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Kurzfassung

Ein faszinierendes Phänomen in räumlich gedehnten Systemen, die sich weit vom ther-

mischen Gleichgewicht befinden, ist die spontane Strukturbildung. Unter den ausgedehn-

ten Systemen heben sich durch ihr vielfältiges raumzeitliches Verhalten insbesondere die

Reaktions-Diffusions-Systeme hervor. Technologische Fortschritte der letzten Jahrzehn-

ten auf dem Gebiet der Abbildungsverfahren erlauben eine immer vollkommenere Charak-

terisierung der Raum-Zeit-Dynamik von Oberflächenreaktionen. Außerdem wurde einer

Reihe von Ansätze nachgegangen um die raumzeitliche Dynamik zu gestalten und zu

kontrollieren. Das spontane Verhalten eines Systems kann durch Verwendung schwacher

Steuerimpulsen in eine bestimmte Richtung gelenkt werden, was eine Kombination vom

theoretischen Verständnis des physikalischen Phänomens und dessen experimentellen

Nachweises voraussetzt. In der vorliegenden Dissertation werden einige Verfahren zur

visuellen Oberflächendarstellung in Experimenten mit externkontrollierten Oberflächen-

reaktionen verwendet, wobei zwei katalytische Reaktions-Diffusions-Systeme und deren

entsprechende Strukturbildung erforscht werden: Die CO-Oxidation auf Platin (110) und

der Lochfraß von Edelstahl.

CO-Oxidation auf Pt(110)-Einkristall-Oberflächen stellt ein bekanntes 2D-System

mit einer Vielzahl möglicher Konzentrationsstrukturen dar. PEEM (Photoemissions-

elektronen-Mikroskopie) wurde zur Erforschung dieser raumzeitlichen Strukturen verwen-

det. Verfahren für periodisches globales Forcieren wurden bei verschiedenen Resonanz-

Zuständen eingesetzt um raumzeitliches Chaos zu steuern und vorher nie gesehene Struk-

turen zu induzieren. Es wird auch die gezielte Einführung von Rauschen, sowie die dabei

auftretenden Strukturen vorgestellt. Des weiteren wurde Interferometrie verwendet um

die Topografie einer ultra-dünnen Platinfolie zu vermessen. Die katalytische Dynamik der

Reaktion und die damit verbundenen thermischen Effekte führen zu einer Deformierung

der Folie und zur Entstehung von raumzeitlichen Strukturen.

Von erheblicher Bedeutung für die Sicherheit von Gebäuden und von Bauteilen in

der Industrie ist das Problem des Lochfraßes von Metallen. Es wurde ein morpholo-

gischer Ansatz zum Verständnis des Prozesses und um den Weg zu neuen Test- und

Verhütungsverfahren zu ebnen unternommen. Eine Kombination zweier Methoden der

Oberflächenforschung, Atomarekräfterastermikrospie und Rasterelektronenmikroskopie,

wurde verwendet um die verschiedenen Stufen der Löcher in Edelstahl unter kontrol-



lierten Bedingungen bildlich darzustellen. Verschiedene präparative Verfahren wurden

ebenfalls miteinander verglichen. Eine nähere Untersuchung der zeitlichen Entwicklung

der generierten Löcher und deren Profile könnte dazu beitragen, neue Methoden zur

Prüfung der Korrosionsfestigkeit von Legierungen zu erarbeiten.



Abstract

Spontaneous pattern formation is a fascinating phenomenon in spatially extended sys-

tems far from thermal equilibrium. Among extended systems, reaction-diffusion systems

stand out for the wealth spatiotemporal behavior that they display. Technological ad-

vances in imaging during the last few decades have allowed an ever improving charac-

terization of the space-time dynamics of surface reactions. In addition, a wide range

of approaches have been pursued to design and control spatiotemporal dynamics. The

spontaneous activity of a system can be steered in a desired direction by applying weak

control impulses; this implies the combination of theoretical understanding of physical

phenomenon with experimental verification. In this thesis, a number of surface imaging

techniques are used in experiments where surface reactions are externally controlled; in

particular, two catalytic reaction-diffusion systems and their corresponding pattern for-

mation are studied: CO oxidation of platinum (110), and pitting corrosion on stainless

steel.

CO oxidation on Pt(110) single crystal surfaces is a well known 2D system with a great

number of possible concentration patterns; PEEM (photoemission electron microscope)

was used for the study of such spatiotemporal structures. Periodic global forcing tech-

niques were applied within different resonant regimes to control spatiotemporal chaos and

to induce never before seen patterns. Purposeful introduction of noise into the system,

and the corresponding emerging structures are also presented. Moreover, interferometry

was used to map the topography of an ultra-thin platinum foil. The catalytic dynamics

and thermal effects involved in the reaction resulted in the deformation of the foil and

the emergence of spatiotemporal patterns.

For general safety and in industry, the problem of pitting corrosion on metals is

crucial. A morphological approach has been done to understand this process and to

pave the way for new testing and prevention techniques. The combination of two surface

techniques, atomic force and scanning electron microscopy, was used to visualize the

pits growth on stainless steel under controlled parameters. Different sample preparation

methods are also compared. The study of the generated holes and their profiles in time

can help develop new methods to test the alloys corrosion resistance.
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Chapter 1

Introduction

“The scientist does not study nature because it is useful; he studies it because

he delights in it, and he delights in it because it is beautiful. If nature were

not beautiful, it would not be worth knowing, and if nature were not worth

knowing, life would not be worth living”

Henri Poincaré

Why are the furs of certain animals, like the leopard (Fig. 1.1), spotted whereas

the furs of others are striped (tiger, zebra)? Why are the spots of the giraffe much

bigger than and different from those of the leopard? Why do some animals, such as the

mouse and the elephant, not have any pattern at all? Why do some animals, such as the

cheetah and the jaguar, have spotted bodies and striped tails, but there are no animals

with striped bodies and spotted tails?

All of these questions can be addressed by a mathematical modeling. James D.

Murray proposed a model [1, 2] that describes a reaction-diffusion system in which two

different chemical products react and propagate through the skin: one which stimulates

the production of melanin (coloring the skin) and one which inhibits this production.

This is an example of a reaction-diffusion system, in which a unique set of differential

equations seems to reproduce most of the animal fur patterns found in nature.



2 Introduction

Although pattern formation has always been a major attraction and artists have

repeatedly been inspired by spatiotemporal regularities in nature, its study as we know

it began in the early 1950’s in two quite different places. First, theoretical work was

done by the English mathematician Alan Turing (1912-1954) on morphogenesis not long

before he died (the term “morphogenesis” is now referred to by the generally more

understandable term “pattern formation”). He showed that the coupling of nonlinear

kinetics with diffusion may lead to spatial differentiation and structures (which were

later named Turing patterns) [3]. Second, completely independent from Turing, there

was the important experimental work of the Russian biophysicist Boris Belousov (1893-

1970). He was the first to report the complex dynamical behavior of nonlinear reaction

kinetics coupled with a diffusive transport in the oxidation of malonic acid [4]. At

that time much of Belousov’s work was either unpublished or unrecognized for many

years. Therefore, the theory of reaction-diffusion lay dormant until around 1968 when

a number of paths came together. A Russian biochemist named Anatoly Zhabotinsky

had been improving Belousov’s experimental work and Western scientists learnt of it

at a symposium in Prague in 1968. At the same time, the (Russian born) Belgian

chemist Ilya Prigogine (1917-2003) and co-workers following up Turing’s work formulated

and analyzed a model for chemical self-organizing non linear reactions (known as the

Brusselator), which fitted in with some of Prigogyne’s earlier work [5]. This earlier work

showed that the spontaneous creation of order is not forbidden by the Second Law of

Thermodynamics, and later played a significant role in Prigogyne’s 1977 Nobel Prize for

Chemistry; by the exchange of matter and energy with the environment, open systems

far from thermodynamic equilibrium are able to export entropy, so that spontaneous

ordered patterns can emerge [6].

The mathematical foundations to adequately describe the nonlinear dynamics,

nowadays adapted to reaction-diffusion systems far from equilibrium, are based on the

work of the French mathematician and physicist Henri Poincaré (1854-1912) [7]. He first

described the complex dynamics of systems with three degrees of freedom. Since then,

nonlinear dynamics has been intensively investigated, in particular chaotic behavior and

instabilities due to parameter changes (bifurcations) [8].

Today, pattern formation is a major branch of nonlinear science, where a common

set of fundamental concepts are used to describe how non-equilibrium processes lead to

(often visible) structures to appear in a wide variety of complex systems within physics,

chemistry, geology, biology, and sociology.
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A particular exemplary reaction-diffusion system are spatiotemporal patterns evol-

ving during chemical reactions on surfaces. The field of surface science was established

about a century ago by Irving Langmuir (1881-1957). “For his discoveries and investiga-

tions in surface chemistry” he was awarded with the Nobel Prize for Chemistry in 1932.

Langmuir was a versatile scientist that dedicated part of his efforts to the foundation of

modern surface science, with key contributions like the invention of the diffusion pump

(of vital importance for vacuum techniques). He also introduced concepts like monolayer

(ML), valence shell, and isotope, and he indicated the importance and lack of knowledge

about heterogeneous catalysis [9].

During the last four decades, Gerhard Ertl (1936- ) and coworkers have further deve-

loped surface science thanks to Ertl’s innovative approach to catalyzed chemical reac-

tions. Partly due to his studies of the catalytic oxidation of CO on platinum, Ertl was

awarded the Nobel Prize in Chemistry 2007. This particular chemical reaction has a clear

practical relevance since CO is the product of incomplete combustion of carbon based

fuels. Due to the extreme toxicity of CO is desirable to convert it to CO2 for which,

among others, cars are equipped with a catalytic converter. The macroscopic kinetics

of the CO-Pt system features an oscillatory reaction rate (Fig. 1.1) [10] and nonlinear

cooperative behavior along the surface [11], which have been extensively studied and

interpreted through imaging techniques and models. Following that research line, and

after the background provided in chapter 2, chapter 3 of this thesis describes global pur-

poseful modifications of the CO-Pt reaction-diffusion system, namely resonant forcing

and the artificial introduction of noise. Next, chapter 4 focuses on the particular case

of an ultra-thin platinum foil: the temperature diffusion and the heat of adsorption and

reaction play a causal role in reshaping the topology of the sample, which is characterized

with the help of a new interferometric setup.

The information provided by direct real-time reaction visualization has frequently

proved to be essential for the advance of surface science, particularly in the study of the

spatial and temporal regularities of pattern formation. In the case of reaction-diffusion

systems, PEEM (photoemission electron microscope, used in chapter 3), as described

in [12] and subsequent improvements done in the Fritz Haber Institute, Berlin, made

it possible to discover the profuse spatiotemporal pattern formation phenomena arising

from the CO oscillatory reaction rates reported some years earlier [13]. Later, tech-

niques like EMSI (ellipso-microscopy for system imaging), RAM (reflection anisotropy

microscopy), and interferometry (as presented in chapter 4) played an important role in

the understanding of active media and cooperative behavior in surface reactions.



4 Introduction

Another relevant surface chemical reaction that presents a cooperative and nonlinear

behavior is the pitting corrosion of metals. In 2004, Rotermund’s group succeeded in

observing the propagation of corrosion on stainless steel with two different microscopes

simultaneously: an ellipsometric and an optical microscope. The combination of imaging

techniques turned out to be a successful approach: autocatalytic onset of pitting [14]

and corrosion front propagation governed by diffusion mechanisms were reported [15].

In the present work (chapter 5), two well-know surface techniques, AFM and SEM, are

combined to take on the problem of the morphology of corrosion pits, aiming at a better

understanding of the process itself and to substantiate old and new models.

Figure 1.1: Left, image of the patterned fur of a leopard (modified from [16]). Right,

plot reproduced from [10]: slow growth of periodic CO reaction rate

oscillations on Pt(110) after an increase of oxygen pressure (marked with

an arrow) from 1.5×10−4 to 2.0×10−4 Torr within 100 seconds (T = 470 K,

pCO = 2.3× 10−5 Torr).



Chapter 2

Background

This chapter pertains to the scientific theoretical frame and the experimental setups

involved in the present thesis. The first sections pay special attention to reaction-diffusion

systems in general, the CO oxidation on Pt(110) in particular, and the corresponding

spatiotemporal pattern formation and imaging. The last part discusses the pitting corro-

sion on stainless steel as a cooperative mechanism and the experimental techniques used

to characterize it.

2.1 Pattern formation and self-organization in reaction-

diffusion systems

Regular patterns are found in abundance in nature, from the ripples of a desert dune to

the spots on a cheetah’s fur. There has been a flurry of recent research activity seeking

to explain their appearance and evolution. The preference of one pattern before another

has turned out to be an inherent nonlinear phenomenon [17].

The term “self-organizing” seems to have been first introduced in 1947 by the

psychiatrist and engineer W. Ross Ashby [18], but did not become commonplace in

the scientific literature until its adoption by physicists and researchers in the field of

complex systems in the 1970s and 1980s.



6 Background

Synergetics is an interdisciplinary field of research that deals with material or immate-

rial systems, composed of, in general, many individual parts [19]. It focuses its attention

on the spontaneous, self-organized emergence of new qualities which may be structures,

processes, or functions. Synergetics looks for general principles of self-organization inde-

pendent of the nature of the individual parts that make up the system.

The inner organization of an open system may increase in complexity without being

guided or managed by an outside source. Such self-organizing systems typically display

spontaneous formation of patterns. They are present in different disciplines such as

biology, cybernetics or human society. Self-organization in chemistry encompasses a

number of systems, namely liquid crystals, autocatalytic networks, reaction-diffusion

systems and oscillating chemical reactions.

Spatial and temporal patterns can be observed in far from thermodynamic

equilibrium systems of reacting and diffusing chemical compounds: diffusion links to-

gether the dynamics of neighboring points in space, and in combination with the non-

linear reaction kinetics, results in the formation of a wide variety of spatiotemporal

structures.

Among homogeneous catalytic reactions, one of the first recorded examples of pattern

formation stemming from a reaction-diffusion phenomena is the 3D Belousov-Zhabotinsky

reaction, where malodyc acid is oxidized by bromate ions in the presence of a ferroin ca-

talyst: oscillating spirals and target patterns are seen with alternating color arms or

rings.

Within heterogeneous catalysis, an outstanding example of 2D reaction-diffusion is

the catalytic CO oxidation on Pt (110), which is one of the two systems to be studied in

this thesis. It features spontaneous oscillations caused by the excitability of the system,

where some local spatial coherence is introduced by diffusion; neighboring molecules or

parts of the surface oscillate in some definite phase relation to one another.

The second system to be studied in this thesis is the corrosion and pit formation

on metals, which can also be considered as a reaction-diffusion process. The transition

in such a chemical system from a negligible small and localized damage to a highly

affected corroded surface can be described using the conceptual framework of nonlinear

dynamics [20]. Numerical simulations [21] based on the latter showed how interactions

among nucleation events can lead to the formation of clusters of metastable pits and to an
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explosive growth in the total number of pits. Later, experiments supported by combined

optical techniques were able to visualize and confirm such a cooperative behavior [14, 15].

The temporal behavior of a reaction system is governed by rate equations involving the

chemical concentrations. Therefore, the spatiotemporal dynamics of a reaction-diffusion

system may well be defined by adding diffusion terms to the rate equations. A general

system of reaction rate equations is given by

u̇ = f(u ,p) (2.1)

where u = (u1, u2, ... , un) represent the state of each individual element within the active

media, p denotes the set of n parameters pj, and f represents the vector containing the

kinetic terms. Eq. 2.1 describes homogeneous dynamics where the reactor is well stirred

and so diffusive transport is absent in the resulting uniform distribution of reactants.

For a system of n species, a general form of the diffusion equation can be written as

∂tu = D∇2 u . (2.2)

The diffusion matrix D often adopts the diagonal form if diffusion of the different species

can be considered independent from each other. Combining Eq. 2.1 with Eq. 2.2, the

general reaction-diffusion equation for n components can be written as:

∂tu = f(u ,p) + D∇2 u . (2.3)

2.2 Stability and bifurcation

The analysis of the system dynamics starts with its temporal behavior, neglecting the

spatial degrees of freedom. Each state of a system like (2.1) corresponds to a point in

phase space, spanned by the variables u = (u1, u2, ... , un), and the temporal evolution of

the system describes its orbits (phase space trajectories). The dynamics is deterministic:

only the initial conditions determine the state of the system through the function f(u,p),

because the time derivative in system (2.1) is of first order. The temporal behavior of the

system is governed by the topology of its phase space, and since the system is dissipative,

conservation laws for quantities such as energy do not exist. It may show regions where

trajectories are trapped when t → ±∞ (limit sets). They are called attractors if the
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limit set is approached for t→ +∞. A system may have various attractors, each having

its attraction basin. Whereas if the trajectories described are periodic, they can be called

limit cycle. All the initial conditions lying in a given basin of attraction will end up in

the corresponding attractor. Separatrices set the limit between neighboring basins of

attraction. Limit sets for t→ −∞ are called repellers.

Next comes the stability analysis of such fixed points us. They are defined by the

condition u̇ = 0. A fixed point us is said to be asymptotically stable if small pertur-

bations δu(t) ≡ u(t) − us of that state are damped down. Stability is checked through

a linear stability analysis. The difference vector δu(t) is inserted into Eq. 2.1 and f is

expanded around us in a Taylor series, where only the linear term is kept, yielding

˙δu = J(us) δu with Jij =
∂fi
∂uj

. (2.4)

The real parts of the eigenvalues λ1, λ2, ... , λn of the Jacobian J at the fixed points

us are the exponential growth rates of the perturbation δu(t) along the eigenvectors of

J, and therefore, determine the stability of us:

• if ∀i ∈ [1, n], Re λi < 0 ⇀↽ us asymptotically stable (2.5)

• if ∃i ∈ [1, n], Re λi > 0 ⇀↽ us asymptotically unstable (2.6)

The application of the linear stability analysis assumes that higher order terms

O(|δu|2) have no influence on the topology of the trajectories close to the fixed points.

If at least one eigenvalue of the Jacobian is zero while the others are negative, a linear

analysis is not sufficient; this happens at bifurcations and will be discussed later. We

will consider now only hyperbolic fixed points, those with eigenvalues real part different

from zero.

Linear stability analysis of a fixed point in a two-dimensional phase space yields to a

quadratic equation for the eigenvalues λ1 and λ2

λ1,2 =
1

2

(
TrJ±

√
(TrJ)2 − 4DetJ

)
, (2.7)

where TrJ denotes the trace and DetJ the determinant of the Jacobian J. Depending

on their eigenvalues, the fixed point stemming from such a system can be stable or

unstable, and can be classified as nodes, foci, or saddle points. A node possesses two real
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eigenvalues. A focus has two complex conjugated eigenvalues. A fixed point is a saddle

point if it has positive and negative eigenvalues. The different types of fixed points for a

two-dimensional vector field are summarized in Fig. 2.1.

Furthermore, to understand the dynamics of a system requires an analysis of its

nullclines. That is, curves, planes, or hyper-surfaces in phase space on which the temporal

derivative of one of the dynamical variables is zero (u̇i = 0). The intersections between

nullclines correspond to fixed points of the system.

Figure 2.1: Hyperbolic fixed points in two-dimensional vector fields. Type and stability

of a fixed point is determined by the eigenvalues of the Jacobian J. The line

DetJ = 0 separates saddles from nodes and the curve (TrJ)2 = 4DetJ nodes

from foci. The insets schematically display the corresponding eigenvalues

in the complex plane.
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2.2.1 Bifurcations and normal forms

At a bifurcation there is a sudden qualitative-dynamics change in response to changes

in one or more parameters of the equations that describe the temporal behavior of a

system, for instance Eq. 2.1 in section 2.1. There will be obvious differences in the phase

portrait, and there will typically be a change in the number and stability properties of

fixed points or periodic orbits. The parameters that lead to these changes are called

bifurcation parameters and the point in parameter space at which the changes occur is

referred to as bifurcation point. If we let µ be a vector of a bifurcation parameter, then

the critical value for µ = µc is a bifurcation point. Local bifurcation theory is concerned

with dynamics changes in the neighborhood of a fixed point or periodic orbit. There also

are global bifurcations with a large-scale impact [22] which will not be considered here.

For simplicity and suitability with the following chapters, let’s just consider a sta-

tionary state us which lies in the two-dimensional phase space and which depends only

on one parameter p. It presents two cases of interest: either one real eigenvalue of the

Jacobian J changes sign, or a pair of complex conjugate eigenvalues of J crosses the

imaginary axis.

In the first case, the matrix J becomes singular (DetJ = 0) at the critical parameter

value p = pc and, according to the implicit function theorem [8, 23], the solution us(p)

is no longer a smooth function of p. This implies a change of stability on the fixed

point and the existence of new stationary solutions; in such so called saddle-point or fold

bifurcation a new stationary stable solution appears. Besides that, another bifurcation

know as pitchfork bifurcation (Fig. 2.2) may also appear if one real eigenvalue becomes

positive. Here, a stable fixed point loses its stability and at the same time two new stable

fixed points appear. In other words, the system is then bistable. In the second case,

the matrix J is invertible at the parameter value p = pc, and the stationary solution

us(p) remains a smooth function at this bifurcation point, the trace TrJ of the Jacobian

vanishes at that parameter value pc and a Hopf bifurcation occurs (Fig. 2.3). For the

present work, this is one of the most important kind of bifurcation because it is the

simplest case leading to periodic behavior in time; once the bifurcation point is crossed,

a focus loses its stability and gives rise to a harmonic limit cycle, small in amplitude,

that follows a square root dependence close to the bifurcation point. Far from the

Hopf bifurcation, the oscillations may become anharmonic and increase significantly in

amplitude.
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Figure 2.2: Pitchfork bifurcations diagrams. a) supercritical and b) subcritical pitch-

fork bifurcations. Stable solutions are shown as bold lines and unstable

solutions as dotted lines.

