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Zusammenfassung

Code-Division-Multiple-Access (CDMA) ist ein Modulations- und Vielfachzugriffsverfah-
ren basierend auf der Bandspreiztechnologie. Dabei findet die Signalübertragung mehre-
rer Teilnehmer zur gleichen Zeit und über die gleiche Frequenz statt. Damit die Informa-
tionen der einzelnen Nutzer aus dem resultierenden Signalstrom herausgefiltert werden
können, werden bei CDMA alle übertragenen Informationen eines Teilnehmers vor dem
Versenden mit einer spezifischen Signatursequenz versehen.

Diese Dissertation befasst sich mit der Ressourcenvergabe, Sequenzdesign und Ka-
nalschätzung für CDMA Systeme. Jedes Themengebiet wird in einem eigenen Kapitel
abgehandelt. Im Folgenden wird dem Leser eine kurze Einführung in jedes Thema sowie
eine Kurzbeschreibung der erzielten Ergebnisse präsentiert.

1. Eines der zentralen Probleme bei der Planung von CDMA Netzwerken ist das Problem
der Zulässigkeit. Hierbei wird die Frage erötert, ob eine bestimmte Anzahl von Nut-
zern mit vorgegebenen Signal-zu-Interferenz Verhältnissen in einem CDMA System
unterstützt werden kann, wobei das Signal-zu-Interferenz Verhältnis ein Maß für die
Güte der Datenübertragung darstellt. Die meisten bis heute existierenden Arbeiten
zu diesem Thema gehen von einer perfekten Synchronisation zwischen den einzelnen
Nutzern aus. Leider kann eine solche Synchronisation in vielen praktischen Situatio-
nen nicht gewährleistet werden, so dass man durch diese Resultate lediglich recht
ungenaue Erkentnisse über die Performanzgrenzen vieler CDMA Systeme gewinnen
kann.

Zuerst werden bekannte Resultate für den synchronen Fall ausgiebig diskutiert und
auch verfeinert. Anschliessend wird das Problem der Zulässigkeit in asynchronen CD-
MA Systemen behandelt und in einigen Fällen vollständig gelöst. Dabei wird zwischen
asynchronen CDMA Modellen mit festen und zufälligen Signalverzögerungen unter-
schieden.

2. Es gibt durchaus praktische Situationen, in denen eine grobe Synchronisation der
Nutzer bereits vorhanden ist oder mit einem geringen Signalisierungsaufwand her-
gestellt werden kann. Solche annährend synchronisierte CDMA Systeme werden als
quasi-synchron (QS-CDMA) bezeichnet. Eine grobe Synchronisation kann zur Verbes-
serung der Systemperformance genutzt werden. Die Voraussetzung ist jedoch, dass die
Korrelationsfunktionen nur in einem bestimmten Fenster um den Nullpunkt optimiert
werden.
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Es werden Gütekriterien für die Wahl von Sequenzen für QS-CDMA vorgeschlagen
und dazugehörige mathematische Schranken hergeleitet. Weiterhin werden zwei Me-
thoden zur Konstruktion von Sequenzfamilien mit guten Korrelationseigenschaften
innerhalb eines Fensters um den Nullpunkt präsentiert sowie deren Korrelationsei-
genschaften ausgewertet. Entsprechende Simulationen zeigen ein enormes Gewinnpo-
tenzial.

3. In drahtlosen Kommunikationssystemen ist die Übertragung eines Pilotsignals zur
Kanalschätzung sehr nützlich. Dadurch wird ein kohärenter Empfang und damit eine
bessere Systemperformance ermöglicht. Pilotbasierte Verfahren zur Kanalschätzung
haben sich bereits in der Abwärtsstrecke, in der alle Nutzer ein gemeinsames Pilotsi-
gnal verwenden, erfolgreich bewährt.

Es wird der wesentlich schwierigere Fall der Aufwärtsstrecke betrachtet, wo jeder
Nutzer ein eigenes Pilotsignal sendet. Damit hier eine zuverlässige Kanalschätzung
überhaupt möglich ist, muss der Schätzer auch die Mehrfachzugriffsinterferenz ef-
fizient reduzieren. Es werden zwei Typen von linearen Kanalschätzern betrachtet,
nämlich der inverse Filter und der lineare MMSE (Minimum Mean Square Error)
Schätzer. In beiden Fällen werden untere Schranken für den maximalen mittleren
quadratischen Fehler hergeleitet. Es wird gezeigt, dass die Schranken in den mei-
sten Fällen durch eine geeignete Wahl von Pilotsignalen erreicht werden können. Die
Existenz und die Konstruktion solcher Pilotsignale werden eingehend betrachtet.

Abschließend beschäftigt sich die Arbeit mit einem von Jim Massey zur Diskussion
gestellten Problem. Darin wird nach der Existenz von polyphasen Sequenzen mit
asymptotisch optimalem Rauschverstärkungsfaktor gefragt. Pilotsequenzen mit einem
kleinen Rauschverstärkungsfaktor garantieren zuverlässige Schätzwerte in Systemen
mit aperiodischen Pilotsignalen.
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Abstract

Code-Division-Multiple-Access (CDMA) is a modulation and multiple-access scheme
based on spread-spectrum technology. In this scheme, multiple users communicate in
the same frequency band at the same time. Signals from the users are separated at the
receiver by means of signature sequences that are unique to each user.

This thesis deals with topics in the area of sequence design, resource allocation and
channel estimation for CDMA channels. Each topic will be treated in a separate chapter.
A short introduction to each topic and a brief statement of our results is given below.

1. One of the central problems in CDMA network design is the problem of admissibility
since it addresses the question of admissibility of users in a communications system
with a certain quality-of-service guaranteed. We say that a set of users is admissible
in a CDMA system if one can assign sequences to the users and control their power so
that all users meet their signal-to-interference ratio requirements. Most of the existing
results on this problem assume a symbol-synchronous CDMA channel. However, since
the simplistic setting of perfect symbol synchronism rarely holds in practice, there is
a strong need for investigating symbol-asynchronous CDMA channels.

First we review and refine some of the known results for the symbol-synchronous
case. Subsequently, we consider symbol-asynchronous CDMA channels and com-
pletely solve the problem of admissibility in some cases. In doing so, we distinguish
between symbol asynchronous channels with fixed and random time offsets.

2. In many practical situations, a coarse synchronization of the users is either avail-
able or can be easily established with some additional signaling overhead. Such ap-
proximately synchronized CDMA systems are called quasi-synchronous CDMA (QS-
CDMA) channels. The fact that all users are approximately synchronized can be
used to improve the system performance provided that the aperiodic correlations of
signature sequences are only optimized in the vicinity of the zero shift.

We provide criteria for selecting sequence sets for QS-CDMA and derive lower bounds
on them. Moreover, we propose two methods for constructing sequences with fa-
vorable aperiodic correlation properties in the vicinity of the zero shift. Numerical
computations show that this approach has enormous potential for performance im-
provement.

3. In wireless systems, transmission of a pilot signal is very valuable for obtaining good
amplitude and phase estimates of the mobile communications channel, making pos-
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sible quasi-optimum coherent reception and weighted combining of multipath com-
ponents. Pilot-based channel estimation schemes have been extensively used in the
downlink channel from a base station to multiple users where all users share a common
pilot signal sent from a base station.

We consider the more challenging uplink channel in which each user transmits an
individual pilot signal. Thus, in order to obtain reliable estimates, the channel esti-
mator must effectively combat multiple access interference. We consider two types
of channel estimators, namely the inverse filter and the linear minimum mean-square
error estimator. In both cases, we derive lower bounds on the maximum mean square
error. It is shown that in most cases, the bounds can be met by appropriately choosing
pilot signals. The existence and construction of such pilot signals are investigated.

Finally, we consider the question raised by Jim Massey about the existence of a
polyphase sequences with an asymptotically optimal aperiodic noise enhancement
factor. For best performance in estimating multipath components using aperiodic
channel inputs, it is desirable to find invertible sequence with a small aperiodic noise
enhancement factor.
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1 Introduction

The physical limitation of the mobile radio propagation channel presents a fundamental
technical challenge for reliable communications. The propagation channel is the principal
contributor to many of the problems and limitations that beset wireless systems. One
obvious example is multipath propagation, which may severely affects the performance
of wireless systems. Channel parameters such as path delays, path amplitudes, and
carrier phase shifts may vary with time, making the situation even more complicated.
Limitation on the power and the bandwidth is a second major design criterion.

Code Division Multiple Access (CDMA) is receiving a great deal of attention as a
promising technology for future generations of mobile communications systems. CDMA
is a modulation and multiple-access scheme based on spread spectrum technology. CDMA
users share the same frequency band at the same time. In a spread spectrum system,
the signal occupies a bandwidth much in excess of the minimum bandwidth necessary
to send the information. The ratio of the bandwidth occupied by the transmitted signal
to the bandwidth of the information signal is called processing gain or spreading factor.
There are two main types of spread spectrum systems: direct sequence and frequency
hop. This thesis exclusively deals with CDMA systems based on the direct sequence
spread spectrum technology. In this scheme, each information bearing symbol is mul-
tiplied by a sequence of complex numbers, called a signature sequence, which is then
transformed into a carrier pulse train with a modulated phase. In general, the signa-
ture sequence can be either fixed or change from symbol to symbol. At the receiver,
recovering the information bearing symbols is accomplished by the correlation of the
demodulated signal with a synchronized replica of the signature sequence. If the corre-
lation between any pair of distinct signature sequences is sufficiently small, the original
symbols are recovered with a small probability of error.

The merits of CDMA for wireless communications systems are now widely accepted.
When compared with Time-Division-Multiple-Access (TDMA) and Frequency-Division-
Multiple-Access (FDMA) options, CDMA provides unique benefits for wireless applica-
tions. Chief among these are frequency reuse (the fact that users communicating within
a large area occupy a common frequency spectrum) and ”soft capacity” (users allowed in
the network can be traded for transmission quality). Besides increasing the spectral effi-
ciency, these features also simplify spectrum management. Furthermore, CDMA allows
reliable communications over multipath fading channels since the transmitted signals
cover a large bandwidth so that if one part of the signal spectrum is in a fade, other
parts of the signal spectrum are not faded. These signal components can be construc-
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1 Introduction

tively combined rather than allowing them to destructively combine as in narrowband
transmission.

At the time of writing this manuscript, CDMA is proving to be an excellent tech-
nology for voice transmission. The statistical averaging of out-of-cell interference and
exploitation of silence periods in voice conversation provide unique benefits for wireless
voice applications. However, future wireless systems will have to integrate data, video
and voice traffic in a single network. This implies that users with completely different
demands on data rate and loss will compete for bandwidth within the same time, making
the development of strategies for allocation of scarce resources necessary. When devel-
oping such strategies, CDMA network designers will be confronted with the problem of
how to use these resources in order to satisfy stringent quality-of-service requirements
of users.

Quality-of-service requirements are often expressed in terms of the the signal-to-
interference ratio (SIR). SIR is commonly used to assess transmission quality [Ver98]. In
contrast to TDMA and FDMA users, CDMA users cannot satisfy their SIR requirements
by simply increasing the signal power. This is because signature sequences assigned to
different users are usually non-orthogonal. Even if they are orthogonal, the asynchronous
transmission or time-dispersive nature of the mobile radio channel destroys this orthog-
onality. The non-orthogonal nature of the received signals results in multiple access
interference (MAI). This makes users dependent on each other in the sense that increas-
ing the signal power of one particular user generally degrades performance of all other
users. In order to mitigate the effects of interference between users, a great deal of effort
has been spent to develop strategies for allocation of resources in CDMA systems. Here,
a careful choice of spreading sequences and appropriate power allocation plays a crucial
role. This is in contrast to using of sequences chosen at random from the set of all
possible sequences. Certainly, an advantage of this approach is that simple higher-layer
network protocols are sufficient for allocation of signature sequences that are available in
large numbers. However, the use of random sequences results in a strong MAI, making
a reliable, high data-rate communication practically impossible. To mitigate the devas-
tating effects of MAI on the system performance, multiuser receivers are considered as a
remedy. However, the results of [Ver99] obtained in the context of a symbol-synchronous
CDMA (S-CDMA) channel clearly show that random sequences induce significant loss
in terms of sum capacity1 even if optimal linear multiuser receivers are employed.

In fact, it is not necessary to employ multiuser receivers in order to achieve the optimal
sum capacity of S-CDMA. This is even true if the number of users is greater than the
processing gain (an overloaded channel). [RM94] showed that the sum capacity of an
overloaded S-CDMA channel equipped with matched filters is equal to the Cover-Wyner
bound for the Gaussian multiple access channel provided that signature sequences are

1Sum capacity is defined as the maximum sum of the achievable rates of all users per unit processing
gain, where the maximum is taken over all choices of signature sequences.

10



1 Introduction

chosen appropriately. Moreover, this statement is basically true even for the situation of
unequal received powers except that in this case, there can be capacity loss due to the
so-called oversized users whose input power constraints are large relative to the input
power constraints of the other users [VA99]. These results make clear that a careful
choice of both power allocation strategy and signature sequences not only improves the
system performance but also reduces the receiver complexity.

The work in this thesis is driven by these observations and the fact that the simple
setting of symbol synchronism between spatially separated users rarely holds in practice.
Indeed, in case of S-CDMA, all users are assumed to be in exact synchronism (relative
to the receiver) in the sense that not only their carrier frequencies and phases are the
same, but also their expanded symbols. A shortcoming of such a model is obvious, and
hence there is a strong need for investigating symbol-asynchronous CDMA (A-CDMA)
channels.

This thesis deals with three topics in the area of CDMA:

• The problem of admissibility of users in A-CDMA channels with certain SIR require-
ments guaranteed.

• Sequence design for quasi-synchronous CDMA (QS-CDMA) channels. QS-CDMA is a
symbol-asynchronous CDMA channel in which signal delays with respect to a common
clock are significantly smaller than the duration of expanded symbols.

• Pilot-based multipath channel estimation for a many-to-one transmission channel such
as the uplink channel from mobile users to a base station. We think that this topic
needs no extra motivation here since channel estimation is arguably one of the most
important elements of any wireless communications system.

Each topic will be treated in the succeeding three chapters, which can be read inde-
pendently. Moreover, all chapters start with a detailed introduction to each topic and a
summary of the obtained results. We finish each chapter with conclusions, open problems
and possible future extensions.

1.1 Notation and General Definitions

Throughout the text, R denotes the set of real numbers and C the set of complex
numbers. R+ ⊂ R is used to designate the set of non-negative real numbers. The
corresponding sets of all N -tuples will be denoted by RN ,CN and RN

+ , respectively.
We use small boldface letters a = (a0, . . . , aN−1) ∈ CN to represent both sequences of
complex numbers and complex vectors. The set CN should be thought of as being a
Hilbert space with the inner product defined to be

〈a,b〉 =
N−1∑

i=0

ai bi, a,b ∈ CN ,
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1 Introduction

where x denotes the complex conjugate of x. The squared l2-norm ‖a‖2
2 = 〈a,a〉 is

called the energy of the sequence a. Obviously, CN is also a metric space, with the
metric d(a,b) = ‖a− b‖2, a,b ∈ CN . Unless something else is stated, it is assumed
that each sequence is a vector on the complex unit sphere SN−1 ⊂ CN . Note that for
any a ∈ SN−1, we have ‖a‖2 = 1. In some cases, we find it more handy to use the
polynomial notation, and then replace a sequence a = (a0, . . . , aN−1) by the polynomial

A(z) :=
N−1∑

n=0

an zn.

If z is considered to be a complex number, then the polynomial A(z) on the unit circle
is referred to as the Fourier transform of a and we write

A
(
eiω

)
:=

N−1∑

n=0

aneinω, ω ∈ [−π, π).

Finally, if z is confined to a finite subset {ein∆ω : 0 ≤ n < N,∆ω = 2π
N }, we obtain the

discrete Fourier transform of a

A(m) := A
(
eim∆ω

)
=

N−1∑

n=0

aneimn∆ω, 0 ≤ m < N .

A collection of a finite number of sequences of the same length is referred to as a sequence
set. Since the arrangement of sequences in the sequence set may play a role (especially
in linear algebra equations etc.), we will use matrices (designated by capital boldface
letters) to represent sequence sets. Accordingly, the sequence matrix S = (s1, . . . , sK)
whose each column 2 is a unit-energy sequence (vector) of length N is usually referred
to as a sequence set or, more specific, as a set of K sequences of length N . Writing
a ∈ S means that a is a member of the sequence set S or, equivalently, a is a unit-energy
column vector of the matrix S. The size of the sequence set S is denoted by |S|.

An important subset of the unit sphere is the set of polyphase sequences denoted by
SN−1

c . We say that a = (a0, . . . , aN−1) ∈ SN−1
c is a polyphase sequence if |ai| = 1/

√
N

for each 0 ≤ i < N . Furthermore, if
√

Nai is a complex q-th root of unity for each
0 ≤ i < N and some given q ≥ 2, then a ∈ SN−1

c is said to be a q-phase sequence. The
most important cases are bipolar sequences (q = 2) and quadriphase sequences (q = 4).

For two arbitrary (not necessarily distinct) sequences a ∈ CN and b ∈ CN , the j-th

2Note that in connection with matrices, sequences and vectors are written as columns
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1 Introduction

aperiodic crosscorrelation cj(a,b) = c−j(b,a) is defined to be

cj(a,b) :=





N−j−1∑
i=0

ai · bi+j 0 ≤ j < N

N+j−1∑
i=0

ai−j · bi −N < j < 0

0 elsewhere

. (1.1)

When a = b, we refer to cj(a) := cj(a,a) as the j-th aperiodic autocorrelation of a.
Note the identity

A(z)B(z) =
N−1∑

j=−N+1

cj(a,b)zj (1.2)

in the Laurent Polynomial Ring R[z, z−1]. Consequently, if a = b, (1.2) yields

|A(z)|2 =
N−1∑

j=−N+1

cj(a)zj . (1.3)

For convenience, the aperiodic autocorrelation magnitudes not at the origin and the
aperiodic crosscorrelation magnitudes are referred to as aperiodic correlation sidelobes.

For two arbitrary (not necessarily distinct) sequences a ∈ CN and b ∈ CN , let

ρj(a,b) := cj(a,b) + cj′(a,b), −N < j < N, (1.4)

and
ρ̃j(a,b) := cj(a,b)− cj′(a,b), −N < j < N, (1.5)

be the j-th periodic crosscorrelation and the j-th odd crosscorrelation, respectively,
where j′ = j − Nsgn(j) with sgn(j) = +1 for every j ≥ 0 and sgn(j) = −1 otherwise.
Equivalently, if a = b, we obtain the j-th periodic autocorrelation ρj(a) and the j-th
odd autocorrelation ρ̃j(a) of a. We point out that the periodic and odd correlations
are defined for the negative shifts only for convenience. Obviously, it is sufficient to
restrict attention to the non-negative shifts since ρ−j(a,b) = ρN−j(a,b) = ρj(b,a) and
ρ̃−j(a,b) = −ρ̃N−j(a,b) = ρ̃j(b,a) for each 0 < j < N .

To assess correlation properties of sequences, it is customary to use criteria of goodness
[Pur77, PS80, Gol77, Rup94, Lue92]. Let 1 ≤ d ≤ N be a given natural number and
S an arbitrary sequence set. We define the maximum aperiodic autocorrelation value
Ca(d;S) and the (normalized) total aperiodic autocorrelation energy Fa(d;S) as

Ca(d;S) := max
{|cj(a)| : 0 < j < d,a ∈ S

}
(1.6)

and

Fa(d;S) :=
1
|S|

∑

a∈S

d−1∑

j=−d+1

|cj(a)|2, (1.7)
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1 Introduction

respectively. Both (1.6) and (1.7) are used to evaluate aperiodic autocorrelation proper-
ties of sequences within the window {−d+1, . . . , d−1}. To assess aperiodic crosscorrela-
tion properties within the same window, define the maximum aperiodic crosscorrelation
value Cc(d;S) and the total aperiodic crosscorrelation energy Fc(d;S) as

Cc(d;S) := max
{|cj(a,b)| : 0 ≤ j < d,a,b ∈ S,a 6= b

}
, (1.8)

and

Fc(d;S) :=
1
|S|

∑

a,b∈S
a6=b

d−1∑

j=−d+1

|cj(a,b)|2, (1.9)

respectively. Combining these definitions gives the maximum aperiodic correlation value

C(d;S) := max{Ca(d;S), Cc(d;S)} (1.10)

and the total aperiodic correlation energy

F (d;S) := Fa(d;S) + Fc(d;S). (1.11)

Note that if |S| = 1, then Cc(d;S) = Fc(d;S) = 0, and hence C(d;S) = Ca(d;S) and
F (d;S) = Fa(d;S). For simplicity, we write C(d;a) and F (d;a) when S = (a).

Equivalently, given 1 ≤ d ≤ N and a sequence set S, define the maximum periodic
correlation value as

C̃(d;S) := max
{
C̃a(d;S), C̃c(d;S)

}
, (1.12)

where the maximum periodic autocorrelation value C̃a(d;S) and the maximum periodic
crosscorrelation value C̃c(d;S) are defined to be

C̃a(d;S) := max
{|ρj(a)| : 0 < j < d,a ∈ S

}
(1.13)

and
C̃c(d;S) := max

{|ρj(a,b)| : 0 ≤ j < d,a,b ∈ S,a 6= b
}
, (1.14)

respectively. Finally, we define the total periodic correlation energy as

F̃ (d;S) := F̃a(d;S) + F̃c(d;S) (1.15)

where the total periodic crosscorrelation energy F̃c(d;S) and the total periodic autocor-
relation energy F̃a(d;S) are given by

F̃c(d;S) :=
1
|S|

∑

a,b∈S
a 6=b

d−1∑

j=−d+1

|ρj(a,b)|2. (1.16)

and

F̃a(d;S) :=
1
|S|

∑

a∈S

d−1∑

j=−d+1

|ρj(a)|2, (1.17)

respectively.
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2 Resource Allocation in CDMA Channels

This chapter deals with one of the central problems in CDMA network design, namely the
problem of admissibility. This problem addresses the question whether or not users are
admissible in a CDMA channel with a certain quality-of-service guaranteed. We choose
the signal-to-interference ratio (SIR) as a basic quality-of-service measure and say that a
set of users is admissible in a CDMA channel if one can assign signature sequences to the
users and control their power so that each user meets its SIR requirement. SIR is useful
to assess the quality of the multiuser receiver [Ver98]. This is particularly true when
it is used in conjuction with error-control decoders. SIR gives a soft-decision variable
that reflects the reliability of decisions. Roughly speaking, the larger SIR is, the more
reliable the decisions are, and hence there is higher quality-of-service for the users. To
guarantee a certain quality-of-service for the users, we demand that each user meets its
SIR requirement.

In a symbol-synchronous CDMA (S-CDMA) channel, when the number of active users
is smaller than or equal to processing gain (an underloaded channel), any set of mutually
orthogonal signature sequences is optimal in the sense that SIR of each user attains its
maximum. This is independent of power allocation and the receiver structure. On the
other hand, when the number of active users is greater than the processing gain (an
overloaded channel), mutually orthogonal signature sequences cannot be assigned to the
users, resulting in multiple access interference. Consequently, SIRs of the users cannot
be maximized independently, making the optimization much more difficult. Under the
assumption of equal-power users equipped with matched filter receivers, [MM93] iden-
tified signature sequences for which the minimum SIR (the “worst-case” SIR) becomes
maximal. These sequence sets were shown to be those subsets of the unit sphere for
which the sum of the squares of the magnitudes of the inner products between all pairs
of these sequences attains the Welch’s lower bound [Wel74]. For this reason, such sets
are called Welch-Bound-Equality (WBE) sequence sets.1

Note that [MM93] did not solve the problem of admissibility because of the assumption
that all users are received at the same power. In fact, to solve this problem, a joint
optimization of power control and signature sequences is necessary. Focusing on the
linear minimum mean-square error (MMSE) receiver, the authors of [VAT99] seem to
be the first who stated and solved the problem of admissibility in S-CDMA channels

1In fact, [MM93] considered a related problem of minimizing the total multiple access interference.
However, under equal-power users, WBE sequences can be shown to maximize the minimum SIR.
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2 Resource Allocation in CDMA Channels

with different SIR requirements. Furthermore, they provided strategies for allocation
of powers and signature sequences so that all users meet their SIR requirement at the
minimum total power. Such allocations of powers and sequences are called optimal. It
is worth pointing out that, under an optimal allocation, the linear MMSE receiver is
equal to a scaled matched filter. Thus, a careful resource allocation not only improves
the system performance but also reduces the receiver complexity.

Unfortunately, the simple setting of perfect symbol synchronism rarely holds in prac-
tice, and hence the extension of the results of [VAT99] to symbol-asynchronous CDMA
(A-CDMA) channels is an important problem [VA99, UY00, UY01]. The lack of symbol
synchronism is usually modeled by time offsets that are defined as the signal arrival times
measured with respect to a common clock. Assuming a constant power allocation, the
authors of [UY00, UY01] investigated a chip-synchronous A-CDMA channel with fixed
time offsets. It was shown that the use of sequence sets for which the so-called total
squared asynchronous correlation (TSAC) attains its minimum induces no user capacity
loss compared to S-CDMA.2 Although the existence of such sequences was left as an
open problem, [UY00, UY01] provided iterative algorithms that decrease TSAC in each
iteration step.

Due to the mobility of users in wireless communications systems, channel parameters
such as path amplitudes and time offsets can be highly dynamic. Thus, in order to ensure
the best possible performance, wireless systems have to adapt system parameters to
varying channel conditions. However, adaptation of signature sequences to varying time
offsets may be impractical due to the additional signaling overhead. In such cases, the
problem is to find power allocation and signature sequences so that the SIR requirements
are met on average over all possible realizations of the time offsets. To this end, it
is a common practice to model the time offsets as realizations of independent random
variables uniformly distributed on a certain time interval [Pur77, ML89, Mow95, Rup94].

In this chapter, we consider each of the three types of CDMA channel models. The
organization of the chapter and its main contributions to the problem of admissibility
are as follows:

• In Section 2.1, we define the symbol-asynchronous CDMA channel model. Section 2.2
states the problem of admissibility and introduces the concept of an optimal allocation.

• In Section 2.3, we summarize some of the known results for S-CDMA and strengthen
them by proving the following result: Suppose that Aopt denotes the set of all optimal
allocations for S-CDMA and Ã ⊆ Aopt is the set of allocations that result from the
construction given in [VAT99]. Then, we prove that Ã = Aopt, which completely
characterizes the set of all optimal allocations.

• Section 2.4 extends some of the results of [UY00, UY01] mentioned above to the case
when users have different SIR requirements. In case of an underloaded channel, we give

2The user capacity is defined as the maximum number of supportable users at a common SIR level.
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2 Resource Allocation in CDMA Channels

a simple procedure for constructing signature sequences that ensure the orthogonality
between asynchronous users. This method can be used to obtain signature sequences
for oversized users 3 in an overloaded channel. We show how to separate the oversized
users from all other users, thereby reducing the problem to finding optimal allocations
for non-oversized users. Such allocations are found in some special cases.

• In Section 2.5, we consider a chip-synchronous A-CDMA channel with random time
offsets. Assuming that all users are assigned polyphase sequences, our main result
can be stated as follows: K users, each with the SIR requirement γ, are admissible in
a chip-synchronous A-CDMA channel with the processing gain N ≤ K and no power
constraints if and only if

K <

(
N − 1

2

)
1
γ

+
2
3
N +

1
3N

≈ N

(
2
3

+
1
γ

)
.

We establish a connection to channels with power constraints and identify the set of
all optimal allocations if N ≤ K. In case of different SIR requirements, we prove a
necessary condition for the admissibility of users. These results have already appeared
in [BS03, SB02a, BS01b].

2.1 Channel Model and Definitions

We consider a K-user direct-sequence spread-spectrum CDMA channel with processing
gain N embedded in zero-mean additive white Gaussian noise (AWGN) (see [Ver98]):

y(t) =
M∑

m=−M

K∑

k=1

sk(t− τk −mT ) Xk(m) + z(t)

=
M∑

m=−M

K∑

k=1

N−1∑

i=0

si,k ϕ
(
t− τk − (i + mN)Tc

)
Xk(m) + z(t).

(2.1)

The notation in (2.1) is defined as follows:

• T is the inverse symbol rate, which is fixed and the same for all users.

• Tc = T
N is the chip duration. Consequently, the processing gain is equal to the number

of chips per transmitted symbol.

• 2M + 1 is the number of symbols transmitted by each user (the frame length).

3The name “oversized users” was coined in [VAT99] and designates users with relatively large SIR
requirements
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2 Resource Allocation in CDMA Channels

• τk ≥ 0, 1 ≤ k ≤ K, is a time offset of the user k with respect to a common clock. The
time offsets model the lack of synchronism between users at the receiver. In general,
they are not multiples of the chip duration so that we write

τk = jkTc + rkTc, jk ∈ N0, rk ∈ [0, 1), 1 ≤ k ≤ K. (2.2)

Furthermore, we define the relative time offsets as

τk,l := τk − τl = (jk,l + rk,l)Tc, jk,l ∈ Z, rk,l ∈ [0, 1) . (2.3)

In what follows, we assume that there exists a natural number d ∈ N0 (bounded and
independent of M) such that

0 ≤ τk ≤ d Tc < +∞, 1 ≤ k ≤ K . (2.4)

In particular, we have

lim
M→∞

d

(2M + 1)N
= 0. (2.5)

Note that this requires some form of frame synchronization. Because of typically large
values of M in practice, it is safe to assume that d ¿ (2M + 1)N . Depending on how
the time offsets are modeled, we distinguish between the following cases:

– Symbol-synchronous CDMA (S-CDMA) channel: d = 0.
– Symbol-asynchronous CDMA (A-CDMA) channel with fixed time-offsets: With-

out loss of generality, we assume that mink τk = 0 and dmaxk τke = dTc > 0.4 In a
special case, when τk = jkTc for each 1 ≤ k ≤ K, one obtains a chip-synchronous
A-CDMA channel with fixed time offsets.

– Symbol-asynchronous CDMA channel with random time offsets: the relative
time offsets are considered to be random variables uniformly distributed on the
interval (−T, T ).

• ϕ(t) : R→ C is the chip waveform. It is a common practice to assume that

{ϕn} := {ϕ(t− nTc) : n ∈ Z}
is an orthonormal system in L2(R). Note that {ϕn} does not need to be complete
in L2(R). For simplicity, we assume that ϕ(t) is the unit-energy rectangular pulse of
length Tc (zero outside the interval [0, Tc)) so that

Rϕ(s) :=
∫ ∞

−∞
ϕ(t) ϕ(t + s)dt =

{
1− | s

Tc
| −Tc ≤ s ≤ Tc

0 otherwise
.

However, we point out that we are primarily interested in chip-synchronous CDMA
channels, and hence the choice of the chip waveform ϕ(t) is irrelevant as long as {ϕn}
is an orthonormal system in L2(R) since then Rϕ(nTc) = 0 for every n ∈ Z, n 6= 0.

4dxe denotes the smallest integer that is greater than or equal to x
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2 Resource Allocation in CDMA Channels

• sk = (s0,k, . . . , sN−1,k) ∈ SN−1 is the unit-energy complex-valued (signature) sequence
assigned to the user k. The sequence length is the same for all users and equal to the
processing gain. We use the matrix S = (s1, . . . , sK) ∈ S to denote a set of allocated
sequences (also called a sequence allocation) where

S :=
{
X = (x1, . . . ,xK) : xk ∈ SN−1, 1 ≤ k ≤ K, rank(X) = min{N,K}}.

• sk(t) : R→ C is the signature waveform assigned to the user k and given by

sk(t) =
N−1∑

n=0

sn,k · ϕ(t− nTc), 1 ≤ k ≤ K.

Since ϕ(t) is a rectangular pulse of length Tc, we obtain

∫ ∞

−∞
|sk(t)|2dt =

∫ T

0

∣∣∣∣
N−1∑

i=0

si,kϕ(t− iTc)
∣∣∣∣
2

dt =
N−1∑

i=0

|si,k|2
∫ T

0
|ϕ(t− iTc)|2dt = 1.

• The information bearing symbols Xk(−M), . . . , Xk(M) transmitted by the user k in
2M + 1 consecutive symbol intervals are modeled as zero mean independent random
variables with

E
[|Xk(m)|2] = pk, −M ≤ m ≤ M, 1 ≤ k ≤ K ,

where the expectation is over all realizations of the random variables. The variance
pk is the power at which the user k is received. The positive diagonal matrix

P := diag(p1, . . . , pK)

is referred to as a power allocation. In view of practical systems, it is reasonable
to assume that the total power trace(P) has some positive, real upper bound Ptot.
Consequently, we assume that P ∈ P where

P :=
{
X = diag(x1, . . . , xK) : ∀1≤k≤K 0 < xk, trace(X) =

K∑

k=1

xk ≤ Ptot

}
.

• z(t) : R → C is a zero mean (stationary and ergodic) circularly-symmetric complex
white Gaussian noise with the variance

E
[|z(t)|2] = σ2, t ∈ R.
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Any matrix pair (P,S) with P ∈ P and S ∈ S is called an allocation. We use A to
denote a set of all allocations, i. e., we have

A :=
{
(P,S) : P ∈ P,S ∈ S}

.

In the remainder of this chapter, we confine our attention to one-shot linear receivers.
In order to demodulate a symbol, such receivers discard all information outside its inter-
val. In general, the one-shot approach is suboptimal since for the optimal detection in
channels with memory 5, it is necessary to observe the whole frame (M -shot receivers)
[Ver98]. Because of the assumed rectangular chip pulse, the outputs of the CDMA chan-
nel defined by (2.1) may depend on two consecutive inputs of each user. Thus, in those
cases where the channel has memory one-shot receivers must be suboptimal. However,
it will be shown that the resulting performance loss is negligibly small provided that
P ∈ P and S ∈ S are chosen appropriately.

