

vorgelegt von

M. Sc. Eng. Yasemin Kuzu

bei der Fakultät VI

Bauingenieurwesen und Angewandte Geowissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

Promotionsausschuss:

Gutachter: Prof. Dr. –Ing. Olaf Hellwich

Gutachter: Prof. Dr. –Ing. Jörg Albertz

Gutachter: Prof. Dr. –Ing. Ayhan Alkis

Vorsitzender: Prof. Dr. –Ing. Lothar Gründig

Tag der wissenschaftlichen Aussprache: 18. Februar 2004

Berlin 2004

D 83

VOLUMETRIC OBJECT RECONSTRUCTION
BY MEANS OF PHOTOGRAMMETRY

 Acknowledgements i

Acknowledgements:

I would like to thank many people who supported and helped me with my research which led to this
dissertation. All my doctor fathers have been equally important for developing this thesis. First of all, I
would to like say that I owe a great debt to my adviser, Prof. Dr.-Ing. Jörg Albertz, who suggested and
motivated me to work on this interesting research topic. Secondly, I want to thank to Prof. Dr.-Ing.
Olaf Hellwich for continuing my supervision, for his invaluable advices and support. I would like to
thank Prof. Dr. Ayhan Alkis for giving me the opportunity to study at Berlin Technical University
which was a challenging opportunity in my career. I also would like to thank to him for proof reading
of this dissertation and his enlightening advices.

There are many people who contributed to this thesis. I should say that working with all these people
at the Department of Photogrammetry and Cartography, TU Berlin, was a fruitful and enjoyable
experience. I am especially grateful to Olaf Sinram with whom I collaborated throughout my research.
His contributions are significant throughout this thesis. I truly appreciate the help of Volker Rodehorst
for introducing me the recent developments in computer vision techniques and sharing his ideas. I
would like to thank John Moré and Albert Wiedemann for their helpful assistance to the camera
calibration and bundle block adjustment tasks. I thank to Iliana Theodoropoulou for checking and
correcting the written English of this thesis. I thank to all my colleagues for their support and
friendship as well.

I am grateful to Berlin Technical University for financially supporting my studies which made it all
possible for me.

Last but surely not the least; I would like to thank my parents and all my family for their support and
encouragement.

Berlin, 2003

Yasemin Kuzu

 Zusammenfassung iii

Titel der Dissertation:

Volumetrische Objektreconstruktion mit Mitteln der Photogrammetrie

ZUSAMMENFASSUNG:

In vielen Bereichen, wie Virtual Reality, Wissenschaft, Medizin und Unterhaltung wird die
automatische Erstellung von 3D Computer Modellen benötigt. In dieser Arbeit behandeln wir das
Problem zur Erstellung photorealistischer Modelle aus Einzelbildern und wir präsentieren eine
volumetrische Rekonstruktionstechnik, die auf Voxel-Modellen basiert.

Das Ziel war es, die Systemvoraussetzungen so gering wie möglich zu halten, damit der Algorithmus
auf möglichst vielen Gebieten Anwendung finden kann. Es wird eine standard CCD Videokamera
verwendet, die auch die Möglichkeit besitzt, hochauflösende Standbilder zu erfassen. Ein
kreisförmiger Kameraaufbau wurde dadurch realisiert, dass das Objekt auf einem Drehteller gedreht
wurde, während die Kamera nicht bewegt wurde. Nachdem der Kamerakalibrierung wurden die
Bildorientierungen anhand einer Bündelblockausgleichung berechnet.

Ein etabliertes Verfahren der Computer Vision wird verwendet, um ein genähertes Modell zu
erstellen, da der Algortihmus schnell und einfach arbeitet. Für die Verfeinerung des Modells und zur
Genauigkeitssteigerung wurden auch Methoden der Photogrammetrie zu Rate gezogen.

Das Objekt wird in mehreren Schritten rekonstruiert. Im ersten Schritt wird ein Volumen definiert,
welches den gesamten auszuwertenden Bereich umschließt. Eine erste Näherung des Modells wird
durch “Shape from Silhouette” (Form aus Kontur) erreicht, aus dem die sogenannte umgebende Hülle
hervorgeht. Leider können in der umgebenden Hülle keine Konkavitäten des Objektes enthalten sein.
Es werden mehrere Algorithmen vorgestellt, um diese Darstellung zu verfeinern. Ein wichtiger Faktor
ist die Information über Sichtbarkeit eines Voxels in einem bestimmten Bild. Es kann aus mehren
Gründen verdeckt sein. Wir stellen einen Algorithmus vor, der diese Information schnell und
zuverlässig anhand einer Linienverfolgung liefert. Darüber hinaus präsentieren wir ein
Qualitätsmerkmal für die Sichtbarkeit, indem der Normalenvektor der Tangentialebene mit der
Blickrichtung des Bildes in Beziehung gebracht wird. Diese Werkzeuge dienen neben anderen dazu,
das Modell zu verfeinern.

