next section. We proceed in several steps. First we recall the well known results
in discrete-time H∞ control for standard systems (E = I). These results usually
make use of the discrete algebraic Riccati equation (DARE) which can be solved by
�nding de�ating subspaces of a symplectic matrix pencils under strong assumptions
on the invertibility of certain matrices. It was noticed in [19] that this problem in
solving discrete algebraic Riccati equations can be circumvented by using the so called
Extended Symplectic Pencil. We will adapt and slightly modify this approach. As a
next step we will extend these results to descriptor systems of index one by making
use of the Weierstrass canonical form (WCF) and to higher index systems by using
a preliminary output feedback. Since palindromic matrix pencils can be well treated
by e�cient structure preserving algorithms we will show how these can be used to
further enhance the numerical treatment of the discrete H∞- control problem.

3. H∞-control for discrete-time descriptor systems. In this section we
discuss the theoretical background for the modi�ed optimal H∞ problem. As in the
case of standard state space systems, see [15, 16, 27, 38], we need several assumptions
on the system matrices of (1.1).

Assumptions:
A1) The triple (E,A,B2) is strongly stabilizable and the triple (E,A,C2) is strongly

detectable, see De�nition 2.4.

A2) rank

[
A− ejθE B2

C1 D12

]
= n+m2 for all θ ∈ [0, 2π].

A3) rank

[
A− ejθE B1

C2 D21

]
= n+ p2 for all θ ∈ [0, 2π].

A4) For matrices T∞, S∞ with ImS∞ = kerE and ImT∞ = kerET the rank
conditions

rank

[
TT
∞AS∞ TT

∞B2

C1S∞ D12

]
= n+m2 − rankE,

rank

[
TT
∞AS∞ TT

∞B1

C2S∞ D21

]
= n+ p1 − rankE

hold.

Note that assumption A1 is in fact stronger than necessary, but it rules out the
possibility of having non-causal systems. It is actually su�cient to assume �nite
dynamics stabilizability and the existence of an equivalent system that is controllable
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at in�nity. But for now we restrict ourselves to systems that satisfy Assumption A1

which is not a restriction in general, since non-causal systems usually only appear if
the modeling of the problem is not performed correctly [7]. In H∞- control theory we
usually consider the following two subsystems of (1.1), see [34]

Exk+1 = Axk +B1wk +B2uk, x0 = x0, (3.1a)

zk = C1xk +D11wk +D12uk, (3.1b)

and the dual system

ETxT
k+1 = ATxT

k + CT
1 wk + CT

2 uk, x0 = x0, (3.2a)

yTk = B1x
T
k +DT

11w
T
k +DT

21u
T
k . (3.2b)

First we consider subsystem (3.1). Since we want to minimize the in�uence of the
disturbance wk on the output zk by using a control input uk, we minimize the following
objective function. Note that uk does not appear explicitly in the sequence, but zk
depends on uk.

J({xk}, {wk}, {uk}) =
1

2

∞∑
k=0

∥zk∥2 − γ2∥wk∥2. (3.3)

Then (3.3) can be rewritten as

J({xk}, {wk}, {uk}) =
1

2

∞∑
k=0

 xT
k

wT
k

uT
k

T  CT
1 C1 CT

1 D11 CT
1 D12

DT
11C1 DT

11D11 − γ2 DT
11D12

DT
12C1 DT

12D11 DT
12D12

 xk

wk

uk

 .

We de�ne two matrices to describe the ∞-stage descriptor process for (3.1a).

M =


A B1 B2 −E

A B1 B2 −E
. . .

A B1 B2 −E

 , (3.4)

L =


L̂

L̂
. . .

L̂

 ,

with

L̂ =

 CT
1 C1 CT

1 D11 CT
1 D12

DT
11C1 DT

11D11 − γ2 DT
11D12

DT
12C1 DT

12D11 DT
12D12

 (3.5)

and the in�nite variable ξ by

ξT = [xT
0 , w

T
0 , u

T
0 , x

T
1 , w

T
1 , u

T
1 , . . .]

T

and rewrite (3.1a) and (3.3) as an optimization problem [23]

Minimize
1

2
ξTLξ, subject to Mξ = f. (3.6)
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De�ne the Lagrangian of the optimization problem by

L(ξ, µ) = 1

2
ξTLξ + µT (Mξ − f), (3.7)

where

µT = [µ1, µ2, µ3, . . .]

is the in�nite vector of the Lagrangian multipliers. Di�erentiating the Lagrangian
(3.7) leads to the following conditions for the optimal control

Lξ + µMTµ = 0, (3.8)

Mξ = f. (3.9)

We introduce the arti�cial variable µ0 = 0. Then (3.8) can be rewritten as

0 = CT
1 C1xk + CT

1 D11wk + C1D12uk +ATµk+1 − ETµk,

0 = DT
11C1xk + (DT

11D11 − γ2)wk +D11D12uk +BT
1 µk+1,

0 = DT
12C1xk +DT

12D11wk +DT
12D12uk +BT

2 µk+1,

0 = ETµ∞.

Together with equation (3.1b), we can rewrite this as
0 −E 0 0 0
AT 0 0 0 0
BT

1 0 0 0 0
BT

2 0 0 0 0
0 0 0 0 0




µk+1

xk+1

wk+1

uk+1

zk+1

+


0 A B1 B2 0

−ET CT
1 C1 CT

1 D11 CT
1 D12 0

0 DT
11C1 DT

11D11 − γ2I DT
11D12 0

0 DT
12C1 DT

12D11 DT
12D12 0

0 C1 D11 D12 −I




µk

xk

wk

uk

zk

 = 0.