Some bifurcations (Hopf or pitchfork for instance) may appear in a super- or sub-

critical form. In a supercritical bifurcation, the existing solutions become unstable while

newly emerging solutions are stable. In a subcritical bifurcation the opposite occurs.

Examples are shown in Fig. 2.2 and Fig. 2.3.

One of the main methods of simplifying dynamical systems is to reduce the dimension

of the system. Center manifold theory is a rigorous mathematical technique that makes

this reduction possible, at least near equilibria [23]. Close enough to a bifurcation and

after an eventual short transient, the dynamics of the system 2.1 takes place on the

center manifold, which is of great advantage: close to a bifurcation the study of the

complete dynamics is reduced to the analysis of the center manifold. The so-called normal

form is the differential equation that describes the center manifold system, and as its

dimensionality is normally lower than the phase space dimension n, the reduced system

is usually easier to solve. Furthermore, the normal form is universal and all dynamical

systems undergoing the same bifurcation can be described by the same normal form close

to the bifurcation point.
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Figure 2.3: Hopf bifurcation diagrams for b) supercritical and e) subcritical cases, with

their corresponding phase plane diagrams close to the bifurcation for p < pc

[a) super- and d) subcritical], and p > pc [c) super- and f) subcritical].

Stable solutions are shown as continuous lines, unstable solutions as dashed

lines.

2.3 Distributed active media

A spatially distributed system can be viewed as a large population of interacting non-

linear active elements, with a certain degree of coordination within its individual parts,

which are either distinct units or represent sufficiently small pieces of a bigger continuous

medium. Active media are indeed commonly classified according to the local dynamics of

their individual elements; many systems described by Eq. 2.3 feature either monostable,

bistable, oscillatory, or excitable behavior [24]. A reaction-diffusion system (section 2.1)

is a model of a spatially extended (or distributed) medium and is described by a set of

partial differential equations as shown in Eq. 2.3.
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Figure 2.4: Schematic phase space diagrams showing nullclines and fixed points of a) a

monostable, b) a bistable, c) an excitable, and d) an oscillatory system. The

trajectories in phase space (dashed lines) illustrate in c) a typical excitable

trajectory, and in d) the oscillatory limit cycle. Hollow circles represent

unstable fixed points whereas filled circles are stable fixed points. They

are displayed assuming a clear separation of time scales (u1 dynamics are

faster than u2 dynamics).

2.3.1 Monostable media

Its dynamics are determined by a single stable fixed point (Fig. 2.4 a)). The system

experiences damping after every perturbation, returning to the original steady state.
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2.3.2 Bistable media

Bistable media consist of elements that have two steady states, stable under small per-

turbations. Nevertheless, sufficiently strong perturbations can cause transitions between

these states (Fig. 2.4 b)). The most common pattern in bistable media is a trigger wave;

its propagation triggers the transition from one stable stationary state of the medium to

the other, crossing through an unstable saddle point. The propagation velocity of a flat

front is determined by the properties of the bistable medium [24].

2.3.3 Excitable media

An element of an excitable medium exhibits one stable fixed point corresponding to

the only intersection of the nullclines in phase space (Fig. 2.4 c)). The key idea in

the concept of an excitable medium is that small perturbations on the stationary state

decay and the dynamics converge quickly to the initial steady state, while a large enough

perturbation (above a certain excitability threshold) involves a burst of activity before

returning to its state of rest. This response is strongly nonlinear and is accompanied by a

large excursion of the system’s variables through the phase space. Such initially localized

large perturbation spreads through the system by stimulating neighboring areas to a fast

response, thus keeping the initial impulse alive. In the wake of this traveling pulse the

system is refractory and cannot excite again. This is the recovery phase and once the

refractory time is consumed, traveling waves can pass through the element again, re-

starting the excitation excursion. This circumstance multiplies the number of possible

patterns developed. In two-dimensional media, well known merging patterns are plane

waves, target patterns (expanding concentric circles), and spirals [25]. A broken end

of an excitable pulse curls and evolves into a rotating spiral wave with a characteristic

wavelength and rotation frequency that depend exclusively on the system properties.

Once triggered, parameter changes may cause the spiral wave to undergo drift motion,

meandering [26, 27], or transit to chemical turbulence [28]. The wave velocity is normally

determined by the reaction parameters and the diffusion coefficient. Two propagating

waves annihilate each other after colliding. In reaction-diffusion chemical systems a fast

response can propagate through diffusive coupling with adjacent areas.
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In three dimensions, excitation waves can produce intricate figures such as scroll

waves, rings, or knots [29].

Excitability is observed in a wide range of systems, namely lasers, chemical reactions,

ion channels, neural systems, cardiovascular tissue, and climate dynamics. Common to

all of them is the existence of a “rest” state, an “excited” (or “firing”) state, and a

“refractory” (or “recovery”) state.

2.3.4 Oscillatory media

The phase space of an oscillator typically shows an unstable fixed point and a stable limit

cycle, hence the system cannot settle down to a stationary configuration (Fig. 2.4 d)). For

any initial condition, the oscillator ends up at the limit cycle to remain there. Kuramoto

[30] and Winfree [31] demonstrated that the onset of synchronization in oscillator popula-

tions represents a phase transition. Below the transition point, the motion of individual

oscillators in a multitude is not correlated. Nevertheless, as the interaction between

them becomes stronger, correlations between dynamical states of oscillators in a fraction

of the multitude develop: the frequencies of these oscillators become identical. Near the

transition point, the size of the coherent oscillator group is small, but the group grows

as interactions are increased. Moreover, the synchronization transition is accompanied

by symmetry breaking. The phase of collective oscillations is arbitrary, but is fixed in

a particular realization. Basic concepts of statistical theory of critical phenomena can

be used in the studies of synchronization. Macroscopic oscillations may emerge from

the mutual synchronization of a large number of more elementary, individual oscillatory

processes. The mechanisms governing the spontaneous organization of such cyclic ele-

ments are intricate, and may be considerably dissimilar for different systems. Diffusively

coupled arrays of periodic oscillators may exhibit rotating spiral waves, target patterns,

and spatiotemporal chaos (chemical turbulence). The wave velocity is normally deter-

mined by the reaction parameters and the diffusion coefficient.
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2.3.5 Chemical turbulence

Turbulence is a spatiotemporal phenomena, generally understood as irregular, appa-

rently random motion of a fluid. In the context of reaction-diffusion extended sys-

tems, chemical turbulence is referred to as spontaneous spatiotemporal chaotic dynamics

arising through diffusive coupling, the local dynamics itself being non-chaotic. This si-

tuation typically occurs in excitable and oscillatory media when diffusive coupling desta-

bilizes uniform oscillations in the course of time, amplifying existing phase gradients,

and it is characterized by irregular and spatiotemporal disordered patterns. An analysis

of such turbulence can be performed based on the statistical properties of topological

defects in the system [32].

Different turbulence suppression methods are considered in chapter 3, where global

modifications of one of the reaction parameters are purposefully applied to the system;

different ways of control and suppression of chemical turbulence on a surface reaction

are there presented.
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2.4 Catalytic oxidation of CO on platinum (110)

The occurrence of kinetic oscillations during the catalytic oxidation of CO on a

platinum surface under continuous flow conditions has been investigated extensively in

the recent past. These oscillations are coupled to periodic transformations between the

two structural modifications of the Pt (110), which propagate across the surface area

of the sample. Such a far from equilibrium system shows nonlinear surface reactions

stemming into a number of interesting dynamics and spatiotemporal behaviors. The in-

vestigation of structures arising from the lateral variation of concentration species at the

surface requires adequate techniques, and only became possible after the development of

surface imaging methods like PEEM [33, 34], Reflection Anisotropy Microscopy (RAM),

or Ellipso-Microscopy for Surface Imaging (EMSI) [13].

The present section is focused on a specific reaction-diffusion system, the catalytic

oxidation of CO on platinum (110). The processes of adsorption of oxygen and CO, the

mechanism of the reaction, the concentration pattern formation, and the reaction rate

oscillations are presented. Finally, the experimental setup used in this work is described.

2.4.1 Carbon monoxide and oxygen adsorption on Pt(110)

This section overcomes the catalytic CO oxidation; first, a paragraph about the

platinum (110) structure, which is followed by an explanation of the corresponding CO

and oxygen adsorption. The reaction mechanism and its modeling can be better under-

stood afterwards.

2.4.1.1 Platinum (110)

At room temperature, the clean surface of the face centered cubic (fcc) platinum crystal

has a lattice parameter a = 3.92 Å (Fig. 2.6), and the closest-neighbors distance between

the platinum atoms d = 2.77 Å. The corresponding (110) surface has a (1×2) structure,

also called missing row reconstruction because free rows alternate with platinum rows

along the [11̄0] direction (Fig. 2.7) [35, 36, 37, 38, 39]. The missing row structure features

a large fraction of energetically advantageous (111) microfacets. Nevertheless, platinum
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is known to undergo an adsorbate-induced reconstruction [39, 40, 41] that yields a (1×1)

structure, with the atoms arranged as in the bulk.

Figure 2.5: Face centered cubic (fcc) crystal structure: the shaded plane represents

a) the (110) plane and b) the (111) plane. Reproduced from [42].

Figure 2.6: Hard-sphere model showing the (1×1) structure of the Pt(110) surface.

Top view (left) and cross section (right) of the first layers. Reproduced

from [43].

2.4.1.2 Carbon monoxide on Pt(110)

CO adsorption on d-metals (such as Cu or Pt) is molecular. It adsorbs through a weakly

bound precursor state that allows diffusive mobility through the surface. On a Pt(110)

crystal, CO molecules adsorb following the donation-backdonation Blyholder mechanism

[44, 45] shown in Fig. 2.8. The 5σ and the 2π frontier molecular orbitals (MO) of the
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Figure 2.7: Hard-sphere model showing the (1×2) structure of the Pt(110) surface.

Top view (left) and cross section (right) of the first layers. Reproduced

from [43].

CO molecule are substantially modified by the presence of the metal surface. A filled

5σ single orbital interacts with the empty dσ metal orbital leading to a partial transfer

of electron density to the metal. At the same time, the filled dπ metal orbital overlaps

with the 2π antibonding molecular orbital of the CO. As the 5σ and 2π MO are localized

mainly at the carbon atom, the bonding occurs with the carbon facing the metal surface.

Initially, for the (1×2) structure, the CO sticking probability on Pt(110) s0
co ≈ 1

[35, 46, 47], and remains almost constant for low coverage of CO. Nevertheless, for

higher coverage (u ≥ 0.35) the sticking coefficient decreases. According to Gasser and

Smith who described it in [48], sco = s0
co(1−uq) where q is a mobility parameter between

3 and 4. The CO saturation coverage on Pt(110) is equal to unity [35, 46, 49, 50].

The adsorption of CO on the missing row reconstructed (1×2) Pt(110) surface causes

a lifting of the reconstruction. LEED analysis showed that the process starts for coverage

of 0.2 ML (monolayer), and a bulk truncated (1×1) phase is completed for coverage of

0.5 ML [51]. STM observation [40] revealed that at 300 K this process is initiated by

homogeneous nucleation of small characteristic (1×1) patches. Their further growth is

limited by thermal activation; migration of Pt atoms is restricted to a few lattice sites.

At higher temperatures, correlated jumps cause the lateral displacement of longer chains

and the enhanced surface mobility leads to the formation of larger, strongly anisotropic

(1×1) islands.
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Figure 2.8: a) the Blyholder model of the CO bonding on platinum [44]. Molecular

orbital corresponding to b) a free carbon monoxide, and c) a CO-metal [52].

CO is diffusively mobile on the Pt(110) surface, and has a diffusion constant that

depends on the crystallographic orientation. On both the (1×1) and the (1×2) phases,

the diffusion constant is larger in the [11̄0] direction than in the [001] orientation [53].

Thermal desorption spectra of adsorbed CO show a strong coverage dependence on

the occupied lattice sites. For coverage below 0.4 ML a single peak is measured between

510 and 530 K (see Fig. 2.10 a)). This peak shifts towards lower temperatures with

increasing coverage up to 0.5 ML, to remain fixed for even higher coverage. Nevertheless,

at temperatures between 400 and 425 K, a second peak appears at higher coverage that

shifts to lower temperatures with increasing coverage [46, 54, 55]. At saturation, the

areas under both peaks are equal.
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2.4.1.3 Oxygen on Pt(110)

Figure 2.9: A schematic one-dimensional representation of the Potential Energy Surface

(PES) for oxygen atomic adsorption (a), dissociative chemisorption of O2

(c), and molecular physisorption of O2 (p) on Pt(110) (1×2). Q represents

an undefined reaction coordinate. Reproduced from [56].

Dissociative oxygen adsorbtion on the Pt(110) surface takes place at temperatures

above 240 K [57]. Electron Energy Loss Spectroscopy (EELS) data suggests that oxygen

follows a precursor mediated adsorption process [56]: the physisorbed state is a precursor

to chemisorbed dioxygen, and the latter is the precursor state to the dissociative oxygen

state (schematically represented in Fig. 2.9). Below 0.25 ML coverage oxygen is ad-

sorbed into a fluxional state with constant rearrangement of adatoms, where alternating

sites along the [11̄0] rows can be occupied due to lateral repulsive interactions between

these adatoms. A different regime is reached with coverage between 0.25 and 0.5 ML,

where oxygen remains fixed at the fcc sites on the walls of the valleys (microfacets).

Alternating sites are occupied, again, thanks to repulsive interactions between adatoms.

The structures would give rise to a c-(2×4) or a (2×2) LEED pattern with ordering across
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the missing rows ([001] direction). Instead, at oxygen coverage below 0.5 ML, a (1×2)

LEED diffraction pattern is retained, indicating disorder between the rows [56]. At

coverage greater than 0.5 ML, additional slow oxygen uptake produces a coverage-

dependent variable unit mesh structure consistent with low density domain walls; these

structures are consistent with a (10×2) pattern at coverage of 0.75 ML (experimentally

measured) [56].

The activation energies for oxygen diffusion are high and strongly dependent on

the crystallographic orientation. Therefore, diffusion is basically limited to the [11̄0]

direction, never perpendicular to the missing row fringes, and highly coverage depen-

dent [53]. Nevertheless, for the particular experiments presented in the following chap-

ters, an experimental temperature range below 540 K allows for neglecting oxygen

diffusion.

Oxygen desorbs exclusively in molecular form. Thermal desorption spectra for low

coverage shows a single peak around 840 K (see Fig. 2.10 b)). As the coverage increases,

the peak shifts to lower temperature, and for high coverage, desorption takes place at

740 K [56, 57] by a direct process.

Figure 2.10: Temperature programmed desorption spectra. a) CO from Pt(110), for

different surface fractional coverage θ = 1.0, 0.9, 0.7, 0.51, 0.38, 0.28,

0.15. Reproduced from [54]. b) oxygen from Pt(110) for different surface

coverage: a 0.11 ML, b 0.17 ML, c 0.24 ML, d 0.28 ML, e 0.33 ML,

f 0.41 ML, g 0.45 ML, h 0.47 ML, i 0.52 ML. Reproduced from [56].
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2.4.2 Reaction mechanism

The previous sections were dedicated to the adsorption of CO and oxygen on Pt(110)

independently. This section considers a system combining both species in the gas phase,

and their reaction on a platinum sample. It has been well established that the reac-

tion mechanism follows a Langmuir-Hinshelwood scheme [58], described by the following

three equations:

where ⊗ stands for a free adsorption site and the index ‘ad ’ indicates that the species

is in adsorbed state. Both CO and oxygen have to adsorb from the gas phase on the

surface for the catalytic reaction to take place: an adsorbed CO molecule can react

with an adsorbed oxygen atom from a neighboring lattice site to form carbon dioxide,

which is immediately released to the gas phase (see Fig. 2.11 a)). This process leaves two

vacant sites on the platinum surface, available for adsorption of new reactants. Adsorbed

CO molecules are bound to the surface considerably more weakly than oxygen atoms.

Within the frame of the experimental temperature conditions of this work, desorption

and diffusion mobility of CO have to be taken into account, while both can be neglected

in the case of adsorbed oxygen.

In the reaction environment, the reactants compete for the empty adsorption sites; for

a number of reasons CO has advantages in that competition over oxygen. First, a single

empty adsorption site is enough for a CO molecule to stick on the catalytic surface, while

oxygen needs two adjacent free sites. Second, precursor mediated processes allow CO

molecules to hop between different locations, increasing the probability of binding to an

adequate adsorption site. Third, oxygen forms a very open adlayer structure, allowing

CO to adsorb and react (see Fig. 2.11 a)). In contrast, a fully CO covered surface

prevents completely the adsorption of oxygen and, hence, poisons the reaction [59] (see

Fig. 2.11 b)). This behavior is referred to as asymmetric inhibition and induces bistable

dynamics in a wide range of parameters, with a mainly oxygen covered reactive state

and a CO covered non-reactive state coexisting beside each other.
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Figure 2.11: a) illustrative drawing of the principles involving adsorption of CO and

oxygen molecules, diffusion of CO, and CO2 formation. b) CO com-

pact adsorbate layer completely covering the platinum and poisoning

the reaction.

An additional mechanistic step is required in order to explain the reaction mechanism,

crucial for the development of the excitable and oscillatory dynamics: an internal negative

feedback loop (see Fig. 2.12). It consists of a structural transition of the Pt(110) surface

between (1×2) and the (1×1) bulk terminated structure. When the crystal is freshly

prepared, the surface reconstructs a (1×2) structure (missing row phase). The driving

force for this reconstruction is the formation of (111) microfacets that are energetically

favored. When CO is admitted to the (1×2) surface, this reconstruction will be lifted

and a phase transition to the (1×1) phase occurs [35, 40, 55]. This reconstruction starts

at a fractional coverage of 0.2, and is considered complete at a coverage of 0.5. The

activation energy for this phase transition is 29 kJ/mol [60]. Under oscillation conditions,

when there is a flow of both oxygen and carbon monoxide, the following can happen for

particular reaction parameters (temperature and partial pressures): when the surface is

CO covered (low reactivity), the reconstruction is lifted but the sticking coefficient of

oxygen on the non-reconstructed surface is higher compared to the reconstructed one

by a factor of 2 [61]. More oxygen will therefore be able to adsorb in the competitive

adsorption process. As a consequence, the surface will show an oxygen covered state.

And once the surface is oxygen covered, with no CO species to lift the reconstruction,

it will reconstruct again. The reconstructed surface has a low sticking coefficient for

oxygen, thus enabling CO to take over. Now the surface is mainly CO covered and the
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oscillation cycle (loop) starts again. In this picture, the velocity of the phase transition

is a key factor, because it determines the system oscillating period.

Figure 2.12: Schematic illustration of the adsorbate induced structural transition (feed-

back loop) of the Pt(110) surface.

2.4.2.1 Spatial coupling

Two different mechanisms establish spatial coupling between the different locations on

the catalytic surface: CO diffusion and gas phase global coupling. Surface diffusion of

adsorbed CO molecules gives rise to local coupling between neighboring sites. Diffusion

is fast along the [11̄0] orientation of the Pt(110) single crystal surface, while it is slower

by a factor of about 2 parallel to the [001] orientation of the substrate lattice. Due to this

diffusion anisotropy, spatial patterns are elliptically deformed. The second type of spatial

coupling acts via gas phase as a consequence of mass balance in the reaction. Since the

mean free path of the gases at low pressures is typically large in comparison to the size
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of the chamber, local partial pressure variations that result from the consumption of the

reactants, quickly extend to affect the whole system [62]. Consequently, the gas-phase

coupling is global. It has been experimentally found that the interplay between diffusion

and gas phase coupling can lead to such phenomena as synchronous oscillations [63],

standing waves [34], and cellular structures [64]. The partial pressures variations due to

gas phase coupling are typically less than 2 - 3 % in magnitude [65].

An additional coupling may stem from the reaction thermodynamics and the conse-

quent heat flows, even with associated formation of patterns. Only for higher pressures

[66, 67] or ultrathin catalysts (chapter 4) [68, 69] the effect of thermal coupling plays a

role. At lower pressures isothermal conditions prevail and heat transport is absent.

2.4.2.2 Faceting

Below the critical temperature of 530 K, another reversible restructuring process takes

place on the Pt surface during the CO oxidation: faceting. The initially flat platinum

surface facets under the influence of the catalytic reaction into new orientations; (100)

steps are accumulated during the (1×1) to (1×2) reconstruction process. The direction

of faceting ([110]) is perpendicular to the direction of the (1×2) reconstruction ([001])

[70]. Above this critical temperature, thermal reordering keeps the surface flat.

Faceting is a dissipative Turin structure [71], only obtained under non-equilibrium

conditions in a continuous flow of CO and oxygen [70]. The facets are formed on a

time scale of several minutes, and their size is of the order of 100 Å [70, 72]. The

faceting process on Pt(110) increases the catalytic activity due to a higher oxygen sticking

coefficient on the faceted surface [73, 74]. PEEM (see below) cannot image surface

faceting, and only becomes apparent indirectly through its influence on the reaction

dynamics.

2.4.2.3 Subsurface oxygen

Another feature of the reaction mechanism is the formation of subsurface oxygen. Under

certain conditions, oxygen atoms not only adsorb on the surface, but an oxygen species

may also migrate underneath the surface top layer. After being stored below the surface
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for a certain time, oxygen atoms may later be released back onto the surface. The

formation of subsurface oxygen only happens on the nonreconstructed (1×1) surface,

and in return, subsurface oxygen tends to stabilize this phase, affecting the reaction

dynamics. It is for instance responsible for the reflective collision of traveling excitation

waves, a rather unusual phenomenon in reaction-diffusion systems [63]. PEEM (see

section 2.4.6.2) images subsurface oxygen as very bright patches [75]: a dipole inversion

when subsurfaced causes a decrease of the oxygen work function.