It is assumed that the multiuser receiver can be decentralized so that the receiver of
each user can be implemented completely independently. Let

ck(t) :=
N−1∑

i=0

ci,k ϕ(t− iTc), 1 ≤ k ≤ K,

be the receiver of the user k. Notice that the k-th receiver is completely determined by
the vector ck = (c0,k, . . . , cN−1,k) ∈ CN , which in general depends on an allocation and
the variance of the Gaussian noise. The soft-decision variable X̂k(m),−M ≤ m ≤ M,
results from the projection of y(t) on ck(t−mT − τk) to give

X̂k(m) =
∫ ∞

−∞
ck(t−mT − τk) y(t) dt = X̂ ′

k(m) + X̂ ′′
k (m) + Zk(m) ,

where
X̂ ′

k(m) = 〈ck, sk〉Xk(m) = 〈ck, sk〉Xk(m) = cH
k skXk(m)

is the signal component of the user k,

X̂ ′′
k (m) =

M∑

n=−M

K∑

l=1
l 6=k

N−1∑

i,j=0

cj,ksi,lRϕ

(
(j − i + mN − nN)Tc + τk,l

)
Xl(n)

incorporates the impact of all other users, and Zk(m) =
∫∞
−∞ ck(t−mT − τk)z(t)dt is a

zero mean discrete-time Gaussian noise with the variance

E
[|Zk(m)|2] = ‖ck‖2

2σ
2, −M ≤ m ≤ M. (2.6)

5We say that a multiple access channel has finite memory n if its outputs are conditionally independent
and depend on n consecutive inputs of each user [Ver89b].
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As the basic measure of performance, we consider SIR at the soft decision variable X̂k(m)
defined to be

SIRk(m, ck,P,S) =
E

[
|X̂ ′

k(m)|2
]

E
[
|X̂ ′′

k (m) + Z(m)|2
] , 1 ≤ k ≤ K, −M ≤ m ≤ M. (2.7)

As aforementioned, SIR is a useful quantity for assessing the quality of transmission.
Apart from that, there are also some connections to information-theoretic quantities
[TH99]: if the linear receiver is followed by a single-user decoder in S-CDMA, then
the mutual information achieved for each user under an independent Gaussian input
distribution is equal to 1

2 log(1 + SIRk) bits per symbol time. Furthermore, it was
shown in [VG97] that the optimum successive decoder (with feedforward and feedback
equalization) achieves the total capacity region of the Gaussian Multiple Access Channel
(GMAC) at any vertex of the capacity region. The information theoretic rate achieved
by the user k depends on the decoding order and is equal to 1

2 log(1+ ˜SIRk) where ˜SIRk

denotes SIR at the output of the feedforward equalizer.
In general, SIR in (2.7) depends on m, which is due to the fact that users may initiate

and terminate their transmissions at different times. For instance, whereas the user
k transmits its data within the time interval Ik = [−MT + τk,MT + τk), the user
l 6= k is active in the time interval Il = [−MT + τl,MT + τl). Consequently, the user l
“contributes” to X̂ ′′

k (m) over the interval Ik(m) = [mT + τk, (m + 1)T + τk) if Ik(m) ⊂
Ik∩Il. In general, we can say that all users contribute to X̂ ′′

k (m) if Ik(m) ⊂ I1∩· · ·∩IK .
Let Ik := {m : Ik(m) ⊂ I1 ∩ · · · ∩ IK} ⊆ {−M, . . . , M}. Now if m ∈ Ik, then SIR at the
soft-decision variable X̂k(m) is [Pur77, ML89]

SIRk(ck,P,S) :=
pk|〈ck, sk〉|2∑K

l=1
l 6=k

pl Vk,l + σ2‖ck‖2
2

, 1 ≤ k ≤ K, (2.8)

where we used (2.6) and the fact that the Gaussian noise is independent of the symbols.
The term

∑
l 6=k plVk,l is the multiple access interference and we have

Vk,l =|(1− rk,l)cjk,l
(ck, sk) + rk,lcjk,l+1(ck, sk)|2

+ |(1− rk,l)cj′k,l
(ck, sk) + rk,lcj′k,l+1(ck, sk)|2, 1 ≤ k, l ≤ K,

(2.9)

where τk,l = (jk,l + rk,l)Tc ∈ (−T, T ) is defined by (2.3) and j′ = j − sgn(j)N,−N ≤
j < N . Thus, SIR defined by (2.8) is independent of the index m since the number of
interfering users is the same for each m ∈ Ik. Moreover, because all the terms in (2.9)
are positive, we have

SIRk(ck,P,S) = min
−M≤m≤M

SIRk(m, ck,P,S), 1 ≤ k ≤ K, (2.10)
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for any fixed ck,P and S. In what follows, we restrict ourselves to SIR defined by (2.8),
which is equivalent to neglecting the edge effects. This does not impact the generality
of the analysis because of the typically large values of M when compared with d. Note
that when considering SIR defined by (2.8), we can focus on the time offsets modulo-T ,
which implies that τk,l ∈ (−T, T ) for each 1 ≤ k, l ≤ K. For convenience, if m ∈ Ik is
fixed, we drop the index m in Xk(m), X̂k(m) and etc. Furthermore, we write SIRk(P,S)
if ck is given. In Sections 2.3 and 2.4, we consider the optimal one-shot linear receiver
in the sense of maximizing (2.8). In Section 2.5, we assume the matched filter receiver.

In an S-CDMA channel (this channel is memoryless), the optimal one-shot linear
receiver is equal to the linear MMSE (minimum mean square error) receiver. Indeed,
since all symbols and the noise are independent and have zero mean, it may be easily
verified that [Ver98, Problem 6.5]

pk

minck 6=0 E[|Xk − 〈ck,y〉|2] = 1 + max
ck 6=0

SIRk(ck,P,S) . (2.11)

Here, the one-shot channel output vector y = (y0, . . . , yN−1) ∈ CN is given by yi =
〈ϕ(−iTc − mT ), y〉, 0 ≤ i < N, where −M ≤ m ≤ M is chosen so that X̂k = cH

k y is
an estimate of Xk. For convenience, a one-shot linear receiver for an A-CDMA channel
that is optimal in the sense of maximizing (2.8) is also referred to as the MMSE receiver.

2.2 Problem Statement

We say that users are admissible in a CDMA channel if one can assign signature sequences
to the users and control their power so that each user meets its signal-to-interference
ratio requirement. A question whether or not users are admissible in a CDMA channel
is known as the problem of admissibility [VAT99], which can be formulated as follows:

Problem 2.1. Suppose that K, N, σ2 and Ptot are fixed and γ1, . . . , γK are given positive
real numbers. Is it true that a pair (P,S) ∈ A exists such that

γk ≤ SIRk(P,S), 1 ≤ k ≤ K ? (2.12)

The real numbers γ1, . . . , γK are called SIR requirements.

Any pair (P,S) ∈ A for which (2.12) holds is called a valid allocation. Furthermore,
if a valid allocation exists, we say that the SIR requirements γ1, . . . , γK are feasible or,
equivalently, that the users are admissible. Problem 2.1 is one of the central problems
in CDMA wireless network design since it addresses the question of admissibility of
users in a communications system with a certain quality-of-service guaranteed. If the
SIR requirements are feasible, we know that there exists an allocation so that all users
have their quality-of-service guaranteed, and then it remains to find such an allocation.
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However, communications network designers are often confronted with other important
issues. For instance, in many wireless applications, battery life of wireless devices and
adjacent cell interference (ACI) are crucial factors. The simplest and still most effective
way of extending the battery life of wireless devices and reducing ACI is reduction of
signal power. Since this also reduces SIR of users, it is reasonable to ask:

Problem 2.2. What is the minimum total power Pmin for which (2.12) holds ?

The minimum total power of Problem 2.2 is defined as follows:

Pmin := min
(P,S)∈A

trace(P) subject to ∀1≤k≤K γk ≤ SIRk(P,S). (2.13)

In other words, if the SIR requirements are feasible, then the problem is to find those valid
allocations for which the total power becomes minimal. Any valid allocation (P,S) ∈ A
with trace(P) = Pmin is called an optimal allocation. Let

Aopt := {(P,S) ∈ A : trace(P) = Pmin, ∀1≤k≤K γk ≤ SIRk}

denote a set of all optimal allocations. The following lemma shows that an optimal
allocation exists if the SIR requirements are feasible.

Lemma 2.1. Suppose that γ1, . . . , γK are feasible. Then, there exists a valid allocation
(P,S) ∈ A for which trace(P) = Pmin. Furthermore, in the minimum, we have

SIRk(P,S) = γk, 1 ≤ k ≤ K. (2.14)

Proof. The trace function is bounded and continuous on P. Since γk ≤ SIRk(P,S), 1 ≤
k ≤ K, must hold, we have Pmin = minP∈P ′ trace(P), where P ′ = {P : ∀1≤k≤K γkσ

2 ≤
pk, trace(P) ≤ Ptot} is a compact set. Thus, the minimum exists. Furthermore, in
the minimum, we have (2.14). Otherwise, if we had γk < SIRk for some 1 ≤ k ≤ K,
we could allocate P∗ = diag(p1, . . . , αpk, . . . , pK) ∈ P with α = γk/SIRk(P,S) < 1 to
obtain trace(P∗) < trace(P).

A trivial but important observation is that once the minimum total power Pmin < +∞
have been found, we can immediately solve the problem of admissibility. Indeed, it
follows that the users are admissible in a CDMA channel if and only if there exists
Pmin < +∞ and

Pmin ≤ Ptot. (2.15)

Consequently, for Pmin < +∞ to exist and be bounded, it is necessary and sufficient that
the SIR requirements are feasible when Ptot → +∞. In the remainder of this section,
we prove a necessary condition for the feasibility of the SIR requirements.
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Suppose that (P,S) ∈ A is a valid allocation given γ1, . . . , γK . Adding γkSIRk(P,S), 1 ≤
k ≤ K, to both sides of (2.12) yields γk(1+SIRk(P,S)) ≤ SIRk(P,S)(1+γk), 1 ≤ k ≤ K,
from which one obtains

K∑

k=1

γk

1 + γk
≤ ϑ(P,S) :=

K∑

k=1

SIRk(P,S)
1 + SIRk(P,S)

.

We conclude that if γ1, . . . , γK are feasible, then the inequality above must hold. How-
ever, the converse does not need to hold. Consequently, maximizing ϑ(P,S) with respect
to (P,S) ∈ A leads to a necessary (but not sufficient) condition for the feasibility of the
SIR requirements. In other words, if γ1, . . . , γK are feasible, then

K∑

k=1

γk

1 + γk
≤ ϑ(Ptot) := max

(P,S)∈A
ϑ(P,S) (2.16)

must hold. The condition (2.16) will turn out to be sufficient in some important cases.
The following lemma shows that the maximum in (2.16) exists.

Lemma 2.2. There exists an allocation (P,S) ∈ A so that ϑ(Ptot) = ϑ(P,S). Moreover,
in the maximum, we have trace(P) = Ptot.

Proof. The functional ϑ(P,S) > 0 is continuous and bounded on A. Let P ′ = {P =
diag(p1, . . . , pK) : ∃1≤k≤K pk = 0, trace(P) ≤ Ptot}. Note that P ∪ P ′ is a compact
set and that ϑ(P,S) = 0 if p1 = . . . = pK = 0. Consequently, since SN−1 is also a
compact set, there must exist a maximum on A. Furthermore, in the maximum, we have
trace(P) = Ptot. Otherwise, if we had trace(P) < Ptot, we could allocate the set αP =
(αp1, . . . , αpK) ∈ P with α = Ptot/trace(P) > 1 to obtain ϑ(P,S) < ϑ(αP,S).

Assuming fixed time offsets, the following result proves a necessary condition for the
feasibility of the SIR requirements by solving the maximization problem in (2.16). This
result will allow us to quantify the performance loss due to the one-shot receivers.

Theorem 2.1. Let the time offsets be fixed. If γ1, . . . , γK are feasible, then

K∑

k=1

γk

1 + γk
≤ ϑ(P,S) ≤

(
max

{ 1
K

,
1

N + d
2M+1

}
+

σ2

Ptot

)−1

. (2.17)

Proof. The reader can found the proof in the appendix.

We point out that even if the upper bound is attained for some finite value of M , this
does not need to be true when M → +∞. For the bound to be tight when M → +∞, it
is necessary that there exist some positive real constants a, b with 0 < a < b < ∞ (both
independent of M) so that the eigenvalue spectrum σ(W∞) of the biinfinite channel
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covariance matrix W∞ satisfies σ(W∞) ⊆ {0∪ [a, b]}. Fortunately, this condition seems
to be satisfied in most cases of interest.

To proof Theorem 2.1, we used some results from the theory of majorization. A
comprehensive reference on majorization and its application is [MO79]. The reader is
also referred to [VAT99, VA99], where the theory of majorization was used to solve the
problem of admissibility in S-CDMA. The following two definitions are of fundamental
significance.

Definition (Majorization). Given two non-negative real vectors x,y ∈ RN
+ , say that

x majorizes y (written as y ≺ x) if

∀1≤t≤N

t∑

i=1

(x[i] − y[i]) ≥ 0

with equality if t = N , where
x[1] ≥ . . . ≥ x[N ]

is the order statistics of the vector x.

Definition (Schur-concave functional). A real-valued functional F : RN
+ → R+ is

said to be Schur-concave (resp. Schur-convex) if for all non-negative vectors x,y ∈ RN
+

with ‖x‖1 = ‖y‖1 and y ≺ x, we have F (y) ≥ F (x) (resp. F (y) ≤ F (x)).

An important example of Schur-concave (resp. Schur-convex) functionals is

F (x) =
N∑

i=1

f(xi) , (2.18)

where f : R+ → R+ is a positive concave (resp. convex) function.

Remark. If two real vectors x,y are compared by majorization, we implicitly assume
that both vectors are non-negative, have the same length and ‖y‖1 = ‖x‖1.

2.3 Symbol Synchronous CDMA Channel

In a symbol-synchronous CDMA (S-CDMA) channel, all users are in exact synchronism
in the sense that their symbol epochs coincide at the receiver. This is equivalent to
assuming that d = 0, where d is defined by (2.4). S-CDMA has been subject to extensive
research. The interested reader is referred to [Ver98] and [VAT99] for more information
and references.

Because of the symbol synchronism, an S-CDMA channel is memoryless so that the
outputs are conditionally independent and only depend on users’ present inputs [Ver86].
In memoryless channels, the observation of one symbol interval is sufficient for optimal
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decoding [Ver86, Ver98]. This implies that the input-output relationship is completely
determined by the following one-shot channel model

x → y = Sx + z ∈ CN , (2.19)

where x = (X1, . . . , XK) is a zero mean random vector with E[xxH ] = P and z is a
zero mean circularly-symmetric complex Gaussian random vector with E[zzH ] = σ2I.
Consequently, the channel output covariance matrix yields

E[yyH ] = SPSH + σ2I = W + σ2I,

where W = SPSH . Since d = 0, (2.9) reduces to Vk,l = |〈ck, sl〉|2, 1 ≤ k, l ≤ K. Thus,
using Wk = W − pksksH

k , SIR of the user k defined by (2.8) can be written as

SIRk(P,S) =
pk|〈ck, sk〉|2∑K

l=1
l 6=k

|〈ck, sl〉|2 + σ2‖ck‖2
2

=
pk|〈ck, sk〉|2

cH
k (Wk + σ2I)ck

. (2.20)

Maximizing the right hand side of (2.20) with respect to ck ∈ CN shows that the MMSE
receiver is [VAT99]

ck = Z−1
k sk Zk := Wk + σ2I, 1 ≤ k ≤ K. (2.21)

Hence, under the MMSE receiver,

SIRk(P,S) = pksH
k Z−1

k sk =
pksH

k Z−1sk

1− pksH
k Z−1sk

, (2.22)

where Z := W + σ2I.
If K ≤ N , Problem 2.1 and Problem 2.2 are easy to solve.

Lemma 2.3. Let K ≤ N . Suppose that (P,S) ∈ A is a valid allocation. Then, we have
γkσ

2 ≤ pk for each 1 ≤ k ≤ K. Equality can hold only if ck = αsk, α ∈ C, α 6= 0, and
〈sk, sl〉 = δk−l, 1 ≤ l ≤ K.

Proof. Since (P,S) ∈ A is a valid allocation, it follows from (2.12) that

γk ≤ SIRk(P,S) =
pk|〈ck, sk〉|2∑

l 6=k plVk,l + σ2‖ck‖2
2

≤ pk|〈ck, sk〉|2
σ2‖ck‖2

2

≤ pk

σ2
, 1 ≤ k ≤ K.

Equality implies that ck = αsk, α ∈ C, α 6= 0, and 〈sk, sl〉 = δk−l, 1 ≤ l ≤ K.

This widely known fact states that if K ≤ N , a set of mutually orthogonal sequences
is optimal for any choice of P. If mutually orthogonal sequences are used, then the
MMSE receiver is equal to the matched filter receiver and P = diag(γ1σ

2, . . . , γKσ2) is
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the componentwise minimal power allocation. Obviously, under this power allocation,
trace(P) becomes minimal, and hence

Pmin = σ2
K∑

k=1

γk, K ≤ N.

Consequently, we can write

Aopt =
{
(P,S) ∈ A : P = diag(γ1σ

2, . . . , γKσ2),SHS = I,K ≤ N
}
. (2.23)

Combining this with (2.15) reveals that γ1, . . . , γK are feasible if and only if

K∑

k=1

γk ≤ Ptot

σ2
, K ≤ N. (2.24)

Thus, if there are no power constraints, any set of SIR requirements is feasible. Finally,
note that under mutually orthogonal sequences, we have

K∑

k=1

γk

1 + γk
=

K∑

k=1

pk

pk + σ2
≤

( 1
K

+
σ2

trace(P)

)−1
≤

( 1
K

+
σ2

Ptot

)−1

with equality if and only if p1 = · · · = pK = trace(P)
K and trace(P) = Ptot. Thus, if

K ≤ N , the necessary condition in (2.17) is sufficient only if either Ptot →∞ (note that
0 ≤ x

1+x < 1 for every x ≥ 0) or γ1 = · · · = γK , in which case (2.17) and (2.24) coincide.
Now we consider the more interesting case when N < K. To the best of our knowledge,

first results are due to [MM93]. Suppose that the problem is to maximize the minimum
SIR for equal-power users. Under the assumption of the matched filter receivers, [MM93]
specified optimal sequence sets as those sets S ⊂ SN−1 for which the lower bound in

K2

N
≤

K∑

k=1

K∑

l=1

|〈sk, sl〉|2, N < K, (2.25)

is attained. This bound is known as the Welch’s lower bound on the squares of the inner
product magnitudes between all sequence pairs and was originally proven in [Wel74].
Thus, any set that achieves the lower bound is called a Welch-Bound-Equality (WBE)
sequence set. [MM93] showed that a necessary and sufficient condition for S ⊂ SN−1 to
be a WBE sequence set is that

SSH =
K

N
I, N < K. (2.26)

It is worth pointing out that in the frame theory, WBE sequence sets goes by the name
of a uniformly tight frame in CN .
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Although it may not be evident that WBE sequences maximize the minimum SIR,
this becomes clear when one considers that for any WBE sequence set S ∈ SN−1, we
have [MM93]

K∑

l=1

|〈sk, sl〉|2 =
K

N
, 1 ≤ k ≤ K. (2.27)

This relationship is known as the uniformly good property and implies that all users
have the same SIR if p1 = · · · = pK . Thus, the minimum SIR attains its maximum
exactly when the sum of SIRs becomes maximal, which is true if and only if the Welch’s
lower bound in (2.25) is attained. Another interesting result is due to [RM94] where it
was shown that WBE sequences induce no sum capacity loss when compared with the
Gaussian Multiple Access Channel (GMAC).

The assumption of a constant power allocation was dropped in [VAT99] by considering
the problem of admissibility. It turned out that if users have different SIR requirements,
the use of a constant power allocation and WBE sequences is a suboptimal strategy. As-
suming the MMSE receiver, [VAT99] found optimal (in the sense of minimizing Pmin) al-
locations for a given set of SIR requirements. Furthermore, it was shown that γ1, . . . , γK

are feasible if and only if
K∑

k=1

γk

1 + γk
< N, N < K. (2.28)

However, we point out that (2.28) is sufficient only in case of a channel without power
constraints. A tighter bound immediately follows from Theorem 2.1 to give

K∑

k=1

γk

1 + γk
≤

(
1
N

+
σ2

Ptot

)−1

, N < K. (2.29)

Later, it will be shown that there are cases in which (2.29) is not sufficient either.
Another interesting problem, which was not considered in [VAT99], is that of complete
characterization of Aopt. More specific, it was shown that (P,S) ∈ Ã implies (P,S) ∈
Aopt, where Ã denotes the set of optimal allocations constructed in [VAT99]. However,
the problem whether or not the converse holds remained an open problem. In this
section, we solve this problem completely.

First we summarize the results of [VAT99]. Let ε = x − x̂ be the error vector under
the MMSE receiver, where x̂ = (X̂1, . . . , X̂K) is the vector of the soft-decision variables.
A simple application of the orthogonality principle [Lue69] shows that the corresponding
error covariance matrix Kε = E[εεH ] is

Kε = E[xxH ]−E[xyH ]
(
E[yyH ]

)−1
E[yxH ].
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From this we have
K∑

k=1

E[|Xk − X̂k|2]
pk

= trace(P− 1
2 KεP− 1

2 ) = K − trace
(
W(W + σ2I)−1

)

= K −
N∑

i=1

λi(W)
λi(W) + σ2

,

where λ1(W), . . . , λN (W) are the eigenvalues of the Hermitian matrix W = SPSH .
Thus, if SIRk(P,S) is SIR of the k-th user under the MMSE receiver, (2.11) implies that

N∑

i=1

λi(W)
λi(W) + σ2

= K −
K∑

k=1

1
1 + SIRk(P,S)

=
K∑

k=1

SIRk(P,S)
1 + SIRk(P,S)

. (2.30)

This relationship is known as the conservation law for the MMSE receiver [VAT99]. In
what follows, we shall adopt the convention that the eigenvalues of W are labeled in
non-increasing order:

λ1(W) ≥ . . . ≥ λN (W) > 0.

We rewrite (2.30) to obtain

K∑

k=1

SIRk(P,S)
1 + SIRk(P,S)

=
N∑

i=1

λi(W)
λi(W) + σ2

=
K∑

i=1

ui = ‖u‖1,

where u ∈ RK
+ with u1 ≥ · · · ≥ uN > 0 is defined to be

ui =

{
λi(W)

λi(W)+σ2 , 1 ≤ i ≤ N

0, N < i ≤ K
. (2.31)

Thus, we have

trace(P) = trace(W) =
N∑

i=1

λi(W) = F (u) := σ2
K∑

i=1

ui

1− ui
. (2.32)

Recall that optimal allocations are those valid allocations for which trace(P) attains its
minimum. By Lemma 2.1, if the minimum is attained, we have SIRk(P,S) = γk for each
1 ≤ k ≤ K, and hence

‖e‖1 =
K∑

k=1

ek = ‖u‖1 =
K∑

k=1

uk ,

must hold in the minimum, where

e = (e1, . . . , eK) :=
(

γ1

1 + γ1
, . . . ,

γK

1 + γK

)
.
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An important observation is that F : RK
+ → R+ defined by (2.32) is a Schur-convex

functional [MO79, VAT99]. Thus, for any positive vectors v,u ∈ RK
+ with ‖v‖1 = ‖u‖1

such that u ≺ v, we have F (u) ≤ F (v). On the other hand, however, we have the
following result due to Horn [Hor54]:

Theorem 2.2. There exists an K×K Hermitian matrix with eigenvalues u = (u1, . . . , uK) ∈
RK

+ such that u1 ≥ . . . ≥ uK ≥ 0 and diagonal elements x ∈ RK
+ if and only if x ≺ u.

Now observe that SIRk(P,S)
1+SIRk(P,S) ≥ γk

1+γk
, 1 ≤ k ≤ K, are the diagonal elements of the

Hermitian matrix
V = P

1
2 SH [SPSH + σ2I]−1SP

1
2 ,

and u1, . . . , uK its eigenvalues. Consequently, by Theorem 2.2 and the fact that ‖e‖1 =
‖u‖1 in the minimum, we must have e ≺ u. Combining this observation with the fact
that F (u) = trace(P) is Schur-convex shows that the problem is to find (P,S) ∈ A so
that e ≺ u ≺ v for every v ∈ E, where E ⊂ RK

+ is defined to be

E := {x ∈ RK
+ : x ≥ 0,∀N<i≤K xi = 0, ‖x‖1 = ‖e‖1, e ≺ x}.

We can summarize these observations by writing

Aopt = {(P,S) ∈ A : u ∈ E and u ≺ v for all v ∈ E}.
In other words, the problem is to find an element in E that is minimal with respect to
the majorization. For instance, the vector u ∈ RK

+ given by

ui =

{
1
N

∑K
k=1

γk
1+γk

1 ≤ i ≤ N

0 N < i ≤ K
.

is majorized by any v ∈ RK
+ with the last K − N elements equal to zero. However,

this vector can be majorized by e, and hence does not need to be in E. Actually, if
e ≺ u holds, then ek ≤ 1

N−1

∑
l 6=k el must hold for each 1 ≤ k ≤ K. The problem of

determining the minimal element in E was solved in [VAT99]: Without loss of generality,
assume that γ1 ≥ . . . ≥ γK > 0. Let L < N be a non negative integer defined to be

L :=

{
0, e1 ≤ 1

N−1

∑K
l=2 el

max
{

k : ek > 1
N−k

∑K
l=k+1 el

}
, otherwise

. (2.33)

In [VAT99], the first L users are referred to as oversized users since, roughly speak-
ing, their SIR requirements are large relatively to the SIR requirements of other users.
[VAT99] showed that u∗ ∈ E and u∗ ≺ v for all v ∈ E if and only if

u∗i =

{
λ∗i (W)

λ∗i (W)+σ2 , 1 ≤ i ≤ N

0 N < i ≤ K
,
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where

λ∗i (W) =





σ2γi, 1 ≤ i ≤ L
σ2

PK
l=L+1 el

N−L−PK
l=L+1 el

, L < i ≤ N
. (2.34)

From this it follows that

Aopt = {(P,S) ∈ A : λi(W), 1 ≤ i ≤ N, given by (2.34), N < K}.
Thus, the problem is reduced to finding all pairs (P,S) ∈ A so that the eigenvalues of
the matrix W satisfy (2.34). [VAT99] constructed such allocations. Before presenting
this construction, we first consider the following definition.

Definition (Generalized WBE Sequence Set). Let N < K. Say that S ∈ S forms
a generalized WBE sequence set given P if

SPSH =
trace(P)

N
I . (2.35)

This definition is a natural extension of the concept of WBE sequences to more general
power allocations. Note that WBE sequence sets are a special case of generalized WBE
sequence sets when P is a scaled identity. A necessary and sufficient condition for the
existence of WBE sequence sets is that maxk pk ≤ trace(P)

N . In [VA99], the reader can find
a systematic method for constructing generalized WBE sequence sets. For convenience,
in what follows, we omit the word “generalized”.

Now suppose that (P̃, S̃) ∈ Ã is an allocation that results from the construction
presented in [VAT99]. Then, we have

p̃k :=





σ2γk, 1 ≤ k ≤ L
σ2ek

1− 1
N−L

PK
l=L+1 el

, L < k ≤ K
, (2.36)

and

S̃ := U
(

I 0
0 S̃n

)
. (2.37)

Here, U ∈ CN×N is an arbitrary unitary matrix, 0 denotes a suitable zero matrix, and
S̃n ∈ CN−L×K−L is an arbitrary WBE sequence set given P̃n = diag(p̃L+1, . . . , p̃K).
Thus, by the definition, we have S̃nP̃nS̃H

n = trace(P̃n)
N−L I. Note that under this allocation,

each oversized user is orthogonal to all other users so that one has

〈s̃l, s̃k〉 = δl−k, 1 ≤ l ≤ L, 1 ≤ k ≤ K.

On the other hand, the non-oversized users are assigned sequences that form a WBE
sequence set in a N − L dimensional subspace of SN−1.

It may be easily verified that the eigenvalues λi(S̃P̃S̃H), 1 ≤ i ≤ N, are equal to
(2.34), and hence if (P,S) ∈ Ã, then (P,S) ∈ Aopt. But does the converse hold ? The
following theorem provides an answer to this question:
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2.3.1 Complete Characterization of the Set of All Optimal Allocations

Theorem 2.3. Let γ1, . . . , γK be feasible. We have Ã = Aopt. In other words, (P,S) ∈
Aopt if and only if (P,S) ∈ Ã.

First we need the following lemma:

Lemma 2.4. Let γ1 ≥ . . . ≥ γK > 0. Then, we have p̃1 ≥ . . . ≥ p̃K .

Proof. It is easy to see that this is true for each 1 ≤ k ≤ L and L < k ≤ K so it remains
to prove that p̃L ≥ p̃L+1. By construction, we have eL > 1

N−L

∑K
l=L+1 el so that

1− eL < 1− 1
N − L

K∑

l=L+1

el .

Hence,

p̃L+1 <
σ2eL+1

1− eL
=

1 + γL

1 + γL+1
· γL+1

γL
σ2γL =

1 + γL

1 + γL+1
· γL+1

γL
· p̃L,

from which p̃L+1 < p̃L follows since 1+γL
1+γL+1

· γL+1

γL
− 1 = γL+1−γL

(1+γL+1)γL
< 0.

Proof of Theorem 2.3. We have (P,S) ∈ Aopt if and only if λ1(W), . . . , λN (W) are
given by (2.34) where W = SPSH . Thus, if (P,S) ∈ Aopt, then (P,US) ∈ Aopt for any
unitary matrix U ∈ CN×N since

λi(UWUH) = λi(W), 1 ≤ i ≤ N.

Consequently, everything we need to do is to prove that P̃ in (2.36) is the optimal power
allocation. Without loss of generality, assume that γ1 ≥ . . . ≥ γK > 0 and suppose that
(P,S) ∈ Aopt. Let R = P

1
2 SHSP

1
2 and note that the non-zero eigenvalues of R coincide

with the eigenvalues of W. Let the eigenvalues of R be labeled in non-increasing order.
By the Horn’s theorem, the Hermitian matrix W exists if and only if

k∑

l=1

(λl(R)− p[l]) ≥ 0, 1 ≤ k ≤ K,

with equality if k = K. Specially, one has p[1] ≤ λ1(R). Since the first user is oversized
(L > 1), we have 〈s̃1, s̃k〉 = 0 for each 2 ≤ k ≤ K implying that λ1(R) = p̃1 ≥ p[1] ≥ p1.
By Lemma 2.4 and Lemma 2.3, however, we must have p[1] ≥ p1 ≥ p̃1 ≥ . . . ≥ p̃K

so that p1 = p[1] = p̃1 must hold. Now assume that for some 1 < l < L, one has
pi = p[i] = p̃i, i = 1 . . . l. Then, we obtain

l+1∑

i=1

p[i] =
l∑

i=1

p̃i + p[l+1] ≤
l∑

i=1

p̃i + λl+1(R) =
l∑

i=1

p̃i + p̃l+1,
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from which it follows that pl+1 ≤ p[l+1] ≤ p̃l+1. Again, by Lemma 2.4 and Lemma 2.3, we
have p[l+1] ≥ pl+1 ≥ p̃l+1 so that pl+1 = p[l+1] = p̃l+1 ≥ . . . ≥ p̃K . Hence, by induction,

∀1≤l≤L pl = p[l] = p̃l = σ2γl.

We can conclude that if (P,S) ∈ Aopt, then p1, . . . , pL are given by (2.36) and each
oversized user is orthogonal to all other users. Specially, if U ⊂ CN is used to denote
the subspace spanned by sequences assigned to oversized users, then sequences assigned
to non-oversized users must span an orthogonal complement U⊥ so that U⊥ ⊕ U = CN .
As an immediate consequence of this, the problem of specifying optimal allocations for
the non-oversized users in a K -user S-CDMA channel with L oversized users reduces
itself to specifying optimal allocations for an S-CDMA channel with K − L users and
without oversized users. In other words, we have to find P = diag(p1, . . . , pK−L) and
S = (s1, . . . , sK−L) that follow from

λi(W)
λi(W) + σ2

=
1

N − L

K∑

k=L+1

ek, 1 < i ≤ N − L .

Note that for each 1 ≤ i ≤ N − L, we have

λi(W) =
σ2 1

N−L

∑K
k=L+1 ek

1− 1
N−L

∑K
k=L+1 ek

.

This implies that

W = SPSH =
σ2 1

N−L

∑K
k=L+1 ek

1− 1
N−L

∑K
k=L+1 ek

I ,

and hence

Z = W + σ2I =
σ2

1− 1
N−L

∑K
k=L+1 ek

I .

On the other hand, for each 1 ≤ k ≤ K − L, we have

SIRk(P,S) =
pksH

k Z−1sk

1− pksH
k Z−1sk

= γk

so that

pk =
ek

sH
k Z−1sk

=
ek

sH
k

(
σ2

1− 1
N−L

PK
k=L+1 ek

I
)−1

sk

=
ekσ

2

sH
k

(
1− 1

N−L

∑K
k=L+1 ek

)
Isk

=
ekσ

2

1− 1
N−L

∑K
k=L+1 ek

which is equal to p̃k, L < k ≤ K.
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Finally, we address the problem of admissibility. A necessary condition that γ1, . . . , γK

are feasible is given by (2.29), which follows from (2.16) for d = 0. This condition is also
sufficient if there are no oversized users (L = 0). Indeed, let (P,S) ∈ Aopt be arbitrary.
Then, P is given by (2.36), and hence the minimum total power (2.13) is

Pmin =
σ2

∑K
k=1 ek

1− 1
N

∑K
k=1 ek

, L = 0, N < K. (2.38)

Thus, by (2.15), we have

Pmin =
σ2

∑K
k=1 ek

1− 1
N

∑K
k=1 ek

≤ Ptot N < K ,

which, after some elementary manipulations, yields (2.29). However, this condition is not
sufficient if there are oversized users since then the eigenvalues in (2.34) are not equal.
Consequently, if L > 0, the upper bound (2.29) is not tight. Obviously, a necessary and
sufficient condition follows from (2.15), where the minimum total power is

Pmin = σ2
L∑

k=1

γk +
σ2

∑K
k=L+1 ek

1− 1
N−L

∑K
k=L+1 ek

, N < K . (2.39)

Let Po =
∑L

k=1 pk be the total power allocated to oversized users and note that we must
have Po < Ptot. Some elementary calculations show that the non-oversized users are
admissible if and only if

K∑

k=L+1

γk

1 + γk
≤ 1− Po

Ptot

1
N−L(1− Po

Ptot
) + σ2

Ptot

N < K . (2.40)

Clearly, if L = 0 (Po = 0), (2.40) becomes (2.29).
We complete this section by pointing out that if (P,S) ∈ Aopt, then the MMSE

receiver given by (2.21) is equal to a scaled matched filter. This immediately follows
from the fact that Zk = Wk + σ2I is diagonal for each 1 ≤ k ≤ K under an optimal
allocation.