(3.10)

Using the last column for eliminations in the second to fourth column yields the
equivalent system

0 −E 0 0 0
AT 0 0 0 0
BT

1 0 0 0 0
BT

2 0 0 0 0
0 0 0 0 0




µk+1

xk+1

wk+1

uk+1

zk+1

+


0 A B1 B2 0

−ET 0 0 0 CT
1

0 0 −γ2I 0 DT
11

0 0 0 0 DT
12

0 C1 D11 D12 −I




µk

xk

wk

uk

zk

 = 0,

and we introduce the matrix pencil

λUH + VH(γ) :=

λ


0 −E 0 0 0
AT 0 0 0 0
BT

1 0 0 0 0
BT

2 0 0 0 0
0 0 0 0 0

+


0 A B1 B2 0

−ET 0 0 0 CT
1

0 0 −γ2I 0 DT
11

0 0 0 0 DT
12

0 C1 D11 D12 −I

 . (3.11)

Similar calculations for the second subsystem (3.2) lead to the pencil

λUJ + VJ(γ) :=

λ


0 −ET 0 0 0
A 0 0 0 0
C1 0 0 0 0
C2 0 0 0 0
0 0 0 0 0

+


0 AT CT

1 CT
2 0

−E 0 0 0 B1

0 0 −γ2I 0 D11

0 0 0 0 D21

0 BT
1 DT

11 DT
21 −I

. (3.12)
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Remark: These pencils have the form of the BVD-pencils introduced in [9]. In the next
sections we will use these pencils to develop the theory for discrete-time descriptor
systems starting with the standard case.

4. Standard Case (E = I). First we consider the standard case where E = I
and make the following assumptions that are typical in H∞-theory, see for example
[38].

Ast1) (A,B2) is stabilizable and (A,C2) is detectable.

Ast2) rank

[
A− ejθI B2

C1 D12

]
= n+m2 for all θ ∈ [0, 2π],

Ast3) rank

[
A− ejθI B1

C2 D21

]
= n+ p2 for all θ ∈ [0, 2π],

Ast4) rankD12 = m2, rankD21 = p1.

Note that A1)− A4) reduce to Ast1)− Ast4) when setting E = I. For the standard
system the matrix pencils (3.11) and (3.12) have the forms

λUH,st + VH,st(γ) :=

λ


0 −I 0 0 0
A 0 0 0 0
BT

1 0 0 0 0
BT

2 0 0 0 0
0 0 0 0 0

+


0 A B1 B2 0
−I 0 0 0 CT

1

0 0 −γ2I 0 DT
11

0 0 0 0 DT
12

0 C1 D11 D12 −I

 (4.1)

and

λUJ,st + VJ,st(γ) :=

λ


0 −I 0 0 0
A 0 0 0 0
C1 0 0 0 0
C2 0 0 0 0
0 0 0 0 0

+


0 AT CT

1 CT
2 0

−I 0 0 0 B1

0 0 −γ2I 0 D11

0 0 0 0 D21

0 −BT
1 DT

11 DT
21 −I

. (4.2)

Definition 4.1. [20] A solution X of the discrete-time algebraic Riccati equation

X = ATXA+Q− (C +BTXA)T (R+BTXB)−1(C +BTXA)

is said to be stabilizing if all eigenvalues of

A−B(R+BTXB)−1(BTXA+ C)

are inside the unit circle.

Theorem 4.2. [34] Consider a system (1.1) and assume that Ast1)−Ast4) are
satis�ed. Then the following statements are equivalent:

(i) There exists a dynamic controller of the form (1.2) such that the transfer
matrix Tzw from w to z of the resulting closed loop system satis�es ∥Tzw∥<1
and such that the resulting closed loop system is internally stable.

(ii) There exist positive semi-de�nite symmetric matrices P and Q such that
(a) U > 0, where

U := I−DT
11D11−BT

1 PB1+(BT
1 PB2+DT

11D12)(B
T
2 PB2+DT

12D12)
−1(BT

2 PB1+DT
12D11).
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(b) P is a stabilizing solution of the discrete time algebraic Riccati equation

P = ATPA+CT
1 C1−

[
BT

1 PA+DT
11C1

BT
2 PA+DT

12C1

]T
R̂−1

H (P, γ)

[
BT

1 PA+DT
11C1

BT
2 PA+DT

12C1

]
,

(4.3)
where

R̂H(P, γ) =

[
DT

11D11 − γ2I DT
11D12

DT
12D11 DT

12D12

]
+

[
BT

1

BT
2

]
P
[
B1 B2

]
.

(c) V > 0, where

V = I−D11D
T
11−C1QCT

1 +(C1QCT
2 +D11D

T
21)(D21D

T
21+C2QCT

2 )−1(C2QCT
1 +D21D

T
11).

(d) Q is a stabilizing solution of the discrete algebraic Riccati equation

Q = AQAT+B1B
T
1 −

[
C1QAT +D11B

T
1

C2QAT +D21B
T
1

]T
R̂−1

J (Q, γ)

[
C1QAT +D11B

T
1

C2QAT +D21B
T
1

]
,

(4.4)
where

R̂J(Q, γ) =

[
D11D

T
11 − γ2I D11D

T
21

D21D
T
11 D21D

T
21

]
+

[
C1

C2

]
P

[
C1

C2

]T
.

(e) ρ(PQ) < γ2.
Note that in contrast to the continuous-time case R̂H and R̂J depend on the

solutions P and Q of the discrete-time algebraic Riccati equation. Conditions (a)
and (c) in Theroem 4.2 ensure that R̂H and R̂J are invertible. To �nd a stabilizing
solution of the discrete algebraic Riccati equation we can make use of the relation to
de�ating subspaces of symplectic matrix pencils. This means that we can calculate
the stabilizing positive semi-de�nite solution of (4.3) and (4.4) by �nding a basis of
the stable de�ating subspace of the symplectic matrix pencils associated with (4.3)
and (4.4), respectively [24,26,35]. Then, with

RH =

[
DT

11D11 − γ2I DT
11D12

DT
12D11 DT

12D12

]
, RJ =

[
D11D

T
11 − γ2I D11D

T
21

D21D
T
11 D21D

T
21

]
, (4.5)

we can replace conditions (b) and (d) in Theroem 4.2 by the following two conditions.
(b') There exist matrices XH,1, XH,2 ∈ Rn,n with XH,1 nonsingular such that the

columns of

[
XH,1

XH,2

]
span an n-dimensional semi-stable de�ating subspace

of the matrix pencil

λ

 0 A−
[
B1 B2

]
R−1

H

[
DT

11C1

DT
12C1

]
−I CT

1 C1 −
[
CT

1 D11 CT
1 D12

]
R−1

H

[
DT

11C1

DT
12C1

]
 (4.6)