2.4.3 Thermodynamics of the CO oxidation on platinum

The heat of adsorption of CO and of oxygen on platinum are crucial parameters for the

kinetic models of the CO catalytic reaction on Pt(110), as well as the surface desorption

energies of CO2. In the literature concerned with this point, insofar pertinent for the

present section, special attention is paid to the work of Wartnaby et al. [76] within D. A.

King’s group because their data was obtained with the same kind of ultra-thin platinum

sample employed here in chapter 4. The cited authors also show in great detail how the

adsorption heat of CO and oxygen is strongly correlated with the sticking probability.

2.4.3.1 Adsorption of CO on Pt(110)

Different research groups using different methods [35, 76] agree that the adsorption heat

of CO on Pt(110) at 300K has an initial value of 183 kJ/mol, decreases monotonically

to 146 kJ/mol at 0.5 ML, reaching 125 kJ/mol at the saturation coverage of 0.88 ML.

2.4.3.2 Adsorption of O2 on Pt(110)

The microcalorimetric heat measurement by Wartnaby et al. [76] was pioneering work

on the interaction of oxygen with Pt(110); the following data is taken from their work.

Initially, adsorption heat is 332 ± 10 kJ/O2 mol, declining with coverage to

215 ± 24 kJ/O2 mol at 0.35 ML, and reaching a steady-state value of 153 ± 50 kJ/O2

mol for higher coverage.
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2.4.3.3 Thermodynamics of the reaction

The reaction enthalpy of the carbon dioxide formation CO + 1
2

O2 −→ CO2 is

-283.17 kJ/mol [77]. There are two experimental possibilities to let this reaction run

on the whole platinum surface in a controlled way: a CO (O) monolayer covers the sur-

face and reacts completely away with O (CO), releasing CO2 to the gas phase. These

chemical reactions are called titrations and the next paragraphs are centered in these

two particular reactions, including data extracted from [76, 78, 79].

2.4.3.4 Titration of an oxygen monolayer with CO on Pt (110)

The enthalpy change associated with this reaction is described by:

∆H = ∆HCO2 −∆Had,O, (2.8)

where ∆HCO2 is the formation enthalpy of CO2, and ∆Had,O the adsorption energy of

oxygen per CO2 mol.

2.4.3.5 Titration of a CO monolayer with oxygen on Pt (110)

The standard enthalpy formation for this reaction can be written as:

∆H = 2∆HCO2 − 2∆Had,CO, (2.9)

where ∆HCO2 is the formation enthalpy of CO2, and ∆Had,CO the adsorption energy of

CO per CO2 mol.

2.4.4 Mathematical model

Krischer, Eiswirth, and Ertl developed a kinetic model to describe the temporal

dynamics of the catalytic oxidation of CO on Pt(110), consisting of a set of ordinary

differential equations (ODEs) and neglecting the spatial degrees of freedom: the KEE

model [80]. Depending on the choice of external parameters, the model is able to repro-

duce monostable, bistable, excitable, and oscillatory dynamics. Subsequently, diffusive
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coupling was introduced to the model to reproduce spatially extended systems [81]. The

KEE model is well established and has been successfully used to study the dynamics

of catalytic CO oxidation on Pt(110) numerically. Many experimental observations of

spatiotemporal pattern formation in the CO oxidation system could be reproduced at

least qualitatively [82, 83, 84, 85, 86].

2.4.4.1 The KEE model

The model decomposes the entire reaction into elementary steps and consists of three

coupled ordinary differential equations for the local dynamics:

where u is the CO coverage, v the oxygen coverage, and w the local fraction of the

surface found in the nonreconstructed (1×1) structure. The three of them are normalized

between zero and one, and together can be regarded as an example of a dynamical system

of type 2.1 (see section 2.1).

The production of carbon dioxide with rate constant k3 is involved in the first two

equations. Desorption reduces the CO coverage with a rate constant of k2, while for

oxygen it can be neglected (see section 2.4.1). The adsorption processes of CO and oxygen

are determined by the respective impingement rates k1 and k4, the sticking coefficients s0
co

and s0
o, and the partial pressures pCO and pO2 of the two components. The CO diffusion

term D∇2u has also been added [81], as pointed out above.
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Both sticking coefficients are coverage dependent. For sco a precursor effect has to

be considered and is modeled following Gasser and Smith [48]. In the case of oxygen

sticking so, a second order kinetics in the fraction of free sites needs to be considered and

the difference in sticking probability between the (1×1) and (1×2) surface structures has

to be taken into account. Hence, the initial sticking probabilities of CO and oxygen on

the clean surface can be written:

In the third equation of the KEE model, the constant k5 represents the transition rate

between the (1×1) missing row structure and the (1×2) bulk terminated surface. The

function f , describing the equilibrium value of w, is exclusively determined by u, because

only CO induces a lifting of the (1×2) reconstruction. In the original form of the KEE

model [80], a piecewise approximation of f was used. For computational convenience, a

different approach has been frequently used in the more recent versions [87] which only

deviates lightly from the piecewise original approximation,

f(u) =
1

1 + exp
(
u0−u
δu

) . (2.10)

Here, the parameter u0 determines the threshold value above which adsorbed CO

molecules significantly affect the surface structure, and δu determines the steepness of the

threshold. Both functions, f and the original piecewise form, are compared in Fig. 2.13.

Three external control parameters can be varied freely, namely the partial pressures

pCO and pO2 of the two reactants and the temperature. The rate constants k2, k3, and

k5 show a significant temperature dependence that is generally modeled assuming an

Arrhenius-type relation,

ki = νi exp
(−Ei
kT

)
. (2.11)

The reaction specific parameters such as sticking coefficients or activation energies

were taken from the literature or determined in experimental studies of the individual

reaction steps [80, 88, 89].
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Figure 2.13: Plot of function f(u) with u0 = 0.35 and δu = 0.05 (solid line) and its

piecewise original form (dashed line). Below u ≈ 0.2, the surface is found

almost completely in the reconstructed (1×2) structure, whereas the non-

reconstructed (1×1) structure is almost exclusively present above u ≈ 0.5.

Reproduced from [65].

Introducing a spatial dependence of the variables u, v, and w, allows to model the

dynamics on an extended single crystal surface. Since diffusion of oxygen can be neglected

at the temperatures considered here, local coupling between the different locations on

the platinum surface is only established by diffusion of CO (D∇2u).

2.4.4.2 Modifications

The KEE model has been changed and modified in many ways. In the previous section

were mentioned the changes concerning f and the addition of the diffusion term D∇2u. A

reduced two-variable version of the model was proposed with qualitatively similar results

for many aspects of the spatiotemporal dynamics [90, 91]. Spiral waves [84, 92] and

the emergence of chemical turbulence in the excitable regime [28, 93] were successfully

studied using the two-variable version.

Furthermore, the three-variable model has been extended to account for additional

phenomena that were considered irrelevant in the original version. An important effect is

the global coupling through the gas phase. The model can be extended by an additional

equation accounting for the evolution of CO partial pressure in the reaction chamber. In

numerical simulations of the extended model, global coupling was found to influence the
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spatiotemporal dynamics significantly, inducing e.g. standing waves and cluster patterns

[94, 95, 96, 97, 98, 99, 100]. Subsurface oxygen was taken into account for new extensions

of the original KEE model [63, 87, 97], so too the overall effect of faceting of the single

crystal surface [80].

2.4.5 Pattern formation in the CO oxidation system

After discussing the kinetics, the microscopic mechanism, and a mathematical model

for the CO oxidation on Pt(110), as done in the previous sections, the corresponding

phenomena of nonlinear kinetics and appearance of spatiotemporal patterns can be better

understood. The present section briefly reviews the main milestones in the research on the

CO oxidation on platinum single crystal surfaces, and touches upon the more significant

self-organized structures.

The group of E. Wicke discovered in 1972 the oscillations of the reaction rate in the

catalytic oxidation of carbon monoxide [103]. The desire to explain the origin of this

kinetic instabilities set off a burst of activity on the field of oscillatory surface reactions,

of which the catalytic CO oxidation on platinum surfaces is one of the most extensively

studied examples [59]. Investigations were focused on processes at well-defined single

crystal surfaces under low pressure conditions.

In 1982 G. Ertl and co-workers observed for the first time oscillatory kinetics on single

crystal surfaces in CO oxidation on Pt(100) [104]. In 1986, oscillations were also reported

on Pt(110) [10], where the authors showed a broader range of behavior, including period

doubling and deterministic chaos [105]. Subsequently, control techniques like periodic

forcing were introduced [106, 107].

In the 1990s, the development of new spatially resolving optical techniques such as

PEEM (in greater detail in section 2.4.6.2) [108] meant a significant step forward in

spatiotemporal pattern formation research. Furthermore, ellipsomicroscopy for surface

imaging (EMSI) and reflection anisotropy microscopy (RAM) [13] made it possible to also

perform studies of pattern formation at atmospheric pressures [66, 109]. All these optical

techniques resolve spatially images of concentration patterns on a catalytic surface in real

time.
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Figure 2.14: Snapshots of PEEM images displaying typical patterns during CO oxida-

tion on Pt(110). Dark areas in the images correspond to predominantly

oxygen covered regions, and bright areas indicate mainly CO covered re-

gions. a) rotating spiral waves [101]. The different spatial wavelengths of

spirals are due to the existence of different size surface defects to which

some of the spirals are pinned. b) target patterns [33], c) standing waves

[102], and d) chemical turbulence (taken from experiments corresponding

to chapter 3). The size of the crystal area shown is: a) 400x400 µm2, b)

200x200 µm2, c) 300x200 µm2, and d) 300x300 µm2.
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Proposed by Krischer, Eiswirth, and Ertl, and published in 1992 [80], the KEE model

(introduced in section 2.4.4) describes the oscillations and excitable behavior in the CO

oxidation reaction on Pt(110). It immediately became a powerful tool for the theoretical

assesment of experiments, and has allowed to effectively reproduce the behavior of the

system, at least qualitatively.

Among the surface chemical reactions, by far the richest variety of spatiotemporal

patterns has been found in CO oxidation on Pt(110). The basic phenomenon under-

lying these patterns is that of a chemical wave. The latter can be defined as a steep

concentration gradient, traveling with constant velocity in space. It was already recog-

nized by Luther in 1906 [110], that chemical waves can arise if an autocatalytic reac-

tion is involved. These chemical waves may appear as simple reaction fronts, or they

may form pulses, spirals, target patterns, or even more complex forms including chem-

ical turbulence [33, 34, 59, 101, 111, 112]. Some examples of these patterns are dis-

played in Fig. 2.14. Similar spatiotemporal structures have also been observed on other

substrates, such as Pt(100), Pt(210), and polycrystalline Pt samples, so too for other

surface chemical reactions [59].

In later studies efforts were made to guide the processes of self-assembly on the

catalyst at will, focused on purposeful global and local modifications to influence the

concentration patterns. Global control of parameters, like the modulation of the CO

partial pressure, induced new patterns and suppressed chemical turbulence [65, 82, 113].

Local control has been based on the inclusion of microstructures on the catalytic surface

[114, 115, 116], on the use of lasers to increase the reactivity in a very localized way, as

well as on the combination of both [42, 117]. More information about the state of the

research in this field can be found in [118].
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2.4.6 Experimental setup

An introduction to the different setups and techniques that were used for the experimental

part of this work related with the CO-Pt system follows.

2.4.6.1 Ultra high vacuum system (UHV)

Figure 2.15: Sketch of the UHV chamber including pumping and gas supply system.

The experiments with CO oxidation on Pt(110) presented in this work were performed

in a stainless steel ultrahigh vacuum (UHV) chamber, schematically shown in Fig. 2.15.

Two rotary vane pumps establish a pre-pressure of 10−3 mbar, which is measured with

two Pirani gauge. Zeolite traps prevent the lubricating oil of these roughening pumps

to contaminate the UHV chamber. The vacuum inside the chamber is maintained by

three turbomolecular pumps and a titanium sublimation pump. Combining all of them,

the pressure in the 60 liter chamber is kept at a base pressure of 10−10 mbar. The

pressure inside the UHV chamber is measured with a baratron differential capacitance

manometer for low (103 - 1 mbar) and medium vacuum (1 - 10−3 mbar), and an ionization

manometer for high (10−3 - 10−7 mbar) and ultrahigh vacuum (10−7 - 10−12 mbar).

Leaks and chemical species tests are done with a differentially pumped quadrupole mass

spectrometer (QMS).
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A PEEM (see below) is set as the main microscopic technique used in chapter 3. In

addition, the chamber is equipped with standard UHV surface science instruments such

as low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES).

The sample used in chapter 3 is a Pt(110) single crystal, 10 mm in diameter. A

sample holder manipulator allows its controlled positioning inside the chamber, and

electric stepper motors allow precise movements in the x, y, and the z directions, as well

as radial and azimuthal turns. A halogen projector lamp is mounted inside the sample

holder for heating the crystal directly from behind. The platinum sample was prepared

by repeated cycles of argon ion sputtering, oxygen treatment, and annealing. Purified

gases (Ar 5.0, CO 4.7, and O2 5.0) were supplied into the chamber by manually operated

valves, and were used for the experiments as well as for the sample preparation. Besides

that, to ensure stable partial pressures in the chamber, the supply of gases was regulated

by means of electromagnetic valves that were automatically controlled by an electronic

feedback system. In particular, the CO and oxygen partial pressures could be computer

controlled and modified via Labview.

2.4.6.2 Photoemission Electron Microscope (PEEM)

The imaging instrument used in chapter 3 to study the spatiotemporal patterns that arise

at CO oxidation on platinum is the PEEM. It allows the direct real-time visualization of

adsorbates, and has been used extensively since the early 1990’s to study heterogeneous

catalysis [33, 34, 108, 119]. PEEM, schematically represented in Fig. 2.16, yields spatially

resolved information based on the work function difference between adsorbates across the

sample surface. PEEM is a vacuum instrument and can only work at pressures up to

10−6 mbar, therefore it is differentially pumped (as can be seen in Fig. 2.15), allowing a

maximum pressure of 10−3 mbar at the sample.

The emission of photoelectrons from the sample is caused by photons originated from

uniform illumination by a 200 W deuterium discharge ultraviolet lamp; the angle of

light incidence is ∼ 75 degrees to the surface normal. To capture the highest number

of emitted photoelectrons, the sample is placed close to the objective (4 mm). The

cloud of emitted electrons is accelerated by a 20 kV potential between the sample and

the PEEM. A system of three lenses then magnifies the local electron distribution by a

factor of 102 - 103 by imaging the latter onto a channelplate of 4 cm in diameter [119].
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The channelplate intensifies the local electron current by about 103 and is converted into

a light intensity image by a phosphor screen. This image is recorded by a CCD camera

at a rate of 25 frames per second, which means that this instrument has a reasonably

good temporal resolution. The imaged areas have a diameter of 500 µm with a spatial

resolution of 1 µm.

Figure 2.16: Section view of the PEEM [108].

In air, the absorption of oxygen limits the spectrum of the lamp towards high

energies at around 6.8 eV, while the Pt electrons work function ϕ is ∼ 5.8 - 6.0 eV.

The work function of an oxygen covered platinum surface is higher than the clean sur-

face (4ϕ = +0.8 eV), causing a decrease in the emitted photoelectron and consequently

also a decrease on the PEEM image intensity. The increase of the work function for CO

covered areas is less than that of the oxygen covered platinum (4ϕ = +0.3 eV) thereby

increasing the number of emitted photoelectrons and the brightness of the image. This

means that in the present work, dark PEEM images represent oxygen covered while

bright ones represent CO covered platinum. Further information about Rotermund’s

group PEEM can be found in [120].
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2.4.6.3 Michelson interferometer

Reaction thermal effects were observed at low pressure when the CO oxidation takes place

on an ultrathin platinum substrate [68]: such thin films exhibited heat induced surface

expansions. To quantify the latter, surface topography methods based on interferometry

patterns turned out to be a suitable tool, and therefore an interferometer is used in

chapter 4 to characterize a Pt thin foil during the processes of species adsorption and

CO2 production.

Interferometers are optical tools used for the high-precision measurement of wave-

length, distance, index of refraction, and temporal coherence of optical beams. They

are based on the superposition of waves with the same frequency and amplitude to de-

tect differences between them, adding to each other when in-phase, and canceling each

other out when in opposite phase. Applications are found in a large variety of fields,

including astronomy, fiber optics, optical metrology, oceanography, seismology, quantum

mechanics and plasma physics [121].

Figure 2.17: Simplified reproduction of a Michelson interferometer [42].

There is a number of known interferometer types, namely the Mach-Zehnder inter-

ferometer (used in integrated optical circuits), the Fabry-Perot interferometer (widely
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used in telecommunications and spectroscopy), or the Sagnac interferometer (used in

navigation) [121]. Besides that, a notable example is the Michelson interferometer, which

is used in chapter 4 of this work to measure the temperature induced expansion of a

platinum ultra-thin foil.

Albert Abraham Michelson developed the interferometer named after him in 1881,

using it in collaboration with his colleague Edward Williams Morley in 1887 in the

Michelson-Morley experiment in which this interferometer proved (against their own

expectation) the non-existence of luminiferous ether [122]. The Michelson interferometer,

schematically depicted in Fig. 2.17 consists of a source of coherent light, a beam splitter

(a partially reflective mirror), two mirrors, and a light detector. Interference fringes

are produced by splitting a beam of monochromatic light in the beam splitter, so that

each beam strikes a mirror. When the reflected beams are brought back together at the

detector, an interference pattern is formed based on the different light paths. If these

two paths differ by a whole number (including 0) of wavelengths, there is constructive

interference and a strong signal at the detector. If they differ by a whole number and a

half wavelengths, destructive interference weakens the signal. The path difference may

be the result of a relief or bulge on the surface of one of the reflecting mirrors. And that

is the case in chapter 4, where a platinum sample plays the role of one of the mirrors,

and the interference fringes carry information about the surface profile.

Let’s consider one of the mirrors of a Michelson interferometer as fixed and perfectly

perpendicular to its incident beam (reference mirror), while the other mirror has an

adjustable position:

Mirror perpendicular to its incident laser beam A laser beam would illuminate

a small spot, so the interference is hard to see. To spread out the light ray a lens can

be placed between the laser and the beam splitter. This spreads out the beam and

makes the interference easier to be seen. An interference pattern of dark and bright

rings, or fringes, is seen on the viewing screen, as shown in Fig. 2.18 a). However,

this spreading also means that only the central ray of the laser beam is still traveling

on a straight line through the interferometer. All the surrounding rays are traveling at

some angle, depending on how close to the center of the beam they are. Thus rays at

different radii from the center of the laser beam travel a different total distance through

the interferometer. This causes the interference pattern we see to look like a bullseye or
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target shape, with concentric rings of bright and dark fringes. As the distance mirror-

beam splitter is changed (d in Fig. 2.18 a)), the maxima and minima of the wave

interference alternate, and dark or bright spots in the very center of the fringes can be

seen.

Figure 2.18: Representation of a Michelson interferometer with its corresponding inter-

ference pattern reconstructed at the detector. a) shows the two mirrors

perpendicular to their incident laser beans. In b) the mirrors are slightly

tilted. Reproduced from [42].

Mirror slightly tilted When one of the mirrors is tilted (even tenths of a degree),

the maximal peak of interference is shifted out of the viewing screen (Fig. 2.18 b)) and

the secondary maxima are imaged as parallel fringes. If in addition, one of the mirrors

is not perfectly flat, the interference stripes would appear distorted. This is the kind of

pattern that characterizes the topography of a thin Pt foil in chapter 4.
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2.5 Pitting corrosion on stainless steel

As mentioned before, a part of the thesis has been focused on the nonlinear aspects of

pitting corrosion on stainless steel. The following section will present a brief introduction

into the vast field of corrosion.

Metallic corrosion is a physicochemical process which consists of the degradation

of a metal exposed to a reactive environment. Pitting corrosion is a sort of localized

corrosion of major practical importance [123]; it does not extend over the metal surface

but penetrates into its interior, causing this way most of the failures of metallic structures.

Pit growth usually starts on chemical impurities, inclusions, or, in the case of extremely

pure metals, the vulnerable spots are dislocations and physical defects. While pits grow,

the composition of the electrolyte changes locally due to the hydrolysis of metal ions.

The aggressiveness of the medium increases close to the dissolution site leading to the

acceleration of the corrosion process [124, 125]. This also yields a cooperative bistable

behavior, where spreading fronts can be predicted [126] and experimentally observed

[15]. That is, pitting corrosion is an autocatalytic process, strongly associated with

threshold phenomena [127]. This section provides the electrochemical background in

addition to the experimental information that complete chapter 5, where single pits are

characterized.

2.5.1 Corrosion mechanism

The evolution of pitting corrosion of stainless steel when in contact with a chloride so-

lution involves three distinct stages: nucleation, metastable growth, and stable growth

[128]. Experimental results suggest that pit formation occurs at weak spots of the pro-

tective chromium oxide layer: inclusions, defects, scratches, metal dislocations, or areas

in contact with an anion concentration (e.g. Cl− ions) exceeding a critical value [124].

At that vulnerable spot, the electrolyte has direct access to the oxide-free metal surface,

and causes the saturated solution of corrosion products within the initial cavity. The

aggressiveness of the medium increases in and close to the dissolution site, leading to

acceleration of the corrosion process [130]. Besides chlorides, other anions implicated in

pitting include fluorides and iodides. Fig. 2.19 depicts the nucleation, growth, possible

propagation, and passivation of a pit. Each pit produces a small spike in the electrical
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Figure 2.19: Schematic diagram of the pitting corrosion process, following Pastorius

and Burstein [128]. b) onset of the corrosion in one of the inclusions shown

in a). c) the pit grows while the aggressive anions start a new corrosion

process in a close inclusion. d) passivation of the main site as the old

surface oxide collapses and a new one forms. e) corresponding current

through the metal during a), b), c), and d). Reproduced from [129].

current through the sample, indicating an anodic reaction that dies out in few seconds.

