
This version is available at https://doi.org/10.14279/depositonce-9401

Copyright applies. A non-exclusive, non-transferable and limited 
right to use is granted. This document is intended solely for 
personal, non-commercial use.

Terms of Use

© ACM 2016. This is the author's version of the work. It is posted here for your personal use. Not for 
redistribution. The definitive Version of Record was published in Proceedings of the 2016 Conference on 
ACM SIGCOMM 2016 Conference - SIGCOMM ’16, http://dx.doi.org/10.1145/2934872.2959083. 
 
Shukla, A., Schmid, S., Feldmann, A., Ludwig, A., Dudycz, S., & Schütze, A. (2016). Towards Transiently 
Secure Updates in Asynchronous SDNs. Proceedings of the 2016 Conference on ACM SIGCOMM 2016 
Conference - SIGCOMM ’16. https://doi.org/10.1145/2934872.2959083

Apoorv Shukla, André Schütze, Arne Ludwig, Szymon Dudycz, Stefan 
Schmid, Anja Feldmann

Towards Transiently Secure Updates in 
Asynchronous SDNs

Accepted manuscript (Postprint)Conference paper  |



Towards Transiently Secure Updates in
Asynchronous SDNs

Apoorv Shukla
TU Berlin, Germany
apoorv@inet.tu-

berlin.com

André Schütze
TU Berlin, Germany

Arne Ludwig
TU Berlin, Germany

arne@inet.tu-berlin.de

Szymon Dudycz
Uni Wroclaw, Poland

szymon.dudycz@gmail.com

Stefan Schmid
Aalborg University,

Denmark
schmiste@cs.aau.dk

Anja Feldmann
TU Berlin, Germany

anja@inet.tu-berlin.com

ABSTRACT
Software-Defined Networks (SDNs) promise to overcome
the often complex and error-prone operation of tradi-
tional computer networks, by enabling programmabil-
ity, automation and verifiability. Yet, SDNs also in-
troduce new challenges, for example due to the asyn-
chronous communication channel between the logically
centralized control platform and the switches in the
data plane. In particular, the asynchronous commu-
nication of network update commands (e.g., OpenFlow
FlowMod messages) may lead to transient inconsisten-
cies, such as loops or bypassed waypoints (e.g., fire-
walls). One approach to ensure transient consistency
even in asynchronous environments is to employ smart
scheduling algorithms: algorithms which update subsets
of switches in each communication round only, where
each subset in itself guarantees consistency. In this
demo, we show how to change routing policies in a
transiently consistent manner. We demonstrate two al-
gorithms, namely, Wayup [5] and Peacock [4], which
partition the network updates sent from SDN controller
towards OpenFlow software switches into multiple rounds
as per respective algorithms. Later, the barrier mes-
sages are utilized to ensure reliable network updates.

CCS Concepts
•Networks → Network reliability; Programmable net-
works;

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’16 Florianópolis, Brazil
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4424-1..

DOI: 10.475/123 4

Keywords
SDN; Mininet

1. INTRODUCTION
While Software-Defined Network (SDN) outsources

and consolidates the control to a logically centralized
software controller, SDN still needs to be regarded as
an asynchronous distributed system: the installation of
new policies as well as the update of existing policies
need to be communicated from the control plane to the
dataplane elements (switches, universal nodes, appli-
ances, etc.). This transmission is performed over an
asynchronous and unreliable network, and hence, up-
dates may actually take effect out of order.

Based on the update scheduling algorithms Wayup
and Peacock presented in [5] and [4] respectively, we
divide the policy updates from SDN controller to Open-
Flow soft switches into rounds. Each round culminates
in the SDN controller sending the barrier requests to
each OpenFlow switch receiving updates in that round
and receiving barrier replies for acknowledgement. Once
done with receiving all barrier replies, the SDN con-
troller initiates the next round of policy update. There-
fore, synchronicity and consistency is ensured avoiding
out of order updates and ensuring waypoint enforce-
ment [5], weak loop freedom [4]. More work on multiple
policies can be found on [1][3].