+

 −
[
B1 B2

]
R−1

H

[
BT

1

BT
2

]
−I

−AT +
[
CT

1 D11 CT
1 D12

]
R−1

H

[
BT

1

BT
2

]
0

 .
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(d') There exist matrices XJ,1, XJ,2 ∈ Rn,n with XJ,1 nonsingular such that the

columns of

[
XJ,1

XJ,2

]
span an n-dimensional semi-stable de�ating subspace of

the matrix pencil

λ

 0 AT −
[
CT

1 CT
2

]
R−1

J

[
D11B

T
1

D21B
T
1

]
−I B1B

T
1 −

[
B1D

T
11 B1D

T
21

]
R−1

J

[
D11B

T
1

D21B
T
1

]
 (4.7)

+

 −
[
CT

1 CT
2

]
R−1

J

[
C1

C2

]
−I

−A+
[
B1D

T
11 B1D

T
21

]
R−1

J

[
C1

C2

]
0

 .

Similar to [22] we can now show that conditions (b') and (d') are equivalent to the
existence of a semi-stable de�ating subspace of (4.1) and (4.2).

Lemma 4.3. If the columns of the matrices

QH =


QH,1

QH,2

QH,3

QH,4

QH,5

 , QJ =


QJ,1

QJ,2

QJ,3

QJ,4

QJ,5

 , (4.8)

partitioned conformably with (4.1) and (4.2), span a semi-stable de�ating subspace of
the pencils (4.1) and (4.2), respectively, then the columns of

QH =

[
QH,1

QH,2

]
, QJ =

[
QJ,1

QJ,2

]
(4.9)

span a semi-stable de�ating subspace of (4.6) and (4.7).

Proof. We assume that the columns of QH span a semi-stable de�ating subspace
of the pencil in (3.10), i.e.


0 A B1 B2 0
−I CT

1 C1 CT
1 D11 CT

1 D12 0
0 DT

11C1 DT
11D11 − γ2I DT

11D12 0
0 DT

12C1 DT
12D11 DT

12D12 0
0 C1 D11 D12 −I




QH,1

QH,2

QH,3

QH,4

QH,5

 =


0 I 0 0 0

−AT 0 0 0 0
−BT

1 0 0 0 0
−BT

2 0 0 0 0
0 0 0 0 0




QH,1

QH,2

QH,3

QH,4

QH,5

TH

for TH with |λi(TH)| ≤ 1, for all i. After some permutations and eliminations we
obtain

0 A B1 B2

−I CT
1 C1 CT

1 D11 CT
1 D12

0 DT
11C1 DT

11D11 − γ2I DT
11D12

0 DT
12C1 DT

12D11 DT
12D12




QH,1

QH,2

QH,3

QH,4

 =


0 I 0 0

−AT 0 0 0
−BT

1 0 0 0
−BT

2 0 0 0




QH,1

QH,2

QH,3

QH,4

TH .

10



Since RH is assumed to be invertible, we can use it to eliminate the upper right 2× 2
block in VH(γ) and we get

0 A−
[
B1 B2

]
R−1

H

[
DT

11C1

DT
12C1

]
0 0

−I CT
1 C1 −

[
CT

1 D11 CT
1 D12

]
R−1

H

[
DT

11C1

DT
12C1

]
0 0

0 DT
11C1 DT

11D11 − γ2I DT
11D12

0 DT
12C1 DT

12D11 DT
12D12




QH,1

QH,2

QH,3

QH,4



=



[
B1 B2

]
R−1

H

[
BT

1

BT
2

]
−I 0 0

−AT +
[
CT

1 D11 CT
1 D12

]
R−1

H

[
BT

1

BT
2

]
0 0 0

−BT
1 0 0 0

−BT
2 0 0 0




QH,1

QH,2

QH,3

QH,4

TH .

Thus

[
QH,1

QH,2

]
spans a semi-stable de�ating subspace of (4.6). The calculations for

(4.7) are equivalent.
Similarly to [4, 22] we replace condition (e) in Theorem 4.2 by

(e') The matrix

Y(γ) =

[
−γXT

H,2(γ)XH,1(γ) XT
H,2(γ)XJ,2(γ)

XT
J,2(γ)XH,2(γ) −γXJ,2(γ)

TXJ,1(γ)

]
(4.10)

is positive semide�nite and satis�es rankY(γ) = k̂H + k̂J , where

k̂H = rankXH,2(γH,1) = rankXH,2(γH,2),

k̂J = rankXJ,2(γJ,1) = rankXJ,2(γJ,2).

Using these results we can reformulate the set of conditions in Theorem 4.2 that needs
to be checked for the existence of a suitable controller:
Cst1) There exists a matrix XH(γ) as in (4.8) such that

Cst1a) the columns of XH(γ) span a semi-stable de�ating subspace of λUH,st+
VH,st(γ),

Cst1b) rankXH,1(γ) = n.
Cst2) There exists a matrix XJ(γ) as in (4.8) such that

Cst2a) the columns of XJ(γ) span a semi-stable de�ating subspace of λUJ,st +
VJ,st(γ),

Cst2b) rankXJ,1(γ) = n.
Cst3) Condition (e') is satis�ed.

In the modi�ed optimal H∞ control problem we want to �nd the smallest value γmo

such that all these conditions are satis�ed.
Remark 4.4. Note that condition (a) and (c) in Theorem 4.2 are only needed to

ensure that the inverse in the discrete-time algebraic Riccati Equation exists. Since we
found an alternative formulation by using matrix pencils, we do not need the existence
of the inverse as an extra condition.

5. Descriptor Systems. In this section we will show that the following gener-
alization of Conditions Cst1) � Cst3) is su�cient for the existence of an appropriate
controller in the descriptor system case:
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C1) There exists a matrix XH(γ) as in (4.8) such that
C1a) the columns of XH(γ) span a semi-stable de�ating subspace of λUH +

VH(γ),
C1b) rankEXH,1(γ) = r.

C2) There exists a matrix XJ(γ) as in (4.8) such that
C2a) the columns of XJ (γ) span a semi-stable de�ating subspace of λUJ +

VJ(γ),
C2b) rankETXJ,1(γ) = r.