Da nur Voxel der wahren Oberfläche auf korrespondierende Bildpunkte abgebildet werden, kann diese
Tatsache helfen, um nicht Oberflächen-Voxel auszuschließen. Die Prüfung auf Ähnlichkeit der
Projektionen eines Voxels, lässt demnach Entscheidungen zu, ob es sich um einen Oberflächenvoxel
handelt. Verschiedene Methoden der Ähnlichkeitsberechnung werden vorgestellt und bewertet. Mit
Hilfe der vorgestellten Methoden, gelingt es, die Konkavitäten der Objektoberfläche zu entfernen, so
dass das fertige Modell dem Objekt tatsächlich entspricht.

 Abstract v

Title of Dissertation:

Volumetric Object Reconstruction By Means of Photogrammetry

ABSTRACT:

In many fields such as virtual reality, science, medicine and entertainment, an automated generation of
3D computer models is required. In this thesis the problem of creating photorealistic 3D models from
still image sequences is addressed and a volumetric object reconstruction technique based on voxel
models is presented.

One of the goals of this study is to keep the system requirements as low as possible so that the
algorithm can be used in many application areas. A standard CCD video camera is used which can
capture still images in high resolution. A circular camera setup was done, which was actually
accomplished by rotating the object itself, while the camera position was stationary. After calibrating
the camera, the orientation parameters of the acquired images are calculated with a bundle block
adjustment.

A popular computer vision technique is used in order to achieve an approximate model since this
technique is fast and easy to reconstruct 3D models of real-world objects. In order to refine the model
and get more precise results, conventional photogrammetric techniques are often referred.

The object is reconstructed in several steps. The algorithm presented begins by initializing a volume
that encloses the 3D objects to be reconstructed. A first approximation of the model is acquired by
shape from silhouette which delivers the objects visual hull. Unfortunately, this method does not
recover concavities on the object. In order to refine the representation, several tools are described. An
important factor is the visibility information of a voxel in a specific image. It can be occluded for
several reasons. A fast method is presented to recover this information with a line tracing algorithm.
Furthermore, a quality measure of the visibility is introduced, by using the surface normal vector of a
voxel in combination with the viewing direction of the image. These tools will help to generate the
upgraded model more accurately.

The objects natural texture will serve as criterion to exclude non-surface voxels. Since only surface
voxels will be projected into corresponding image points in an oriented bundle, we can make use of a
similarity value to distinguish surface from non-surface voxels. Several algorithms to evaluate
similarity are introduced and compared.

With the help of the tools introduced, the concave areas on the object’s surface are recovered
successfully and the final model represents the object correctly.

 Contents vii

CONTENTS:

Figure Index

Table Index

Symbol Index

Chapter 1 : Introduction .. 1

1.1 Introduction .. 1

1.2 3D Shape Acquisition Techniques ... 2
1.2.1 Physical Contact... 2
1.2.2 Transmissive... 3
1.2.3 Reflective Methods .. 4

1.2.3.1 Active Optical Methods .. 4
1.2.3.1.1 Active Stereo ... 4
1.2.3.1.2 Shape from Projected Texture (Interferometry) .. 4
1.2.3.1.3 Active Depth from Defocus... 6
1.2.3.1.4 Time of Flight .. 6
1.2.3.1.5 Optical Triangulation... 6

1.2.3.2 Passive Optical Methods... 7
1.2.3.2.1 Shape from Shading... 7
1.2.3.2.2 Shape from Motion.. 8

1.3 Image-Based Modeling and Rendering.. 8

1.4 Aim of the Study .. 11

1.5 Problem Statement ... 11

1.6 Areas of Application .. 12
1.6.1 Reverse Engineering .. 12
1.6.2 Medicine... 13
1.6.3 Entertainment ... 13
1.6.4 Virtual Worlds, Virtual Walkthrough, Telepresence 13
1.6.5 Cultural Heritage .. 14
1.6.6 Home Shopping.. 14
1.6.7 Industrial Inspection... 14
1.6.8 Design... 14