2.4 Symbol Asynchronous CDMA Channel: Fixed Time
Offsets

In this section, we considerably relax the requirement for perfect synchronization by con-
sidering a chip-synchronous A-CDMA channel with fixed time offsets. The assumption
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of chip synchronism implies that the time offsets are multiples of the chip duration Tc.
In other words, rk,l in (2.3) is zero for each 1 ≤ k, l ≤ K, and hence (2.9) yields

Vk,l = |cjk,l
(ck, sk)|2 + |cj′k,l

(ck, sk)|2, −N < jk,l < N, 1 ≤ k, l ≤ K . (2.41)

Chip-synchronism is often assumed in the literature [UY00, KT00, Mow95, UY01] to
make the analysis more tractable. However, we point out that this assumption still
limits the generality of the analysis since most practical systems are chip-asynchronous.
In particular, note that (2.9) does not need to be small if (2.41) does. Furthermore,
transmitted signals are usually subject to various impairments such as time offset vari-
ations, Doppler spread and multipath reflections. Especially, time offset variations and
multipath reflections may severely impact the system performance when signature se-
quences are not chosen carefully. Although these important issues are not captured by
the chip-synchronous A-CDMA channel model, its study gives insight into design of op-
timal sequences for A-CDMA channels and shows the impact of symbol asynchronism
on the system performance.

Before proceeding with the analysis, we make some elementary observations. It follows
from (1.4) and (1.5) that

|ρj(a,b)|2 = |cj(a,b)|2 + |cj′(a,b)|2 + 2Re{cj(a,b)cj′(a,b)}
|ρ̃j(a,b)|2 = |cj(a,b)|2 + |cj′(a,b)|2 − 2Re{cj(a,b)cj′(a,b)}

for any a,b ∈ SN−1. Adding both equations and dividing by two gives

|cj(a,b)|2 + |cj′(a,b)|2 =
1
2
|ρj(a,b)|2 +

1
2
|ρ̃j(a,b)|2. (2.42)

An examination of the periodic crosscorrelations shows that

ρm−n(a,b) = 〈Tna,Tmb〉, 0 ≤ m,n < N, a,b ∈ SN−1. (2.43)

Here and hereafter, T denotes the left-hand cyclic shift matrix defined to be

T :=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
1 0 0 · · · 0




. (2.44)

On the other hand, the odd crosscorrelations can be written as

ρ̃m−n(a,b) = 〈T̃na, T̃mb〉, 0 ≤ m,n < N, a,b ∈ SN−1, (2.45)
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where T̃ is the left hand nega-cyclic shift matrix defined to be

T̃ :=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
−1 0 0 · · · 0




. (2.46)

The following properties of T and T̃ are immediate:

(Tj)T = TN−j TN = I

(T̃j)T = −T̃N−j T̃N = −I .

2.4.1 Underloaded Channel

In this section, we assume that K ≤ N (an underloaded channel). Let j := (j1, . . . , jK)
denote the time offset vector, where 0 ≤ jk < N for each 1 ≤ k ≤ K. Similar reasoning
as in the proof of Lemma 2.3 shows that if γ1, . . . , γK are feasible, then γkσ

2 ≤ pk must
hold for each 1 ≤ k ≤ K. Equality if and only if both ck = α · sk for some α ∈ C, α 6= 0
and

|cjk,l
(sk, sl)|2 + |cj′k,l

(sk, sl)|2 = 0, 1 ≤ k, l ≤ K, k 6= l. (2.47)

By (2.42), this is true if and only if

|ρjk,l
(sk, sl)|2 + |ρ̃jk,l

(sk, sl)|2 = 0, 1 ≤ k, l ≤ K, k 6= l.

It follows from (2.43) that

ρjk,l
(sk, sl) = 〈Tjlsk,Tjksl〉 = sH

k TN−jlTjksl = 〈T−jksk,T−jlsl〉, 1 ≤ k, l ≤ K.

On the other hand, (2.45) implies that

ρ̃jk,l
(sk, sl) = 〈T̃jlsk, T̃jksl〉 = −sH

k T̃N−jlT̃jksl = 〈T̃−jksk, T̃−jlsl〉, 1 ≤ k, l ≤ K.

Thus, since |ρjk,l
(sk, sl)|2 ≥ 0 and |ρ̃jk,l

(sk, sl)|2 ≥ 0 for every 1 ≤ k, l ≤ K, we conclude
that (2.47) is satisfied if and only if

SH
j Sj = S̃H

j S̃j = I , K ≤ N , (2.48)

where

Sj :=
(
T−j1s1, . . . ,T−jKsK

)
(2.49)

S̃j :=
(
T̃−j1s1, . . . , T̃−jKsK

)
. (2.50)
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If (2.48) holds, then the MMSE receiver is equal to a scaled matched filter as all users are
mutually orthogonal. Furthermore, just as in case of an S-CDMA channel, a necessary
and sufficient condition for γ1, . . . , γK to be feasible is given by (2.24). To prove this,
we need to show the existence of sequence sets that satisfy (2.48) for any time offset
vector j. By the preceding discussion, the condition (2.48) implies that cjk,l

(sk, sl) =
cj′k,l

(sk, sl) = 0 for every 1 ≤ k, l ≤ K, k 6= l. To the best of our knowledge, methods for
constructing sets of polyphase sequences that satisfy (2.48) are not known. In contrast,
as shown below, there exist sequence sets with this property on the unit sphere.

1. Arrange users so that 0 ≤ j1 ≤ · · · ≤ jK < N and divide them into D, 1 ≤ D ≤ K,
groups so that all users in each group have the same time offset. Let tl be the time
offset of the group l.

2. Assume that Sl with |Sl| = Kl is a sequence set allocated to the group l, 1 ≤ l ≤ D.
Note that

∑D
l=1 Kl = K ≤ N .

3. Let
Sl = TtlU0,l, 1 ≤ l ≤ D, (2.51)

where U0,l is a N ×Kl matrix given by

U0,l =




0Σl,Kl

UKl

0N−Σl−Kl,Kl


 , Σl =

l−1∑

i=1

Kl. (2.52)

Here, 0m,n denotes the m × n zero matrix and Um is any m × m unitary matrix
so that UmUH

m = I. Thus, due to the zeros, we have UH
0,kU0,l = δk−lI for any

1 ≤ k, l ≤ D. Note that if Kl = 1 for some 1 ≤ l ≤ D, then U0,l = eΣl+1 where
en = (0, . . . , 0, 1, 0, . . . , 0) is the n-th unit vector (column) that contains a 1 in the
n-th position.

We claim that the set sequence set S = (s1, . . . , sK) = (S1, . . . ,SD) given by the proce-
dure above satisfies (2.48). To see this, note that by construction, we have

Sj = (T−t1S1, . . . ,T−tDSD) = (U0,1, . . . ,U0,D).

Consequently, since UH
0,kU0,l = δk−lI, 1 ≤ l, k ≤ D, we have SH

j Sj = I. On the other
hand, we obtain

S̃j = (T̃−t1S1, . . . , T̃−tDSD) = (Dt1U0,1, . . . ,DtDU0,D),

where

Dn = T̃−nTn = T−nT̃n = diag(−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1), 0 ≤ n < N. (2.53)
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Now we have (DtkU0,k)HDtlU0,l = 0 if k 6= l. This is because the column spaces of
U0,k and U0,l with l 6= k remain orthogonal subspaces of CN if each of these matrices
is multiplied by any diagonal matrix. Furthermore, since DnDn = I, 0 ≤ n < N , we
obtain UH

0,kDtkDtkU0,k = UH
0,kU0,k = I, from which it follows that S̃H

j S̃j = I. Thus,
the sequence set (2.51) satisfies (2.48).

Example 2.1. Let us consider a full-loaded channel with K = N = 6. The time offsets
are chosen to be j1 = j2 = 0, j3 = 2 and j4 = j5 = j6 = 4. Consequently, we have 3
groups of users with K1 = 2, K2 = 1 and K3 = 3. We choose U1, U2 and U3 to be
normalized Fourier matrices of order K1, K2 and K3, respectively. Then, the optimal
sequence set (2.51) is

S =




0.7071 0.7071 1.0000 0.5774 −0.2887−0.5000i −0.2887+0.5000i
0.7071 −0.7071 0 0.5774 −0.2887+0.5000i −0.2887−0.5000i

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.5774 0.5774 0.5774


 .

The method presented here is by no means the only possible method for constructing
optimal sequences for an underloaded chip-synchronous A-CDMA channel with fixed
time offsets. Our main objective was to show the existence of sequence sets that satisfy
(2.48). As an immediate consequence of this, we obtain

Aopt =
{
(P,S) : pk = γkσ

2, 1 ≤ k ≤ K,SH
j Sj = S̃H

j S̃j = I,K ≤ N
}
.

A complete characterization of the set of all optimal sequences remains an interesting
open problem. Note that in contrast to S-CDMA, such a set cannot be closed under the
operation of multiplication by a unitary matrix.

2.4.2 Overloaded Channel

In this section, we assume that N < K. Obviously, (2.48) can never be satisfied in
this case implying that there must be multiple access interference. Consequently, sig-
nature sequences must be chosen to mitigate the impact of the interference on system
performance. Combining (2.42) with (2.43) and (2.45) gives

Vk,l = |cjk,l
(ck, sl)|2 + |cj′k,l

(ck, sl)|2 =
1
2
|〈Tjlck,Tjksl〉|2 +

1
2
|〈T̃jlck, T̃jksl〉|2

=
1
2
cH

k

(
TjkT−jlslsH

l TjlT−jk + T̃jkT̃−jlslsH
l T̃jlT̃−jk

)
ck

for any 0 ≤ jk, jl < N . Now define

W1 :=
1
2
SjPSH

j W2 :=
1
2
S̃jPS̃H

j , (2.54)
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and note that trace(W1) = trace(W2) = trace(P)
2 . Using these definitions, we can write

∑

l=1
l 6=k

plVk,l = cH
k

(
TjkW1T−jk + T̃jkW2T̃−jk

)
ck − pk|〈ck, sk〉|2, 1 ≤ k ≤ K,

and hence
SIRk(P,S)

1 + SIRk(P,S)
=

pk|〈ck, sk〉|2
cH

k (W(k) + σ2I)ck
, 1 ≤ k ≤ K,

where
W(k) = TjkW1T−jk + T̃jkW2T̃−jk .

Consequently, the MMSE receiver of the user k is given by ck = (Wk +σ2I)−1sk, where
Wk = W(k)−pksksH

k . Obviously, the matrix W(k) with trace(W(k)) = trace(P) ≤ Ptot

also follows from E[ykyH
k ] = W(k) +σ2I, where yk ∈ CN is the one-shot channel output

vector “seen” by the k-th receiver. Note that because of the lack of symbol synchronism,
the receiver of each user in general observes different one-shot channel output vectors.
This stands in clear contrast to S-CDMA where all users are perfectly synchronized, and
hence the receiver of each user observes the same channel. This fact slightly complicates
the analysis. In particular, the conservation law for the MMSE receiver in (2.30) seems
not to be applicable to this case (at least not in this form). However, if M → +∞, we
must have

ϑ(P,S) =
K∑

k=1

SIRk(P,S)
1 + SIRk(P,S)

≤
(

1
N

+
σ2

Ptot

)−1

, (P,S) ∈ A. (2.55)

This follows from the upper bound (2.17), which holds for any linear receiver. Thus,
if there exists (P,S) ∈ A with trace(P) = Ptot so that the bound (2.55) is attained,
then there is asymptotically no performance loss in comparison with the M -shot MMSE
receiver. Now suppose that

W1 = W2 =
trace(P)

2N
I, N ≤ K, (2.56)

holds and trace(P) = Ptot. Then, the bound in (2.55) is attained. Indeed, if (2.56) holds
and trace(P) = Ptot, then W(k) = Ptot

N I for each 1 ≤ k ≤ K so that the MMSE receiver
is a scaled matched filter:

ck = (W(k) − pksksH
k + σ2I)−1sk =

1
Ptot
N + σ2 − pk

sk ,

where we used the matrix inversion lemma [HJ85, VAT99]. Thus, with (2.56) and
trace(P) = Ptot, we obtain

ϑ(P,S) =
K∑

k=1

pkcH
k sksH

k ck

cH
k (Ptot

N + σ2)ck

=
K∑

k=1

pk
Ptot
N + σ2

=
(

1
N

+
σ2

Ptot

)−1

.
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Our conjecture is that (2.56) is a necessary and sufficient condition for attaining the
upper bound (2.55). Realizing the importance of sequence sets that satisfy (2.56), we
introduce the following definition:

Definition (A-WBE Sequence Set). Let N < K. Say that S ⊂ SN−1 is an A-WBE
(Aperiodic WBE) sequence set given j and P if W1 = W2 = trace(P)

2N I where W1 and
W2 are defined by (2.54).

The reason for the name becomes clear when one considers the following result.

Theorem 2.4. Suppose that N < K and trace(P) = Ptot. Let ck = sk. We have

Ptot
2

N
≤

K∑

k=1

K∑

l=1

pkplVk,l, N ≤ K . (2.57)

Equality if and only if (2.56) holds.

Proof. Let

R1 =
1√
2
P

1
2 SH

j SjP
1
2 R2 =

1√
2
P

1
2 S̃H

j S̃jP
1
2 ,

and note the following identity

K∑

k=1

K∑

l=1

pkplVk,l = ‖R1‖2
F + ‖R2‖2

F ,

where ‖·‖F is used to denote the matrix Frobenius norm. Since N < K, we have
rank(R1) = rank(R2) = N . Furthermore, note that the non-zero eigenvalues of R1 and
R2 are equal to the eigenvalues of W1 and W2, respectively. Without loss of generality,
we can assume that λi(R1) = λi(R2) = 0 for N < i ≤ K. It follows that

K∑

k=1

K∑

l=1

pkplVk,l = trace(R2
1) + trace(R2

2) =
N∑

i=1

λ2
i (R1) +

N∑

i=1

λ2
i (R2),

where the eigenvalues are subject to

N∑

i=1

λi(R1) =
N∑

i=1

λi(R2) =
Ptot√

2
.

Thus, the right hand side of (2.57) becomes minimal exactly if both
∑N

i=1 λ2
i (R1) and∑N

i=1 λ2
i (R2) attain their minima, where the eigenvalues are subject to the constraint

above. Since the quadratic function is convex on the set of positive real numbers,
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∑N
i=1 λ2

i (R1) and
∑N

i=1 λ2
i (R2) are Schur-convex functionals with respect to the eigen-

values. Consequently, we have

Ptot
2

N
≤ ‖R1‖2

F + ‖R2‖2
F =

K∑

k=1

K∑

l=1

pkplVk,l .

Equality if and only if

λ1(R1) = . . . = λN (R1) = λ1(R2) = . . . = λN (R2) = Ptot√
2N

or, equivalently, if and only if (2.56) holds.

The lower bound of Theorem 2.4 is closely related to the Welch’s lower bound [Wel74]
when applied to cyclically and nega-cyclically shifted sequences with arbitrary energies.
This is where the name “A-WBE” sequences comes from. Theorem 2.4 implies that
if A-WBE sequences are used in a chip-synchronous A-CDMA channel equipped with
the matched filter receivers, then the total interference becomes minimal. Using differ-
ent techniques, [UY00, UY01] showed that K2

N ≤ ∑K
k=1

∑K
l=1 Vk,l. Thus, Theorem 2.4

extends the result of [UY00, UY01] to the case when P is not a scaled identity. Further-
more, it was shown in [UY00, UY01] that K2

N =
∑K

k=1

∑K
l=1 Vk,l implies K

N =
∑K

l=1 Vk,l

for each 1 ≤ k ≤ K, which is similar to the uniformly good property discussed in Section
2.3. The following theorem generalizes this result to A-WBE sequences.

Theorem 2.5. Let ck = sk and trace(P) = Ptot. If the lower bound of Theorem 2.4 is
attained or, equivalently, if (2.56) holds, then

K∑

l=1

plVk,l =
Ptot

N
, 1 ≤ k ≤ K. (2.58)

Proof. Let R1 and R2 be as in the proof of Theorem 2.4. Use (R1)k to denote the k-th
column of R1. We have

K∑

l=1

plVk,l =
1
pk
‖(R1)k‖2

2 +
1
pk
‖(R2)k‖2

2 =
1
2

K∑

l=1

pl|〈sk, ŝl〉|2 +
1
2

K∑

l=1

pl|〈sk, s̃l〉|2

for any fixed 1 ≤ k ≤ K, where ŝl = TN−jk,lsl and s̃l = T̃N−jk,lsl. Thus, we obtain
K∑

l=1

plVk,l =
1
2

K∑

l=1

pl

N−1∑

i=0

si,kŝi,l

N−1∑

j=0

ŝj,lsj,k +
1
2

K∑

l=1

pl

N−1∑

i=0

si,ks̃i,l

N−1∑

j=0

s̃j,lsj,k

=
1
2

N−1∑

i=0

N−1∑

j=0

si,ksj,k

( K∑

l=1

plŝj,lŝi,l +
K∑

l=1

pls̃j,ls̃i,l

)
.

By assumption, W1 = W2 = Ptot
2N I so that the expression in the brackets is 2Ptot

N if i = j
and zero otherwise.
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By Theorem 2.5, A-WBE sequence sets given j and P with trace(P) = Ptot must have
property (2.58). Consequently, if (2.58) cannot be satisfied, then no A-WBE sequences
exist. This observation immediately gives rise to a necessary condition for the existence
of A-WBE sequence sets:

Corollary 2.1. Let p1 ≥ . . . ≥ pK > 0 and assume that trace(P) = Ptot. It follows
from (2.56) that

p1 ≤ Ptot

N
⇔ p1 ≤ 1

N − 1

K∑

k=2

pk. (2.59)

Conversely, if p1 > Ptot
N , an A-WBE sequence set does not exist.

Proof. Let ck = sk. By (2.58), we have

p1 ≤ p1 +
K∑

l=2

plV1,l =
K∑

l=1

plV1,l =
Ptot

N
.

Thus, if the lower bound (2.57) is attained, then p1 ≤ Ptot
N . Conversely, if p1 > Ptot

N , then
we would have Ptot

N − p1 =
∑K

l=2 plV1,l < 0 in the minimum, which is impossible since all
the sum terms are non-negative.

By the previous discussion, we know that if A-WBE sequences are employed, the
MMSE receiver is equal to a scaled matched filter. Thus, Theorem 2.4 implies that, when
A-WBE sequences are assigned to the users, the total multiple access interference attains
its minimum. By Theorem 2.5, the sequences distributes the total interference among
the users so that SIRk(P,S)

1+SIRk(P,S) = pk

trace(P)/N+σ2 for each 1 ≤ k ≤ K. Obviously, these
results do not solve the problem of admissibility under the MMSE receiver. However,
suppose that there are no oversized users (L = 0) and P is equal to (2.36), which is
the optimal power allocation for an S-CDMA channel. Furthermore, assume that there
exists an A-WBE sequence set given j and P. Then, if (2.29) holds, we can always meet
the SIR requirements by allocating the A-WBE sequences to the users. Thus, if (2.29)
holds, K users with the SIR requirements γ1, . . . , γK are admissible. On the other hand,
due to the upper bound (2.17), the converse also holds for M → +∞. Thus, because of
typically large values of M , we can conclude that if there are no oversized users and there
exists an A-WBE sequence set for any j and P, then (2.29) is necessary and sufficient
for the feasibility of γ1, . . . , γK . Finally, if such sequences are assigned and M → +∞,
the total power is equal to (2.38), which is the minimal total power. This is because,
when A-WBE sequences are used, we have

ϑ(P,S) =
K∑

k=1

SIRk(P,S)
1 + SIRk(P,S)

=
( 1

N
+

σ2

trace(P)

)−1
.
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Hence, if we had trace(P) < Pmin, where Pmin is given by (2.38), then we would obtain
ϑ(P,S) <

∑K
k=1

γk
1+γk

, which contradicts the feasibility of the SIR requirements.
Obviously, by Corollary 2.1, an A-WBE sequence set cannot exist if (2.59) is not

satisfied. Note that under the power allocation in (2.36), (2.59) translates into

e1 ≤ 1
N

K∑

k=1

ek =
e1

N
+

1
N

K∑

k=2

ek ⇒ e1 ≤ 1
N − 1

K∑

k=2

ek, ek =
γk

1 + γk
,

which is exactly the condition that there are no oversized users in an S-CDMA channel
(2.33). Thus, if there are oversized users, (2.29) is not sufficient anymore since then the
bound in (2.55) is not tight. Proceeding essentially as in Section 2.3, a tighter bound can
be obtained by considering Theorem 2.2 and the theory of majorization [Sta03]. It turns
out that if oversized users are orthogonal to all other users, just as in case of S-CDMA,
the bound is attained for M → +∞. By Section 2.3, (P,S) ∈ A is an optimal allocation
for S-CDMA with the first L users being oversized if and only if P is given by (2.36) and

W = SPSH = diag
(
p1, . . . , pL,

∑K
k=L+1 pk

N − L
, . . . ,

∑K
k=L+1 pk

N − L

)
.

For this reason, in what follows we focus on constructing sequence sets so that

W1 = W2 =
1
2
diag

(
p1, . . . , pL,

∑K
k=L+1 pk

N − L
, . . . ,

∑K
k=L+1 pk

N − L

)
, (2.60)

where the first L users are assumed to be oversized and P is given by (2.36). The
problem remains to “extract” the sequence set S from (2.60). In all that follows, our
efforts are directed towards constructing sequence sets for which (2.60) holds. We will
succeed only in some special cases so that the problem whether or not such sequences
exist when (2.59) holds remains an open one.

Construction of Signature Sequences

Suppose that the first L ≥ 0 users are oversized and note that L < N must hold.
It follows from (2.60) that each oversized user must be orthogonal to all other users.
In other words, each oversized user must be assigned a sequence whose cyclically and
nega-cyclically shifted replicas are orthogonal to cyclically and nega-cyclically shifted
sequences allocated to all other users. This can be achieved by the following procedure:

1. Let U be a subset of SN−1 so that every x ∈ U is of the form x = (x1, . . . , xL, 0, . . . , 0).

2. Oversized users are assigned sequences So = (s1, . . . , sL) so that both {T−jksk : 1 ≤
k ≤ L} and {T̃−jksk : 1 ≤ k ≤ L} form an orthonormal basis in U. To this end, put
K = L and use the method described previously for an underloaded channel. Note
that by this method, we obtain T−jksk ∈ U and T̃−jksk ∈ U for each 1 ≤ k ≤ L.
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3. Let U⊥ ⊆ SN−1 be an orthogonal complement of U in SN−1 so that each y ∈ U⊥ is
of the form y = (0, . . . , 0, yL+1, . . . , yN ).

4. Each non-oversized user, say user k with L < k ≤ K, is allocated a sequence sk =
Tjky for some y ∈ U⊥. This separates the non-oversized users from oversized ones
since then we have T−jksk = y ∈ U⊥ and T̃−jksk = Djk

y ∈ U⊥, where Djk
=

T̃−jkTjk is defined by (2.53).

This simple procedure allows us to separate each oversized user from all other users,
and the problem reduces itself to constructing sequences for non-oversized users. This
is equivalent to constructing an A-WBE sequence set in CN−L. To see this, suppose
that x1, . . . ,xK−L ∈ SN−L are some given unit-energy vectors of length N − L. Let
Sn = (sL+1, . . . , sK) be a sequence set allocated to the non-oversized users where

sk = Tjk(0, . . . , 0,xk−L), L < k ≤ K .

Clearly, as required above, we have

T−jksk = (0, . . . , 0,xk−L) ∈ U⊥
T̃−jksk = Djk

(0, . . . , 0,xk−L) ∈ U⊥
, L < k ≤ K .

Consequently, each oversized user is orthogonal to all other users, and hence it remains
to identify the vectors x1, . . . ,xK−L. Define the real-valued function f : R→ R as

f(x) =





0 0 ≤ |x| ≤ L

x− L L < x

x + L x < −L

,

and note that T−jksk = T̃−jksk if 0 ≤ jk ≤ L for any L < k ≤ K. Otherwise, if
L < jk < N , then the first jk −L non-zero components of T̃−jksk = Djk

(0, . . . , 0,xk−L)
are multiplied by −1. Using uk−L = Tf(jk)

L xk−L, this may be written as

T̃−jksk = (0, . . . , 0, T̃f(−jk)
L Tf(jk)

L xk−L) = (0, . . . , 0, T̃f(−jk)
L uk−L), L < k ≤ K,

where TL : CN−L → CN−L and T̃L : CN−L → CN−L are appropriate cyclic and nega-
cyclic shift matrices, respectively. Define

Uj′ :=
(
Tf(−jL+1)

L u1, . . . ,T
f(−jK)
L uK−L

)

Ũj′ :=
(
T̃f(−jL+1)

L u1, . . . , T̃
f(−jK)
L uK−L

)
,
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where j′ = (f(jL+1), . . . , f(jK)). Now let S = (So Sn) and Pn = (pL+1, . . . , pK), where
So is used to denote a sequence set allocated to the oversized users. Then, we obtain

SjPSH
j =




p1 · · · 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . . pL 0 . . . 0
0 · · · 0 Uj′PnUH

j′


 S̃jPS̃H

j =




p1 · · · 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . . pL 0 . . . 0
0 · · · 0 Ũj′PnŨH

j′


 .

Comparing this with (2.60) reveals that the problem is to find U = (u1, . . . ,uK−L) ⊂
SN−L so that

Uj′PnUH
j′ = Ũj′PnŨH

j′ =
trace(Pn)

N − L
.

In other words, U ∈ SN−L must be an A-WBE sequence set given Pn and j′ =
(f(jL+1), . . . , f(jK)). So the problem indeed reduces to the problem of constructing
A-WBE sequence sets. Note that if L = 0, then sk = Tjkxk where xk = T−jkuk so that
sk = uk.

In the remainder of this section, it is shown (by construction) that A-WBE sequence
sets exist in some special cases. We also present a simple example to better illustrate our
results. The problem of proving a necessary and sufficient condition for the existence of
A-WBE sequences in terms of P and j is left open.

Without loss of generality, assume that L = 0 and consider the following two obser-
vations:

Observation. A union of a finite number of WBE sequence sets is a WBE sequence set.

The union of 2 WBE sequence sets should be understood as follows: if S1 is a WBE
sequence set given P1 and S2 is a WBE sequence set given P2, then S = (S1,S2) is a
WBE sequence set given P = diag(P1,P2) as we have

SPSH = S1P1SH
1 + S2P2SH

2 =
trace(P1)

N
+

trace(P2)
N

=
trace(P)

N
.

The second observation is that

Observation. Cyclic and nega-cyclic shift operations preserve the WBE property.

This means that if S is a WBE matrix given P so also are TjS and T̃jS for any j ∈ Z
since

TjSPSH(Tj)H = Tj trace(P)
N

ITN−j = TjTN−j trace(P)
N

I =
trace(P)

N
I

T̃jSPSH(T̃j)H = −T̃jT̃N−j trace(P)
N

I =
trace(P)

N
I .

Now assume that P is given and consider the following allocation procedure:
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1. Divide users into D, 1 ≤ D ≤ K, groups with Kl users in the group l, 1 ≤ l ≤ D, so
that all users in each group have the same time offset. Let tl be the time offset of the
group l and Pl = (p1,l, . . . , pKl,l) its power allocation.

2. Assume that

N ≤ Kl and max
1≤i≤Kl

pi,l ≤ trace(Pl)
N

for each 1 ≤ l ≤ D. (2.61)

3. Each group, say group l, is allocated a sequence set Sl = TtlUl, 1 ≤ l ≤ D, where Ul

is a WBE sequence set given Pl. Thus, we have

UlPlUH
l =

trace(Pl)
N

, 1 ≤ l ≤ D.

Note that WBE sequence sets exist for each group because of (2.61).

The procedure yields an A-WBE sequence set since the cyclic and nega-cyclic shift op-
erations preserve the WBE property. Assumption (2.61) is quite restrictive, especially
the part requiring that the number of users in each group must be larger than process-
ing gain. Thus, the procedure can be applied to either heavily overloaded channels or
channels with a relatively large number of oversized users. We give a small example for
the latter application, which is more realistic than the first one.

Example 2.2. Consider a chip-asynchronous A-CDMA channel with N = 5 and K = 8.
Assume that p1 ≥ · · · ≥ p8 and p5 = · · · = p8 = p and suppose that p3 > 5

2p, p2 > p3+5p
3

and p1 > p2+p3+5p
4 . Consequently, it follows from (2.59) that the first three users are over-

sized (L = 3). The time offsets are chosen to be j1 = 0, j2 = j3 = 3, j4 = 1, j5 = 2, j6 = 3
and j7 = j8 = 4. Sequences for the oversized users are derived using the procedure for
the underloaded channel (see also Example 2.1). By the previous discussion, the non-
oversized users must be assigned sequences sk = Tjk(0, . . . , 0,Tf(−jk)uk−L), L < k ≤ K
where U = (u1, . . . ,uk−L) is an A-WBE sequence set in SN−L given Pn = pI and
j = (f(j4), . . . , f(j8)) = (0, 0, 0, 1, 1). Note that as long as any two non-oversized users
have the time offsets smaller than or equal to L = 3, they belong to the same group
in view of the preceding procedure. Thus, to obtain A-WBE set in SN−L, we need a
WBE sequence set (3 sequences of length 2) for the first group (users 4, 5 and 6) and an
orthonormal basis in C2 for the second group (users 7 and 8). We choose a normalized
2×2 Fourier matrix and a normalized 2×3 submatrix of a 3×3 Fourier matrix to obtain
the following sequence set:

S =

( 1.0000 0 0 0 0 0.7071 0.7071 0.7071
0 0 0 0 0.7071 −0.3536+0.6124i 0 0
0 0 0 0.7071 −0.3536−0.6124i 0 0 0
0 0.7071 0.7071 0.7071 0 0 0 0
0 0.7071 −0.7071 0 0 0 0.7071 −0.7071

)
.
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It may be easily verified that each column has unit energy and

SjPSH
j = S̃jPS̃H

j = diag
(
p1, p2, p3,

5
2
p,

5
2
p
)
.

which satisfies (2.60) with N = 5 and L = 3.
As already mentioned, the construction of A-WBE sequence sets for other cases is left

as an open problem. Our conjecture, which is also based on the results of [UY00, UY01],
is that A-WBE sequences exist for any choice of the time offset vector provided that the
power allocation P with trace(P) = Ptot satisfies (2.59).

2.5 Symbol Asynchronous CDMA Channel: Random Time
Offsets

In this section, we consider a chip-synchronous A-CDMA channel in which any relative
time offset between two distinct users is a realization of an independent discrete random
variable uniformly distributed on {−N+1, . . . , N−1}. The received powers and signature
sequences are fixed rather than adjusted to take into account the changing relative time
offsets. Consequently, we say that users are admissible in a CDMA channel if one can
assign signature sequences to the users and control their power so that each user meets
its SIR requirement on average over all possible realizations of the relative time offsets.
Such a channel is a quite good approximation to model communication systems in which
signal delays of the users are independent, and have a relatively high rate of change on
certain time intervals.

CDMA channels with random time offsets were extensively investigated in [Pur77,
ML89], where the authors focused on SIR performance of a particular user being de-
modulated (user-centric approach). Whereas the time offset of the user of interest was
fixed, all other time offsets were assumed to be uniformly distributed on the interval
[0, T ). Moreover, [Pur77, ML89] assumed random spreading and equal-power users. In
contrast, as in the previous sections, we consider a network-centric formulation where
the users have to simultaneously satisfy their SIR requirements through the allocation of
signature sequences and power control. Another related work can be found in [Mow95]
where, under the assumption of a constant power allocation, the author optimized sig-
nature sequences to maximize SIR of the users. However, [Mow95] failed to construct
optimal signature sequences.

We assume the matched filter receivers so that ck = sk for each 1 ≤ k ≤ K. First, let
us briefly look at a chip-asynchronous channel to see why this case is so complicated. It
follows from (2.8) that SIR of the user k depends on the relative time offsets through
Vk,l defined by (2.9). Since all relative time offsets are assumed to be realizations of
independent random variables, we can drop the indices in (2.9) and consider

Vk,l(τ) = |(1− r)cj(sk, sk) + rcj+1(sk, sk)|2 + |(1− r)cj′(sk, sk) + rcj′+1(sk, sk)|2,
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where τ = j +r,−N ≤ j < N, 0 ≤ r < 1, is a realization of an independent random vari-
able uniformly distributed on (−N, N). Averaging Vk,l(τ) with respect to all realizations
of the random variable τ yields [Pur77]

E[Vk,l(τ)] = c0

(
2wk,l(0) + wk,l(1)

)
,

where c0 > 0 is a constant, and

wk,l(n) =

{∑N−1
j=−N+1 Re

{
cj(sk, sl)cj+n(sk, sk)

}
k 6= l

0 k = l
. (2.62)

Hence, SIR of the user k at the output of the matched filter receiver is equal to

SIRk(P,S) =
pk

c0
∑K

l=1 pl

(
2wk,l(0) + wk,l(1)

)
+ σ2

. (2.63)

When the power allocation is fixed, it follows from (2.63) that SIR of the k-th user attains
its maximum exactly when

∑K
l=1 pl(2wk,l(0)+wk,l(1)) becomes minimal. However, unlike

wk,l(0), the term wk,l(1) may be negative. Unfortunately, this makes the optimization
of signature sequences much more difficult. For this reason, we again assume chip-
synchronism, which is a common practice in the literature [Mow95, KT00, UY00]. Based
on the numerical computations presented in [ML89] and [KT00], we conjecture that this
assumption only slightly impacts the generality of the results in this section. However,
we point out that the extension of these results to the chip-asynchronous case remains
an interesting open problem.

Under the assumption of chip synchronism, τ is a realization of a discrete-time random
variable with the probability mass function p(n) = 1

2N−1 for each −N < n < N and
zero otherwise. This implies that

E[Vk,l(τ)] =
1

2N − 1

N−1∑

j=−N+1

(|cj(sk, sl)|2 + |cj′(sk, sl)|2
)

=
2

2N − 1

N−1∑

j=−N+1

|cj(sk, sl)|2 .