C3) The matrix

Y(γ) =

[
−γXT

H,2(γ)EXH,1(γ) XT
H,2(γ)EXJ,2(γ)

XT
J,2(γ)E

TXH,2(γ) −γXJ,2(γ)
TETXJ,1(γ)

]
(5.1)

is positive semide�nite and satis�es rankY(γ) = k̂H + k̂J , where

k̂H = rankETXH,2(γH,1) = rankETXH,2(γH,2),

k̂J = rankEXJ,2(γJ,1) = rankEXJ,2(γJ,2).

Remark 5.1. Note that in the continuous-time case (both for standard and de-
scriptor systems) one has the additional condition that the pencils λUH + VH(γ) and
λUJ + VJ(γ) in (3.11) and (3.12) have index one, [22]. This is not necessary here,
since the following example shows that even a pencil of higher index can still have the
desired number of (semi-)stable eigenvalues.

Example 5.2. Let

E =

[
1
2 0
0 1

2

]
, A =

[
1 0
0 1

]
, B =

[
1
2

]
, Q =

[
1 0
0 1

]
, S = R = 0.

Then

λUH + VH = λ


0 0 1 0 0
0 0 0 1 0
1
2 0 0 0 0
0 1

2 0 0 0
1 2 0 0 0

+


0 0 1

2 0 1
0 0 0 1

2 2
1 0 1 0 0
0 1 0 1 0
0 0 0 0 0


is not of index one, but it has rankE = r = 2 eigenvalues inside the uni circle, namely
λ = 1

2 and λ = 0.

5.1. The Index 1 Case. To extend the result for the standard case to descrip-
tor systems, where (E,A) is of index one, we can use the WCF to reformulate the
descriptor system as a system in standard form and then apply Theorem 4.2. Trans-
forming system (1.1) and using the notation introduced in (2.3), the explicit solution
(2.5b) reduces to x∞ = −B1,∞w−B2,∞u and using this, we obtain the standard state
space system

ẋk+1,f = Afxk,f +B1,fwk +B2,fuk,

zk = C1,fxk,f + (D11 − C1,∞B1,∞)wk + (D12 − C1,∞B2,∞)uk,

yk = C2,fxk,f + (D21 − C2,∞B1,∞)wk + (D22 − C2,∞B2,∞)uk.

(5.2)

Lemma 5.3. Consider system (1.1) and suppose that the index of λE − A is at
most one. Then for i ∈ {1, 2, 3, 4}, system (1.1) satis�es Ai) if and only if (5.2)
satis�es Asti).
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Proof. The proof is completely equivalent to the continuous-time case treated
in [22] (Lemma 4.2) and is therefore omitted.
Next we need to show that the set Γ of all values for γ that satisfy Ci for i = 1, 2, 3
is invariant under transformation to WCF.

Lemma 5.4. Consider the system (1.1) and assume that the index of λE − A is
at most one. Let λUH − VH(γ) and λUJ − VJ(γ) be the pencils as in (4.1) and (4.2)
and let λUH,st − VH,st(γ), λUJ,st − VJ,st(γ) be the corresponding pencils constructed
from the data of the system (5.2).

Let ΓH , ΓJ be the set of γ-values that satisfy conditions C1) and C2) and let
Y(γ) be the matrix introduced in (5.1).

Let analogously ΓH,st, ΓJ,st and Yst(γ) be correspondingly de�ned for the standard
state space system (5.2). Then,

ΓH,st = ΓH , ΓJ,st = ΓJ ,

rankY(γ) = rankYst(γ).

Proof. We only prove the statement for the sets associated with λUH − VH(γ).
The proof for the sets associated with λUJ − VJ(γ) is analogous.

Introducing the transformation matrix

P =



V T
f 0 0 0 0

0 WT
f 0 0 0

0 0 Im1 0 0
0 0 0 Im2 0
0 −C1,∞WT

∞ 0 0 Ip2

V T
∞ 0 0 0 0
0 WT

∞ 0 0 0



T

(5.3)

we obtain that

λPTUHP − PTVH(γ)P =

λUH,st − VH,st(γ) 0 0
0 In∞ 0
0 0 In∞

 . (5.4)

This directly implies that ΓH,st = ΓH . Furthermore, we can conclude that the columns
of a matrix

XH,st =
[
XT

H,st,1 XT
H,st,2 XT

H,st,3 XT
H,st,4 XT

H,st,5 XT
H,st,6 XT

H,st,7

]T
partitioned conformably to the block structure of (5.4) span a semi-stable invariant
subspace if and only if the columns of

XH,1

XH,2

XH,3

XH,4

XH,5

 =


VfXH,st,1 + V∞XH,st,6

WfXH,st,2 −W∞CT
1,∞XH,st,5 +W∞XH,st,7

XH,st,3

XH,st,4

XH,st,5


span the semi-stable invariant subspace of λUH−VH(γ). Using the fact that EV∞ = 0,

it follows that
[
EXH,1(γ)

T XH,2(γ)
T

]T
is a generalized Lagrangian subspace if

and only if
[
XH,st,1(γ)

T XH,st,2(γ)
T

]T
is a Lagrangian subspace. This also implies

that rankEXH,1 = rankXH,st,1. Thus, we have ΓH,st = ΓH .
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Since an analogous result holds for the pencils λUJ −VJ(γ) and λUJ,st−VJ,st(γ),
we conclude that also rankY(γ) = rankYst(γ).
With these preparations we have the following result for systems of index one.

Proposition 5.5. Consider system (1.1) such that the index of the pencil λE−A
is at most one, and the pencils λUH + VH(γ) and λUJ + VJ(γ) are as in (3.11) andende ersetzen

(3.12), respectively. Suppose that assumptions A1)-A4) hold.

Then there exists an internally stabilizing controller such that the transfer function
from w to z satis�es ∥Tzw∥∞ < γ if and only if γ is such that the conditions C1),
C2) and C3) hold.

Proof. The closed-loop transfer function TNW (s) of the system (5.2) with a con-
troller of the form (1.2) is equal to the closed-loop transfer function of the system
(1.1) with the same controller.