Typically, the corrosion reaction implies the oxidation of iron, and the formation of iron

hydroxide and hydrochloric acid as follows:

Fe → Fe2+ + 2e−

Fe2+ + 2Cl− → FeCl2 (2.12)

FeCl2 + 2H2O ⇀↽ Fe(OH)2 + 2HCl .
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Pit growth is controlled by the material composition, the pit bottom potential, and

the relative rate of metal dissolution and of ion transport in the liquid phase [124]. If

the electrolyte becomes saturated, salt may precipitate on the pit wall leading to an

abrupt cessation of the pit growth process. On the other hand, if the concentration of

aggressive anions decreases significantly inside or in the vicinity of a dissolution site, the

bare metal surface becomes prone to oxidation, passivating. Unstable pitting, involves an

intermittent regime of metastable growth caused by temporary repassivation of previously

active corrosion pits. With a lifetime on the order of seconds, metastable pits can form

at potentials below the pitting potential, which is associated with the initiation of stable

pits [127]. Stable pits happen when corrosion lasts indefinitely in time: a delicate balance

must be maintained between the metal dissolution and the ion transport towards and

away from the active surface. In other words, stable pits survive the metastable stage

and continue to grow, whereas metastable pits repassivate and stop growing [127].

Unstable pitting is normally related with vertical and/or horizontal grain attack, and

undercutting, while stable pit growth is pron to semispherical shapes (Fig. 2.20). In

the pitting formation there is a set of critical potential values found [127]: the pitting

potential (φp) and the repassivation potential (φr), which is lower than the former. Stable

pits form above φp, and will grow at potentials above φr.

Figure 2.20: Schematic representation of different common pit shape: a) semispherical,

b) horizontal grain attack, c) vertical grain attack, and d) undercutting.

Reproduced from [131].
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2.5.2 Experimental setup

This section offers a schematical introduction into the principles of the surface imaging

techniques employed in chapter 5, as well as a description of stainless steel 316 and of

the three electrode setup used for the electrolytic corrosion experiments.

2.5.2.1 Stainless steel: AISI 316

Figure 2.21: XPS depth profiles of the passivation films developed on AISI 316:

a) film formed in air, and b) electrochemically formed film after eight po-

tentiodynamic polarization cycles in 0.1 M NaOH solution. Reproduced

from [132].

Stainless steels are iron based alloys containing chromium. They achieve their stain-

less characteristics through the formation of an invisible and adherent chromium rich

oxide film: the chromium forms a passivation layer of chromium(III) oxide (Cr2O3) when

exposed to oxygen; Fig. 2.21 shows in detail the composition of the passivation layer

formed in air and in a NaOH solution [132]. As the passivation film requires oxygen

to repair itself, stainless steels have poor corrosion resistance in low-oxygen and poor

circulation environments (e.g. tunneled cavities). AISI 316 is a general purpose variety

of commercial stainless steel (the second most common grade after 304). It belongs to
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the group of the austenitic steels because it has a high nickel and chromium contents,

which provide a superior level of corrosion resistance. This category is also known for

its ductility and weldability as well as for its ability to withstand extremely low tempe-

ratures. 316 steel is used in the manufacture and handling of food and pharmaceutical

products where it is often required in order to minimize metallic contamination. SS316

is also frequently found in nuclear reprocessing plants. Often referred to as “A4” in

accordance with the International Organization for Standardization ISO 3506, its typical

composition is 0.13 % C, 0.31 % Co, 18.18 % Cr, 0.38 % Cu, 1.75 % Mn, 2.40 % Mo,

12.25 % Ni, 0.016 % S, 0.35 % Si, and 64.23 % Fe (based on [14]).

2.5.2.2 Three electrode setup

The study of surface corrosion processes presented in the present work was performed

using an electrolytic cell, where a chemical reaction is purposefully driven by an external

supply of voltage (accelerated corrosion). An electrochemical cell can be made using a

three electrode configuration, including working, counter, and reference electrodes (as

seen in Fig. 2.22).

The aim is to control the potential drop across the interface at the surface of the

working electrode (i.e., the stainless steel interfacial potential) while the pitting corrosion

takes place. The electrode-solution interface is thought of as a sheet with positive or

negative charge (the surface of the electrode) in contact with a sheet of the opposite

charge next to it (the solution) that is called the electrical double layer. To control

or to measure the interfacial potential between working electrode and solution, at least

one more electrode is needed: the counter electrode. The interfacial potential of the

counter electrode in a two electrode system does not remain constant, but varies as the

current passes through the cell, and therefore the potential at the stainless steel cannot

be independently measured. This problem is overcome by using a third electrode, the so

called reference electrode. This ensures that the potential between the working and the

reference electrodes is controlled. The current passing through the reference electrode

can be further diminished by using a high-input-impedance operational amplifier for the

reference electrode input.
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Figure 2.22: a) schematics of a three electrode cell: working electrode (WE), reference

electrode (RE), and counter electrode (CE). b) the corresponding voltage

drop across the system. R represents the electrolyte resistance, I the

current measured, V the externally applied voltage, φDL the interfacial

potential (DL stands for double layer), and φRE the WE-RE potential.

Reproduced from [129].

2.5.2.3 Scanning Electron Microscopy (SEM) and Atomic Force Microscopy

(AFM)

To gain high resolution information about created pits two scanning microscopies have

been used, namely the SEM and the AFM; both will be discussed now.
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SEM The earliest known work describing the concept of a SEM was published by

M. Knoll (1935) [133] who, along with other pioneers in the field of electron optics,

was working in Germany. Subsequently M. von Ardenne (1938) constructed a scanning

transmission electron microscope (STEM) by adding scan coils to a transmission elec-

tron microscope. The instrument was further developed by Charles Oatley and first

commercialized by Cambridge Instruments [134].

Figure 2.23: Sketch of a SEM.

Images in a SEM are generated by focusing a beam of high energy electrons onto the

surface of a sample and detecting signals from the interaction of the incident electrons

with the sample’s surface (Fig. 2.23) [134, 135]. The gathered signals may be secondary

electrons, back scattered electrons, and characteristic x-rays. In a SEM these signals

come not only from the primary beam impinging upon the sample, but from other inter-

actions within the sample near the surface. The SEM can operate with a resolution of

1 - 20 nm [135]. SEM images have great field depth that yields a characteristic three-



48 Background

dimensional appearance that is very suggestive of a relief perspective, extremely helpful

for understanding the surface structure of a sample.

AFM In 1986, Binnig, Quate, and Gerber first reported the invention of the AFM in

their highly cited article [136]. Its precursor, the scanning tunneling microscope (STM)

was developed in the early 1980s by Binnig and Rohrer [137]. AFM operates by measuring

attractive or repulsive forces between a tip and the sample. The tip, generally monolithic

silicon 15 - 20 µm height with a radius of curvature < 10 nm, is positioned at the end of

a cantilever beam shaped much like a diving board. As the tip is repelled by or attracted

to the surface, the cantilever beam deflects. Typically, the amplitude and phase of the

deflection is measured using a laser spot reflected from the top of the cantilever into

an array of photodiodes (Fig. 5.4). A plot of the laser deflection versus tip position on

the sample surface provides the resolution of the hills and valleys that constitute the

topography of the surface.

Figure 2.24: Sketch of an AFM.
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One of the most common AFM operation modes is the tapping mode, involved in

the pitting corrosion analysis of this work. The cantilever is made to oscillate with a

piezo-element with a high amplitude (typically greater than 20 nm) when the tip is not

in contact with the surface. The oscillating tip is then moved towards the surface until it

begins to tap the surface lightly. During scanning, the vertically oscillating tip alternately

contacts the surface and lifts off, generally at a frequency of 50,000 to 500,000 cycles per

second. As the oscillating cantilever begins to intermittently contact the surface, its

oscillation is necessarily reduced due to energy loss caused by the tip contacting the

surface. The reduction in oscillation amplitude is used to identify and measure surface

features, as good as atomic resolution. This technique can be used with samples in air

or in a fluid, allowing in situ electrochemical experiments (as presented in chapter 5).
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Chapter 3

Global control on the catalytic CO

oxidation on Pt(110)

The knowledge of an extended system opens doors to the control of its dynamics,

and the control of its dynamics can be used to test and support prediction models.

The present chapter deals with control techniques applied to reaction-diffusion systems,

mainly aiming at suppressing chemical turbulence. In particular, techniques for pur-

poseful global modifications of the reaction parameters of the catalytic CO oxidation

on Pt(110) are detailed. This chapter is divided into two large sections, each of them

corresponding to a different global control technique:

• Resonant forcing

• Effect of noise

Both are based on CO partial pressure modulation in the reaction chamber (schematically

shown in Fig. 3.1). The special experimental techniques and implementations for each

section are described. The arising spatiotemporal patterns are observed with PEEM,

analyzed, compared with numerical results, and discussed.
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Figure 3.1: Experimental setup with external forcing and noise.

3.1 Resonant forcing

Periodic forcing can be understood as a global control technique, and it is a common

phenomenon in nature too. It plays an important role in any system with a certain

time regularity, for instance plankton production, the human heartbeat, tidal currents,

pollution models, or circadian rhythm [106, 138, 139, 140]. Periodic forcing has attracted

considerable interest in the last decades both in theory and practice [141, 142]. This

section presents the particular case of spatially uniform resonant periodic forcing of the

CO-Pt system. A preliminary approach precedes the setup implementations. Then, the

experimental results for different forcing regimes are presented and commented on.

3.1.1 Preliminary approach

3.1.1.1 Single nonlinear oscillators

The temporal response of a single oscillator to a small stimulus (known as forcing), if

periodic in time, can be either quasiperiodic (unlocked) or periodic (locked), depending

upon the magnitude of two external determining parameters of that stimulus: the forcing

amplitude γ and the forcing frequency νf [143]. In the frequency-locked state, the system

may oscillate with a frequency different from its natural frequency ν, where the range
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of detuning ν − ν0 over which frequency locking can be observed expands for increasing

forcing amplitude γ. This is reflected by tongue-shaped regions of resonance in the

frequency-amplitude plane. Within these so-called Arnold tongues, the frequency of the

forced oscillator is correlated by a definite mathematical relation with the frequency of

the external force, νf/ν = n/m, where the general case of an n:m resonance is denoted as

sub-harmonic (super-harmonic) if n > m (n < m). An example of such Arnold tongues

is shown in Fig. 3.8 and will be discussed in section 3.1.3.

Periodic forcing and entrainment of single oscillators are both well understood, and

have been investigated in the context of many different systems [144]. Ordinary diffe-

rential equation models [145] and experimental approaches [146] have been used to study

one-dimensional maps [147]. However, much less is known about the effect of a time-

periodic stimulus on spatially extended oscillatory systems [143].

3.1.1.2 Extended systems of oscillators

The response of a spatially extended system of oscillators to periodic parameter modula-

tion is more complicated than that of a single oscillator: the oscillation at different points

in the continuum can variate in amplitude and phase. Besides frequency-locked uniform

oscillations, the variation of frequency and amplitude of the external force can lead to

a multiplicity of complex spatiotemporal phenomena in such systems. More specifically,

the system can respond in such a way that the ratio of the frequency of the resulting

oscillation to that of the perturbation (ν/νf ) is a rational number (entrainment). It can

also yield to a quasiperiodic, or even a chaotic behavior. In the particular case of n:m

resonance, different parts of the system can be locked to any of the n distinct phase

states, and fronts will be observed that separate these different phase locked states.

An important group of oscillators extended system in which these phenomena can

be investigated experimentally are chemical reaction-diffusion systems with oscillatory

kinetics. Previous studies were mostly carried out using the periodically forced light-

sensitive Belousov-Zhabotinsky (BZ) reaction [145]. Resonant pattern formation in this

system has been systematically investigated as a function of the forcing parameters νf

and γ [143, 148, 149]. A variety of space-time patterns could be stabilized, and detailed

studies of resonant phase clusters [150] and front instabilities were performed [151].
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In recent years, a number of heterogeneous catalytic reactions were established as

model systems for the study of self-organization in nonlinear reaction-diffusion sys-

tems [59]. These are chemical reactions with high industrial relevance. When observed

on well-defined single crystal surfaces, these systems are truly two-dimensional and in-

dividual reaction steps can be analyzed with surface science diagnostics under ultrahigh

vacuum conditions. Thus, contrary to homogeneously catalyzed reactions in aqueous

phase, their mechanisms are often simple and well understood. The oxidation of CO on

Pt(110) under low-pressure condition was found to exhibit stable periodic oscillations of

the CO2 formation rate for particular conditions of partial pressures and temperature;

since then, the CO-Pt system has been repeatedly used for the study of periodic forcing

of a self-oscillating surface reaction [106].

By contrast to chaotic oscillators, the local oscillations in the CO oxidation ex-

tended system are prevalently periodic, disturbed only by the diffusive coupling between

neighboring surface sites (as explained in chapter 2). The transition from homogeneous

oscillations with a defined natural frequency to disordered turbulent patterns is smooth,

and results in both a broadening and a small shift of the dominating frequency line.

3.1.1.3 The natural frequency of the system

The intrinsic or natural frequency of the CO-Pt system (ν0) can be defined as the main

frequency in the Fourier spectrum of the local PEEM image intensity. In other words,

the frequency with the highest amplitude in the power spectrum of a local intensity time

series. For a measurement of the natural frequency during the experiments, a section of

the PEEM image with a size of 10×10 pixels is chosen, its mean intensity is calculated,

and its time series Fourier transformed (Fig. 3.2 a) and b)); ν0 is then determined from

the maximum in the power spectrum. Even though the frequency analysis is performed

locally, it is assumed to be valid for the whole sample. To check the correctness of this

assumption, 2500 pixels, equally distributed over the region of interest (ROI, as seen in

Fig. 3.3 b)), were chosen from the same experimental video sequence. The time series

of one single pixel is shown in Fig. 3.2 c). For each pixel, a Fast Fourier Transform

(FFT) of the time series was computed. Fig. 3.2 d) shows the result for a random pixel.

Although the data are much noisier than in the spatially averaged analysis, the main

frequency is the same as in Fig. 3.2 b).
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Figure 3.2: a) time series of the averaged image intensity in an area of 10×10 pixels,

and b) power spectrum of the data. c) time series of the image inten-

sity one single pixel, and d) corresponding power spectrum. The 1 Hz

oscillations are clearly discernable in both the time series and the spec-

trum. The reaction parameters are T = 515 K, poxygen = 1.5 · 10−4 mbar,

p0
CO = 7.5 · 10−5 mbar [113].

The system frequency mainly depends on the crystal temperature and the partial

pressures of the reactants. However, on a time range of several minutes the natural fre-

quency slowly decreases although the reaction parameters are kept constant (Fig. 3.3 a)).

This effect is presumably caused by a faceting of the platinum surface, which is known to

take place in the reaction conditions frame of this work [152]. This assumption is substan-

tiated by LEED pictures taken before and after the experiments, showing a broadening

of the diffraction spots after the experiments (data not shown).
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Figure 3.3: a) Fourier spectrogram showing the time evolution of the natural fre-

quency of the system without forcing. For the analysis of each PEEM

frame a window of 20.48 s (512 samples at 25 frames per second) is chosen.

Initially, the frequency has a value of ≈ 1 Hz. During the first

30 minutes it drops by approximately 0.2 Hz. Also a broadening of

the frequency line is observed, which indicates an increase in turbu-

lence in the system. Temperature (T = 515 K), and partial pressures

(poxygen = 1.1 × 10−4 mbar, pCO = 9.1 × 10−5 mbar) were constant.

b) PEEM image of the Pt(110) surface under reaction conditions with-

out forcing. The region of interest (ROI), used for a global test of

the Fourier method for determination of the natural frequency, is in-

dicated by the square. Within the ROI 50× 50 pixels were analyzed.

The reaction parameters are T = 515 K, poxygen = 1.5 × 10−4 mbar,

p0
CO = 7.5× 10−5 mbar [113].
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3.1.2 Experimental implementation

This section details how the experimental setup introduced in section 2.4.6 was used to

externally force the oscillatory CO oxidation in a periodic way. Previous experimen-

tal efforts to study pattern formation of the driven CO oxidation were not focused on

resonant frequencies, and they were more restricted in forcing speed (below twice the

natural frequency of the system). The amplitude of partial pressure modulation in the

reactor was limited by the finite pumping speed of the vacuum chamber [153]. In the

present work, the frequency of the natural oscillations was carefully analyzed before ev-

ery experiment. On the other hand, a new experimental setup is introduced to impose

higher forcing frequencies to the CO oxidation reaction, while providing at the same time

the means to image the spatiotemporal concentration patterns on the catalyst surface

by PEEM. The resulting images were taken by a Sony CCD camera. The experimental

parameters and the mean intensity of a 10 x 10 pixel region of the PEEM image were

recorded with a computer at a sampling rate of 10 Hz.

All experiments (except those concerning a propagating pulse in section 3.1.6, where

lower reactivity is needed) were performed within the following parameter range: tem-

perature = 512 - 529 K, oxygen partial pressure pO2 = 1.0−1.5×10−4 mbar, and carbon

monoxide base pressure pCO = 7.2 − 9.3 × 10−5 mbar. Under these conditions, the

chemical reaction-diffusion system shows oscillatory behavior with a natural frequency

of approximately ν0≈ 1 Hz. For resonant forcing, the carbon monoxide pressure in the

chamber was periodically modulated following the relation:

pCO(t) = p0
CO[1 + γ sin(2π · νf · t)], (3.1)

where γ is the forcing amplitude and νf ≈ n · ν0 (n ∈ N) the forcing frequency.

Temperarure and poxygen were held constant during the experiment. The general proce-

dure for all experiments was as follows:

• Preparation of the sample by Ar-ion sputtering and subsequent annealing at 950 K.

• Rough manual adjustment of T, poxygen and pCO to reach a bistable, oscillatory, or

excitable regime, monitored with PEEM.

• Manual fine tuning of the parameters until the uniform oscillations become spatially

unstable and show turbulent behavior (except in section 3.21, where the aimed
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pattern is a propagating pulse). The parameter changes are in the range of a

degree for the temperature, and 10−5 mbar for the partial pressures.

• Measurement of the system’s natural frequency (see section 3.1.1.3).

• Application of harmonic modulation of pCO and measurement of the system

response by means of the PEEM images.

Figure 3.4: The CO pressure regulating system represented as an electric circuit.

Symbols, abbreviations, and indices: σ = conductivity, C = capacity,

x1 = pressure in the UHV-chamber, x2 = regulated CO pressure in the

gas dosing system, x3 = pressure in the pre-pressure system, DV = dosing

valve, EV = exhaust valve, GDS = gas dosing system, i = inner, IM = ioni-

zation manometer, L = leakage, M = manometer, MOT = compressor,

P0 = pressure after manometer, PPP = pre-pressure pump, PPS = pre-

pressure system, PI = Pirani pressure sensor, PT = pressure transducer,

RV = regulating valve, TP = turbo pump, UHV = ultra high vacuum [113].

The forcing at frequencies νf ≤ 2 Hz was applied by controlling the CO flux with

an electronic solenoid valve. The valve is connected to a computer and is regulated by

an oscillating voltage signal generated by LabView. This setup allows for scanning a
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predefined range of forcing amplitudes and frequencies to measure the system’s response

over a wide parameter range.

However, this setup fails for higher forcing frequencies because the forcing amplitude is

strongly damped once the gas flux is dosed into the UHV chamber. Based on the analogy

between electrical and pneumatic circuits [154] the UHV-chamber and the CO pressure

regulating system were analyzed in detail. Even though this analogy neglects effects of

chemical processes and the finite velocity of the gas stream, it reveals the intrinsic low-

pass filtering characteristics of the system as can be inferred from the equivalent circuit

diagram (Fig. 3.21).

Figure 3.5: Scheme of the forcing compressor [113].

To overcome these experimental restrictions, a novel gas-regulating device was

developed and implemented into the system to substitute the electronic valve. The

core of the new device is a plunger, connected to the CO prepressure line with a branch

connection (see Fig. 3.5). By periodically moving the main piston to and fro in the

cylinder with the help of a stepper motor, the gas line volume is changed accordingly,

resulting in a harmonic modulation of the CO pressure. The amplitude depends on the

ratio between the plunger volume and the installed gas line volume, and can be regulated

in a wide range by utilizing a secondary cylinder as an adjustable offset gas volume in the
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dosing line. The forcing frequency is adjusted by the rotational frequency of the stepper

motor driving the piston compressor. The other side of the piston is pumped by a rotary

pump to ease the movement of the piston, since the CO pressure is normally operated

between 50 - 100 mbar.

Figure 3.6: Characteristic Bode plots of the UHV-chamber showing the compressor

forcing frequency vs. phase and amplitude of resulting oscillations inside

the UHV-chamber. The experimental results are shown as crosses, while

the dashed lines indicate approximation fits with a first order low-pass filter

function [113].

This new device allowed us to apply periodic forcing at frequencies up to 4 Hz and well

defined amplitudes. We have analyzed the frequency response inside the UHV-chamber

to the generated pressure changes in the prepressure line and present the results in form

of a Bode plot in Fig. 3.6. The measurement was performed at pCO = 2 × 10−4 mbar

using an ionization manometer (Leybold IM510 with VIG17-head) in linear scaling. The

compressor turned out to be more efficient if connected to the gas line as close to the

chamber as possible. The oscillation amplitude in the gas dosing system was around

20 %. At a frequency of 2 Hz, the effective pressure variation in the UHV chamber was

estimated to be 10 %. This high value could only be achieved under optimal forcing

conditions; the forcing strength is reduced by about one order of magnitude for less

favorable conditions.
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3.1.3 2:1 Resonant forcing

In this section, the experiments performed applying a resonant forcing to the CO

oxidation system with values of νf close to 2 ν0 are presented. At sufficiently large

forcing amplitudes the periodic forcing results in an entrained state in which the oscilla-

tion frequencies of the system and the forcing signal maintain a fixed ratio m : n (m and

n are natural numbers). An initial turbulent state is common to every experiment to

follow in this section, which is set by adjusting the reaction temperature and the gases

partial pressures.