1.7 Contents of the Thesis .. 15

Chapter 2 : 3D Representation Techniques ... 17

2.1 3D Primitives.. 17
2.1.1 Surface Graphics .. 17
2.1.2 Volume Graphics.. 17
2.1.3 Comparison of Voxel Methods with Polygonal Methods................................ 18

2.1.3.1 Advantages of Voxels ... 18
2.1.3.2 Disadvantages of Voxels... 20

2.2 Volume Data .. 20
2.2.1 Voxel Definition... 21
2.2.2 Voxel Adjacencies.. 21
2.2.3 Surface Voxel List.. 22
2.2.4 Vector Line... 23

viii Contents

2.2.5 Surface Normal Vector... 24
2.2.6 Volumetric Data Set Definition.. 24

2.2.6.1 Sources of Volume Data ... 25
2.2.6.1.1 Sampled Data... 25
2.2.6.1.2 Modeled (Generated) Data .. 27
2.2.6.1.3 Simulated Data .. 28

2.2.7 Storage of Voxels ... 28
2.2.7.1 Volume Buffer .. 28
2.2.7.2 Binary Space Partitioning Trees ... 28
2.2.7.3 Run-Length-Encoding (RLE) ... 29
2.2.7.4 Octrees .. 29

2.3 Morphological Operations in 3D.. 30

Chapter 3 : Camera Calibration and Image Orientation ... 31

3.1 Coordinate Systems.. 31
3.1.1 Image and World Coordinate System .. 31
3.1.2 Voxel and World Coordinate System... 33
3.1.3 Pixel and Image Coordinates.. 36

3.2 Camera Calibration .. 39

3.3 Image Orientation... 41

Chapter 4 : Volumetric Object Reconstruction Techniques Using Images 43

4.1 Volumetric Intersection (Shape from Silhouettes)... 44
4.1.1 Experimental Setup .. 45
4.1.2 Automatic Image Segmentation ... 46
4.1.3 The Visual Hull Computation .. 47
4.1.4 Voting-Based Voxel Carving ... 48
4.1.5 Hierarchical Processing Using Octrees .. 50
4.1.6 Improved Volume Intersection with Adjusted Image Orientations 51
4.1.7 An Application of the Volume Intersection in a Medical Project.................... 53

4.2 Shape from Photo Consistency .. 55
4.2.1 Comparison of Voxel Coloring Methods with Area-Based Image Matching.. 57
4.2.2 Color Consistency .. 57

4.2.2.1 Color Consistency Measures... 58
4.2.3 Voxel Coloring... 59
4.2.4 Space Carving .. 61
4.2.5 Generalized Voxel Coloring... 62
4.2.6 Multi-Hypothesis Voxel Coloring.. 64
4.2.7 Voxel Coloring Using Ray Tracing for Visibility Computation...................... 65

4.3 Model Refinement by Image Matching ... 68
4.3.1 Image Matching.. 68

4.3.1.1 Correlation .. 68
4.3.1.2 Normalized Cross Correlation .. 69
4.3.1.3 Rank Correlation... 70
4.3.1.4 Difference Correlation .. 70
4.3.1.5 Least Squares Matching (LSM) .. 71
4.3.1.6 Epipolar Geometry.. 74

4.3.2 Color Image Matching ... 75
4.3.2.1 Color Theory... 75

 Contents ix

4.3.2.2 Considering Color... 76
4.3.2.3 Single Vector Correlation ... 77
4.3.2.4 Separate Channel Mean Value.. 77
4.3.2.5 Weighted Channel Mean Value .. 78
4.3.2.6 Difference Correlation .. 78
4.3.2.7 RGB-Correlation... 79
4.3.2.8 Evaluation ... 79

4.3.3 A Visual Hull Refinement Algorithm Using Block-Matching 81
4.3.3.1 Polychromatic Block Matching .. 81
4.3.3.2 Hierarchical Matching Using Image Pyramids... 82
4.3.3.3 Integration of Volume Data and Depth Maps... 82

Chapter 5 : Proposed Volumetric Reconstruction Algorithm.. 83

5.1 Utilities for Volumetric Processing.. 83
5.1.1 Line Tracing ... 83

5.1.1.1 18-Connected Line.. 83
5.1.1.2 6-Connected Line.. 84
5.1.1.3 Implementation of Line Tracing ... 85