Since (1.1) is strongly stabilizable (strongly detectable), if and only if system (5.2)
is stabilizable (detectable), a controller that internally stabilizes (5.2) also stabilizes
the �nite dynamics of (1.1).

Therefore the existence of a controller with desired properties for (1.1) is equiva-
lent to the existence of such a controller for (5.2). Since by Lemma 5.3 the validity of
assumptions A1)-A4) for (5.2) is equivalent to those of (1.1) and, furthermore, also by
Lemma 5.4 the corresponding conditions C1)-C3) of these two systems are equivalent
and thus the statement follows.
We have seen so far that the the index one case follows from the standard case by
some simple transformation. To extend the results to descriptor systems of arbitrary
index we study the general case in the following section.

5.2. The General Case. To extend the previous results to general descriptor
systems we will use an a-priori feedback that transforms the general system to an
index one system such that we can apply the previous results. Using a feedback of
the form uk = KYk + ūk leads to the system

Exk+1 =(A+B2KC2)xk + (B1 +B2KD21)wk +B2ūk, x0 = x0,

zk =(C1 +D12KC2)xk + (D11 +D12KD21)wk +D12ūk,

yk =C2xk +D21wk.

(5.5)

The feedback matrix K will be constructed in a way that system (5.5) has index
one. Under the assumption that the system is controllable and observable at ∞,
such a feedback always exists [8]. After applying such a feedback we can construct a
controller (1.2) for (5.5). A controller for the overall system is then given by

Êx̂k+1 = Âx̂k + B̂yk,

uk = Ĉx̂k + (D̂ +K)yk.
(5.6)

We now need to show that this static output feedback does not change the assumptions
A1)�A4). The proof is similar to the continuous-time case discussed in [22].

Lemma 5.6. Consider system (1.1) and let K ∈ Rm2,p2 such that the pencil
λE− (A+B2KC2) is regular. Then for every i ∈ {1, 2, 3, 4} the system (1.1) satis�es
Ai) if and only if the system (5.5) satis�es Ai).

Proof. The invariance of strong stabilizability and strong detectability under
output feedback is proved in [11]. The proof for the equivalence of the conditions A2)
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and A3) follows from the identities[
A− iωE B2

C1 D12

] [
I 0

KC2 I

]
=

[
A+B2KC2 − iωE B2

C1 +D12KC2 D12

]
,

[
I B2K
0 I

] [
A− iωE B1

C2 D21

]
=

[
A+B2KC2 − iωE B2

C1 +D12KC2 D12

]
.

The remaining assertions follows from[
TT
∞AS∞ TT

∞B2

C1S∞ D12

] [
I 0

KC2S∞ I

]
=

[
TT
∞(A+B2KC2)S∞ TT

∞B2

(C1 +D12KC2)T∞ D12

]
,

[
TT
∞AS∞ TT

∞B1

C2S∞ D21

] [
I 0

KC2S∞ I

]
=

[
TT
∞(A+B2KC2)S∞ TT

∞(B1 +B2KD21)
C2S∞ D21

]
.

As in the index one case we need to show the set Γ of all suitable γ-parameters is
invariant under the preliminary feedback.

Lemma 5.7. Consider the system (1.1) and let K ∈ Rm2,p2 be such that the
pencil λE − (A + BKC) is regular. Let ΓH , ΓJ be the sets of γ-values such that
condition C1). and C2), respectively, are satis�ed. Furthermore, let ΓH,K , ΓJ,K be
the corresponding quantities for the system (5.5). Then

ΓH,K = ΓH , ΓJ,K = ΓJ , rankY(γ) = rankYK(γ).

Proof. We only show the result for the the sets associated with λUH −VH(γ), the
proof for λUH − VH(γ) is completely analogous.

Let λUH−V K
H be the BVD-pencil [9] formed from the data of system (5.5). Then,

with the transformation matrices

Tl,K =


I 0 0 0 0
0 I 0 0 0
0 0 I DT

21K
T 0

0 0 0 I 0
0 0 0 0 I

 , Tr,H =


I I 0 0 0
0 I 0 0 0
0 0 I 0 0
0 −KC2 0 I 0
0 0 0 0 I

 ,

we have the identity

λTl,KUHTr,H − Tl,KVH(γ)Tr,H = λUH − V K
H (γ).

Thus we have that both the index and eigenvalues of λUH −VH(γ) and λUH −V K
H (γ)

coincide. This directly implies that ΓH,K = ΓH . The remaining relations follow from
the fact that [

XT
H,1 XT

H,2 XT
H,3 XT

H,4 XT
H,5

]T
is a semi-stable invariant subspace of λUH − V K

H (γ) if and only if[
XT

H,1 XT
H,2 XT

H,3 (XH,4 −KC2XH,1 +KD21XH,3)
T XT

H,5

]T
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is a semi-stable invariant subspace of λUH − VH(γ) . With these auxiliary results,
we are now in a position to prove the general Theorem.

Theorem 5.8. Consider system (1.1) and the associated pencils λUH − VH(γ)
and λUJ − VJ (γ) as in (3.11) and (3.12), respectively. Suppose that assumptions
A1)-A4) hold.

Then there exists an internally stabilizing controller such that the transfer function
from w to z satis�es ∥Tzw∥∞ < γ if and only if γ is such that the conditions C1),
C2) and C3) hold.

Proof. There exists a matrix K ∈ Rm2,p2 such that the system (5.5) has index at
most one. Lemma 5.6 implies that (5.5) satis�es A1)-A4) as well. Furthermore, by
Lemma 5.7, the validity of the conditions C1)�C3) for the system (1.1) are equivalent
to the respective conditions for system (5.5).

Proposition 5.5 then implies that conditions C1)�C4) for (5.5) are ful�lled if and
only if there exists a desired controller for (5.5).

Since an application of the controller (1.2) to (5.5) results in the same closed loop
system as controlling (5.5) with (5.6), the desired result follows immediately.
Since we want to calculate the optimal value for γ as accurate as possible we should
use structured methods for the arising matrix pencils.

6. Palindromic Pencils. In this section we will reformulate the results to make
use of structure preserving numerical methods.

