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ich Dr. Robin Grotjahn für die angenehme Büroatmosphäre und Dr. Sebastian Gohr für
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Abstract

Within the course of the present work, the implementation of a new class of density func-

tionals, so-called local hybrid functionals (LHs), for the calculation of nuclear magnetic

resonance (NMR) shieldings and spin–spin coupling constants was carried out. First, the

relevant equations for the quantum chemical calculation of NMR parameters with LHs

were derived and subsequently these equations were implemented into the quantum chem-

ical program package Turbomole. It was shown that despite additional terms caused

by the presence of a local mixing function (LMF) in the LHs an efficient semi-numerical

implementation can be obtained with a similar computational effort as a comparable

implementation of conventional hybrid functionals with constant exact-exchange admix-

ture. In addition, higher derivatives of the density, i.e. the Laplacian and the Hessian of

the density, were implemented in a quantum chemical program for the first time in this

work. Likewise, a current-density-dependent gauge correction of the kinetic energy den-

sity (τD) was implemented, which was not available in any program code in the context

of linear-response theory.

These developments allowed the first self-consistent validation of a set of meta-GGA func-

tionals for the current-density-corrected approach using τD and more importantly, the first

systematic validation of LHs for NMR parameters in a coupled-perturbed scheme on the

basis of gauge-including atomic orbitals. After initial evaluations for shielding constants,

two large validation studies on shieldings and shifts, and a first validation for spin–spin

couplings where carried out. In this initial assessment, LHs ranked among the most

successful DFT approximations in both test sets for main-group and transition-metal

shieldings and shifts, respectively. High accuracy of certain LHs was also demonstrated

in the assessment of spin–spin couplings constants, often on par with the best alterna-

tive density functionals. Furthermore, a significant dependence of the calculated NMR

parameters on the chosen LMF models was demonstrated within the validation studies,

indicating further potential for improvements of LH functionals using new and poten-

III



tially better suited LHs and mixing functions. This suggests further investigation of LHs

in connection with magnetic resonance properties.

Finally, the accurate performance of various LH functionals in NMR parameter calcula-

tions renders them particularly suitable for application studies. Initially, this was demon-

strated by the calculation of fluorine NMR parameters for a small set for fluorohalogenates

([XFn]
– , X=Cl, Br, I; n = 2, 4, 6). In case of n = 2, the applied LH functionals showed

much larger deviations with respect to the experimental reference than expected from the

prior benchmark studies. These deviations were traced to explicit solvent-solute inter-

actions, specifically, remarkably strong H· · ·F hydrogen bonds between the acetonitrile

solvent and the [XF2]
– species. Further analyses, including other fluoride-containing com-

pounds and the free fluoride anion in solution, confirmed explicit orbital interactions as

the source of the deviations between computed gas-phase and experimental solution NMR

shifts.
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Zusammenfassung

Das Thema der vorliegenden Arbeit ist die Verbindung einer neuen Funktionalklasse der

Dichtefunktionaletheorie, den sogenannten lokalen Hybridfunktionalen (LHs), und der

Kernmagnetresonanz-Spektroskopie (NMR): Im Zuge der vorliegenden Arbeit wurden

zunächst die relevanten Gleichungen hergeleitet, welche einer quantenchemische Berech-

nung der NMR Parameter wie Kernabschirmungen und Spin–Spin Kopplungen mit LHs

zugrunde liegen. Im Anschluss wurden diese in das quantenchemische Rechenprogramm

Turbomole unter Verwendung eines effizienten semi-numerischen Ansatzes implemen-

tiert. Es konnte gezeigt werden, dass trotz neuer Terme, die durch die Präsenz einer

lokalen Mischfunktion (LMF) in den LHs hervorgerufen werden, eine effiziente Implemen-

tierung erreicht werden kann, deren Rechenaufwand sich kaum von einer seminumerischen

Implementierung herkömmlicher Hybridfunktionale unterscheidet. Zusätzlich wurden im

Laufe dieser Arbeit erstmals höhere Ableitungen der Dichte, d.h. der Laplacian und

Hessian der Dichte, in ein quantenchemisches Rechenprogramm implementiert. Genauso

wurde eine stromdichteabhängige Eichursprungskorrektur der kinetischen Energiedichte

(τD) implementiert, die vorher in keinem Programmcode im Kontext der linearen Antwort-

theorie verfügbar war.

Diese Arbeiten erlaubten somit die erste selbstkonsistente Validierung einer Reihe von

meta-GGAs und weiteren von der kinetischen Energiedichte anhängigen Funktionalen für

den stromdichtekorrigierten Ansatz über τD und außerdem die erste systematische Vali-

dierung von LHs für NMR-Parameter auf der Basis sogenannter Londonorbitale (“gauge-

including atomic orbitals”) in einem gekoppelten Störungsschema. In zwei großen Vali-

dierungsstudien zu NMR Abschirmungskonstanten und chemischen Verschiebungen, sowie

einer ersten Validierung für Spin–Spin Kopplungen konnte das große Potential der LHs

demonstriert werden. Sowohl in den Studien zu Hauptgruppen-, als auch Übergangsme-

tallkernen gehörten einzelne LHs zu den erfolgreichsten Dichtefunktionalen in der Berech-

nung von Kernabschirmungskonstanten bzw. Verschiebungen. Auch in den Spin–Spin-

Kopplungen konnte eine hohe Genauigkeit einzelner LH Funktionale demonstriert werden,
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die häufig mit den besten alternativen Dichtefunktionalen gleichauf lag. Aus den Daten

zeigte sich außerdem eine große Abhängigkeit der Ergebnisse von der gewählten LMF, was

auf zusätzliche Verbesserungsmöglichkeiten durch neuere LH Funktionale und angepasste

Mischfunktionen schließen lässt und weitere Untersuchungen der LHs im Zusammenhang

mit Magnetresonanzeigenschaften nahelegt.

Die in den Benchmarkstudien nachgewiesene hohe Genauigkeit verschiedener LH Funk-

tionale für die Berechnung von NMR-Parametern prädestiniert diese Funktionalklasse

außerdem im Besonderen für anwendungsbezogene Arbeiten. Dies wurde anhand der

Berechnung von chemischen Verschiebungen für einen Satz kleiner Fluorhalogenate ([XFn]
– ,

X=Cl, Br, I; n = 2, 4, 6) demonstriert, wobei für den Fall n = 2 deutlich größere Abwei-

chungen der Berechnungen zur experimentellen Referenz beobachtet wurden, als aus den

Validierungsarbeiten zu erwarten waren. Diese Abweichungen konnten auf explizite Wech-

selwirkungen zwischen dem Lösungsmittel und dem Ion, genauer, auf auffallend starke

H· · ·F Wasserstoffbrückenbindungen zwischen den [XF2]
– Spezies und dem Lösungsmit-

tel Acetonitril zurückgeführt werden. Weitergehende Analysen, auch unter Einbezug wei-

terer fluoridhaltiger Spezies und dem freien Fluoridion in Lösung, bestätigten explizite

Orbitalwechselwirkungen als Ursprung dieser großen Abweichungen zwischen berechneten

Verschiebungen in der Gasphase und den experimentellen Werten in Lösung.
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is probably one of the most widely ap-

plied experimental methods in the structure elucidation of diamagnetic target species

today. In the years since the pioneering experiments in 1946, [1–4] a huge amount of em-

pirical data and experience has been accumulated. [5–7] Nevertheless, quantum-chemical

calculations are nowadays routinely performed to support experimental work, either to

guide the experiment with theoretical insight, or to assist in the final assignment of the

resulting spectra. [8] This was on the one hand made possible by the rapid development

of computer technology, which nowadays allows calculations of small- to medium-sized

systems even on home computers. Also appropriate infrastructure, such as computation

clusters or high-performance computing centers with huge computational power, becomes

more and more available. On the other hand, it was the development of accurate and

efficient quantum-chemical computation packages which made accurate calculations pos-

sible in the first place. These developements have been an active field of research in the

past decades resulting in a selection of computational software packages (partly varying

in focus and specialized applications) such as Turbomole, [9] Cfour [10] or Orca, [11–13]

which were used to calculate NMR properties throughout this thesis.

The developments of theoretical and subsequently computational NMR spectroscopy

started with the pioneering work of Norman F. Ramsey, who derived the interactions

of an external magnetic field with the wave function of a target system in a series of

consecutive papers. [14–17] On the basis of this theory, first calculations of NMR properties

have been published already in the 1950s. [18,19] However, due to initially limited compu-

tational capacities, the work focused on small molecules and/or methods with likewise

limited accuracy. Later, the interest for computational NMR properties rose once again

in the 1980s and 1990s, when the foundations for today’s routine computations were laid,

i.e. with work concerned with the gauge ambiguity of the vector potential of the magnetic

field, [20–23] computational implementation [23–29] as well as initial validation studies. [30,31]
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1. Introduction

Clearly, the highest computational accuracy can be achieved with wave-function ap-

proaches, such as coupled cluster or configuration interaction, which in principle con-

verge to the exact solution. [32–35] If zero-point vibration and temperature corrections

are included, good accuracy in comparison to experimental gas-phase shielding data can

be achieved for small light-atom compounds. [36–39] However, such calculations are cost-

intensive, and still today only small molecules of limited relevance in chemical research

are accessible.

Approaches based on a perturbational treatment of electron correlation, such as Møller

Plesset (MP) perturbation theory [40,41] or double hybrid functionals, which contain a

MP2-like correlation contribution, are accurate in main group shielding calculations as

well. [42] However, due to their inability to reproduce static correlation, error margins

increase significantly if these contributions become sizeable. [42] Such methods are already

less costly than the highest-level wave-function methods described above. However, larger

molecules or the need to perform many (consecutive) calculations, remain a challenge, even

for efficiency-increasing implementations using approximations such as the domain-based

local pair natural orbital (DLPNO). [43]

One example where possibly many calculations have to be processed is a recently pro-

posed computational protocol that combines a conformer-rotamer sampling with DFT

calculations of NMR shieldings and spin–spin coupling constants to generate complete

Bolzmann-weighted NMR spectra. [44] Consequently, all energetically relevant structures

have to be included, which potentially results in a large number of total calculations and

accordingly limits the applicability of the above described set of methods.

Therefore, in many cases more approximative approaches have been established as stan-

dard computational protocols. In particular density functional theory (DFT), [45] in its

incarnation due to Kohn and Sham (KS), [46] is used in many applications due to its re-

markable cost/performance ratio: DFT takes electron correlation into account by using

an (approximate) exchange-correlation (XC) functional, [47,48] while still being applicable

to systems containing hundreds of atoms on modern computers. Importantly, the XC

energy gathers all approximated contributions of the KS-DFT approach and therefore de-

termines the final accuracy of the calculations. [49,50] For that reason, an actively pursued

search for a generally applicable and accurate functional resulted in a plethora of available

density functional approximations, which were constructed and proposed over the years

on the basis of partly very different philosophies. [51]

Starting with just a dependence on the density, [46,52] functionals including correcting terms

based on the gradient or higher derivatives of the density evolved. [53–57] A further cor-

nerstone in the development of modern density functionals was the inclusion of exact-
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exchange of Hartree–Fock theory, [58,59] which can help to reduce spurious self-interaction

of semi-local functionals. [60] However, in the calculation of NMR parameters such semi-

local DFT functionals and (global) hybrid methods show a mixed accuracy in shieldings

and shifts [13,61–67] as well as spin–spin coupling constants, [28,29,68–72] with a strong de-

pendence on the target species. That is, molecules and complexes containing transition

metals, lone pairs, double and/or triple bonds can be a significant challenge for typi-

cal density functionals due to potentially large correlation contributions, which are not

always captured sufficiently. Early on, the shortcomings of KS-DFT in NMR-shielding

calculations were attributed to the lack of a correct description of the arising current-

density response in the presence of external magnetic fields, as the method was derived

in the field-free limit. [73] However, in initial studies the tested methods including current

dependencies were typically less accurate than their non-current-dependent counterparts,

which suggested that the underlying XC functionals were not sufficiently accurate after

all. [26,74] For this reason the development of more accurate and robust XC functionals for

NMR-parameter computations has remained an active field of research to this day.

Within the present work, these efforts have been extended to the class of local hybrid (LH)

functionals, for which only few data existed: in initial work on LHs in connection with

NMR parameters, shieldings were computed in terms of a localized-local-hybrid exchange-

correlation potentials, [75] an approach similar to the optimized effective potential (OEP).

The OEP approach gained some interest due to its comparably good performance in

shielding and shift caluculations. [76–80] However, the construction of such multiplicative

potentials is not a trivial task (and hence time-consuming), [81,82] and more importantly,

the gain in performance in the calculation of response properties, such as shielding con-

stants, was traced to an insufficient quality of the resulting multiplicative potential due

to numerical instabilities. [83]

For that reason, the first GIAO-based self-consistent implementation of LHs within a

coupled-perturbed scheme is reported within the present work. The relevant equations

to cover additionally arising terms occurring for LHs were derived and subsequently im-

plemented into the Turbomole program code on the basis of efficient semi-numerical

integration techniques. The scheme was furthermore extended to cover spin–spin coupling

constants and the current-density response using an alternative gauge correction of the

kinetic energy density (τD), which likewise was not available self-consistently before in the

context of linear-response theory. The implementation extends the applicability of LH

functionals in Turbomole to second order magnetic resonance parameters and provides

CDFT variants of other kinetic-energy density dependent functionals, both features no

other quantum-chemical computation package provides to date.
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1. Introduction

1.1 Outline of the Present Thesis

The further chapters in this thesis are organized as follows: In Chapter 2, the theoretical

outline of the basics of quantum chemistry, density-functional theory (with an emphasis on

KS-DFT), functional development, local-hybrid functionals and computational method-

ology is given. This is followed by a brief outline of the theory of magnetic resonance

parameters, their derivation and the connection between DFT and NMR parameter cal-

culations. Chapter 4 covers the relevant computational infrastructure in the Turbomole

program code and in Chapter 5 the relevant aspects of the papers making up the present

thesis are revisited. This is followed by a brief outlook on further developments and

potential pathways of future investigations. Finally, in Chapter 6 the original papers

are reprinted, followed by an Appendix gathering the relevant data from the supporting

informations of the presented publications and further relevant data.
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2 Theoretical Background

– Quantum-Chemical Methods

In the present chapter, fundamental equations of quantum chemistry, Hartree–Fock theory

and density-functional theory especially in its Kohn–Sham formulation will be briefly

introduced. Having established the fundamental theoretical outline (in the field free

limit), a more detailed introduction on density functional approximations will be given.

The focus lies on functionals used in the studies of the present thesis and especially local

hybrid functionals.

2.1 Basic Concepts of Quantum Chemistry

In the non-relativistic limit, the electronic structure of any many-particle system is em-

bedded in the time-independent Schrödinger equation [84]

ˆ︁HΨ = EΨ. (2.1)

Here, Ψ is the (likewise time-independent) wave function and E is the eigenvalue, i.e. the

energy of the system described by the Hamilton operator ˆ︁H, itself gathering the kinetic

and potential energy contributions of the system. In principle, the Hamiltonian, as well

as the wave function, contain contributions from nuclei and electrons. However, due

to the significant difference in mass and hence velocity of these particles, formally the

contributions can be separated [84]

ˆ︁H = ˆ︁He + ˆ︁HN , (2.2)

Ψ = Ψe ·ΨN . (2.3)
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2. Theoretical Background – Quantum-Chemical Methods

The electronic wave function depends on the positions of the nuclei parametrically and

only describes the motion of the electrons explicitely. [84] Subsequently the two problems

can be solved separately within the electronic and nuclear Schrödinger equations, respec-

tively. In the first, the electrons are assumed to move in a potential of fixed nuclei.

Therefore, within this approximation, the kinetic energy of the nuclei vanishes and the

nuclear Coulomb repulsion gives a constant contribution to the total energy of the sys-

tem [84]

EN =

NN∑︂
K<L

ZKZL

|RK −RL|
, (2.4)

where NN is the number of nuclei with charge ZK at position RK . This approximation

is commonly known as the Born-Oppenheimer approximation. [84,85] In atomic units (used

throughout the present work) the electronic Hamiltonian is given by [84,86]

ˆ︁He = ˆ︁Te + ˆ︁Vee + ˆ︁VNe (2.5)

= −1

2

N∑︂
i

∇2
i +

N∑︂
i<j

1

|ri − rj|
−

N,NN∑︂
i,K

ZK

|ri −RK |
. (2.6)

Here, ˆ︁Te is the kinetic energy, ˆ︁Vee the electron-electron repulsion and ˆ︁VeN the electron-

nuclear attraction for a system with N electrons at the positions ri and rj. A similar

equation can be formulated for the motion of the nuclei using a nuclear Hamiltonian

(instead of its electronic counterpart), which describes the motion of the nuclei in an

averaged field of the electron cloud. [84] The (graph of the) energy as function of the

nuclear coordinates is then known as the potential energy surface (PES). However, in

the remaining part of this work only solutions of the electronic Schrödinger equation are

discussed, thus the subscript e for the Hamiltonian and for the operator of the kinetic

energy is dropped for the following chapters.

Using the electronic Hamiltonian and a complete set of trial wave functions (|Ψi⟩), the
energy of a certain state can be obtained by multiplication with ⟨Ψj| and assuming or-

thonormality (⟨Ψi|Ψj⟩ = δij) via

⟨Ψj| ˆ︁He|Ψi⟩ = Eiδij, with E0 ≤ E1 ≤ · · · ≤ Ei ≤ . . . . (2.7)

The solution with the lowest energy E0, the ground state (GS) of the system, is ob-

tained with the GS (i.e. exact) wave function |Ψ0⟩. The fact, that the exact wave

function minimizes the energy expression given in Eq. 2.7 is called the variational prin-
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2.1. Basic Concepts of Quantum Chemistry

ciple. [86,87] However, the search for the this wave function is practically impossible due

to the large number of possible trial functions and exact analytical solutions of the elec-

tronic Schrödinger equation are only known for simple systems such as the hydrogen atom.

Therefore, in practice, suitable approximations usually have to be employed to solve the

Schrödinger equation.

2.1.1 Hartree–Fock Theory

One approximation of conceptual importance is the Hartree–Fock (HF) theory. [88] On

the one hand, it provides a starting point for highly accurate post-HF methods (i.e.

methods which include electron correlation on the basis of a HF solution, see Sec. 2.1.2

for a brief discussion of such approaches). On the other hand, the concepts outlined

within this chapter will become important for density functional theory in its Kohn–Sham

formulation, which will be discussed in later chapters of this thesis. In the HF method

the system’s N -electron wave function is expanded in a set of M ≥ N orthonormal one-

electron wave functions, so called spin orbitals (χi(x)). These are composed of a spatial

part (φi(r)), the so called molecular orbital (MO), and a spin contribution σ(s) (of α(s)

or β(s) spin) [84]

χi(x) = φi,σ(r)σ(s). (2.8)

Here, α(s) and β(s) are associated with spins 1
2
and −1

2
, respectively, and they form an

orthonormal basis (⟨α|β⟩ = δαβ). For that reason, the spatial functions φi,σ(r) of α and

β spin are in principle independent, as orthonormality of the spin orbitals is guaranteed

by the associated spin functions. Hence, such spatial orbitals form an unrestricted basis.

A calculation using a basis of unrestricted spatial orbitals is called unrestricted Hartree–

Fock (UHF). However, in the case of closed-shell singlet states (or restricted open-shell

approaches) the condition φi,α = φi,β can be imposed and the same spatial orbitals are

employed for both spin channels, i.e. they form a basis of restricted spatial orbitals,

associated with restricted Hartree–Fock (RHF) or restricted open-shell HF calculations.

In the following, the subscripts i, j, . . . denote occupied, a, b, . . . unoccupied or virtual,

and p, q, . . . general MOs. For the spins, either α and β as explicit, as well as σ and ς as

general (independent) spin labels are used, whereas a primed entity, e.g. σ′, denotes the

opposite spin to σ.

The requirement of antisymmetry (i.e. the Pauli exclusion principle [89]) and the principle

of indistinguishability of the wave function of fermions (such as electrons) are satisfied
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2. Theoretical Background – Quantum-Chemical Methods

by arranging the molecular spin orbitals in an anti-symmetrized product called the Slater

determinant (SlD) [84]

Ψ = ΦSlD(x1,x2, ...,xN) =
1√
N !

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
χ1(x1) χ1(x2) · · · χ1(xN)

χ2(x1) χ2(x2) · · · χ2(xN)
...

...
. . .

...

χN(x1) χN(x2) · · · χN(xN)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ . (2.9)

Using such an arbitrary SlD, the expectation value (after integration of the orthonormal

spin functions) according to Eq. 2.7 is

ESlD

[︁{︁
φi,σ

}︁]︁
= T

[︁{︁
φi,σ

}︁]︁
+ ENe

[︁{︁
φi,σ

}︁]︁
+ J

[︁{︁
φi,σ

}︁]︁
+ EX

[︁{︁
φi,σ

}︁]︁
. (2.10)

Here, O
[︁{︁

φi,σ

}︁]︁
denotes the implicit dependence of the entity (operator or functional)

O on the set of occupied MOs. The one-electron contributions of the kinetic energy

T
[︁{︁

φi,σ

}︁]︁
and the Coulomb attraction of the nuclei and electrons ENe

[︁{︁
φi,σ

}︁]︁
are con-

veniently combined in one expression

T
[︁{︁

φi,σ

}︁]︁
+ ENe

[︁{︁
φi,σ

}︁]︁
=
∑︂
σ

∑︂
i

∫︂
φ∗
i,σ(r)

ˆ︁h(r)φi,σ(r)dr, (2.11)

where the one-electron core-Hamiltonian is defined as [84]

ˆ︁h(r) = −1

2
∇2 −

∑︂
K

ZK

|r−RK |
. (2.12)

The Coulomb repulsion, J [{φi,σ}], is given by

J [{φi,σ}] =
1

2

∑︂
σ

∑︂
ij

∫︂
φ∗
i,σ(r)

[︂ ˆ︁Jj,σ(r) + ˆ︁Jj,σ′(r)
]︂
φi,σ(r)dr (2.13)

and EX

[︁{︁
φi,σ

}︁]︁
is the exchange energy

EX

[︁{︁
φi,σ

}︁]︁
=

1

2

∑︂
σ

∑︂
ij

∫︂
φ∗
i,σ(r)

[︂ ˆ︁Kj,σ(r)
]︂
φi,σ(r)dr, (2.14)

which is a non-classical contribution arising solely due to the antisymmetry of the em-

ployed SlD. Moreover, exchange occurs only for electron pairs with same spin and it

corrects for spurious self-interaction of the Coulomb operator (in case of j = i), [90] other-

wise known as the self-interaction error. [60] Both contributions are defined in terms of the

8



2.1. Basic Concepts of Quantum Chemistry

Coulomb and exchange operators, best understood by their action on an arbitrary MO

(φi,σ(r))

ˆ︁Jj,ς(r)φi,σ(r) = φi,σ(r)

∫︂
φ∗
j,ς(r

′)φj,ς(r
′)

|r− r′|
dr′, (2.15)

ˆ︁Kj,ς(r)φi,σ(r) = φj,ς(r)

∫︂
φ∗
j,ς(r

′)φi,σ(r
′)

|r− r′|
· δςσdr′. (2.16)

The variational flexibility of the energy according to Eq. 2.10 is embedded in the choice of

the set of the N spin orbitals the equation is composed of. [84] In other words, the optimal

set which minimizes the energy, is found by application of the variational principle with

respect to the set of occupied molecular orbitals, subject to the constraint of orthonor-

mality. Using this approach, the resulting equations can be rewritten as the canonical

Hartree–Fock equations. [88] In the MO basis, these are given as[︂ˆ︁h(r) + vHF
σ (r)

]︂
φi,σ(r) = εi,σφi,σ(r), (2.17)

where εi,σ is an energy eigenvalue, interpreted as the orbital energy of ith MO of the σ

spin channel and ˆ︁h(r) is the core-Hamiltonian of Eq. 2.12. The HF potential contains

the Coulomb and exchange operators

vHF
σ (r) =

∑︂
ς

∑︂
j

[︂ ˆ︁Jj,ς(r) + ˆ︁Kj,σ(r)
]︂
. (2.18)

As the HF potential itself depends on the set of MOs, which are the subject of variation

within the approach, the HF equations have to be computed iteratively. In practice a

first set of orbitals is generated as solution of Eq. 2.17, e.g. via the core-Hamiltonian

under neglect of the Hartree–Fock potential. Then in each iteration the HF potential is

determined by the orbitals of the previous iteration, generating a new set of orbitals. This

procedure is repeated until convergence of the resulting HF energy and thus the involved

MOs, i.e. a self-consistent field (SCF) of the potential is achieved.

2.1.2 Electron Correlation and Its Explicit Description

Except for the simplest problems with only one electron, the HF method never provides

the exact GS solution of the Schrödinger equation according to Eq. 2.7. The reason for

this shortcoming is that HF is a mean-field theory, i.e. the electrons are treated as moving

in an averaged potential of the other N − 1 electrons of the system (pictorially speaking,
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2. Theoretical Background – Quantum-Chemical Methods

the electrons are on average too close to each other in HF theory). [90,91] The deviation

EC = E0 − EHF (2.19)

from the HF energy to the exact ground-state energy is referred to as electron correla-

tion. [92,93] Hence, EC , as defined in Eq. 2.19, captures all contributions to the total GS

energy that cannot be represented by a single SlD. Conceptually, the correlation energy

can be separated into the so-called (i) dynamic and (ii) static (also called non-dynamic)

correlation (NDC). [94,95] However, the distinction is not clear-cut and methods aimed at

recovering correlation in almost all cases account for fractions of both contributions to

some degree. [96] Nevertheless, different methods are usually employed to compute the

individual contributions:

(i) Dynamic correlation is understood as an energy correction of a dominant single deter-

minant. [95] Practically, it can either be recovered by means of perturbation theory (PT),

e.g. the MP2 method by Møller and Plesset (later generalized to MPn, where n is the

perturbation order), [97,98] or by single-reference wave-function methods like configuration

interaction (CI) or coupled cluster (CC) theory. [99,100] Note that CI and CC are con-

structed as an expansion of excited determinants of the HF ground state. Extrapolated

to the basis set limit, CI and CC calculations can in principle converge to the exact

solution of the Schrödinger equation and hence include all correlation contained in EC .

However, such appraoches are computationally costly and limit their applicability to small

molecules. [99] Thus in practice, contributions that go beyond a particular excitation order

(single, double, triple, etc.) are often truncated, as significant fractions of the correlation

are nevertheless recovered. [91] Combinations of CI/CC with perturbation theory are also

possible, i.e. CCSD(T) is a coupled cluster calculation with explicit inclusion of all singly

and doubly excited determinants and a perturbation theoretical correction of the triply

excited contributions. [101]

In contrast, (ii) non-dynamical correlation is best understood by near degeneracies of

the occupied and virtual MOs, respectively, near degeneracy of determinants of the HF

solution. [95] Such systems with (near) degenerate reference states are also referred to as

being of multi-reference character. In practice, in HF theory parts of the static cor-

relation can already be recovered by an unconstrained approach, however, at the cost

of a spin-contaminated solution (i.e. the solution is not an eigenvector of the ˆ︁S2 op-

erator anymore). [94] The existence of such lower-energy UHF solutions in singlet sys-

tems is referred to as triplet instability. [102] However, such an approach is highly erratic

and by no means captures all static correlation or is guaranteed to include even a rele-
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2.2. The Electron Density and Foundations of Density Functional Theory

vant fraction. [94] Systematic solutions have been established in wave-function theory by

means of multi-reference approaches such as the multiconfigurational self-consistent field

model (MCSCF). [103] Here, the wave function is expanded in a linear combination of de-

terminants (usually those considered to be of importance for the problem or model to

be described [104]), whereas the flexibility is further increased by simultaneous optimiza-

tion of the involved spin orbitals. [96] Typically, the method is applied within a complete

(CASSCF) or restricted active space (RASSCF), where only excitations within the active

space are included in the MCSCF wave function. The other orbitals are either doubly

occupied (“inactive”) or remain vacant (“secondary”). [96,104] In addition to the mostly

static contribution provided by such approaches, methods to effectively recover dynamic

correlation can be applied on top of the multi-reference wave functions, e.g. in methods

such as multi-reference CI (MRCI) [91] or CASPT, which applies perturbation theory on

top of the CASSCF solution (e.g. CASPT2). [101]

The above described methods successfully recover the correlation contributions. As men-

tioned, however, they are often costly to compute and therefore can be applied to few

systems of interest in chemical research. Thus, for quick and routine applications usually

more time-efficient methods with an acceptable error margin have to be employed, such

as density functional theory, outlined in further detail in the following.

2.2 The Electron Density and Foundations of Den-

sity Functional Theory

In the outline of HF theory, the multi-electron wave function was reformulated in terms of

single-electron wave functions, solved in the mean field of the remaining electrons of the

system. An alternative to the wave function and its complexity, reducing the electronic

problem to just 3 spatial coordinates, is the electron density ρ(r), given by [105,106]

ρ(r) = N

∫︂
Ψ∗(x1, . . . ,xN)Ψ(x1, . . . ,xN)ds1dx2 . . . dxN , (2.20)

Within the Born–Oppenheimer approximation, the density can be understood as the

probability to find one of the electrons with arbitrary spin in an infinitesimally small

volume element for a given nuclear geometry. Therefore, integration of the electron density

over the real space gives the total number of electrons [105]∫︂
ρ(r)dr = N. (2.21)
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2. Theoretical Background – Quantum-Chemical Methods

Furthermore, the density decays exponentially and vanishes at positions far from the

nuclei (i.e. in infinity) [105]

ρ(r −→ ∞) = 0. (2.22)

The foundation of DFT was provided in the 1960s by Hohenberg and Kohn (HK): [45]

Considering the Hamiltonian of Eq. 2.5, it is apparent that it is completely determined

by the number of electrons and an external potential (i.e. for molecules in the BO ap-

proximation the potential VNe, which is determined by the position of the nuclei). For

the first Hohenberg–Kohn theorem it was proven by “reductio ad absurdum”, that the

external potential uniquely determines the electron density and vice versa. [45] It is there-

fore possible to formulate a unique energy functional of the electron density, for which the

variational principle has been formulated in the second HK theorem, similar to the vari-

ational principle in wave function theory. [45] Assuming ρ0 to be the ground state density

and ρ to be any trial density it can be written as

E [ρ0] ≤ E [ρ] = FHK [ρ] +

∫︂ ˆ︁VNeρ(r)dr = FHK [ρ] + ENe [ρ] , (2.23)

where

FHK [ρ] = T [ρ] + Eee[ρ] = ⟨Ψ|ˆ︁T + ˆ︁Vee|Ψ⟩ (2.24)

is the exact contribution from the kinetic-energy and electron-electron repulsion operators,

if ρ equals the ground state density, i.e. ρ = ρ0.

ENe [ρ], T [ρ] and Eee[ρ] are the explicit density functionals of the electron-nuclear attrac-

tion, kinetic energy and electron-electron repulsion, respectively. The latter contains the

classical Coulomb term as well as a non-classical contribution due to electron correlation

and exchange. It is given by

Eee[ρ] =
1

2

∫︂∫︂
ρ (r) ρ (r′)

|r− r′|
dr dr′ + Encl [ρ] = J [ρ] + Encl [ρ] . (2.25)

The functional FHK [ρ] is universal, i.e. it is independent of the external potential. How-

ever, its exact form as well as those of T [ρ] and Encl[ρ] remain unknown to date. A

systematic approach to its solution was later formulated by Levy’s constrained search

approach. However, the need to construct a set of wave functions explicitly led to an

unbearable cost. [107,108]
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2.2. The Electron Density and Foundations of Density Functional Theory

The central task of DFT in the formulation by HK is thus to find approximations of

the universal functional and subsequently the success of the method depends decisively

on the accuracy of these approximations. In particular, the kinetic energy is crucial be-

cause it has the same magnitude as the total molecular energy, as evident from the virial

theorem. However, the development of accurate expressions just in terms of the density

remains a difficult task. [109] Functionals such as the Thomas–Fermi model for the kinetic

energy provide impressive evidence for this, as it cannot bind molecular systems. [50,110]

Over the years, other more elaborate approximations were proposed within the HK frame-

work, [111,112] but the accuracy was still insufficient for general chemical applications. [113]

For this reason, an alternative approach evolved into today’s most widely used branch of

DFT: Kohn–Sham density functional theory. [46]

2.2.1 Kohn–Sham DFT

In the Kohn–Sham (KS) method, [46,114] some of the simplicity of the HK approach is sac-

rificed, as KS (re-)introduces molecular orbitals into the approach to provide a reasonable

starting point for the calculation of the kinetic energy

TS

[︁{︁
φi,σ

}︁]︁
= −1

2

∑︂
σ

∑︂
i

∫︂
φ∗
i,σ(r)∇2φi,σ(r)dr. (2.26)

The MOs are arranged in a SlD, which, as outlined in HF theory, is the wave function

of the mean-field approximation. In the context of DFT this limiting case is connected

with the so-called non-interacting (correlation-free) reference system. Thus, TS is not

the kinetic energy of the real interacting system, as it lacks a small but important resid-

ual correction. [115] The non-interacting system is linked to the fully interacting one by

enforcing the density, constructed from the MOs as

ρ(r) =
∑︂
σ

ρσ(r) =
∑︂
σ

∑︂
i

|φ∗
i,σ(r)φi,σ(r)|, (2.27)

to be equal in both the fictitious (ρKS,σ(r)) and real (ρσ(r)) reference systems. This is

achieved by means of an external potential, which ensures the constraint ρKS,σ(r) = ρσ(r).

The total energy of the KS approach is given by [114]

E [ρσ] = TS[{φi,σ}] + ENe[ρσ] + J [ρσ] + EXC [ρσ]. (2.28)
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2. Theoretical Background – Quantum-Chemical Methods

Here, the exchange-correlation (XC) functional

EXC [ρσ] = (T [ρσ]− TS[{φi,σ}]) + Encl [ρσ] (2.29)

captures the residual contribution of the kinetic energy as well as the electron-electron

interactions not mapped by the classical Coulomb repulsion (Encl, see Eq. 2.25). Like the

universal HK functional F [ρ] (Eq. 2.24), the exact form of the XC functional is unknown

to date. KS-DFT therefore shifts the complications of HK theory associated with the

construction of F [ρ] to the approximative construction of EXC [ρσ]. However, the latter

represents a significantly lower fraction of the total energy.

Comparing Eqs. 2.10 and 2.28 reveals a close resemblance of the HF and KS approaches.

Indeed, in the framework of generalized Kohn–Sham (GKS) theory, which introduces

partially interacting reference systems and allows the inclusion of non-local potentials in

the calculation, HF can be regarded as a special case of KS-DFT (in the limit EXC −→
EX).

[116] It is therefore not surprising, that the variational minimization of the KS energy

equation with respect to the molecular orbitals results in a set of one-electron equations

similar to the ones in HF theory [114]

[︂ˆ︁h(r) + νKS
σ (r)

]︂
φ∗
i,σ(r) = εi,σφi,σ(r). (2.30)

However, there is a distinct difference: the Kohn–Sham potential νKS
σ , given by

vKS
σ (r) =

∑︂
ς

∫︂
ρς(r

′)

|r− r′|
dr′ + vXC,σ(r), (2.31)

is, as stated above, defined by the constraint ρKS(r) = ρ(r) and thus generates MOs

which, according to Eq. 2.27, should give the exact density of the fully interacting system

and finally its exact energy via Eq. 2.28. Hence, the MOs of HF and KS-DFT are similar

but not the same. Finally, the exchange correlation potential [114]

vXC,σ(r) =
δEXC [ρσ]

δρσ(r)
, (2.32)

is defined as the functional derivative of the XC energy with respect to the electron

density. However, since it is derived from the approximative (see below) XC functional,

the potential in KS-DFT also remains an approximation.
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2.2. The Electron Density and Foundations of Density Functional Theory

Conceptually, the XC energy can be separated into the exchange and correlation contri-

butions [117]

EXC [ρσ] = EX [ρσ] + EC [ρσ] . (2.33)

Exchange is interpreted as the exchange energy arising from a SlD of KS orbitals (it is

therefore different from exchange in HF theory) and is typically a much larger contri-

bution than the correlation. [118] The latter describes the remaining non-classical energy

contribution (therefore, it also contains the missing fraction of the kinetic energy). Fur-

thermore, the XC energy can be expressed either in terms of the exchange-correlation

energy density (eX/C) or its counterpart per particle (εX/C) weighted by the density [117]

EX/C [ρσ] =
∑︂
σ

∫︂
eX/C,σ [ρσ] dr =

∑︂
σ

∫︂
ρσ(r)εX/C,σ [ρσ] dr. (2.34)

Spin-neutral definitions of the XC energy were also proposed (related to the spin-density

formulation via the spin-scaling relation E[ρ] = 1/2
(︁
E[2ρα] + E[2ρβ]

)︁
). [54] Others defined

functionals in terms of the density and spin polarization (E[ρ, ζ]) [119,120]

ζ(r) =
ρα(r)− ρβ(r)

ρ(r)
. (2.35)

However, as shown by the spin-scaling relation, these are equivalent and only the spin-

dependent formulations will be used throughout this work.

2.2.2 Assessment of Approximate XC Functionals

In the derivation of KS-DFT the existence of a universal exchange-correlation functional

was proven, which, if it was known and if its functional derivative was constructable, would

provide an exact solution to the electronic Schrödinger equation. However, the exact

form of the XC functional or how it might be constructed is not apparent from the KS-

DFT derivation. A prescription, to some extent, is provided by the adiabatic connection

(AC) [119,121–123] and the exchange and correlation holes. [105,124,125] The AC connects the

non-interacting reference system to the fully interacting (“real”) one and gives an exact

prescription of the exchange-correlation energy by means of the XC hole. [109] However, for

the XC hole and its exchange and correlation counterparts separately, exact constraints

have been derived, such as cusp and integration conditions (“sum rules”), [118,126] which

can be used to guide the development of new functionals.
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2. Theoretical Background – Quantum-Chemical Methods

Nevertheless, the performance of density functional approximations (DFAs) is usually

assessed by statistical measures generated from comparison of the approximate DFT

calculations against (near-)exact test-set data bases. Standardized test sets have been

used throughout the DFA development. Early examples of such data bases are the G1

benchmark set and its successors by Pople and co-workers. [127–129] However, such early

attempts often relied heavily on a few properties (largely atomization energies (AE), but

also ionization potentials (IP), electron – (EA) and proton affinities (PA)) and therefore

did not necessarily provide a representative assessment of the overall performance of the

tested methods. [130] To better account for robustness (i.e. the applicability of a certain

methods to all tested properties, with the constraint of the absence of severe outliers) in

the testing of DFAs, in one attempt randomized testing was proposed. [131] Truhlar and

co-workers used diverse benchmark sets covering a range of chemical properties, [132] later

also using a combined statistical measure. [133,134] In a similar attempt, Grimme and co-

workers combined a total 55 test sets in the largest main-group energetics benchmark set

to date, the GMTKN55 test set, [135] which is the latest offspring of the GMTKN series of

benchmark data bases. [136,137]

Whereas test sets have been used to evaluate functionals for more than two decades, differ-

ent philosophies in constructing XC functionals have also evolved: while some groups tried

to satisfy as many of the (known) exact constraints as possible, that way building non-

empirical XC functionals, a (semi-)empirical branch also emerged, where the parameters of

the functional were optimized with respect to experimental and (in the beginning atomic)

theoretical data. Later, this approach was taken further and some groups constructed

functionals with many empirical parameters fitted to extended molecular training-sets

(see below). Recently, the topic gained attention due to a study by Medvedev et al.

in which it was argued, that modern functionals and/or their development, respectively,

might have already lost their path towards the “exact” functional. [138,139] In the study,

the authors ranked a set of functionals by deviations in atomic densities and found the

performance of semi-empirical and highly parametrized functionals to fall behind DFAs

constructed in a non-empirical fashion. However, the chosen test set (containing partly

highly charged, thus chemically less meaningful atomic species) and method (e.g. bias in

the chosen functionals and the selected data) was critically reviewed shortly after with

partly differing results. [140,141]

In the following, such approaches and test-set data will not be discussed in detail and will

only briefly be mentioned where it suits the discussion of the different DFAs.
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2.2. The Electron Density and Foundations of Density Functional Theory

2.2.3 Local Approximate XC Functionals

The Local Density Approximation The simplest possible approximation for a density

functional can be based on the uniform electron gas (UEG). The UEG is a model of

a homogeneous electron distribution of N electrons in a volume (V ) neutralized by a

uniform background charge (such that V → ∞, N → ∞ and ρ = N/V ). [117,142] The exact

analytical expression of the exchange part of the UEG model for the XC functional, the

previously mentioned Slater (S) exchange, reads [52,143]

EUEG
X [ρσ] = −3

2

(︃
3

4π

)︃1/3∑︂
σ

∫︂
ρ4/3σ (r)dr. (2.36)

(Note, the inclusion of a simple scaling factor into the UEG model was termed the Xα

functional. [115])

Corresponding correlation functionals were derived by means of fitting analytical ex-

pressions to numerical quantum Monte-Carlo simulations, [144] resulting in differently pa-

rametrized constructions like VWN [120] or PW92. [145,146] Since these models can all be

expressed solely in terms of the density, [45] or the spin densities, [119,147] these approxi-

mations are called local-(spin-)density approximation (L(S)DA) (the term LSDA will be

used synonymously throughout).

Even though the model is a drastic approximation in molecular calculations (due to

rapid changes in the local densities in such systems), the performance is relatively ac-

curate, [118,148–150] which was attributed to constraint satisfaction with regard to the XC

hole. [119,126] However, the applicability is limited, i.e. exchange energies are underesti-

mated, [151] whereas correlation energies are overestimated due to the overestimation of

same-spin correlation in molecular systems [152,153] and hence the LSDA is far from the

regime of chemical accuracy (typically 1kcal/mol). [91]

The Generalized Gradient Approximation A straightforward extension of the LSDA

is the introduction of the gradient of the density (∇ρσ) into the exchange-correlation

functional. However, initial attempts of such DFAs were shown to violate important con-

straints of the exchange and correlation holes [53,154–156] and showed further shortcomings

(i.e. the potential was shown to diverge in regions of small densities and the prefactor

of the gradient correction was not universal). [55] Today, these inital attempts are referred

to as gradient expansion approximations (GEAs), [117] to clearly separate them from later

approaches.

DFAs enforcing the violated constraints of the GEA model, first introduced by Perdew and

Becke, [53–55,157] are collectively termed generalized gradient approximations (GGAs). [118]
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2. Theoretical Background – Quantum-Chemical Methods

In a shorthand notation, the GGA exchange functional can be expressed as

EGGA
X [ρσ] =

∑︂
σ

∫︂
eLSDA
X,σ [ρσ] fX,σ [ρσ,∇ρσ] dr, (2.37)

where fX,σ [ρσ,∇ρσ] is the exchange enhancement factor (EEF) or inhomogeneity correc-

tion factor (ICF), [51] which can also be expressed in terms of a dimensionless reduced

gradient of the density

sσ(r) =
1

k

|∇ρσ(r)|
ρ
4/3
σ (r)

, (2.38)

with k = 2(3π2)1/3, giving fX,σ [ρσ, sσ]. Clearly, for fX,σ(0) = 1 such a functional reduces

to the LSDA. In 1997 Becke introduced a generalized form of the EEF [158]

fX,σ [ρσ, sσ] =
m∑︂
i=0

cX,iu
i
X,σ [ρσ, sσ] . (2.39)

However, the popular GGA models B86, [55] B88 [159] and PBE [160] share a simpler model,

equal to cutting off the expansion after the first correcting term (m = 1, fX,σ [sσ] =

1 + cX,1uX,σ [sσ]). As an example, the EEFs of such models (here shown for B88 and

PBE) read

fB88
X,σ [ρσ, sσ] = 1 + a1

2

3

(︃
4π

3

)︃1/3(︃
k2
F s

2
σ(r)

1 + 6a1kF sσ(r) sinh
−1 (kF sσ(r))

)︃
, (2.40)

fPBE
X,σ [ρσ, sσ] = 1 +

b1b2s
2
σ(r)

b1 + b2s2σ(r)
. (2.41)

The different philosophies of obtaining the optimal exchange-enhancement factors were

employed in such models: whereas Becke’s B86 and B88 rely on semi-empiricism and

therefore their parameters (i.e. a1 = 0.0042) were fitted to (exact) HF atomic exchange

data, [55,159] the functional PBE is constructed with non-empirical (i.e. physically moti-

vated) constants based on the Lieb–Oxford bound and the linear response of the spin

unpolarized UEG (b1 = 0.804 and b2 = 0.21951). [160,161]

More recent approaches using higher orders of the expansion of Eq. 2.39 like the HCTH

functionals (m = 4) [162,163] rely on parametrization using molecular test sets and contain

up to 15 empirical parameters for exchange and correlation. A step further to semi-

empirical fitting was taken by Truhlar and co-workers, who published exchange-correlation
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2.2. The Electron Density and Foundations of Density Functional Theory

GGAs like N12 with overall 30 empirical parameters, adjusted in a sophisticated fitting

procedure with a large set of training-data. [164]

Specialized constructions like the KT series of functionals (KT1–KT3) have a particular

importance for the present work: these functionals were optimized with respect to (near-

exact) potentials, which were shown to be accurate in NMR shielding calculations shortly

before, [165] in order to reproduce nuclear shieldings and the respective shifts. [166,167] The

main difference between the three models lies in a successively enhanced flexibility (by

introducing further optimized parameters, respectively, a more evolved functional form in

KT3) in order to simultaneously reproduce molecular properties beyond nuclear shield-

ings. However, in comparison to other GGAs even the most flexible KT3 is overall less

successful in the application to reaction barriers and total electronic energies. [167] In fact,

it was shown that GGA exchange can never simultaneously reproduce the correct asymp-

totic behaviour of its potential and its energy density. [168] Therefore, optimization of the

EEF with respect to the potential in order to enhance the performance in shielding con-

stants necessarily (at least to some extent) violates the asymptotic limit of the exchange

energy density, whereas this limit was connected to the performance with respect to the

calculation of energy differences. [168]

Correlation models of the GGA approach are for example LYP [169] by Lee, Yang and

Parr, or P86, [170] PW91 [171,172] and PBE [160] by Perdew and co-workers. The first is

the density functional of the Colle and Salvetti correlation model, which was derived

from the HF second-order density matrix and was fitted to the Helium atom. [173] This

correlation model was for example later combined with B88 exchange, resulting in the

famous BLYP functional. [174] The latter functionals of the above list, however, follow a

similar philosophy as the exchange functionals of the same authors, i.e. they are based on

non-empirical arguments and constraint satisfaction. [109] Unlike the LYP functional, these

models (also HCTH and N12 are in line here) provide exchange and correlation models

simultaneously. Thus, a calculation using “PBE” usually refers to PBE exchange and

correlation, but they may also be employed separately (e.g. BP86 and BPW91 combine

B88 exchange with either P86 or PW91 correlation).

The meta-Generalized Gradient Approximation DFAs involving higher derivatives

of the density, such as the Laplacian [175] and/or the kinetic energy density

τσ(r) =
1

2

∑︂
i

∇Tφ∗
i,σ(r)∇φi,σ(r) (2.42)

are termed meta-GGAs (or mGGAs). The latter quantity is more commonly chosen due

to enhanced numerical stability. [109]
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In accordance with Eq. 2.37, meta-GGAs can generally be expressed using an extended

EEF [176]

EmGGA
X [ρσ] =

∑︂
σ

∫︂
eLSDA
X,σ [ρσ] fX,σ [ρσ,∇ρσ, τσ] dr. (2.43)

Typically, the form of such EEFs is less instructive than for the GGAs, as more param-

eters and more evolved functions are usually chosen. The advantage, however, is that

the introduction of additional semi-local ingredients and parameters into the functional

enhances its flexibility and subsequently allows for the satisfaction of more of the (known)

constraints simultaneously. [177]

This approach was, as for the GGAs, largely explored by Perdew and co-worker, who

published XC functionals like TPSS [178] and its predecessor PKZB, [176] which both can be

viewed as attempts to improve upon the PBE functional. [109,178] Both share the general

form of the EEF employed in PBE (Eq. 2.41), but with a substitution in the semi-local

parameter using a τσ-dependent function xσ (not discussed in detail here) instead of the

reduced density gradient sσ (see Eq. 2.38) (sσ [ρσ,∇ρσ] −→ xσ [ρσ,∇ρσ, τσ]). Finally,

the approach was pushed further in the developement of the strongly constrained and

appropriately normed (SCAN) functional, which was explicitly constructed with full con-

straint satisfaction in mind. [179] On the semi-empirical branch, meta-GGAs like VSXC, [180]

τ -HCTH, [181] M06-L [182] or M15-L [183] have been constructed. For these 16 (VSXC), 21

(τ -HCTH), 37 (M06-L) and up to 58 (MN15-L) empirical parameters were fitted to (partly

extended) molecular data sets.

Closing Remarks DFT functionals are termed “local” if the computation of their

potential vXC,σ(r) at point r only requires information related to this specific point in

space. Nevertheless, the gradient and kinetic energy density contain information about

the immediate vicinity of the reference point. Therefore, the term “semi-local” is employed

for these functionals to oppose them to purely local LSDAs.

Furthermore, the three models discussed up to this point represent the first three rungs

on the so called “Jacob’s ladder” proposed by Perdew and Schmidt (pictorally connecting

the “Hartree World” to the “(heaven of) chemical accuracy”). [184] The scheme uses the

semi-local DFT ingredients to categorize DFAs, i.e. LSDA with just the density describes

the first, GGAs with additionally using the (reduced) gradient of the density the second

and meta-GGAs incorporating also the kinetic energy density (or other variants of the

second-order correction) the third rung.
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2.2.4 Non-Local Approximate XC Functionals

Within the present section, approaches going beyond semi-local DFT are discussed. Local

hybrid functionals are a non-local approximation to the exchange-correlation contribution

as well. However, due to their central importance for this thesis these are discussed

separately (see Sec. 2.3).

Hybrid Functionals The forth rung of the “ladder” of Perdew and Schmidt is rep-

resented by the so-called hyper-GGAs, which contain a non-local contribution from the

(KS) orbitals in form of the exact exchange (see Eq. 2.14).a The simplest representative

of these functionals are (global) hybrid (GH) functionals, which can expressed as

EGH
XC [ρσ] =

∑︂
σ

[︃∫︂ {︁
aX · eexactX,σ

[︁{︁
φi,σ

}︁]︁
+ (1− aX) · eDFT

X,σ [ρσ]
}︁
dr

]︃
+ EDFT

C [ρσ]

= aX · Eexact
X

[︁{︁
φi,σ

}︁]︁
+ (1− aX) · EDFT

X [ρσ] + EDFT
C [ρσ] , (2.44)

where aX is a constant and eexactX,σ

[︁{︁
φi,σ

}︁]︁
is the exact-exchange energy density

eexactX,σ

[︁{︁
φk,σ

}︁]︁
= −1

2

∑︂
ij

φ∗
i,σ(r)φj,σ(r)

∫︂
φ∗
j,σ(r

′)φi,σ(r
′)

|r− r′|
dr′, (2.45)

dependent on the set of occupied KS orbitals {φk,σ}. Clearly, the integration requires

the sampling of a second spatial variable (r′) and accordingly the potential of such ap-

proaches becomes vXC,σ(r, r
′). The evaluation of such non-local potentials hence requires

a treatment via the GKS scheme (see also Sec. 2.2.1). It is noted in passing, that a

transformation of vXC,σ(r, r
′) into an OEP is possible, which recovers the local KS-DFT

approach. [185,186] However, such schemes are not discussed in further detail within the

present work.

The introduction of exact exchange was rationalized on the one hand by the localization

properties of the exchange hole. [50] On the other hand, it can help to reduce spurious

self-interaction present in typical DFAs. This error arises, as for such functionals the

exchange-correlation contribution does not fully cancel the self-interaction present in the

Coulomb contribution. [51,60,187]

However, Becke rationalized the approach using the AC and initially assumed a linear

interpolation between the non-interacting (described by exact exchange) and the fully

aIt should be noted that the exchange is calculated from the KS orbitals, not their HF counterpart and
is therefore not “exact” in the sense of HF theory. The expression is nevertheless used throughout
this work.
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interacting limit (in his model approximated by the LSDA), which resulted in a “half

and half” mixing form. [58] Later, this approach was slightly adjusted to the BHLYP func-

tional using B88 exchange and LYP correlation. [188] Other popular functionals with a

similar approach are for example TPSSh, with 10% exact-exchange admixture (EXX) on

top of TPSS [189] or PBE0, with 25% EXX on top of PBE. [190,191] The exchange admix-

ture in PBE0, however, was argued to be non-empirical as the parameter was fixed with

arguments based on perturbation theory (the lowest order of PT which provides a real-

istic shape of the XC-energy curve within the adiabatic connection). [192] However, using

similar arguments, also different prefactors were derived, [193] even with an enhanced per-

formance. [194] In the same year as the simple one parameter hybrids, Becke also proposed

the (semi-empirical) three-parameter B3PW91 functional. [59] Replacing PW91 by LYP

correlation finally gave the popular B3LYP, [195] probably the most commonly used DFA

in chemistry to date, [49] for which the exchange and correlation contributions according

to Eq. 2.44 are

EDFT
X −→ ELSDA

X +
b

(1− a)
· EB88

X , (2.46)

EDFT
C −→ (1− c) · ELSDA

C + c · ELY P
C . (2.47)

However, the functional uses the same parameters (a = 0.20, b = 0.72 and c = 0.81) as

the initial model proposed by Becke. [59] B3PW91 was also the first functional, which was

ever optimized using molecular test-set data. [50] Later, the approach was rationalized to

some extent by Csonka et al., who pointed out that no additional exact constraints can be

satisfied with a constant exchange admixture and hence EXX must always be estimated

(semi-)empirically. [196]

Further approaches in that direction include the B97 functional, which explored the op-

timal GGA (never intended to give reasonable results without EXX) to mix with exact-

exchange in terms of the EEF expansion scheme (Eq. 2.39). In the final functional, the

order m = 2 was employed, as for higher orders signs of overfitting were observed, giving

in total 10 optimized parameters. [158,197] Also Truhlar and co-workers proposed (highly

parametrized) (semi-)empirical GHs, such as M06, M06-2X and M06-HF with 27%, 54%

and 100% exact exchange, respectively, [134,198] or the M08 [199] series of functionals as well

as DFAs such as MN15. [200]

Range-Separated Hybrid Functionals An early extension of the global hybrid scheme

and still on rung four of Perdew’s ladder, are the range-separated (RS) hybrid functionals,

which use a substitution of the Coulomb operator in order to split the exchange interac-
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2.2. The Electron Density and Foundations of Density Functional Theory

tion into a short and long-range contribution. [201,202] Among other possible choices, [203] a

common version of the splitting operator uses the error function

1

|r− r′|
≡ erfc (ω|r− r′|)

|r− r′|
+

erf (ω|r− r′|)
|r− r′|

. (2.48)

Here, the first term on the right-hand side describes the short-range (SR), the second term

the long-range (LR) electron-electron interaction. The parameter ω defines the transition

between the two domains, which becomes more rapid, the larger the value of ω is cho-

sen. In the simplest RS hybrids the SR domain is dominated by DFT exchange, to benefit

from the description of the exchange-correlation hole and the error compensation between

the semi-local exchange and correlation functionals, whereas the LR domain is typically

represented by exact exchange in order to properly describe the long-range behavior of

the potential and to benefit from self-interaction correction in one-electron regions. Typ-

ical examples for such functionals are the long-range corrected (LC) versions of popular

semi-local constructions such as LC-BLYP, LC-PBE [204] or the more recent ωB97. [205]

Following arguments used in the construction of GHs, admixture of exact exchange was

also introduced into the short-range part, as in ωB97X [205] or CAM-B3LYP. [206] The latter

uses a generalization of the splitting operator of Eq. 2.48, termed Coulomb-attenuation

method (CAM), providing a more flexible mixing of semi-local and exact exchange in the

SR and LR domains. [206]

In optimally-tuned RS hybrids, the non-empirical system-dependent determination of the

RS parameter in the course of the calculation was suggested (instead of using a fixed ω,

irrespective of the application). [207–209] Recently, this approach was also extended to NMR

property calculations, however, with limited success. [210]

London Dispersion London dispersion interactions are a long-range and hence non-

local correlation effect. While short-ranged to medium-ranged dispersion interactions are

to some extent captured within the parametrization of the correlation models of many

DFAs, the long-range part is impossible to describe by purely local constructions due to

its non-local nature. [211] In the context of this work, two types of corrections were applied:

(i) semi-empirical schemes, which often apply a correction to the energy and (ii) non-local

density-based schemes, which introduce a correction to the potential itself. [211]

Practical examples of (i) are dispersion corrections such as D2, [212] its successor D3 [213] and

related models. [214,215] Corrections of that type are calculated directly from the nuclear

coordinates without the need of any knowledge of the electronic structure. Therefore, such

models can be used as a post-SCF correction (with empirical parameters fit to the indi-

vidual functionals) at low computational cost. To avoid double counting of correlation (in
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DFAs which may already contain some dispersion contributions as described above), [211]

intrinsically dispersion corrected functionals such as B97-D [212] or ωB97X-D [216] have been

constructed, both using the D2 dispersion model.

As an example of type (ii), the non-local dispersion functional by Vydrov and Van Voorhis

is considered. [217] Here, the dispersion is calculated by means of a non-local correlation

kernel, parametrized to capture the missing fraction of the dispersion energy directly from

the electron density. It was later shown, that similar to the above discussed corrections

of type (i), the empirical parameters in VV10 can also be fitted to suit a range of DFAs,

allowing the correction to be applied on top of common XC functionals. [218] However,

functionals such as the meta-GGA B97M-V [219] as well as the RS hybrids ωB97X-V [220]

and ωB97M-V [221] have been parametrized with VV10 dispersion correction explicitly

included.

Rung Five Functionals The fifth rung of Perdew’s ladder is defined by the additional

incorporation of contributions dependent on virtual KS orbitals. [184] This covers meth-

ods with contributions from wave-function theory involving excited SlDs (see above),

the random-phase approximation (RPA) [222,223] and different approaches based on per-

turbation theory. [186,224–227] However, the focus here is on so-called double-hybrid (DH)

functionals. [228,229] DHs extend the idea of the GHs to the correlation contribution by

introducing a fraction of second-order perturbative correlation into the DFT correlation

functional, in the simplest form expressed as [228]

EDH
XC [ρσ] =aX · Eexact

X

[︁{︁
φi,σ

}︁]︁
+ (1− aX) · EDFT

X [ρσ]

+ aC · EPT2
C

[︁{︁
φp,σ

}︁]︁
+ (1− aC)E

DFT
C [ρσ] . (2.49)

Here, EPT2
C

[︁{︁
φp,σ

}︁]︁
is the second-order contribution derived from perturbation theory,

which in addition to the occupied block includes an implicit dependence on the set of

virtual KS orbitals
{︁
φa,σ

}︁
. The term was first used in Grimme’s B2PLYP functional,

which (as in B3LYP) combines B88 exchange and LYP correlation. The hybrid mixing

parameters (aX = 0.53 and aC = 0.27) have been fitted to a small thermochemical

test set. [230,231] A later refit, the B2GP-PLYP functional, uses the same exchange and

correlation functionals but larger mixing parameters of aX = 0.65 and aC = 0.36. [232] The

DH scheme was further extended by introducing dispersion corrections (see above) and

by separating the PT correlation contribution to same and opposite-spin contributions
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with individual (adjustable) parameters

aC · EPT2
C

[︁{︁
φp,σ

}︁]︁
−→ cS · ESS−PT2

C

[︁{︁
φp,σ

}︁]︁
+ cO · EOS−PT2

C

[︁{︁
φp,σ

}︁]︁
. (2.50)

One example of such functionals is the dispersion-corrected spin-component-scaled double

hybrid with PBE exchange and P86 correlation (DSD-PBEP86), which was the result of

a search for the best possible DSD-DFT combination by Kozuch and Martin. [233] As for

DFT and hybrid methods, many DH functionals were proposed (see Refs. 228 and 229

as well as references therein), including approaches to non-empirical DHs based on the

AC [234] or combinations with range separation in the exchange part. [235] However, such

functionals will not be discussed in further detail here.

2.3 Local Hybrid Functionals

Another generalization of global hybrid functionals as shown in Eq. 2.44, and still on rung

four of Perdew’s ladder, are local-hybrid functionals (LHs). [236,237] For this class of hybrids,

a real-space function, the local mixing function (LMF) gσ(r), is employed to control the

exact-exchange admixture position dependently in the target species. Consistent with the

expression for GHs, a general expression for LH functionals is given by [238]

ELH
XC [ρσ] =

∑︂
σ

{︃∫︂
gσ(r)e

exact
X,σ [{φi,σ}] dr

+

∫︂
(1− gσ(r))

(︁
eDFT
X,σ [ρσ] +Gσ(r)

)︁
dr

}︃
+ EDFT

C [ρσ] , (2.51)

where the global admixture of exact exchange is interchanged with the LMF (a −→ gσ(r)),

eexactX,σ is the exact-exchange energy density as defined in Eq. 2.45 and Gσ(r) is the so called

gauge or calibration function (see below). Compared to GHs, for such LHs two new

quantities arise: (i) the LMF (gσ(r)) and (ii) the gauge or calibration function (Gσ(r)),

which both will be addressed in more detail in the following.

2.3.1 Local Mixing Functions

The LMF governs the position-dependent admixture of exact exchange in the functional,

therefore usually 0 ≤ g(r) ≤ 1 is chosen. A set of constraints of the real space behavior of

the LMF were derived. [238] These are based on general considerations: (i) in one-electron

regions, that is, regions dominated by single exponential decays, exchange dominates
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2. Theoretical Background – Quantum-Chemical Methods

Figure 2.1.: Plots of real-space exact-exchange admixture along the F–H bond in the HF
molecule for various LH functionals using different models for the LMF. Here,
F is located at the origin of (r) and H at the position (r) = 1.729; *07s corre-
sponds to LH07s-SVWN.

correlation and therefore the admixture of exact exchange is employed to compensate self-

interaction. Hence, pure exact exchange is desirable (gσ(r) −→ 1). [239] This constraint is

best associated with the asymptotic region far outside the molecule. However, the exact

constraints for the transition to the asymptotic region are unknown. [238] (ii) A similar

constraint also holds for the high-density limit and is related to the scaling properties of

the exchange and correlation contributions. [238] The high-density limit is associated with

the core region of the molecules. However, height (i.e. the on top value) and shape (i.e.

representation of the core shell structure) are dependent on the nuclei and the limiting

case is more likely met in heavier elements, as the core density increases with the nuclear

charge. [238] (iii) In the homogeneous limit the implicit description of NDC and error

compensation between the semi-local exchange and correlation functionals is beneficial,

hence admixture of exact-exchange should vanish or be comparably low (gσ(r) −→ 0). [238]

In the molecular case, this limit is best associated with the bonding region, where NDC

is a crucial aspect. [238]

A set of different LMF models has been proposed. However, the focus here will be on

the models employed in the context of the present work, exemplarily plotted for the HF

molecule in Fig. 2.1. Starting with the pioneering work of Jaramillo et al., the ratio
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between the von-Weizsäcker kinetic energy density

τW,σ(r) =
1

8

γσσ(r)

ρσ(r)
, with γσς (r) = ∇Tρσ(r)∇ρς(r), (2.52)

and its KS counterpart was used as their initial LMF. [237] The same quantity was formerly

also employed as the inhomogeneity parameter in different (non-empirical) meta-GGA

functionals. [176,178,240] In these, it was typically employed as an iso-orbital indicator, [241]

i.e. it was exploited, that the von-Weizsäcker kinetic energy density reduces to the KS ki-

netic energy density for isolated orbitals (which are typically associated with one-electron

regions). Later, an empirical prefactor (a) was introduced, which resulted in enhanced

performance, utilized in a variety of LH functionals (see below). [242–245] The resulting

(scaled) t-LMF is given by (blue line in Fig. 2.1, using a = 0.715) [242,246]

gtσ(r) = a · τW,σ(r)

τσ(r)
. (2.53)

Furthermore, Kaupp and co-workers proposed the s-LMF [247]

gsσ(r) = erf(b · sσ(r)), (2.54)

which uses the (scaled) reduced spin-density gradient, subsequently mapped by the error

function to obtain 0 ≤ gsσ(r) ≤ 1. The first version used the spin density gradient of Eq.

2.38. Later, a slightly different definition was employed using k = 2(6π2)1/3. However,

the versions are interchangeable by adapting the empirical parameter b (green line in Fig.

2.1, using b = 0.22, respectively, b = 0.277, see below). [238]

Johnson proposed another model mapped with the error function, which is based on the

(same-spin) correlation-length (zσς),
[248] in the following termed z-LMF (red line in Fig.

2.1, using c = 0.096) [249]

gzσ(r) = erf(c · zσσ(r)). (2.55)

Here,

zσς(r) = cσς

[︄
1

|εX [ρσ] |
+

1

|εX
[︁
ρς
]︁
|

]︄
(2.56)

is defined in terms of the exchange-energy density per particle (see Eq. 2.34) and cσς are

empirical parameters, fitted to atomic correlation energies. [249]
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Perdew and co-workers published a sophisticated LMF to satisfy as many exact constraints

as possible in their attempt to construct a LH based on TPSS exchange and correlation,

the PSTS functional. [239] The LMF is constructed from two parts (note, originally the

LMF was given in a spin-free formulation. The mPSTS version (see below) is plotted as

the yellow line in Fig. 2.1)

gpσ(r) = 1− (1− g1,σ(r))(1− g2,σ(r)), (2.57)

where g1,σ(r) is used to identify one-electron, rapidly varying and high-density regions, and

g2,σ(r) is used to identify regions of strongly fluctuating electron numbers. In the original

publication both are associated with the need of high exact-exchange admixture (termed

“abnormal”, see also above). [239] The two functions, g1,σ(r) and g2,σ(r), are defined as

g1,σ(r) =
1

1 + d1 · ln(1 + d2uσ(r))
, (2.58)

g2,σ(r) =

(︃
d3 (ζ

2(r) · r−1
s )

1 + d4 (ζ
2(r) · r−1

s )

)︃
· f [vσ] , (2.59)

where d1, . . . , d4 are empirical parameters, ζ is the spin polarization (Eq. 2.35) and rs is

the Seitz radius. In a first approach, the function f [vσ] was given by

f [vσ] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, vσ(r) ≤ d5,

1

1+exp
[︂
1/(1−vσ(r))

F−1/(vσ(r)−d5)
F
]︂ , d5 < vσ(r) < 1,

0, vσ(r) ≥ 1,

(2.60)

where F = −3/(2 ln[(1−d5)/2]) > 0 and d5 is an additional empirical parameter. Finally,

the quantities

uσ(r) =
εGL2−TPSS
C [ρσ]

εLSDA
X [ρσ]

, (2.61)

vσ(r) =
εexactX [{φi,σ}]
εTPSS
X [ρσ]

(2.62)

are constructed from various exchange-energy densities, i.e. the Görling-Levy second-

order limit of TPSS correlation, [224] LSDA exchange, exact exchange and TPSS exchange.
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Further LMF models have been proposed: Kaupp and co-workers introduced the AC-

LMFs, derived using the adiabatic-connection formula [250] as well as spin-polarized mod-

els of the t-LMF and s-LMF. [251] Corminbeuf et al. proposed an LMF based on the

density-overlap region indicator (DORI). [252,253] Furthermore, Schmidt et al. used the

orbital indicator of the t-LMF scaled by the square of the spin polarization in connection

with a reduced density gradient. [254] Various approaches were also published by Scuse-

ria and co-workers using similarity metrics of exact and LSDA exchange (spin-)density

matrices, [255,256] or defining the LH as a perturbation of the underlying GH. [257]

To this point, the LMFs have been formulated in their spin-channel representation, i.e.

in principle a different LMF is employed in the α and β channel, if spin-polarized systems

are targeted (for unpolarized closed shell systems both reduce to the same contribution).

However, a reformulation of the LH energy expression in terms of a non-dynamical cor-

relation correction to an exact-exchange and correlation functional

ELH
XC [ρσ] = Eexact

X

[︁{︁
φi,σ

}︁]︁
+

∫︂ [︁
(1− gσ)

(︁
eDFT
X,σ [ρσ] +Gσ(r)− eexactX,σ

[︁{︁
φi,σ

}︁]︁)︁]︁
dr+ EDFT

C [ρσ]

(2.63)

reveals the role of the LMF as a local scaling factor of the NDC contribution which in prin-

ciple should contain cross-terms between the two spin channels. [244] These considerations

motivated the construction of common instead of spin-channel LMFs, constructed from

total quantities instead of their spin-resolved counterparts. Exemplarily, the common

t-LMF can be written as

gt(r) = a · 1
8

γ(r)

ρ(r) · τ(r)
, (2.64)

where τ = τα + τβ, ρ = ρα + ρβ and γ = γαα + 2γαβ + γββ.

2.3.2 The Calibration Function

The use of gauge or calibration functions (CFs) [258] in the context of LH functionals is

motivated by the following considerations: an energy density as defined by Eq. 2.34 is

only uniquely defined up to an integrable function Gσ(r), which itself is defined by the

condition∫︂
Gσ(r)dr = 0. (2.65)

29



2. Theoretical Background – Quantum-Chemical Methods

Hence, for semi-local and GH functionals

EX,σ [ρσ] =

∫︂
eX,σ [ρσ] dr =

∫︂ (︁
eX,σ [ρσ] +Gσ(r)

)︁
dr =

∫︂
e′X,σ [ρσ] dr, (2.66)

the “uncalibrated” (eX,σ(r)) and “calibrated” (e′X,σ(r) = eX,σ(r) +Gσ(r), where Gσ(r) is

accordingly called the CF) energy densities integrate to the same energy contribution.

However, if a local mixing function is used, a (potentially non-vanishing) contribution to

the LH energy remains [244]

ELH
XC [ρσ] = Ẽ

LH

XC [ρσ]−
∫︂

gσ(r) ·Gσ(r)dr, (2.67)

where Ẽ
LH

XC [ρσ] is the uncalibrated counterpart of the LH energy expression of Eq. 2.51. [244]

Therefore, as shown in Eq. 2.63, for LHs the CF enters as a correction or scaling factor

of the NDC term and allows to tune the difference of the energy densities to a “match-

ing gauge” (i.e. adjusting the LHs behavior, e.g. in the bond dissociation of noble-gas

dimers). [245] LHs using a CF are accordingly termed calibrated. If certain constraints are

fulfilled, e.g. the CF should vanish for the uniform electron gas, be totally symmetric,

decay in the asymptotic limit and exhibit the proper coordinate scaling (see also Ref.

244), it is possible to obtain a physically meaningful representation of the non-dynamical

correlation contribution for such LHs. [259]

Among earlier attempts, [236,258] Kaupp and co-workers suggested a semi-local model for

the CF, based on the divergence of a vector field [244]

Gσ(r) = ∇ ·

[︄
a · ∇ρσ(r)

ρ
1/3
σ (r)

· f [sσ]

]︄
. (2.68)

Here, f [sσ] is a damping or cut-off function, for which exemplarily a Gaussian function

(f [sσ] = exp [−b · s2σ(r)]) was chosen in the original publication. [244] Application of such

CF models resulted in a significantly enhanced performance of GGA based LH functionals

due to the reduction of spurious positive NDC contributions, [244] when used in a PBE-

based LH functional competitive to contemporary functionals. [260]

As an extension, in a relatively recent approach by Maier et al. the CF was directly con-

structed from integration by parts of the underlying semi-local exchange functionals. [261]
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The resulting CF can generally be written as

G(N)
σ (r) =

N∑︂
m=1

[︄
m∏︂

n=1

an

]︄
· ∇T

[︄
∇ρσ(r)s

X(m−1)
σ (r)

ρ
1/3
σ (r)

dm−1f [Qσ]

dQm−1
σ (r)

]︄
. (2.69)

In this equation, an are adjustable empirical parameters, X = 1 in GGA and X = 2

in meta-GGA functionals and Qσ(r) is an inhomogeneity parameter present in the EEF

(f [Qσ]) of the semi-local XC functional the LH is based on (for examples of such EEFs

see Sec. 2.2.3. However, a slightly different definition of the EEF was employed in Ref.

261, using EGGA
X [ρσ] = ELSDA

X [ρσ] −
∑︁

σ

∫︁
ρ
4/3
σ (r)s2σ(r)f [sσ] dr). The superscript (N)

denotes the order of the CFs and accordingly the first-order calibration model derived

from a GGA functional G
(1)
σ (r) was termed pig1 (partial integration gauge (pig) of first

order), the second-order model G
(2)
σ (r) termed pig2 (pig of second order). If a meta-

GGA functional was used in the construction the term “τ -dependent partial integration

gauge” (tpig) was suggested. Furthermore, the Nth order CF is derived from a partial

integration based on the (N−1)th order term, hence, the higher order CFs can be regarded

as corrections to the former and should thus be applied hierarchically on top of the former

contributions. Importantly, due to the partial integration, higher-order derivatives of the

density arise in such CFs, which results in an implicit dependence of the pig1 and pig2

models on the Laplacian (lσ(r)) and Hessian (ης,σϑ(r)) of the density

lσ(r) = ∆ρσ(r), (2.70)

ης,σϑ(r) = ∇Tρσ(r)∇∇Tρς(r)∇ρϑ(r). (2.71)

Additionally, the tpig1 is dependent on a reduced quantity containing the gradient of the

kinetic energy density (∇τσ(r)). However, the gauge problem was recognized to be less

severe if LSDA, instead of GGA or meta-GGA semi-local functionals were employed. [244]

Thus, until suitable CFs were available, most LH functionals were based on LSDA semi-

local exchange and correlation (with the exception of PSTS, see also below).

2.3.3 Local Hybrid Functionals in Turbomole

In the present work, a set of LH models have been used, primarily those implemented in

Turbomole (usually fixed by a keyword within the program code). These are collected

in Tab. 2.1 (similarly to Ref. 263). The list contains LSDA based spin-channel LHs such

as the LH07s-SVWN using the s-LMF with prefacor b = 0.22 (or b = 0.277, depending on
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Table 2.1.: LH functionals implemented in Turbomole and employed in the present work

LMF Specification Ref.

LH07t-SVWN spin-channel t-LMF (a = 0.48), Slater exchange and VWN
correlation

246

LH07s-SVWN spin-channel s-LMF (b = 0.22, respectively, b = 0.277),
Slater exchange and VWN correlation

238,247

LH12ct-SsirPW92 common t-LMF (a = 0.646), Slater-exchange and
sicPW92 correlation (ω = 0.8, λ = 0.646)

243

LH12ct-SsifPW92 common t-LMF (a = 0.709), Slater-exchange and
sicPW92 correlation (ω = 0.8, λ = 1.0)

243

LH14t-calPBE spin-channel t-LMF (a = 0.5), pig1-CF (a1 =
−0.1446, b = 0.190488), 0.49Slater+0.51PBE-exchange
and 0.55PW92+0.45PBE correlation

244

LHJ14 spin-channel z-LMF (c = 0.096), B88 exchange and corre-
lation

249

LH20t common t-LMF (a = 0.715), pig2-CF (a1 = −0.9361,
a2 = 0.2034, and β = 0.004936 (contained in the damp-
ing function)), 0.22Slater+0.78PBE-exchange and mod-
ified B95 correlation (using parameters cσσ = 0.0954,
copp. = 0.00499, dσσ = 0.82, and dopp. = 1.23)

245

mPSTS modified PSTS functional (see Eq. 2.57), TPSS exchange
and correlation

239,262

the definition of k) within the reduced spin-density gradient (see above) [238,247] and LH07t-

SVWN using a prefactor of a = 0.48. [246] Furthermore, the functionals LH12ct-SsirPW92

and LH12ct-SsifPW92 combine a common t-LMF (using a prefactor of a = 0.646 and

a = 0.709, respectively) with LSDA and a short-range self-correlation correction (either

self-interaction free (SIF) or self-interaction reduced (SIR)) of the form

ESR−LSDA
C,ω =

∫︂ {︃
eSR−LSDA
C,ω

[︁
ρα, ρβ

]︁
− λ

[︄(︃
τW,α

τα

)︃
eSR−LSDA
C,ω [ρα, 0]−

(︃
τW,β

τβ

)︃
eSR−LSDA
C,ω

[︁
0, ρβ

]︁]︄}︃
dr. (2.72)

The scaling factor λ = 1 is used for the SIF version, whereas generally 0 ≤ λ ≤ 1 for

the SIR case (practically, in LH12ct-SsirPW92 λ = 0.646 is chosen). The t-LMF based

LH14t-calPBE [244] (spin-channel t-LMF with prefactor a = 0.5) and LH20t [245] (common

t-LMF with prefactor a = 0.715) are two examples of calibrated GGA based functionals

using PBE exchange and (modified) B95 correlation, in connection with the pig1 and pig2

CFs, respectively.
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The LHJ14 functional uses B88 [159] exchange and correlation as well as the z-LMF, which

in the original work was fitted to G3 atomization energies with a resulting prefactor of

c = 0.1. [264] However, here an adjusted version is used, with a prefactor of c = 0.096,

as implemented in the course of Ref. 262. In the same work, Holzer et al. identified

numerical instabilities related to the function f [vσ] in the PSTS LMF model and proposed

a modification for the function of Eq. 2.60

f [vσ] =
1

2
− 1

2
tanh

(︃
vσ(r)− 1

2
(1 + d)

0.017

)︃
, (2.73)

where d is an empirical parameter. [262] The resulting functional was termed mPSTS,

which shares TPSS exchange and correlation as well as the empirical parameters (fitted

to atomic and molecular test-set data) with the original PSTS model. [239]

2.3.4 Density Matrices and the LH Potential

In the context of publications related to LH functionals, a generalized way to express

semi-local quantities was employed, [238] using density matrices already in the MO basis,

given by

Dij,σ = δij, (2.74)

Dia,σ = Dai,σ = Dab,σ = 0. (2.75)

Semi-local quantities, here shown as an example the density, using such density matrices

hence become

ρσ(r) =
∑︂
pq

Dpq,σφ
∗
p,σ(r)φq,σ(r). (2.76)
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The advantage of this fomulation is a straight-forward derivative scheme in terms of the

density matrices, with which the LH potential in the MO basis is defined as [238]

V LH
XC,pq,ς =

∂ELH
XC

∂Dpq,ς

=− 1

2

∑︂
rs

Drs,ς

∫︂
gς(r)

(︁
φr,ς(r)φq,ς(r)Aps,ς(r) + φp,ς(r)φs,ς(r)Arq,ς(r)

)︁
dr

+
∑︂
σ

∫︂ ˆ︁dpq,ςgσ(r) · [︁eexactX,σ

[︁
{φt,σ}

]︁
− eDFT

X,σ [ρσ]
]︁
dr

+
∑︂
σ

∫︂
[1− gσ(r)]

ˆ︁dpq,ςeDFT
X,σ [ρσ] dr+

∫︂ ˆ︁dpq,ςeDFT
C [ρσ] dr. (2.77)

Here,

Apq,σ(r) =

∫︂
φ∗
p,σ(r

′)φq,σ(r
′)

|r− r′|
dr′ (2.78)

is the two center A-matrix and the exact-exchange energy density in terms of the density

matrix reads

eexactX,σ

[︁
{φp,σ}

]︁
= −1

2

∑︂
pqrs

Dpq,σDrs,σφ
∗
p,σ(r)φs,σ(r)Arq,σ(r). (2.79)

Next, ˆ︁dpq,σ is a differential operator, defined as

ˆ︁dpq,σ =
∑︂
QεQ

∫︂
∂Q(r′)

∂Dpq,σ

δ

δQ(r′)
dr′ (2.80)

and second order derivatives of such operators are given by

ˆ︁drs,ς ˆ︁dpq,σ =
∑︂

Q,Q′εQ

∫︂∫︂
∂Q(r′)

∂Dpq,σ

∂Q′(r′′)

∂Drs,ς

δ2

δQ(r′)δQ′(r′′)
dr′′dr′

+
∑︂
QεQ

∫︂
∂2Q(r′)

∂Dpq,σ∂Drs,ς

δ

δQ(r′)
dr′. (2.81)

Here, Q and Q′ run over the set of (semi-local) quantities present in the functional or

function (Q = {ρσ, γσσ, τσ, . . . }), of which the derivatives are taken. Explicitly, such a
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derivative, here as an example for a general function f = f [ρσ, γσσ, τσ]), reads

ˆ︁dpq,σf =φ∗
p,σφq,σ

δf

δρσ
+

1

2
∇Tφ∗

p,σ∇φq,σ

δf

δτσ

+∇T
[︁
φ∗
p,σφq,σ

]︁(︃
2∇ρσ

δf

δγσσ
+∇ρσ′

δf

δγσσ′

)︃
. (2.82)

2.4 Computational Methodology

2.4.1 Atomic Orbitals

To this point, all equations have been shown in the MO basis. However, in molecu-

lar calculations the MOs are usually expanded in a linear combination of atomic or-

bitals (LCAO). [265] Such an expansion results in the Roothaan–Hall equations for re-

stricted [266,267] and Pople–Nesbet equations for unrestricted calculations. [268] Explicitly,

the expansion is given as

φi,σ(r) =
∑︂
µ

cµi,σϕµ(r), (2.83)

where cµi is the orbital coefficient and ϕµ(r) is the AO. Note that throughout this work the

subscripts µ, ν, . . . on the variable ϕ denote atomic orbitals. The expansion coefficients

are conveniently arranged in the (spin resolved) AO density matrices, given by

Dµν,σ =
∑︂
pq

c∗µp,σcνq,σDpq,σ. (2.84)

The AOs can themselves either be constructed from a contracted primitive basis

ϕµ(r) =
∑︂
n

anµγn(r), (2.85)

or in the special case of uncontracted basis sets, all AOs are constructed from just one

primitive and the corresponding contraction coefficient a1µ = 1.

The AOs and the primitive functions γn(r) are usually centered on the associated atoms

and either Slater-type orbitals or (more frequently) Gaussian-type orbitals are used. The

latter can generally be written as [269]

γn(r) = xiyjzk exp(−αnr
2). (2.86)
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Here, αn is the related exponent of the individual primitive, the exponents of the so-called

monomials i, j and k define the angular quantum number l = i+ j+ k and x, y, z are the

Cartesian components of the vector r. Each contracted set of basis functions (according

to Eq. 2.85) of a certain l-quantum number is called a shell and accordingly, AOs of

the same l-quantum number share the shell’s coefficients (anµ) and exponents (αn). It is

noted in passing, that the product of two interacting Gaussian primitives may itself be

expressed in terms of a single Gaussian function via the “Gaussian product rule”, which

allows for efficient integral evaluation using standardized techniques (see below). [270]

2.4.2 Integral Evaluation

Throughout the chapter, the evaluation of molecular quantities was expressed in terms of

integration over spatial coordinates, where formally three different types of integrals can

be distinguished. (I) Relatively simple two-center one-electron integrals, such as for the

overlap and the kinetic energy, (II) integrals involving the semi-local exchange-correlation

energy and (III) four-center two-electron integrals involving the Coulomb operator.

(I) The “simple” [269] two-center integrals can be solved using well established integral

evaluation techniques such as Gauss–Hermite or the recurrence-related Obara–Saika and

McMurchie–Davidson schemes. [269] However, such integrals have never been altered within

the course of the present thesis and therefore are not discussed in further detail.

(II) Focussing next on the semi-local quantities, analytic integration of the exchange-

correlation terms can in general be difficult due to the partly sophisticated form of the

involved functionals. Therefore the integration over the spatial coordinates can be refor-

mulated in terms of a sum over a numerical grid, generally expressed as [271]

F =

∫︂
f(r)dr ≈

∑︂
g

wgf(rg), (2.87)

where wg is a grid-weighting factor and rg are the spatial coordinates of the respective

grid points. Assuming, that the function f is implicitly dependent on a set of molecular

quantities Q = {ρσ,∇ρσ, τσ, . . . }, its evaluation requires the computation of these quan-

tities on the integration grid. For example the density (Eq. 2.27) in terms of the AOs at
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individual grid points (ϕµ(rg)) is given by

ρσ(rg) =
∑︂
µν

Dµν,σϕ
∗
µ(rg)ϕν(rg)

=
∑︂
µ

ϕ∗
µ(rg)

∑︂
ν

Dµν,σϕν(rg)

= ϕT
g Dϕg. (2.88)

These semi-local quantities are evaluated straightforwardly in terms of matrix-vector

products on the numerical integration grid.

The difficulty associated with numerical integration is to provide the balance between

molecular grids, which on the one hand result in near analytical error margins, but on

the other hand are sufficiently small to enable efficient evaluation of molecular properties.

Therefore, in Turbomole standardized schemes for the grid construction were imple-

mented, such as Becke partitioning in connection with approaches by Lebedev for the

spherical grid and by Chebyshev for the radial grid construction. [271–273]

(III) The evaluation of the four-center integrals

(ϕµϕν |ϕκϕλ) =

∫︂∫︂
ϕ∗
µ(r)ϕν(r)ϕ

∗
κ(r

′)ϕλ(r
′)

|r− r′|
dr′dr (2.89)

is the most time consuming step in common KS-DFT and HF calculations due to its formal

N4 scaling. Hence, the implementation of efficient algorithms to reduce the computational

cost is crucial to obtain efficient and applicable tools.

To reduce the cost of integral evaluation, (i) a simplification of the analytical integrals

can be employed, i.e. reformulation of the four-center integrals in order to reduce their

complexity, number or cost, and (ii) the development of numerical methods to efficiently

solve the resulting integrals is required.

Examples of (i) are the resolution of the identity (RI) and chain-of-spheres (COS) ap-

proximations, which can be applied both to the Coulomb (RI-J, COS-J) and exchange

integrals (RI-K, COS-X). While for the Coulomb part the RI-J scheme was found to

be more efficient than the COS-J scheme (especially, if its multipole-accelerated variant

(MARI-J) [274] is chosen), [275] for exchange COS-X outperforms the RI-K approximation

(due to a favorable scaling with system size). [13,276]
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For the RI-J approximation the Gaussian-type orbitals are expanded in a set of pre-fitted

auxiliary basis functions P (r) [277,278]∑︂
µν

Dµνϕ
∗
µ(r)ϕν(r) ≈

∑︂
P

cPP (r) = ρ̃(r). (2.90)

These are constructed from a suitable scheme such as minimizing the self-repulsion of the

residual density. [265] That way, the complexity of the four-center integrals is reduced to

the three-center entities [278,279]

(ϕµϕν |ϕκϕλ)RI =
∑︂
PQ

(ϕµϕν |Q)(Q|P )−1(P |ϕκϕλ), (2.91)

with a formal reduction of the scaling to be proportional to Naux. · N2 (where Naux. is

the number of basis functions in the auxiliary basis set and N is the number of basis

functions).

For the multipole-accelerated variant the additional steps taken involve the separation of

the Coulomb integrals into short-range (“near-field”) interactions, calculated with the RI-

J approximation as shown in Eq. 2.91, and a long-range (“far-field”) interaction, where

the Coulomb interactions are evaluated in terms of charge distributions instead of the

explicit four-center integrals. [274,280,281]

Efficient implementations of four-center exchange integrals can be obtained by algorithms

such as COS-X, which is based on a semi-numerical approach [275]

Kµν = −1

2

∑︂
κλ

Dκλ(ϕµϕλ|ϕκϕν) ≈ −1

2

∑︂
κλ,g

wg · ϕ∗
µ(rg)Aνκ,gDκλϕλ(rg)

= −1

2

∑︂
g

wg · ϕ∗
µ(rg)

∑︂
κ

Aνκ,g

∑︂
λ

Dκλϕλ(rg)

= −1

2
ϕTADϕ. (2.92)

Here, the explicit integral over the outer vector r in the four-center term is replaced

by numerical integration, as outlined in Eq. 2.87. However, the two-center A-matrix

elements (Aµν,g, see Eq. 2.93 below) are solved analytically, thus formally the overall

scaling reduces to ng · N2, where ng is the number of grid points. Again, the second

line of the right-hand side of Eq. 2.92 shows the potential step-wise contraction of the

expressions by means of the matrix-vector products, as schematically outlined in the last

line. Here, additionally implicit summation (Einstein notation) over the weighted grid

points is employed. It is noted in passing, that the approach to this point is similar to the
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pseudo-spectral methods developed by Friesner and co-workers. [282–284] As the most time

consuming step within such semi-numerical schemes is the evaluation of the two-center

A-matrix integrals, the crucial step to arrive at the COS-X scheme is to introduce efficient

pre-screening of the basis-function overlap (“S-junction”) or density-matrix elements (“P-

junctions”), used to decided which four-center integrals have to be evaluated (see also

below). [275] Recently, further pre-evaluation based on an asymptotic integral estimate

(“F-junction”) was suggested for the modified COS-X (mCOS-X) method. [285] Here, the

spatial expansion of the current grid batch is approximated by a sphere comprising all

grid-points of the said batch, and based on the minimal distance of the sphere to the

center of a basis-function pair (outside the sphere) an estimate of the integral is calculated

as an upper bound for the integrals of the basis-function pair on any point of the grid

batch. Finally, the evaluation of the A-matrix elements for such a basis-function pair

is skipped if this upper bound is below a chosen threshold. In large-scale calculations,

the combined pre-screening for the COS-X (respectively, mCOS-X) scheme potentially

results in linear scaling, as the number of interacting pairs (basis and density-matrix)

converges. [275,286] Furthermore, semi-numerical implementation is also well suited for the

evaluation of non-standard integrals such as the LMF weighted exchange (see e.g. Eq.

2.51) arising in LH functionals, [238] as the analytic evaluation of LMF-dependent integrals

can be circumvented and instead the LMF and its derivatives are constructed from semi-

local ingredients on the numerical grid.

(ii) In standard GH functionals the four-center integrals Eq. 2.89 are usually solved

using well established integration techniques, such as the recurrence-related McMurchie–

Davidson and Obara–Saika schemes or a direct approach such as Rys-quadrature, [269]

which all can also be applied in connection with the RI approximation (see Eq. 2.91). In

the context of the present work especially the two center A-matrices (Aµν,g) of Eq. 2.92

are of importance, which contain the interaction between two basis functions over the

Coulomb operator involving the evaluated point on the numerical grid [287]

Aµν,g =

∫︂
ϕ∗
µ(r

′)ϕν(r
′)

|rg − r′|
dr′. (2.93)

However, in the implementations reported in Sec. 5.3 such repulsion integrals were eval-

uated using well established, formerly implemented integral evaluation schemes within

Turbomole. [273] These use an Boys-function based approach up to f-f basis function

pairs and Rys-quadrature for higher l-quantum numbers. [288]
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– Nuclear Magnetic Resonance

Chapter 2 has so far focused on KS-DFT in its field-free limit. In this chapter, the

fundamental theory of nuclear magnetic resonance is introduced, a general description of

the calculation of magnetic properties via perturbation theory and the central equations

derived by Ramsey are presented and the extension of the Hamiltonian to cover magnetic

interactions is derived. Furthermore, the coupled perturbed equations, central to the

derivation in later chapters, are discussed and finally the formal extension of KS-DFT to

current-carrying states is outlined.

3.1 Linking Experiment and Theory

3.1.1 The Effective Spin-Hamiltonian

In NMR experiments, the probe is placed within a external magnetic field (B), which

interacts with the nuclear magnetic moments of the nuclei and induces a Zeeman split-

ting of associated energy levels. [289] Importantly, due to induced electric currents in the

electronic structure of the sample, the local magnetic field strength is dependent on the

electronic environment. [290] Hence, the method is sensitive to the local electronic structure

of the target molecules. The local magnetic field at the position of nucleus K is defined

by

BK,loc. = (1− σK)B, (3.1)
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introducing the nuclear shielding tensor σK , which is related to the interaction of the

nuclear magnetic moment with the external field, described by the Hamiltonian

HB = −MK ·BK,loc.

= −MK(1− σK)B. (3.2)

MK is the nuclear magnetic dipole moment

MK = γKℏIK , (3.3)

itself related to the gyromagnetic ratio γK and the nuclear spin IK (with the spin quantum

numbersmI = −I,−I+1, . . . , I−1, I). Note thatMK andB are both vectors, whereas σK

is a second rank tensor, containing in principle nine independent contributions. However,

in a freely tumbling molecule typically just the isotropic contribution is measured, which

is given by [289]

σK,iso. =
1

3
Tr (σK) . (3.4)

Applying an electromagnetic pulse at the so-called observation frequency (νK) induces

transitions between the energy levels and the absorbed wave length (typically radio-waves)

can subsequently be detected. [290] The corresponding νK is itself dependent on the nuclear

shielding (here fixed in direction of the magnetic field, chosen as the z-direction) [289]

νK =
γK
(︁
1− σK,zz

)︁
Bz

2π
. (3.5)

Finally, the chemical shift, expressed as the difference to a reference compound, is related

to the observation frequency via [289]

δK =
νK − νK,ref.

νK,ref.

=
σK,iso.,ref. − σK,iso.

1− σK,iso.,ref.

≈ σK,iso.,ref. − σK,iso.. (3.6)

A second interaction observed in NMR spectra is due to the coupling of the nuclear spins,

the spin–spin coupling. As (parts of) these contributions can also be detected in freely

tumbling molecules, it was concluded that these are not due to a direct interaction of the

magnetic dipoles (direct coupling, DKL), but mediated by the electronic structure in the

molecules ((reduced) indirect coupling, KKL).
[291] These two distinct contributions can
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be collected in the Hamiltonian

HI =
1

2
γKγLℏ2IK (KKL +DKL) IL, (3.7)

where, just as the shielding tensor, KKL and DKL have in principle nine independent

components, depending on the Cartesian directions of the vectors IK and IL. The direct

coupling (as stated above) vanishes in freely tumbling molecules and just the isotropic

contribution of the indirect coupling is obtained in these spectra, given by [292]

KKL,iso. =
1

3
Tr (KKL) . (3.8)

Typically the indirect spin–spin coupling tensor JKL is reported instead of its reduced

counterpart KKL, given by

JKL = h
γK
2π

γL
2π

KKL. (3.9)

Using the quantities discussed above,a experimental NMR spectra can be fit by an effective

spin-Hamiltonian, written as [292,293]

Heff. = −
∑︂
K

γKℏBT (1− σK) IK +
1

2

∑︂
K ̸=L

γkγLℏ2IK (KKL +DKL) IL. (3.10)

Compared to electronic energy differences, the perturbation due to the experimental ex-

ternal magnetic fields and the nuclear spins are small. [292] Therefore, perturbation theory

(PT) is a suitable tool to link the effective spin-Hamiltonian and quantum-chemical com-

putations, as discussed in the following.

3.1.2 Molecular Properties via Perturbation Theory

As outlined by the effective spin-Hamiltonian (Eq. 3.10), the application of the external

magnetic field and the nuclear magnetic moments induces changes in the molecular elec-

tronic states of the target system. These changes are the so-called magnetic responses of

the system and can subsequently be identified with the molecular properties associated

with the applied perturbations. If these response-energies in comparison to the ground-

state energy are small, PT (here shown for the non-degenerate and time-independent

aFurther contributions, such as nuclear quadrupole couplings, which would be present for nuclei with
I > 1/2 and manifest themselves as a splitting of the NMR signals in the spectrum, [293] were never
analysed within this work and are therefore neglected.
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limits) is a suitable starting point for their calculation. [292] Using Rayleigh–Schrödinger

PT, [91,294] the corrections to the energy are obtained from a power series expansion of the

energy, Hamiltonian and wave function. In double perturbation theory, two perturbation

factors (λ and κ) are applied simultaneously, giving

E = E0 + λE(10) + κE(01) + λ2E(20) + λκE(11) + κ2E(02) + . . . , (3.11)

H = H0 + λH(10) + κH(01) + λ2H(20) + λκH(11) + κ2H(02) + . . . (3.12)

and

Ψ = Ψ0 + λΨ(10) + κΨ(01) + λ2Ψ(20) + λκΨ(11) + κ2Ψ(02) + . . . . (3.13)

These switch the system from unperturbed at λ = κ = 0 to fully perturbed at λ = κ = 1

and are associated with the perturbation order, where terms of the form λlκkE(lk) denote

the (k + l)th order perturbation.

Molecular properties of a certain order can be connected with derivatives of the molec-

ular ground-state energy. The general expression for the energy as a function of the

perturbations λ and κ is given by [295,296]

E = E(λ,κ, c(λ,κ)), (3.14)

where c denotes the wave-function parameters, e.g. the MO coefficients. The first deriva-

tive of the energy at the point of a vanishing perturbation

dE

dλ

⃓⃓⃓⃓
λ=0

=
∂E

∂λ
+

∂E

∂c

∂c

∂λ
(3.15)

contains an explicit derivative with respect to λ as well as the implicit variation via the

wave-function parameters on the right-hand side. In case of variational wave functions,

such as the ones obtained from HF-theory and KS-DFT, the GS energy is a stationary

point with respect to c, therefore

dE

dc
=

∂E

∂c
= 0, (3.16)

and the second term on the right-hand side of Eq. 3.15 vanishes. This result is related to

the Hellmann–Feynman theorem, [297,298] which states that a molecular property of first or-

der E(1) (without the explicit dependence of the wave function on the perturbation) can be

obtained from the ground state wave function and the first-order perturbed Hamiltonian.
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This leads to a simple explicit expression of Eq. 3.15:

E(10) = ⟨Ψ0| ˆ︁H(10)|Ψ0⟩ . (3.17)

The (symmetrized) second derivative is given by [292]

d2E

dλdκ

⃓⃓⃓⃓
λ=κ=0

=
∂2E

∂λ∂κ
+

∂2E

∂c∂λ

∂c

∂κ
+

∂2E

∂c∂κ

∂c

∂λ
+

∂2E

∂c∂c

∂c

∂λ

∂c

∂κ
. (3.18)

Similar to the first-order equation, the last term on the right-hand side vanishes for

variational wave functions due to the condition shown in Eq. 3.16. Alternatively, a

step-wise differentiation of Eq. 3.15 results in a reduced variant of the above equation

d2E

dλdκ

⃓⃓⃓⃓
λ=κ=0

=
∂2E

∂λ∂κ
+

∂2E

∂c∂λ

∂c

∂κ
. (3.19)

However, the second derivative of Eq. 3.19 results in a reduced (but usually sufficient)

numerical accuracy in comparison to Eq. 3.18. [292] As stated by the interchange theorem,

the order of the derivatives in Eq. 3.19 is interchangeable. [299] Using

d2E

dκdλ

⃓⃓⃓⃓
λ=κ=0

=
∂2E

∂κ∂λ
+

∂2E

∂c∂κ

∂c

∂λ
(3.20)

therefore results in the same perturbed energy contribution as Eq. 3.19. However, the

order may have an (significant) influence on the overall efficiency of the PT scheme (see

also Sec. 3.2.1).

In terms of the second-order correction of the energy and Hamiltonian, the second-order

energy correction for a mixed derivative is given by

E(11) = ⟨Ψ0| ˆ︁H(11)|Ψ0⟩+ 2
∑︂
a

⟨Ψ0| ˆ︁H(10)|Φ(01)
a ⟩ ⟨Φ(10)

a | ˆ︁H(01)|Ψ0⟩
Ea − E0

, (3.21)

which is the so-called sum-over-states (SOS) expression of double-perturbation theory.

The left-hand side is built from the ground-state wave function and is therefore a simple

expectation value of the second-order Hamiltonian. However, the construction of the

right-hand side contribution requires the perturbed wave function of first order. It is

noted in passing, that Eq. 3.21 is obtained by assuming that the perturbed wave function

of first order can be expanded in a basis of the excited states of its ground state (Ψ(10) =∑︁
a c

(10)
a Φ

(10)
a ). However, in order to calculate the second-order correction to the energy,

the first-order response of the wave function is sufficient. This was generally expressed

45



3. Theoretical Background – Nuclear Magnetic Resonance

by Wigner’s 2n+ 1 theorem stating that the nth order correction to the wave function is

sufficient to calculate (2n+ 1)th order properties. [295,300]

As the exact wave function and its expansion in virtual states is in most cases not available,

especially in approximate calculations based on a single SlD, [292] molecular properties are

usually calculated using a different ansatz than the SOS. Suitable schemes are outlined fur-

ther below (see Sec. 3.2.1). Comparing the spin-Hamiltonian (Eq. 3.10) with the outlined

perturbation scheme, the quantities λ and κ can be associated with the magnetic field B

and the nuclear magnetic moment of nucleus K, MK , in case of NMR shielding constants,

or the magnetic moments MK and ML for SSCCs. In this case, the contributions of the

SOS equation are often termed diamagnetic (on the left-hand side) and paramagnetic (on

the right-hand side), respectively. Furthermore, the pure electronic Hamiltonian of Eq.

2.6 is insufficient as it lacks contributions dependent on the magnetic field and it has to

be adjusted accordingly to describe such interactions properly. After introducing general

definitions regarding the magnetic field, the derivation of a suitable quantum-chemical

Hamiltonian including magnetic interactions is outlined in the following.

3.1.3 The Magnetic Field and Its Vector Potential

The magnetic field (B) and the corresponding magnetic vector potential (A) are inter-

related with the electric field, the charge density, the current density and the electric

vector potential via Maxwell’s equations and related reformulations. [301] In the context of

the present work, however, only the interconnection of both magnetic quantities is briefly

revisited. The magnetic field vector can be defined as the curl of the a vector potential

B = ∇×A, (3.22)

which by construction obeys the constraint of the absence of free magnetic poles (∇·B =

0). [301] From the definition of 3.22 the corresponding vector potential (A) is not uniquely

defined, as readily shown by choosing A′ = A+∇Λ (where Λ is an arbitrary function)

B′ = ∇×A′ = ∇× (A+∇Λ) = ∇×A+∇×∇Λ = B. (3.23)

In the absence of sources (thus for a vanishing scalar potential), a convenient choice is

the so-called Coulomb gauge, [292,301] i.e. a divergence-free vector potential

∇ ·A = 0. (3.24)
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Other possiblities such as the Lorentz gauge have been considered, [301] however, for time-

independent vector and scalar potentials, as assumed throughout the present work, the

choices are indistinguishable. [302]

An explicit form of the vector potential associated with a uniform external magnetic field

is [292]

AG(r) =
1

2
B× (r−RG) , (3.25)

where RG is the gauge origin of the magnetic vector potential.

Considering NMR experiments, the magnetic induction (Btot.(r)) and the corresponding

vector potential (Atot.(r)), arise from the external magnetic field induced within the

spectrometer, as well as the magnetic field due to the magnetic moments of the nuclei

Btot.(r) = B+
∑︂
K

BK(r), (3.26)

Atot.(r) = AG(r) +
∑︂
K

AK(r). (3.27)

Here, [292]

AK(r) = α2MK × rK
r3K

(3.28)

is the vector potential induced by nucleus K and its corresponding magnetic field is given

by [292]

BK(r) = −α2 r
2
K1− 3rKr

T
K

r5K
MK +

8πα2

3
δ (rK)MK . (3.29)

In both equations α is the fine structure constant, which is the inverse of the velocity

of light in atomic units (α ≈ 137−1) and rK = |rK | = |r − RK | is the distance with

regard to the position of nucleus K. Note that explicitly taking the curl of the vector

potential associated with the nuclei gives rise to the Dirac δ-function in the expression

for the magnetic field. This is due to a singularity of AK(r) at the point of the nucleus

(rK → 0), which requires the differentiation in a distribution sense. [303,304]

3.1.4 The Magnetic Hamiltonian

The Dirac equation describes the relativistic interactions of an electron in a (time-independent)

magnetic field. [302,305,306] Following an ansatz by Fukui, [291,307] the equation in block form

47



3. Theoretical Background – Nuclear Magnetic Resonance

for a single electron without the presence of nuclear charges is given by(︄
α−1

(︄
0 σ

σ 0

)︄
π + α−2

(︄
1 0

0 −1

)︄)︄(︄
ΨL

ΨS

)︄
= Erel.

(︄
ΨL

ΨS

)︄
. (3.30)

Here, σ is the vector of the 2 × 2 Pauli spin matrices, π is the kinetic momentum (π =

−i∇ +A), 1 the 2 × 2 identity matrix and Erel. is the relativistic energy. Furthermore,

ΨS and ΨL are the small and large components of the wave function, respectively.