5.1.2 Line Segment Limiting... 88
5.1.2.1 Global Minimum/Maximum Limitation ... 88
5.1.2.2 Spherical Limitation.. 89
5.1.2.3 Cubical Limitation .. 90

5.1.3 Line Snapping .. 91
5.1.3.1 Perpendicular Projection... 91
5.1.3.2 Point Rotation ... 92

5.1.4 Recovering Visibility Information ... 93
5.1.5 Normal Vector on Voxel Surfaces ... 96

5.2 Model Refinement.. 101
5.2.1 Knowledge-Based Patch Distortion ... 102

5.2.1.1 Introducing Knowledge about the Approximate Object Shape 107
5.2.2 Shell Carving.. 109
5.2.3 Shape Carving .. 111
5.2.4 Voting Based Shell Carving... 115

5.3 Texture Mapping .. 119

Chapter 6 : Contributions and Future Work... 123

6.1 Contributions.. 123

6.2 Future Work ... 124

Chapter 7 : Literature .. 125

Curriculum Vitae

 Figure Index xi

FIGURE INDEX:

FIGURE 1-1: 1CMM ‘FAROARM – PLATINUM’ FROM FARO TECHNOLOGIES INC.

(WWW.FARO.COM)... 3
FIGURE 1-2: A SCHEME OF OPTICAL SCANNER WHERE 3D POINTS ARE COMPUTED BY

TRIANGULATION.. 7
FIGURE 1-3: IMAGE-BASED RENDERING AND TRADITIONAL MODELING AND RENDERING

METHODS... 10
FIGURE 2-1: A nnn ×× VOLUME AND A VOXEL WITH COORDINATES (XV, YV, ZV)................... 21
FIGURE 2-2: THE 6- (B), THE 18- (C) AND THE 26-ADJECENIES (D) OF THE VOXEL (A)............... 22
FIGURE 2-3: A) 18- AND B) 6-CONNECTED VOXEL LINE... 23
FIGURE 2-4: LINE INTERSECTING A PLANE WITHOUT DETECTION .. 24
FIGURE 2-5: TANGENT PLANE AND SURFACE NORMAL VECTOR... 24
FIGURE 2-6: VOLUME DATASETS: 5 CONSECUTIVE VOLUMINA WITH 50 LAYERS OF 256 BY 256

PIXELS EACH (TOTAL 16 MB = 0.5 SECONDS OF FLOW DATA) [MAAS, 1994].................. 25
FIGURE 2-7: UNLABELED, LABELED, MRI AND CT IMAGES RESPECTIVELY “VISIBLE HUMAN

PROJECT” [TVHP] .. 26
FIGURE 2-8: 3D VISUALIZATION OF THE FEMALE CADAVER, FROM THE “VISIBLE HUMAN

PROJECT”, EXTRACTED FROM A LOW-RESOLUTION ANIMATED GIF [TVHP]...................... 26
FIGURE 2-9: VIRTUAL SURGERY “VISIBLE HUMAN PROJECT” [TVHP] 26
FIGURE 2-10: GENERATED OBJECTS, BASED ON THE KNOWN GEOMETRY AND TEXTURE 27
FIGURE 2-11: NUMBERING OF OCTANTS IN AN OCTREE AND SUBDIVISION OF THE VOXEL CUBE 30
FIGURE 3-1: RELATION BETWEEN IMAGE AND OBJECT COORDINATES UNDER CENTRAL

PROJECTION... 31
FIGURE 3-2: THREE SEQUENTIAL ROTATIONS.. 32
FIGURE 3-3: RELATION BETWEEN WORLD AND VOXEL COORDINATES....................................... 35
FIGURE 3-4: RELATIONSHIP BETWEEN PIXEL AND IMAGE COORDINATE SYSTEMS...................... 37
FIGURE 3-5: CALIBRATION OBJECT WITH 75 SPATIALLY WELL DISTRIBUTED CONTROL POINTS 39
FIGURE 3-6: RELATION OF DIFFERENT IMAGE SIZES AND REFERRING FOCAL LENGTH................ 40
FIGURE 3-7: DETERMINATION OF OBJECT CONTROL POINTS BY BUNDLE BLOCK ADJUSTMENT .. 42
FIGURE 3-8: THE VIRTUAL CAMERA SETUP, USING VRML-VISUALIZATION.............................. 42
FIGURE 4-1: VIRTUAL CAMERA POSITIONS ACCORDING TO THE TURNTABLE-FIXED COORDINATE