Definition 6.1. A matrix pencil λA − B is called T-palindromic if B = AT .
In the following we will just use the term palindromic pencil for a T-palindromic
pencil. We want to �nd a reformulation of (3.11) and (3.12) that has palindromic
structure and preserves the information on eigenvalues and de�ating subspaces [9]. In
this chapter we introduce two techniques that carry out this transformation and we
discuss the advantages and disadvantages of both approaches. The �rst approach can
be found in [32] for the linear-quadratic optimal control problem.

We introduce the new sequences

x̃k =
k∑

j=0

xk, ũk =
k∑

j=0

uk, w̃k =
k∑

j=0

wk, z̃k =
k∑

j=0

zk,

and rewrite subsystem (3.1) as

Ex̃k+1 = Ax̃k +B1w̃k +B2ũk,

z̃k = C1x̃k +D11w̃k +D12ũk,

and with x0 = x̃0, w0 = w̃0, u0 = ũ and xi = x̃i− x̃i−1, wi = w̃i−w̃i−1, ui = ũi− ũi−1

for i > 0 we can formulate the cost functional as

J =
1

4

 x̃0

w̃0

ũ0

T  CT
1 C1 CT

1 D11 CT
1 D12

DT
11C1 DT

11D11 − γ2 DT
11D12

DT
12C1 DT

12D11 DT
12D12

 x̃0

w̃0

ũ0


+

∞∑
k=0

 x̃k − x̃k−1

w̃k − x̃k−1

ũk − ũk−1

T  CT
1 C1 CT

1 D11 CT
1 D12

DT
11C1 DT

11D11 − γ2 DT
11D12

DT
12C1 DT

12D11 DT
12D12

 x̃k − x̃k−1

w̃k − x̃k−1

ũk − x̃k−1

 .
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After regrouping we get

J =
1

2
(

∞∑
k=0

 x̃k

w̃k

ũk

T  CT
1 C1 CT

1 D11 CT
1 D12

DT
11C1 DT

11D11 − γ2 DT
11D12

DT
12C1 DT

12D11 DT
12D12

 x̃k

w̃k

ũk


−

 x̃k

w̃k

ũk

T  CT
1 C1 CT

1 D11 CT
1 D12

DT
11C1 DT

11D11 − γ2 DT
11D12

DT
12C1 DT

12D11 DT
12D12

 x̃k+1

x̃k+1

x̃k+1

).
Let the matrices M and L̂ be de�ned as in (3.4) and (3.5) respectively and de�ne

L̃ =

 L̂ −L̂

L̂ −L̂
. . .

. . .

 .

De�ne a new variable ξ̃ by

ξ̃T = [x̃T
0 , w̃

T
0 , ũ

T
0 , x̃

T
1 , w̃

T
1 , ũ

T
1 , . . .]

T

and rewrite the optimization problem (3.6) as

Minimize
1

2
ξ̃T L̃ξ̃, subject to Mξ̃ = 0.

De�ne the Lagrangian of the optimization problem by

L(ξ̃, µ) = 1

2
ξ̃T L̃ξ̃ + µT (Mξ̃) (6.1)

with

µT = [µ1, µ2, . . .].

Di�erentiating (6.1) leads to the following conditions for the optimal control

L̃ξ̃ + µMT = 0,

Mξ̃ = 0.

We introduce the arti�cial variable µ0 = 0. Then the �rst equation can be rewritten
as

0 = CT
1 C1x̃k + CT

1 D11w̃k + C1D12ũk − CT
1 C1x̃k+1

− CT
1 D11w̃k+1 − C1D12ũk+1 +ATλk+1 − ETλk (6.2)

0 = DT
11C1x̃k + (DT

11D11 − γ2)w̃k +D11D12ũk

−DT
11C1x̃k+1 − (DT

11D11 − γ2)w̃k+1 −D11D12ũk+1 +BT
1 λk+1 (6.3)

0 = DT
12C1x̃k +DT

12D11w̃k +D12D12ũk

−DT
12C1x̃k+1 −DT

12D11w̃k+1 −D12D12ũk+1 +BT
2 λk+1 (6.4)
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and the �nal condition limk→∞(F1xk + F2wk + F3uk) = limk→∞ ETλk for ap-
propriate matrices F1, F2, F3. If we additionally use the system equations for zk in
terms of the new variables

z̃k−z̃k−1 = C1z̃k−C1z̃k−1+D11z̃k−D11z̃k−1+D12z̃k−D12z̃k−1, i = 1, . . . ,∞, z̃0 = z0,
(6.5)

we can rewrite (6.2) - (6.5) as
0 −E 0 0 0
AT −CT

1 C1 −CT
1 D11 −CT

1 D12 0
BT

1 −DT
11C1 −(DT

11D11 − γ2I) −DT
11D12 0

BT
2 −DT

12C1 −DT
12D11 −DT

12D12 0
0 C1 D11 D12 −I




λk+1

xk+1

wk+1

uk+1

zk+1



+


0 A B1 B2 0

−ET CT
1 C1 CT

1 D11 CT
1 D12 0

0 DT
11C1 DT

11D11 − γ2I DT
11D12 0

0 DT
12C1 DT

12D11 DT
12D12 0

0 −C1 −D11 −D12 I




λk

xk

wk

uk

zk

 = 0

which is equivalent to
0 −E 0 0 0
AT 0 0 0 −CT

1

BT
1 0 −γ2I 0 −DT

11

BT
2 0 0 0 −DT

12

0 C1 D11 D12 −I




λk+1

xk+1

wk+1

uk+1

zk+1



+


0 A B1 B2 0

−ET 0 0 0 CT
1

0 0 −γ2I 0 DT
11

0 0 0 0 DT
12

0 −C1 −D11 −D12 −I




λk

xk

wk

uk

zk

 = 0.