Consequently, (2.63) reduces to

SIRk(P,S) =
pk∑K

l=1 plwk,l + σ2
, 1 ≤ k ≤ K , (2.64)

where wk,l is defined to be

wk,l :=
2

2N − 1
wk,l(0) ≈ 1

N
wk,l(0). (2.65)

In what follows, we confine our attention to polyphase sequences that we defined in
Section 1.1. We use Sc ⊂ S to denote the set of all polyphase sequence allocations, i. e.,
we have

Sc :=
{
S = (s1, . . . , sK) : sk ∈ SN−1

c , 1 ≤ k ≤ K
}
, (2.66)
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where SN−1
c is the set of all polyphase sequences. Obviously, SN−1

c is a compact set in
CN since it is closed and any closed subset of a compact set (the unit sphere) is also
compact [Rud76]. Analogously, we define

Ac = {(P,S) : P ∈ P,S ∈ Sc}.

Polyphase sequences are of great importance to practical systems as they can be trans-
formed easily into a carrier pulse train with a modulated phase. As a consequence, the
complex envelope of transmitted signals is constant.

Assuming that N ≤ K and the SIR requirements of all users are equal to γ =
γ1, . . . , γK , we solve Problem 2.1 and Problem 2.2 completely. We also present some
results for the case of unequal SIR requirements. In the remainder of this section, we
discuss our approach to solving the problem of admissibility (Problem 2.1). Once the
solution is known, the set of optimal allocations Aopt

c ⊂ Ac can be easily found.
If γ = γ1, . . . , γK , observe that (2.12) can be written as γ ≤ min1≤k≤K SIRk or,

equivalently, µ̃(P,S) ≤ 1/γ, where 6

µ̃(P,S) := max
1≤k≤K

SIR−1
k = max

1≤k≤K

(
σ2

pk
+

1
pk

∑

l

pl · wk,l

)
. (2.67)

Clearly, given (P,S) ∈ Ac, µ̃(P,S) measures the goodness of a CDMA system in terms of
its “worst-case” SIR performance. In other words, if γ is the largest SIR requirement that
can be met by all users simultaneously, then µ̃(P,S) = 1/γ. The following lemma shows
that µ̃(P,S) attains a minimum on Ac. Furthermore, it is shown that trace(P) = Ptot

holds in the minimum case.

Lemma 2.5. There exists an allocation (P,S) ∈ Ac for which

0 < µ̃(P,S) = µ̃(Ptot) .

Here and hereafter,

µ̃(Ptot) := inf
(P,S)∈Ac

µ̃(P,S) = min
(P,S)∈Ac

µ̃(P,S) . (2.68)

Moreover, in the minimum case, we have trace(P) = Ptot.

Proof. Essentially, the proof follows the same reasoning as in the proof of Lemma 2.2.
The functional µ̃(P,S) is continuous and bounded on Ac. Note that P ∪ P ′, where
P ′ = {P = diag(p1, . . . , pK) : ∃1≤k≤K pk = 0, trace(P) ≤ Ptot} is a compact set, and
that µ̃(P,S) → +∞ if P → P′ ∈ P ′. Consequently, since SN−1

c is also a compact
6Note that if (P,S) ∈ A and σ2 > 0, we have SIRk(P,S) > 0, 1 ≤ k ≤ K so that the inverses of the

SIRs are bounded.
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set, there must exist a pair (P,S) ∈ Ac so that µ̃(P,S) = µ̃(Ptot). Furthermore, in
the minimum we have trace(P) = Ptot. Otherwise, if we had trace(P) < Ptot, we
could allocate the set αP = (αp1, . . . , αpK) ∈ P with α = Ptot/trace(P) > 1 to obtain
µ̃(αP,S) < µ̃(P,S).

Consequently, given fixed K, N, σ2 and Ptot, any SIR requirement γ that can be met
by all users must satisfy

0 < µ̃(Ptot) ≤ 1
γ

. (2.69)

Conversely, if (2.69) holds for a given γ, there must exist a valid allocation in a sense
of problem 2.1. In other words, (2.69) is a necessary and sufficient condition for γ to
be feasible. Given a fixed Ptot, the set of SIR requirements that can be met by all
users simultaneously providing that (P,S) ∈ Ac is chosen appropriately is uniquely
characterized by µ̃(Ptot) through inequality (2.69). Furthermore, when Ptot changes,
µ̃(Ptot) determines feasible SIR requirements. The proof of Lemma 2.5 also shows that
µ̃(Ptot) is a strictly monotone decreasing function of Ptot. Hence, the minimum total
power Pmin in a sense of problem 2.2 simply follows from

µ̃(Pmin) =
1
γ

, (2.70)

and thus the set of optimal allocations Aopt
c is

Aopt
c = {(P,S) ∈ Ac : µ̃(P,S) = µ̃(Pmin)} ⊂ Ac. (2.71)

For the case that N ≤ K, we solve the problem of admissibility and identify the set of
optimal allocations in two steps:

Step 1: We solve the problem of admissibility in case of the channel without power
constraints (Section 2.5.1).

Step 2: We establish a connection to the channel with power constraints and identify
the set of optimal allocations (Section 2.5.2)

2.5.1 Admissibility of Users without Power Constraints

Note that for any fixed (P,S), we have µ(P,S) < µ̃(P,S) where

µ(P,S) := max
1≤k≤K

1
pk

K∑

l=1

pl · wk,l. (2.72)

Whereas µ̃(P,S) is related to SIR defined by (2.64), µ(P,S) reflects the behavior of SIR
when σ2 = 0 (a noiseless channel) or when the power allocation is αP with α → +∞ (a
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channel without power constraints). Define

SIR0
k(P,S) := lim

σ2→0

pk∑K
l=1 pl wk,l + σ2

=
pk∑K

l=1 pl wk,l

, 1 ≤ k ≤ K. (2.73)

The following lemma shows that µ(P,S) has a minimum on Ac, and that this minimum
is independent of the power constraints.

Lemma 2.6. There exists (P,S) ∈ Ac so that µ(P,S) = µmin where

µmin := min
P∈RK×K

+ ,S∈Sc

µ(P,S) = inf
(P,S)∈Ac

µ(P,S) = min
(P,S)∈Ac

µ(P,S). (2.74)

Furthermore, in the minimum case, we have

SIR0
1(P,S) = . . . = SIR0

K(P,S) . (2.75)

Proof. Note that |cN−1(sk, sl)| = |c−N+1(sk, sl)| = 1
N holds for arbitrary sequences

sk, sl ∈ SN−1
c . Thus, µ(P,S) > 0 for any (P,S) ∈ Ac, and hence the same reason-

ing as in the proof of lemma 2.5 shows that the minimum exists on Ac. Furthermore,
since µ(αP,S) = µ(P,S) for any α > 0, we have

min
P∈RK×K

+ ,S∈Sc

µ(P,S) = min
(P,S)∈Ac

µ(P,S).

The proof of (2.75) is by contradiction. Let (P,S) ∈ Ac denote an allocation so that
µ(P,S) = µmin and suppose that there exists 1 ≤ t ≤ K such that

1
SIR0

t (P,S)
=

1
pt

K∑

l=1

pl wt,l < µ(P,S) = µmin.

Then, we obtain

µmin = max
1≤k≤K

1
pk

K∑

l=1

plwk,l = max
1≤k≤K

k 6=t

1
pk

K∑

l=1
l 6=t

plwk,l + ptwk,t

> max
1≤k≤K

k 6=t

1
pk

K∑

l=1
l 6=t

plwk,l + αptwk,t = µ(P̃,S),

where P̃ = diag(p1, . . . , αpt, . . . , pK) ∈ P for some given 0 < α < 1. This, however,
contradicts µmin ≤ µ(P,S) for any (P,S) ∈ Ac.
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Since µ(P,S) < µ̃(P,S) for any (P,S) ∈ Ac, the existence of a valid allocation implies

µmin <
1
γ

. (2.76)

Obviously, the converse does not need to hold. However, it will become clear later that
µ̃(Ptot) → µmin when Ptot → +∞ (or, equivalently, when σ2 → 0). Thus, (2.76) is a
necessary and sufficient condition for the existence of a valid allocation in a channel
without power constraints. The set of allocations for which µ(P,S) attains its minimum
is denoted by A∗c ⊂ Ac so that

A∗c := {(P,S) ∈ Ac : µ(P,S) = µmin}.

We identify the set A∗c by considering the following quantity:

Σ(P,S) :=
1
K

K∑

k=1

1
pk

K∑

l=1

pl · wk,l. (2.77)

Reasoning essentially as in the proof of Lemma 2.6 shows that Σ(P,S) has a minimum
on Ac and that this minimum is independent of the power constraints. Furthermore,
note that Σ(P,S) ≤ µ(P,S) with equality if and only if (2.75) holds. Assuming that
N ≤ K, we construct (P,S) so that Σ(P,S) = Σmin where

Σmin := min
(P,S)∈Ac

Σ(P,S), (2.78)

and show that (2.75) holds in the minimum case.
The following theorem characterizes a power allocation that minimizes Σ(P,S) for a

given fixed S.

Theorem 2.6. Let S be fixed. We have

Σ(S) := min
P∈P

Σ(P,S) =
1
K

K∑

k,l=1

wk,l, (2.79)

and hence Σ(P,S) = Σ(S) if and only if

0 < p1 = . . . = pK = p . (2.80)

Proof. Let Σ(P) = Σ(P,S) for a given fixed S. Let

gradΣ(P) =
(

∂Σ(P)
∂p1

, . . . ,
∂Σ(P)
∂pK

)T
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denote the gradient of Σ(P), where the partial derivatives are

∂Σ(P)
∂pk

=
1
K

(
− 1

p2
k

∑

l

pl · wk,l +
∑

l

1
pl
· wl,k

)
.

Since Σ(αP) = Σ(P) for any α ∈ R, we have

min
P∈RK×K

+

Σ(P) = inf
P∈P

Σ(P) = min
P∈P

Σ(P),

and hence the minimum follows from gradΣ(P) = 0K , where 0K denotes the zero
vector of length K. Note that the identity |cj(A,B)| = |c−j(B,A)| implies the symmetry
wk,l = wl,k, and therefore gradΣ(P) = 0K yields

∀1≤k≤K

K∑

l=1

wk,l

(
pk

pl
− pl

pk

)
= 0.

Without loss of generality, we can assume that p1 ≥ . . . ≥ pK . Thus, whenever p1 > pK ,
the expression in the parentheses above is positive for k = 1 implying that ∂Σ(P)/∂p1 >
0. Consequently, gradΣ(P) = 0K if and only if p1 = pK or, equivalently, if and only if
p1 = . . . = pK .

A remarkable fact is that a constant power allocation p1 = . . . = pK minimizes the
functional Σ(P,S) for any fixed S. As an immediate consequence of this, we can write

Σmin = min
P∈P

min
S∈Sc

Σ(P,S) = min
S∈Sc

min
P∈P

Σ(P,S) = min
S∈Sc

Σ(S).

Furthermore, we have:

Corollary 2.2. Suppose that (P,S) is an allocation so that Σ(P,S) = Σmin. Then,
(P,S) ∈ A∗c if and only if

∑
l
wk1,l =

∑
l
wk2,l, 1 ≤ k1 ≤ k2 ≤ K. (2.81)

Proof. We have Σmin = minS Σ(S) = minS
1
K

∑K
k,l=1 wk,l. Thus, (2.75) is satisfied in the

minimum case if and only if (2.81) holds.

In case of an S-CDMA channel, it was mentioned in Section 2.3 that optimal sequences
must satisfy (2.27), which is known as the uniformly good property. Property (2.81) have
a similar interpretation in case of aperiodic crosscorrelation magnitudes.
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Desired Correlation Properties of Sequences

Now our goal is to specify correlation properties of sequence sets for which Σmin = Σ(S)
where Σ(S) is given by (2.79). By Theorem 2.6, we have

Σ(S) =
1
K

K∑

k=1

K∑

l=1

wk,l.

Considering (2.65) and (1.9), we obtain

Σ(S) =
2

2N − 1
1
|S|

∑

a∈S

∑

b∈S
a 6=b

N−1∑

j=−N+1

|cj(a,b)|2 =
2

2N − 1
Fc(N ;S). (2.82)

Consequently, we need to find a set of sequences so that the total aperiodic crosscorre-
lation energy becomes minimal. It follows from (1.11) that

Fc(N ;S) = F (N ;S)− Fa(N ;S), (2.83)

where Fa(N ;S) is given by (1.7) and can be rewritten as

Fa(N ;S) =
1
|S|

∑

a∈S

N−1∑

j=−N+1

|cj(a)|2 =
1
|S|

∑

a∈S

1 + MF (a)
MF (a)

. (2.84)

The (Golay) merit factor MF (a) of the sequence a is defined to be [Gol77]

MF (a) :=
1

2
∑N−1

j=1
j 6=0

|cj(a)|2 . (2.85)

Obviously, we have

Σmin = min
S∈Sc

Fc(S) = min
S∈Sc

(
F (N ;S)− Fa(N ;S)

)

≥ min
S∈Sc

F (N ;S)−max
S∈Sc

Fa(N ;S).
(2.86)

We know that the minimum and the maximum exist since SN−1
c is a compact set and

all of the functionals are continuous and bounded. Let

Šc :=
{
S ∈ Sc : F (N ;S) = min

S∈Sc

F (N ;S)
}

and
Ŝc :=

{
S ∈ Sc : Fa(N ;S) = max

S∈Sc

Fa(N ;S)
}
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be the sets of sequence allocations that minimize F (N ;S) and maximize Fa(N ;S), re-
spectively. If Šc ∩ Ŝc 6= ∅, we have Σmin = F (N ;S) − Fa(N ;S) for any S ∈ Šc ∩ Ŝc.
Otherwise, if Šc ∩ Ŝc = ∅, we always have Σmin > minS∈Sc F (N ;S)−maxS∈Sc Fa(N ;S)
since sequence sets that would both minimize F (N ;S) and maximize Fa(N ;S) do not
exist. In other words, if Šc ∩ Ŝc is the empty set, it is not possible to consider the func-
tionals F (N ;S) and Fa(N ;S) separately. First, let us consider the functional F (N ;S).
Direct substitution using the identity

N−1∑

j=−N+1

|cj(a,b)|2 =
N−1∑

j=−N+1

cj(a) · cj(b)

yields

F (N ;S) =
1
|S|

N−1∑

j=−N+1

∣∣∣
∑

a∈S

cj(a)
∣∣∣
2
.

Hence, we have
|S| = F ≤ F (N ;S). (2.87)

Equality if and only if S is an (aperiodic) complementary set of sequences, i. e., if

∑

a∈S

cj(a) =

{
|S| j = 0
0 otherwise

. (2.88)

Thus, Šc is a collection of all complementary sequence sets. The theory of complemen-
tary sequence sets was found by Golay in [Gol51, Gol61] where he presented a method for
constructing bipolar complementary sequence pairs. [TL72] extended the idea to bipolar
complementary sequence sets consisting more than two sequences and [Siv78] considered
polyphase complementary sequence sets (see also [Fra80] and references therein). Some
important results were reported in [Tur74]. We summarize some of the results (especially
those for complementary sequence pairs) in Section 3.4, where we use complementary
sequence pairs to construct sequence sets with favorable aperiodic correlation properties
in the vicinity of the zero shift. At this point, it is interesting to note that unit-energy
columns of any N × K matrix with mutually orthogonal rows form a complementary
sequence set [Fra80]. In other words, any WBE sequence set, which gives the optimal
performance for S-CDMA, is a complementary sequence set. Another important prop-
erty was proved in [Rup94, Mow95] showing that if S is a complementary sequence set,
then

∑

b∈S

N−1∑

j=−N+1

|cj(a,b)|2 = |S|, a ∈ S. (2.89)
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As for the functional Fa(N ;S), note that, for any a ∈ SN−1
c , we have

|cj(a)| ≤
N−j−1∑

i=0

|ai||ai+j | = N − j

N
, 0 ≤ j < N. (2.90)

Equality if and only if
∀0≤j<N ai+j = αj · ai, (2.91)

where αj is some complex number with |αj | = 1. Thus, considering (2.90), we obtain

Fa(N ;S) ≤ 1
|S|

∑

a∈S

1
N2

N−1∑

j=−N+1

(N − j)2 =
(

2
3
N +

1
3N

)
, S ∈ Sc, (2.92)

where the upper bound is attained if and only if

MF (a) =
1

2
3N − 1 + 1

3N

, a ∈ S. (2.93)

Consequently, Ŝc is a set of sequences so that the merit factor of each sequence in the
set is given by (2.93). We would like to point out that the minimum of the merit factor
on the unit sphere is smaller than that given by (2.93). Although a closed form solution
to this minimization problem seems not to be known, we found the minimum for small
values of N by solving a system of trigonometrical equations. For instance, if N = 3,
the sequence 1√

7
(
√

2,
√

3,
√

2) has the minimum merit factor of 0.875, which is smaller
than 0.9 that results from (2.93). Now we summarize our results in a theorem:

Theorem 2.7. For any S ∈ Sc, we have
(
|S| − 2

3
N − 1

3N

)
≤ Fc(S), (2.94)

where the lower bound is attained if and only if S ∈ Šc ∩ Ŝc.

Proof. Combine (2.83) with (2.87) and (2.92) .

As an immediate consequence of this theorem, we have the following corollary:

Corollary 2.3. Šc ∩ Ŝc = ∅ if 1 < |S| ≤ 2
3N − 1

3N .

Proof. By theorem 2.7, we know that Fc(S) = (|S| − 2
3N − 1

3N ) if S ∈ Šc ∩ Ŝc. Conse-
quently, we can conclude that Šc ∩ Ŝc = ∅ if 1 < |S| ≤ 2

3N − 1
3N since then the right

hand of (2.94) is negative whereas Fc(S) > 0 must always hold.
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In other words, if a number of users is smaller than approximately two-third of the
processing gain, a set of polyphase sequences that would both minimize F (N ;S) and
maximize Fa(N ;S) does not exist. Of course, optimal sequences in the sense of mini-
mizing Fc(N ;S) still exist in this case but such sets cannot be identified by considering
F (N ;S) and Fa(N ;S) separately. The case 2

3N − 1
3N < |S| < N also remains an open

problem except that here it is unclear whether or not Šc ∩ Ŝc = ∅. In contrast, in the
following section, we will construct an optimal sequence set when N ≤ |S|.

Sequence Construction

Now we present a systematic method for constructing sets of K = |S| polyphase se-
quences of length N ≤ K such that S ∈ Šc ∩ Ŝc ⊂ SN−1

c . By the last section, such sets
are optimal in the sense of minimizing (2.82) or, equivalently, (2.83).

Theorem 2.8. We have S = (s1, . . . , sK) ∈ Šc ∩ Ŝc ⊂ SN−1
c if and only if

sk =
1√
N

(
1, ei2πβk , . . . , ei2πβk(N−1)

)
, 1 ≤ k ≤ K, (2.95)

and
K∑

k=1

ei2π·βk·j =

{
K j = 0
0 j 6= 0

(2.96)

where βk ∈ R, 1 ≤ k ≤ K.

Proof. Suppose that a = (a0, . . . , an) ∈ S ∈ Ŝc, where, without loss of generality, it is
assumed that a0 = 1. Then, for i = 0, (2.91) yields am = αm, 0 ≤ m < N , and hence,
for any fixed 0 ≤ j < N and 0 ≤ m < N − j, we have

am+j = am · aj ⇔ ei2πφ(m+j) = ei2π(φ(m)+φ(j)),

where am = 1√
N

ei2πφ(m) and φ : N0 → R. As an immediate consequence, we obtain

φ(m + j) = φ(m) + φ(j) (mod 1), 0 ≤ m < N − j,

which holds if and only if φ(m) = β·m, 0 ≤ m < N , for some β ∈ R. The autocorrelations
of such sequences are

cj(sk) =
N − j

N
· ei2πβkj , 0 ≤ j < N, 1 ≤ k ≤ K.

Hence, (2.88) holds if and only if (2.96) is true.

Corollary 2.4. If N ≤ K, there exists a sequence set S ∈ Šc ∩ Ŝc.
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Proof. Choosing βk in theorem 2.8 to be βk = k−1
K gives

K∑

k=1

cj(sk) =
N − j

N

K∑

k=1

ω
(k−1)j
K =

1− ωjK
K

1− ωj
K

= 0

for each 1 ≤ j < N , where ωK denotes the K-th root of unity. Consequently, the set
S = (s1, . . . , sK) so that

sk =
1√
N

(
1, ω

(k−1)
K , . . . , ω

(N−1)(k−1)
K

)
(2.97)

for each 1 ≤ k ≤ K is a member of Šc ∩ Ŝc.

It is worth pointing out that there is a strong dependence among the sequences given
by (2.97) in the sense that any subset of this set containing two or more sequences is no
longer optimal.

Summarizing Theorem

Now we are in a position to solve the problem of admissibility when there are no power
constraints.

Theorem 2.9. Let N ≤ K. We have

µmin = Σmin =
2

2N − 1

(
K − 2

3
N − 1

3N

)
, (2.98)

and hence K users are admissible in a chip-synchronous A-CDMA channel with process-
ing gain N , without power constraints, and with the SIR requirement of all users equal
to γ if and only if

K <
2N − 1

2γ
+

2
3
N +

1
3N

.

Proof. Theorem 2.8 shows that a sequence set S ∈ Šc ∩ Ŝc exists if N ≤ K. Thus, by
theorem 2.6 and theorem 2.7, Σmin is equal to the right hand side of (2.98). By corollary
2.2, C(P,S) = F (P,S) if (2.81) holds. Due to (2.89) and the fact that merit factors of
all sequences are given by (2.93), any sequence set S ∈ Šc ∩ Ŝc must have this property
so that µmin = Σmin.

As an immediate consequence of these results, the set A∗c ⊂ Ac for N ≤ K is

A∗c =
{

(P,S) : 0 < p1 = · · · = pK ≤ Ptot

K
,S with (2.95) and (2.96), N ≤ K

}
.

Note that if N ≤ K, the sequence set S given by (2.97) satisfies (2.95) and(2.96). For
typical sequence lengths (N = 32, . . . , 256), we have 1

3N ≈ 0 and 2
2N−1 ≈ 1

N . Thus, we
can write µmin ≈ K

N − 2
3 , and hence 2.9 is approximately K < N

(
2
3 + 1

γ

)
.
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2.5.2 Admissibility of Users with Power Constraints

Now the problem is how the set A∗c is related to the set of optimal allocations Aopt
c

defined by (2.71). The following theorem solves the problem of admissibility in case of
a channel with power constraints by showing that µ̃(P,S) attains its minimum if and
only if (P,S) ∈ A∗c and trace(P) = Ptot.

Theorem 2.10. Let N ≤ K. We have

σ2K

Ptot
+ µmin = µ̃(Ptot) ≤ µ̃(P,S) .

Equality if and only if (P,S) ∈ A∗c and trace(P) = Ptot. Hence, there exists a valid
allocation in a K-user chip-synchronous A-CDMA channel with processing gain N ≤ K
and the SIR requirement of all users equal to γ if and only if

K ≤ 2N − 1
2

(
1
γ
− σ2

p

)
+

2
3
N +

1
3N

, p =
Ptot

K
. (2.99)

Proof. Assume that N ≤ K. Let (P∗,S∗) ∈ A∗c and trace(P∗) = Ptot, which, by Lemma
2.5, is necessary for µ̃(P,S) to attain its minimum . By the preceding discussion, P∗ is
the constant power allocation as in Theorem 2.6 and S∗ has property (2.81). We have

µ̃(P,S) ≤ U(P,S) = U1(P) + µ(P,S) ,

where U1(P) = maxk
σ2

pk
. Since f : R+ → R+ with f(x) = 1

x is a convex function,
U1 : P → R+ is a Schur convex functional so that

Kσ2

Ptot
= U1(P∗) ≤ U1(P),

and hence

min
(P,S)∈Ac

U(P,S) =
Kσ2

Ptot
+ µmin = U(P∗,S∗).

On the other hand, we have

µ̃(P,S) ≥ L(P,S) = L1(P) + Σ(P,S).

where L1(P) = 1
K

∑K
k=1

σ2

pk
. The functional L1 : P → R+ is also Schur convex, which

implies that L1(P∗) = U1(P∗) ≤ L1(P). Thus, we have

min
(P,S)∈Ac

L(P,S) =
Kσ2

Ptot
+ Σmin = L(P∗,S∗).
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By theorem 2.9, µmin = Σmin so that L(P∗,S∗) = U(P∗,S∗). Thus, L(P∗,S∗) ≤
min(P,S)∈Ac

µ̃(P,S) ≤ U(P∗,S∗) implies that

min
(P,S)∈Ac

µ̃(P,S) = µ̃(P∗,S∗) =
Kσ2

Ptot
+ µmin.

Admissibility of the users follows from (2.69) after some elementary manipulations.

Theorem 2.10 shows when exactly K users with a common SIR requirement γ are
admissible in a chip-synchronous A-CDMA channel with processing gain N ≤ K. Note
that for large N , the upper bound of Theorem 2.10 is essentially equal to

K ≤ N

(
1
γ

+
2
3
− σ2

p

)
,

where p = Ptot
K . Now suppose that users are admissible or, equivalently, the SIR re-

quirement of all users γ is feasible. Then, the minimum total power Pmin in a sense of
Problem 2.2 follows from (2.70), and hence we obtain

Pmin =
Kσ2

1
γ − µmin

≈ Kσ2

1
γ + 2

3 − K
N

, N ≤ K, (2.100)

where µmin is given by (2.98). Obviously, Pmin is a positive real number if and only
if (2.76) holds. Furthermore, because of the power constraint trace(P) ≤ Ptot, the
inequality Pmin ≤ Ptot must be satisfied for users to be admissible. Now since the
minimum total power is known, we can identify the set of optimal allocations (2.71) as

Aopt
c =

{
(P,S) : p1 = · · · = pK =

Pmin

K
,S defined by (2.95) and (2.96), N ≤ K

}
.

(2.101)
Finally, we present a simulation to illustrate our results. Figure 2.1 depicts SIR =

mink SIRk(P,S) as a function of SNR = p
σ2 , where p = p1 = · · · = pK = Ptot/K

(constant power allocation). For comparison, we have simulated the optimal sequences
given by (2.97) and Gauss sequences defined by (3.20), which are also known as Frank-
Zadoff-Chu (FZC) sequences [Chu72]. The Gauss sequences are known to have excellent
periodic correlation properties (see the next chapter). The SIR requirement γ is equal
to 5 dB. Furthermore, we have N = K = 31( K = 30 in case of the Gauss sequences).
If the optimal sequences are allocated to the users, the SIR requirement is met by all
users at SNR∗ ≈ 8.2 dB. From this, Pmin immediately follows if σ2 is known. On the
other hand, the SIR requirement cannot be met in case of the Gauss sequences since
SIR = mink SIRk < γ. We also see that SIR → SIR0 = min1≤k≤K SIR0

k(P,S) for
Ptot → +∞.
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Figure 2.1: The minimum SIR as a function of the signal-to-noise ratio SNR = p
σ2 = Ptot

σ2K
for the optimal sequences and the Gauss sequences, where p = p1 = · · · = pK .
We have a chip-synchronous A-CDMA channel with 31 (Gauss sequences 30)
users and the processing gain 31. In case of the optimal allocation in (2.97),
the SIR requirement γ of 5 dB is met by all users at SNR ≈ 8.2 dB. If the
Gauss sequences are allocated, the SIR requirement cannot be met.

2.5.3 A Necessary Condition for Admissibility of Users with Different SIR
Requirements

In this section, we use some of the techniques presented in the previous section to obtain
a necessary condition for admissibility of users with unequal SIR requirements. However,
we would like to point out that in this general case, the problem of admissibility remains
an open problem.

It may be easily seen that (2.12) can be written as µ̃γ1,...,γK (P,S) ≤ 1, where

µ̃γ1,...,γK (P,S) := max
1≤k≤K

γk

SIRk(P,S)
= max

1≤k≤K

(
γkσ

2

pk
+

γk

pk

K∑

l=1

plwk,l

)
.

Note that if γ1 = · · · = γK = γ, then µ̃γ1,...,γK (P,S) = γµ̃(P,S), where µ̃(P,S) is defined
by (2.67). Proceedings essentially as in the proof of Lemma 2.5 shows that µ̃γ1,...,γk

(P,S)
has a minimum onAc and, in the minimum case, we have trace(P) = Ptot. Consequently,
γ1, . . . , γK are feasible if and only if µ̃γ1,...,γK (Ptot) ≤ 1, where

µ̃γ1,...,γK (Ptot) = min
(P,S)∈Ac

µ̃γ1,...,γK (P,S) .
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Define

Σγ1,...,γK (P,S) :=
1
K

K∑

k=1

γk

SIR0
k(P,S)

=
1
K

K∑

k=1

γk

pk

K∑

l=1

pl wk,l.

Note that Σγ1,...,γK (P,S) > 0 on Ac since wk,l > 0 for any 1 ≤ k, l ≤ K such that k 6= l.
Now our goal is to bound below Σγ1,...,γK (P,S) on Ac. Obviously, the lower bound gives
a necessary condition for the feasibility of γ1, . . . , γK since

Σγ1,...,γK (P,S) < µ̃γ1,...,γK (P,S)

holds for an arbitrary (P,S) ∈ Ac.

Theorem 2.11. Let S be arbitrary. We have

Σγ1,...,γK (S) = min
P∈P

Σγ1,...,γK (P,S) =
1
K

K∑

k=1

√
γk

K∑

l=1

√
γl · wk,l. (2.102)

Consequently, given S, any power allocation P = diag(p1, . . . , pK) such that

pk = α
√

γk, 1 ≤ k ≤ K, 0 < α , (2.103)

minimizes Σγ1,...,γK (P,S).

Proof. Let Σγ1,...,γK (P) = Σγ1,...,γK (P,S) for a given fixed S. Proceeding essentially as
in the proof of Theorem 2.6 shows that the minimum follows from

gradΣγ1,...,γK (P) =
(

∂Σγ1,...,γK (P)
∂p1

, . . . ,
∂Σγ1,...,γK (P)

∂pK

)
= 0K ,

where the partial derivatives are

∂Σγ1,...,γK (P)
∂pk

=
1
K

(
−γk

p2
k

K∑

l=1

pl wk,l +
K∑

l=1

γl

pl
wl,k

)
.

Note that the identity |cj(a,b)| = |c−j(b,a)| for any a,b ∈ SN−1 implies the symmetry
wk,l = wl,k, and hence gradΣγ1,...,γK (P) = 0K yields

K∑

l=1

wk,l

(
γl · pk

pl
− γk · pl

pk

)
=

K∑

l=1

wk,l

(
pk · pl

βl
− pk · pl

βk

)
= 0, 1 ≤ k ≤ K,

where βk = p2
k

γk
. Without loss of generality, assume that β1 ≥ . . . ≥ βK and consider

k = 1 (the first equation). Whenever β1 > βK , the expression in the brackets on the
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right hand side is positive, which implies that ∂Σγ1,...,γK
(P)

∂p1
> 0. Consequently, we must

have β1 = βK or, equivalently,

p2
1

γ1
= · · · = p2

K

γK
= α

for some α > 0.

Note that (2.102) is true for any sequence allocation. Thus, in order to obtain a lower
bound on Σγ1,...,γK (P,S), it is sufficient to lower bound Σγ1,...,γK (S) given by (2.102).
Combining (2.102) with (2.65) yields

Σγ1,...,γK (S) =
2

2N − 1
1
K

K∑

k=1

√
γk

K∑

l=1
l 6=k

√
γl

N−1∑

j=−N+1

|cj(sk, sl)|2

=
2

2N − 1
(
G(S)−Ga(S)

)
,

(2.104)

where

G(S) =
1
K

K∑

k=1

K∑

l=1

√
γkγl

N−1∑

j=−N+1

|cj(sk, sl)|2 =
1
K

N−1∑

j=−N+1

∣∣∣∣
K∑

k=1

√
γkcj(sk)

∣∣∣∣
2

and

Ga(S) =
1
K

K∑

k=1

γk

N−1∑

j=−N+1

|cj(sk, sl)|2 =
1
K

K∑

k=1

γk
1 + MF (sk)

MF (sk)
.

Consequently, a lower bound on Σγ1,...,γK (S) can be obtained by bounding G(S) from
below and Ga(S) from above. Let us first consider G(S). Obviously, we have

1
K

( K∑

k=1

√
γk

)2

≤ G(S) . (2.105)

Equality if and only if

K∑

k=1

√
γkcj(sk) =

{∑K
k=1

√
γk j = 0

0 otherwise
.

To the best of our knowledge, nothing is known regarding how to construct sequence
sets for which the bound in (2.105) is attained. The existence of such sets in terms of
γ1, . . . , γK is also an open problem. Note that if γ1 = · · · = γK , then the lower bound
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in (2.105) is attained if and only if S is a complementary sequence set defined by (2.88).
On the other hand, an upper bound on Ga(S) immediately follows from (2.92) to give

Ga(S) ≤
(

2
3
N +

1
3N

)
1
K

K∑

k=1

γk. (2.106)

Equality if and only if MF (sk), 1 ≤ k ≤ K, is equal to the right hand side of (2.93). We
summarize the results in a theorem.

Theorem 2.12. K-users with the SIR requirements equal to γ1, . . . , γK are not admis-
sible in a chip-synchronous A-CDMA channel with processing gain N and polyphase
sequences allocated to the users if

K · 2N − 1
2

+
(

2
3
N +

1
3N

) K∑

k=1

γk <

( K∑

k=1

√
γk

)2

. (2.107)

Proof. Combine (2.104) with (2.105) and (2.106) to lower bound Σγ1,...,γK (P,S) on Ac.
Since Σγ1,...,γK (P,S) < µ̃γ1,...,γK (P,S) holds for any (P,S) ∈ Ac, we can conclude that
K users are not admissible if the lower bound is greater than 1, which is equivalent to
(2.107).

For typical values of N , we have 2N−1
2 ≈ N and 1

3N ≈ 0 so that (2.107) is approxi-
mately given by

K +
2
3

K∑

k=1

γk <
1
N

( K∑

k=1

√
γk

)2

.

This inequality can be used as a first approximation (a rule of thumb) to decide whether
or not the users are admissible in a CDMA system.