Equation 3.30 contains two uncoupled linear equations for ΨS and ΨL. The small com-

ponent of the wave function can be eliminated by insertion, resulting in the equation[︄
α−2 (σ · π)2

Erel. − α−2
+ α−2 − Erel.

]︄
ΨL = 0, (3.31)

from which an expression for the relativistic energy can be extracted

Erel. = ±
(︁
α−4 + α−2(σ · π)2

)︁1/2
. (3.32)

The Hamiltonian for the electronic states is obtained in terms of a power-series expansion

of the positive energy contribution

Hrel. = α−2 +
1

2
(σ · π)2 − α2(σ · π)4

8
+ . . . , (3.33)

where the first contribution is related to the rest-mass energy and the higher-order terms

(O(α2 + . . . )) contain relativistic corrections (which vanish in the non-relativistic limit).

However, the second term on the right-hand side contains the non-relativistic contribu-

tions. By using the Dirac identity ((σ · π)2 = π2 + iσ · (π × π)) [308] and inspecting its

right-hand side [309]

(π × π) = (−i∇+A)× (−i∇+A) = −iB, (3.34)

a non-relativistic Hamiltonian is obtained, given by

ˆ︁Hspin =
1

2
π2 +

1

2
σ ·B

=
1

2
∇2 − iA · ∇+ˆ︁s ·B+

1

2
|A|2. (3.35)

Here, the second line is obtained by invoking the Coulomb gauge (see Eq. 3.24) andˆ︁s = 1
2
σ is the spin operator.
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The Hamiltonian of Eq. 3.35 is known as the Pauli Hamiltonian, which is suitable for the

Pauli equation, i.e. the Schrödinger equation with an additional spin-dependent term to

describe the interactions of one electron with an external magnetic field. [302]

The Pauli Hamiltonian, however, is a one-electronic Hamiltonian but can be extended

to the N -electronic case by introducing the summation over all electrons and adding

pairwise electronic and nuclear Coulomb interactions. Finally, the resulting Hamiltonian

can be decomposed into contribution of different orders in the magnetic field and the

corresponding vector potential, resulting in [310]

H = H(0) +H(1) +H(2). (3.36)

Here, H(0) is the (unperturbed) electronic Hamiltonian (Eq. 2.6) and

H(1) = −i
∑︂
k

A(rk) · ∇k +
∑︂
k

B(rk) ·ˆ︁sk, (3.37)

H(2) =
1

2

∑︂
k

|A(rk)|2, (3.38)

where H(1) is the linear paramagnetic contribution and H(2) is the diamagnetic contribu-

tion. The paramagnetic contribution is composed of the orbital paramagnetic term (first

term), which couples the external magnetic field to the orbital motion of the electrons,

and the spin paramagnetic term (second term), which couples the field to the spin of the

electrons.

3.1.5 Explicit Contributions to the Magnetic Hamiltonian

With the definitions of the magnetic field and vector potential in Eqs. 3.22 – 3.29, the

contributions entering the explicit expressions for NMR shielding and spin–spin couplings

can be derived. This results in the set of equations reported by Ramsey in the 1950s. [14–17]

Starting with contributions of first order in the magnetic field, first the external magnetic

field (Eq. 3.22) and the corresponding vector potential (Eq. 3.25) are inserted into the

adjusted Hamiltonian (Eq. 3.37)

H
(1)
B =

∑︂
k

(︁
− iAG(rk) · ∇k +B ·ˆ︁sk)︁

= B
(︁
horb.
B + hspn.

B

)︁
. (3.39)
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The contributions to the Hamiltonian are [292]

horb.
B =

1

2

∑︂
k

lkG, (3.40)

hspn.
B =

∑︂
k

ˆ︁sk, (3.41)

where lkG = −irkG × ∇k is the orbital angular momentum operator with respect to the

gauge origin RG.

Contributions arising from the nuclear magnetic moments are likewise obtained by insert-

ing in the magnetic field (Eq. 3.29) and vector potential (Eq. 3.28) due to the nuclear

magnetic moments

H
(1)
M =

∑︂
k,K

(︁
− iAK(rk) · ∇k +BK(rk) ·ˆ︁sk)︁

=
∑︂
K

MK

(︁
hFC
K,M + hSD

K,M + hPSO
K,M

)︁
, (3.42)

with [292,310]

hFC
K,M = α28π

3

∑︂
k

δ (rkK)ˆ︁sk, (3.43)

hSD
K,M = α2

∑︂
k

3rkKr
T
kK − r2kK13×3

r5kK
ˆ︁sk, (3.44)

hPSO
K,M = α2

∑︂
k

lkK
r3kK

. (3.45)

Here, FC denotes the Fermi-contact, SD the spin-dipolar and PSO paramagnetic spin-

orbit operator, respectively.

Finally, for the second-order contributions the total vector potential (Eq. 3.27) is inserted

into the second-order Hamiltonian Eq. 3.38, giving

H
(2)
B,M =

1

2

∑︂
k

(︄
AT

G(rk) +
∑︂
K

AT
K(rk)

)︄
·

(︄
AG(rk) +

∑︂
L

AL(rk)

)︄
= BThdia.

BBB+
∑︂
K

BThdia.
K,BMMK +

∑︂
K,L

MT
Kh

DSO
KL,MMML, (3.46)
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with [292,310]

hdia.
BB =

1

8

∑︂
k

13×3r
2
kG − rkGr

T
kG, (3.47)

hdia.
K,BM =

α2

2

∑︂
k

rTkGrkK13×3 − rkKr
T
kG

r3kK
, (3.48)

hDSO
KL,MM =

α4

2

∑︂
k

rTkKrkL13×3 − rkKr
T
kL

r3kKr
3
kL

. (3.49)

Using these explicit operators of the magnetic-field dependent Hamiltonian, the final

expressions, as formulated by Ramsey, can be obtained from the general expression of the

SOS (Eq. 3.21). These are given by [14,292]

d2E

dBdMK

⃓⃓⃓⃓
B=MK=0

= ⟨Ψ0|hdia.
K,BM|Ψ0⟩ − 2

S∑︂
a

⟨Ψ0|horb.
B |ΦS

a ⟩ ⟨ΦS
a |(hPSO

K,M)T|Ψ0⟩
ES

a − E0

, (3.50)

for NMR shielding constants and [15,16,292]

d2E

dMKdML

⃓⃓⃓⃓
MK=ML=0

= ⟨Ψ0|hDSO
KL,MM|Ψ0⟩ − 2

S∑︂
a

⟨Ψ0|hPSO
K,M|ΦS

a ⟩ ⟨ΦS
a |(hPSO

L,M)T|Ψ0⟩
ES

a − E0

− 2
T∑︂
a

⟨Ψ0|hFC
K,M + hSD

K,M|ΦT
a ⟩ ⟨ΦT

a |(hFC
L,M)T + (hSD

L,M)T|Ψ0⟩
ET

a − E0

,

(3.51)

for spin–spin coupling constants, respectively.

The superscripts S and T denote excitations into singlet and triplet states, which arise

due to the symmetries of the involved operators. [292] No contributions in shielding and

SSCC calculations arise from the operators hspn.
B and hdia.

BB, which are included only for the

sake of completeness. That is because (i) the operator hspn.
B (Eq. 3.41) vanishes for singlet

states due to the involved spin operator and (ii) hdia.
BB involves the second derivatives with

respect to the external magnetic field, which in the presented PT-approach represents the

diamagnetic contribution to magnetizabilities.

3.1.6 The Gauge-Origin Problem

On closer examination, the (NMR-related) operators of Eq. 3.40 and 3.48 are implicitly

dependent on the gauge origin as introduced in Eq. 3.25. Hence, a gauge transforma-

tion of the vector potential (A′ = A +∇Λ) affects the Hamiltonian (H −→ H ′) and its
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eigenfunctions (Ψ −→ Ψ′) [292] as well as the dia- and paramagnetic contribution sepa-

rately. [311] However, for exact wave functions it does not affect its eigenvalues [302] and the

gauge invariance of the property is maintained, i.e. [292]

⟨Ψ′|H ′|Ψ′⟩ = ⟨Ψ|H|Ψ⟩ . (3.52)

Furthermore, the two wave functions describe the same physical state [292]

|Ψ′(r)|2 = |Ψ(r)|2. (3.53)

However, the introduced gauge transformation of the Hamiltonian induces a compensating

phase factor within the wave function [292,302]

Ψ′(r) = exp

(︃
− i

2c
B× (RG −RG′) · r

)︃
Ψ(r). (3.54)

The transformation of Eq. 3.54 is exact for exact wave functions, but this condition

does not necessarily hold for approximate calculations and subsequently an (unpysical)

dependence on the chosen gauge origin may remain. [292] A natural choice for the gauge

in atomic systems is the position of the nucleus for which the wave function is exact to

first order in the magnetic field. [292] However, in molecular calculations no such a-priori

defined position exists and any choice of such a common gauge origin may result in a

significant gauge dependence of the calculation, unless a sufficiently flexible basis (with a

typically slow convergence to the complete basis-set (CBS) limit) is employed. [290,312]

To enhance the convergence to the CBS limit, the distribution of gauge origins throughout

the molecule was suggested: an initial successful approach by Kutzelnigg and co-workers

termed “individual-gauges for localized-orbitals” (IGLO) attached a similar phase fac-

tor to that of Eq. 3.54 to the center of the electronic charge of localized molecular

orbitals (LMOs). [20–22] Later, Hansen and Bouman introduced their “localized-orbitals

local origin” (LORG) ansatz in the context of RPA. [295,313] However, the close relation

of the LORG to the IGLO approach was later pointed out by Kutzelnigg. [22] Further

approaches such as the “individual gauges for atoms in molecules” (IGAIM) method [314]

or the related “continuous set of gauge transformations” (CSGT) [315] aimed at recovering

the local current density in order to calculate the local magnetic field (and hence related

NMR properties) by distribution of the gauge origins.
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In the “gauge-including atomic orbitals” (GIAOs) ansatz, [8,312,316] the phase factor is

directly integrated into the atomic-orbital basis

ωµ(r,B) = exp

(︃
− i

2c
B× (Rµ −RG) · r

)︃
ϕµ(r), (3.55)

as initially introduced by London in the study of aromatic hydrocarbons (the original

paper is written in french and included just for the sake of completeness). [317] Most im-

portantly, GIAOs provide a smooth and fast convergence with respect to basis-set size. [30]

However, as discussed below (see Sec. 3.2.1), a drawback of GIAOs are additional inte-

grals arising in the corresponding HF and DFT approaches due to the explicit dependence

of the orbitals on the perturbing external magnetic field. For that reason, their broad

success was closely connected to the avaiability of efficient implementations, first reported

in the 1990s. [23]

An initial implementation of the GIAO approach on HF level was reported by Ditchfield in

the 1970s, [318,319] whereas a first implementation for DFT was reported by Friedrich et al.,

at the time limited to the Xα method. [320] Later, the approach was extended to different

program packages covering a variety of density functionals by different groups. [25,26,30,321]

The derivative of a GIAO with respect to the magnetic field is given by

∂ωµ(r,B)

∂(B)k
= − i

2c

(︁
Rµ × (r−RG)

)︁
k
ϕµ(r), (3.56)

whereRµ is the center of the AO ϕµ(r) andRG is the position of the gauge of the magnetic

vector potential. However, the explicit presence of the gauge origin in Eq. 3.56 vanishes

for the derivative of the GIAO pair

∂
(︁
ω∗
µ(r,B)ων(r,B)

)︁
∂(B)k

=
i

2c

(︁
Rµν × r

)︁
k

(︁
ϕ∗
µ(r)ϕν(r)

)︁
. (3.57)

Here, Rµν = Rµ − Rν is the distance vector of the two AOs and since Rµν = −Rνµ

matrices involving such derivatives of GIAOs are skew-symmetric.

3.2 Calculation of NMR Parameters Using DFT

3.2.1 Coupled Perturbed Kohn–Sham Equations

In Sec. 3.1.2 the basic ansatz of perturbation theory to calculate molecular properties

was outlined. In the following, this is extended to equations actually solved within KS-
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DFT (and thus intrisically HF). [292,322] For both methods, due to their methodological

resemblance, underlying considerations and the resulting expressions are similar. [323–325]

The present derivation starts from the energy expression of KS-DFT (Eq. 2.28), aug-

mented with a constant admixture of exact exchange (E ′
KS = EKS + cexE

exact
X ). For

completeness, the open-shell description is given. To highlight derivatives of the involved

(potentially perturbation-dependent) atomic orbitals, equations where such derivatives

are present are given in the AO basis. Using these conditions, a generalized expression

for the first derivative, i.e. first-order molecular properties, is [322]

∂E ′
KS

∂λ
=
∂ENN

∂λ
+
∑︂
µν,σ

Dµν,σ

{︃
∂hµν

∂λ
+

1

2

∑︂
κλ

Dκλ,σ

∂
(︁
(ϕµϕν |ϕκϕλ) + cex(ϕµϕλ|ϕκϕν)

)︁
∂λ

+
1

2

∑︂
κλ

Dκλ,σ′
∂(ϕµϕν |ϕκϕλ)

∂λ
+

∫︂
vXC,σ

∂(ϕ∗
µϕν)

∂λ
dr

}︃
−
∑︂
µν,σ

Wµν,σ

∂Sµν

∂λ
,

(3.58)

where vXC,σ is the XC potential (see Eq. 2.32) and Wµν,σ =
∑︁

i εi,σc
∗
µi,σcνi,σ is the energy

weighted density matrix. Equation 3.58 is independent of the perturbed density matrix,

due to reformulations of the expression by (i) using [324]

−
∑︂
µν

Dµν,σS
λ
µν =

∑︂
µν

Dλ
µν,σSµν , (3.59)

which can be derived from the perturbed orthonormality condition (and equivalently holds

for the energy weighted density matrix) and (ii)∑︂
µν

Wλ
µν,σSµν =

∑︂
µν

Dλ
µν,σFµν,σ

=
∑︂
µν

Dλ
µν,σ

[︃
hµν +

∑︂
κλ

Dκλ,σ

(︁
(ϕµϕν |ϕκϕλ) + cex(ϕµϕλ|ϕκϕν)

)︁
+
∑︂
κλ

Dκλ,σ′(ϕµϕν |ϕκϕλ) +

∫︂
vXC,σϕ

∗
µϕνdr

]︃
, (3.60)

which arises from the Roothaan–Hall equation. [88,266] Hence, the Hellman-Feynman the-

orem holds. Without the dependence of the orbitals on the perturbation and under the

condition of one-electron perturbations, the equation of the gradient with respect to the
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perturbation λ reduces to

∂E ′
KS

∂λ
=
∑︂
µν,σ

Dµν,σ

(︁
ϕµ|hλ|ϕν

)︁
. (3.61)

The generalized expression for the second-order correction to the energy, i.e. the second

derivative, is given by [322]

∂2E ′
KS

∂λ∂κ
=

∂2ENN

∂λ∂κ

+
∑︂
µν,σ

{︃
Dµν,σ

∂2hµν

∂λ∂κ
+Dµν,σ

∫︂
vXC,σ

∂2
(︁
ϕ∗
µϕν

)︁
∂λ∂κ

dr−Wµν,σ

∂2Sµν

∂λ∂κ

+
∂Dµν,σ

∂κ

∂hµν

∂λ
+

∂Dµν,σ

∂κ

∫︂
vXC,σ

∂
(︁
ϕ∗
µϕν

)︁
∂λ

dr−
∂Wµν,σ

∂κ

∂Sµν

∂λ

}︃
+

1

2

∑︂
µνκλ,σ

{︃
Dµν,σDκλ,σ

∂2
(︁
(ϕµϕν |ϕκϕλ) + cex(ϕµϕλ|ϕκϕν)

)︁
∂λ∂κ

+
∂
(︁
Dµν,σDκλ,σ

)︁
∂κ

∂
(︁
(ϕµϕν |ϕκϕλ) + cex(ϕµϕλ|ϕκϕν)

)︁
∂λ

+Dµν,σDκλ,σ′
∂2(ϕµϕν |ϕκϕλ)

∂λ∂κ
+

∂
(︁
Dµν,σDκλ,σ′

)︁
∂κ

∂(ϕµϕν |ϕκϕλ)

∂λ

+ 2
∑︂
ς

Dµν,σDκλ,ς

∫︂∫︂
fXC,σς

∂
(︁
ϕ∗
µ(r)ϕν(r)

)︁
∂λ

∂ (ϕ∗
κ(r

′)ϕλ(r
′))

∂κ
dr′dr

+ 2
∑︂
ς

Dµν,σ
∂Dκλ,ς

∂κ

∫︂∫︂
fXC,σς

∂
(︁
ϕ∗
µ(r)ϕν(r)

)︁
∂λ

ϕ∗
κ(r

′)ϕλ(r
′)dr′dr

}︃
, (3.62)

where

fXC,σς =
δ2EXC

δρσ(r)δρς(r
′)

(3.63)

involves the second functional derivative of the exchange-correlation energy with respect

to the density and is known as the exchange-correlation kernel. [322] Without an explicit

dependence of the basis functions on either of the perturbations the second-order equation

also reduces drastically and we find [322]

∂2E ′
KS

∂λ∂κ
=
∑︂
µν,σ

(︃
Dµν,σ

∂2hµν

∂λ∂κ
+

∂Dµν,σ

∂κ

∂hµν

∂λ

)︃
. (3.64)
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However, identifying κ with B and using GIAOs (thus perturbation-dependent basis

functions), additionally the paramagnetic-undisturbed-density (PUD) contribution to the

shieldings (labelled in the expression below) has to be taken into account

∂2hµν

∂λ∂κ
=
(︂
ωµ

⃓⃓⃓ ˆ︁h
∂λ∂κ

⃓⃓⃓
ων

)︂
+
(︂∂ωµ

∂κ

⃓⃓⃓ ˆ︁h
∂λ

⃓⃓⃓
ων

)︂
PUD

+
(︂
ωµ

⃓⃓⃓ ˆ︁h
∂λ

⃓⃓⃓∂ων

∂κ

)︂
PUD

. (3.65)

Furthermore, Eq. 3.64 reveals the importance of the order of derivation with mixed

perturbations, as identifying κ with either the external magnetic field or the nuclear

magnetic moment leads to a different dimensionality of the perturbed density. For κ = B

the perturbed density has three Cartesian components, the choice κ = MK results in

3 · K entries for the perturbed density matrix (and additional terms arising due to the

use of GIAOs), with an accordingly larger computational burden, if solved for all nuclei.

However, to accelerate the shielding calculations for just a small number of nuclei in large

molecular systems, such an approach was suggested. [326,327]

The perturbed density can finally be evaluated using the coupled-perturbed Kohn–Sham

(CPKS) scheme, which is readily obtained from differentiating the Brillouin condition, [13,88]

uκ
ai,σ

(︁
εa,σ − εi,σ

)︁
= −Fκ

ai,σ + εi,σS
κ
ai,σ. (3.66)

The expansion coefficients uκ
ai,σ are typically defined in terms of the expansion of the MO

coefficients [322]

cκµi,σ =
∑︂
p

cµp,σu
κ
pi,σ. (3.67)

Likewise they can be related to the set of virtual orbitals (φκ
i,σ(r) =

∑︁
a φa,σ(r)u

κ
ai,σ

[328]).

However, to solve for uκ
ai,σ or its real and imaginary contribution (uκ

ai,σ = xκ
ai,σ + iyκai,σ),

the perturbed MO Fock-matrix Fκ
ai,σ has to be evaluated. Its explicit derivative results in

the final CPKS equations, [322] (i) for the real part

∑︂
bj,ς

GRe.
aibj,σςx

κ
bj,ς = −F

(κ)
ai,σ +

1

2
RRe.

ai,σ (S
κ) + εiS

κ
ai,σ, (3.68)
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where the real part of the electronic Hessian is given by

GRe.
aibj,σς =(εa,σ − εi,σ)δabδijδςσ +

(︂
2(φa,σφi,σ|φb,σφj,σ) + 2(φa,σφi,σ|fXC,σσ|φb,σφj,σ)

− cex[(φa,σφj,σ|φb,σφi,σ) + (φa,σφb,σ|φj,σφi,σ)]
)︂
δςσ

+
(︂
2(φa,σφi,σ|φb,σ′φj,σ′) + 2(φa,σφi,σ|fXC,σσ′|φb,σ′φj,σ′)

)︂
δςσ′ , (3.69)

and

RRe.
ai,σ(S

κ) =
∑︂
jk

{︃
Sκ
kj,σ

(︂
2(φa,σφi,σ|φk,σφj,σ) + 2(φa,σφi,σ|fXC,σσ|φk,σφj,σ)

− cex[(φa,σφj,σ|φk,σφi,σ) + (φa,σφk,σ|φj,σφi,σ)]
)︂

+Sκ
kj,σ′

(︂
2(φa,σφi,σ|φk,σ′φj,σ′) + 2(φa,σφi,σ|fXC,σσ′|φk,σ′φj,σ′)

)︂}︃
.

(3.70)

(ii) The imaginary part is given by

∑︂
bj

GIm.
aibj,σy

κ
bj,σ = −F

(κ)
ai,σ +

1

2
RIm.

ai,σ (S
κ) + εiS

κ
ai,σ, (3.71)

with

GIm.
aibj,σ =(εa,σ − εi,σ)δabδij + cex

(︁
(φa,σφj,σ|φb,σφi,σ)− (φa,σφb,σ|φj,σφi,σ)

)︁
, (3.72)

and

RIm.
ai,σ(S

κ) =
∑︂
jk

Sκ
kj,σcex

(︁
(φa,σφj,σ|φk,σφi,σ)− (φa,σφk,σ|φj,σφi,σ)

)︁
. (3.73)
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3. Theoretical Background – Nuclear Magnetic Resonance

F
(κ)
ai,σ contains all contributions of the one-electron part (hκ

ai,σ) and involves derivatives of

the atomic orbitals,

F
(κ)
ai,σ = cµa,σ

(︃
hκ
µν +

∫︂
vXC

∂(ϕ∗
µ(r)ϕν(r))

∂κ
dr

+
∑︂
κλ

Dκλ,σ

{︃
∂
(︁
(ϕµϕν |ϕκϕλ) + cex(ϕµϕλ|ϕκϕν)

)︁
∂κ

+

(︃
ϕµϕν

⃓⃓⃓⃓
fXC,σσ

⃓⃓⃓⃓
∂(ϕκϕλ)

∂κ

)︃}︃
+
∑︂
κλ

Dκλ,σ′

{︃
∂(ϕµϕν |ϕκϕλ)

∂κ
+

(︃
ϕµϕν

⃓⃓⃓⃓
fXC,σσ′

⃓⃓⃓⃓
∂(ϕκϕλ)

∂κ

)︃}︃)︃
cνi,σ. (3.74)

Due to the implicit dependence of Eqs. 3.69 and 3.72 on the expansion coefficients the

CPKS equations have to be solved iteratively. In case of semi-local functionals, however,

the imaginary contribution RIm.
ai,σ vanishes, as it only contains contributions from exact-

exchange, i.e. the expansion coefficients are directly accessible (the approach is uncoupled)

and no iterative procedure is required. Without any dependence of the orbitals on the

perturbation, contributions dependent on Sλ vanish and in Eq. 3.74 only the perturbed

one-electron contribution hκ
ai,σ survives. However, in case of κ = B and the use of GIAOs,

only the kernel-dependent contributions (right hand side) vanish, due to the symmetry of

the involved matrices. Thus, similar to Eq. 3.65, additional GIAO-dependent four-center

integrals have to be computed

∂(ωµων |ωκωλ)

∂(B)k
=
(︂∂(ωµων)

∂(B)k

⃓⃓⃓
ωκωλ

)︂
+
(︂
ωµων

⃓⃓⃓∂(ωκωλ)

∂(B)k

)︂
. (3.75)

The evaluation of the four-center integrals is (similar to the ground-state SCF) the most

time consuming step in NMR-parameter calculations, hence, efficient implementations

have also been developed in this context. Examples of such are RI-J [13,281] and its

multipole-accelerated variant MARI-J, [281] pseudospectral methods [329] and COS-X (see

Sec. 2.4.2 for further details). [13] It is noted in passing, that within the GIAO-dependent

perturbed COS-X exchange-contribution

Kµν [ω
B] =

∑︂
κλ,g

Dκλwg

{︂(︁
ω∗
µωλ

)︁B
Aκν,g + ω∗

µωλ (Aκν,g)
B
}︂

=
∑︂
κλ,g

Dκλwg

{︂(︁
ω∗
µωλ

)︁B
Aκν,g + (ω∗

κων)
BAµλ,g

}︂
, (3.76)
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3.2. Calculation of NMR Parameters Using DFT

the second equality is obtained by interchange of the involved arguments r −→ r′. Hence,

for global hybrid functionals the evaluation of the perturbed A-matrix elements can be

circumvented using the COS-X approximation.

It should ne noted, that Eqs. 3.69 and 3.72 are presented in a generalized, spin-resolved

form. In case of closed shell systems, as assumed throughout the present work, the

two separate density matrices are equal (Dµν,α = Dµν,β). However, the conditions for

describing singlet and triplet states separate the equations into their singlet and triplet

counterparts, [330] where the triplet description is required in the calculation of the FC and

SD contributions. [292]

With the computed perturbed densities, according to Eq. 3.64 shieldings and SSCCs in

the AO basis are then obtained via

σK =
∂2E ′

KS

∂B∂MK

=
∑︂
µν,σ

(︃
Dµν,σh

dia.
µν,BM +Dorb.

µν,σ

(︁
hPSO
µν,M

)︁T)︃
(3.77)

and [330]

KKL =
∂2E ′

KS

∂MK∂ML

=
∑︂
µν,σ

(︃
Dµν,σh

DSO
µν,MM +DPSO

µν,σ

(︁
hPSO
µν,M

)︁T
+ 13×3D

FC
µν,σh

FC
µν,M

+DFC
µν,σh

SD
µν,M +DSD

µν,σh
FC
µν,M +DSD

µν,σh
SD
µν,M

)︃
. (3.78)

In both equations, the superscripts on the perturbed densities indicate the right hand

side one-electron contribution within the CPKS scheme and the one-electron integrals

are obtained from the operators shown in Eqs. 3.40, 3.43 – 3.45, 3.48, and 3.49. For

example the diamagnetic contribution to the shielding constants (neglecting the PUD

contribution) is given by

hdia.
µν,BM =

α2

2

∫︂
ϕ∗
µ(r)

rTGrK13×3 − rKr
T
G

r3K
ϕν(r)dr. (3.79)

The following dimensions of the operators and perturbed densities have to be taken into

account: [330] (i) Dorb.
µν,σ, D

PSO
µν,σ and hPSO

µν,M are vectors with one entry for each Cartesian

component of the magnetic fields due to the externally applied field and the magnetic

moment of the involved nucleus, respectively. (ii) The FC contributions are scalar, as

the operator involves the delta function and takes into account just the contribution at

the position of the nuclei. (iii) The SD perturbed density (DSD
µν,σ) and one-electron terms

(hSD
µν,M ) in principle contain 9 entries per nucleus due to the involved spin operator, which
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3. Theoretical Background – Nuclear Magnetic Resonance

itself has three Cartesian components. However, the matrices are symmetric and therefore

only 6 individual contributions have to be taken into account.

Finally, due to the triplet symmetry of both the FC and SD operators, cross-terms between

both contributions have to be taken into account (see also Eq. 3.51). However, the

resulting contribution to the reduced spin–spin coupling constant is traceless and therefore

such cross-terms only contribute to the anisotropy of the SSCCs.

3.2.2 Current Density Functional Theory

As outlined in Sec. 2.2.1, the general formulation of KS-DFT considers electrons in

an arbitrary external potential, but neglects any external magnetic fields. [331,332] In their

presence, the local magnetic field is a superposition of the external and local field strength

(see also Eq. 3.1), whereas the local field, according to the Biot–Savart law, [299,333] is

caused by the current density. [290] Hence, the proper formulation of a current-density

functional theory (CDFT) requires an implicit dependence of the XC functional on an

additional parameter to describe the arising interactions. [290] The rigorous CDFT was

formulated by Vignale et al. [73] and extended to the spin-dependent formulation by the

same authors shortly after, [332] replacing the density by a current-density functional

EXC [ρσ] −→ EXC

[︁
ρσ, jp,σ

]︁
= EXC

[︁
ρσ,vp,σ

]︁
. (3.80)

Here,

jp,σ(r) =
i

2

∑︂
ij

Dij,σ

(︁
φj,σ(r)∇φ∗

i,σ(r)− φ∗
i,σ(r)∇φj,σ(r)

)︁
(3.81)

is the paramagnetic current density and

vp,σ(r) = ∇×
(︃
jp,σ(r)

ρσ(r)

)︃
(3.82)

is the vorticity, which was introduced as a gauge-independent alternative to the param-

agnetic current density. [73] For closed-shell molecules in the absence of a magnetic field

jp,σ(r)
⃓⃓
B=0

= 0. (3.83)

The first implementation using CDFT in connection with response equations for NMR

parameter calculations was reported by Lee et al. [26] Later, explicit finite-field dependent

implementations have been published. [334]
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3.2. Calculation of NMR Parameters Using DFT

As shown in the context of Eq. 3.71, the CPKS equations of NMR shielding calculations

using semi-local current-free KS-DFT remain uncoupled, i.e. there is no response of the

density nor the XC potential, if an external magnetic field is applied. However, within

the CDFT scheme, the electronic Hessian (Eq. 3.72) is no longer diagonal. Therefore, the

approach includes a response of the exchange-correlation term to the external magnetic

field, formerly neglected in uncoupled DFT. [290]

In the context of the present work jp,σ only arises via the kinetic energy density, which in

the presence of the magnetic field is not gauge invariant. [241] This can be shown from the

compensating gauge transformation of the MOs

φi,σ(r) −→ φ′
i,σ(r) = φi,σ(r) exp (−iΛ(r)) (3.84)

in case of a gauge transformation of the vector potential of the magnetic field (A −→
A’ = A +∇Λ, see Secs. 3.1.3 and 3.1.6), in which case the kinetic energy density takes

the form [241,335]

τ ′σ(r) = τσ(r)−∇Λ(r)jp,σ(r) +
1

2
|∇Λ(r)|2ρσ(r). (3.85)

Gauge-invariant models have been proposed. First Maximoff et al. identified Λ(r) =
1
c
AG(r) and therefore [335]

τ̃MS,σ(r) = τσ(r)−
AT

G(r)

c
jp,σ(r) +

|AG(r)|2

2c2
ρσ(r). (3.86)

Here, the vector potential of the magnetic field and the paramagnetic current density are

present simultaneously, which keeps the Hessian in the evaluation of the CPKS equations

diagonal, i.e. despite the presence of jp,σ(r) no current response in the sense of CDFT

arises for τMS.

Another gauge-corrected form of τσ(r) arises from the generalization of the spherically-

averaged exchange hole in case of non-zero currents, first derived in the context of the

work of Dobson, [336,337]

τ̃D,σ(r) = τσ(r)−
|jp,σ(r)|2

2ρσ(r)
. (3.87)

It is noted in passing, that Becke and Tao et al. also explored this generalized variant in

the development of current-dependent functional models. [338–340]
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3. Theoretical Background – Nuclear Magnetic Resonance

Both of these gauge-invariant models for τσ(r) depend on the paramagnetic current density

and therefore any τ -dependent density functional gains an implicit dependence on jp,σ(r).

In principle, the presence of the current density in the XC functional requires the extension

of the field-free KS equations (Eq. 2.30) to cover these arising current densities within

the functional. As stated above, however, in the context of this work the dependence only

arises from the gauge corrections of the kinetic energy densities and therefore [334]

EXC

[︁
ρσ, jp,σ

]︁
=

∫︂
eXC

[︁
ρσ,∇ρσ, τσ, jp,σ

]︁
dr

=

∫︂
eXC [ρσ,∇ρσ, τ̃σ] dr. (3.88)

Hence, the corresponding contributions to the functional derivative entering the XC po-

tential is given by

δeXC

δjp,σ
=

δeXC

δτ̃σ

∂τ̃σ
∂jp,σ

, (3.89)

where in the absence of the magnetic field, and thus in the limit of vanishing current-

density contributions

δeXC

δτ̃σ

⃓⃓⃓⃓
jp,σ=0

=
δeXC

δτσ
. (3.90)
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4 Turbomole Program Structure

All developments throughout this work were implemented into the Turbomole quan-

tum chemical calculation package using a local developers’ version, which was regularly

updated to the most current published version. All developments shown in this work are

available in the Turbomole program code starting from version 7.5. [9] In the following,

a short outline of the relevant aspects of the program structure for the present work is

given with an emphasis on developments in the context of LH functionals.

4.1 Ground-State SCF

Property calculations with the Turbomole program package are built upon converged

SCF solutions, which can be obtained via the dscf and ridft programs, [273] i.e. full ana-

lytic four-center Coulomb or RI-J adjusted approaches, respectively. LH functionals have

been implemented in a semi-numerical fashion in both routines by Bahmann et al., [287] who

also introduced central LH specific infrastructure into the Turbomole program package.

The current versions of these routines are (i) the ondes x routines, specifically ondes ks

for the symmetric contraction of the basis-function vector with the density matrix (Dϕ)

and ondes 2as for a similar asymmetric contraction. (ii) The lmf x routines construct-

ing the LMF value (x=u0, r0) and derivatives (x=u1, r1, for first derivatives; x=u2,

r2 for second derivatives, . . . ) on the numerical grid, for restricted (rx) and unrestricted

(ux) calculations, respectively. Finally, (iii) the lochyb x routines (where x is denoted

just as in the LMF routines), which construct the exchange-correlation contribution of

the LH and its derivatives (on the numerical integration grid)

OLH
XC,g = wg

∑︂
QεQ

(︄
∂gg
∂Q

(︁
eexactX,g − eDFT

X,g

)︁
+

∂eDFT
X,g

∂Q

(︁
1− gg

)︁
+

∂eDFT
C,g

∂Q

)︄
, (4.1)
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4. Turbomole Program Structure

which in a final step is contracted with the AO basis-function vectors to the LMF-

dependent potential contribution.

Furthermore, the evaluation of the two-center A-matrix was introduced using similar pre-

screening techniques as outlined for the COS-X approach (see Sec. 2.4.2). [275,287] These

are (i) the S-junctions, for which the radial extent of the shells around the nuclei (until its

value falls below the chosen threshold) is probed. Only shell-pairs with overlapping radii

are considered in the A-matrix evaluation. (ii) the P-junctions, where the entries of the

F -vectors (the weighted contraction of the density matrix with the basis-function vectors,

Fµg =
∑︁

ν wg
1/2Dµνϕν(rg)) are compared to a threshold value. In this case, the evaluation

of the A-matrix is omitted, if the F -vectors of both shells are below this chosen threshold.

However, it was later pointed out, that in the limit of an infinite grid the use of Fµg in the

P-junction evaluation results in full neglect of any A-matrix evaluation, as the grid weights

in that case become infinitesimally small. Therefore, within the junction evaluation, the

use of the non-weighted contraction of the density matrix and the basis-function vector

was suggested. [285]

Gradients used in the optimization of molecular structures are implemented in the grad

and rdgrad subroutines, for full analytical and RI-J approximative calculations, respec-

tively. Adjustments for LH functionals were later added by Klawohn et al. [341] Within

this work, recurrence relations for the basis-function gradients were employed, [269] which

subsequently required the evaluation of two-center A-matrices with adjusted azimuthal

(orbital angular momentum)-quantum numbers of the Gaussian primitives (A′). These

are handled in the a matrices routines.

4.2 The MPSHIFT Routine

The calculation of NMR shielding constants in Turbomole is available via the sub-

routine mpshift, developed by Häser et al. [342] Prior to the present work, the rou-

tine supported calculations with semi-local and global hybrid functionals, [343] as well as

MP2 on the basis of gauge-including atomic orbitals. [344,345] The use of implicit solvation

using the conductor-like screening model (COSMO) is supported. [281,346] Furthermore,

multipole-accelerated RI-J was implemented and reported recently. [281] The existing (im-

plicit) treatment of relativistic effects by the use of effective core potentials (ECPs) [347,348]

was extended by a two-component scalar-relativistic implementation using the exact two-

component (X2C) Hamiltonian. [349] In the context of the work of Refs. 281 and 349 addi-

tional parts of the mpshift code were revisited and adapted prior to this work. Parallel

to the present work, a semi-numerical scheme for GH functionals was implemented and
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4.2. The MPSHIFT Routine

Figure 4.1.: Schematic work-flow diagram of the mpshift routine. The LH specific subroutines
introduced in the present work are highlighted in red.

shortly after the initial implementation of LHs in the context of this work, the response

code was restructured, which further enhanced the efficiency (also of the LH implementa-

tion). [262] Additional DFAs were introduced via linking external exchange and correlation

functional libraries such as LibXC. [350,351]

In Fig. 4.1 a schematic (and simplified) work-flow diagram of the mpshift routine for

non-relativistic DFT and HF calculations is shown. The program is roughly structured

in two parts: (i) a pre-loop section, where the one-electron contributions (hB) and GIAO

dependent terms are calculated (marked with ϕB to point to derivatives of GIAOs) and (ii)

a section handling the construction of the perturbed density, in the uncoupled case either

directly or via the coupled-perturbed iterations, if exact exchange or the paramagnetic

current density is present (see also Eqs. 3.71–3.74 for details of the terms). As pointed

out above, the calculations are based on a converged SCF solution. The ground-state

density matrix (D) is therefore assumed to be available as an input parameter.

In (i) the one-electron integrals (hB), (undisturbed-density) exact exchange (K
[︁
ϕB
]︁
),

the Coulomb contribution (J
[︁
ϕB
]︁
) and the GIAO-dependent XC potential contribution
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4. Turbomole Program Structure

(EXC

[︁
ϕB
]︁
) are calculated and directly written onto the perturbed Fock-matrix (FB).

The corresponding subroutines are csonei, csloop or twoder (the latter is employed

in case of the RI and MARI adjusted Coulomb terms) and dftpart. The exact ex-

change and DFT contributions for LH functionals are, however, handled separately within

cs lh part.

Program section (ii) is organized either by the subroutine cpscf or its recently restruc-

tured counterpart bfield cphf. [262] However, the schematic work flow (outlined in the

gray box) is fairly similar and therefore not depicted separately in Fig. 4.1. Initially,

the perturbed Fock-matrix is handed over into the makeu subroutine, which returns an

initial set of expansion coefficients (uB). These are restructured to the perturbed MO

coefficients (cB) and organized in the perturbed density matrix (DB). In the diagram,

these reformulations are skipped for conciseness. In an uncoupled approach, the perturbed

density matrix is directly used to calculate the final shielding result. If exact exchange is

present, the perturbed density (i.e. the expansion coefficients) is handed into the hf k

(analytic exact exchange) or cssemnuk (semi-numerical exact exchange) subroutines to

calculate the respective contribution and obtain a new set of coefficients. However, for

a LH functional the exact-exchange contribution is calculated within lh cpscf. The

procedure is then iterated until convergence, followed by calculation of the final shielding

results (σK).

Within the work-flow diagram, the new LH specific subroutines are marked in red. They

each replace the exact-exchange and DFT routines in the pre-loop and loop sections,

respectively. Their content is discussed in more detail in Sec. 5.3.

4.3 The ESCF Routine

The escf [352] subroutine was extended to LH functionals by Maier et al. [353,354] In the

later work the LH functionals were embedded within the routine df2nd lochyb which

is called within df2nd (itself a wrapper differentiating semi-local functionals). However,

in the schematic work-flow diagram in Fig. 4.2, these routines are shown in parallel to

highlight that the output parameters of rshlop and df2nd in the semi-local and GH

case are replaced by the LH-specific routine. Since there are no Coulomb contributions,

neither in the real triplet nor in the imaginary (singlet or triplet) cases, [330] these are

skipped within the schematic overview.

The extension to SSCCs was achieved by replacing the right-hand side vectors by the one-

electron vectors (hMK ) of the FC and SD contribution for the real-triplet and PSO term

for the imaginary-singlet case. These are calculated within the subroutine mkncints
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4.3. The ESCF Routine

Figure 4.2.: Schematic work-flow diagram of the escf routine. The LH specific subroutines
introduced in the present work are highlighted in red.

according to Eq. 3.74 using the operators of Eqs. 3.43 – 3.45 (note that without a depen-

dence of the orbitals on the perturbation, only the one-electron contribution remains).

For semi-local and GH functionals, the electronic Hessians were constructed as outlined

in Eqs. 3.69 and 3.72, similarly to RPA or time-dependent DFT (TDDFT) calculations.

Corresponding extentions of these equations for LH functionals were published in Refs.

353 and 354.

The three contributions to the SSCC (FC, SD and PSO) are constructed separately within

a loop over the respon routine (marked with all within the work-flow diagram). This

routine calculates the matrix-vector products of the electronic Hessian and the perturbed

densities (see Eq. 3.68 and 3.71) within the mvproduct subroutine.

Within the subroutine mvproduct, the input density in the MO basis is initially trans-

formed into the AO basis via tramocao for all contributing terms. However, the overall

work flow is different for the real and imaginary contributions. Therefore, these are sep-

arated in Fig. 4.2 by either the blue (for the real-triplet case) or the red arrows (for

the imaginary-singlet case). For the real contribution (blue arrows), exact exchange and
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4. Turbomole Program Structure

semi-local contributions are calculated either via rshlop and df2nd (in the GH case) or

via df2nd lochyb (in case of a LH functional). The construction of these contributions

remained unaltered within the present thesis.

The construction of the imaginary triplet contribution (red arrows) only requires the

evaluation of exact exchange, as for the GH case shown in Eq. 3.72. Therefore, in

the initial hybrid implementation the DFT part via df2nd was skipped entirely, as the

exact-exchange contribution is calculated either via rshlop, or senex as omp for semi-

numerical exchange. Both routines are collectively termed EXX GH within the work-flow

diagram.

However, the PSO contribution was not evaluated properly for LHs because the exact-

exchange contribution for local hybrids is embedded in df2nd lochyb (called within

df2nd), which was skipped in the initial implementation. Its evaluation was implemented

externally of df2nd and parallel to the semi-numerical GH subroutine via lh cpscf. The

subroutine was formerly implemented to handle the paramagnetic contribution of NMR

shielding constant (see above), which as the PSO contribution is of imaginary-singlet

character. Therefore, the routine required only minor adjustments for the extension to

the PSO in SSCCs, i.e. it was altered to handle the 3 ·K (instead of 3 as in the shielding

case) perturbed densities simultaneously (see also Sec. 3.2.1 for further details). The

newly implemented subroutine is marked in red, for which further details are outlined in

Sec. 5.3.

Finally, the matrix-vector product is transformed into the MO basis (via tracaomo)

and mvproduct is iterated until the expansion coefficients of all perturbed densities are

converged. For the final output the contributions are gathered on the reduced spin–spin

coupling tensor KKL and reformulated into its counterpart JKL using the corresponding

nuclear magnetic moments of the computed nuclei tabulated within the program code.
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5 NMR Property Calculations with

Local Hybrid Functionals

The general theory of semi-local and GH functionals, and the calculation of NMR prop-

erties by means of perturbation theory using the CPKS equations has been outlined in

chapters 2 and 3, which in the context of this work was extended to cover local hybrid

functionals. The details of this work were published within the enclosed manuscripts

reprinted after the present chapter. In the following, the main results and interconnec-

tions between the respective publications will be highlighted.

The chapter begins with a short summary of generalized computational details intended to

cover programs, functionals, methods, basis sets and computational setups used through-

out the presented work. This is followed by a short review of the most important steps of

the project regarding the derivation, implementation, validation and application of local

hybrid functionals for NMR properties such as shieldings, chemical shifts and spin–spin

coupling constants. Where necessary, the discussions of the publications have been sup-

plemented and extended. Finally, the chapter is closed by a brief summary of the main

conclusions and an outlook of further research, which might build on the presented work.

Throughout, the reprinted publications are referred to as P-X, whereas data published

in the supporting information (SI) of the respective publications is referred to as SI-X.

In both cases, X is the number of the respective publication within the present work. It

should be noted that due to the extensive data collection in some of the SIs, only parts

are reprinted in this work.

5.1 Computational Details

Calculations using DFT functionals up to rung 4 on Perdew’s ladder were performed using

a developers’ version of Turbomole updated regularly during the developments until

version 7.5. [9] In some cases comparative calculations were performed using theGaussian
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5. NMR Property Calculations with Local Hybrid Functionals

Table 5.1.: Pre-defined functionals and methods used throughout P-I – P-VIII. In case of GHs
the exact-exchange admixture, for RSHs the short and long range EXX as well as
their RS parameter ω and for DHs the exact-exchange admixture and (same and
opposite spin) correlation contributions is given (see also Eqs. 2.49 and 2.50). For
LHs further details are given in Table 2.1 and Figure 2.1.

LSDA SVWN [52,120]

GGA BP86, [159,170,361] BLYP, [159,169] PBE, [160] KT1, [166] KT2, [166] KT3, [167]

HCTH [162,362] and B97D [212]

m-GGA TPSS, [178,363] VSXC, [180] τ -HCTH, [181] M06-L, [182] MN15-L, [183] B97M-V, [219]

SCAN, [179] rSCAN [364] and r2SCAN [365,366]

GH TPSSh (10 %), [189] B3LYP (20 %), [59,195] B97-2 (21 %), [165] PBE0 (25
%), [190,191] M06 (27 %), [134] PW6B95 (28 %), [367] MN15 (44 %), [200] BHLYP
(50 %) [58,188] and M06-2X (54 %) [134]

RSH CAM-B3LYP (19 % → 65 %, ω = 0.33), [206] ωB97X-D (22 % → 100 %,
ω = 0.2), [216] ωB97X-V (17 % → 100 %, ω = 0.3) [220] and ωB97M-V (15%
→ 100 %, ω = 0.3) [221]

LH LH07s-SVWN, [247] LH07t-SVWN, [242] LH12ct-SsirPW92, [243] LH12ct-
SsifPW92, [243] LH14t-calPBE, [244] LH20t [245], LHJ14 [249] and mPSTS [239,262]

DH B2PLYP (aX=53 %, aC=27 %), [230] B2GP-PLYP (aX=65 %, aC=36 %) [232]

and DSD-PBEP86 (aX=70 %, co= 53 %, cs =25 %) [233,368]

methods Hartree–Fock, MP2, CCSD and CCSD(T)

program, either Gaussian09, revision D.01, [355] or Gaussian16, revision A.03. [356] Double

hybrid and MP2 shielding calculations were performed using Orca, version 4.2.1, [11–13]

whereas coupled-cluster optimizations and property calculations used the Cfour pro-

gram code, version 1.2, [10] in some cases extended to further CC diagnostics using Mol-

pro. [357] Analysis of contributions to NMR shieldings tensors were computed using Re-

Spect. [358] Tight-binding based calculations were performed using the xTB program

code, [359] whereas the sampling of molecular structure spaces was performed using the

conformer-rotamer ensemble sampling tool (CREST). [360]

Throughout P-I – P-VIII, the pre-defined functionals and methods listed in Tab. 5.1

were used. Furthermore, a few adjusted LH models have been employed: 07ct, 07tx and

07ctx, which are related to the LH07t-SVWN functional using either a common LMF, an

enlarged prefactor (a = 0.709), or both. The two functionals LH14t-nc and LH20t-nc use

the same set of parameters as LH14t-calPBE and LH20t, but are constructed without the

respective CFs.

Where required, D3 dispersion corrections [213,369] in combination with Becke–Johnson

damping (denoted D3(BJ)) [370–372] were employed. The prefix “c” is used for function-
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als employing the current-corrected τD model for the kinetic energy density for shielding

or spin–spin coupling calculations. In some computations, the resolution of the iden-

tity for the Coulomb contribution (RI-J) has been employed, [278] partly in its multipole-

accelerated variant (MARI-J). [274,281] Furthermore, implicit solvent models COSMO and

the direct COSMO for real solvents (D-COSMO-RS) have been used. [346,373–375]

Optimizations were performed either with the def2-X [376,377] (X = TZVP,TZVPD) or the

correlation-consistent cc-pVXZ [378–381] (X = T,Q) basis sets. NMR-property calculations

employed specifically optimized basis sets as published by Jensen, using pcSseg-X [382]

(X = 3, 4) for shieldings and pcJ-4 [383] for spin–spin coupling constants. In P-VII addi-

tionally the ANO-RCC basis set was used for I. [384] In some cases uncontracted basis sets

were employed marked with the suffix “unc”. If the RI-J or subsequently the MARI-J

approximations are employed, “universal” auxiliary basis sets have been used through-

out. [385]

Statistical quantities such as the standard deviation (StD), mean signed (MSE) and mean

absolute errors (MAE) are reported. In cases where statistical data is calculated from

reference data, which is not of benchmark quality, the term “deviation” instead of “error”

(MSD, MAD) is employed. Partly relative quantities are compared, termed either “mean

absolute relative error” (MARE) or “mean absolute percentage deviation” (MAPD). The

definition of these quantities is also shown in Sec. S1 of SI-I, reprinted in Sec. A.1.1.

In P-V and P-VI relative quantities were normalized by the shielding and shift ranges

provided by the references for individual nuclei. These quantities are marked with the

prefix “rel.”, whereas for maximum values the prefix “max.” is used.

For further details on computational methodology, grid setting and computational con-

vergence criteria see also the individual computational details of P-I – P-VIII.

5.2 Derivation

The general derivation of NMR property calculations using LH functionals is reported in

P-I and P-II, in which the coupled-perturbed, respectively, response schemes for shielding

and SSCC calculations are outlined. Extensions to that work, including the current-

dependent implementation of the Dobson variant of the kinetic-energy density (Eq. 3.87)

and second-order derivatives of the density, are reported in P-III and P-IV.

The derivation of second-order NMR properties for LH functionals can be started from

the expression of the perturbed Fock matrix (see also Eq. (12) of P-I). Compared to

the GH scheme only the LH-specific exchange-correlation potential is altered by the LMF

and therefore requires adjustments. Importantly, also the LMF-dependent exact-exchange
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5. NMR Property Calculations with Local Hybrid Functionals

contribution is gathered within this term. The first step was thus to derive a generalized

expression for the perturbed LH potential (the direct derivative of the potential, Eq. 2.77,

with respect to the perturbation), which with respect to an arbitrary perturbation is given

by

∂V LH
XC,µν,ς

∂λ
=− 1

2

∑︂
κλ

[︃
Dλ

κλ,ς

∫︂
gς(r)

(︁
ϕ∗
κ(r)ϕν(r)Aµλ(r) + ϕ∗

µ(r)ϕλ(r)Aκν(r)
)︁
dr

+Dκλ,ς

∫︂ ˆ︁dλgς(r) (︁ϕ∗
κ(r)ϕν(r)Aµλ(r) + ϕ∗

µ(r)ϕλ(r)Aκν(r)
)︁
dr

+Dκλ,ς

∫︂
gς(r)

(︁
ϕ∗
κ(r)ϕν(r)Aµλ(r) + ϕ∗

µ(r)ϕλ(r)Aκν(r)
)︁λ

dr

]︃
+
∑︂
σ

[︃ ∫︂ ˆ︁dλ ˆ︁dµν,ςgσ(r) · [︁eexactX,σ [{ϕτ}]− eDFT
X,σ [ρσ]

]︁
dr

+

∫︂ ˆ︁dµν,ςgσ(r) · ˆ︁dλeexactX,σ [{ϕτ}] dr−
∫︂ ˆ︁dµν,ςgσ(r) · ˆ︁dλeDFT

X,σ [ρσ] dr

−
∫︂ ˆ︁dλgσ(r)ˆ︁dµν,ςeDFT

X,σ [ρσ] dr+

∫︂
[1− gσ(r)] ˆ︁dλ ˆ︁dµν,ςeDFT

X,σ [ρσ] dr

]︃
+

∫︂ ˆ︁dλ ˆ︁dµν,ςeDFT
C [ρσ] dr. (5.1)

Here, ˆ︁dλ describes the derivative of the semi-local quantities with respect to the arbitrary

perturbation λ using the chain rule.

Without a dependence of the basis functions on the perturbation (in the context of this

work the condition holds for the calculation of SSCCs) the derivative operators in Eq. 5.1

can be rewritten in terms of derivatives with respect to the density matrices as outlined

in Eqs. 2.80 and 2.81

ˆ︁dλ⃓⃓(ϕλ=0)
=
∑︂
µν

∑︂
σ

Dλ
µν,σ

ˆ︁dµν,σ, (5.2)

ˆ︁dλ ˆ︁dµν,σ ⃓⃓(ϕλ=0)
=
∑︂
κλ

∑︂
ς

Dλ
κλ,ς
ˆ︁dκλ,ς ˆ︁dµν,σ. (5.3)

Using these adjusted operators, the response equations for SSCCs are obtained, as pre-

sented in Eqs. (10), (11), (16) and (17) of P-II. However, in P-II the equations were

directly reported in form of the electronic Hessians, as outlined for GHs in Eqs. 3.68

and 3.71. As shown in Eq. 3.78, for SSCCs the real FC and SD as well as imaginary

PSO perturbations are present. These are reflected in symmetric and skew-symmetric

perturbed density matrices, giving rise to the two different definitions of the Hessian in

the real (Eqs. (11) and (16) of P-II) and imaginary cases (eq. (17) of P-II). It is noted in
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5.2. Derivation

passing, that the final expressions for the Hessians resemble those which were derived in

the context of LH functionals in the framework of TDDFT. [353,354]

If a CDFT functional via τD is chosen, the current response enters only in the imaginary

PSO contribution due to skew-symmetry of the perturbed density matrix. Details are

outlined in the discussion of paramagnetic contributions below.

For NMR shielding constants (initially derived without current contributions) the depen-

dence of the orbitals on the perturbation had to be taken into account. In that case, the

corresponding generalization of the derivative operators is not as instructive as shown for

SSCCs. Therefore, the present discussion uses references to the respective equations in

the original publications.

The contributing terms for shielding constants without the current response were shown

in Eq. (16) of P-I. This expression is obtained by considering that the paramagnetic con-

tribution is imaginary and the involved perturbed density matrices as well as matrices of

the GIAO pairs (see Eq. 3.57) are skew-symmetric. For that reason, the direct derivatives

of semi-local quantities in Eq. 5.1 vanish.

However, due to the involved GIAOs, the shielding calculation requires contributions

contracted with the unperturbed density, which are calculated just once (pre-loop), as

well as contributions dependent on the perturbed density, which are constructed within

the CPKS iterations, as also outlined in Sec. 4.2.

Within the pre-loop part, the most important steps to adjust the coupled-perturbed

scheme for LHs involved the derivation of a suitable expression for the pre-loop exact-

exchange contribution, which requires the contruction of the perturbed A-matrix, as out-

lined in Eq. (20) of P-I. As shown, the quantity can be constructed from the A-matrices

with an increased l-quantum number, similar to the schemes derived for molecular gra-

dients. [341] However, circumventing the perturbed A-matrix, as shown for GHs (see Eq.

3.76), is impractical for LHs due to the presence of the LMF: interchanging r −→ r′ results

in explicit dependence of the analytic A-matrix integrals on the (potentially sophisticated)

LMF, which might lead to integrals without analytical solution. Further details of the

derivation of the perturbed A-matrix were given in Sec. S3 of SI-I, see also Sec. A.1.2.

The derivation also required the perturbed LMF-dependent potential contribution, as

shown in Eq. (28) of P-I. Within the initial implementation, the focus was on uncalibrated

LH models (see Sec. 2.3.2 for further details) with a dependence on the density, gradient of

the density and kinetic energy density. In the course of the work published in P-IV, second

derivatives of the density such as the Laplacian (Eq. 2.70) and the Hessian of the density

(Eq. 2.71) were included (see Eqs. (20)–(22) of P-IV), which enter due to the presence of

the calibration functions (Eq. 2.69). The inclusion into the previously outlined potential
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5. NMR Property Calculations with Local Hybrid Functionals

contribution was straightforward (see also Eq. (28) of P-I). In this context, expressions

for the gradient of the kinetic energy density in their gauge-independent representations

via the Maximoff–Scuseria (Eq. 3.86) and Dobson (Eq. 3.87) models were derived, see

Eqs. (29) and (30) of P-IV. These would enter for calibrated meta-GGA-based LHs (see

Sec. 2.3.2). However, no LH functionals using this quantity have been reported to date.

The perturbed-density-dependent exchange contribution, given in Eq. (29) of P-I, resem-

bles the Hessian for the imaginary PSO contribution in SSCCs (Eq. (17) in P-II). Both

are reflected in the first term on the right-hand side of Eq. 5.1.

If a current-density functional via τD (see Eq. 3.87) is chosen in a shielding calculation,

the related expression due to the perturbed paramagnetic current density is outlined in

Eq. (18) of P-III. The equation contains a contribution dependent on the perturbed and

unperturbed densities. For these contributions the condition of Eq. 3.89 applies. It

should be noted that the potential contribution for an arbitrary f [τ̃ ] with τ̃ → τD can be

derived using

∂2f

∂j2p

⃓⃓⃓⃓
jp=0

= −1

ρ

∂f

∂τ
. (5.4)

The work related to the gauge correction of the kinetic energy density was made necessary

due to paramagnetic artefacts arising within the τMS-model. These already occurred in

the application to second-period noble-gas atoms (see P-III for further details). These

additional contributions were traced to an orbital rotation-operator, which was derived

from the expression of the potential contribution for the kinetic energy using the τMS-

model (see Eqs. (23) and (24) of P-III, as well as Sec. S1 in SI-III and Sec. A.3.1).

Therefore, various models for the kinetic energy density were revisited in P-III, including

a gauge-dependent construction allowing to choose the gauge origin of the kinetic energy

density within the calculation (typically, it was placed at the center-of-mass (COM)) and

an ad-hoc corrected variant, which was derived to resemble the model implemented in the

Orca program code. The exact forms of the latter two models are outlined in Sec. S2 of

SI-III and Sec. A.3.2 of the present work.

5.3 Implementation

The implementation within the CPKS scheme for LH functionals was reported in P-I

and P-II for shieldings and SSCCs, respectively. Extensions to the initial implementation

covering the paramagnetic current density and the Laplacian and Hessian terms were re-

ported in P-III and P-IV. The matrix-vector notation as introduced in Sec. 2.4.2 is used
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5.3. Implementation

throughout this section. In the following, the implementation as reported in the publica-

tions (without consideration of later changes within the program code not conducted by

the author) are revisited and further details of the program structure and interconnections

to other LH related implementations are outlined.

The shielding extension in Turbomole was implemented into the mpshift program

code (see also Fig. 4.1), whereas SSCCs were obtained from implementations within the

escf routine (Fig. 4.2). As shown in Fig. 4.1, LH specific extensions to mpshift bypass

the exchange and semi-local contributions of common semi-local and hybrid function-

als. Within the the pre-loop part the routines csloop and dftpart are replaced with

cs lh part and within the loop the routines hf k (for analytical exchange) or cssemnuk

(for semi-numerical exchange) are replaced with lh cpscf. In calculations of SSCCs us-

ing LHs, the real triplet contribution due to the FC and SD operators (Eqs. (5) and (6) in

P-II, see also Eqs. 3.43 and 3.44 of the present work) utilizes the resemblance to TDDFT

derivations (see Refs. 353 and 354, as well as Sec. 5.2) by adjusting the right-hand-side

vector with the according perturbed one-electron contribution (Eq. (11) in P-II or Eq.

3.74 of the present work). This part of the program required no additional modifications

of the available LH-TDDFT program code. Only the LH-specific PSO contribution (Eq.

(7) in P-II, see also Eq. 3.45) had to be introduced (as the df2nd routines are skipped

within the PSO loop, see Sec. 4.3). This was achieved by implementing the lh cpscf

routine (which required just slight adjustments, see below), available from the related

work on NMR shieldings.

In Figs. 5.1 and 5.2, the main subroutines of the newly implemented cs lh part and

lh cpscf routines are outlined in a schematic pseudo-code representation. The relevant

output of the subroutines is shown on the right-hand side. Both subroutines use the

arguments cdft and lh func. The first represents changes within the program due to the

presence of the paramagnetic current density via τD (see Eq. 3.87). The second variable

describes additional steps involved with LH functionals, as the routine is also used for the

semi-numerical solution of GH models within the pre-loop section (within the loop, the

cssemnuk routine is used for GHs).

The CS LH PART Routine The initialization of the program contains the division

of the numerical grid into batches (typically up to 100 grid points per batch) in order

to reduce memory demands within the calculation and enable efficient parallelization by

subdivision of grid-batches to multiple CPUs. Within the program loops over the grid

batches are used and within these loop the working subroutines are called. The program

is structured to hierarchically construct the semi-local XC and non-local exchange quanti-

ties, beginning with the AO values as well as their first and second derivatives (if they are
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5. NMR Property Calculations with Local Hybrid Functionals

cs lh part()

initialization
for number of grid batches do

call funct()
call ondes ks()
call cs ondes(cdft)
if lh func then

call lmf r1()
end
call calc ftg B()
call cs gvg(lh func)
call cs kmat(lh func)
if lh func then

calc exx()
call lochyb r1()
if cdft then

call scal jpb()
end
call cslh mgga(cdft)

end

end
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Dϕ, Q
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eexactX
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jBp ρ
−1
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Figure 5.1.: Simplified algorithm of the newly implemented cs lh part routine (neglecting
grid and junction construction for conciseness).

required by the chosen functional) on the grid, arranged as a vector by the funct routines.

These vectors are contracted with the input density matrix (Z = Dϕ) within ondes ks.

In the same subroutine the semi local quantities Q (QεQ, Q = Q{ρ,∇ρ, τ , . . . }; except jp)
present in the chosen functional or LMF (see also Sec. 4.1) are also constructed. Essen-

tially, the cs ondes subroutine is a rework of the ondes ks routine. Within the routine,

the prefactor of the derived GIAOs (Eq. 3.56) is multiplied with the basis function and

afterwards the former product is contracted with the unperturbed density to obtain the

ZB-vectors, where ZB = DϕB. If a current-dependent density functional (under use of

τD) is chosen, the unperturbed-density contribution of the paramagnetic current density

(jBp ) is also constructed, as outlined by the right hand side of Eq. (18), and represented

by the three vectors outlined in Eqs. (20)–(22) in P-III.

As outlined in Sec. 4.1, in lmf r1 the LMF and its first derivatives with respect to the

semi-local quantities are constructed. These are later used to scale the exchange contri-
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bution in cs kmat and in the construction of the semi-local contribution in cslh mgga

(see also Eqs. (26) and (28) of P-I).

Within the calc ftg b subroutine, the unperturbed and perturbed vectors F and FB

are calculated,a as shown in Eq. (21) of P-I. The resulting vectors are then contracted

with the A and AB-matricesb (Eqs. (14) and (20) of P-I, see also Eq. 2.93 in this work)

within the cs gvg subroutine to provide the corresponding unperturbed G, perturbed

GB and GAB

vectors (Eqs. (22) and (23) of P-I), respectively. The direct contraction

of the A-matrices reduces the memory demand significantly, as the A-matrices are never

stored explicitly within the routine. As previously discussed for Eq. (20) of P-I, the

AB-matrices require an increased l-quantum number, similar to the recurrence relation

arising in the derivation of molecular gradients. [269,341] However, the schematic work-flow

of cs gvg is similar to the outline of refs. 341 and 288 and is not discussed in further

detail here. To enhance the efficiency of the implementation, the S- (pre-constructed

within the mpshift routine and handed down), P- (constructed from the Z and ZB

vectors within cs lh part) and F-junctions (constructed on the fly within cs gvg) are

evaluated within the subroutine. A detailed discussion of the pre-screenings was included

in P-I (for details see the related discussion in P-I, or Sec. 4.1 for S- and P-junctions and

Sec. 2.4.2 for F-junctions, respectively). The final exchange contribution is constructed

within the cs kmat subroutine according to Eq. (26) (or in case of a GH Eq. (27)) of

P-I and written on the perturbed Fock matrix, which is the output of the routine.

In case of a GH, the semi-numerical exact-exchange contribution is fully evaluated at this

point and the routine is left as the semi-local DFT contributions are evaluated externally

within the routine dftpart (see Fig. 4.1). However, in case of a LH the exact-exchange

energy density (eexactX ) and subsequently the O vectors according to Eq. 4.1 are con-

structed via calc exx and lochyb r1. Finally, these vectors are contracted with the

basis functions within cslh mgga, according to Eq. (28) of P-I, or in case of the presence

of the Laplacian or Hessian of the density Eqs. (18)–(23) of P-IV.

If a current-density dependent functional via τD is chosen, the contribution of the kinetic-

energy density to the semi-local potential is altered according to Eq. (15) of P-III. In

that case the initial product jBp ·ρ−1 is calculated externally within the scal jpb routine,

whereas the final contraction of the reduced perturbed paramagnetic current density with

the basis-function pairs (jBp ·ρ−1 (ϕ∇ϕ− ϕ∇ϕ)) is likewise performed in the cslh mgga

aThese are the weighted contractions w
1/2
g Dϕ and w

1/2
g DϕB, not to be confused with the Fock matrix,

and its derivative.
bNot to be confused with the magnetic vector potential.
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lh cpscf()

initialization
for number of grid batches do

call funct()
call ondes ks()
for perturbed density matrices do

call ondes 2as(cdft)
end
call lmf r1()
if cdft then

call calc ftg()
end
for perturbed density matrices do

call calc ftgB()
end
call cs gvg cpscf(cdft)
if cdft then

call calc exx()
end
call cs kmat cpscf()
if cdft then

call lochyb r1()
call scaljpb()
call cslh jpb()

end

end
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Figure 5.2.: Simplified algorithm of the newly implemented lh cpscf routine (neglecting grid
and junction construction for conciseness).

subroutine. As for the exact-exchange contribution above, the resulting semi-local con-

tribution is written on the perturbed Fock-matrix and passed to the mpshift routine.

The LH CPSCF Routine The CPKS loops of the paramagnetic term of the shield-

ings and the PSO contribution in SSCCs are equivalently handled within the lh cpscf

routine. As for cs lh part, the cdft argument was implemented to separate DFT and

CDFT cases (for the latter, the connected contributions are outlined in Eqs. (12), (15)

and (19) of P-III). If no current dependency is present, the subroutine only controls the

construction of the perturbed-density-dependent exact-exchange contribution (Eq. (29)

in P-I and Eq. (17) in P-II, respectively). A recurring element within the subroutine is

the loop over the perturbed density matrices. In case of shielding calculations 3 (one for
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each direction of the magnetic field) and in case of SSCCs 3 ·K matrices (the Cartesian

components for each nucleus individually) are handled.

Equivalently to cs lh part, within lh cpscf loops over grid batches are used and ini-

tially the basis-function vector and its derivatives are constructed via the funct routines.

Also, semi-local contributions are computed via ondes ks. The LMF values and the cor-

responding derivatives are obtained via lmf r1. Technically, the derivatives are only

required in the CDFT case. However, lmf r0 and lmf r1 are almost equivalently fast,

and no distinction of the cases was built in. Due to the skew-symmetry of the perturbed

density matrices, their contraction with the basis functions (Dκϕ) is handled within on-

des 2as, the asymmetric counterpart to the ondes ks routine. This subroutine was

implemented by Maier et al. in the course of the TDDFT implementation (see Refs. 353

and 354) and can also be used to construct the perturbed-density-dependent paramag-

netic current density (jp [D
κ]) if the cdft option is set.

If no current dependency is present, only the perturbed density dependent F [Dκ], G [Dκ]

and K [Dκ] are constructed within lh cpscf. This is done in a similar fashion as the

corresponding quantities outlined for the cs lh part routine above. However, in these

steps the subroutines calc ftgB, cs gvg cpscf and cs kmat cpscf are employed,

as in contrast to the pre-loop contributions, the cpscf specific routines handle the 3,

respectively, 3 · K vectors arising due to the perturbed densities simultaneously. Pre-

screening is employed via the S- and the (loop-specific) PL- and FL-junctions. The

PL- and FL-junctions are constructed similarly to their P- and F-junction counterparts.

However, due to the presence of the perturbed densities, a separate threshold value was

introduced to compensate for the observed higher sensitivity of the CPKS-loops on the

junction-settings. An additional gain in efficiency (with an acceptable error margin) was

obtained by introducing non-standard coarse numerical grids within the loop section (see

below). Details on these pre-screenings and efficiency-related technicalities are outlined

in P-I.

In case of a CDFT functional via τD, an additional semi-local contribution is present.

In that case F [D], G [D] and subsequently eexactX have to be constructed to build the

O vectors in lochyb r1. These contributions are calculated taking similar steps as for

the pre-loop part described above, i.e. the (perturbed-density dependent) paramagnetic

current density is scaled by the density within scaljpb and finally contracted with the

basis functions in cslh jpb. Here, cslh jpb is a reduction of cslh mgga as only the

current-dependent contribution has to be evaluated (see Eq. (19) in P-III).
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Table 5.2.: Mean absolute deviations (MAD) of NMR shielding constants (in ppm) using dif-
ferent coarse grid settings (see text) in comparison to calculations using grid setting
5 for the test-set data of Ref. 13 (GIAO-DFT/pcSseg-3 results).

LH07t-SVWN LH20t
τMS τD τMS τD

grid 1 1 1 1 1 1 1 1 1 1 1 1
cpksgrid – 0 -1 – 0 -1 – 0 -1 – 0 -1

MAD 1H 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002
13C 0.02 0.03 0.09 0.02 0.03 0.12 0.02 0.05 0.15 0.02 0.05 0.07
15N 0.02 0.04 0.30 0.02 0.04 0.35 0.03 0.06 0.47 0.05 0.05 0.28
17O 0.04 0.05 0.15 0.04 0.05 0.17 0.03 0.16 0.26 0.04 0.15 0.27
19F 0.01 0.10 0.08 0.01 0.10 0.09 0.02 0.15 0.13 0.03 0.12 0.11
31P 0.07 0.12 0.20 0.07 0.12 0.18 0.13 0.21 0.36 0.14 0.25 0.38

rel. MAD 1H 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.02 0.02 0.03
13C 0.01 0.01 0.04 0.01 0.01 0.05 0.01 0.02 0.07 0.01 0.02 0.03
15N 0.00 0.01 0.04 0.00 0.01 0.05 0.00 0.01 0.07 0.01 0.01 0.04
17O 0.01 0.01 0.02 0.01 0.01 0.02 0.00 0.02 0.03 0.00 0.02 0.03
19F 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.00 0.02 0.02
31P 0.01 0.02 0.03 0.01 0.02 0.03 0.02 0.03 0.06 0.02 0.04 0.06

5.3.1 Efficiency and Grid Convergence

The efficiency of the semi-numerical implementation (see Sec. S2 of SI-I or Eq. 2.92 and

the related discussion within this work) relies on integral pre-screening via the S-, P-,

and F-junctions (as well as their loop-section counterparts), as outlined above. However,

the implementation also crucially depends on the employed integration grid (see also

Sec. 2.4.2). To further increase the efficiency of the implementation, coarse integration

grids have been evaluated within the loop section of the shielding calculations (for the

definitions of Turbomole grid settings see Tab. 1 in P-I), where in comparison to the

pre-loop part of the calculation a lower sensitivity on the grid size was detected (see Fig.

S2 within SI-I, reprinted in Fig. A.1 of the present work). These initial measures have

been tested and reported in P-I.

However, the initial implementation, for which the timings and grid-dependencies of the

coarse-grid approach have been tested, used the τMS-model for the kinetic energy den-

sity. Therefore, the loop section contained only the perturbed exact exchange and was

independent of any semi-local contributions. This changes with the introduction of τD.

Due to the potential sensitivity of such semi-local quantities on the chosen grid, the error

margins of the separate grid settings for the CPKS loops have been re-evaluated for the

CDFT variants of the LHs. Fig. 5.2 gathers the MAD and relative MAD of calculations

using various coarse grid settings in comparison to a set of shieldings obtained with grid

size 5 (internal Turbomole setting) for the benchmark set reported by Stoychev et al.

(GIAO-DFT/pcSseg-3 level of theory is employed, see Tab. A.27 for the full data). [13]

The data for the individual nuclei is reported for two t-LMF based LH models, LH07t-
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SVWN and LH20t, as examples for uncalibrated and calibrated LH functionals. However,

the error margins in the CDFT case are insignificantly larger in comparison to the initial

implementation. Therefore, the conclusions of P-I regarding the grid-dependencies still

hold for the CDFT-LH variants.

A similar pre-screening as for shieldings is also available for SSCCs. However, thorough

testing was provided elsewhere. [353] As visible from Tab. S10 in SI-II (reprinted in Tab.

A.2.1), calculation of SSCCs appears to be more sensitive to the chosen grids and therefore

the coarse grids have not been employed.

5.4 Validation

5.4.1 Validity of the Implementation

The implementations reported above have been carefully tested. However, a thorough

validation as provided by numerical differentiation, i.e. finite-field methods, is not avail-

able in the one-component code of Turbomole. Therefore, the validation used implicit

rather then explicit arguments, i.e. it relied on a comparison between LH related code

segments and testing of GH vs. GH-via-LH (calculations of GH results using the LH code)

approaches, which was executed in P-I – P-IV for all newly implemented extensions.

The implementedA′ routines were tested by computing both expressions of Eq. 3.76 (with

and without the exchange r −→ r′), as outlined for the Hartree–Fock results in Tab. S1

of the SI-I (reprinted in Tab. A.1). As shown, the error margins are within numerical

accuracy. The same holds for the GH and GH-via-LH comparison, which provides a

simultaneous test of the semi-local implementation and the CPKS-loop computation, as

shown for B3LYP (and further GHs) in the same table.

Furthermore, gauge-independence was proven for the implementations, which is an im-

portant physical property in NMR parameter calculations (see also Sec. 3.1.6). The

corresponding data is provided in Tabs. S2 and S3 of the SI-I (see also Tab. A.2) as well

as Tab. S2 (and for further partly gauge-variant version in Tab. S3) of SI-III, reprinted in

Tab. A.9 of the present work. As an example for calibrated LHs, similar data is provided

for LH20t, see Tab. A.26. In all cases translation and rotation of a trial-molecule (NH3)

was tested.

The implicit measures were also employed for the validation of SSCCs. Nevertheless, in the

initial implementation the author set an incorrect prefactor: due to the modularity of the

Turbomole program code, the definition of the GS density matrix is inconsistent within

the individual subroutines of the code. In some routines the off-diagonal elements are pre-
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Figure 5.3.: Plot of the real-space exact-exchange admixture, as controlled by the t-LMF with
prefactor a = 0.5, due to the two definitions of the density matrix (see text) along
the H–F bond; F is placed at the origin and H at (r) = 1.729.

multiplied by a factor 2 to include both ij and ji matrix elements in loops over upper or

lower triangular matrices. Such a difference is also present within the mpshift and escf

subroutines, but it was missed in the initial transfer of the lh cpscf subroutine for the

calculation of SSCCs. As outlined above, the routine is involved within the construction

of the PSO contribution to the SSCCs. Without the use of a current-density functional

(as for the initial implementation) the GS density matrix only enters in the construction

of the LMF, which weights the LH exact-exchange contribution. In case of GH functionals

via the LH code a constant is provided and the direct comparison of the two codes (GH

and GH-via-LH) matched exactly. Nevertheless, the initial LH results use an additional

prefactor of 1/2 for the unperturbed density matrices used in the construction of the LMF,

which subsequently controls the exact-exchange admixture within the PSO contribution.

The correct prefactor was set in the course of Ref. 386. However, the impact on the

resulting SSCCs is comparably small. On the one hand this is due to the overall small

contribution of the PSO in comparison to the total coupling constants. On the other hand,

it should be noted that no one-to-one mapping between the LMF and the (prefactor of

the) density-matrix exists and therefore significant parts of the LMF are almost identical
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Table 5.3.: Mean absolute percentage deviations (in %) of SSCCs obtained with various DFAs
in comparison to the combined test set of Refs. 387 and 388. On the left, the ini-
tially published data of P-II, and on the right the data computed with the corrected
PSO contribution (see text) and the CDFT variants of various density functionals
are shown.

1Ja 2/3Ja,b 1J 2/3Jb

TPSS 34.37 33.87 34.37 33.87
cTPSS – – 34.78 35.08
TPSSh 29.67 28.10 29.67 28.14
cTPSSh – – 30.05 29.45
B3LYP 22.94 21.89 22.95 21.87
PBE0 22.09 19.56 22.09 19.57
BHLYP 26.65 27.63 26.65 27.55
LH07t-SVWN 19.80 15.64 20.17 16.65
cLH07t-SVWN – – 20.27 16.92
LH12ct-SsirPW92 – – 31.19 28.75
cLH12ct-SsirPW92 – – 31.19 28.78
LH12ct-SsifPW92 31.70 28.23 32.26 29.34
cLH12ct-SsifPW92 – – 32.23 29.26
LH14t-calPBE 15.38 16.27 15.77 17.49
cLH14t-calPBE – – 15.82 17.62
LH20t – – 17.90 22.79
cLH20t – – 17.75 22.41
a Reprinted original data published in P-II; b Couplings with abso-
lute values smaller than 5 Hz have been excluded from the statistical
evaluation.

with both definitions of the density matrix (with distinct differences in asymptotic and

high density limits), see Fig. 5.3. For that reason, the main conclusions of P-II are still

valid for the corrected scaling of the exact-exchange admixture. The original data is given

in SI-II (the total SSCCs are reprinted in Tab. A.4). The corrected data for the same

data set is given in Tabs. A.29 and A.30 of the present work.

5.4.2 Validation of NMR Spin–Spin Coupling Constants

The initial validation of SSCCs in the course of P-II was based on a mixed main-group

benchmark set of MCSCF/BS2 and CC3/aug-ccJ-pVTZ levels of theory providing 80

SSCCs in 23 small main-group molecules, taken from Refs. 387 and 388.c

Within the main discussion of P-II, the MAPD of the 1J and 2/3J SSCCs was provided

as an initial assessment of the DFAs performance. Otherwise, the data of particularly

challenging 1JCF coupling constants and their individual contributions was provided as

an initial test for the newly implemented LHs. Besides these limited discussions in the

main text, further aspects of the functionals performance have been outlined in a more

detailed discussion in SI-II, reprinted in the present work in Sec. A.2.3.

cThroughout, SSCCs between nuclei K and L separated by n bonds are reported as nJKL.
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To summarize the main findings, (i) none of the provided models performs outstandingly

for all SSCCs. However, the statistical mean, as provided in Tab. 5.3, revealed the

comparatively broad accuracy of the t-LMF based LHs with lower EXX and the cali-

brated models within such main-group coupling constants. Furthermore, these LHs show

a comparably robust performance, i.e. even in cases less well described the deviations are

never among the worst performing methods. Therefore, such LHs outperform also estab-

lished GH methods, which are frequently applied and have been shown to perform well

compared to (approximate) wave-function based appraoches for (certain) SSCCs. [70,389,390]

(ii) In the computation of the 1JCF couplings the FC contribution in many cases dom-

inated the overall SSCCs (see also Ref. [71]) and the DSO contribution is usually small

to negligible. However, also the PSO and SD contributions may become sizeable and

decisively influence the overall performance of the DFAs. In particular, the PSO con-

tribution for t-LMF-based LHs with higher exact-exchange admixture is outstandingly

accurate. In comparison to established DFAs this results in SSCCs comparable to the

quality of BHLYP, formerly found as the best performing DFA in the calculation of cou-

pling constants involving fluorine (a more detailed discussion of these aspects is provided

in P-II). [391]

As outlined above, these initial results for the LH functionals use an incorrect scaling of

the exact-exchange admixture in the PSO contribution. For that reason, the corrected

data for the employed functionals of P-II is presented in Tabs. A.29 – A.31 using the same

computational settings as in the former calculations. However, the direct comparison of

both data sets shows relatively small deviations in most SSCCs with a MAD below 0.5

Hz for all LH models. Again, this finding can be rationalized by noting the overall small

PSO contributions in the SSCCs of the test-set data and the relatively small impact of the

factorized density matrix on the final EXX (see above). Nevertheless, larger deviations of

-63.5 Hz in 2JFF(OF2), as well as 19.4 Hz and 31.1 Hz for the 1JOF couplings in OF2 and

OHF are observed for LH12ct-SsifPW92. However, on a relative scale these barely exceed

5 % in comparison to the reference value. The small overall deviations are also preserved

for the 1JCF coupling constants, particularly for the individual PSO contributions, which

in the original publication was traced as the source of the accurate performance of certain

LH models. The related conclusions of the discussion within P-II therefore remain valid.

The corrected data is shown in Tab. A.32.

In Tabs. A.29 – A.31 the CDFT versions of the kinetic-energy dependent LHs and meta-

GGA functionals via τD are reported as well. These were not available at the time of P-II.

The current contribution likewise enters just the PSO term due to the symmetry of the

involved density matrices. Overall, small deviations are observed due to τD in the DFT
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Table 5.4.: Mean signed (MSD), mean absolute (MAD) and maximum absolute deviations
(MaxAD) in Hz of the DFT vs. CDFT (via τD) data sets for various density
functionals.

TPSS TPSSh 07t 12sir 12sif 14t LH20t
MSD 0.41 0.33 0.06 0.00(4) -0.03 0.02 -0.06
MAD 1.69 1.53 0.39 0.13 0.22 0.12 0.65
Max.AD 56.5 49.0 10.0 1.8 4.7 2.4 16.8
a abbreviations 07t=LH07t-SVWN, 12sir=LH12ct-SsirPW92, 12sif=LH12ct-SsifPW92,
14t=LH14t-calPBE, respectively

vs. CDFT data and the relative performance is largely preserved, as shown by the mean

statistical data provided in Tab. 5.3. However, a slight tendency of all methods except

the LHs with larger exact-exchange admixture to larger deviations with respect to the

reference data is observed upon inclusion of τD. Significant deviations in the SSCC data

due to the presence of the current density in the PSO contribution are rare. This is also

reflected in the MSD of the DFT vs. the CDFT variants (see Tab. 5.4), which is below 0.5

Hz in all employed functionals, for the LHs even significantly lower (between -0.06 Hz in

LH20t and 0.06 Hz in LH07t-SVWN). The largest changes are again found for 1JOF SSCC

in OHF and the SSCCs in OF2. Interestingly (and different to shielding calculations, see

below), the largest deviations are observed for the TPSS and TPSSh functionals (up to

56.5 Hz). In comparison, the maximum deviation of the LHs are observed for LH20t with

a maximum of -16.8 Hz for the 2JOF in OF2. However, on a relative scale, these changes

barely exceed 5 % and the main conclusions of P-II also hold in case of the current-density

correction within the PSO contribution.

Furthermore, the discussion of P-II lacks the analysis of the influence of the CFs, semi-

local functionals and the choice between spin-channel and common LMFs.d To better

understand some of these aspects, several LH models were modified separately, starting

with the cLH07t-SVWN model. In a first step the original prefactor was increased from

a = 0.48 to a = 0.709, matching the prefactor used in the cLH12ct-SsifWP92 functional.

In a second step, the spin-channel LMF was replaced by a common-LMF, both for the

smaller and the larger prefactor. These changes on the one hand allowed the study of

the influence of the common vs. spin-channel variants of the LMF and of exact-exchange

admixture, and on the other hand also probed the role of the short-range self-interaction

corrected PW92 LSDA correlation in cLH12ct-SsifPW92 in comparison to VWN LSDA

correlation in the modified cLH07t-SVWN version using the same admixture of exact

exchange. The role of the CF was probed by switching off the pig1 and pig2 models

in cLH14t-calPBE, and cLH20t. The uncalibrated variants are termed cLH14t-nc and

dDifferent to the shielding case (see below) the presence of the triplet operators in the FC and SD
contributions generates a spin cross-term dependency via the common LMF (see Eq. 2.64)
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Table 5.5.: Mean signed errors (MSE) in Hz from reference SSCC data of Refs. 387 and 388
for a variety of LH models (see text).

c07ta c07cta c07txa c07ctxa c12sifa c14ta c14t-nca c20ta c20t-nca

MSE 1JHC -6.43 -19.19 3.84 -17.12 -30.04 4.69 -0.14 -11.00 -4.51
1JCC 0.60 -12.69 8.00 -14.27 -20.87 8.52 3.93 -4.45 -5.65
-1JCO/CN -6.73 -10.55 -2.34 -8.90 -10.50 -4.35 -6.95 -5.76 -5.98
1JCF -93.52 -81.19 -81.66 -62.74 -59.88 -96.39 -103.51 -59.70 -58.59
2JHH -0.90 2.52 -3.79 1.81 1.49 1.46 -1.21 2.06 2.85
2JHC 0.08 0.91 -1.25 0.92 0.40 0.79 0.05 1.68 2.13
3JHH -0.49 -1.59 0.77 -1.39 -1.83 -0.26 0.07 -1.51 -1.05

a abbreviations of LH functionals c07t = cLH07t-SVWN, c12sif = cLH12ct-SsfiPW92, c14t = LH14t-calPBE, c20t
= cLH20t; “t” vs. “ct” mark the spin-channel and common t-LMF, “x” denotes functionals with a non standard
prefactor (a = 0.709), and “nc” is used for uncalibrated models.

cLH20t-nc. It is noted in passing, that the resulting cLH14t-nc is also a PBE analogue

of the LH07t-SVWN, with just a slight difference in the LMF prefactor.

The evaluation of these changes uses a subset of the initial SSCC benchmark data, sub-

divided into individual classes of coupling constants (C–H, C–C, C–N/C–O, C–F and

H–H), with at least 6 elements. Further statistical data is gathered in Tab. A.28, whereas

here primarily the MSE of just the CDFT variants of the respective LHs is discussed, as

shown in Tab. 5.5. Due to the negative gyromagnetic ratios of the 17O and 15N nuclei,

the negative of the C–N/C–O coupling MSE were included for easier comparison.

Focusing on the spin-channel variant of cLH07t-SVWN first, the increase of the prefactor

is observed to systematically increase the MSE (the negative MSE for C–N/C–O) for

the 1J couplings by 7-12 Hz (4.4 Hz for C–N/C–O). The agreement with the reference

data does not change dramatically and only notably improves for C–F. An increased

MSE is also observed for 3JHH, changing the sign, while the two-bond couplings decrease,

deteriorating somewhat agreement with the reference data. However, the same increase

of the prefactor applied to the common t-LMF has a much smaller and non-systematic

effect on all the one-bond couplings except for 1JCF, which increase even more (by ca.

17 Hz) than for the spin-channel LMF (where it reduces absolute deviations). Effects on

the 2/3J couplings are much smaller than in the spin-channel case. This shows that 1JCF

SSCCs behave distinctly different than the other 1J coupling constants evaluated.

Directly comparing the spin-channel and common LMF variants for a given prefactor,

the 1JCH and 1JCC MSEs as well as the negative of the MSE of 1JCN/CO are observed to

decrease, even more so if a larger prefactor is employed. The MSEs in these cases become

too negative, indicating a systematic underestimation of the corresponding SSCCs. Only

the MSE for 1JCF increases (improving the agreement with the reference data), consistent

with the distinctly different behavior identified for this type of coupling (see above). Fur-

thermore, replacing the spin-channel with a common LMF increases the 2J and decreases

the 3J couplings, whereas the size of the change again correlates with the chosen prefac-
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tor. As mentioned above, it should be noted that the spin-channel and common LMFs

are identical for closed-shell ground states and therefore reduce to the same models, e.g.

in nuclear shielding calculations (see below). However, they affect the triplet response

terms involved in SSCCs, i.e. the FC and SD contributions. It is often argued that the

spin cross-terms introduced by the common LMFs introduce non-dynamical correlation

to some extent, which lacks in the spin-channel LH models. In the present context, such

terms seem particularly beneficial for the C–F couplings, reducing their systematic un-

derestimate significantly, but at the same time they appear to cause also the deterioration

of the other 1J couplings.

The c07ctx functional model differs from cLH12ct-SsifPW92 only in the correlation func-

tional, hence their comparison provides an estimate of the influence of such correlation

models: replacing VWN by sifPW92 (see Eq. 2.72) further decreases the 1J MSEs (-MSE

for 1JCN/CO), and provides a small increase for 1JCF. As a result, the cLH12ct-SsifPW92

functional exhibits the most negative MSEs for all one-bond couplings, except C–F, for

which the smallest deviation of the so far discussed functionals is observed (only topped by

cLH20t, see below), however, with still a significant systematic underestimation in com-

parison to the reference data. The replacement of the correlation functional results also

in somewhat smaller 2J and 3J couplings. Hence, the performance of cLH12ct-SsifPW92

can be rationalized by a combination of a common t-LMF with large prefactor (and thus

local exact-exchange admixture) combined with its modified correlation functional. These

aspects appear to be beneficial for the C–F couplings but also account for the observed

systematic underestimate of the other SSCCs, which results in a mediocre performance

in the overall evaluation as given in P-II (see also Tab. 5.3).

Finally, to inspect the influence of the CFs more closely, cLH14t-calPBE and cLH20t are

compared with their uncalibrated variants. First, removing the CF in cLH14t-calPBE

decreases all 1J coupling MSEs (-MSE for 1JCN/CO) by about 3-7 Hz, with a mixed impact

on the agreement with the reference data (performance in H–C and C–C improves, but

deteriorates in C–F and C–N/C–O). However, the 2J coupling MSEs are decreased (with

a change in the sign of the H–H coupling constant MSE), while the 3JHH are increased,

yet the changes are smaller (between -2.7 Hz – 0.7 Hz). The cLH14t-nc functional is

furthermore a close analogue of cLH07t-SVWN, replacing LSDA contributions in the latter

by PBE exchange and correlation. However, differences in the MSEs of the 1J couplings

are moderate, with cLH07t-SVWN performing better for C–C and C–F couplings but

worse for C–H couplings (C–N/C–O coupling MSEs are similar) and overall negligible in
2J and 3J coupling MSEs. Removing the CF in cLH20t, however, results in a moderate

decrease of the 1JHC MSE (6.5 Hz) whereas the changes in the other 1J, 2J and 3J coupling
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MSEs are much smaller and range from -1.2 Hz to 0.8 Hz. It appears that the correction

in cLH20t is smaller than in cLH14t-calPBE, i.e. it has a smaller impact on the resulting

SSCCs.

5.4.3 Validation of NMR Shielding Constants

Initial Studies – P-I, P-III and P-IV The initial validation of LH functionals for

shieldings in P-I (uncalibrated LHs), P-III (CDFT variants) and P-IV (calibrated LH

models) used a smaller benchmark set compiled by Stoychev et al. based on GIAO-

CCSD(T)/pcSseg-4 reference data, [13] containing 34 (8 1H, 7 13C, 5 15N, 6 17O, 5 19F and

3 31P) shielding constants in 15 molecules.

In that context P-I provided a limited set of LHs containing the first-generation, uncali-

brated LSDA based approaches, LH07s-SVWN, LH07t-SVWN and the LH12ct-series of

functionals in comparison to the HF method and a few common semi-local and GH func-

tionals (such as BLYP, TPSS, TPSSh, B3LYP and BHLYP). The latter were also studied

by Stochev et al. and therefore provided a basis of comparison of the newly implemented

functionals. [13] This initial analysis of the LHs revealed (i) the s-lmf based LH07s-SVWN

to show a comparable performance to the applied GH models and (ii) the t-LMF based

models to perform comparably accurate, especially for the heavier nuclei of the test set, if

a larger prefactor as in the LH12ct-functionals is chosen. However, (iii) the t-LMF based

models showed a relatively large deviation in the application to 1H shielding constants

(also rising with the prefactor of the LMF), which at the time was attributed to the shape

of the mixing function when approaching the hydrogen along the bond axis (see Fig. 2.1).

It was then argued that the interplay of the steep increase in connection with a large

prefactor may deteriorate the results in such cases.

However, in the course of P-III four different models for the kinetic-energy density, in-

cluding the explicitly current-dependent τD (Eq. 3.87) were revisited and applied in

connection with meta-GGAs and other τ -dependent functionals such as the LHs. This

approach revealed that the deviations of the t-LMF based LH functionals described in P-I

can be traced to spurious artefacts (caused by a arising orbital-rotation operator, see also

in Sec. 5.2) due to the formerly implemented τMS-model. An analysis of these artefacts

was attempted in terms of atomic systems such as helium and neon (see Tab. 1 in P-III),

and the σp
∥-components of the paramagnetic contribution to the shielding tensors in a set

of linear diatomic molecules (see Tab. 2 in P-III). Comparably large deviations were found

not only in the LHs (increasing with the prefactor) but also in the M06-L and M06 func-

tionals, while TPSS and TPSSh were much less affected. However, the model provided
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by Maximoff and Scuseria was the first approach to implement meta-GGA functionals in

a gauge-independent way and is the standard approach in many quantum-chemical cal-

culation packages such as Gaussian or (before the present work) Turbomole. Another

aspect which was already noticed in P-I, but clearly rationalized not until P-III, was the

much better performance of the TPSS and M06-L functionals in Ref. 13 compared to the

τMS-data provided in P-I, which was due to an ad-hoc corrected version of τ within the

Orca program code.

Evaluation of the τD-dependent shielding constants for a similar set of (τ -dependent) func-

tionals as in P-I revealed a significant increase of the performance of the cLH12ct-series of

functionals. For these a decrease of the MAE and StD was observed, accompanied by an

increase of the MSE (still the lowest of the tested methods). Similarly, the performance of

the cLH07t-SVWN functional in 1H shieldings improved. This was, however, accompanied

by a slight decrease of the description of the heavier nuclei. Finally, a significant increase

in the StD of the CDFT variant of the formerly well performing meta-GGA M06-L was

observed. This was attributed to error compensation of the non-current dependent models

of the kinetic energy density within this highly parametrized semi-empirical functional.

Other meta-GGAs, such as TPSS or TPSSh, were much less affected by different choices

for the kinetic energy density. As a result of these deviations, the cLH12ct-series of func-

tionals (cLH12ct-SsirPW92, and cLH12ct-SsifPW92 performed overall very similar) were

now the top performers of the tested methods for the small shielding benchmark set.

Within P-IV the analysis was then extended to the calibrated LH functionals cLH14t-

calPBE and cLH20t, which showed an excellent overall performance of the calibrated

models for 1H shielding constants, and a comparable performance in the heavier nuclei

(i.e. 13C and heteronuclei such as 15N, 17O, 19F and 31P provided in the test-set) for

the calibrated models and the uncalibrated LHs with a similar prefactor. However, a

slight offset of the calibrated models was observed. While this makes the cLH12ct-series

of functionals still the best choice for heavier nuclei, in a simultaneous calculation of

multiple nuclei including hydrogen cLH20t was observed as the probably most robust

choice.

Drawbacks of the small test set employed within these initial analyses are the potential

dominance of a few shielding constants in the statistical evaluations. This was exemplified

by the exclusion of PN from the statistical data (see Fig. 1 in P-IV), as this particular

molecule is a major challenge for typical DFAs due to its significant (static-)correlation

contribution. [35] Furthermore, the small sample of data complicates reliable statistical

measures for the individual nuclei. To construct a statistically meaningful test set, the

combination of previously compiled reference data (see e.g. Refs. 13,35–39,64,392 for
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shielding and Refs. 62,65–67 for shift data sets) has been considered. However, such an

approach suffers from the inconsistent description of the benchmark data as well as the

implicit need to carefully trace errors due to the chosen methods and basis sets (in op-

timization, shielding and corresponding shift calculations, respectively). The magnitude

of such deviations can be estimated from the data collection of Tabs. S4 and S5 in SI-V

(see also Tabs. A.10 and A.11), which shows that especially the effect due to optimized

structures can amount to deviations of several ppm.

Systematic Validations – P-V and P-VI As reported in P-V, a benchmark data

set of consistent quality was compiled for validation of main-group shieldings and shifts.

Throughout, structure optimization was based on CCSD(T)/cc-pVQZ calculations (partly

also CCSD(T)/cc-pVTZ structures were computed for comparison) and shielding con-

stants on GIAO-CCSD(T)/pcSseg-3 calculations (for a significant subset additional GIAO-

CCSD(T)/pcSseg-4 data was provided). Finally, the benchmark comprised 372 evaluated

shieldings constants (124 1H, 15 11B, 93 13C, 43 15N, 33 17O, 49 19F, 14 31P, and 6 33S)

and shifts, respectively.

In Sec. 5.1 and 5.2 of P-V, the residual error of the test-set data was carefully estimated by

assessing the basis-set and method errors (see also S4 and S5 in SI-V). Furthermore, the

reliability of the single-reference benchmark data was analysed by suitable diagnostic tools

to exclude severe multi-reference cases (see S3 in SI-V). Further estimates of relativistic

(spin-orbit) contributions were provided by four-component calculations for a subset of

molecules. These, however, play no role in the direct QM-QM (i.e. QM=quantum me-

chanic) comparison at the non-relativistic limit as provided throughout P-V (and would

become important just in case of QM-experiment comparisons). Due to the exclusive

computational benchmark data, also the estimation of vibrational and environmental ef-

fects was circumvented, which likewise would become important for direct comparison to

experimental data.

To furthermore include electronically challenging test-set data, a benchmark of 3d transi-

tion-metal (TM) nuclei was constructed, as published within P-VI, using a combination

(and partly extension) of data sets of the systematic studies by Bühl et al. [393–400] Due

to the size of the systems and significant static-correlation contributions, a wave-function

based approach to construct the reference data was not pursued in this case. The data set

contains 70 evaluated complexes (12 49Ti, 10 51V, 10 53Cr, 11 55Mn, 9 57Fe, 9 59Co and 9
61Ni nuclei) with carefully selected experimental reference data (see Tab. S1 of SI-VI; data

not shown in the present thesis). It should be noted, that due to the direct comparison

with experimental shifts, further steps were included to validate the comparability of

the calculated vs. experimental reference data: these steps include careful estimates of
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solvent and environmental effects, including an estimate of the donor properties of organic

solvents such as acetonitrile (see Sec. S3 in SI-VI, reprinted in Sec. A.5.1), as well as

(scalar-)relativistic effects (see Sec. S6 in SI-VI, or Sec. A.5.2 of the present work).

Furthermore, in the original publications partly truncated model system were included

and the influences of the truncated vs. full ligand systems have been estimated carefully

(see Sec. S7 of SI-VI, reprinted in Sec. A.5.3). Also, the choice of the reference standard

for the calculation of NMR shifts (see Eq. 3.6) was analyzed. A “best estimate” approach

via the y-intercept of the linear regression of computed shielding constants at a given level

against the experimental shift data was employed (comparisons of statistical data using

either a referenced or the y-intercept approach are provided in Sec. S8 of SI-VI, reprinted

in Tabs A.17 – A.19 in Sec. A.5.4 of the present work). Further steps in the preparation of

the data set included the unification of the optimized structures and the careful estimation

of the residual errors due to the chosen DFT approach in the optimization. However, a

negligible effect on the relative statistics throughout the employed DFAs was observed

for different approaches for the input structure (a plot of the statistical data and selected

data sets of the shift results with different input structures are included in Sec. S2 in

SI-VI, in the context of this work only the plot of the statistical data is reprinted, see

Fig. A.5). Also, the influence of triplet instabilities was estimated. These were traced to

become severe for methods with large EXX (and subsequently are the reason for a very

poor performance of MP2 and the DHs), but were shown to be of lower importance for

typical DFAs (see Sec. S4 in SI-VI, reprinted in Sec. A.5.6).

In P-V, 45 methods and density functionals were included. These comprise Hartree–Fock,

MP2, CCSD and DFAs from all rungs of Perdew’s ladder such as semi-local functionals,

GHs, RSHs, LHs and DHs (see also the set of DFAs and methods outlined in Sec. 5.1).

Of these, 41 were also evaluated within the TM test set of P-VI, excluding only the

regularized and re-regularized SCAN models (which in P-V were observed to perform

fairly similar to SCAN) as well as B2GP-PLYP (due to the overall poor performance of

DHs) and CCSD (too computationally demanding). Furthermore, in both studies the

four different models for τ , as outlined in P-III, were included for meta-GGAs and other

functionals dependent on the kinetic energy density. Within the main studies, the focus

was on the current-dependent τD. However, the performance of the widely applied τMS

as well as the COM and ad-hoc corrected models of the kinetic energy density were also

compared (see the related discussions in the contexts of Fig. 3 of P-V and Fig. 4 of

P-VI). Furthermore, estimates of the paramagnetic artefacts due to τMS by means of iso-

electronic diamagnetic TM ions and atoms (see Tab. 1 of P-VI) were included in P-VI,

similar to the data provided in P-III.
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This resulted in 111 individual data sets in the main-group benchmark (not counting

shieldings and shifts individually) and 101 data sets for the TM benchmark, respectively.

The analyses in both studies contained averaged statistical measures, in the case of P-V

for shieldings and shifts (see the discussions in connection with Figs. 1 and 4 of P-V as

well as Fig. 1 of P-VI). Furthermore, both studies contained analyses of the performances

regarding the individual nuclei (see the corresponding sections within the publications as

well as Secs. S1 and S2 in SI-V, reprinted in Secs. A.4.1 and A.4.2 of the present work).

As a measure for robustness the maximum errors have been included (see Fig. 1 in P-V

and Sec. S3 in SI-V (reprinted in Sec. A.4.4 and the related Fig. A.2) as well as Sec.

S5 in P-VI (reprinted in Sec. A.5.7 and Fig. A.6)). Furthermore, in P-VI the role of

exact exchange was discussed in detail, providing further insights into the performance of

individual DFAs with regard to the nuclei of the benchmark set (see Figs. 2 and 3 and

the related discussion in P-VI).

Collecting common results from both studies: strikingly, CDFT meta-GGAs and LHs

such as cB97M-V and cmPSTS provide an outstanding accuracy and relative robustness

over the range of nuclei and partly challenging test cases presented in the benchmark data

of P-V and P-VI. Also the calibrated LH models cLH14t-calPBE and cLH20t provide a

similar performance. For the latter functionals, only the 53Cr subset is an exception, which

was shown to be notoriously sensitive to EXX and therefore error margins comparable to

common GH functionals are observed for these LH models.

A few more functionals were identified with an overall robust performance, but showed

already larger error margins in either one or both subsets. These are DFAs such as

the HCTH and B97D GGAs, which in both studies were typically more accurate than

older functionals of the same rung (e.g. BLYP or PBE). Furthermore, CDFT meta-

GGAs such as cM06-L or cVSXC combined a relatively stable performance in the main-

group data, with an outstanding performance in the TM benchmark set. Within this

category also GHs and RSHs such as cTPSSh, B97-2, ωB97X-V and ωB97M-V, as well

as the first-generation LSDA based cLH07t-SVWN can be collected, which are among

the best hybrid functionals in both benchmark sets. However, these DFAs are typically

already outperformed by CDFT meta-GGAs and also the best CDFT LH functionals.

It is also noteworthy that cTPSSh (similar to cmPSTS) is more accurate for shifts than

shieldings due to a pronounced error compensation. Furthermore, of the tested GHs

B3LYP was observed to be the best for the transition-metal benchmark set due to a

successful balance of the individual subset errors (while it is less successful in main-

group shieldings and shifts). To a lesser extent, also the t-LMF based cLH12ct-series of

functionals can be included within this group as these performed comparable to typical
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GHs within the TM benchmark, but were outstandingly accurate within the main-group

test set. In particular, the cLH12ct-SsifPW92 provided the overall best relative MAE for

the main-group shielding data and within the 19F test set performed similar to the best

DH functionals of the set.

As a next category, DFAs and methods are collected with an outstanding performance in

one of the benchmark sets, but clearly larger error margins in the other. This category

includes the specialized KT series of functionals, which were parametrized with shieldings

and shifts in mind, but trained using main-group species. Likely for that reason, their

good performance within the main-group test set was not preserved in the TM test-set

data, where these functionals were outperformed by common GGAs. Also cMN15-L was

very accurate in the evaluation of P-V but had to be excluded from closer statistical

evaluation of the TM benchmark due to its extremely large error margins. MP2 and

the DHs, particularly DSD-PBEP886, provide overall outstanding results in the main-

group case (in fact DSD-PBEP86 is the best functional up to rung 5 for the main-group

benchmark). Nevertheless, due to triplet instabilities (and significant static correlation

that is not properly reproduced), these methods are largely useless for the calculation of

TM shifts. Another drawback of MP2 and the DHs is the high computational cost due

to the perturbation-dependent correlation contribution.