SYSTEM ... 45
FIGURE 4-2: MATHEMATICAL CAMERA MODEL FOR CENTRAL PROJECTION............................... 45
FIGURE 4-3: BACKGROUND ESTIMATION USING AN IHS COLOR SPACE HISTOGRAM (LEFT) AND

THE RESULTING SILHOUETTE EXTRACTION (RIGHT) ... 46
FIGURE 4-4: THE VISUAL HULL COMPUTATION.. 47
FIGURE 4-5: CARVING OF A VOXEL CUBE USING VARIOUS SILHOUETTES UNDER CENTRAL

PROJECTION... 48
FIGURE 4-6: INTERSECTION OF SILHOUETTE CONES USING 1, 3, 5 AND 9 IMAGES...................... 48
FIGURE 4-7: VOXEL MODEL OF THE 3-D SHAPE RECONSTRUCTION USING 60 IMAGES AND 3256

VOXELS WITH TEXTURE MAPPING .. 49

xii Figure Index

FIGURE 4-8: CONCAVE AREAS IN SHAPE FROM SILHOUETTE RECONSTRUCTION......................... 50
FIGURE 4-9: ITERATIVE GENERATION OF AN OCTREE MODEL USING 43, 163, AND 643 VOXELS .. 50
FIGURE 4-10: VOLUMETRIC INTERSECTION WITH ADJUSTED (LEFT) AND ESTIMATED (RIGHT)

ORIENTATION PARAMETERS... 52
FIGURE 4-11: IMAGE ACQUISITION STEP.. 53
FIGURE 4-12: SLICES OF THE RECONSTRUCTION ALONG THREE AXES AND THE HISTOGRAM FOR

VOLUME CALCULATION ... 54
FIGURE 4-13: RECONSTRUCTION RESULTS OF THE LEG WITH 16 IMAGES 55
FIGURE 4-14: COLOR CONSISTENCY IS USED TO DISTINGUISH SURFACE POINTS FROM POINTS NOT

ON THE SURFACE ... 58
FIGURE 4-15: VISIBILITY COMPUTATION IN VOXEL COLORING .. 60
FIGURE 4-16: VISIBILITY ORDERING IN SPACE CARVING ... 62
FIGURE 4-17: TWO VARIANTS OF GVC USING DIFFERENT DATA STRUCTURES TO COMPUTE

VISIBILITY, ITEM BUFFERS (LEFT) AND LAYERED DEPTH IMAGES (RIGHT).......................... 63
FIGURE 4-18: WHEN A VOXEL IS CARVED, THE VISIBILITY OF THE ADJACENT INNER VOXELS

CHANGE... 63
FIGURE 4-19: MULTI-HYPOTHESIS VOXEL COLORING.. 64
FIGURE 4-20: TRACING PIXELS BACK INTO THE VOXEL CUBE .. 66
FIGURE 4-21: RECONSTRUCTION OF A FLOWER BY VOXEL COLORING USING 16 IMAGES........... 67
FIGURE 4-22: AREA-BASED TEMPLATE MATCHING.. 69
FIGURE 4-23: TRANSFORMED SLAVE TEMPLATE AFTER LEAST SQUARES MATCHING................. 74
FIGURE 4-24: EPIPOLAR GEOMETRY.. 74
FIGURE 4-25: BASIC COLOR THEORY... 75
FIGURE 4-26: AN IMAGE SHOWING THE PROPERTIES OF THE HUE-CHANNEL.............................. 76
FIGURE 4-27: THE IMPORTANCE OF COLOR ... 77
FIGURE 4-28: TEST IMAGE TO EVALUATE COLOR IMAGE MATCHING ... 79
FIGURE 4-29: VISUALIZATIONS OF THE COLOR MATCHING ALGORITHMS 80
FIGURE 4-30: COMPUTED STEREO DEPTH MAPS OF THE FLOWER (LEFT, MIDDLE) AND THE

COMBINATION OF THREE NEIGHBORED VIEWS (RIGHT) .. 81
FIGURE 4-31: THE ENHANCED CONCAVE HEAD OF THE FLOWER USING BLOCK MATCHING