This boundary value problem can be solved by considering the following palindromic
matrix pencil and its de�ating subspace associated with the eigenvalues inside the
unit disk:

λUH,p + VH,p(γ) =

λ


0 −E 0 0 0
AT 0 0 0 −CT

1

BT
1 0 −γ2I 0 −DT

11

BT
2 0 0 0 −DT

12

0 C1 D11 D12 −I

+


0 A B1 B2 0

−ET 0 0 0 CT
1

0 0 −γ2I 0 DT
11

0 0 0 0 DT
12

0 −C1 −D11 −D12 −I

 .(6.6)

Similar calculations for the second subsystem (3.2) lead to

λUJ,p + VJ,p(γ) =

λ


0 −ET 0 0 0
A 0 0 0 B1

C1 0 −γ2I 0 −D11

C2 0 0 0 −D21

0 BT
1 DT

11 DT
21 −I

+


0 AT CT

1 CT
2 0

−E 0 0 0 B1

0 0 −γ2I 0 D11

0 0 0 0 D21

0 −BT
1 −DT

11 −DT
21 −I

. (6.7)
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Since we are interested in calculating the semi-stable de�ating subspaces, we need
the following Lemma to provide a connection of the semi-stable de�ating subspaces
of (6.6) and (3.11) (and similarly for (6.7) and (3.12)).

Lemma 6.2. Let

[
X1

X2

]
be a matrix partitioned conformably with the blocks

shown in (6.6). If X =

[
X1

X2

]
is a de�ating subspace of (3.11), i.e.,

UHX = VHXT,

where T is a matrix whose spectrum are the semi-stable eigenvalues, then X̃ =[
X1(I + T )

2X2

]
is the semi-stable de�ating subspace of the palindromic pencil (6.6),

i.e.,

UH,pX̃ = VH,pX̃T.

Proof. The pencil λUH + VH(γ) in (3.11) has the block form

λ

[
0 F

−GT 0

]
−
[

0 G
−FT D

]
with

F =
[
−E 0 0 0

]
(6.8)

and

G =
[
A B1 B2 0

]
(6.9)

and we know from [37] that this pencil can be transformed to the following (even)
form by Cayley transformation and a �drop-procedure�,

λUH,e − VH,e = λ

[
0 F̃

−F̃T 0

]
−
[

0 G̃

F̃T D̃

]
. (6.10)

If X is a de�ating subspace of λUH + VH(γ) associated with T then (6.10) has the

de�ating subspace X̃ =

[
X1(I + T )

2X2

]
associated with the Cayley transformation

c(T ) of T [37], i.e.,

UH,e

[
X1(I + T )

2X2

]
c(T ) = VH,e

[
X1(I + T )

2X2

]
. (6.11)

Now we perform an inverse Cayley transformation (ŨH , ṼH) = 1/2(UH,e−VH,e, UH,e+
VH,e) and from (6.11) we get

1/2UH,e

[
X1(I + T )

2X2

]
c(T ) = 1/2VH,e

[
X1(I + T )

2X2

]
⇔1/2UH,e

[
X1(I + T )

2X2

]
(T − I)(T + I)−1 = 1/2VH,e

[
X1(I + T )

2X2

]
⇔1/2UH,e

[
X1(I + T )

2X2

]
(T − I) = 1/2VH,e

[
X1(I + T )

2X2

]
(T + I)

⇔Ũ

[
X1(I + T )

2X2

]
T = Ṽ

[
X1(I + T )

2X2

]
.
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Multiplying (Ũ , Ṽ ) by (diag In, 2In+m1+m2) we �nd that X̃ spans the de�ating sub-
space of λUH,p − VH,p associated with T . �

Unfortunately, this approach of get palindromic matrix pencils has some draw-
backs which become clear when we lock at the transformations as an algebraic ma-
nipulation [9, 32, 37]. We �nd that this procedure adds m1 + m2 + p1 copies of the
eigenvalue 1 and -1 which is not desirable in our case. One reason for this is that
eigenvalues on the unit circle are usually critical in the numerical treatment. The
other drawback is that we are interested in the calculation of de�ating subspaces that
are associated with the eigenvalues inside the open (closed) unit disk and thus would
have to distinguish between the eigenvalues inside the unit disc that are added by the
above procedure and the ones that have been there originally. This can be done by
considering the kernel of the matrix UH in (3.11) since it provides the information on
the in�nite eigenvalues of (3.11) that may have been transformed to 1 by the above
procedure. For more details see Section 7.

Another approach that reformulates the pencils (3.11) and (3.12) to a palindromic
form is the following adaption of [21] which we show for the pencil (3.11). The calcu-
lations for (3.12) are similar. We multiply (3.11) with the matrix

In
λIn

λIm1

λIm2

λIp1


and obtain the quadratic palindromic matrix polynomial

λ2


0 0 0 0 0
AT 0 0 0 0
BT

1 0 0 0 0
BT

2 0 0 0 0
0 0 0 0 0



+ λ


0 −E 0 0 0

−ET 0 0 0 CT
1

0 0 −γ2I 0 DT
11

0 0 0 0 DT
12

0 −C1 −D11 −D12 −I

+


0 A B1 B2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (6.12)

By performing this multiplication we add n + m1 + m2 + p1 eigenvalues at 0 and
n eigenvalues at ∞. All other eigenvalues are preserved [9, 21] and we now have
a palindromic standard formulation of (3.11) (and by similar calculations also for
(3.12)) which contains the desired information concerning the eigenvalues and as well
the de�ating subspaces, see [9]. Just as in the �rst method of deriving a palindromic
representation we add eigenvalues inside the unit disc. Here we can easily distinguish
between the ones that have been there originally and the ones that we added by
performing the procedure by simply calculating the kernel of the matrix VH , see
section 7 and [9]. We dis not add any critical eigenvalues, but on the other hand
we increased the degree of the matrix polynomial by one and thus it is a necessary
next step to reduce the degree back to 1 without changing the palindromic structure
or the information on eigenvalues, eigenvectors and de�ating subspaces. There are

20



several ways to carry out this linearization. A possible palindromic linearization of a
quadratic matrix polynomial λ2UT + λV + U is given by

λ

[
UT V − U
UT UT

]
+

[
U U

V − UT U

]
and exists whenever λ2UT +λV +U has no eigenvalue at −1. Using this linearization
we obtain the palindromic pencil

λUH,lin − VH,lin (6.13)

=



0 0 0 0 0 0 −A− E −B1 −B2 0
AT 0 0 0 0 −ET 0 0 0 CT

1

BT
1 0 0 0 0 0 0 −γ2I 0 DT

11

BT
2 0 0 0 0 0 0 0 0 DT

12

0 0 0 0 0 0 −C1 −D11 −D12 −I
0 0 0 0 0 0 0 0 0 0
AT 0 0 0 0 AT 0 0 0 0
BT

1 0 0 0 0 BT
1 0 0 0 0

BT
2 0 0 0 0 BT

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0



−



0 A B1 B2 0 0 A B1 B2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 E 0 0 0 0 A B1 B2 0

−ET −AT 0 0 0 CT
1 0 0 0 0 0

−BT
1 0 −γ2I 0 DT

11 0 0 0 0 0
−BT

2 0 0 0 DT
12 0 0 0 0 0

0 −C1 −D11 −D12 −I 0 0 0 0 0


In order to use this palindromic pencil for the veri�cation the conditions C1), C2) and
C3) we need to discuss the relationship of the de�ating subspaces of (3.11) and (6.13).