Some functionals are less well to categorize. One example is BHLYP, which on the one

hand performs remarkably accurate for some main-group nuclei such as 1H or 19F. On the

other hand, it shows large error margins in the TM benchmark set due to significant triplet

instabilities (except the less critical nuclei such as 49Ti or 51V) and a mediocre performance

considering the combined statistical measures for the main-group benchmark set.

Finally, methods which cannot be recommended for general use in shielding and shift

computations are largely comprised of GHs with larger exact-exchange admixture, such

as the Minnesota series of functionals (M06, M06-2X and MN15). These DFAs were

commonly observed among the methods with the largest error margins in P-V and P-VI.

5.5 Application to 19F Shifts

On the basis of the systematic validation of various DFAs and wave-function based meth-

ods, the comparably high robustness and accuracy of various LH models in the application

for NMR properties was shown (see also the conclusions below). Especially the cLH12ct-

series of functionals were observed to perform remarkably well for 19F shieldings (even

on par with the tested DH functionals) and, e.g., C–F SSCCs. This predestines these

functionals also in the application to fluorine-specific problems. Such applications were
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carried out in P-VII and P-VIII. The present summary of these aspects focuses on the

contributions conducted by the author within these collaborative works.

In the initial study in P-VII, the NMR shifts of a set of fluorohalogenates ([XFn]
– with

X=Cl, Br, I and n = 2, 4, 6) were calculated to support the experimental conclusions with

regard to the synthesis of the individual species. However, while the deviations of the

computational results with respect to the experimental data were within the expected

error margins of the benchmark of P-V for the four- and six-coordinated species, much

larger deviations were observed in case of two-coordinated [XF2]
– (see Tab. 1 of P-VII,

and Tabs. S3 and S4 of SI-VII, reprinted in Tabs. A.22 and A.23).

Therefore, in P-VIII the solvent-induced 19F shifts were analyzed in detail for a set of

fluorine containing compounds, including the initial [ClF2]
– and [ClF4]

– (the latter to

provide a comparison of a less affected system) as well as [FHF]– and the fluoride anion

(F– ). Throughout P-VII, experiments were conducted in acetonitrile. The solvent-solute

interactions of the two-coordinated species, as well as of the fluoride and bifluoride anions,

were significantly underestimated by implicit solvent modeling via COSMO (published in

P-VII, see Tabs. S3 and S4 in SI-VII, reprinted in Tabs. A.22 and A.23), D-COSMO-RS

and the three-dimensional reference interaction site model (3D-RISM; those calculations

were not conducted by the author). This is why the corresponding NMR shifts were

far from the experimental reference results. Therefore, up to 12 explicit acetonitrile

molecules were added successively to the calculations. For the resulting micro-solvated

clusters between 2–8 ([ClF2]
– , [ClF4]

– ), 8–9 (F– ) and up to 10 ([FHF]– ) explicit CH· · ·F
hydrogen bonds were observed within the CREST and DFT optimized systems (see Tab.

S1 of SI-VIII, reprinted in Tab. A.24), close to the results which were also suggested by the

3D-RISM model. It was shown that the number of formed hydrogen bonds correlates with

the solvation free energy, which in turn correlates with the strength of the formed bonds

due to the negative charge on fluorine (“charge-assisted hydrogen bond”). Subsequent

calculations of the 19F NMR shifts revealed a significant solvent shift of 50-60 ppm for

[ClF2]
– , about 80 ppm in [FHF]– and up to 227 ppm for the micro-solvated F– (see Tab.

S4 in SI-VIII, reprinted in Tab. A.25).

Further analysis of two model systems ([F(MeCN)8]
– and a symmetrically coordinated

water cluster [F(H2O)6]
– ) showed that the solvent shifts are induced by charge transfer

from the anion to the solvent molecules. Within the acetonitrile micro-cluster this pri-

marily involves the σ∗(C–H) MOs (schematically shown in Fig. 3 of P-VIII). This charge

transfer was furthermore observed to induce a distinct red-shifted fingerprint in the in-

frared spectrum of (computationally) high intensity for the C–H stretching mode (see Fig.

4 of P-VIII) in comparison to a (MeCN)8 cluster system. In spite of the overall higher
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experimental and computed solvation free energy in water compared to acetonitrile, the

experimental and computed solvent effect on the 19F shifts in the latter solvent is found

to be larger. This was traced back in the analyses to arise from the overall larger average

number of hydrogen bonds (ca. 8–9 in acetonitrile compared to ca. 4–5 in water).

5.6 Conclusions and Outlook

In the present work, the derivation, implementation and validation of local hybrid func-

tionals for the calculation of NMR properties, such as shieldings and spin–spin coupling

constants, was reported. It was shown that despite the presence of a local mixing function

within the LHs, an efficient implementation is possible on the basis of semi-numerical in-

tegration. In comparison to standard global hybrid functionals, such an approach results

in just a small increase of the prefactor of the pre-loop section within the CPKS equa-

tions caused by the unavoidable presence of the perturbed two-center A-matrix integrals.

If calibrated LHs are included, higher derivatives of the density, such as the Laplacian

and Hessian, are additionally required. However, the derivation and implementation was

shown to be straightforward and with a negligible additional computational burden.

Initial validation using small benchmark sets for shieldings constants revealed the com-

parably accurate and robust performance of LHs. However, an unexpectedly large error

margin for relatively small and electronically less challenging species was detected. These

deviations were observed in particular for the t-LMF dependent LH functionals with an

implicit dependence on the kinetic energy density and were finally traced to unphysical

paramagnetic artefacts caused by the Maximoff–Scuseria model for the gauge-correction

of τ in the presence of a magnetic field. It was furthermore shown that these artefact are

not exclusively present in LH functionals, but can also be observed in other functionals

with a dependence on τ . The impact on the overall performance is, however, significantly

different. For that reason, the gauge corrections of τ were revisited and a physically mo-

tivated model proposed by Dobson (τD) was implemented. Using τD, no artefacts as for

τMS were observed and subsequently the deviations in the initial LH models were reduced

significantly. The model also renders the functionals implicitly current dependent. Hence,

the implementation of τD also enabled the first CPKS-based self-consistent evaluation of

common meta-GGA functionals and methods dependent on the kinetic-energy density in

the CDFT framework via τD.

For spin–spin coupling constants, the final equations are similar to those derived in the LH-

TDDFT framework, which was exploited for the FC and SD contributions. Adaptations

were only required for the PSO contribution. However, due to its resemblance to the
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paramagnetic contribution in NMR shieldings, its implementation was relatively straight

forward and could be based on routines previously implemented in the course of this work.

The initial validation of SSCCs revealed a comparably accurate and robust performance

of the t-LMF based LHs with lower exact-exchange admixtures, as well as the calibrated

models, also on par with the best performing alternative DFAs on the challenging 1JCF

coupling constants. It was later observed, that an erroneous prefactor had been included

in the initial implementation. However, the impact on the results was small and the

respective discussion and conclusions of P-II hold for the corrected data set. The analysis

of the current-dependent DFAs via τD in the PSO contribution revealed a small impact

on the resulting SSCC data, likely due to the small overall contribution of the term in

comparison to the total SSCCs.

A detailed analysis of the influencing factors of the performance of the LHs revealed a

significant impact of the inclusion of non-dynamical correlation within the SSCC calcula-

tions, as it affects the often dominant FC (and also SD) contributions. Also, a significant

sensitivity to exact-exchange admixture was observed. As in LHs the exact-exchange

admixture is controlled by the LMF, this sensitivity suggests further research into po-

tentially better suited mixing functions with an enhanced performance. However, the

initially employed test set comprised just a small number of SSCCs. In particular, a sta-

tistically still too small number of data points for the individual coupling constants was

provided. Further evaluation with larger benchmark data sets might therefore sharpen

the presented analyses and help to draw a conclusive picture on the capability of the

DFAs, the impact of the current contributions and further aspects of the LHs such as

semi-local ingredients, CFs or the LMFs.

The performance in NMR shielding and shift calculations was assessed in two large bench-

mark studies for main-group as well as 3d transition-metal nuclei. Each of the test sets

contained the largest combined benchmark data for shieldings and shifts to date and thus

allowed for an unprecedentedly detailed validation of the applied methods and DFAs.

The set of 3d transition-metal shifts was based on experimental data and combined to

a large extent earlier sets of individual nuclei, but treated computationally at a consis-

tent level. The new, unprecedentedly large and diverse NS372 main-group shielding/shift

benchmark, however, is based on newly generated, extremely demanding but accurate

coupled-cluster calculations carried out by the author.

Remarkably, several CDFT meta-GGAs and LHs are among the most robust and best

performing functionals and methods for the combined test-set data and are hence also

frequently found among the most accurate methods for individual nuclei. Such an out-

standing performance was also exploited in the analysis of solvent-induced NMR shifts in
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a set of small fluorine-containing compounds, which further illustrates the applicability of

these newly implemented LHs. However, as for SSCCs above, throughout the validation

studies a significant dependence of the performance on the chosen semi-local ingredients

and, more importantly, LMFs was observed, which suggests further research along these

lines.

Finally, the comparably accurate performance of the LHs in NMR shieldings and SSCCs

also suggests the extension of the implementation to NMR-parameters for open-shell

species, which to date is not yet provided in Turbomole. Moreover, further properties

in the context of magnetic resonance, such as magnetizabilities, could be explored in order

to gain further insights into the performance of the LHs and potential future pathways

of their development. Overall, this work has provided advances in DFT methodologies

to compute NMR parameters that should be useful when aiming at the complete first-

principles-based prediction and evaluation of NMR spectra.
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ABSTRACT: Nuclear shielding calculations for local hybrid (LH) functionals with position-dependent exact-exchange admixtures
within a coupled-perturbed Kohn−Sham (CPKS) framework have been implemented into the TURBOMOLE code using efficient
seminumerical integration techniques to deal with two-electron integrals. When using gauge-including atomic orbitals, LHs generate
additional terms within the “pre-loop” section of the CPKS scheme compared to global hybrid (GH) functionals, related to
perturbed electron-repulsion integrals. These terms have been implemented and tested in detail, together with dependencies on grid
sizes and integral screening procedures. Even with relatively small grids, a seminumerical treatment of GHs reproduces analytical GH
results with high accuracy while improving scaling with system and basis-set sizes significantly. The extra terms generated by LHs in
the pre-loop part increase the scaling of that contribution slightly, but the advantages compared to the analytical scheme are largely
retained, in particular for the typically large basis sets used in NMR shift calculations, allowing for a very efficient computational
scheme. An initial comparison of four first-generation LHs based on LDA exchange for a shielding test set of 15 small main-group
molecules against high-level CCSD(T) benchmark data indicates a substantial reduction of the systematically underestimated
shieldings compared to semilocal functionals or GHs for non-hydrogen nuclei when a so-called t-LMF is used to control the position
dependence of the exact-exchange admixture. In contrast, proton shieldings are underestimated with this LMF, while an LH with a
so-called s-LMF performs much better. These results are discussed in the context of experience for other properties, and they suggest
directions for further improvements of LHs regarding nuclear shieldings.

1. INTRODUCTION

The fundamental importance of NMR spectroscopy in many
areas of natural science and the central role that chemical shifts
often play in the characterization of chemical compounds can
hardly be overemphasized. It is therefore natural that the
quantum-chemical computation of nuclear shieldings and thus
of NMR chemical shifts has become an important tool in the
hands of researchers in various fields, for example, in catalysis
research, biophysics, or materials sciences. In this context,
Kohn−Sham density functional theory (KS-DFT) is the most
widely used approach, given its favorable scaling with system
size compared to more sophisticated post-Hartree−Fock
methodologies1 (see ref 2 for a review of the latter). However,
the accuracy of DFT calculations depends crucially on the

approximate exchange-correlation (XC) functional used.
Nuclear shieldings are quite sensitive in this context. While
DFT is widely used to compute them, limitations in accuracy
have been documented and discussed (see, e.g., refs 1, 3, 6. and
the references therein). Standard functionals are known to
often underestimate absolute shieldings, in particular for
systems with smaller excitation energy gaps.3,7,8 Efforts toward
improved performance for nuclear shieldings involved initially
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some ad hoc corrections9−12 and subsequently the use of
hybrid functionals with a constant exact-exchange (EXX)
admixture4,13,14 (in the following termed “global hybrids”,
GHs) or explicit empirical parametrization of semilocal
functionals for shieldings.15,16 While GHs and parametrized
functionals like Tozer’s KT2 or KT3 may improve perform-
ance15−17 over simpler semilocal functionals in some cases,
they are by no means a panacea for improving upon the limited
accuracy of DFT for sensitive shielding cases,18,19 and some
highly parametrized GHs in fact perform poorly for core-
related properties.17,20 While range-separated functionals are
particularly popular for other linear-response properties such as
TDDFT excitation energies, they also so far have not been
found to be a notable improvement.21,22 Double hybrid
functionals, which contain a fraction of MP2 correlation, have
been screened for the nuclear shieldings of a set of small main-
group molecules.23 Double hybrids performed very well in
comparison to CCSD(T) benchmark data, but the MP2 part in
combination with large basis sets and gauge-including atomic
orbitals (GIAOs) renders the computational effort of such
calculations rather demanding.
One likely origin for the deficiencies of approximate DFT in

the computation of shieldings is the neglect of induced current
terms in the XC functional. As has been demonstrated recently
based on functionals extracted from accurate densities,18 the
neglected current terms are typically shielding (except possibly
for a small negative contribution to proton shieldings). Their
contributions reached up to 11 ppm for the 13C shielding in
CO and 13 ppm for the 15N shielding in N2. The importance
of such current terms had been suspected earlier and had been
used to justify the use of EXX admixture in hybrid functionals
as exact nonlocal Hartree−Fock exchange does provide a
current response.24 The studies in ref 18 analyzed also
individual contributions to the dia- and paramagnetic shielding
parts and emphasized errors of typical XC functionals in the
core region as well as error cancellation between these two
parts (for example, in the empirical KT2 functional).
Unfortunately, the current corrections in ref 18 require
CCSD(T) computations and an extraction of KS-orbitals
from the coupled-cluster densities, and they can thus be
applied only to small molecules for benchmark purposes.
The present work will focus on yet another type of hybrid

functionals, so-called local hybrids (LHs) with a position-
dependent EXX admixture.25 An enhanced EXX admixture of
LHs in the core region near nuclei can address, to some extent,
the description of core densities, and the non-local exchange
may alleviate the errors from the neglected current terms. The
potentially good performance of LHs for core-related proper-
ties has been demonstrated recently for hyperfine coupling
constants20 and for core excitations at the TDDFT level,26

albeit the local mixing functions (LMFs) used to control the
position dependence were still of rather modest complexity
and most of the LHs studied were based on LDA exchange. It
seems nevertheless clear that LHs should provide a possible
way forward toward improved nuclear shieldings given that
suitable implementations become available. Such an imple-
mentation is the purpose of the present work, which details the
development and implementation of a coupled-perturbed
Kohn−Sham (CPKS) treatment of nuclear shieldings with
LHs within a generalized KS framework (i.e., using nonlocal
Hartree−Fock exchange) with GIAOs. We had earlier
attempted to use approximations to the multiplicative and
local optimized-effective potential (OEP) of exact exchange to

arrive at an uncoupled KS perturbation theory for nuclear
shieldings for GHs27 and LHs.28 However, it was later found
for GHs that the usual approximations to the OEP (including
the localized Hartree−Fock approach used in refs 27, 28) are
not of a sufficient quality for subtle response properties like
shieldings.29−33 The only previous CPKS treatment of
magnetic properties for LHs in a generalized KS framework
has been done for g-tensors.34 Implementation in that case
benefited from the use of a common gauge origin that removed
most of the additional terms arising for LHs. For nuclear
shieldings, the use of GIAOs or other distributed-gauge
treatments is mandatory, and we thus derive and implement
the CPKS terms in the GIAO basis using seminumerical
integration techniques to obtain an efficient code. We report
the implementation into the mpshift module of the
TURBOMOLE

35 program code and provide a preliminary
evaluation of computed shifts with LHs for some typical test
sets.

2. THEORY
2.1. Local Hybrid Functionals. Replacing the constant

amount (0 ≤ a0 ≤ 1) of EXX admixture in GHs

∑= { + − } +
σ

E a E a E E(1 )XC 0 X
ex

0 X
sl

C
sl

(1)

by a position-dependent admixture in LHs,36 governed by the
LMF gσ(r), gives the form25

∫∑= [ + −

+ ] +
σ

σ σ σ σ

σ

E g e g e

G E

r r r r

r r

( ) ( ) (1 ( ))( ( )

( )) d

XC
LH

X,
ex

X,
sl

C
sl

(2)

EC
sl represents some semilocal correlation contribution to the

energy, and eX, σ
sl and eX, σ

ex are the (spin-resolved) semilocal and
exact-exchange energy density, respectively. eX, σ

ex is constructed
from a set of occupied molecular spin orbitals {φi, σ}

∫∑ φ φ
φ φ

= − *
*

| − ′|
′σ σ σ

σ σe r
r r

r( )
1
2

d
ij

i j
j i

X,
ex

, ,
, ,

(3)

Gσ(r) represents the so-called calibration function (CF),
having the property ∫Gσ(r)dr = 0. The CF accounts for the
ambiguity of the exchange-energy densities (the so-called
gauge problem).37 Proper introduction of a CF to provide a
better match between the semilocal and exact-exchange energy
density38 reduces gauge-related spurious nondynamical
correlation contributions and notably improves upon weak
noncovalent interactions.37,39,40 In this first CPKS implemen-
tation of nuclear shieldings with LHs, we neglect the CF. We
therefore also restrict our initial evaluations to LDA-based
“uncalibrated” LHs only. An implementation for calibrated
exchange-energy densities, which requires derivatives with
respect to the density Hessian and Laplacian in the CPKS
scheme, will be reported elsewhere. We note in passing that
initial tests for hyperfine couplings suggested an only modest
influence of calibration for such core-related properties.20 We
note also that the present work deals with closed-shell systems
only, and thus any distinctions between “spin-channel” and
“common” LMFs25,41 are irrelevant for the purpose of the
present work.
While the number of different LMF forms suggested has

increased over the past years,25 in this initial assessment, we
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will mainly focus only on two simple types: (a) so-called “t-
LMFs” based on the scaled ratio of the von Weizsac̈ker kinetic
energy density and the Pauli kinetic energy density36,42,43

∑τ
τ

τ φ φ

τ
ρ ρ

ρ

= · = ∇ * ∇

=
∇ ∇

·

σ
σ

σ
σ σ σ

σ
σ σ

σ

g ar
r

r
( )

( )

( )
,

1
2

,

8

W

i
i i

W

,
, ,

,

(4)

and (b) an “s-LMF”44 formulated as

ρ

ρ
π= · =

∇
=σ σ σ

σ

σ

g b s s
k

kr( ) erf( ),
1

, 2(3 )4/3
2 1/3

(5)

where ρσ = ∑iφi, σ* φi, σ is the electron density. a and b are the
adjustable parameters of t- and s-LMFs, respectively (0 ≤ a ≤
1 and 0 ≤ b ≤ 1), typically optimized for thermochemistry and
reaction barriers (see explicit parametrizations in the
Computational Details below).
2.2. Extension of the Coupled-Perturbed Equations

for Nuclear Shieldings to Local Hybrid Functionals. The
theory background of the coupled-perturbed Hartree−Fock
equations and their extension to GHs can be found in detail
elsewhere.1,5,45 As a basis for the formulation of the CPKS
scheme for LHs, we only introduce the main aspects and the
notation. The nuclear shielding tensor σ (not to be confused
with the spin label σ) may be identified as the second
derivative of the energy with respect to the magnetic field B
and the nuclear magnetic moment of nucleus K, mK,

σ = =
= =

E
B m

k l x y z
d

d d
, , , ,kl

K

k l
K

B m

2

0k l
K (6)

For a variational wave function describing the unperturbed
closed-shell ground state (GS), this mixed derivative may be
written in terms of the GS density matrix in the atomic-orbital
(AO) basis, Dμν = 2∑icμi*cνi, as

∑σ = +
μν

μν
μν μν μν

= =

D
H

B m

D

B

H
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d

d d

d

d

d

dkl
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2
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Ä
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ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (7)

where Hμν is an element of the molecular Hamiltonian in the
same basis. We require the first-order response of the density
matrix (and hence of the wave function) to solve for σ. This
response is constructed from the perturbed coefficients, which
in turn are expressed in terms of unperturbed states, weighted
by expansion coefficients uia

Bk,

∑=μ μc u ci
B

a
ia
B

a
k k

(8)

The expansion coefficients may be obtained from direct
differentiation of the Brillouin condition or of the Roothaan−
Hall equations, which leads to the coupled-perturbed
equations (CPE)

ε
ε ε

=
−
−

u
F S

ia
B ia

B
i ia

B

i a

k
k k

(9)

where Fia
Bk is the derivative of the Fock matrix (in the MO

basis) with respect to the magnetic field. For a local and
multiplicative KS potential (i.e., in the absence of nonlocal
Hartree−Fock exchange or of current contributions to the XC
potential), the CPE may be solved in one step as they are

uncoupled. For the Hartree−Fock method or for hybrid
functionals, the corresponding potential depends implicitly on
the expansion coefficients uia

Bk, and the iterative CPHF or CPKS
scheme is required. We will use GIAOs to deal with the gauge
dependence in a finite basis set46−48

ω ϕ[ ] = − ×μ μ μ
i
c

r B r B R r, ( )exp
2

( )
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (10)

where ϕμ is an atom-centered basis function with its center at
position Rμ.
Usually, we consider derivatives with respect to GIAO pairs

ω ω ϕ ϕ[ * ] = [ × ]μ λ μν μ ν
=

i
c

R r
2

B

B
k

0

k

k (11)

where Rμν = Rμ − Rν is the distance vector between the two
basis functions ϕμ and ϕν.
In the following, we (mostly) suppress spin labels for the

sake of simplicity as we deal with closed-shell systems only.
Equation 9 contains the derivative of the Fock matrix with
respect to the magnetic field. As the Fock matrix depends on
the HF or generalized KS potential VXC, as well as on the exact-
exchange admixture (a0 for a GH, gσ(r) for an LH, see eqs 1
and 2), these derivatives clearly depend on the functional used.
For LHs, the derivative (marked by superscript B) may be
expressed as

[ ] = [ + + ]F h J Vij ij ij ij
B BLH LH,XC

(12)

where exact exchange is part of the exchange-correlation
potential Vij

LH, XC = Vij
LH, XC[ρ, eX

ex] as we mix energy densities
(see eq 2) rather than integrated energy quantities. Note that
the Coulomb term contributes only due to the use of GIAOs
and would vanish otherwise for the direct derivative with
respect to the magnetic field.49 Dropping the dependencies on
coordinate r, the LH exchange-correlation potential in the AO
basis reads:25

∫
∫ ∫
∫

∑ ϕ ϕ ϕ ϕ= − · +

+ [ − ] ̂ + ̂
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introducing the A matrix

∫ ϕ ϕ
=

′ ′

− ′
′μν

μ νA r
r r

r r
r( )

( ) ( )
d

(14)

as well as the potential operator

∫∑̂ = ∂ ′
∂

∂
∂ ′

′μν
ε μν

d
Q

D Q
r

r
r

( )
( )

d
Q (15)

where ρ ρ τ= { ∇ }, , , ... is a set of all quantities considered
in the LMF or LH of choice (a detailed description may be
found in ref 25).
Next, we have to evaluate the direct derivatives of the

potential with respect to the Cartesian components of the
magnetic field B = (Bx, By, Bz)
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∫
∫

∫ ∫

∑ ω ω ω ω

ω ω ω ω

[ ] = − { * + *

+ * + * } + ̂ ·[ − ]

+ − ̂ + ̂

μν
κλ

κλ κ ν μλ λ μ κν

κλ κ ν μλ λ μ κν μν

μν μν

V gD A A

gD A A d g e e

g d e d e

r r

r r

1
2

( )

( ) d ( ) d

(1 )( ) d ( ) d

B B

B B

B B

LH,XC

XX X
sl

X
sl

C
DFT

(16)

The first two lines represent the EXX contribution to the
potential, multiplied by the LMF prefactor, relatable to the
somewhat simpler, well-known CPKS scheme for GHs. The
first line represents the exchange response involving the
perturbed wave function (via the perturbed density matrix),
which contributes to the coupling terms of the CPKS scheme.
Exchange and correlation energy densities do not depend
directly on the magnetic field and contribute to the response
Fock matrix only via their contributions to the perturbed
potential terms (see lines four and five). The same holds for
the LMF, which itself does not depend on the perturbation but
contributes as part of an additional perturbed potential term
(lines three and four). The latter contributions may be viewed
as arising from a nondynamical correlation (NDC) term, the
second term on the RHS of 17. This is a rewritten formulation
of the LH energy functional (without a CF, see above)50,51

where this NDC term corrects 100% exact exchange (first
term) and is combined with the dynamical correlation (third
term):

∫∑= + [ − × − ]

+
σ

σ σ σE E g e e

E

r r r r(1 ( )) ( ( ) ( )) dXC
LH

X
ex

X,
sl

X,
ex

C
sl

(17)

The LMF or the semilocal XC contributions may depend on
the kinetic energy density, which is not a priori gauge invariant.
Following ref 52, we restore the gauge independence by using
the finite-external-field kinetic energy density

∑τ ω ω̃ = ∇ + · − ∇ +
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μν μ νD i
c

i
c

A A
1 1i

k
jjj

y
{
zzz

i
k
jjj

y
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(18)

rather than the zero-field kinetic energy density τ

( = ×A B r1
2

is the vector potential).

Line 2 in eq 16 contains the exact-exchange contribution
arising from the ground-state density Dμν, giving

∫ ∑ ω ω ω ω[ ] = − ·{ + + }μν
κλ

κλ κ ν μλ κ ν μλK D gD A r
1
2

( ) A ... dg
B B B

,

(19)

(shown here only for the first set of indices).
Due to the presence of the LMF, we may not simply

interchange the integration indices and sum up as we also
change the position of the LMF (gσ(r) → gσ(r′) for r → r′).
That is, the perturbed A matrix has to be computed

explicitly. For example, we find for the x component of the
perturbed A matrix (using eqs 10 and 11)
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(20)

and analogous results for the other components (see Section
S3 in the Supporting Information for more details).
Note that z − Rμ, z = zμ is just a Cartesian prefactor of a

given Gaussian primitive (indicated by the superscripts m for
the z component and k for the y component).53 Hence, the
remaining integrals over dr (the A as well as the AB matrices)
can be solved straightforwardly by standard techniques
involving incremented l quantum numbers. The perturbed A
matrices are furthermore exclusively connected to the
unperturbed density matrix as only the first-order response
has to be considered. We therefore have to solve them only
once before the CPKS iterations. The additional effort for LHs
compared to GHs is thus limited to the “pre-loop part”.

2.3. Seminumerical Integration Techniques. We and
others have found seminumerical integration techniques to be
uniquely suited to implement LHs54−58 as the LMF
contributions in an LH are readily included. Seminumerical
schemes like RIJ-COSX,59 which are a simplification of
Friesner’s so-called pseudospectral methods,60 in addition
offer general scaling advantages for exact-exchange integration
also for GHs and post-Hartree−Fock methods as the approach
scales formally as n · Nbas

2 compared to an Nbas
4 scaling of

analytical four-center integrals (n is the number of grid points
and Nbas the number of basis functions). In general,
seminumerical methods replace the outer integration of two-
electron integrals by quadrature on a set of (weighted) grid
points, while the inner integration is done analytically (these
two-center electron repulsion integrals constitute the A matrix
that has to be computed at each grid point). We note in
passing that the nuclear-shielding implementation for GHs in
the ORCA code uses RIJ-COSX.59 Here, we will follow the
notation of our SCF and TDDFT implementations of LHs
(see refs 54, 56). The underlying basic equations are provided
in the Supporting Information (eqs S5−S9) so that here we
can focus exclusively on the additional equations needed for
the CPKS treatment of nuclear shieldings in a GIAO basis.
Due to the derivation of the GIAOs wrt the magnetic field

Bk (k = x, y, z), three additional perturbed Fκ, g matrices
involving the GIAO prefactor

∑ ϕ= · ×κ
λ

κλ λ λF
i
c

w D R r
2

( )g
B

g k g, ,
k

(21)

and six perturbed Gν, g matrices

∑=ν
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νκ κG A Fg
B

g g
B

, , ,
k k

(22)

∑=ν
κ

νκ κG A Fg g
B

g,
A

, ,
Bk

k

(23)

have to be constructed.
In contrast to the symmetric unperturbed A matrices, the

perturbed A matrices are skew-symmetric (as are the perturbed
density matrices). However, due to the presence of the
perturbed density, we additionally have to construct F matrices
depending on Dμν

B

∑ ϕ= ·κ
λ

κλ λF w Dg
D

g
B

g, ,

Bk
k

(24)

as well as the resulting G matrices

∑=ν
κ

νκ κG A Fg
D

g g
D

, , ,
Bk Bk

(25)
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κF g
D

,
Bk
and, hence, νG g

D
,

Bk
only contribute within the CPKS loop,

while the other F and G matrices (eqs 21−23) only need to be
evaluated once before the iterations.
2.3.1. Integral Screening (S-, P-, and F-Junctions). The

timing of the seminumerical procedure is determined by the
calculation of the A matrix elements, and savings in the
computational effort are possible by prescreening of A matrix
elements using so-called S-junctions (based on an overlap
criterion of spherical shells) and P-junctions (based on density
matrices contracted with the basis-function vectors to the F
matrices),59 as well as F-junctions (based on an integral
estimate in the asymptotic limit, as recently proposed in ref
61). We follow the S-junction criteria of ref 54. Regarding both
the P- and F-junctions, we need to screen not only
unperturbed but also perturbed F matrices. This screening is
done once before the CPKS iterations and takes into account
Fμ, g (eq S7) and Fμ, g

Bk (eq 21). For the P-junctions, A matrix
elements are neglected if all (non-weighted) values of F (Fμ, g
and Fμ, g

Bk ) are below the given threshold, while for elements
with negligible Fμ, g but non-negligible Fμ, g

Bk , at least the
calculation of the perturbed A matrix can be skipped for the
given grid-point batch (saving more than with unperturbed
matrices due to the incremented angular momentum). In the
case of the F-junctions, computation of the current grid batch
is skipped if the contraction of an asymptotic integral estimate
and the maximum value Fμ, g (considering Fμ, g and Fμ, g

Bk ) of
that grid batch is below the chosen threshold.

Within the CPKS loop, the (non-weighted) elements κF g
D

,
Bk

are probed, and again the evaluation of the A matrix for the
given grid-point batch may be skipped if all values are below
the threshold. In principle, the same holds for the F-junctions.
These considerations show that different thresholds may be
suitable in the pre-loop (P- and F-junctions) and in the loop
(PL- and FL-junctions, respectively) parts of the CPKS scheme
as the magnitudes of Dμν and Dμν

B may differ significantly (see
Section 4 for more details).
2.4. Implementation. Starting from the most recent GH

shielding implementation in TURBOMOLE,62 adjustments for
LHs and for seminumerical integration of GHs have been
made. We distinguish in the following between those
contributions to the perturbed Fock matrix that depend on
the perturbed density (i.e., the contributions obtained
iteratively) and those we have to calculate just once (pre-
loop). The first pre-loop contributions come from the LMF-
weighted exact exchange, treated seminumerically (see above).
After computing the perturbed A matrices according to eq 20,
this contribution is calculated as

∑ ∑ ϕ

ϕ ϕ

ϕ
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− + + ×
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(26)

For g(r) = a0 = const, we obtain the GH seminumerical
scheme

∑ ∑ ϕ ϕ
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which does not require the evaluation of perturbed A matrices.
The second additional pre-loop contribution arises from the

LMF-weighted semilocal exchange part. Here, the direct
derivatives of the LMF do not contribute. The semilocal
correlation contributions are in any case unaltered and not
shown here. Overall, the additional contributions to the Fock
matrix read:
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(28)

contains all quantities occurring in the LMF and in the
semilocal exchange functional. Having multiplied the deriva-
tives of the LMF with respect to those quantities by the
difference between exact and semilocal exchange-energy
densities, as well as the derivative of the semilocal exchange
by 1 − g, we are left with the evaluation of the perturbed
orbital pairs, which are comparable to standard DFT routines
(if the set does only involve the density, the gradient of the
density, and the kinetic-energy density), as outlined in detail
elsewhere.52

The GIAO contribution arising from the Coulomb term
remains unaltered (cf. the recent update to include the MARI-
J62 approximation for this term).
Within the loop section, we finally have to account for the

LMF-weighted EXX contribution depending of the perturbed
density Dμν

B

∑ ∑ ϕ ϕ

ϕ ϕ

[ ] = − ·[

− ]
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μ νκ κλ λ

ν μλ λκ κ

K D w g A D
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, ,

, ,

k k k

k
(29)

Here, the analytical integration is replaced by the semi-
numerical integration scheme, leaving the other program
segments (e.g., the construction of the perturbed density
matrix from the expansion coefficients) unaltered.

3. COMPUTATIONAL DETAILS
The above equations have been implemented into a local
developers’ version of the TURBOMOLE program package, release
7.3.35 Computational efficiency has been tested on a single
CPU core (Intel(R) Xeon(R) CPU X5650 @2.67GHz, and
TURBOMOLE has been compiled using Intel Fortran Compiler
version ifort 17.0.2-20170213). All calculations have used the
RI-J approximation in the SCF-calculation, with energy
convergence criteria set to 10−9 a.u., as well as the MARI-J
approximation for the GIAO Coulomb shielding contribu-
tion,62 with shift convergence (convergence of the Euclidean
norm of the residual vectors) set to 10−7.
Throughout this work, we use standard TURBOMOLE

integration grids (Lebedev angular grids and Chebyshev radial
grids), constructed as outlined in ref 63 using Becke
partitioning.64 Table 1 provides the grid definitions. The first
column gives the standard settings (grid size X = 1, 2, 3, 4, 5),
except for the largest grid where additionally the keyword
“radsize 25” was employed to enlarge the radial Chebyshev
grid. For some parts of the algorithm, we also examined very
small non-standard grids marked as grid −1 and grid 0.
Timings and scaling with system and basis-set sizes of the

shielding computations have been evaluated comparing
seminumerical treatments of LHs (eq 26) and GHs (eq 27)
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to the existing analytical GH implementation of the code. In
these comparisons, the TPSSh GH65 and the Lh07t-SVWN
LH42 were used. The effects of prescreening (S-, P-, F-, PL-,
and FL-junctions) on efficiency and accuracy have been
evaluated for the all-trans C10H12 polyene (all-trans decene).
Performance comparison of different XC functionals is done

for a small set of 15 molecules (overall 34 shielding values)
taken from ref 59 (structures are also taken from that work)
against benchmark CCSD(T) data for 1H, 13C, 15N, 17O, 19F,
and 31P nuclei. As in that work, extended pcSseg-4 basis sets
are used.66 In addition to LHs (see below), we include
BLYP67,68 as an example for a GGA functional, TPSS as meta-
GGA,69 and the GHs TPSSh,65 B3LYP,70 and BHLYP,71

(providing 10, 20, and 50% EXX admixtures, respectively), as
well as Hartree−Fock (HF) calculations. On the LH side, for
this initial comparison, we include the simple LDA-based
functionals Lh07s-SVWN44 (s-LMF, eq. 5, b = 0.22) and
Lh07t-SVWN42 (t-LMF, eq. 4, a = 0.48). Functionals Lh12ct-
SsirPW9241 and Lh12ct-SsifPW9241 use t-LMFs (a = 0.646
and a = 0.709, respectively) with PW9272 correlation modified
to reduce or eliminate, respectively, short-range self-correla-
tion. Statistical measures employed are mean signed errors
(MSEs), mean absolute errors (MAEs), and standard
deviations (SDs) (see eqs S1−S3 in the Supporting
Information).

4. ACCURACY AND EFFICIENCY OF THE
IMPLEMENTATION

Before going into an assessment of grid dependencies, we note
that we have carefully evaluated for GH and HF calculations
that seminumerical EXX integration with (eq 26) and without
(eq 27) accounting for perturbed A matrices gave identical
results and data in excellent agreement with the standard
analytical EXX integration (data are provided in Table S1 in
the Supporting Information). Additionally, gauge independ-
ence of the implementation has been confirmed by rotation
and translation of a simple test system for both global and local
hybrids (cf. Supporting Information, Table S2 for the
structures and Table S3 for full results).
4.1. Dependence of Accuracy and Efficiency on Grid

Sizes. As the efficiency of the seminumerical scheme benefits
from using smaller grids, we need to evaluate the accuracy and
efficiency achieved with different grid sizes (cf. Table 1 for the
TURBOMOLE grid settings used). This is done at the Lh07t-

SVWN/pcSseg-4 level for the full set of 15 molecules
described in the Computational Details. Evaluations for the
ground-state SCF and for the pre-loop part of the CPKS
scheme compared standard grid sizes 1−5 as the same grid is
used here for the seminumerical integration of two-electron
integrals and for the integration of semilocal functionals
(where we cannot afford to reduce the grid size further59).
Within the loop section where no semilocal functionals are
integrated, we also evaluate still coarser grids denoted grid 0
and grid −1. Convergence of the density matrix is set to 10−7

a.u. in these evaluations. Following ref 59, throughout this
work, we report 1H and 13C results separately from those for
the other nuclei (13N, 17O, 19F, 31P) to account for the
somewhat different shielding ranges covered. Accuracy is
measured against an extremely large grid (grid 7/25, see
above). Effects of grid size on accuracy and efficiency for the
different parts of the code were screened independently for
each part of the code while keeping the large grid 5 for the
other two parts.
Deviations from the super-large grid 7/25 results are plotted

in Figure S2 in the Supporting Information (see also Tables
S5−S7 for detailed evaluations). The accuracy converges very
quickly with increasing grid sizes. Already for the combination
of the smallest grid 1 for SCF and the pre-loop part and grid 0
for the loop part, 1H shieldings deviate only by an MAE of
0.001 ppm, 13C shieldings by 0.041 ppm, and the other nuclei
by 0.097 ppm (see Table S8 in the Supporting Information).
That is, any of the grid combinations evaluated, except the use
of grid −1 in the loop part, provides clearly sufficient accuracy
compared, for example, to errors arising from different
functionals. The possibility of using such relatively small
grids does of course aid the efficiency of the computations
compared to the standard analytical integration scheme for
GHs. This gain in computational efficiency for smaller grid
sizes is shown in Figure 1 for timings of a typical shielding

computation on C10H12 in a def2-TZVP basis, assuming 10
SCF cycles and a typical value of 5 CPKS iterations. General
timing comparisons of different approaches are provided
further below.

4.2. Effects of Integral Screening. As S-, P-, F-, PL-, and
FL-junctions can be used to further speed up the semi-
numerical integrations (see the Implementation section), we
need to evaluate their influence on the accuracy. This is done

Table 1. TURBOMOLE Grid Settingsa

setting angular pts. radial pts.

−1b 50 10 (H−He)
15 (Li−Ne)
20 (Na−Ar)
≡(10/15/20)

0b 50 (15/20/25)
1 110 (20/25/30)
2 194 (25/30/35)
3 302 (30/35/40)
4 434 (40/45/50)
5 590 (55/60/65)

7/25 1202 (140/145/150)
a“Angular” is synonymous for Lebedev grids with the indicated grid
points, while “radial” grids use the indicated number of Chebyshev
grid points, depending on atom type (illustrated for grid −1). bNon-
standard grid settings; see text for details.

Figure 1. Grid dependence of the timings of different parts of the
code for the calculation of shieldings for C10H12 in a def2-TZVP basis
using the Lh07t-SVWN functional.
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by varying individually the threshold for one type of junction
while not screening by the other criteria (and using grid 5).
Results are shown in Table 2 (see Tables S9−S14 in the

Supporting Information for more detailed evaluations). Even at
very loose thresholds for the S- and P-junctions, deviations are
similarly small as discussed above for the grid errors. Only if we
choose extremely large values of 10−2 for S- and P-junctions,
we get larger errors and even convergence failure in some
cases. Regarding the F-junctions, reasonable accuracy seems to
be afforded at a threshold of 10−6, but since we expect F-
jupctions to affect larger systems more strongly, we suggest
10−7 as a reasonable lower cutoff. Tighter thresholds are
required for the CPKS loops (PL- and FL-junctions). For the
PL-junctions, 10−5 is needed to arrive at similarly small errors
as obtained with 10−3 P-junction settings in the pre-loop part.
For the FL-junctions, convergence can only be guaranteed for
thresholds of 10−9. This reflects the fact that in the CPKS loop
part, we screen the (much smaller) perturbed density matrices.

Settings 10−4 for S- and P-junctions, 10−8 for F-junctions, 10−6

for PL-junctions, and 10−10 for FL-junctions guarantee
essentially converged results if we aim at MAEs close to
0.001 ppm for 1H shieldings and at approximately 0.01 ppm
for the other nuclei. Combining these settings in the same
calculation leads to closely similar deviations (see Table S15 in
the Supporting Information). We may use even more
aggressive thresholds by up to one order of magnitude (10−3

for S- and P-junctions, 10−7 for F-junctions, 10−5 for PL-
junctions, and 10−9 for FL-junctions). The resulting somewhat
lower accuracy will likely still be reasonable for many
applications. Comparison of the higher and lower settings for
C10H12 (bottom of Table 2) indicates significant speedups
while conserving good accuracy (see Table S16 in the
Supporting Information for more detailed evaluations). In
the following, we will use 10−4 for S- and P-junctions, 10−8 for
F-junctions, 10−6 for PL-junctions, and 10−10 for FL-junctions
as standard thresholds (marked as high threshold).

4.3. Overall Timings. Starting with the basis-set depend-
ence for ethylene as an example for a small molecule, Figure 2
compares analytical and seminumerical treatments for a GH
(TPSSh) and the seminumerical scheme for an LH (Lh07t-
SVWN) as a function of increasing the basis set within the
TURBOMOLE def2-X (X = SVP, TZVP, TZVPD, QZVP,
QZVPD) and Dunning’s cc-pVXZ, aug-cc-pVXZ, and d-aug-
cc-pVXZ (with X = D, T, Q, 5) families (grid 1 for the pre-
loop and grid 0 for the loop part have been used). Presentation
on a logarithmic scale helps to evaluate scaling with basis-set
size (linear fits were done on the logarithmized data set).
Consistent with similar evaluations for TDDFT calculations of
excitation energies56 and as expected from the theoretical
underpinnings,59 these plots reveal roughly N2 scaling of both
pre-loop and loop timings with basis-set size in the semi-
numerical schemes compared to an N4 scaling for the analytical
GH computations. Additional efforts for the LH compared to
the GH in the seminumerical scheme, pertaining to perturbed
A matrices (cf. Section 2), occur only in the pre-loop part. For
the given (small) molecule, these contributions increase the
scaling exponent of the pre-loop part very slightly, while the
prefactor obtained in the fit is even slightly lower (likely due to
the effect of F-junctions). This leads to a somewhat earlier
crossover with basis-set size compared to the analytical
treatment of GHs for GHs than for LHs (Figure 2), but
only moderately so. The CPKS iterations are not affected.
Note that the crossover is observed for basis sets of double to
triple zeta quality, which is near or below the lower limit of
basis sets required for accurate shielding computations (see
Figure S1 in the Supporting Information).5

Moving on to the dependence on system size, we use a
“worst-case scenario” for seminumerical integration in
comparison to analytical four-center integrals56 by looking at
polyene chains (the same set of all-trans C2nH2n + 2; n = 1 − 10
as discussed above) with moderate def2-TZVP basis sets. Such
linear systems are best suited for standard integral screenings
in the analytical scheme while offering no advantages for
seminumerical integration. Figure 3 shows CPU times for full
NMR shielding calculations (normalized to 5 CPKS iterations,
while for n = 2 − 6, usually 3 to 4 iterations suffice for
convergence) obtained with the standard grid and the high-
threshold screening settings discussed above. As expected from
the above basis-set studies, the semi-numerical scheme
outperforms the analytical one even for very short chains
and increasingly so for longer ones, when looking at the TPSSh

Table 2. Mean Absolute Shielding Errors (in ppm) Caused
by Different Screening Thresholds for S-, P-, F-, P-Loop-,
and F-Loop-Junctions (PL/FL) for the Full Set of 15 Small
Molecules and Total CPU Times and Deviations from
Unscreened Results Using Grid 5 (Lh07t-SVWN/def2-
TZVP) for C10H12

Δσav. Δσmax

type 1H 13C other 1H 13C other

S-Junc.
2 partly unconverged results
3 0.000 0.024 0.024 0.001 0.114 0.094
4 0.000 0.001 0.005 0.000 0.006 0.038
5 0.000 0.000 0.000 0.000 0.000 0.000
P-Junc.
2 0.102 2.851 6.558 0.274 11.619 34.570
3 0.003 0.070 0.203 0.011 0.286 0.930
4 0.000 0.001 0.004 0.000 0.005 0.016
5 0.000 0.000 0.000 0.000 0.000 0.000
PL-Junc.
3 partly unconverged results
4 0.016 1.537 3.935 0.036 4.505 12.538
5 0.007 0.069 0.326 0.010 0.295 1.103
6 0.001 0.002 0.013 0.002 0.009 0.056
7 0.000 0.000 0.000 0.000 0.000 0.002
F-Junc.
4 0.048 1.035 1.261 0.106 3.865 7.334
5 0.021 0.250 0.419 0.080 0.812 2.027
6 0.007 0.064 0.117 0.028 0.185 0.421
7 0.002 0.015 0.025 0.006 0.036 0.090
8 0.000 0.003 0.005 0.001 0.007 0.020
9 0.000 0.001 0.001 0.000 0.002 0.004
FL-Junc.
8 partly unconverged results
9 0.001 0.012 0.028 0.002 0.019 0.081
10 0.000 0.003 0.006 0.001 0.005 0.018
11 0.000 0.001 0.001 0.000 0.001 0.004

C10H12 MAE 1H MAE 13C time [s]

unscreened 9009
high thresh.b 0.005 0.024 6376
low thresh.b 0.022 0.075 5426

bThresholds are as follows: (i) low S-/P-j. 10−3, PL-j. 10−5, F-j. 10−7,
FL-j. 10−9; (ii) high S-/P-j. 10−4, PL-j. 10−6, F-j. 10−8, FL-j. 10−10
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GH. For this worst-case scenario, the extra work for the LH in
the pre-loop part is moderate, and the increase with chain
length is also faster. However, except for the shortest chains,
these LH computations still outperform the analytical GH
scheme. As typically larger, often weakly contracted basis sets
are employed for nuclear-shielding calculations, this advantage
of the seminumerical scheme will be even more pronounced
for practical applications.
The code has been SMP-parallelized. Preliminary test

calculations for the C10H12 system on one node provide a
speedup of approximately 3.9 (4 CPUs), 7.1 (8 CPUs), and 9.6
(12 CPUs), reducing the full computational time from 153
min (1 CPU) to 39 min (4 CPUs), 21.5 min (8 CPUs), and 16
min (12 CPUs) when using grid 5 without pre-screening in the
seminumerical integration.

5. EVALUATION OF LOCAL HYBRID FUNCTIONALS
As a first assessment of the accuracy of a limited set of first-
generation local-hybrid functionals (LDA-based without CF),
we look at the CCSD(T)/psSseg-4-based benchmark data set
for 15 small main-group species of ref 59 in comparison with a
few standard functionals that include one GGA (BLYP), one
meta-GGA (TPSS), and three GHs with increasing amounts of
EXX admixture. The direct comparison against CCSD(T) gas-
phase computations eliminates the need to correct for
environmental or for ro-vibrational effects (also for relativistic
effects). To eliminate basis-set errors, we use the same large
psSseg-4 basis as the benchmark computations. Table 3
provides the data, including statistical analyses. The latter have
to be viewed with some care due to the small sample sizes (8
entries for 1H, 7 for 13C, and 19 for the combined 15N, 17O,
19F, and 31P set, following the separation used also in ref 59),
but they nevertheless provide some useful insights. While we
provide results obtained using grid setting 5 and without pre-
screening, identical conclusions can be drawn from data using
smaller grids and standard screening thresholds as discussed
above (see also Table S17 in the Supporting Information).
We start with the mean signed errors (MSEs) and mean

absolute errors (MAEs) of non-hydrogen main-group nuclei:
as is well known (see, e.g., ref 8), semilocal functionals
systematically underestimate nuclear shieldings in such test
sets, as indicated by the negative MSE for BLYP and TPSS
being equal to the negative of the MAE. As discussed in the
introduction, this may in part be attributed to the neglect of
current-density terms in the XC functional for the non-
hydrogen atoms.18 This systematic underestimate holds also
for the GHs, and it is not notably diminished (e.g., TPSS gives
smaller MAEs than the global hybrids, except for TPSSh).
Interestingly, HF theory exhibits smaller negative MSEs but
notably large MAEs, suggesting a less systematic underestimate
but significant statistical scattering. Turning to the LHs, we see
that Lh07s-SVWN (07s) with s-LMF performs essentially like
the GHs, with the MSEs being the negative of the MAEs. This
changes as we move on to t-LMFs.
While the simplest and earliest LDA-based functional Lh07t-

SVWN (07t) features only a small reduction of the negative
MSEs compared to the MAEs, the errors are indeed reduced.
As we increase the prefactor of the t-LMF and thereby bring in
a more position-dependent EXX admixture with Lh12ct-
SsirPW92 (12sir) and Lh12ct-SsifPW92 (12sif), the errors get
noticeably smaller, and the (still negative) MSEs deviate more
from the MAEs. This shows that, while we still underestimate
to some extent the shieldings for the non-hydrogen nuclei with

Figure 2. Comparison of timings for pre-loop (top) and CPKS loop
part (bottom) of nuclear shielding calculations on ethylene using
analytical and seminumerical treatments of the TPSSh GH and the
seminumerical treatment for the lh07t-svwn LH functional. def2-X (X
= SVP, TZVP, TZVPD, QZVP, QZVPD) and ((d)-aug-)cc-pVXZ (X
= D, T, Q, 5) basis sets are compared. Settings were grid 1 (grid 0 for
CPKS loops) and high thresholds (see text) in seminumerical
integration. The logarithmized data set has been used for linear fits
(Table S4 gives the Nprim of all basis sets).

Figure 3. Comparison of timings for full nuclear shielding calculations
on polyalkenes (def2-TZVP basis, normalized to five CPKS
iterations) using analytical and seminumerical treatments of the
TPSSh GH and the seminumerical treatment for the lh07t-svwnLH
functional. Settings were grid 1 (grid 0 for CPKS loops) and high
thresholds (see text) in seminumerical integration.
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those t-LMF-based LHs, the underestimate is overall
appreciably less pronounced than with GHs and semilocal
functionals, and the deviations become more statistical. This is
interesting given the very simple structure of these LHs, but it
aligns with the good performance of the Lh12ct-SsirPW92 and
Lh12ct-SsifPW92 functionals in TDDFT computations of
different types of excitation energies.26,73 Looking at the
standard deviations for the non-hydrogen nuclei is also
instructive: these are in fact the smallest for TPSS and

TPSSh and not for the LHs, indicating that the distributions
for the former two functionals are narrower than for the others
even though they are shifted to distinctly too low shielding
values. This is confirmed by the normal distributions shown in
Figure 4 (middle and right panels). Note that the distributions
for the LHs with t-LMF are also somewhat wider than that for
the LH with s-LMF but shifted closer to the origin.
Closer analyses of non-hydrogen shieldings of different

systems (Table 3) provide some explanations for the

Table 3. Comparison of Isotropic Shielding Constants (in ppm) Computed with Different Functionals against CCSD(T)/
pcSseg-4 Reference Valuesa

nuclei molecule HF BLYP TPSS TPSSh B3LYP BHLYP 07s 07t 12sir 12sif Ref.
1H furan (C2/5) 24.27 24.02 24.15 24.19 24.00 24.03 23.74 23.68 23.52 23.42 24.03

furan (C3/4) 25.30 25.03 25.22 25.25 25.00 25.03 24.68 24.63 24.45 24.33 25.02

(CH3)2CO 29.94 29.53 29.66 29.72 29.57 29.71 29.37 29.28 29.19 29.11 29.53

CH4 31.63 31.65 31.72 31.69 31.59 31.55 31.45 31.31 31.19 31.12 31.39

NH3 31.57 31.83 31.94 31.88 31.72 31.59 31.57 31.33 31.17 31.09 31.44

H2O 30.49 31.29 31.37 31.37 31.04 30.84 30.84 30.47 30.28 30.18 30.65

HF 28.11 29.80 29.82 29.75 29.33 28.87 29.06 28.55 28.28 28.16 28.82

PH3 29.67 29.69 29.67 29.67 29.63 29.65 29.40 29.25 29.12 29.03 29.46

13C furan (C2/5) 36.85 25.17 35.65 37.00 26.50 29.19 33.23 38.02 42.06 43.44 47.36

furan (C3/4) 74.50 59.62 69.21 70.80 61.63 65.45 67.00 72.32 76.39 77.79 81.67

(CH3)2CO −24.94 −42.28 −30.25 −28.05 −39.81 −33.55 −33.00 −30.31 −25.88 −24.34 −10.84
(CH3)2CO 162.51 145.05 151.26 153.43 148.84 154.87 154.09 159.38 163.67 165.35 162.88

CH4 195.11 186.47 188.76 189.89 188.82 191.66 193.51 199.85 203.92 205.78 199.39

CF4 77.81 36.06 45.57 49.16 44.64 57.19 51.53 53.40 58.82 60.81 65.96

CO −28.05 −19.19 −9.04 −9.71 −22.93 −25.02 −16.92 −13.20 −10.87 −10.32 2.56

15N N2 −116.04 −89.97 −79.18 −83.12 −97.20 −106.03 −92.03 −81.59 −78.74 −78.12 −61.16
NH3 262.07 258.45 259.26 259.99 259.68 261.06 263.88 275.84 280.43 282.39 270.4

NNO −35.78 −7.60 1.57 −0.28 −14.52 −21.84 −6.41 −1.52 0.70 1.64 11.74

NNO 60.94 85.31 91.09 89.41 79.01 72.20 85.89 94.44 97.76 99.00 106.22

PN −510.99 −425.30 −398.73 −405.87 −447.50 −470.04 −428.60 −401.71 −395.99 −394.92 −344.71

17O furan 58.20 8.09 22.46 27.25 15.03 28.78 22.03 37.55 44.76 46.62 64.82

(CH3)2CO −333.47 −350.97 −320.59 −320.08 −356.21 −348.90 −342.33 −316.52 −306.17 −304.12 −297.91
H2O 327.59 325.50 326.55 327.64 326.53 328.11 331.06 349.49 354.87 356.91 337.63

CO −91.92 −83.89 −71.10 −70.67 −88.07 −87.78 −81.43 −64.96 −60.21 −59.42 −55.42
OF2 −448.18 −646.56 −561.91 −536.98 −593.76 −524.56 −583.15 −538.32 −511.64 −504.24 −446.32
NNO 173.28 172.21 172.30 173.52 171.30 172.31 175.54 191.34 196.51 198.46 198.77

19F HF 414.32 409.95 411.23 412.42 411.49 413.76 414.79 437.04 442.80 444.75 419.91

F2 −173.98 −279.70 −236.89 −226.64 −259.92 −223.67 −252.35 −215.67 −198.22 −192.91 −192.76
CF4 281.95 229.96 241.17 246.15 241.33 257.09 247.97 262.88 271.40 273.89 267.58

OF2 19.74 −105.06 −73.39 −58.59 −76.60 −36.31 −58.08 −34.20 −16.18 −10.03 −24.28
PF3 255.53 182.74 196.38 205.27 199.15 223.36 209.21 227.02 238.06 240.94 231.81

31P PH3 583.04 553.28 569.98 574.07 560.99 569.90 580.93 598.97 615.34 623.43 604.51

PF3 255.41 149.12 180.59 189.07 168.07 200.24 181.29 189.24 204.92 210.03 224.8

PN −109.37 −48.52 −7.85 −18.03 −70.30 −92.05 −72.30 −44.89 −40.28 −40.39 51.61

MSE (1H) 0.08 0.31 0.40 0.40 0.19 0.12 −0.03 −0.23 −0.39 −0.49
MSE (13C) −7.88 −22.58 −13.98 −12.35 −20.18 −15.60 −14.22 −9.93 −5.84 −4.35
MSE (other) −26.05 −54.22 −33.91 −30.67 −49.41 −39.56 −40.60 −21.20 −11.96 −9.12
MAE (1H) 0.30 0.32 0.40 0.40 0.21 0.12 0.18 0.23 0.39 0.49

MAE (13C) 11.27 22.58 13.98 12.35 20.18 15.60 14.22 10.06 7.36 6.88

MAE (other) 39.89 54.22 33.91 30.67 49.41 39.56 40.60 24.83 20.29 20.15

SD (1H) 0.34 0.33 0.30 0.27 0.18 0.08 0.20 0.10 0.13 0.14

SD (13C) 12.08 5.96 3.79 3.07 5.82 7.24 5.21 6.35 6.50 6.75

SD (other) 54.26 43.89 24.77 21.25 36.73 36.98 36.03 29.81 28.29 28.67
aResults with pcSseg-4 basis sets, grid 5, and without pre-screening. Abbreviations: 07s = Lh07s-SVWN, 07t = Lh07t-SVWN, 12sir = LH12ct-
SsirPW92, 12sif = LH12ct-SsifPW92, Ref. = CCSD(T)/pcSseg-4.59
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somewhat wider distributions of the LHs with t-LMF: results
for systems with relatively large nondynamical correlation
effects and smaller band gaps are improved most notably; for
example, several fluorine and oxygen shifts (where lone-pair
repulsions can be important), as well as unsaturated systems
such as CO, N2 or N2O. This may suggest that LHs with t-
LMF indeed bring in a certain amount of extra nondynamical
correlation (cf. eq 17). In contrast, atoms bonded to hydrogen
atoms tend to be described more poorly by the t-LMF-based
LHs, and the “heavy-atom” shielding in these systems (NH3,
H2O, HF, PH3) is overestimated by those functionals. This
explains at least in part the wider error distributions.
Matters are rather different for the 1H shieldings (Table 3).

Now, the LHs having a t-LMF clearly underestimate the
shieldings systematically by similar amounts as the semilocal
functionals overestimate them. In contrast, Lh07s-SVWN with
an s-LMF now is among the best-performing functionals,
together with BHLYP and B3LYP. However, note that the
latter two functionals give systematically too shielded 1H
values, while the errors of Lh07s-SVWN are largely statistical.
The relatively poor performance of the t-LMF for proton
shieldings may be linked to the peculiar shape of this type of

LMFs near hydrogen atoms as the ratio
τ
τ

σ

σ

r

r

( )

( )
W , (eq 4) goes to 1

near hydrogen atoms (consistent with these spatial regions
being dominated by a single hydrogen 1 s orbital).25,74 This
suggests that, while t-LMFs perform well for the second- and
third-period atoms studied here, modifications of the LMF
may be needed to properly account for proton shieldings.
These results are furthermore consistent with observations for
binding energies involving hydrogen atoms when using t-
LMFs.25 Obviously, an increased prefactor of the t-LMF, as in
Lh12ct-SsirPW92 and Lh12ct-SsifPW92, is in this case
detrimental rather than beneficial. Interestingly, for proton
shieldings the normal distributions of the LH results with t-
LMF are among the most narrow of all functionals (except for
BHLYP, see SDs in Table 3 and distribution in Figure 4, left
panel), suggesting that the underestimated shieldings are
largely due to a systematic error for all species. We should
emphasize that, while fulfilling the one-orbital limit may be a
useful exact constraint on an LMF for one-electron regions, the

constancy of =τ
τ

σ

σ
1

r

r

( )

( )
W , applies equally to closed-shell s orbital-

dominated situations as in H2, or for parts of the E−H bonding
regions in molecules of the present test set (see Figure S3 in
the Supporting Information). In the latter case, this leads to a

sudden rise of the LMF as we approach the hydrogen-atom
position. This likely does not adequately model left−right
correlation in the E−H bond.
To evaluate to which extent it is the large EXX admixture

near hydrogen and to what extent the steep increase toward
hydrogen, which is responsible for the too deshielded 1H
values obtained with t-LMFs, we have tested GHs constructed
from two of the t-LMF-based LHs by simply using the
maximum EXX admixture provided by the given t-LMF
prefactor (Table S18 in the Supporting Information). For both
cases, the 1H values for the GHs are also too deshielded with
respect to the CCSD(T) reference values, but somewhat less
so than for the underlying LH. In fact, for most molecules, the
differences between LH and GH are very similar (0.10−0.15
ppm for Lh07t-SVWN and 0.13−0.18 ppm for Lh12ct-
SsirPW92). Only for the most polar E−H bonds, there is
either a smaller shielding increase for the associated GH (0.07
and 0.08 ppm, respectively, for H2O) or there is an extra
deshielding (−0.05 and −0.07 ppm, respectively, for HF).
These results suggest that the very large EXX admixture near
the hydrogen nucleus is part of the problem with the t-LMFs
for 1H shieldings but the steep increase and thus the shape of
the LMF also may contribute. The results for the non-
hydrogen shieldings obtained with these specially constructed
GHs are much poorer than those of the underlying LHs (Table
S18), roughly comparable to the data for BHLYP, which
exhibits similar EXX admixtures (Table 3).
The present results with LHs cannot yet compete with the

results for double hybrid (DH) functionals given in ref 23.
While the MSE and MAE for 13C shieldings with t-LMF are
comparable to the best DH results, those for the other non-
hydrogen nuclei are overall inferior to those for the best DH
evaluated (DSD-PBEP86).59 The standard deviations for DHs
indicate clearly more narrow distributions. Also, of course, the
LH results with t-LMFs for proton shieldings are not
competitive for the reasons outlined above. However, the
small main-group molecules of the present test set are ideal
cases for DHs, while the MP2 correlation term contained in
DHs is likely to cause problems for systems exhibiting large
nondynamical correlation effects (e.g., for the 17O shieldings in
ozone or in d0 oxo complexes where MP2 is known to fail
completely19). It seems likely that improved LMFs may render
LHs competitive with the best DHs for systems like those
studied here while performing better for systems with strong
nondynamical correlation at lower computational cost than
required for DHs.

Figure 4. Normal error distributions of absolute shielding constants (ppm) obtained with different functionals relative to the CCSD(T) reference
data from ref 59. The computations used pcSseg-4 basis sets, the MARI-J approximation for the Coulomb contributions, grid 5, and no pre-
screening (see text).
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We note in passing that our results using TPSS for non-
hydrogen nuclei are rather different (lower) than those in ref
59 where TPSS and M06L were the best-performing
functionals apart from DHs. We have repeated these
calculations for τ-dependent meta-GGA functionals with the
Gaussian09 code75 and obtained results very close to our own
data for TPSS but very different from the results of ref 59 for
TPSS and M06L (see Table S19 in the Supporting
Information). It appears that the different results in ref 59
arise from the neglect of current terms caused by the τ
contributions (cf. eq 18).

6. CONCLUSIONS
To be able to tap the potential of local hybrid functionals with
position-dependent exact-exchange admixture for the compu-
tation of NMR chemical shifts, this work has reported the first
implementation of a coupled-perturbed Kohn−Sham scheme
with local hybrids for nuclear shieldings within a generalized
Kohn−Sham framework using gauge-including atomic orbitals.
The additional contributions to the shielding tensor resulting
for local hybrids compared to global hybrids have been derived
and implemented using efficient seminumerical integration
techniques for the terms arising from exact exchange, as well as
current-density contributions for mixing functions and meta-
GGA contributions depending on local kinetic energy
densities. Efficiency and accuracy of this scheme depend on
the required integration grid sizes. Gratifyingly, rather small
grid sizes for the different program parts have been found to be
sufficient to obtain accurate nuclear shieldings, and efficiency
can be further enhanced by different integral screening
techniques. This leads to a CPKS scheme for global hybrids
that exhibits more favorable scaling with system and basis-set
sizes than standard analytical integration schemes (as has been
shown previously), and the additional effort required for the
computation of perturbed A matrices with local hybrids,
restricted to the pre-loop part of the CPKS algorithm, increases
the CPU time only moderately and does not affect the basis-set
scaling. As the advantages of the seminumerical scheme are
particularly notable for large basis sets as typically used for
nuclear-shielding calculations, this allows the straightforward
application of local and global hybrid functionals to the
computation of NMR chemical shifts for large molecules.
A preliminary evaluation of the performance of four first-

generation local hybrids based on LDA exchange in
comparison with some standard GGA, meta-GGA, and global
hybrid functionals against CCSD(T) reference data for a test
set of 34 shielding values of 15 small, light main-group
compounds has been carried out. Local hybrids with local
mixing functions based on the ratio between von Weizsac̈ker
and Pauli kinetic energy densities (t-LMFs) provide a
substantial improvement for the shieldings of the non-
hydrogen nuclei, reducing the systematic underestimate of
these shieldings by semilocal functionals and global hybrids.
These improvements pertain particularly to systems with large
nondynamical correlation and small band gaps, while atoms
bonded to hydrogen are treated less accurately by these t-
LMF-based local hybrids. For proton shieldings, these same
functionals provide systematically underestimated shieldings,
suggesting that the unique shape of t-LMFs in one-orbital
regions around hydrogen is unfavorable in this context. A local
hybrid with a local mixing function based on the reduced
density gradient (s-LMF) in contrast performs more closely
aligned with standard global hybrids, that is, less accurately for

non-hydrogen shieldings (except when bonded to hydrogen)
and more accurately for proton shieldings. These results point
to the crucial role of the LMF and of its shape in different
spatial regions for local hybrids, suggesting areas for improve-
ment as the development of this class of functionals continues
actively. That is, we pursue LMFs that respect the high-density
homogeneous coordinate scaling limit relevant for the core
regions of heavy atoms and also exhibit the correct shape in
areas dominated by hydrogen 1 s orbitals. Having an efficient
implementation for nuclear shielding computations with local
hybrids will allow an in-depth investigation of these and other
aspects, together with evaluations for other magnetic and
electric properties for which variable exact-exchange admixture
in different regions in space may also be beneficial.
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ABSTRACT: We present an efficient implementation for the computation
of nuclear spin−spin coupling tensors within density functional theory into
the TURBOMOLE software suite. Emphasis is put on methods to efficiently
evaluate the Hartree−Fock exchange needed for hybrid functionals:
resolution of the identity and seminumerical evaluation on a grid. Our
algorithm allows for the selection of specific nuclei for the reduction of
calculation times. Further, the accuracy of locally dense basis sets in the
density functional theory framework is investigated. These features allow for
the routine computation of coupling constants in systems comprising about
100 carbon atoms within less than one day on a single CPU and within a few
hours when using the OpenMP variant. Based on seminumerical integration,
the first implementation of local hybrid functionals for spin−spin couplings is reported. This has allowed a preliminary evaluation of
position-dependent exact-exchange admixture in three local hybrid functionals for a set of 80 isotropic spin−spin couplings in 23
small main-group molecules against CC3 and MCSCF reference data. Two of the local hybrids (LH14t-calPBE and LH07t-SVWN)
are the top performers in the overall statistical evaluation compared to several standard functionals (TPSS, TPSSh, B3LYP, PBE0,
and BHLYP), in particular, as they do not exhibit notable outliers for specific coupling types.

■ INTRODUCTION

Nuclear magnetic resonance (NMR) is one of the most
powerful tools in chemistry to analyze geometric and electronic
structures in molecules, solutions, and solids.1−4 In addition to
nuclear magnetic shieldings, which relate to chemical shifts,
nuclear spin−spin coupling tensors (SSCTs) are one of the
most important NMR parameters. In isotropic media (e.g., in
fluids), the isotropic spin−spin coupling constant (SSCC, trace
of the SSCT) is usually measured. The SSCT anisotropy can
provide additional information and is accessible in certain
solid-state or gas-phase measurements.5,6 To aid the
interpretation of the experimental data and to make
predictions,7,8 reliable yet efficient quantum-chemical methods
for the calculation of SSCTs are needed. The large size of
many relevant molecules, which may easily consist of hundreds
of atoms, presently often prohibits the use of precise wave
function-based methods, such as coupled cluster theory.9−12

Density functional theory (DFT) is a popular choice to fill this
gap. Often, hybrid functionals, which include a constant
amount of exact exchange (“global hybrids”), perform better
for SSCCs than pure density functionals.13−20

As the exact exchange dominates the computational
requirements of the coupled-perturbed Kohn−Sham treatment
of SSCTs using hybrid functionals, the first main aim of the
present work is its efficient treatment. The computation of the
exact-exchange contribution scales as N( )bf

4 per perturbation
(Nbf is the number of basis functions). Therefore, the

calculation of SSCTs scales effectively with system size N as
N( )5 . We will present several methods to improve upon both

formal scaling and prefactor, including the selection of
perturbed and responding nucleus, a systematic use of locally
dense basis sets (LDBSs), as well as the efficient evaluation of
exact exchange using a resolution of the identity (RI-K) or
seminumerical integration on a grid.
The second main aim of this work is to use the

seminumerical integration of exact exchange to implement
and evaluate for the first time local hybrid functionals (“local
hybrids”, LHs) for the computation of SSCTs. LHs replace the
constant amount of exact-exchange admixture of global hybrids
by a position-dependent admixture, governed by a local mixing
function (LMF).21 The increased flexibility of local hybrids
compared to global hybrids offers the promise of an accurate
treatment of properties that depend on different areas of space,
for example, near nuclei, in bonding regions or in the low-
density asymptotics of a molecule. In addition to various other
ground- and excited-state properties that have been reviewed,21

this enhanced potential of LHs has already been evaluated also
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for some magnetic-resonance parameters. In particular, the
possibility of balancing of core- and valence-shell spin
polarization by having more exact exchange in the core region
has been found promising for hyperfine couplings (HFCs) of
transition-metal complexes22 and may likely be improved
further by LMFs respecting the high-density limit.23 Our very
recent nuclear-shielding implementation of LHs also provided
very promising results, even though room for improvement of
the functionals was identified for proton shieldings and for
nuclei bound to hydrogen.24 Given the large role of the Fermi-
contact (FC) term, which can be related to HFCs, and of the
paramagnetic spin−orbit (PSO) term that is analogous to
paramagnetic shielding, one may expect also the advantages of
position-dependent exact-exchange admixture for SSCTs.
The paper is organized as follows: first, we briefly review the

theory of SSCTs and discuss the extension to LHs. We then
present our implementation along with a description of the RI-
K and seminumerical integration algorithms we use. Afterward,
small examples are provided to highlight the correctness,
timing, and usefulness of the new implementation features.
This is followed by the first evaluation and analysis of LH
functionals for SSCTs. We close with our conclusions.

■ THEORY
The theoretical framework for the calculation of SSCTs has
been described elsewhere in detail.11,12,25−28 We focus here on
the key points necessary to understand the described
treatments of exact exchange and the extension to LHs.
The reduced indirect nuclear spin−spin coupling tensor KKL

is the second derivative of the electronic energy E with respect
to the magnetic dipole moments M of the coupling nuclei

M M
E

K
d

d d
M

KL
K L I0I

=
= ∀ (1)

The isotropic and the anisotropic part

K K
1
3

tr( )KL KL
iso =

(2)

K K K K
3
2

1
4

(( ) ( ) ) 3( )KL KL KL KL
anis 2 iso 2

i

k

jjjjjjj
y

{

zzzzzzz∑= + −
αβ

αβ βα

(3)

are invariant under rotation of the molecule in space. By
multiplying with the isotope-specific gyromagnetic ratio γ, the
observable quantities JKL

iso and JKL
anis are obtained

J h K
2 2KL

K L
KL

iso isoγ
π

γ
π

=
(4)

and similar for JKL
anis.

We note in passing that the choice for the anisotropic part is
not unique.29 For reasons of consistency, here, the same
definition was chosen as for the anisotropy in chemical
shielding tensors.30

According to Ramsey’s theory,31 four terms contribute to
the SSCTs: the FC, spin−dipole (SD), PSO, and diamagnetic
spin−orbit (DSO) interactions

r sh
8

3
( )K

i
iK i

FC 2

∑πα δ̂ =
(5)

r s r s
h

r
r

3
K

i

iK i iK iK i

iK

SD 2
T 2

5∑α̂ =
−

(6)

r
h

r
iK

i

iK i

iK

PSO 2
3∑α̂ = −
× ∇

(7)

r r r r
h

r r
I

KL
i

iK iL i iL

iK iL

DSO 4
T

3 K
T

3 3∑α̂ =
−

(8)

α ≈ 1/137 is the fine structure constant, δ(riK) denotes the
Dirac delta distribution, si is the spin of electron i, and I3 is the
(3 × 3) identity matrix.
Carrying out the derivative in eq 1 yields

M M M M M M
R

E E E
KKL

K L K L K L
K L

2 2 2
λ

κ
κ= ∂

∂ ∂
+ ∂

∂ ∂
∂

∂
= ∂

∂
+

(9)

where κ is the set of parameters that determine the wave
function. The right-hand side integrals RK (for FC, SD, and
PSO terms) can be calculated easily from the operators, eqs
5−7. The response of the wavefunction λL can be obtained by
solving the linear system of equations for each nucleus L

G R
bj

ai bj L bj L ai, , ,∑ λ = −
(10)

where G is an electronic Hessian. In the context of SSCTs, two
different Hessians are needed

G ab f ji aj f bi( ) ( ) ( )ai bj ij ab a i,
rt

XC XCδ δ ε ε= − + | | + | | (11)

r rG w w( ) ( ) d dai bj ij ab a i abji ajbi,
is

1 2∬δ δ ε ε γ= − − −
(12)

where the labels r, i, s, and t stand for real, imaginary, singlet,
and triplet, respectively. εp denotes the energy of orbital p.

r r r

r

pq f rs d d e w

d d e

( ) d d d

(1 ) d

ps rq pqrs

ps rq

XC C
sl

1 1 2

X
sl

1

∫ ∬
∫

γ

γ

| | = ̂ ̂ −

+ − ̂ ̂
(13)

are the DFT kernel integrals, where γ is the portion of exact
exchange in global hybrid functionals, eX

sl and eC
sl are the

semilocal exchange and correlation energy densities, respec-
tively (defined by EX/C

sl = ∫ eX/Csl dr1). The differential operator
d̂ps is defined as

d
Q
D Qps

Q psQ

∑̂ = ∂
∂

∂
∂∈ (14)

where Q runs over all quantities present in the functional of
choice (e.g., Q = {ρ, ∇ρ, τ} for meta-GGA functionals) and
Dps is an element of the density matrix.
The four-center products are defined as

r r r rw r( ) ( ) ( ) ( )pqrs p q r s1 1 12
1

2 2ϕ ϕ ϕ ϕ= * *−
(15)

For LH functionals, the constant amount of exact exchange γ
in eqs 12 and 13 is replaced by an LMF g(r). As a result, the
four-center integrals depend on an additional semilocal
function, whose derivatives have to be accounted for as well,
leading to additional terms within the potential and kernel
integrals.
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For the sake of simplicity, we limit ourselves to a general LH
exchange kernel integral. The second term in eq 13 is then
replaced by

r r
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(16)

Similar real triplet kernel integrals have to be solved in the
context of linear-response time-dependent DFT, and detailed
derivations for LHs can be found in ref 32.
The imaginary singlet Hessian, eq 12, becomes

r r r r

G

g g w w

( )
1
2

( ( ) ( ))( )d d

ai bj ij ab a i

abji ajbi

,
is,LH

1 2 1 2∬
δ δ ε ε= −

− + −
(17)

The PSO operator is a purely imaginary singlet operator
(hence requiring Gis) and does therefore not interact with the
FC and SD operators (which are real and triplet operators).
The contributions of the latter two are both obtained from Grt

and therefore form a cross term which can be written
equivalently in two forms

R

K R R
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(18)

This matrix is traceless and does therefore not contribute to
the SSCC, but it is in many cases the dominant contribution to
the SSCT anisotropy.
The DSO contribution

M M
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(19)

is a ground-state expectation value and thus does not require
solution of linear-response equations.
The complete reduced coupling tensor is given by

R
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(20)

■ IMPLEMENTATION
DSO Term. The DSO integral in eq 19 cannot be solved

analytically. Instead, it is rewritten as suggested in ref 33 and is
then solved by one analytical integration and one Gauss−
Legendre quadrature on 24 gridpoints. For the transformation
of the integral bounds, m = 0.75 was chosen, in accordance
with ref 33.

Response. The response eq 10 are solved for FC, SD, and
PSO individually, using an iterative non-orthonormal Krylov
subspace method.34,35

The trial vectors are read from a file in the basis of molecular
orbitals (MO basis, Latin indices) and transformed to the basis
of atomic basis functions (AO basis, Greek indices). They are
then contracted with the two-electron integrals,36,37 which are
calculated on the fly using the Obara−Saika scheme

R g∑ λ=μν
κλ

μνκλ κλ
(21)

r r r r r rg r( ) ( ) ( ) ( ) d d1 1 12
1

2 2 1 2∬ ϕ ϕ ϕ ϕ= * *
μνκλ μ ν κ λ

−
(22)

The matrix−vector products are transformed back to the
MO basis and stored on disk for the convergence check.

RI-K. For Coulomb integrals, an efficient and accurate
approximation has been developed.38−40 Due to its formal
similarity to the resolution of the identity, it has been termed
RI-J. In the context of SSCTs, however, there are no Coulomb
terms. A similar approach, RI-K, exists for the exchange
integrals.41 In contrast to RI-J, it does not reduce the formal
scaling, albeit the prefactor is reduced.
Within the RI-K approximation, the four-center integrals for

exchange are calculated as

g P P R R Q Q
1
2

( )( ) ( ) ( )
PQR

RI 1/2 1/2∑ μν κλ= | | | |μνκλ
− −

(23)

To solve the response eq 10, the integrals need to be
contracted with the trial vector λbj. Instead of transforming it to
the AO basis in every iteration, the three-center integrals
(μν|P) are transformed to the MO basis once after
construction, and the quantity

B pq P P Q( )( )pq
Q

P

1/2∑= | | −

(24)

is stored on disk. Within the solver iterations, these quantities
are read and contracted with λbj, yielding

B Baj
b

ab
Q

bj
Q ∑ λ̃ =

(25)

In the final step

R B Bai
jQ

ji
Q

aj
Q∑= ̃

(26)

is obtained.
Seminumerical Integration. As an alternative, we

implemented the seminumerical (sn) integration of the four-
center integrals on a grid42−44

R X A X
g

g g g
sn ∑ ∑ ∑ λ=μν μ

λ
νλ

κ
κλ κ

(27)

here, g indexes the grid points at position rg with weights wg
and
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ν λ
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Like in ground state calculations, Aνλg is evaluated by an
exact quadrature scheme. Equation 26 is most efficiently
evaluated right-to-left. The loop over the grid points is
executed in batches to reduce memory demands.
Extension to Local Hybrids. A similar seminumerical

integration scheme has been used to implement LH func-
tionals. As outlined above, due to the presence of the LMF, the
four-center exchange integrals depend on an additional
semilocal function, rendering an analytical implementation
demanding, if not impossible. Yet the seminumerical scheme
allows a straightforward solution, where the LMF is
constructed from molecular properties on a grid and is
included in the quadrature part of the integration.
The extension of the existing code to match the requirement

of SSCCs is done taking the following steps: (i) the electronic
(LH) Hessian of eq 11 is used, as described in ref 32, where
only the right-hand sides are exchanged to correspond to the
contributions of eqs 5 and 6. (ii) The Hessian of the PSO
contribution, which is comparable to the paramagnetic
contribution to nuclear shieldings (as both are imaginary,
they depend only on the exact-exchange contribution), is
solved by adjusting the dimensions of the involved perturbed
density matrices in the routines of our recent nuclear shielding
implementation for LHs in TURBOMOLE (cf. ref 24), and
exchange of the right-hand sides to match eq 7. We note that
for SSCTs, a larger number of perturbed contributions have to
be computed compared to shielding calculations (overall 3·N,
where N is the number of non-symmetry-equivalent nuclei,
instead of the 3 perturbations by the external magnetic field for
shieldings).
Nuclei Selection Schemes. As is evident from eq 20, it is

sufficient to solve the response equations for one coupling
partner in order to obtain the coupling tensor between that
atom and any other atom. For the latter, it suffices to calculate
the right-hand side. Since there is a separate set of eq 10 for
each atom, excluding some RK does not alter the solution
vector λL and therefore leaves the resulting SSCT untouched.
This can be utilized via a nuclei selection scheme, where the
response is calculated only for a few, user-selected, nuclei. This
can be readily combined with the idea of LDBSs,45 that is, by
employing different types of basis sets for the atom/region of
interest and the remainder of the molecule, which is carefully
investigated for the present context below.
The form given in the first line of eq 18 requires both λK

FC

and λL
FC, that is, the response equations need to be solved for

both coupling atoms. This prohibits the full use of the nuclei
selection, but it avoids the six response equations of the SD
term. The form given in the second line requires λK

FC and λK
SD

and is preferred if the SD terms are calculated anyway, as no
response equations for nucleus L need to be solved. If one
wants, for example, to obtain the 13C NMR spectrum of a
compound CnAmXk, where A stands for coupling nuclei and X
for non-coupling ones, then only 10(n + m) RHS vectors need
to be calculated and 10n response equations to be solved,
instead of 10(n + m + k). The factor 10 = 1 + 6 + 3 describes
the individual contributions of the FC, SD, and PSO term.

Further, molecular symmetry may be exploited for D2h
symmetry and subgroups, and solvent effects may be included
by the conductor-like screening models COSMO46 and D-
COSMO-RS.47 All features are available in TURBOMOLE
V7.5.48−51

■ RESULTS AND DISCUSSION
Technical Performance of the Implementation.

Settings. For the computations in this section, the wave
function has been converged with an energy threshold of
10−8 Ha and the response vectors with a residual norm of 10−6,
which is enough to obtain a precision in the coupling tensors
of typically 10−2 Hz.
The computation times were recorded on an Intel Xeon

CPU E5-2687W v4 (3.00 GHz).
Nuclei Selection and Locally Dense Basis Sets. The time

savings when calculating the coupling tensors of only a subset
of atom pairs have been investigated exemplarily using
porphyrin. At B3LYP52,53/pcJ-254−56 (grid57 size 3) level
without symmetry, the calculation of all tensors takes 72 h on
one core. All hydrogen−hydrogen coupling tensors can be
calculated within 21 h and a particular nitrogen−nitrogen
coupling tensor within 3 h using nuclei selection, without loss
of accuracy. An obvious complement to this feature is the idea
of so-called “locally dense basis sets” (LDBSs), that is, the
combination of larger basis sets for the atom/region of interest
and smaller ones for the remainder of the molecule, as for
SSCTs, only the electronic structure of the coupling atoms and
their immediate vicinity matters. This concept was first
employed in the calculation of chemical shifts.45,58−60 It has
been applied to SSCCs as well, mainly using the second order
polarization propagator approximation.61−64 Although LDBS
have been used with DFT methods,65,66 little investigation on
the reliability of such a method has been done.67

We have investigated the LDBS scheme on 15 molecules:
adamantane, Al4Me4, AlH2PMe2CF3, AlH2PMe3, allene,
B4Me4, bicyclo[1.1.1]pentane, butane, C2H2, C2H6, EtMgCl·
2THF, HCN, MgMe2, naphthalene, and OF2. For these
compounds in particular, it is not always clear which nuclei to
include into a chemically meaningful surrounding of the
coupling atoms as this would require a priori knowledge of the
system. In preliminary investigations, we found that it is usually
sufficient to use LDBS at the coupling partners only. Our
results are summarized in Table 1, the complete list can be

found in Supporting Information (Tables S1−S4). We used
the basis set combinations “pcJ-n/m” (meaning pcJ-m for the
coupling atoms and an attenuated basis set pcJ-n for the
remainder of the system) and “XVP/pcJ-m” (X = S, TZ),
where we employed the def2-XVP basis set68 as the attenuated
basis. In this article, we restrict ourselves to m = 2 and use pcJ-
2 as a reference. We used the TPSS69 and the B3LYP
functional with grid 3. The isotropic and anisotropic part of the

Table 1. Number of Couplings That Deviate More Than
0.1 Hz from the pcJ-2 Reference Result (First Number) and
Maximum Deviation Therefrom (Second Number, in Hz)

measured quantity pcJ-1/2 TZVP/pcJ-2 SVP/pcJ-2

TPSS, isotropy 25/−12.2 29/−12.2 47/−57.5
B3LYP, isotropy 24/−10.6 29/−11.5 45/−54.3
TPSS, anisotropy 29/14.6 31/6.1 40/18.8
B3LYP, anisotropy 27/16.2 28/7.8 40/22.0
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SSCT in most cases differ by less than 5 Hz (for pcJ-2)
between these two functionals, but large deviations up to
240 Hz have been found for OF2. However, all basis set
combinations are affected in a similar way (as can be seen from
the maximum deviation in Table 1), and we are therefore
confident that our findings hold for other density functionals as
well.
The distribution of errors is highly non-Gaussian, and the

usual statistical methods such as calculating the standard
deviation are not meaningful. For instance, the smallest
attenuated basis set, def2-SVP, produces the largest deviation
from the pcJ-2 result, 57.5 Hz for the F−F coupling in OF2.
We therefore use the number of coupling constants that differ
by more than 0.1 Hz from their reference value as a primary
criterion; other thresholds give similar results. With pcJ-1/2,
we find 24−29 (depending on the functional and whether
isotropy or anisotropy is considered) such outliers in the 51
coupling constants investigated, and the combination TZVP/
pcJ-2 yields similar values (28−31). With SVP/pcJ-2, many
coupling constants (40−47) differ by more than 0.1 Hz from
pcJ-2. We find no clear indication that either the isotropic or
the anisotropic contribution is described worse with LDBS. It
is noteworthy that most SSCTs are only slightly affected if the
attenuated basis set is used instead of the large one. For
example, with TZVP/pcJ-2, only three coupling constants
deviate by more than 2 Hz from pcJ-2. Of the three
combinations investigated here, we deem the methods
pcJ-1/2 and TZVP/pcJ-2 eligible.
As a practical example, we calculated the P−H and P−C

coupling constants of SIMesPH [SIMes = 1,3-bis(2,4,6-
trimethylphenyl)imidazolin-2-ylidene] as well as its tBu2AlCl
and tBu2GaCl adducts, in the following labeled SIMesPH·Al
and SIMesPH·Ga, respectively. In Table 2, we compare the

computed coupling constants (using B3LYP/grid 3) with the
experimentally obtained ones from ref 70, from where we also
obtained the optimized Cartesian coordinates. We used
COSMO to simulate the solvent effect, using ε = 2.28
(benzene). All three calculation protocols yield almost the
same result, reproducing the experimental trends fairly well.
Note that the experiment does not indicate the sign of the
coupling constants. If a negative sign for JPC is assumed, the
calculated values are consistently about 25 Hz smaller than the
measured ones. The agreement between the three computation
methods shows that the use of mixed basis sets pcJ-1/2 and
TZVP/pcJ-2 is valid also beyond the sample test set and that
basis set errors are much smaller than the differences to the
experiment.

Grids for the Seminumerical Integration and LHs. The
size of the grid for the numerical integration is a tradeoff
between the errors made and the computational effort. To find
a suitable grid size, we investigated the 276 coupling tensors of
the α-D-glucose monomer (generated with the SWEET tool71)
with the pcJ-2 basis set.
The seminumerical calculation of the exact exchange was

examined using Hartree−Fock. We found that the TURBO-
MOLE grid size 1 yields maximum errors of 0.03 and 0.05 Hz
for the isotropic and anisotropic part, respectively.
The error margins of LH functionals using the smallest

integration grids (grid setting 1) are tested with respect to very
large grid settings (TURBOMOLE grid 7 with enlarged radial
grid setting to 25), giving a maximal deviation of 0.12 Hz with
an averaged deviation of 0.01 Hz for LH07t-SVWN.72 Due to
the presence of the gauge function, deviations are larger for
LH14t-calPBE,73 giving a maximal deviation of 2.44 Hz and an
average deviation of 0.18 Hz. However, increasing the radial
grid size slightly (radial grid setting 3 instead of the default
setting of 1) reduces the deviations to 0.27 Hz (max.) and
0.01 Hz (av.), with only a moderate increase of grid points
(increase from a total of 30,797 to 43,596 grid points, see also
Table S10 in Supporting Information).

Efficiency. To demonstrate the efficiency of our implemen-
tation, we investigated chains consisting of n α-D-glucose units,
denoted (amylose)n, n = 4, 8, 16, 32, 48, 64, which were
generated with the SWEET tool. Our setup (PBE74/pcJ-1,
TURBOMOLE grid 1, one core) is very close to the
parameters used in ref 75. The wall times obtained in this
manner (without approximations) are listed in Table 3. For

ease of comparison with ref 75, we report only the time needed
for the calculation of R and λ, disregarding overhead, for
example for reading the MO data. We achieve a favorable
scaling of n2.3 between n = 16 and n = 32, close to that in ref 75
(n2.4) but with a lower prefactor. Factoring in the thermal
design power of the CPUs, we find that our implementation
consumes about half the energy.

Benefit of the Implemented Features. In the following, we
compare timings for RI-K (using the def2-TZVP auxiliary
basis76) and the seminumerical integration (for which a grid
size of 1 was used) with the unapproximated exchange. For
this, we use TPSSh77 and grid 3 for the exchange−correlation
functional. For comparison, we include the LH07t-SVWN
functional (using a grid size of 1 for the exchange−correlation
functional as discussed above). We investigated four setups:
(amylose)2 with a pcJ-2 basis, where we are able to calculate all
SSCTs in less than two days, and the larger system (amylose)4
in a pcJ-3 basis, where we only calculate a single SSCT, to test
the other extreme. For the first system, we also investigated the

Table 2. Comparison of Experimentally Measured (“Exp.”,
Sign Unkown) Coupling Constants (in Hz) with the Ones
Calculated with Different Basis Set Combinations (at the
B3LYP Level)a

SIMesPH SIMesPH·Al SIMesPH·Ga

JPH JPC JPH JPC JPH JPC

Exp. 163 72.7 211 68.9 215 65.6
pcJ-2 139.1 −103.1 188.8 −96.3 192.3 −92.2
pcJ-1/2 137.2 −105.1 188.0 −97.4 191.1 −93.4
TZVP/pcJ-2 138.5 −103.4 188.7 −96.3 192.3 −92.2

aFor Ga, pcJ-1 and pcJ-2 were replaced by def2-SVP and def2-TZVP,
respectively.

Table 3. Wall Times on One Core (in minutes) for Setting
up the RHS and Solving the Necessary Response Equations
for the Calculation of a Single Coupling Tensor in a Chain
of n Glucose Units Employing PBE/pcJ-1

n wall time

4 1
8 2
16 6
32 28
48 78
64 174
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effect of the nuclei selection and LDBS. The times given are
wall times on four cores. The wave function was optimized
using the RI-J approximation only (in all cases) starting from a
Hückel guess.
For (amylose)2, the SCF procedure is faster than solving the

response equations for all three approximations (cf. Table 4).
When calculating all coupling constants, in the TPSSh case,
about 2.1 h are spent outside the four-center integral routines
(this time is included in Table 4), mainly computing the
density functional derivatives. The remainder of the time (i.e.,
the larger part) is brought down from 36.0 to 10.8 h with the
seminumerical integration and even to 3.5 h with RI-K,
meaning a speedup of the exchange integrals by one order of
magnitude.
If only C−C coupling tensors are to be calculated, much less

response equations have to be solved, and therefore, the
computation time is greatly reduced. The time of the SCF
procedures is not affected. If additionally the pcJ-1/2 LDBS
combination (as described above) is employed, the times for
both the SCF and the SSCT step are reduced.
In these three cases, RI-K is the fastest method of the three

investigated. This is because pcJ-2 is a rather large basis set,
where RI-K performs well, if enough memory is available.
Similar time savings can be seen for the LH functional

LH07t-SVWN. While it requires slightly more computational
effort than the seminumerical approximation for the global
hybrid, the use of smaller grids remedies this drawback,
rendering the computation times for C−C-only couplings
similar to the unapproximated TPSSh case. If a large number
of couplings are to be calculated, the effect of the small grid
prevails.
For (amylose)4, the SCF procedure with TPSSh takes

35.2 h, which is significantly longer than the response
equations for one SSCT. These take 21.3 h without
approximation, where again most time (20.9 h) is spent for
the exact exchange. With RI-K, this reduces to 14.4 h, but a
significant amount (5.4 h) is spent preparing the Bpq

Q

intermediates. Their computational effort is always the same,
independent of the number of SSCTs to be calculated. The
seminumerical integration does not suffer from such an
overhead and is the fastest method of the three for this case,
evaluating the four-center integrals in 8.6 h. It is well known
that the seminumerical integration (and hence the LHs as
well) scales better than analytical exact exchange with basis set
size;42,43 therefore, this scheme becomes more competitive as
larger basis sets (e.g., pcJ-4) are chosen. With LH07t-SVWN,
the wavefunction can be computed faster than with TPSSh due
to the seminumerical treatment of exact exchange. Computing
the TPSSh wave function with similar parameters as LH07t-
SVWN only takes 7.9 h but results in an error of about 4 Hz.
The response part with LH07t-SVWN is about as fast as with
TPSSh.

Parallelization. Most computation times so far were
obtained on four cores using the OpenMP parallelization
scheme. It is therefore worthwhile to examine the efficiency
when calculating all SSCTs of (amylose)2/pcJ-1 and one SSCT
of (amylose)3/pcJ-2, using grid settings as discussed above. As
can be seen from Table 5, with TPSSh, a speedup of 3.7 is

achieved on four cores in the first case and 3.2 in the latter.
Examining the approximations, we find a speedup of 3.8 for the
seminumerical integration for both molecules. The RI-K
method seems to be slightly worse, with a speedup of about
3. The good performance of the seminumerical integration
translates to the LH functionals LH07t-SVWN and LH14t-
calPBE (3.6−3.8). The overall longer time of LH14t-calPBE
compared to LH07t-SVWN can be explained by the larger grid
(radial grid size 3 instead of 1), containing about 40% more
grid points.

Performance of Local Hybrid Functionals. Settings.
For this first preliminary evaluation of LHs in the computation
of isotropic SSCCs, we focus on a combined benchmark set of
23 small main-group species (H2O, HOF, OF2, C2H4, C2H6,
C2H2, CFCH, C2F2, NH3, N2, C3H4, CH4, CH3F, CO, CO2,
H2CO, HFCO, F2CO, HCN, FCN, FNO, HD, and HF), with
overall 80 SSCCs of diverse nucleus combinations against
CC3/aug-ccJ-pVTZ and MCSCF/BS2 data from refs 78 and
79, respectively, which avoids complications from environ-
mental or rovibrational effects included in experimental values.
For consistency, structures from these studies have been used
without reoptimization at the given DFT level. The reference
data are of either CC3/aug-ccJ-pVTZ or MCSCF/BS2 quality.
Where references and structures are available in both
benchmark sets (H2O, C2H2, HCN, and CO), we use the
more recently published CC3 SSCCs from ref 79 (yet
structures and SSCC benchmark data from both works are
almost identical). pcJ-4 basis sets, energy convergence
thresholds of 10−9 Ha, and density matrix convergence
thresholds of 10−7 were used for the evaluation of LHs and

Table 4. Wall Times (in hours) on Four Coresa

TPSSh LH07t-SVWN

molecule basis set response SCF no approx. RI-K seminumerical SCF SSCT

(amylose)2 pcJ-2 all 0.9 38.1 5.6 12.9 0.6 20.3
pcJ-2 all C 0.9 6.9 1.7 3.4 0.6 6.0
pcJ-1/2 all C 0.3 2.1 0.8 1.6 0.3 2.6

(amylose)4 pcJ-3 one C 35.2 21.3 14.9 9.1 10.2 17.7
aIn the third row, a LDBS scheme was used. The column “response” indicates for which atoms the response equations had been solved. For TPSSh,
grid 3 has been used. The seminumerical integration was carried out with grid 1. For LH07t-SVWN, grid 1 has been used throughout.

Table 5. Computation Times in Hours on One and Four
Cores Using Different Methodsa

(amylose)2/pcJ-1 (amylose)4/pcJ-2

1 core 4 cores speedup 1 core 4 cores speedup

TPSSh 9.3 2.5 3.7 5.8 1.8 3.2
TPSSh (sn) 9.8 2.6 3.8 6.8 1.8 3.8
TPSSh (RI-K) 4.4 1.3 3.3 8.5 3.0 2.9
LH07t-SVWN 14.4 4.0 3.6 14.8 3.9 3.7
LH14t-calPBE 20.1 5.5 3.7 21.0 5.6 3.8

aFor TPSSh, grid 3 has been used. The seminumerical integration was
carried out with grid 1. For LH07t-SVWN, grid 1 has been used
throughout. LH14t-calPBE has been computed with a spherical grid
size of 1 and a radial grid size of 3.
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the other functionals in that comparison. To ensure
convergence for this initial evaluation for LHs, we enhanced
the grids to the large TURBOMOLE standard setting 5, albeit
tests show that the grid dependence for LHs and meta-GGA
global hybrid functionals is essentially the same (see Table S10
in Supporting Information). The ground-state SCF for LHs
uses the seminumerical implementation of ref 44.
While more uniform DFT results with smaller deviations

from experimental SSCCs can be obtained when these are
evaluated at structures obtained with the same DFT func-
tional,12 we rely here on the structures provided in the
benchmark studies to concentrate exclusively on the perform-
ance of a given functional in the perturbation treatment of the
coupling constants.
All employed LH models are based on the so called t-

LMF,80 defined as the (scaled) ratio of the von-Weizsac̈ker and

Pauli kinetic energy densities ( rg b( ) r
r
( )

( )
W= · τ
τ ), with

r( ) r
rW

1
8

( )
( )

2

τ = ρ
ρ

|∇ | ). We include the LDA-based LH07t-

SVWN with a prefactor b = 0.48 for its spin-channel t-LMF,

LH12ct-SsifPW9281 with a larger prefactor of b = 0.709 of its
common t-LMF, and a short-range modified (self-interaction-
free − sif) PW92 correlation functional, and LH14t-calPBE (b
= 0.50 for its spin-channel t-LMF). The latter functional is
based on PBE exchange and correlation and serves as a first
example of using exchange-energy densities calibrated by a
gauge function to account for their ambiguity (further
functionals based on such an approach are currently
developed).
Performances are statistically compared by reporting mean
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LH results (see below), we include the meta-GGA TPSS and
its global hybrid version TPSSh (which both often perform
well in NMR shielding calculations82), together with the global
hybrids B3LYP, PBE0,83 and BHLYP84 (the latter has been
found to perform well for the challenging C−F SSCCs85 and
for H−F SSCCs86).

Table 6. Comparison of MAPD (in %) of Computed SSCCs for Various Density Functionals Compared to the Reference Data

coupling TPSS TPSSh B3LYP PBE0 BHLYP LH07t LH12ct LH14t
1J 34.37 29.67 22.94 22.09 26.65 19.80 31.70 15.38
2/3Ja 33.87 28.10 21.89 19.56 27.63 15.64 28.23 16.27

aCouplings with absolute values smaller than 5 Hz have been excluded from the statistical evaluation.

Table 7. Comparison of Computed Contributions to the 1JCF SSCCs with Various Density Functionals against CC3/aug-ccJ-
pVTZ Data

Exp.a CC3a TPSS TPSSh B3LYP PBE0 BHLYP LH07tb LH12ctb LH14tb

C2F2 FC −241.57 −400.36 −384.67 −357.81 −355.82 −308.95 −348.08 −323.51 −349.35
SD −7.52 −13.41 −15.32 −14.00 −15.91 −19.60 −11.04 −7.92 −12.76
PSO −8.08 −11.27 −14.26 −18.04 −19.12 −26.29 −13.98 −14.58 −14.43
DSO 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58
Σ −287.3 −256.58 −424.45 −413.66 −389.28 −390.26 −354.26 −372.52 −345.44 −375.96

F2CO FC −256.94 −394.57 −375.72 −355.19 −346.15 −298.65 −342.54 −311.56 −342.84
SD 0.00 −0.91 −1.42 −1.46 −1.97 −2.78 −1.12 −0.62 −1.48
PSO −38.61 −44.14 −44.74 −47.63 −46.71 −47.89 −42.84 −41.32 −43.22
DSO 1.17 1.17 1.17 1.16 1.16 1.15 1.16 1.16 1.16
Σ −308 −294.39 −438.45 −420.71 −403.13 −393.67 −348.15 −385.34 −352.34 −386.38

CFCH FC −247.47 −398.12 −381.47 −356.20 −353.56 −305.58 −349.14 −323.82 −349.57
SD −9.73 −16.60 −18.81 −17.40 −19.64 −24.34 −14.31 −10.72 −16.34
PSO −20.96 −24.81 −27.92 −32.86 −33.96 −41.81 −28.08 −29.10 −28.38
DSO 0.49 0.49 0.49 0.48 0.48 0.47 0.47 0.47 0.48
Σ −277.68 −439.04 −427.71 −405.99 −406.69 −371.26 −391.07 −363.17 −393.82

FCN FC −365.36 −556.46 −527.63 −493.85 −484.74 −418.39 −477.93 −432.60 −478.88
SD −9.67 −14.78 −17.42 −16.98 −18.73 −25.59 −14.04 −11.26 −16.08
PSO −28.55 −31.23 −34.72 −39.91 −41.11 −50.47 −35.33 −36.54 −35.84
DSO 0.57 0.57 0.56 0.55 0.56 0.54 0.55 0.55 0.55
Σ −403 −601.90 −579.21 −550.19 −544.01 −493.90 −526.75 −479.85 −530.25

HFCO FC −314.6 −427.18 −413.57 −397.83 −387.22 −357.29 −374.17 −333.84 −379.56
SD 1.18 −0.54 −1.13 −1.06 −1.68 −2.66 −0.64 0.07 −0.96
PSO −39.7 −51.07 −50.22 −52.17 −50.89 −48.35 −46.47 −43.65 −46.58
DSO 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.71 0.71
Σ 369 −352.41 −478.08 −464.21 −450.35 −439.08 −407.59 −420.58 −376.70 −426.38

aSee ref 79. bLH07t-SVWN, LH12ct-SsifPW92, LH14t-calPBE.
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Statistical Data Evaluation. It is tempting to condense the
rather extensive data analysis of these two test sets by using
statistical analyses. This is made difficult by the rather diverse
types of SSCCs with rather different sizes and signs,
requirements regarding the different terms, and general
behavior. Table 6 makes an attempt to nevertheless obtain
an impression of the general performances of different
functionals by providing MAPDs. This allows a better
comparison of small and large, positive and negative SSCCs.
We provide separate statistics for one-bond couplings and for
two-/three-bond couplings. We see that for the one-bond
couplings, LH14t-calPBE provides the lowest relative devia-
tions, followed by LH07t-SVWN and the PBE0 and B3LYP
global hybrids. In spite of its top performance for some of the
types of couplings (see below), BHLYP exhibits only a middle
place in this evaluation. LH12ct-SsifPW92, which also
performs best for some of the couplings, ranks even lower
due to problems for other cases. The TPSS meta-GGA
provides the largest MAPD. This holds also for the two-/three-
bond couplings. Here, the LH07t-SVWN LH gives slightly
lower deviations than LH14t-calPBE and ranks first. PBE0 and
B3LYP again rank third and fourth, respectively, while BHLYP
and LH12ct-SsifPW92 perform again only moderately well. We
note in passing that coupled-perturbed Hartree−Fock
calculations (sometimes referred to as RPA in this context)
give much larger MAPD values between 200 and 400%, even if
we exclude cases where the Hartree−Fock wave function
exhibits triplet instabilities.
More Detailed Evaluations. In the interest of conciseness

and clarity, we refer the reader to Supporting Information for a
more detailed, somewhat tedious comparison of the various
functionals for different classes of SSCCs. Full data are
provided in Table S11 (individual FC, SD, PSO, and DSO
terms are analyzed in Tables S12−S15). This is an attempt to
understand the statistical results better by discussing different
types of couplings in turn, focussing in particular on one-bond
couplings for different combinations of nuclei.
Here, we select only the 1JCF SSCCs for closer scrutiny, as

they behave rather differently than most other couplings. It is
important to note that these types of couplings are considered
a major challenge to DFT. Indeed, the accuracy achieved for
many other couplings is much better (see Table S11 in
Supporting Information). As for 1JFH in the HF monomer and
dimer,86 the large negative 1JCF SSCCs (six occurrences in the
test sets) are known to be underestimated appreciably by most
functionals, with BHLYP having been found to perform best85

(or even larger exact-exchange admixture being superior17).
While the PSO contribution also exhibits some dependence on
the functional,17−19,87 the FC term is again the main culprit
here (see Table 7 for closer analysis). Our computations
confirm the relatively good performance of BHLYP, but
LH12ct-SsifPW92 performs even slightly better (except for
F2CO). Interestingly, this may be attributed to a clearly better
description of the PSO term by the LH (reminiscent of its
good performance for non-hydrogen nuclear shieldings24),
while BHLYP benefits from a somewhat less negative FC
contribution. This highlights that the different terms, in this
case FC and PSO, present different requirements to the
functional. For couplings involving atoms with lone pairs, it
appears that the large constant exact-exchange admixture of
BHLYP may be favorable for reducing the underestimate of the
FC contribution, but it increases the underestimate of the PSO
term. The couplings obtained with the other two LHs (LH14t-

calPBE, LH07t-SVWN) are only moderately more negative
than the BHLYP and LH12ct-SsifPW92 ones, followed by the
PBE0 results. The most negative values are obtained with
TPSS and TPSSh, that is, the present LH results do improve
upon 1JCF SSCCs but do not eliminate their systematic
underestimate by DFT approaches completely.
The overall detailed analyses (see Supporting Information)

confirm that no functional evaluated here is fully satisfactory
for all SSCCs of the two test sets, even if we keep in mind the
somewhat heterogeneous reference data (CC3 and MCSCF,
which deviate also a bit from the available experimental data).
This confirms previous evaluations for global hybrids (see, e.g.,
ref 17). Some functionals perform best in some situations but
may exhibit serious shortcomings in others. Picking, for
example, BHLYP, our computations not only confirm its
leading performance for 1JCF and 1JFH

85,88 but also show it
performs best for 1JCO (and for 1JOH). Yet this top performance
is offset by cases where high constant exact-exchange
admixture is detrimental, such as the C−H, C−C, C−N, O−
F, and N−F one-bond couplings. The O−F and N−F
couplings highlight that some cases with appreciable static
correlation may not tolerate the large admixture, and the C−N
couplings and the C−C couplings in acetylenes tell a similar
story for some of the couplings across multiple bonds.17 These
are some of the reasons that prevent BHLYP from being a top
performer across the entire test set. We can make analogous
arguments for the LH12ct-SsifPW92 LH. While this performs
very well for some of the couplings (C−F, N−F, O−F) and
seems to tolerate static correlation cases, it underestimates
reduced couplings for many of the seemingly simpler cases
such as C−H or C−C couplings. The LH14t-calPBE and
LH07t-SVWN LHs that top the overall ranking (Table 6) are
most often among the top performers. However, even when
they are not, they never exhibit extreme deviations. One may
say the same, but to a lesser extent, about the PBE0 and
B3LYP global hybrids.
Further evaluations of the different aspects that may affect

the performance of a given LH functional will be needed to
proceed toward a more complete understanding that will also
aid in the development and validation of improved functionals.
Such evaluations, which are outside the scope of the present
work and will be pursued separately, will involve the role of the
LMF and calibration function and the role of induced-current
contributions to the response equations resulting from the
occurrence of the local kinetic energy density in the t-LMF and
conceivably in more sophisticated mixing functions.