(RIGHT).. 82
FIGURE 5-1: 18-CONNECTED (DARK PIXELS) AND 6-CONNECTED LINE (LIGHT+DARK PIXELS) IN

2D... 83
FIGURE 5-2: THE BASIC IDEA OF AN 18-CONNECTED LINE TRACING .. 84
FIGURE 5-3: 6-CONNECTED LINE TRACING .. 85
FIGURE 5-4: THE USE OF CLASSES AND INHERITANCE ... 87
FIGURE 5-5: THE OPERATOR-CLASS FAMILY ... 87
FIGURE 5-6: MIN/MAX λ LIMITATION OF A LINE ... 89
FIGURE 5-7: SPHERE-INTERSECTION LIMITATION .. 89
FIGURE 5-8: CUBICAL INTERSECTION LIMITATION .. 90
FIGURE 5-9: SNAPPING OF INTEGER POINTS TO THE TRUE LINE.. 91
FIGURE 5-10: PROJECTING CORRECTED AND UNCORRECTED VOXELS.. 93
FIGURE 5-11: RECOVERING VISIBILITY INFORMATION .. 94

 Figure Index xiii

FIGURE 5-12: TOLERANCE FOR RECOVERING VISIBILITY INFORMATION 95
FIGURE 5-13: DIFFERENT RESULTS FOR VOXEL RENDERING .. 96
FIGURE 5-14: SURFACE VOXELS (GREEN) WITHIN THE RADIUS (RED) AROUND THE VOXEL OF

INTEREST (DARK GREY) AND THEIR SURFACE NORMAL VECTOR (BLUE). 98
FIGURE 5-15: SEVERAL SURFACE NORMAL VECTORS SEEN ON A LARGER SURFACE FRAGMENT 98
FIGURE 5-16: ANGLE α BETWEEN THE SURFACE NORMAL N AND THE PROJECTION VECTOR P. 100
FIGURE 5-17: VISUALIZATION OF THE ANGLE BETWEEN SURFACE NORMAL AND PROJECTION

VECTOR ... 100
FIGURE 5-18: PROJECTION ERROR DUE TO CONCAVITIES... 101
FIGURE 5-19: MASTER PATCH AND DISTORTED SLAVE PATCH FROM TWO VIEWPOINTS........... 103
FIGURE 5-20: THE EFFECT OF KNOWLEDGE-BASED PATCH DISTORTION 106
FIGURE 5-21: CREATING A TANGENTIAL SURFACE PATCH... 107
FIGURE 5-22: THE IMPROVEMENT OF TAKING THE OBJECT SHAPE INTO ACCOUNT................... 108
FIGURE 5-23: THE ‘MILLING MACHINE’ APPROACH... 112
FIGURE 5-24: VOTING-BASED CARVING .. 116
FIGURE 5-25: DIFFERENT VIEWPOINTS OF THE NEFERTITI CUBE. THE RESULT OF SHAPE FROM

SILHOUETTE (LEFT), REFINEMENT BY VOTING BASED CARVING (RIGHT).......................... 118
FIGURE 5-26: THE APPROXIMATE MODEL WITHOUT AND WITH COLOR INFORMATION 119
FIGURE 5-27: CONSIDERING OCCLUDED AREAS... 120
FIGURE 5-28: PROJECTING COLOR WITHOUT AND WITH CONSIDERATION OF VISIBILITY.......... 121

 Table Index xv

TABLE INDEX:

TABLE: 1-1: AUTOMATIC AND SEMI AUTOMATIC SHAPE ACQUISITION SYSTEMS BASED ON THE

TAXONOMY PROVIDED BY [CURLESS-II, 1997], [RUSINKIEWICZ-I, 2001] 5

TABLE: 2-1: COMPARISON OF SURFACE AND VOLUME GRAPHICS BASED ON THE TABLE

PROVIDED BY ARIE KAUFMAN [KAUFMAN-I, 1993], [KAUFMAN-II, 1996] 18

TABLE 4-1: SPEED OPTIMIZATION USING HIERARCHICAL PROCESSING 51

TABLE 5-1: DIFFERENT ERROR TYPES FOR CARVING ... 115

 List of Symbols xvii

LIST OF SYMBOLS:

 M : image center

 x0 , y0 : coordinates of principal point p0

 x, y : metric coordinates of image point p

 xp, yp : left-handed pixel coordinates of point pp

 X0, Y0, Z0 : coordinates of projection center O

 X, Y, Z : metric real-world coordinates of point P

 Xv
0

, Yv
0, Zv

0
 : position of voxel cube origin in world coordinates Xv

0

 Xv, Yv, Zv : left-handed voxel coordinates of point Pv

 X’v, Y’v, Z’v : cube-centered right-handed voxel coordinates of point P’v

 α, ν, κ : terrestrial rotation angles

σ : standard deviation

A, P, l, v, X : adjustment matrices(design-, weight-, observation-, correction- and unknown matrix)