First, a range of forcing frequencies close above 2 ν0 were scanned, while applying

different γ values between 0 % and 0.36 % (Fig. 3.7). The corresponding frequency

analysis reveals that for low frequency mismatch (detuning (νf/ 2)−ν0), γ = 0.06 % is

sufficient to entrain the system, while at larger frequency mismatch entrainment occurred

only at γ > 0.18 %. In the measurement shown in Fig. 3.7, the system is 2:1 entrained,

since it oscillates predominantly at a frequency close to half of the frequency of the

external force, νf /2. At larger mismatch, a period doubling occurs as can be seen from

the appearance of sub-harmonic frequencies around t = 5000 s. This is in agreement with

theoretical results obtained by Davidsen et al. [155] who also found a period doubling

scenario in the corresponding Arnold tongue (Fig. 3.8).

A complementary experiment allows for a closer view of how the system oscillations

transit from its natural frequency to a completely entrained regime. In this case, not a

broad range of forcing frequencies was scanned, but only 2 ν0. In order not to induce

abrupt changes in the oscillatory dynamics of the surface, the forcing amplitude was

slowly increased in smaller ∆γ steps, until the system was completely locked to the

driving force (at γ = 0.7 %). The resulting Fourier spectrogram (Fig. 3.9) shows how

the main frequency bifurcates twice while gradually approaching the 2:1 locked state.

A third experiment also begins with the forcing frequency manually adjusted to 2ν0.

At this setting a forcing strength of 0.04 % was sufficient to suppress turbulent dynamics

at least temporarily; intermittent turbulent regimes alternated with spatially coordinated

patterns. An increase of the forcing strength resulted in shorter turbulent regimes.

At γ = 0.22 % a phase locked regime with stable cluster patterns 2:1 entrained was

observed (Fig. 3.10). The surface splits into large domains belonging to either of the

two different phase-locked states. In this way, the population of oscillators was divided
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Figure 3.7: Fourier spectrogram showing 2:1 forcing with 2:1 entrainment for suffi-

ciently high forcing amplitudes. Top: forcing amplitude as a function

of time. Bottom: corresponding Fourier spectra from 20.48 s intervals.

The forcing amplitude is increased in six steps to 0.36 % of the CO base

pressure and then decreased in the same manner to zero again. In each of

these amplitude sweeps a lower forcing frequency is used. The first sweep

(t = 0 - 750 s) is performed at 2.12 Hz, the last proceeds at 1.92 Hz.

During the experiment, the natural frequency decreases from around 1 -

0.8 Hz. The reaction parameters are T = 512 K, poxygen = 1.5×10−4 mbar,

p0
CO = 7.2× 10−5 mbar, and ν0≈ 1 Hz [113].

into smaller subpopulations; all of them characterized by the same oscillation amplitude

and frequency, but in different phases.

The arising spatiotemporal patterns exhibit a periodicity of four forcing cycles, which

indicates that the system performs period doubled 2:1 entrained oscillations; this be-

comes particularly clear upon following, for instance, the brighter patches shown in the

Fig. 3.10 b). The size of these phase domains is not fixed but changes in time, un-
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Figure 3.8: The 2:1 Arnold tongue obtained from numerical simulations with the KEE

model [80]. The amplitude (a) of the forced oscillation is plotted as a

function of the forcing frequency (normalized to the natural frequency of

the system). A period-doubling cascade appears in a region below the over-

lapping 1:1 tongue. For νf/ν0= 2 only the first period doubling bifurcation

is present. Its location matches that observed for a spatially extended

system. Reproduced from [155].

dergoing enlargement-reduction (breathing-like) cycles. The species diffusion dynamics

can explain the nature of these oscillations. CO diffuses from high to low concentration

regions, which happens in CO-covered domains, enlarging the cluster area. After a

forcing cycle the concentration locations are inverted and diffusion proceeds in the

opposite direction. This “breathing” mode can be seen in Fig. 3.12, standing out the

fact that the larger domain state always corresponds to the (1×1) surface structure.

Although the front diffusive behavior changes direction every forcing cycle, the periodi-

city (with regard to the xt-pattern) is four forcing cycles. Similar front dynamics are

found in other oscillatory bistable systems like the BZ reaction [149].

The temporal dynamics of each individual image pixel can be separated into phase

and amplitude dynamics using a frequency demodulation technique. This is done by
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Figure 3.9: Fourier spectrogram showing 2:1 forcing with an increasing forcing ampli-

tude from 0 to 0.7 % of p0
CO at νf = 2 Hz. The reaction parameters are

T = 512 K, poxygen = 1.4×10−4 mbar, p0
CO = 5.9×10−5 mbar, and ν0≈ 1 Hz.

Fourier transformation and evaluation of the complex Fourier coefficients at ν0 /2 within

shifted time intervals of 5 seconds duration. In polar coordinates these Fourier coefficients

directly give the phase and amplitude of the dominant mode of the local oscillations. The

image pixels can now be colored in correspondence their respective phase and amplitude.

The result is shown in Fig. 3.11 a) and b). Two different surface regions with opposite

phase but identical amplitude can be clearly distinguished. A phase portrait of the

system is obtained by plotting the phase and amplitude values of all image pixels in polar

coordinates (Fig. 3.11 c)). In addition, a phase histogram was calculated (Fig. 3.11 d)).

Two different clusters with a phase difference of π can be seen, while the link between

them, corresponding to the bordering area where the oscillations have smaller amplitude,

is close to the origin in the phase portrait. The existence of two stable entrained states

differing by a phase shift of π is a feature of the 2:1 resonance regime, distinguishing it

from that of 1:1 resonance [156].
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Figure 3.10: Oscillating clusters during the 2:1 forcing experiment. a) snapshots

of 300× 300 µm2 PEEM images illustrating a phase locked regime.

b) spacetime plot taken along the AB line (top), and the corresponding

averaged overall intensity (bottom) of the PEEM image (continuous blue

line) and the forcing signal (dotted red line). The white arrows indicate

when the snapshots in a) were taken. c) local values of the intensity,

calculated over rectangles c (dashed red line) and d (continuous blue

line). The reaction parameters are T = 529 K, poxygen = 1× 10−4 mbar,

p0
CO = 9.3 × 10−5 mbar, γ is 0.22 % of the CO pressure base value.

ν0 = 0.7 Hz, and νf = 1.4 Hz [113].
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Comparable phase clusters were already found by Bertram et al. [153] in the case

of periodic low frequency forcing with high amplitude. The major difference is that the

results presented in this section are obtained at 2:1 resonant frequency (1.4 Hz instead of

0.67 Hz), with forcing amplitudes more than one order of magnitude smaller; this is due

to the fact that the effect of global forcing is maximal for resonant forcing frequencies.

Figure 3.11: Phase and amplitude representation of a cropped region (150×150 µm2)

of the cluster patterns shown in Fig. 3.10. a) phase pattern, b) amplitude

pattern, c) phase portrait and d) phase histogram [113].

3.1.3.1 2:1 Bloch walls

The forcing of a spatially homogeneous assembly of oscillators, as shown above, may

lead under particular conditions to stable inhomogeneous structures. The most simple

of these structures are solutions which join two symmetrically equivalent states. In two

dimensions (2D), the two stationary frequency locked solutions differ in phase by π. At
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Figure 3.12: Cropped PEEM snapshots of the 2:1 clusters shown in Fig. 3.10

(400×300 µm2), representative of the enlargement-reduction cycles: phase

domains swell and shrink periodically. a) minimal size domain (oxygen

covered), and b) maximal size domain (CO covered), separated in time

by two forcing cycles. c) Intersected area between the main domain on a)

and on b).

the core of the kink, which connects the two solutions, the order parameter rotates in

the complex plane and the oscillating amplitude is reduced [157]. The borders between

domains of opposite phase in the arising structures are generally referred to as Bloch

walls by analogy with those in corresponding structures in solid state physics.

In section 3.1.3 non-equilibrium Bloch walls were shown at the borders between two

different entrained states differing in phase by π. They display traveling behavior and

annihilate each other upon collision. To represent them, a stroboscopic xt-plot (Fig. 3.13)

is used, so that the phase domains are compared at the same oscillatory state. The

propagation speed of these Bloch Walls, also known as π-fronts, has a constant value of

0.35 µms−1.

The relevant time unit in the observation of Bloch walls is the period of the oscilla-

tions. These π-fronts are better characterized if the dynamics of the forced clusters

remain stable for a higher number of oscillations. The natural frequency drift exposed in

section 3.1.1.3 implies a shortening of cluster stability in time, and is for this reason an

obstacle in the Bloch wall analysis. An improvement in this direction is to use shorter

cycles (faster forcing), and it will be tackled in section 3.1.4.1 together with a more

detailed description of phase domains shape-related properties.
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Figure 3.13: Space-time stroboscopic plot showing the pattern evolution along the

same AB line of Fig. 3.10, showing one frame every 4 forcing cycles

(2.84 seconds). Four Bloch walls separating different phase locked do-

mains are identified; two of them approach each other at a constant speed

of 0.35 µm s−1 [113].
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3.1.4 3:1 Resonant forcing

Experiments similar to those presented in section 3.1.3 were carried out driving the

system with three times its natural frequency (νf = 3 ν0), where the gas-regulating

device described in section 3.1.2 played a key role. Again, as seen in section 3.1.3, an

initial state of chemical turbulence is set before applying any periodic modulation of the

CO partial pressure. At a forcing strength of about 0.12 %, phase locked regimes were

observed (Fig. 3.14). As can be seen in the corresponding xt-plot (Fig. 3.14 b)), the

system performs oscillations with a frequency of ν = νf /2 (2:1 entrainment).

An analysis of the local oscillations (Fig. 3.14 c)) reveals that —like in the case of

2:1 forcing —an additional shoulder appears during every oscillation cycle. However, it

seems that for this amplitude of 3:1 forcing the system is not fully entrained. At t = 5.5 s

the pattern inverts: in the xt-plot a large amplitude oscillation is not followed by a small

shoulder but by another large amplitude oscillation. After this transition, the oscillations

of the system are again 2:1 entrained.

The complex 3:1 dynamics are also apparent when phase and amplitude of the

patterns are analyzed (Fig. 3.15). Two distinct clusters with sharp boundaries can

be observed (Fig. 3.15 a) - b)). By contrast to 2:1 forcing, they have a different am-

plitude and are not contrasted by a phase difference of π (Fig. 3.15 c)). Moreover, the

temporal evolution of the phase histogram (Fig. 3.15 d)) shows that the phase difference

between the two clusters changes in the course of time. The two domains approach each

other in phase space until a part of the cluster that lags behind skips half an oscillation

cycle. This makes itself apparent at the transfer of a shoulder from one peak to another

in the phase histogram and coincides with the inversion of the oscillation pattern in the

xt-plot (Fig. 3.14): the alternation of dark to bright is broken at the 5th second of the

sequence where a bright-bright event takes place. After this inter-cluster transfer, the

phase difference recovers the value of π, to then resume shrinking again. The more com-

plex behavior of the system is probably caused by the competition between the natural

frequency and the enforced actual oscillation frequency which has a ratio of 2:3. This

suggests that for higher values of γ the system may completely become 3 to 1 entrained.

To test that, an enhancement on the amplitude modulation of the gas compressor is

necessary; probably a larger secondary piston would be enough.
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Figure 3.14: Oscillating clusters during the 3:1 forcing experiment with 2:1 entrain-

ment. a) snapshots of 300×300 µm2 PEEM images . b) space-time plots

showing the pattern evolution along the AB line (top), and correspon-

ding grayscale values (bottom) of the PEEM image (continuous blue

line) averaged over the whole snapshot, and the applied forcing signal

(dashed red line). The snapshots in a) are indicated with white arrows.

c) local values of the intensity, calculated over rectangles c (continuous

blue line) and d (dashed red line). The reaction parameters are T = 526 K,

poxygen = 1.5× 10−4 mbar, p0
CO = 6.9× 10−5 mbar, γ is 0.12 % of the CO

pressure base value, ν0= 0.76 Hz, and νf= 2.3 Hz [113].
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Figure 3.15: Phase and amplitude representation of a cropped region (100×100 µm2)

of the cluster patterns shown in Fig. 3.14. a) phase pattern, b) amplitude

pattern, c) phase portrait, and d) phase histogram [113].

As in section 3.1.3, CO diffusion plays a role in the size of the clusters formed, which

undergo periodic changes, “breathing” every two forcing cycles, although less pronounced

in this case as Fig. 3.16 shows: the intersecting area depicted is smaller than the one

shown in Fig. 3.12 c).

3.1.4.1 3:1 Bloch walls

The resonant 3:1 forcing recorded in the PEEM sequence above (Fig. 3.14), shows well

defined borders separating oscillating subpopulations, which are also seen in the corres-

ponding amplitude and frequency map (Fig. 3.15). Nonetheless, the phase difference

between domains is not always π (section 3.1.4), and therefore the name of “Bloch wall”

has to be used with caution here, in awareness of the grammatical license. The behavior
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Figure 3.16: Cropped PEEM snapshots of the 3:1 clusters sequence shown in Fig. 3.14

(400 × 300 µm2), representative of the enlargement-reduction cycles.

a) minimum size domain (oxygen covered), and b) maximum size domain

(CO covered), separated in time by one forcing cycle. c) enhancement of

the intersected area between the main domain in a) and that in b). The

phase domains swell and shrink regularly, with a periodicity of two forcing

cycles.

of the 3:1 Bloch walls is comparable with that of the 2:1 case. Both are characterized by

a minimum in the oscillation amplitude (Fig. 3.15 b)) and move slowly (Fig. 3.17).

As mentioned in section 3.1.3.1, the relevant time unit of a Bloch wall is the number of

oscillations. The 3:1 Bloch walls dynamics are faster and reach a higher number of oscil-

lations in the same time period than 2:1 walls; this indexes them as better candidates for

a more in-depth analysis. For this purpose, a numerical simulation of the CO 3:1 forced

reaction was made by C. Punckt using the KEE model (introduced in section 2.4.4),

and it is compared with the amplitude map of an experimental sequence in Fig. 3.18.

Phase locked domains can also be considered as regions with a particular surface recons-

truction surrounded by a different phase: Pt(110) 1×1 (1×2) reconstructed islands in a

sea of 1×2 (1×1) surface structure. This interface (1×1 - 1×2) tends to minimize its

length. As a result, rounded domains evolve into circles and shrink (even disappearing

at times, specially the small ones), while almost straight walls undergo straightening.

Representative examples, in close agreement between model and experiment, can be

seen in Fig. 3.18.
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Figure 3.17: Space-time stroboscopic plot showing the pattern evolution along the

same AB line of Fig. 3.14, choosing one frame every 2 forcing cycles

(0.84 s). Cluster boundaries separating different phase locked domains

move apart [113].

Figure 3.18: 3:1 forcing domain border dynamics compared: a) experimental amplitude

map, b) numerical simulation (done by C. Punckt).
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3.1.5 4:1 Resonant forcing

The compressor designed presented in section 3.1.2 and used in the 3:1 forcing experi-

ments allows an even faster modulation of the CO partial pressure in the UHV chamber:

νf =4 · ν0, for ν0 ≈ 1Hz. Once the crystal surface exhibits spiral turbulence, the stepper

motor of the compressor is started to achieve global forcing of the catalytic reaction. For

γ = 0.1 % frequency locked four-phase clusters arise. Fig. 3.19 a) shows four snapshots

of the PEEM sequence where the corresponding spatiotemporal patterns can be seen:

structures that look similar to turbulence with abrupt interruptions every forcing cycle.

The xt-plot shows a cascade pattern (Fig. 3.19 b)), in which domain borders are not

stationary and yet a periodicity of four forcing cycles is evident. The plot of the PEEM

image intensity in Fig. 3.19 b) shows oscillations fully entrained with the forcing signal.

However, if this snapshot intensity plot is done locally (Fig. 3.19 c)), choosing a smaller

area, a periodicity pattern of four forcing cycles can be distinguished, very similar to

that plotted in Fig. 3.10 c).

Four different phase states are visible in the phase pattern in Fig. 3.20 a) as black,

dark gray, gray, and light gray areas, while the amplitude pattern in Fig. 3.20 b) shows

that the oscillation amplitude is strongly reduced in the interface between domains.

Even though smaller than in the previous sections (2:1 and 3:1 clusters), the developed

structures still consist of domains where the phase is locked. In the phase portrait in

Fig. 3.20 c) four individual clusters can be distinguished, each with a phase difference

of π/2 radians to its neighbors (Fig. 3.20 d)).
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Figure 3.19: Four-phase traveling patterns during 4:1 forcing. a) snapshots of 300×
300 µm2 PEEM images. b) space-time plot showing a cascade shaped

pattern evolution along the AB line (top), and corresponding grayscale

values (bottom) of the PEEM image (continuous blue line) averaged over

the whole snapshot, and the applied forcing signal (dashed red line). The

white arrows indicate the time of the a) snapshots. c) PEEM intensity

averaged over the whole image. The reaction parameters are T = 543 K,

poxygen = 1.7×10−4 mbar, p0
CO = 5.9×10−5 mbar, ν0 = 0.65 Hz, νf = 2.6 Hz

and γ is 0.1 % of the CO base pressure value.
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Figure 3.20: Phase and amplitude representation of a cropped region (100×100 µm2)

of the cluster patterns shown in Fig. 3.19. a) phase pattern, b) amplitude

pattern, c) phase portrait, and d) phase histogram.
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3.1.6 Forcing effect on propagating pulses (1:1, 2:1, 3:1, 4:1)

The previous sections were focused on the suppression of chemical turbulence in the

Pt-CO system, and the resulting spatiotemporal pattern formation. Global forcing tech-

niques can also be applied to propagating pulses, which leads to interesting new patterns

too, whereby different simultaneous reaction dynamics are affected in different ways by

the same uniform partial pressure modification.

Figure 3.21: XT-plot of a propagating pulse along the line C̄ during 8 seconds:

a) without forcing and b) under 2:1 forcing. The reaction parameters are

T = 504 K, poxygen = 1.4×10−4 mbar, p0
CO = 6.3×10−5 mbar, ν0 = 0.25 Hz,

νf = 0.5 Hz and γ is 0.2 % of the CO base pressure value. The inset

image in a) is a PEEM frame where the pulse with the cropped line C̄

can be seen.

A propagating pulse with constant velocity and with constant shape, like the one in

Fig. 3.21 a), presents itself as a reaction wave moving across a medium that is otherwise

at rest state. It can be either considered as an excitable phenomenon or as a bistable

one. If resonant forcing is applied (as explained in section 3.1.2), two differentiated effects
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can be seen, depending on the state of the medium. In the excited region, the width of

the pulse is periodically modulated, increasing and decreasing its width. The front of

the pulse and the rear approach and move apart with a periodicity that is completely

entrained to the periodic forcing νf . The maximum pulse width is proportional to the

forcing amplitude γ. This proportionality was found to hold for experimental results

obtained at 1:1, 2:1, 3:1, and 4:1 resonant forcing.

At the same time, the remaining region of the medium (not occupy by the pulse) is

affected by the forcing in a different manner: it exhibits homogeneous oscillations that

are likewise entrained to νf . The combination of both effects delivers a remarkably vivid

xt-plot that can be seen in Fig. 3.21 b).

3.1.7 Conclusions

The effect of periodic external global forcing on the catalytic CO oxidation on Pt(110) has

been studied for chemical turbulence and propagating pulses, in particular the 2:1, 3:1,

and 4:1 regimes. A compressor driven reactor was designed and built to allow experiments

with such high forcing frequencies. The observed pattern formation is discussed in the

context of present experimental results and previous theoretical studies.

For particular values of the amplitude under 2:1 and 3:1 forcing, the condition of

the system adopted a regime dominated by phase locked cluster-domains. Phase fronts

separating different homogeneous phase locked states were clearly observed during our

experiments, in agreement with numerical simulations of the forced KEE model [155].

In addition, the latter theoretical work predicts front explosions for decaying forcing

amplitudes: turbulent interfacial zones for 2:1 resonant forcing and labyrinth patterns

for the 3:1 case. This could not be observed in our experiments, probably due to the

high sensitivity of the system to parameter changes and present technical limitations in

the application of soft changes in γ. Every parameter change in our set-up is followed

by a short period of self-adjustment of the system, long enough to perturb the reaction

dynamics significantly, and thus transition dynamics between different patterns could

not be resolved. A gas forcing setup allowing a more gradual adjustment of νf might

mean a relevant improvement for future experiments.
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The nature of the clusters arising in the experiments with highest forcing ratio (4:1)

reported here seem different from those in the rest of the experiments (2:1, 3:1). The

reason why the size of these structures is notably reduced is not totally understood. It

may be due to the different degree of border stability which does not allow larger stable

domains, or that the forcing amplitude is not large enough at these frequencies. A gas

dosing system able to dose larger amounts of gas (γ) into the reaction chamber could be

helpful to complete the resonant forcing analysis.

Combining a broader range of forcing amplitudes for every forcing frequency with a

finer variation of forcing parameters (γ and νf ) would make possible, for instance, to

experimentally reproduce detailed Arnold tongues in the 2:1, 3:1, and 4:1 regimes.
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3.2 Effect of noise

Natural systems are inevitably subject to random fluctuations, caused by either environ-

mental variability or thermal effects. In particular, noise-influenced reaction parameters

are involved in any far from equilibrium system [19, 158, 159, 160]. Such fluctuations

are known to interact with the nonlinearities of a system in ways that induce, enhance,

or sustain ordered behavior [161]. For instance, waves sustained by artificial noise in-

troduced in the Belousov-Zhabotinsky reaction [162, 163], and generation of pacemakers

and spiral dynamics by noise have been reported [164, 165, 166]. A systematic study

of the role of noise in these instances may help to better understand the behavior of an

extended system under real-world conditions.