■ CONCLUSIONS
The implementation of the calculation of spin−spin coupling
tensors at Hartree−Fock, semi-local DFT (including meta-
GGA functionals), global hybrid and, for the first time, LH
DFT level in the TURBOMOLE code has been presented. The
two described approximations to treat exact exchange, RI-K
and seminumerical integration, both reduce the computation
time significantly. On the (amylose)2 molecule investigated,
the calculation with RI-K was about seven times as fast as full
analytical integration, with negligible loss in accuracy. The
SSCCs of all 45 atoms can be calculated in less than 6 h.
Symmetry exploitation and a nuclei selection scheme may
further reduce the computational effort.
We have confirmed that LDBS can be used within DFT for

both the isotropic and the anisotropic contribution to the
spin−spin coupling. We were able to obtain a speedup of more
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than 14 with this approximation, which will increase if even
larger systems are investigated.
Using seminumerical integration has also allowed the

extension of the code to be able to use LH functionals for
the computation of spin−spin couplings for the first time,
complementing a recent implementation of nuclear shieldings
in the same code. This permits studies of the effects of
position-dependent exact-exchange admixture on the quality of
computed spin−spin coupling tensors. A first assessment of
three first-generation LHs in comparison with some standard
functionals in wider use against CC3 and MCSCF benchmark
isotropic couplings of small main-group molecules has
provided insights into the performance. Two of the LHs
(LH14t-calPBE and LH07t-SVWN) were the top performers
in a general statistical evaluation. They often performed well
and, most notably, never exhibited extreme deviations. Other
functionals, such as BHLYP, perform well in some types of
couplings but deliver substantial errors in others. This holds
also for the third LH in the comparison, LH12ct-SsifPW92;
while it performs particularly well for the challenging 1JCF
couplings (competitive with BHLYP) and for some other
SSCCs, including cases with substantial static correlation, it
exhibits notable underestimates for seemingly simpler cou-
plings.
In view of the overall promising performance of LHs in this

initial evaluation, without a truly exceptional quality of the
results across the entire test suite, further work in the
development of this class of functionals certainly seems
warranted. A more systematic evaluation of the various aspects
of a LH functional that may affect the quality of computed
SSCCs (LMF, calibration function, and semi-local ingredients
of both exchange and correlation parts of the functional)
should provide indications of where further improvements are
to be expected. Such evaluations will involve more extensive
benchmarking and further functionals. The availability of an
efficient implementation, as reported here, provides the
opportunity of in-depth investigations of such aspects.
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Berlin, Germany

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.0c06897

Author Contributions
⊥F.M. and C.J.S. contributed equally to this work.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We are grateful to Christof Holzer and to Yannick J. Franzke
for technical improvements of the implementation and to the
authors of ref 79 for providing input structures. F.M.
acknowledges financial support from the Deutsche For-
schungsgemeinschaft (German Research Foundation) through
the CRC 1176 (Project Q5). C.J.S. acknowledges funding via a
Ph.D. scholarship of Studienstiftung des deutschen Volkes.
Work in Berlin has also received funding by the German
Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) within project KA1187/14-1 and furthermore by
project-ID 387284271-SFB 1349 (Gefördert durch die
Deutsche Forschungsgemeinschaft (DFG)project-ID
387284271-SFB 1349).

■ REFERENCES
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(78) San Fabiań, J.; Díez, E.; García de la Vega, J. M.; Suardíaz, R.
Approximating correlation effects in multiconfigurational self-
consistent field calculations of spin-spin coupling constants. J. Chem.
Phys. 2008, 128, 084108.
(79) Faber, R.; Sauer, S. P. A.; Gauss, J. Importance of Triples
Contributions to NMR Spin−Spin Coupling Constants Computed at
the CC3 and CCSDT Levels. J. Chem. Theory Comput. 2017, 13,
696−709.
(80) Jaramillo, J.; Scuseria, G. E.; Ernzerhof, M. Local hybrid
functionals. J. Chem. Phys. 2003, 118, 1068−1073.
(81) Arbuznikov, A. V.; Kaupp, M. Importance of the correlation
contribution for local hybrid functionals: Range separation and self-
interaction corrections. J. Chem. Phys. 2012, 136, 014111.
(82) Stoychev, G. L.; Auer, A. A.; Izsaḱ, R.; Neese, F. Self-Consistent
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(86) San Fabiań, J.; Omar, S.; García de la Vega, J. M. Towards
quantifying the role of exact exchange in the prediction hydrogen
bond spin-spin coupling constants involving fluorine. J. Chem. Phys.
2016, 145, 084301.
(87) Lantto, P.; Vaara, J.; Helgaker, T. Spin−spin coupling tensors
by density-functional linear response theory. J. Chem. Phys. 2002, 117,
5998−6009.
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ABSTRACT: Exchange-correlation functionals that depend on
the local kinetic energy τ are widely used in many fields. This
includes meta-generalized gradient approximation (GGA) func-
tionals and their global hybrid versions as well as local hybrid
functionals with τ-dependent local mixing functions to determine
position-dependent exact-exchange admixture. Under the influence
of an external magnetic field, τ becomes dependent on the gauge of
the magnetic vector potential and should thus be extended to a
gauge-invariant formulation. The currently most widely used
extension for nuclear shielding calculations is that suggested by
Maximoff and Scuseria (Maximoff, S. N.; Scuseria, G. E. Chem.
Phys. Lett. 2004, 390, 408). Using the recent first implementation
of local hybrids in this framework, we have found unphysical paramagnetic contributions, which are most clearly identified for atoms
but are also present in molecules. These τMS artifacts are small for the TPSS or TPSSh functionals, significantly deshielding in the
case of nonhydrogen nuclei for the M06-L and M06 functionals and significantly shielding in those cases for the first-generation τ-
dependent local hybrids LH07t-SVWN and LH12ct-SsifPW92. We have therefore implemented an extension of a linear-response
nuclear shielding code to the proper current-density functional version of τ suggested by Dobson (Dobson, J. F. J. Chem. Phys. 1993,
98, 8870). Using τD eliminates the gauge dependence as well as the unphysical contributions introduced by τMS. A first evaluation of
this implementation for a set of main-group nuclear shieldings against CCSD(T) benchmark data indicates rather small effects for
the TPSS and TPSSh functionals but significant changes for the other functionals studied: the previously observed remarkable
performance of the highly parameterized meta-GGA functional M06-L is found to be the result of error compensation with the lack
of an explicit current dependence. Results for the M06 functional are improved somewhat but are still overall of relatively low
accuracy. In contrast, too low proton shieldings found recently for τ-dependent local hybrids are improved significantly within the τD
current-density functional framework while preserving the outstanding performance of these functionals for other nuclei.

1. INTRODUCTION
In view of the central importance of nuclear magnetic
resonance (NMR) spectroscopy in many research fields, the
quantum-chemical computation of its parameters is an active
and growing endeavor, providing central insights into
molecular and electronic structure.1 Nuclear shieldings and
the related NMR chemical shifts are the focus of the present
work. Despite the shortcomings of currently available
approximate exchange-correlation (XC) functionals, Kohn−
Sham density functional theory (KS-DFT) is the most widely
used approach to compute NMR parameters. Yet, the accuracy
achieved with standard XC functionals leaves substantial room
for improvement,2,3 more so than for simpler properties like
energetics or structures. Among the various directions for
improvement pursued, we mention specialized functionals
parameterized specifically for shieldings,4,5 which, however, are
based on extensive error compensation,6 likely also limiting
their predictive power. The currently most accurate DFT
results for shieldings of many main-group species are obtained
with double-hybrid functionals (DH).7 Apart from possible

problems for systems with appreciable static correlation, the
MP2-like correlation part of DHs renders shielding calculations
computationally much more demanding than with simpler
functionals on the lower rungs of the Jacob’s ladder of XC
functionals.8 Improvements for functionals on these lower
rungs (1−4) are thus highly desirable.
A central problem with KS-DFT identified for shieldings and

other magnetic properties9−11 is that standard XC functionals
lack a dependence on the paramagnetic current density. This
was recently demonstrated most clearly in ref 6 based on XC
functionals extracted from accurate coupled-cluster electron
densities. Inclusion of current terms reduced overestimated
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paramagnetic shielding contributions for all nuclei studied
except hydrogen.6 The earliest attempts to include current
dependencies of XC functionals into shielding computations
for the local density approximation (LDA), i.e., the lowest rung
of the ladder, gave negligible contributions and thus no
improvements,12 and so far, no improvements for shieldings
have been found when introducing currents9 on the second
rung, the generalized gradient approximation (GGA).
Introduction of the non-interacting KS kinetic-energy

density

1
2 i

i i∑τ ψ ψ= ∇ *∇
(1)

on the third meta-GGA rung without current dependency is,
however, known to violate the required invariance with respect
to the gauge of the vector potential of the external magnetic
field.13−17 To correct for this, essentially all implementations of
nuclear shieldings with τ-dependent functionals to date (but
see below) use a modified local kinetic energy suggested by
Maximoff and Scuseria (τMS)

13

c c
A

j
A( )
2
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MS
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2τ τ τ ρ→ = + +
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where jp is the paramagnetic current density

i
j

2
( )p

i
i i i i∑ ψ ψ ψ ψ= ∇ * − *∇

(3)

and AG =
1
2
B × (r − RG) is the vector potential of the magnetic

field B for an arbitrary gauge origin RG. This holds for meta-
GGA functionals like TPSS18 or M06-L,19 which have been
found to perform relatively well in shielding computations,20,21

or for meta-GGA-based global hybrid (GH) functionals on the
fourth rung, such as TPSSh22 or M06.23 It holds also for the
first nuclear shielding implementation with local hybrid (LH)
functionals24 having position-dependent exact-exchange ad-
mixtures (still on rung 4), needed here because of the
predominant use of a τ-dependent local mixing function
(LMF) to determine the position dependence (see the Theory
section).
The MS treatment removes the gauge dependence of the XC

contribution while keeping the magnetic Hessian diagonal, i.e.,
no coupling terms enter the paramagnetic shielding contribu-
tions that would occur for a proper current density functional.
This helps to avoid an iterative treatment of the perturbed
Kohn−Sham scheme in the case of meta-GGAs. We will show
here that the price paid for this advantage is unphysical
paramagnetic contributions that may become significant for
some of the relevant functionals. We note that coupling terms
arise in any case for GHs or LHs. Indeed, it has been pointed
out that the formulation of τMS in terms of the full physical
current and its resulting explicit dependence on the magnetic
vector potential renders it non-universal6,16,25,26 (cf. also
refs9−11). Moreover, τMS does not constitute a proper iso-
orbital indicator like τ does in the absence of a magnetic
field.27

A gauge-invariant extension of τ that provides proper current
density functionals depending not on the full physical current
but only on the paramagnetic orbital current has been
introduced by Dobson28,29

j

2
p

D

2

τ τ τ
ρ

→ = −
(4)

Here, the current density is not mixed with the magnetic
field, and the model introduces an explicit dependence on the
current density into the exchange-correlation contribution to
the magnetic-field response in the shielding calculations (and
to the full exchange-correlation functional for current-carrying
states, see below). This ansatz not only provides a field-free
gauge correction to τ, it also recovers the iso-orbital constraint
and satisfies the second-order gradient expansion of the
kinetic-energy density for slowly varying densities and current
densities.25 τD has been used for reducing unphysical symmetry
breaking in current-carrying atomic states14 and for the proper
gauge-invariant implementation of meta-GGAs for TDDFT
calculations of excitation energies16 (also for LHs30). It has
furthermore been used in finite-field treatments of molecules in
strong magnetic fields using meta-GGA functionals.31

Application of τD to nuclear shieldings so far has been very
limited. This includes a small set of shieldings obtained with
the TPSS and B9832 meta-GGAs31 and a comparison of the
current-free τ vs τMS and τD for TPSS.6 Relatively small
differences between results for these approaches were found in
the latter work, but we will show here that this does not hold
true for all τ-dependent XC functionals. Both of these studies
used a finite-field approach, and we are not aware of any linear-
response implementation of shieldings based on τD. We will
close this gap in the present work, where we will point out
problems with approaches based on τMS and compare explicitly
shieldings obtained with τ, τMS, and τD for meta-GGAs, meta-
GGA-based GHs, and two LHs with a t-LMF.

2. THEORY
Using perturbation theory, the shielding tensor is expressed as
the second derivative of the total energy of the system with
respect to the (external) magnetic field Bk and the nuclear
magnetic moment μl

K of the nucleus K in the Cartesian
directions k, l = x, y, z1,33
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The first term on the right-hand side of eq 5 (diamagnetic
shielding) is a simple expectation value of the ground-state
wave function or the density matrix (the latter formulation is
chosen here). In contrast, the paramagnetic shielding
contribution (second term of eq 5)
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is formulated here in terms of the atomic-orbital (AO) basis
{ϕμ} and the density matrix perturbed to the first order in the
external magnetic field
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where Sij
Bk is the perturbed overlap matrix, and uai

Bk are the
expansion coefficients to be solved for within the coupled
perturbed equations

u
F S

ai
B ai

B
i ai

B

i a

k
k kε
ε ε

=
−
− (8)

We generally use i and j to denote occupied and a and b for
virtual MOs, while μ and ν denote AOs.
The first-generation LH functionals that we will evaluate

here do not contain a so-called calibration function to deal
with the ambiguity of exchange-energy densities34 and may be
formulated as

E g e g e Er r r r r( ) ( ) (1 ( )) ( ) dX XXC
LH ex sl

C
sl∫= [ · + − ] +

(9)

where g(r) is the local-mixing function (LMF) that governs the
position-dependent exact-exchange admixture, eX

sl(r) is the
(semi)local energy density, and eX

ex(r) is the exact-exchange
energy density
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r r
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and EC
sl is some (semi)local correlation functional.

While a substantial number of LMFs have already been
proposed (see ref 34 and references therein), the currently
most widely used constructions are the so-called t-LMFs,
defined as the (scaled) ratio of the von-Weizsac̈ker and Pauli
kinetic-energy densities

g a , with
1
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The extension of the CPKS scheme for nuclear shieldings to
such LH functionals was reported recently.24 The central
equation needed here to understand extensions to τD vs τMS is
the XC contribution (eq 28 of ref 24 to the perturbed Fock
matrix
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Here, defines the set of (local) quantities used in the
respect ive LMF or (semi)local funct ional , e .g . ,

, ,ρ ρ τ= { ∇ }̃ for a meta-GGA.
Letting g→a0 = const., we obtain the GH expression for the

perturbed Fock matrix. Likewise, g→a0 = 0.0 defines the
(semi)local limit. Choosing MSτ= { }, the contributions
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omitting the terms depending on the magnetic field to the
second order (A2) in eq 2 in the derivative since these vanish
for B = 0. Here, the gauge dependence of the kinetic energy is
corrected due to the presence of the gauge within the vector
potential but at the cost of introducing an explicit dependence

on the magnetic vector potential into the functional, as
discussed in the Introduction.
Choosing instead Dτ= { } and neglecting the term to the

second order in jp since

j 0p B 0k

=
= (14)

we get
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The second terms on the r.h.s. of eqs 13 and 15 correct for
the gauge dependence of B1

2
kω ω[∇ *∇ ]μ ν , which itself

corresponds to the uncorrected and thus gauge-dependent
contribution from the kinetic-energy density. In all equations,
ωμ and ων denote gauge-including atomic orbitals (GIAOs)
used throughout35,36
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We note in passing that for current-carrying ground states
(e.g., certain open-shell species or potentially atoms and
molecules in a strong magnetic field treated variation-
ally14,31,37), use of τD leads explicitly to a current-density
functional theory (CDFT) framework,9−11 i.e.,

E E j, pXC XCρ ρ[ ] → [ ] (17)

Within the present linear-response treatment of the
magnetic perturbations and in the absence of ground-state
currents, there is no dependence of the ground state on jp (cf.
eq 14), and the corrections from eq 15 will contribute just to
the XC response. That is, we have to construct
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The first term depends of the perturbed density, constructed
from the expansion coefficients. That is, coupling terms enter
also for pure meta-GGA functionals even in the absence of
exact exchange, and thus, the perturbation equations have to
be solved iteratively, when τD is used (see below). Note that eq
18 still depends on the gauge of the magnetic vector potential.
However, as shown before,31 the terms arising from τD now
cancel the gauge dependence of the original equations for a
gauge-dependent τ. While the correction of the gauge vectors
RG is immediately visible for the τMS case, for τD the gauge
corrections arise within the iterative solution of the equations.
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However, the gauge invariance has been ascertained in both
cases (see below).
If we neglect the second term in eq 13, which depends on

the vector potential, or the second term in eq 15, which
depends on the paramagnetic current density, we arrive at a
treatment for the uncorrected, gauge-dependent τ. In the
finite-difference work of ref 6, a common gauge at the center of
mass was applied to these terms. We will in the following call
this model τC. Our numerical tests suggest that the default
version in the widely used ORCA code21,38,39 simply removes
the gauge-dependent terms in this approach (see the
Supporting Information), as has been confirmed by the
authors. We will term this ad hoc gauge-invariant approx-
imation τGI and will also include its results, as well as those
with τC, mostly in the Supporting Information.
2.1. Implementation of the τD-Dependent Contribu-

tions. Analogous to the CPKS treatment for hybrid func-
tionals, we may divide new contributions to jp

Bk arising from eq
18 into two parts. The first part depends of the perturbed
density Dμν

Bk , which is solved for iteratively within the CPKS
loops (note that Dνμ

Bk = −Dμν
Bk is skew-symmetric)

D D Dj ,
1
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The remaining “pre-loop” part (jp [ω
Bk, D]) is constructed

from the three vectors
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resulting in a separate vector of jp for each Cartesian
component of the magnetic field. The additional computa-
tional effort required for (local or global) hybrid functionals is
minor (see Table S1 in the Supporting Information). Due to
the presence of the perturbed density, an iterative solution is
also needed for semilocal meta-GGA functionals. This adds
some computational burden over the τMS treatment, but the
remaining computational effort is still appreciably smaller than
that for hybrid functionals (Table S1).

3. COMPUTATIONAL DETAILS
Extensions of τ-dependent meta-GGA, GH, and LH func-
tionals to use τD (as well as τC and τGI) have been added to the
mpshif t nuclear shielding module17 of a developers’ version of

the Turbomole program package, based on release 7.5,40,41

into which LHs were implemented recently (so far based on
τMS).

24 While we thus mainly report results obtained with
Turbomole, we also provide some data that have been
obtained with the ORCA21,38,39 and Gaussian42 program
packages (see the Supporting Information), based on τMS. This
ensures comparability to other codes. All shieldings are
computed using gauge-including atomic orbitals (GIAOs)
and large pcSseg-4 basis sets. We also implemented the
uncorrected gauge-dependent τC and the ad hoc gauge-
independent τGI models discussed at the end of the Theory
section (see Section S2 in the Supporting Information for
more details).
Initial analyses focus on the He and Ne atoms, compared to

recent GIAO-CCSD(T)/aug-cc-pVQZ43−45 reference data,6

followed by some small molecular systems. To obtain
statistically relevant insights into the performances of different
functional forms, we compare our results to GIAO-CCSD(T)/
pcSseg-446 reference data of main-group molecules from ref 21,
as done recently for a variety of LHs in the τMS formulation.24

We compare data for two meta-GGAs, TPSS and M06-L, the
meta-GGA GHs TPSSh and M06, and the two LHs LH07t-
SVWN47,48 and LH12ct-SsifPW9249 based on t-LMFs (some
data with the related LH12ct-SsirPW92 functional49 are
included in the Supporting Information).
Unless noted otherwise, all calculations using Turbomole

employ grids of size 5 (internal setting) and are performed
without any integral prescreening within the seminumerical
treatment of the LHs. SCF convergence criteria in TBM were
set to 10−9, with additionally ensuring convergence by
enforcing the convergence of the density matrix to 10−7.
Convergence of the Euclidean norm of the residual vectors
within the shielding calculations was likewise set to 10−7.
Computational timings as reported in Table S1 have been
recorded on an AMD EPYC 7302 16-Core CPU. Calculations
in Gaussian use the options verytight for the SCF convergence
and ultraf ine for the grid setup, while in ORCA, we used
VeryTightSCF and the internal setting Grid6 with a
convergence tolerance for the shielding calculations of 10−12.
We note in passing that we have numerically checked the
gauge invariance of both our τMS and τD implementations (see,
e.g., Table S2 in the Supporting Information, which includes
also gauge-invariant τGI data). Tests for a larger molecule
(eicosane, data not shown) confirm these conclusions. A
gauge-dependent τ results in appreciable overall gauge
dependence (cf. Table S3 in the Supporting Information)
even though the choice of placing the gauge at the center of
mass (τC), as done in ref 6, still provides overall reasonable
shieldings.

Table 1. Diamagnetic (σd, Equal for Both τ Models) and Paramagnetic (σp) Contributions to Shieldings in He and Ne
Comparing the τMS (Equation 2) and τD (Equation 4) Models for Various Functionals

CCSD(T)a TPSS M06-L TPSSh M06 LH07tb LH12ctb

3He σd 59.9 σd 60.0 60.1 60.0 60.1 59.6 59.7

σp 0.0 σp,MS 0.0 0.0 0.0 0.0 0.0 0.0
σp,D 0.0 0.0 0.0 0.0 0.0 0.0

21Ne σd 552.0 σd 552.2 552.4 552.2 552.4 551.1 551.3

σp 0.0 σp,MS −0.7 −11.5 −0.5 −20.9 18.8 24.1
σp,D 0.0 0.0 0.0 0.0 0.0 0.0

aGIAO-CCSD(T)/aug-cc-pVQZ data.6 bLH07t = LH07t-SVWN and LH12ct = LH12ct-SsifPW92.
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4. RESULTS

4.1. Unphysical Paramagnetic Contributions from τMS
for Atoms. During our careful evaluations of results within the
τMS formalism in ref 24, we had noted that the data for t-LMF-
based LHs tended to deviate more than expected from the
CCSD(T) reference data for proton shieldings and for the
shieldings of some heavier nuclei in seemingly simple cases,
where low paramagnetic contributions were expected. We
assumed at that time that the specific form of the t-LMF along
element-hydrogen bonds34 may have been responsible for
these deviations, as results for an s-LMF (based on the reduced
density gradient) aligned more closely with GH results.24

However, subsequent analyses have made us suspect that the
τMS formalism may be responsible for some of the deviations
when dealing with t-LMFs. We first illustrate the problem by
comparing shieldings for simple spherical closed-shell atomic

systems, where paramagnetic shielding contributions clearly
should not be sustained, independent of any gauge issues, for
the exact and approximate wave functions and also for DFT
approaches.50

Table 1 provides data for the He and Ne atoms with meta-
GGAs, meta-GGA-based GHs, and LHs, comparing τMS and
τD. Diamagnetic shielding contributions depend on the
functional (Table 1) but not on the model, so we may
concentrate on the paramagnetic part. Both models give
exactly zero σp contributions for He. This can be traced back to
the absence of any occupied orbital with angular momentum.
Turning to Ne, however, we see notable differences: τMS now
generates non-negligible σp values. These artifacts are negative
and below 1 ppm for TPSS and TPSSh, also negative but an
order of magnitude larger for M06-L and M06, and
significantly positive for the two LHs. The latter positive
contributions are fully consistent with the too shielded values

Table 2. Components of the Paramagnetic Shielding Tensor for Three Linear Molecules, Comparing Different Functionals
and Models for τ

τMS τD τC τGI

σ ⊥
p σ ∥

p σ ⊥
p σ ∥

p σ ⊥
p σ ∥

p σ ⊥
p σ ∥

p

LiH 1H PBEa −0.39 0.00

TPSS −2.60 0.00 −2.58 0.00 −2.84 0.00 −2.58 0.00
M06-L 0.04 0.00 0.07 0.00 −0.36 0.00 0.01 0.00
TPSSh −2.62 0.00 −2.60 0.00 −2.83 0.00 −2.60 0.00
M06 0.31 0.00 0.34 0.00 0.29 0.00 0.25 0.00
LH07t −1.66 0.00 −1.66 0.00 −1.65 0.00 −1.61 0.00
LH12sif −1.95 0.00 −1.97 0.00 −1.67 0.00 −1.90 0.00

7Li PBEa −18.3 0.0

TPSS −17.2 0.0 −17.3 0.0 −16.5 0.0 −16.9 0.0
M06-L −20.2 0.0 −19.9 0.0 −19.0 0.0 −19.5 0.0
TPSSh −17.2 0.0 −17.2 0.0 −16.5 0.0 −16.9 0.0
M06 −16.8 0.0 −16.5 0.0 −18.0 0.0 −18.1 0.0
LH07t −16.8 0.0 −16.8 0.0 −15.6 0.0 −15.8 0.0
LH12sif −15.9 0.0 −15.9 0.0 −15.0 0.0 −14.9 0.0

HF 1H PBEa 2.92 0.00

TPSS 2.80 −0.08 2.62 0.00 2.31 0.00 2.96 0.00
M06-L 10.85 −0.26 10.56 0.00 9.96 0.00 11.51 0.00
TPSSh 2.72 −0.07 2.56 0.00 2.29 0.00 2.88 0.00
M06 6.55 −0.22 6.19 0.00 6.28 0.00 6.08 0.00
LH07t 2.49 0.14 2.87 0.00 2.72 0.00 3.07 0.00
LH12sif 2.41 0.20 2.99 0.00 2.91 0.00 3.12 0.00

19F PBEa −85.9 0.0

TPSS −86.7 −1.1 −86.9 0.0 −85.6 0.0 −82.9 0.0
M06-L −82.7 −10.4 −76.1 0.0 −71.0 0.0 −65.6 0.0
TPSSh −85.4 −0.9 −85.6 0.0 −84.5 0.0 −81.9 0.0
M06 −96.4 −24.1 −73.2 0.0 −72.8 0.0 −75.5 0.0
LH07t −57.0 19.9 −75.0 0.0 −74.4 0.0 −72.1 0.0
LH12sif −47.8 25.6 −70.3 0.0 −69.7 0.0 −67.9 0.0

F2
19F PBEa −1106.7 0.0

TPSS −1051.0 −0.7 −1064.2 0.0 −1037.0 0.0 −1033.0 0.0
M06-L −994.3 −7.6 −1049.1 0.0 −958.9 0.0 −942.8 0.0
TPSSh −1041.1 −0.6 −1052.7 0.0 −1028.6 0.0 −1024.9 0.0
M06 −1152.8 −16.0 −1151.9 0.0 −1149.4 0.0 −1147.1 0.0
LH07t −1025.7 15.1 −1028.6 0.0 −1022.4 0.0 −1023.6 0.0
LH12sif −993.8 19.3 −993.7 0.0 −994.3 0.0 −997.0 0.0

aNo τ dependence for this GGA functional.
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that we found with t-LMF-based LHs for nonhydrogen nuclei
in seemingly simple electronic situations.24 In contrast, τD
provides zero σp contributions, as it should, and thus overall
much better agreement with the CCSD(T) value for Ne. While
the unphysical σp contributions with τMS might be considered
only a small issue for TPSS and TPSSh, they clearly are a
problem for the other four functionals.
To clarify the origin of these artificial paramagnetic terms

due to τMS, we start from the contribution to the perturbed
Fock matrix with τMS for a meta-GGA functional, written in the
AO basis
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For a free atom at the gauge origin, the equation reduces to
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but the contributions to the Fock matrix do not vanish, as they
do in the LDA and GGA case or when using the uncorrected τ
in τ-dependent functionals (τC and τGI approaches, see above).
Inspecting the operator r × ∇ acting on the second basis
function, we note that it is a simple rotation around the
direction of the magnetic field, as soon as the magnetic
quantum number ml ≥ 1 for the AO involved (see more details
in the Supporting Information). We note in passing that the
one-electron contributions to the perturbed Fock matrix
depend on a closely similar operator

h h r, ( )B B
k

k kω ϕ ϕ[ ] = ⟨ *|− × ∇ | ⟩μν μ ν (25)

and they also contribute to the perturbed Fock matrix for the
exact same entries (following the rotation pattern). However,
in contrast to the additional contributions from the τMS model,
these contributions cancel completely within the occupied-
virtual block of the expansion coefficients and thus do not
contribute to the final perturbed density matrix. Therefore, no
net paramagnetic contributions arise. The entries in the
perturbed Fock matrix due to the τMS model are typically an
order of magnitude smaller for TPSS or TPSSh compared to
the other four functionals, explaining the smaller impact on the
shielding tensors. Any entries arising from τD are orders of
magnitude smaller, below the level of numerical noise
determined by the inherent integration accuracies.
We should also note that the present meta-GGA or meta-

GGA-based GH results using τMS in Turbomole agree almost
perfectly with data obtained within the same model but with
the ORCA38,39 or Gaussian42 program packages (see Table S4
in the Supporting Information; the same holds for molecules).
That is, the unphysical σp contributions are clearly not an
artifact of any particular implementation but intrinsic to the
τMS model itself.
4.2. Extension of the Analyses to Simple Linear

Molecules. For molecular systems, proper paramagnetic
contributions naturally arise as well, and so, the artifactual σp

contributions generated by τMS are less visible. However, we
see them clearly in the parallel shielding tensor contributions in
linear molecules, e.g., for the parallel 19F shielding tensor

component in HF (see Table 2), where σp clearly should also
vanish (see, e.g., ref 51 and references therein). Here,
magnitudes and sizes for the different functionals are closely
analogous to what we saw above for Ne. Looking at the
perpendicular tensor component in HF, where sizable regular
paramagnetic contributions are present, a comparison between
τMS and τD suggests that similar artifacts for the former
contribute also here. This reflects the relatively ionic F−H
bond, which renders the fluorine environment still relatively
similar to that of a free fluoride ion. As we switch to the more
covalent situation in F2, we still get similar, albeit somewhat
smaller, parallel contributions for τMS as in HF, with the same
dependence on the functional as for HF or for Ne. However,
now, the differences between τMS and τD for the much larger
(negative) perpendicular components behave very differently.
That is, differences are larger for TPSS, M06-L, and TPSSh but
smaller for M06 and the LHs. This shows that the artifacts of
τMS are not easily separable from the overall paramagnetic
terms and of course also from the current contributions, which
enter for τD.
No numerically significant artifacts of the τMS model are seen

for the parallel 7Li shielding component in LiH (Table 2),
confirming our conclusion for He that the artifacts are linked
to orbitals on the atoms of interest with angular momentum.
These contribute apparently rather little to the lithium
shielding in this case, as confirmed also by the very small
differences between τMS and τD for σ⊥

p . The same holds for
both components of the 1H paramagnetic shielding tensor.
This contrasts to the small but notable artifacts for σ∥

p (1H) in
HF. These artifacts are again negative for TPSS and TPSSh,
negative and somewhat larger for M06-L and M06, and
positive by similar amounts for the LHs. One might thus
expect too large 1H shieldings for the LHs. However, this trend
for σ∥

p is outweighed by the two more deshielded σ⊥
p

components with τMS compared to τD, explaining the
observations in ref 24 of too deshielded isotropic 1H values
with LHs. In contrast, now, τMS provides increased σ⊥

p

compared to τD for the other four functionals, to varying
extents. This then leads to more positive isotropic 1H
shieldings for τMS vs τD in the case of these other functionals.
Despite the rather transferable effects between atoms and the
parallel tensor components in linear molecules, we thus find
that we cannot anymore fully disentangle the artifacts of the
τMS treatment from current contributions when larger
paramagnetic terms come into play.
This holds also, for example, for the 13C and 17O shieldings

in CO and the 15N shieldings in N2 (cf. Table S6 in the
Supporting Information). In those cases, not all of the
abovementioned dependencies on the functional hold for the
parallel component. While the artifacts due to τMS are still
positive for the LHs in all cases, some variations of sign and
magnitude are seen for the other four functionals. That is, the
artifacts are deshielding for M06-L and M06 but shielding for
TPSS and TPSSh in the case of the parallel 17O and 15N values,
whereas matters are reversed for the 13C shielding (with
smaller absolute values). As seen above for F2, the differences
between τMS and τD for σ⊥

p behave differently (Table S6) from
those for σ∥

p.
Table 2 and Table S6 provide additional paramagnetic

shielding contributions for the two models based on an
uncorrected kinetic-energy density, the gauge-dependent τC
and the ad hoc τGI model (see the Theory section). Here, no
contributions to the parallel component in these linear
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molecules arise, as expected. We may thus focus only on σ⊥
p

where, however, current contributions clearly matter. Taking
the τD model as the correct reference, we cannot see clear-cut
trends or advantages of one over the other of the simpler
models. Starting with Table 2, differences tend again to be
relatively small for both 1H and 7Li shieldings in LiH, where
current contributions from p orbitals are minor. Deviations
from the τD results are the largest for σ⊥

p in F2. This is not
surprising, as the effects of a current density functional should
be the most notable for the largest paramagnetic currents.
Interestingly, for this system, the deviations are the most

sizable for the semilocal M06-L functional and the smallest for
the LHs. This may be rationalized as follows: in the semilocal
functional, all of the current dependence of the functional
arises from the τD contributions. In contrast, in the LHs, most
of the current contributions likely are provided by the position-
dependent nonlocal exchange admixture (which is relatively
large in the most decisive semicore region24), while only some
further contributions come from τD occuring in the LMF. The
same observation holds for the σ⊥

p contributions in CO and N2
(Table S6), where clearly the largest effect of τD compared to
the uncorrected τC and τGI models (larger deshielding) is seen
with M06-L and the smallest with the LHs. These observations
are expected to be of general relevance for the nonhydrogen
nuclei (see below).
4.3. Broader Evaluation for a Main-Group Isotropic

Shielding Benchmark Set. We evaluate now the perform-
ance of the same set of six functionals with τMS vs τD on the
main-group isotropic shielding benchmark set of ref 21, which
contains 15 molecules and overall 34 shielding constants for

1H, 13C, 15N, 17O, 19F, and 31P of GIAO-CCSD(T)/pcSseg-4
quality. This set was also used for the recent first evaluation of
LH shielding computations, using τMS.

24 Statistics with respect
to the CCSD(T) reference data are provided in Table 3,
grouped into 1H, 13C, and heteroatom (15N, 17O, 19F, plus 31P)
shieldings. Full isotropic shielding data for all functionals,
including also results with the τC and τGI models, are provided
in Tables S7−S10 in the Supporting Information.
Note that in addition to the evaluation of LHs within the

τMS framework,24 TPSS and M06-L had also been screened
before using the same model and were generally found to
perform well.20,21 Before starting a more detailed discussion,
we note that the effects of going from τMS to τD on the overall
statistics are small for TPSS and TPSSh but in part significant
for the other functionals, as one might have expected from the
atomic and linear-molecule results discussed above.
If we take first a bird’s eye view on the statistical

performance for all nuclei, switching from τMS to τD causes a
slight deterioration of the performance for TPSS and TPSSh
and a more significant one for M06-L. While the latter
functional performs remarkably well within the τMS, τC, and τGI
models, as found previously for τMS

20 and τGI,
21 deviations are

much larger using τD. This suggests that the previously
observed good performance of this highly parameterized
semilocal functional may to some extent indicate the right
answer for the wrong reason, i.e., an error compensation
involving the lack of current dependencies. In contrast, the
rather poor performance of M06 improves slightly when using
the τD model (but with a slightly wider distribution of errors).
In this rough bird’s eye view, the effects of changing to τD

Table 3. Comparison of Statistical Deviations with Respect to GIAO-CCSD(T)/pcSseg-4 Reference Data for the Main-Group
Shielding Set from Reference 21 for Six Density Functionals Using Either the τMS or the τD Model

TPSS M06-L TPSSh M06 LH07ta LH12cta

1H τMS SD 0.30 0.24 0.23 0.16 0.10 0.14

MSE 0.40 0.28 0.34 0.24 −0.23 −0.49
MAE 0.40 0.29 0.34 0.25 0.23 0.49

τD SD 0.27 0.19 0.20 0.16 0.10 0.13
MSE 0.36 0.34 0.30 0.16 −0.09 −0.27
MAE 0.36 0.34 0.30 0.21 0.10 0.27

13C τMS SD 3.8 2.1 3.2 9.0 6.3 6.8

MSE −14.0 −12.1 −13.2 −28.7 −9.9 −4.4
MAE 14.0 12.1 13.2 28.7 10.1 6.9

τD SD 4.0 4.4 3.7 9.5 5.4 5.3
MSE −13.9 −14.0 −13.2 −27.4 −10.4 −4.8
MAE 13.9 14.0 13.2 27.4 10.4 5.8

heteronucleib τMS SD 24.8 19.2 22.3 59.1 29.8 28.7
MSE −33.9 −19.0 −32.7 −79.7 −21.2 −9.1
MAE 33.9 22.4 32.7 79.7 24.8 20.1

τD SD 29.0 32.6 26.6 61.6 27.4 24.1
MSE −37.2 −32.7 −35.8 −72.6 −26.9 −15.2
MAE 37.2 32.7 35.8 72.6 26.9 17.0

all τMS SD 23.6 16.4 21.8 56.1 24.1 22.0
MSE −21.7 −13.0 −20.9 −50.4 −14.0 −6.1
MAE 21.9 15.1 21.1 50.5 16.0 12.8

τD SD 27.1 28.1 25.2 55.7 23.6 19.3
MSE −23.6 −21.1 −22.6 −46.2 −17.2 −9.6
MAE 23.8 21.2 22.8 46.2 17.2 10.8

aLH07t−LH07t-SVWN and LH12ct−LH12ct-SsifPW92. bCombining 15N, 17O, 19F, and 31P shielding constants.
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would also seem relatively minor for the already relatively good
performance of the two LHs. However, it is preferable to
analyze these observations separately for the different subsets
of nuclei.
Starting with the 13C shieldings, the differences between the

models are essentially negligible for TPSS and TPSSh, and the
changes also are rather modest for the other functionals (e.g.,
the top performance of LH12ct-SsifPW92 for MSE and MAE
is not affected). This is different for the heteronuclei, where the
performance of TPSS and TPSSh deteriorates slightly with τD,
that for M06-L worsens more significantly, and the very poor
performance of M06 improves somewhat (but with a slightly
increased SD). For the very simple LH07t-SVWN local hybrid,
the error distribution narrows, but the moderate systematic
underestimation of the shieldings increases slightly. For the
newer LH12ct-SsifPW92, similar trends are observed, i.e., an
even more notable narrowing of the distribution and a slightly
more negative MSE, but the overall MAE is now reduced
somewhat. Given the much worse performance of M06-L
within the τD model, LH12ct-SsifPW92 is now even more
clearly the best-performing functional for the heteronuclei.
The most notable effects of the model for the LHs, however,

are seen for the 1H shieldings. In contrast to all other
functionals compared in ref 24, LHs had been found to
underestimate proton shieldings significantly, even though the
overall performance for other nuclei was outstanding (see
above). This can also be seen here for both LHs, particularly
for LH12ct-SsifPW92, when using τMS. Most of this negative
deviation is removed with τD for LH07t-SVWN, and the

negative MSE for LH12ct-SsifPW92 is reduced almost by half.
We can thus conclude that at least part of the previously
observed poor performance of t-LMF-based LHs for proton
shieldings is not caused by the specific form of the t-LMF, as
we had assumed, but by the artifacts of the τMS model. Changes
of the proton shieldings from τMS to τD are much smaller for
the other functionals, with the slight exception of M06, where
the MSE decreases, while the SD remains the same. We note
also the very different performances and dependences on the
treatment of τ of the at first sight closely related functionals
M06-L and M06. That is, despite their generally similar
functional form, predictions are rendered difficult by the highly
parameterized nature of these functionals. M06-L and M06
were also found recently to provide very different descriptions
of core−shell spin polarization in the context of transition-
metal hyperfine couplings.52

It is also instructive to compare graphically the distribution
of errors when moving from τMS to τD (Figure 1): in the case of
the 1H shieldings, the distributions narrow slightly (except
those for M06-L and TPSSh, which widen). Consistent with
the above discussion, the maxima of the curves move closer to
the origin, except for M06-L, most notably so for M06 and the
LHs, coming from opposite directions. With τD, LH07t-SVWN
clearly provides the narrowest error distribution and
particularly small systematic errors as well. For the non-
hydrogen nuclei, the most notable features of going from τMS
to τD are the pronounced broadening of the distribution for
M06-L and the less pronounced sharpening for LH12ct-
SsifPW92, which is now even more clearly the best-performing

Figure 1. Normal error distributions of absolute shielding constants (ppm) for (top) 1H and (bottom) 13C, 15N, 17O, 19F, and 31P nuclei obtained
with different functionals relative to GIAO-CCSD(T)/pcSseg-4 benchmark data,21 comparing the τMS (left) and τD (right) models.
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of the functionals evaluated, despite the slightly more negative
MSE. We note in passing that within the τC and τGI models,
the LH performance differs only moderately from the τD data,
consistent with a reduced role of the explicit current
dependence compared to M06-L (see above).

5. CONCLUSIONS
We have identified appreciable unphysical paramagnetic
contributions to nuclear shieldings for a number of
exchange-correlation functionals based on the KS kinetic
energy, when applying the widely used Maximoff−Scuseria
model to remove the gauge dependence of τ. These artifacts
can be identified most clearly for spherical atoms and for the
parallel tensor component in linear molecules. While the
effects are rather small for the TPSS meta-GGA and its TPSSh
global hybrid variant, they become much larger for the M06-L
and M06 functionals and for local hybrid functionals with τ-
dependent local mixing functions. For these local hybrids, the
artifactual paramagnetic contributions for atoms are deshield-
ing; for the other functionals, they are shielding. We have
traced these unphysical contributions to entries in the
magnetically perturbed Fock matrix arising from the rotation
of orbitals with angular momentum.
Such unphysical contributions are eliminated when instead

using Dobson’s explicit current-density functional extension of
τ. Here, τD has been included for the first time into a linear-
response nuclear shielding code. For meta-GGA functionals,
this adds somewhat to the computational effort by requiring an
iterative coupled-perturbed Kohn−Sham treatment, while for
global or local hybrid functionals, the already higher computa-
tional requirements are affected very little. The τD scheme
ensures the gauge invariance of the XC functionals and
simultaneously eliminates the unphysical contributions en-
countered for the τMS model. The actual impact on the overall
shielding results depends on the specific functional form into
which the τMS or τD contributions enter. The previously
observed outstanding performance of the M06-L functional to
some extent has been due to a compensation between intrinsic
errors of the density functional and the incomplete (or lacking
for the τC and τGI models) treatment of its current-density
dependence. That is, M06-L performs less accurately within
the τD framework.
In contrast, recently observed too negative 1H shieldings

with first-generation local hybrid functionals, such as LH07t-
SVWN and LH12ct-SsifPW92 studied in this work, were to a
significant part due to artifacts within the τMS implementation
used. The more complete treatment using τD improves these
hydrogen shieldings appreciably while retaining the already
outstanding performance for other nuclei. This clearly
motivates the further development of local hybrid functionals
for nuclear shieldings and related properties, which is
underway in our laboratory.
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ABSTRACT: A recently reported coupled-perturbed Kohn−Sham imple-
mentation to compute nuclear shielding constants with gauge-including
atomic orbitals and local hybrid functionals has been extended to cover
higher derivatives of the density in the local mixing function (LMF) of the
local hybrid as well as the calibration function (CF) needed to deal with the
ambiguity of exchange-energy densities. This allowed the first evaluation of
state-of-the-art local hybrids with “calibrated” exchange-energy densities for
nuclear shieldings. Compared to previously evaluated simpler local hybrids
without a CF, appreciable improvements are found for proton shieldings.
Furthermore, the recent LH20t functional is still competitive with the
outstanding performance of the uncalibrated LH12ct-SsirSVWN and
LH12ct-SsifSVWN LHs for heavier nuclei, suggesting that LH20t is
possibly the most robust choice of any rung-four functional for computing
the nuclear shieldings of main-group nuclei so far. Interestingly, the presence of a CF in the functional significantly reduces the
number of artifacts introduced by the widely used Maximoff−Scuseria framework to treat the local kinetic energy τ. The latter occurs
in so-called t-LMFs used in many of the present local hybrids. In any case, the use of Dobson’s current-density functional framework
is also recommended with more advanced calibrated τ-dependent local hybrid functionals.

1. INTRODUCTION

Due to the central importance of NMR spectroscopy in
chemistry and related fields, the quantum-chemical calculation
of NMR parameters has become a tool of appreciable
importance and interest.1 Methodological improvements in
this area in terms of the computational efficiency2,3,
accuracy,4−6 and method validation7−19 are currently being
pursued very actively. With the focus of the present work on
nuclear shieldings, we note that Kohn−Sham density func-
tional theory (DFT) is the most widely used methodology in
view of its good cost−performance ratio. Yet, the overall
accuracy obtained with standard functionals is currently a
limiting factor, more so than that for energetics, for example.
This is also relevant in regard to efforts toward the automated
quantum-chemical computation of full NMR spectra.20 So far,
double-hybrid (DH) functionals are considered to provide the
most accurate nuclear shieldings for most main-group species;5

however, they require computationally expensive MP2 second-
derivatives involving gauge-including atomic orbitals
(GIAOs21−23), limiting their applicability to smaller systems.
Accuracy improvements on the lower rungs of the often-

invoked Jacob’s ladder of DFT exchange-correlation func-
tionals24 (double hybrids are on the fifth and highest rung) are

thus highly desirable. Our own recent efforts in this context
involve local hybrid (LH) functionals25−27 on the fourth rung.
These exhibit a position-dependent Hartree−Fock exchange
admixture, which is governed by a so-called local mixing
function (LMF). This position-dependent admixture allows a
more flexible compromise between a minimization of the self-
interaction errors and a simulation of the left−right correlation
in different regions of space compared to global hybrid (GH)
functionals with a constant admixture. This is also expected to
be beneficial for NMR parameters, and the recent first
implementations and preliminary evaluations of LHs for
nuclear shieldings28 and spin−spin coupling constants29

appear to support this assumption. One reason for the
expected advantages of LHs for nuclear shieldings is that
locally elevated Hartree−Fock exchange admixtures may help
bring in some of the dependencies on induced paramagnetic
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currents that are lacking in standard semilocal functionals.
Recent work suggests that at least part of the too low shieldings
obtained with the latter for main-group nuclei is related to the
missing current terms,16 and in a broader way GHs are not
very effective in curing this deficiency.
Indeed, the first LH implementation of LHs for shieldings28

has given excellent results for non-hydrogen main-group nuclei
when using so-called t-LMFs26,30,31 based on a scaled ratio of
the von Weizsac̈ker and Kohn−Sham local kinetic energies
g br( ( ) )W= · τ

τ . However, clearly inferior results were found for

proton shieldings in addition to unexpected deviations from
accurate CCSD(T) data for some seemingly simple molecules
with small paramagnetic contributions. We initially suspected
that the form of the t-LMF was responsible for the too
deshielded proton values,28 as LHs with an s-LMF based on
the reduced density gradient32 performed more in line with
GHs. However, closer analyses showed that another issue
affected the proton data specifically:33 the t-LMF depends on
the gauge-dependent local kinetic energy τ. Therefore, the
implementation of ref 28 was done within the widely used
framework of Maximoff and Scuseria34 (MS) to render the τ
contributions gauge-independent (τMS). It turned out that the
MS scheme introduced artifactual paramagnetic contributions
that showed up even for atoms or the parallel shielding tensor
contribution of linear molecules.33 These artifacts were found
to be responsible for both a significant part of the too
deshielded proton values and the deviations in “simple” cases
for other nuclei. Such artifactual contributions from τMS also
appear for other τ-dependent functionals such as meta-GGAs
or meta-GGA-based GHs. In some cases (e.g., TPSS and
TPSSh), the artifacts were small or even beneficial (M06-L)
due to error compensation. This was shown by the
implementation33 of a theoretically more complete treatment
based on Dobson’s current-density generalization35,36 of τ
(τD), which did not exhibit these artifacts. The too negative 1H
shieldings of LHs with t-LMF improved significantly in this τD-
framework, while the other shieldings remained accurate and
the overall width of the error distributions narrowed further.33

The LH nuclear shielding implementations of refs 28 and 33
are still incomplete in an important aspect: they have been
limited to first-generation LHs based on the local spin-density
approximation (LSDA) for the exchange-energy density, which
lack a so-called calibration function (CF) to deal with the
gauge ambiguity of exchange-energy densities.27,37−39 In
particular, the gauge problem manifests in spurious non-
dynamical correlation contributions and notably affects weak
noncovalent interactions.27,38−41 Our more recent LHs are
thus based on GGA exchange-energy densities that are
corrected by a semilocal CF.38,40 The recent LH20t func-
tional40 is particularly notable in this context as it has been
found to be one of the most accurate rung-four functionals for
general main-group energetics and is the first functional of any
rung to properly balance localization and delocalization in the
MVO-1042 gas-phase mixed-valence benchmark. The CFs in
such calibrated functionals contain terms that depend on the
Laplacian and Hessian of the electron density. To evaluate
such second-generation LHs for nuclear shieldings, in this
work we extend the code to include such terms as well as
further terms that involve derivatives of the local kinetic
energy. We note in passing that these extensions may enable
also the use of either future LMFs that contain higher density
derivatives or LHs based on meta-GGA exchange-energy

densities. Thus, the main goal of this work is to present the
extended implementation of more advanced “calibrated” LHs
into the nuclear shielding part of the Turbomole program
package and in addition their first evaluation for main-group
nuclear shieldings by comparing both τMS and the more
complete τD framework.

2. THEORY
2.1. Local Hybrid Functionals Containing Calibration

Functions. A relatively general form of a LH reads38

E E E g e e Gr r r r r1 ( ) ( ) ( ) ( ) dXC
LH

X
ex

C
sl

X,
sl

X,
ex∫∑= + + [ − ][ − + ]

σ
σ σ σ σ

(1)

where EX
ex is the exact (Hartree−Fock-type) exchange energy,

EC
sl is a semilocal correlation energy functional, eX,σ

sl (r) is the
semilocal exchange-energy density, and eX,σ

ex. (r) is the exact
exchange-energy density

e r r r
r r

r r
r( )

1
2

( ) ( )
( ) ( )

d
ij

i j
j i

X,
ex

, ,
, ,∫∑ φ φ

φ φ
= − *

* ′ ′

| − ′|
′σ σ σ

σ σ

(2)

constructed from a set of molecular spin−orbitals {φi,σ(r)}.
Gσ(r) is a calibration function (CF)43 defined by its basic
property ∫ Gσ(r) dr = 0. In principle, any function that fulfills
this basic constraint may be considered (see ref 37 and the
references therein), but here we consider the semilocal CFs as
suggested in refs 38 and 39 (see below), which fulfill a number
of additional exact constraints.27,38,39 In the case of g(r) = a0 =
constant i.e. for a GH, the CF integrates out and has thus no
effect on the resulting exchange-correlation energy EXC. This is
not possible for a proper LH. The CF is adjusted to bring
eX,σ
sl (r) and eX,σ

ex (r) “into matching gauges”. In practice, the CF
contains adjustable parameters that can be optimized to
remove unphysical nondynamical correlation-energy contribu-
tions, e.g., for atoms or weakly bound noble-gas dimers.38,39

Ref 39 shows how to derive semilocal CFs from semilocal
exchange functionals using one or more partial integrations.
We may, for example, consider a GGA functional written as
EX,σ
GGA = EX,σ

LDA − ∫ΔeX,σGGA dr, where e s sX,
GGA 4/3 2ρ= · [ ]·σ σ σ σ .

Here, sσ(r) is the reduced spin-density gradient

s
k

r
r

r
( )

1 ( )

( )

1/2

4/3

γ

ρ
= ·σ

σσ

σ (3)

where k = 2(6π2)1/3, ρσ(r) is the density, and γσσ(r) is the
squared density gradient

r r r( ) ( ) ( )Tγ ρ ρ= ∇ ∇σς σ ς (4)

s[ ]σ is a real-space damping function, which is discussed
further below.
A first partial integration leads to a first-order “partial

integration gauge” CF (pig1 CF)39

G f s q s s
s

s
p s

1
3

d
d

4
3

(1)
1

4/3 2 2ρ= · · [ ]· − + ·
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· −σ σ σ σ σ σ
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σ
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Ä
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ÅÅÅÅÅÅÅÅÅÅ
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jjj

y
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zzz
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k
jjj

y
{
zzz
É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(5)

Another partial integration provides a second-order contribu-
tion
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where f1 and f 2 are adjustable parameters. Combined with the
first-order contribution, this leads then to a more complex
second-order pig2 CF. In these equations,

q
k

l
r

r

r
( )

1 ( )

( )2 5/3ρ
= ·σ

σ

σ (7)

is the reduced density Laplacian and

p
k

r
r

r r
( )

1 ( )

( ) ( )2
,

5/3

η

γ ρ
= ·

·σ
σ σσ

σσ σ (8)

is the reduced density Hessian. These contain the density
Laplacian

l r r( ) ( )ρ= Δσ σ (9)

(where Δ = ∇T∇) and the projection of the density Hessian
onto the density gradient

r r r r( ) ( ) ( ) ( ),
T Tη ρ ρ ρ= ∇ ∇∇ ∇ς σϑ σ ς ϑ (10)

We note in passing that ς, σ, and ϑ are individual spin labels of
either α- or β-spin and σ′ is the opposite spin in regard to the
spin defined by σ. The underlying damping (or real-space
cutoff) functions depend on the GGA functional we started
with. Two examples present in the functionals we will evaluate
here are the damping factor of the B88 functional,44 which
occurs in the pig2 CF39 of the LH20t functional,40 and a
simple Gaussian damping function, which occurs in the pig1
CF of the earlier LH14t-calPBE functional.38 The implemen-
tation includes also pig1 and pig2 CFs based on the PBE
functional.45 Ref 39 also provides a first-order CF (tpig1)
based on the B98 meta-GGA functional,46 which depends on
the gradient of τ. The magnetic-field derivatives and shielding
contributions for the latter have also been derived in this work
(see Appendix A), albeit no published functional so far uses
tpig1.
2.2. Extension of the LH Nuclear Shielding Imple-

mentation to Include a Calibration Function. For broader
overviews on the theoretical aspects of shielding calculations,
we refer to refs 47 and 48. We built on ref 28 for the general
formulation of the coupled-perturbed KS scheme to compute
nuclear shieldings with LHs and on ref 33 for the extension to
the τD formalism. In the following, we will thus restrict the
exposition mainly to the additional terms arising from a
semilocal CF. We thus switch to the AO basis, which is

denoted as {ϕμ}, and use ( )B R rexp i
c2

ω ϕ= − [ × ]μ μ μ to

denote GIAOs. For the sake of simplicity, superscripts denote
derivatives with respect to the given quantity, and we omit the
argument r since all employed quantities are local.
The general equation to be solved for shielding constants σ

can be expressed as

D
h

B

D

B
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d d

d

d

d
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k l K k l K
B,

2

, ,
0k l K,
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μ μ
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μν
σ μν μν

σ
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μ= =

Ä
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ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (11)

where hμν is a component of the (magnetic-field-dependent)
Hamiltonian in the AO basis; k, l = x, y, z are Cartesian
components; Bk is a spatial component of the magnetic field;
and μl,K is a component of the nuclear magnetic moment of
nucleus K. The first (diamagnetic) term on the right-hand side
involves only the ground-state density matrix for which LHs
with a semilocal CF had already been formulated and
implemented.38,39 The new implementation thus pertains
exclusively to the second (paramagnetic) term, which involves

the perturbed density matrix [D c c( )B
B i i i

,
, ,

k

k
= ∑ *μν

σ
μ σ ν σ

∂
∂

]

constructed from perturbed MO coefficients (cμi
Bk). The latter

may be expanded into a set of virtual unperturbed orbitals,
which are weighted by so-called expansion coefficients (cμi,σ

Bk =
∑a uai,σ

Bk cμa,σ). Finally, the expansion coefficients require the
solution of the CP equations derived from, for example, the
Brillouin condition

u
F SB

B
i

B

i a
ai,

ai, , ai,

, ,

k

k kε
ε ε

=
−

−σ
σ σ σ

σ σ (12)

where Fai,σ
Bk and Sai,σ

Bk are perturbed Fock and overlap matrices,
respectively, and the εσ terms are MO energies. Additional
terms due to the presence of a CF arise in the perturbed Fock
matrix. While the CF may be viewed equally well as calibrating
either the semilocal exchange-energy density or the exact
exchange-energy density,38 the semilocal nature of the CFs
used here make it natural to lump them with the semilocal
exchange-energy density and compute these parts together
with other semilocal quantities. The former generates a
modified semilocal expression

e e GG
X,
sl,

X,
sl= +σ σ σ

σ (13)

As discussed above, this brings in higher derivatives of the
density (and potentially the gradient of the kinetic-energy
density; see Appendix A), which have to be dealt with. In
general, the semilocal parts of a LH, via LMF, eX,σ

sl. , or CF, may
depend on a variety of quantities

f f

lwhere , , , , , ...,ρ γ η τ

= [ ]

= { }σ σσ σ σ σσ σ (14)

for which derivatives with respect to the magnetic field have to
be computed. We note again that τ itself is not gauge-invariant.
In this work, we will compare both the gauge-invariant
extension by Maximoff and Scuseria34

c c
A

j
A
2pMS,

T

,

2

2τ τ τ ρ→ = + + | |
σ σ σ σ σ (15)

which involves the magnetic vector potential A, and that due to
Dobson35,36

j

2
p

D,
,

2

τ τ τ
ρ

→ = −
| |

σ σ σ
σ

σ (16)

which only brings in the paramagnetic current jp,σ. The term
jp,σ is defined as

i
Dj

2
( )p, ∑ ϕ ϕ ϕ ϕ= ∇ * − *∇σ

μν
μν
σ

ν μ μ ν
(17)

While τD also requires the solution of coupled equations for
meta-GGA functionals, it has the advantage of being an explicit
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current-density functional. τMS is computationally more
convenient but has the disadvantages of depending on the
vector potential,37 violating the iso-orbital constraint,49 and
generating unphysical paramagnetic contributions.33 In con-
trast to τ, the density and the gradient of the density are both
implicitly gauge-invariant without modification, and the same
holds for higher derivatives such as the Laplacian and Hessian.
The final contributions to the perturbed Fock matrix have

the general form

F d frdB B
, ,

k k∫= [ ̂ ]μν σ μν σ σ (18)

where
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and Q runs over the set of quantities present in f [ ]. Since the
contributions from the density, the gradient of the density, and
the kinetic-energy density are well-known (e.g., see ref 34), we
only give the explicit equations for the Laplacian
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(see Appendix A for the gradient of the kinetic-energy
density). We have to additionally construct

i
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3. COMPUTATIONAL DETAILS
The developments described in the Theory section have been
implemented into the mpshift module of a local developers’
version of the Turbomole program package, which was
updated to release 7.5,50 thus extending the LH implementa-
tions of refs 28 and 33. Nuclear shielding constants were
calculated using GIAOs. To deal with the gauge-dependence of
the kinetic-energy density, we compare the τMS model (eq
15)34 and the recently implemented33 and explicitly current-
dependent τD model (eq 16).35−37,51 The SCF energy-

convergence criterion of 10−9 was used in addition to ensuring
the convergence of the input density by setting the density
convergence to 10−7. Integration grids employed grid setting
“5” (internal Turbomole setting) for both the semilocal
contributions and seminumerical integrations52−56 of the
exact-exchange contributions. For this benchmarking study,
no integral screening methods (“junctions”) were used in this
work for the exact-exchange terms (see ref 28). The
convergence of the CPKS iterations was set to 10−7

(convergence of the Euclidean vectors). Unless stated
otherwise, we use the RI-J approximation for the Coulomb
terms in the SCF calculations and the MARI-J approximation
for the GIAO Coulomb shielding contribution.2

After initial analyses of the effects of the τMS framework on
the Ne atom and the HF molecule, we evaluated computed
shieldings against GIAO−CCSD(T)/pcSseg-4 benchmark
data for the main-group test set of ref 3, which contains 15
molecules and 34 shielding constants (8 × 1H, 7 × 13C, 5 ×
15N, 6 × 17O, 5 × 19F, and 3 × 31P). As in our previous
studies,28,33 we used pcSseg-4 basis sets57 throughout to
essentially eliminate basis-set errors. We employed the auxiliary
basis sets (“universal”) as specified in ref 58.
The focus of the present evaluations is on LHs with

calibrated exchange-energy densities. That is, the LH20t
functional40 based on PBE exchange and B95 correlation,
which is augmented by a B88-based pig2 CF, and the earlier
LH14t-calPBE functional38 based on PBE exchange and
correlation and a Gaussian-damped pig1 CF are both
considered. Both of these LHs use a scaled t-LMF (with
prefactors b = 0.715 and 0.5, respectively). For comparison, we
also include results with uncalibrated first-generation LSDA-
based LHs that have previously been evaluated.28,33 These are
the t-LMF-based LH07t-SVWN (b = 0.48),30 the s-LMF-based
LH07s-SVWN,32 and the t-LMF-based LH12ct-SsirPW92 (b =
0.646)59 and LH12ct-SsifPW92 (b = 0.709).59 For the analysis,
we also evaluate the effect of removing the CF from the two
calibrated LHs while keeping all other parameters fixed. We
will denote these modified functionals as LH14tNC and
LH20tNC. While a larger number of further functionals was
previously evaluated for this test set,3,5,28,33 for conciseness we
only include TPSSh here.60 This meta-GGA-based GH was
previously identified as the best non-LH rung-four functional
for this set of main-group shieldings.3,28 Some statistical data
for further standard functionals are included in Table S1 in the
Supporting Information.

4. RESULTS
Initial work to evaluate the correctness of the implementation
focused on the gauge invariance and on other invariances, for
example, those regarding spatial symmetries. All of the tests
confirmed that the additional terms were implemented
correctly. Some timing tests (data not shown) confirmed
that the computational effort increased only marginally
compared to that for simpler LHs when using the same
computational settings.

4.1. Evaluation of the Artifacts of the τMS Framework
for the Ne Atom and HF and F2 Molecules. We noted
above that too deshielded proton values and some artifacts for
seemingly simple cases with t-LMF-based first-generation LHs
in the initial evaluation of LHs for nuclear shielding28 were
caused to an appreciable part by artifacts of the standard τMS
treatment and notably improved within the τD framework.33

Before we delve into a more general statistical evaluation of
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main-group shieldings, it is thus of interest to see how such
artifacts were affected by the presence of a CF in the LH20t
and LH14t-calPBE functionals. As these contributions are
typically overshadowed in the presence of genuinely large
paramagnetic terms, it is best to evaluate them for spherical
atoms or the σ∥

p contributions in linear molecules, where the
physical σ∥

p terms are zero. Table 1 provides this analysis for
the Ne atom and the HF and F2 molecules, which served a
similar purpose before.33

We can most favorably compare the results of LH14t-calPBE
to those of LH07t-SVWN and the results of LH20t to those
LH12ct-SsifPW91, as these pairs exhibit rather similar t-LMF
prefactors (see Computational Details). Additionally, we can
simply remove the CF from both of the two calibrated LHs.
Interestingly, the τMS artifacts on Ne and those for σ∥

p in HF
and F2 that were seen for LH14t-calPBE are smaller by close to
a factor of two relative to those for LH07t-SVWN, while the
removal of the CF (LH14tNC) increases the unphysical terms
by part of this difference. In case of the larger t-LMF prefactors
of LH20t and LH12ct-SsifPW91, the differences are even more
notable. Now, the artifacts of the calibrated LH20t are less
than one-third of those for the uncalibrated LH12ct-SsifPW91,
and the effect of removing the CF (LH20tNC) is likewise larger.
Thus, it seems that the use of uncalibrated exchange-energy
densities exacerbates the unphysical contributions from τMS for
t-LMFs, and using a CF provides a better starting point. This
holds for the Ne atom and for the σ∥

p terms of both 1H and 19F
shieldings in HF. Nevertheless, some artifacts remain, even for
the calibrated functionals. These contributions are absent when
using the τD current-density functional framework for the τ-
dependent terms (Table 1). Paramagnetic contributions for Ne
and σ∥

p in the two molecules vanish, as they should.
The agreement of the isotropic shieldings with the reference

data for Ne and HF largely reflect the unphysical artifacts of

τMS; thus, these systems may be considered “simple cases” for
which uncalibrated LHs previously showed unexpectedly large
deviations in this framework.28 The large σ⊥

p and thus the
isotropic shielding in F2 reflect other aspects of the functional
and are not necessarily improved by the use of either τD or the
CF. Such aspects will be more broadly evaluated below for the
larger test set of main-group shieldings. As τ occurs also in the
B95 meta-GGA correlation functional of LH20t, and the
results may be affected by how we render it gauge-invariant, we
have evaluated replacing it with PBE GGA correlation. Effects
of this substitution are much smaller than those arising from
the exchange functionals and are thus not shown in the table.
We want to further demonstrate that the too low 1H

shieldings and the too large shieldings for heavy atoms bound
to hydrogen in electronically “simple” cases found initially with
uncalibrated LHs28 were caused to a large extent by the τMS
framework33 and that these artifacts are clearly smaller with
calibrated LHs. To this end, Table S2 in the Supporting
Information provides shieldings computed for the element
hydrides CH4, NH3, H2O, and HF compared to the CCSD(T)
reference data.
While the 1H shieldings with TPSSh are generally over-

estimated, those of the uncalibrated LHs are significantly
underestimated within the τMS treatment, increasingly so from
CH4 to HF and most pronouncedly with a larger prefactor of
the t-LMF. Using the physically better-founded τD framework,
these deviations decrease but do not vanish completely. With
the calibrated LHs, the underestimate is only really notable
(but much smaller) for HF in the case of LH20t and is not
much affected when using τD.
Turning to the “heavy” nuclei in these systems, the clear

overestimate of the shieldings for most of the uncalibrated LHs
is obvious with τMS, again increasingly so for the more polar
element−hydrogen bonds up to 25 ppm for HF. The problem

Table 1. Total Isotropic Shielding Constants and Paramagnetic Shielding Tensor Contributions for Ne, HF, and F2 In
Comparison To CCSD(T) Reference Data When Comparing the τMS and τD Frameworks

referencea LH07t LH12sif LH14t LH14tNC LH20t LH20tNC

τMS Ne 21Ne σ 552.0 569.9 575.4 561.3 566.1 559.3 569.3

σp 0.0 18.8 24.1 9.6 14.5 7.2 17.2
HF 1H σ 28.82 28.55 28.16 28.78 28.64 28.55 28.28

σ⊥
p 2.49 2.41 3.34 2.39 5.16 2.95
σ∥
p 0.14 0.20 0.07 0.11 0.05 0.14

19F σ 419.91 437.0 444.7 426.9 432.1 426.0 436.8

σ⊥
p −57.0 −47.8 −69.8 −62.0 −73.7 −57.4
σ∥
p 19.9 25.6 9.9 15.3 7.1 18.3

F2
19F σ −192.76 −215.7 −192.9 −220.3 −218.4 −209.2 −205.6

σ⊥
p −1025.7 −993.8 −1029.3 −1028.8 −1011.8 −1011.2
σ∥
p 15.2 19.3 7.4 11.6 5.2 13.8

τD Ne 21Ne σ 552.0 551.1 551.3 551.7 551.6 552.1 552.1

σp 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HF 1H σ 28.82 28.76 28.48 28.82 28.81 28.52 28.51

σ⊥
p 2.87 2.99 3.43 2.70 5.13 3.36
σ∥
p 0.00 0.00 0.00 0.00 0.00 0.00

19F σ 419.91 418.4 421.2 418.0 418.1 420.1 420.5

σ⊥
p −75.0 −70.3 −78.2 −75.4 −79.0 −72.7
σ∥
p 0.0 0.0 0.0 0.0 0.0 0.0

F2
19F σ −192.76 −222.7 −199.3 −222.9 −223.0 −206.1 −206.7

σ⊥
p −1028.6 −993.7 −1029.5 −1029.9 −1004.6 −1006.0
σ∥
p 0.0 0.0 0.0 0.0 0.0 0.0

aGIAO−CCSD(T) reference data, cf. refs 3 and 16.
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disappears when using τD. The artifacts arising with τMS for the
calibrated LHs are again much smaller, while the removal of
the CF increases them. Differences between the different LHs
and relative to the CCSD(T) values are very small within the
τD framework, now almost irrespective of the presence of a CF
in the functional. We note in passing that the TPSSh GH gives
somewhat too low shieldings irrespective of the treatment of τ,
which is in line with previous observations for this and other
standard functionals.
Statistical Evaluations for Main-Group Shieldings. To

extend the study of nuclear shieldings with first-generation
LHs in refs 28 and 33 to the more sophisticated calibrated
LH14t-calPBE and LH20t functionals, we turn to the statistical
evaluation of the main-group shielding benchmark from ref 3.
As done previously, we grouped the shieldings into 1H, 13C,
and heteronuclei (combining 15N, 17O, 19F, and 31P). For each
subset, we evaluated the standard deviation (SD), the mean
signed error (MSE), and the mean absolute error (MAE). For
the subset of heteronuclei, we found that the PN molecule
dominated the deviations of the LHs and for that matter any
hybrid functional with larger exact-exchange admixtures3,28

(TPSSh has only 10% and is thus somewhat less sensitive).
This reflects the particularly large static correlation effects of
this diatomic molecule.61 Our statistical evaluations in Figure 1
thus provide results with PN either excluded (solid bars) or

included (hatched bars). For comparison, we give also the data
for the first generation uncalibrated LHs (including LH07s-
SVWN, which is based on an s-LMF) and TPSSh. We
furthermore compare the τMS (darker color tone) and τD
(lighter tone) treatments of the local kinetic energy for all τ-
dependent functionals. The full set of isotropic shielding
constants is provided in Tables S3 and S4 in the Supporting
Information. We note in passing that we deliberately compared
them to CCSD(T) rather than to the corrected experimental
data. This may introduce a very small bias, as the benchmark
data show some small but notable deviations from the
experiment for systems with an appreciable static correlation,
such as OF2, F2, N2O, or the

31P shielding of PN. However,
comparing them instead directly to the experimental data for
the subgroup of systems for which these are available (Tables
S3 and S4) would not notably alter the statistical evaluation.
Starting with the somewhat less critical 13C shieldings

(middle of Figure 1), we see relatively small differences
between the functionals and the treatments of τ. Most of the
LHs (except the s-LMF-based LH07s-SVWN) give lower
MAEs and less negative MSEs than TPSSh, while their
standard deviations are slightly larger (particularly with τMS
and less so with τD). Indeed, the smallest MAEs were found
with the two uncalibrated LHs LH12ct-SsifPW91 and LH12ct-
SsirPW91. LH20t, which has a similarly large t-LMF prefactor

Figure 1. Statistical evaluation for various LH functionals and the TPSSh GH with the pcSseg-4 basis sets compared to the CCSD(t)/pcSseg-4
reference data from ref 3. R* stands for all heteronuclei. In that case, the PN molecule caused a large part of the deviations; therefore, the solid bars
indicate the statistics obtained when excluding PN.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c01135
J. Phys. Chem. A 2021, 125, 2697−2707

2702



compared to those two functionals (see Computational
Details), is only slightly worse but shows a somewhat more
negative MSE. Importantly, the treatment of τ only moderately
affects the overall performance of even uncalibrated LHs. That
is, the τMS artifacts identified for “simple” cases such as CH4

(see above) are small relative to the overall paramagnetic
contributions that arise in many of the molecules involved in
the 13C shielding subset considered.
In contrast, the most striking differences were seen for the

1H shieldings (left of Figure 1, note the different scale).
Uncalibrated t-LMF-based LHs were previously found to
clearly underestimate these values with τMS, but were improved
within the τD framework (with LH07t-SVWN performing the

best). LH07s-SVWN had small systematic errors but
comparably large statistical scatter, while many GHs, including
TPSSh, tended to overestimate the 1H shieldings. Here, the
performances of the two calibrated LHs are striking, in
particular for LH20t; with both τMS and τD, LH20t and LH14t-
calPBE perform excellently. This confirms the findings for the
simplest hydrides discussed above.
Finally, the heteronuclei shieldings (right side of Figure 1)

offer some of the most notable advantages when using t-LMF-
based LHs over standard functionals such as TPSSh (the s-
LMF-based LH07s-SVWN is inferior). While use of τMS gives
less negative MSEs than τD for the uncalibrated LHs, likely
indicating some error compensation, the MAEs and SDs were

Figure 2. Normal distribution plot of the deviations of heteronuclear shieldings (combining 15N, 17O, 19F, and 31P, excluding PN) relative to the
CCSD(T) reference data.

Figure 3. Normal distribution plot of the deviations of shieldings computed with LH14t-calPBE (orange) and LH20t (purple) as well as those
computed without the respective CF (dotted lines) using either τMS (top) or τD (bottom) relative to the CCSD(T) reference data. Ra combines the
15N, 17O, 19F, and 31P shieldings (excluding PN).
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clearly improved upon switching to τD. These effects were
again somewhat diminished for the two calibrated LHs. In this
case, the older LH14t-calPBE performs somewhat worse than
the best-performing uncalibrated LH12ct-SsifPW91 and
LH12ct-SsirPW91 and comparable to LH07t-SVWN, which
has a similar t-LMF prefactor. The more recent LH20t, which
has a larger prefactor, is almost on par with the best performers
in this case. However, it retains a somewhat larger fraction of
the typically too large deshielding of standard functionals.
Given the much better results for proton shieldings compared
to those of the LH12ct functionals, LH20t may nevertheless be
the most robust choice overall if one aims at hydrogen and
non-hydrogen shieldings simultaneously. Obviously, the still
relatively large exact-exchange admixture of this LH may still
hamper the accuracy for cases with a strong static correlation,
such as PN. As LH20t is currently the best LH for general
main-group energetics, indeed one of the best rung-four
functionals overall, and has further advantages for both ground
and excited states,40 these first results for nuclear shieldings are
encouraging. If one aims mostly at non-hydrogen shieldings,
LH12ct-SsirPW91 and particularly LH12ct-SsifPW91 are so far
the best choices overall. Used with τD, their errors for proton
shieldings may also be acceptable.
Further insight into the error distributions of the

heteronuclei subset are provided by the plots of the deviations
in Figure 2 (distributions including PN are provided in Figure
S1 in the Supporting Information). The top performances of
LH12ct-SsifPW91 and LH12ct-SsirPW91, followed by LH20t,
are apparent, as is the notable narrowing of the curves for the
two former uncalibrated LHs when using τD (right side).
LH20t provides the narrowest distribution of errors but a slight
systematic shift to too-low shieldings. Note, however, that this
shift is small compared to that of any GH studied previously
for this test set28,33 and is inferior only to that of the best
double hybrid studied so far, DSD-PBEP86.5

Overall, the removal of the CF for LH20t or LH14t-calPBE
modifies the overall statistical performance relatively little but
still is most notable for proton shieldings. Figure 3 shows that
the CF helps to narrow the 1H distributions for both LH14t-
calPBE and LH20t (the distribution for heteronuclei with PN
is given as Figure S2 in the Supporting Information). While it
also corrects the overall too negative shieldings, this effect
becomes less pronounced when moving from τMS to the τD
framework. In the 13C case, the narrowing is less pronounced
and the systematic negative shift is even very slightly increased.
Finally, the effects are rather small for the heteronuclei,
particularly when using τD. Numerical data underlying these
distributions are provided in Table S4 in the Supporting
Information.
We finally note that, while TPSSh was previously identified

as the best rung-four functional for this main-group shielding
test set, the rung-three meta GGA M06-L gave even slightly
better statistics when used within the τMS framework.5 We
showed in ref 33 that this reflects the error compensation with
missing current terms. For completeness, Table S1 in the
Supporting Information gives some gross statistical data for the
entire test set for a set of additional functionals, including
M06-L with τMS and τD. This shows that several local hybrids
indeed outperform all the previously studied functionals on
rungs one to four for this test set, particularly when using the t-
LMF within the τD current-density functional framework.

5. CONCLUSIONS
A recent coupled-perturbed Kohn−Sham implementation for
the computation of nuclear shieldings with local hybrid
functionals and GIAOs has been extended to account for
higher derivatives of the electron density (and the gradient of
the local kinetic energy). This has allowed the first evaluation
of more advanced constructions of local hybrids that include a
semilocal calibration function to deal with the “gauge
problem”, i.e., with the ambiguity of exchange-energy densities,
and allow the use of GGA or meta-GGA contributions. Two
functionals of this more advanced type were implemented,
namely, LH14tcal-PBE and the most recent LH20t. The latter
was previously found to be superior to all earlier local hybrids
as one of the overall best rung-four functionals for main-group
energetics (GMTKN55 set) and the first functional to
simultaneously describe the most extreme delocalized and
localized cases of mixed-valence systems. Indeed, the first
evaluations for a moderate-sized main-group shielding test set
show that the “calibrated” local hybrids provide substantial
improvements over the uncalibrated ones for proton shieldings
while maintaining a high accuracy for the other nuclei. Behind
the best of the significantly more computationally demanding
double hybrid functionals studied recently (DSD-PBEP86),
the data suggest that LH20t is currently one of the overall most
robust choices for the computation of main-group shielding
constants and thus NMR chemical shifts, being clearly superior
to standard rung one through four functionals.
This underlines the potential of the position-dependent

exact-exchange admixture in local hybrids for properties that
depend on different regions of space. Ongoing work in our
laboratory is aimed at evaluating this methodology for a much
wider range of shieldings for both main-group and transition-
metal systems. At the same time, more advanced local mixing
functions and other extensions of the local hybrid method-
ology are expected to provide further improvements in
accuracy. More detailed comparisons of local hybrids with
double hybrids and other functionals will be explored
elsewhere for a much larger benchmark test set.
Interestingly, the artifacts introduced by the gauge-invariant

Maximoff−Scuseria extension of the local kinetic energy, which
occur in the most widely used local mixing functions (t-LMFs)
of local hybrids so far, is substantially diminished for the more
advanced calibrated functionals. Nevertheless, use of Dobson’s
current-density functional extension, which does not introduce
any artifacts but also ensures the gauge-invariance of τ, is
recommended as the most accurate and physically justified
methodology.

■ APPENDIX A
In ref 39, a first-order calibration function for meta-GGA
functionals (tpig1) was proposed as follows:
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For the physically better-founded τD variant (eq 16), we get

the somewhat more complicated
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where we have to construct
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and the contribution from the gradient
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ABSTRACT: An extended theoretical benchmark set, NS372, for
light main-group nuclear shieldings and NMR shifts has been
constructed based on high-level GIAO-CCSD(T)/pcSseg-3//
CCSD(T)/cc-pVQZ reference data. After removal of the large
static-correlation cases O3, F3

−, and BH from the statistical
evaluations for the 17O, 19F, and 11B subsets, the benchmark
comprises overall 372 shielding values in 117 molecules with a
wide range of electronic-structure situations, containing 124 1H, 14
11B, 93 13C, 43 15N, 31 17O, 47 19F, 14 31P, and 6 33S shielding
constants. The CCSD(T)/pcSseg-3 data are shown to be close to
the basis-set and method limit and thus provide an excellent
benchmark to evaluate more approximate methods, such as density
functional approaches. This dataset has been used to evaluate Hartree−Fock (HF) and MP2, and a wide range of exchange−
correlation functionals from local density approximation (LDA) to generalized gradient approximations (GGAs) and meta-GGAs
(focusing on their current-density functional implementations), as well as global hybrid, range-separated hybrid, local hybrid, and
double-hybrid functionals. Starting with absolute shielding constants, the DSD-PBEP86 double hybrid is confirmed to provide the
highest accuracy, with an aggregate relative mean absolute error (rel. MAE) of only 0.9%, followed by MP2 (1.1%). MP2 and double
hybrids only show larger errors for a few systems with the largest static-correlation effects. The double-hybrid B2GP-PLYP, the two
local hybrids cLH12ct-SsirPW92 and cLH12ct-SsifPW92, and the current-density functional meta-GGA cB97M-V follow closely
behind (all 1.5%), as do some further functionals, cLH20t and cMN15-L (both 1.6%), as well as B2PLYP and KT3 (both 2.0%).
Functionals on the lower rungs of the usual ladder offer the advantage of lower computational cost and access to larger molecules.
Closer examination also reveals the best-performing methods for individual nuclei in the test set. Different ways of treating τ-
dependent functionals are evaluated. When moving from absolute shielding constants to chemical shifts, some of the methods can
benefit from systematic error compensation, and the overall error range somewhat narrows. Further methods now achieve the 2%
threshold of relative MAEs, including functionals based on TPSS (TPSSh, cmPSTS).

1. INTRODUCTION

Due the central importance of NMR spectroscopy in many
areas of natural sciences, quantum-chemical computation of its
spectroscopic parameters is increasingly in demand. We focus
here on nuclear shieldings and the related NMR chemical
shifts. The development of post-Hartree−Fock (post-HF)
methodologies has been an important part of the progress here,
providing unrivaled accuracy.1−4 CCSD(T) in combination
with gauge-including atomic orbitals (GIAOs5−7) is currently
the gold standard except for cases with large static-correlation
effects. However, due to the substantial computational effort
involved with such post-HF methods, the vast majority of
practical applications of quantum-chemical methods to NMR
shifts, in particular for larger molecules and solids, use the
computationally much more expedient methods of the Kohn−
Sham density functional theory (KS-DFT). For the latter, the
approximate exchange−correlation (XC) functional largely

determines the achievable accuracy. Indeed, such approximate
DFT methods for nuclear shieldings, while being used widely,
frequently do not yet achieve the accuracy desired for some
sophisticated spectroscopic problems,8−11 and thus the search
for improved XC functionals is an ongoing and active
endeavor.
Currently, it appears that the shieldings of main-group

systems, on which we concentrate in this work, are best
reproduced by some so-called double-hybrid functionals
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(DHs) on the fifth rung of Perdew’s ladder of XC
functionals,12 in particular, the DSD-PBEP86 functional13,14

based on spin-component-scaled (SCS) MP215 (a recent
comparison with experimental 1H shifts comes to a different
conclusion but suffers from methodological inadequacies16).
The nonlocal MP2-type correlation of DHs in conjunction
with GIAOs introduces substantial computational demands
(estimated to be 1−2 orders of magnitude larger than a regular
DFT shielding calculation), however, placing this class of
functionals in an accuracy and cost range intermediate between
the more standard DFT approaches and the CCSD(T)
reference method. This limits the accessible system sizes
with DHs and emphasizes the need for further accuracy
improvements on the lower rungs of the ladder (we note,
however, promising efforts to extend DH approaches to local
correlation methods17). A point in case is provided by a recent
computational protocol that combines cheap conformational
dynamics simulations with DFT computations of NMR shifts
and spin−spin coupling constants to simulate full NMR
spectra from first principles.18 Here, the need for many
computations for different conformers on larger systems limits
the applicability of DHs. The limited accuracy of NMR shifts
obtained with more standard DFT functionals on the lower
rungs of the ladder is a decisive obstacle that might be
overcome by accuracy improvements.
An area we have started to focus on is the use of local hybrid

functionals (LHs19,20) with position-dependent (Hartree−
Fock-type) exact-exchange (EXX) admixture (rung 4) for
which the first efficient implementation of nuclear shieldings
has been reported recently.21 After considering the proper
treatment of local kinetic-energy contributions to the local
mixing functions (LMFs) that govern the position depend-
ence22 and introducing more advanced LHs with calibration
functions (CFs) to deal with the ambiguity of exchange-energy
densities,23 very promising results have been found in initial
evaluations on a relatively small main-group shielding test set
when using the most recent LH20t functional,24 with
promising data obtained also with some earlier variants of
LHs. Part of the advantages of LHs in this field relate to their
larger EXX admixture in the core and semicore regions that
may allow induced-current contributions to the magnetic-field
response to be covered more accurately than with standard
global hybrids (GHs), an aspect that has recently received
increased attention.25 A related notable aspect of refs 22 and
23 is that the implementation of functionals depending on
local kinetic energy τ using Dobson’s current density functional
(CDFT) framework26,27 cures some artifacts of the widely
used Maximoff−Scuseria scheme28 to render τ gauge-invariant,
and it can affect the nuclear shielding results substantially for
some meta-GGAs, meta-GGA based GHs, and for τ-dependent
LHs. A wider screening of LHs, and of CDFT versions of
meta-GGA-based functionals, for nuclear shieldings and
chemical shifts thus seems in order.
A completely systematic improvement of approximate XC

functionals toward an exact functional is not possible while
retaining the computational advantages of DFT. Although we
can attempt to use physical reasoning to construct improved
functionals, the path forward always typically involves some
type of validation and benchmarking to establish that a given
functional performs well for a given property. This can be done
by comparing approximative calculations to experimental data
or to data computed using high-level ab initio methodologies.
The latter helps to eliminate a number of factors that often

complicate the direct comparison against experiment, such as
environmental, ro-vibrational, or thermal contributions (pos-
sibly also relativistic effects, see below). This makes a theory-
against-theory comparison preferable, provided a benchmark
level with sufficiently high accuracy is available. For main-
group nuclear shieldings, a number of high-level benchmarks
have been put forward, typically based on CCSD(T) “gold
standard” data for small molecules.10,11,15,29−38 However, these
data sets usually have been based on a relatively small number
of values for a given nucleus, and the different sets often used
different basis sets, which may lead to variable accuracy. We
therefore decided to construct a larger benchmark set of light
main-group nuclear shieldings at a uniform computational level
to be used in validation studies of more approximate methods.
CCSD(T)/pcSseg-3 benchmark data have been generated for
377 nuclei in 119 molecules, containing 124 1H, 15 11B, 93
13C, 43 15N, 33 17O, 49 19F, 14 31P, and 6 33S shielding
constants. For a large subset of 297 nuclei in 104 molecules,
where this has been computationally feasible, additional
CCSD(T)/pcSseg-4 data have been computed to ensure
basis-set convergence at the CCSD(T)/pcSseg-3 level. This
extended dataset includes light main-group systems with
widely different electronic structures and computational
requirements, including cases with larger static correlation. It
is used here to validate a large number of quantum-chemical
methods, from HF and MP2 to a wide range of XC functionals
representing all five rungs of the ladder.

2. THEORY

In this study, we include some meta-GGAs, global and range-
separated hybrids based on meta-GGAs, and also LHs that may
depend on the kinetic energy (τ = (1/2)∑i∇ϕi*∇ϕi) via their
LMF. Since τ is not a priori gauge-invariant in the presence of
an external magnetic field, the correct handling of gauge
dependence is important for these functionals. We will briefly
recall some of the relevant aspects. The so far most widely used
model to correct the gauge dependence of τ is that proposed
by Maximoff and Scuseria (τMS),

28 which is also the standard
implementation in many quantum-chemical program codes

c c
A

j
A
2MS

T

p

2

2τ τ τ ρ→ = + + | |
(1)

where

i
j

2
( )

i
i i i ip ∑ ϕ ϕ ϕ ϕ= ∇ * − *∇

(2)

is the paramagnetic current density and A is the vector
potential of the magnetic field. Such a treatment keeps the
magnetic Hessian diagonal, while removing the gauge
dependence. Hence, no iterative procedure is required to
solve for the shielding constants in the case of semilocal
functionals, i.e., for pure meta-GGAs. However, τMS does not
provide a proper iso-orbital indicator in the presence of an
external magnetic field39,40 and due to its explicit dependence
on the vector potential, it is nonuniversal.41 More importantly,
we recently found paramagnetic shielding artifacts for atoms
and for the parallel tensor contribution in linear molecules,
which are also related to a deterioration of the overall results
with, for example, certain τ-dependent LHs, in particular, for
proton shieldings and for seemingly simple electronic-structure
situations.22,23
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To overcome these limitations, a physically motivated and
intrinsically current-dependent correction as proposed by
Dobson26,27

j

2D
p

2

τ τ τ
ρ

→ = −
| |

(3)

was implemented. This model has been used before in various
contexts,25,39,42,43 It renders the XC functional explicitly
dependent on the induced paramagnetic current density,
providing a CDFT framework via the τ dependence. And it
provides a gauge-invariant treatment. In a linear-response
framework, the correction affects only the magnetic-field
response. While this generates moderate additional computa-
tional burden for meta-GGAs, it hardly affects the computa-
tional times for τ-dependent hybrids. We will use the prefix “c”
for a given functional to denote the use of τD and thus of the
CDFT framework, following previous works (cf. refs 25, 43,
and 44).
For comparison, data for two additional models for τ will be

provided in the Supporting Information: (i) use of the gauge-
dependent τ, with the gauge origin placed at the center of mass
(termed τC), and (ii) the ad hoc gauge-independent model22,36

used currently as a default method in the ORCA program,45,46

in the following called τ0.
In addition to the direct comparison of nuclear shieldings to

benchmark CCSD(T) data, we will look at chemical shifts (δ),
obtained by referencing the isotropic shielding value

1
3

Tr( )iso σσ =
(4)

to the shielding of a known standard compound

calc. ref. calc. ref.δ σ σ δ= − + (5)

3. THE NEW NS372 BENCHMARK SET
Various test sets for main-group nuclear shieldings and
chemical shifts have been put forward,10,11,29−37 differing in
the level of theory used for structure optimization and
shielding calculation. Usually, a test set covers one or two
nuclei, which makes a comprehensive comparison difficult,
even if we want to restrict ourselves to light main-group species
for the time being to avoid complications from relativistic
effects. This has motivated us to construct a larger benchmark
set at uniform CCSD(T) levels of theory for both structures
and shielding computations, consisting of overall 377 shielding
values in 119 molecules (see Tables S1 and S2 in the
Supporting Information), containing 124 1H, 15 11B, 93 13C,
43 15N, 33 17O, 49 19F, 14 31P, and 6 33S shielding constants.
As we exclude O3 from the 17O, F3

− from the 19F, and BH from
the 11B subset for statistical evaluations of approximate
methods (see the Results section), the number of values
used for such purposes reduces to 372, including 14 11B, 31
17O, and 47 19F nuclei. In the interest of including a sufficiently
wide and diverse range of molecules containing up to 13
atoms, we settled on the use of the pcSseg-3 basis set.47 The
possible remaining basis-set or method errors of this
benchmark level will be evaluated below. As the structures
used for the shielding calculations are also of major
importance, we have optimized all structures at the high
CCSD(T)/cc-pVQZ level.48,49 We note in passing that we
include here only 31P/33S as the third-row nuclei while
neglecting other important nuclei like 29Si and 27Al. On the

one hand, we expect these nuclei to provide relatively similar,
moderate demands on the electronic-structure methods as 11B
or 13C shieldings/shifts. On the other hand, a large 29Si shift
benchmark based on experimental data has just appeared,
which can be utilized for method evaluations.50 A further
extension of the present CCSD(T)-based benchmark to other
main-group nuclei is in any case planned.

4. COMPUTATIONAL DETAILS
4.1. Benchmark Calculations. The CCSD(T) structure

optimizations and vibrational-frequency analyses (to ensure
minima) with cc-pVQZ and cc-pVTZ basis sets,48,49,51,52 as
well as the benchmark GIAO-CCSD(T) and GIAO-CCSD
calculations of nuclear shieldings at these structures with the
pcSseg-3, pcSseg-4, and pcSseg-4(unc) basis sets,47 were all
carried out with the CFOUR program package, version 1.2.53

Unless stated otherwise, the CCSD(T)/pcSseg-3//CCSD(T)/
cc-pVQZ benchmark data are used, and the CCSD(T)/cc-
pVQZ structures are also used for the shielding calculations at
lower levels. We note in passing that small imaginary
frequencies remain for the used Cs-symmetrical structures of
CMe3

+ and BMe3, corresponding to free rotations of the
methyl groups. The true minima have a C1 symmetry, which
leads to prohibitively costly CCSD(T) shielding calculations
and difficult convergence issues. As lower-level computations
show negligible effects of symmetry-lowering on the computed
shieldings, we use the Cs structures throughout.
The question of systems with large static-correlation effects

has already been mentioned. In extreme cases, the reliability of
the single-reference CCDS(T) level as the benchmark method
may be called into question. We have therefore computed T1,

54

D1,
55 and percent total atomization energy56,57 (%TAE)

diagnostics (with the cc-pVQZ basis) using the MOLPRO
program58 to test for multireference character. Standard
thresholds59 for closed-shell main-group species of ≥0.02
(T1), ≥0.06 (D1), and ≥10% (|%TAE|) were used. The full CC
diagnostics are listed in Table S3 in the Supporting
Information. We furthermore use the comparison between
MP2 results and the benchmark CCSD(T) data to detect
difficult cases (as listed in the last row of Tables S6−S12 in the
Supporting Information, next to the shielding overviews for full
MP2 results). That is, relative deviations of MP2 by more than
2% for 1H and more than 4% for the other nuclei from the
CCSD(T) benchmark data are taken to indicate large static-
correlation cases (see below).
To estimate the importance of relativistic effects for a few of

the most pertinent systems containing third-row elements,
additional four-component (4c) calculations were performed
for a subset of molecules (see below) using the ReSpect
program code.60 All calculations employ the KT2 functional in
the matrix Dirac−Kohn−Sham (mDKS) Hamiltonian,61,62

uncontracted pcS-3 basis sets,63 GIAOs, and a finite size
Gaussian charge model for the nucleus. To estimate the
magnitude of the relativistic effects (and to avoid cross-
program deviations), calculations approaching the nonrelativ-
istic limit were performed by scaling the speed of light by a
factor of 50 (the largest recommended scaling factor in
ReSpect), while keeping the other parameters as in the
relativistic setting.

4.2. Evaluation of DFT Methods. Unless stated
otherwise, nuclear shielding constants at DFT levels up to
rung 4 on Perdew’s “Jacobs Ladder” of XC functionals have
been calculated using a local developers’ version of the
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TURBOMOLE program package, updated to release 7.5.64 Self-
consistent field (SCF) convergence was set to 10−9, ensuring
converged results by additionally enforcing the density matrix
change to be smaller than 10−7. Likewise, the shielding
coupled-perturbed Kohn−Sham convergence was set to a
threshold of 10−7 (convergence of the Euclidean norm of the
residual vectors). TURBOMOLE standard grids of size “3” have
been used throughout, except for the SCAN series of
functionals where larger grids (grid setting “5” and enhanced
radial grids of size “40”) have been employed to ensure
convergence. The resolution of the identity approximation was
used for both SCF and shielding parts in its multipole
accelerated version (MARIJ),65 with auxiliary basis sets
(“universal”), specified in ref 66. pcSseg-3 basis sets47 have
been used, which are essentially at the basis-set limit for DFT
shielding computations. Calculations using double hybrids
(rung 5) and MP2 are performed with the ORCA 4.2.1
program package,45,46 using the same settings as in ref 15.
Unless stated otherwise, the DFT and MP2 GIAO shielding
calculations are reported with pcSseg-3 basis sets, but we also
obtained shieldings using pcSseg-4 basis sets. The full pcSseg-3
shielding data are reported in Tables S6−S12, accompanied by
statistical results in Table S13, whereas a comparison of
statistical results of pcSseg-3 and pcSseg-4 shieldings is
provided in Table S14. Hartree−Fock shielding calculations,
which are also reported, give almost identical results with
TURBOMOLE and ORCA, within the margins expected from
different convergence criteria in the two codes.
In addition to HF and MP2 results, data for a wide range of

exchange−correlation functionals from all rungs of the ladder
will be provided. SVWN75,76 represents the local density
approximation (LDA, rung 1). Rung 2 (generalized gradient
approximation, GGA) is represented by PBE,77 BLYP,68,78

BP86,68,79,80 HCTH,81,82 and B97D,83 as well as Tozer’s three
functionals KT1−KT3 aimed specifically at light main-group
shieldings.84,85

The meta-GGA rung 3 level includes TPSS,86,87 VSXC,88 τ-
HCTH,89 B97M-V,90 SCAN,91 and its regularized and
reregularized versions rSCAN92 and r2SCAN,93 as well as the
highly parameterized M06-L94 and MN15-L.95 For these τ-
dependent meta-GGAs, as well as for related GHs, RSHs, and
τ-dependent LHs, we will first report results for their
theoretically most satisfactory CDFT implementation, as
indicated by the prefix “c”, but other treatments of τ will
also be mentioned.
On rung 4 (“hyper-GGA”), we evaluate a selection of GHs

with or without τ-dependence, from simple to more para-
meterized functionals. This includes (in order of increasing
EXX admixture) TPSSh (10%),96 B3LYP (20%),97 B97-2
(21%),98 PBE0 (25%),99,100 M06 (27%),101 PW6B95
(28%),102 MN15 (44%),103 BHLYP (50%),104 and M06-2X

(54%).101 Also on rung 4, we have evaluated the four RSHs
CAM-B3LYP,105 ωB97X-D,106 ωB97X-V,107 and ωB97M-
V.108 The latter is τ-dependent, and as all other τ-dependent
functionals, it will be evaluated in its CDFT variant and other
implementations.
All LHs available in TURBOMOLE are evaluated (an overview

of the relevant details of the employed LH functionals is shown
in Table 1). This includes the first-generation LDA-based
LH07s-SVWN,71 LH07t-SVWN,72 LH12ct-SsirPW92, and
LH12ct-SsifPW92.73 Except for the first one, which is based
on an “s-LMF” depending on the reduced density gradient,
these functionals use a t-LMF, defined as the scaled ratio of the
von-Weizsac̈ker and Pauli kinetic energies.19,72,109 The same
holds for the more advanced LH14t-calPBE74 and LH20t,24

which make use of GGA-type exchange-energy densities
augmented by a so-called calibration function to deal with
the ambiguity of exchange-energy densities.20,110−112 Contrary
to a recent statement,44 the calibration functions in these two
functionals do not depend on the gradient of τ and are thus
fully implemented. Two additional LHs with other types of
LMFs have recently been implemented into TURBOMOLE by
Holzer et al.44 The first is a slightly modified version
(mPSTS44) of the PSTS functional, which features a more
complex LMF.44,67 The second is Johnson’s LHJ14 featuring
an LMF based on the correlation length.70

Finally, on rung 5, three DHs available in the ORCA code
are addressed: B2PLYP,113 B2GP-PLYP,114 and DSD-
PBEP86.13,14 The latter functional uses SCS-MP2-type
correlation together with a very large EXX admixture of 70%
and has been the most accurate functional for main-group
shieldings in a recent evaluation for a smaller test set.36

The statistical data reported in the present work include
standard deviations (SD), mean absolute errors (MAE), and
mean signed errors (MSE), and we also report maximum
absolute errors (max. AE). To allow comparison between
nuclei with different shielding ranges in the present test set,
relative deviations normalized to the shielding range covered
by the respective CCSD(T) reference for a given nucleus are
also given. In addition, the aggregate weighted relative
deviations with and without 1H nuclei are given (see Figures
1 and 4; “all” and “all (−1H)”), which are calculated from the
sum of the relative data weighted by the number of shieldings
in the individual subsets.

5. RESULTS

5.1. Accuracy of the Benchmark Data. Obviously, the
ultimate benchmark test of approximate methods would be
provided by comparison with experimental shifts. As pointed
out in the introduction, this is rendered difficult by a variety of
effects not considered in the present nonrelativistic 0 K
computations, such as ro-vibrational and thermal effects, and in

Table 1. Specifications of LH Functionals of the Present Work

functional LMF scal. CF exchange correlation refs

mPSTS a TPSS TPSS 44 and 67
LHJ14 z 0.096 B8868 B8869 70
LH07s-SVWN s 0.220 LSDA VWN 71
LH07t-SVWN t 0.480 LSDA VWN 72
LH12ct-SsirPW92 t 0.646 LSDA sir-PW92 73
LH12ct-SsifPW92 t 0.709 LSDA sif-PW92 73
LH14t-calPBE t 0.500 pig1 0.49 LSDA + 0.51 PBE modified B95 74
LH20t t 0.715 pig2 0.22 LSDA + 0.78 PBE modified B95 24
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Figure 1. Relative deviations (in %, normalized to the shielding range for a given nucleus) from the CCSD(T)/pcSseg-3 reference data for different
methods (with pcSseg-3 basis). Individual nuclei shown as open symbols, weighted aggregate relative deviations across all subsets as black
diamonds, and when excluding the 1H shieldings as red diamonds.
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some cases, environmental or relativistic contributions. This is
the very reason we rely here on a high-level theory benchmark,
and why we include light main-group systems only. A
comprehensive comparison with experimental shieldings,
even for the subset of the present large benchmark for which
such data are available, would be prohibitive and of limited
usefulness, as the additional corrections needed for such a
comparison are themselves not always known with sufficient
accuracy or would require extensive computations. We may,
however, judge the reliability and accuracy of the present
GIAO-CCSD(T)/pcSseg-3 benchmark method by comparing
it to some earlier benchmark studies on smaller data sets,
where experimental data had been “back-corrected” to be
better comparable to isolated 0 K gas-phase computations.
Such comparisons are given in Table S4 in the Supporting
Information, where CCSD(T)/pcSseg-3 and CCSD(T)/
pcSseg-4 results are compared with CCSD(T) calculations
with different basis-set sizes from various sour-
ces.29−32,35,37,115−117 The best estimates are the basis-set
convergence studies provided in refs 29, 30, 32, and 116 where
the uncontracted “13s9p4d3f” basis (“15s12p4d3f2g” for 31P
shieldings) basis is considered to be close to the basis-set limit
(with a remaining error of about 0.5 parts per million (ppm)).
From these comparisons, we can conclude that the pcSseg-3

basis provides similar accuracy as the “pz3d2f” basis sets with a
residual basis-set error of a few ppm in the worst cases (arising
for the largest paramagnetic contributions), whereas in many
cases the accuracy is in the sub-ppm range, comparable to the
larger uncontracted “13s9p4d3f” basis. The even larger pcSseg-
4 top-of-the-line basis may be expected to produce essentially
converged shielding constants. This can also be seen from
Table S5 in the Supporting Information for a smaller subset of
molecules. To additionally gauge the remaining basis-set errors
at the chosen GIAO-CCSD(T)/pcSseg-3 level, we have also
computed CCSD(T)/pcSseg-4 shielding constants for a subset
of 104 (smaller) molecules representing 297 nuclei (Table S2
in the Supporting Information). Considering the error ranges
of even the most accurate more approximate methods to be
evaluated, the basis-set errors of the pcSseg-3 basis may be
considered negligible, except possibly for the proton shifts: for
the second- and third-row nuclei studied here, the average
changes from pcSseg-3 to pcSseg-4 range from −0.2 to −0.4
ppm (31P: −0.6 ppm). The maximum absolute deviations are
generally below 3 ppm even for the overall most deshielded
cases (e.g., O3 or F3

−), which will not even be used for method
evaluations (see below). Only for the 1H shieldings, where the
overall average differences between methods are below 1 ppm,
we need to keep in mind that the larger basis reduces the
shieldings by an average of −0.03 ppm and a maximum value
of −0.07 ppm (for the S−H proton in CH3SH). Complete
decontraction of the pcSseg-4 basis has essentially negligible
further effects (Table S5 in the Supporting Information).
Comparison of the statistical data confirms the negligible
effects when going from pcSseg-3 to pcSseg-4, with relative
deviations in the statistical data below 0.3% for all tested
functionals and nuclei (Table S14 in the Supporting
Information). Overall, these data show that the somewhat
smaller pcSseg-3 basis set, for which data are available for the
entire test set, is perfectly sufficient for generating accurate
CCSD(T) benchmark data against which we may evaluate
more approximate approaches. We note in passing that for
regular DFT calculations, the pcSseg-3 level can be considered
as converged.