Lemma 6.3. Let [XT
1 , . . . , X

T
10]

T span a stable de�ating subspace of the matrix
pencil λUH,lin−VH,lin. Then [XT

1 +XT
6 , X

T
2 +XT

7 , X
T
3 +XT

8 , X
T
4 +XT

9 , X
T
5 +XT

10]
T

spans a stable de�ating subspace of λUH − VH(γ) in (3.11).
Proof. The result follows by some simple matrix calculations.

7. Numerical Methods. In this section we discuss how we can use the results
from the previous sections to calculate the (sub-)optimal value γmo. We make use
of a procedure to verify if for a �xed value γ the desired controller exists and then
proceed with a bisection procedure to �nd γmo.

If we use the �rst approach of attaining a palindromic pencil, we need the follow-
ing steps that we have reached to verify γmo:

Procedure 1a (classi�cation of γ)
Input: Data of system (1.1), value γ ≥ 0.
Output: Decision whether γ < γmo or γ > γmo.
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(1) Formulate palindromic pencil (6.6) and (6.7).
(2) Calculate the eigenvalues of (6.6) and (6.7) and let sH := dimkerUH and

sJ := dimkerUJ be the number of stable eigenvalues of the two pencils
respectively that are not equal to one and let vH and vJ be the number
of stable eigenvalues of the two pencils respectively including all eigenvalues
at one.
IF vH < r or vJ < r, then γ < γmo, STOP.
ELSEIF sH < r and vH−min{dimker(UH),m1+m2+p1} < r, then γ < γmo

STOP.,
ELSEIF sJ < r and vJ −min{dimker(UJ ),m1 +m2 + p1} < r, then γ < γmo

STOP.
ELSE
(2a) Use a structure preserving method to calculate the de�ating subspaces

of (6.6) and (6.7) associated with the semi-stable eigenvalues.
IF rankEXH,1 < r, then γ < γmo, STOP.
ELSEIF rankETXJ,1 < r, then γ < γmo, STOP.

ELSEIf Ŷ is not positive semi-de�nite, then γ < γmo, STOP.
ELSE γ ≥ γmo.

If we use the second approach in the construction of the palindromic problem, we
perform the following steps

Procedure 1b (classi�cation of γ)
Input: Data of system (1.1), value γ ≥ 0.
Output: Decision whether γ < γmo or γ > γmo.

(1) Formulate quadratic palindromic polynomials (6.12) from λUH + VH(γ) and
λUJ + VJ(γ).

(2) Use structure preserving linearization to formulate palindromic pencils.
(3) Use a structure preserving method to calculate the eigenvalues and let sH

and sJ be the number of stable eigenvalues of the two pencils respectively
that are not equal to zero.
IF sH < r and dimker(VH) < r − sH , then γ < γmo, STOP.
ELSEIF sJ < r and dimker(VJ ) < r − sJ , then γ < γmo, STOP.
ELSE
(3a) Use a structure preserving method to calculate the de�ating subspaces

of the linearized palindromic polynomials associated with the eigenval-
ues inside the unit disc. IF rankEXH,1 < r, then γ < γmo, STOP.
ELSEIF rankETXJ,1 < r, then γ < γmo, STOP.

ELSEIf Ŷ is not positive semi-de�nite, then γ < γmo, STOP.
ELSE γ ≥ γmo.

To actually �nd γmo we may use a bisection together with one of the above algorithms:

Procedure 2 (Bisection)
Input: γup and γlo
Output: γmo

(1) IF γup − γlo < d, d su�ciently small, then γmo = γlo.
(2) ELSEIF γ < γmo, set γlo = γ and γ = (γmo + γup)/2 and run Algorithm 1.
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ELSE set γup = γ and γ = (γmo + γup)/2 and run Algorithm 1a/1b.

8. Example. To illustrate the functionality of our approach, we consider the
following example. Let the discrete-time system of the form (1.1) be given by

E =

 1 0 0
0 1 0
0 0 0

 , A =

 0 0 1
0 1 1
0 −1 0

 , B1 =

 0
1
1

 , B2 =

 1
0
1

 ,

C1 =

[
1 1 0
0 1 1

]
, C2 =

[
1 0 1

]
, D12 =

[
0
1

]
, D21 = 1

Using the pencils of the form (3.11) and (3.12) and the QZ-algorithm in matlab to
calculate the eigenvalues and the de�ating subspaces associated with the eigenvalues
inside the unit disc and Procedure 2 to determine the optimal value for gamma, we
computed γopt = 4.7684. If we use the palindromic reformulation Procedure 1b and
make use of the palindromic structure with the methods from [29] when calculating
eigenvalues and de�ating subspaces we obtain a smaller value γopt = 4.4163. The
reason is that the matrices of the eigenvalue problem become more and more ill
conditioned when approaching the optimal value for γ and algorithms that do not
take the special structure of the pencil into account will not get as closed to the
optimal value as methods that make use of the special structure of a matrix pencil.

9. Conclusion. In this paper we developed conditions for the existence of op-
timal H∞-controllers for discrete-time descriptor systems of arbitrary index. The
conditions are expressed in terms of matrix pencils. Furthermore we used several ap-
proaches to reformulate the results in terms of palindromic matrix pencils that set us
in position to apply structured numerical methods which lead to even better results.
We illustrated our approach by a numerical example.
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