The present section is dedicated to the emergence of spatiotemporal structures in

the CO oxidation on Pt while global noise is artificially introduced. Experiments are

presented and compared with theoretical results obtained by S. Alonso using the KEE

model (complementary information is given in section 2.4.4 and in the appendix at the

end of this chapter). The first experiments in this section were done to scale fluctuations

in the gas dosing system at given experimental parameters in terms of a “mild noise” to

“strong noise” range. The former extreme is given when there is no reaction of the system

at all, while the latter is noise of such intensity that the system is completely governed

by it. Between these extremes one observes an interesting range of transient pattern

formation, where noise interacts with the non linearities of the system. The reference

values were obtained by imaging the evolution of chemical turbulence once different noise

parameters were introduced in the reaction (3.2.2). Afterwards, in section 3.2.3, attention

was paid to bistable transitions, and section 3.2.4 points out the possible use of noise to

enhance reactivity. A discussion closes the whole chapter.

3.2.1 Experimental implementation

The experiments related with the noise induced effects were performed using the basic

setup sketched in Fig. 3.1, and explained in a more general manner in section 2.4.6.1. A

meaningful modulation of the CO partial pressure was introduced into the system as a

computer controlled source of random fluctuations following:

pCO(ti) = p0
CO(1 + randi · 4N) (3.2)
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where rand is a random number between -1 and +1 that is regenerated by the computer in

time intervals of 4t (ti−ti−1 = 4t). 4N is the percentage of CO partial pressure that is

added to the base value. The combination of the parameters4t and4N determines how

fast and how much pCO(t) changes, or in other words, the magnitude of the multiplicative

noise present in the reaction. The two parameters are input into the computer that

controls the CO gas dosing valve. Due to this solenoid valve effective reaction time

and the low-pass filtering between the dosing system and the chamber (described in

section 3.1.2), the generated rectangular signal is integrated by the system, resulting in

a gaussian wave in the solenoid valve and in the reaction chamber, as shown in Fig. 3.22.

Hence, the CO partial pressure in the reaction environment has a fluctuating value

between p0
CO +4N and p0

CO −4N , homogeneous in space, characterized by a gaussian

shape histogram like the one depicted in Fig. 3.22 b).

Figure 3.22: Histograms of the pCO(t): a) generated signal, b) signal in the dosing

system, and c) mass spectrometer lecture of the reaction chamber.

Once again, PEEM (section 2.4.6.2) proves to be an excellent tool for tracking the

adsorbates local density and the surface dynamics in real time.

3.2.2 Turbulence suppression by noise

Chemical turbulence on a platinum crystal surface can be effectively suppressed by a noisy

modulation of the reactant supply, namely pCO(t). Fig. 3.23 represents the corresponding
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spatiotemporal patterns seen when different noise intensities (different combinations of

4t and 4N) are applied to a turbulent regime . In absence of external noise, spiral

turbulence develops freely. As the noise intensity increases (left to right and/or bottom

to top) the system is driven to a partially suppressed state featuring an alternation

between asynchronized and homogeneous global oscillations. Remarkably, the frequency

of such response is different than the characteristic frequency of the spiral turbulence.

Finally, the noise reaches values that completely annihilate the reaction dynamics; the

system then follows the noise signal oscillations.

Figure 3.23: Spatiotemporal patterns corresponding to different noise parameter values

(4t and 4N), applied on an initial turbulence state, with reaction pa-

rameters: T = 540 K, pO2 = 1.3×10−4 mbar, and p0
CO = 6.6×10−5 mbar.

Areas for four distinct regimes are pointed out.
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The series of space-time plots depicted in Fig. 3.24 show the typical surface dynamics

of each of the three regions (I, II, and III) of Fig. 3.23, and are compared with numerical

simulations; one can see how well the plots based on the KEE model qualitatively agree

with the experimental results.

Stronger or faster modulations than were used for Fig. 3.23 are not considered because

of the limitations of the experimental setup (experiments showed strong disagreement

between the computer values and the real state in the chamber for values 4t < 0.1

or 4N > 3 % p0
CO). Besides, this study project was specifically focussed on smallest

fluctuations with a relevant impact.

Figure 3.24: Space-time plots corresponding to the turbulence suppression map regions

I, II, and III; experiments (PEEM) vs. numerical results (KEE).

3.2.2.1 System oscillation frequency

The oscillation frequency of the system is affected by the global noise that is artifi-

cially introduced. Fig. 3.25 shows how the periodicity of the local oscillations changes,

and compares the initial spiral turbulence of region I (Fig. 3.23), the periodic induced

patterns within region II, the noise controlled region III, and the spatiotemporal dyna-

mics when 4t and 4N are set back to zero and spiral turbulence reappears (shown

in region IV). Typically, the local oscillations frequency decreases from region I to II,
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slowing down for higher values of 4N . Region III has no local periodicity whatsoever

and reflects the imposed random oscillations. Region IV is characterized by spiral turbu-

lence similar to that of region I, but with lower frequency (ν ,0 < ν0). This slow down of

the dynamics is expected, being caused by structural changes on the crystal surface [113],

and depends on the sample temperature (see section 2.4.2 and 3.1.1.3). The global noise

not only couples the whole system but also reduces the frequency of the patterns. Space-

time plots, PEEM image grayscale, and a set of values for particular cases are given in

Fig. 3.25.

3.2.2.2 Periodic induced behavior

Region II of Fig. 3.23 encompasses the range of noise parameters in which the origi-

nal spiral turbulence is not completely suppressed. Interaction with noise drives the

active media through transient states, alternating between spatiotemporal chaos and a

lack of patterns. Furthermore, for certain parameters these cycles may become regular.

Fig. 3.25 region II a) shows the time evolution of a cropped line on the platinum surface:

suppressed patterns alternate with re-activated turbulence in regular cycles of 4 seconds.

The noise parameters corresponding to this induced behavior draw a narrow stripe in the

turbulence suppression map (seen in Fig. 3.23). Along that stripe, the interplay between

excitability, refractory time, noise, and diffusion results in time regularity.

3.2.3 Transitions anticipated by noise

Further experiments were focused on the bistable transition from a mainly oxygen covered

Pt crystal to a mainly CO covered state. These experiments start with a certain amount

of oxygen in the reaction chamber (pO2 = 1.1×10−4 mbar) and no CO. When the surface

is oxygen covered, the pO2 is kept constant, and then the pCO is increased. At sufficiently

large value of the CO partial pressure all the adsorbed oxygen is reacted away releasing

CO2, the sample ends up completely CO covered. The transition is clearly discernable

in the PEEM images (Fig. 3.27 top): it is seen as the change from a uniformly dark

expanse to a uniformly bright one through a number of growing bubbles. The KEE

model forecasts similar transition patterns (Fig. 3.27 bottom).
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Figure 3.25: Space-time and grayscale plots of the PEEM imaged for different values

of 4N . Reaction parameters are T = 540 K, pO2 = 1.3 × 10−4 mbar,

p0
CO = 6.6× 10−5 mbar, and 4t = 0.05 s.
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Figure 3.26: a) and b) show the critical pCO of both transitions, from oxygen covered to

CO covered (continuous red line) and from CO covered to oxygen covered

platinum (black dashed line), for two different values of applied noise. The

black dotted line delimits together with the red line the parameter region

where patterns induced by defects take place. Reaction parameters are:

T = 509 K, pO2 = 1.1 × 10−4 mbar. c) represents the corresponding

numerical simulation by S. Alonso, plotted in terms of the simulation

parameter ε, related with the noise intensity (see section 3.2.6).

The same steps are followed backwards for the back-transition to the initial state.

Nevertheless, the critical pCO is lower in this case, which is explained by the asymmetric

inhibition of the reaction: the poisoned CO covered surface does not behave in the same

way as the oxygen covered platinum [59]. There is an inherent hysteresis loop in this

bistable transition, as explained in chapter 2 (section 2.4.2) due to the asymmetry of

the reaction. Fig. 3.26 describes how the mentioned hysteresis loop shrinks as the

noise applied is larger. Right above the line that represents the transition to a CO

covered surface in Fig. 3.26 a) and b), there is a triangle of pCO values, between the

continuous red line and the dotted black line, where defect-induced patterns appear (see

also Fig. 3.27). Although the crystal is homogeneously covered, the role of defects on

the surface becomes clear in its interplay with the sharp changes of one of the reaction

parameters. Deep drops of the pCO signal are followed by the initiation in some defects

of spirals and target patterns. These sort of structures are rapidly suppressed in the next

steps of the generated signal (lifetime between 0.5 - 15 seconds), and do not appear at

all in the corresponding model simulation.
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Figure 3.27: PEEM snapshots (top) compared with numerically generated images

(bottom). Different stages of the bistable transition oxygen covered to

CO covered can be seen, including defect-induced patterns once the tran-

sition is already fulfilled (see the last three PEEM frames). Experimental

parameters are: T = 509 K, pO2 = 1.1 × 10−4 mbar, 4t= 0.25 s, and

4N = 0.5 % p0
CO. Parameters used for the simulation: pO2 = 0.00045,

pCO = 0.0000908, and internal noise d = 0.005.
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3.2.4 CO2 production increment

Besides the spatiotemporal noise-induced patterns, the experiments performed with noise

also featured an increase in the resulting amount of CO2 produced in the CO oxidation.

A mass spectrometer measured the CO2 present in the UHV chamber while chemical

turbulence developed, with and without modulating the pCO. For the same amount of

reactants involved in the reaction, integrated in time, the carbon dioxide production rate

was higher with a fluctuating carbon monoxide partial pressure. This augmentation is

reflected in Fig. 3.28, where the productivity of CO2 rapidly approaches a maximal value

when 4t=0.5 and 4N =0.2 % p0
CO, or 4t=0.75 and 4N =0.1 % p0

CO.

Figure 3.28: Increases in the CO2 reaction rate due to the CO fluctuations. Reaction

parameters for a) (and b)) are: T = 526 K, pO2 = 1.2 × 10−4 mbar,

and p0
CO = 5.2 × 10−5 mbar (pO2 = 1.07 × 10−4 mbar, and

p0
CO = 4.4× 10−5 mbar).

3.2.5 Discussion

The role of random fluctuations in the CO catalytic reaction on Pt(110) has been pre-

sented. As mentioned at the beginning of the section, the interplay between excitability,

noise, and diffusion may actually enhance regular behavior, as well as alter phase tran-

sitions.

The control of chemical turbulence is a problem tackled from a number of different

angles [167]. In the CO-Pt system for instance, attempts have been made with feedback
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techniques [82, 168], local control [117], and periodical global forcing [153]. The present

work adds resonant periodic forcing and the use of noise to this list. The forcing am-

plitude needed to effectively suppress turbulent states in p0
CO percentage was reported

to be 10 - 20 % for the periodically forced reaction [153]. Closer analysis of the initial

turbulent dynamics, determining the natural frequency of the system, and performing

periodical global forcing at a resonant frequency (as shown in sections 3.1.3, 3.1.4, 3.1.5,

and in [113]) allows one to reduce the forcing amplitude by two orders of magnitude. The

same order of magnitude (0.1 - 0.2 %) is enough for fast random modulations (section

3.2.2) to reach total entrainment. It is remarkable that the latter is independent from

our previous knowledge of the system, which means that no estimation of the natural

frequency of the system is needed. In addition, it was shown how global noise influences

the reaction, coordinating the whole system and reducing the characteristic frequency of

the patterns.

When the CO-Pt system shows developed spiral turbulence and global noise is in-

troduced, noise behaves as an overall coordinating factor that gives a certain spatial

coherence to otherwise discoordinated oscillations. In this way, chemical turbulence can

be suppressed. Fig. 3.23 indicates that the introduced noise has a stronger influence

in the reaction dynamics (less percentage of p0
CO needed to suppress turbulences) for

fast modulations (small 4t); that is it, when the system has shorter time to assimilate

the reaction parameters. The cases of intermittent turbulence suggest that the global

coordination is not absolute, and the time needed for the active medium to recover its

excitability plays a role in the alternation periodicity.

The fluctuations also had an influence on the transition between two stable states,

anticipating a bistable transition of the system and shortening the intrinsic hysteresis

loop. Using a mechanics heuristic model, the bistable transition anticipation is concep-

tually equivalent to the motion of a particle in a double-well potential [169], in which

external noise gives energy to the system to save the barrier in that double-well potential.

For moderate noise has been shown that the reaction mechanism of the system jumps

more easily the barrier that separates the two steady regimes. For extremely large noise,

that jump would become so small that the system is indifferently at one of the two local

minima of the potential, or transiting between them.

Defect-induced fronts were experimentally observed during the anticipated bistable

transitions. When the transitions were completed and the crystal surface showed a full
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CO coverage, deep drops of the pCO signal led to the emergence of spirals and target

patterns at some defects. These oxygen structures propagated along the surface for

short time before they disappeared. This is a very rare phenomenon because the reaction

mechanism of the CO oxidation favors the formation of CO structures rather than oxygen

structures.

A production increase of CO2 was also observed but not totally understood, and its

explanation remains as a future task. A proposed partial answer using the same heuristic

model as above is that the system somehow is able to focus the energy introduced by

the noise into jumping over the reaction energy barrier, and therefore it increases the

production. That parameter fluctuation enhances productivity has already been reported

for other systems, namely the ozone production in atmospheres of urban areas [169]. This

fact raises the question of a possible catalytic effect of noise, which could also be relevant

for increasing productivity in other chemical systems.

In the context of such real-world systems like marine ecosystems [170, 171] or the

ozone production [169], in which stochasticity processes combine with periodic annual or

daily cycles, it seems worthwhile for the future to combine the two global modifications

examined in the present chapter: periodic and noisy modulations of the CO oxidation

reaction parameters.
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3.2.6 Appendix: reaction model

The numerical simulations presented in section 3.2 were performed by S. Alonso using

the KEE model (see section 2.4.4). The values of the parameters that were employed

are shown in table 3.1. These parameters basically correspond to previous numerical

studies of the same experimental system [65, 172]. In order to simulate the experimental

conditions of random external pressure of the partial pressure of CO, a stochastic variable

was added to the pressure:

pCO = p0
CO (1 + ξe(t)) (3.3)

where the variable ξe(t) is a gaussian white noise with null mean < ξe(t) >= 0 and

variance < ξe(t)ξe(t
′) >= 2εδ(t − t′), and ε is the intensity of the noise. This noise is

completely uniform and it has no spatial structure.

Heterogeneities are known to occur on real crystal surfaces, qualitatively affecting the

dynamics of surface waves; to consider these internal irregularities, together with addi-

tional defects and variables, we introduce an additive noise ξi(x, t) in the first equation

of the model (section 2.4.4). This is a gaussian white noise distributed in space with null

mean < ξi(x, t) >= 0 and variance < ξi(x, t)ξi(x
′, t′) >= 2εiδ(x, x

′)δ(t − t′), where εi is

the intensity of the noise. The intensity of this noise will be kept constant for all the

numerical simulations to be presented here, as we will not be undertaking a systematic

study of these internal sources of fluctuation.

Due to the particularities of the stochastic partial differential equations, we integrate

the three equations of the model using the Heun method [173]. Two-dimensional numeri-

cal simulations are carried out using finite difference approximation, with a spatial and

temporal discretization of ∆x = 2 µm and ∆t = 0.001 s respectively. Periodic boundary

conditions were always considered.
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Table 3.1: Parameters of the reaction model.

Parameter Value Meaning

k1 3.14× 105 mbar−1 Impingement rate of CO

k2 10.21 s−1 CO desorption rate

k3 283.8 s−1 CO reaction rate

k4 5.86× 105 s−1mbar−1 Impingement rate of O2

k5 1.61 s−1 Phase transition rate

sCO 1.0 CO sticking coefficient

sO 0.6 Oxygen sticking coefficient on the 1× 1 phase

sO 0.4 Oxygen sticking coefficient on the 1× 2 phase

u0, δu 0.35, 0.05 Parameters for the structural phase transition

D 40 µm2s−1 CO diffusion coefficient

uref 0.3358 Reference CO coverage



Chapter 4

Ultra-thin Platinum foil

A temperature increase ensuing from an exothermic reaction may dominate the course

of a heterogeneous catalysis experiment, even if performed in a controlled environment

at atmospheric pressures. This is especially relevant in the case of nonlinear chemical

systems that exhibit oscillatory behavior, where the reaction conditions play a delicate

role in the system dynamics (as shown in chapters 2 and 3). The indicated tempera-

ture effects can determine the spatiotemporal pattern formation observed in the surface

reactions [103, 174, 175, 176, 177]. The problem of distinguishing whether temperature

changes were due to nonlinear effects or to intrinsic features of the reaction mechanism

gained the attention of G. Ertl and co-workers; for their investigations they used the

well known CO-oxidation on single crystal surfaces under isothermal conditions and low

partial pressures [104]. A number of surface patterns have been discovered under these

well defined reaction conditions for the CO-Pt system (section 2.1). To accurately infer

whether these patterns and their evolution stem from minor temperature changes, we

need a method independent of the reactant pressures, that allows a precise measure of

the adsorption and reaction heat. The present chapter seeks to explain why the use of

an ultra-thin platinum foil can be a solution to this problem, and how the foil can be

used as a micro-calorimetric technique.

An ultra-thin self-supporting platinum foil, 300 nm thick and 4 mm in diameter, has a

heat capacity of only 10 µJ/K. It does not have enough mass to dissipate the reaction heat

generated at its surface; even small amounts of heat deposited within the thin metal foil
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cause a significant temperature increase. The resulting thermo-elastic stress in the metal

leads to macroscopic deformations of the foil. A quantification of these deflections was

achieved with a Michelson interferometer, and a topographical reconstruction algorithm,

as will be shown in sections 4.1 and 4.7.

Samples with extremely low heat capacities were first used in the micro-calorimetric

determination of the heat of adsorption of different gases on Ni and Pt single crystal

surfaces in 1994 [78, 178, 179]. In addition, macroscopic oscillating deformations of an

ultra-thin foil under reaction conditions at moderate pressures of 10−2 mbar, have been

reported in [68, 180].

4.1 The sample and the setup

The key element of this chapter is the particular platinum sample used: a 300 nm

thick Pt(110) single crystal foil, schematically shown in Fig. 4.1. The crystal sample was

prepared by J. Chevallier at the Aarhus University, Denmark. It was grown epitaxially by

evaporation onto the polished crystal surface of a radiation-hardened NaCl single crystal,

previously annealed at ∼ 800 K, at growth rates of 10 - 20 Å·s−1 and at a substrate

temperature of 600 - 700 K. The NaCl was subsequently dissolved in water to leave the

metal crystal floating on the water, supported by surface tension. A polycrystalline Pt

support ring with a 4 mm inner diameter, etched in a hot acid mixture to remove any

surface oxide, and then rinsed clean in distilled water, was used to lift the crystal off the

water. Finally, gentle pressure was applied to expel the water from between crystal and

ring and pull the thin film taut and flat, resulting in a permanent cold weld giving good

mechanical support and electrical contact [79].

A Michelson interferometer enables us to characterize the topography of the foil

after deformation through heat deposition. The corresponding interferogram fringes are

recorded by a 2048× 2048 pixels, 16 bit digital CCD camera at a maximum rate of

10 video frames per second (fps) and stored on a Sun workstation. A spatial linear-

carrier method is then used to obtain the surface profile of the Pt foil, as explained in

section 4.7 and [181, 182].
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Figure 4.1: a) photo [68] and b) sketch of the ultra-thin Pt foil [69]. c) schematical

representation of the foil expansion [42].

The sample is placed in a UHV chamber very similar to the one presented in sec-

tion 2.4.6.1. It has a base pressure of 10−10 mbar and is also equipped with an Ar-ion

sputterer for sample preparation and LEED for surface analysis. A dosing system allows

for precise dosing of CO and oxygen, and the sample holder can be heated by a halogen

lamp. Besides that, two laser beams (continuous and chopped) are used to heat the Pt

foil independently. A sketch of the setup is shown in Fig. 4.2.

Fig. 4.3 a) displays a typical interferogram of the Pt foil obtained with this setup. The

so-called contour line interferogram does not provide the complete information necessary

for reconstruction of the topography. Therefore, the reference mirror of our setup is tilted

horizontally by about two tenths of a degree, which results in an interferogram like the

one shown in Fig. 4.3 b). A regular pattern of slightly distorted vertical stripes is then

observed. Variation in sample topography changes the distortion of the stripe pattern

shown in (Fig. 4.3 c)). The distortion can be analyzed with the help of a computer

program and the surface profile can be reconstructed (Fig. 4.3 d) to e)). As a measure of

the deformation of the sample, the expansion of the Pt foil perpendicular to the buckling

in Fig. 4.3 is calculated from the change of the arc length of the curve shown in Fig. 4.3 e)

compared to the length of the curve for a plain surface. Computational analysis of the

fringes becomes problematic at extreme deformations, and it is consequently not possible

to measure foil expansions above a critical value (see Fig. 4.4).
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Figure 4.2: Sketch of the experimental mounting: essentially a Michelson

interferometer [69].

The mechanical pre-strain on the Pt foil caused by a temperature difference between

the foil and the substrate [68] has to be taken into account in the experiments with

this setup. Due to thermal radiation, the Pt foil permanently exchanges heat with its

environment. At elevated temperatures this leads to a temperature difference between the

foil and the substrate, because the radiative heat losses of the foil cannot be compensated

by heat conduction from the foil boundaries, and temperature equilibrium cannot be

achieved through the gas phase. Thus, the temperature in the center of the foil decreases

and the thermal expansion is smaller than that of the substrate, tightening up the foil.