The underlying structures obtained at the CCSD(T)/cc-
pVQZ level are known to exhibit close agreement with
experimental data for light main-group species, with mean
deviations of 0.19 pm in distances. Even the smaller cc-pVTZ
basis gives very small deviations.118 We have nevertheless
analyzed the effect of this change of the input-structure level
for a subset of our dataset, using either pcSseg-3 or pcSseg-4
basis sets for the shielding computations (Table S5 in the
Supporting Information). While the effects are in most cases
small and not relevant for the statistical evaluations, they can
reach several ppm for the most extreme cases with large static-
correlation effects and paramagnetic contributions. Pertinent
examples are the 15N and 31P values in PN, where a change of
0.81 pm in the bond length affects the shieldings by ca. 6−7
ppm. An even larger effect is seen for the 33S shielding in SO2,
where a change of 0.94 pm in the bond length causes a change
in shielding of ca. 17 ppm. The terminal 17O shielding in O3
changes even by about 25 ppm. In all of these cases, the effect
of changing the basis for the structure optimization is clearly
more important than that of changing the basis for the
shielding computations. In spite of the overall insignificant
changes in the overall statistical results for various nuclei, we
decided to use the larger cc-pVQZ basis in the structure
optimizations for the entire benchmark set.

Due to the extreme computational demand involved, the
expected effects of full triple excitations are studied less
frequently. They typically amount to just 1−1.5 ppm in
“normal” main-group cases like BH, HF, CO, N2O, N2, or
CH3OH,

116,119 and up to 3−8 ppm for the 19F shieldings in F2
or F2O.

30,31 Larger changes are found for the most extreme
multireference cases like O3 and F3

−. For O3 the transition
from CCSD(T)/qz2p to CCSDT/qz2p was found to be 77
ppm for the terminal atom and 50 ppm for the central oxygen
atom.119 For F3

−, our own comparison of CCSD(T)/pcSseg-3
with CCSDT/pcSseg-3 data indicates a shift of 99 ppm for the
central and 31 ppm for the terminal fluorine atoms, on top of
the even larger changes from CCSD to CCSD(T) (Table 2).
Relativistic effects on absolute shieldings can be substantial,

but those on the shielding of the heavier atom itself often tend
to cancel in relative shifts.120 The largest relativistic effects for
relative shifts are expected here from spin−orbit contributions
to neighbor-atom shifts for atoms bonded to chlorine or sulfur.
We have evaluated a few of the most pertinent systems by
relativistic DFT computations, and the magnitude of the
effects is consistent with the literature values.121−123 The
largest effects relative to the overall shielding range of a given
nucleus apply to the 1H shieldings in HCl (+0.82 ppm) and
H2S (+0.51 ppm). Effects on the 13C shielding in CS2 (+5.4
ppm) are also notable. For most systems, the effects are much
smaller than this, clearly less important than the intrinsic errors
of the electronic-structure methods evaluated in this work. In
any case, the comparison against nonrelativistic CCSD(T)

Table 2. Shielding Results for F3
− Obtained at Different

Levels of Coupled-Cluster Theory Using the pcSseg-3 Basis
Set

F3
− (19F)

(cent.) (term.)

CCSD −297.7 −136.9
CCSD(T) −203.0 −265.9
CCSDT −104.5 −286.9
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benchmark data allows us to disregard these effects in method
evaluations.

5.2. Special Cases with Strong Static Correlation. As
has been done in several previous studies,30,31,84,124,125 we
decided to exclude a few systems from the statistical
evaluations for some nuclei in the main text, essentially the
molecules or ions with the largest static-correlation effects and
consequently with the by far largest paramagnetic shielding
contributions (statistics with these systems included can,
however, be found in Table S13 in the Supporting
Information). The reason is that, otherwise, these systems
tend to dominate the overall deviations and override other
trends and insights. Furthermore, in some of these cases, the
accuracy of the CCSD(T) benchmark data is lower or in
doubt, as single-reference coupled-cluster theory is pushed to
or beyond its limits (as also visible from the T1, D1, and |%
TAE| diagnostics in Table 3, a more complete set of these
diagnostics is given in Table S3 in the Supporting
Information). We also discuss two molecules, which may be
viewed as borderline cases but which we ultimately decided to
include in the statistical evaluations in the main text. For the
relevant eight nuclei in five molecules/ions, Table 4
summarizes the relative deviations of the results with various
functionals from the CCSD(T)/pcSseg-3 data.
O3 is commonly excluded from statistical evaluations, as

otherwise its extreme static-correlation effects (see above)
would dominate the comparison. Together with F3

−, it is also
the only molecule of the test set, where all diagnostic
thresholds for multireference systems are exceeded (Table
3). Obviously, any Hartree−Fock exchange admixture
deteriorates agreement with the benchmark data by providing
too deshielded values between several hundreds and more than
a thousand of ppm for both distinct 17O nuclei (Table 4; even
semilocal functionals produce large deviations, but less so). As
Hartree−Fock fails completely for ozone, MP2 also performs
catastrophically, giving large positive shieldings for both central
and terminal atoms (see Table S10 in the Supporting
Information). DSD-PBEP86 is now not able to adequately
correct for this failure of MP2, while the deviations of B2PLYP
and B2GP-PLYP from the CCSD(T) reference data are less
dramatic but still large. Notably, even the reference CCSD(T)
method provides about 100 ppm too shielded values for the
terminal and somewhat too deshielded values for the central
oxygen atom of ozone (in comparison with the experiment, see

Table S2 in the Supporting Information). As discussed above,
the influence of triple excitations accounts for several hundreds
of ppm, and even going from CCSD(T) to full CCSDT has
substantial effects for both nuclei. We note in passing that 17O
shielding cases with similar or even stronger static-correlation
effects are known for transition-metal oxo complexes.126,127

An even more extreme case of static correlation (on a
relative scale given the overall less dramatic variations for 19F
shieldings), which we thought worth presenting but exclude
from the statistical evaluations, is provided by F3

−. Similar to
O3, all diagnostics point to the multireference character (Table
3), and the effects of full triple excitations are large (see Table
2). MP2 exhibits large deviations for both nuclei.
Static-correlation effects for the 11B shieldings of BH are not

as pronounced, with MP2 too deshielded by about 16% and
none of the multireference thresholds exceeded (note that here
the CCSD(T) reference is thought to be quite reliable119).
Nevertheless, inclusion of this system in the 11B subset would
dominate the statistics. The reason is that its reference
shielding of −188.3 ppm is more than 205 ppm lower than the
next most deshielded system (BH3) in this still relatively small
subset of 15 molecules. That is, this system would extend the
shielding range covered for this nucleus from 141.6 to 344.3
ppm. As a consequence, relative deviations will look overall
smaller but will often be dominated by BH. We therefore
decided to omit the 11B value of BH also from the statistical
evaluations. As for O3 and F3

−, we provide additional statistics
including these systems in Table S13 in the Supporting
Information.
Another system with extremely large paramagnetic con-

tributions but without a distinct multireference character,
which we considered leaving out of the statistics for the 15N
and 31P subsets, is PN. The deviations shown in Table 4
indicate that this is obviously also a difficult system for many
methods. Its reference 15N shielding value of −339 ppm is
more than 100 ppm lower than the second negative value
(−236 ppm, FNO), thereby extending the overall 15N
shielding range covered from 523 to 626 ppm. However, the
deviations are consistent with the behavior of the methods for
the other molecules in the subset, and inclusion of PN does
not alter the results of the statistical evaluations unacceptably,
given the relatively large number of nuclei (43) in the present
15N subset. The 31P subset is smaller (14 nuclei), and PN also
stands out in this subset (its reference shielding of ca. 59 ppm
is lower than the nearest value (PF3) by 170 ppm, extending
the overall shielding range covered from 660 to 830 ppm. Its
inclusion in the statistics of the combined 31P/33S subset will
favor methods that show relatively small deviations in Table 4
(MP2, the DHs, the KT1−KT3 series, cM06-L, cVSXC) and
will disfavor most GHs, RSHs, and LHs. We decided in any
case to include PN also in this subset. The same considerations
hold for SO2 (Table 4), which also has a moderate
multireference character. Table S13 in the Supporting
Information provides additional statistics excluding these two
molecules.
Table 3 includes further systems for which at least one of the

multireference thresholds is exceeded. However, in three of
them (F2, OF2, ClF3), the T1/D1 diagnostics remain low,
indicating good performance of coupled-cluster theory. Only
|%TAE| is above the 10% mark, which indicates large
importance of triple excitations. Indeed, CCSD(T) data for
F2 and OF2 were found to deviate from the experiment by
almost 20 ppm (after application of ro-vibrational and thermal

Table 3. Overview of Molecules from the Benchmark Set,
Where At Least One of the Multireference Diagnostic
Thresholds Is Exceeded (CC/cc-pVQZ Results)

T1 D1 |%TAE|

CF3
+ 0.015 0.062 5.3

CH3NO2 0.018 0.065 2.2
ClF3 0.016 0.050 13.1
F2 0.011 0.029 19.5
F3

− 0.030 0.133 16.6
FNO 0.021 0.060 4.5
NO3

− 0.018 0.070 4.4
O3 0.027 0.075 17.6
OF2 0.015 0.040 14.4
SO2 0.021 0.054 6.2

threshold 0.020 0.060 10.0
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corrections).30,32 However, relative to the 19F shielding range
covered here, these deviations are below 3%. For CF3

+,
CH3NO2, FNO, and NO3

−, T1 and/or D1 are above threshold
but the coupled-cluster energies are accurate and the shieldings
look unsuspicious.
5.3. General Statistical Method Overview for Shield-

ing Constants. Before discussing the performance of different
methods for the different nuclei of the test set, we take a bird’s
eye view across the entire shielding test set of 372 values
(which excludes O3, F3

−, and the 11B shielding of BH). This is
enabled by looking at relative (percentage) deviations
normalized by the shielding ranges covered by the benchmark
data for each nucleus, weighted by the number of values in the

various subsets. Figure 1 shows rel. SDs, rel. MSEs, rel. MAEs,
and max. rel. AEs in percentage for the individual nuclei, and
the weighted deviations for all nuclei (black diamonds). We
also show weighted deviations obtained by excluding the 1H
shieldings (red diamonds), as the latter represent rather
different demands on the methods than the second- and third-
period elements due to the absence of a core shell. For better
representation, we had to limit the plots to ≤7% for the relative
SDs, ≥−12% and ≤5% for the relative MSEs and ≤12% for the
relative MAEs. The results for SVWN have thus been excluded
from the plot (but the values can be found in Table S13 in the
Supporting Information), as values for some nuclei exceeded
these limits. For τ-dependent functionals, we show only their

Table 4. Relative Deviations to CCSD(T) Reference Data for Some Particularly Difficult Moleculesa

O3 F3
− BH PN SO2

17Ocent.
17Oterm.

19Fcent.
19Fterm.

11B 15N 31P 33S

SVWN −10.8 −19.7 5.6 −22.6 −44.6 −14.2 −16.6 −10.5
BP86 −8.4 −14.8 2.7 −17.2 −19.1 −11.7 −11.9 −7.0
BLYP −9.6 −16.0 1.6 −17.0 −21.8 −12.9 −12.2 −8.2
PBE −8.5 −15.3 2.7 −17.8 −24.5 −11.9 −11.9 −6.6
KT1 −2.6 −1.7 6.0 −5.1 −9.2 −5.0 −2.1 1.3
KT2 −3.4 −3.8 3.8 −8.2 −7.3 −5.4 −2.2 0.4
KT3 −3.4 −5.4 0.9 −10.5 −2.7 −4.9 −2.1 0.6
HCTH −7.2 −14.6 −0.5 −19.9 −10.8 −8.3 −9.3 −5.1
B97D −7.5 −13.6 0.3 −17.7 −6.4 −8.9 −8.9 −5.8
cTPSS −8.1 −11.9 1.4 −12.2 −7.4 −10.6 −8.6 −4.5
cτ-HCTH −6.9 −13.0 −0.7 −18.3 0.7 −7.5 −8.3 −5.7
cM06-L −14.3 −24.3 −2.3 −10.3 0.0 −14.2 −12.6 −2.1
cVSXC −10.8 −17.1 0.7 −20.2 −12.9 −9.7 −4.5 −0.6
cMN15-L −12.9 −12.4 −4.4 1.8 0.0 −0.2 3.2 5.3
cB97M-V −10.4 −13.0 −2.8 −4.4 −8.6 −6.9 −3.9 0.5
cSCAN −14.3 −21.0 −1.1 −11.2 −23.1 −11.7 −8.4 −2.6
crSCAN −12.8 −19.2 −1.4 −12.7 −24.8 −11.5 −8.5 −2.9
cr2SCAN −12.7 −18.4 −1.4 −11.3 −20.8 −10.8 −8.1 −2.8
cTPSSh −14.3 −17.9 −6.0 −6.8 −9.5 −12.2 −9.9 −6.2
B3LYP −23.4 −29.3 −14.7 −5.0 −24.7 −16.2 −14.6 −11.5
B97-2 −21.6 −27.2 −16.0 −4.3 −14.0 −13.2 −12.3 −9.1
PBE0 −25.9 −31.9 −18.7 −1.8 −26.2 −15.8 −14.6 −10.5
cM06 −45.2 −66.1 −26.3 −11.4 −6.5 −27.3 −27.7 −17.9
cPW6B95 −27.9 −33.2 −21.4 −1.0 −23.8 −17.7 −15.1 −11.6
BHLYP −49.9 −50.5 −49.8 17.1 −27.4 −20.2 −17.0 −15.4
cMN15 −31.6 −33.1 −27.3 3.7 −28.3 −15.2 −21.0 −23.3
cM06-2X −46.9 −48.3 −49.0 15.2 −29.7 −24.6 −21.9 −17.2
CAM-B3LYP −29.7 −33.4 −26.0 5.4 −35.4 −16.5 −16.7 −13.4
ωB97X-D −28.5 −33.7 −27.0 3.3 −16.2 −16.5 −15.5 −11.9
ωB97X-V −27.8 −28.7 −29.7 12.0 −27.0 −13.3 −13.6 −10.2
cωB97M-V −26.1 −25.9 −28.7 13.3 −29.5 −13.6 −11.3 −8.0
LH07s-SVWN −22.7 −29.9 −12.5 −3.8 −19.0 −13.2 −14.8 −10.1
cmPSTS −15.3 −18.7 −8.1 −4.8 −4.2 −11.7 −9.3 −5.8
cLHJ14 −17.5 −22.9 −5.1 −8.5 −23.1 −14.0 −14.8 −10.9
cLH07t-SVWN −17.8 −20.4 −10.9 2.7 −22.7 −9.5 −11.7 −8.1
cLH12ct-SsirPW92 −20.1 −21.0 −16.0 9.2 −24.1 −8.1 −10.9 −7.4
cLH12ct-SsifPW92 −21.0 −21.4 −17.9 11.4 −26.3 −7.6 −10.7 −7.3
cLH14t-calPBE −17.7 −19.7 −11.7 3.2 −19.2 −9.8 −11.3 −8.2
cLH20t −21.2 −20.0 −18.3 10.9 −13.8 −9.6 −10.9 −8.7
HF −120.2 −96.0 −160.6 60.9 −23.4 −25.3 −18.4 −18.7
MP2 200.3 131.2 221.1 −30.7 −16.0 12.2 5.7 4.4
B2PLYP 15.7 6.4 23.7 −11.1 −20.4 −5.2 −5.8 −4.7
B2GP-PLYP 27.7 14.9 35.0 −9.1 −20.5 −3.7 −4.9 −4.2
DSD-PBEP86 49.6 33.6 62.9 −15.7 −15.1 0.2 −1.7 −1.0

aO3, F3
−, and BH are left out from the general statistical evaluations in the main text (for 17O, 19F, and 11B shieldings); PN and SO2 are included.
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CDFT-based results (using τD), as indicated by the “c” suffix,
and postpone a discussion of different models to include τ to a
later section. The relative deviations are shown in Figure 1,
while data are summarized in Table S13 in the Supporting
Information.
Starting with the aggregate rel. MAEs (and implicitly the rel.

MSEs, which for most functionals are systematically negative,
approaching the negative of the rel. MAE values, see below),
we note first that a number of functionals, as well as the MP2
method, provide deviations below 2% from the benchmark
data. The lowest combined MAE of the more approximate
methods is found with the DH DSD-PBEP86 (0.9%), only
slightly behind CCSD (0.6%), confirming its top performance
noted in an earlier study on a smaller main-group shielding test
set.36 This is followed by MP2 (1.1%), by the DH B2GP-
PLYP, the two LH functionals cLH12ct-SsirPW92 and
cLH12ct-SsifPW92, the CDFT meta-GGA cB97M-V (all
1.5%), by the LH cLH20t and the meta-GGA cMN15-L
(1.6%). Further functionals in the list are the DH B2PLYP, and
by the specialized GGA KT3 (both 2.0%), as well as by two
further LHs (cLH07t-SVWN and cLH14t-calPBE) and the
GGA KT1 (all 2.1%). As will be discussed in detail further
below, the remarkable results for cB97M-V and cMN15-L,
which stand out among all functionals up to rung 3, are
observed for their CDFT variants. For MN15-L, other
treatments of τ are drastically worse and for B97M-V the
CDFT treatment is also most accurate but to a lesser extent.
The treatment of τ is less determinative for the LHs.
But a number of further functionals also provide relatively

good results for the overall test set. Starting with the GGA
functionals, the already mentioned specialized functionals
KT1, KT2, and KT3 stand out with rel. MAEs around 2%,
clearly superior to the simpler GGAs BLYP, BP86, and PBE
around 4% as well as the more recent HCTH and B97D
around 3%. It has been shown that this improved performance
of the KTx series of functionals, which have all been
constructed with an emphasis on improving light main-group
shieldings, relies on the compensation of errors for the dia- and
paramagnetic shielding contributions.25 As can be seen from
the positions of the red vs black diamonds for this subset of
functionals, the performance of the simpler GGAs is
significantly worse when the moderately good 1H shielding
constants are excluded, as errors for some of the second- and
third-period nuclei are larger (e.g., up to 11% rel. MAE for 11B
with BLYP). This is not the case for the KTx functionals. As
for most DFT functionals (but see below), the rel. MSEs of the
GGAs are systematically negative, approaching or reaching the
amount of the rel. MAEs (for all but the 1H shieldings),
reflecting the systematic overestimate of the (usually negative)
paramagnetic contributions.
Turning to the CDFT mGGA functionals, we have already

noted the outstanding performance of cB97M-V and cMN15-
L. The cSCAN series of functionals (between 2.2 and 2.5%),
cVSXC (2.3%), and cM06-L (2.6%) also perform rather well.
In previous works, a particularly good performance of M06-L
had been noted for some main-group nuclei.15,36,128 However,
these results had been obtained using either probably a gauge-
dependent τ in the Gaussian03 program129 or the ad hoc τ0
treatment in ORCA, and they seem to reflect error
compensation to some extent. The same appears to hold for
VSXC (both functionals have rel. MAEs near 1.7−1.9% for τ0
and 1.9−2.2% with τC, see Table S13 in the Supporting
Information). We postpone a broader discussion of these

aspects to a later section. The remaining CDFT meta-GGAs
cTPSS and cτ-HCTH trail somewhat behind (2.8%) and
perform only slightly better than the HCTH and B97D GGAs.
It is worth noting that cB97M-V is the only CDFT meta-GGA,
which exhibits rel. MAEs below 3% for all nuclei studied here.
cMN15-L deviates more for the 11B (4.0%) and 31P/33S (3.6%)
subsets but is better for some other nuclei. One particularly
striking observation for cMN15-L is that it is the only DFT
functional, and together with MP2, the only method evaluated
which gives a clearly positive aggregate rel. MSE (in fact
positive MSEs for all subsets). That is, the common
overestimate of the (usually negative, except for the 19F
shielding in ClF) paramagnetic contributions is reversed. Due
to the highly parameterized character of this functional, it
seems difficult to find a physical explanation for this
observation. However, recent evaluations of transition-metal
hyperfine couplings130 have indicated wide variations and
deviations from other methods in the description of electron
densities in the core region for several of the Minnesota
functionals, including MN15-L.
As has been pointed out before,125 inclusion of constant

exact-exchange admixture in GHs does not necessarily help in
the calculation of main-group shielding constants. Indeed, the
GHs tend to be overall less accurate than the best (CDFT)
meta-GGAs and partly even than the (nonspecialized) GGAs
discussed above. The lowest aggregate MAE is observed with
cTPSSh (2.6%), slightly better than the underlying CDFT
meta-GGA cTPSS. This is followed by B97-2 (2.7%).
Moderate overall improvement by constant EXX admixture
can be seen for the series of the related BLYP (4.4%), B3LYP
(3.8%), and BHLYP (3.1%). Improvements for the latter
functional arise mostly from the values for the 11B, 19F, and
31P/33S subsets (see below). It is notable that the widely used
B3LYP is far from being a top-performing functional for the
present large main-group shielding test set. PBE0 and
cPW6B95 are intermediate examples with aggregate rel.
MAEs of 3.2 and 3.5%, respectively, followed by the Minnesota
functionals cMN15 (4.0%, with large deviations of 10.2% for
31P/33S) and cM06-2X (4.2%). The remaining Minnesota
functional cM06 (4.9%) performs worst, in fact worse than all
semilocal functionals. We note in passing that PBE0 had been
advocated earlier for nuclear shieldings,99 but it clearly falls
behind many other functionals studied here.
The best RSHs ωB97X-V (2.3%) and cωB97M-V (2.5%)

improve only slightly over the best GHs. ωB97X-D (3.1%) and
CAM-B3LYP (3.6%) are somewhat inferior. Notably, even
these relatively sophisticated rung 4 functionals do not
outperform the best rung 3 functionals, nor the specialized
KTx rung 2 ones. We note in passing the possibility of
“optimal tuning” of the range-separation parameter. While this
may help improve excitation spectra, its usefulness for nuclear
shieldings appears to be limited.38

As noted already above, matters are different for the LH
functionals. Apart from the top-performing LH12ct-SsirPW92
(1.5%), LH12ct-SsifPW92 (1.5%), and LH20t (1.6%), several
other LHs perform relatively well. This includes two further t-
LMF-based ones, cLH07t-SVWN and cLH14t-calPBE (both
2.1%), followed by the sophisticated cmPSTS (2.4%). The s-
LMF-based LH07s-SVWN (3.0%) only performs comparably
to the better GHs, while cLHJ14 (3.9%) falls clearly behind.
These differences are not too surprising when one examines
the shape of the LMFs, particularly in the core regions around
the nuclei of interest (Figure 2): while the t-LMF clearly
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increases toward the fluorine nucleus in the HF molecule
shown, and the complicated LMF of mPSTS approaches this
behavior, the s-LMF is known to have negative cusps at the
nuclei and less pronounced wiggles in the bond. Finally, the “z-
LMF” of LHJ14 actually presents low EXX admixture in the
entire fluorine core region, which is clearly undesirable for
nuclear shieldings, where larger EXX admixtures in the core
and semicore regions are expected to enhance useful induced-
current contributions and reduce delocalization errors. The
shielding results clearly confirm the importance of the shape of
the LMF in the core and semicore regions, motivating
currently ongoing further developments of improved LMFs
in our research group. Only LH20t and LH14t-calPBE exhibit
calibrated exchange-energy densities. While this does not have
an apparent effect on the aggregate rel. MAEs, we will see
below that proton shieldings are improved (see, e.g., distances
between red and black diamonds in Figure 1), and the best
uncalibrated first-generation LDA-based LH12ct-SsirPW92
and LH12ct-SsifPW92 perform somewhat better for several
of the other nuclei. Similar to cB97M-V, discussed above, the
best-performing LHs cLH12ct-SsirPW92, cLH12ct-SsifPW92,
and LH20t also give individual rel. MAEs below 3% for all
subsets. Remarkably, the two former LHs even give rel. MAEs
below 2% except for the 31P/33S subset.
Coming to rung 5, it seems appropriate to discuss the DH

functionals together with MP2, as they all exhibit some form of
MP2-type correlation contribution, as well as relatively high
constant EXX contributions. As the performance of MP2
depends on how good Hartree−Fock is as a starting point, here
we also discuss the HF results. The fact that HF exhibits a rel.
MAE of only 3.1% for our overall test set, better than many
DFT functionals, indicates that static-correlation cases do not
determine the statistical evaluations in this work across the
overall test set. This is clearly different when static correlation
becomes large, as found in a parallel benchmark study on the
NMR shifts of 3d transition-metal nuclei,131 where HF and
MP2 fail completely and thus DHs as well. Indeed, as
mentioned already above, here MP2 (1.1%) only trails slightly
behind DSD-PBEB86 (0.9%), while B2PG-PLYP (1.5%) falls
into the range of the best LHs and CDFT meta-GGAs (see
above) and B2PLYP (2.0%) is only slightly behind. Notably,
together with cMN15-L (see above), MP2 is the only method
here with overall aggregate positive MSE (Figure 1).

Interestingly, this is reversed for the DHs, moderately so for
DSD-PBEP86, more notably so for the other two functionals.
That is, the DHs benefit to some extent from error
compensation between too shielded values of MP2 and the
commonly too deshielded ones of the DFT approaches. DSD-
PBEP86 does this in the clearly most accurate way and is thus
the overall frontrunner in the present comparison. We note the
SCS-MP2-type correlation part and the 70% EXX admixture of
this DH as possibly important factors for this performance. As
will be discussed further below, DSD-PBEP86 manages
simultaneously to largely conserve the outstanding perform-
ance of MP2 for some of the subsets with overall low static
correlation (11B, 13C, 19F) and to correct for deficiencies of
MP2 for those with somewhat more static-correlation cases
mixed in (15N, 17O). We should of course note here as well the
substantially higher computational burden and the resulting
limitation to smaller systems of MP2 and DHs compared to
the DFT functionals on the lower rungs of the ladder.
In principle, the 1H shielding constants are clearly the least

critical, reflected by the small rel. MAEs in all functionals
tested here (generally below 2% for all functionals evaluated in
Figure 1, in contrast to HF). Accordingly, the aggregate rel.
MAE deteriorates for most functionals when the 1H shieldings
are removed from the statistical data (see red diamonds
relative to black diamonds). Hydrogen does not have a core
shell and is dominated by the 1s shell with only some
deformation of the electron density due to bonding.
Consequently, paramagnetic contributions are smaller, and
even relative shifts (see below) can be affected by both para-
and diamagnetic terms. Only for those methods where the
relative deviations for the nonhydrogen nuclei are already
relatively small, we see the rel. MAEs to be similar with and
without 1H shieldings included. For cLH12ct-SsifPW92 the
order is even reversed. This is due to somewhat larger
deviations for 1H shieldings (e.g., compared to the calibrated
cLH20t) and the rather low deviations for the other nuclei.
So far, we have concentrated on the rel. MAEs and implicitly

on the rel. MSEs. The rel. SDs indicate how narrow or wide
the distributions of errors are. This is particularly important in
the context of relative chemical shifts, where the absolute
shielding is subtracted from that of a reference compound.
This allows for the elimination of systematic constant errors in
the absolute shieldings, for example arising from errors in the
diamagnetic shielding term. We will discuss such relative shifts
in a later section, but we can already anticipate methods for
which such error compensation may be beneficial by examining
the rel. SDs for the shieldings (which are equivalent to those
for the shifts). That is, we should look for methods that have
an SD significantly below the MAE.
Such examples, in particular with narrow SDs, are provided

by a number of functionals. cTPSS (rel. SD 1.5%) and the
related GH cTPSSh (1.3%), as well as the LH cmPSTS
(1.3%), clearly point to such systematic deviations in the
absolute shieldings, as do many of the simpler GGAs (with rel.
SDs from 1.7 to 2.3%), as well as the meta-GGA cτ-HCTH
1.7%, and many further GHs (B97-2 1.5%, B3LYP 1.9%, PBE0
2.0%, cM06 2.9%, cPW6B95 2.1%, cMN15 2.6%) and RSHs
(CAM-B3LYP 2.2% and ωB97X-D 1.9%).
Among the LHs, those with the lowest rel. MAEs (see

above) seem to have matchingly low rel. SDs, while some
others seem to have narrower distributions than would appear
from their MAEs. Apart from cmPSTS (see above), these are
particularly LH07s-SVWN (1.8%), cLH07t-SVWN (1.4%),

Figure 2. Plots of local mixing functions (LMFs) along the F−H
bond in the HF molecule for various LH functionals; F is placed at
the origin and H at 1.729 b (*07s corresponds to LH07s-SVWN).
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and cLH14t-calPBE (1.3%). Among the DHs, B2PLYP (1.1%)
may benefit most from a compensation of systematic errors.
We postpone the actual discussion of relative shifts to a later
section.
The right bottom panel of Figure 1 gives also the max. rel.

AE for each of the nuclei, providing additional insights into the
robustness of a given approach. For example, in spite of its
overall excellent performance, MP2 shows cases of particularly
large maximum errors for the 15N and 17O subsets, reflecting
cases with appreciable static correlation. This is largely
corrected with the DSD-PBEP86 DH, which does not show
particularly large max. AEs for any of the subsets. Overall,
relatively small max. AEs are also seen for a number of
functionals from rungs 3 and 4, with cB97M-V being
particularly notable, but cMN15-L and several LHs also give
a robust performance, followed by, e.g., KT2. We note in
passing that some methods (including KT1) also exhibit
surprisingly large max. rel. AEs of around 10% for 1H
shieldings, contrasting the overall relatively low average
deviations for this nucleus.

The overall statistical evaluation given above should provide
useful guidelines if one is interested, e.g., in applications to aide
multinuclear NMR studies. Often we may be asked, however,
to suggest best methods for one specific NMR nucleus. This
benchmark also provides extensive information on this
question. In the interest of conciseness, we give a more
detailed discussion for the individual nuclei in the Supporting
Information (see Section S1) and instead briefly focus here on
the list of the 10 best-performing functionals (including MP2
as alternative approximate method) for each nucleus shown in
Table 5 based on their MAEs (rel. MAEs in percentage and
max. AEs in ppm are also provided). For the least critical 1H
shieldings, most methods give MAEs below the 0.34 ppm
corresponding to 2% rel. MAE, and the best methods in Table
5 even come close to or pass the 0.1 ppm mark, with the top-
performing DSD-PBEP86 significantly below. In contrast to
the other nuclei, here even two GHs and two RSHs make it
into the top-10 list.
Absolute 11B shieldings are more challenging, albeit not very

sensitive to static correlation, and the best performer MP2 is

Table 5. The Ten Functionals with the Lowest MAE for Absolute Shieldings of Each Nucleus with Their Relative MAE (in %),
MAE (in ppm), and Max. AE (in ppm), GIAO-DFT/pcSseg-3 vs GIAO-CCSD(T)/pcSseg-3

functional rel. MAE MAE max. AE
1H 1 DSD-PBEP86 0.34 0.06 0.59

2 B2GP-PLYP 0.47 0.08 0.58
3 B2PLYP 0.56 0.09 0.67
4 cLH20t 0.74 0.12 0.63
5 cLH14t-calPBE 0.75 0.13 0.53
6 ωB97X-D 0.77 0.13 0.68
7 B97-2 0.78 0.13 1.09
8 MP2 0.80 0.13 0.55
9 BHLYP 0.82 0.14 0.63
10 ωB97X-V 0.83 0.14 0.95

11B 1 MP2 0.4 0.6 2.3

2 cLH12ct-SsifPW92 0.9 1.3 5.0
3 cLH12ct-SsirPW92 1.4 1.9 6.0
4 cLH20t 1.8 2.6 7.5
5 DSD-PBEP86 1.9 2.6 5.5
6 KT3 2.4 3.3 6.5
7 cVSXC 2.7 3.8 17.3
8 KT2 2.9 4.0 8.4
9 cB97M-V 2.9 4.1 8.2
10 KT1 3.0 4.3 9.8

13C 1 MP2 0.5 2.1 16.4

2 cLH12ct-SsifPW92 1.2 4.9 27.2
3 DSD-PBEP86 1.3 5.0 16.0
4 cLH12ct-SsirPW92 1.4 5.7 26.9
5 KT1 1.6 6.3 22.9
6 cB97M-V 1.7 6.8 26.9
7 KT2 1.7 7.0 19.8
8 cMN15-L 1.8 7.2 40.0
9 cLH20t 1.8 7.4 32.3
10 KT3 1.9 7.5 19.5

15N 1 cMN15-L 0.9 5.8 27.9

2 DSD-PBEP86 1.2 7.5 40.5
3 KT1 1.6 10.2 31.2
4 cB97M-V 1.7 10.4 43.1
5 cLH12ct-SsifPW92 1.8 11.1 47.8

functional rel. MAE MAE max. AE

6 KT2 2.0 12.4 33.8
7 cLH12ct-SsirPW92 2.0 12.5 50.7
8 KT3 2.0 12.6 32.7
9 B2GP-PLYP 2.0 12.7 31.1
10 B2PLYP 2.5 15.5 37.9

17O 1 DSD-PBEP86 0.9 7.0 36.4

2 cLH12ct-SsifPW92 1.6 13.0 47.0
3 B2GP-PLYP 1.8 14.0 59.6
4 cLH12ct-SsirPW92 1.8 14.8 50.9
5 cMN15-L 1.9 14.8 34.3
6 cB97M-V 2.2 17.3 53.8
7 B2PLYP 2.4 19.5 76.8
8 cLH20t 2.6 20.5 56.1
9 KT1 2.6 20.6 63.3
10 cSCAN 2.6 20.9 96.9

19F 1 MP2 0.6 5.2 34.2

2 cLH12ct-SsifPW92 0.9 8.2 30.0
3 DSD-PBEP86 1.0 9.0 22.9
4 cMN15-L 1.0 9.4 25.5
5 cLH12ct-SsirPW92 1.1 9.7 37.4
6 cLH20t 1.3 11.6 40.2
7 B2GP-PLYP 1.5 13.4 39.2
8 BHLYP 1.8 16.7 65.5
9 cB97M-V 1.9 17.3 48.4
10 cLH07t-SVWN 1.9 17.8 61.9

31P/33S 1 DSD-PBEP86 1.1 9.2 17.2

2 cB97M-V 1.4 12.2 32.3
3 MP2 1.4 12.6 47.2
4 cVSXC 1.5 13.2 37.8
5 KT1 1.5 13.4 29.0
6 KT3 1.7 15.2 35.3
7 KT2 1.7 15.3 28.8
8 cr2SCAN 2.0 17.2 67.1
9 cSCAN 2.1 17.7 70.1
10 crSCAN 2.1 18.3 70.9
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followed by some LHs even before the more demanding DSD-
PBEP86 DH. The much larger 13C shielding subset is also
excellently suited for MP2, which shows again an outstanding
performance. Several LHs and the DSD-PBEP86 DH (which
has the smallest max. AE) compete closely for the second
position, with a number of other functionals not too far
behind.
For 15N shieldings, where static correlation plays a larger

role, the CDFT meta-GGA cMN15-L strikingly takes the lead
just before DSD-PBEP86 (MP2 is now far behind, not among
the top 10 functionals, see the Supporting Information),
followed by a number of functionals from rungs 2−5.
Significant static-correlation effects hold also for the 17O
shieldings, even after exclusion of O3. While this deteriorates
the performance of MP2, which does not appear among the 10
best functionals, the DSD-PBEP86 DH is still the clear top-
performer for this subset, followed by a number of functionals
from different rungs, which can also be recommended for
oxygen shielding constants (note the small max. AE of cMN15-
L).
Static correlation is of lesser importance for the 19F shielding

subset (after excluding F3
−), and MP2 appears again as the

clear top-performer. Interestingly, two LHs and the cMN15-L
CDFT meta-GGA compete with DSD-PBEP86 for the second

place (the DH has, however, the smallest max. AE), and a
number of further functionals from rungs 3 and 4 perform
reasonably well too (including the BHLYP GH advocated
before for 19F shifts132−135). Finally, the small subset of third-
period nuclei 31P and 33S is intermediate with regard to static
correlation. Here, DSD-PBEP86 is the top-performer.
Interestingly, the CDFT meta-GGA cB97M-V outperforms
MP2 for the second place, at much lower computational cost,
followed by a number of other functionals from rungs 2−4.
The tested LHs perform only moderately well for this subset
and do not make it into the top 10. This is potentially due to
the fact that the t-LMF does not respect the high-density limit,
which may become more important for heavier nuclei136 (see
further discussion in Section S1, Supporting Information).
Only DSD-PBEP86 appears in the top 10 functionals for all

seven subsets. cB97M-V achieves this for six subsets and
cLH12ct-SsifPW92, cLH12ct-SsirPW92, and KT1 for five
subsets. The two remaining DHs B2GP-PLYP and B2PLYP
appear in the list only in four subsets.

5.4. Comparison of Different Ways to Treat τ-
Dependent Functionals. We have so far deliberately
concentrated on the CDFT variants of the τ-dependent
functionals using Dobson’s τD model. The reason is that this is
the physically best justified treatment. We had already pointed

Figure 3. Comparison of relative standard deviations and relative mean absolute errors for four different treatments and implementations of τ-
dependent functionals: top, 1H shielding subset; bottom, aggregate deviations for the nonhydrogen shielding subsets.
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out theoretical disadvantages and paramagnetic artifacts of the
widely used τMS model, the gauge dependence of using
unmodified τ (leading to the τC model), as well as the ad hoc
character of the truncated τ0 model used so far as default
ansatz in the ORCA code. However, as already discussed
before,22,23 this does not mean that the τD CDFT treatment
gives the overall best agreement with the reference data for all
functionals and subsets. Error compensation obviously can
become important here, and we had already mentioned some
cases where the other models seem to provide smaller
deviations and have been touted in previous works. Here, we
provide some more analyses on this point. Figure 3 gives rel.
SDs and rel. MAEs for 1H shieldings on top and the aggregate
rel. deviations for the remaining nuclei at the bottom for all
four treatments of τ mentioned here.
The rel. SDs and rel. MAEs provide rather similar

information here, and we will not discuss them much
separately. Starting with the 1H shieldings, we see that for
several meta-GGAs (MN15-L, TPSS, M06-L, B97M-V, SCAN,
rSCAN, r2SCAN), meta-GGA GHs (MN15, M06, TPSSh,
M06-2X), and some LHs (mPSTS, LHJ14, LH20t, LH14t-
calPBE), the gauge-dependent τC treatment provides by far
larger errors than the other models. This suggests that the
gauge dependence is a problem particularly for the hydrogen
atoms on the periphery of the molecules when the gauge origin
is placed at the center of mass. The ad hoc τ0 treatment
removes this gauge dependence and thereby improves matters,
but does not do so completely in all cases (e.g., MN15-L, M06-
L, B97M-V, MN15, M06-2X, LHJ14). Other functionals do

not exhibit large deviations for τC (τHCTH, VSXC, partly
PW6B95, ωB97M-V, LH07t-SVWN, LH12ct-SsirPW92,
LH12ct-SsifPW92), showing that the construction of the τ-
dependent functional plays a role in this context. Artifacts for
1H shieldings of τMS with t-LMF-based LHs with uncalibrated
exchange-energy densities (LH07t-SVWN, LH12ct-SsirPW92,
LH12ct-SsifPW92) have been noted previously,22,23 and are
confirmed here for the much larger test set. This problem does
not exist for the calibrated LHs (LH20t, LH14t-calPBE) and
for mPSTS and LHJ14. Interestingly, for the three above-
mentioned uncalibrated t-LMF-based LHs, the τ0 and partly
the τC treatments actually provide somewhat better agreement
with the reference data, in a clear case of error compensation.
Turning to the nonhydrogen shieldings, we start by noting

that induced paramagnetic currents25 are now expected to play
a more important role. Their τ-contributions are properly
accounted for by the CDFT treatment (τD), but clearly neither
by τC nor by τ0. However, as noted above, this does not mean
that τD will provide the smallest deviations for all functionals,
as different factors may compensate each other. MN15-L is the
most clearcut case where the CDFT treatment does indeed
provide by far the best results. The same holds for MN15 and
M06-2X (partly also for LHJ14), but with overall much larger
deviations, while B97M-V shows smaller effects but still in
favor of τD. For MN15-L, the rel. MSEs are generally positive
(see Table S13 in the Supporting Information) and are
reduced by the CDFT treatment, providing the noted
improvements. For MN15, M06-2X, and LHJ14, the rel.
MSEs become less negative. Cases where τC or τ0 provide

Figure 4. Relative deviations (in %, normalized to the shift range for a given nucleus) from the relative CCSD(T)/pcSseg-3 chemical shifts for
different methods (with pcSseg-3 basis). Individual nuclei shown as open symbols, weighted aggregate relative deviations across all subsets as black
diamonds, and when excluding the 1H shieldings as red diamonds.
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lower deviations than τD and τMS are the related TPSS, TPSSh,
and mPSTS, but particularly also M06-L (and less so VSXC).
For M06-L, this explains why some previous studies provided
very accurate shielding and shift results with this functional for
some main-group nuclei,15,36,101 as the computations used
either a gauge-dependent τC or τ0. However, we do not want to
recommend this procedure for a best-practice computational
protocol due to (a) the already mentioned theoretical
arguments that clearly favor τD and (b) the problems arising
particularly for the 1H shieldings (see above). Moreover, this
work shows that better-performing methods with good
theoretical justification are available. On the other hand, the
CDFT versions cM06-L and cVSXC also perform reasonably
well, albeit somewhat worse than their non-CDFT variants.
Finally, we also note relatively small effects of the τ model on
the nonhydrogen shieldings for various functionals (all t-LMF-
based LHs, ωB97M-V). Here, we suspect that induced-current
contributions to the XC response part are mainly covered by
position-dependent or range-separated Hartree−Fock ex-
change, and the τ contributions are less important.
5.5. Method Performance for Relative NMR Shifts.

Comparison with the experiment is most often done for
relative chemical shifts, as absolute shieldings are rarely
available for comparison. Computation of shifts allows some
compensation of systematic errors to be made use of, for
example if the electronic environment of the nucleus in the
reference compound is chosen similar to the compounds to be
studied. If we are interested, for example, in 13C shifts in
aromatic hydrocarbons, it may be preferable to use benzene as
a reference compound rather than tetramethylsilane (TMS) or
CH4. Then, errors in the treatment of the paramagnetic terms,
e.g., the typical overestimate made by many DFT methods,
cancel out for the relative shifts. One may then easily shift the
results back to the scale used by experimentalists, e.g., using
the experimental shift of benzene relative to TMS. For a
diverse shielding benchmark such as the one presented in this
work, this provides only limited extra information of this type,
as the molecules studied have been specifically selected to
cover many different electronic situations for a given nucleus as
well as very large shielding ranges (see above). The potential
for beneficial error compensation thus arises only in cases
where some constant errors are contained in the computed
absolute shielding data for a given method, which are largely
removed by subtracting the same error for the reference
compound. The most likely candidate for such a constant error
to be canceled is the diamagnetic term, which depends on the
description of the spherical core shells. While a preliminary
inspection of our data confirms this to be the case, the
complications of identifying the relevant diamagnetic and
paramagnetic contributions for GIAO-based computations let
us refrain from a detailed analysis of such compensations in the
present benchmark paper.
In the general statistical overview of the shielding part, we

had already identified methods for which we expect such
elimination of systematic errors. These should be the ones
where the rel. SDs are smaller than the rel. MAEs, indicating a
relatively narrow error distribution shifted from the origin. We
will show below that this is indeed the case. The SDs are
essentially the same here for the shifts (except for a small
technical change for the 31P/33S subset due to the joint
normalization of the deviations for two nuclei), so we should
focus on the rel. MAEs (and rel. MSEs) for the shifts in
comparison with those discussed already for the shieldings.

These are shown in Figure 4 using CH4 (
1H and 13C), BF3,

NH3, H2O, HF, PH3, and H2S as the respective computational
reference standards. Note that the signs of the MSEs are
different due to the different sign convention of shieldings and
shifts. As these are still comparisons against the GIAO-
CCSD(T)/pcSseg-3 data, we do not need to apply any
corrections and are free to use convenient standards with small
paramagnetic contributions, without having to rely on
experimental shift standards. See also Tables S15−S21 in the
Supporting Information for full shift results of all nuclei and
functionals and the complete statistical evaluation in Table
S22.
While we mention the most accurate methods for which

changes are small, the main focus will be on methods where
accuracy for relative shifts is improved significantly. Starting
with MP2 and the three DHs, we see that DSD-PBEP86 (rel.
MAE 0.7%, rel. MSE +0.5%) and MP2 (rel. MAE 1.0%) are
still the best methods, affected relatively little. Among the two
remaining DHs B2PLYP (1.3%) and B2GP-PLYP (1.1%), the
improvement by error compensation for the former is more
pronounced. The best LHs are still only a bit behind, but now
some LHs that had not been at the top for the shieldings (but
had narrow SDs) also benefit: cmPSTS (1.2%) is now the top-
performer, cLH20t, cLH12ct-SsirPW92, and cLH12ct-
SsifPW92 (all 1.5%), cLH14t-calPBE (1.6%), and cLH07t-
SVWN (1.7%) follow closely behind. cLHJ14 (2.7%) still gives
the poorest performance, but it also benefits from error
compensation for the shifts, as do essentially all simpler
semilocal functionals (see below).
While the KT1, KT2, and KT3 functionals (2.1, 1.9, 1.7%)

are still among the best GGAs, the distance to some of the
others is now smaller (e.g., B97D 1.9%, HCTH 2.1%). The
same holds for the CDFT meta-GGAs, where cB97M-V is now
clearly the top-performing functional (1.2%, rel. MSE +0.1%),
while cMN15-L (1.6%, rel. MSE −0.6%) still performs very
well but is now rivaled by others: cM06-L (1.5%), cTPSS and
cSCAN (both 1.6%), cτ-HCTH and cr2SCAN (both 1.7%),
and cVSXC and crSCAN (both 2.0%). The small SDs for the
TPSS-related functionals (see also cmPSTS above) also help
reduce the rel. MAE of TPSSh (1.5%), which is now the best
GH, with only B97-2 (1.7%) and BHLYP (1.9%) also below
2%. While many of the other GHs also benefit from error
compensation for the shifts, they are clearly still less accurate
(from PBE0 2.3% to cM06-2X 3.3%). The RSHs also benefit,
with rel. MAEs from 1.9% (ωB97M-V) to 2.5% (CAM-
B3LYP). HF (2.6%) is now in the range of the less well-
performing GGAs. Overall, we thus see that, due to the partial
elimination of systematic errors, we have now more methods
with rel. MAEs below 2% than for absolute shieldings. Those
methods that perform already very well for absolute shieldings
(see further above) and do not benefit particularly for this
error compensation likely give particularly good descriptions of
the inner core regions contributing to the diamagnetic term.
We note in passing that maximum relative errors for the shifts
of the various methods are similar to those for the shieldings.
Therefore, we do not discuss them separately here but provide
some additional information in the Supporting Information
(Section S3).
As for the shieldings above, we can also get detailed

information on the performance of the various functionals
(again including MP2) for the shifts of the different subsets,
and again we provide a detailed discussion in the Supporting
Information (Section S2). A short overview of the 10 best-
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performing functionals for the relative shifts of each nucleus is
provided in Table 6 in the same manner as Table 5 gave for
shieldings. Note that the abovementioned error compensation
does not work in most cases for the 1H shifts, due to the
absence of a core shell. Here, the rel. MAEs for the shifts are
often even somewhat larger than those discussed further above
for the shieldings. Compensation of some systematic errors is,
however, seen for a few cases like cLH12ct-SsirPW92,
cLH12ct-SsifPW92, cmPSTS, HF, and SVWN. The cLH20t
LH provides the best performance for the 1H shifts below rung
5.
Massive improvements for a number of methods are seen

upon going from shieldings to shifts for the 11B subset. DSD-
PBEP86, which had been clearly behind MP2 for absolute
shieldings, now gives the lowest MAE, below 0.5 ppm! MP2 is
then followed closely by a number of functionals from rungs
2−5 with MAEs around the 1 ppm mark. Somewhat less
pronounced but still notable differences between shieldings
and shifts apply to the 13C subset. Now, the cmPSTS LH
slightly outperforms even MP2 and DSD-PBEP86, and several

functionals from rungs 3 and 4 are not far behind, including
TPSS and TPSSh.
Error compensation is less pronounced for the 15N shifts,

due to the larger paramagnetic terms. cB97M-V and DSD-
PBEP86 give the lowest MAEs, closely followed by cMN15-L
and the KTx family of functionals. Small error compensation is
seen also for the 17O shifts. DSD-PBEP86 clearly performs
best, followed by B2GP-PLYP and a number of functionals
from rungs 2−4 (Table 6). Error compensation is probably
smallest for the 19F shifts, where MP2 and DSD-PBEP86 still
perform best, and the other top performers still follow a similar
order as for the shieldings, including a number of LHs, DHs,
CDFT meta-GGAs, and the GH BHLYP.
For the third-row nuclei 31P and 33S, the systematic errors of

some functionals in the diamagnetic part seem to be
particularly large, and performance can change significantly
upon going to the shifts. Indeed, for several functionals, the
deviations for shifts are much smaller than for shieldings.
Several functionals from rungs 2−5 now outperform MP2,
with DSD-PBEP86 again being clearly the top-performer.

Table 6. The Ten Functionals with the Lowest MAE for Relative Shifts of Each Nucleus with Their Relative MAE (in %), MAE
(in ppm), and Max. AE (in ppm) (GIAO-DFT/pcSseg-3 vs GIAO-CCSD(T)/pcSseg-3)

functional rel. MAE MAE max. AE
1H 1 DSD-PBEP86 0.48 0.08 0.64

2 MP2 0.63 0.11 0.51
3 B2GP-PLYP 0.68 0.11 0.64
4 cLH20t 0.73 0.12 0.63
5 BHLYP 0.73 0.12 0.78
6 cmPSTS 0.83 0.14 0.71
7 cLH14t-calPBE 0.85 0.14 0.55
8. B2PLYP 0.86 0.15 0.77
9 cTPSSh 1.03 0.17 0.82
10 ωB97X-D 1.03 0.17 0.84

11B 1 DSD-PBEP86 0.3 0.4 3.0

2 MP2 0.4 0.6 2.3
3 B2GP-PLYP 0.6 0.9 4.5
4 cLH12ct-SsifPW92 0.7 0.9 3.9
5 B97-2 0.7 0.9 2.6
6 ωB97X-D 0.7 1.0 2.7
7 cLH12ct-SsirPW92 0.7 1.0 3.8
8 LH07s-SVWN 0.7 1.0 2.9
9 B2PLYP 0.8 1.1 3.7
10 cLH07t-SVWN 0.8 1.1 3.6

13C 1 cmPSTS 0.6 2.3 15.0

2 MP2 0.7 2.6 14.8
3 DSD-PBEP86 0.7 2.8 13.6
4 cTPSSh 0.9 3.6 13.3
5 cTPSS 0.9 3.7 11.8
6 cM06-L 0.9 3.7 35.2
7 cτ-HCTH 1.0 4.2 21.6
8 cB97M-V 1.1 4.2 34.4
9 cVSXC 1.1 4.5 35.6
10 B97D 1.2 4.6 14.5

15N 1 DSD-PBEP86 1.1 6.6 41.9

2 cB97M-V 1.1 6.6 33.6
3 KT3 1.1 7.0 24.6
4 KT1 1.2 7.4 26.7
5 cMN15-L 1.2 7.6 31.2

functional rel. MAE MAE max. AE

6 KT2 1.2 7.8 28.0
7 B2GP-PLYP 1.6 10.1 28.2
8 cmPSTS 1.6 10.2 62.9
9 cτ-HCTH 1.6 10.2 35.7
10 cVSXC 1.7 10.4 52.7

17O 1 DSD-PBEP86 0.8 6.2 45.4

2 B2GP-PLYP 1.5 12.0 73.8
3 cLH12ct-SsifPW92 1.8 14.0 61.4
4 KT1 1.8 14.6 72.9
5 cSCAN 1.8 14.7 115.6
6 cLH12ct-SsirPW92 1.9 14.9 65.1
7 cB97M-V 1.9 15.3 58.2
8 MP2 2.0 15.6 138.0
9 B2PLYP 2.0 15.6 93.9
10 cM06-L 2.0 16.1 103.8

19F 1 MP2 0.6 5.3 34.1

2 DSD-PBEP86 0.9 8.0 25.3
3 cLH12ct-SsifPW92 1.0 9.0 36.0
4 cMN15-L 1.0 9.4 31.9
5 cLH12ct-SsirPW92 1.1 10.1 43.7
6 BHLYP 1.2 11.2 69.2
7 cB97M-V 1.3 11.8 48.8
8 cLH20t 1.3 11.9 46.8
9 B2GP-PLYP 1.3 11.9 43.6
10 cLH07t-SVWN 1.8 16.5 70.1

31P/33S 1 DSD-PBEP86 0.4 3.1 9.7

2 B2GP-PLYP 0.8 7.2 28.1
3 B2PLYP 0.9 7.9 26.4
4 cTPSS 1.0 8.6 41.1
5 KT2 1.0 8.8 22.5
6 cτ-HCTH 1.0 9.2 33.7
7 cTPSSh 1.1 9.2 54.6
8 MP2 1.1 9.3 42.4
9 KT3 1.1 9.6 38.5
10 cmPSTS 1.1 9.4 50.6
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6. CONCLUSIONS

An extended benchmark set of light main-group nuclear
shielding constants and NMR shifts, NS372, with 372 shielding
constants for 117 molecules has been constructed, uniformly
based on accurate ab initio data at the GIAO-CCSD(T)/
pcSseg-3//CCSD(T)/cc-pVQZ level. The test set combines
many molecules contained in earlier, smaller sets, typically for
only one or two nuclei, and it adds many more systems that
cover a wide range of electronic-structure situations. This
allows an unprecedentedly detailed evaluation of more
approximate quantum-chemical methods, in particular, differ-
ent exchange−correlation functionals of Kohn−Sham density
functional theory. Adding up weighted relative deviations
normalized to the shielding range of a given nucleus has
allowed us to compare different methods across the entire 1H,
11B, 13C, 15N, 17O, 19F, and 31P/33S test set, comparing HF,
MP2, and CCSD, as well as density functionals from all five
rungs of the usual ladder.
As HF is found to be a reasonable starting point for the 11B,

13C, 19F, and 31P/33S subsets, MP2 performs excellently in
those cases, and double hybrids (rung 5) that incorporate MP2
correlation are also outstanding, with the spin-scaling-DH
DSD-PBEP86 confirmed as the best DFT method for light
main-group shieldings and shifts. The latter functional is also
able to correct the somewhat larger errors of MP2 in the 15N
and 17O subsets that feature more cases with larger static
correlation (even while excluding O3 for the

17O subset). Two
further double hybrids evaluated, B2PLYP and particularly
B2GP-PLYP, also perform well but not as consistently. Given
the large computational demands of GIAO computations with
MP2 and double hybrids, and the resulting limitations in the
sizes of molecules to which these methods are applicable, it is
gratifying that a number of DFT functionals on the lower rungs
of the ladder could be identified, that also provide accurate
shieldings and shifts. We note that, due to compensation of
errors resulting from diamagnetic shielding contributions, a
number of methods perform even better for relative shifts.
Looking for methods that work well across the entire test set
we find, in addition to specialized GGA functionals (KT1−
KT3) fitted explicitly for main-group shifts (rung 2), current
density functional implementations of several meta-GGA
functionals (rung 3; in particular cB97M-V, cMN15-L) and
local hybrid functionals with position-dependent exact-
exchange admixtures (rung 4; several functionals from our
group with t-LMFs and the more complicated mPSTS) to
provide promising alternatives to the computationally more
expensive methods. Indeed, the CDFT meta-GGA cB97M-V
makes it into the list of the 10 best functionals for the shifts for
six out of seven subsets, and the cLH12ct-SsifPW92 and
cLH12ct-SsifPW92 LHs achieve this for five subsets. The fact
that these functionals do not exhibit large maximum absolute
errors for any of the subsets (in contrast to, e.g., MP2 for some
cases with significant static correlation) also attests to their
robustness.
This work is considered an important step in a more

extensive benchmarking of quantum-chemical methods for the
computation of NMR parameters, aiming toward accurate and
computationally expedient methods that work across the
periodic table. Obviously, this will also need to include spin−
spin coupling constants, and it has to extend to heavier main-
group systems, as well as to d- and f-element compounds
(including both metal and ligand NMR parameters). This will

require us to go beyond the present nonrelativistic framework,
and to also include environmental effects in the condensed
phase. Work along these lines has been initiated. The long-
term goal is to combine the resulting approaches also with
conformational averaging procedures as described by Grimme
and co-workers (see Introduction) to arrive at the accurate and
reliable quantum-chemical simulation of full NMR spectra.
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(5) London, F. Theórie quantique des courants interatomiques dans
les combinaisons aromatiques. J. Phys. Radium 1937, 8, 397−409.
(6) Ditchfield, R. Self-consistent perturbation theory of diamagnet-
ism. Mol. Phys. 1974, 27, 789−807.
(7) Wolinski, K.; Hinton, J. F.; Pulay, P. Efficient Implementation of
the Gauge-Independent Atomic Orbital Method for NMR Chemical
Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251−8260.
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“Systematic Evaluation of Modern Density Functional Methods for the Computation

of NMR Shifts of 3d Transition-Metal Nuclei”,

J. Chem. Theory Comput., 2022, 18, 273–292.

DOI: 10.1021/acs.jctc.1c00964

Copyright 2021 American Chemical Society.

179

https://doi.org/10.1021/acs.jctc.1c00964




Systematic Evaluation of Modern Density Functional Methods for
the Computation of NMR Shifts of 3d Transition-Metal Nuclei
Caspar Jonas Schattenberg, Morten Lehmann, Michael Bühl, and Martin Kaupp*
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ABSTRACT: A wide range of density functionals from all rungs
of Jacob’s ladder have been evaluated systematically for a set of
experimental 3d transition-metal NMR shifts of 70 complexes
encompassing 12 × 49Ti, 10 × 51V, 10 × 53Cr, 11 × 55Mn, 9 × 57Fe,
9 × 59Co, and 9 × 61Ni shift values, as well as a diverse range of
electronic structure characteristics. The overall 39 functionals
evaluated include one LDA, eight GGAs, seven meta-GGAs
(including their current-density-functionalCDFTversions),
nine global hybrids, four range-separated hybrids, eight local
hybrids, and two double hybrids, and we also include Hartree−
Fock and MP2 calculations. While recent evaluations of the same
functionals for a very large coupled-cluster-based benchmark of
main-group shieldings and shifts achieved in some cases aggregate percentage mean absolute errors clearly below 2%, the best results
for the present 3d-nuclei set are in the range between 4 and 5%. Strikingly, the overall best-performing functionals are the recently
implemented CDFT versions of two meta-GGAs, namely cM06-L (4.0%) and cVSXC (4.3%), followed by cLH14t-calPBE (4.9%),
B3LYP (5.0%), and cLH07t-SVWN (5.1%), i.e., the previously best-performing global hybrid and two local hybrids. A number of
further functionals achieve aggregate deviations in the range 5−6%. Range-separated hybrids offer no particular advantage over
global hybrids. Due to the overall poor performance of Hartree−Fock theory for all systems except the titanium complexes, MP2 and
double-hybrid functionals are unsuitable for these 3d-nucleus shifts and provide large errors. Global hybrid functionals with larger
EXX admixtures, such as BHLYP or M06-2X, also perform poorly, and some other highly parametrized global hybrids also are
unsuitable. For many functionals depending on local kinetic energy τ, their CDFT variants perform much better than their “non-
CDFT” versions. This holds notably also for the above-mentioned M06-L and VSXC, while the effect is small for τ-dependent local
hybrids and can even be somewhat detrimental to the agreement with experiment for a few other cases. The separation between
well-performing and more poorly performing functionals is mainly determined by their results for the most critical nuclei 55Mn, 57Fe,
and 59Co. Here either moderate exact-exchange admixtures or CDFT versions of meta-GGAs are beneficial for the accuracy. The
overall deviations of the better-performing global or local hybrids are then typically dominated by the 53Cr shifts, where triplet
instabilities appear to disfavor exact-exchange admixture. Further detailed analyses help to pinpoint specific nuclei and specific types
of complexes that are challenges for a given functional.

1. INTRODUCTION
The NMR chemical shifts of transition-metal nuclei have a long
history, dating back to some of the very first NMR experiments
in the early 1950s, on the 59Co isotope.1,2 While some of the
relevant nuclei are difficult to observe,3 others are easily
accessible, and many of them cover a rather large range of
chemical shifts of many thousands of ppm.2,4 This large range
and the importance of transition-metal complexes in many areas
of research, from organometallic catalysis via materials to
bioinorganic chemistry, makes NMR spectroscopy of transition-
metal (TM) nuclei an important tool in chemistry. As with
main-group NMR,5−7 quantum-chemical computations of
transition-metal NMR parameters have thus been of substantial
interest.7−13

One of us (M.B.) had initiated systematic studies of DFT
approaches to compute TMNMR shifts about 25 years ago, with

one of the aims being the correlation with reactivity, and an
appreciable knowledge base has been accumulated over the
years. Apart from structural, environmental, and ro-vibrational
effects, the choice of the exchange-correlation (XC) functional
has been crucial to obtain reasonable predictive-quality TM
NMR shifts. Initially, (global) hybrid functionals (GHs) with a
moderate admixture of Hartree−Fock exchange, such as the
B3LYP functional (20%), were found to improve the obtained
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shifts for many TM nuclei, compared to pure semilocal
functionals. This holds in particular for nuclei in the second
half of the 3d series, such as 57Fe or 59Co14−16 and to a lesser
extent also for 55Mn17 and 61Ni18 and for some late 4d nuclei,
99Ru and 103Rh.15,19−21 Different rationalizations can be put
forward for these observations. Delocalization errors of
semilocal functionals are known to render metal−ligand bonds
too covalent, as also shown for EPR parameters of open-shell
complexes.22,23 Potentially too low excitation energies of
semilocal functionals and the coupling terms introduced by
nonlocal exchange are additional aspects.24 Later, studies for
some 4d nuclei such as 95Mo or 99Tc,25,26 or for the 3d nucleus
53Cr,27 suggested better performance of semilocal functionals
and detrimental effects of exact-exchange (EXX) admixture for
such elements in the middle of the TM rows. Relatively small
dependencies on the EXX admixtures were identified for early
TMs, such as 49Ti, 51V, or 91Zr.28−30

Many results for main-group nuclei also suggest that different
amounts of EXX admixture of global hybrids may be preferable
for different nuclei. For example, the BHLYP functional with
50% EXX admixture has been suggested31 to be among the best
choices for 19F shifts (double hybrid functionals (DHs) like
DSD-PBEP86 perform even better,32 but these require
computationally demanding MP2-type correlation contribu-
tions and have similarly high EXX admixtures). On the other
hand, BHLYP dramatically overestimates chemical shifts for
many other main-group nuclei33,34 (and for transition metals,35

see also below). Indeed, it appears that the optimal amount of
EXX admixture depends not only on the nucleus studied but also
on the electronic structure of the given compound. That is, large
EXX admixtures are known to be problematic in many cases
exhibiting large static correlation contributions and in case of
triplet instabilities of the generalized ground-state Kohn−Sham
wave function.36,37 This brings us back to the main topic of
transition-metal compounds, which are known to often exhibit
large static correlation effects as well as spin-symmetry breaking
of Hartree−Fock wave functions, depending on oxidation and
charge state, as well as on other characteristics of their electronic
structure.
In view of these limitations of global hybrid functionals in

terms of their flexibility of being able to treat different situations,
more flexible extensions of the concept of hybrid functionals
obviously are of interest, not exclusively but distinctly also in the
context of NMR chemical shifts. So far, the use of range-
separated hybrids (RSHs) has been studied to a limited degree,
and the results did not seem to provide a significant
improvement over global hybrids. This brings us to local hybrid
functionals (local hybrids, LHs) with position-dependent EXX
admixture, governed by a so-called local mixing function
(LMF).38 An early attempt to use LHs for nuclear shieldings
based on an uncoupled scheme on top of an approximate
optimized-effective-potential (OEP) treatment within the
localized-Hartree−Fock (LHF) approach39 suffered from the
sensitivity of nuclear shieldings to the underlying approxima-
tions used.40,41 Recently we have reported a full and efficient
coupled-perturbed Kohn−Sham (CPKS) implementation of
nuclear shieldings with LHs within the TURBOMOLE code, based
on generalized Kohn−Sham ground-state wave functions.33 The
first evaluations for main-group nucleus shieldings of some first-
generation LHs were very encouraging, confirming the potential
advantages of having large EXX admixtures in the core region
but lower ones in the valence region. In particular, the systematic
underestimate of shieldings by semilocal or global hybrid XC

functionals for non-hydrogen nuclei, which in part seems to be
related to the neglect of current terms in the XC functionals,42

was reduced significantly. Some limitations noted initially for 1H
shieldings, and for the shieldings of nuclei in direct
neighborhood of hydrogen atoms, were found43,44 to be related
to the gauge correction of the kinetic energy τ by the widely used
Maximoff-Scuseria model.45 They vanish almost completely
when using the Dobson46−49 current-density functional
(CDFT) extension of τ.43 Further improvements for hydrogen
shieldings were found44 when using more advanced LHs with
calibrated exchange-energy densities, such as LH20t.50 Sub-
sequent evaluations of main-group NMR shifts as part of a more
diverse evaluation of local hybrids for response properties by
Holzer et al.51 included the same LHs and in addition a modified
variant (mPSTS) of the rather involved PSTS functional,52 as
well as an LH (LHJ14) by Johnson and co-workers53 with an
LMF based on correlation length. Good performance of LHs
was generally found, even though the selected test sets in part
may have been too limited to distinguish the advantages and
disadvantages of different functionals in granular detail. To
obtain amoremeaningful extensive comparison of a wide variety
of XC functionals and other methods for main-group shieldings
and shifts, we have very recently constructed and used34 a very
large benchmark set containing 372 shielding values for 1H, 11B,
13C, 15N, 17O, 19F, 31P, and 33S nuclei in 117 molecules and ions,
based on CCSD(T)/pcSseg-3//CCSD(T)/cc-pVQC data and
used it to evaluate a wide variety of different functionals from all
five rungs of Perdew’s ”Jacob’s ladder of functionals”54 plus HF
and MP2 calculations. The DSD-PBEP86 DH55,56 was
confirmed to provide the overall most accurate results. Several
LHs performed excellently and were competitive with the other
DHs evaluated, at appreciably lower computational cost. A
number of further important insights were obtained on other
functionals. This includes in particular the excellent perform-
ance of parametrized meta-GGAs like B97M-V and MN15-L,
when used in their CDFT implementations based on Dobson’s
scheme (”cB97M-V”, ”cMN15-L”).34

A more diverse evaluation of XC functionals for NMR shifts
clearly should extend beyond main-group nuclei. Many of the
functionals mentioned above, that have recently been evaluated
in detail for main-group shieldings, have so far not been applied
to transition-metal shifts. Here we work toward filling this gap
and provide a systematic study of the NMR shifts of 3d nuclei, as
more data are available for comparison here than for the heavier
TM nuclei, complications due to relativistic effects (or
potentially to violations of the high-density limit for certain
functionals57) are expected to be small, but the potential
importance of static correlation is largest. The latter point
reflects the often found stretched-bond situations related to the
large Pauli repulsion with semicore−shells, exacerbated by the
small 3d shell that lacks a radial node.58,59We include 70 shifts of
49Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, and 61Ni nuclei, where
experimental data are available. The selection includes
complexes that have been studied previously by computations,
and we concentrate largely on systems where environmental
effects are not expected to affect the shifts very much (see
below). As the generation of high-level coupled-cluster bench-
mark data of comparable quality as provided for main-group
systems in ref 34 would be prohibitive andmight not provide the
required accuracy in all cases, we compare here to carefully
selected experimental data.
Beyond the first evaluations of LHs for transition-metal NMR

shifts, we include some GGAs geared specifically toward nuclear
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shieldings of main-group nuclei (KT1, KT2, KT3), more recent
meta-GGA functionals (e.g., B97M-V, M06-L, MN15-L, VSXC,
τ-HCTH), a number of more recent and highly parametrized
GHs, and four RSHs (CAM-B3LYP, ωB97X-D, ωB97X-V,
ωB97M-V). We also evaluate HF andMP2 calculations and two
DHs, B2PLYP and DSD-PBEB86, even though we expected
these approaches to face difficulties for many transition-metal
complexes where appreciable static correlation and triplet
instabilities are common. Yet MP2 and DSD-PBEP86 excel
formost main-group shieldings,34 and so it is only fair to evaluate
them also for transition-metal shifts. Overall, 41 methods are
evaluated for the entire test set, without counting different ways
of treating local kinetic energy, τ. In the section Theory, we
describe the issue of the proper treatment of τ for those
functionals that depend on it,43,44 as this will turn out to be a
major aspect for the success of some of the best-performing
functionals in this work.

2. THEORY
As many of the functionals evaluated here, meta-GGAs, meta-
GGA-based GHs and RSHs, and LHs with certain local mixing
functions (LMFs), depend on local kinetic energy τ, the proper
treatment of the latter becomes important and shall be briefly
discussed here. τ itself is not invariant to gauge transformations
of the vector potential in the presence of a magnetic field and has
to be adjusted accordingly. In most nuclear shielding
implementations used today, a gauge-invariant extension due
to Maximoff and Scuseria45 is used (τMS in the following)

τ τ τ ρ→ = + + | |
c c

A
j

A
2MS p

T 2

2 (1)

where

∑ φ φ φ φ= ∇ * − *∇i
j

2
( )p

i
i i i i

(2)

is the paramagnetic current density, and A is the vector potential
of the magnetic field. However, use of the physical current does
not generate a proper isoorbital indicator,47,48 as τ is in the
absence of a field, and this treatment renders τ explicitly field-
dependent, which is considered theoretically disadvantageous.49

More importantly, we have found the model to introduce
unphysical paramagnetic artifacts for atoms and for the parallel
shielding tensor component in linear molecules,43 which also
turned out to be responsible for a poor description of proton
shieldings (and for some other artifacts) by first-generation LHs.
It is advantageous to use instead the more physically motivated
induced paramagnetic current density. This gives a model
proposed by Dobson46 that has been used also in other contexts
(e.g., for gauge invariance of τ-dependent functionals in TDDFT
computations,47 to describe current-carrying atomic states48 or
molecules in strong magnetic fields,60 to study magnetically
induced currents,61 or to compute spin−spin coupling
constants51,62):

τ τ τ
ρ

→ = −
| |j

2D
p

2

(3)

Use of τD eliminates the above-mentioned artifacts of τMS and
provides a proper current-density functional theory (CDFT)
framework for τ-dependent XC functionals. This entails
coupling terms in the response treatment also for meta-GGA
functionals.43 We will in the following denote these CDFT

implementations of the functionals by a small “c” prefix, as has
been done in several previous works.34,51,60,61 We note in
passing that, in the present linear-response treatment, τD applies
only to the response terms, while a variational treatment of the
magnetic field will also turn the ground-state functionals into
CDFT functionals.60 While both τMS and τD frameworks will be
considered in this work, we regard τD as the physically better
founded one and will place central focus on its results. A gauge-
dependent model with an unmodified τ (with the gauge origin
placed at the center of mass of the molecule, τC), as well as the ad
hoc gauge invariant solution implemented in ORCA63−65 (τ0;
see discussion in ref 43) will also be mentioned or reported
where we find it useful to discuss the role of current-density
dependence in τD.
While nuclear shielding is a tensor property, for the purpose of

the present work we will concentrate on the isotropic shielding

σσ = Tr
1
3

( )iso (4)

As no reference-quality computed shielding data are available, in
contrast to the main-group case (see Introduction), we will have
to compare our results to experimental chemical shifts. The
NMR chemical shift is usually reported (approximately) as the
difference between the shielding of a reference compound and
that of the nucleus of interest

δ σ σ= −iso iso,ref. (5)

In the case of transition-metal nuclei and complexes, the choice
of reference compound becomes particularly important, as some
complexes may be more difficult to compute than others
regarding static correlation or environmental effects. To exclude
as far as possible artifacts arising from such errors, one can try to
use “benign” reference compounds that are comparably easy to
compute accurately. In those cases where the choice differs from
that made by the experimentalists for a given nucleus, one can
map the computed results back to the experimental shift scale by
using the experimental shift of the chosen secondary reference
standard relative to the experimentally used one

δ σ σ δ= − +iso iso,ref.calc. ,calc. ref.exp. (6)

We will discuss the chosen reference standards at the beginning
of the Results section, in comparison with the alternative
approach of referencing via the Y-intercept of the linear
regression of computed σiso against experimental δ values at a
given computational level.18 The latter will be our central choice
for statistical analyses.

3. COMPUTATIONAL DETAILS
All regular DFT calculations (except double hybrid shielding
calculations) were carried out with a developers’ version of the
TURBOMOLE program suite.66,67 Structures of all complexes were
optimized at the BP86-D3(BJ)/def2-TZVP(D)68,69 level of
theory, i.e., using a def2-TZVPD basis for the metal centers and
def2-TZVP for the main group atoms, which is similar to the
structures used in many earlier transition-metal NMR shift
studies.15−21,28−30 To evaluate the role of the structures for the
shift computations, we also evaluated TPSSh-D3(BJ)70/def2-
TZVP(D) structures for comparison. D3(BJ) represents D3
atom-additive dispersion corrections,71,72 with Becke−Johnson
damping.73−75 The maximum norm of Cartesian gradients was
converged to 10−5, with an energy convergence criterion of 10−8.
Grids were set to “5” for BP86 optimizations and to “3” in
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TPSSh optimizations (internal TURBOMOLE settings). All
structures were characterized as true minima by subsequent
harmonic vibrational frequency analyses.
Some truncated model complexes, VOMe3, VOMe2(OMe),

VOMe(OMe)2, VO(OMe)3, and Fe(CO)4(CH2CHOMe),
have been used throughout the present work, while the
experimental shifts were reported for the larger VO-
(CH2SiMe3)3, VO(CH2SiMe3)2(O

tBu), VO(CH2SiMe3)-
(OtBu)2, VO(OtBu)3, and Fe(CO)4(CH2CHOEt).76,77 To
study the effect of the truncation, the full-sized complexes
have been optimized by the Conformer-Rotamer Ensemble
Sampling Tool (CREST)78,79 followed by a BP86-D3(BJ)/def2-
TZVP(D) optimization of all relevant conformers. We selected
the energetic minimum of this search and evaluated the
shielding constants for a small subset of functionals.
Comparisons of the results for three functionals are reported
in Table S13 in the Supporting Information. Changes of the
NMR shifts compared to the truncated complexes are below 50
ppm. Relative to the experimental shift scale the changes do not
exceed 2.1%, whereas the relative statistical results are affected
by a maximum of 0.3% for the evaluated functionals. Due to the
small effects on the overall statistics, and to be consistent with
previous publications (see refs 15 and 29), we use the truncated
models throughout.
DFT shielding calculations with TURBOMOLE used gauge-

including atomic orbitals (GIAOs),80−82 pcSseg-383 basis sets,
SCF energy convergence criteria of 10−9, a ground-state density
convergence of 10−7, and a grid setting “3”. Convergence
thresholds for the CPKS iterations were set to 10−7

(convergence of the Euclidean vectors).
GIAO−CCSD(T)/pcSseg-3 results for some atoms (see

Table 1 below) were computed using the CFOUR program.84

All double hybrid and MP2 GIAO shielding calculations have
been performed using the ORCA program, version 4.2.1.32,63,64

Due to the much larger computational requirements of such
computations compared to regular DFT shielding calculations,
the basis sets have been reduced somewhat in a locally dense
basis-set approximation to still be able to carry out these
calculations for all complexes in reasonable time. pcSseg-3 basis
sets were then used only on the transition metal nuclei
themselves, while pcSseg-2 basis sets were used on the ligand
atoms. The RI approximation (resolution of the identity) has

been used employing the def2-universal85,86 auxiliary basis for
the Coulomb and exchange part (RI-JK, AuxJ/AuxJK) and the
“AutoAux” option with size setting “1” was used for the auxiliary
basis within the MP2 correlation part (AuxC).87 For one double
hybrid (DSD-PBEP86), we have tested the full pcSseg-3 basis
set and practically complete auxiliary basis sets (using the
“AutoAux” option with setting “3” and the additional setting
“AutoAuxLMax = True”) for a subset of the smaller complexes.
While the differences to the mixed-basis results are non-
negligible, they do not affect the overall judgment on the lack of
suitability of MP2 and the DHs for the present 3d shift test set
(except for 49Ti). Shifts at Hartree−Fock level have also been
computed, using both TURBOMOLE and ORCA, with closely
similar results.
We do not include thermal corrections or solvent effects in the

benchmark statistics. Previous analyses have found the former to
be quite small in comparison to the shift ranges of the involved
nuclei and possible errors of the XC functionals, and the latter in
most cases too,88,89 at least for the types of complexes studied
here. Indeed, larger effects are typically found from possible
errors in the optimized structures.16,90 Exceptionally large
solvent influences are expected for some highly charged species
in aqueous solution, in particular for nuclei with large shift
ranges, due to a shortening of the average metal−ligand
distances by the solvent environment. One of us (M.B.) has
investigated this previously for a number of Co complexes from
the present test set. Based on snapshots from ab initio MD
simulations (CPMD level), or based on polarizable continuum
models (PCM), the effects on aqueous [Co(H2O)6]

3+, [Co-
(NH3)6]

3+, [Co(CN)6]
3−, and [Co(CO)4]

− have been
estimated.91 The shifts of these charged systems are reduced
compared to their gas-phase values, which can of course alter the
comparison between computational methods and experiment.
Table S7 and Figure S2 in the Supporting Information show how
the statistics for the 59Co subset and those for the entire test set
are altered if we consider the two types of correction schemes
(PCM vs CPMD) for the four complexes to back-correct their
experimental shifts to obtain approximate gas-phase values. The
effects on the individual 59Co subset are indeed non-negligible.
Notably, the deviations with several (global, local, and range-
separated) hybrid functionals tend to be reduced to some extent,
in particular with larger EXX admixtures. The reason is, that

Table 1. Shielding Constants and Paramagnetic Contributions for Iso-electronic Atomic Systems with Closed-Shell d10

Configuration (with the pcSseg-3 Basis)a

aGray font indicates cases where the converged closed-shell d10 configuration exhibits a negative HOMO−LUMO gap. bAbbreviation for LH12ct-
SsifPW92. cNo convergence to a diamagnetic solution was achieved.
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many of these functionals, when used in gas-phase calculations,
tend to overestimate the large shifts of these charged species.
Semilocal functionals tend to benefit much less from the solvent
corrections (for cSCAN the CPMD correction even over-
shoots), while agreement for SVWN is also improved. The
overall trends for the different types of functionals remain
similar, but a few changes in the order of the best-performing
functionals are found (B3LYP becomes now the best-perform-
ing functional for the 59Co subset, and several LHs perform
similarly well, in particular cLH20t; Table S7). For the
combined test set of all nuclei, the changes are small, however,
with the largest shifts below 0.5% in rel SDs and below 0.3% in
relative MAEs compared to the uncorrected data (Figure S2).
We find even smaller effects of both explicit and implicit solvent
modeling for aqueous Cr2O7

2− (Figure S3 and Tables S8 and
S9). Another potential source of larger solvent effects could be
explicit coordination of donor solvent molecules to unsaturated
metal sites. We examined this for a number of complexes for
which the experimental data had been taken in the potential
donor solvent acetonitrile. However, even in cases where the
computations suggest solvent coordination, the effects on the
metal shifts are very small. Neither solvent effects for the charged
complexes in aqueous solution nor explicit solvent coordination
to the metal center are large enough to modify our conclusions
on the suitability of different electronic-structure methods
notably. The tremendous effort of modeling the solvent
environment for all relevant species would be clearly outside
the scope of the present work.
Likewise, no relativistic corrections are included. Scalar

relativistic computations using the X2C Hamiltonian92 have
been carried out at the cM06-L level and are provided in Table
S12 in the Supporting Information. The largest effect on
absolute shieldings is ca. 75 ppm, and variations within a given
subset are less than 50 ppm. Given the much larger shift ranges
covered for each nucleus, these are negligible contributions. At
first sight, spin−orbit effects due to heavy ligand atoms might be
expected to be significant for complexes like TiBr4. However,
due to the small metal s-character in the metal−ligand bonds,
these effects should be small.93−95

As triplet instabilities are an issue for some of the complexes in
case of hybrid functionals with larger EXX admixtures and for
Hartree−Fock and MP2, we carried out stability analyses of the
wave functions. In TURBOMOLE, triplet instabilities can be
investigated in the escf module by calculating the lowest
eigenvalues of all irreducible representations of the electronic
Hessian. InORCA the keyword “stabperform”was employed for
the same purpose. In that case, we could also follow the
eigenvector associated with themost negative eigenvalue and get
unrestricted solutions and, in some cases, also their shieldings.
Instabilities are indicated by red color in the full shielding results
in Tables S43−S55 in the Supporting Information. While the
instability analyses for the mPSTS LH did also indicate
instabilities, this appears to be to be an artifact of the recent
implementation of this functional (see below) in the analysis
rather than true instabilities. We did not pursue UKS solutions
for general shielding analyses at a larger scale but report the
RKS-based results. However, we did additional analyses of the
UKS solutions for the BHLYP functional with 50% EXX
admixture to estimate the importance of the symmetry breaking
for a method where a larger number of unstable RKS solutions
were found (see Section S4 and Table S10 in the Supporting
Information). For most complexes studied, the UKS solutions
did not show strong symmetry breaking (see S2 expectation

values of zero). For the few cases with spin-broken UKS
solutions, somewhat larger deviations are seen, but on a scale
that would not affect significantly the overall performance of
BHLYP in the statistical evaluations. The same is expected to
hold for other hybrid functionals with similar or lower EXX
admixtures, where triplet instabilities are seen. Matters are
different for HF and consequently for MP2: here the negative
eigenvalues are much larger for a given complex than for
BHLYP, and to some extent this holds already for the DSD-
PBEP86 DH (Table S11). UHF solutions tend to exhibit large
symmetry breaking, and their associated shielding values can be
very different from those obtained for the unstable RKS
solutions. Consequently, we have to consider HF and MP2
results, as well as double-hybrid data, to be meaningless in many
cases, and we keep them in the Supporting Information only as
an illustration of the failure of these methods. The differences
between BHLYP and HF instabilities can be inferred from the
magnitude of the negative eigenvalues of the electronic Hessian:
these are much smaller with 50% EXX admxiture than for 100%
(Table S11). The TURBOMOLE and ORCA stability analyses for
HF wave functions do not align to 100%, but this does not affect
the main conclusions drawn.
The XC functionals evaluated in the TURBOMOLE shielding and

shift calculations include SVWN96,97 as an example of an LDA
functional (rung 1), the rung 2 GGA functionals BLYP,98,99

BP86,98,100,101 PBE,102 KT1,103 KT2,103 KT3,104 B97D,105 and
HCTH,106,107 and the rung 3 meta-GGA functionals TPSS,108

M06-L,109 MN15-L,110 VSXC,111 τ-HCTH,112 B97M-V,113 and
SCAN.114 Global hybrid functionals (GHs, rung 4) include
TPSSh,70 B3LYP,115 PBE0,116 B97-2,117 BHLYP,118

PW6B95,119 M06,120 MN15,121 and M06-2X.120 We addition-
ally tested the four range-separated hybrids (RSHs, rung 4)
CAM-B3LYP,122 ωB97X-D,123ωB97X-V,124 andωB97M-V,125

as well as the local hybrid functionals (LHs, also rung 4) LH07s-
SVWN,126 LH07t-SVWN,127 LH12ct-SsirPW92,128 LH12ct-
SsifPW92,128 LH14t-calPBE,129 LH20t,50 mPSTS,51,52 and
LHJ14.53 LH14t-calPBE and the recent LH20t are the only
local hybrids here that include calibrated exchange-energy
densities. mPSTS and LHJ14 have been recently implemented
into TURBOMOLE by Holzer et al.51 mPSTS is a slightly modified
version of the PSTS functional52 that has been suggested to
exhibit better SCF convergence than the original functional.
Note that for τ-dependent functionals we generally include in
particular the CDFT versions (using τD) that we will denote with
the prefix “c”.
Computations with the ORCA program contribute additional

results for MP2130 as well as for the double hybrids (DHs, rung
5) B2PLYP131 and DSD-PBEP8655,56 (these data are collected
in the Supporting Information). In general, we will not present
data for all functionals at length in the main text but will largely
concentrate on statistical analyses for the better-performing
functionals. Full shifts and shielding results for all functionals
and complexes are given in Tables S17−S29 and S43−S55 in the
Supporting Information, and further statistical data can be found
in Tables S30−S42.
Statistical analyses have been carried out relative to the

experimental chemical shifts (as reported in Table S1), using
standard deviation (SD), mean signed error (MSE), and mean
absolute error (MAE) in ppm, as well as the slope of the linear
regression when using the Y-intercept method. To be able to
compare performances across different nuclei, we will addition-
ally use dimensionless percentage (relative) deviations
normalized to the experimental shift range covered for a given
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nucleus. Adding these relative statistical measures up (including
the slopes), weighted by the number of values for a given
nucleus, provides us also with final aggregate relative deviations
for the entire test set (aggregate relative SD, aggregate relative
MSE, aggregate relative MAE, and aggregate slope) for all
complexes (“all”). A direct linear regression of shifts across the
entire test is of course also possible but would be dominated by
the nucleus with the largest shift range, 59Co, and thus be less
informative. We furthermore will use histogram plots of relative
deviations to trace the origins of the largest deviations for a given
method, and we also provide maximum relative absolute errors
for each method and nucleus (Figure S4 in Supporting
Infromation).

4. RESULTS
Comparison of the Structures Obtained at BP86-

D3(BJ) and TPSSh-D3(BJ) Levels. In the following, we will
largely focus on the results obtained with BP86-D3(BJ)
structures to maintain consistency with previous publications.
However, different input structures are known to result in
(partly large) deviations in the final shifts (see, e.g., ref 90). For a
subset of functionals we therefore also computed shifts using
TPSSh-D3(BJ) structures, which have been found to agree
somewhat better with experimental structures.132 The results are
provided in the Supporting Information, where statistical
comparisons are in Figure S1, while the full numerical data are
given in Tables S2−S6.
The relative performance of the functionals in the NMR

calculations is essentially the same for both sets of input
structures (Figure S1). However, the use of moderate exact-
exchange admixture (10%) in the optimizations tends to overall
improve agreement with experimental shifts, particularly when
hybrid functionals, CDFT variants of τ-dependent functionals or
highly parametrized functionals are used for the shielding
calculations. That is, the performance of most GGAs and
mGGAs is affected insignificantly, with the changes in statistical
data mostly below 0.3%. Two exceptions here are cM06-L and
cVSXC where the differences between the two structure sets are
larger but still below 1.0% in relative deviations. Relative SDs
and MAEs are reduced somewhat when using the TPSSh
structures. Somewhat larger differences are found for rung 4
functionals. In case of GHs the differences between the two sets
increase with exact-exchange admixture: that is, for cTPSSh
deviations are still below 0.3% in SD and MAE, for B3LYP they
are ca. 1.2%/0.9%, for cPW6B95 1.8%/1.4%, for BHLYP 3.7%/
3.2% (reducing the relative SD from 20.4% to 16.7% and the
relative MAE from 18.7% to 15.5%). Differences for RSHs and
LHs are below 2%. That is, while individual shift values may
change significantly with input structure, the overall statistical
significance is more limited. We can thus in the following
concentrate on the BP86-D3(BJ) structures with some
confidence, keeping in mind that the TPSSh-D3(BJ) structures
may give overall somewhat improved statistical agreement with
experiment. We note additionally that while TPSSh was the top-
performer in a systematic evaluation of the structures of 3d-
complexes, BP86 was not far behind.132

Choice of Reference Standards. We have evaluated
different choices of reference standards, as these can affect
statistical evaluations for transition-metal nuclei substan-
tially.17,18 One set of evaluations, for which we provide statistical
data in Tables S14−S16 in the Supporting Information, uses
shifts relative to the following reference standards for the
different 3d nuclei: TiCl4 (δref.exp. = 0 ppm), VOCl3 (δref.exp. = 0

ppm), CrO2F2 (δref.exp. = −87 ppm), MnCp(C6H6) (δref.exp. =
−180 ppm), Fe(CO)5 (δref.exp. = 0 ppm), Co(CO)4H (δref.exp. =
−3721 ppm), and Ni(PMe3)4 (δref.exp. = 40 ppm). Some of these
compounds differ from the usual standards used in the NMR
experiments and were chosen because they are either neutral
molecules (where the experimental standards are ions) or easier
to calculate from an electronic-structure point of view. In these
cases, the chemical shifts were converted back to the usual scales
using the experimental chemical shifts of the chosen reference
compounds. We finally decided, however, to follow earlier
precedent for transition-metal nucleus shifts and will focus our
main discussion on the Y-intercept method, based on the linear
regression of computed shielding constants at a given level
against the experimental shift data. The intercept on the Y-axis of
this linear fit provides a new reference shift at the given level. The
relative performances of different XC functionals are affected
only weakly by this choice, also for additional choices of
reference standards (even when using “more difficult” reference
complexes17). The Y-intercept method gives overall the smallest
statistical deviations, as it produces a “best linear fit” of the
computed shieldings to the experimental shift data for any given
method.We assume this to provide the smallest bias. This choice
also provides us with slopes of the linear-regression lines as a
measure of how well a given method reproduces overall the
experimental spread of shifts. We implicitly accept the known
disadvantage of this approach: in principle, the chemical shifts
need to be re-evaluated each time a new compound is added to
the test set. For the current sizable (and chemically diverse) test
sets, we feel that the Y-intercept method provides us with the
best measure of the relative performances of different XC
functionals.

Artifacts of Using τMS.The τMS scheme (eq 1) for rendering
the local kinetic energy gauge-invariant is still the most widely
used approach to shielding computations with τ-dependent XC
functionals. As we had reported,43,44 we found the scheme to
give unphysical paramagnetic contributions for atoms and for
the parallel shielding tensor component in linear molecules.
While these artifacts clearly also extend to general molecules, the
replacement of τMS by the better founded τD (eq 3) did by no
means generally improve the agreement with benchmark data
for main-group shieldings. In fact, the previously observed
excellent performance of the M06-L meta-GGA, obtained with
τMS, clearly deteriorated with τD for the initially studied small
main-group shielding test set studied.43 While the differences
were in fact less pronounced for the much larger and diverse
main-group benchmark set of ref 34, τMS still gave somewhat
smaller MAEs and less negative MSEs. Similar observations held
for the VSXC meta-GGA, while matters were dramatically
reversed for MN15-L, with much closer agreement with
reference data provided within the τD framework (with a
reduced positive MSE), and τD also gave somewhat better
agreement with the benchmark data for B97M-V.34 Small effects
on the overall statistics were found for some other meta-GGAs
like TPSS, effects for τ-dependent GHs varied. On the other
hand, results with several τ-dependent LHs were clearly
improved for proton shieldings and for some other situations
considered in refs 34, 43, and 44.
We will discuss the situation for the molecular 3d complexes

of the present study further below and find a number of
substantial differences for the relative performance of different
schemes compared to themain-group case. In this subsection we
want to only show for some spherical atoms and ions with d10

configuration that the same artifacts exist for transition-metal
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Figure 1. Relative standard deviations, mean signed errors, mean absolute errors in percent, as well as slopes of the linear regression for the individual
nuclei (hollow symbols) and their weighted aggregate (filled black symbols) for various XC functionals (using τD for τ-dependent functionals).
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nuclei, that they can be even much larger in terms of their shift
contributions, and that they are completely eliminated when
using τD. Table 1 shows total shieldings and paramagnetic
contributions for Fe2−, Co−, Ni, and Cu+ with τMS and τD for a
series of τ-dependent functionals compared to CCSD(T) data.
Throughout this analysis, we enforce iso-electronic diamagnetic
([Ar]3d10) configurations for all four atomic systems,
irrespective of the actual ground state (for Fe2− the CCSD(T)
computations produced a symmetry-broken solution only, and
the diamagnetic state could not be converged). τMS gives
generally artificial σp contributions for all four systems, but the
magnitude varies substantially with the overall charge and with
the XC functional. The contributions are by far largest for Fe2−

and decrease substantially toward Cu+. We may attribute this
trend to particularly small energy denominators and low-lying
virtual orbitals for the anionic systems.
In agreement with observations for main-group systems,43,44

the artifacts of the τMS scheme are by far smallest (with positive
sign) for TPSS and TPSSh. SCAN also gives relatively small
artifacts, as do B97M-V, PW6B95, and LH20t (except for Fe2−),
with varying signs. For LH20t, we note the calibrated exchange-
energy densities involved, which appear to reduce such artifacts
compared to “uncalibrated” LHs.44 While M06-L exhibited
rather large effects in the main-group case,43 it occupies an
intermediate position for the present 3d systems, together with
ωB97M-V and LH12ct-SsifPW92. Particularly large artifacts are
seen for VSXC, M06 and, most notably, M06-2X. In some of
these latter cases, the paramagnetic artifacts for Fe2− dominate
the overall shielding. Fe2− and Co−may be unrealistic examples,
however. The case of the Ni atom may be the best glimpse into
the magnitude of these artifacts in a realistic situation, as all Ni
complexes studied here have a formal Ni(0) oxidation state (see
below). Even here the artifacts are substantial with many of the
functionals evaluated. This suggests that the τMS scheme should
be viewed with caution for the 3d nuclei studied here.
Calculations with τD eliminate the artifacts completely. Now
the overall shieldings are exclusively due to the diamagnetic
term, and they match the CCSD(T) reference data excellently.
We will see below that the fact that τD includes also current
dependencies for τ in a physically reasonable way becomes an
additional asset for the molecular transition-metal complexes
studied here.
General Statistical Evaluation of 3d-Nucleus NMR

Chemical Shifts. We start with a bird-eye’s view on the
statistical evaluation, focusing first on the relative deviations for
the weighted average over all 70 complexes, consisting of 12 ×
49Ti, 10 × 51V, 10 × 53Cr, 11 × 55Mn, 9 × 57Fe, 9 × 59Co, and 9 ×
61Ni shifts. The relative statistical data for the individual nuclei
and the combined weighted values are shown in Figure 1, using
the Y-intercept method for each nucleus. In this graphic we
include only methods where relative MAEs below 18%, relative
MSEs between −13% and +13%, relative SDs below 20%, and
slopes between 0.4 and 1.4 are achieved for all nuclei. Statistical
evaluations for all methods by the Y-intercept method can be
found in Tables S30−S42 in the Supporting Information, data
for the alternative referencing scheme (see above) are in Tables
S14−S16, while Tables S17−S29 provide full numerical shifts
and Tables S43−S55 the corresponding shielding data. As
differences between BP86-D3(BJ) and TPSSh-D3(BJ) struc-
tures for the shielding results are insignificant for the overall
statistical comparison of the different methods (see above), we
focus exclusively on the former set of structures. For τ-
dependent functionals, we will focus on the better justified τD

model only (using prefixes “c” as is common for the CDFT
treatment) and postpone a discussion of the treatment of τ to a
later section. We note already, however, that τD provides
generally the best agreement with experiment, sometimes
dramatically so, except for MN15-L (see below).
We first discuss the aggregate weighted relative MAEs for the

different categories of XC functionals (Figure 1, top right). For
orientation we note that for the large main-group absolute
shielding benchmark of ref 34 based on CCSD(T)/pcSseg-3
data, several functionals achieved combined relative MAEs
below 2%, 0.9% in case of the overall best-performing DHDSD-
PBEP86 (1.1% for MP2), 1.5% in case of the currently best rung
4 (cLH12ct-SsifPW92) and rung 3 (cB97M-V) functionals.
Even a few more functionals made the 1.5% threshold when
going to relative shifts.34 For the present 3d shift evaluations, the
best functionals are generally still above 4% aggregate relative
MAE, indicating a generally more challenging situation. We
lump the only LDA on rung 1 (SVWN) with the rung 2 GGAs
and find that two of the latter, B97D and HCTH, give relatively
low relative MAEs of 5.6% and 5.3%, respectively. The SVWN
LDA and the standard GGAs BLYP, BP86, and PBE perform
only somewhat more poorly with relative MAEs of 6.1−6.4%.
Strikingly, the “specialized” KT1-KT3 functionals designed for
(main-group) nuclear shieldings give clearly inferior results here
(relative MAEs 7.5−8.8%), in spite of their relatively good
overall performance for main-group nuclei.34 Indeed, even
SVWN clearly outperforms these three functionals. This shows
that their narrow parametrization does not carry over to the
present 3d nuclei, consistent with observations that the good
performance of these functionals for light main-group shieldings
is essentially based on a compensation between errors in the dia-
and paramagnetic contributions.42

Turning to the meta-GGA functionals (rung 3), we see widely
divergent performance. cMN15-L, which performed very well in
the main-group case (see above),34 has been excluded from
Figure 1, as it exceeds the boundaries set (see above), mainly due
to its rather poor performance for the critical nuclei 55Mn, 57Fe,
and 59Co (Table S32). Its final weighted relative MAE is 13.2%.
On the other hand, cM06-L and cVSXC provide the best
performances (but only in their τD CDFT versions, see further
below), with a final relative MAE of only 4.0% and 4.3%,
respectively. Indeed, these are not only the lowest relative MAEs
for rung 3 but for any functional studied here! This is notable, as
it defies the usual expectation that the performances of XC
functionals usually improve as one moves up the rungs of
“Jacob’s ladder”. In the present case, this has to do with clearly
detrimental effects of EXX admixture for certain transition-metal
systems (in particular for 53Cr shifts, see below) and also with
the ability of the CDFT framework to cover important current
contributions (see below). The remaining CDFT meta-GGAs,
cTPSS, cτ-HCTH, cB97M-V, and cSCAN exhibit intermediate
relative MAEs between 5.3% and 6.7%, which is in the range of
the GGAs discussed above. In fact, the rather reasonable
performance of cτ-HCTH is slightly inferior to its GGA
analogue HCTH, and the exceptionally good performance of
cB97M-V for main-group shieldings34 carries over only partially
to the present 3d shift set (relative MAE 5.3%).
Proceeding to rung 4, we start with the GHs. Only five out of

the nine GHs evaluated here are included in Figure 1. Most of
the Minnesota functionals exhibit extremely large deviations
(Tables S35−S37 in Supporting Information), with weighted
relative MAEs of 16.7% (cM06-2X), 18.7% (cM06), and 9.9%
(cMN15), still much larger deviations are found with other τ
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frameworks. Again the by far largest deviations are accumulated
for 55Mn, 57Fe, and 59Co. In case of cM06-2X, the large
deviations for these three nuclei can at least in part be attributed
to the very large global EXX admixture (54%), as BHLYP
exhibits similar deviations (relative MAE 18.7%). For cM06 and
cMN15, other shortcomings related to the description of
electron density response in the core and semicore regions have
to be considered as important factors, as found previously for 3d
transition-metal hyperfine couplings.133 B3LYP, cTPSSh, and
B97-2 are the best-performing GHs (relative MAEs 5.0%, 5.5%,
5.7%, respectively), as they perform rather well for the three
critical nuclei (they exhibit larger deviations for 53Cr, see below).
B3LYP had so far been considered the best functional for the
later 3d nuclei,15−18 and it does indeed belong to the overall
best-performing functionals. Nevertheless, its overall relative
MAE is larger than those of cVSXC, cM06-L and comparable to
those of several LHs (see below) and even to one GGA
(HCTH). cPW6B95 (6.2%), and PBE0 (6.8%) follow as
intermediate performers among the GHs. We included four
RSHs on rung 4, even though previous experience did not
suggest them to have any notable advantages over GHs for
nuclear shieldings. This is borne out by the results for CAM-
B3LYP (6.5%), ωB97X-D (6.7%), ωB97X-V (6.8%), and
cωB97M-V (6.2%), which are comparable to, e.g., cPW6B95
or PBE0. For cωB97M-V, the CDFT variant actually
deteriorates the results very slightly in comparison to the
other τ models.
This brings us to the LHs, where position-dependent EXX

admixture indeed has been considered and previously found to
be34,43,44 an advantage for nuclear shieldings in the main-group
case. While cLH12ct-SsifPW92 and cLH12ct-SsirPW92 had
been found to perform best overall for non-hydrogen main-
group nuclei in these studies (followed by cLH20t, which
performs better for proton shieldings), in the present case LHs
with a smaller prefactor of the t-LMF and thus lower overall EXX
admixtures perform better. That is, cLH14t-calPBE (4.9%) and
cLH07t-SVWN (5.1%) show the overall lowest relative MAEs,
together with cmPSTS that features a more complicated LMF
(5.2%). These values are comparable to those for B3LYP and
HCTH but remain somewhat above those of the best-
performing cVSXC and cM06-L (see above), attributable to
the 53Cr values (see below). Interestingly, LH07s-SVWN with
an s-LMF based on the reduced density gradient is not far
behind here (5.3%), followed by the general-purpose cLH20t
(5.6%). The larger deviations for cLH12ct-SsifPW92 (7.7%)
and cLH12ct-SsirPW92 (6.7%) are due to larger deviations for
several nuclei and related to the large EXX admixture. cLHJ14
(6.0%) based on correlation length is intermediate among the
LHs.
The current representatives of rung 5 on the ladder, the

B2PLYP and DSD-PBEP86 DHs, are not at all suitable for the
3d-nucleus shifts studied here (see Table S29 in Supporting
Information). As expected, their combination of large constant
EXX admixtures andMP2 correlation make them largely useless
for transition-metal shifts, in contrast to the clearly best
performance over all functionals in the main-group case by
DSD-PBEP86.32,34 The DHs andMP2, as well as the underlying
HF method, are not included in Figure 1, as they exceed the set
boundaries by far for all nuclei except for 49Ti. As HF is a very
poor starting point, MP2 fails completely as well, and this failure
is only partly corrected in the DHs (somewhat better with
B2PLYP than with DSD-PBEP86, which has a larger EXX
admixture of 70%).