2.5.4 Optimal Power Allocation for Given Signature Sequences

Sometimes it may be desirable to find out an optimal power allocation when signature
sequences are given and fixed. An optimal power allocation given S is a valid power
allocation P so that trace(P) becomes minimal. Clearly, if the SIR requirements are
feasible, the optimal power allocation immediately follows from the system of linear
equations in (2.14). First, we find a necessary and sufficient condition for the feasibility
of γ1, . . . , γK by identifying a power allocation P that minimizes µ̃γ1,...,γK (P,S) when S
is given. It is shown that the corresponding power vector given S is unique and equal to
a right eigenvector of a certain primitive matrix. Some of the techniques presented here
were originally used in [BS02] in the context of the SIR downlink beamforming problem.
We need the following lemma.
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Lemma 2.7. Let S ∈ S be given. There exists P ∈ P for which µ̃γ1,...,γK (P,S) =
µ̃γ1,...,γK (S), where µ̃γ1,...,γK (S) := minP∈P µ̃γ1,...,γK (P,S). Furthermore, in the mini-
mum, we have trace(P) = Ptot and

γ1

SIR1(P,S)
= · · · = γK

SIRK(P,S)
= µ̃γ1,...,γK (S) . (2.108)

Proof. Using a similar reasoning as in the proof of Lemma 2.5 shows that the minimum
exists and, in the minimum case, we have trace(P) = Ptot. The proof of (2.108) proceeds
essentially as the proof of (2.75) in Lemma 2.6.

Define
P∗ := P∗(S) = arg min

P∈P
µ̃γ1,...,γK (P,S)

and let p∗ := (p∗1, . . . , p
∗
K) be the corresponding power vector. By Lemma 2.7, we have

µ̃γ1,...,γK (S)p∗k = γk

K∑

l=1

p∗l wk,l + σ2γk, 1 ≤ k ≤ K

trace(P∗) =
K∑

k=1

p∗k = Ptot

.

Let W(S) = (wk,l), 1 ≤ k, l ≤ K, where wk,l is defined by (2.65). Using the matrix
notation, we can rewrite the system of K + 1 equations above to obtain

µ̃γ1,...,γK (S)p∗ = ΓW(S)p∗ + σ2γγγ

1Tp∗ = Ptot

,

where γγγ := (γ1, . . . , γK) and Γ := diag(γγγ). Substituting the first equation into the second
one yields

µ̃γ1,...,γK (S)p∗ = ΓW(S)p∗ + σ2γγγ

µ̃γ1,...,γK (S) =
1

Ptot
1TΓW(S)p∗ +

σ2

Ptot
1Tγγγ.

Finally, this can be expressed as

µ̃γ1,...,γK (S)p̃∗ = V(S)p̃∗,

where p̃∗ := (p∗, 1) and

V(S) :=

(
ΓW(S) σ2γγγ

1
Ptot

1TΓW(S) σ2

Ptot
1Tγγγ

)
.
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Because
∑

j |cj(a,b)|2 > 0 for any a,b ∈ SN−1, all non-diagonal elements of V(S) are
positive. Thus, V(S) is a non-negative primitive matrix since, due to the Frobenius
test for primitivity [Sen81], a quadratic non-negative matrix A is primitive if and only
if Ak is positive for some k. We know from the Perron-Frobenius theory [Sen81] that
any primitive matrix has a unique positive eigenvector (the Perron vector) and the
associated positive eigenvalue (the Perron root) has algebraic multiplicity 1 and is equal
to the spectral radius of this matrix. Thus, we conclude that µ̃γ1,...,γK (S) is the Perron
root of V(S) and p̃∗ is the associated Perron vector. The converse also holds so that
if p̃∗ is the positive right eigenvector of V(S) (normalized to have the last component
equal to 1), and λmax is the associated eigenvalue, then µ̃γ1,...,γK (S) = λmax. To see this,
assume that q̃∗ is the left positive eigenvector of V(S) with the associated eigenvalue
equal to µ̃γ1,...,γK (S). Then, we have λmaxq̃∗T p̃∗ = q̃∗TV(S)p̃∗ = µ̃γ1,...,γK (S)q̃∗T p̃∗, and
hence λmax = µ̃γ1,...,γK (S) since q̃T p̃ > 0. Summarizing, we can conclude that there
exists a valid power allocation given S if and only if

ρ(V(S)) ≤ 1,

where ρ(V(S)) denotes the spectral radius of V(S). Now suppose that ρ(V(S)) ≤ 1 is
satisfied for some given S. By Lemma 2.7, we have SIRk(Popt,S) = γk, 1 ≤ k ≤ K, and
hence the optimal power vector popt minimizing trace(P) for a given S is

popt = (I− ΓW(S))−1Γ1 .

Note that in contrast to popt, the power vector p∗ given S follows from p̃∗ = (p∗, 1),
where p̃∗ is the right eigenvector of V(S) with the last element normalized to be one.

2.6 Conclusions and Future Work

We considered one of the main problems in communications network design where users
must simultaneously meet their quality-of service requirements expressed in terms of
SIR. [VAT99] solved the problem of admissibility in an S-CDMA channel and provided a
procedure for constructing optimal power and sequence allocations. Optimal allocations
are valid allocations that allow all users to meet their SIR requirement at the minimum
total power. We showed that optimal allocations given in [VAT99] are the (only) optimal
ones. This completely characterizes the set of all optimal allocations for S-CDMA.

The major shortcoming of S-CDMA is demand on perfect symbol synchronism that
rarely holds in practice. For this reason, we significantly relaxed this demand by con-
sidering chip-synchronous A-CDMA channels.

First, we assumed that time offsets that model the lack of symbol synchronism are
fixed. If the number of users K is smaller than or equal to processing gain N , we
provided a simple procedure for constructing sequences that ensure the orthogonality
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between users in spite of symbol asynchronism. Our sequences contain zero elements
so that it remains an open problem whether or not polyphase sequences with such a
property exist. On the other hand, if N < K, we showed that in terms of the number of
admissible users with SIR requirements guaranteed, there is essentially no performance
loss due to symbol asynchronism provided that certain sequence sets exist for any choice
of the time offsets and power allocations. The problem of the existence of such sets was
reduced to the problem of the existence of Aperiodic Welch-Bound-Equality (A-WBE)
sequence sets. We showed by construction that the A-WBE sequence sets exist in some
special cases. As a possibility for future work, it would be interesting to prove the
existence of A-WBE sets in all unresolved cases.

Finally we considered a chip-synchronous A-CDMA channel in which the relative time
offsets are random variables. In this case, all users need to meet their SIR requirements
on average over all possible realizations of the relative time offsets. Assuming that all
users have the same SIR requirement and are assigned polyphase sequences, we solved
the problem of admissibility when N ≤ K. Furthermore, we proved a necessary condition
for admissibility of users with different SIR requirements. A comparison with S-CDMA
reveals that for commonly used sequence lengths and SIR requirements (for instance,
N = 32 . . . 256 and γ = 3 . . . 10 [dB]), there is a loss of approximately N/3 users. Our
future efforts will be directed towards solving the case when K < N .

Appendix

Proof of Theorem 2.1

Projecting the received signal y(t) in (2.1) along the orthonormal system {ϕn} incurs
no information loss [Ver89a]. Consider the infinite-length sequence {yi}i∈Z where yi =
〈ϕ(−iTc), y〉. Clearly, since the CDMA channel in (2.1) is time-limited, we have yi = 0
if either i < −MN or i > MN + d. Let

yM = (y−MN , . . . , yMN+d) ,

be the M -shot channel output vector of length W = (2M + 1)N + d. The asynchronous
model in (2.1) can be viewed as a special case of S-CDMA with (2M + 1)K “users”
in which each symbol in (2.1) comes from different “user” whose symbol interval is
[−MT,MT + d] (see [Ver98, Page 25]). Thus, the M -shot channel output covariance
matrix E[yMyH

M ] is equal to

E[yMyH
M ] = MMPMMH

M + σ2I = WM + σ2I ,

where MM is a W×(2M+1)K matrix whose unit-energy columns are signature sequences
of the “virtual users” and PM = diag(P, . . . ,P) is the M -shot channel input covariance
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matrix. Let SIRk(m,P,S) be SIR at the soft-decision variable X̂k(m) under the M-shot
linear MMSE receiver and define

ϑM (P,S) :=
1

2M + 1

M∑

m=−M

K∑

k=1

SIRk(m,P,S)
1 + SIRk(m,P,S)

.

The conservation law for the M -shot MMSE receiver implies that

ϑM (P,S) =
1

2M + 1

L∑

i=1

λi(WM )
λi(WM ) + σ2

,

where the eigenvalues are in non-increasing order and L = min{(2M + 1)K,W}. Fur-
thermore, we have

trace(WM ) = trace(PM ) =
L∑

i=1

λi(WM ) ≤ (2M + 1)Ptot.

Now since f(x) = x
(x+σ2)

with x ≥ 0 is concave, it follows from (2.18) that the functional

F (λ) =
∑L

i=1 f(λi(WM )) is Schur-concave on RL
+, where λ = (λ1(WM ), . . . , λL(WM )).

Consequently, since the constant vector

( trace(PM )
L

, . . . ,
trace(PM )

L

)

is majorized by any positive vector x ∈ RL
+ with ‖x‖1 = trace(PM ), we obtain

ϑM (P,S) ≤ L

2M + 1

trace(PM )
L

trace(PM )
L + σ2

=
(

2M + 1
L

+
(2M + 1)σ2

trace(PM )

)−1

≤
(

2M + 1
L

+
σ2

Ptot

)−1

=
(

max
{ 1

K
,
2M + 1

W

}
+

σ2

Ptot

)−1

.

This completes the proof because of (2.10), which implies that ϑ(P,S) ≤ ϑM (P,S) for
any (P,S) ∈ A.
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Channels

In this chapter, we address the problem of designing signature sequences for quasi-
synchronous CDMA (QS-CDMA) channels. We say that a CDMA channel is quasi-
synchronous if the duration of expanded symbols is significantly longer than the max-
imum time offset with respect to a common clock. Obviously, this requires some form
of synchronization between users at the receiver. In many wireless systems, however, a
coarse synchronization is either given or can be accomplished by introducing additional
signaling overhead. Alternatively, the symbol duration can be increased by employing
multicode spreading techniques or high order modulation schemes. In such a case, it
is necessary that the mobile radio channel is underspread in the sense that the channel
spread factor (the product of the multipath delay spread and the Doppler spread) is
significantly smaller than one. The underspread assumption is relevant as most mobile
radio channels are underspread. QS-CDMA channels are also referred to as “approxi-
mately synchronized CDMA systems” [Sue94].

The fact that users are roughly synchronized can be used to improve system per-
formance provided that sequence design is appropriate. Indeed, we show that the use
of signature sequences with low aperiodic correlation sidelobes within a certain window
around the zero shift guarantees excellent performance characteristics of QS-CDMA sys-
tems. Basically, the size of the so-called interference window depends on how accurate
users are synchronized but other system parameters such as multipath delay spread also
influence the window size.

Sequence design for QS-CDMA is a relatively new research field. In [Sue94], a class
of q-phase sequence sets for QS-CDMA was presented. These sequences were derived
from a set of q-phase sequences with zero periodic crosscorrelations and zero periodic
autocorrelation sidelobes in a small vicinity of the zero shift. The construction of this
set is based on a method presented in [SH88]. To ensure that there is no interference
even when the signals are modulated by data, the authors proposed using cyclic prefix
and suffix. Another (somewhat related) method can be found in [Lue92]. [MM93] con-
sidered a QS-CDMA channel in which the maximum time offset is smaller than the chip
duration. The authors showed how to find good Welch-Bound-Equality (WBE) sequence
sets for such QS-CDMA systems. Finally, [FSKD99] and [FH00] constructed sequence
sets whose periodic correlation sidelobes are zero within a certain window around the
zero shift. In contrast to [Sue94] and [Lue92], this method can be used to obtain bipolar
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sequences. The so-called zero correlation zone (ZCZ) sequences guarantee good perfor-
mance characteristics of QS-CDMA. Recently, LAS-CDMA (Large Area Synchronized)
was proposed for future wireless communications systems. LAS-CDMA relies on the
use of sequence sets with zero periodic correlation sidelobes in the vicinity of the zero
shift. Aperiodic correlation sidelobes are forced to zero by inserting zero gaps and guard
intervals. The main problem is that the number of ZCZ sequences is strictly limited
[TFM00].

The ZCZ property is not necessary to ensure good system performance. For instance,
there is no performance loss if instead of the ZCZ property, we have zero odd correlation
sidelobes in the vicinity of the zero shift. This becomes clear when one considers that sys-
tem performance parameters of QS-CDMA, just like in case of any symbol-asynchronous
CDMA channel, are reflected by the aperiodic correlation criteria and not periodic ones.
Thus, using the periodic correlation criteria for sequence selection may exclude many
classes of good sequence sets. Furthermore, if the ZCZ property is required, the maxi-
mum number of available sequences is necessarily small. We will show that this is also
true in case of the aperiodic correlations. Consequently, to increase the size of sequence
sets, we need to relax the zero correlation window requirement and consider sequences
with low aperiodic correlation sidelobes in the vicinity of the zero shift.

The organization of this chapter and its contribution to the research area are as follows:

• In Section 3.1, we propose criteria for selecting sequence sets for QS-CDMA channels.
Moreover, we prove an upper bound on the number of sequences with zero aperiodic
correlation sidelobes within a given window around the zero shift. This result has
appeared in [SB02d].

• Section 3.2 provides lower bounds on the maximum aperiodic correlation value and
the weighted total correlation energy in the vicinity of the zero shift. These bounds
apply to any sequence set on the unit sphere. The first bound is slightly improved in
case of q-phase sequences. [SB02d] and [SB02b] partially cover the material in this
section.

• In Section 3.3, we prove upper bounds on the absolute differences between aperiodic
and periodic correlation criteria to show that these differences are marginal in the
vicinity of the zero shift. This implies that if the interference window is sufficiently
small, signature sequences with favorable periodic correlation properties guarantee
good performance characteristics of QS-CDMA systems. Moreover, large sequence
sets can be obtained by using cyclically shifted replicas of these sequences. Some of
the results have appeared in [BS00, SB02c]. Theorem 3.4 has appeared in [SB99b].

• Section 3.4 provides a new construction method that is based on the use of comple-
mentary sequence pairs and M-WBE (Minimum WBE) sequences. Sets obtained by
this method are shown to be close to the lower bound on the weighted total correlation
energy. This work has appeared in [SBH01] and [SB02b].
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3.1 Demands on Signature Sequences

QS-CDMA is a symbol-asynchronous CDMA channel defined by (2.1) in which the time
offsets are significantly smaller than the duration of expanded symbols or, equivalently,
of signature waveforms allocated to the users. In other words, we have d ¿ N where d
is given by (2.4). For simplicity, we slightly modify the parameter by assuming that all
the time offsets (including time offsets of possible multipath reflections) are contained
in the interval [0, (d− 1)Tc] ⊂ [0, T ). This implies that the relative time offsets defined
by (2.3) are confined to the the interval [−(d−1)Tc, (d−1)Tc], the so-called interference
window. Note that by this assumption, d = 1 corresponds to S-CDMA. In what follows,
all users are assumed to be received at the same power.

As aforementioned, QS-CDMA is a symbol-asynchronous channel so that its perfor-
mance depends on both periodic and odd correlations defined by (1.4) and (1.5), respec-
tively. This fact was already pointed out by [MU69]. However, due to the time offset
constraints, the performance of QS-CDMA channels is only influenced by periodic and
odd correlations within the set {−d + 1, . . . , d − 1}. To be more specific, suppose that
S is allocated to the users. Then, the “worst-case” system performance is captured by
the maximum crosscorrelation value on the set {−d + 1, . . . , d− 1} defined to be

Bc(d;S) := max
{|cj(a,b) + s · cj−N (a,b)| : 0 ≤ j < d,a,b ∈ S,a 6= b, s = ±1

}
.

Note that both periodic and odd autocorrelations have no impact on Bc(d;S). Con-
sequently, sequence sets with a small value of Bc(d;S) may have poor autocorrelation
properties in terms of the maximum autocorrelation value

Ba(d;S) = max
{|cj(a) + s · cj−N (a)| : 0 < j < d,a ∈ S, s = ±1

}
.

Although the periodic and odd autocorrelations have no impact on the post-acquisition
performance of asynchronous CDMA channels, they are of utmost importance for many
practical systems [Mow95]. The use of sequences with low autocorrelation sidelobes
improves acquisition and tracking capabilities as well as enhances resistance to multipath
dispersion effects. Except for the initial acquisition process, signature sequences with
low aperiodic autocorrelation sidelobes in the vicinity of the zero shift are sufficient for
many relevant applications, especially when the delay spread of the radio propagation
channel is relatively small. For these reasons, we propose the following criterion to
evaluate signature sequences for QS-CDMA channels:

B(d;S) = max
{
Ba(d;S), Bc(d;S)

}
.

An application of the triangle inequality shows that

B(d;S) ≤ C(d;S) + max
{|cj−N (a,b)| : 1 ≤ j < d,a,b ∈ S

}
,
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where C(d;S) is the maximum aperiodic correlation value defined by (1.10). Note that
if bN/2c < d holds, then all aperiodic correlations of sequences influence the system
performance. In a special case when d = N , the bound above becomes B(d;S) ≤
2C(N ;S). However, we excluded such situations by assuming d ¿ N . In particular, we
have

1 ≤ d ≤ bN/2c . (3.1)

The problem of how to satisfy d ¿ N in high data rate systems is not addressed here.
The most common approaches are the use of high-order modulation constellations and
multicode spreading schemes. The interested reader is referred to [SBH01, SB02c].

We write the upper bound above as

B(d;S) ≤ C(d,S) + max
a,b∈S

max
1≤j<d

j−1∑

i=0

|ai−j+N ||bi| . (3.2)

Now if S is an arbitrary set on the unit sphere, then the second term in (3.2) can be
large. To see this, consider the unit-energy sequences a = (0, . . . , 0, 1) ∈ SN−1 and
b = (1, 0, . . . , 0) ∈ SN−1 for which c1−N (a,b) = 1. In contrast, if S ⊂ SN−1

c is a set
of polyphase sequences, then the second sum term in (3.2) is upper bounded by d−1

N
implying that

B(d;S) ≤ C(d;S) +
d− 1
N

. (3.3)

By assumption, we have d ¿ N so that in case of polyphase sequences, we can neglect
the term d−1

N ≈ 0 and focus on C(d;S). Note that C(d;S) may become as large as N−1
N

if S ⊂ SN−1
c , and hence sequence optimization with respect to C(d;S) is necessary.

Another approach is to force the second sum term in (3.2) to zero by appending guard
intervals of length d− 1 to each signature sequence 1. Indeed, it may be easily seen that

B(d;S) = C(d;S)

if and only if such guard intervals of length at least d− 1 are appended to each sequence
in S. Obviously, the use of guard intervals leads to the capacity loss. Although the loss
is negligible if d ¿ N , we would like to point out that the approach may be suboptimal.
By this, we mean that interference reduction due to the guard intervals of length d− 1
does not need to compensate for capacity loss. We are not going to dwell upon this
problem here. On the contrary, in all that follows, the guard intervals are assumed so
that we can exclusively focus on the aperiodic correlations in the vicinity of the zero
shift.

In most applications, the “average-case” system performance is more significant than
the “worst-case” one. For instance, signal-to-interference ratio (SIR), the main perfor-
mance measure in the previous chapter, is an “average-case” performance criterion. By

1A guard interval is a sequence of a finite number of consecutive zeros
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Section 2.4, if all users are received at the same power and the relative time offsets are
independent discrete random variables uniformly distributed on {−N + 1, . . . , N − 1},
then sequence sets that maximize the minimum SIR are exactly those sets for which the
total aperiodic crosscorrelation energy Fc(N ;S) defined by (1.9) becomes minimal. In
[Rup94] and [Mow95], the authors also took into account aperiodic autocorrelations of
sequences by considering the total aperiodic correlation energy F (N ;S), which becomes
minimal if and only if S is a complementary sequence set. These sequence design criteria,
however, may be not suitable for selecting sequence sets for QS-CDMA channels. Note
that if Y and Z are two independent discrete random variables uniformly distributed on
the set {0, . . . , d−1}, then X = Y −Z is a discrete random variable with the probability
density function given by

p(x = X) =

{
d−|x|

d2 −d ≤ x ≤ d

0 |x| > d
. (3.4)

This implies that if the time offsets are uniformly distributed on {0, . . . , d − 1}, then
the corresponding relative time offsets are triangularly distributed with the probability
density function given by (3.4). This indicates that a weighted sum of the squares of
the aperiodic crosscorrelation magnitudes may be a better sequence design criterion
for QS-CDMA. Furthermore, in the presence of multipath fading, [EB00] showed that
optimizing sequences with respect to an appropriately weighted sum of the squares of the
aperiodic autocorrelation magnitudes can significantly enhance the system performance.
Although the choice of the weight function depends on the power delay spectrum, we
think that the triangular function as in (3.4) is a good approximation for many practical
situations. Thus, we propose

F ′(d;S) :=
1
d2

∑

a,b∈S

d−1∑

j=−d+1

(d− |j|)|cj(a,b)|2 (3.5)

as another sequence evaluation criterion.
The remaining part of this section deals with some problems related to sequence sets

with C(d;S) = F (d;S) = 0 where d is subject to (3.1). Note that if such sequences were
used in QS-CDMA with guard intervals, both inter-symbol interference and multiple-
access interference would be eliminated completely, thereby creating independent AWGN
channels. This would stand in clear contrast to completely symbol-asynchronous CDMA
channels where such a perfect signal separation is not possible in finite dimensional
complex spaces. Furthermore, it is well known [Sar79] that there is always a trade-off
between autocorrelations and crosscorrelations. By this we mean that if a sequence set
has a good crosscorrelation properties in terms of Bc(d;S), its autocorrelation properties
in terms Ba(d;S) are not very good and vice versa. However, this is not always true if
d ¿ N , which is shown later by proving the existence of AZCW sequence sets.
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Definition (AZCW Sequence Set). Given d subject to (3.1), say that S ⊂ SN−1 is
an AZCW (Aperiodic Zero Correlation Window) sequence set if C(d;S) = 0.

The problem whether or not polyphase AZCW sequence sets exist remains an impor-
tant open problem. In contrast, bipolar and quadriphase AZCW sequence sets do not
exist. To see this, it is sufficient to prove that c1(a) 6= 0 if a is a bipolar or quadriphase
sequence of length N . A necessary condition for a bipolar or quadriphase sequence set
S to be an AZCW set is that N is even since S must form an orthonormal system. Let
i =

√−1 and N = n + 1. We have

Nc1(a) = N
∑

k∈Ir

Re{akak+1}+ iN
∑

k∈Ii

Im{akak+1},

where the index sets Ir and Ii subject to |Ir| + |Ii| = n are given by Ir := {0 ≤ k <
n : Re{akak+1} 6= 0} and Ij := {0 ≤ k < n : Im{akak+j} 6= 0}, respectively. Since
n = N − 1 is odd, it follows from |Ir| + |Ii| = n that either |Ir| or |Ii| must be odd.
Consequently, since N |akak+1| = 1 for each k, either the real or imaginary part of c1(a)
is different from zero.

A fundamental problem is to determine the maximum size of AZCW sequence sets in
terms of N and d. We prove an upper bound on the size of AZCW sequence sets and
show later that the bound is “almost” tight. First, we make the following observation:

Observation. For any 1 ≤ k, l ≤ d, the following identity holds:

cj(a,b) = 〈Tkâ,Tlb̂〉, j = k − l, (3.6)

where
â := (â0, . . . , âN+d−2) = (a, 0, . . . , 0︸ ︷︷ ︸

d−1

) , (3.7)

and T : CN+d−1 → CN+d−1 is the right-hand cyclic shift matrix. Thus, T is a circulant
matrix with the first column equal to (0, 1, 0 . . . , 0).

Representation of aperiodic crosscorrelations in terms of inner products of cyclically
shifted sequences padded with zeros is well-known and, to the best of our knowledge,
was first used in [Wel74]. However, note that it is sufficient to use d − 1 zeros in order
to represent aperiodic correlations within the window {−d + 1, . . . , d − 1}. Using more
zeros than d− 1 results in worse bounds.

Theorem 3.1. Suppose that S is an AZCW sequence set. Then, we have

|S| ≤ N + d− 1
d

⇒ |S| ≤
{

N
d d dividesN⌊
N
d

⌋
+ 1 otherwise

, (3.8)

where bxc is used to denote the largest integer smaller than x.
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Proof. Let S be an AZCW sequence set. If d = 1, then any AZCW sequence set is a set
of mutually orthogonal sequences, in which case the bound is trivial. Now assume that
d > 1. By (3.6), S is an AZCW sequence set if and only if

Ŝ = {Tkâ : a ∈ S, 0 ≤ k < d}
is an orthonormal system in CN+d−1. Consequently, if S is an AZCW sequence set, then
|Ŝ| ≤ N + d− 1. Since |Ŝ| = d|S|, this is equivalent to

|S| ≤ N + d− 1
d

.

Since |S| is a natural number, we have |S| ≤ N
d if d divides N . Otherwise, we can write

N
d = bN

d c + r, where r ∈ {1
d , . . . , d−1

d }. Hence, we have |S| ≤ bN
d c + max(r) + 1 − 1

d =
bN

d c + 1 + d−2
d , from which it follows that |S| ≤ bN

d c + 1 since 0 ≤ d−2
d < 1 for any

2 ≤ d.

Theorem 3.1 shows that the size of AZCW sequence sets is strongly limited. If the
bound was tight, the maximum loading factor would be ≈ 1

d . This can be too small
for many applications, especially if the reuse of signature sequences is not possible.
Consequently, in order to accommodate a large number of users in a QS-CDMA system,
it is necessary to consider the case 0 < C(d;S) with C(d;S) as close to 0 as possible.
Given d and N , there must be a trade-off between the set size and the maximum aperiodic
correlation value. Unfortunately, the exact relationship seems to be unknown and will
be most likely difficult to obtain. Instead, in the next section, we prove lower bounds
on C(d;S) and F ′(d;S).

3.2 Lower Bounds on the Maximum Aperiodic Correlation
Value in the Vicinity of the Zero Shift

Lower bounds on the maximum aperiodic correlation value are useful as they provide
insights into the performance limits of asynchronous CDMA systems and their derivation
may be helpful in designing optimal sequence sets. The theory is a reach one, especially
in case of periodic correlations. The results of [Wel74] provide lower bounds on the
maximum periodic and aperiodic correlation values. Around the same time, [Sid71a,
Sid71b] focusing on q-phase sequences derived a lower bound on the maximum correlation
value. These results are commonly used to assess correlation properties of sequence
sets, although some better bounds have been found in the meantime, among which
the most known are the Levenshtein bounds [Lev82] (the reader is referred to [Lev98]
and [HK98] for more information). Unfortunately, because of a one-to-one relationship
to the theory of cyclic codes, most of these results only apply to the periodic case.
Furthermore, it seems to the author that except for [TFM00], where periodic correlations
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were investigated, the problem of deriving lower bounds on the maximum aperiodic
correlation sidelobe in the vicinity of the zero shift was not addressed before.

Subsequently, we prove lower bounds on C(d;S) and F ′(d;S) by making extensive use
of the observation made in the preceding section and some known techniques.

Define

R(w;S) :=
∑

a,b∈S

d∑

k,l=1

|〈Tkâ,Tlb̂〉|2wkwl , (3.9)

where T is the right-hand cyclic shift matrix and the weight vector w = (w1, . . . , wd) is
assumed to be an element of

Wd :=
{
x = (x1, . . . , xd) : ∀1≤i≤d 0 < xi,

d∑

i=1

xi = 1
}
⊂ Rd

+ .

We find a lower bound and an upper bound on R(w;S). The following lemma proves
the lower bound:

Lemma 3.1. Let w ∈Wd and S ⊂ SN−1 be given. We have

|S|2
N + d− 1

≤ R(w;S) . (3.10)

Proof. Let âl = Tlâ where â is defined by (3.7). We can write (3.9) as

R(w;S) =
∑

a,b∈S

d∑

k,l=1

〈âk, b̂l〉〈b̂l, âk〉wkwl =
∑

a,b∈S

d∑

k,l=1

Nd−1∑

i=0

âi,k · b̂i,l

Nd−1∑

j=0

b̂j,l · âj,kwkwl

=
Nd−1∑

i,j=0

∣∣∣∣
∑

a∈S

d∑

k=1

âi,k · âj,kwk

∣∣∣∣
2

,

where Nd = N + d− 1. Since all the sum terms on the right hand side of the expression
above are positive, we can drop those terms for which i 6= j to obtain

R(w;S) ≥
Nd−1∑

i=0

∣∣∣∣
∑

a∈S

d∑

k=1

âi,k · âi,kwk

∣∣∣∣
2

=

∑Nd−1
j=0 1

∑Nd−1
i=0

∣∣∣∣
∑

a∈S

∑d
k=1 âi,k · âi,kwk

∣∣∣∣
2

N + d− 1
.

Applying the Cauchy-Schwartz inequality to the numerator yields

R(w;S) ≥

∣∣∣∣
∑Nd−1

i=0

∑
a∈S

∑d
k=1 âi,k · âi,kwk

∣∣∣∣
2

N + d− 1
=

∣∣∣∣
∑

a∈S

∑d
k=1 ‖Tkâ‖2

2wk

∣∣∣∣
2

N + d− 1

=

∣∣∣∣
∑

a∈S

∑d
k=1 ‖a‖2

2wk

∣∣∣∣
2

N + d− 1
=

∣∣∣∣|S|
∑d

k=1 wk

∣∣∣∣
2

N + d− 1
=

|S|2
N + d− 1

.
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Note that in the special case when w1 = . . . = wd = 1
d , the bound in (3.10) is

a simple application of the Welch’s lower bound on the total sum of the squares of
the inner product magnitudes [Wel74]. An examination of (3.6) and (3.9) reveals that
F ′(d;S) = R

(
(1

d , . . . , 1
d);S

)
so that by (3.10), we have

|S|2
N + d− 1

≤ F ′(d;S) . (3.11)

Obviously, if d|S| < N + d − 1, the lower bound is loose since then |S|
d ≤ F ′(d;S) with

equality if and only if C(d;S) = 0. The following lemma proves an upper bound on
R(w;S):

Lemma 3.2. For any w ∈Wd and S ⊂ SN−1, we have

1
|S|R(w;S) ≤ (

1− C(d;S)2
) d∑

k=1

w2
k + |S|C(d;S)2. (3.12)

Proof. Because of (3.6), we have the following identities:

∑

a∈S

d∑

k=1

|〈Tkâ,Tkâ〉|2w2
k = |S|

d∑

k=1

w2
k

∑

a∈S

d∑

k,l=1
k 6=l

|〈Tkâ,Tlb̂〉|2wkwl =
∑

a∈S

d∑

k,l=1
k 6=l

|ck−l(a)|2wkwl

∑

a,b∈S
a 6=b

d∑

k,l=1

|〈Tkâ,Tlb̂〉|2wkwl =
∑

a,b∈S
a 6=b

d∑

k,l=1

|ck−l(a,b)|2wkwl .

Consequently, R(w;S) defined by (3.9) is bounded from above as follows

1
|S|R(w;S) ≤

d∑

k=1

w2
k + C(d;S)2

d∑

k,l=1
k 6=l

wkwl + (|S| − 1)C(d;S)2
d∑

k,l=1

wkwl

=
(
1− C(d;S)2

) d∑

k=1

w2
k + |S|C(d;S)2 ,

where we used
∑

k 6=l wkwl = 1−∑
k w2

k and
∑

k,l wkwl = 1 in the last step.

Now combining Lemma 3.1 with Lemma 3.2 yields a lower bound on C(d;S):
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Theorem 3.2. Let w ∈Wd and S ⊂ SN−1 be given. We have

1

|S| −∑d
k=1 w2

k

( |S|
N + d− 1

−
d∑

k=1

w2
k

)
≤ C(d;S)2 . (3.13)

The problem of choosing the weight vector w = (w1, . . . , wd) so that the left hand
side of (3.13) becomes maximum is left open. In the special case of the constant weight
vector w = (1/d, . . . , 1/d), one obtains:

Corollary 3.1. Let S ⊂ SN−1 be given. We have 2

1
d|S| − 1

(
d|S|

N + d− 1
− 1

)
≤ C(d;S)2. (3.14)

Note that if C(d;S) = 0 is required (an AZCW sequence set), then (3.14) is equivalent
to the left hand side of (3.8). Proceedings essentially as in [Sar79], the lower bound (3.14)
can be also written in terms of Cc(d;S) and Ca(d;S) to give

d|S| −Nd

Nd
≤ (d− 1)Ca(d;S)2 + d

(|S| − 1
)
Cc(d;S)2 , (3.15)

where Nd = N + d − 1. Now if (3.8) holds, then (3.15) above is trivial since its left
hand side is negative or zero. In this case, the bound suggests that there is no trade-off
between aperiodic autocorrelations and crosscorrelations. Otherwise, if the left hand side
of (3.15) is positive, the bound indicates some trade-off between autocorrelations and
crosscorrelations. However, for small values of d and large sequence sets, the impact of
the aperiodic autocorrelations is marginal compared to the aperiodic crosscorrelations.

Given fixed d and N , it is easy to see that the left hand side of (3.14) is monotonically
increasing function of |S| and tends to (N + d − 1)−1 as |S| → +∞. Thus, the lower
bound (3.14) must be loose for sufficiently large sequence sets. This is a well-known fact
[Sar79]. To improve the bound in such cases, one can consider

Rk(S) =
1
d2

∑

a,b∈S

d∑

m,n=1

|〈Tmâ,Tnb̂〉|2k

for some k ≥ 1. The proof of a lower bound and an upper bound on Rk(S) for some
given k ≥ 1 proceeds essentially as the proof of Lemma 3.1 and Lemma 3.2. However,
unless |S| is quite large, one does not get any significant improvement for typical values
of d = 2, . . . , 4 and N .

If S is a sequence set over some finite alphabet, one can often obtain better bounds by
exploiting additional constraints put on such sets. For instance, the Sidelnikov bound

2If d = N , the bound does not imply the Welch’s lower bound [Wel74]. The reason is that the original
Welch’s lower bound is obtained by considering 2N − 1 cyclically shifted sequences.
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on the maximum periodic correlation value for complex root-of-unity sequences [Sid71a,
Sid71b] is tighter than the corresponding Welch’s lower bound [Wel74], which applies to
any set on the unit sphere3. [KL90] modified the Welch’s lower bound to obtain a lower
bound for complex root-of-unity sequences that is even better than that of Sidelnikov in
some special cases.