This pre-strain restrains the mechanical response of the Pt foil to any heat effect and

should therefore be reduced to make the effects induced by adsorption and reaction of

CO and oxygen visible. This is achieved by continuously focusing laser light onto the

Pt foil. As a result, the temperature of the foil is increased, the foil expands, and the

strain is reduced. Furthermore, the pre-strain exhibits a strong anisotropy caused by the

heterogeneity of ring fixation of the Pt foil. This is the origin of the rather complicated
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topography of the buckled surfaces. The sample does not deform homogeneously but

shows ripples which are oriented parallel to the strongest strain (Fig. 4.1 a) and 4.3 d)).

This was already observed and analyzed in earlier studies [68]. Generally, the sensitivity

of this setup is the highest in the case of a homogeneous deformation (see section 4.7).

However, the method of analysis is independent of the respective buckling mode and also

works when applied to complicated patterns.

Figure 4.3: Interferogram fringe patterns and calculated surface profile. a) contour

line interferogram, b) interferogram of the flat Pt foil with tilted reference

mirror, c) magnified interferogram of a buckled Pt foil being irradiated by

laser light with a power of 4.91 mW (TUHV = 419 K), d) reconstructed to-

pography from c), and e) cut perpendicular to the wrinkles shown in d) [69].
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Figure 4.4: a) foil expansion out of measure range. b) corresponding fringes pattern:

too distorted for the topographic reconstruction method [42].

4.2 Calibration

To quantitatively characterize the thermal effect on the sample and to properly relate the

corresponding foil deformation with the adsorbed heat, the system has to be calibrated.

The strategy followed is to match the foil expansion with known amounts of heat released

on it by a laser light; this idea was already used in the groups of King [79] and Campbell

[183, 184, 185]. However, in the first attempts to measure the sample expansion under

reaction conditions, a proper calibration had not been performed. For this reason the

experimental results presented in the following are still of a qualitative character.

Using solely the continuous laser beam to change the temperature of the Pt foil

produces changes in the topography (as shown in Fig. 4.1 or 4.3). No deformation of the

foil is observed until a certain laser power is reached. The magnitude of this threshold

power depends on the substrate temperature, hence, on the pre-strain of the foil. At a

substrate temperature of T = 419 K (512 K) deformation started at a laser power of

3.8 mW (4.55 mW). These data reveal the temperature dependence of the pre-strain that

conditions the foil’s thermal expansion.

As ex situ measurements with our Pt foils have shown [42], a fraction of 36 % of the

laser radiation is absorbed by the Pt foil. Thus, a laser power of 3.8 mW (4.55 mW)

corresponds to an absorbed power of 1.35 mW (1.62 mW). A further increase of the laser

power (both for T = 419 K and T = 512 K) of 0.05 mW (18 µW absorbed) results in a
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Figure 4.5: Relative expansion of the Pt foil as a function of the incident laser power.

a) T = 419 K, b) T = 512 K [69].

relative expansion of around 10−6. When this state is reached, an increase of yet another

0.05 mW causes an expansion in the order of 10−5. Thus, a surface reaction that releases

18 µW of heat into the Pt foil, will cause some sample deformation. This is the same

amount of heat that is released when CO is oxidized on top of the Pt foil at a reaction

rate of 0.5 ML/s (9 × 10−11 mol/s) [78]. For all subsequent experiments, the sample is

illuminated by continuous laser light with a power slightly below the deformation thres-

hold, so that even small amounts of additional heat can produce a detectable deformation

of the foil.

To further improve the calibration, a short, well defined laser pulse is applied. Its

duration is controlled by the shutter shown in Fig. 4.2. Consequently, an expansion of

the foil corresponding to a short temperature increase can be measured. Fig. 4.6 a) to e)

show the heat induced expansion for different shutter times. During the measurement

presented in 4.6 a) about 15 µJ of heat are released within a time interval of 1/15 seconds.

For pulses longer than 0.5 seconds a saturation of the change in topography can be

observed. The same behavior is arrived at in numerical simulations of the thermal

properties of our Pt foil (Fig. 4.6 f)).
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Figure 4.6: Relative expansion of the Pt foil due to the irradiation with a chopped

laser light. Plaser−pulse = 0.61 mW, T = 478 K. a) to e) experimental data,

f) numerical simulation of the temperature response [69].
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4.3 Titration experiments

The experimental setup and the topographic methods have already been presented in

previous sections. Now, the CO2 formation comes into play and two particular cases of

titration on a catalytic surface are presented.

4.3.1 Reaction of oxygen with preadsorbed CO

The titration experiment illustrated in Fig. 4.7 was performed as follows: first, the

sample was exposed to a CO pressure of 10−5 mbar for about 60 seconds. The sample

heating by continuous laser light was adjusted in such a way that the foil rested slightly

below the buckling threshold (corresponding, for example, to 4.5 mW laser power in

Fig. 4.7 b)). Then the CO valve was closed, leaving a CO covered Pt crystal in the UHV

chamber, and the oxygen valve was opened (t = 0 s in Fig. 4.7 a)). This procedure leads

to a clear mechanical response of the foil: initially the relative deformation of the Pt foil

is zero, but after approximately 3 s the deformation abruptly increases, to decay 2 s later

down to a constant value of about 0.5×10−6. This mechanical behavior of the foil is due

to the chemical exothermic processes taking place on its surface. After the oxygen valve

has been opened, the catalytic reaction cannot start immediately because the Pt surface

is poisoned with CO [13]. Three seconds later, the reaction starts up. Oxygen is adsorbed

and reacts with the adsorbed CO molecules. This process releases heat which is partly

absorbed by the catalyst. The resulting small temperature increase causes thermo-elastic

stress which leads to the deformation of the foil (Fig. 4.7 c) and f)). In the end, the Pt

foil is covered with oxygen. The deformation does not vanish completely but remains at

a small and fixed value (Fig. 4.7 d) and g)). The reason is that the optical properties of

the oxygen covered platinum surface differ from the properties of the CO covered crystal.

To summarize, two mechanisms determine the mechanical response of the Pt foil.

First, the catalytic reaction increases the sample temperature because reaction heat is

released. And second, due to adsorption of oxygen, the absorption coefficient of the

Pt foil increases (about 2 %). More laser light is absorbed and therefore the sample

temperature raises.
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Figure 4.7: Titration experiment. T = 482 K, Plaser−pulse = 4.5 mW. At t = 0 s

the crystal surface was CO covered and the oxygen valve is opened,

pO2 = 10−3 mbar. a) relative expansion, b) to d) snapshots of the re-

construction of the surface profile at the time moments indicated in a).

e) to g) are cuts through b) to d). A relative expansion larger than 5×10−6

at around 3 - 4 s could not be analyzed with the used algorithm. In this

case the algorithm did not produce reasonable results and a fixed value of

5× 10−6 was assigned to images with larger expansion [69].
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4.3.2 Reaction of CO with preadsorbed oxygen

In this case, the resulting deformation happens on a shorter time scale because the Pt

surface is not poisoned and the reaction starts immediately when the oxygen covered

sample is exposed to CO. The transition from a buckled to an unbuckled surface can be

observed in Fig 4.8. The reaction speed is higher than the sampling rate, which makes

visible no sign of the exothermic reaction.

Figure 4.8: Titration experiment. a) Plaser−pulse = 4.5 (4.69) mW and

b) Plaser−pulse = 5.14 (5.46) mW. At t = 0 s the crystal surface was oxygen

covered and the CO valve is opened, pCO = 10−5 mbar [42].

4.3.3 Parameter dependence of the titration

Fig. 4.9 and 4.10 show how the contributions of the two mechanisms above explained

changes when the reaction parameters are modified. At high oxygen pressure during

titration of CO, the reaction heat dominates the mechanical response of the catalytic

foil and a fast pronounced deformation peak is observed (Fig. 4.9 a)). With decreasing

pressure, the deformation peak becomes broader (note the different time scales in the

plots) and smaller in comparison to the permanent deformation induced by the laser

heating (Fig. 4.9 b) to d)). When the same experiment is performed at higher tempera-

ture (Fig. 4.10), the result is qualitatively the same. If Fig. 4.9 and 4.10 are compared,
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it can be seen that the permanent relative deformation of the oxygen covered foil differs

because the power of the heating laser is not the same; indicated in the figure caption,

different laser power was used in order to optimize the visibility of the reaction topo-

graphic effects.

Figure 4.9: Relative expansion of the foil during titration of CO.

a) Plaser = 4.37 (4.49) mW. b) Plaser = 4.49 (4.63) mW.

c) Plaser= 4.51 (4.69) mW. d) Plaser = 4.69 (4.80) mW. The power

of the heating laser is adjusted to a value slightly below the buckling

threshold (value in brackets) [69].
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Figure 4.10: Relative expansion of the foil during titration of CO.

a) Plaser = 5.14 (5.37) mW. b) Plaser = 5.14 (5.46) mW. The power of the

heating laser is adjusted to a value slightly below the buckling threshold

(value in brackets) [69].
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4.4 Pattern formation

During the titration of CO with oxygen, spatiotemporal patterns in the sample topogra-

phy were observed at temperatures below 512 K. The effect is weak (deformations of few

tens of nanometers), so that a background subtraction is needed to visualize the surface

profile changes. For this, the first image of a sequence of surface profiles was stored in the

computer and subtracted from all the following images. Consequently, the topography

of the unperturbed Pt foil appears perfectly flat. Fig. 4.11 shows the propagation of a

deformation front corresponding to the measurement shown in Fig. 4.9 b). The effect is

visible as a small peak in the relative expansion around t = 5 s, and is shown in detail in

Fig. 4.12. For lower temperature and lower oxygen partial pressure a deformation pulse

can be seen (Fig. 4.13).

Figure 4.11: Propagation of deformation fronts. a) to c) representation of subsequent

surface profiles reconstruction and the corresponding cuts at T = 482 K

and pO2 = 10−3 mbar. The power of the heating laser is adjusted to a

value slightly below the buckling threshold [69].

To explain the formation of patterns on the Pt surface, the following mechanism can

be proposed: when the reaction starts, heat is released into the foil and the temperature

increases locally. Heat is transported via heat conduction within the foil. This means
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Figure 4.12: Detail of the relative expansion shown in Fig. 4.9 b), corresponding to

the propagating front shown in Fig. 4.11 [42].

that the temperature also increases in the immediate surroundings of the nucleation site,

so that the reaction is more likely to start there too. As a consequence, the reaction

propagates, together with a pulse-shaped temperature heterogeneity, from the center of

the foil to its boundary. Depending on the reaction conditions this process leads to a

front-like or a pulse-like deformation, where the propagation velocity is determined by

heat conduction and the reaction rate. At higher temperature and higher O2 pressure

(for instance T = 482 K and pO2 = 10−3 mbar), the reaction rate is higher and the front

moves with a velocity of around 1.2 mm/s. At lower temperature and lower pressure

(for instance T = 420 K and pO2 = 10−6 mbar), the propagation velocity of the pulse is

lower. It is plausible that the patterns shape is also a parameter dependent feature. For

slow temperature propagation, the spot origin of the reaction is more likely to release

enough heat and recover its shape before the mechanical pulse reaches the border of the

foil (giving a pulse like shape to the pattern), than if the temperature propagation is

faster (remaining as a front).

In both cases (pulse and front) a coupling between the reaction dynamics and tempe-

rature heterogeneities may occur. In addition, the patterns always emerge in the center

of the Pt foil. The reason might be that the intensity of the heating laser beam is at its

maximum there, or because that is the spot where the foil has less structural tension, or

most likely a combination of both.
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Figure 4.13: Propagation of deformation pulses. T = 420 K and pO2 = 10−6 mbar.

The power of the heating laser is again adjusted to a value slightly below

the buckling threshold [69].

4.5 Sensitivity of the method

The calorimetric method for direct measurement presented in this chapter can be properly

described in terms of featured sensitivity. Let’s first consider the geometry of the Pt foil

as quasi one-dimensional with, for the sake of simplicity, a rectangular shape (as in

Fig. 4.16). The thermal expansion of the sample results in a rippling of the foil: the ratio

of the arc lengths of cuts through the ripple and the flat foil (d +4d)/d is the relative

expansion of the crystal (Fig. 4.1 c) and 4.16 b)). Neglecting any cooling effects via heat

conduction into the substrate, the relative expansion is proportional to the temperature

increase of the Pt foil, with this proportionality factor given by the thermal expansion

coefficient. Therefore, the relative expansion (d +4d)/d is used here for the graphical

representation of the sample response.

The height of the ripple h (buckling amplitude) is a function of the thermal expansion

of the Pt crystal, and thus, of the adsorbed energy which is released into the foil during

the species adsorption or during titration. The dependence can be summarized in the



4.5 Sensitivity of the method 109

following two equations:

4E =
mcp
α

(
ϕ

sinϕ
− 1) (4.1)

with

ϕ = 2 arctan(
2h

d
). (4.2)

Here, m is the mass of the self-supporting part of the foil, cp is the Pt heat capacitance,

α stands for the thermal expansion coefficient, and h and d are defined according to

Fig. 4.1 c). The term (ϕ/sinϕ − 1) is the relative expansion (d +4d)/d. Using these

equations, the amount of energy4E which has been released into the foil and has caused

the thermal expansion, can be calculated from the value of h. In this approach, any

thermomechanical transmission is neglected and temperature rise as well as mechanical

deformation are assumed to occur instantaneously. Also, cooling via heat conduction

into the substrate is not taken into account. The dependence of h on 4E at room

temperature is shown in Fig. 4.14 a) for a rectangular sample 4 mm x 2 mm x 0.5 µm.

Figure 4.14: Theoretical sensitivity for a 4 mm x 2 mm x 0.5 µm sample. a) buckling

amplitude as a function of the dosed energy. b) sensitivity for different

buckling modes (see text). Energy necessary to cause a buckling ampli-

tude h (see Fig. 4.1 c)) of 1 µm as a function of the mode number. The

value of the first mode corresponds to the dashed lines in a). Thermal

expansion coefficient α = 8.92 × 10−6, heat capacity cp = 133Jkg−1K−1

and density ρ = 21.45 g/cm [69].

Using an interferometer, buckling amplitudes (h) of 1 µm can be measured. To

generate a buckling amplitude of 1 µm, 0.21 µJ of heat has to be absorbed by the foil
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(dashed lines in 4.14 a)). This amount of heat is released, when 720×109 molecules of CO

adsorb on the Pt surface instantaneously (adsorption enthalpy HCO =175 kJ/mol [76].

As one monolayer (ML) of CO on the Pt(110) single crystal surface (8 mm2) consists of

about 74×1012 molecules, the calculated amount of 0.21 µJ of heat would be released by

an instantaneous adsorption of 1 × 10−2 ML of CO. A buckling amplitude of, let’s say,

100 nm (i.e., 2.1 nJ absorbed energy) will be caused by adsorption of only 1× 10−4 ML

of CO. This detection limit for coverage could be improved by at least one order of

magnitude with the use of a state-of-the-art interferometry [186] and thinner Pt foils.

Figure 4.15: Theoretical sensitivity at low temperatures for a sample geometry shown

in Fig. 4.16. a) thermal expansion coefficient of platinum as a function of

temperature, after [187]. b) molar heat capacity as a function of temper-

ature, “O” data after [188], “+” data after [189]. The red lines indicate

spline fits to the experimental data used for further calculations. c) energy

necessary for a buckling amplitude of 1 µm calculated from the fitted red

curves in a) and b) using the equations in appendix 4.7, foil dimensions

4 mm x 2 mm x 0.5 µm [69].

So far, the Pt foil was assumed to buckle homogeneously, as indicated in Fig. 4.1 c).

What happens if higher deformation modes are present? Like in the case of guitar

strings, the wavelength of the buckling can be any integer fraction of the foil length d. If

we number the buckling modes like the harmonics of a tone, and calculate the amount

of energy necessary to produce a buckling amplitude of 1 µm in the respective mode, we

get the diagram shown in Fig. 4.14 b), in which the sensitivity is maximum for the first

buckling mode and then decreases.
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4.6 Discussion

In this chapter a new method for direct calorimetric measurement of adsorption energies

is presented, which has clear advantages over “conventional” techniques. Traditional

methods are indirect and rely on desorption, e.g., thermal desorption spectroscopy or

measuring isosteric heat. Although these techniques have proven to be effective for

many traditional reversible adsorption systems, they are only useful if the adsorbates do

not form another high-temperature phase at the desorption temperature, namely the ad-

sorbates dissociate, form clusters, diffuse into the bulk or react with co-adsorbates [190].

Direct calorimetric measurements of adsorption heat evade this limitation. Of course, the

present work [69] is still only a feasibility study, as it has not yet been fully calibrated

for use in differential calorimetry. However, this should be straightforward using the

techniques developed by King and Campbell. Even without calibration, the technique

can be used to measure relative reaction rates. Combined with the spatially resolving

topographic detector, this may ultimately prove to be useful for spatially resolving re-

lative reaction rates on heterogeneous samples or even as a detector in combinatorial

chemistry [191].

This setup is based on the interferometric determination of topographical changes of

an ultra-thin reflective foil. Sample thicknesses between 0.1 and 5 µm may be used. The

theoretical detection limit of our setup as applied to CO coverage (energy) lies in the

order of 10−5 ML (2 nJ) (section 4.5).

The method can be applied to experiments in a broad range of parameters. The

sample can be annealed at high temperatures, since no heat-sensitive components are

used in. The system theoretically operates at temperatures down to 2 K without loss of

sensitivity (see Fig. 4.15). Between room temperature and 3 K the sensitivity does not

change significantly and only decreases rapidly at temperatures below 2 K. By contrast to

Campbell’s method [183, 184, 185], where the signal is dependent on the time derivative of

the sample temperature, this setup allows for measuring constant reaction rates, since the

output signal (mechanical deformation) is directly dependent on the sample temperature.

Furthermore, it is not restricted to UHV conditions.

Table 4.1 provides a general comparison of the exposed interferometric approach with

methods based on infrared detection (King and co-workers [79]) and methods based on

the pyroelectric effect (Campbell et al. [183, 184, 185]).
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Table 4.1: Properties of the method proposed in this work (first column) compared

with the methods used by Campbell [183, 184, 185] and King [79].

Method Interferometry Pyroelectric detection IR detection

(Campbell) (King)

Detection limit < 2 nJ < 100 nJ < 100 nJ

(energy) (calculated)

Working temperature range > 2 K 2 K- 400 K > 100 K

(theoretical)

Sample 0.1-5 µm 0.1-10 µm ≈ 0.2 µm

thickness

Annealing at high Yes Yes No

temperatures

Dependence on ∝ ∆ T ∝ d (∆ T )/dt ∝ ∆ T

temperature

The detection limit of our interferometric approach is only a rough theoretical estimate,

while the values of the other two methods are deduced from experimental results.

Reproduced from [69].

Some improvements of the design are still needed to develop this method into a

quantitative tool for reaction rate and calorimetric measurements. Both, resolution and

working range could be increased if a more complex setup together with a more sophis-

ticated algorithm was used. The coverage of the surface with oxygen or CO could not

be measured during the interferometric experiments because the space in front of the

sample was occupied by the laser used for heating and the interferometer. Since laser

heating is only necessary because of the mechanical pre-strain of the sample, a removal

of the mechanical pre-strain would make the heating laser redundant. In that case, there

would be space for additional surface analysis, like ellipsomicroscopy, and the mechanical

response of the foil would no longer be influenced by the change of the optical proper-

ties due to adsorption of the reaction products. The latter can also be achieved by

heating with laser radiation from the back of the sample, using a coated foil with optical

properties independent of the coverage on the illuminated side.
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Using quantitative ellipsometry and a molecular beam, the absolute coverage of the Pt

crystal could in principle be measured directly and used for accurate system calibration.

To perform this measurement with sufficient accuracy, a flat sample would be needed,

because the angle of incidence has to be defined with an accuracy of at least a few

tenths of a degree. A possible way would be adsorbing a fraction of a monolayer using

a molecular beam. The surface would buckle due to the released reaction heat, and

would again unbuckle when the crystal foil has cooled down via heat conduction into the

substrate. If no thermal desorption of the adsorbed species occurs at the given conditions,

the coverage could then be measured, matching buckling amplitude with coverage and

released heat.

An alternative sample setup (Fig. 4.16) has also been proposed [69]. The Pt foil

is evaporated on a piezo-crystal with a trench filled with sodium chloride or a lacquer.

After evaporation of platinum the substance filling the trench is dissolved, and a self-

supporting Pt film remains. Any pre-strain occurring during the experiment can now

be compensated by applying an appropriate voltage to the piezo-crystal. Thus, no laser

illumination during adsorption experiments is needed, and the change of the optical

properties of the Pt foil due to adsorbed species could be compensated. In combination

with a molecular beam, this setup should have a sensitivity of a few nJ. Furthermore, it

is possible to use polycrystalline samples selected according to the investigated reaction,

which paves the way for inexpensive practical applications.

A faster image processing CCD camera would also mean a better characterization of

the fast titration experiments, allowing a more precise time profile of the foil topography

changes. The reconstruction algorithm also has some limitations, related in particular to

the strong distortion of the interferogram fringes. The combination of two algorithms,

one for small expansions (the actual one) and another for large expansions, could be a

solution.
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Figure 4.16: Proposed setup and sample geometry. a) the Pt foil is mounted on a

piezo-support. b) thermal expansion causes a deformation of the sample;

the ratio (d + ∆d)/d is the relative expansion of the foil, while h is the

buckling amplitude.
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4.7 Appendix: algorithm for the topography recon-

struction

The algorithm used for the reconstruction of the sample topography was first proposed

by Takeda et al. in 1982 [181]. Fig. 4.17 illustrates the basic principles of the method,

which extracts the phase information encoded into the interferogram in form of bending

of the fringes. The uniform spacing between parallel fringes is lost when the fringes

are deformed, generating localized areas of compressed and expanded fringe spacing.