Based mainly on the aggregated relative MAE values the
overall top-performing functionals for the entire set are cM06-L,
cVSXC, cLH14t-calPBE, and B3LYP (with values up to 5%),
closely followed by LH07t-SVWN, LH07s-SVWN, cmPSTS,
HCTH, cB97M-V, cTPSSh, and LH20t (with values up to
5.6%). A closer understanding of what drives these overall trends
requires looking at the individual nuclei, as we will do below.
This will also involve the relative MSEs (Figure 1, bottom left)
and the slopes of the regression lines (Figure 1, bottom right).
The aggregates of these two quantities are less informative, and
particularly the slopes are of more interest when analyzed for the
individual nuclei (see below). We note only here that the
aggregate relative MSEs are small and negative (by not more
than −2% for semilocal functionals, a bit more when EXX
admixture is present), and they arise from a compensation
between positive and negative values for different nuclei (see
below). The widths of the distributions of errors are indicated by
the relative SDs (Figure 1, top left). These give largely the same
order of functionals as the relative MAEs.

A Closer Look at the Most Critical Nuclei: 55Mn, 57Fe,
and 59Co. These nuclei, as well as 61Ni discussed below, are the
best-known examples for the advantage of GHs with moderate
EXX admixture such as B3LYP over simple GGAs,15−18 while
GGAs gave better agreement with experiment for earlier 3d
nuclei like 53Cr and some earlier 4d nuclei.25−27,134 We have
mentioned in the introduction some of the arguments put
forward to explain these observations. Yet we find these three
later 3d nuclei to also dominate the aggregated relative
deviations discussed in the previous subsection, at least for
those functionals that do not make it into the top group. It seems
thus important to have a closer look at these critical nuclei,
focusing again on the better-performing functionals. Starting
again with the rung 1−2 functionals, we see that indeed 55Mn
and 57Fe account for the largest relative MAEs, on the order of
9−12% for the simpler functionals (SVWN, BLYP, PBE, B97D,
HCTH), and to 13−17% for the “specialized” KT1-KT3. For
59Co, the relative MAEs are lower, about 5−8% for the simple
LDA/GGA functionals, 11−13% for KT1-KT3. It is notable,
that the relative MSEs often reach substantial fractions of these
values, with a positive sign for 55Mn but with a negative sign for
57Fe and 59Co. These opposite signs seem to generally
contribute to the overall relatively small negative aggregate
relative MSEs that we discussed above. The relatively good
performance of HCTH and B97D among the GGAs is reflected
in relatively low deviations for these nuclei and is consistent with
earlier findings on a smaller set of TM complexes.135 Note also
that the GGAs all give too small slopes of the regression lines for
these three nuclei.
While several CDFT meta-GGAs give similar (cτ-HCTH,

cTPSSh) or much larger (cMN15-L) deviations for the same
nuclei, the top-performing cM06-L and cVSXC are clear outliers
and improve the MAEs and MSEs, giving relative MAEs of 3.9−
6.0% (but only in their CDFT implementations), comparable to
the less critical nuclei (see below), and with slopes close to 1.0.
This is indeed the reason for their overall top performance.
Notably, these two functionals also give very small relativeMSEs
(and low SDs). In contrast, the very poor performance of
cMN15-L for the overall test set is closely linked to its large
deviations for these three nuclei. cB97M-V performs only
somewhat inferior (relative MAEs 5.4−7.3%) to the top-
performing cM06-L and cVSXC.
The better-performing GHs in the general overview above,

such as B3LYP, cTPSSh or B97-2, also reduce the deviations
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most notably for these three nuclei (to 3.7−7.8% relative MAE,
8.9% for 55Mn in case of cTPSSh), to the extent that the relative
MAEs of other nuclei are typically larger (see below). The slopes
are again close to 1.0 (up to 1.19 with B97-2 for 59Co) for these
three functionals. cPW6B95 also has fairly low relative MAEs for
these three nuclei (4.5−8.1%), PBE0 and three of the RSHs also
remain generally below 10%. All other GHs (BHLYP, cM06,
cMN15, cM06-2X) exhibit much larger deviations, including
dramatically overestimated slopes. Even larger deviations are
seen for HF, MP2 and the DHs, largely indicating erratic
behavior.
Among the best-performing LHs, cLH14t-calPBE, cLH07t-

SVWN, and cLH20t all have relative MAEs below 6% for these
three nuclei, comparable to cM06-L or cVSXC. LH07s-SVWN,
cmPSTS, cLHJ14, cLH12ct-SsifPW92, and cLH12ct-SsifPW92
give slightly larger values. For all of these LHs, as well as for
cM06-L, cVSXC, and B3LYP, and indeed for most hybrids, the
largest relative MAEs are now contributed by other nuclei (see
below). Indeed, we can define the best-performing functionals as
those where this is the case, i.e., where the deviations for the
most critical nuclei 55Mn, 57Fe, and 59Co have been reduced
below those for some seemingly less demanding ones. When
taking a weighted average of the relative MAEs for just these
challenging three later 3d nuclei, we find six functionals
competing closely with values below 5%, in the order cLH14t-
calPBE < cLH20t = cM06-L < cLH07t-SVWN < cVSXC <
B3LYP. It is notable that this includes not only three LHs, the
B3LYP GH but also two CDFT meta-GGAs.
The spread of shifts, the slope of the regression lines, and the

scatter, as well as the dependence on the electronic-structure
method for a given nucleus is typically dominated by the systems
with the largest paramagnetic (de)shielding contributions. This
holds even more so for transition-metal complexes where the
incomplete metal d-shells give rise to large paratropic currents
around a given metal nucleus. Indeed, our analyses confirm that
the performance of a givenmethod for a given subset is governed
largely by the complexes with the most negative absolute
shielding values, even though small deviations from this notion
can be found. The Y-intercept method tends to hide somewhat
these effects, as the reference shift value is adapted for a given
method. Other choices of reference values may also be
misleading. Therefore, it is best to examine the absolute
shielding values provided in Tables S43−S55 in the Supporting
Information for better understanding.
The subset for the prototypical late 3d nucleus 57Fe consists

exclusively of organometallic systems, which typically are
considered to provide strong ligand fields. Nevertheless,
considerable paramagnetic contributions are found, for example
in case of Cp ligands. The relative MSE and the slope of the
linear regression are largely dominated by [FeCp2], followed by
[ F eCp (CO) 2 i P r ] a n d [ F eCp (CO) 2Me ] . [ F e -
(CO)3(CH2CHCHO)] exhibits the second largest shift after
[FeCp2] but has a smaller dependence on the functional than the
three Cp complexes, potentially due to the lack of support for
delocalized currents by a Cp ligand. While functionals that
enhance paramagnetic contributions by (a) EXX admixture or
(b) CDFT τ contributions also lead to more deshielding for the
remaining complexes, they do so to a lesser extent. This explains
the effects on slope and MSE. Indeed, [FeCp2] has been chosen
earlier for closer analysis of the effects of EXX admixture for this
very reason,24 and we have already mentioned the ration-
alizations, i.e., energy gaps and CPKS coupling terms on one
hand and delocalization errors on metal−ligand covalency

reducing the PSO matrix elements on the other hand. Just as an
example, the computed absolute shielding constants for [FeCp2]
grow more negative with increasing EXX admixture in the series
BLYP, B3LYP, and BHLYP as −2747.3 ppm > −4518.8 ppm >
−9395.9 ppm. Combined with similar trends for the two further
Cp complexes and much smaller changes for the less deshielded
systems, this controlsMSEs and slopes, with themiddle value for
B3LYP giving the best representation. Similarly, cM06-L gives a
shielding value of −4057.2 ppm, while its non-CDFT variants
give much less deshielded values in the range −2300 to −2600
ppm, similar to simple GGAs (similar but less dramatic effects of
τD are found for VSXC). We can thus conclude that current-
dependencies of the response functionals are of major
importance here, be it via EXX admixture or via the CDFT
treatment of τ.
The 59Co subset is represented by complexes with a much

more diverse range of electronic structures and ligand types, and
it exhibits the by far largest shift range of any of the nuclei
studied here. This has made 59Co NMR such an important
subfield. The most deshielded values are found for classical
Werner-type ligands with a relatively weak ligand field, which
give rise to small ligand-field splittings and consequently low-
lying excited states. The complexes dominating the MSEs and
slopes are [Co(H2O)6]

3+, [Co(acac)3], [Co(NH3)4(CO3)]
+,

and [Co(NH3)6]
3+. As described above for the iron complexes,

these systems exhibit the largest dependencies on the functional,
and for example both EXX admixture and CDFT τ contributions
in the twomentioned CDFTmeta-GGAs provide more negative
shieldings (larger shifts). The least deshielded values and thus
smallest dependencies on the functionals are represented by the
carbonyl complexes [Co(CO)4H] and [Co(CO)4]

−. That is, in
spite of the rather more diverse electronic-structure character-
istics of the Co complexes, the mechanisms that determine the
dependencies on the functional are comparable as for the Fe
systems discussed above. Recall that some of the charged species
from this subset also exhibit the largest solvent effects on the
shifts, reducing the largest values to some extent, but they are not
considered in this comparison of functionals (cf. Computational
Details above, as well as Table S7 and Figure S2 in Supporting
Information).
A somewhat mixed situation pertains to the 55Mn subset,

where the most deshielded values represent both high
([MnO4]

−) and lower ([MnCp(C7H8)], [MnCp(C6H6)])
oxidation states. It appears that similar effects of extended
paratropic currents as discussed above for [FeCp2] are relevant
for the two Cp complexes. In contrast, the permanganate ion
represents high-oxidation-state situations with d0 configuration
that are also of importance for the earlier 3d elements, e.g., for
53Cr (see below). Nevertheless, both EXX admixture and CDFT
τ contributions lead to more deshielded values for both types of
systems. The less deshielded end with smaller dependences on
the functional is in this case represented by several carbonyl
complexes. The dominance of the most deshielded systems can
again be exemplified by the slopes of the regression lines as a
function of EXX admixture. For the entire subset they increase
overall steeply, e.g., as 0.77 (BLYP), 1.07 (B3LYP), and 1.77
(BHLYP). Removing the three most critical complexes alters
this substantially to 0.61 (BLYP), 0.81 (B3LYP), and 1.07
(BHLYP). Now the larger EXX admixture of BHLYP might
even seemmore favorable. This makes it even more obvious that
part of the challenge of these later 3d nuclei indeed arises from
some complexes with extremely large paramagnetic shielding
contributions. Clearly, the best-performing functionals also
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benefit from some error compensation. Nevertheless, standard
GGA functionals tend to underestimate the paramagnetic
contributions for these three subsets systematically, and this
can be cured partly by moderate (constant or position-
dependent) EXX admixture or by CDFT τ contributions. The
latter can be exemplified by the shielding value for [MnCp-
(C7H8)], which is −5392.5 ppm for cM06-L (only somewhat
less negative than the B3LYP value of−5814.6 ppm, comparable
to the cLH14t-calPBE value of −5268.7 ppm), while it is in the
range −3300 to −3600 ppm for the non-CDFT variants of this
functional. Similar trends hold for [MnO4]

− or [MnCp(C6H6)].
Note also, that some of the most deshielded systems for these

three nuclei do already exhibit substantial triplet instabilities
when larger EXX admixtures are used, as with BHLYP. This
pertains, e.g., to [FeCp2], [Co(H2O)6]

3+, and [MnCp(C7H8)]
(the same holds for [Mn(NO)3(CO)]). This will be a larger
issue for the discussion of the 53Cr subset (see below).
Examination of Results for 61Ni, Which Is Represented

by Electronically Less Diverse Complexes.The reason for a
somewhat diminished diversity of electronic structures for the
61Ni complexes is, that all of the experimentally measured ones
correspond to the Ni(0) formal oxidation state and a relatively
symmetrical coordination environment. The likely origin for this
limitation appears to be the large electric quadrupole moment of
61Ni,136 when combined with large electric field gradients of the
common square-planar Ni(+II) complexes, as well as a low
natural abundance.3 This leads probably to very broad lines,
rendering experimental observation very difficult.

61Ni is another nucleus for which the initial computational
evaluation by one of us had suggested the B3LYP GH to
outperform the BPW91 GGA as well as the BHLYP GH with
higher global EXX admixture.18 The GGA was found to
underestimate somewhat the spread of shifts, while BHLYP gave
larger scatter. The present broader evaluation confirms this to
some extent but provides further insights. We start by noting
that most semilocal functionals exhibit small negative relative
MSEs between −1.7% and −1.1% and too low slopes, between
0.78 and 0.88. Exceptions are again caused by several CDFT
meta-GGAs, such as cM06-L (relative MSE +0.4%, slope 1.05),
cMN15-L (relative MSE +0.1%, slope 1.02), cVSXC (relative
MSE −0.7%, slope 0.92), cSCAN (relative MSE −0.4%, slope
0.95), and cB97M-V (relative MSE +0.0%, slope 1.00). This
leads to an improvement of the relative MAEs from about 4−6%
for the simpler GGAs and LDA and up to 8% for KT1 and KT2
to only 2.9% for cM06-L, and 3.3%−3.7% for cB97M-V,
cMN15-L, and cSCAN (cVSCX lags somewhat behind, 5.2%).
Obviously, the underestimate of the slope by semilocal
functionals is much less pronounced here than for the above
three critical nuclei, likely due to the narrow range of electronic
structures of the Ni(0) complexes, and due to the resulting
overall smaller shielding range of less than 2000 ppm. The most
deshielded values arise from [Ni(cod)2], [Ni-t,t,t-cdt(PMe3)],
and [Ni-t,t,t-cdt(CO)], and the most shielded one arises from
[Ni(C2H4)2PMe3]. EXX admixture does improve the spread
moderately. Here even somewhat larger admixture is tolerated in
the GHs (e.g., slope 0.94 for B3LYP, 0.96 for B97-2, 0.99 for
PBE0, 1.03 for BHLYP), and most GHs, RSHs or LHs give
slopes that are still below unity. Indeed, now the LHs that
performed best for the non-hydrogen main-group shieldings,
cLH12ct-SsifPW92 and cLH12ct-SsifPW92, are competitive as
well but still inferior to cM06-L. CDFT τ contributions for the
latter functional (somewhat less so for cVSXC) have similarly
moderate effects that increase the slope and improve the MSEs.

Overall the picture is less clear-cut than for some of the other
nuclei, as most semilocal functionals and even hybrids with
moderate EXX admixtures give somewhat too small slopes, but
many of these functionals still have reasonably low relative
MAEs and small negative relative MSEs for 61Ni. The poorer
performances of cM06-2X and cMN15 should be mentioned, as
should the again very poor performances of HF, MP2, and the
DHs (see full shift results in Tables S23, S24, and S29, and
statistical data in Tables S36, S37, and S42 in Supporting
Information). Triplet instabilities play a minor role here. Except
for Hartree−Fock, MP2, and DSD-PBEP86, where several Ni
complexes feature instabilities, only [Ni(cod)2] seems to be
sensitive for functionals with large EXX admixtures like BHLYP
or M06-2X.

Results for 53Cr and the Issue of Triplet Instabilities.
53Cr is the 3d nucleus where EXX admixture most clearly has
been found to be detrimental in a past study, with B3LYP giving
a too large spread of values as well as more scatter than the
BPW91 GGA.27 We note that the complexes for which data are
available fall into the two categories of very low (0) and very high
(+VI) oxidation states. In agreement with the earlier work, we
find LDA and all GGAs to give comparably small relative MAEs
on the order of ca. 4−5% (5.3% for SVWN), with small negative
relativeMSEs between−2.4% and−3.6%. This suggests that the
reasons that render EXX admixture important for the
aforementioned nuclei do not apply here to the same extent.
As we move to the CDFT versions of the meta-GGAs, this
picture is modified somewhat, in an interesting way: now the
overall top-performing cM06-L (6.8%) actually gives larger
relative MAEs than its otherwise inferior counterparts cTPSS
(4.8%) or cτ-HCTH (4.5%). cB97M-V, cSCAN and cMN15-L
give relative MAE of 8.7%, 8.6%, and 12.3%, respectively, in this
case clearly poorer than their non-CDFT variants (see Tables
S32 and S33, as well as discussion below). But cVSXC still
performs excellently (relative MAE 4.2%, relative MSE −2.5%)
in this case.
We clearly confirm the notion that Hartree−Fock exchange is

detrimental for the treatment of the 53Cr shifts: all GHs exhibit
larger relative MAEs than the GGAs, increasingly so with
growing EXX admixture. That is, cTPSSh (7.6%) performs
worse than its underlying cTPSS meta-GGA but better than
B3LYP (10.2%), B97-2 (10.8%), PBE0 (12.3%), cM06 (11.5%),
or cPW6B95 (12.5%). GHs with larger EXX admixtures, such as
BHLYP or cM06-2X, perform even much worse here, with the
notable exception of cMN15, which is comparable to B3LYP in
this case (relative MAE 10.1%, but only in its CDFT variant), in
spite of a larger global EXX admixture of 44%. The RSHs
perform comparably as the PBE0 or cM06 GHs in this case. The
detrimental effect of Hartree−Fock exchange is particularly
apparent in the HF calculation, which fails completely here and
gives larger deviations than for any of the other nuclei (see Table
S29 for shifts vs experimental data and Table S42 for statistical
data). Consequently, MP2 or the DHs also fail completely for
53Cr. Notably, the HF calculations give dramatically negative
MSEs, and this carries over in reduced form to negative relative
MSEs for all (global, range-separated or local) hybrid func-
tionals. In contrast, MP2 exhibits catastrophically positive
relative MSEs, which carries over to the DHs. From the
viewpoint of the spread of values, all semilocal functionals
already have slopes above one, and this is aggravated by EXX
admixture.
Closer analysis has to again focus on the absolute shieldings,

as the Y-intercept-based shifts cloud which systems actually
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cause the overall largest variations, given that the reference value
also changes from method to method. The most deshielded
values and the largest variations with the functional arise clearly
from the six Cr(+VI) complexes, while the most shielded end is
represented by the four Cr(0) carbonyl complexes. The
experimental shifts of these two groups of complexes are
separated by approximately 2000 ppm, while the variations
within a given group are below 350 ppm. It is thus clear that the
performances of the different functionals are largely controlled
by how well they represent the shielding differences between the
two groups, and this is largely determined by how well the
Cr(+VI) d0 complexes and their low-lying LMCT-type excited
states are described. We may use [CrO2Cl2] as a good example
for a Cr(+VI) complex with large deshielding and a large
dependence on the functional and contrast it with [Cr(CO)6]
on the most shielded side (see Tables S43−S55). The difference
in experimental shifts between these two complexes is 2058
ppm. Already the simplest semilocal functionals give a too large
difference of about 2300−2400 ppm, due to a too negative
shielding for [CrO2Cl2], consistent with an overestimated slope
in the range 1.11−1.17, which is slightly more than the
corresponding slope of the regression for the entire subset. The
difference is further increased by EXX admixture as well as
CDFT τ contributions. For example, B3LYP gives a difference
between the two shieldings of 2753 ppm, cLH14t-calPBE 2703
ppm, and cM06-L 2517 ppm (compared to 2100−2200 ppm for
its non-CDFT variants). The detrimental effect of even small
EXX admixtures is thus immediately apparent from just the
differences between those two complexes. As the CDFT τ
contributions also increase the difference somewhat, they also
lead to too large slopes and evenmore negativeMSEs in the final
shifts. Indeed, it may well be that the diversity of the 53Cr subset
is insufficient to get a more balanced description. This is not easy
to correct, however, as any experimental data available fall into
either the tetrahedral Cr(+VI) oxo or the octahedral Cr(0)
carbonyl category. Less symmetrical complexes pose difficulties
for experimental detection due to large electric-field gradients
and thus line-broadening for the quadrupolar 53Cr nucleus. For
example, Hafner et al. examined a larger series of more than 50
Cr(0) carbonyl and phosphine complexes, most of them (46)
with carbene ligands.137 However, their shifts span a range of less
than 300 ppm. Similarly, the range of shifts for experimentally
accessible Cr(+VI) oxo complexes is also small so far.
Consideration of a larger number of complexes would thus
likely not cure the basic problem of the too large relative shifts
between Cr(+VI) and Cr(0) complexes.
One may wonder to what extent triplet instabilities are the

reason for the unfavorable effect of EXX admixture on the 53Cr
shifts. Hartree−Fock exhibits triplet instabilities for all
chromium complexes studied here, and consequently HF,
MP2 and DH shift results are completely erratic. Following ref
36, we may consider this as an artificial spin-symmetry breaking,
as GHs with lower EXX admixture, such as B3LYP, or LHs and
RSHs produce stable spin-restricted solutions. Yet BHLYP is
triplet-unstable for the three Cr(+VI) complexes [CrO2Cl2],
[CrO2F2], and [CrO3Cl]

−, i.e., for several of the systems with
the largest paramagnetic contributions. It seems possible that
“incipient” or “latent” spin-symmetry breaking could be invoked
in this context to rationalize the detrimental effects of EXX
admixture. While BHLYP also exhibits triplet instabilities for
several Mn, Fe, and Co complexes, in those cases the effects
seem to be partly compensated due to themore diverse nature of

the electronic-structure characteristics making up the given
subset of complexes.

The Less Difficult Earlier 3d Nuclei 51V and 49Ti.The two
early 3d nuclei represent smaller dependences on the XC
functional than those discussed so far. Indeed, the 49Ti subset is
the only one for which even HF, MP2, and the DHs perform
reasonably well (see below).
We start our discussion with the slightly more demanding 51V

subset. Here the relative MAE values for the semilocal
functionals range from 3.1% (cM06-L) to 3.9% (KT3),
excluding some of the non-CDFT variants, which give poorer
results. The relativeMSEs for these functionals are small and can
be negative or positive, and slopes close to 1.0 are found. The
relative MAEs are also between 3.1%−3.8% for all GHs, RSHs,
and LHs, except for a few cases, most notably ωB97X-V with a
relative MAE of 2.9%, the top performing functional in this
subset. cM06-2X (4.3%), cM06 (5.6%), and BHLYP (5.8%)
give clearly larger deviations. Relative MSEs also tend to remain
small in many cases except for a few functionals (including some
non-CDFT variants of τ-dependent functionals), but they tend
to become more consistently negative. Indeed, slopes are now
around 1.10 (larger ones are obtained for the less well-
performing GHs). Hartree−Fock and particularly MP2 perform
nevertheless clearly worse here too, with large negative MSEs,
particularly for MP2. Indeed, the majority of vanadium
complexes studied here exhibits triplet instabilities at HF level
(Table S55). Most of these are cured for the DHs, which
perform indeed much better than HF or MP2 while still falling
behind most other functionals.
Overall the 51V subset is dominated by V(+V) oxo complexes

and VF5, while the two V(−I) carbonyl complexes bring in
additional diversity. It seems, however, that the different ligand
types available for the V(+V) complexes improve the balance of
the overall set, which may be an advantage over the available
53Cr data discussed above. The largest paramagnetic contribu-
tions arise for the model complex [VOMe3] (and the
experimentally studied counterpart [VO(CH2SiMe3)3]), as the
pure σ-donor methyl ligands leave the system coordinatively
unsaturated with low-lying vanadium 3d-type virtual orbitals
(additional π-donor ligands like fluoride or chloride help
increase the HOMO−LUMO-gap and thus reduce the para-
magnetic contributions somewhat). The least deshielded value
is represented by [V(CO)6]

−. As discussed in several cases
above, EXX admixture and CDFT τ contributions increase the
differences between these extreme cases, and the changes for the
oxomethyl complex are most important in this context.
However, the dependencies are much less pronounced than
those discussed so far, and the overall somewhat too large
difference for hybrid functionals like B3LYP is in part
outweighed by the smaller statistical scatter over the entire
subset, giving low relative MAEs.
Turning finally to the 49Ti shifts, we find this to be the only

subset, where Hartree−Fock is not a catastrophical starting
point, and where thus alsoMP2 or the DHs do not deviate much
from the other functionals. Incidentally the first calculations of
49Ti chemical shifts had been reported at the IGLO-HF level - in
hindsight a serendipitously good choice of target systems for this
method.138 Except for some non-CDFT variants of certain τ-
dependent functionals (see Tables S32, S33, and S35−S38), all
functionals have relative MAEs below 5%, including HF, MP2,
and the DHs. Now even the KT1-KT3 functionals perform well
with relative MAEs of around 2%, while cM06-L (1.7%) is the
top performer. cTPSSh (2.0%) has the lowest value for a GH,
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cmPSTS (1.9%) for an LH, while most GHs, RSHs or LHs tend
to have somewhat larger relative MAEs above 3%. These
observations are consistent with previous work on a much
smaller sample of functionals.28 A few worse performances of
highly parametrized functionals should also be mentioned, such
as cMN15 or cM06, which exhibit a relative MAE of 5%, while
LDA (SVWN) gives 4.2%. Most functionals also give slopes
relatively close to one, except for a few (SVWN 1.15, cM06 1.17,
cMN15 1.16, MP2 1.15, and some non-CDFT variants of τ-
dependent functionals).
A Closer Look at the Role of Exact-Exchange

Admixture for Error Distributions (Figure 2). To provide
some further insights into how EXX admixture in GHs and LHs
shifts the performances for the different 3d nuclei, in Figure 2 we
use relative SD curves (black solid line) on top of histogram
plots of the number of shifts of all subsets in the error ranges
from−80% to 140% in 10% blocks.We compare the series of the
closely related BLYP, B3LYP and BHLYP with constant EXX
admixtures of 0%, 20%, and 50%, as well as the two cLHs
cLH14t-calPBE and cLH20t, which are both based on calibrated
exchange-energy densities. They have t-LMF prefactors of 0.500
and 0.715, respectively, and thus also represent different EXX
admixtures. The histogram representation allows us to follow
how the overall width of the aggregate relative SD distribution
over the entire test set is dominated by certain nuclei. Similar
information is provided by the maximum relative AEs (see
Figure S4 in Supporting Information).
Starting with the BLYP curve, we see its medium width to be

caused by positive deviations in the 20% block for 55Mn shifts

and a few negative deviations in the −40% and −20% blocks for
57Fe (and 59Co) shifts. This is consistent with the observation
that these critical nuclei dominate the errors for most semilocal
functionals (with the exception of some CDFT meta-GGAs),
with positive MSEs for 55Mn and negative ones for 57Fe. As we
move to 20%EXX admixture in B3LYP, the distribution narrows
noticeably, larger errors for the three critical nuclei are removed,
but now negative deviations in the −30% and −20% blocks
occur for 53Cr and 55Mn, consistent with the generally negative
MSEs of hybrid functionals for these two nuclei. As we increase
the EXX admixture to 50% for BHLYP, the distribution widens
dramatically. Now deviations for 53Cr in the −70% and −60%
blocks and for 55Mn in the −60% through −20% blocks
dominate the negative flank of the curve, while overshooting for
57Fe in the +50%, + 60% and even +130% blocks is seen,
together with positive deviations for 59Co in the +30% and +60%
blocks. It is thus clear that too high constant EXX admixture
enhances the negative MSEs for the early nuclei 53Cr and 55Mn,
but positive deviations start to appear for 57Fe and 59Co, which
are absent for the more moderate EXX admixture of B3LYP. We
may trace this potentially to triplet instabilities, in particular for
certain 53Cr and 55Mn complexes (see above). We noted already
the smaller dependencies of the 49Ti, 51V and 61Ni shifts on the
EXX admixture. In consequence, these nuclei do not dominate
the widths of the distributions.
Similar observations can be made for the two cLHs: both

functionals have relatively narrow distributions and do not differ
much on the side of positive deviations (shifts of all nuclei except

Figure 2. Standard deviation plots (solid black line) on top of histogram deviation plots of the individual 3d transition metal test sets, comparing BLYP
to B3LYP and BHLYP (top), and cLH14t-calPBE to cLH20t (bottom) within the range from −60% to +140% in blocks of 10%.
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51V appear in the +10% block). Similarly to the B3LYP GH, for
both LHs the negative flank of the distribution curve is
dominated by some 53Cr shifts, to a lesser extent by 55Mn shifts
(again, except for 53Cr and 59Co, all nuclei appear in the −10%
block). These deviations increase somewhat with increased t-
LMF prefactor for cLH20t (the 53Cr error margins increase from
−24% to−30%, compared to−26% for B3LYP), explaining why
this functional arrives at a slightly inferior overall performance
and a slightly wider distribution of errors compared to cLH14t-
calPBE for the entire test set, while being entirely competitive for
the later 3d nuclei. We note, however, that the average EXX
admixture of LH20t might be compared best to a GH with
around 30−35% EXX admixture (as indicated, e.g., by its
performance for mixed-valence (de)localization50). In spite of
this, its problems caused by triplet instabilities are much less
pronounced than for comparable GHs (see above). Yet we also
see that the flexibility of position-dependent EXX admixture for
the present LHs is not yet sufficient to allow an improvement of
the performance for the later 3d nuclei without any deterioration
for the earlier ones. This represents a goal for the currently
ongoing construction of more sophisticated local mixing
functions for LHs.
Figure 3 widens the lens to a larger selection of the better-

performing functionals and can correspondingly narrow the

scale of the error distributions. Starting with the semilocal
functionals, the plots for HCTH and cB97M-V confirm that the
widths of the distributions are dominated by positive deviations
from 55Mn complexes (and a few 59Co and 61Ni systems) and by
both negative and positive deviations from 57Fe and 53Cr
complexes (some 61Ni and 59Co systems also appear). The two
CDFT meta GGAs cM06-L and cVSXC change the picture
decisively in terms of the much smaller magnitude of the
deviations for 55Mn, 57Fe and in terms of the nature of the also
reduced negative deviations: for cM06-L these are now
contributed by some 53Cr, 57Fe, and 59Co complexes and even
a few 55Mn systems, and for cVSXC, these smaller negative
deviations are now also distributed over different nuclei,
including 53Cr, 57Fe and 61Ni. The consequence for the latter
functional is, that relative MAEs are below 5.2% for all nuclei,
indicating a particularly balanced behavior (see above).
The three GHs cTPSSh, B3LYP, and cPW6B95 can be used

to look again at the role of (constant) EXX admixture. As
mentioned above, the largest (moderate) negative deviations for
B3LYP arise from 53Cr shifts, to a lesser extent from 55Mn. The
largest positive deviations come from 61Ni and 59Co, but they
reach only into the +10.0 block (ranging from +8.75%−
11.25%). In contrast, cTPSSh (10% EXX admixture) is
somewhat closer to the semilocal functionals, as its slightly
wider distribution is dominated by positive deviations for 55Mn

Figure 3. Standard deviation plots (solid black line) on top of histogram deviation plots of the individual 3d transition metal test sets for a larger
selection of better-performing functionals within the range −45% to +40% in blocks of 5%.
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and by a less structured mix of negative deviations that include
53Cr and 57Fe. The larger EXX admixture (28%) of cPW6B95
also widens the error distribution compared to B3LYP but
retains the typical origins for hybrids: negative deviations for
53Cr and 55Mn, positive ones for 59Co, 57Fe, 61Ni, now ranging
from −30% to +20%. In addition to the already discussed LHs
cLH14t-calPBE and cLH20t, Figure 3 also includes cmPSTS
and cLHJ14, which are both not based on a t-LMF. The most
notable feature of the somewhat wider distribution of cLHJ14
are positive deviations for 55Mn. Interestingly, the negative
deviations are covered by some 57Fe, 53Cr, 59Co, and 61Ni shifts,
which differs from the typical behavior of most of the hybrid
functionals. This results from an overall low EXX admixture for
this LH in the core region.34 cmPSTS, which has a similarly
narrow distribution as cLH14t-calPBE, differs from the behavior
of the latter by clearly having a larger positive deviation for 55Mn
(the relative MSE of 3.5% for cmPSTS should be compared to
−0.7% in cLH14t-calPBE). The largest negative deviations arise
from some 53Cr and 57Fe complexes.
Role of Current-Dependency in the τ-Dependent

Functionals for Their Overall Performance. So far we
have concentrated on the CDFT variants of the τ-dependent
functionals using the τD scheme, but we mentioned from time to
time the non-CDFT variants. As has been discussed
previously,42−44,47−49,60 τD is the physically most appropriate
way of using these functionals for magnetic properties, as this
turns them into proper CDFTs, if only via their τ-dependence. It
is difficult to derive meaningful CDFT functionals at LDA or
GGA levels, while EXX admixture is of course a way to bring in
current contributions to some extent. Indeed, we have argued
previously that the position-dependent EXX admixture of LHs is
helpful for this purpose.43,44

We also showed above and in refs 43 and 44 that the τMS
scheme, while rendering τ gauge invariant, also introduces
paramagnetic artifacts that are easy to demonstrate for atoms but
aremore difficult to identify for general molecules.We can partly
disentangle these artifacts from the genuine current contribu-
tions by comparing also to two further models to treat τ, (a) by
using the original gauge-dependent τ (with the gauge origin
placed at the center of mass, termed τC) and (b) by eliminating
the gauge dependence in an ad hoc way43 as done in the ORCA
code (τ0). These two models do not generate paramagnetic
artifacts for atoms, but they lack of course current contributions
arising from τ. Figure 4 compares the aggregate relative SDs and

relative MAEs for the entire test set obtained from these overall
four treatments for several τ-dependent functionals (MN15-L,
M06, MN15, and M06-2X are not shown, as their deviations
would be too large to fit properly into the plots; see Tables S32
and S35−S37). The statistical measures for individual nuclei are
available in Tables S30−S42 in Supporting Information.
We note first of all, that the performances for τMS, τC, and τ0

are generally very similar, while the τD CDFT results differ
substantially from these data for several but not for all
functionals. This suggests that the main differences do not
arise from the τMS artifacts discussed further above, but that they
reflect genuine current contributions provided by the τD CDFT
framework. This outcome differs somewhat from previous
analyses for main-group nuclei,34,43,44 where sometimes the
differences of τMS compared to τC and τ0 were of similar
magnitude as those relative to τD. The obvious reason for the
large effects of explicit current contributions for some of the
functionals in the present case seems to be the genuinely very
large paratropic currents determining the shieldings and relative
shifts for the transition-metal nuclei.
Indeed, for those functionals in Figure 4, where the differences

between τD and the other three models are significant, the
CDFT framework generally improves the agreement with
experiment, as indicated by lower relative SDs and relative
MAEs. This is particularly notable for the meta-GGAs M06-L,
VSXC, B97M-V, and SCAN: while all these functionals perform
rather well, and the first two functionals were even the top
performers for the entire test set, when used in their CDFT
variants, they are much less convincing otherwise. Closer
analyses (Tables S32−S34) show that this holds for almost all
nuclei, except for 53Cr where the larger deshielding brought in by
the CDFT contributions in fact deteriorates somewhat agree-
ment with experiment, as was found for the main-group
case.34,43,44 For the three critical nuclei 55Mn, 57Fe, and 59Co
the improvements by the CDFT terms are dramatic, to some
extent comparable to the effects of moderate EXX admixture.
Indeed, without the CDFT framework the best-performing
meta-GGAs M06-L and VSXC (and partly B97M-V) would not
offer any notable advantage over other semilocal functionals.
Significant error reductions pertain also to SCAN. Smaller but
still notable improvements are seen for TPSS, while the
differences are very small for τ-HCTH.
For one meta-GGA not shown in Figure 4, MN15-L, the

CDFT framework is actually overall detrimental to the

Figure 4. Effects of different treatments of τ on aggregate relative SDs and relative MAEs for different τ-dependent functionals.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00964
J. Chem. Theory Comput. 2022, 18, 273−292

287



agreement with experiment (Table S32). While cMN15-L
improves somewhat over the other three schemes for 49Ti, 51V,
57Fe, and 61Ni, it gets significantly worse for 53Cr, for 55Mn, and
particularly for 59Co. As a result, the overall relative MAE
increases from about 9%−10% for the other three schemes to
about 13% for cMN15-L. It appears that here the current
contributions overshoot for several nuclei, while they are more
moderate and thus mostly improve matters for cM06-L or
cVSXC (see above). This should be viewed against the backdrop
that cMN15-L is strikingly improved over its non-CDFT
variants for main-group shieldings, where it is in fact superior to
both cM06-L and cVSXC.34

The performance of the two GHs TPSSh and PW6B95 also
benefits very notably from the CDFT treatment, even though
their EXX admixture does also bring in some current
contributions. For TPSSh, the CDFT treatment gives slightly
larger deviations for 53Cr, which are outweighed by the
improvements for the other nuclei. That is, the effects here
also parallel those brought about by EXX admixture. For
PW6B95 the improvements extend to essentially all nuclei
except 61Ni, which remains almost unaffected. Some improve-
ments are found also for M06 (Table S35), even though the
resulting deviations are still too large to fit the scale of Figure 4
(55Mn shifts are improvedmost notably). In case ofM06-2X and
of MN15, the non-CDFT variants are even more strikingly
worse than the already poorly performing CDFT variants.
Indeed, for MN15 the deviations without CDFT treatment
reach several hundreds of percent for the critical nuclei 55Mn,
57Fe, and 59Co, suggesting extremely large current contributions
needed to reach even moderately accurate results (Table S36).
Nevertheless all of the just mentioned, highly parametrized,
meta-GGA-based GHs are not competitive even when used in
the CDFT framework.
The only RSH that depends on τ is ωB97M-V. Here the

overall effects of the CDFT contributions are relatively small and
tend to deteriorate the overall agreement with experiment
slightly for most nuclei, except for 59Co and 61Ni (see Table
S41). A smaller influence of the CDFT treatment is seen also for
most LHs, and the overall effects may be somewhat favorable
(LH20t) or very slightly unfavorable (LHJ14, LH07t-SVWN,
LH12ct-SsirPW92, and LH12ct-SsifPW92). Only mPSTS
exhibits a larger improvement by the CDFT contributions for
all nuclei except 61Ni. For most LHs, we find moderate
improvement for some nuclei and moderate deterioration for
others adding up to the observed trend. LH20t shows small
improvements for all nuclei, LH14t-calPBE exhibits generally
negligible changes. The overall smaller effects of τD for most LHs
are consistent with the argument that position-dependent EXX
admixture, in particular in the core and semicore regions around
the NMR nucleus, helps to cover some current-dependencies
that are absent for semilocal functionals or insufficiently
described by most GHs.43,44

5. CONCLUSIONS

This report extends substantially earlier work on the quantum-
chemical computation of the NMR chemical shifts of the 3d
transition-metal nuclei. On one hand, the composed benchmark
set covers 70 NMR shift values for both early and late 3d nuclei
from 49Ti, 51V, 53Cr, 55Mn, 57Fe, and 59Co to 61Ni. This provides
a systematic comparative look at systems that so far had been
evaluated separately at different levels. On the other hand, the
overall 41 methods (plus different treatments of τ) evaluated

here cover many approaches that had so far not been tested for
transition-metal nuclei, in particular many more recent DFT
methods. This includes current-density functional (CDFT)
implementations of τ-dependent meta-GGAs and of other τ-
dependent functionals based on Dobson’s extension of τ in
comparison with other treatments. In addition to a variety of
semilocal functionals, a wide selection of global, range-
separated, and local hybrid functionals have been compared,
as well as Hartree−Fock, MP2 and two double-hybrid
functionals. The same methods have recently been evaluated
in an extended screening for main-group shieldings and shifts. In
combination, the two evaluations give an unprecedentedly
detailed account of the performance of DFT methods for NMR
shieldings and shifts.
One particularly striking result of the present study is, that two

CDFT versions of meta-GGA functionals, cM06-L and cVSXC,
are the top performers when evaluated across the entire 3d-
nucleus test set. It appears that the CDFT-extension brings in
advantages for the later nuclei 55Mn, 57Fe, 59Co that otherwise
can only be provided by moderate Hartree−Fock exchange
admixtures in hybrid functionals. On the other hand, the
disadvantages of Hartree−Fock exchange for 53Cr are only
partly mimicked by these functionals. In general, the effect of the
CDFT extension of τ-dependent functionals can have a much
larger effect in the present evaluations than for main-group
nuclei. Performance is improved overall significantly (i.e.,
averaged over all nuclei), except for cMN15-L. This suggests
that inclusion of current-dependence into a functional via τ
contributions is particularly important for nuclei like 55Mn, 57Fe,
and 59Co, which exhibit particularly large paratropic currents in
their complexes.
Hartree−Fock admixture in different types of hybrid

functionals may also be beneficial for these same nuclei for the
same reason, i.e., to bring in current contributions. This is the
case for moderate constant admixtures as in B3LYP, confirming
the excellent performance of this functional for the later 3d
nuclei (cTPSSh, B97-2, and partly cPW6B95, also belong to the
better-performing global hybrids). But it holds also for several
local hybrids, which also perform particularly well for these later
nuclei. Too large Hartree−Fock exchange admixtures, either
global, range-separated, or local, deteriorate performance for
53Cr. This can probably be traced back to triplet instabilities in
high-oxidation-state complexes of these elements at Hartree−
Fock level, and possibly to some lack of nuance in the 53Cr set
caused by experimental limitations. While most hybrid func-
tionals do not show such instabilities, it seems that their
remnants may still deteriorate the performance for the
chromium subset increasingly with larger admixtures of
Hartree−Fock exchange. Among the local hybrids, functionals
with lower admixtures (cLH14t-calPBE, cLH07t-SVWN, and
cmPSTS) tend to perform best, changing somewhat the order of
the best local hybrids compared to the main-group case. Some of
the local hybrids, such as cLH14t-calPBE, may be particularly
suitable for multinuclear NMR studies on transition-metal
complexes, where simultaneously high accuracy for metal and
ligand shifts is desired.
Too high EXX admixtures in global or range-separated

hybrids deteriorate even the behavior for the later 3d elements,
where Hartree−Fock fails completely. MP2 cannot correct this
and also is not applicable here, except for the uncritical 49Ti case.
MP2 contributions and large exact-exchange admixtures also
make double hybrid functionals unsuitable for 3d transition-
metal shifts, while some of them are known to be top performers
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in main-group shielding evaluations (in particular DSD-
PBEP86). Overall, we can recommend cM06-L, cVSXC,
cLH14t-calPBE, cLH07t-SVWN, cmPSTS, and B3LYP as
particularly suitable functionals for 3d-nucleus NMR shifts.
The systematic evaluation also provides hints for an even more
fine-grained selection of methods for particular nuclei. These
insights should be helpful in aiding NMR studies on transition-
metal nuclei. In particular, an improved selection of methods for
combined computational studies of metal and ligandNMR shifts
in the context multinuclear NMR experiments should be
enabled. The construction of more advanced local mixing
functions for local hybrids is an area from which further
improvements can be expected, including for heavier nuclei,
where coordinate scaling in the high-density limit becomes
important.
We close with a short take-home summary:

• An extended benchmark of experimental NMR shifts for
3d nuclei was used to evaluate more than 40 DFT
functionals from all rungs.

• Overall, the top performance was found for current-
density-response implementations of two meta-GGAs,
cM06-L and cVSXC.

• This is followed closely by two local hybrids (LH14t-
calPBE and LH07t-SVWN) and by the B3LYP global
hybrid.

• Hartree−Fock, MP2, and double-hybrid functionals are
completely unsuitable for the 3d shifts, except for 49Ti,
due to large static correlation effects and triplet
instabilities.

• Some CDFT meta-GGAs and some local hybrids are
suggested for multinuclear NMR studies on 3d transition-
metal complexes.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00964.

Comparison of shift results with BP86-D3(BJ)/def2-
TZVP(D) and TPSSh-D3(BJ)/def2-TZVP(D) struc-
tures for a subset of functionals, estimates of solvent
effects on the shifts of some selected complexes,
evaluation of UKS solutions for triplet-unstable BHLYP
wave functions using ORCA in comparison to RKS values
with ORCA and TURBOMOLE, the maximum relative AEs,
estimates of scalar relativistic effects for all complexes with
the best performing cM06-L functional, shieldings, shifts,
and statistical results for nontruncated vs model
complexes (see text), mean statistical data for the Y-
intercept vs referenced shift calculations, as well as full
shifts, shieldings, and statistical results for all functionals,
including all τ-models with BP86-D3(BJ)/def2-TZVP-
(D) structures, as well as comparisons of relevant
structural parameters of the BP86-D3(BJ)/def2-TZVP-
(D) and TPSSh-D3(BJ)/def2-TZVP(D) structures, and
Cartesian input files for all complexes of the present study
(PDF)

Raw shielding results for all functionals at BP86-
optimized structures and experimental reference shifts
used (XLSX)

■ AUTHOR INFORMATION
Corresponding Author

Martin Kaupp − Institut für Chemie, Theoretische Chemie/
Quantenchemie Sekretariat C7, Technische Universität Berlin,
D-10623 Berlin, Germany; orcid.org/0000-0003-1582-
2819; Email: martin.kaupp@tu-berlin.de

Authors
Caspar Jonas Schattenberg− Institut für Chemie, Theoretische
Chemie/Quantenchemie Sekretariat C7, Technische
Universität Berlin, D-10623 Berlin, Germany

Morten Lehmann − Institut für Chemie, Theoretische Chemie/
Quantenchemie Sekretariat C7, Technische Universität Berlin,
D-10623 Berlin, Germany
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X-ray Structures and DFT Calculations on Rhodium-Olefin Com-
plexes: Comments on the 103Rh NMR Shift-Stability Correlation.
Organometallics 2000, 19, 5589−5596.
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(26) Bühl, M.; Golubnychiy, V. Density-functional computation of

99Tc NMR chemical shifts. Magn. Reson. Chem. 2008, 46, S36−S44.
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(28) Bühl, M.; Mauschick, F. T. Density functional computation of

49Ti NMR chemical shifts. Magn. Reson. Chem. 2004, 42, 737−744.
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Chlorine Fluorides

Improved Access to Organo-Soluble Di- and Tetrafluoridochlorate-
(I)/(III) Salts
P. Prçhm, J. R. Schmid, K. Sonnenberg, P. Voßnacker, S. Steinhauer, C. J. Schattenberg,
R. M�ller, M. Kaupp, and S. Riedel*

Abstract: A facile one-pot gram-scale synthesis of tetraalky-
lammonium tetrafluoridochlorate(III) [cat][ClF4] ([cat] =

[NEt3Me]+, [NEt4]
+) is described. An acetonitrile solution of

the corresponding alkylammonium chloride salt is fluorinated
with diluted fluorine at low temperatures. The reaction
proceeds via the [ClF2]

� anion which is structurally charac-
terized for the first time. The potential application of [ClF4]

�

salts as fluorinating agents is evaluated by the reaction with
diphenyl disulfide, Ph2S2, to pentafluorosulfanyl benzene,
PhSF5. The CN moieties in acetonitrile and [B(CN)4]

� are
transferred in CF3 groups. Exposure of carbon monoxide, CO,
leads to the formation of carbonyl fluoride, COF2, and
elemental gold is dissolved under the formation of tetrafluor-
idoaurate [AuF4]

� .

Chlorine fluorides (ClF, ClF3, ClF5) are amongst the most
reactive compounds known.[1] These very strongly oxidizing
gases should only be handled in special equipment made from
metal, including stainless steel, copper, nickel, Monel and
other Cu/Ni alloys or from perfluorinated polymers such as
PTFE, KEL-F or PFA. Especially ClF3 and ClF5 can under
certain conditions exceed the reactivity of elemental fluorine.
Exposure to organic material leads to violent reactions in
many cases and only carefully chosen reaction conditions
(especially dilution of the chlorine fluoride) can avoid
dangerous explosions; however, acetonitrile is known to be
resistant against bromo and chloro fluorine compounds.[2]

ClF3 reacts with nitrosyl fluoride or alkali metal fluorides
under formation of the corresponding tetrafluoridochlorate-
(III) salts.[3, 4] Alkali metal tetrafluoridochlorates can also be
formed via exposure of the corresponding alkali metal

chlorides (CsCl, RbCl, KCl) towards elemental fluorine at
elevated temperatures.[5] More soluble tetrafluoridochlorate-
(III) salts, for example, alkylammonium salts, can be obtained
by salt metathesis with the corresponding alkylammonium
fluorides in propionitrile at low temperatures.[3] However,
only few examples of stable anhydrous alkylammonium
fluorides are known.[6] Nevertheless, cation metathesis was
used to synthesize the tetramethylammonium and 1,1,3,3,5,5-
hexamethylpiperidinium (pip) tetrafluoridochlorate(III)
salts.[3, 7] Additionally, [NMe4][ClF4] was observed as a decom-
position product of [NMe4][ClF6].[8] The difluoridochlorate(I)
anion, [ClF2]

� , is so-far only reported with a limited amount
of counter ions (K+, Rb+, Cs+, NO+) and only characterized
by vibrational spectroscopy.[9,10] To the best of our knowledge
the chemistry of di- and tetrafluoridochlorates was only
studied rudimentarily. Hence, we present a ClF3-free, gram
scale synthesis of organo-soluble tetraalkylammonium tetra-
fluoridochlorate and explore its chemical properties. We
exposed triethylmethylammonium chloride [NEt3Me]Cl to
dilute fluorine (10% in argon) in acetonitrile or propionitrile
at low temperatures [Equation (1)]. In the beginning of the
fluorination a slight yellow color of the solution was observed.
We hypothesize that small amounts of chlorine are formed.
However, it was not possible to detect any vibrational band of
Cl2 via Raman spectroscopy. In the process of further
fluorination the solution decolorized again. For the synthesis
of highly concentrated solutions we used [NEt3Me][Cl3]

[11] as
a starting material due to its enhanced solubility in acetoni-
trile in comparison to tertraalkylammonium chlorides like
[NEt4]Cl or [NMe4]Cl. It is worth mentioning that all starting
materials are commercially available and the reaction pro-
ceeds in standard laboratory glassware in contrast to the
reported synthesis with ClF3.

½NEt3Me�Clþ 2 F2
RCN

�35 �C, R¼Me,Et
��������!½NEt3Me�½ClF4� ð1Þ

We characterized the obtained solution by Raman and
19F NMR spectroscopy. The 19F NMR spectrum (Figure S2 in
the Supporting Information) shows one main resonance at
67 ppm for [ClF4]

� which is in good agreement with pre-
viously reported values (66.8 ppm).[7] The Raman spectrum
(Figure 1) measured at �196 8C shows, besides the bands of
the cation and solvent, three bands at 500 cm�1, 408 cm�1 and
278 cm�1, which are attributed to the a1g, the b1g, and the b2g

vibration in the D4h symmetric molecule in agreement with
literature values (508 cm�1, 415 cm�1, 278 cm�1).[7, 12]

By exchange of the cation to tetraethylammonium
[NEt4]

+ we were able to grow single crystals suitable for
single crystal X-Ray diffraction. [NEt4][ClF4] crystallizes in
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the space group C2/c. The chlorine atom occupies the
Wyckhoff position 4c (site symmetry P1̄). The [ClF4]

� is
only slightly distorted from D4h symmetry with two crystallo-
graphically inequivalent Cl�F bonds, d(Cl�F1) = 180.6(2) pm
and d(Cl�F2) = 179.3(2) pm and rectangular bond angles
](F1-Cl-F2) = 90.01(5)8 and ](F2-Cl-F1’) = 89.99(5)8, see
Figure 2. Overall, the anion is in good agreement with the
structures reported in the literature ([cat][ClF4], [cat] = K+,
Rb+, Cs+, NO+

, [pip]+) and is only slightly less distorted than
in the reported structures of [pip][ClF4] and [NO][ClF4] (see
Table S2).[3] The shortest cation anion contact is an F�H
hydrogen bridge and was determined to 242.3(1) pm, the
corresponding F···(H)�C distance was determined to
336.5(3) pm. Additionally, we calculated the Hirshfeld sur-
face which is also showing a short cation anion contact
(Figure S16).

The addition of 1.2 equiv. fluorine to a solution of
[NEt3Me]Cl in acetonitrile yields a mixture of [ClF2]

� and
[ClF4]

� anions. Again, we were able to characterize this
mixture by vibrational and 19F NMR spectroscopy. The
Raman spectrum (Figure 3) of this mixture at �196 8C
shows the characteristic bands of [ClF4]

� and additionally

one band at 455 cm�1 which can be assigned to the symmetric
stretch vibration of [ClF2]

� , similar to those reported for solid
KClF2 (475 cm�1) and RbClF2 (476 cm�1).[10] The harmonic
frequency of the symmetric stretching mode for free [ClF2]

� is
calculated to 453 cm�1 (CCSD(T)/def2-TZVPP) which is in
good agreement with our assignment.[13] The differences
between the value reported by us and the literature values can
be explained by the stronger coordination of the alkali metal
cation in the solid-state in comparison with the tetraalkylam-
monium cation.

The 19F NMR spectrum (Figure S3) shows two signals.
The one at 67 ppm can be assigned to the [ClF4]

� anion (see
above). We assigned the second signal at �125 ppm to the
[ClF2]

� anion since the Raman spectrum showed the corre-
sponding band at 455 cm�1 before and after the measurement
of the NMR spectrum.

Table 1 provides our computed 19F shifts for the full series
of anions [XFn]

� (X = Cl, Br, I; n = 2, 4, 6), using two
functionals (the BHLYP global hybrid and the LH12ct-
SsifPW92 local hybrid) that have been shown to provide
superior 19F shieldings compared to B3LYP.[14, 15] The compu-
tations used BP86-D3(BJ)(COSMO,CH3CN))/def2-
TZVPPD structures and DFT(COSMO,CH3CN)-GIAO//
pcSseg-4/ANO-RCC-unc shielding computations (with
pcSseg-4 basis sets for F, Cl, Br and the uncontracted ANO-
RCC basis for I; see Supporting Information for further
computational details and additional data). The available
experimental data for n = 4, 6 are reproduced rather well at
the two levels used. As shown by separate four-component
relativistic computations (Table S5 in Supporting Informa-
tion), both spin-orbit and scalar relativistic effects are small,
in most cases a few ppm, at most about 13 ppm for [IF2]

� . The
small spin-orbit effects can be understood from an inefficient
transfer mechanism to the fluoride nuclei.[16] However, the
computed 19F shifts for the difluoridohalide anions are too
shielded by 60–100 ppm (more so for BHLYP than for
LH12ct-SsifPW92). This is clearly outside the error margins
of these two density functionals or of relativistic contribu-

Figure 1. Raman spectrum of [NEt3Me][ClF4] in acetonitrile at �196 8C.

Figure 3. Raman spectrum of [NEt3Me]3[ClF4][ClF2]2 in acetonitrile at
�196 8C.

Figure 2. Crystal structure [NEt4][ClF4]. Displacement ellipsoids are
shown at 50 % probability at 100 K. Selected bond lengths [pm] and
bond angles [8]: F1–Cl1 179.2(2), F2–Cl1 180.6(2) F1-Cl1-F2 89.99(5),
F2-Cl1-F1’ 90.01(5). Hydrogen atoms omitted for clarity.[29]
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tions. Closer inspection reveals that the highly negative
fluorine charges in the difluorido anions give rise to specific
F···H�C interactions with the acetonitrile solvent, which is not
the case for the four- and six-coordinate cases. These strong
interactions are not covered by the implicit COSMO solvent
model but become apparent when using more explicit treat-
ments of solvation. Detailed studies of these interesting
fluoro-specific interactions are underway and will be reported
elsewhere.

By slowly cooling a reaction mixture of [NEt3Me]Cl with
1.2 equiv. fluorine in acetonitrile, single crystals of
[NEt3Me]3[ClF4][ClF2]2 were obtained (for further details
see Supporting Information, Figure S17). Replacing F2 by ClF
as a fluorination agent we were able to synthesize neat
[NEt3Me][ClF2]. The Raman spectrum (Figure S6) shows one
main band at 457 cm�1 which is in good agreement with data
from [NEt3Me]3[ClF4][ClF2]2 (455 cm�1). The compound
crystallizes in the space group P121/c1 (Figure 4). The two
anionic moieties F1Cl1F1’ and F2ACl2F2A’ are both half
occupied with Cl1 on Wyckhoff position 2b (site symmetry
P1̄) and Cl2 on Wyckhoff position 2c (site symmetry P1̄). The
Cl�F bond lengths are 185.24(6) pm (Cl1�F1) and 184.6(2)
(Cl2�F2A). The calculated bond length of the free [ClF2]

� is
186.8 pm (CCSD(T)/def2-TZVPP).[13] The bonding situation

is best described by a 3-center-4-electron bond. The Cl�F
bond lengths in [ClF2]

� are significantly elongated in compar-
ison with solid ClF (162.8(1) pm).[20] It is well-known from
polyhalide chemistry that the bond length of a dihalogen is
elongated upon coordination by a Lewis base due to the
donation of electron density into the s*(Cl�F) orbital.[12, 21] As
anticipated, the [ClF2]

� anion is computed to be more
thermochemically stable towards halogen loss than [Cl3]

�

and [F(Cl)2]
� which is due to more ionic interactions of the

ClF moiety in comparison to Cl2.
[12, 22]

We examined the stability of [NEt3Me][ClF4] in acetoni-
trile solution via 19F NMR spectroscopy. Surprisingly, it
showed only slow decomposition at room temperature over
a month via fluorination of the organic solvent and the cation.
However, the isolated solid is significantly more reactive. We
observed explosions in several cases at temperatures above
�40 8C. Consequently, we avoided the isolation of larger
quantities of [NEt3Me][ClF4] and instead worked with
solutions in propionitrile or acetonitrile with concentrations
in the range of 0.66 mol l�1 to 8.8 mol l�1.

We envisioned [NEt3Me][ClF4] as a fluorinating and
oxidation reagent for the synthesis of highly fluorinated
moieties such as trifluoromethyl (-CF3), pentafluorosulfanyl
(-SF5) or fluoridometallates ([MFx]

�). Trifluoromethyl and
pentafluorosulfanyl derivatives have a growing importance in
pharmaceutical- and agrochemistry.[23, 24,25] Recently, Togni
and co-workers reported on a non-gaseous reagent to access
aryl tetrafluorido-l6-sulfanyl chlorides (Ar-SF4Cl), a key
intermediate for the synthesis of pentafluorosulfanyl aryls
(Ar-SF5).[24] Beier and co-workers recently studied the direct
fluorination with dilute elemental fluorine and disulfides to
directly obtain pentafluorosulfanyl aryls, a process with
industrial application.[25] As a proof of concept we exposed
diphenyl disulfide, Ph2S2, to a solution of [NEt3Me][ClF4] in
propionitrile at �50 8C to directly obtain phenylsulfur penta-
fluoride, PhSF5. As by-products the cis- and trans-PhSF4Cl
were observed (Table 2 Entry 1, for further details see
Supporting Information). PhSF5 can be prepared in pure
form by removal of both PhSF4Cl isomers by hydrolysis.
Simultaneously, residual fluorochlorates are hydrolysed.[26]

Addition of the Lewis acid boron trifluoride, BF3, to
a solution of [NEt3Me][ClF4] in acetonitrile led to the
formation of CH3CF3, the CN activation product of the
solvent acetonitrile, amongst other components. To increase
the selectivity of this reaction, we synthesized the acetonitrile-
BF3 complex and substituted the solvent, from nitrile-based
solvents to chlorofluorocarbons. Dichlorofluoromethane
(CHFCl2, R-21) turns out to be sufficiently stable towards

Table 1: Calculated 19F NMR chemical shifts relative to CFCl3 (in ppm) of
[XFn]

� (X = Cl, Br, I; n =2, 4, 6) in comparison with experimental values.

Molecule dexp dBHLYP
[a] dLH12ct-sifPW92

[a]

[ClF2]
� �125[b] �202 �174

[ClF4]
� 67[7] 68 61

[ClF6]
� – 278 249

[BrF2]
� �210[3a] �296 �273

[BrF4]
� �37[8] �42 �45

[BrF6]
� 94[8] 129 112

[IF2]
� �286, �282[3a, 17] �360 �348

[IF4]
� �106[3a, 18] �111 �117

[IF6]
� 13[19] 30 14

[a] DFT(COSMO,CH3CN)-GIAO/pcSseg-4/ANO-RCC-unc//BP86-D3-
(BJ)(COSMO,CH3CN))/def2-TZVPPD data. [b] This work.

Figure 4. Crystal structure of [NEt3Me][ClF2]. Displacement ellipsoids
are shown at 50% probability at 100 K. Selected bond lengths [pm]:
F1–Cl1 185.24(6), F2A–Cl2 184.6(2). Hydrogen atoms omitted for
clarity.[29]

Table 2: Reactivity Studies with [NEt3Me][ClF4].

Entry Substrate Lewis acid Product

1 Ph2S2 – PhSF5, PhSF4Cl
2 MeCN BF3 MeCF3

3 [B(CN)4]
� BF3 [B(CF3)x(CN)4�x]

�

4 [Au(CN)2]
� BF3 cis-[AuF2(CF3)(CN)]�[a]

5 Au – [AuF4]
�

6 CO – COF2

[a] Minor product.
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F2 and [ClF4]
� and also dissolves the starting material

[NEt3Me]Cl. Combination of two dichlorofluoromethane
solutions containing [NEt3Me][ClF4] and MeCN·BF3 leads
to the formation of CH3CF3 (Table 2 Entry 2, for further
details see Supporting Information). This is reminiscent of the
reaction between succinonitrile and BrF3.

[27] We also exam-
ined the reactivity towards the tetracyanidoborate anion
[B(CN)4]

� . With addition of the Lewis acid BF3 we observed
the conversion of the cyanido ligands to trifluoromethyl
ligands. This result is analogous to the synthesis of [B(CF3)4]

�

from [B(CN)4]
� and ClF3 in anhydrous HF.[28] However, we

did not achieve full conversion but a distribution of different
borate anions with trifluormethyl and cyanido ligands
[B(CF3)x(CN)4�x]

� (Table 2 Entry 3, for further details see
Supporting Information). Additionally, we exposed the
[BF3(CN)]� anion to [NEt3Me][ClF4] but only fluorination
to [BF4]

� was observed. The reaction of [NEt3Me][ClF4] with
dicyanidoaurate(I) [Au(CN)2]

� is not selective, however, we
were able to identify one Au-CF3 containing product in the
reaction mixture via NMR spectroscopy, that is,
cis-[AuF2(CF3)(CN)]� (Table 2 Entry 4, for further details
see Supporting Information). Another promising application
for [NEt3Me][ClF4] is the dissolution of noble metals such as
gold. After the addition of a piece of elemental gold, the
solution containing [ClF4]

� turns yellow. The 19F NMR
spectroscopic analysis reveals the formation of mainly
[AuF4]

� (Table 2 Entry 5, for further details see Supporting
Information) and traces of other chloridofluoridoaurates
([AuF3Cl]� and cis-[AuF2Cl2]

� see Figure S12). Exposure of
[NEt3Me][ClF4] in propionitrile to an atmosphere of CO
results in the formation of carbonyl fluoride (COF2) within
30 min (Table 2 Entry 6, for further details see Supporting
Information).

In conclusion, we developed a facile and fast synthetic
procedure to obtain a soluble source of highly reactive [ClF4]

�

in the form of [NEt3Me][ClF4] avoiding gaseous ClF3 which
tends to react explosively when exposed to organic matter.
We characterized this compound by NMR and Raman
spectroscopy and, additionally, single crystal X-Ray diffrac-
tion for the analogous [NEt4][ClF4]. Furthermore, we pre-
sented the first structural and 19F NMR spectroscopic proof of
the [ClF2]

� anion. All experimental results are supported by
quantum-chemical calculations. Additionally, we showed
several applications of [NEt3Me][ClF4] as a highly reactive
fluorinating agent for the transformation of aryl disulfides
into the corresponding pentafluorosulfanyl aryls, nitriles and
cyanido complexes into the corresponding trifluoromethyl
compounds, carbon monoxide into carbonyl fluoride and the
dissolution of elemental gold. In further studies we will
explore a broader substrate scope to develop a widely
applicable fluorinating reagent for organic and inorganic
chemists.

Caution! Fluorine, even under dilute conditions, is extraordinar-
ily reactive and can react violently with organic materials under the
formation of HF. Similarly, tetrafluoridochlorate(III) and
difluoridochlorate(I) are strongly oxidizing compounds, which can
decompose violently under certain conditions when exposed to
organic materials. Exposure to acidic compounds (e.g. water or boron
trifluoride) greatly enhances the reactivity due to the in situ formation

of ClF3. Additionally, precipitation also greatly enhances the reac-
tivity of tetrafluoridochlorate(III) and difluoridochlorate(I) com-
pounds, leading to explosions at temperatures above�40 8C. Usage of
PFA, FEP or PTFE may lower the risk of injury.
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Unusually Large Effects of Charge-assisted C� H···F
Hydrogen Bonds to Anionic Fluorine in Organic Solvents:
Computational Study of 19F NMR Shifts versus
Thermochemistry
Martin Kaupp,* Caspar J. Schattenberg, Robert Müller, and Marc Reimann[a]

A comparison of computed 19F NMR chemical shifts and experi-
ment provides evidence for large specific solvent effects for
fluoride-type anions interacting with the σ*(C� H) orbitals in
organic solvents like MeCN or CH2Cl2. We show this for systems
ranging from the fluoride ion and the bifluoride ion [FHF]� to
polyhalogen anions [ClFx]

� . Discrepancies between computed
and experimental shifts when using continuum solvent models
like COSMO or force-field-based descriptions like the 3D-RISM-
SCF model show specific orbital interactions that require a
quantum-mechanical treatment of the solvent molecules. This is
confirmed by orbital analyses of the shielding constants, while
less negatively charged fluorine atoms (e.g., in [EF4]

� ) do not
require such quantum-mechanical treatments to achieve rea-

sonable accuracy. The larger 19F solvent shift of fluoride in
MeCN compared to water is due to the larger coordination
number in the former. These observations are due to unusually
strong charge-assisted C� H···F� hydrogen bonds, which mani-
fest beyond some threshold negative natural charge on fluorine
of ca. < � 0.6 e. The interactions are accompanied by sizable
free energies of solvation, in the order F� @ [FHF]� > [ClF2]

� >

[ClF4]
� . COSMO-RS solvation free energies tend to moderately

underestimate those from the micro-solvated cluster treatment.
Red-shifted and intense vibrational C� H stretching bands,
potentially accessible in bulk solution, are further spectroscopic
finger prints.

Introduction

CH bonds acting as hydrogen-bond donors have a long and
varied history going back to a 1937 suggestion by Glasstone to
explain the formation of mixtures of CX3H (X=Cl, Br, I) with
acetone or quinoline.[1] From the controversial early history of
such suggestions, we mention here only the X-ray diffraction
studies of short CH···O distances in crystals by Suton[2] and first
definitive IR experiments by Allerhand and Schleyer.[3] Mean-
while the existence of such interactions is very well established,
with too many facets and applications to be mentioned here in
detail. They even form the central basis for a book on weak
hydrogen bonds.[4] The latter implies that usually such inter-
actions tend to be weaker than regular hydrogen bonds with
more electronegative donor atoms like N, O, or F. And indeed,
often CH···O hydrogen bonds tend to exhibit blue-shifted CH
vibrations with reduced intensities and have been (improperly)
termed “improper hydrogen bonds”, as the charge-transfer
component is small, and electrostatic and rehybridization

effects can lead to shortened CH bonds with enhanced force
constants and reduced bond dipoles.[5,6]

However, the strength of CH···X hydrogen bonds can be
enhanced by various factors: a) a net positive charge on the
donor in cationic species, for example by protonation, metal
coordination or involvement in an ammonium-ion framework;[7]

b) employing sp2 or sp hybridized carbon donors, which
increases their electronegativity;[8] c) a more gradual increase of
the electronegativity and donor strength by attaching electro-
negative substituents to the carbon atom (this explains the
predominant early observation of such interactions for halo-
forms); and d) a negative charge on the hydrogen-bond
acceptor.[9,10,11] All of these aspects have been utilized, for
example, in the design of supramolecular anion receptors,[12]

including those for halide ions, or, for example, in catalysis.[13]

The term “charge-assisted hydrogen bonding” has been used in
this context.[14]

While these types of studies of specific anion receptors
benefit from well-defined structural arrangements, the CH
bonds of many common solvents also should be expected to
form rather strong CH···X hydrogen bonds with anionic solutes.
This is supported by a number of recent computational studies
at various levels.[9,10,11] While little experimental solution data is
available, these computational studies indeed suggest strong
CH···X interactions to contribute to the microsolvation of anions
in many common organic solvents. This certainly should hold
for aliphatic CH groups not only in the haloforms (which have
been used in previous computational studies[9]) but also in
solvents like acetonitrile (MeCN) or dichloromethane (DCM),
which all bear electronegative substituents on the donor carbon
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atom. It should also hold for the more electronegative aromatic
CH groups as in benzene or toluene, even in the absence of
electronegative substituents,[15] but enhanced in their
presence.[16]

If we discard small, multiply charged anions,[10a] which are
unlikely to dissolve in organic solvents, fluoride-like species may
be expected to exhibit the largest CH···X solvent-solute
interactions,[9] as fluoride concentrates negative charge density
on the smallest conceivable volume. In a recent combined
experimental and computational study[17] of polyhalogen anions
[EFx]

� (E=Cl, Br, I; X=2, 4, 6) we found that using suitable DFT
approaches and continuum solvent models allowed us to
reproduce well the 19F NMR shifts with X=4, 6 to within about
10–15 ppm but not with X=2. In the latter case our
computations underestimated the shifts systematically by about
50–60 ppm at our best DFT level used (with the LH12ct-
SsifPW92 local hybrid functional[18] and large basis sets). As
relativistic effects were found to be small, and such discrep-
ancies are clearly outside the expected accuracy of functional
and basis set,[19,20] we suspected that specific solvent interac-
tions in the experimentally used MeCN, that are not covered
adequately by the standard COSMO solvent model[21] used, are
responsible for the differences. We will show this to be the case
below by using microsolvated cluster models. The differences
between X=2 versus X=4, 6 in these systems intrigued us, as
they suggested that the negative charge on fluorine may
determine how well or how poorly standard solvent models
may reproduce these effects. Similar specific solvent interac-
tions can be inferred from recent ab initio molecular dynamics
studies of the bifluoride ion [FHF]� in deuterated dichloro-
methane (CD2Cl2).

[22] Here an explicit quantum-mechanical treat-
ment of solvent molecules was found as well to be necessary to
reproduce the experimental 19F NMR shifts in solution, even
though the main focus of that work was on the (a-)symmetry of
hydrogen bonding within the anion.

Properties like NMR shifts are important probes of molecular
interactions, and the need to include solute-solvent interactions
quantum-mechanically in some but not in other cases signals a
more general challenge for computational studies in that field.
Consider, for example, a chemical reaction where the anionic
character on a fluorine atom (or on some other very electro-
negative atom) varies for different intermediates or transition
states. Then standard computational treatments using continu-
um solvent models will certainly not be adequate, and an
appropriate treatment of microsolvation becomes mandatory.
As we will see below, a force-field based treatment of the
solvent, as in QM/MM simulations or related approaches, is also
insufficient.

To obtain more insight, we use here microsolvated model
clusters for anionic fluorine species and select MeCN as organic
solvent and CH-bond donor, as it is often used to dissolve such
species (see Ref. [11] for a recent computational study of
interactions between one acetonitrile molecule and chloride). In
addition to the anions [ClFx]

� (X=2, 4) that were part of the
abovementioned study,[17] we will evaluate such effects for the
free fluoride ion, and for the bifluoride ion. We will concentrate
on MeCN, to avoid complications due to halogen bonding, as is

possible for DCM. For the fluoride ion we will compare also to
aqueous solution, as experimental evidence suggests a larger
deshielding solvent effect on the 19F shift in organic solvents
such as MeCN compared to water,[23] which seems interesting to
understand.

Computational Details
Initial estimates of the average number of solvent molecules
expected around a given species were obtained using 3D-RISM-SCF
calculations,[24] where the solute is treated at the BP86-D3(BJ)/TZ2P
level[25,26,27] and the solvent at the 3D-RISM level based on OPLS
force field parameters, either using a united atom (UA) approach[28]

or the parameters obtained from the LigParGen web server[29,30]

employing 1.14*CM1A-LBCC[31] charges and the all-atoms (AA)
approach. All these computations used a modified version of our
recent 3D-RISM-SCF implementation[32] in the ADF engine[33] of the
AMS program package[34] – a code based on Slater-type-orbital
basis sets. These modifications are part of the 2022.1 release. In all
calculations, the 3D-RISM equations were solved on a Cartesian grid
with 128 points in each direction and a spacing of 0.25 Å using the
KH closure[35] and solvent susceptibility functions obtained from
DRISM calculations[36] employing the hypernetted chain (HNC)
closure.[37] The Lennard-Jones parameters of the solute atoms were
taken from Ref. [38], using special parameters for the H in FHF� (σ=

1.0 Å, ɛ=0.056 kcal/mol). The electrostatic potential obtained from
the fitted electron density of the solute at the given DFT level has
been used.[32] The estimated average coordination number was
obtained by integrating the pair distribution function – either
spherically averaged around a fluorine atom or around the
molecular center of mass – up to the first minimum.

The computed average solvation numbers provided the basis for
fast meta-dynamics runs using the GFN2-xTB tight-binding
approach[39] as implemented in the CREST tool of the xtb
program.[40] Optimized structures from the latter simulations were
used as starting points for DFT structure optimizations of clusters of
the solute with varying numbers of solvent molecules. These
optimizations were done within a COSMO solvent environment (ɛ=

35.688 for MeCN, ɛ=78.355 for water) at MARIJ-BP86-D3(BJ)/def2-
TZVPP[41] level (MARIJ stands for “multipole-accelerated resolution
of the identity”), using the Turbomole program,[42,43] version 7.5.1
and newer.

Free energies of solvation were computed from the microsolvated
cluster energies following a cluster cycle[44] corresponding to the
reaction [X� (MeCN)n]solv**X� (g)+ [(MeCN)n]solv (and analogously for
F� (H2O)n). Contributions to the free energies were obtained from
the optimized clusters by including their vibrational contributions
at the same level plus additional solvation contributions at COSMO-
RS(MeCN) level for X� (MeCN)n as well as for (MeCN)n.

[45] To this end,
additional single-point calculations at the COSMO and gas-phase
optimized structures were carried out. These calculations were
performed at MARIJ-BP86 level (omitting the D3(BJ) corrections)
with COSMO, setting an infinite permittivity and using the refined
COSMO cavity construction algorithm (keyword $cosmo_isorad),[45b]

as well as in the gas phase, employing def2-TZVPD[41a] basis sets for
all atoms. Based on these single-point calculations, subsequent
COSMO-RS computations to obtain ΔGsolv used the COSMOtherm
program, version C30_1201, and a BP-TZVPD-FINE level parameter-
ization (BP_TZVPD_FINE_HB2012_C30_1201). Electronic energy
contributions were refined by single-point energy calculations at
the DLPNO-SCS-MP2/aug-cc-pVTZ[46,47] level and, where computa-
tionally feasible for smaller clusters, at the DLPNO-CCSD(T)-F12/cc-
pVTZ-F12 level as reference.[48,49] These calculations used the ORCA
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program, version 4.2.1.[50] For comparison, electronic energies have
also been computed by single-point energy calculations at the
ωB97M-V/def2-TZVPP[51] DFT level. Furthermore, free energies of
solvation without the presence of explicit solvent molecules have
been computed directly with COSMO-RS at MARIJ-BP86/def2-
TZVPD level for comparison, using the settings given above. Free
energies were computed at standard conditions, i. e. 298.15 K and
0.1 MPa, and standard-state corrections were computed as SScorr=
� RTln(Vm); Vm=24.46 mol l� 1.

Using the clusters optimized at MARIJ-BP86-D3(BJ)/def2-TZVPP/
COSMO level, calculations of 19F shieldings were done with a
number of different DFT functionals that have recently been
established to perform well for the 19F shielding and shift subset (47
nuclei) of the large coupled-cluster-based NS372 benchmark.[20]

That is, we used the three local hybrid functionals cLH12ct-
SsirPW92,[18] LH12ct-SsifPW92,[18] and LH20t[52] including their cur-
rent-density response[53,54] within Dobson’s scheme[55] (denoted
cLH12ct-SsirPW92, cLH12ct-SsifPW92 and cLH20t) and with gauge-
including atomic orbitals (GIAOs[56]) as implemented in the
Turbomole code, version 7.6. pcSseg-3 basis sets were employed
for all atoms, and the computations used COSMO (MeCN, ɛ=

35.688; H2O, ɛ=8.93), as well as the MARIJ approach for the
Coulomb contribution (using “universal” auxiliary basis sets[57]). We
will preferably focus on results obtained with the cLH12ct-SsirPW92
local hybrid functional. For free F� and for HF, it provides 19F
shielding constants that agree with high-level CCSD(T)/pcSseg-3[58]

results to within about 1 ppm, and for LiF to within ca. 3 ppm.[20] Its
mean absolute error for the full 19F subset of the recent NS372
benchmark is 9.7 ppm.[20] This should be compared to 5.2 ppm for
MP2 and to 9.0 ppm for the top-performing[20,59] double hybrid
DSD-PBEP86,[60] which both require substantially higher computa-
tional effort and indeed exhibit somewhat larger deviations from
the benchmark data for HF (in the latter case also for LiF). For
comparison we also used the BHLYP global hybrid functional[61] that
has previously been used often for 19F NMR parameter
computations[62] but does not perform as well as the three local
hybrids.[19,20,53,54] Computations without explicit microsolvation using
COSMO or the self-consistent version of COSMO-RS, D-COSMO-
RS,[63] were also done for comparison at the otherwise identical
levels. Additional computations of 19F shieldings using 3D-RISM-SCF
as solvent model without explicit solvent molecules used ADF/AMS
at BHLYP/QZ4P-J//BP86-D3(BJ)/TZ2P level.

To transform computed 19F absolute shielding constants σ into
chemical shifts δ requires a value for the absolute shielding σref of
the reference standard used experimentally. For 19F NMR this is
nontrivial, as a direct computation of the absolute shielding
constant of neat liquid CFCl3 is required. In this work we decided to
indeed use reference shieldings for CFCl3 computed directly at the
given level, using structures optimized at the MARIJ-BP86-D3(BJ)/
def2-TZVPP level with COSMO (ɛ=2.315 for liquid CFCl3

[64]) to
model the liquid environment. Shielding computations also used
COSMO(CFCl3). The obtained reference values are: 186.3 ppm
(cLH12ct-SsirPW92), 189.5 ppm (cLH12ct-SsifPW92), 184.6 ppm
(cLH20 t), and 187.2 ppm (BHLYP).

We have carefully considered but ultimately not applied an
alternative scheme for obtaining a shielding for liquid CFCl3
indirectly via the secondary standard of gaseous dilute HF at 300 K
that we want to share here for scientists interested in computing
19F NMR shifts in other contexts: the relative shift of HF(g, 300 K)
with respect to neat liquid CFCl3 can be inferred to be 217.02 ppm
from a relative shift of HF(g, 300 K) against SiF4(g, 300 K) of 46.85�
0.35 ppm,[65] and a more recent relative shift of SiF4(g, 300 K) versus
CFCl3(l, 300 K) of 170.17 ppm.[66] For the absolute shielding of HF(g,
300 K) we use a nonrelativistic value of 409.7 ppm computed from
an equilibrium shielding of 419.384 ppm obtained at CCSDTQ/CBS

level (with corrections for quintuple excitations) and 300 K rovibra-
tional corrections at CCSD(T)/CBS level of � 9.677 ppm.[67] Using this
shielding value provides us with a reference shielding value of
192.7 ppm for neat liquid CFCl3. We assume that this is an
appropriate reference for shielding computations that neglect
relativistic effects, as we expect computed relativistic effects of ca.
+4.6 ppm[67] to be essentially atomic in nature (a so-called heavy-
atom effect on the heavy-atom shielding, HAHA[68]) and to therefore
cancel out by taking the experimental shift of HF(g) vs. CFCl3(l) into
account to obtain our reference shielding. When relativistic
corrections would be included in the actual shielding computations,
the reference value would have to be increased accordingly. Note
that this alternative reference shielding value is a few ppm larger
than the directly computed ones (see above), and it would thus
lead to slightly lower relative shifts. We note furthermore in passing
that all σref values discussed here are much lower than the MP2-
based gas-phase value of 217.9 ppm used in the MP2 computations
of fluoride solvent shifts in Ref. [23], explaining our more negative
shifts for free fluoride compared to the � 260 ppm given in that
work.

Natural population analyses (NPA) and natural bond orbital
analyses (NBO)[69] for the clusters F� (H2O)6 and F� (MeCN)8 were
carried out at the BP86-D3(BJ)/def2-TZVPP level using the NBO3.1
routines available in the Gaussian16 program, revision A.03.[70] MO-
based analyses of the shielding constants computed at GIAO-BP86/
pcSseg-2//MARIJ-BP86-D3(BJ)/def2-TZVPP level with Turbomole
were carried out by interfacing to the in-house MAG code.[71]

Alternative analyses using localized MOs at IGLO-level (individual
gauges for localized orbitals[72]) were not as informative, and we will
thus concentrate on the GIAO-based canonical MO analyses. The
Turbomole MOs have been generated with convergence criteria
scfconv 10� 9, convergence of the density matrix to 10� 7, and
gridsize m5 (internal settings). Harmonic vibrational spectra for
cluster models were computed using the NumForce subroutine at
MARIJ/BP86-D3(BJ)/def2-TZVPP/COSMO level with displacements of
0.02 a.u. Spectra are obtained with Gaussian broadening and a full
width at half maximum of 4 cm� 1 using the Gallier tool included in
Turbomole.

Results

Fluoride in acetonitrile compared to water

We start with the fluoride ion as the simplest solute. For F� in
MeCN our 3D-RISM-SCF computations suggest an average
coordination by 9–10 MeCN methyl groups in the first solvation
shell for both UA and AA approaches. All-atom calculations
show that a bit more than 1 in 3 of the attached H atoms is in
close contact with the fluoride ion (using a maximum F···H
distance of 2.7 Å), suggesting each methyl group to contribute
one CH bond oriented towards the fluoride (see Figures S1, S2
in Supporting Information for the computed radial distribution
functions). This rather large coordination number is indeed
confirmed by the GFN2-xTB MD simulations and preoptimiza-
tions, which show binding of up to eight or nine solvent
molecules in the first shell. DFT- and DFT-COSMO-optimized
clusters tend to retain this picture. The F-(MeCN)9 cluster has all
nine MeCN molecules contributing to the coordination (Fig-
ure 1). For n=10, 11 we see only eight molecules coordinating
directly to fluoride, with 3–4 somewhat shorter CH···F contacts
of around 1.98 Å and the others somewhat longer, 2.04 Å (see
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Figure 1 and Table S1; for n=9 a somewhat different arrange-
ment with overall longer distances is found).

The exergonicity of the free binding energies of the solvent
molecules in the F� (MeCN)n clusters increases very quickly for
smaller n and then more slowly (Figure 2 and Table S2). The
curve dips at around n=7–9, confirming completion of the first
solvation shell at around this number. Note that the embedding
of both the clusters and the cluster of MeCN molecules without
fluoride by the COSMO-RS solvent model is required to obtain
these qualitatively correct curves, and it is mandatory to use a
“cluster cycle” (see Computational Details). If one uses a
“monomer cycle” according to the reaction [X� (MeCN)n]solv**X� -
(g)+n[(MeCN)]solv rather than the cluster cycle, the most
negative free energies (Table S3) are obtained for smaller n
(around n=5 for F� ), and the curves then bend up towards
zero for larger n values. This incorrect behavior, which is shown
in Figures S3, S4 (without and with COSMO-RS embedding; see
also Table S3) in Supporting Information and is similar to curves
obtained for microsolvation of anions by CHF3,

[9] is an artefact

of an exaggerated translational entropy for the monomer
treatment. The even slightly larger coordination number given
by 3D-RISM-SCF might be attributed to the somewhat larger
CH···F bond length (maximum of the RDF, Figure S1). What is
also noticeable is the rather steep negative slope from n=1 to
n=2, which is consistent with the steep positive slope in that
area for the 19F shift changes (Figure 2). A direct computation of
the solvation free energy of F� in MeCN with COSMO-RS,
without explicit solvent molecules, gives � 375.2 kJmol� 1. This is
somewhat below the expected asymptote of the cluster-based
free-energy curve in Figure 2, and it agrees well with an
experimental solvation free energy range of � 383 kJmol� 1 to
� 389 kJmol� 1 for F� in MeCN obtained from the known range
in aqueous solution (� 454 kJmol� 1[73] to � 460 kJmol� 1[74]) and
the standard Gibbs free energy for the transfer of fluoride from
water to MeCN (+71 kJmol� 1 at 298 K).[75] Given the uncertain-
ties involved in the explicit calculations on the microsolvated
cluster models (e.g., neglected dynamical averaging, see below,
or configurational entropies) as well as in the parametrization of

Figure 1. Examples of microsolvated clusters X� (MeCN)n with relevant sizes (structures optimized at COSMO-MARIJ/BP86-D3(BJ)/def2-TZVPP level).
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COSMO-RS, this may be considered close agreement. We note
in passing that DLPNO-CCSD(T)-F12 gives about 13 kJmol� 1

more negative solvation free energies for a given n than the
DLPNO-MP2 values used to draw the curves in Figure 2
(compare Figure S5 in Supporting Information for electronic
binding energies; BP86-D3(BJ) and ωB97X-D give still larger
binding energies; see also Table S2), bringing the micro-
solvated-cluster value to around � 365 kJmol� 1, into even closer
agreement with the implicit COSMO-RS value and experiment.
We note in passing that only for fluoride, the COSMO-RS value
is more negative than the (COSMO-RS-embedded) microsol-
vated cluster value, while this reverts for the other anions
discussed below (see Figure S6).

The experimental 19F NMR shifts of fluoride in different
solvents have been studied by Christe and coworkers (based on
dissolving tetramethylammonium fluoride),[76] and by others,[77]

and have been summarized and compared to MP2 calculations
of fluoride with one coordinated solvent molecule (and up to
six coordinated molecules for water) in Ref. [23]. Interestingly,
the measured 19F shifts of fluoride in organic solvents are larger
(less negative) than those in water or in alcoholic solvents (e.g.
� 74 ppm in MeCN, � 109 ppm in DCM, � 119 ppm in water, and
� 149 ppm in MeOH). That is, the deshielding solvent contribu-
tion in MeCN is particularly large. It was pointed out that these
solvent shifts do not correlate with the binding energies of the
corresponding solvent molecules to fluoride.[23] The MP2
calculations of the monocoordinated clusters reproduce the
trends but of course underestimate the solvent shifts. Our
computed shifts for n=8 (� 65.9 ppm) and n=9 (� 82.8 ppm) at
LH12ct-SsirPW92/pcSseg-3 level bracket the � 74 ppm[23] exper-
imental shift value in solution and are clearly within the

expected accuracy margin of the method.[20] This corresponds
to a remarkable solvent shift of more than 200 ppm.

The shifts at n=8, 9 are thought to realistically reflect the
most probable situation in solution. This is borne out by
additional computations for all clusters obtained in xTB meta-
dynamics simulations with 12 MeCN molecules, which we
summarize in Figure S7 in Supporting Information. Energies at
either the BP86-D3/def2-TZVPP/COSMO level used for the
optimizations, or in LH12ct-SsirPW92-D3/pcSseg-3/COSMO sin-
gle-point calculations to match the level used for the shift
computations, clearly show that clusters with n=8, 9 provide
the lowest energies, by about 10 kJmol� 1 compared to n=7
(the few n=6 clusters have even higher energies). The BP86-D3
energies favor somewhat structures with n=8, giving shifts
centered around ca. � 65 ppm. The LH12ct-SsirPW92-D3 ener-
gies favor more structures with n=9, which lead to shifts closer
to � 80 ppm. I.e. the two coordination numbers give shifts
slightly above or below the experimental value of � 74 ppm
and generally match experiment to within the accuracy of the
method used in the shift computations. They are reasonably
well represented by the single-structure results shown in
Figure 2, given that the shifts for a given n only show a small
spread with different structures. This supports the approxima-
tion of using the “best” static cluster in this case, an
approximation made also for the other ions, given that to carry
out full MD simulations for all cases is beyond the scope of the
present work. We note that during revision of this paper,
Spicher et al.[78] reported a new, automated workflow for the
generation of microsolvated clusters, called “quantum cluster
growth”. Such algorithms provide more freedom to include

Figure 2. A comparison of computed solvation free energies ΔGsolv (DLPNO-SCS-MP2/aug-cc-pVTZ/COSMO-RS//MARIJ-BP86-D3(BJ)/def2-TZVPP[/
COSMO(MeCN)] level using a cluster cycle) and 19F NMR chemical shifts (GIAO-cLH12ct-SsirPW92/pcSseg-3/COSMO(MeCN)//MARIJ-BP86-D3(BJ)/def2-TZVPP/
COSMO(MeCN) level) of microsolvated anions in MeCN as a function of cluster size. See Supporting Information Table S2 for thermochemical data, Table S4
for NMR shifts, and Table S3 for comparative thermochemical data using a monomer cycle. Experimental shifts and shift ranges are shown at the right-hand
y-axis.
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conformer averaging in a computationally affordable manner,
and we will investigate its use in our ongoing work.

Shifts for DFT-optimized clusters have been computed with
increasing cluster size up to n=9 (Table S4, Figure 2). In
Ref. [23] the solvent deshielding was linked to the larger
shielding anisotropy in the monosolvated complexes used to
model the effects. However, as we see in Table S5, the
anisotropy only reflects the unsymmetrical coordination (see
Figure 1 for some example cluster structures) and overall
decreases with increasing coordination number, albeit in an
uneven way due to the symmetry and structure of the given
static solvate complex used. Yet, the isotropic shifts increase up
to n=6, 7 before levelling off only slightly for n=8, 9 (Figure 2).
Moreover, the computed shielding anisotropies for the larger
clusters are much smaller (Table S4) than the overall solvent
shifts (Table S4, Figure 2) and thus cannot be the major reason
for the latter. Indeed, in isotropic solution the shielding
anisotropy of a fluoride ion will vanish in the dynamical
average. The mechanism by which solvation leads to low-
frequency shifts thus clearly must operate also in the absence
of anisotropy, and we will analyze it in more detail below.

In aqueous solution, which we also studied for comparison,
3D-RISM-SCF suggests an average of six hydrogen bonds from
water molecules to fluoride (see Figure S8), while previous ab
initio MD simulations give results closer to n=5.[79] Other
microsolvated cluster models even suggest n=4 to be the
predominant number of OH···F hydrogen bonds in the first
solvation shell.[80] Our computations on F� (H2O)n cluster models
embedded in COSMO-RS surroundings show the Gibbs free
energies of solvation to still drop after n=6, but in an irregular
fashion (Figure S9, Table S6 in Supporting Information), even
though closer inspection of the clusters suggest that indeed
only four water molecules are coordinated to F� in the larger
clusters. This suggests that the contributions from the COSMO-
RS model are somewhat smaller than those contributed by
adding more explicit solvent molecules to the clusters in the
second solvation shell. However, the large scatter in the curve
suggests that the static clusters in any case do not provide an
as good description as they did for MeCN (see above). Free
solvation energies approach the experimental range of around
� 460 kJmol� 1 (see above) but do not quite get there (Table S6,
Figure S9). The “pure” COSMO-RS value of � 437.2 kJmol� 1

agrees well with the cluster-based numbers but is also slightly
too small in absolute value. We note in passing, that also in this
case the free energies of the “monomer cycle” agree much less
with experiment (Table S6) than those of the “cluster cycle”
shown in Figure S9.

The 19F shifts increase sharply for small n and seem almost
saturated at around n=6 (Figure S9, Table S7). At this n, the
chosen cLH12ct-SsirPW92/pcSseg-3 level provides a shift of
� 150 ppm. Further deshielding by up to 10–15 ppm is seen for
the larger n values. This brings us to around � 130 ppm to
� 140 ppm, still somewhat below the experimental shift of
� 119 ppm of fluoride in aqueous solution.[23] Overall, the
solvent shift of around 140–150 ppm is in any case overall less
pronounced than the more than 200 ppm we find for MeCN
(see above). An explanation will be provided below.

Computations of F� with only a COSMO or D-COSMO-RS
solvent model fail completely to capture the solvent shifts, both
in MeCN and in water. They give less than 2 ppm solvent shift
for both solvents (� 1.4 ppm in water for COSMO, � 1.7 ppm for
D-COSMO-RS). A 3D-RISM-SCF treatment of the solvents does
not give any solvent effects on the 19F shifts. This is to be
expected, since the spherical symmetry of the solute gives a
spherical solvation potential, which in turn creates no polar-
ization of the electron density of the fluoride ion compared to
the gas phase.

That is, as previously noticed for the gas-liquid 17O shift of
water,[32] electronic coupling of the solute and solvent orbitals
in the magnetic field must play a decisive role for the solvent
shifts in such strong-interaction cases. We have analyzed these
effects in more detail using the F� (MeCN)8 and F� (H2O)6 clusters
(the latter cluster with S6 symmetry, taken from Ref. [23], is not
a minimum but gives a good overall solvent shift and renders
analyses relatively transparent). We first note that the solvent
shifts arise purely from paramagnetic shielding contributions σp

(Table S8). For further analyses, we have used a breakdown into
orbital contributions using the implemented tools in the MAG
code,[71] at the quantitatively less accurate GIAO-BP86/pcSseg-
2[58] level (the more accurate functionals are not implemented
in that code). For the F� (H2O)6 cluster, the deshielding
compared to free fluoride ion is distributed over a substantial
number of occupied canonical MOs (some MO plots are
provided in Figure S10 in Supporting Information). All of them
have some fluorine p-orbital character mixed with various water
oxygen-based orbitals. This reflects the similar electronegativity
of fluorine and oxygen, which places their valence orbitals in a
similar energy range and thus leads to extensively delocalized
canonical MOs for the cluster. While it confirms extensive
solute-solvent orbital mixing, further analyses in terms of
occupied-virtual MO couplings turn out to be complicated.

Analyses are more straightforward for the F� (MeCN)8 cluster,
where the fluorine p-orbital character concentrates more in the
three highest, almost degenerate occupied canonical MOs,
which indeed dominate the large deshielding compared to free
fluoride (in particular the HOMO and HOMO-1; see Figure 3 for
MO plots). The dominant contributions to σp from occupied/
virtual MO couplings arise from these three occupied MOs and
from three virtual MOs. The latter do indeed have substantial
σ*(C� H) character in the CH-bonds coordinating to fluoride,
albeit mixed with π*(C�N) character of these coordinated
MeCN molecules (Figure S10). Alternative analyses using Boys-
localized MOs[81] within an IGLO[72]-BP86-based scheme confirm
the dominance of occupied LMOs with fluorine p-orbital
character, but the couplings tend to be smeared over a larger
number of (canonical) virtual MOs, rendering the analyses less
transparent. Overall, our analyses clearly confirm couplings
between fluorine lone pair orbitals and low-lying solvent based
virtuals for MeCN solvates. This holds also analogously for the
interpretation of the 19F solvent shifts of the other species
covered in this work (see below). We will not discuss extensive
shielding analyses for these other species. We note here already
that both the free solvation energies and the shift effects in
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MeCN are largest for fluoride compared to the solutes discussed
further below.

Bifluoride anion

Turning to the bifluoride ion FHF� , we note that its solvation in
CH2Cl2 and CCl4 has been subject to recent AIMD simulations.[22]

While that work had its main focus on changes to the potential
of the strong hydrogen bond within the solute, computed 19F
shift results clearly also confirmed appreciable deshielding in
both solvents even for symmetrical structures of the solute, on
which we focus in the present work. Note that those authors
found that the average coordination of CH bonds to the
fluorine atoms tended to be close to two for each of the
fluorine atoms,[22] corresponding to n=4 in the present context.
It was speculated that steric interactions between the coordi-
nated solvent molecules determine average dihedral angles
between their CH···F vectors and thereby limit the average
coordination.

Here we focus on solvation in MeCN. 3D-RISM-SCF suggests
an average number of CH···F interactions n=10 when integrat-
ing to the minimum after the second maximum (Figure S2b, the
second maximum includes the sites coordinating to the other F
atom, assuming 1 in 3 H sites to form a CH···F contact), that is,
five hydrogen bonds per fluorine atom. Integrating only to the
first minimum results in an average of 3 close interactions
(again assuming 1 in 3 H sites to form a CH···F contact). The
GFN2-xTB preoptimizations and the subsequent DFT and DFT+

COSMO optimizations with up to 12 solvent molecules agree
with this notion, as maximally 10–11 short CH···F contacts below
2.3 Å are found, and there is a tendency of solvent molecules to

bind in a second solvation shell when higher coordination
numbers are explored (Table S1 in Supporting Information). The
DLPNO-SCS-MP2-based free energies behave similarly as for F�

but progress more slowly down to ca. � 290 kJmol� 1 (Figure 2,
Table S2), while DLPNO-CCSD(T)-F12 gives even about
20 kJmol� 1 more negative free energies. COSMO-RS without
explicit solvent molecules provides a somewhat less negative
free solvation energy of � 263 kJmol� 1, again (see above for
fluoride) in agreement with the observation that the free
energies of the microsolvated cluster models still grow more
negative at n=14, even though this involves already solvent
molecules in a second shell. That is, the “pure” COSMO-RS
treatment seems to underestimate slightly the overall binding.
“Monomer-cycle” free energies again exhibit an incorrect
behavior (Table S3, Figures S4, S5)

The 19F NMR shifts tend to increase slowly up to n=10, 11
(Figure 2, Table S4), where they reach ca. � 135 ppm (compared
to experimental shifts of � 145 ppm to � 148 ppm[82]), a solvent
shift of about +84 ppm compared to the gas-phase anion
(Table S4), less than half the solvent shift found for fluoride (see
above). This may be compared to an average solvent 19F shift in
CH2Cl2 of +79 ppm from the AIMD simulations in Ref. [22].
COSMO and D-COSMO-RS give a solvent shift of about 3 ppm,
3D-RISM-SCF of less than 2 ppm, both methods again failing
completely to capture the orbital couplings and thus the
explicit solvent effects on the shifts, as can be expected. Note
that we have not varied the asymmetry of the F� H� F moiety, in
contrast to the AIMD simulations in Ref. [22], which showed a
coupling of an asymmetry in that nominally symmetrical
hydrogen bond and an asymmetric solvation shell. We conclude
thus that the bifluoride ion also exhibits large solvation shifts in
MeCN, but less so than fluoride, consistent with the overall
smaller binding/solvation energies.

ClF2� compared to ClF4�

For the ClF2
� anion, which originally stimulated our interest in

these types of interactions of fluoride-type fluorine atoms with
the CH-bonds of organic solvents,[17] 3D-RISM-SCF gives a lower
average number n=2 of close CH···F interactions (see also
Figure S2, assuming 1 in 3 H sites to form a CH···F contact) than
for the related FHF� anion, where an identical analysis gives n=

3 (see above). The second minimum in the RDF would
accommodate 9 contacts. Overall, the RDF shows less pro-
nounced structure than for FHF� . This trend is consistent with
the cluster models, which provide only up to 6–7 short F···H
distances below 2.3 Å, with additional solvent molecules
moving further away from the fluorine sites (Table S1 in
Supporting Information). The computed free energies for the
microsolvated clusters nevertheless also go down further, even
at n=12, beyond � 260 kJmol� 1 (Figure 2, Table S2), where they
have clearly not yet converged. “Pure” COSMO-RS suggests a
free solvation energy of � 240.9 kJmol� 1, so the shape of the
curve is again consistent with the microsolvation beyond the
first solvent shell providing a slightly larger stabilization than

Figure 3. Structure of the optimized F� (MeCN)8 cluster used and isosurface
plots (0.03 a.u.) of relevant occupied and virtual canonical molecular orbitals
contributing to the 19F shielding tensor.
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the COSMO-RS embedding. Overall the solvation energies are
only slightly smaller than those discussed above for FHF� .

The solvent effects on the 19F NMR shifts still increase slowly
up to n=11 (Figure 2, Table S3) where the calculations would
suggest them to be about 73 ppm, also only slightly less than
those for FHF� (see above). However, possibly adding further
solvent molecules to the second solvation shell beyond n=6, 7
leads to an unbalanced coordination sphere. It thus seems
prudent to focus on the shifts obtained for n=6, 7. Then we
arrive at shifts between � 115 ppm and � 121 ppm, which is
reasonably close to the experimental shift of � 125 ppm. This
corresponds to a somewhat smaller and more realistic and still
appreciable solvation shift of 47–53 ppm. COSMO and D-
COSMO-RS give a solvent shift of � 4.8 and +0.5 ppm,
respectively, while 3D-RISM-SCF gives about +5 ppm. All of
these methods are thus again unable to recover most of the
actual solvent shifts. We note that our previous computations
using COSMO(MeCN) in Ref. [17] for this and related EF2

� anions
left deviations from the experimental shifts in solution of about
50–70 ppm using a similar local hybrid (LH12ct-SsifPW92, still
without current response). The present computations clearly
show that this is due to the orbital couplings caused by specific
CH···F hydrogen bonds not being covered by implicit or force-
field-based solvent models.

In that same work, the 19F shifts of anions EF4
� in MeCN

could be reproduced to within ca. 10 ppm using a COSMO
model for the solvent.[17] This suggests that the specific CH···F
interactions are much less pronounced for the tetrafluoro
species (as well as for the hexafluoro anions studied in the
same paper), and it was argued that this reflects a less negative
charge on fluorine (see below). 3D-RISM-SCF indeed suggests
only an average of 1.5 close CH···F contacts for ClF4

� in MeCN
overall for the four fluorine sites, and a much shallower RDF
overall than for the other three anions (Figure S2). This is
consistent with a much less structured solvation shell. While
cluster models can be constructed for many more solvent
molecules, they tend to feature only 6 short contacts below
2.3 Å (Table S1), about 8–10 below 2.5 Å. The free binding
energies still go down at n=12 (DLPNO-SCS-MP2 ca.
� 251 kJmol� 1), but this also again involves second-shell micro-
solvation (Figure 2, Table S2), and the “pure” COSMO-RS value
of � 223.6 kJmol� 1 indicates again less binding. For both ClF2

�

and ClF4
� the “monomer cycle” is again unsuitable (Table S3,

Figures S3, S4).
The solvent effects on the 19F shifts in ClF4

� are much
smaller than those for ClF2

� , peaking at about 18 ppm at n=9,
while at a more realistic n=6 the solvation shift is 10 ppm
(Figure 2, Table S4), leading to a shift of 78 ppm compared to
the experimental value of 67 ppm. This explains why even a
COSMO-based calculation without explicit inclusion of solvent
molecules gave already reasonable agreement with experiment
in Ref. [17]. In the present work, COSMO gives a solvent shift of
� 4.9 ppm, D-COSMO-RS � 2.0 ppm, 3D-RISM-SCF (OPLS-AA) ca.
+11 ppm.

NMR shifts of solvent nuclei

While the effects on the shifts of the coordinating MeCN
molecules will be difficult or impossible to observe experimen-
tally, due to the expected fast exchange on the NMR time scale
and the likely dominance of the bulk solvent signals, we
summarize the computed data nevertheless in Tables S9–S13 in
Supporting Information. As one might expect, the effects due
to the charge transfer from the anion to a given solvate
molecule decrease with increasing cluster size, as the effects are
somewhat “diluted” over more interactions. The 1H shifts of the
coordinating hydrogen atoms are computed to have increased
shifts compared to the noncoordinating ones by about 2–
3 ppm for F� , by about 0.8 ppm for FHF� and by about 0.4 ppm
for ClF2

� (Tables S9, S10), while noncoordinating hydrogens
show very small deviations from an (MeCN)n cluster. The
computed methyl and nitrile 13C shifts are within less than
1 ppm from a pure solvent cluster (CH3CN)8 (Tables S11, S12),
the nitrile 15N shifts within less than 2.5 ppm (Table S13). Any
ion-induced shifts for these nuclei are thus even less likely to be
observable experimentally.