 Rανκ : rotation matrix with angles α, ν, κ

 rik : elements of rotation matrix

 λ : scaling factor

 c : calibrated focal length

 r : correlation coefficient

 w : weighting factor

 g, gRGB : density (gray value), in one and RGB channels, respectively

 g : arithmetic mean of densities (or gray values)

 R, G, B : red, green and blue channel of a pixel

 I, H, S : intensity, hue and saturation channel of a pixel

 rows, cols or

 nx, ny : dimensions of a digital image

 Nx, Ny, Nz : dimensions of a voxel cube

 sp : metric size of a pixel

 sv : metric size of a voxel

 p.x, p.y : accessing the x- and y-part of a point structure in pseudo code

 n : normal vector to a plane

 P : projection vector

 1.1 Introduction 1

Chapter 1 : Introduction

1.1 Introduction

Photogrammetry is a science which is occupied with recovering accurate 3D information from several
2D images. The main application areas of photogrammetry are conventionally arial and close range
surveying. However, with the emergence of relatively new sciences such as image understanding and
computer vision, photogrammetry has broadened its working area through these disciplines in which it
has common interests. Computer vision is an image understanding application which deals with
automatic extraction of different kinds of information from imagery. The main goal of computer
vision is to make a robot system to sense, understand and interpret vision information just like we
humans do. One of the purposes of computer vision is the creation of computer models of 3D objects
from digital images which overlaps photogrammetric research area and it is also the goal of this
dissertation.

The most important difference between these two disciplines is computer vision desires automation
while photogrammetry seeks high geometric accuracy. Not surprisingly, photogrammetry is concerned
with high accurate and reliable results; although in computer vision speed is more important which
sometimes cause loss in accuracy. However, photogrammetry and computer vision are closely related
disciplines and they meet in mutual research areas such as recovering the 3D structure of objects.
Therefore, it is beneficial to apply computer vision and photogrammetric techniques in each other. For
example when accurate measurements are required in a vision system, it is a good idea to investigate
photogrammetric solutions first, since obtaining precise measurements from images has been studied
long time in photogrammetry. Accordingly, when automation is desired in photogrammetric tasks
computer vision techniques can be used. It is because of this reason; inheriting the well known and
efficient techniques developed by computer vision scientist and photogrammetrists rather than re-
inventing them would save time and help these two disciplines grow faster. Moreover, a system which
brings together the most efficient photogrammetric and computer vision techniques would provide
more robust and fast results. In this dissertation issues from both photogrammetry and computer vision
are addressed in order to reconstruct volume models of arbitrarily-shaped scene from its color images.

Reconstruction of the shape of 3D objects from a series of digital images is a challenging problem
both in photogrammetry and computer vision. When generating 3D models with traditional CAD
techniques, the details of 3D objects should be entered manually using graphical interfaces.
Furthermore, with traditional CAD techniques objects are modeled with polygon patches and
traditional material description which does not give high degree of realism. Since it is a labor intensive
and complex process, the efforts concentrated in automatic modeling of 3D objects either with active
methods by scanning the objects or with passive methods by using their images taken by a CCD
camera. This dissertation presents an efficient image-based approach to compute volume models.

In this dissertation a voxel-based method is used to recover the shape of the 3D objects. Volume
graphics is an advancing field in computer graphics. Volumetric data was first introduced in early 70’s
in medical imaging and now it has been commonly used in scientific visualization, computer graphics
and computer vision. Although voxel methods consume large amounts of memory, with the rapid
growth of memory and processing requirements in the last decades, it has been gaining importance and
it has become a practical alternative to surface based representations. Specifically volume models
provide more flexible representations of 3D objects from multiple images of the scene. Furthermore
volumetric representations allow us to represent complex objects more effectively. And if desired,

2 1 Introduction

they can be converted into polygonal models in order to be rendered effectively with the use of
standard graphics hardware.

The model of the 3D object can be easily acquired by shape from silhouettes technique which is a well
known and popular method in computer vision where the shape of the objects is recovered by
intersecting the volumes. Shape from silhouette method is fast and robust; however the concave areas
on an object cannot be recovered with this method. The later work to recover the shape of the objects
from multiple images is concentrated on voxel coloring algorithms. These algorithms use color
consistency to distinguish surface points from the other points in the scene. In this dissertation a new
method is proposed with several powerful tools to create voxel-based photo realistic volume models
from multiple color images.