Scanning across these areas would reveal changes in the fringe frequency corresponding

to the change in fringe spacing. By extracting this fringe frequency from the domi-

nant carrier frequency the phase information is isolated; this is achieved using a Fourier

transform.

Figure 4.17: Reconstruction of the surface profile of a plane mirror. a) interferogram,

b) horizontal cut through a), c) spatial frequency spectrum of b) where

the shaded area represents the chosen frame of the spectrum used for the

reconstruction of the topography. d) shape of the mirror surface and e) a

cut through d).
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The two dimensional intensity distribution g(x,y) of an interferometric image can

generally be written in the following form:

g(x, y) = a(x, y) + b(x, y) cosφ(x, y) . (4.3)

Here, a(x,y) denotes an (undesired) background intensity, b(x,y) represents the space

dependent amplitude of the interference pattern and φ(x,y) stands for the phase difference

between the object wave (reflected by the Pt foil) and the reference wave (reflected by

the plane mirror). The phase difference carries the information about the topography of

the foil. But without knowledge of a(x,y) and b(x,y) the reconstruction of the phase from

only one interferogram is impossible. This is why phase stepping techniques are usually

applied. In our experiment this is not possible, because the surface profile changes too

quickly; we have to reconstruct the topography from only one image. In their 1982

paper [181] Takeda et al. suggest to tilt the reference mirror with respect to one axis of

the image in order to solve this problem (see Fig. 4.3). When this is done, the intensity

in the interferometric image can be written as

g(x, y) = a(x, y) + b(x, y) cos (2πf0x+ φ(x, y)) (4.4)

where f0 is the mean spatial frequency of the interference stripes caused by tilting the

mirror. The interferometric image of a plane mirror (instead of the Pt foil) using a

tilted reference mirror is shown in Fig. 4.17 a). The horizontal cut through the image

is visible in Fig. 4.17 b). Since the mirror is flat, the stripe pattern is regular, but

the amplitude of the interference pattern is not homogeneous and decays towards the

boundaries of the image. The tilt introduces a carrier frequency for the information about

the surface topography. Thus, the shape of the sample is now encoded in a frequency

modulated form in the sequence of the interference stripes in the image. This becomes

more obvious when we rewrite the above formula in a complex notation and perform a

Fourier-transformation with respect to the tilted x-axis:

g(x, y) = a(x, y) + c(x, y) exp (2πif0x) + c∗(x, y) exp (−2πif0x) (4.5)

where

c(x, y) =
1

2
b(x, y) exp (iφ(x, y)) . (4.6)

And after the Fourier transformation:

G(f, y) = A(f, y) + C(f − f0, y) + C∗(f + f0, y) . (4.7)
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The spectrum of the intensity distribution is divided into three parts: the Fourier

transform of the background intensity A(f,y) and the Fourier transforms of c(x,y) and

c*(x,y) with one shifted to +f0 and the other to -f0 in the frequency domain. This can be

seen in Fig. 4.17 c) where C and C* correspond to the two peaks located at ± 5.75 mm−1.

The information about the topography of our sample is completely contained in the term

C(f -f0,y). It follows that G(f ,y) can now be filtered without loss of (desired) information

by subtracting A(f ,y) and C*(f + f0,y) and shifting C(f − f0,y) back to zero:

G̃(f, y) = C(f, y) . (4.8)

This is done numerically by setting all stored values of G outside a given window

around +f0 to zero and shifting the resulting array by -f0. The window used for the

reconstruction of the topography in our example is indicated by the light gray shading

in Fig. 4.17 c). In practice there is an overlap between the different parts of the Fourier

spectrum. This restricts the spatial resolution of this method. The separability increases

with larger tilt of the mirror (i.e., higher value of f0), but is limited by the resolution

of the CCD-camera because the interference stripes have to be sampled with sufficient

accuracy. From Ḡ(f, y) the surface profile z(x,y) can be calculated:

g̃(x, y) =
1

2
b(x, y) exp (iφ(x, y))

ln (g̃(x, y)) = ln
(

1

2
b(x, y)

)
+ iφ(x, y)

⇒ φ(x, y) = =
{

ln (g̃(x, y))
}
. (4.9)

Now the information about the surface profile is no longer affected by interfering back-

ground heterogeneities and amplitude variations.
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Chapter 5

Pitting corrosion on stainless steel

Already introduced in section 2.5, pitting corrosion on stainless steel is a particularly

interesting and very common kind of metal corrosion. Apart from the localized loss of

metal thickness, corrosion pits can also be stress raisers and the cause of a great deal

of damage; huge losses every year are attributed to the pitting corrosion, and not just

economic (*) but also human losses (**). Pitting is considered to be more dangerous

than uniform corrosion because it is more difficult to detect, predict, and design against;

for this purposes, surface imaging plays a prominent role [192], specially those techniques

that are able to provide real-time information about an on-going process [14].

The nucleation of individual pits is strongly dependent on the state of the protective

metal oxide layer, with inclusions, defects, and grain boundaries as the weak spots where

the reactions normally begin. It is also well known that pits have a destructive influ-

ence on their vicinities through the release of aggressive ions, which enables the use of

stochastic reaction-diffusion models [193] to approach pitting behavior. Numerical simu-

lations based on an autocatalytic reproduction of pitting sites anticipated a spreading

of the corrosion process as a cooperative wave [21], and this pattern has been confirmed

experimentally [15].

The importance of the pit morphology in spreading corrosion processes has been

generally recognized. A number of two-dimensional statistical models have been deve-

loped to describe the morphological aspects of pitting corrosion, and it has been reliably

stablished that the shaping of the holes has a close relation with the corrosion activity
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[194, 195, 196, 197]. Also relevant is the current density, as it may enlarge the active

surface in a fractal way [197, 198]. Although some work has been done, especially with

aluminum [124, 199], there is still a lack of precise experimental data on pit morphology,

required for the development and testing of more elaborated models. The present chapter

is dedicated to a three dimensional characterization of pits involved in the stainless steel

degradation process, combining AFM in situ experiments with SEM microscopy.

(*) The NACE (National Association of Corrosion Engineers) estimated that for 1998, the
total annual direct cost of corrosion in the U.S. was approximately $276 billion (3.1 % of the
US gross domestic product).

(**) For instance, in April 1992, a corroded gasoline pipeline caused a sewer explosion that

killed 215 people and injured 1,500 more in Guadalajara, Mexico [131].

5.1 AFM in situ experiments

An electrochemical cell is used to study the metal corrosion under controlled conditions: a

stainless steel sample is immersed in a 0.05 M NaCl solution and a potentiostat establishes

a potential difference between electrodes, while the current through the working electrode

is monitored. The cell is a three electrode set up (see section 2.5.2) adapted for AFM

microscopy (see section 2.5.2.3).

5.1.1 Electrochemical unit

Designed to perform electrochemical experiments with simultaneous AFM imaging, the

in situ unit is a small teflon container that contains the electrolyte and the electrodes

(Fig. 5.1). The working electrode is built by attaching the stainless steel sample to a

copper disc with silver paste, which guaranties good conductance through the two pieces.

The disc has an electrical connection from the bottom of the unit. The edge of the sample

is covered with nail varnish and the copper disc is isolated with parafilm, so that once

the teflon basin is filled with the solution only the top face of the stainless steel is left

in contact with the liquid. A silver gauze in the form of half cylinder centered in the

sample is used as counter electrode. The reference electrode is a coating-free tip of an
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Figure 5.1: AFM in situ electrochemical cell.

enameled Cu (0.315 mm) wire placed close to the sample surface. The whole unit fits

into the microscope, and after careful calibration of the cantilever in the fluid, the tip

can scan the surface while the potentiostat controls the current through the system.

The mapping of the surface was performed in alternating cycles of electrochemical

activity and an AFM scans (60 - 90 seconds per image). After every cycle the potentiostat

would apply a higher potential for short time. For instance, the sequence corresponding

to the experiments shown in section 5.2.1 is: surface scan, 0.1 V applied for 3 seconds,

surface scan, 0.2 V applied for 3 seconds,... up to 0.8 V. These successive steps make it

possible to follow the pit growth.

Events like the nucleation and growth of metastable pits can be identified in a current

vs. time plot. Peaks and stepwise increase of the current are the result of partial ruptures

of the protective cover, or the formation of new holes, assuming that the number and size

of the holes must increase with time during pit growth [128, 200]. Fig. 5.2 compares the

corresponding curves of a potential kept constant and of a constantly increasing potential

applied to the cell.
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Figure 5.2: Current vs. time plots corresponding to electrochemical experiments on

stainless steel AISI 316. The applied voltage to the electrochemical cell is:

a) constant of 0.5 V, b) a linear sweep from 0.0 to 0.8 V.

5.1.2 Sample preparation

The alloy composition and microstructure can have a strong effect on its tendency to

allow corrosion processes [125]. Aiming the pitting analysis as close to real life conditions

as possible, a very common high quality grade of stainless steel is chosen: AISI 316

(see section 2.5.2). Samples are cut into a cylindrical disc of 4 mm height and 1 cm

diameter. Also, two different polishing techniques were used: mechanical polishing, and

electropolishing.

5.1.2.1 Mechanical polishing

The AISI 316 samples were always mechanically polished. First, using sandpaper, and

then with different grades of polishing Al powder down to 0.05 microns. A serie of

ultrasonic baths followed: in acetone, in isopropanol, in methanol, and in distilled water.
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5.1.2.2 Electropolishing

An additional electrochemical polishing treatment was carried out in the preparation

of some of the samples. Electropolishing uses a combination of rectified current and

a blended chemical electrolyte bath to remove substrate material from the surface of

a metal, diminishing scratches, burrs, or unwanted sharp edges. The steel sample is

immersed in a temperature controlled bath of electrolyte and connected to the anode

of a power supply, the negative terminal being attached to an auxiliary electrode. An

ionic current flows from the anode (metal oxidizes) to the cathode (where reduction takes

place). During this process, the protruding parts of the surface profile typically dissolve

faster than the recesses, which is called anodic leveling. For the metal preparation a

voltage of 50 volts was applied for 5 minutes. The choice of applied voltage and time

was optimized after a comparison of optical microscope images (not shown) of different

samples prepared under different conditions. The particular electrolyte used for this stage

of the sample preparation is a solution of 133 ml glacial acetic acid and 25 g chromium

trioxide in 7 ml of water.

Figure 5.3: Current vs. time plots corresponding to electrochemical experiments with

a constant potential applied of 0.7 V. a) mechanically and b) electro-

chemically polished stainless steel 316.



124 Pitting corrosion on stainless steel

The resulting metal has fewer vulnerable spots and is significantly less prone to initia-

tion of corrosion processes, as can be seen in Fig. 5.3. During the same electrochemical

experiment, the current through the electropolished metal stays always below 50 % of

the non electropolished one, indicating a smaller cover damage; especially significant is

the difference during the initial stretch of the plot.

5.2 Results

5.2.1 AFM

Section 2.5.2.3 and 5.1 introduce the experimental techniques used to map the surface of

SS 316 during its electrochemical corrosion. The present section shows six consecutive

AFM scans where the nucleation and growth of a pit can be followed, and the corres-

ponding profile plot, giving additional depth information (Fig. 5.4). The scans made after

Fig. 5.4 f) (data not shown) indicate that the pit passivated and did not grow anymore.

A small bump seems to precede the pit nucleations (as in Fig. 5.4 b)), maybe a fracture

on the oxide cover. Another bump is often found at the bottom of the growing hole

(Fig. 5.4 c), d), and e)), of which the nature is unclear: it could be a piece of the cover, it

could belong to the pit walls, or it could be the result of uneven erosion dynamics within

the hole due to convection patterns arising from hydrogen bubbles during the reaction

[201]. 3D images corresponding to the first and last surface maps can be seen in Fig. 5.5.

This preliminary analysis showed that the profile of big flat pits can be better imaged

with AFM, and that it is clearly an incompatible technique for the proper characterization

of holes with horizontal grain attack or undercutting growth (Fig. 2.20). The respective

SEM images may provide additional useful information from the pits contour-edge lines,

the walls consistency, or bodies found at the bottom.

Although the temperature was controlled before and after each experiment to be

sure that no significant changes may have altered the reaction environment, a constant

temperature control while surface mapping is still a desired improvement for the setup.
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Figure 5.4: Subsequent AFM deflection images. After every scan, a voltage is applied

for 3 seconds between the working electrode and the reference electrode:

0.1 V after a), 0.2 V after b), 0.3 V after c), 0.4 V after d), 0.5 V after e).

Surface distance between reference bars indicate the pit depth evolution:

c) 0.075 µm, d) 0.076 µm, e) 0.076 µm, and f) 0.102 µm.
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Figure 5.5: Three dimensional representation of the AFM scans above. I and II

correspond to Fig. 5.4 a), III and IV show the hole seen in Fig. 5.4 f).
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Figure 5.6: a) and b) SEM images of corrosion pits generated during the experi-

ment shown in Fig. 5.4, using a mechanically polished sample. c) and d)

corrosion pits generated during a similar experiment with an electro-

polished sample.
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5.2.2 SEM

After the in situ surface experiments presented in the previous sections, stainless steel

samples were also analyzed with a SEM (see section 2.5.2.3) to further characterize

the corrosion holes morphology, complementing the information obtained with AFM.

Unfortunately, localizing and visualizing the very same pit with both techniques could

not be achieved yet.

The images presented here (Fig. 5.6) give a general idea of the kinds of pit profiles

that were generated, and show the difference between the results of the two sample

polishing methods used. The (typically) abrupt walls of the mechanically polished sample

of Fig. 5.6 a) contrast with the (typically) round edges of the electropolished metal

(Fig. 5.6 c) and d)). The collapse of either the oxide covering layer or internal material

that came off during the corrosion surrounds the pit in Fig. 5.6 b). Fig. 5.6 c) shows

in detail a protruding body at the bottom of a hole, such as is also visible in the AFM

profile of Fig. 5.4 d) and e).

5.3 Conclusions and future work

A morphological approach to the autocatalytic process of pitting corrosion for prevention,

detection, and materials testing knowledge has been presented in a preliminary state.

Three dimensional data has been obtained combining AFM and SEM, allowing resolve

size, growing rate, and profile nature of single pits.

It is accepted that stable corrosion conditions normally lead to smooth surfaces hav-

ing a characteristic hemispherical profile. On the other hand, pits grown under unstable

conditions normally show rugged surfaces with pronounced crystallographic edges [197].

In other words, a morphological characterization of a corroded surface may give infor-

mation about the prior reaction conditions.

After electropolishing, stainless steel is more effectively resistant against the onset

and development of pitting corrosion. Not only is more aggressive electrolyte needed to

nucleate pits (Fig. 5.3), but the morphology of the nucleated holes is less detrimental, less
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likely to tunnel into the metal and to erode internal cavities where the ion concentration

is always higher and the pits keep growing.

Implementing a pit identification technique, perhaps a lithographic marking of the

surface, would help in tracking pits on the metal and allow both AFM and SEM to locate

the same surface spot. With this improvement, the combined imaging techniques may

lead to a test protocol to detect metal resistance towards pitting corrosion in its very

first stage, most critical for preventive measures.

The corrosion pit sizes found in this work range from hundreds of nanometers to tens

of micrometers. However, how big or how small they can be is not yet defined, although

it might be relevant to determining unknown corrosion factors, specially if dimensions

can be related to hole profiles. With more experience and larger probes, the AFM-SEM

combination may cast new light on these issues.

Still preliminary in its results, a future goal of this morphological approach is to

support and/or contrast mathematical models used to describe the pitting formation

and growth process [194, 195, 196, 197, 198].

The present work is framed within a bigger project led by H. H. Rotermund, in

which the already developed EMSI plus optical microscopy setup [14], is combined with

in-line holography [202] to advance in the knowledge and prevention of corrosion. The

morphological analysis of pitting corrosion gains relevance in the context of the mentioned

techniques and is expected to generate a great deal of further practical information about

metal corrosion.
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Chapter 6

Summary

The number of spatiotemporal structures that chemical systems far from equilibrium

can exhibit is remarkable. This thesis is aimed at exploring surface reactions under well

defined conditions and attempts to control and manipulate the corresponding reaction-

diffusion dynamics. Its approach is dominated by the use of visual techniques and image

processing. The summary is divided into two sections, one for each of the systems studied.

6.1 CO oxidation on Pt(110)

The heterogeneous catalysis of CO oxidation on platinum was controlled by modulating

the partial pressure of the CO involved in this self-oscillating reaction. Two different

approaches were followed: resonant periodic forcing and introduction of artificial noise.

Furthermore, the particular dynamics of the reactions taking place on an ultra-thin Pt

foil were studied.

The first approach was intended to drive the system to resonant forcing regimes,

periodically regulating the CO dosed into the chamber with a frequency chosen to be an

integer number times the intrinsic natural frequency of the system. The experimental

parameters were set in such a way that the reaction exhibits chemical turbulence in

the absence of forcing. The experiments performed in the 2:1 and 3:1 forcing cases

showed the formation of clusters in agreement with previous theoretical results, and

were further discussed. The concept of Bloch walls were introduced, and their shape and
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time evolution were characterized. The implementation of a gas compressor allowed, for

the first time, to reach the 3:1 regime, and even the 4:1. Not seen before, the complex

spatiotemporal structures arising from 4:1 forcing also present phase locked domains, but

with significantly different sizes than previously seen in the CO-Pt system. In all cases,

turbulence could be suppressed effectively with resonant forcing, yielding phase-locked

structures. Previous work was done on periodic forcing of the same system, but it was not

focused on resonant effects; the forcing amplitude then needed to suppress turbulences

was two orders of magnitude higher than in the present experiments, underlying the

sensitivity of the system in the resonant regime. In addition, the effect of periodic

forcing on a propagating pulse is presented, where two different reactions to the stimulus

can be observed simultaneously.

The analysis of the experimental results is based on the processing of PEEM images

taken from the Pt single crystal, space-time plots, and Fourier spectrograms as well as a

phase and amplitude representation of the results.

Even though the presented setup has successfully reached the 2:1, 3:1, and 4:1 reso-

nant regimes, a better understanding of these complex scenarios could be achieved with

an improved periodic gas compressor: smooth and progressive adjustments of the for-

cing speed and amplitude are desirable features, needed for instance for clusters front

explosions (as predicted by models), or to complete the plot of experimental Arnold

tongues.

The second approach showed the effect of global noise applied to one of the reaction

parameters via a random modulation of the amount of CO in the reaction chamber. As

above, PEEM was the imaging technique used. The dynamics temporal behavior was

analyzed with the help of space-time plots.

The effect of noise on the bistable CO-to-oxygen transitions was studied: a shrinking

of the corresponding hysteresis loop and a decrease in the reactivity needed to achieve

the transitions was found. Also defect induced patterns arising in an otherwise homoge-

neously CO-covered surface was reported. The goal of some of the experiments was again

to suppress developed chemical turbulence. The forcing amplitude needed to reach total

entrainment with the noise signal is comparable to the value that periodic forcing needs

in the resonant regime. Remarkably, for certain noise parameters, regular structures were

sustained. While artificial noise was introduced, the system presented a CO2 production
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increase. This means that noise can raise the reactivity, which in other systems might

be relevant as a production enhancer. Experiments were contrasted with KEE model

results, with particularly good agreement for the bistable transitions and the space-time

plots generated during the experiments of turbulence control.

An ultra-thin platinum (110) foil was used as a catalytic surface to characterize the

reaction heat as well as the species’ adsorption heat. Due to the low heat capacity of

the sample, small amounts of heat can increase the temperature and induce a detectable

surface expansion. A direct calorimetric approach to the reaction kinetics was supported

by the topographic reconstruction of the Pt foil profile. An adapted Michelson inter-

ferometer was used for this reconstruction. The setup and its calibration were introduced,

and then CO and oxygen adsorption energies, as well as titration experiments (CO to

oxygen and vice versa), were characterized.

The surface reflectivity change induced by the adsorbates was confirmed by the com-

parison of the surface profiles for a clean surface, a CO covered surface, and an oxygen

covered one. Pattern formation due to thermal coupling could also be seen. This inno-

vative topographic/calorimetric approach was compared in terms of detection limit and

operating environment conditions with different direct calorimetric techniques. Further

improvements concerning a more versatile topographic reconstruction algorithm were

proposed, that would be able to handle large and small deformations alike. An alterna-

tive setup that combines the sample with a piezo to relieve surface pre-strain was also

introduced, which would permit removing one of the laser beams.

6.2 Pitting corrosion on stainless steel

Pitting corrosion is a degradation process affecting metals that have a stable passivating

layer. Originating at weak spots of that layer, pits go through a state of metastability that

may end in stable pitting. The activity alternations (active-passive) of these generated

pits, together with the concentration of a given species within them determine their

shape. Through the release of aggressive ions pits influence their surroundings, where

new events are more likely to happen, turning the spreading of corrosion into a reaction-

diffusion phenomenon. The profile of each pit and its growing dynamics is a consequence
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of the surface composition, the concentration of aggressive species in contact with it, and

also its own shape.

The autocatalytic growth and propagation of corrosion pits on stainless steel were

studied from a morphological point of view. AFM and SEM microscopy techniques were

combined to characterize the depth and profile of pits generated in a three electrode

electrochemical cell. In situ experiments were performed in a NaCl electrolytic solution.

Images and profiles of the growing process of pits, from nucleation to passivation were

discussed. Two different sample preparations were used to provide comparative informa-

tion of the metal resistance against corrosion. Future work will be focused on contrasting

the morphology of pits in a wide range of reaction parameters and different sample prepa-

rations. An expected improvement will be the use of a pit recognition system to allow

imaging the same pit with both atomic force and scanning electron microscopes.
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