Unfortunately, these techniques are not directly applicable to the aperiodic case since
in order to represent the aperiodic correlations of two sequences in terms of the inner
products as in (3.6), we must append zeros to the sequences. Instead, we use other tech-
niques that were recently developed by Levenshtein for bipolar sequences and extended
by [Boz98] to complex root-of-unity sequences. For some given q ≥ 2, let

Γq :=
{
1, γ, . . . , γq−1 : γ = e

i2π
q

}

be the set of all q-th roots of unity and assume that S ⊆ ΓN
q is a set of q-phase sequences

of length N where ΓN
q denotes the set of all q-phase sequences. Note that |ΓN

q | = qN .
Let 0 ≤ j < N and a ∈ ΓN

q be fixed. It is shown in [Boz98] that

∑

b∈ΓN
q

|cj(a,b)|2 =
qN

N2
(N − j), 0 ≤ j < N.

By (3.6), this implies that

∑

b∈ΓN
q

|〈Tkâ,Tlb̂〉|2 =
qN

N2
(N − (k − l)), (3.16)

where 0 ≤ j = k − l < d. Using the symmetry |cj(a,b)| = |c−j(b,a)|, and the fact that
the right hand side of (3.16) is independent of a ∈ ΓN

q , we can write

1
q2N

R(w; ΓN
q ) =

1
N2

d∑

l,k=1

(N − |k − l|)wlwk =
1
N
−wTAw, (3.17)

where A is a symmetric Toeplitz matrix with the first column given by 1
N2 (0, 1, . . . , d−1).

Now we know from [Lev98] that the inequality on the mean

1
q2N

R(w; ΓN
q ) ≤ 1

|S|2 R(w;S), S ⊆ ΓN
q (3.18)

holds since:

1. Rw(a,b) =
∑d

k,l=1 |〈Tkâ,Tlb̂〉|2wkwl is is a finite dimensional nonnegative definite
function (FDNDF) on the complex unit sphere in CN [Lev98, pp. 522-523].

3It is worth pointing out that Sidelnikov used the ratio of successive even moments to derive his bound.
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2. By (3.16),
∑

b∈ΓN
q

Rw(a,b) is independent of the choice of a ∈ ΓN
q [Lev98, Corollary

3.10].

Now we summarize these observations in a theorem:

Theorem 3.3. Let w ∈Wd and S ⊆ ΓN
q be given. Then,

1
N
−wT

(
A +

1
|S|I

)
w <

1
N −wT

(
A + 1

|S|I
)
w

1− 1
|S|w

Tw
≤ C(d;S)2. (3.19)

Proof. Combine (3.17) and (3.18) with Lemma 3.2.

Theorem 3.3 reduces the problem of finding a lower bound to the problem of a con-
strained minimization of the quadratic form wT (A + 1

|S|I)w with respect to w ∈ Wd.
Instead of attempting to derive a closed form solution to this problem, we did some
computations to see what the improvement is. Using one of the standard minimization
tools, we maximized the expression in the center of (3.19) for 32 sequences of length
32. If d = 4, 5, 6, 7, 8, 9, 10, 11, 12, then the square root of the lower bound in (3.14)
yields 0.145,0.147,0.148,0.148,0.148 0.147,0.146,0.145, and 0.144. On the other hand,
the square root of (3.19) is equal to 0.15, 0.154, 0.156 0.157,0.158, 0.158, 0.159, 0.159
and 0.159. Thus, the bounds are almost the same for very small d and go slightly apart
when d increases. Obviously, the difference depends on the sequence length as well as
on the set size, and is probably greater for larger sequence sets. The main drawback of
the numerical optimization is that we get no insight into how to design optimal q-phase
sequence sets.

3.3 Periodically Shifted Sequence Sets

As periodic correlation criteria alone do not correspond to any meaningful system perfor-
mance parameter, sequence sets with good or even optimal periodic correlation properties
do not guarantee a good performance of symbol-asynchronous CDMA systems. In this
section, we show that this is not true in case of QS-CDMA, especially if d is negligible
compared to N .

It follows from (1.4) that |ρj(a,b)| ≤ |cj(a,b)| + |cj−N (a,b)| for each 0 ≤ j < N ,
and hence a small aperiodic correlation value implies a small periodic one. Obviously,
the converse does not need to hold. In fact, even if sequences have optimal periodic
correlation properties, they can exhibit large aperiodic correlation sidelobes. To see
this, let us consider the Gauss sequences defined as follows:

Definition (Gauss sequences). Let λ and N > λ be given positive integers with λ
and N relatively prime. Say that a = (a0, . . . , aN−1) is the Gauss sequence if

an =
1√
N

ωλn2
, 0 ≤ n < N, ω = e

iπ(N+1)
N . (3.20)
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The Gauss sequences are also called Frank-Zadoff-Chu (FZC) sequences. It is well-
known [Lue92, Chu72, Saf01b] that all periodic autocorrelation sidelobes of any Gauss
sequence are equal to zero. Thus, if G with |G| < N denotes a set of Gauss sequences
of length N , then we have

C̃a(N ;G) = 0 , (3.21)

where the maximum periodic autocorrelation value is given by (1.13). As for the periodic
crosscorrelations, it may be easily verified that [Lue92]

|ρj(a,b)| = 1√
N

, 0 ≤ j < N,a,b ∈ G,a 6= b ⇒ C̃c(N ;G) =
1√
N

. (3.22)

Consequently, when restricted to sequences whose all periodic autocorrelation sidelobes
are equal to zero, the Gauss sequences have the lowest possible maximum periodic cor-
relation value defined by (1.12). This is because for any sequences a,b ∈ SN−1 with
C̃a(N ;a) = C̃a(N ;b) = 0, we have |A(m)| = |B(m)| = 1, 0 ≤ m < N , and hence

1 = |A(m)B(m)|2 =
N−1∑

j=0

|ρj(a,b)|2, 0 ≤ m < N,

⇒ 1√
N

=
(

1
N

N−1∑

j=0

|ρj(a,b)|2
) 1

2

≤ max
0≤j<N

|ρj(a,b)| .

Now consider the following theorem, which proves the asymptotic limit of C(N ;a) as
N → +∞ where a is the Gauss sequence for λ = 2.

Theorem 3.4. Let a be a Gauss sequence for λ = 2 and N = 2n + 1, n ∈ N. Then, we
have

lim
n→∞C(2n + 1;a) =

1
π

. (3.23)

Proof. The proof can be found in the appendix.

Numerical evaluation of C(N ;a) shows that already for small values of N , the maxi-
mum aperiodic autocorrelation value is close to 1

π . Consequently, in terms of the max-
imum aperiodic correlation value, the Gauss sequences exhibit poor behavior although
they have excellent periodic correlation properties.

To the best of our knowledge, methods for estimating deviation of aperiodic correla-
tion magnitudes from periodic ones are not known. Thus, even if we have a sequence
set with good periodic correlation properties, we cannot say how useful it is for symbol-
asynchronous CDMA systems. As shown in the next section, the absolute difference
between periodic correlation magnitudes and aperiodic ones of any two polyphase se-
quences is small in the vicinity of the zero shift.
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3.3.1 Estimation of Aperiodic Correlations from Periodic Ones

The following lemma is a trivial but useful result. It states that for any polyphase se-
quences a,b ∈ SN−1

c , the absolute difference between |cj(a,b)| and |ρj(a,b)| is bounded
above by |j|

N ,−N < j < N .

Lemma 3.3. Let a and b be two arbitrary (not necessarily distinct) polyphase sequences
of length N . Then,

∣∣∣|cj(a,b)| − |ρj(a,b)|
∣∣∣ ≤ |j|

N
, −N < j < N . (3.24)

Proof. By the symmetry, we may confine our attention to the non-negative shifts. It
follows from (1.4) that

|ρj(a,b)| ≤ |cj(a,b)|+ |cj−N (a,b)| = |cj(a,b)|+
∣∣∣∣
j−1∑

i=0

ai−j+N · bi

∣∣∣∣

≤ |cj(a,b)|+
j−1∑

i=0

|ai−j+N ||bi| = |cj(a,b)|+ j

N
, 0 ≤ j < N .

Thus |ρj(a,b)| − |cj(a,b)| ≤ j
N , 0 ≤ j < N . From |cj(a,b)| = |ρj(a,b)− cj−N (a,b)|,

it follows that |cj(a,b)| ≤ |ρj(a,b)| + |cj−N (a,b)| ≤ |ρj(a,b)| + j
N for 0 ≤ j < N, and

hence we obtain ||ρj(a,b)| − |cj(a,b)|| ≤ j
N , 0 ≤ j < N .

Before we proceed, it is worth pointing out that this trivial bound cannot be improved
significantly if −b

√
N/2c ≤ j ≤ b

√
N/2c. This is because there exists a polyphase

sequence a ∈ SN−1
c so that

2
π

j

N
≤

∣∣∣|cj(a)| − |ρj(a)|
∣∣∣ = |cj(a)|, 1 ≤ j ≤ kN =

⌊√
N

2

⌋
. (3.25)

To see this, let a be the Gauss sequence for λ = 1. Then, we have 4

|cj(a)| = 1
N

∣∣∣∣
sin

(πj2

N

)

sin
(πj

N

)
∣∣∣∣ .

Consequently, considering both ∀x∈[0,2π) sin(x) ≤ x and ∀x∈(0,π/2)
2
π ≤ sin(x)

x gives

|cj(a)| ≥ 1
πj

sin
(πj2

N

)πj2

N
πj2

N

≥ 1
πj

2
π

πj2

N
=

2
π

j

N
, 1 ≤ j ≤ b

√
N/2c .

As an immediate consequence of Lemma 3.3, we have the following result:
4see the proof of Theorem 3.4
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Theorem 3.5. Let S be a polyphase sequence set. Then, we have

|C(d;S)− C̃(d;S)| ≤ d− 1
N

<
d

N
, (3.26)

and hence if d ≤ √
N ,

|C(d;S)− C̃(d;S)| → 0 as N →∞. (3.27)

Proof. Let a,b ∈ S be arbitrary. Since cj(b,a) = c−j(a,b) and ρj(b,a) = ρ−j(a,b),

|C(
d; (a,b)

)− C̃
(
d; (a,b)

)| =
∣∣∣ max
−d<j<d

j 6=0 ifa=b

|cj(a,b)| − max
−d<j<d

j 6=0 ifa=b

|ρj(a,b)|
∣∣∣

≤ max
−d<j<d

∣∣∣|cj(a,b)| − |ρj(a,b)|
∣∣∣ ≤ max

−d<j<d

|j|
N

<
d− 1
N

,

where we used Lemma 3.3.

By Theorem 3.5, C(d;S) is close to C̃(d;S) if d is small compared to N . Moreover, if
d ≤ √

N , then C(d;S) converges to C̃(d;S) as N tends to infinity. In practice, however,
the system parameter d is proportional to N so that for d ≤ √

N to hold when N
increases, it would be necessary to adjust other system parameters that have impact on
d such that modulation order [SB02c].

Another consequence of Lemma 3.3 is the following result:

Theorem 3.6. Let S be any polyphase sequence set. Then, we have

1
|S|2 |F

′(d;S)− F̃ ′(d;S)| ≤ d2 − 1
6N2

<
1
6

(
d

N

)2

. (3.28)

Consequently, for any fixed d ≤ √
N ,

1
|S|2

∣∣∣F ′(d;S)− F̃ ′(d;S)
∣∣∣ → 0 as N →∞.

Proof. We have

1
|S|2

∣∣F ′(d;S)− F̃ ′(d;S)
∣∣ ≤ 2

d2|S|2
∑

a,b∈S

d−1∑

j=1

(d− j)
∣∣∣|cj(a,b)|2 − |ρj(a,b)|2

∣∣∣

≤ 2
d2|S|2

∑

a,b∈S

d−1∑

j=1

(d− j)|cj(a,b)− ρj(a,b)|2 ≤ 2
d2N2

d−1∑

j=1

(d− j)j2.

Now the bound follows by considering the identity
∑d−1

j=1(d− j)j2 = d2(d−1)(d+1)
12 .
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By Theorem 3.6, F̃ ′(d;S) is close to F ′(d;S) when d ¿ N . Consequently, multiple
access interference in QS-CDMA channels is to a large extent determined by the periodic
correlation magnitudes of signature sequences. This is an advantage since as far as the
periodic correlations are concerned, the theory of sequence design is a rich one, and
many constructions of binary and polyphase sequences (with small and large alphabets)
are known. A good overview of known construction methods is given in [HK98]. The
interested reader is also referred to [Lue92, FD96].

In the remainder of this section, we briefly illustrate the usefulness of the results by
considering two sets of sequences with good periodic correlation properties, namely the
Gauss sequences and the Alltop cubic sequences [All80].

Definition (Alltop Cubic Sequences). Say that a ∈ SN−1
c is an Alltop cubic sequence

of length N if an = 1√
N

ωn3+αn , 0 ≤ n < N, where 1 ≤ α ≤ N and N ≥ 5 is prime.

It is shown in [All80] that the cubic sequences form an orthonormal basis in CN whose
all out-of-phase periodic correlation magnitudes are equal to 1√

N
. Consequently, when

confined to mutually orthogonal sequences, the cubic sequence set is optimal with respect
to the maximum periodic correlation value.

Now suppose that S is either the Gauss sequence set or the Alltop cubic sequence set.
Then, by (3.26), we have

C(d;S) ≤ 1√
N

+
d− 1
N

. (3.29)

Consequently, if d ¿ N , the bound above ensures relatively good “worst-case” perfor-
mance. Furthermore, if d ¿ N , we can drastically increase the number of sequences
without violating the upper bound in (3.29). Everything we need to do is to include
periodically shifted replicas of sequences in S: For given S and α ∈ N with α < N , let
S̃ be a periodically shifted sequence set defined to be

S̃ =
{
b : b = Tlαa, 0 ≤ l < bN/αc,a ∈ S

}
.

Clearly, if d ≤ α, we obtain a set S̃ with |S̃| = bN
α c|S| so that C(d; S̃) ≤ C̃(N ;S) + d−1

N .
Thus, if S is either the Gauss sequence set or the Alltop cubic set, then C(d; S̃) is
upper bounded by the right hand side of (3.29). In contrast, there are large aperiodic
correlation magnitudes outside the interval {−α + 1, . . . , α− 1}.

Such periodically shifted sequence sets could be used in multicode QS-CDMA to sup-
port variable data rates. In such systems, multicode spreading is applied to the stream
of information bearing symbols to satisfy d ¿ N for high data rate users. This is nec-
essary since d increases with the symbol rate and N is the same for all users, and hence
fixed. To avoid strong interference when users cannot be temporarily synchronized at a
desired accuracy, each user should be allocated a distinct signature sequence and use up
to bN

α c cyclically shifted versions of this sequence to support variable data rates. The
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parameter α should be chosen considering the maximum time dispersion of the channel,
which is relatively small in many practical systems. We calculated the maximum ape-
riodic correlation value for periodically shifted Gauss sequences, Alltop cubic sequences
and Gold sequences (generator polynomials 45 and 67). We also compared these values
to the lower bound in (3.14). The result is depicted in Figure 3.1. For small values of d

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

d

C
(d

;S
)

Gold
Gauss
Cubic

Lower Bound

Figure 3.1: The maximum aperiodic correlation value for cyclically shifted sequence sets
based on Gold-, Gauss- and Alltop cubic sequences of length N = 31. We
have α = 8 and |S| = 90 in each case. The lower bound is given by (3.14)

(d ≤ 4), the maximum aperiodic correlation value of periodically shifted Gauss sequences
and Alltop cubic sequences is quite close to the lower bound. On the other hand, these
sequences have significantly better properties than periodically shifted Gold sequences,
although the comparison is not quite fair as Gold sequences are bipolar. The Gauss and
Alltop sequences have relatively large alphabets that put these designs at a disadvan-
tage in many applications. However, when multicode schemes are used, sequences with
large alphabets usually lead to a lower peak-to-average power ratio (PAPR), which is an
important issue in communication systems [WB01]. Numerical computations of PAPR
in [SB02c] show a performance gain up to 4 dB when compared with bipolar sequences.

3.4 Sequences Based on Complementary Sequence Sets

In this section, we present another method for constructing sequence sets with favorable
aperiodic correlation properties within the window {−d + 1, . . . , d − 1}. To be more
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specific, let n and m with n ≤ m be two natural numbers such that there exists a
minimum WBE (M-WBE) sequence set H ∈ Cn×m (m sequences of length n) [HS02,
Sar99, CHS96]. In a special case, when m = n, H is a set of mutually orthogonal
sequences or, equivalently, a unitary matrix. Furthermore, let N be of the form N =
d(2n + 1) where d > 1 is length of some complementary sequence pair [Gol61, Tur74,
Fra80, EKS90]. Then, there exists a sequence set S = (Š, Ŝ) ∈ SN−1 consisting of two
mutually orthogonal subsets Š and Ŝ with |Š| = |Ŝ| = m so that

|cj(a,b)| =





1 j = 0,a = b√
m−n

n(m−1) j = 0,a 6= b, either a,b ∈ Š or a,b ∈ Ŝ

0 otherwise so that |j| < d

. (3.30)

Obviously, this implies that

C(d;S) =
√

m− n

n(m− 1)
, n ≤ m.

Furthermore, some elementary manipulations show that

F ′(d;S) =
|S|
d

[
1 +

( |S|
2
− 1

)
m− n

n(m− 1)

]
=

|S|2
N − d

, (3.31)

where m = |S|d
N−dn and n = N−d

2d was used. Let us evaluate the correlation properties.

• If m = n , then we obtain 2n = N−d
d AZCW sequences of length N = d(2n + 1) for

some given n ∈ N. Comparing this with the upper bound in (3.8) reveals that the
resulting sets are “almost” optimal in the sense that only one additional sequence is
needed to achieve the upper bound (note that by construction, d divides N).

• If n < m, all aperiodic correlation sidelobes within {−d+1, . . . , d−1} are zero except
for the inner products between two distinct sequences in either of the two mutually
orthogonal subsets. Consequently, the sequence sets must be suboptimal with respect
to the maximum aperiodic correlation value. For instance, if m = 2n and n is of the
form 2k for some k ∈ N, then there exists an M-WBE sequence set [HS02, SH02]. In
this case, the maximum aperiodic correlation value is

√
d/(N − 2d), d > 1.

• Comparing (3.31) with (3.11) reveals that the sequence sets have favorable properties
in terms of the weighted total aperiodic correlation energy. When d ¿ N , (3.31) is
quite close to the lower bound in (3.11).

Unfortunately, if m > n+1, M-WBE sequences seem to be known only for some special
cases. Thus, the main result of this section is the construction of AZCW sequence sets.
Finally, we point out that (3.31) also holds when WBE sequences (see the previous
chapter for definitions) are used instead of M-WBE sequences.
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Review of M-WBE Sequence Sets

For completeness, we briefly summarize some results on the existence of M-WBE se-
quences and outline a construction method reported in [SH02, HS02]. For more details,
the interested reader is referred to [SH02, HS02, CHS96, Sar99].

M-WBE sequence sets are those WBE sets for which the Welch’s lower bound on
the maximum inner product magnitude is attained. To be more specific, [Wel74] showed
that for any H = (h1, . . . ,hm) with hk ∈ Sn−1, 1 ≤ k ≤ m, we have C(1,H) ≥

√
m−n

n(m−1) .
Equality holds if and only if H is an M-WBE sequence set:

|〈hk,hl〉| =
√

m− n

n(m− 1)
, 1 ≤ k, l ≤ m, k 6= l .

Construction of m M-WBE sequences of length n is closely related to finding the best
packing of m one-dimensional subspaces (lines) in Cn [CHS96]. The packing problem is
to arrange the lines so that the angle between any two of the lines is as large as possible.
This is equivalent to finding a set of sequences so that the inner product between any
two of the sequences is as small as possible. M-WBE sequences are those sequences
for which all the inner products are the same (equiangular property) and equal to the
Welch’s lower bound. A necessary condition for the existence of M-WBE sets in Rn is
that m ≤ n(n + 1)/2. In case of Cn, M-WBE sequence sets can only exist if m ≤ n2.
However, even if these necessary conditions are satisfied, M-WBE sequence sets may not
exist for some choices of m and n. A sufficient condition is that m = n+1 for any n ∈ N
since then any WBE sequence set is an M-WBE sequence set, and conversely [SH02].5

Furthermore, there exist m = 2n M-WBE sequences in Rn whenever a 2n×2n symmetric
conference matrix exists. Recall that an n × n conference matrix C has zeros along its
main diagonal, ±1 entries otherwise and satisfies CCT = (n−1)I. A sufficient condition
for the existence of an n×n symmetric conference matrix is that n = 2(pk +1) for some
k ∈ N and prime p [Pal33]. In the complex case, there are m = 2n M-WBE sequences in
Cn provided that there exists a 2n× 2n skew-symmetric conference matrix (C = −CT ).
In what follows, we focus on this case and briefly discuss a simple construction method
due to [SH02, HS02]. If m = 2n is of the form m = 2k for some k ∈ N, then there exists
a skew-symmetric conference matrix. The following simple recursive formula

Cn+1 =
(

Cn Cn − I
Cn + I −Cn

)
with C1 =

(
0 −1
1 0

)

yields a 2n+1 × 2n+1 skew-symmetric conference matrix Cn+1. Now suppose that C is
a 2n× 2n skew-symmetric conference matrix so that CCT = (2n− 1)I and C = −CT .

5In [SH02], WBE sequence sets go by the name of uniformly tight frames for a finite dimensional Hilbert
space.
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Compute

R =
i√

2n− 1
C + I R = WΛWH ,

where W is unitary and Λ is the diagonal eigenvalue matrix. Assume that the eigenvalues
are arranged in non-increasing order. Let hi = 1√

2
(h1,i, . . . , hn,i), 1 ≤ i ≤ 2n, where

h1,i, . . . , hn,i are the first n components of the i-th row of the matrix W. Then, H =
(h1, . . . ,h2n) is an M-WBE sequence set [HS02, SH02].

Complementary Sequence Pairs

For the construction, we need a sequence pair (r0,q0) of length d so that

|R0(z)|2 + |Q0(z)|2 = 2d (3.32)

in the Laurent polynomial ring R[z, z−1]. Note that (r0,q0) given by (3.32) is a comple-
mentary sequence pair. In case of bipolar sequences, such pairs are called Golay pairs
[Gol51, Gol61]. For a detail treatment of polyphase sequences, the reader is referred to
[Siv78, Fra80]. Although necessary and sufficient conditions on the existence of Golay
pairs are not known, it was shown in [Tur74] that if Golay pairs exist for length N1 and
N2, then there exists a Golay pair for length N1 · N2. This is because the set of inte-
gers being the length of some Golay pair is closed under multiplication [Tur74, EKS90].
Golay himself showed that one can double the length by observing the following fact: If
(r0,q0) is a Golay pair of length d, then (p, s) is a Golay pair of length 2d where

P (z) = R0(z) + zdQ0(z) S(z) = R0(z)− zdQ0(z)

or, alternatively,

P (z) = R0(z2) + zQ0(z2) S(z) = R0(z2)− zQ0(z2) .

The length 2 is easily realized as R0(z) = 1+z and Q0(z) = 1−z form a Golay pair. Note
that an iterative application of the first rule (concatenation) to this Golay pair gives the
so-called Shapiro-Rudin sequences [Rud59]. Other known Golay pairs that cannot be
obtained from the Golay pair of length 2 are pairs of length 10 and 26 [Gol61, EKS90]:

R0(z) = 1 + z − z2 + z3 − z4 + z5 − z6 − z7 + z8 + z9

Q0(z) = 1 + z − z2 + z3 + z4 + z5 + z6 + z7 − z8 − z9 ,

and

R0(z) = 1 + z + z2 + z3 − z4 + z5 + z6 − z7 − z8 + z9 − z10 + z11 − z12 + z13

− z14 − z15 + z16 − z17 + z18 + z19 + z20 − z21 − z22 + z23 + z24 + z25

Q0(z) = 1 + z + z2 + z3 − z4 + z5 + z6 − z7 − z8 + z9 − z10 + z11 + z12 + z13

+ z14 + z15 − z16 + z17 − z18 − z19 − z20 + z21 + z22 − z23 − z24 − z25 .
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Consequently, due to [Tur74], every integer d of the form d = 2p10s26t is the length of
a Golay pair. Other Golay pairs of the same length can be obtained by realizing that
negation, time reversal, and negation of every odd sequence component are permutations
of a set of all Golay sequences. In [UK96], (3.32) was written as a system of polynomial
equations. For small lengths, such systems was solved using Gröbner bases [CO96].

It is easy to show [Gol61] that the length of any Golay pair must be even and the
sum of two squares. Subsequently, [Gri77] showed that there no Golay pairs of length
2 · 3t for some positive t. To the author’s knowledge, the current state is that the
length of a Golay pair has no prime factor congruent to 3 (mod 4) [EKS90]. In view of
applications for QS-CDMA, d is relatively small (say up to 16) so that the interesting
lengths are 2, 4, 8, 10 and 16. The situation becomes better when instead of Golay pairs,
quadriphase complementary pairs are used. Here, the possible lengths up to 16 are
[Fra80]: 2, 3, 4, 5, 6, 8, 10, 12, 13, 16. Furthermore, by extensive computer search, it was
shown [Fra80] that other lengths up to 16 do not exist. Thus, the product N1 · N2 is
not necessarily the length of quadriphase complementary pairs if N1 and N2 are lengths
of some quadriphase complementary pairs. This stands in clear contrast to the bipolar
case.

Orthogonal Complements

Now we introduce the concept of orthogonal complements. It is well-known [TL72,
Tur74] that there exists at least one orthogonal complement of any complementary
sequence pair. Given (r0,q0), let (r1,q1) be a sequence pair such that

R1(z) = zd−1Q0(z) Q1(z) = −zd−1R0(z) . (3.33)

Then, we have

R0(z)Q0(z) + R1(z)Q1(z) = R0(z)Q0(z)− z1−dQ0(z)zd−1R0(z) = 0

in R[z, z−1]. Thus, (r1,q1) given by (3.33) is an orthogonal complement of (r0,q0).
Furthermore, we obtain

|R1(z)|2 + |Q1(z)|2 = zd−1Q0(z)z−d+1Q0(z) + zd−1R0(z)z−d+1R0(z)

= |R0(z)|2 + |Q0(z)|2,
and hence if (r0,q0) is a complementary pair, so is also (r1,q1). In other words, if
(r0,q0) is a complementary pair, then (r0,q0) and (r1,q1) are mutually orthogonal
complementary sequence sets [Fra80]. By this we mean that each set consists of a finite
number of complementary sequences and is an orthogonal complement of any other
set. The result of [Sch71, Theorem 2.1] shows that the number of mutually orthogonal
complementary sets cannot exceed the number of sequences in the set. In this sense,
(r0,q0) and (r1,q1) is optimal (2 sets, each with 2 sequences).
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Lemma 3.4. Let (r0,q0) be an arbitrary complementary sequence pair and (r1,q1) its
orthogonal complement given by (3.33). Then, (r0, r1) is a complementary sequence pair
and (q0,q1) its orthogonal complement. Furthermore, this is also true for (r1, r0) and
(q1,q0) as well as for (q0, r0) and (q1, r1).

Proof. Simple calculations using (3.32) and (3.33) proves the lemma.

Lemma 3.5. For some given n ∈ N, let π = (π1, . . . , πn), πi ∈ {0, 1}, be a binary
expansion of arbitrary integer 0 ≤ k < 2n. Furthermore, let π∗ = (π∗1, . . . , π

∗
n) denote

the binary complement of π in the sense that π∗i = πi + 1 (mod 2) for each 1 ≤ i ≤ n.
Suppose that (r0,q0) is an arbitrary complementary sequence pair (length d) and (r1,q1)
its orthogonal complement given by (3.33). Let (a,b) be a sequence pair of length N =
d(2n + 1) defined as follows:

A(z) =
1√
2d

n∑

i=1

[
Rπi(z) + zd(n+1)Qπi(z)

]
z(i−1)d

B(z) =
1√
2d

n∑

i=1

[
Rπ∗i (z) + zd(n+1)Qπ∗i (z)

]
z(i−1)d

. (3.34)

Then, C(d; (a,b)) = 0

Proof. Note that all the polynomial coefficients in (3.34) of the order zj with dn ≤ j <
d(n+1) are zero. This implies that the aperiodic crosscorrelations between “R” and “Q”
components in the polynomial

∑N−1
j=−N+1 cj(a,b)zj = A(z)B(z) have degree magnitude

greater than or equal to d. Consequently, we can write

N−1∑

j=−N+1

cj(a,b)zj =
n∑

i=1

d−1∑

j=−d+1

[
cj(rπi , rπ∗i ) + cj(qπi ,qπ∗i )

]
zj

+
n−1∑

i=1

d−1∑

j=1

[
cj−d(rπi , rπ∗i+1

) + cj−d(qπi ,qπ∗i+1
)
]
zj

+
n−1∑

i=1

−1∑

j=−d+1

[
cj+d(rπi+1 , rπ∗i ) + cj+d(qπi+1 ,qπ∗i )

]
zj

+ o(z|j|≥d) ,

where o(z|j|≥d) denotes all the components of degree magnitude greater than or equal to
d. These components have no impact on C(d;S), and hence need not be considered. Due
to Lemma 3.4, (rπi , rπ∗i ) and (qπi ,qπ∗i ) are orthogonal complements for each 1 ≤ i ≤ n
and any choice of π. If πi 6= π∗i+1, this is also true for (rπi , rπ∗i+1

) and (qπi ,qπ∗i+1
).

Otherwise, if πi = π∗i+1, cj−d(rπi , rπ∗i+1
)+cj−d(qπi ,qπ∗i+1

) is zero for each 1 ≤ j < d since
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then the sequences form a complementary sequence pair. The same reasoning applies
to (rπi+1, rπ∗i ) and (qπi+1,qπ∗i ), and hence all the expressions in the square brackets are
identically zero independent of i implying that cj(a,b) = 0,−d < j < d. Furthermore,
since (rπi ,qπi) and (rπ∗i ,qπ∗i ) are both complementary sequence pairs for each 1 ≤ i ≤ n
and any choice of π, a similar reasoning as above shows that cj(a) = cj(b) = 0,−d <
j < d, j 6= 0 and c0(a) = c0(b) = n.

Roughly speaking, the lemma states that if the members of (r0,q0) and (r1,q1) are
concatenated to form two longer sequences so that r0 and q1 as well as r1 and q0 are
prevented from “overlapping” for shifts smaller than d, then the aperiodic correlation
sidelobes of the concatenated sequences are zero within the window {−d + 1, . . . , d− 1}.
The choice of the vector π determines the concatenation arrangement thereby influencing
correlation properties only outside the window. A careful choice of π may improve
correlation properties outside the window.

3.4.1 Sequence Construction

Now we are in a position to address the problem of constructing sequences. Consider
the construction rule of the sequence a in (3.34). The basic observation is that instead
of Rπi(z) and Qπi(z), 1 ≤ i ≤ n, we can actually use αiRπi(z) and αiQπi(z) for some
α = (α1, . . . , αn) ∈ Sn−1 to obtain a unit-energy sequence a′ with cj(a′) = 0,−d <
j < d, j 6= 0. This is because multiplying members of a complementary sequence pair
by any constant preserves the complementary property. Now let a′′ be another unit-
energy sequence that is obtained by applying the construction rule for a in (3.34) to
βiRπi(z) and βiQπi(z), 1 ≤ i ≤ n, for some given β = (β1, . . . , βn) ∈ Sn−1. Clearly,
we have cj(a′′) = 0 and cj(a′,a′′) = 0 for each −d < j < d, j 6= 0. Furthermore,
|c0(a′,a′′)| = |〈α,β〉| ≤ 1. Now assume that b′ is a unit-energy sequence obtained by
applying the construction rule for b in (3.34) to βiRπ∗i and βiQπ∗i , 1 ≤ i ≤ n, β ∈ Sn−1.
Since (rπ∗i ,qπ∗i ) is an orthogonal complement of (rπi ,qπi), we conclude that (βirπ∗i , βiqπ∗i )
is an orthogonal complement of (αirπi , αiqπi) for any αi, βi ∈ C. Thus, by Lemma 3.5, we
obtain cj(a′,b′) = 0,−d < j < d, for any α,β ∈ Sn−1. We summarize these observations
in a theorem:

Theorem 3.7. Let (r0,q0), (r1,q1), π and π∗ be as in Lemma 3.5. Given H =
(h1, . . . ,hm),hk ∈ Sn−1, 1 ≤ k ≤ m, define Š = (š1, . . . , šm), šk ∈ SN−1, 1 ≤ k ≤ m, and
Ŝ = (ŝ1, . . . , ŝm), ŝk ∈ SN−1, 1 ≤ k ≤ m, as follows:

Šk(z) :=
1√
2d

n∑

i=1

hi,k

[
Rπi(z) + zd(n+1)Qπi(z)

]
z(i−1)d, 1 ≤ k ≤ m,
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and

Ŝk(z) :=
1√
2d

n∑

i=1

hi,k

[
Rπ∗i (z) + zd(n+1)Qπ∗i (z)

]
z(i−1)d, 1 ≤ k ≤ m,

respectively. Then, we have

|cj(a,b)| =





1 j = 0,a = b
C(1;H) j = 0,a 6= b, either a,b ∈ Š or a,b ∈ Ŝ
0 otherwise so that |j| < d

,

where C(1;H) = max{|〈hk,hl〉| : 1 ≤ k, l ≤ m, k 6= l}.
Proof. The proof follows from the discussion above.

In what follows, let H and S = (Š, Ŝ) be as in Theorem 3.7. If H is an M-WBE
sequence set, then S has the correlation properties given by (3.30). For instance, using
M-WBE sets discussed earlier in this section with m = 2n = 64 and d = 4 gives 128
sequences of length N = d(2n + 1) = 260 so that C(4;S) ≈ 0.13. For comparison, a
set of periodically shifted Gauss sequences of length 257 (a prime) yields a value that is
lower than ≈ 0.074 with up to 16384 sequences. This is quite close to the optimum since
the lower bound (3.14) is equal to 0.0619. On the other hand, we have F ′(4;S) = 64.
Thus, in terms of the weighted total aperiodic correlation energy, these sequences have
excellent properties as the lower bound in (3.11) yields ≈ 62.3. Unfortunately, M-
WBE sequences obtained by this method are in general neither q-phase sequences nor
polyphase sequences.