IR spectroscopic fingerprints for the interaction

While weak CH···X hydrogen bonds tend to give blue-shifted CH
stretching frequencies in vibrational spectra,[83] the larger
charge transfer into the σ*(C� H) orbitals for stronger charge-
assisted interactions with anionic acceptors is expected to lead
to strongly red-shifted bands with enhanced intensity.[5,6] This
should certainly hold for simple halide ions in organic solvents,
and the only question is, whether these shifted bands are
sufficiently strong in comparison with the bulk spectra. As an
exploratory computational examination, we have computed the
harmonic vibrational spectra of the F� (MeCN)8 cluster in
comparison with clusters of the heavier halides Cl� and Br� and
a cluster (MeCN)8 without a halide ion as a rough approximation
for the bulk liquid. The simulated spectra at BP86-D3(BJ)/def2-
TZVPP/COSMO level are compared in Figure 4. It is clear that

Figure 4. Computed harmonic IR Spectra of X� (MeCN)8 clusters (X=F, Cl, Br)
in comparison with an (MeCN)8 cluster (BP86-D3(BJ)/def2-TZVPP/COSMO).
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the halide ions generate red-shifted, very intense C� H stretch-
ing bands that are not present in the (MeCN)8 cluster (nor in an
isolated MeCN molecule). Both the red-shift by several
hundreds of cm� 1 and the intensity increase by an order of
magnitude are clearly most pronounced for fluoride. Such
bands might well be observable even in the presence of the
bulk vibrations. We note in passing that similar computational
frequency and intensity shifts have also been found for
molecular complexes of halide ions with fluoro- or chloroform,
with fluoride again causing the largest effects.[10d]

Comparison of charge transfer and polarization in F� (MeCN)8
and F� (H2O)6 clusters by NPA/NBO analyses

The fact that the 19F NMR solvent shifts of fluoride in MeCN are
larger than in water prompted us to compare the amount of
charge transfer in the respective cluster models by NBO
analyses (BP86/pcSseg-2//BP86-D3(BJ)/def2-TZVPP level, Ta-
ble 1). Nuclear shieldings are a response property and thus do
not necessarily follow the ground-state charge on the NMR
atom of interest.[84] Still, such charge analyses can be useful.
Interestingly, the negative NPA charge on fluorine is indeed
smaller for the MeCN-based cluster. However, the average
charge transferred to one solvent ligand is slightly larger for the
aqueous cluster (0.026 e) compared to the MeCN-based cluster
(0.023 e), and it is the larger number of solvent molecules that
are able to coordinate for the organic solvent that overall
depletes somewhat more charge from the fluoride than for the
aqueous case (note that the actual n in water may be 4 or
5,[79,80] so the disparity in the average coordination may even be
slightly larger than for the chosen cluster sizes).

For the latter, we see a redistribution of negative charge to
the water oxygen atoms within the coordinated molecules, and
the coordinating hydrogen ends up with an even more positive
charge than for a free water molecule. This behavior is
consistent with the behavior for a typical hydrogen bond, which
enhances the ionicity of the bond within the hydrogen-bond
donor. That is, in addition to moderate charge transfer from the
solute to the solvent molecules, charge becomes more
polarized within the coordinating solvent, accumulating more
negative charge on oxygen (which in turn will enhance further

interactions with the next solvent shell, not covered by the
cluster model). The same observations can be made for the
MeCN case: in addition to the charge transfer from fluoride to
the solvent molecules, the charge within the solvent molecules
becomes more polarized, accumulating charge on the nitrogen
and methyl carbon (C2) atom, while depleting charge from C1
and the hydrogen atoms, particularly on the coordinating ones
(H1). This underscores the character of a strong CH···F hydrogen
bond with an essentially conventional build. Perturbation-
theoretical analyses of the interactions between the strictly
localized NBOs and the composition of the resulting natural
localized MOs[69] (NLMOs) confirm expectations that the charge
transfer from fluoride to the solvent molecules involves
donation into the σ*(H� O) and σ*(H� C) antibonding orbitals of
the coordinating OH or CH units, respectively, consistent with
the MO couplings responsible for the 19F solvation shifts (see
above).

The interactions for the other anions are analogous albeit
less pronounced, regarding both the charge-transfer and the
polarization within the MeCN molecules, consistent with the
reduced negative fluorine NPA charges for the free gas-phase
anions of � 0.756 (FHF� ), � 0.591 (ClF2

� ) and � 0.529 (ClF4
� ).

Conclusions

The element fluorine occupies a special place in the Periodic
Table, not only as the most electronegative element but also
due to its compact charge concentration within a small radial
space. Once the accumulation of negative charge becomes very
large, the resulting fluoride-like units exhibit particularly strong
CH···F hydrogen-bonding interactions with the CH-bonds of
organic solvents, which are not captured by the usual
continuum solvation models nor by force-field-based models. In
this work we have largely concentrated on acetonitrile, but the
effects are clearly observable for other CH-bond containing
solvents as well, CH2Cl2 or the haloforms being other examples.

Computational studies have already pointed out that
anionic acceptors X� can enhance CH···X� interactions to the
extent that they have to be considered strong, charge-assisted
hydrogen bonds (see literature pointed out in the Introduction).
The focus of the present work has been on the extremely large
and characteristic solvent effects on 19F NMR shifts generated
by these types of hydrogen bonds. It had been known that 19F
solvent shifts of fluoride in many organic solvents are larger
than in aqueous solution. Our analyses show that this is largely
due to the fact that a solvent like acetonitrile can form more
CH···F hydrogen bonds to fluoride than possible in aqueous
solution (8–9 rather than 4–6). In contrast to previous
interpretations, it is this larger number of (slightly weaker)
hydrogen-bonding interactions that leads to a larger solvation
shift, in spite of an overall somewhat smaller solvation free
energy. This is why Christe had noted that the 19F shift of
fluoride cannot be used as an indicator of its “nakedness”.

However, we do confirm that for a given solvent the 19F
solvation shifts of different anionic fluorine species correlate
with the magnitude of their solvation free energies, which are

Table 1. Relevant NPA charges of atoms and fragments for the solvent
complexes and the free solvent molecules (BP86/pcSseg-2//BP86-D3(BJ)/
def2-TZVPP)[a]

MeCN F� (MeCN)8 H2O F� (H2O)6

Q(F) – � 0.819 Q(F) – � 0.843
Q(N) � 0.308 � 0.368 Q(O) � 0.905 � 0.975
Q(C1) +0.263 +0.294 Q(H1)[b] +0.452 +0.484
Q(C2) � 0.733 � 0.785 Q(H2) +0.452 +0.465
Q(H1)[b] +0.259 +0.308
Q(H2) +0.259 +0.264
Q(H3) +0.260 +0.264
Q(MeCN) 0.000 � 0.023 (8x) Q(H2O) 0.000 � 0.026 (6x)

[a] Averaged over the eight and six solvent molecules, respectively.
[b] Hydrogen atom coordinating to fluoride in the cluster.
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in turn determined by the strengths of the CH···F hydrogen
bonds that correlate with the amount of negative charge on
the given fluorine atom. That is, both the solvation 19F shifts
and the solvation free energies in acetonitrile decrease along
the series F� @ FHF� > ClF2

� > ClF4
� studied in the present

work. The 19F solvation shifts reach astounding +227 ppm for
F� and clearly require a proper quantum-chemical treatment of
microsolvation to be reproduced accurately. In contrast, the
effects of microsolvation are close to +10 ppm for ClF4

� , where
the negative charge is more delocalized and thus smaller on a
given fluorine atom. In the latter case these specific solvation
effects are still relatively close to the error margins of even
rather advanced DFT approaches but might be needed
accounting for in more accurate benchmark-level treatments.
And more delocalized fluoridic ions will exhibit even less
pronounced effects of microsolvation. But already for ClF2

� , the
19F solvation shifts of 50–60 ppm are far outside practically
achievable DFT accuracies and thus clearly have to be dealt
with.

None of the implicit or force-field-based solvent models
studied here, COSMO, D-COSMO-RS or 3D-RISM-SCF, can
reproduce these microsolvation effects on the 19F shifts, as
these involve a coupling of solute and solvent orbitals in the
magnetic-field response. This clearly requires an accurate
quantum-mechanical treatment of the directly bound solvent
molecules. In the present work, we have pre-generated the
static DFT cluster models used for the computation of both
shifts and solvation free energies by cheap tight-binding (xTB)
meta-dynamics methods available in Grimme’s CREST program,
followed by DFT optimizations. In the present case of relatively
simple anionic species, this has still led to probably reasonable
estimates of the microsolvation effects. Clearly, matters will
become less tractable for routine computational treatment for
more complicated systems that one may encounter in various
chemical applications (also for other electronegative elements
like oxygen or chlorine when they exhibit large negative
charge). This puts more emphasis on improved and expedient
methods for the generation of microsolvated clusters (as, for
example, the recent QCG algorithm, see above), short of the
costs of full AIMD simulations, to be used in mechanistic studies
of chemical reactions where the “fluoridic” character may vary
along a reaction coordinate. Thermochemistry and kinetics of
such reactions are expected to be strongly affected by differ-
ential microsolvation contributions not only in protic but also in
“aprotic” organic solvents. In contrast to the NMR shift case, in
this case we have semi-empirical methods like COSMO-RS as
reasonable albeit not perfect alternatives to obtain estimates of
solvation free energies. Finally, microsolvated cluster models
are also required to access computationally the fingerprints that
such CH···X hydrogen bonds may cause in the vibrational
frequencies and intensities of C� H vibrations of the coordinated
solvent molecules.

Supporting Information Summary

Tables with additional data on structures, thermochemistry and
NMR chemical shifts, Figures on 3D-RISM-SCF radial distribution
functions, cluster models, free energies and NMR shifts as
functions of cluster size, relevant MOs for analyzing solvent
NMR shifts.
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A Appendix

A.1 SI-I

A.1.1 Statistical Quantities

MSE/MSD =
1

N

N∑︂
i

xi − xi,ref., (A.1)

MAE/MAD =
1

N

N∑︂
i

|xi − xi,ref.|, (A.2)

StD =

⌜⃓⃓⎷ 1

N

N∑︂
i

(︁
xi − xi,ref.

)︁2 −MSE/MSD2. (A.3)

MARE/MAPD =

(︄
1

N

N∑︂
i

|xi − xi,ref.|
|xi,ref.|

)︄
· 100, (A.4)

where x denotes either shielding or spin–spin coupling constants.

A.1.2 The Perturbed A-Matrix

For one component (Bx) of the magnetic field, the perturbed A-matrix at a point on the

numerical grid rg is given by

ABx
µν,g =

i

2c

∫︂
[Rµν × r′]x

ϕ∗
µ(r

′)ϕν(r
′)

|rg − r′|
dr′,

=
i

2c

{︃
Rµν,y

∫︂
z′ ·

ϕ∗
µ(r

′)ϕν(r
′)

|rg − r′|
dr′ −Rµν,z

∫︂
y′ ·

ϕ∗
µ(r

′)ϕν(r
′)

|rg − r′|
dr′
}︃
. (A.5)
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A. Appendix

Due to the GIAO derivative (see Eq. 3.57) an additional dependence on the grid vector

r′ arises, which can be projected onto the position of the Gaussian basis function (r′ =

r′K +RK , with r′K = r′−RK , where RK is the position of nucleus K; The same condition

holds also for the Cartesian components). For simplicity, an uncontracted basis set is

chosen and the Gaussian function is separated into its Cartesian components, [269]

γK (r) = xi
K exp(−αx2

K) · y
j
K exp(−αy2K) · zkK exp(−αz2K),

= Gx
iK ·Gy

jK ·Gz
kK ,

= G̃
r′

ijk,K . (A.6)

It is noted in passing, that atom-centered basis functions are assumed, therefore the

position of nucleus K is also the center of the Gaussian. Inserting the projection of the

Gaussian basis function and the Cartesian expansion into Eq. A.5 results in

ABx
µν,g =

i

2c

{︃
Rµν,y

∫︂
(z′K + ZK) ·

(︂
G̃

r′

ijk,K

)︂(︂
G̃

r′

lmn,L

)︂
|rg − r′|

dr′

−Rµν,z

∫︂
(y′ + YK) ·

(︂
G̃

r′

ijk,K

)︂(︂
G̃

r′

lmn,L

)︂
|rg − r′|

dr′,

}︃
=

i

2c

{︂
Rµν,y

(︁
Ak+1

µν,g + ZK · Aµν,g

)︁
−Rµν,z

(︁
Aj+1

µν,g + YK · Aµν,g

)︁}︂
, (A.7)

where Ar+1
µν,g is the A-matrix with an enlarged l-quantum number. The expression can be

generalized to

ABk
µν,g =

i

2c

{︂
Rµν × (Alk+1

µν,g +RKAµν,g)
}︂

k
. (A.8)

The vector Alk+1
µν,g contains the three A-matrices with an enlarged quantum number l of

the Gaussian with Cartesian component k.
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A.1. SI-I

A.1.3 Grid Dependence of LH Shielding Calculations

Figure A.1.: MAEs of shieldings obtained with various grid sizes relative to the extra-large
(7/25) grid at LH07t-SVWN/pcSseg-4/MARI-J level of theory for 1H (left), 13C
(middle), and the other nuclei (15N, 17O, 19F and 31P, right) for the test-set of
Ref. 13.
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A.1.4 Validation of Semi-Numerical Integration

Table A.1.: Top: Comparison of selected isotropic shielding constants obtained with analytical
vs. semi-numerical EXX integration (B3LYP/pcSseg-4). Bottom: Mean absolute
errors (MAE) of the semi-numerical results compared to the analytical program
code (in ppm, results for pcSseg-4 and grid setting 5) for various functionals.

B3LYP
molecule analyt. sem.-num. (Eq.(27) P-I) sem.-num. AB (Eq.(26) P-I)

1H furan (C2/5) 23.998 23.998 23.998
furan (C3/4) 24.995 24.995 24.995
(CH3)2CO 29.800 29.800 29.800
CH4 31.592 31.592 31.592
NH3 31.720 31.720 31.720
H2O 31.042 31.042 31.042
HF 29.334 29.334 29.334
PH3 29.631 29.631 29.631

13C furan (C2/5) 26.504 26.504 26.504
furan (C3/4) 61.627 61.627 61.627
(CH3)2CO -39.810 -39.810 -39.810
(CH3)2CO 148.840 148.840 148.840
CH4 188.822 188.822 188.822
CF4 44.642 44.642 44.642
CO -22.925 -22.925 -22.925

15N N2 -97.205 -97.205 -97.205
NH3 259.679 259.679 259.679
NNO -14.516 -14.516 -14.516
NNO 79.013 79.013 79.013
PN -447.495 -447.495 -447.495

17O furan 15.031 15.031 15.031
(CH3)2CO -356.208 -356.208 -356.208
H2O 326.534 326.534 326.534
CO -88.066 -88.066 -88.066
OF2 -593.761 -593.761 -593.761
NNO 171.304 171.304 171.304

19F HF 411.486 411.486 411.486
F2 -259.918 -259.918 -259.918
CF4 241.329 241.329 241.329
OF2 -76.603 -76.603 -76.603
PF3 199.155 199.155 199.155

31P PH3 560.987 560.988 560.987
PF3 168.069 168.069 168.069
PN -70.298 -70.298 -70.298

functional MAE (Eq.(27) P-I) MAE AB (Eq.(26) P-I)

B3LYP 0.00001 0.00001
BHLYP 0.00005 0.00003
TPSSh 0.00001 0.00001
PBE0 0.00002 0.00001

Hartree-Fock 0.00004 0.00002
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A.1.5 Test of the Gauge Independence of Initial LH Implemen-

tation

Table A.2.: Coordinate files of NH3 used to test gauge dependence of the implementation (top)
and corresponding isotropic shielding constants (in ppm, results for def2-TZVP
and pcSseg-4 with grid setting 5) for various functionals (bottom).

centered 0.000000 0.000000 0.069289
0.807968 0.466482 -0.320910
0.000002 -0.932962 -0.320910
-0.807969 0.466479 -0.320910

rotated 0.069289 0.000000 0.000000
-0.320910 0.807968 0.466482
-0.320910 0.000002 -0.932962
-0.320910 -0.807969 0.466479

translated 100.000000 100.000000 100.069289
100.807968 100.466482 99.679090
100.000002 99.067038 99.679090
99.192031 100.466479 99.679090

def2-TZVP pcSseg-4
functional cent. rot. transl. cent. rot. transl.

1H SVWN 32.096 32.096 32.096 31.382 31.382 31.382
BLYP 32.600 32.600 32.600 31.833 31.833 31.833
PBE 32.477 32.477 32.477 31.758 31.758 31.758
TPSS 32.616 32.616 32.616 31.945 31.945 31.945
TPSSh 32.548 32.548 32.548 31.883 31.883 31.882
B3LYP 32.456 32.456 32.456 31.720 31.720 31.719
PBE0 32.339 32.339 32.339 31.654 31.654 31.654
BHLYP 32.307 32.307 32.307 31.594 31.594 31.594
LH07s-SVWN 32.316 32.316 32.316 31.575 31.575 31.574
LH07t-SVWN 32.076 32.076 32.076 31.326 31.326 31.326
LH12ct-SsirPW92 31.951 31.951 31.951 31.175 31.175 31.175
LH12ct-SsifPW92 31.882 31.882 31.882 31.094 31.094 31.094

15N SVWN 272.722 272.722 272.724 266.383 266.383 266.385
BLYP 265.682 265.682 265.684 258.450 258.450 258.453
PBE 268.840 268.840 268.842 261.877 261.877 261.880
TPSS 265.878 265.878 265.881 259.258 259.258 259.261
TPSSh 266.260 266.260 266.261 259.988 259.988 259.980
B3LYP 266.122 266.122 266.115 259.679 259.679 259.660
PBE0 268.803 268.803 268.796 262.834 262.834 262.812
BHLYP 266.593 266.593 266.566 261.062 261.062 260.975
LH07s-SVWN 270.172 270.172 270.167 263.877 263.877 263.833
LH07t-SVWN 280.812 280.812 280.806 275.845 275.845 275.838
LH12ct-SsirPW92 285.085 285.085 285.082 280.429 280.429 280.417
LH12ct-SsifPW92 286.944 286.944 286.937 282.390 282.390 282.376
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A.2 SI-II

A.2.1 Evaluation of LH Grid Dependency in SSCCs

Table A.3.: Grid dependency in SSCC calculations using the meta-GGA hybrid TPSSh and
several LH functionals.

SSCC grid TPSSh LH07t-SVWN LH12ct-SsifPW92 LH14t-calPBE
1JCO (CO) 1 19.78 19.55 24.32 18.70

1–2a 20.72 19.56 24.32 17.37
1–3a 20.73 19.56 24.32 17.78
2 20.71 19.55 24.32 17.36
2–3a 20.73 19.56 24.32 17.77
3 20.73 19.56 24.32 17.78
4 20.51 19.56 24.32 17.87
5 20.52 19.56 24.32 17.88
7–25a 20.52 19.56 24.32 17.88

1JHF (HF) 1 404.95 438.85 421.63 436.90
1–2a 401.54 439.20 421.57 445.31
1–3a 398.72 439.29 421.64 448.89
2 401.81 439.04 421.51 445.34
2–3a 398.99 439.10 421.54 448.79
3 399.10 439.13 421.54 448.79
4 396.54 439.12 421.54 449.96
5 396.59 439.12 421.53 449.93
7–25a 396.60 439.12 421.53 449.93

1JNN (N2) 1 1.35 1.75 3.10 1.42
1–2a 1.84 1.75 3.09 0.91
1–3a 1.90 1.75 3.10 0.97
2 1.83 1.75 3.10 0.92
2–3a 1.90 1.75 3.10 0.97
3 1.90 1.75 3.10 0.97
4 1.84 1.75 3.10 1.00
5 1.83 1.75 3.10 1.00
7–25a 1.84 1.75 3.10 1.00

a With enlarged radial grid (radsize 2, 3 or 25).
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A.2.2 SSCCs with Various DFAs

Table A.4.: Comparison of computed SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ and MCSCF/BS2
reference data.

Molecule Coupling Exp. Rovib.b CC3a MCSCFb TPSS TPSSh B3LYP PBE0 BHLYP LH07tc LH12ctc LH14tc

CH4
1JHC 125.30b 4.43 121.07 139.61 140.41 133.06 123.72 141.62 114.32 97.51 122.70
2JHH -12.57b -0.58 -12.89 -10.28 -11.38 -13.38 -13.94 -16.16 -15.19 -10.40 -13.37

CH3F
1JHC 149.1b 144.35 163.64 164.91 154.61 144.69 165.68 135.42 115.73 144.89
1JCF -157.5b 5.1 -161.68 -255.28 -243.86 -226.99 -220.40 -190.22 -207.87 -185.11 -209.30
2JHH -9.5b -10.74 -5.12 -6.39 -10.06 -10.62 -12.63 -12.43 -8.47 -10.09
2JHF 46.4b 48.09 57.05 57.65 53.67 51.65 58.92 50.25 35.53 53.91

C2H4
1JHC 156.302b 5.1 153.57 172.73 174.27 166.70 156.44 178.56 145.43 125.47 154.62
1JCC 67.457b 0.9 69.63 71.78 74.33 73.39 70.53 87.10 65.51 48.72 72.73
2JHH 2.394b 0.3 1.06 8.32 7.15 3.28 1.36 0.59 -1.27 1.48 1.37
2JHC -2.403b -1.2 -2.24 -0.67 -1.76 -1.42 -2.88 -5.53 -2.24 0.41 -2.33
3JHH (trans) 19.015b 2.3 18.25 22.54 22.85 20.53 20.15 22.97 17.71 14.90 18.57
3JHH (cis) 11.657b 1.2 11.72 12.53 12.97 13.37 13.11 15.20 12.40 10.29 12.29

C2H6
1JHC 125.206b 124.56 139.71 140.77 133.33 124.63 142.62 115.75 98.48 124.00
1JCC 34.521b 35.51 34.70 36.14 33.79 31.53 41.92 29.82 18.23 34.40
2JHH -13.12b -14.63 -10.17 -11.36 -13.75 -14.19 -16.61 -15.41 -10.79 -13.51
2JHC -4.657b -5.01 -3.34 -3.89 -3.47 -4.15 -5.14 -4.25 -2.53 -4.12
3JHH (gauche) 3.92b 3.61 3.80 3.93 4.36 4.07 4.73 3.86 3.23 3.87
3JHH (trans) 16.92b 15.79 19.35 19.29 17.85 16.64 18.77 14.94 13.22 15.91

C3H4
1JHC (CH) 228.2b 4.5 229.75 249.97 252.23 245.36 231.47 260.31 215.22 190.16 226.80
1JHC (CH2) 167b 5.0 168.49 185.16 186.45 178.70 167.66 189.45 156.57 136.42 166.02
1JCC (CH=CH) 57.1b -0.2 66.34 64.16 67.13 68.68 66.87 83.16 61.43 47.89 68.32
1JCC (CH–CH2) 10.55 7.24 8.77 8.82 8.03 15.62 7.09 0.77 10.10
2JHH 2.03 14.99 14.20 9.51 8.10 9.01 4.73 6.11 7.34
2JHC (CH=CH) 3.15 4.76 3.97 3.66 2.64 -0.01 3.64 5.69 3.67
2JHC (CH–CH2) 2.39 4.31 4.38 3.30 3.03 4.06 2.35 1.48 3.17
2JHC (CH2-CH) -2.86 -0.87 -1.24 -1.74 -2.24 -2.73 -2.38 -1.54 -1.91
3JHH (CH=CH) 1.3b 0.3 6.48 1.11 1.53 2.28 2.59 4.30 2.41 1.71 2.25
3JHH (CH–CH2) -1.4b 0.0 -2.15 -2.31 -2.45 -2.11 -2.21 -2.58 -2.10 -1.45 -2.04

CO 1JCO 16.4a,b 0.76 14.62 15.17 22.26 20.81 18.70 20.61 11.51 19.84 24.58 18.16
CO2

1JCO 16.1b 2.8 15.67 29.22 27.05 23.45 24.17 15.64 23.92 26.99 22.08
2JOO 2.36 -0.22 0.89 2.43 2.48 6.60 1.20 0.87 2.12

H2CO 1JHC 172a 167.89 190.47 192.45 185.30 173.25 198.15 165.03 143.48 174.01
1JCO 26.98 37.58 35.43 35.37 35.21 24.61 33.61 36.20 31.66
2JHH 40.2a 37.29 56.18 54.85 45.00 41.01 44.66 33.43 30.63 38.24
2JHO -3.01 -3.69 -3.77 -2.91 -2.50 -2.95 -3.13 -1.96 -3.70229
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Continuing Table A.4
HFCO 1JHC 267a 242.4 281.90 283.92 270.37 254.00 284.99 241.54 212.67 254.39

1JCF 369a -352.41 -478.08 -464.21 -450.35 -439.08 -407.59 -420.58 -376.70 -426.38
1JCO 14.67 26.82 24.36 22.31 22.33 12.09 22.09 25.46 19.80
2JHF 182a 182.86 203.25 201.86 200.48 188.51 203.27 182.94 152.35 188.80
2JHO -10.01 -10.56 -10.57 -10.61 -9.90 -10.12 -10.71 -9.73 -10.85
2JOF 48.74 72.75 67.78 71.10 69.78 47.98 64.54 74.12 58.24

F2CO 1JCF -308a -294.39 -438.45 -420.71 -403.13 -393.67 -348.15 -385.34 -352.34 -386.38
1JCO 12.08 28.11 25.04 21.30 21.36 10.52 21.36 24.35 19.15
2JFF -100.2 -266.49 -247.59 -232.95 -233.29 -162.91 -194.74 -222.14 -180.89
2JOF 39.78 57.38 54.02 53.97 53.39 39.62 49.21 54.24 45.83

HCN 1JHC 267.3a,b 5.1 249.95 257.92 288.22 291.83 286.19 267.09 306.03 249.20 219.51 263.28
1JCN -19.1a, -18.5b 2 -18.19 -19.07 -12.17 -14.84 -18.20 -16.94 -30.32 -16.04 -10.83 -19.24
2JHN -8.7a, -7.4b 0.8 -7.47 -8.24 -5.17 -5.98 -7.52 -7.40 -8.50 -8.94 -9.75 -8.83

FCN 1JCF -403 -601.90 -579.21 -550.19 -544.01 -493.90 -526.75 -479.85 -530.25
1JCN -5.63 10.13 5.77 -0.56 0.52 -17.55 1.38 5.78 -2.08
2JNF 53.12 64.88 59.22 54.89 53.42 34.57 52.42 49.52 49.90

C2H2
1JHC 247.56a,b 4.86 240.44 247.65 284.94 286.65 275.36 258.82 291.34 237.51 208.30 251.83
1JCC 174.78a,b -10.26 180.96 185.66 190.92 194.22 205.74 198.36 222.26 186.83 162.95 195.50
2JHC 50.14a,b -3.68 53.07 53.63 58.87 58.27 56.66 54.09 54.72 52.14 50.70 53.69
3JHH 9.62a,b -1.27 9.95 10.72 12.22 12.90 11.57 12.67 15.10 10.73 8.65 10.71

CHCF 1JHC 270.08 320.17 321.40 307.87 290.36 324.10 266.06 234.86 281.56
1JCC 268.11 276.92 281.46 296.68 287.21 316.95 271.96 239.28 283.16
1JCF -277.68 -439.04 -427.71 -405.99 -406.69 -371.26 -391.07 -363.17 -393.82
2JHC 68.53 80.08 78.89 74.78 71.69 72.33 67.93 65.34 70.05
2JCF 25.56 20.69 27.51 28.72 30.50 58.19 30.62 14.88 38.53
3JHF 21a 14.45 19.34 16.87 18.55 16.74 9.32 16.09 20.85 15.03

C2F2
1JCC 401.65 424.21 429.03 445.28 433.67 467.70 413.20 367.76 427.41
1JCF -287.3a -256.58 -424.45 -413.66 -389.28 -390.26 -354.26 -372.52 -345.44 -375.96
2JCF 45.54 41.66 47.27 48.00 49.85 74.00 48.85 29.42 57.03
3JFF 2.1a 2.56 4.58 11.27 26.43 20.19 48.70 24.57 -1.27 31.51

FNO 1JNF 152.73 170.40 180.83 187.76 190.94 233.88 165.55 139.34 175.60
1JNO -34.14 -41.96 -41.12 -41.94 -41.52 -34.42 -40.02 -42.12 -38.82
2JOF 130.22 175.70 174.24 191.14 190.28 156.96 166.28 176.76 158.70

HD 1JHD 42.94b 1.81 41.22 41.10 41.66 49.35 45.10 51.56 40.38 39.53 42.90
HF 1JHF 500b -25 538.40 372.21 396.59 449.25 433.75 530.16 439.12 421.53 449.93
N2

1JNN (14N–15N) 1.8b 0.43 1.30 2.42 1.83 1.04 1.41 -1.98 1.75 3.10 1.00
NH3

1JHN -61.4b∗ -0.3 -61.65∗ -64.67 -65.38 -64.43 -60.28 -69.40 -57.42 -50.10 -60.78
2JHH -9.6b 0.7 -10.60 -7.12 -8.33 -10.18 -10.17 -13.59 -10.52 -7.59 -9.07

H2O
1JHO -80.6a,b 4.58 -81.19 -81.19 -71.21 -73.58 -77.63 -73.63 -87.18 -72.93 -66.09 -75.96
2JHH -7.11a, -7.34b 0.67 -7.84 -8.31 -4.05 -5.32 -7.37 -7.26 -11.35 -7.40 -5.71 -6.25

OHF 1JHO -49.7 -27.41 -31.49 -35.52 -32.91 -49.66 -37.00 -33.56 -39.73
1JOF -565.79 -659.75 -680.53 -731.44 -743.10 -813.24 -630.95 -600.29 -651.23
2JHF 89.93 102.12 104.18 113.07 114.64 115.33 103.05 94.83 101.97

OF2
1JOF 300a -251.99 -251.74 -286.46 -319.03 -339.78 -441.27 -269.96 -270.27 -285.50
2JFF 1327.34 1808.58 1766.85 1790.41 1777.09 1734.41 1537.74 1291.74 1602.44

a Ref. 388; b Ref. 387 (and references therein); c LH07t-SVWN, LH12ct-SsifPW92, LH14t-calPBE; * Recalculated for 15N.
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A.2.3 Additional, More Detailed Evaluations of LHs for Dif-

ferent Types of Couplings

Full data for the comparison of various functionals against the reference data are provided

in Tab. A.4 (individual FC, SD, PSO, and DSO terms are analyzed in Tabs. A.5–A.8

below). We will attempt to understand the statistical results presented in the main text

better by discussing different types of couplings in turn, focussing in particular on one-

bond couplings for different combinations of nuclei. We start with cases dominated clearly

by the FC term, followed by cases with sizeable PSO and/or SD contributions. A rather

diverse set of 11 relatively large and positive (ca. 120-250 Hz) 1JCH couplings is contained

in the tests. Here most standard functionals tend to overshoot by about 20 Hz or more

(B3LYP somewhat less), only PBE0 gets within a few Hz of the reference values for pure

hydrocarbons and overshoots a bit more for more difficult heteroatom systems or acety-

lene (and FCCH). Among the LHs, the calibrated LH14t-calPBE performs best, on par

with PBE0. LH07t-SVWN performs almost as well but gives lower values, which deterio-

rates matters for the simplest hydrocarbons but improves agreement for the heteroatom

systems. LH12ct-SsifPW92 values are systematically lower (about 30-40 Hz below the ref-

erence values), while BHLYP generally overshoots, by ca. 20 Hz for the simpler systems

up to ca. 50 Hz for the acetylenes.
1JCC couplings (7 couplings in the test sets) are also FC-dominated and do not involve

lone pairs. They might thus be expected to behave the same as 1JCH. Here most stan-

dard functionals, as well as LH14t-calPBE and LH07t-SVWN, provide values close to the

references for the simpler hydrocarbons, with a somewhat larger overestimate for FCCF.

BHLYP overshoots again, moderately so for simple hydrocarbons, notably so for highly

unsaturated systems like the acetylenes. LH12ct-SsifPW92 undershoots again systemati-

cally.

We have only four 1JEH couplings in the test set in which E contains one or more lone

pairs (NH3, H2O, HOF, HF). HF is special by exhibiting a sizeable PSO contribution,

the other three are clearly FC-dominated. As differences between the PSO terms for

the various functionals are comparably small in this case too, the trends are in all cases

anyway clearly controlled by the FC term. The large positive 1JFH in HF is a challenge

for the DFT methods, most of which strongly underestimate it. Only BHLYP reproduces

this coupling well. The LHs perform comparably to B3LYP or PBE0, while TPSS and

TPSSh give even lower values. The negative 1JOH couplings in H2O and HOF (note

the negative gyromagnetic ratio of 17O) are also best reproduced by BHLYP. All other

functionals, including the three LHs, give somewhat too large values. In contrast, the
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negative 1JNH in ammonia is reproduced well by most functionals, with LH14t-calPBE

and PBE0 performing best. Here BHLYP gives a too low, LH12ct-SsifPW92 a too high

value.

The remaining one-bond SSCCs exhibit more important PSO and partly SD contribu-

tions than the previously discussed ones. We may start with 1JCO, which is represented in

the test sets by five relatively small positive couplings (CO, CO2, F2CO, H2CO, FHCO;

Tab. A.4). BHLYP provides the best agreement with the reference values, while stan-

dard functionals with lower exact-exchange admixtures clearly overshoot. The LHs also

overshoot, in the order LH14t-calPBE < LH07t-SVWN < LH12ct-SsifPW92. The ex-

cellent performance of BHLYP arises again from a particularly good agreement for the

FC term, combined with some error compensation between a somewhat too positive PSO

and a somewhat too negative SD term. Two 1JCN values (HCN, FCN) are included in

Tab. A.4. Here LH14t-calPBE and B3LYP produce values closest to the reference data,

followed by PBE0 and LH07t-SVWN. BHLYP gives clearly too negative values, while

LH12ct-SsifPW92, TPSS, and TPSSh overshoot somewhat. Obviously BHLYP does not

always perform well for couplings involving lone pairs. For the two C–N couplings dis-

cussed here, this may relate to the highly unsaturated nature of the bonds.

The two examples of 1JOF couplings (F2O, FHO) differ distinctly from most other cou-

plings in the two test sets by exhibiting large positive FC, negative PSO, and negative

SD contributions that add up to overall negative SSCCs. Appreciable static correlation

complicates the description by global hybrid functionals, which exhibit increasingly too

negative values with increasing exact-exchange admixture. This leaves TPSS the best-

performing standard functional in this case. Here position-dependent exact-exchange

admixture allows keeping triplet instabilities low, and thus the LHs perform well, with

LH12ct-SsifPW92 on average closest to the reference values.

The FNO molecule is the sole representative for 1JNF and 1JNO couplings and also clearly

a static-correlation case. This is seen for 1JNF, where increasing constant exact-exchange

admixture leads to an increasing overestimate of the sizeable positive SSCC, while TPSS

and the three LHs are closest to the reference value (LH12ct-SsifPW92 is the only func-

tional that underestimates it somewhat). In contrast, the much smaller negative 1JNO

coupling is best reproduced by BHLYP and underestimated somewhat by all other func-

tionals (least so for LH14t-calPBE). HD and NN couplings are the remaining one-bond

couplings not covered yet. They do not offer much further insight (the t-LMF is a constant

for H2 or HD, and the coupling in N2 is extremely small).

We turn to two-bond SSCCs but discuss them more briefly than the larger and more di-

verse set of one-bond couplings. Starting with 2JHH (8 values), no clearcut best-performing
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functional can be identified. Couplings in saturated systems (CH4, C2H6, CH3F) are re-

produced well by a number of functionals, including LHs. The very small couplings in

ethylene and cyclopropene give a more variable picture with no clearcut trends. The larger

positive value in H2CO is best reproduced by LH14t-calPBE. The other LHs and PBE0

are somewhat too low, TPSS and TPSSh clearly too high, while BHLYP and B3LYP rank

in the middle. Finally the couplings involving lone pairs (H2O, NH3) are best reproduced

by LH14t-calPBE, LH07t-SVWN, B3LYP, and PBE0, but variations are overall small.

Two distinct groups of 2JCH couplings are marked by five very small couplings of either

sign (C2H4, C2H6, 3x C3H4) and by two larger positive couplings in acetylenes (HCCH,

FCCH). The former couplings are reproduced reasonably well by several functionals,

including LH14t-calPBE and LH07t-SVWN, but also B3LYP or PBE0. The two larger

couplings are also not too sensitive, only TPSS and TPSSh overshoot more notably. For

the three relatively large 2JHF couplings we only note that BHLYP overestimates them

most notably, while several other functionals, including the LHs, perform better. The two
2JOH couplings (H2CO, HFCO) are small and do not exhibit enough variation with the

functional to allow meaningful conclusions. Two 2JCF couplings (FCCF, FCCH) reveal a

strong overestimate by BHLYP (a smaller one by LH14t-calPBE and an underestimate

by LH12ct-SsifPW92) and better performance by functionals like B3LYP or TPSSh. Very

different behavior because of very different electronic structures is found for the two 2JCF

couplings in the test set (F2CO, OF2). Finally, LH14t-calPBE and LH07t-SVWN are

among the best performers for 2JNF,
2JOF, and

2JOO couplings (overall 5 values). We

refrain from analyzing the three-bond couplings (9 values) in further detail, as they are

relatively small and show only weak dependencies on the functionals.
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A.2.4 Contribution to the SSCCs with Various DFAs

Table A.5.: Comparison of computed FC contribution to SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ
and MCSCF/BS2 reference data
Molecule Coupling CC3a MCSCFb TPSS TPSSh B3LYP PBE0 BHLYP LH07tc LH12ctc LH14tc

CH4
1JHC 119.21 137.65 138.48 130.84 121.55 139.61 112.28 95.47 120.74
2JHH -13.50 -10.93 -12.04 -14.07 -14.64 -16.86 -15.83 -11.01 -14.01

CH3F
1JHC 143.82 162.96 164.25 153.81 143.93 165.02 134.73 115.04 144.26
1JCF -218.12 -309.33 -298.73 -285.86 -279.88 -249.97 -265.32 -241.43 -267.82
2JHH -11.29 -5.67 -6.95 -10.65 -11.24 -13.26 -12.98 -9.01 -10.63
2JHF 41.00 49.90 50.63 45.27 43.19 51.47 42.62 27.74 46.63

C2H4
1JHC 152.59 171.49 173.12 165.41 155.32 177.63 144.29 124.41 153.55
1JCC 75.76 76.75 78.97 79.45 75.79 91.40 71.43 55.17 78.15
2JHH 0.44 7.61 6.33 2.50 0.56 -0.28 -1.91 0.85 0.71
2JHC -0.66 0.95 -0.15 0.31 -1.20 -3.88 -0.54 2.09 -0.68
3JHH (trans) 18.44 22.68 22.95 20.58 20.17 22.82 17.81 15.12 18.65
3JHH (cis) 12.07 12.89 13.33 13.72 13.46 15.58 12.75 10.63 12.65

C2H6
1JHC 123.03 137.92 139.01 131.29 122.66 140.78 113.88 96.60 122.21
1JCC 34.28 33.33 34.77 32.42 30.20 40.53 28.42 16.91 32.93
2JHH -15.00 -10.90 -12.07 -14.41 -14.85 -17.26 -16.03 -11.39 -14.11
2JHC -5.11 -3.45 -4.00 -3.59 -4.29 -5.26 -4.36 -2.65 -4.24
3JHH (gauche) 3.65 3.76 3.86 4.27 3.99 4.63 3.82 3.18 3.82
3JHH (trans) 15.80 19.37 19.38 17.89 16.69 18.85 15.00 13.27 15.96

C3H4
1JHC (CH) 229.67 249.44 251.82 244.96 231.26 260.35 214.96 190.05 226.61
1JHC (CH2) 167.10 183.63 184.95 176.97 166.03 187.91 155.02 134.91 164.54
1JCC (CH=CH) 67.87 64.95 67.47 69.85 67.37 82.26 63.13 50.14 69.50
1JCC (CH–CH2) 11.32 8.22 9.78 9.90 9.07 16.81 7.83 1.39 10.88
2JHH 2.22 14.42 13.62 8.84 7.33 8.35 4.08 5.44 6.70
2JHC (CH=CH) 2.96 4.58 3.75 3.47 2.38 -0.38 3.52 5.60 3.51
2JHC (CH–CH2) 1.98 3.79 3.86 2.80 2.55 3.55 1.90 1.10 2.70
2JHC (CH2-CH) -2.62 -0.66 -1.02 -1.52 -2.01 -2.46 -2.17 -1.34 -1.69
3JHH (CH=CH) 5.93 1.33 1.76 2.41 2.73 4.49 2.58 1.80 2.42
3JHH (CH–CH2) -2.21 -2.19 -2.32 -2.04 -2.13 -2.47 -1.99 -1.36 -1.92

CO 1JCO 6.34 14.34 13.16 10.86 12.77 5.06 11.98 16.53 10.71
CO2

1JCO 12.87 28.03 25.59 21.54 22.21 13.02 21.92 24.65 20.18
2JOO -5.00 -8.34 -7.74 -7.45 -7.13 -4.87 -7.31 -6.89 -6.81

H2CO 1JHC 167.75 190.09 192.14 185.07 173.10 198.20 164.84 143.35 173.83
1JCO 8.21 18.80 16.85 14.53 14.92 5.87 14.24 17.06 12.60
2JHH 36.92 55.83 54.47 44.54 40.48 44.18 33.02 30.15 37.92
2JHO -5.88 -6.14 -6.21 -5.84 -5.33 -5.69 -5.84 -4.76 -6.26
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HFCO 1JHC 241.67 280.94 283.01 269.47 253.16 284.27 240.79 211.98 253.65

1JCF -314.60 -427.18 -413.57 -397.83 -387.22 -357.29 -374.17 -333.84 -379.56
1JCO 6.49 19.51 17.13 14.23 14.60 4.85 14.10 17.21 12.10
2JHF 190.06 212.20 210.58 208.89 196.95 210.99 190.78 159.83 196.61
2JHO -10.39 -10.82 -10.79 -10.95 -10.18 -10.31 -11.03 -10.09 -11.10
2JOF -19.32 -0.84 -5.60 -7.54 -8.53 -27.33 -6.39 5.40 -12.93

F2CO 1JCF -256.94 -394.57 -375.72 -355.19 -346.15 -298.65 -342.54 -311.56 -342.84
1JCO 8.96 26.21 23.14 18.90 19.18 8.44 18.67 21.23 16.75
2JFF 144.15 15.34 28.86 54.63 49.94 105.48 64.56 23.27 79.43
2JOF -3.61 13.42 9.58 6.75 6.03 -7.48 5.71 11.10 2.14

HCN 1JHC 249.63 287.49 291.36 286.06 267.17 306.94 249.08 219.75 263.28
1JCN -13.13 -4.81 -6.71 -9.79 -8.18 -18.27 -9.24 -4.48 -11.62
2JHN -3.98 -1.48 -2.10 -3.29 -3.10 -3.55 -5.09 -5.81 -4.88

FCN 1JCF -365.36 -556.46 -527.63 -493.85 -484.74 -418.39 -477.93 -432.60 -478.88
1JCN 4.64 22.90 19.19 13.38 14.59 -0.64 13.26 16.93 10.60
2JNF 44.98 61.18 56.32 53.42 51.42 37.51 50.02 45.55 48.13

C2H2
1JHC 240.39 284.51 286.49 275.54 259.25 292.64 237.68 208.87 252.13
1JCC 165.83 171.29 173.49 184.41 176.46 196.26 168.70 146.12 176.04
2JHC 47.86 53.40 52.57 50.38 47.72 47.59 46.51 44.93 47.91
3JHH 8.30 10.38 10.96 9.37 10.48 12.64 8.72 6.69 8.72

CHCF 1JHC 269.90 319.65 321.15 307.83 290.57 325.06 266.03 235.14 281.67
1JCC 247.28 251.91 255.39 269.48 259.87 285.59 248.55 217.44 258.46
1JCF -247.47 -398.12 -381.47 -356.20 -353.56 -305.58 -349.14 -323.82 -349.57
2JHC 63.04 74.50 73.07 68.39 65.23 65.11 62.21 59.51 64.19
2JCF 13.02 -3.01 2.80 2.73 4.52 27.06 9.86 -1.59 16.00
3JHF 0.21 2.04 -0.44 0.37 -1.54 -9.03 0.18 5.25 -1.20

C2F2
1JCC 376.08 394.98 398.66 413.22 401.81 431.66 385.49 341.80 398.44
1JCF -241.57 -400.36 -384.67 -357.81 -355.82 -308.95 -348.08 -323.51 -349.35
2JCF 19.99 1.31 6.89 6.95 9.15 30.63 14.95 0.90 21.27
3JFF 8.17 5.68 10.05 4.08 6.52 23.28 6.12 -6.63 13.89

FNO 1JNF 124.98 120.22 137.43 146.99 154.50 225.78 130.52 112.12 141.93
1JNO -18.90 -24.99 -23.70 -23.29 -22.87 -15.80 -22.93 -25.50 -21.57
2JOF -34.13 -13.56 -20.30 -21.60 -22.84 -60.25 -17.93 2.56 -28.89

HD 1JHD 40.22 41.18 41.73 48.38 44.10 50.52 39.44 38.48 41.95
HF 1JHF 348.62 178.07 203.23 244.44 233.28 331.29 251.60 238.88 264.03
N2

1JNN (14N–15N) 0.20 1.99 1.70 1.01 1.45 -0.50 1.42 2.77 0.95
NH3

1JHN -58.50 -61.37 -62.09 -60.81 -56.75 -65.91 -54.07 -46.84 -57.50
2JHH -12.14 -8.76 -9.98 -11.98 -11.99 -15.40 -12.19 -9.17 -10.69

H2O
1JHO -68.88 -58.64 -61.00 -64.07 -60.36 -73.86 -60.39 -53.86 -63.59
2JHH -10.93 -7.28 -8.53 -10.83 -10.70 -14.61 -10.52 -8.59 -9.36

OHF 1JHO -55.55 -34.46 -38.76 -43.63 -41.43 -58.15 -44.10 -40.25 -47.08
1JOF 106.09 126.34 127.65 134.27 129.79 130.27 117.74 96.69 122.57
2JHF 23.01 30.02 32.47 32.69 33.47 41.30 32.72 27.11 32.07

OF2
1JOF 120.58 134.16 136.61 147.62 142.24 137.63 128.81 112.44 132.10
2JFF 97.68 29.22 34.44 30.97 26.18 41.04 26.33 -33.24 54.75

a Ref. 388; b Ref. 387 (and references therein); c LH07t-SVWN, LH12ct-SsifPW92, LH14t-calPBE.
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Table A.6.: Comparison of computed SD contribution to SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ
and MCSCF/BS2 reference data
Molecule Coupling CC3a MCSCFb TPSS TPSSh B3LYP PBE0 BHLYP LH07tc LH12ctc LH14tc

CH4
1JHC 0.07 0.09 0.06 0.18 0.14 0.05 0.13 0.13 0.09
2JHH 0.40 0.42 0.42 0.35 0.35 0.38 0.37 0.31 0.39

CH3F
1JHC 0.05 0.20 0.16 0.20 0.18 0.07 0.16 0.16 0.15
1JCF 20.22 23.82 23.95 24.15 24.10 24.53 22.10 20.60 23.19
2JHH 0.52 0.57 0.58 0.49 0.52 0.54 0.52 0.46 0.53
2JHF -3.12 -4.11 -4.17 -3.32 -3.52 -3.62 -3.19 -2.82 -3.46

C2H4
1JHC 0.13 0.31 0.25 0.29 0.21 0.07 0.26 0.22 0.24
1JCC 2.85 4.23 4.68 4.13 4.71 6.00 3.51 2.74 4.03
2JHH 0.36 0.44 0.55 0.40 0.43 0.46 0.35 0.28 0.40
2JHC 0.11 0.12 0.14 0.12 0.19 0.22 0.08 0.10 0.11
3JHH (trans) 0.24 0.29 0.33 0.35 0.39 0.55 0.35 0.19 0.36
3JHH (cis) -0.04 -0.06 -0.07 -0.07 -0.07 -0.11 0.01 -0.03 -0.07

C2H6
1JHC -0.11 0.03 0.00 0.12 0.09 -0.01 0.09 0.11 0.06
1JCC 1.02 1.27 1.26 1.21 1.17 1.23 1.10 0.98 1.17
2JHH 0.34 0.51 0.49 0.34 0.35 0.34 0.36 0.30 0.37
2JHC 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06
3JHH (gauche) 0.08 0.08 0.11 0.10 0.10 0.11 0.08 0.08 0.08
3JHH (trans) 0.02 0.02 -0.06 -0.06 -0.06 -0.12 -0.03 -0.04 -0.02

C3H4
1JHC (CH) 0.31 0.56 0.52 0.50 0.42 0.35 0.48 0.39 0.46
1JHC (CH2) 0.14 0.29 0.25 0.32 0.28 0.20 0.27 0.25 0.25
1JCC (CH=CH) 3.77 4.86 5.28 4.88 5.40 6.71 3.96 3.20 4.49
1JCC (CH–CH2) -0.36 -0.48 -0.49 -0.43 -0.43 -0.50 -0.35 -0.26 -0.38
2JHH -0.20 0.37 0.38 0.36 0.46 0.36 0.42 0.40 0.41
2JHC (CH=CH) 0.42 0.54 0.56 0.49 0.55 0.58 0.42 0.38 0.47
2JHC (CH–CH2) 0.35 0.40 0.41 0.37 0.36 0.40 0.37 0.30 0.38
2JHC (CH2-CH) -0.17 -0.18 -0.18 -0.16 -0.17 -0.18 -0.15 -0.14 -0.16
3JHH (CH=CH) 0.32 -0.19 -0.21 -0.19 -0.20 -0.29 -0.19 -0.14 -0.20
3JHH (CH–CH2) -0.06 -0.07 -0.08 -0.07 -0.07 -0.09 -0.07 -0.06 -0.07

CO 1JCO -4.94 -6.04 -6.28 -6.66 -6.65 -7.46 -5.72 -5.17 -6.10
CO2

1JCO -2.11 -3.14 -3.08 -3.10 -3.02 -2.93 -2.67 -2.35 -2.80
2JOO 5.30 6.32 6.59 6.82 6.75 7.73 5.96 5.29 6.33

H2CO 1JHC 0.30 0.63 0.58 0.48 0.46 0.29 0.45 0.38 0.47
1JCO -1.64 -2.18 -2.70 -2.66 -3.07 -5.10 -2.06 -1.82 -2.42
2JHH 0.40 0.42 0.43 0.40 0.48 0.41 0.40 0.44 0.33
2JHO -0.73 -1.28 -1.32 -1.11 -1.24 -1.28 -0.98 -0.83 -1.12
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HFCO 1JHC 0.46 0.75 0.74 0.62 0.62 0.54 0.57 0.51 0.61

1JCF 1.18 -0.54 -1.13 -1.06 -1.68 -2.66 -0.64 0.07 -0.96
1JCO -3.13 -4.23 -4.52 -4.57 -4.74 -5.81 -3.79 -3.29 -4.16
2JHF -1.50 -1.23 -1.37 -1.23 -1.41 -1.62 -1.23 -1.28 -1.28
2JHO -0.61 -0.86 -0.89 -0.78 -0.83 -0.89 -0.71 -0.64 -0.79
2JOF -2.87 -3.62 -4.05 -4.16 -4.31 -6.23 -3.52 -3.02 -3.72

F2CO 1JCF 0.00 -0.91 -1.42 -1.46 -1.97 -2.78 -1.12 -0.62 -1.48
1JCO -3.50 -4.69 -4.88 -4.95 -4.99 -5.69 -4.18 -3.63 -4.53
2JFF 24.72 31.45 29.97 26.96 27.23 23.24 25.34 23.69 25.68
2JOF -4.84 -6.82 -6.93 -6.79 -6.82 -7.66 -5.84 -4.90 -6.20

HCN 1JHC 0.52 0.72 0.68 0.53 0.46 0.38 0.61 0.47 0.58
1JCN -5.02 -7.42 -7.87 -7.63 -7.94 -9.64 -6.34 -5.58 -7.02
2JHN -0.71 -1.00 -1.02 -0.93 -0.99 -1.04 -0.73 -0.71 -0.84

FCN 1JCF -9.67 -14.78 -17.42 -16.98 -18.73 -25.59 -14.04 -11.26 -16.08
1JCN -5.50 -7.90 -8.27 -8.08 -8.25 -9.70 -6.71 -5.90 -7.36
2JNF -10.20 -14.43 -14.98 -15.18 -15.25 -17.77 -13.15 -11.17 -13.96

C2H2
1JHC 0.48 0.65 0.60 0.49 0.40 0.31 0.58 0.42 0.53
1JCC 8.54 13.06 13.58 12.81 13.40 15.07 10.72 9.15 11.83
2JHC 1.01 1.34 1.36 1.33 1.41 1.43 1.01 1.00 1.15
3JHH 0.55 0.71 0.75 0.81 0.75 0.87 0.70 0.59 0.71

CHCF 1JHC 0.48 0.61 0.57 0.52 0.43 0.35 0.57 0.43 0.53
1JCC 9.31 13.55 14.04 13.48 13.82 15.42 11.23 9.65 12.28
1JCF -9.73 -16.60 -18.81 -17.40 -19.64 -24.34 -14.31 -10.72 -16.34
2JHC 0.98 1.24 1.27 1.24 1.31 1.33 0.95 0.94 1.08
2JCF 17.95 27.49 28.09 27.06 27.65 29.81 23.16 18.96 24.80
3JHF 3.07 4.79 4.65 4.11 4.29 3.84 3.15 3.03 3.54

C2F2
1JCC 10.18 14.19 14.68 14.31 14.49 16.07 11.91 10.31 12.91
1JCF -7.52 -13.41 -15.32 -14.00 -15.91 -19.60 -11.04 -7.92 -12.76
2JCF 19.10 29.69 29.92 28.77 29.05 30.43 24.36 19.92 25.96
3JFF 34.45 45.92 46.94 51.24 50.32 53.20 46.69 35.92 47.40

FNO 1JNF -12.16 -8.24 -10.78 -12.83 -13.88 -28.28 -11.18 -12.23 -12.35
1JNO 0.69 -0.14 -0.06 0.34 0.25 1.30 0.24 0.47 0.22
2JOF -2.45 8.04 9.80 7.21 9.04 6.59 4.27 1.29 6.65

HD 1JHD 0.51 -0.38 -0.38 0.46 0.48 0.52 0.47 0.48 0.50
HF 1JHF -1.52 -1.50 -2.65 -0.74 -2.36 -4.94 -0.35 -0.39 -2.16
N2

1JNN (14N–15N) -1.86 -2.49 -2.70 -2.74 -2.80 -3.65 -2.30 -2.11 -2.53
NH3

1JHN -0.14 -0.16 -0.14 -0.27 -0.23 -0.18 -0.23 -0.21 -0.19
2JHH 0.64 0.67 0.67 0.64 0.69 0.72 0.69 0.60 0.67

H2O
1JHO -0.60 -0.45 -0.39 -0.68 -0.57 -0.43 -0.62 -0.55 -0.50
2JHH 0.99 0.98 1.00 1.02 1.05 0.99 1.01 0.82 1.01

OHF 1JHO 0.91 2.04 2.03 1.64 1.84 1.61 1.25 0.90 1.51
1JOF -211.71 -318.67 -329.79 -314.21 -324.13 -377.77 -259.27 -221.65 -285.41
2JHF -7.26 -5.16 -6.28 -6.55 -6.52 -11.96 -7.03 -7.45 -7.07

OF2
1JOF -146.51 -200.71 -216.78 -210.24 -219.28 -277.66 -172.31 -151.50 -191.07
2JFF 431.61 787.51 770.68 705.82 709.76 758.13 592.82 476.80 640.02

a Ref. 388; b Ref. 387 (and references therein); c LH07t-SVWN, LH12ct-SsifPW92, LH14t-calPBE.
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Table A.7.: Comparison of computed PSO contribution to SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ
and MCSCF/BS2 reference data
Molecule Coupling CC3a MCSCFb TPSS TPSSh B3LYP PBE0 BHLYP LH07tc LH12ctc LH14tc

CH4
1JHC 1.54 1.63 1.63 1.80 1.77 1.72 1.67 1.65 1.62
2JHH 3.74 3.78 3.79 3.90 3.89 3.90 3.81 3.84 3.80

CH3F
1JHC -0.17 -0.16 -0.15 -0.03 -0.07 -0.03 -0.12 -0.11 -0.15
1JCF 35.84 29.84 30.53 34.34 35.00 34.83 34.97 35.34 34.95
2JHH 3.05 3.01 3.03 3.14 3.13 3.16 3.07 3.11 3.06
2JHF 12.12 13.16 13.09 13.63 13.88 12.98 12.73 12.52 12.66

C2H4
1JHC 0.42 0.50 0.47 0.58 0.49 0.46 0.45 0.42 0.41
1JCC -8.98 -9.27 -9.38 -10.25 -10.04 -10.36 -9.49 -9.26 -9.52
2JHH 4.13 4.16 4.17 4.30 4.27 4.33 4.18 4.24 4.16
2JHC -1.00 -1.05 -1.06 -1.16 -1.17 -1.17 -1.08 -1.09 -1.07
3JHH (trans) 3.15 3.15 3.15 3.20 3.18 3.20 3.14 3.17 3.15
3JHH (cis) 0.77 0.78 0.79 0.82 0.81 0.83 0.80 0.78 0.80

C2H6
1JHC 1.15 1.28 1.28 1.45 1.40 1.39 1.31 1.30 1.27
1JCC 0.14 -0.01 0.00 0.05 0.05 0.06 0.19 0.23 0.20
2JHH 2.91 3.13 3.14 3.24 3.23 3.25 3.17 3.20 3.15
2JHC 0.38 0.39 0.40 0.40 0.41 0.40 0.41 0.41 0.41
3JHH (gauche) 0.80 0.89 0.89 0.92 0.91 0.92 0.90 0.90 0.89
3JHH (trans) 3.04 3.03 3.04 3.09 3.09 3.12 3.05 3.06 3.04

C3H4
1JHC (CH) -0.88 -0.68 -0.75 -0.74 -0.85 -1.01 -0.85 -0.92 -0.91
1JHC (CH2) 0.61 0.61 0.61 0.77 0.70 0.71 0.64 0.63 0.59
1JCC (CH=CH) -5.35 -5.76 -5.74 -6.16 -6.00 -5.91 -5.77 -5.56 -5.78
1JCC (CH–CH2) -0.52 -0.62 -0.64 -0.76 -0.72 -0.80 -0.51 -0.47 -0.51
2JHH 2.75 3.48 3.49 3.61 3.59 3.61 3.52 3.56 3.52
2JHC (CH=CH) 0.75 0.62 0.65 0.69 0.69 0.78 0.68 0.70 0.68
2JHC (CH–CH2) 0.78 0.84 0.84 0.85 0.84 0.83 0.80 0.79 0.81
2JHC (CH2-CH) 0.39 0.43 0.42 0.41 0.41 0.38 0.41 0.40 0.41
3JHH (CH=CH) 3.58 2.70 2.72 2.80 2.80 2.84 2.76 2.79 2.76
3JHH (CH–CH2) 2.31 2.15 2.15 2.20 2.19 2.19 2.16 2.17 2.16

CO 1JCO 13.12 13.86 13.83 14.39 14.39 13.80 13.47 13.11 13.45
CO2

1JCO 5.00 4.39 4.60 5.08 5.03 5.61 4.73 4.74 4.75
2JOO 2.15 1.89 2.13 3.16 2.95 3.83 2.64 2.57 2.70

H2CO 1JHC -0.78 -0.88 -0.90 -0.87 -0.95 -0.94 -0.88 -0.87 -0.91
1JCO 20.41 20.96 21.28 23.49 23.36 23.84 21.43 20.95 21.49
2JHH 3.49 3.46 3.48 3.60 3.59 3.64 3.55 3.57 3.53
2JHO 3.11 3.23 3.26 3.54 3.57 3.52 3.18 3.13 3.17
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Continuing Table A.7
HFCO 1JHC -0.91 -0.98 -1.00 -0.89 -0.95 -0.95 -0.99 -0.99 -1.04

1JCF -39.70 -51.07 -50.22 -52.17 -50.89 -48.35 -46.47 -43.65 -46.58
1JCO 11.36 11.59 11.80 12.71 12.52 13.10 11.83 11.60 11.91
2JHF -3.87 -5.88 -5.50 -5.33 -5.18 -4.25 -4.77 -4.36 -4.69
2JHO 0.47 0.60 0.59 0.60 0.60 0.56 0.51 0.48 0.52
2JOF 70.60 76.88 77.10 82.46 82.28 81.20 74.11 71.41 74.56

F2CO 1JCF -38.61 -44.14 -44.74 -47.63 -46.71 -47.89 -42.84 -41.32 -43.22
1JCO 6.76 6.73 6.92 7.48 7.30 7.90 7.00 6.89 7.06
2JFF -267.98 -312.18 -305.33 -313.45 -309.37 -290.53 -283.55 -268.01 -284.90
2JOF 47.91 50.46 51.05 53.69 53.86 54.44 49.02 47.72 49.57

HCN 1JHC -0.60 -0.40 -0.61 -0.78 -0.94 -1.65 -0.89 -1.10 -0.97
1JCN -0.07 0.02 -0.30 -0.82 -0.86 -2.45 -0.50 -0.80 -0.64
2JHN -3.40 -3.31 -3.48 -3.92 -3.93 -4.52 -3.73 -3.85 -3.73

FCN 1JCF -28.55 -31.23 -34.72 -39.91 -41.11 -50.47 -35.33 -36.54 -35.84
1JCN -4.73 -4.84 -5.12 -5.83 -5.79 -7.19 -5.13 -5.22 -5.29
2JNF 17.92 17.71 17.46 16.24 16.84 14.41 15.13 14.73 15.31

C2H2
1JHC -0.73 -0.51 -0.74 -0.95 -1.13 -1.88 -1.05 -1.29 -1.13
1JCC 6.57 6.56 7.14 8.52 8.49 10.93 7.40 7.67 7.62
2JHC 5.54 5.47 5.69 6.31 6.32 7.06 5.97 6.11 5.97
3JHH 4.69 4.72 4.78 4.99 5.04 5.20 4.89 4.96 4.86

CHCF 1JHC -0.74 -0.54 -0.75 -0.90 -1.07 -1.72 -0.98 -1.16 -1.07
1JCC 11.35 11.30 11.87 13.57 13.36 15.78 12.02 12.02 12.26
1JCF -20.96 -24.81 -27.92 -32.86 -33.96 -41.81 -28.08 -29.10 -28.38
2JHC 5.63 5.46 5.68 6.29 6.28 7.01 5.90 6.01 5.91
2JCF -4.53 -2.91 -2.50 -0.19 -0.79 2.21 -1.52 -1.61 -1.38
3JHF 13.78 15.12 15.28 16.69 16.60 17.12 15.37 15.18 15.30

C2F2
1JCC 15.09 14.73 15.37 17.44 17.07 19.67 15.50 15.34 15.75
1JCF -8.08 -11.27 -14.26 -18.04 -19.12 -26.29 -13.98 -14.58 -14.43
2JCF 7.14 11.36 11.16 12.97 12.34 13.64 10.23 9.30 10.49
3JFF -38.22 -45.18 -43.87 -27.04 -34.80 -25.93 -26.39 -28.71 -27.93

FNO 1JNF 40.17 58.69 54.46 53.87 50.59 36.66 46.48 39.72 46.28
1JNO -15.93 -16.82 -17.35 -18.97 -18.89 -19.91 -17.33 -17.08 -17.46
2JOF 166.55 180.96 184.48 205.26 203.82 210.35 179.68 172.65 180.67

HD 1JHD 0.79 0.62 0.62 0.85 0.83 0.86 0.80 0.90 0.78
HF 1JHF 191.41 195.78 196.17 205.78 203.05 204.09 188.18 183.39 188.36
N2

1JNN (14N–15N) 2.93 2.90 2.81 2.74 2.73 2.14 2.59 2.41 2.56
NH3

1JHN -2.97 -3.08 -3.09 -3.30 -3.24 -3.25 -3.06 -3.00 -3.03
2JHH 6.15 6.23 6.24 6.43 6.40 6.40 6.25 6.27 6.24

H2O
1JHO -11.67 -12.09 -12.16 -12.87 -12.68 -12.87 -11.90 -11.66 -11.86
2JHH 9.29 9.42 9.40 9.66 9.60 9.54 9.32 9.30 9.32

OHF 1JHO 5.05 5.12 5.35 6.57 6.79 6.96 5.96 5.88 5.94
1JOF -459.91 -467.16 -478.14 -551.23 -548.51 -565.47 -489.17 -475.08 -488.13
2JHF 76.15 79.22 79.95 88.91 89.67 87.98 79.34 77.17 78.96

OF2
1JOF -225.66 -184.79 -205.89 -256.01 -262.35 -300.83 -226.07 -230.81 -226.13
2JFF 799.05 992.85 962.73 1054.62 1042.16 936.25 919.60 849.18 908.67

a Ref. 388; b Ref. 387 (and references therein); c LH07t-SVWN, LH12ct-SsifPW92, LH14t-calPBE.
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Table A.8.: Comparison of computed DSO contribution to SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ
and MCSCF/BS2 reference data
Molecule Coupling CC3a MCSCFb TPSS TPSSh B3LYP PBE0 BHLYP LH07tc LH12ctc LH14tc

CH4
1JHC 0.25 0.25 0.24 0.24 0.25 0.23 0.25 0.25 0.24
2JHH -3.53 -3.54 -3.55 -3.56 -3.55 -3.57 -3.55 -3.55 -3.55

CH3F
1JHC 0.65 0.65 0.64 0.64 0.65 0.63 0.64 0.65 0.64
1JCF 0.39 0.39 0.39 0.39 0.39 0.39 0.38 0.39 0.39
2JHH -3.02 -3.03 -3.04 -3.05 -3.04 -3.07 -3.04 -3.04 -3.04
2JHF -1.90 -1.91 -1.91 -1.91 -1.91 -1.92 -1.91 -1.91 -1.91

C2H4
1JHC 0.43 0.43 0.43 0.42 0.43 0.41 0.42 0.42 0.42
1JCC 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.07
2JHH -3.88 -3.89 -3.90 -3.91 -3.89 -3.93 -3.89 -3.89 -3.90
2JHC -0.69 -0.69 -0.70 -0.70 -0.70 -0.70 -0.70 -0.69 -0.70
3JHH (trans) -3.58 -3.58 -3.59 -3.59 -3.59 -3.60 -3.58 -3.58 -3.59
3JHH (cis) -1.08 -1.09 -1.09 -1.09 -1.09 -1.10 -1.09 -1.09 -1.09

C2H6
1JHC 0.49 0.47 0.47 0.46 0.48 0.46 0.47 0.47 0.47
1JCC 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2JHH -2.88 -2.91 -2.91 -2.92 -2.91 -2.94 -2.91 -2.91 -2.92
2JHC -0.34 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35
3JHH (gauche) -0.92 -0.93 -0.93 -0.93 -0.93 -0.94 -0.93 -0.93 -0.93
3JHH (trans) -3.06 -3.07 -3.07 -3.08 -3.07 -3.08 -3.07 -3.07 -3.08

C3H4
1JHC (CH) 0.65 0.65 0.64 0.64 0.65 0.62 0.64 0.64 0.64
1JHC (CH2) 0.65 0.64 0.64 0.64 0.65 0.63 0.64 0.64 0.64
1JCC (CH=CH) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
1JCC (CH–CH2) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
2JHH -2.74 -3.28 -3.29 -3.30 -3.28 -3.32 -3.29 -3.28 -3.29
2JHC (CH=CH) -0.98 -0.98 -0.99 -0.99 -0.98 -0.99 -0.98 -0.98 -0.99
2JHC (CH–CH2) -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72
2JHC (CH2-CH) -0.46 -0.47 -0.47 -0.47 -0.47 -0.47 -0.47 -0.47 -0.47
3JHH (CH=CH) -3.36 -2.74 -2.74 -2.74 -2.74 -2.75 -2.74 -2.73 -2.74
3JHH (CH–CH2) -2.19 -2.20 -2.20 -2.21 -2.20 -2.21 -2.20 -2.20 -2.20

CO 1JCO 0.10 0.10 0.10 0.11 0.10 0.11 0.10 0.10 0.10
CO2

1JCO -0.06 -0.06 -0.06 -0.06 -0.06 -0.05 -0.06 -0.06 -0.06
2JOO -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09

H2CO 1JHC 0.63 0.63 0.63 0.62 0.63 0.60 0.62 0.62 0.62
1JCO 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
2JHH -3.53 -3.52 -3.53 -3.54 -3.53 -3.57 -3.53 -3.53 -3.54
2JHO 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
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HFCO 1JHC 1.18 1.19 1.18 1.17 1.18 1.14 1.17 1.17 1.17

1JCF 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.71 0.71
1JCO -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05
2JHF -1.83 -1.84 -1.84 -1.84 -1.84 -1.86 -1.84 -1.84 -1.85
2JHO 0.51 0.51 0.52 0.52 0.52 0.52 0.52 0.52 0.52
2JOF 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

F2CO 1JCF 1.17 1.17 1.17 1.16 1.16 1.15 1.16 1.16 1.16
1JCO -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13
2JFF -1.09 -1.09 -1.09 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10
2JOF 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

HCN 1JHC 0.41 0.41 0.40 0.39 0.40 0.36 0.39 0.39 0.39
1JCN 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
2JHN 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62

FCN 1JCF 0.57 0.57 0.56 0.55 0.56 0.54 0.55 0.55 0.55
1JCN -0.04 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
2JNF 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

C2H2
1JHC 0.30 0.30 0.30 0.28 0.30 0.27 0.30 0.30 0.29
1JCC 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01
2JHC -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -1.34 -1.35
3JHH -3.59 -3.59 -3.60 -3.60 -3.59 -3.60 -3.59 -3.58 -3.59

CHCF 1JHC 0.44 0.44 0.44 0.42 0.44 0.40 0.44 0.44 0.43
1JCC 0.16 0.16 0.16 0.16 0.16 0.15 0.16 0.16 0.16
1JCF 0.49 0.49 0.49 0.48 0.48 0.47 0.47 0.47 0.48
2JHC -1.12 -1.12 -1.12 -1.13 -1.12 -1.13 -1.12 -1.12 -1.12
2JCF -0.88 -0.88 -0.88 -0.88 -0.88 -0.88 -0.88 -0.88 -0.88
3JHF -2.61 -2.62 -2.62 -2.62 -2.62 -2.62 -2.61 -2.61 -2.62

C2F2
1JCC 0.31 0.31 0.31 0.30 0.31 0.30 0.31 0.31 0.31
1JCF 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58
2JCF -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69
3JFF -1.84 -1.85 -1.85 -1.85 -1.85 -1.85 -1.85 -1.85 -1.85

FNO 1JNF -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27
1JNO -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
2JOF 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

HD 1JHD -0.30 -0.31 -0.32 -0.34 -0.32 -0.35 -0.33 -0.33 -0.33
HF 1JHF -0.09 -0.14 -0.16 -0.23 -0.21 -0.29 -0.31 -0.35 -0.30
N2

1JNN (14N–15N) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
NH3

1JHN -0.07 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06
2JHH -5.25 -5.25 -5.26 -5.28 -5.27 -5.31 -5.27 -5.28 -5.28

H2O
1JHO -0.03 -0.03 -0.03 -0.02 -0.02 -0.01 -0.02 -0.01 -0.02
2JHH -7.18 -7.17 -7.19 -7.21 -7.22 -7.27 -7.22 -7.24 -7.22

OHF 1JHO -0.12 -0.12 -0.11 -0.10 -0.11 -0.09 -0.10 -0.09 -0.10
1JOF -0.26 -0.26 -0.26 -0.26 -0.26 -0.27 -0.26 -0.26 -0.26
2JHF -1.97 -1.96 -1.97 -1.97 -1.98 -1.99 -1.99 -1.99 -1.98

OF2
1JOF -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.39 -0.39 -0.40
2JFF -1.00 -1.00 -1.00 -1.00 -1.01 -1.00 -1.01 -1.01 -1.01

a Ref. 388; b Ref. 387 (and references therein); c LH07t-SVWN, LH12ct-SsifPW92, LH14t-calPBE.

241



A. Appendix

A.3 SI-III

A.3.1 Action of an Angular Momentum Operator Around the

x-Axis on p-Orbitals in an Atom

In case of an atomic system at the origin, the contribution to the Fock matrix for the τMS

model is given by

F
τMS ,Bk

µν,XC =
i

4c

∫︂
δf

δτ

[︂
ϕν

(︁
r×∇ϕ∗

µ

)︁
k
− ϕ∗

µ (r×∇ϕν)k

]︂
, (A.9)

where f is an arbitrary functional and the the x component of the rotation operator is

given by

(r×∇ϕ)x = y · ∂ϕ
∂z

− z · ∂ϕ
∂y

(A.10)

It is noted in passing, that for atoms at the origin y = yK , since RK = 0. Using Gaussian

basis functions (see also Eq. A.6), the above definition and the recurrence relation [269]

∂Gx
iK

∂XK

= −∂Gx
iK

∂x
= 2αGx

i+1K − iGx
i−1K , (A.11)

the rotation operator of Eq. A.10 gives

(r×∇ϕ)x = −yK ·
(︂
2αG̃

r

ijk+1,K − kG̃
r

ijk−1,K

)︂
+ zK ·

(︂
2αG̃

r

ij+1k,K − jG̃
r

ij−1k,K

)︂
= kG̃

r

ij+1k−1,K − jG̃
r

ij−1k+1,K

(A.12)

That is, if ϕ is of py character, a pz orbital is obtained, and vice versa. s-Orbitals, as well

as px orbitals vanish under application of the x rotation operator. It should be noted,

that within the CPKS equations the MO indices run over the occupied and virtual block,

respectively. If no ml ≥ 1 orbital is present in either of the sets, the contributions vanish.

A.3.2 Models for the Kinetic Energy Density

Within the context of the present work, four different models for the kinetic energy density

have been employed. The two gauge-corrected τD (Eq. 3.87) and τMS (Eq. 3.86), but also

an uncorrected explicitly gauge dependent version (τC), related to the common kinetic
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energy density (Eq. 2.42) and the ad-hoc corrected variant implemented within the Orca

program code. Using the general derivative operator of Eq. 2.80, and applying the direct

derivative with respect to magnetic field, the contributions due to the kinetic energy

density within the perturbed potential are obtained (here, f is an arbitrary functional

with f = f [τ̃ ])

F
τ̃ ,Bk
µν,XC =

∫︂
δf

δτ̃

∂

∂Bk

[︃
∂τ̃

∂Dµν

]︃
dr. (A.13)

The contribution to the Fock matrix of the uncorrected energy density is given by

F
τC ,Bk

µν,XC =
i

4c

∫︂
δf

δτ

[︃
(Rµν × r)k ∇ϕ∗

µ∇ϕν

− ϕν

(︁
(Rν −RG)×∇ϕ∗

µ

)︁
k
+ ϕ∗

µ ((Rµ −RG)×∇ϕν)k

]︃
dr, (A.14)

which is gauge dependent due to the presence of RG. The ad-oc corrected variant (τ0)

sets Rν−RG = 0 and Rµ−RG = 0, and thus only the first contribution on the right hand

side remains. The contribution of the gauge-corrected model by Maximoff and Scuseria

is given by

F
τMS ,Bk

µν,XC =
i

4c

∫︂
δf

δτ

[︃
(Rµν × r)k ∇ϕ∗

µ∇ϕν

+ ϕν

(︁
(r−Rν)×∇ϕ∗

µ

)︁
k
+ ϕ∗

µ ((r−Rµ)×∇ϕν)k

]︃
dr, (A.15)

without any gauge dependence as shown in Eq. A.14. For the model by Dobson the

contribution to the Fock matrix is given by

F
τD,Bk

µν,XC =

∫︂
δf

δτ

[︃
i

4c

(︃
(Rµν × r)k ∇ϕ∗

µ∇ϕν

− ϕν

(︁
(Rν −RG)×∇ϕ∗

µ

)︁
k
+ ϕ∗

µ ((Rµ −RG)×∇ϕν)k

)︃
− i

2ρ
jBk
p

[︁
ϕν∇ϕ∗

µ − ϕ∗
µ∇ϕν

]︁ ]︃
dr, (A.16)

where the last term on the right-hand side corrects the gauge dependence of the model

and jBk
p is given in Eq. (18) of P-III.
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A.3.3 Test of the Gauge Independence of the CDFT LH Implementation

Table A.9.: Tests of the gauge influence on isotropic shielding constants for NH3 (in ppm, DFT/pcSseg-4 with grid setting 5) for one
meta-GGA and one LH functional (input structure as indicated on the left hand side). The table on the top displays
gauge independence using different models for τ (see Eqs. 3.86 and 3.87 within the present work), whereas the table on
the bottom shows gauge dependence using an uncorrected (explicitly gauge-dependent) model for τ (see Eq. A.14) with
different choices for the gauge origin.

TPSS LH12ct-SsifPW92
Nucleus x y z τMS τD τ0 τMS τD τ0
N 0.000000 0.000000 0.000000 259.6 260.3 264.2 282.7 272.3 272.3
H 0.933748 0.000000 -0.385356 31.96 31.89 32.13 31.11 31.34 31.32
H -0.466874 -0.808650 -0.385356 31.958 31.89 32.13 31.11 31.34 31.32
H -0.466874 0.808650 -0.385356 31.958 31.89 32.13 31.11 31.34 31.32

N 0.000000 0.000000 0.000000 259.6 260.3 264.2 282.7 272.3 272.3
H 0.000000 0.000000 1.010141 31.96 31.89 32.13 31.11 31.34 31.32
H 0.969231 0.000000 -0.284562 31.96 31.89 32.13 31.11 31.34 31.32
H -0.380116 0.891586 -0.284553 31.96 31.89 32.13 31.11 31.34 31.32

N -100.000000 -100.000000 -100.000000 259.6 260.3 264.2 282.7 272.4 272.3
H -99.066252 -100.000000 -100.385356 31.96 31.89 32.13 31.11 31.34 31.32
H -100.466874 -100.808650 -100.385356 31.96 31.89 32.13 31.11 31.34 31.32
H -100.466874 -99.191350 -100.385356 31.96 31.89 32.13 31.11 31.34 31.32

N 100.000000 100.000000 100.000000 259.6 260.2 264.2 282.6 272.3 272.3
H 100.933748 100.000000 99.614644 31.96 31.89 32.13 31.11 31.34 31.32
H 99.533126 99.191350 99.614644 31.96 31.89 32.13 31.11 31.34 31.32
H 99.533126 100.808650 99.614644 31.96 31.89 32.13 31.11 31.34 31.32

TPSS LH12ct-SsifPW92
τ τ τC τ τ τC

RG x 100.000000 0.000000 0.000000 100.000000 0.000000 0.000000
y 100.000000 0.000000 0.000000 100.000000 0.000000 0.000000
z 100.000000 0.000000 -0.068423 100.000000 0.000000 -0.068423

x y z Nucleus
N 0.000000 0.000000 0.000000 143.2 261.0 261.1 256.7 271.9 271.9
H 0.933748 0.000000 -0.385356 120.94 31.59 31.62 33.15 31.44 31.44
H -0.466874 -0.808650 -0.385356 -205.34 31.59 31.62 20.05 31.44 31.44
H -0.466874 0.808650 -0.385356 33.52 31.59 31.62 29.64 31.44 31.44
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A.4 SI-V

A.4.1 Detailed Analysis of Shieldings for Individual Nuclei of

the Test Set

As we see some variation of the best-performing methods for the different nuclei, here we

scrutinize them separately for the subsets. We reiterate that the 1H shieldings exhibit

different, on average lower demands on the electronic-structure methods than the other

nuclei studied here. Furthermore, the 11B, 13C and 19F subsets exhibit relatively moderate

demands, as they include less systems with appreciable static correlation in comparison

with the more demanding 15N and 17O subsets. The 31B/33S subset appears to be less

critical in terms of static correlation but might already pose higher demands to some

functionals regarding the high-density core regions of these third-row atoms. Note that

we still look at absolute shieldings and do not yet take into account the compensation of

systematic errors enabled by going to relative shifts.

1H shieldings. As we will discuss deviations relative to the shielding range covered by

the reference data, we note that for the 1H subset this range is 16.84 ppm. That is,

1% relative deviation corresponds to ca. 0.17 ppm. Most methods give give rel. MAEs

below 2% (0.34 ppm). Exceptions are (a) the SVWN LDA (4.5%), (b) HF (2.3%), (c)

some τC and τ0 implementations of τ -dependent meta-GGAs and GHs, and of the LHs

LH14t-calPBE, LH20t, mPSTS and LHJ14, and (d) the τMS implementations of the LHs

LH12ct-SsirPW92 and LH12ct-SsifPW92 (data for the latter two categories are provided

in Tab. S13 in Supporting Information of SI-V). The poor performances of some τC

variants likely reflect the fact that the gauge dependence of τ may be most detrimental

for the 1H shieldings, as the hydrogen atoms in question may be far from the center

of mass used as a gauge. While the ad hoc τ0 model removes the gauge dependence,

it apparently does not eliminate the problems with 1H shieldings for all τ -dependent

functionals (even though the results for some other nuclei at this level may benefit from

error compensation with some functionals like M06-L or VSXC). The τMS treatment

has been shown earlier to deteriorate the 1H shielding results for some t-LMF-based

LHs without calibration function, with LH12ct-SsirPW92 and LH12ct-SsifPW92 being

the most extreme cases (see also P-III). Several methods provide rel. MAEs below 1%,

including DSD-PBEP86 (0.3%), B2GP-PLYP (0.5%), B2PLYP (0.6%), cLH20t (0.7%),

B97-2, BHLYP, CAM-B3LYP, ωB97X-D, ωB97X-V, cLH14t-calPBE, MP2 (all 0.8%),

B3LYP, cPW6B95 (both 0.9%). Here the specialized KTx GGAs are not among the
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best performers, and the otherwise well-performing LHs cLH12ct-SsirPW92 and cLH12ct-

SsifPW92 also fall slightly behind.

We can compare the present results to a previous benchmark on relative 1H shifts, en-

compassing a narrower set of 48 values (the present subset contains 124 nuclei in more

widely varying environments) and fewer DFT methods, against CCSD(T)/cc-pVQZ refer-

ence data. [65] The lowest MAD in that work was provided by MP2 (0.08 ppm), while HF

(0.17 ppm) and the best-performing DFT methods (KT2 0.15 ppm, B97-2 0.16 ppm) were

roughly on par. The more diverse set studied here gives a somewhat different perspective,

where MP2 exhibits an MAE of 0.13 ppm and is outperformed by the DHs DSD-PBEP86

(0.06 ppm), B2GP-PLYP (0.08 ppm), B2PLYP (0.09 ppm) and matched by several LHs

(cLH20t 0.12 ppm, cLH14t-calPBE 0.13 ppm), and a number of other functionals from

rungs 2-4 (including B97-2, 0.13 ppm) are not far behind. The former top-performing

KT2 (0.25 ppm) does not belong to them. Of course the DHs and LHs had not yet been

available for evaluation at the time of Ref. 65, and the present 1H shielding set features

somewhat more demanding bond environments for the hydrogen atoms.
11B shieldings. Here the shielding range covered (without BH) is 141.5 ppm, and 1%

relative deviation thus corresponds to 1.4 ppm. This is a smaller value than for the other

second- and third-period nuclei. We find that the rel. MAEs for some functionals can

be rather large for this subset (this changes partly for relative shifts, see below). Static

correlation plays a relatively small role (after removal of BH). Hartree-Fock is thus a more

reasonable starting point (rel. MAE 4.5%), and MP2 is clearly excellent (rel. MAE 0.4%,

rel. MSE +0.1%). In fact, BF gives the largest deviation of MP2 from the reference data

(1.7% or 2.3 ppm). Given that almost all DFT functionals suffer from the systematically

too large paramagnetic contributions (negative MSEs, except for cMN15-L), none of them

can compete here with MP2. Even the DSD-PBEP86 DH falls behind (rel. MAE 1.9%,

rel. MSE -1.9%), the other DHs much more so (rel. MSE: B2PLYP -4.5%, B2PG-PLYP

-3.1%).

The otherwise best-performing functionals are those that minimize this systematic de-

shielding. Disregarding some τC and τ0 variants of τ -dependent functionals (see discussion

further below), only a few functionals keep this systematic underestimate to less than -

3%: apart from DSD-PBEP86, these are cLH12ct-SsifPW92 (-0.7%), cLH12ct-SsirPW92

(-1.4%), cLH20t (-1.5%), KT3 (-2.2%), cB97M-V (-2.3%), cVSXC (-2.5%), KT1 (-2.6%),

and KT2 (-2.7%). For the most part, these rel. MSEs translate into rel. MAEs of the

same magnitude or very slightly larger. cMN15-L stands out with a positive rel. MSE

of +3.7%. Many standard functionals exhibit much more negative rel. MSEs than the

better-performing functionals (see Tab. S13 in Supporting Information of SI-V). The rel.
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MSEs of the non-specialized GGAs range from -6.2% (B97D) to -11.0% (BLYP) (SVWN

LDA: -14.0%). Apart from the better-performing cB97M-V and cVSXC (-2.3% and -2.5%,

see above) and the unusual cMN15-L, those for the CDFT meta-GGAs range from -3.8%

(cM06-L) to -5.7% (cTPSS). The GHs range from -4.2% (BHLYP) to -8.3% (B3LYP),

the RSHs from -4.2% (ωB97X-V) to -8.1% (CAM-B3LYP). We have already mentioned

the top-performing LHs above. Most of the remaining LHs fall into the range of the GHs

or RSHs, from -3.2% (cmPSTS) to -5.0% (LH07s-SVWN), with cLHJ14 (-8.7%) standing

out negatively, in line with the above discussion of the shape of its LMF. We can thus

conclude that in this case the functionals that come closest to the MP2 performance,

without being able to reach it, are not the DHs but several LHs (in particular cLH12ct-

SsifPW92, cLH12ct-SsirPW92). This is notable in view of the much lower computational

effort involved for the LH computations.
13C shieldings. This much larger subset (93 nuclei) covers a shielding range of 402 ppm.

A 1% relative deviation corresponds thus to ca. 4 ppm. As for the 11B subset, static

correlation cases tend to be of minor importance here. The CS2 molecule provides the

largest deviation of MP2 from CCSD(T) (16.4 ppm, 4.1%). Therefore, Hartree-Fock is

a very reasonable starting point (rel. MAE 2.6%, rel. MSE -2.2%), and MP2 performs

outstandingly (rel. MAE 0.5%, rel. MSE 0.0%). For most functionals, systematically too

low shieldings can again be noted, and thus the negative MSE often equals or approaches

the MAE value. Given the larger shielding range, the relative deviations tend to be

smaller here than for the 11B subset.

cMN15-L again holds a special position by being the only functional with a positive rel.

MSE (+1.6%, rel. MAE 1.8%). Mentioning otherwise only functionals with rel. MSEs

less negative than -2%, we get the following rel. MAEs: cLH12ct-SsifPW92 (1.2%), DSD-

PBEB86 (1.3%), cLH12ct-SsirPW92 (1.4%), KT1 (1.6%), cB97M-V and KT2 (1.7%),

cLH20t (1.8%), KT3 (1.9%), cVSXC (2.1%). All other functionals give larger deviations.

In the range of rel. MAEs below 3% we find the two other DHs, several of the remaining

LHs, the ωB97X-V RSH, cSCAN, and cr2SCAN. The largest rel. MAEs are represented

by cM06 (6.6%) and SVWN (5.7%). The widely used B3LYP is also among the worse-

performing functionals (5.0%) for the 13C shieldings.

As for the 1H shieldings (see above), we may compare to the relative 13C shift set for

40 nuclei of ref. 65 (cc-pVQZ data). In that work, MP2 also outperformed all DFT

approaches, giving an MAD of 1.9 ppm (HF 8.0 ppm), while the best functionals were

B97-2 (3.9 ppm) and KT2 (4.2 ppm). For the present, more diverse and larger 13C

shielding set, MP2 gives an only slightly larger MAE of 2.1 ppm (HF 10.5 ppm). As

discussed above, the best DFT methods do not reach the MP2 performance for this
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subset, confirming the results of the previous work. The lowest MAEs correspond to 4.9

ppm (cLH12ct-SsifPW92) and 5.0 ppm (DSD-PBEP86), while the best functionals from

ref. 65 trail somewhat behind (KT2 7.0 ppm, B97-2 13.2 ppm) but at least for KT2 are

still in the range of the better-performing functionals for this nucleus.

Clearly, the 11B and 13C subsets are ideal for MP2, but the best LH cLH12ct-SsifPW92

offers a reasonably accurate alternative at substantially lower computational cost. We

will see below that relative shifts provide an easier target for many methods.
15N shieldings. Including the PN molecule, this subset (43 nuclei) covers a shielding

range of 626 ppm. That is, a 1% relative deviation corresponds to 6.3 ppm. Together

with the 17O subset discussed below, the 15N set exhibits the largest demands regarding

cases with static correlation. In addition to PN, further molecules with larger static

correlation are, e.g., H2CN2, CH3NO2, HN3, and NO –
3 . Consequently, Hartree-Fock

starts out with a rel. MAE of 5.6%, and MP2 (3.1%) is clearly inferior to the best DFT

approaches for the 15N shieldings. The latter are represented by cMN15-L (0.9%, rel.

MSE +0.5%) and DSD-PBEP86 (1.2%, rel. MSE -0.7%), with several further functionals

with rel. MAEs below or equal 2.0% (KT1, cB97M-V, cLH12ct-SsifPW92, cLH12ct-

SsirPW92, B2GP-PLYP, KT2, KT3), and others below the 3% mark, i.e. still competitive

with MP2 (B2PLYP, cLH20t, cLH07t-SVWN, cVSXC). The functionals with the largest

negative rel. MSEs are cM06 (-8.0%) and cM06-2X (-6.6%). The fact that DFT can

outperform MP2 for 15N shifts or shieldings has been noted before for typically much

smaller or less definite benchmark sets. [39,401,402] Translating the relative MAEs for the

best-performing functionals into ppm values, we can conclude that modern DFT methods

allow the computation of 15N shieldings with mean absolute errors of about 5-10 ppm for

a diverse and demanding data set, better than the ca. 20 ppm MAE provided by MP2.
17O shieldings. Excluding O3, the

17O shielding subset (32 nuclei) covers a range of

800 ppm. A relative deviation of 1% in this case corresponds already to 8 ppm. As for

the 15N subset discussed above, the nature of typical oxygen compounds also guarantees

that cases with larger static correlation are present, even though the by far most severe

case ozone (see above) is excluded from the statistics. Other typical systems included

with static correlation and large paramagnetic contributions are, e.g., CH3NO2, FNO,

H2CO, CH3CHO, SO2, and OF2. As a result, Hartree-Fock (rel. MAE 4.1%, rel. MSE

-3.7%) provides an only moderately good starting point, and MP2 (rel. MAE 2.7%, rel.

MSE +2.3%) is reasonable but not outstanding. Clearly lower rel. MAEs below 2% are

provided by DSD-PBEP86 (0.9%), cLH12ct-SsifPW92 (1.6%), B2GP-PLYP and cLH12ct-

SsirPW92 (1.8%), and cMN15-L (1.9%). The latter functional is again the only one with

a positive rel. MSE (+1.3%), while the negative ones for the other functionals tend to be
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close in magnitude to the MAEs (except DSD-PBEP86 -0.6%). Further functionals that

provide lower rel. MAEs than MP2 are cB97M-V (2.2%), B2PLYP (2.4%), cLH20t, KT1

and cSCAN (all 2.6%). The worst performers are cM06 (8.1%) and cM06-2X (7.8%). In

conclusion, several DFT functionals outperform MP2 also for the relatively difficult 17O

shieldings of the present test set. DSD-PBEP86 reproduces the reference 17O shieldings

with an MAE of ca. 7 ppm, and several other functionals (two LHs, one DH, one CDFT

meta-GGA) give relatively low MAEs of 12-15 ppm.

19F shieldings. The reference shieldings of the 19F subset cover a range of 923 ppm,

from FNO (-276 ppm) to ClF (+647 ppm). A relative deviation of 1% corresponds thus

to ca. 9.2 ppm. While the subset contains a number of systems with larger paramagnetic

contributions (e.g. F2, FNO, OF2; see Tab. S11 in Supporting Information of SI-V),

static correlation does not play a crucial role, if F –
3 is excluded. Interestingly, the largest

deviation of MP2 results from the CCSD(T) (39.4 ppm, 4.3%) is seen for the most shielded

ClF (more shielded than F– !). This large shielding has long been known to arise from

off-center paramagnetic currents. [403–405] That is, while the induced local paramagnetic

currents are paratropic around Cl, they turn diatropic around the fluorine nucleus. MP2

works well for the entire 19F subset (except for the excluded F –
3 , see above) and exhibits

a rel. MAE (rel. MSE) of 0.6% (+0.4%). Indeed, the underlying HF method is already

a reasonable starting point (rel. MAE 2.1%, rel. MSE +2.1%). Given their tendency

to overestimate the (negative) paramagnetic contributions, it is difficult for the DFT

methods to outperform MP2 for this subset, as we discussed above for the 11B and 13C

subsets. We note in passing that due to the positive paramagnetic shielding of the special

case of ClF the negative MSEs of most DFT functionals tend to be slightly smaller than

the negative of the corresponding MAE values, in contrast to the other nonhydrogen

subsets of this work.

Given the good performance of MP2, the DHs perform well but do not outperform

MP2. Notably, however, some LHs are as good here as the best DH (DSD-PBEP86).

In the order of increasing rel. MAE, the best-performing functionals with values below

2% are: cLH12ct-SsifPW92 (0.9%), DSD-PBEP86, cMN15-L (1.0%), cLH12ct-SsirPW92

(1.1%), cLH20t (1.3%), B2GP-PLYP (1.5%), BHLYP (1.8%), cB97M-V and cLH07t-

SVWN (1.9%). Further functionals with rel. MAEs below or equal to 3% (in addition to

HF) are: cLH14t-calPBE (2.1%), B2PLYP (2.2%), ωB97X-V (2.3%), cωB97M-V (2.6%),

cM06-L (2.8%), cSCAN and ωB97X-D (3.0%). GGA functionals feature rel. MAEs of

4.2-5.7% (the SVWN LDA gives 6.3%). Notably, here the specialized KT1-KT3 set is

still best among the GGAs (4.2-4.5%) but not by as much as for the other nuclei of this

work. Most GHs range from 3.5% (PBE0) to 4.2% (cM06). Interestingly, in spite of
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its large EXX admixture of 54% cM06-2X is one of the better-performing GHs (3.1%),

closely followed by B97-2 (3.2%), and only behind BHLYP (see above). In a way this

confirms that static correlation is not a particular issue for the 19F subset. Nevertheless,

fluorine NMR shifts have often been considered particularly difficult for DFT methods.

Indeed, in view of the larger cost of MP2 or DHs, GHs with large EXX admixture, such as

BHLYP or related constructions (or sometimes even Hartree-Fock), had been suggested

to be the method of choice in the field. [406–409] The relatively high and compact electron-

density distributions around the 19F nuclei and the related induced currents seem to be

an important aspect explaining why larger EXX admixtures are favorable in this case.

Notably, however, the best LHs, DHs, and the CDFT meta-GGA cMN15-L, reduce the

relative MAE by a factor of up to 2 compared to the so far recommended BHLYP, and

they perform well also for the other nuclei in this overall test set, while BHLYP becomes

much worse in the presence of more static correlation (e.g. for 15N, 17O), and even for

the 13C shieldings. The best LHs and cMN15-L (which exhibits a rel. MSE of +0.1%)

achieve this improvement without increasing the computational effort, and they can thus

be recommended for routine use in the field.

31P/33S shieldings. Given that the subsets for the two third-row nuclei contain only 14

(6) nuclei for 31P (33S) and exhibit rather comparable shielding ranges (830 ppm for 31P,

984 ppm for 33S), we lump them together to one subset of 20 nuclei (including PN and

SO2), and their weighted relative deviations are discussed. That is, for 31P 1% relative

deviation corresponds to 8.3 ppm, for 33S to 9.8 ppm. As expected, the largest deviations

of MP2 results from the CCSD(T) reference data occur for PN (47.2 ppm, 5.7%) and SO2

(43.3 ppm, 4.4%). The overall rel. MAE (rel. MSE) of MP2 for the combined subset

is 1.4% (+1.1%). This is closer to the subsets with the smallest importance of static

correlation than to those with the largest ones. Hartree-Fock performs only moderately

well (4.1%, -2.7%).

The only DFT methods that outperform MP2 here are the DSD-PBEP86 DH (rel. MAE

1.1%) and cB97M-V (1.4%). While several LHs are still among the better-performing

functionals, they fall behind MP2, and a number of other functionals also provide lower

deviations. In the order of increasing rel. MAE, the further best-performing function-

als below 3% are: cVSXC, KT1 (1.5%), KT2, KT3 (1.7%), cr2SCAN (2.0%), cSCAN,

crSCAN, cLH12ct-SsifPW92 (2.1%), cM06-L (2.2%), cLH12ct-SsirPW92 (2.3%), B2PG-

PLYP (2.4%), cLH20t (3.0%). Of course the inclusion of the static-correlation cases PN

and SO2 does influence this order to some extent. Excluding them (see Tab. S13 in Sup-

porting Information of SI-V for these modified statistical data) would bring the best LHs

(1.8%, 1.9%) closer to MP2 and DSD-PBEP86 (both 1.3%), on par with cVSXC (1.8%)
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and in front of the KTx functionals (2.0-2.3%). This demonstrates the importance of the

makeup of test sets. Nevertheless, it seems that the t-LMF-based LHs perform slightly

less well for these two third-row nuclei than for the second-row ones discussed above. In

view of recent analyses for the hyperfine couplings of 3d, 4d, and 5d transition metal com-

plexes, [410] it appears possible that the t-LMF, which does not respect the high-density

coordinate-scaling limit, [238] does not provide a sufficient increase of EXX admixture in

the core when going to the larger core densities of the heavier atoms. These aspects are

obviously of importance in constructing improved LMFs.

Non-specialized GGAs range from 4.3% (HCTH) to 7.3% (BLYP), with the latter only

slightly below SVWN (7.4%). As mentioned above, cB97M-V and cVSXC are the best-

performing CDFT meta-GGAs for this subset. Interestingly, in contrast to the other

subsets, here cMN15-L does not perform particularly well and overestimates the shieldings

systematically (rel. MAE 3.6%, rel. MSE +3.6%). With rel. MAEs comparable to this,

cTPSSh (3.7%) is the best GH, followed by B97-2 (4.3%) (with several others performing

much worse, up to 10.2% for the overall worst-performing cMN15). ωB97X-V (3.4%) and

cωB97M-V (3.8%) are again the best RSHs.

A.4.2 Detailed Analysis of Shifts for Individual Nuclei of the

Test Set

Due to the error compensation discussed in the main text, some methods reach a higher

ranking for the shifts than for absolute shieldings. Here we also extend the discussion

for the individual subsets for the shifts beyond what has already been stated in the main

text.
1H shifts. Note that the abovementioned error compensation does not work in most

cases for the 1H shifts, due to the absence of a core shell. Here the rel. MAEs for

the shifts are often even somewhat larger than those discussed further above for the

shieldings. Compensation of some systematic errors is, however, seen for a few cases like

cLH12ct-SsirPW92, cLH12ct-SsifPW92, cmPSTS, HF, and SVWN. cLH20t is now the

best-performing functional on rungs 1-4.
11B shifts. Massive improvements of a number of methods are seen upon going from

shieldings to shifts for the 11B subset. DSD-PBEP86, which had been clearly behind

MP2 for absolute shieldings, now gives the lowest rel. MAE (0.3%; note that this corre-

sponds to less than 0.5 ppm!). This is followed by B2GP-PLYP (0.6%), LH07s-SVWN,

cLH12ct-SsirPW92, cLH12ct-SsifPW92, B97-2, ωB97X-D (all 0.7%), B2PLYP, cLH07t-

SVWN (0.8%), B97D, cTPSSh (0.9%), cLH14t-calPBE and cr2SCAN (1.0%), with an
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appreciable number of further functionals below the threshold of 2%. That is, the error

compensation when going to relative shifts is large for 11B, rendering this subset overall

relatively uncritical for shifts. We also note that some of the advantages of the specialized

KT1-KT3 functionals over other GGAs are removed for these relative 11B shifts.
13C shifts. Somewhat less pronounced but still notable differences between shieldings

and shifts apply to the 13C subset: while MP2 had clearly outperformed all DFT methods

for the absolute shieldings, none of the DFT methods giving rel. MAEs below 1% (4 ppm)

and only a relatively small number below 2% (8 ppm), matters change for the relative

shifts: now cmPSTS (0.6%) outperforms MP2 and DSD-PBEP86 (0.7%), and some of the

functionals from the lower rungs also perform strikingly well (cTPSS, cTPSSh, cM06-L,

all 0.9%), cτ -HCTH (1.0%). The remaining DHs, the remaining LHs (except cLHJ14),

the KT1-KT3 specialized functionals, B86, HCTH, B97D, the remaining CDFT meta-

GGAs (except cMN15-L), and B97-2 all give values below 2%. Many functionals with

large deviations for absolute shieldings also exhibit lower relative errors for the shifts.

The largest outliers are still SVWN (4.2%) and cM06-2X (3.8%).
15N shifts. Given the much larger importance of paramagnetic contributions and static

correlation for the 15N shieldings (see above), here the compensation of errors in the core

contributions has a lower impact. Nevertheless, a few changes of ”best methods” occur

compared to the shieldings. MP2 (2.9%) clearly is still not the top-performing method

for this subset. DSD-PBEP86 (1.1%) and cMN15-L (1.2%) still belong to the methods

with the smallest rel. MAE but have reversed their order, and cB97M-V performs now

comparably well (1.1%). What becomes more clear for the relative 15N shifts is the

advantage that the absence of EXX admixture provides for some semi-local functionals

in view of many systems with appreciable static correlation: KT3 (1.1%), KT1, KT2

(1.2%), cτ -HCTH (1.6%), cVSXC (1.7%), cM06-L (1.8%), cSCAN (1.9%) B97D and

cr2SCAN (2.0%), and HCTH (2.1%) are pertinent examples. Several of these outperform

the remaining two DHs B2GP-PLYP (1.6%) and B2PLYP (1.8%). Among the LHs,

cmPSTS (1.6%) now stands out, while cLH12ct-SsirPW92 and cLH12ct-SsifPW92 (2.0%)

still perform reasonably well and the other LHs (except cLHJ14, 3.6%) still are in the

range below 3%. Apart from cTPSSh (see above) the only GH below 3% is B97-2 (2.5%),

while all others perform distinctly worse. ωB97X-V (2.9%) is the best RSH.
17O shifts. Even after removal of O3 from the statistical evaluations, many systems with

large paramagnetic contributions in this subset suggest that here the compensation of

errors for the diamagnetic part should also have a smaller impact in going to relative

shifts. This is confirmed by the data, as is the potential of some semi-local functionals to

perform well. MP2 (2.0%) performs moderately well here, but DSD-PBEP86 (0.8%) and
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B2GP-PLYP (1.5%) are still the best-performing methods, followed by KT1, cSCAN and

cLH12ct-SsifPW92 (1.8%), cLH12ct-SsifPW92 and cB97M-V (1.9%), KT2, cM06-L and

B2PLYP (2.0%). Further functionals with rel. MAEs up to 2.5% are cMN15-L, cr2SCAN

(both 2.1%), KT3 (2.2%), cmPSTS (2.3%), cLH20t (2.4%), and cLH07t-SVWN (2.5%).

Problems with constant and range-separated EXX admixture are shown by the fact that

cTPSSh (2.8%) is clearly the best GH and ωB97X-V (3.1%) the best RSH. The largest

deviations are exhibited by cM06-2X (6.8%), cM06 (6.6%), and SVWN (6.0%).
19F shifts. As noted already for the shieldings, here Hartree-Fock (2.6%) is a reasonable

starting point, and MP2 (0.6%) is the top performer, followed by DSD-PBEP86 (0.9%).