2. PROTOTYPE
We have implemented the Wayup [5] and Peacock [4]

algorithms1 successfully in Mininet based on a Python-
based Ryu SDN controller. and have been running our
evaluations with respect to the update time of flow ta-
bles in OpenFlow switches (OVS)2. Here, our focus is

1For details about the algorithm, we refer to reader to
the cited papers.
2In multi-vendor hardware switches, this demo might



on the implementation challenges. The existing app
“ofctl rest.py” is used as a basis for the implementa-
tion of a new Ryu app called “ofctl rest own.py”. The
original SDN controller app provides functionality to do
network updates consisting of a single round OpenFlow
message sent from SDN controller to OpenFlow switch.
In this demo, we will use multiple round updates to
show waypoint enforcement to ensure the networks are
transiently secure without security being compromised.
We implement the app “ofctl rest own.py”, which pro-
vides the ability to create a message queue at the SDN
controller side to enqueue the REST messages in a mes-
sage queue for each round of network update as per the
Wayup algorithm. All messages save the update sched-
ule and the OpenFlow messages in the message object
and therefore, every round of the update schedule is
processed in the same way. If the SDN controller starts
to process a message, it begins with the first round,
which is set to be the current round. In the current
round, there are a set of switches which have to be up-
dated. The SDN controller retrieves the corresponding
OpenFlow message for every switch (OVS) in the set
and sends them out to the switches. Later, the SDN
controller sends a barrier request to every switch of the
set and waits for barrier replies. For every barrier re-
ply received by the SDN controller, it determines the
source switch. This switch is removed from the set of
switches of the current round of the first message in the
message queue. If the set is empty, the current round
finishes and the SDN controller goes on to process the
next round of the messages. If the message object does
not have a next round, the SDN controller deletes the
message from the queue and starts processing the next
message. Here is an example of a REST message:
{
“oldpath”:[<dp-num>,<dp-num>,<dp-num>],
“newpath”:[<dp-num>,<dp-num>,<dp-num>],
“wp”:<dp-num>,
“interval”:<time in ms>,
<type>:[<OpenFlow message information>],
<type>:[<OpenFlow message information>],
<type>:[<OpenFlow message information>],
<type>:[<OpenFlow message information>],
}

The WayUp REST request consists of a header part
and a body part. The header part consists of the in-
put parameters of WayUp. These are the old route,
the new route, the waypoint, and the time interval. In
Ryu, the switches which are connected to the controller,
are identified by integer values called datapaths. The
waypoint is a string, which can be converted to an inte-
ger value and the old and new route are strings, which
can be converted to a list of integer values. The inte-
ger values are ordered in the list in the way they are

face problems as mentioned in [2]. Therefore, this demo
is just about the asynchronicity of the control channel.

Figure 1: Example Topology. Solid lines show
the old routing policy and the dotted lines show
the new routing policy. Black Node s3 is the
waypoint

passed by the network packets along the route. For ex-
ample, if in the route at first switch 2 is passed, then
switch 1 and then switch 3, so the path would look like:
〈2, 1, 3〉. In the body part of the REST message, we
can find information about the OpenFlow messages that
the SDN controller has to send to the switches. In the
common case, a WayUp REST request consists of sev-
eral OpenFlow messages. For example, an OpenFlow
message in the body part could be sent to the URL:
http://<controller-address><controller-port>
/stats/flowentry/add of the SDN controller and the
controller would add the flow entry to the OpenFlow
switch specified in the flow entry. The type field is used
to specify type of FlowMod.

As shown in Figure 1, the test setup for transiently
secure network updates tool consists of 12 nodes or
OpenFlow (OVS) switches with host h1 connected to
switch 1 and host h2 connected to switch 12 in mininet.
Node/switch 3 is the waypoint, e.g., Firewall or IDS.
The edges having a solid line, build the old route through
the network. The edges having a dashed line, build the
new route through the network.3 The source code can
be found at : https://bitbucket.org/Apoorv1986/
transiently_secure_code

Acknowledgements –– The research leading to these
results has received funding from the European Union
Seventh Framework Programme under grant agreement
No. 619609 (project UNIFY).

3. REFERENCES
[1] S. Dudycz, A. Ludwig, and S. Schmid. Can′t touch

this: Consistent network updates for multiple
policies. In IEEE/IFIP DSN, 2016.

[2] M. Kuzniar, P. Peresini, and D. Kostic. What you
need to know about sdn flow tables. In PAM, 2015.

[3] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid.
Transiently secure network updates. In ACM
SIGMETRICS, 2016.

[4] A. Ludwig, J. Marcinkowski, and S. Schmid.
Scheduling loop-free network updates: It′s good to
relax! In ACM PODC, 2015.

[5] A. Ludwig, M. Rost, D. Foucard, and S. Schmid.
Good network updates for bad packets. In ACM
HotNets, 2014.

3The link to the video of the prototype is at
http://tinyurl.com/zf4v7qo