Bipolar sequences with good correlation properties in the vicinity of the zero shift can
be obtained by considering either the case m = n or m = n + 1 where m > 2 is chosen
so that a Hadamard matrix exists. A necessary and sufficient condition for the existence
of Hadamard matrices is still an open problem [GKS02]. The order of an Hadamard
matrix must be 1, 2 or n ≡ 0 (mod 4) and the first unresolved case is 428. For more
information, we refer to [GKS02, MS77]. Let us first consider the case m = n + 1 where
m is chosen so that an Hadamard matrix of the order m exists. Let H = 1√

n
A where

A is an n ×m matrix obtained from a given m ×m Hadamard matrix by deleting an
arbitrary row. Then, H forms an M-WBE sequence set [SH02]. Using such sets yields
N
d + 1 sequences of length N = d(2n + 1) with the maximum aperiodic correlation value
equal to 1/n. On the other hand, if m = n and H = 1√

n
A, where A is an m × m

Hadamard matrix, one obtains N
d − 1 AZCW sequences. However, note that in both

cases, the resulting sequences are not bipolar because of the zero gaps between “R” and
“Q” components (see Lemma 3.5). To obtain bipolar sequences, we must remove the zero
gaps at the expense of non-zero out-of-phase aperiodic correlation magnitudes within the
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window {−d + 1, . . . , d − 1}. Fortunately, if H forms a set of polyphase sequences (or,
equivalently, if H has constant modulus entries), it is easy to see that all the magnitudes
are upper bounded by d−1

2nd . Consequently, assuming that both H is a set of polyphase
sequences and S′ is a set of sequences of length N = 2nd obtained from S by removing
the zero gaps, we obtain

C(d;S′) ≤ max
{

C(1;H),
d− 1
N

}
.

In a special case, when H is obtained from a Hadamard matrix, S′ is a bipolar sequence
set with C(d;S′) ≤ d−1

N .

Example 3.1. Let d = 4 and m = n = 2. We choose R0(z) = 1+z +z2−z3 and Q0(z) =
1 + z − z2 + z3, which is a complementary sequence pair since |R0(z)|2 + |Q0(z)|2 = 8.
The orthogonal complement R1(z) = 1− z + z2 + z3 and Q1(z) = 1− z− z2− z3 follows
from (3.33). Furthermore, let π = (0, 1) and H = 1√

2

(
1 1
1 −1

)
. Assuming no zero gaps,

one obtains 2m = 4 unit-energy sequences of length N = 2dn = 16:

Š1(z) =
1√
16

(
R0(z) + z4R1(z) + z8Q0(z) + z12Q1(z)

)

Š2(z) =
1√
16

(
R0(z)− z4R1(z) + z8Q0(z)− z12Q1(z)

)

Ŝ1(z) =
1√
16

(
R1(z) + z4R0(z) + z8Q1(z) + z12Q0(z)

)

Ŝ2(z) =
1√
16

(
R1(z)− z4R0(z) + z8Q1(z)− z12Q0(z)

)
.

The maximum correlation value of this set is upper bounded by d−1
N = 3

16 = 0.1875. The
sequences are mutually orthogonal as HHH = I. Multiplying the “Q” components by
z3 gives an AZCW sequence set.

Finally, we present a numerical simulation. Figure 3.2 depicts the average bit error
rate as a function of the signal to noise ratio in a QS-CDMA over fading channels.
We compared the new sequences (as in the example above but for m = n = 8 and
π = (0, . . . , 0)) with a small set of Kasami sequences (generator polynomial 103). We
see a performance increase of about 4 dB at a bit error rate of 10−4, although small
sets of Kasami sequences are known to be asymptotically optimal with respect to the
maximum periodic correlation value [Lue92].

3.5 Conclusions and Future Work

This chapter dealt with the problem of designing signature sequences for quasi-synchronous
CDMA (QS-CDMA) systems. In such systems, all users are approximately synchronized
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Figure 3.2: Bit error rate for QS-CDMA channel with 8 users, N = 64 (Kasami N = 63),
and d = 4. Other channel parameters are: Tc ≈ 1.53µs, BPSK modulation,
two signal paths with line-of-sight propagation (K-factor 10 dB, no power
loss), exponential power delay profile with delay spread≈ 1.5µs, uncorrelated
block fading, the maximum round-trip delay ≈ 1.5µs, perfect fast power
control, the maximum ratio combining. The single-user bound corresponds
to a single user in an AWGN channel.

at the receiver in the sense that the maximum time offset with respect to a common
clock is significantly smaller than the duration of signature waveforms. This assumption
is relevant since there are many practical situations where such an approximate synchro-
nization is either given or can be easily established at the expense of increased control
data traffic. Moreover, high order modulation schemes and multicode techniques can be
used to increase the duration of signature waveforms.

Much of the motivation behind this work comes from the fact that sequence design
for completely asynchronous CDMA channels is a notoriously difficult problem. Al-
though much effort has been expanded, systematic methods for constructing sequences
with low aperiodic correlation sidelobes everywhere are not known [HK98]. As a conse-
quence, random sequences or sequences with low periodic correlation sidelobes are used,
although the periodic correlations alone do not correspond to any meaningful system
performance parameter. Theorem 3.4 clearly shows that system performance cannot be
guaranteed even when sequences with optimal periodic correlation properties are allo-
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cated to the users. In contrast, if the time offsets are relatively small, periodic correlation
magnitudes are close to aperiodic ones. Consequently, when CDMA users are approx-
imately synchronized, sequences with favorable periodic correlation properties ensure
good performance characteristics.

We proposed criteria for selecting sequence sets for QS-CDMA channels and derived
lower bounds on them. Compared to a conventional approach, the lower bounds suggest
that a significant performance improvement can be achieved if the aperiodic correlation
sidelobes are minimized only in the vicinity of the zero shift. Moreover, sequence design
becomes easier. We presented a systematic method for constructing signature sequences
for QS-CDMA systems. In a special case, this method yields sequences whose aperiodic
correlation sidelobes are zero within a given window around the zero shift, the so-called
interference window. Alternatively, we can obtain bipolar sequences with extremely low
aperiodic correlation sidelobes within the interference window. A comparison with op-
timal periodic sequences show a tremendous performance increase. Unfortunately, the
maximum number of these sequences is strongly limited. Section 3.4.1 presents one
possible method for increasing the number of sequences at the expense of larger correla-
tion values. The weighted total aperiodic correlation energy of the resulting sequences
was shown to be close to the optimum but the maximum correlation value is relatively
large. For future work, it would be interesting to find large sequence sets that have good
properties with regard to the maximum correlation value in the vicinity of the zero shift.

Appendix

Proof of Theorem 3.4. Because of the symmetry cj(a) = c−j(a), we can confine our
attention to the positive shifts. We have

cj(a) =
1
N

N−j−1∑

l=0

exp
(−iπλl2

N

)
exp

( iπλ(l + j)2

N

)
=

exp
( iπλj2

N

)

N

N−j−1∑

l=0

exp
( i2πλlj

N

)

for each 0 ≤ j < N . By assumption, λ = 2 and N = 2n + 1 are relatively prime so that

|cj(a)| = 1
2n + 1

∣∣∣∣
2n−j∑

l=0

exp
( i4πlj

2n + 1

)∣∣∣∣ =
1

2n + 1

∣∣∣∣∣
1− exp

( i4πj(2n+1−j)
2n+1

)

1− exp
( i4πj

2n+1

)
∣∣∣∣∣

=
1

2n + 1

∣∣∣∣∣
sin

( 2πj2

2n+1

)

sin
( 2πj

2n+1

)
∣∣∣∣∣, 1 ≤ j < N ,

where the identity |1− exp(ix)| = |sin(x
2 )|, x ∈ R was used. Consequently, we have

|cj(a)| = |cN−j(a)|, 1 ≤ j < N , and hence

C(2n + 1;a) = max
1≤j≤n

|cj(a)| = max
1≤j≤n

1
2n + 1

|sin( 2πj2

2n+1

)|
sin

( 2πj
2n+1

) .
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Let x ∈ [1, n] be a real-valued variable. Then, we have

C(2n + 1;a) ≤ max
x∈[1,n]

1
2n + 1

∣∣∣∣∣
sin

(
2πx2

2n+1

)

sin
(

2πx
2n+1

)
∣∣∣∣∣ = max

x∈[1,n]

1
2n + 1

|sin(
2πx2

2n+1

)|
sin

(
2πx

2n+1

) .

Equality if and only if the global maximum of the function fn : [1, n] → R+ given by

x → fn(x) =
|sin(

2πx2

2n+1

)|
sin

(
2πx

2n+1

)

coincides with the maximum of this function on the finite set {1, . . . , n}. The maximum
exists since fn is bounded on the compact set [1, n]. The denominator of fn is strictly
concave on [1, n] and attains its maximum at x = (2n + 1)/4. The minimum is attained
for x = n since ∀n≥1 sin

(
2π/(2n + 1)

) ≥ sin
(
2πn/(2n + 1)

)
. On the other hand, the

numerator of fn becomes maximal for x =
√

(2n + 1)(2m− 1)/4, 1 ≤ m ≤ n, so that fn

has n local maxima. Now consider the local maximum at xn =
√

n2 − 1/4. We have

lim
n→∞

∣∣n− xn

∣∣ = lim
n→∞(n−

√
n2 − 1/4) = lim

n→∞
1

4
√

n +
√

n + 1/4
= 0.

Thus, as n tends to infinity, the numerator becomes maximal at x = n where the
denominator is minimal. Thus, we can write that

∃n0≥1∀n≥n0C(2n + 1;a) =
1

2n + 1

∣∣∣∣
sin

(
2πn2

2n+1

)

sin
(

2πn
2n+1

)
∣∣∣∣.

Investigating the asymptotic limit of the the right hand side yields

lim
n→∞C(2n + 1;a) = lim

n→∞

∣∣∣∣
sin

(
πn− πn

2n+1

)

(2n + 1) sin
(
π − π

2n+1

)
∣∣∣∣ = lim

n→∞

∣∣∣∣
sin

(
πn

2n+1

)

(2n + 1) sin
(

π
2n+1

)
∣∣∣∣

= lim
n→∞

∣∣∣∣
1

2n+1

sin
(

π
2n+1

)
∣∣∣∣ =

1
π

.

The proof is complete.
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In wireless systems, transmission of a pilot signal is very valuable for obtaining good
amplitude and phase estimates of the mobile communications channel, making possible
quasi-optimum coherent reception and weighted combining of multipath components
[Rup89, RR96, GHST00]. Pilot-based channel estimation schemes have already proved
to be useful in one-to-many transmission channels such as the downlink channel from a
base station to multiple users where all users share one common pilot signal sent from
a base station [Vit95]. This stands in clear contrast to the many-to-one uplink channel
from multiple wireless users to a base station. Here, each user transmits an individual
pilot signal, and thus, in order to obtain reliable estimates, the channel estimator at a
base station must effectively combat multiple access interference. On the positive side,
one can jointly estimate channel parameters of all users by employing multiuser channel
estimators. Such estimators exploit the structure of the multiple access interference to
obtain more accurate estimates. One of the main drawbacks of multiuser estimators,
however, may be a relatively large computational complexity.

The theory of estimation in wireless channels is a rich one. For more information and
references, we refer the reader to [GHST00]. A great deal of this theory is concerned
with blind estimation methods where the channel information is “extracted” from the
received data signal without transmitting pilot signals. In this thesis, we exclusively
focus on pilot-based channel estimation and consider the mean squared error (MSE)
as a cost function. Pilot signals are transmitted periodically in every data frame to
estimate variable multipath channel parameters. The transmission channel is assumed
to be periodic, which is usually achieved by adding a cyclic prefix to each pilot frame.

First, we extend some of the results of [Rup89] to the many-to-one transmission chan-
nel. [Rup89] proposed coding schemes for effective multipath estimation in the one-to-
many transmission channel. These schemes use inverse filters and may be useful for
indoor wireless channels [Odl94]. An important observation is that the performance of
the inverse filter depends on the choice of a pilot signal (sequence). It was shown in
[Rup89] that the optimal performance (in the sense of minimizing MSE) is achieved
if and only if a periodically self-invertible pilot sequence is used. Furthermore, in the
optimum, the inverse filter is equal to the matched filter.

The second part of this chapter investigates the performance under the linear minimum
mean square error (MMSE) estimator. It seems to the author that most existing studies
on this topic only consider the so-called underloaded channel where the total number
of signal paths of all users is smaller than or equal to processing gain (see for instance
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[BW01] and references therein). This case, however, may not be of interest to system
designers. We consider both the underloaded and overloaded case.

Finally, we address a problem raised by Jim Massey regarding the existence of polyphase
sequences for which the aperiodic noise enhancement factor converges to 1 as the se-
quence length tends to infinity [Mas97]. The existence of such asymptotically optimal
sequences seems to be an open problem. For best performance in estimating multipath
components using aperiodic pilot sequences, it is desirable to find invertible sequences
with an aperiodic noise enhancement factor as close to 1 as possible [Odl94].

The organization of the chapter and its contribution to the theory of channel estima-
tion is as follows:

• Section 4.1 introduces the multipath channel model and the system model. Section
4.2 presents the main problem addressed in this chapter.

• In Section 4.3, we consider estimation schemes that use inverse filters. First, we review
the one-to-many transmission channel and then investigate the many-to-one case. We
prove a lower bound on the maximum mean square error and show that the lower
bound is attained if and only if a set of periodically self-invertible pilot sequences is
used. It is also shown that the matched filter achieves the same lower bound if and
only if pilot sequences form a periodic complementary sequence set. [BS01a] covers
most of the material in this section.

• Section 4.4 investigates the many-to-one transmission channel equipped with the linear
MMSE estimator. We again lower bound the maximum mean square error and prove
necessary and sufficient conditions for realizing the bound. It is shown that the lower
bound can be either met or not depending on certain system parameters. Furthermore,
there are also unresolved cases where it is not known whether the bound is attainable.
These results have appeared in [WSB02, SWB03].

• Section 4.5 addresses the problem of constructing optimal sets of pilot sequences.

• In Section 4.6 , we prove that the inverse Golay merit factor and the l1-norm of
aperiodic autocorrelation sidelobes are sufficient for solving the Massey’s problem.
This reduces the problem in the sense these quantities are easy to compute, and
hence can be used for sequence evaluation. Furthermore, we show that there exists a
polyphase sequence with an asymptotically optimal inverse Golay merit factor, which
is a necessary condition for solving the Massey’s problem. [SB00a] partially covers
the material in this section. Theorem 4.7 has appeared in [SB00b].
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4.1 Signal and System Model

Multipath Channel Model

A widely accepted multipath radio channel model is based on the following basic as-
sumption [Tur80, Pro95, Par92]: if the signal

x(t) = Re{s(t)e2πif0t}, t ∈ R,

is transmitted via a time-invariant multipath channel, then it will be received as

r(t) = Re{y(t)e2πif0t}, t ∈ R ,

where

y(t) =
L−1∑

l=0

|hl|eiφls(t− τl) + z(t). (4.1)

Here and hereafter, s(t) is the complex envelope of x(t), f0 is the carrier frequency and
z(t) is a realization of independent zero-mean circularly-symmetric complex Gaussian
noise with variance σ2. According to this model, the transmitted signal is received via
L signal paths, where the l-th path is characterized by its strength |hl| ≥ 0, its relative
delay τl ≥ 0, and its carrier phase shift φl ∈ [−π, π). Obviously, we need to assume that
all paths in (4.1) are resolvable, i.e, we have Tc ≤ |τl − τk| for each 0 ≤ k, l < L, k 6= l.
Consequently, the multipath channel model is characterized by the path-delay sequence
τ = (τ0, . . . , τL−1) and the channel coefficient vector h = (h0, . . . , hL−1) where

hl = |hl|eiφl , 0 ≤ l < L ,

is the l-th complex channel coefficient. For our analysis, we assume that the path delay
sequence τ is simply

τ = (0, Tc, . . . , (L− 1)Tc) .

By this, the L time-shifted signal replicas in (4.1) are received on the first L signal paths,
and hence the only parameter to be estimated is the channel coefficient vector h.

The channel estimation problem is an important issue in wireless communications
systems since, due to the mobility of users and other objects, radio channel parame-
ters vary over time. In modeling mobile radio channels, it is customary to use sta-
tistical models that were developed based on extensive experimental data (see for in-
stance [Tur80] and references therein). In such models, the time dependent vector
h(t) =

(
h0(t), . . . , hL−1(t)

)
is thought of as being a realization of a random vector pro-

cess that reflects statistical properties of the propagation medium. A basic assumption
is that the process is stationary and ergodic. Furthermore, in most practical cases, the
channel coefficients are slowly varying or, equivalently, strongly correlated in time. The
spectral power content of the channel coefficients hardly ever exceeds 100Hz. Thus, a
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channel model, in which the channel coefficients remain constant during a transmission
of pilot signals, is a good approximation for most practical systems. After sending the
pilot signals, the channel estimates are used for detection of an entire data frame, whose
length should be smaller than the coherence time of the channel. Since the channel coef-
ficients are correlated, the estimator can improve the system performance by exploiting
the correlation between channel realizations in different frames. In this thesis, however,
we consider channel estimators that neglect any information from other frames. All
this allows for viewing the channel estimation problem, which is actually a standard
signal estimation problem, as a problem for estimating the static random parameters
h0, . . . , hL−1 taking values in a certain parameter set.

It is safe to assume that the carrier phase shifts φl, 0 ≤ l < L, are realizations of inde-
pendent random variables uniformly distributed on the interval [−π, π) [Tur80, Pro95].
At the same time, the coefficient magnitudes are often modeled as independent Rayleigh
distributed random variables. Both assumptions imply that h0, . . . , hL−1 are realizations
of independent zero-mean circularly-symmetric complex Gaussian random variables. In
all that follows, we assume such a model, although other distributions such as the Ricean
distribution or the Nakagami-m distribution may better reflect statistical properties of
many practical mobile radio channels [Tur80, Pro95].

As aforementioned, we consider a multiuser channel estimation system with K users.
Let hk := (h0,k, . . . , hL−1,k) denote the channel coefficient vector of the user k, 1 ≤ k ≤
K. These vectors are concatenated to give

h := (h0,1, . . . , hL−1,1, h0,2, . . . , hL−1,K) ∈ CKL.

For some given σ2
c > 0, we assume that hk is a realization of a zero-mean complex-valued

random vector with the covariance matrix

Khk
= E[hkhH

k ] = σ2
c I, 1 ≤ k ≤ K, (4.2)

where the average is over all realizations of the random vectors. Since each user operates
in an independent radio channel environment, this implies that

Kh = E[hhH ] = σ2
c I.

Although the assumption of a constant power delay profile in (4.2) rarely holds in prac-
tice, its study gives insight into the performance limits under the worst-case conditions.
Note that in some sense, (4.2) is the worst-case scenario. Furthermore, our results
provide a solid basis for further analysis of more realistic models. In particular, one
gains insight into design of optimal pilot signals for channels with arbitrary power delay
profiles.
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Signal Model

In each fame, all users transmit one or several periods of pilot signals of length T = NTc

where L ≤ N . A pilot signal of the user k is given by

sk(t) =
N−1∑

i=0

si,k ϕ(t− iTc), t ∈ [0, T ),

where ϕ(t) is a unit-energy rectangular pulse of length Tc. Without loss of generality, it
is assumed that ∫ T

0
|sk(t)|2dt = 1, 1 ≤ k ≤ K,

and hence we have
∑N−1

i=0 |si,k|2 = 1, 1 ≤ k ≤ K. We call sk = (s0,k, . . . , sN−1,k) a pilot
sequence of the k-th user. The pilot sequences of all users are represented by the N ×K
matrix S := (s1, . . . , sK), which is also referred to as a sequence set.

Users are assumed to be perfectly synchronized at the chip and symbol level. To
make the channel circulant (periodic), a cyclic prefix of length at least LTc is sent
before transmitting pilot signals. The estimator knows the timing of the users and
observes the received signal during a time interval of length T . The observation is a
noisy superposition of all transmitted signals, each convoluted with an impulse response
of a multipath channel. Due to the periodicity, we can focus on an arbitrary observation
interval. After chip filtering, the observed discrete-time signal is

ym =
K∑

k=1

(sk ~ hk)(m) + zm, 0 ≤ m < N, (4.3)

where ~ denotes the periodic convolution operator and zm is a realization of an indepen-
dent zero-mean circularly-symmetric complex-valued Gaussian noise with the variance
σ2. Thus, using z = (z0, . . . , zN−1), we have

Kz = E[zzH ] = σ2I. (4.4)

A careful examination of (4.3) reveals that the observation vector y = (y0, . . . , yN−1)
can be written as

y =
K∑

k=1

S̃khk + z =
(
S̃1 · · · S̃K

)



h1
...

hK


 + z = S̃h + z , (4.5)

where S̃k ∈ CN×L is defined to be

S̃k := (sk,Tsk, . . . ,TL−1sk), 1 ≤ k ≤ K,
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and T is the right hand cyclic shift matrix. In other words, T is a N×N circulant matrix
whose first column is (0, 1, 0 . . . , 0). Note that by assumption, we have trace(S̃kS̃H

k ) = L
for each 1 ≤ k ≤ K, and hence

trace(S̃S̃H) =
K∑

k=1

trace(S̃kS̃H
k ) = KL. (4.6)

Channel Estimator

We confine our attention to linear estimators. Thus, for some given observation y ∈ CN ,
the estimate ĥk of hk can be written as

ĥk = CH
k y,

where the matrix CH
k : CN → CL is called the estimator of the user k. We consider two

cases:

1. Assuming that S̃k is periodically invertible for each 1 ≤ k ≤ K, the estimator of the
k-th user is the inverse filter:

CH
k = S̃−1

k , 1 ≤ k ≤ K.

Note that we must have L = N for the inverse filter to exist. Since S̃k is circulant in
this case, we have

Ck =
(
ck,Tck, . . . ,TN−1ck

)
,

where the first column of CH
k is the impulse response of the inverse filter:

ck
R = (c0, cN−1, . . . , c1).

Thus, given an observation y ∈ CN , we can write

ĥk =
(
(ck

R ~ y)(0), . . . , (ck
R ~ y)(L− 1)

)T
= CH

k y.

This case is investigated in Section 4.3.

2. In Section 4.4, the second moment statistics σ2
c and σ2 are known at the receiver. The

channel estimator is the minimum mean square error (MMSE) estimator [Lue69].
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4.2 Problem Statement

A general estimation problem is to find a function (estimator) so that the average dis-
tance between ĥk and hk with respect to a given metric (cost function) is as small as
possible. The average is taken with respect to the random vectors y and hk, 1 ≤ k ≤ K.
In this paper, the metric is assumed to be the square error (distance) so that the problem
is to minimize the mean square error (MSE). Due to a linear structure of the estimator,
the normalized MSE of the user k is

θk =
1
L
‖ĥk − hk‖2

, 1 ≤ k ≤ K,

where hk and ĥk are elements of a Hilbert space of complex-valued random vectors with
the norm defined to be [Lue69]

‖x‖2 = trace(E[xxH ]) < +∞.

An important (but trivial) observation is that for any given estimator, MSE still depends
on the choice of pilot sequences. To emphasize this fact, we write

θk(S) =
1
L
‖εk‖2 =

1
L

trace(Kεk
), (4.7)

where Kεk
denotes the covariance matrix of the error random vector εk = ĥk − hk.

Now suppose that C1, . . . ,CK are given. The problem is to minimize MSE of all
users over all possible sets of unit-energy pilot sequences. In doing so, however, we
must guarantee “fairness” among the users in the sense that all users have the same
performance

θ1(S) = . . . = θK(S). (4.8)

Note that in general, minimizing the total MSE
∑K

k=1 θk(S) does not need to result in
(4.8). In contrast, it is easy to see that minimizing the maximum MSE defined to be

θmax(S) := max
1≤k≤K

θk(S),

always leads to (4.8). Thus, the problem is:

Problem 4.1. Let C1, . . . ,CK be given. Find

θmin := min
S⊂SN−1

max
1≤k≤K

θk(S), (4.9)

where SN−1 denotes the unit sphere in CN .

The minimum in (4.9) exists since θmax(S) is bounded and continuous on the compact
set SN−1. To solve this problem, we proceed as follows: First, we prove lower bounds
on 1

K

∑K
k=1 θk(S) ≤ θmax(S), and then attempt to identify sets of pilot sequences for

which θmax(S) attains the lower bounds. Note that θmax(S) = 1
K

∑K
k=1 θk(S) if and only

if (4.8) is satisfied. Any sequence set S∗ for which θmax(S∗) = θmin is called optimal.
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4.3 Channel Estimation with Inverse Filters

In this section, we consider a channel estimation system equipped with a bank of inverse
filters. The statistics of the radio channel are assumed to be unknown at the receiver.
Furthermore, for the inverse filters to exist, we must have N = L, which usually implies
transmission of several short pilot signals. Such a coding schemes was proposed in
[Rup89] and might be useful in indoor wireless systems [Odl94].

4.3.1 One-to-Many Transmission Channel

First, we briefly review a one-to-many transmission channel such as the downlink channel
from a base station to multiple mobile users. The reader is referred to [Rup89] for a
complete analysis of this case. Since all users share one common pilot signal, such a
scenario is equivalent to the single-user case. Consequently, we can drop the index k in
(4.5) and write

y = S̃h + z , (4.10)

where S̃ ∈ CN×N . Note that S̃ is circulant. Given the observation y ∈ CN , the estimate
ĥ of h ∈ CN is given by

ĥ = CHy = CHSh + CHz, (4.11)

where C is circulant. The channel estimator is the (periodic) inverse filter:

Definition (Inverse Filter). Let s = (s0, . . . , sN−1) be a given sequence so that
∀0≤m<N S(m) = S(e

i2πm
N ) > 0. Say that vR = (v0, vN−1, . . . , v1) with |〈v, s〉| = 1 is

the impulse response of the inverse filter if

∀0≤m<N V (m) =
1

S(m)
. (4.12)

Obviously, by the convolution theorem, (4.12) is equivalent to

(vR ~ s)(m) = δm ⇔ ∀1≤j<N ρj(v, s) = 0,

where δ0 = 1 and zero otherwise. Note that for the inverse filter to exist and be unique, it
is necessary and sufficient that none of the discrete Fourier coefficients S(0), . . . , S(N−1)
is zero or, equivalently, that rank(S) = N . We call such sequences periodically invertible
sequences. In the matrix notation, we have CH = S̃−1 so that (4.11) yields

ĥ = S̃−1y = h + S̃−1z. (4.13)

Although h is a realization of a random vector, the probability structure of h is not
known to the estimator. This is equivalent to assuming that h is a vector of unknown
parameters. Thus, if the noise covariance matrix Kz is known, the minimum-variance
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unbiased estimator (Gauss-Markov estimator) is optimal in the sense of minimizing the
norm of the error vector in the Hilbert space of random vectors [Lue69]. Applying the
Gauss-Markov estimate to (4.10) yields

ĥ = (S̃HK−1
z S̃)−1S̃HK−1

z y = S̃−1y,

where we used the fact that S̃ is invertible and the noise covariance matrix is a scaled
identity (4.4). Consequently, if the channel covariance matrix Kh is not known, Kz is
a scaled identity and L = N , the inverse filter is the optimal estimator. Actually, it is
equal to the maximum-likelihood channel estimator as the noise is Gaussian distributed
[Rup89]. Assuming the inverse filter, (4.7) yields

θ(S) = E[‖S̃−1z‖2] = E
[ 1
N

N−1∑

j=0

|ρj(v, z)|2
]

= σ2‖v‖2
2

=
σ2

N

N−1∑

n=0

|V (n)|2 =
σ2

N

N−1∑

n=0

1
|S(n)|2 = σ2 · Q̃(N ; s) ,

where

Q̃(N ; s) :=
1
N

N−1∑

n=0

1
|S(n)|2 . (4.14)

Q̃(N ; s) is referred to as the periodic noise enhancement factor of the sequence s [Rup89,
Odl94]. An application of the Cauchy-Schwartz inequality shows that

1 = | 〈v, s〉 |2 ≤ ‖v‖2
2‖s‖2

2 = ‖v‖2
2 = Q̃(N ; s). (4.15)

Thus, to obtain reliable channel estimates, one should use a pilot sequence whose periodic
noise enhancement factor is as close to 1 as possible. In particular, if Q̃(N ; s) = 1, then
the optimal system performance is achieved. Sequences having such a property are
referred to as periodically self-invertible sequences since, by (4.15), we have

Q̃(N ; s) = 1 ⇔ ∀0≤m<N S(m) =
1

S(m)
.

Thus, periodically self-invertible sequences have a flat power spectrum on the set of
N -th roots of unity {ein∆ω : 0 ≤ n < N,∆ω = 2π

N }, which is satisfied if and only if
all periodic autocorrelation sidelobes of the sequence s are equal to zero. Furthermore,
in the optimum, the inverse filter is equal to the matched filter. The problem of the
existence of periodically self-invertible sequences is discussed in Section 4.5.
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4.3.2 Many-to-One Transmission Channel

Now we consider the multiuser case K ≥ 1. The estimation system model is given by
(4.5). We have the following result [BS01a]:

Theorem 4.1. Suppose that CH
k = VH

k = S̃−1
k for each 1 ≤ k ≤ K. Then, we have

σ2 + σ2
c (K − 1) ≤ max

1≤k≤K
θk(S). (4.16)

Equality holds if and only if S is a set of periodically self-invertible sequences, i. e., if
and only if each sequence in S is a periodically self-invertible sequence.

Proof. For every 1 ≤ k ≤ K, we have

ĥk = VH
k y = hk + VH

k

K∑
j=1
j 6=k

S̃jhj + VH
k z, 1 ≤ k ≤ K.

The two latter terms on the right-hand side are statistically independent so that

θk(S) = E




K∑
j=1
j 6=k

‖VH
k S̃jhj‖2




︸ ︷︷ ︸
Ik

+σ2Q̃(N ; sk) ,

where Ik incorporates the influence of other users. Since, by assumption, the channel
coefficients are uncorrelated, we can write

Ik = E


 1

N

∣∣∣∣∣∣∣

N−1∑

j=0

K∑
l=1
l6=k

(
vR

k ~ sl ~ hl

)
(j)

∣∣∣∣∣∣∣

2
 =

σ2
c

N

K∑
l=1
l6=k

N−1∑

j=0

N−1∑

r=0

|ρj−r(vk, sl)|2 .

For each 0 ≤ j < N , we have ρj(sk, sl) = ρj−N (sk, sl), and hence

Ik = σ2
c

K∑
l=1
l6=k

N−1∑

j=0

|ρj(vk, sl)|2 = σ2
c




K∑

l=1

N−1∑

j=0

|ρj(vk, sl)|2 − 1


 ,

from which it follows that

θk(S) = σ2
c




K∑

l=1

N−1∑

j=0

|ρj(vk, sl)|2 − 1


 + σ2 Q̃(N ; sk), 1 ≤ k ≤ K.
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Now recall that, for any two sequences sk and sl, the following identity holds [Pur77]

N−1∑

j=0

|ρj(sk, sl)|2 =
N−1∑

j=0

ρj(sk)ρj(sl),

and hence, by the Parseval’s theorem,

K∑

k=1

K∑

l=1

N−1∑

j=0

|ρj(vk, sl)|2 =
1
N

N−1∑

j=0

K∑

l=1

|Sl(j)|2
K∑

k=1

1
|Sk(j)|2 ,

where we used the fact that

ρj(vk,vk) = Vk(j)Vk(j) =
1

|Sk|2 , 0 ≤ j < N.

On the other hand, an application of the Cauchy-Schwartz inequality yields

K =
K∑

k=1

1 =
K∑

k=1

|Sk(j)| 1
|Sk(j)| ≤

K∑

k=1

|Sk(j)|
K∑

k=1

1
|Sk(j)| , 0 ≤ j < N,

with equality if and only if |Sk(j)| = 1/|Sk(j)| for each 0 ≤ j < N and 1 ≤ k ≤ K
or, equivalently, if and only if the sequence sk, 1 ≤ k ≤ K is periodically self-invertible.
Consequently, we obtain

K2 ≤
K∑

k=1

K∑

l=1

N−1∑

j=0

|ρj(vk, sl)|2,

and hence

K∑

k=1

θk(S) = σ2
c




K∑

k=1

K∑

l=1

N−1∑

j=0

|ρj(vk, sl)|2 −K


 + σ2

K∑

k=1

Q̃(N ; sk)

≥ σ2
cK(K − 1) + Kσ2.

Equality if and only if S is a set of periodically self-invertible sequences. This proves the
lower bound in (4.16) as we have

1
K

K∑

k=1

θk(S) ≤ max
1≤k≤K

θk(S).

But if S is a set of periodically self-invertible sequences, then 1
K

∑K
k=1 θk(S) = θmax(S).

This is because if S is a set of periodically self-invertible sequences, then Q(N ; sk) = 1
and

∑N−1
j=0 |ρj(vk, sl)|2 =

∑N−1
j=0 ρj(sk)ρj(sl) = 1 are both independent of k, and hence

(4.8) holds.
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Sets of periodically self-invertible sequences exist in case of polyphase sequences [Mow95,
Lue92] so that the lower bound of Theorem 4.1 is tight and we have

θmin = σ2 + σ2
c (K − 1).

Some known results on the existence and construction of periodically self-invertible se-
quences are summarized in Section 4.5. It is worth pointing out that any set obtained
by including K copies of an arbitrary periodically self-invertible sequence is a periodi-
cally self-invertible sequence set, and hence optimal. In other words, to attain the lower
bound (4.16), all users can be assigned the same periodically self-invertible sequence.

Note that in the minimum, the inverse filter is equal to the matched filter. But do
the pilot sequences always form a set of periodically self-invertible sequences if the lower
bound in (4.16) is attained under the matched filter ? The answer is negative as shown
by the following theorem.

Theorem 4.2. Let Ck = S̃k for each 1 ≤ k ≤ K. Then,

σ2 + σ2
c (K − 1) ≤ max

1≤k≤K
θk(S). (4.17)

Equality if and only if S is a periodic complementary sequence set:

K∑

k=1

ρj(sk) =

{
K j = 0
0 1 ≤ j < N

. (4.18)

Proof. Under a bank of the matched filters, we have Q̃(N ; sk) = 1 for each 1 ≤ k ≤ K
so that

K∑

k=1

θk(S) = σ2
c




K∑

k=1

K∑

l=1

N−1∑

j=0

|ρj(sk, sl)|2 −K


 + Kσ2 .

From

K∑

k=1

K∑

l=1

N−1∑

j=0

|ρj(sk, sl)|2 =
N−1∑

j=0

K∑

k=1

K∑

l=1

|ρj(sk, sl)|2 =
N−1∑

j=0

∣∣∣∣∣
K∑

k=1

ρj(sk)

∣∣∣∣∣

2

≥ K2, (4.19)

it follows that

(K − 1)σ2
c + σ2 ≤ 1

K

K∑

k=1

θk(S) ≤ max
1≤k≤K

θk(S).