The error compensation in going from shieldings to shifts is probably the least pronounced

among the second- and third-period nuclei, and the order of the best-performing func-

tionals is largely retained, with cMN15-L, cLH12ct-SsirPW92 (1.0%), cLH12ct-SsifPW92

(1.1%) right behind DSD-PBEP86. The largest benefits of error compensation are seen

with for BHLYP (1.2%) and cB97M-V (1.3%), which range now before B2GP-PLYP

and cLH20t (1.3%), cLH07t-SVWN (1.8%), cLH14t-calPBE, ωB97X-V, B2PLYP (1.9%),

cM06-L, cωB97M-V (2.1%), cSCAN, ωB97X-D, cmPSTS (all 2.3%). As noted already for

the absolute shieldings (see above), here the specialized KT1-KT3 functionals (3.2-3.6%)

perform still slightly better than the standard GGAs, but not by very much, and they are

no match for the best-performing functionals. Apart from the excellent value of BHLYP,

the GHs do not perform particularly well, with only a few functionals somewhat below

3% (B97-2, cM06-2X, cTPSSh, PBE0, cMN15, cPW6B95).
31P/33S shifts. For these two third-row nuclei, the systematic errors of some function-

als in the diamagnetic part seem to be particularly large, and performance can change

significantly upon going to the shifts. Indeed, for several functionals the deviations for

shifts are much smaller than for shieldings. All three DHs, DSD-PBEP86 (0.4%), B2GP-

PLYP (0.8%) and B2PLYP (0.9%) do now outperform MP2 (1.1%), as do KT2, cτ -HCTH

and cTPSS (1.0%). Further functionals with rel. MAEs below or equal to 2% are KT3,

cTPSSh, cmPSTS, cSCAN (all 1.1%), KT1, B97D (1.2%), cVSXC, cr2SCAN (1.3%),

HCTH, cM06-L, B97-2 (1.5%), cB97M-V (1.6%), BLYP, crSCAN (1.7%), cLH14t-calPBE

(1.9%), BP86, B3LYP, cωB97M-V, cLH20t (2.0%). As observed already for the shield-

ings, the LHs perform overall somewhat less well here than for the other nuclei in the test

set, with the notable exception now of cmPSTS. Given this relatively small subset of 20

values, further investigations of third-row shieldings and shifts will probably be required

to pinpoint some of the decisive factors determining the accuracy of DFT approaches.

In the case of LHs this clearly includes the shape of the LMF in the core and semi-core

regions of heavier atoms.
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A.4.3 Estimates of Basis-Set and Structure Convergence of the

CCSD(T) Shielding Reference Data

Table A.10.: GIAO-CCSD(T) shielding data (in ppm) using various basis sets in the calcula-
tion of the input structures and NMR shielding constants to estimate the con-
vergence with respect to the employed input structures and basis-set size.

CCSD(T) Structure cc-pVTZ cc-pVQZ
NMR pcSseg-3 pcSseg-4 pcSseg-3 pcSseg-4 pcSseg-4(unc)

1H BH 25.07 25.05 25.03 25.02 25.02
Furan (C2, C5) 24.06 24.03 24.04 24.02
Furan (C3, C4) 25.04 25.02 25.02 25.00
CH4 31.30 31.29 31.32 31.31 31.31
H2O 30.69 30.65 30.72 30.68 30.68
HCCH 30.17 30.16 30.10 30.09 30.09
HF 28.88 28.82 28.92 28.86 28.86
NH3 31.46 31.44 31.48 31.45 31.45
HOF 19.68 19.61 19.78 19.70 19.70
PH3 29.50 29.46 29.56 29.52 29.53
HCN 29.01 29.00 28.92 28.90
H2S 30.56 30.49 30.57 30.50

11B BH -188.8 -190.3 -188.3 -189.7 -189.4
BF 82.1 82.0 82.2 82.1

13C Furan (C2, C5) 47.6 47.4 48.0 47.8
Furan (C3, C4) 81.8 81.7 82.0 81.8
CH4 198.7 198.8 198.9 198.9 198.9
CO 2.6 2.2 4.0 3.7 3.7
CO2 60.1 60.0 60.8 60.7
HCCH 122.5 122.3 122.6 122.4 122.5
HCN 84.8 84.5 85.3 85.1

15N N2 -61.2 -61.2 -59.3 -59.3 -59.3
NNO 106.7 106.2 107.5 107.0 107.1
NNO 12.2 11.7 12.9 12.5 12.5
NH3 270.4 270.4 270.7 270.7 270.6
PN -345.7 -344.7 -339.1 -338.1 -338.0
HCN -14.3 -14.7 -13.1 -13.4

17O Furan 65.1 64.8 65.8 65.6
CO -56.0 -56.1 -52.9 -53.0 -53.0
CO2 231.4 231.3 233.7 233.6
H2O 337.5 337.6 338.2 338.3 338.3
NNO 198.9 198.8 200.9 200.8 200.8
O3 (cent.) -770.6 -772.2 -760.7 -762.2
O3 -1224.9 -1227.9 -1200.0 -1202.9
OF2 -444.0 -446.3 -435.7 -438.0
HOF -67.6 -68.7 -64.5 -65.6 -65.6
SO2 -243.4 -243.2 -225.2 -225.1 -225.3

19F F2 -190.5 -192.8 -183.7 -185.9 -185.9
F –
3 (cent.) -208.7 -211.9 -203.0 -206.1

F –
3 -272.8 -276.3 -265.9 -269.5

HF 419.6 419.9 420.0 420.3 420.3
OF2 -22.5 -24.3 -17.2 -18.9
HOF 190.9 191.2 193.3 193.6 193.6
BF 123.3 123.4 124.3 124.4

31P PH3 604.1 604.5 604.7 605.1 605.4
PN 51.2 51.6 58.6 59.1 59.4

33S SO2 -199.0 -200.2 -182.6 -183.8 -183.2
H2S 737.8 738.4 738.1 738.8
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A.4.4 Maximum Relative Deviations for Main Group Shield-

ings and Shifts

Figure A.2.: Maximum relative AEs (in %, normalized to the shielding and shift range for a
given nucleus) from the relative CCSD(T)/pcSseg-3 shieldings (left) and chemical
shifts (right) for different methods (with pcSseg-3 basis).

The right hand side of Fig. A.2 summarizes the max. rel. AEs of the shifts for each of the

nuclei, similar to what is provided in panel 4 of Fig. 1 in P-V for absolute shieldings. The

overall behavior for the different methods is similar to the shieldings, but some details

differ. Among the various DFT functionals and MP2, DSD-PBEP86 gives the smallest

maximum value (6.7% in the 15N set), followed by cB97M-V (8.6% for 13C), B2GP-PLYP

(9.2% for 17O), cLH20t (9.3% for 31P/33S), cMN15-L (10.4% for 13C), cmPSTS (10.6% for
17O), cLH12ct-SsirPW92 (10.8% for 31P/33S), cLH14t-calPBE (11.0% for 17O), cLH12ct-

SsifPW92 (11.5% for 31P/33S), cLH07t-SVWN (11.5% for 17O), and B2PLYP (11.7%

for 17O). That is, the overall most robust functionals in terms of maximum deviations

identified for the shieldings can also be confirmed for the shifts, with slight differences in

their relative ranking. Large max. rel. AEs pertain to methods which are sensitive to

static-correlation cases. This includes HF (27.2% for 17O) and MP2 (29.5% for 15N). As

for the shieldings, these are the two methods with the largest maximum errors.
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Table A.11.: GIAO-CCSD(T)/pcSseg-3 and pcSseg-4 shielding data (in ppm) in comparison
to previously published data (literature estimates) estimating the CBS.

Structure Nucleus Molecule pcSseg-3* pcSseg-4* literature estimates
CCSD(T)/cc-pVTZ 1H CH4 31.30 31.29 31.25a

H2O 30.69 30.65 30.77a

HF 28.88 28.82 28.96a

NH3 31.46 31.44 31.52a

OHF 19.68 19.61 19.57a

HCN 29.01 29.00 29.04a

H2S 30.56 30.49 30.767, 30.564;b 30.55a

PH3 29.50 29.46 29.638, 29.514b
13C HCN 84.8 84.5 86.9, 85.9, 85.1, 85.0;c 85.71a

CO2 60.1 60.0 61.1, 61.5, 60.4, 60.2;c

CO 2.6 2.2 6.3, 4.1, 3.0, 3.0;c 4.03a

HCCH 122.5 122.3 123.5, 123.3, 122.7, 122.6;c

CH4 198.7 198.8 199.0, 199.0, 198.8, 198.8;c 199.25a
15N N2 -61.2 -61.2 -58.76a

NH3 270.4 270.4 270.79a

HCN -14.3 -14.7 -12.72a

NNO 106.7 106.2 107.66a

NNO 12.2 11.7 13.62a

PN -345.7 -344.7 -341.44a
17O CO -56.0 -56.1 -52.1, -56.3;d -53.63a

CO2 231.4 231.3 234.6, 232.5;d

H2O 337.5 337.6 337.0, 338.2;d 337.97a

N2O 198.9 198.8 200.3, 198.2;d 200.00a

Furan 65.1 64.8 69.1, 64.7d

OF2 -444.0 -446.3 -438.3, -439.8;d -442.10a

O3 (cent.) -770.6 -772.2 -763.52a

O3 -1224.9 -1227.9 -1215.81a

OHF -67.6 -68.7 -66.07a

SO2 -243.4 -243.2 -240.32a
19F HF 419.6 419.9 418.4, 418.8, 418.9, 419.1;e 420.17a

OHF 190.9 191.2 185.8, 188.2, 188.5, 188.4;e 193.01a

OF2 -22.5 -24.3 -18.9, -20.3, -22.6, -25.0e

F2 -190.5 -192.8 -189.0, -189.7, -191.3, -193.2e
31P PH3 604.1 604.5 608.965, 605.831b

PN 51.2 51.6 55.65a
33S SO2 -199.0 -200.2 -195.38a

H2S 737.8 738.4 738.990, 737.923;b 739.98a

CCSD(T)/cc-pVQZ 1H CH3OH 28.12 28.10 28.435, 28.197, 28.175, 28.150f

CH3OH 31.67 31.62 32.292, 31.839, 31.812, 31.749f
13C CH3OH 141.7 141.6 143.17, 142.33, 141.92, 141.82f
15N N2 -59.3 -59.3 -55.2, -58.5, -59.8g

NH3 270.7 270.7 270.4, 271.4, 270.7g

HCN -13.1 -13.4 -9.3, -12.7, -13.3g

NNO 107.5 107.0 110.9, 108.5, 107.6g

NNO 12.9 12.5 16.1, 14.1, 12.8g

CH3NH2 256.2 256.3 255.5, 256.9, 256.2g
17O OF2 -435.7 -438.0 -431.6, -435.0d

CH3OH 344.5 344.8 342.80, 345.22, 344.42, 344.14f
31P PN 58.6 59.1 73.3, 58.5, 53.4g

PH3 604.7 605.1 614.2, 609.6, 607.1g

PF3 228.5 227.2 242.3, 232.4, 230.1g

P4 888.9 888.0 903.8, 894.4, 889.4g

PMe3 408.3 427.7, 419.5, 416.8g

CCSD(T)/aug-pc-4h 15N PN -338.7 -337.7 -337.39, -337.27, -336.91, -338.59, -337.72h
31P PN 59.0 59.5 58.08, 56.92, 59.09, 60.21, 59.99h

Exp.i 11B BF 82.3 82.2 85.73, 83.13, 82.36, 82.83i
19F BF 124.6 124.7 130.56, 126.44, 125.02, 125.18i

* work of P-V; a Ref. 64; b Ref. 411; c Ref. 36; d Ref. 38; e Ref. 37; f Ref. 392; g Ref. 39; h Ref. 35; i Ref. 412.
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A.5 SI-VI

A.5.1 Estimates of Solvent Effects for Selected TM Complexes

Figure A.3.: Plot of statistical data of the 59Co test set (hollow diamonds) and the combined
transition metal test-set (filled diamonds) for various density functionals, either
without solvent model (black), a PCM (red) or CPMD (green) solvent correction
for four charged cobalt complexes ([Co(H2O)6]

3+, [Co(NH3)6]
3+, [Co(CN)6]

3−,
and [Co(CO)4]

−), see main text.

Beyond literature data probing solvent effects for four charged Co complexes (as shown in

Fig. A.3 and Tab. A.12), we have looked at a number of further complexes where solvent

effects on the computed shifts might have mattered. This involves aqueous [Cr2O7]
2− as

well as four complexes where the experimental NMR shifts had been obtained in acetoni-

trile, due to the donor properties of MeCN. Optimization at BP86-D3(BJ)/def2-TZVP(D)

level was preceded by evaluation of conformer-rotamer ensembles (CREs) of clusters with

2-4 explicit solvent molecules using the tight-binding methods in the CREST code. [360,413]

Subsequently, all relevant conformers, including the explicit solvent molecules, were DFT-

optimized without implicit conductor-like screening model, COSMO (gas-phase, “GP”).

The best GP structure was then re-optimized at the same BP86-D3(BJ)/def2-TZVP(D)
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Table A.12.: Statistical data of the 59Co test set (relative StD and MAE) for various density
functionals, either without solvent model, a PCM or CPMD solvent correction
for four charged cobalt complexes ([Co(H2O)6]

3+, [Co(NH3)6]
3+, [Co(CN)6]

3−,
and [Co(CO)4]

−), see main text.
59Co Original PCM Corrected CPMD Corrected

rel. StD rel. MAE rel. StD rel. MAE rel. StD rel. MAE
SVWN 6.9 5.7 5.2 4.4 5.1 4.2
BP86 7.2 6.3 6.7 6.4 7.5 7.3
BLYP 8.4 7.8 8.1 7.7 9.1 8.7
PBE 6.8 5.8 6.2 5.8 6.9 6.7
KT1 13.4 12.7 13.2 12.1 14.1 13.0
KT2 13.5 12.7 13.3 12.1 14.2 13.1
KT3 11.6 11.0 11.4 10.5 12.4 11.5
HCTH 6.2 5.2 4.5 3.9 4.5 3.6
B97D 6.0 4.7 5.0 4.3 5.6 5.4

cTPSS 8.0 7.5 7.6 7.3 8.6 8.3
cτ -HCTH 5.9 5.0 4.4 3.6 4.6 4.0
cM06-L 5.0 3.9 4.1 3.4 4.8 4.3
cVSXC 6.7 4.7 4.7 3.4 3.8 3.3
cMN15-L 59.6 40.1 54.6 37.4 51.4 35.0
cB97M-V 7.9 7.3 7.9 7.0 8.9 8.2
cSCAN 11.1 10.5 11.0 10.2 12.0 11.1

cTPSSh 5.0 4.0 4.2 3.6 5.1 5.0
B3LYP 4.7 3.7 2.8 2.4 2.7 2.4
PBE0 10.4 7.2 8.4 6.1 6.8 5.4
B97-2 8.9 5.8 6.9 5.0 5.4 4.1
cM06 39.8 28.6 36.1 27.2 33.5 24.6
cPW6B95 6.7 4.5 4.8 3.5 3.6 3.0
BHLYP 20.6 16.9 18.1 15.5 16.2 14.1
cMN15 35.3 25.4 31.9 23.7 29.4 21.8
cM06-2X 23.2 19.1 20.6 17.7 18.6 16.1

CAM-B3LYP 5.9 4.1 4.1 3.1 3.1 2.6
ωB97X-D 8.1 5.7 6.3 4.8 4.9 4.0
ωB97X-V 7.1 5.1 5.4 4.3 4.1 3.5
cωB97M-V 3.5 3.0 2.7 2.5 3.6 3.2

LH07s-SVWN 10.7 6.7 8.5 6.0 6.9 4.8
cmPSTS 4.5 3.9 3.5 2.8 4.4 4.2
cLHJ14 6.1 5.6 5.8 5.3 6.9 6.6
cLH07t-SVWN 8.3 5.0 6.2 4.2 4.8 3.5
cLH12ct-SsirPW92 11.8 7.7 9.6 7.0 8.0 5.8
cLH12ct-SsifPW92 13.8 9.4 11.5 8.4 9.8 7.4
cLH14t-calPBE 5.4 4.1 3.5 2.7 2.9 2.7
cLH20t 5.2 3.9 3.4 2.6 2.7 2.4
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Figure A.4.: Optimized structures (BP86-D3(BJ)/def2-TZVP(D)) without and with explicit
coordination by solvent molecules.

Table A.13.: Relevant structural data with and without explicit+implicit solvation (BP86-
D3(BJ)/def2-TZVP(D) data).

molecule Parameter incl. solv.

[Ti(CO)6]
2− (MeCN,COSMOa) r(Ti–C) 2.058 2.044

VOClF2 (2 MeCN,COSMOa) av. r(V–F) 1.733 1.778
r(V–Cl) 2.149 2.226
r(V–O) 1.574 1.578
r(V–N) – 2.118

[CrO3Cl]− (2 MeCN,COSMOa) av. r(Cr–O) 1.614 1.613
r(Cr–Cl) 2.237 2.223
av. ∢(O–Cr–Cl) 107.9 107.5

[CrO3F]
− (2 MeCN,COSMOa) r(Cr–O) 1.617 1.618

r(Cr–F) 1.793 1.777
∢(O–Cr–F) 108.2 108.8

[Cr2O7]
2− (4 H2O,COSMOa) r(Cr–O)bridge 1.781 1.773

av. r(Cr–O)term 1.630 1.625
∢(Cr–O–Cr) 175.3 133.4

a COSMO dielectric constants, ε = 35.688 (MeCN), 78.3553 (H2O)
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Table A.14.: Nuclear shielding constants (GIAO-DFT/pcSseg-3) with different treatments of
solvation in structure optimization and shielding computation (see text).

molecule solvent model cM06-L cLH14t-calPBE
opt nmr

49Ti [Ti(CO)6]
2− gas-phase gas-phase 627.5 642.8

+1 MeCN gas-phase gas-phase 626.5 639.9
+1 MeCN COSMO gas-phase 639.7 657.0
+1 MeCN COSMO COSMO 646.1 659.6

51V VOClF2 gasphase gasphase -1599.3 -1632.3
+2 MeCN gasphase gasphase -1594.8 -1615.5
+2 MeCN COSMO gasphase -1602.7 -1622.7
+2 MeCN COSMO COSMO -1585.2 -1606.4

53Cr [CrO3F]
− gasphase gasphase -3035.2 -3151.3

+2 MeCN gasphase gasphase -2995.7 -3099.9
+2 MeCN COSMO gasphase -2996.8 -3101.2
+2 MeCN COSMO COSMO -3000.3 -3106.9

[CrO3Cl]− gasphase gasphase -3146.0 -3268.8
+2 MeCN gasphase gasphase -3144.0 -3262.0
+2 MeCN COSMO gasphase -3144.0 -3262.0
+2 MeCN COSMO COSMO -3136.9 -3252.4

[Cr2O7]
2− gasphase gasphase -3032.9 -3143.3

+4 H2O gasphase gasphase -3034.7 -3132.5
+4 H2O COSMO gasphase -3009.9 -3104.4
+4 H2O COSMO COSMO -3014.8 -3110.0

level of theory including COSMO with dielectric constants of ε = 35.688 (MeCN), and

78.3553 (H2O), respectively. For [Ti(CO)6]
2− the CRE calculations with one MeCN re-

sulted in no solvent coordination, and we therefore optimized a structure directly at DFT

level. The resulting structures are shown in Fig. A.4, relevant structural parameters

are listed in Tab. A.13. Metal-nucleus NMR shielding results at GIAO-DFT/pcSseg-

3/COSMO level were compared for GP structures without any solvent surroundings and

with the structures obtained with both explicit and implicit solvantion. Results are shown

in Tab. A.14. Overall minor solvent effects are seen.
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A.5.2 Estimates of Relativistic Effects in TM Complexes

Table A.15.: Shielding results (GIAO-DFT/pcSseg-3) for cM06-L with and without X2C scalar
relativistic corrections (for BP86-D3(BJ) structures).

Shieldings
cM06-L cM06-LX2C Diff.X2C−NR

49Ti TiBr4 -1358.2 -1309.9 48.3
TiMe4 -2274.9 -2200.3 74.6
TiClMe3 -2065.4 -1989.4 76.0
TiCl2Me2 -1784.8 -1711.7 73.1
TiCl3Me -1412.4 -1349.1 63.3
TiCl4 -942.6 -896.7 45.9

[Ti(CO)6]
2− 627.5 640.7 13.2

TiCp2Br2 -292.7 -257.2 35.4
TiCp2Cl2 -151.4 -112.1 39.3
TiCp2F2 170.8 201.8 30.9
TiCpCl3 -538.8 -496.2 42.6
TiCp*Cl3 -777.6 -724.7 52.9

51V [V(CO)5N2]
− -227.4 -196.1 31.3

[V(CO)6]
− 22.2 48.4 26.2

VF5 -1344.8 -1295.1 49.7
VOCl3 -2131.4 -2066.9 64.6
VOClF2 -1599.3 -1545.1 54.1
VOF3 -1346.6 -1297.9 48.7
VOMe3 -3272.3 -3192.0 80.3
VOMe2(OMe) -2556.6 -2484.5 72.0
VOMe(OMe)2 -1953.1 -1889.0 64.1
VO(OMe)3 -1552.9 -1498.4 54.5

53Cr [Cr2O7]
2− -3032.9 -2962.8 70.1

Cr(CO)5(CHNH2) -1123.7 -1079.8 43.9
Cr(CO)5(CMeNMe2) -1189.5 -1144.1 45.4
Cr(CO)5(PF3) -900.1 -862.9 37.1
Cr(CO)6 -868.2 -826.9 41.4
CrO2Cl2 -3385.1 -3312.0 73.1
CrO2F2 -2922.0 -2853.5 68.5

[CrO3Cl]− -3146.3 -3075.5 70.8

[CrO3F]− -3035.7 -2965.2 70.4

[CrO4]
2− -3131.7 -3062.5 69.3

55Mn Mn2(CO)10 -1875.8 -1830.5 45.4
Mn(CO)5Cl -2637.8 -2578.9 58.9
Mn(CO)5(COMe) -2245.7 -2192.8 52.9
Mn(CO)5H -1547.9 -1505.0 42.9

[Mn(CO)5]
− -1699.1 -1655.5 43.6

[Mn(CO)6]
+ -2186.9 -2129.8 57.1

Mn(NO)3(CO) -3350.8 -3281.6 69.2
MnCp(C6H6) -4100.8 -3980.0 120.8
MnCp(C7H8) -5392.5 -5264.5 128.0
MnCp(CO)3 -2097.8 -2041.2 56.6

[MnO4]
− -4440.0 -4369.3 70.7

57Fe Fe(CO)3(C4H4) -2016.2 -1979.7 36.4
Fe(CO)3(CH2CHCHCH2) -2526.9 -2485.5 41.4
Fe(CO)3(CH2CHCHO) -3570.9 -3518.3 52.6
Fe(CO)4(CH2CHCN) -2689.7 -2646.9 42.8
Fe(CO)4(CH2CHOMe) -2674.9 -2633.2 41.7
Fe(CO)5 -2464.2 -2425.0 39.2
FeCp2 -4057.2 -3959.7 97.5
FeCp(CO)2iPr -3387.5 -3337.5 50.0
FeCp(CO)2Me -3215.7 -3167.5 48.3

59Co fac−Co(NH3)3(CN)3 -7880.8 -7895.5 -14.7
Co(acac)3 -15848.6 -15876.4 -27.8

[Co(CN)6]
3− -5531.2 -5508.9 22.4

Co(CO)4H -2297.2 -2290.7 6.6

[Co(CO)4]
− -2578.8 -2571.5 7.3

CoCp(C2H4)2 -4238.6 -4223.6 15.1

[Co(H2O)6]
3+ -20837.7 -20887.6 -49.9

[Co(NH3)4(CO3)]
+ -13258.8 -13272.1 -13.2

[Co(NH3)6]
3+ -13857.1 -13901.3 -44.2

61Ni Ni(C2H4)2(PMe3) -911.0 -973.9 -62.8
Ni(CO)4 -1934.6 -1975.4 -40.8
Ni(cod)2 -2880.0 -2952.6 -72.6
Ni(PCl3)4 -2245.6 -2332.6 -87.0
Ni(PF3)4 -1041.5 -1090.3 -48.8
Ni(PMe3)4 -1896.7 -1958.3 -61.6
Ni(t,t,t-cdt)(CO) -2730.1 -2798.6 -68.5
Ni(t,t,t-cdt) -2167.2 -2237.8 -70.6
Ni(t,t,t-cdt)(PMe3) -2894.2 -2969.5 -75.3
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A.5.3 Shielding Constants and Shifts for Truncated Models and Full TM Complexes

Table A.16.: Comparison of shielding and shift results, including the y-intercepts, and statistical data for 51V and 57Fe test sets
using either the model compounds (VOMe3, VOMe2(OMe), VOMe(OMe)2,VO(OMe)3 and Fe(CO)4(CH2CHOMe))
or the experimental complexes (VO(CH2SiMe3)3, VO(CH2SiMe3)2(O

tBu), VO(CH2SiMe3)(O
tBu)2,VO(OtBu)3 and

Fe(CO)4(CH2CHOEt)). Only the statistical data and results for the truncated systems are reproduced in the present
work, for the full data set see Table S13 of SI-VI.

Model Complexes Full Complexes
cTPSS cM06-L cLH20t cTPSS cM06-L cLH20t

51V VOMe3//VO(CH2SiMe3)3 -3057.7 -3272.3 -3512.1 -3027.2 -3252.3 -3476.5
VOMe2(OMe)//VO(CH2SiMe3)2(OtBu) -2400.4 -2556.6 -2717.8 -2370.6 -2539.6 -2701.6
VOMe(OMe)2//VO(CH2SiMe3)(OtBu)2 -1827.4 -1953.1 -2025.7 -1790.8 -1915.4 -2007.1
VO(OMe)3//VO(OtBu)3 -1462.2 -1552.9 -1562.6 -1403.1 -1488.0 -1518.9

57Fe Fe(CO)4(CH2CHOMe)//Fe(CO)4(CH2CHOEt) -2151.6 -2674.9 -2828.3 -2161.0 -2685.6 -2838.6

y-Intercept 51V -1987.9 -2115.0 -2226.0 -1967.3 -2097.9 -2210.0
57Fe -1991.4 -2540.6 -2736.1 -1992.9 -2542.3 -2737.8

Shift Results Exp. cTPSS cM06-L cLH20t cTPSS cM06-L cLH20t
51V VOMe3//VO(CH2SiMe3)3 1205 1069.8 1157.3 1286.1 1059.9 1154.4 1266.5

VOMe2(OMe)//VO(CH2SiMe3)2(OtBu) 470 412.5 441.6 491.8 403.4 441.7 491.6
VOMe(OMe)2//VO(CH2SiMe3)(OtBu)2 -210 -160.5 -161.9 -200.3 -176.5 -182.5 -202.9
VO(OMe)3//VO(OtBu)3 -676 -525.7 -562.0 -663.4 -564.2 -610.0 -691.1

57Fe Fe(CO)4(CH2CHOMe)//Fe(CO)4(CH2CHOEt) 5 160.2 134.3 92.3 168.1 143.3 100.8

rel. StD 51V 4.0 3.7 4.8 3.9 3.4 4.5
57Fe 14.3 5.1 5.1 14.3 5.2 5.1

rel. MSE 51V 0.0 -0.8 -2.2 0.1 -0.7 -2.0
57Fe -9.1 -1.5 1.0 -9.1 -1.5 1.0

rel. MAE 51V 3.6 3.1 3.6 3.5 2.9 3.4
57Fe 12.1 4.0 4.1 12.2 4.0 4.1
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A.5.4 Statistical Shift Data of TM Benchmark Set Using the y-Intercept Method and

Explicit References

Table A.17.: Comparison of statistical data of GIAO-DFT/pcSseg-3 calculations for various density functionals vs experimental data
using BP86-D3(BJ) structures referenced with either the y-Intercept method (see P-VI) or via the complexes TiCl4,
VOCl3, CrO2F2, MnCp(C6H6), Fe(CO)5, Co(CO)4H, and Ni(PMe3)4.

SVWN BP86 BLYP PBE KT1 KT2 KT3 B97D HCTH TPSS
τa
D τMS τC τ0

y-Intercept mean StD 334.0 333.0 361.0 321.4 530.0 526.5 459.2 289.8 285.2 361.2 436.9 440.6 444.0
mean MSE -22.9 -84.0 -112.7 -72.3 -186.5 -189.1 -156.7 -48.2 -7.5 -99.6 -136.0 -135.1 -138.2
mean MAE 290.6 304.5 340.0 288.8 509.5 505.3 441.3 251.9 253.3 343.3 422.6 427.2 430.0

mean rel. StD 7.1 6.8 6.9 6.6 9.3 9.1 8.0 6.2 5.8 7.3 8.1 8.0 8.2
mean rel. MSE -1.1 -1.0 -1.1 -0.9 -1.3 -1.3 -1.0 -0.8 -0.6 -1.0 -1.0 -0.8 -1.0
mean rel. MAE 6.4 6.2 6.4 6.1 8.8 8.6 7.5 5.6 5.3 6.7 7.6 7.6 7.8

Referenced mean StD 338.3 319.2 345.2 309.6 503.1 500.6 436.4 284.1 289.6 343.0 413.7 417.3 420.3
mean MSE -181.6 -260.7 -297.3 -243.4 -407.8 -409.1 -359.7 -205.2 -147.7 -268.0 -329.3 -333.3 -334.7
mean MAE 382.7 456.2 496.4 433.7 749.8 739.2 646.6 364.1 322.5 514.4 627.4 631.2 637.6

mean rel. StD 7.3 6.8 6.9 6.7 9.2 9.0 7.9 6.3 6.0 7.2 8.0 7.9 8.1
mean rel. MSE -2.6 -2.3 -2.2 -2.2 -2.9 -2.9 -2.3 -2.1 -1.7 -1.9 -2.0 -1.8 -2.0
mean rel. MAE 7.7 7.9 8.1 7.7 12.2 11.9 10.3 6.8 6.2 9.0 10.4 10.3 10.6

τ-HCTH M06-L MN15-L
τa
D τMS τC τ0 τa

D τMS τC τ0 τa
D τMS τC τ0

y-Intercept mean StD 287.8 288.1 289.6 289.8 237.9 511.0 530.6 532.2 1678.5 533.5 572.7 581.9
mean MSE -20.2 -22.6 -23.0 -23.4 -68.3 -199.2 -198.0 -203.0 722.1 -164.4 -164.7 -174.8
mean MAE 256.2 256.7 257.8 257.8 189.7 485.2 506.9 506.1 1205.0 510.3 553.3 561.3

mean rel. StD 6.1 6.1 6.2 6.2 4.9 7.6 7.9 8.0 16.2 9.7 10.2 10.7
mean rel. MSE -0.8 -0.7 -0.8 -0.8 -1.3 -0.9 -0.6 -0.9 1.5 -0.8 -0.2 -0.8
mean rel. MAE 5.6 5.6 5.7 5.7 4.0 7.2 7.5 7.6 13.2 9.2 9.9 10.3

Referenced mean StD 288.5 288.0 289.3 289.6 239.5 491.7 511.3 511.7 1695.8 511.2 550.6 555.6
mean MSE -168.2 -172.2 -171.6 -172.5 -168.8 -413.1 -422.6 -423.1 908.7 -380.8 -400.1 -405.9
mean MAE 339.4 342.0 343.9 343.6 253.2 675.1 699.2 706.1 1447.3 722.6 772.2 799.7

mean rel. StD 6.3 6.3 6.4 6.4 5.0 7.6 7.9 8.1 16.5 9.6 10.2 10.6
mean rel. MSE -2.0 -2.0 -2.0 -2.0 -1.6 -1.4 -1.2 -1.7 0.3 -2.5 -1.8 -2.8
mean rel. MAE 6.7 6.7 6.8 6.8 5.1 9.2 9.5 9.8 17.1 11.9 12.5 13.5

B97M-V SCAN VSXC
τa
D τMS τC τ0 τa

D τMS τC τ0 τa
D τMS τC τ0

y-Intercept mean StD 328.7 683.4 700.1 705.4 418.3 634.4 642.3 652.1 277.4 337.2 345.3 347.9
mean MSE -143.0 -263.6 -265.0 -269.8 -198.4 -261.0 -260.6 -265.3 29.2 -99.5 -100.6 -104.1
mean MAE 293.9 649.8 668.9 672.7 388.8 602.7 613.1 621.3 212.2 309.5 319.5 322.5

mean rel. StD 6.1 10.2 10.4 10.7 7.0 9.5 9.4 10.0 5.2 6.5 6.5 6.6
mean rel. MSE -1.8 -1.1 -0.9 -1.2 -2.2 -1.6 -1.3 -1.6 -0.5 -0.7 -0.5 -0.6
mean rel. MAE 5.3 9.7 10.0 10.2 6.3 9.0 8.9 9.4 4.3 5.9 6.0 6.0

Referenced mean StD 322.0 656.3 672.9 675.6 406.0 608.6 616.7 624.6 285.1 323.8 334.4 339.2
mean MSE -281.7 -537.4 -537.2 -546.7 -385.5 -518.9 -521.6 -525.4 -56.2 -264.8 -268.2 -235.6
mean MAE 404.0 905.2 928.8 947.8 534.7 852.4 856.7 881.9 262.0 443.1 444.9 437.7

mean rel. StD 6.2 10.1 10.4 10.6 7.1 9.5 9.4 9.9 5.2 6.3 6.5 6.7
mean rel. MSE -2.9 -2.7 -2.0 -2.8 -3.2 -2.6 -2.2 -2.7 -2.5 -2.9 -2.3 -0.6
mean rel. MAE 6.6 12.7 13.0 13.7 7.8 12.1 11.7 12.7 5.9 8.3 7.7 7.1

a corresponds to the CDFT functional of the main discussion in P-VI.
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Table A.18.: Comparison of statistical data of GIAO-DFT/pcSseg-3 calculations for various density functionals vs experimental data
using BP86-D3(BJ) structures referenced with either the y-Intercept method (see main text) or via the complexes TiCl4,
VOCl3, CrO2F2, MnCp(C6H6), Fe(CO)5, Co(CO)4H, and Ni(PMe3)4.

TPSSh B3LYP PBE0 B97-2 BHLYP M06
τa
D τMS τC τ0 τa

D τMS τC τ0
y-Intercept mean StD 265.6 332.3 334.0 338.8 256.4 429.3 368.3 957.1 1401.8 1621.1 1633.5 1624.8

mean MSE -56.2 -99.4 -98.5 -101.5 -22.8 73.5 56.2 142.0 395.5 455.8 454.6 460.2
mean MAE 229.8 314.6 317.9 321.5 209.7 331.6 272.7 861.0 1156.3 1328.0 1342.2 1331.8

mean rel. StD 6.1 6.8 6.7 7.0 6.0 8.0 6.9 20.4 20.4 23.2 23.4 23.1
mean rel. MSE -1.2 -1.2 -1.0 -1.2 -1.6 -1.4 -1.3 -3.0 -1.1 -1.1 -1.4 -1.1
mean rel. MAE 5.5 6.3 6.3 6.4 5.0 6.8 5.7 18.7 18.7 21.2 21.5 21.2

Referenced mean StD 260.9 317.8 319.2 323.7 265.7 436.3 377.1 940.5 1385.0 1601.6 1616.2 1606.4
mean MSE -165.4 -237.0 -241.2 -242.7 -81.5 82.8 38.0 364.2 497.8 541.5 557.5 559.8
mean MAE 329.3 460.3 464.3 471.2 250.7 396.9 324.8 1155.7 1549.7 1780.3 1784.8 1779.4

mean rel. StD 6.2 6.8 6.7 6.9 6.2 8.1 7.0 20.3 20.1 22.8 23.2 22.8
mean rel. MSE -1.9 -1.9 -1.8 -2.0 -2.1 -1.7 -1.8 -1.7 -3.6 -4.6 -4.4 -4.1
mean rel. MAE 6.9 8.4 8.3 8.6 6.1 8.5 7.2 24.6 25.8 29.5 29.6 29.4

PW6B95 MN15 M06-2X
τa
D τMS τC τ0 τa

D τMS τC τ0 τa
D τMS τC τ0

y-Intercept mean StD 331.7 479.6 490.5 484.1 1041.1 17940.6 18822.1 19175.2 1004.4 3490.4 3582.8 3583.1
mean MSE 17.8 77.6 78.0 80.0 446.0 -8329.3 -8719.7 -8827.4 248.4 1298.9 1317.6 1322.1
mean MAE 257.0 387.0 397.2 391.6 793.7 17005.7 17845.4 18163.8 849.1 2761.1 2844.6 2846.1

mean rel. StD 7.4 9.3 9.5 9.3 11.6 274.8 289.8 296.1 19.3 47.6 49.3 49.2
mean rel. MSE -1.6 -1.6 -1.7 -1.5 0.6 -101.2 -106.3 -106.8 -0.7 3.3 2.9 3.3
mean rel. MAE 6.2 8.1 8.3 8.1 9.9 258.5 272.6 277.8 16.7 41.4 43.0 43.0

Referenced mean StD 339.7 484.6 495.8 488.4 1045.9 18609.6 19521.5 19881.9 990.8 3473.0 3566.8 3562.5
mean MSE 19.0 117.3 122.3 123.2 612.1 -4999.7 -5231.8 -5288.6 480.8 2062.3 2108.0 2108.6
mean MAE 307.5 469.1 479.2 478.4 984.3 17027.4 17874.5 18232.8 1166.2 3639.9 3730.7 3759.3

mean rel. StD 7.5 9.4 9.7 9.4 11.7 284.6 300.1 306.4 19.3 47.7 49.5 49.3
mean rel. MSE -1.6 -1.6 -1.6 -1.4 1.0 -88.8 -93.6 -94.3 0.6 7.0 6.9 7.4
mean rel. MAE 7.8 10.1 10.3 10.2 13.2 282.5 298.2 305.2 22.8 54.9 56.5 57.2

07s∗ mPSTS LHJ14 LH07t-SVWN
τa
D τMS τC τ0 τa

D τMS τC τ0 τa
D τMS τC τ0

y-Intercept mean StD 396.3 249.2 308.2 309.9 314.3 300.6 257.9 269.8 257.6 340.9 298.1 290.8 292.3
mean MSE 79.8 -43.0 -87.6 -86.8 -89.7 -89.1 -42.5 -44.3 -41.4 37.8 10.5 11.4 10.5
mean MAE 278.5 219.8 288.2 291.7 295.0 276.3 223.9 232.5 221.5 238.6 218.2 213.9 215.8

mean rel. StD 6.5 5.8 6.5 6.4 6.6 6.6 6.1 6.6 6.1 6.3 6.1 5.9 5.9
mean rel. MSE -1.1 -1.1 -1.1 -1.0 -1.1 -1.4 -1.4 -1.7 -1.5 -1.4 -1.5 -1.4 -1.5
mean rel. MAE 5.3 5.2 6.0 6.0 6.1 6.0 5.3 5.7 5.3 5.1 5.0 4.8 4.9

Referenced mean StD 408.2 248.5 296.4 297.8 302.0 291.5 262.3 275.5 263.2 354.1 310.6 302.7 304.6
mean MSE 36.9 -133.9 -208.3 -212.6 -213.9 -233.1 -158.2 -150.2 -150.1 -22.0 -58.1 -62.1 -61.6
mean MAE 320.6 286.1 416.6 420.8 427.4 392.0 270.1 279.2 264.6 272.4 259.3 256.8 257.1

mean rel. StD 6.7 5.9 6.5 6.4 6.6 6.7 6.4 6.9 6.4 6.6 6.3 6.1 6.2
mean rel. MSE -1.9 -1.7 -1.7 -1.6 -1.8 -2.5 -2.5 -2.6 -2.3 -2.2 -2.3 -2.2 -2.2
mean rel. MAE 66.4 6.4 7.9 7.8 8.1 7.3 5.9 6.4 5.8 5.9 5.8 5.6 5.6

∗ 07s – LH07s-SVWN
a corresponds to the CDFT functional of the main discussion in P-VI.
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Table A.19.: Comparison of statistical data of GIAO-DFT/pcSseg-3 calculations for various density functionals vs experimental data
using BP86-D3(BJ) structures referenced with either the y-Intercept method (see main text) or via the complexes TiCl4,
VOCl3, CrO2F2, MnCp(C6H6), Fe(CO)5, Co(CO)4H, and Ni(PMe3)4.

LH12ct-SsirPW92 LH12ct-SsifPW92 LH14t-calPBE
τa
D τMS τC τ0 τa

D τMS τC τ0 τa
D τMS τC τ0

y-Intercept mean StD 455.3 410.5 405.7 402.9 521.9 488.2 485.0 480.6 266.8 255.9 253.5 254.8
mean MSE 82.4 55.6 56.0 55.8 106.8 83.3 83.3 83.7 -9.8 -21.3 -21.4 -21.8
mean MAE 342.6 310.3 305.7 302.8 404.8 383.2 379.6 375.6 211.8 210.0 208.1 209.6

mean rel. StD 7.9 7.6 7.5 7.5 8.8 8.7 8.7 8.5 5.9 5.9 5.8 5.8
mean rel. MSE -1.5 -1.7 -1.6 -1.6 -1.6 -1.8 -1.7 -1.7 -1.5 -1.6 -1.6 -1.6
mean rel. MAE 6.7 6.5 6.4 6.3 7.7 7.6 7.6 7.5 4.9 4.9 4.9 4.9

Referenced mean StD 464.2 419.6 414.0 411.8 528.8 495.0 491.1 487.1 277.7 265.6 263.0 264.4
mean MSE 62.7 29.6 25.0 26.0 104.2 76.6 72.1 73.3 -85.6 -100.6 -102.6 -102.6
mean MAE 408.4 367.6 364.9 359.5 485.7 459.7 458.4 452.0 250.2 248.1 247.1 247.9

mean rel. StD 8.1 7.8 7.6 7.6 8.9 8.8 8.7 8.6 6.1 6.1 6.0 6.1
mean rel. MSE -2.2 -2.3 -2.3 -2.3 -2.2 -2.4 -2.4 -2.3 -2.3 -2.4 -2.4 -2.4
mean rel. MAE 8.5 8.2 8.1 8.0 9.8 9.7 9.7 9.5 5.7 5.7 5.7 5.7

LH20t CAM-B3LYP ωB97X-D ωB97X-V ωB97M-V
τa
D τMS τC τ0 τa

D τMS τC τ0
y-Intercept mean StD 281.7 317.2 320.7 318.0 315.0 368.4 344.0 253.0 322.9 331.5 327.6

mean MSE -10.8 2.9 2.4 2.6 7.0 50.2 40.7 -53.1 -128.3 -132.1 -130.6
mean MAE 223.2 245.3 248.3 246.2 254.9 293.3 280.7 220.2 280.0 289.1 285.5

mean rel. StD 6.6 7.2 7.3 7.2 7.4 7.7 7.7 7.1 6.8 7.0 6.8
mean rel. MSE -1.8 -1.9 -1.9 -1.9 -1.5 -1.2 -1.1 -1.6 -1.6 -1.8 -1.7
mean rel. MAE 5.6 6.1 6.2 6.1 6.5 6.7 6.8 6.2 5.7 6.0 5.9

Referenced mean StD 291.4 327.3 330.7 327.9 320.0 372.4 346.9 257.2 317.7 326.2 322.1
mean MSE -52.0 -24.5 -24.5 -24.3 -19.7 50.0 30.9 -104.8 -246.6 -245.5 -246.8
mean MAE 268.0 287.5 291.0 288.8 317.8 364.1 353.2 280.3 388.3 398.5 395.6

mean rel. StD 6.8 7.4 7.5 7.4 7.5 7.7 7.7 7.2 6.8 7.1 6.9
mean rel. MSE -2.1 -2.2 -2.3 -2.2 -1.9 -1.4 -1.3 -2.0 -2.3 -2.3 -2.2
mean rel. MAE 6.9 7.5 7.6 7.5 8.4 8.7 9.0 8.1 7.7 7.9 7.7

HF HFb,d MP2b,d B2PLYPb,d DSD-PBEP86b DSD-PBEP86c,d

y-Intercept mean StD 12655.9 8707.1 26262.6 1423.0 6412.9 6562.8
mean MSE -1254.5 907.0 -3441.3 582.5 1221.0 1203.4
mean MAE 10037.3 7785.8 18903.7 1359.4 5080.4 5194.8

mean rel. StD 303.9 286.9 1095.8 39.1 180.5 182.9
mean rel. MSE -39.1 -32.4 -132.5 12.7 29.6 29.7
mean rel. MAE 256.9 251.0 772.1 35.9 140.8 142.7

Referenced mean StD 12009.6 7876.5 23715.1 1462.4 6627.7 6676.1
mean MSE -1948.6 -4531.9 7600.9 278.4 -768.9 -670.4
mean MAE 15678.9 13419.0 25617.8 1410.1 4672.9 4635.2

mean rel. StD 273.8 254.5 972.6 39.7 184.9 181.3
mean rel. MSE -318.0 -339.0 363.4 10.8 7.6 15.5
mean rel. MAE 470.7 465.7 1026.2 43.1 149.2 142.5

a corresponds to the CDFT functional of the main discussion in P-VI; b ORCA calculation; pcSseg-3 for transition metal, pcSseg-2 other nuclei using the “AutoAux” option with settings
AutoAuxSize=1 for the “C” auxiliary basis, as well as def2/J and def2/JK auxiliary basis sets and internal grid setting “Grid5”; c ORCA calculation; pcSseg-3 for all nuclei using the

“AutoAux” option with settings AutoAuxSize=3 and AutoAuxLMax=TRUE for the “C”, “J” and “JK” auxiliary basis and internal grid setting “Grid5”; d Calculated from incomplete
results.
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A.5.5 Comparison of Shifts with BP86 and TPSSh Structures

Figure A.5.: Relative standard deviations and mean absolute errors in % for the individual
nuclei (hollow symbols) and their weighted aggregate (filled black symbols) for
various XC functionals (using τD for τ -dependent functionals), with either BP86-
D3(BJ) (top) or TPSSh-D3(BJ) structures (bottom).
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A.5.6 Studies of Triplet Instabilities and Comparison of RKS

and UKS Solutions

Table A.20.: Comparison of shielding results at GIAO-BHYLP/pcSseg-3 level, either calcu-
lated with Turbomole or with ORCA. Triplet instabilities were detected for
results given in red font. The last two columns give UKS shieldings and total
spin expectation values for those cases. In the present work, only cases are in-
cluded, which show triplet instabilities in one of the calculations. the full data
set is provided in Tab. S10 of SI-VI.

Turbomole ORCAa

RKS UKS ⟨S2⟩
49Ti [Ti(CO)6]

2− 661.9 661.9 661.9 0.000
51V [V(CO)6]

− -155.6 -155.8 -155.8 0.000
53Cr Cr(CO)6 -1588.7 -1588.9 -1588.9 0.000

CrO2Cl2 -5704.7 -5704.6
CrO2F2 -4866.4 -4866.2

[CrO3Cl]− -5045.2 -5045.2 -4591.0 0.625
55Mn [Mn(CO)6]

+ -3969.8 -3970.3 -3970.3 0.000
Mn(NO)3(CO) -5693.2 -5693.2 -5526.7 2.325
MnCp(C7H8) -9647.5 -9647.2 -9666.7 0.244

57Fe FeCp2 -9395.9 -9396.7
59Co [Co(CO)4]

− -5120.4 -5120.3 -5120.3 0.000
CoCp(C2H4)2 -8060.8 -8061.4 -7998.8 0.197

[Co(H2O)6]
3+ -35593.1 -35598.6 -35598.6 0.000

[Co(NH3)6]
3+ -23185.8 -23189.9 -23189.9 0.000

61Ni Ni(cod)2 -3105.8 -3105.9 -4118.5 0.281
a ORCA calculation; pcSseg-3 for all nuclei using the “AutoAux” option with settings
AutoAuxSize=3 and AutoAuxLMax=TRUE for “JK” auxiliary basis and internal grid
setting “Grid5”.

Table A.21.: Triplet-instability analyses and restricted/unrestricted shielding results including
lowest eigenvalues of the electronic Hessian for the restricted solutions and ⟨S2⟩ as
a measure of spin-contamination of the unrestricted solutions, comparing BHLYP,
HF, and DSD-PBEP86.a

BHLYP Hartree-Fock DSD-PBEP86

[CrO3Cl]− ⟨H⟩b -0.005 -0.109 -0.049
⟨S2⟩ 0.606 2.422 1.827
σrestr. -5042.3 -13520.2 5808.5
σunrestr. -4604.0 -5851.5 n.a.c

Mn(NO)3(CO) ⟨H⟩b -0.051 -0.158 -0.092
⟨S2⟩ 2.320 3.587 2.875
σrestr. -5662.6 -9700.6 88731.8
σunrestr. -5512.4 -12946.2 n.a.c

Ni(cod)2 ⟨H⟩b -0.013 -0.159 -0.064
⟨S2⟩ 0.275 1.466 0.772
σrestr. -3091.4 -7312.1 2093.6
σunrestr. -4084.3 -13622.8 n.a.c

a ORCA calculation; pcSseg-3 for transition metal, pcSseg-2 for other nuclei
using the “AutoAux” option with settings AutoAuxSize=1 for the “C” aux-
iliary basis, as well as def2/J and def2/JK auxiliary basis sets and internal
grid setting “Grid3”; ⟨H⟩ values according to RHF/RKS solution.
b Lowest Hessian eigenvalue. c Not available.
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A.5.7 Maximum Relative Absolute Errors.

Figure A.6.: Maximum relative AEs (in %) with respect to experimental shift range of the
individual nuclei with various density functionals (with pcSseg-3 basis).

As an additional measure for the robustness of different methods, Fig. A.6 shows max-

imum relative absolute errors (or equivalently maximum relative unsigned errors) for

different nuclei. These max. rel. AEs are much larger than what is obtained for light

main-group shieldings (as shown in P-V). Further insights on robustness are provided for

several methods by histogram plots of relative deviations in the main text.
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A.6 SI-VII

Table A.22.: Calculated 19F NMR chemical shifts relative to CFCl3 (in ppm) of [XFn]
– (X

= Cl, Br, I; n = 2, 4, 6) in comparison with experimental values, at BP86-D3
structures.a

BHLYP LH12ct-SsifPW92
opt. gas. gas. COSMO COSMO gas. gas. COSMO COSMO
NMR gas. COSMO gas. COSMO gas. COSMO gas. COSMO δexp.
[ClF2]

– -193.2 -200.0 -196.6 -202.4 -166.3 -170.1 -171.5 -174.4 -125
[ClF4]

– 80.6 76.1 71.9 67.8 71.8 68.6 63.3 60.5 67
[ClF6]

– 284.3 286.8 275.0 277.6 255.1 257.3 246.6 248.9 –
[BrF2]

– -284.4 -294.6 -286.2 -295.5 -262.6 -270.7 -265.4 -272.7 -210
[BrF4]

– -32.2 -38.3 -36.3 -42.0 -36.6 -41.6 -40.7 -45.4 -37
[BrF6]

– 131.9 135.0 126.0 129.2 114.6 117.4 109.0 111.9 94
[IF2]

– -350.1 -359.3 -351.4 -360.1 -338.1 -346.7 -339.5 -347.8 -282
[IF4]

– -103.1 -109.5 -105.1 -111.1 -109.8 -115.5 -111.8 -117.3 -106
[IF6]

– 31.1 33.3 28.1 30.5 14.8 16.9 11.9 14.1 13
σ(CFCl3) 185.4 189.7 183.8 183.8 195.2 198.8 193.7 197.5
a At BP86-D3(BJ)/def2-TZVPPD optimized structures. CFCl3 reference shieldings at the same level have been used to
obtain the relative shifts. Nonrelativistic results with pcSseg-4 basis sets for F, Cl, Br, and ANO-RCC-unc for I.

Table A.23.: Calculated 19F NMR chemical shifts relative to CFCl3 (in ppm) of [XFn]
– (X

= Cl, Br, I; n = 2, 4, 6) in comparison with experimental values, at B3LYP-D3
structures.a

BHLYP LH12ct-SsifPW92
opt. gas. gas. COSMO COSMO gas. gas. COSMO COSMO
NMR gas. COSMO gas. COSMO gas. COSMO gas. COSMO δexp.
[ClF2]

– -190.6 -196.4 -193.4 -198.4 -169.8 -171.0 -173.3 -169.8 -125.0
[ClF4]

– 65.3 61.3 58.5 54.9 56.5 53.8 49.9 47.5 67.0
[ClF6]

– 250.8 252.9 243.0 245.3 224.7 226.7 217.5 219.7 –
[BrF2]

– -279.4 -288.5 -281.1 -289.5 -260.0 -267.1 -262.3 -268.9 -210.0
[BrF4]

– -38.2 -43.7 -41.5 -46.7 -43.3 -47.8 -46.6 -50.8 -37.0
[BrF6]

– 113.8 116.4 108.5 111.4 97.6 100.0 92.7 95.3 94.0
[IF2]

– -343.0 -351.5 -344.6 -352.9 -332.4 -340.3 -333.9 -341.8 -282.0
[IF4]

– -99.5 -105.5 -101.3 -107.1 -107.0 -112.5 -108.8 -114.1 -106.0
[IF6]

– 29.3 31.1 26.5 28.4 12.7 14.4 9.9 11.7 13.0
σ(CFCl3) 190.8 194.8 189.1 193.3 200.3 203.6 198.7 202.2
a At B3LYP-D3(BJ)/def2-TZVPPD optimized structures. CFCl3 reference shieldings at the same level have been used to
obtain the relative shifts. Nonrelativistic results with pcSseg-4 basis sets for F, Cl, Br, and ANO-RCC-unc for I.
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A.7 SI-VIII

A.7.1 CH· · ·F Bond Lengths and Coordination in Microsol-

vated Clusters

Table A.24.: Optimized CH· · ·F bond lengths in pm in optimized X−(MeCN)n (X =
F– , FHF– , ClF –

2 , ClF –
4 ) clusters at GFN2-xTB, MARIJ-BP86-D3(BJ)/def2-

TZVPP levels (DFT+C uses COSMO, ε = 35.688) levels.
Anion n XTB DFT DFT+C Anion n XTB DFT DFT+C
F- 8 198.9 197.5 198.2 FHF- 10 210.5 206.7 205.4

198.9 197.5 198.2 219.3 208.3 206.6
198.9 197.5 199.7 220.0 210.0 206.6
198.9 197.5 199.7 220.7 213.1 207.4
214.0 209.0 202.6 221.2 213.4 207.5
214.0 209.0 202.6 221.5 213.7 208.6
214.0 209.0 203.2 223.0 215.8 209.5
214.0 209.0 203.2 223.2 216.4 214.8

227.2 218.3 (233.9)
238.4 218.7 (272.2)

9 201.2 204.9 204.0 11 217.5 208.2 205.9
201.2 204.9 204.2 220.0 209.5 208.0
201.8 205.0 204.2 223.3 210.9 210.7
201.8 211.8 206.6 223.4 211.5 211.5
206.0 211.9 206.7 224.8 211.9 212.0
206.0 212.0 206.7 226.1 212.5 212.8
210.1 214.4 216.1 226.4 213.3 213.2
213.1 214.5 216.4 227.1 213.8 215.7

(505.9) 214.5 216.5 228.6 220.9 217.8
228.6 221.5 218.1

(231.7) (513.3) (484.4)
10 193.9 192.9 196.0 12 218.7 212.0 210.5

194.6 199.8 198.3 220.2 214.1 211.4
202.2 202.5 198.9 222.3 214.8 212.9
202.6 203.5 202.2 222.4 215.2 215.0
211.2 203.8 202.5 223.3 217.0 215.8
212.8 204.0 203.0 225.9 217.0 216.9
212.9 205.9 203.9 227.7 218.9 218.5
215.3 206.9 204.2 227.7 220.5 219.0

(540.6) (506.2) (462.5) 228.2 222.3 221.8
(574.1) (565.5) (585.4) (230.5) 225.2 227.0

(234.6) 228.1 (235.9)
(479.0) (472.3) (443.6)

ClF2- 10 218.0 208.0 209.1 ClF4- 10 222.3 217.4 215.8
218.7 208.5 210.1 225.8 222.5 221.6
219.2 209.2 212.1 226.1 222.7 222.4
221.8 213.1 213.2 (233.4) 225.9 224.7

(231.4) 214.1 215.6 (235.9) 228.2 228.8
(235.4) 217.9 217.5 (238.2) (237.7) 229.8
(237.9) 220.8 220.3 (240.9) (239.7) (238.1)
(243.0) (254.6) 259.6 (244.7) (243.0) (242.6)
(246.3) (267.6) 265.4 (264.1) (290.5) (257.8)
(247.7) (299.1) (315.6) (284.4) (294.3) (280.2)

11 214.5 209.1 206.6 11 226.7 211.9 215.0
217.9 209.8 208.8 227.8 224.4 224.8
218.8 212.5 212.8 (232.1) 226.0 226.2
220.1 214.4 213.2 (232.2) (231.1) 229.8
223.1 214.4 214.6 (234.9) (244.3) 229.8
226.4 215.8 215.4 (236.8) (245.5) (233.1)

(239.6) 223.1 220.5 (242.0) (246.3) (236.3)
(259.7) 223.8 (247.5) (248.6) (247.6) (241.5)
(336.0) (242.2) (260.4) (251.7) (249.1) (242.9)
(342.2) (283.9) (277.1) (257.1) (251.1) (246.3)
(360.1) (297.9) (289.6) (258.3) (259.3) (261.5)

12 218.2 208.9 209.6 12 223.0 217.0 217.7
219.2 208.9 209.7 223.0 217.1 217.8
221.2 212.3 209.8 (233.6) 221.2 222.9
222.6 212.4 209.9 (233.6) 221.2 223.0
224.4 212.6 214.3 (235.8) 222.6 227.9
225.5 212.7 214.6 (235.8) 222.7 227.9

(230.4) (233.4) (236.1) (239.4) 229.9 (231.5)
(234.6) (234.6) (238.8) (239.4) (230.6) (231.5)
(274.2) (291.0) (284.6) (248.9) (233.9) (232.0)
(297.1) (291.6) (284.8) (248.9) (233.9) (232.0)
(362.9) (292.7) (290.3) (252.0) (247.4) (249.2)
(368.6) (292.8) (291.0) (252.0) (248.0) (249.2)
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A.7.2 19F NMR Shift Data

Table A.25.: Computed 19F-NMR shifts in ppm for microsolvated fluoride-like anions in MeCN
with increasing cluster size using different functionals.a

Anion n exp. Shift BHLYP cLH12sir cLH12sif cLH20t
F– 0 -74 -293.5 -293.3 -290.1 -295.8

1 -194.0 -199.8 -198.0 -200.3
2 -151.8 -160.4 -159.3 -158.6
3 -117.3 -128.5 -128.0 -125
4 -93.2 -104.7 -104.7 -99.8
5 -71.5 -83.1 -83.5 -77.3
6 -37.0 -50.6 -51.6 -43.3
7 -44.1 -54.8 -55.9 -46.1
8 -57.3 -65.9 -66.9 -57.0
9 -77.5 -82.8 -83.7 -75.4
10 -58.2 -66.3 -67.2 -57.3
11 -58.6 -66.1 -67.1 -57.5

FHF– 0 145–149 -211.6 -218.7 -216.5 -219.1
1 -195.5 -203.7 -201.7 -203.2
2 -182.9 -191.6 -189.9 -190.4
3 -171.5 -180.8 -179.3 -178.7
4 -164.3 -174.0 -172.7 -171.4
5 -154.2 -164.6 -163.4 -160.8
6 -145.5 -156.1 -155.1 -151.8
7 -139.2 -150.0 -149.1 -145.0
8 -130.4 -141.7 -140.9 -136.0
9 -125.3 -136.9 -136.3 -130.7
10 -124.1 -134.5 -133.9 -128.3
11 -124.3 -135.2 -134.6 -128.1
12 -129.7 -140.2 -139.6 -133.2

ClF –
2 0 -125 -206.3 -167.9 -168.8 -174.7

1 -193.2 -156.5 -157.4 -162.0
2 -184.6 -149.1 -150.2 -153.4
3 -173.9 -139.0 -140.3 -143.3
4 -166.7 -132.2 -133.7 -136.0
5 -160.7 -126.5 -128.0 -128.9
6 -154.0 -120.6 -122.2 -122.0
7 -147.8 -115.4 -117.2 -116.4
8 -147.1 -115.4 -117.0 -114.7
9 -137.3 -105.4 -107.0 -106.3
10 -130.2 -98.3 -100.0 -98.1
11 -126.7 -95.1 -96.7 -94.3
12 -125.5 -93.4 -95.0 -93.6

ClF –
4 0 67 67.8 67.8 65.4 69.0

1 73.0 72.2 69.6 73.8
2 76.2 75.0 72.4 77.4
3 83.8 83.1 80.4 86.2
4 78.0 77.7 75.2 81.1
5 76.2 75.8 73.3 79.0
6 77.7 77.7 75.1 81.2
7 78.2 78.5 75.9 82.6
8 80.7 80.2 77.6 83.9
9 87.0 86.0 83.3 89.9
10 81.8 81.8 79.3 85.5
11 82.8 83.6 81.0 88.3
12 83.5 83.2 80.5 87.1

a MARIJ-GIAO-DFT/pcSseg-3/COSMO//MARIJ-D3(BJ)-BP86/def2-TZVPP/COSMO level. Relative to
a computed CFCl3(l) reference shielding of 187.2 ppm (BHLYP), 186.3 ppm (cLH12ct-SsirPW92), 189.5 ppm
(cLH12ct-SsifPW92), 184.6 ppm (cLH20t). Experimental data from Refs. 414,415 and P-VII. cLH12sir and
cLH12sif abbreviate cLH12ct-SsirPW92 and cLH12ct-SsifPW92, respectively.
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A.8 Additional Data

A.8.1 Test of the Gauge Independence of the Implementation

of Calibrated LHs

Table A.26.: Tests of the gauge independence of isotropic shielding constants for NH3 (in ppm,
DFT/pcSseg-3 with grid setting 5) for the calibrated LH20t (input structure as
indicated on the left hand side) using different models for τ (see Eqs. 3.86 and
3.87).

LH20t
Nucleus x y z τMS τD
N 0.000000 0.000000 0.000000 270.75 268.93
H 0.933748 0.000000 -0.385356 31.490 31.435
H -0.466874 -0.808650 -0.385356 31.490 31.435
H -0.466874 0.808650 -0.385356 31.490 31.435

N 0.000000 0.000000 0.000000 270.75 268.93
H 0.000000 0.000000 1.010141 31.491 31.436
H 0.969231 0.000000 -0.284562 31.490 31.435
H -0.380116 0.891586 -0.284553 31.490 31.435

N -100.000000 -100.000000 -100.000000 270.77 268.95
H -99.066252 -100.000000 -100.385356 31.490 31.435
H -100.466874 -100.808650 -100.385356 31.490 31.435
H -100.466874 -99.191350 -100.385356 31.490 31.435

N 100.000000 100.000000 100.000000 270.73 268.91
H 100.933748 100.000000 99.614644 31.490 31.435
H 99.533126 99.191350 99.614644 31.490 31.435
H 99.533126 100.808650 99.614644 31.490 31.435
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A.8.2 Grid Dependency of DFT and CDFT Shielding Calculations

Table A.27.: Shielding data (in ppm) for the benchmark set of Ref. 13 using two LH functionals with various grid settings (GIAO-
DFT/pcSseg-3 data).

LH07t lh20t
τMS τD τMS τD

grid 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1
cpksgrid – – 0 -1 – – 0 -1 – – 0 -1 – – 0 -1

1H C4H4O(C2 ,C5) 23.68 23.68 23.68 23.68 23.81 23.81 23.81 23.81 23.92 23.91 23.92 23.91 23.92 23.92 23.92 23.92
C4H4O(C3 ,C4) 24.62 24.62 24.62 24.62 24.74 24.74 24.74 24.74 24.87 24.87 24.87 24.87 24.85 24.85 24.85 24.85
CH3COCH3 29.28 29.28 29.28 29.28 29.39 29.40 29.40 29.40 29.50 29.50 29.50 29.50 29.47 29.47 29.47 29.47
CH3F 27.14 27.14 27.14 27.14 27.24 27.24 27.24 27.24 27.41 27.41 27.41 27.41 27.40 27.40 27.40 27.40
CH4 31.30 31.30 31.30 31.31 31.41 31.41 31.41 31.41 31.44 31.44 31.44 31.44 31.40 31.40 31.40 31.40
H2O 30.47 30.47 30.47 30.47 30.64 30.64 30.64 30.64 30.58 30.58 30.58 30.58 30.53 30.53 30.53 30.53
HF 28.56 28.56 28.56 28.56 28.77 28.77 28.77 28.77 28.56 28.56 28.56 28.56 28.54 28.54 28.54 28.53
NH3 31.33 31.33 31.33 31.33 31.46 31.46 31.46 31.46 31.47 31.47 31.47 31.47 31.42 31.42 31.42 31.42
PH3 29.25 29.25 29.25 29.25 29.37 29.37 29.37 29.37 29.42 29.42 29.42 29.42 29.40 29.40 29.40 29.40

13C C4H4O(C2 ,C5) 38.0 38.0 38.0 37.9 38.2 38.1 38.2 38.0 39.3 39.3 39.3 39.1 40.6 40.6 40.5 40.5
C4H4O(C3 ,C4) 72.3 72.3 72.4 72.2 72.0 72.0 72.1 71.9 74.0 74.0 74.1 73.9 75.0 75.0 75.0 75.0
CF4 53.4 53.4 53.5 53.4 54.0 54.0 54.1 54.0 57.2 57.2 57.3 57.2 58.1 58.2 58.2 58.2
CH3COCH3 -30.3 -30.3 -30.3 -30.5 -29.9 -29.9 -29.9 -30.1 -30.0 -30.0 -30.1 -30.3 -28.2 -28.2 -28.3 -28.4
CH3COCH3 159.4 159.4 159.4 159.3 158.1 158.0 158.0 158.0 160.2 160.2 160.2 160.2 160.4 160.4 160.4 160.4
CH3F 117.0 116.9 116.9 116.9 116.3 116.3 116.3 116.2 119.7 119.7 119.6 119.6 120.2 120.2 120.1 120.1
CH4 199.9 199.8 199.8 199.8 197.2 197.1 197.1 197.1 198.7 198.7 198.7 198.6 198.4 198.4 198.4 198.4
CO -13.3 -13.3 -13.2 -13.5 -13.3 -13.3 -13.2 -13.6 -14.4 -14.4 -14.3 -14.8 -12.6 -12.6 -12.6 -12.8

15N N2 -82.2 -82.2 -82.1 -82.6 -83.9 -83.9 -83.8 -84.4 -86.6 -86.6 -86.5 -87.2 -83.4 -83.4 -83.4 -83.8
NNO -1.5 -1.5 -1.4 -1.6 -1.9 -1.9 -1.9 -2.1 -6.2 -6.2 -6.2 -6.5 -4.6 -4.6 -4.6 -4.7
NNO 94.5 94.5 94.5 94.3 92.5 92.5 92.5 92.3 88.7 88.7 88.7 88.4 89.6 89.6 89.6 89.5
NH3 275.8 275.8 275.8 275.8 267.8 267.7 267.7 267.7 270.5 270.4 270.4 270.4 268.7 268.6 268.6 268.6
PN -403.7 -403.7 -403.7 -404.5 -407.5 -407.4 -407.5 -408.3 -418.9 -418.7 -418.8 -420.0 -409.2 -409.0 -409.3 -409.9

17O C4H4O 37.5 37.4 37.5 37.5 35.7 35.7 35.7 35.8 38.7 38.8 38.9 39.0 40.2 40.3 40.4 40.5
CH3COCH3 -316.8 -316.6 -317.0 -316.7 -322.1 -321.9 -322.3 -322.0 -328.4 -328.4 -329.0 -328.5 -323.0 -323.0 -323.6 -323.3
CO -65.2 -65.2 -65.2 -65.2 -71.1 -71.1 -71.1 -71.1 -69.0 -69.0 -69.0 -69.0 -66.5 -66.4 -66.4 -66.4
F2O -538.0 -538.0 -538.1 -537.3 -540.5 -540.5 -540.6 -539.7 -513.1 -513.1 -513.2 -512.0 -503.6 -503.6 -503.6 -502.7
H2O 349.3 349.3 349.3 349.3 335.2 335.2 335.2 335.2 339.9 339.9 339.9 339.9 336.2 336.2 336.2 336.2
NNO 191.2 191.2 191.2 191.2 185.8 185.8 185.8 185.8 182.6 182.6 182.6 182.6 183.4 183.4 183.4 183.4

19F CH3F 486.7 486.7 486.7 486.7 476.9 476.9 476.9 476.9 479.8 479.8 479.8 479.8 476.0 476.0 476.1 476.1
CF4 262.9 262.9 263.1 263.1 255.8 255.9 256.0 256.0 260.7 260.8 261.0 261.0 258.9 259.0 259.2 259.2
F2 -214.2 -214.2 -214.0 -214.0 -221.2 -221.2 -221.0 -220.9 -207.7 -207.7 -207.4 -207.5 -204.7 -204.7 -204.4 -204.6
F2O -33.0 -33.0 -32.8 -33.1 -38.3 -38.3 -38.1 -38.3 -29.7 -29.7 -29.5 -29.9 -29.3 -29.3 -29.1 -29.5
HF 436.8 436.8 436.8 436.8 418.2 418.2 418.2 418.2 425.7 425.7 425.8 425.8 419.9 419.9 419.9 419.9
PF3 227.2 227.2 227.2 227.2 218.9 219.0 218.9 219.0 227.1 227.1 227.1 227.1 224.8 224.9 224.8 224.8

31P PF3 189.5 189.5 189.3 189.4 189.6 189.6 189.4 189.6 200.5 200.4 200.2 200.4 200.5 200.5 200.2 200.2
PH3 599.2 599.0 599.0 599.1 590.6 590.4 590.4 590.5 592.5 592.2 592.2 592.3 590.6 590.4 590.3 590.4
PN -46.5 -46.5 -46.5 -47.0 -49.1 -49.0 -49.1 -49.5 -48.8 -48.7 -48.8 -49.5 -43.9 -43.8 -44.0 -44.5
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A.8.3 Statistical Data for SSCC Subsets

Table A.28.: Standard deviation (StD), mean signed (MSE) and mean absolute errors (MAE)
in Hz from reference SSCC data for a variety of LH models (DFT/pcJ-4 level of
theory).

c07ta c07cta c07txa c07ctxa c12sifa c14ta c14t-nca c20ta c20t-nca

StD 1JHC 4.30 3.55 5.66 3.95 4.52 6.01 5.36 3.18 4.14
1JCC 6.43 2.98 7.11 5.59 7.22 9.61 8.26 3.10 2.49
-1JCO/CN 2.20 1.90 2.72 1.98 1.48 2.54 2.54 1.79 1.61
1JCF 28.62 26.78 31.48 27.82 27.54 28.74 32.00 25.87 24.89
2JHH 1.90 2.34 2.34 2.23 3.28 1.59 1.86 2.78 1.76
2JHC 0.50 1.58 0.93 1.22 2.23 0.49 0.43 0.98 0.76
3JHH 1.54 1.63 1.98 1.55 1.70 1.62 1.68 1.67 1.64

MSE 1JHC -6.43 -19.19 3.84 -17.12 -30.04 4.69 -0.14 -11.00 -4.51
1JCC 0.60 -12.69 8.00 -14.27 -20.87 8.52 3.93 -4.45 -5.65
-1JCO/CN -6.73 -10.55 -2.34 -8.90 -10.50 -4.35 -6.95 -5.76 -5.98
1JCF -93.52 -81.19 -81.66 -62.74 -59.88 -96.39 -103.51 -59.70 -58.59
2JHH -0.90 2.52 -3.79 1.81 1.49 1.46 -1.21 2.06 2.85
2JHC 0.08 0.91 -1.25 0.92 0.40 0.79 0.05 1.68 2.13
3JHH -0.49 -1.59 0.77 -1.39 -1.83 -0.26 0.07 -1.51 -1.05

MAE 1JHC 6.43 19.19 5.45 17.12 30.04 5.77 5.05 11.00 4.79
1JCC 5.88 12.69 8.00 14.27 20.87 8.97 7.01 4.67 5.65
-1JCO/CN 6.73 10.55 3.13 8.90 10.50 4.67 6.95 5.76 5.98
1JCF 93.52 81.19 81.66 62.74 59.88 96.39 103.51 59.70 58.59
2JHH 1.75 3.29 4.06 2.59 3.18 1.56 1.97 3.21 2.86
2JHC 0.42 1.64 1.29 1.30 2.15 0.82 0.36 1.68 2.13
3JHH 1.03 1.76 1.68 1.52 2.04 0.94 1.18 1.70 1.21

a abbreviations of LH functionals c07t = cLH07t-SVWN, c12sif = cLH12ct-SsfiPW92, c14t = LH14t-calPBE, c20t
= cLH20t; “t” vs. “ct” mark the spin-channel and common t-LMF, “x” denotes functionals with a non standard
prefactor (a = 0.709), and “nc” is used for uncalibrated models.
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A.8.4 Computed SSCCs of Various DFAs with Corrected PSO Contribution

Table A.29.: Comparison of computed SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ and MCSCF/BS2
reference data (DFT/pcJ-4 level of theory).
Molecule Coupling CC3a MCSCFb TPSS TPSSh B3LYP PBE0 BHLYP

τPSO
MS τPSO

D τPSO
MS τPSO

D
CH4

1JHC 121.07 139.61 139.64 140.41 140.44 133.05 123.72 141.61
2JHH -12.89 -10.27 -10.17 -11.37 -11.28 -13.36 -13.90 -16.14

CH3F
1JHC 144.35 163.64 163.68 164.91 164.94 154.61 144.69 165.68
1JCF -161.68 -255.28 -254.29 -243.85 -242.96 -226.99 -220.40 -190.22
2JHH -10.74 -5.12 -5.01 -6.38 -6.28 -10.05 -10.61 -12.65
2JHF 48.09 57.05 57.17 57.65 57.76 53.66 51.63 58.91

C2H4
1JHC 153.57 172.73 172.76 174.27 174.29 166.70 156.44 178.56
1JCC 69.63 71.78 71.58 74.33 74.15 73.38 70.53 87.10
2JHH 1.06 8.32 8.44 7.06 7.17 3.29 1.37 0.59
2JHC -2.24 -0.67 -0.69 -1.77 -1.79 -1.42 -2.88 -5.54
3JHH (cis) 11.72 12.52 12.56 12.96 12.99 13.38 13.12 15.22
3JHH (trans) 18.25 22.54 22.61 22.85 22.91 20.48 20.11 22.87

C2H6
1JHC 124.56 139.70 139.73 140.76 140.79 133.32 124.63 142.61
1JCC 35.51 34.70 34.70 36.14 36.14 33.79 31.53 41.92
2JHH -14.63 -10.21 -10.12 -11.37 -11.28 -13.68 -14.10 -16.51
2JHC -5.01 -3.34 -3.34 -3.88 -3.88 -3.47 -4.15 -5.14
3JHH (gauche) 3.61 3.80 3.82 3.90 3.93 4.34 4.05 4.69
3JHH (trans) 15.79 19.35 19.42 19.38 19.44 17.93 16.74 18.89

C3H4
1JHC (CH) 229.75 249.97 249.98 252.24 252.25 245.36 231.47 260.30
1JHC (CH2) 168.49 185.16 185.21 186.45 186.49 178.69 167.66 189.43
1JCC (CH–CH2) 10.55 7.24 7.23 8.77 8.76 8.82 8.03 15.62
1JCC (CH=CH) 66.34 64.16 64.05 67.14 67.04 68.69 66.88 83.16
2JHH 2.03 14.99 15.10 14.22 14.31 9.49 7.99 9.00
2JHC (CH–CH2) 2.39 4.31 4.31 4.38 4.38 3.30 3.03 4.06
2JHC (CH=CH) 3.15 4.76 4.78 3.97 3.99 3.66 2.64 -0.01
2JHC (CH2-CH) -2.86 -0.87 -0.87 -1.24 -1.25 -1.75 -2.24 -2.73
3JHH (CH=CH) 6.48 1.11 1.18 1.53 1.59 2.28 2.58 4.29
3JHH (CH–CH2) -2.15 -2.31 -2.26 -2.45 -2.41 -2.12 -2.22 -2.58

CO 1JCO 14.62 15.17 22.26 22.66 20.81 21.16 18.70 20.61 11.51
CO2

1JCO 15.67 29.22 29.23 27.05 27.06 23.45 24.17 15.64
2JOO 2.36 -0.22 -0.09 0.89 1.02 2.43 2.48 6.60

H2CO 1JHC 167.89 190.47 190.50 192.45 192.47 185.30 173.25 198.15
1JCO 26.98 37.58 38.26 35.43 36.05 35.37 35.21 24.61
2JHH 37.29 56.18 56.31 54.87 54.98 45.00 40.96 44.67
2JHO -3.01 -3.69 -3.61 -3.77 -3.69 -2.91 -2.50 -2.95275
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Continuing Table A.29
HFCO 1JHC 242.4 281.90 281.98 283.92 284.00 270.37 254.00 284.99

1JCO 14.67 26.82 26.99 24.36 24.51 22.31 22.33 12.09
1JCF -352.41 -478.08 -478.93 -464.21 -464.95 -450.35 -439.08 -407.59
2JHO -10.01 -10.56 -10.58 -10.57 -10.59 -10.61 -9.90 -10.12
2JHF 182.86 203.25 203.34 201.86 201.94 200.48 188.51 203.27
2JOF 48.74 72.75 74.91 67.78 69.77 71.10 69.78 47.98

F2CO 1JCO 12.08 28.11 28.12 25.04 25.05 21.30 21.36 10.52
1JCF -294.39 -438.45 -439.06 -420.71 -421.27 -403.13 -393.66 -348.15
2JOF 39.78 57.38 58.47 54.02 55.03 53.97 53.39 39.62
2JFF -100.2 -266.49 -271.29 -247.58 -251.78 -232.94 -233.28 -162.93

HCN 1JHC 249.95 257.92 288.22 288.20 291.82 291.80 286.19 267.08 306.03
1JCN -18.19 -19.07 -12.17 -12.29 -14.84 -14.97 -18.20 -16.94 -30.32
2JHN -7.47 -8.24 -5.17 -5.29 -5.98 -6.10 -7.52 -7.40 -8.50

FCN 1JCN -5.63 10.13 9.89 5.77 5.53 -0.56 0.51 -17.55
1JCF -403 -601.90 -603.12 -579.21 -580.41 -550.19 -544.02 -493.90
2JNF 53.12 64.88 65.09 59.22 59.38 54.89 53.42 34.57

C2H2
1JHC 240.44 247.65 284.95 284.90 286.65 286.60 275.36 258.82 291.34
1JCC 180.96 185.66 190.91 191.30 194.23 194.61 205.74 198.35 222.27
2JHC 53.07 53.63 58.86 59.06 58.27 58.46 56.66 54.09 54.73
3JHH 9.95 10.72 12.22 12.33 12.91 13.02 11.45 12.64 15.09

CHCF 1JHC 270.08 320.17 320.14 321.40 321.36 307.86 290.36 324.08
1JCC 268.11 276.92 277.37 281.46 281.89 296.68 287.21 316.95
1JCF -277.68 -439.04 -440.07 -427.71 -428.74 -405.99 -406.69 -371.28
2JHC 68.53 80.08 80.26 78.89 79.06 74.78 71.70 72.34
2JCF 25.56 20.69 21.13 27.50 27.96 28.72 30.50 58.20
3JHF 14.45 19.34 19.80 16.88 17.31 18.55 16.75 9.35

C2F2
1JCC 401.65 424.21 424.67 429.03 429.47 445.27 433.67 467.70
1JCF -256.58 -424.46 -424.99 -413.67 -414.23 -389.28 -390.26 -354.27
2JCF 45.54 41.66 42.29 47.27 47.87 48.00 49.85 74.01
3JFF 2.56 4.57 3.51 11.24 10.42 26.45 20.17 48.70

FNO 1JNO -34.14 -41.96 -42.48 -41.12 -41.62 -41.94 -41.52 -34.42
1JNF 152.73 170.40 172.32 180.83 182.42 187.76 190.94 233.88
2JOF 130.22 175.70 183.40 174.24 181.64 191.14 190.28 156.97

HD 1JDH 41.22 41.10 41.21 41.67 41.83 49.38 45.13 51.55
HF 1JHF 538.4 372.21 374.18 396.59 398.35 449.25 433.75 530.17
N2

1JNN
14N-15N 1.3 2.42 2.47 1.84 1.87 1.04 1.41 -1.98

NH3
1JHN -61.65* -64.67 -64.68 -65.38 -65.39 -64.43 -60.28 -69.39
2JHH -10.6 -7.11 -6.98 -8.31 -8.20 -10.17 -10.18 -13.59

H2O
1JHO -81.19 -81.19 -71.21 -71.30 -73.57 -73.65 -77.63 -73.63 -87.18
2JHH -7.84 -8.31 -4.06 -3.89 -5.32 -5.17 -7.39 -7.28 -11.22

OHF 1JHO -49.7 -27.41 -26.73 -31.49 -30.86 -35.52 -32.91 -49.66
1JOF -565.79 -659.76 -685.56 -680.53 -704.36 -731.44 -743.11 -813.25
2JHF 89.93 102.12 106.14 104.18 107.86 113.07 114.64 115.33

OF2
1JOF -251.99 -251.74 -265.60 -286.46 -299.99 -319.03 -339.78 -441.27
2JFF 1327.34 1808.58 1865.06 1766.86 1815.86 1790.42 1777.10 1734.43

a Ref. 388; b Ref. 387 (and references therein); * Recalculated for 15N.
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Table A.30.: Comparison of computed SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ and MCSCF/BS2
reference data (DFT/pcJ-4 level of theory).

Molecule Coupling CC3a MCSCFb LH07t-SVWN LH12ct-SsirPW92 LH12ct-SsifPW92 LH14t-calPBE LH20t
τPSO
MS τPSO

D τPSO
MS τPSO

D τPSO
MS τPSO

D τPSO
MS τPSO

D τPSO
MS τPSO

D
CH4

1JHC 121.07 114.33 114.35 100.49 100.50 97.53 97.53 122.71 122.72 113.02 113.03
2JHH -12.89 -15.15 -15.13 -10.32 -10.32 -10.33 -10.35 -13.34 -13.31 -10.24 -10.20

CH3F
1JHC 144.35 135.42 135.42 118.95 118.94 115.74 115.72 144.89 144.91 131.51 131.55
1JCF -161.68 -206.90 -206.62 -188.65 -188.58 -183.71 -183.77 -208.29 -208.11 -179.16 -179.24
2JHH -10.74 -12.42 -12.40 -8.21 -8.22 -8.44 -8.47 -10.07 -10.03 -7.56 -7.49
2JHF 48.09 50.43 50.65 37.12 37.38 35.78 36.06 54.10 54.15 44.22 44.15

C2H4
1JHC 153.57 145.43 145.43 128.67 128.66 125.48 125.46 154.61 154.63 142.23 142.28
1JCC 69.63 65.37 65.33 50.71 50.71 48.54 48.57 72.59 72.57 61.85 61.98
2JHH 1.06 -1.16 -1.14 1.99 1.98 1.58 1.55 1.42 1.46 2.86 2.91
2JHC -2.24 -2.26 -2.27 0.37 0.37 0.37 0.37 -2.35 -2.35 0.30 0.33
3JHH (cis) 11.72 12.40 12.40 10.37 10.37 10.31 10.30 12.30 12.31 10.56 10.58
3JHH (trans) 18.25 17.69 17.71 15.24 15.24 14.95 14.95 18.56 18.58 15.51 15.54

C2H6
1JHC 124.56 115.76 115.77 101.35 101.36 98.49 98.49 124.01 124.02 113.99 114.00
1JCC 35.51 29.83 29.83 19.77 19.77 18.24 18.24 34.41 34.41 28.84 28.83
2JHH -14.63 -15.31 -15.29 -10.62 -10.63 -10.67 -10.70 -13.41 -13.38 -10.47 -10.43
2JHC -5.01 -4.24 -4.24 -2.55 -2.55 -2.53 -2.52 -4.11 -4.11 -2.54 -2.54
3JHH (gauche) 3.61 3.86 3.87 3.26 3.26 3.23 3.22 3.87 3.87 3.52 3.53
3JHH (trans) 15.79 15.03 15.05 13.61 13.61 13.33 13.32 15.99 16.01 14.48 14.50

C3H4
1JHC (CH) 229.75 215.21 215.19 194.02 194.00 190.13 190.10 226.78 226.80 211.08 211.16
1JHC (CH2) 168.49 156.58 156.59 139.73 139.73 136.44 136.43 166.04 166.05 153.83 153.86
1JCC (CH–CH2) 10.55 7.08 7.07 1.45 1.45 0.77 0.76 10.10 10.09 6.77 6.78
1JCC (CH=CH) 66.34 61.36 61.34 49.40 49.41 47.79 47.81 68.24 68.23 57.96 58.02
2JHH 2.03 4.68 4.70 6.53 6.52 6.07 6.04 7.29 7.32 7.26 7.31
2JHC (CH–CH2) 2.39 2.36 2.36 1.65 1.66 1.48 1.49 3.17 3.17 2.94 2.94
2JHC (CH=CH) 3.15 3.64 3.64 5.63 5.62 5.70 5.69 3.68 3.69 6.02 6.04
2JHC (CH2-CH) -2.86 -2.38 -2.38 -1.50 -1.50 -1.54 -1.54 -1.91 -1.91 -0.89 -0.89
3JHH (CH=CH) 6.48 2.43 2.45 1.69 1.69 1.74 1.73 2.27 2.29 1.64 1.67
3JHH (CH–CH2) -2.15 -2.08 -2.07 -1.47 -1.47 -1.42 -1.43 -2.02 -2.01 -1.48 -1.47

CO 1JCO 14.62 15.17 20.04 20.16 24.49 24.51 24.87 24.83 18.38 18.44 20.98 20.88
CO2

1JCO 15.67 23.94 23.94 26.93 26.92 27.01 27.01 22.09 22.10 22.80 22.77
2JOO 2.36 1.34 1.31 1.04 0.97 1.09 1.00 2.27 2.25 2.30 2.27

H2CO 1JHC 167.89 165.02 165.00 146.66 146.62 143.46 143.41 173.99 174.01 160.71 160.79
1JCO 26.98 34.33 34.58 37.16 37.26 37.25 37.26 32.42 32.53 32.95 32.71
2JHH 37.29 33.43 33.45 31.81 31.79 30.59 30.54 38.32 38.36 32.62 32.69
2JHO -3.01 -3.03 -2.98 -1.96 -1.92 -1.82 -1.77 -3.60 -3.61 -2.88 -2.97
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Continuing Table A.30
HFCO 1JHC 242.4 241.56 241.56 217.08 217.04 212.71 212.65 254.42 254.46 231.69 231.78

1JCO 14.67 22.24 22.28 25.59 25.59 25.67 25.65 19.95 19.97 21.06 20.96
1JCF -352.41 -421.19 -421.32 -384.61 -384.56 -377.55 -377.41 -427.04 -427.08 -386.37 -385.81
2JHO -10.01 -10.73 -10.74 -9.81 -9.81 -9.75 -9.74 -10.87 -10.89 -10.32 -10.38
2JHF 182.86 182.98 183.07 155.32 155.37 152.42 152.45 188.84 188.96 165.43 165.69
2JOF 48.74 66.46 66.77 76.81 76.71 76.89 76.55 60.25 60.31 68.76 67.87

F2CO 1JCO 12.08 21.36 21.36 24.39 24.38 24.35 24.34 19.15 19.15 19.81 19.75
1JCF -294.39 -385.74 -385.82 -358.94 -358.90 -352.91 -352.80 -386.80 -386.80 -355.01 -354.44
2JOF 39.78 50.03 50.17 55.64 55.57 55.44 55.25 46.69 46.68 51.46 50.87
2JFF -100.2 -198.41 -198.23 -229.83 -228.85 -227.24 -225.84 -184.77 -184.37 -200.09 -197.65

HCN 1JHC 249.95 257.92 249.17 249.13 224.30 224.26 219.46 219.42 263.25 263.27 241.83 241.96
1JCN -18.19 -19.07 -16.11 -16.17 -11.32 -11.36 -10.93 -10.94 -19.31 -19.31 -16.61 -16.47
2JHN -7.47 -8.24 -9.01 -9.06 -9.64 -9.65 -9.86 -9.85 -8.91 -8.94 -9.78 -9.75

FCN 1JCN -5.63 1.24 1.16 5.49 5.48 5.56 5.58 -2.24 -2.24 -0.25 -0.06
1JCF -403 -527.45 -527.77 -488.08 -488.09 -480.96 -480.78 -530.99 -531.03 -486.54 -485.54
2JNF 53.12 52.58 52.75 50.74 50.93 49.74 49.93 50.07 50.15 48.61 48.53

C2H2
1JHC 240.44 247.65 237.46 237.40 213.17 213.12 208.22 208.17 251.77 251.79 230.99 231.13
1JCC 180.96 185.66 187.06 187.23 166.31 166.39 163.29 163.30 195.75 195.76 182.06 181.72
2JHC 53.07 53.63 52.26 52.34 51.30 51.33 50.88 50.87 53.81 53.85 53.37 53.30
3JHH 9.95 10.72 10.76 10.80 8.73 8.75 8.72 8.72 10.76 10.79 8.75 8.75

CHCF 1JHC 270.08 266.01 265.97 240.15 240.13 234.77 234.75 281.50 281.52 259.88 259.99
1JCC 268.11 272.28 272.43 243.80 243.83 239.76 239.72 283.51 283.52 264.34 263.95
1JCF -277.68 -391.76 -392.18 -368.49 -368.65 -364.26 -364.25 -394.57 -394.63 -359.61 -358.69
2JHC 68.53 68.06 68.12 66.22 66.23 65.54 65.52 70.19 70.21 69.70 69.63
2JCF 25.56 30.85 30.88 15.68 15.56 15.23 15.02 38.80 38.73 28.16 27.87
3JHF 14.45 16.44 16.63 21.19 21.28 21.37 21.39 15.40 15.50 19.70 19.65

C2F2
1JCC 401.65 413.61 413.72 373.80 373.79 368.35 368.27 427.84 427.83 400.71 400.28
1JCF -256.58 -372.97 -373.11 -350.87 -350.84 -346.15 -346.01 -376.44 -376.40 -340.95 -340.22
2JCF 45.54 49.38 49.42 30.93 30.79 30.20 29.95 57.61 57.53 44.54 44.16
3JFF 2.56 22.80 21.32 -1.67 -3.33 -3.71 -5.42 29.70 29.09 3.27 2.98

FNO 1JNO -34.14 -40.51 -40.66 -42.77 -42.80 -42.82 -42.78 -39.33 -39.38 -40.95 -40.69
1JNF 152.73 166.77 167.07 143.29 143.27 140.82 140.64 176.87 176.93 166.88 166.27
2JOF 130.22 174.41 176.02 188.50 188.57 188.73 187.84 167.23 167.54 179.06 175.72

HD 1JDH 41.22 40.39 40.41 38.00 37.90 37.95 37.70 42.85 42.93 23.98 24.12
HF 1JHF 538.4 441.50 443.24 421.70 423.54 424.89 426.69 452.44 452.77 501.45 500.17
N2

1JNN
14N-15N 1.3 1.77 1.78 3.01 3.01 3.13 3.12 1.03 1.03 1.87 1.87

NH3
1JHN -61.65* -57.43 -57.46 -51.21 -51.23 -50.12 -50.15 -60.80 -60.80 -59.51 -59.49
2JHH -10.6 -10.50 -10.45 -7.58 -7.56 -7.52 -7.52 -9.02 -8.97 -8.30 -8.26

H2O
1JHO -81.19 -81.19 -73.02 -73.12 -66.69 -66.79 -66.23 -66.33 -76.06 -76.08 -79.03 -78.93
2JHH -7.84 -8.31 -7.33 -7.25 -5.52 -5.46 -5.53 -5.49 -6.18 -6.12 -6.44 -6.40

OHF 1JHO -49.7 -36.44 -36.31 -32.57 -32.59 -32.75 -32.86 -39.16 -39.11 -45.00 -45.22
1JOF -565.79 -652.73 -659.09 -632.40 -633.89 -631.39 -629.95 -673.82 -675.75 -639.40 -630.13
2JHF 89.93 106.70 108.07 100.11 100.83 100.07 100.38 105.74 106.09 98.68 97.20

OF2
1JOF -251.99 -283.09 -286.64 -285.54 -286.10 -289.66 -288.36 -299.09 -300.18 -286.85 -281.61
2JFF 1327.34 1584.60 1594.57 1380.62 1381.18 1355.22 1350.51 1650.62 1653.05 1455.65 1438.89

a Ref. 388; b Ref. 387 (and references therein); * Recalculated for 15N.
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Table A.31.: Comparison of computed SSCCs (in Hz) with various density functionals against CC3/aug-ccJ-pVTZ and MCSCF/BS2
reference data (DFT/pcJ-4 level of theory).

Molecule Coupling CC3a MCSCFb c07ct c07tx c07ctx cLH14t-nc cLH20t-nc
CH4

1JHC 121.07 105.79 121.71 107.77 118.44 116.66
2JHH -12.89 -10.12 -19.31 -11.16 -16.10 -10.55

CH3F
1JHC 144.35 124.47 145.51 127.65 140.28 137.05
1JCF -161.68 -201.27 -193.01 -186.93 -211.14 -180.11
2JHH -10.74 -7.63 -16.12 -8.43 -13.17 -7.74
2JHF 48.09 39.89 55.76 39.92 52.90 44.39

C2H4
1JHC 153.57 134.42 154.86 136.40 150.49 147.18
1JCC 69.63 54.60 74.34 55.87 67.89 61.50
2JHH 1.06 2.89 -4.68 2.29 -1.64 3.67
2JHC -2.24 0.38 -5.16 0.09 -3.01 0.10
3JHH (cis) 11.72 10.54 14.12 10.55 13.04 11.22
3JHH (trans) 18.25 15.79 19.82 16.09 18.78 16.89

C2H6
1JHC 124.56 106.44 123.65 108.48 119.96 117.62
1JCC 35.51 22.42 36.08 24.04 31.18 28.64
2JHH -14.63 -10.33 -19.40 -11.36 -16.25 -10.77
2JHC -5.01 -2.55 -5.81 -2.91 -4.57 -2.72
3JHH (gauche) 3.61 3.31 4.28 3.34 4.06 3.61
3JHH (trans) 15.79 14.17 15.68 14.20 15.58 15.24

C3H4
1JHC (CH) 229.75 201.37 224.88 202.23 222.28 217.68
1JHC (CH2) 168.49 145.60 165.43 147.78 161.81 158.61
1JCC (CH–CH2) 10.55 2.47 11.58 3.98 8.02 6.79
1JCC (CH=CH) 66.34 52.33 68.95 53.21 64.16 57.69
2JHH 2.03 7.41 3.10 7.42 4.78 8.61
2JHC (CH–CH2) 2.39 1.98 2.54 2.00 2.46 3.01
2JHC (CH=CH) 3.15 5.51 1.20 5.22 2.95 6.16
2JHC (CH2-CH) -2.86 -1.38 -3.36 -1.61 -2.56 -0.95
3JHH (CH=CH) 6.48 1.59 3.79 1.85 2.84 1.65
3JHH (CH–CH2) -2.15 -1.53 -2.54 -1.69 -2.20 -1.60

CO 1JCO 14.62 15.17 24.20 16.68 23.16 20.62 21.35
CO2

1JCO 15.67 26.93 21.56 26.53 24.89 22.68
2JOO 2.36 0.82 2.20 1.08 1.69 1.96

H2CO 1JHC 167.89 152.16 176.37 155.29 170.10 166.73
1JCO 26.98 37.94 29.02 35.10 34.62 32.95
2JHH 37.29 34.23 32.71 34.19 34.95 37.24
2JHO -3.01 -2.08 -3.58 -2.55 -3.24 -2.97
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Continuing Table A.31
HFCO 1JHC 242.4 225.05 254.64 227.86 249.18 243.09

1JCO 14.67 25.93 17.86 24.18 22.45 21.04
1JCF -352.41 -404.17 -404.12 -379.18 -428.92 -385.97
2JHO -10.01 -9.91 -10.99 -10.01 -10.84 -10.65
2JHF 182.86 162.33 188.18 156.50 186.62 170.81
2JOF 48.74 78.77 51.60 70.94 65.51 67.46

F2CO 1JCO 12.08 24.84 17.45 23.49 21.88 19.59
1JCF -294.39 -375.19 -370.22 -355.74 -393.87 -351.68
2JOF 39.78 57.17 41.06 52.77 49.68 50.28
2JFF -100.2 -240.55 -149.70 -214.94 -202.17 -188.57

HCN 1JHC 249.95 257.92 233.32 261.34 235.17 257.37 250.84
1JCN -18.19 -19.07 -11.76 -20.94 -13.30 -16.71 -15.95
2JHN -7.47 -8.24 -9.02 -9.60 -10.04 -9.08 -9.75

FCN 1JCN -5.63 5.98 -5.06 3.37 1.09 0.40
1JCF -403 -508.07 -515.56 -484.32 -541.14 -484.53
2JNF 53.12 54.09 44.41 48.60 51.84 49.11

C2H2
1JHC 240.44 247.65 222.50 248.80 223.90 245.81 239.12
1JCC 180.96 185.66 172.80 194.95 170.44 190.71 179.61
2JHC 53.07 53.63 52.02 51.54 52.71 52.94 54.81
3JHH 9.95 10.72 8.68 13.90 9.58 12.01 9.30

CHCF 1JHC 270.08 250.36 277.59 251.72 275.31 268.38
1JCC 268.11 252.75 280.89 248.05 277.38 261.22
1JCF -277.68 -380.69 -385.98 -366.11 -404.83 -358.16
2JHC 68.53 67.45 67.33 67.95 69.15 71.54
2JCF 25.56 15.90 48.25 19.59 34.41 27.69
3JHF 14.45 21.49 9.44 19.47 15.09 20.38

C2F2
1JCC 401.65 386.54 421.96 377.26 420.95 397.79
1JCF -256.58 -363.46 -366.81 -349.90 -386.90 -336.85
2JCF 45.54 32.28 65.44 33.51 52.91 44.33
3JFF 2.56 2.59 30.64 -4.63 24.52 -2.01

FNO 1JNO -34.14 -43.21 -37.23 -41.66 -40.86 -40.62
1JNF 152.73 149.09 174.87 144.87 170.61 168.32
2JOF 130.22 192.82 150.62 178.94 176.06 174.77

HD 1JDH 41.22 38.14 43.32 39.78 42.97 42.10
HF 1JHF 538.4 415.79 462.96 419.30 437.86 479.00
N2

1JNN
14N-15N 1.3 2.89 0.65 2.49 1.66 2.00

NH3
1JHN -61.65* -53.27 -59.91 -53.40 -58.61 -58.65
2JHH -10.6 -7.42 -13.37 -8.51 -11.03 -8.03

H2O
1JHO -81.19 -81.19 -67.53 -76.45 -67.75 -73.47 -76.07
2JHH -7.84 -8.31 -5.17 -9.58 -6.26 -7.54 -5.98

OHF 1JHO -49.7 -31.19 -42.58 -34.43 -36.25 -41.87
1JOF -565.79 -647.66 -640.47 -621.80 -679.12 -624.28
2JHF 89.93 102.84 105.47 98.07 108.60 98.03

OF2
1JOF -251.99 -279.07 -303.94 -290.84 -304.88 -277.65
2JFF 1327.34 1477.76 1487.31 1320.94 1617.16 1438.96
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A.8.5 1JCF Coupling Constants for Various DFAs with Corrected PSO Contribution

Table A.32.: Comparison of computed contributions to the 1JCF SSCCs with various density functionals against CC3/aug-ccJpVTZ
reference data (DFT/pcJ-4 level of theory).

CC3 TPSS TPSSh B3LYP PBE0 BHLYP 07tb 12sirb 12sifb 14tb LH20t
FCCF FC -241.57 -400.36 -384.67 -357.81 -355.82 -308.95 -348.08 -328.19 -323.51 -349.35 -315.39

SD -7.52 -13.42 -15.33 -14.01 -15.91 -19.61 -11.05 -8.21 -7.92 -12.77 -8.83
PSO -8.08 -11.27 -14.26 -18.04 -19.12 -26.29 -14.42 -15.05 -15.29 -14.91 -17.32
PSO (τD) -11.80 -14.83 – – – -14.56 -15.02 -15.15 -14.87 -16.59
DSO 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Σ -256.58 -424.46 -413.67 -389.28 -390.26 -354.27 -372.97 -350.87 -346.15 -376.44 -340.95
Σ (τD) -424.99 -414.23 – – – -373.11 -350.84 -346.01 -376.40 -340.22

F2CO FC -256.94 -394.57 -375.72 -355.19 -346.15 -298.65 -342.54 -317.24 -311.56 -342.84 -312.29
SD 0 -0.91 -1.42 -1.46 -1.97 -2.78 -1.12 -0.63 -0.62 -1.48 -0.43
PSO -38.61 -44.14 -44.74 -47.63 -46.71 -47.89 -43.24 -42.23 -41.88 -43.64 -43.45
PSO (τD) -44.75 -45.29 – – – -43.32 -42.19 -41.77 -43.64 -42.89
DSO 1.17 1.17 1.17 1.16 1.16 1.15 1.16 1.16 1.16 1.16 1.16
Σ -294.39 -438.45 -420.71 -403.13 -393.66 -348.15 -385.74 -358.94 -352.91 -386.80 -355.01
Σ (τD) -439.06 -421.27 – – – -385.82 -358.90 -352.80 -386.80 -354.44

FCCH FC -247.47 -398.12 -381.47 -356.20 -353.56 -305.58 -349.14 -328.18 -323.82 -349.57 -316.72
SD -9.73 -16.60 -18.81 -17.41 -19.64 -24.35 -14.32 -11.04 -10.73 -16.35 -11.84
PSO -20.96 -24.81 -27.92 -32.86 -33.96 -41.81 -28.77 -29.74 -30.18 -29.13 -31.53
PSO (τD) -25.84 -28.95 – – – -29.20 -29.90 -30.17 -29.19 -30.60
DSO 0.49 0.49 0.49 0.48 0.48 0.47 0.47 0.47 0.47 0.48 0.48
Σ -277.68 -439.04 -427.71 -405.99 -406.69 -371.28 -391.76 -368.49 -364.26 -394.57 -359.61
Σ (τD) -440.07 -428.74 – – – -392.18 -368.65 -364.25 -394.63 -358.69

FCN FC -365.36 -556.46 -527.63 -493.85 -484.74 -418.39 -477.94 -439.97 -432.60 -478.88 -434.61
SD -9.67 -14.78 -17.42 -16.98 -18.73 -25.59 -14.04 -11.48 -11.26 -16.09 -12.87
PSO -28.55 -31.23 -34.72 -39.91 -41.11 -50.47 -36.02 -37.17 -37.64 -36.57 -39.61
PSO (τD) -32.45 -35.93 – – – -36.34 -37.19 -37.46 -36.61 -38.61
DSO 0.57 0.57 0.56 0.55 0.56 0.54 0.55 0.55 0.55 0.55 0.55
Σ -403 -601.90 -579.21 -550.19 -544.02 -493.90 -527.45 -488.08 -480.96 -530.99 -486.54
Σ (τD) -603.12 -580.41 – – – -527.77 -488.09 -480.78 -531.03 -485.54

HFCO FC -314.6 -427.18 -413.58 -397.83 -387.22 -357.29 -374.18 -340.26 -333.84 -379.56 -341.79
SD 1.18 -0.54 -1.13 -1.06 -1.68 -2.66 -0.64 0.06 0.07 -0.96 0.38
PSO -39.7 -51.07 -50.22 -52.17 -50.89 -48.35 -47.09 -45.12 -44.50 -47.24 -45.67
PSO (τD) -51.92 -50.96 – – – -47.22 -45.07 -44.36 -47.29 -45.11
DSO 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.71 0.71 0.71 0.71
Σ -352.41 -478.08 -464.21 -450.35 -439.08 -407.59 -421.19 -384.61 -377.55 -427.04 -386.37
Σ (τD) -478.93 -464.95 – – – -421.32 -384.56 -377.41 -427.08 -385.81

a see Ref. [388]; b Abbreviations for functional acronyms 07t=LH07t-SVWN, 12sir=LH12ct-SsirPW92, 12sif=LH12ct-SsifPW92, 14t=LH14t-calPBE.
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[13] Stoychev, G. L.; Auer, A. A.; Izsàk, R.; Neese, F. Self-Consistent Field Calcula-

tion of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-

Including Atomic Orbitals and Approximate Two-Electron Integrals. J. Chem. The-

ory Comput. 2018, 14, 619–637.

[14] Ramsey, N. F. Magnetic Shielding of Nuclei in Molecules. Phys. Rev. 1950, 78,

699–703.

[15] Ramsey, N. F.; Purcell, E. M. Interactions between Nuclear Spins in Molecules.

Phys. Rev. 1952, 85, 143–144.

[16] Ramsey, N. F. Electron Coupled Interactions between Nuclear Spins in Molecules.

Phys. Rev. 1953, 91, 303–307.
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