Equality if and only if S is a periodic complementary sequence set. The lower bound in
(4.19) is the Welch’s lower bound on the sum of the squares of the periodic correlation
magnitudes. It is shown in [Mow95] that in the equality case, one has

K =
K∑

l=1

N−1∑

j=0

|ρj(sk, sl)|2, 1 ≤ k ≤ K. (4.20)
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Thus, if S is a periodic complementary sequence set, then (4.8) holds and the bound
(4.17) is attained.

Note that any set of periodically self-invertible sequences is also periodic complemen-
tary sequence set. However, the converse does not hold. Theorem 4.2 suggests that there
is no advantage in using periodically self-invertible sequences. But this is not quite true.
To see the advantage in using periodically self-invertible sequences, assume that S1 is a
periodically self-invertible sequence set and S2 its arbitrary subset. Then, the difference
S1\S2 is also a periodically self-invertible sequence set. It is clear that this is not true
for periodic complementary sequence sets. In other words, subsets of periodic comple-
mentary sequence sets do not need to be periodic complementary sets. Such sets are
called “not scalable” [HS02]. In contrast, periodically self-invertible sequence sets are
scalable, which has this advantage that pilot sequences do not need to be reallocated in
order to preserve the optimality in systems with a varying number of users.

The lower bound of Theorem 4.1 increases linearly with the number of users. Thus,
in large communication systems, the system performance must be poor even if optimal
pilot sequences are used. Significant performance gains can be achieved by employing a
multiuser estimator.

4.4 Optimal Linear Multiuser Channel Estimation

In this section, we assume that σ2
c , σ

2 and L are known to the estimator. We incorporate
this additional knowledge by considering the linear MMSE estimator. We confine our
attention to the many-to-one transmission channel.

4.4.1 Many-to-One Transmission Channel

Let y ∈ CN be given. A simple application of the orthogonality principle [Lue69] to
(4.5) yields the MMSE estimate

ĥ = KhS̃H
(
S̃KhS̃H + σ2Kz

)−1
y = S̃H

(
S̃S̃H +

σ2

σ2
c

I
)−1

y. (4.21)

Thus, the error covariance matrix Kε = εεH = (ĥ− h)(ĥ− h)H is

Kε = Kh −KhS̃H
(
S̃KhS̃H + σ2I

)−1
S̃Kh = σ2

c I− σ2
c S̃

H

(
S̃S̃H +

σ2

σ2
c

I
)−1

S̃,

from which we obtain

1
K

K∑

k=1

θk(S) =
1

KL
trace(Kε) = σ2

c


1− 1

KL

min{N,KL}∑

i=1

λi(S̃S̃H)
λi(S̃S̃H) + σ2

σ2
c


 , (4.22)
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where, without loss of generality, the eigenvalues λi(S̃S̃H), 1 ≤ i ≤ N, of the matrix
S̃S̃H are assumed to be in non-increasing order: λ1(S̃S̃H) ≥ · · · ≥ λN (S̃S̃H) ≥ 0. Note
that the trace of S̃S̃H is subject to (4.6). The following theorem proves a lower bound
on the maximum MSE [WSB02].

Theorem 4.3. Let Ck, 1 ≤ k ≤ K, be the MMSE estimator as defined above. We have

σ2
c

(
1− 1

max{1, KL
N }+ σ2

σ2
c

)
≤ max

1≤k≤K
θk(S). (4.23)

Equality if and only if

S̃H S̃ = I , KL ≤ N (4.24)

S̃S̃H =
KL

N
I , KL > N. (4.25)

Proof. Let λ = (λ1(S̃S̃H), . . . , λW (S̃S̃H)), W = min{N,KL}, be a vector of the non-
zero eigenvalues of S̃S̃H . Obviously, the left hand side of (4.22) attains its minimum
subject to (4.6) exactly when

F (λ) =
1

KL

W∑

i=1

λi(S̃S̃H)
λi(S̃S̃H) + σ2

σ2
c

becomes maximal subject to ‖λ‖1 = trace(S̃S̃H) = KL. Now since F (λ) is a Schur-
concave function of λ, we must have [MO79]

F (λ) ≤ 1
max{1, KL

N }+ σ2

σ2
c

.

Equality if and only if

λi(S̃S̃H) = max
{

1,
KL

N

}
, 1 ≤ i ≤ W ,

or, equivalently, if and only if (4.24) or (4.25) holds depending on whether KL ≤ N or
N < KL. Thus, we obtain

σ2
c

(
1− 1

max{1, KL
N }+ σ2

σ2
c

)
≤ 1

K

K∑

k=1

θk(S)

with equality if and only if (4.24) or (4.25) holds. But (4.24) implies (4.8), and hence
the lower bound (4.23) is attained if S̃H S̃ = I is true. This is also true if (4.25) holds,
which immediately follows if one considers the corresponding error covariance matrix

Kε = σ2
c I−

σ2
c

KL
N + σ2

σ2
c

S̃H S̃.
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Since the diagonal elements of S̃H S̃ form a vector of KL ones, all elements along the
main diagonal of the error covariance matrix are equal, which implies (4.8).

The bound is either met or not depending on the system parameters K, L and N . The
reader is referred to Section 4.5.

Note that if (4.24) holds, then the MMSE estimator is a scaled matched filter since

ĥ = S̃H
(
S̃S̃H +

σ2

σ2
c

I
)−1

y =
(
S̃H S̃ +

σ2

σ2
c

I
)−1

S̃Hy =
1

1 + σ2

σ2
c

S̃Hy, KL ≤ N.

It immediately follows from

〈Tmsk,Tnsl〉 = ρm−n(sk, sl), 0 ≤ m,n < L ,

that (4.24) holds if and only if all periodic correlation sidelobes are zero within {−L +
1, . . . , L− 1}. For this reason, any sequence set for which (4.24) is true is referred to as
a Periodic Zero Correlation Window (PZCW) sequence set.

On the other hand, if N < KL, we can combine (4.21) with (4.25) to obtain

ĥ = S̃H

(
KL

N
I +

σ2

σ2
c

I
)−1

y =
1

KL
N + σ2

σ2
c

S̃Hy, N < KL.

Thus, also in this case the MMSE estimator is equal to a scaled matched filter. Any
sequence set for which (4.25) holds is referred to as a Periodic Window Welch-Bound-
Equality (PW-WBE) sequence set. To justify this, let R = S̃H S̃ and note that

‖R‖2
F =

K∑

k,l=1

L∑

m,n=1

|〈Tmsk,Tnsl〉|2 =
K∑

k,l=1

L∑

m,n=1

|ρm−n(sk, sl)|2. (4.26)

Since T : CN → CN is a unitary operator, we can apply the the Welch’s lower bound
on the sum of the squares of the inner product magnitudes to KL unit-energy vectors
of length N to obtain [Wel74]

(KL)2

N
≤ ‖R‖2

F =
K∑

k,l=1

L∑

m,n=1

|ρm−n(sk, sl)|2. (4.27)

The following theorem shows that this bound is attained if and only if S satisfies (4.25).

Theorem 4.4. Let N ≤ KL. The lower bound in (4.27) is attained if and only if
S̃S̃H = KL

N I.
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Proof. Let ak, 1 ≤ k ≤ N, be the k-th row vector of the matrix S̃. We have

‖R‖2
F = trace(S̃H S̃S̃H S̃) = trace(S̃S̃H S̃S̃H) = ‖S̃S̃H‖2

F =
N∑

k=1

N∑

l=1

|〈ak,al〉|2

≥
N∑

k=1

‖ak‖2
2 =

1
N

N∑

l=1

12
N∑

k=1

‖ak‖2
2 ≥

1
N

(
N∑

k=1

‖ak‖2
2 · 1

)2

=
1
N

(
N∑

k=1

KL∑

l=1

|ak,l|2
)2

=
1
N

(
KL∑

l=1

‖sl‖2
2

)2

=
1
N

(
KL∑

l=1

1

)2

=
(KL)2

N
.

Equality if and only if both the rows of S̃ are mutually orthogonal and all rows have the
same norm equal to KL

N . This is because due to the Cauchy-Schwartz inequality, the
vector (‖a1‖2, . . . , ‖aN‖2) and the vector of ones (1, . . . , 1) must be linear dependent.
Since trace(S̃S̃H) = KL, this is satisfied if and only if S̃S̃H = KL

N I.

4.5 Construction of Optimal Pilot Sequences

In the previous sections, we derived lower bounds on the maximum mean square error
for two types of linear estimators. Now we address the problem of the existence of pilot
sequences for which the bounds are attained.

Periodically Self-Invertible Sequences

Periodically self-invertible sequences exist in case of polyphase sequences [Chu72, Saf01b].
For instance, the Gauss sequences defined in Section 3.3 are periodically self-invertible
sequences. The situation appears to be more difficult if sequence elements are confined
to belong to some finite alphabet. In case of bipolar sequences, all known sequences
with vanishing periodic autocorrelation sidelobes are of length 4 and other examples
are most likely not to exist [Sch00]. In [Odl94], a modified Legendre sequence is shown
to asymptotically converge to a periodically self-invertible sequence as N → ∞. On
the contrary, methods for constructing q-phase periodically self-invertible sequences are
known. A good overview of known construction methods can be found in [Mow95]. The
reader is also referred to [HK98]. For instance, sets of q-phase periodically self-invertible
sequences of length q2 can be obtained as follows [Saf01a]: Let λ0, . . . , λq−1 ∈ Γq where
Γq is a set of all q-th roots-of-unity. Define a sequence a of length q2 with n-th ele-
ment given by an = λs√

N
ωrσ(s) where n = qr + s and σ is any permutation of the set

{0, . . . , q − 1}. Assuming that λ0 = 1, we obtain q!qq−1 sequences. Now it may be
verified that all periodic autocorrelation sidelobes of these sequences are equal to zero.
For instance, if q = 4, one obtains 1536 sequences of length 16.
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Periodic Complementary Sequence Sets

The problem is significantly reduced in case of periodic complementary sets. Considering
(1.4) reveals that any aperiodic complementary sequence set defined by (2.88) is also a
periodic one (4.18). Obviously, the converse does not need to hold. Thus, unit-energy
columns of any matrix with mutually orthogonal rows form a periodic complementary
sequence set. [Sar83] pointed out that aperiodic complementary sequence sets can be
obtained from any coset of a minimal cyclic code by deletion or insertion of a certain
number of codewords. Thus, some well-known sets of bipolar sequences such as the
dual-BCH codes can be used to obtain periodic complementary sequence sets.

Periodic Zero Correlation Window (PZCW) sequences

By the discussion in Section 4.4.1, we have (4.24) if and only if all periodic correlation
sidelobes within {−L+1, . . . , L− 1} are equal to zero. Note that the size of any PZCW
set is necessarily upper bounded by N

L . A simple observation is that if a is a periodically
self-invertible sequence of length N (all periodic autocorrelation sidelobes are zero), then

sk = T(k−1)La, 1 ≤ k ≤ K =
⌊

N
L

⌋

form a set of bN
L c PZCW sequences of length N . As periodically self-invertible polyphase

sequences exist for any N ≥ 2, the lower bound in (4.23) is tight, and hence we have

θmin = σ2
c

(
1− σ2

c

σ2
c + σ2

)
, KL ≤ N.

Unfortunately, bipolar periodically self-invertible sequences are not known except for
sequences of length 4. Another method that is not based on the use of periodically
self-invertible sequences is reported in [FSKD99, FH00]. Here, we present a somewhat
related construction: Define sequences A(z) = Ar(z) and B(z) = Br(z) (written in the
polynomial notation) of length N = 2r by the following iterative process:

Ar(z) = Ar−1(z2) + zBr−1(z2)

Br(z) = Ar−1(z2)− zBr−1(z2)
A0(z) = B0(z) = 1.

For r = 2, one obtains a = (1, 1, 1− 1) and b = (1,−1, 1, 1) whose periodic correlations
are ρj(a) = ρj(b) = 0, 1 ≤ j < 4 and ρj(a,b) = 0,−1 ≤ j ≤ 1. Now considering
the formula for periodic autocorrelations and crosscorrelations of interleaved sequences
[Lue92] shows that ρj(a) = ρj(b) = 0, 1 ≤ j ≤ N

4 and ρj(a,b) = 0,−N
4 ≤ j ≤ N

4
for every N ≥ 4. The iterative construction above is similar to the Shapiro-Rudin
construction [Rud59] except that instead of concatenating sequences in each iteration
step, they are interleaved. Note that in contrast to these sequences, the Shapiro-Rudin
sequences do not have zero periodic crosscorrelations within the window {−N

4 , . . . , N
4 }.
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Let a and b be two sequences of length N obtained by the recursive formula. Suppose
that L ≥ 2 divides N

4 and S is a set of N
2L sequences of length N = 2r given by

sk = Tb(2k−1)/4cLb, k = 1, 3, . . . ,
N

2L
− 1 sk = Tb(2k−1)/4cLa, k = 2, 4, . . . ,

N

2L
.

It can be verified that S is a PZCW sequence set so that C̃(L;S) = 0 where the maximum
periodic correlation value C̃(L;S) is defined by (1.12). It is worth pointing out that, up
to now, all known bipolar PZCW sequence sets seem to contain at most N

2L sequences.
If L divides N , this is only half of the size indicated by the upper bound.

Periodic Window Welch-Bound-Equality (PW-WBE) Sequence Sets

By Section 4.4.1, S is a PW-WBE sequence set if and only if S̃S̃H = KL
N I, N < KL.

Calculation of the non-diagonal elements of S̃S̃H immediately shows that any PW-WBE
sequence set is a periodic complementary sequence set. The converse holds if L = N .
Indeed, we have

(S̃S̃H)n,m =
K∑

k=1

ρn−m(sk), L = N.

Now assume that L < N . We must differentiate between two cases:

1. N < KL and N ≤ K: Here, any WBE sequence set is simultaneously a PW-WBE
sequence set. This is because the cyclic shift operation preserves the WBE property:

S̃S̃H =
K∑

k=1

L−1∑

l=0

TlsksH
k TN−l =

L−1∑

l=0

Tl
( K∑

k=1

sksH
k

)
TN−l =

L−1∑

l=0

TlSSHTN−l.

Thus, if SSH = K
N I, then we have S̃S̃H = KL

N I. As an immediate consequence of
this, we have

θmin = σ2
c

(
1− 1

KL
N + σ2

σ2
c

)
, N < KL and N ≤ K.

2. N < KL and K < N : In this case, the existence of PW-WBE sequence sets depends
on the parameters L and N . Indeed, it was shown in [WSB02] that there exists
no PW-WBE sequence set if L and N are relatively prime. In [SWB03], after the
first submission of the thesis, the author showed by construction that there exists a
PW-WBE sequence set if N ≤ K · gcd(L, N), where gcd(L, N) denotes the greatest
common divisor of L and N .
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4.6 On the Existence of Sequences with a Small Aperiodic
Noise Enhancement Factor

In this section, we address the question raised by Jim Massey whether or not there exists
a polyphase sequence for which the aperiodic noise enhancement factor converges to 1
as the sequence length tends to infinity [Mas97]. Sequences having a small aperiodic
noise enhancement factor have found applications in signal estimation. They can be also
used for transmission [RNH92], and hence are more desirable than those with a small
periodic noise enhancement factor [Odl94]. The authors of [Rup89, RR96] proposed
a channel estimation scheme for multipath radio channels. This scheme uses a finite-
length invertible sequence and the corresponding inverse filter. For best performance,
it is desirable that the pilot sequence have an aperiodic noise enhancement factor as
close to 1 as possible. Unfortunately, random sequences almost always have large values
and those with a small noise enhancement factor are hard to find. Furthermore, no
systematic methods for constructing such sequences are known [Odl94].

The aperiodic noise enhancement factor of an invertible sequence s of length N is
defined to be

Q(N ; s) :=
1
2π

∫ π

−π

1

|S(
eiω

)|2
dω =

+∞∑

l=−∞
|vl|2 =

1
2π

∫ π

−π
|V (

eiω
)|2dω , (4.28)

where S(eiω) =
∑N−1

l=0 sle
ilω and V (eiω) =

∑∞
l=−∞ vle

ilω. The infinite length sequence
v = (. . . , v−1, v0, v1, . . . ) in (4.28) is the inverse sequence to s in the sense that

∀ω∈[−π,π) V
(
eiω

)
=

1
S

(
eiω

) ⇔ ∀ω∈[−π,π) V
(
eiω

)
S

(
eiω

)
= 1. (4.29)

Note that in contrast to periodically invertible sequences considered in the preceding
sections, for invertible sequences, we have ∀ω∈[−π,π)S(eiω) 6= 0. Thus, the inverse exists
and is unique. By the convolution theorem, we have

(vR ∗ s)(m) =
N−1∑

l=0

vR
m−l sl =

N−1−m∑

l=−m

vl sl+m, = δm, m ∈ Z, (4.30)

where vR = (. . . , v1, v0, v−1, . . . ). A simple application of the Cauchy-Schwartz inequal-
ity shows that

1 =
∣∣∣∣
N−1∑

l=0

v−l sl

∣∣∣∣ ≤ ‖v‖2
2‖s‖2

2 = Q(N ; s).

Equality if and only if

∀ω∈[−π,π) S(eiω) =
1

S(eiω)
⇔ (sR ∗ s)(m) = δm, m ∈ Z. (4.31)
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Sequences that satisfies (4.31) are called self-invertible. The corresponding polynomials
are said to be perfectly flat on the unit circle [Saf01b]. Self-invertible sequences of a finite
length with at least two non-zero terms cannot exist. This is because there are no finite
length sequences with all aperiodic autocorrelation sidelobes equal to zero [Lue92]. As
aperiodically self-invertible sequences do not exist for finite lengths, the aperiodic noise
enhancement factor should at least converge to the optimum as N tends to infinity. For
this reason, Massey [Mas97] stated the following problem:

Problem 4.2 (Massey’s Problem). Is it true that there exists a polyphase sequence
s = (s0, . . . , sN−1) with ∀ω∈[−π,π)S(eiω) 6= 0 so that

Q(N ; s) → 1 as N →∞. (4.32)

Reduction of the Massey’s Problem

[Rup89] and [RR96] employed an exhaustive search method to find bipolar sequences
with a small value of the aperiodic noise enhancement factor. However, such methods
cannot be used for larger values of N . This is especially true in case of the aperiodic
noise enhancement, which is difficult to analyze both analytically and numerically. Note
that given any finite sequence with at least two non-zero elements, the corresponding
inverse sequence is non-causal and of infinite length. To see this, note that s0 (resp.
sneinω with n = N − 1) is the non-zero term of S(eiω) of lowest (resp. highest) degree.
Now suppose that v has a finite length and call vmeimω (resp. vke

ikω) the non-zero
term of V (eiω) of lowest (resp. highest) degree. Since |∑n

l=0 vlsl| = 1 and v must have
at least two non-zero elements to satisfy (4.30), we have m < n and 0 < k. Thus,
V (eiω)S(eiω) is a non-zero trigonometric polynomial with the non-zero term of lowest
(resp. highest) degree given by |s0||vl|e−ilω+i(α1−β1) (resp. |sn||vm|ei(n−m)ω+i(β2−α2))
where sn = |sn|einω+i(α2−β2) and vm = |vm|eimω. However, this contradicts (4.29) so
that v must be a non-causal infinite length sequence.

Since the aperiodic noise enhancement factor is highly intractable, [RR96] considered
the inverse Golay merit factor as a sequence evaluation criterion. In general, the inverse
Golay merit factor is much easier to deal with than the aperiodic noise enhancement
factor. This approach leads to good results in many cases but is not sufficient to solve
the Massey’s problem. To see this, recall that the inverse Golay merit factor G(N ; s)
can be also expressed as a function of the power density spectrum [Lue92]

G(N ; s) = F (N ; s)− 1 =
N−1∑

j=−N+1

|cj(s)|2 − 1 =
1
2π

∫ π

−π
|S(eiω)|4dω − 1

=
1
2π

∫ π

−π

(
|S(eiω)|2 − 1

)2

dω.
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Thus, the inverse Golay merit factor measures the mean square deviation of the power
density spectrum from a perfectly flat spectrum. Obviously, a small aperiodic noise
enhancement factor implies a small value of the inverse Golay merit factor. The converse,
however, does not need to hold. In particular, the limit

lim
N→+∞

G(N ; s) = 0 (4.33)

does not imply limN→∞Q(N ; s) = 1, which becomes clear when one considers that
sequences need not be invertible to satisfy (4.33). On the other hand, for an arbitrary
invertible sequence s, limN→∞G(N ; s) 6= 0 implies limN→∞Q(N ; s) 6= 1. Consequently,
(4.33) is only a necessary condition for solving the Massey’s problem.

To obtain a sufficient (but not necessary) condition for (4.32) to be true, we consider
both the inverse Golay merit factor and the l1-norm of the aperiodic autocorrelation
sidelobes defined to be

D(N ; s) :=
N−1∑

j=−N+1
j 6=0

|cj(s)| = 2
N−1∑

j=1

|cj(s)| − 1. (4.34)

This reduces the Massey’s problem in the sense that both quantities are easy to compute.
The following theorem is a stronger version of the result proven in [SB99a].

Theorem 4.5. Let s ∈ SN−1 be a given sequence for which (4.33) holds. Suppose that
there exists a constant N0 ≥ 1 so that

∀N>N0 D(N ; s) ≤ c < 1, (4.35)

for some positive absolute constant c. Then,

lim
N→∞

Q(N ; s) = 1.

Proof. Let SN (eiω) = S(eiω) for some given N . The power density spectrum can be
written as |SN (eiω)|2 = 1 + 2

∑N−1
j=1 cj(s) cos(jω), from which it follows that

∣∣∣|SN (eiω)|2 − 1
∣∣∣ =

∣∣∣∣2
N−1∑

j=1

cj(s) cos(jω)
∣∣∣∣ ≤ 2

N−1∑

j=1

|cj(s)| = DN (s).

Note that by assumption, we have

∀N>N0

∣∣∣|SN (eiω)|2 − 1
∣∣∣ ≤ c < 1 ⇒ ∀N>N0 |SN (eiω)|2 ≤ 1 + c.

On the other hand, one obtains

1 =
∣∣∣1− |SN (eiω)|2 + |SN (eiω)|2

∣∣∣ ≤
∣∣∣1− |SN (eiω)|2

∣∣∣ + |SN (eiω)|2,
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and hence ∀N>N0 1− c ≤ |SN (eiω)|2. Combining the lower and the upper bound yields
∀N>N0 1− c ≤ |SN (eiω)|2 ≤ 1 + c or, equivalently,

∀N>N0

1
1 + c

≤ 1
|SN (eiω)|2 ≤

1
1− c

.

Consequently, the sequence of polynomials 1
|SN (eiω)|2 is bounded so that, by the Lebesgue

theorem, we have

lim
N→∞

1
2π

∫ π

−π

1
|SN (eiω)|2 dω =

1
2π

∫ π

−π
lim

N→∞
1

|SN (ejω)|2 dω.

By assumption, we have limN→∞G(N ; s) = 0, and hence

∀ω∈[−π,π) lim
N→∞

|SN (eiω)|2dω = lim
N→∞

1
|SN (eiω)|2 dω = 1,

since |SN (eiω)|2 is bounded for all N > N0.

Theorem 4.5 says that if the l1-norm of the aperiodic autocorrelation sidelobes is upper
bounded by some constant c < 1 for all sufficiently large values of N , then (4.33) solves
the Massey’s problem. The following theorem shows that this requirement is too strong
in case of bipolar sequences.

Theorem 4.6. Let a ∈ SN−1 be an arbitrary bipolar sequence of length N > 1. Then,

D(N ;a) ≥ 1, N even

D(N ;a) ≥ 1− 1
N

, N odd .

Proof. The j-th aperiodic autocorrelation of any bipolar sequence a can be written as

|cj(a)| =
∣∣∣∣
N−j−1∑

i=0

ai ai+j

∣∣∣∣ =
1
N

∣∣∣∣
N−j−1∑

i=0

±1
∣∣∣∣ =

1
N
· ∣∣(±1) + · · ·+ (±1)

∣∣,

where (±1) indicate that the sequence element may be either +1 or −1. Note that if
N − j is an odd number, then

1
N
≤ |cj(a)|.

Equality if and only if there is a difference of one between sequence elements that are
equal to +1 and −1. N − j is odd if and only if N and j have opposite parities, i. e., if
j 6≡ N (mod 2). First, let us consider the case when N = 2r and j = 2s + 1, where r, s
are some integers such that 0 ≤ s < r. We have

D(N ;a) = 2
N−1∑

j=1

|cj(a)| ≥ 2
r−1∑

s=0

|c2s+1(a)| ≥ 2
N

r−1∑

s=0

1 =
2r

N
= 1 .
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On the other hand, if N = 2r + 1 and j = 2s for some integers r, s such that 1 ≤ s ≤ r,
one obtains

D(N ;a) ≥ 2
r∑

s=1

|c2s(a)| = 2
N

r∑

s=1

1 =
2r

N
=

N − 1
N

= 1− 1
N

.

It is worth pointing out that the lower bound of Theorem 4.6 is attained if and only if
a ∈ SN−1 is a Barker sequence of length N whose (N − j)-th aperiodic autocorrelation
is equal to zero for each 0 < j < N and (N − j) ≡ 0 (mod 2). In fact, all known bipolar
Barker sequences have this property making them optimal with respect to the l1-norm of
the aperiodic autocorrelation sidelobes [Bau71, GW98]. Unfortunately, bipolar Barker
sequences are known only up to length 13 [Lue92, GW98], and no other examples are
most likely to exist [Sch00].

A Polyphase Sequence with Asymptotically Optimal Merit Factor

Finally, we prove the existence of a polyphase sequence for which the inverse Golay
merit factor converges to zero when the sequence length tends to infinity. Obviously,
this result does not solve the Massey’s problem but at least shows that there exists a
polyphase sequence that satisfies the necessary condition in (4.33).

Define a sequence q = (q0, . . . , qN−1) with n-th element given by

qn =
1√
N

exp
(

iπn2

N

)
, 0 ≤ n < N. (4.36)

The j-th aperiodic autocorrelation (1.1) yields

cj(q) =
exp

( iπj2

N

)

N

N−1−j∑

l=0

exp
(

i2πlj

N

)
, 0 ≤ j < N.

Note that for each 1 ≤ j < N , the sequence 1, exp
( i2πj

N

)
, . . . , exp

( i2π(N−1)j
N

)
is a geo-

metric series with the quotient of any two successive terms equal to exp
( i2πj

N

)
. Thus,

the aperiodic autocorrelation sidelobes of q can be written as

cj(q) =
exp

( iπj2

N

)

N
· 1− exp

( i2πj(N−j)
N

)

1− exp
( i2πj

N

) , 1 ≤ j < N,

from which we have

|cj(q)| = 1
N

∣∣∣∣∣
1− exp

( i2πj(N−j)
N

)

1− exp
( i2πj

N

)
∣∣∣∣∣ =

1
N

∣∣∣∣∣
sin

(πj2

N

)

sin
(πj

N

)
∣∣∣∣∣, 1 ≤ j < N, (4.37)
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where the identity |1− exp(ix)| = 2|sin x
2 | was used. Note that |cj(q)| = |cN−j(q)| so

that we can confine our attention to 1 ≤ j ≤ bN
2 c. The upper bound on the maximum

aperiodic autocorrelation value immediately follows from

|cj(q)| ≤ 1
N

π
N j2

2
N j

=
1
N

πj

2
≤ 1√

N

π√
8
, 1 ≤ j <

⌊√
N

2

⌋
,

and

|cj(q)| ≤ 1
N

1
sin

(πj
N

) ≤ 1
2j
≤ 1√

2
1√
N

,
⌊√

N

2

⌋
≤ j ≤

⌊N

2

⌋
.

Consequently, we have

C(N ;q) = max
1≤j<N

|cj(q)| → 0 as N →∞. (4.38)

The exact values of C(N ;q) can be found in [ML97]. This pointwise convergence, how-
ever, does not imply (4.33). Indeed, whereas (4.38) follows from (4.33), the converse
does not need to hold. 1 The following theorem shows that the inverse Golay merit
factor of the polyphase sequence defined by (4.36) converges to zero for N → +∞.

Theorem 4.7. Let q = (q0, . . . , qN−1) ∈ SN−1 be given by (4.36). We have

c1√
N
≤ G(N ;q) ≤ c2√

N
,

where c1 = 8

π22
3
2

and c2 = π2+4

2
3
2

. Consequently,

G(N ;q) → 0 as N →∞.

Proof. It follows from (4.37) and (1.7) that

G(N ;q) =
2

N2

N−1∑

j=1

∣∣∣∣∣
sin

(πj2

N

)

sin
(πj

N

)
∣∣∣∣∣
2

Let

kN =
⌊√

N

2

⌋
and KN =

⌊
N

2

⌋
.

First we prove the upper bound. If N is odd, we can write

G(Nodd;q) =
4

N2

( kN∑

j=1

|cj(q)|2 +
KN∑

j=kN+1

|cj(q)|2
)

.

1Note that for any sequence s of length N , we have 2 · C(N ; s)2 ≤ G(N ; s).
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On the other hand, if N is even, we obtain

G(Neven;q) =
4

N2

( kN∑

j=1

|cj(q)|2 +
KN−1∑

j=kN+1

|cj(q)|2
)

+
2

N2

∣∣∣∣sin
(

πN

4

)∣∣∣∣
2

≤ 4
N2

( kN∑

j=1

|cj(q)|2 +
KN∑

j=kN+1

|cj(q)|2
)

.

Consequently, we can write

G(N ;q) ≤ 4
N2

( kN∑

j=1

|cj(q)|2 +
KN∑

j=kN+1

|cj(q)|2
)

.

The first and the second term in the brackets are upper bounded separately to give

kN∑

j=1

|cj(q)|2 =
kN∑

j=1

∣∣∣∣∣
sin

(πj2

N

)

sin
(πj

N

)
∣∣∣∣∣
2

≤ N2
kN∑

j=1

∣∣sin πj2

N

∣∣2
4j2

≤ π2

4

kN∑

j=1

j2

≤ π2

4
k3

N ≤ π2

4

(
N

2

) 3
2

=
π2

4 · 2 3
2

N
3
2 ,

and

KN∑

j=kN+1

|cj(q)|2 =
KN∑

j=kN+1

∣∣∣∣
sin

(πj2

N

)

sin
(πj

N

)
∣∣∣∣
2

≤
KN∑

j=kN+1

1∣∣sin(πj
N

)∣∣2 ≤
N2

4

KN∑

j=kN+1

1
j2

≤ N2

4

∞∑

j=kN+1

1
j2
≤ N2

4
1

kN
≤
√

2
4

N
3
2 .

Combining both bounds proves the upper bound since we have

G(N ;q) ≤ 4
N2

(
π2

423/2
N

3
2 +

√
2

4
N

3
2

)
=

π2 + 4

2
3
2

1√
N

.

As for the lower bound, we obtain

G(N ;q) ≥ 2
N2

kN∑

j=1

∣∣∣∣
sin

(πj2

N

)

sin
(πj

N

)
∣∣∣∣
2

>
2
π2

kN∑

j=1

∣∣sin(πj2

N

)∣∣2
j2

>
8

π2 ·N2

kN∑

j=1

j2

>
8

π2 ·N2
·
(

N

2

) 3
2

=
8

π2 · 2 3
2

1√
N

,

which completes the proof.
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By Theorem 4.7, the l2-norm of the aperiodic autocorrelation sidelobes of the se-
quence defined by (4.36) can be made arbitrarily small at the expense of the sequence
length. Polyphase sequences with such a property find extensive applications as pulse
compression codes in radar and sonar [Sch97]. If N is an odd number, the sequence is
not invertible as the corresponding polynomial has a zero on the unit circle. In contrast,
if N is even, numerical results indicate that the aperiodic noise enhancement factor may
converge to 1 when N = 2n → ∞, n ∈ N. This was also conjectured by [Saf01a]. On
the other hand, the l1-norm of the aperiodic autocorrelation sidelobes seems to increase
with O(log(

√
N)). If this was true, then the condition in (4.35) would be too strong to

prove the conjecture.

4.7 Conclusions and Future Work

We investigated pilot-based schemes for multipath estimation in CDMA systems. We
focused on the many-to-one transmission link such as the uplink from mobile users to a
base station. In contrast to the downlink scenario where all users share a common pilot
signal, in the uplink, the channel estimator at a base station must effectively combat
multiple access interference so as to obtain reliable estimates.

First, we considered an estimation scheme in which each user transmits a periodically
invertible sequence. The channel estimator is the corresponding inverse filter. Thus,
except for the information about the transmitted pilot signal and its timing, no addi-
tional knowledge is needed at the receiver. We derived a lower bound on the maximum
mean square error (MSE) and proved that the bound is attained if and only if the pilot
sequences form a set of periodically self-invertible sequences. Consequently, in the min-
imum, the inverse filters are equal to the matched filters. An interesting fact is that the
same lower bound is attained in case of the matched filter when periodic complementary
sequences are used. Unfortunately, the lower bound increases linearly with a number of
users so that in larger communications systems, the performance is expected to be very
poor even when optimal pilot sequences are used.

Performance gains can be achieved by jointly estimating channel coefficients of all
users. In Section 4.4, we assumed that the power delay profile of the radio channel is
known to the estimator and incorporated this additional knowledge by considering the
linear MMSE estimator. We again derived a lower bound on the maximum MSE and
showed that the bound is either met or not depending on some system parameters. In all
the cases where the bound is tight, we considered the problem of constructing optimal
pilot sequences.

Our results clearly show that the MMSE estimator has a huge potential for per-
formance gains over the inverse filter. However, the MMSE performance may be still
unsatisfactory, especially in large communication systems. Non-linear estimators that
exploit the correlation of the fading processes could provide a remedy to this problem. It
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is worth pointing out that although the use of the MMSE estimator requires some addi-
tional knowledge at the receiver, it does not cause additional computational complexity
provided that pilot sequences are chosen appropriately. In particular, if the lower bound
is met, the MMSE estimator is equal to a scaled matched filter.

For future work, it would be certainly interesting to investigate other power delay
profiles among which exponential power distributions are the most interesting ones. It
would be interesting to know the exact impact of the exponent on the system performance
and properties of optimal pilot sequences. This thesis provides a solid theoretical basis
for the study of such systems.
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