1.2 3D Shape Acquisition Techniques

The first step of scene reconstruction is sampling the real environment. In this dissertation image-
based volumetric modeling is addressed that means the source of data is multiple color images taken
by inexpensive CCD video cameras. Before image-based modeling is discussed, an overview of other
available 3D shape acquisition methods using different instruments rather than inexpensive cameras
are introduced.

When creating 3D models and its textures with classical CAD methods, graphical interfaces are used
to enter the details of 3D objects. Since this is a labor intensive process, a great amount of work in this
area is focused on automatic modeling of 3D scenes by scanning the objects. There is a great need for
acquiring the shape of objects rapidly and without physical contact in many application areas, such as
industrial inspection, robot vision, virtual reality, reverse engineering as well as 3D object
reconstruction and navigation. Object reconstruction pipeline begins with sampling a real world
environment. Generally we can classify the shape acquisition systems into physical contact,
transmissive and reflective sensors. In the following different types of 3D acquisition systems are
given based on the taxonomy provided by [CURLESS-II, 1997], [RUSINKIEWICZ-I, 2001].

1.2.1 Physical Contact

There are two types of physical contact methods namely mechanical and destructive methods. An
example for destructive methods can be given in medicine. After the brain is made solid by freezing, it
is sliced by a machine called microtome. The slices are scanned by high resolution instruments like
electron microscopes in order to reconstruct brain tissues.

An example of physical contact devices is coordinate measurement machines (CMM) which is
illustrated in Figure 1-1. These machines are used in manufacturing industries such as in airplane
manufacturing where the wings of the plane are needed to be measured and modeled accurately.

CMM machines have contact sensors such as tactile tips to detect the surface of the object to be
measured and these machines give high accurate results. In order to digitize the surface, the tactile tip
is placed on surface points of the object, then a contact signal is given and coordinate of the tactile tip
is recorded. The other alternative is tactile tip is moved on the object’s surface by a user while the
machine delivers coordinates in certain intervals. In some cases the contact with the object is not
desirable especially when the object is made of a fragile material. However, new developments allow
fragile parts to be measured without damage due to stylus touch force.

 1.2 3D Shape Acquisition Techniques 3

Figure 1-1: 1CMM ‘FaroArm – Platinum’ from FARO Technologies Inc. (www.faro.com)

There are also photogrammetric solutions to the physical contact 3D shape acquisition. In those
approaches solid and calibrated tactile devices are used which have markers on them. In the first
photogrammetric approach, several cameras are placed in the environment where 3D shape acquisition
is performed. All these cameras are fully calibrated and oriented. The tactile device is interactively
placed on the object surface to be reconstructed. Meanwhile, cameras track the markers on the tactile
device. Therefore, the orientation of the device can be derived as well as the exact position of the
coordinate tip. As a result, the 3D position of the surface point which is detected by the tactile device
can be calculated. In the second photogrammetric solution the situation is reversed. Several cameras
are placed on the tactile device itself and the control points are applied to the environment and the
camera positions are oriented [LUHMANN, 2000].

1.2.2 Transmissive

A non-contact system projects some sorts of energy on the objects surface and records the transmitted
or reflected energy. Therefore, non-contact methods can be subdivided into transmissive and reflective
methods.

Industrial CT is a transmissive method where a beam of radiation is projected through an object and
detectors measure photon interaction between radiation and object matter. The sampled data obtained
is straightforward for volumetric reconstruction. Inner parts of the objects can also be acquired by CT
devices; however these devices are expensive and might be very hazardous.

Although scanning electron microscopes are mostly used as reflective sensors, they can also work in a
high resolution transmissive mode. Electron microscopes work by scanning a specimen surface with
an electron beam. In the TEM mode (Transmission Electron Microscope) those electrons are detected
which completely penetrate the specimen.

4 1 Introduction

1.2.3 Reflective Methods

Reflective methods are subdivided into two categories, namely optical and non-optical methods. Non-
optical methods are microwave radar and sonar. Their main principle is to measure the time required
for a pulse of microwave energy or sound reflected from the object. Sonar systems are inexpensive but
inaccurate. Microwave radar is generally used for long range remote sensing.

An example for a non-optical reflective sensor is the scanning electron microscope, since it detects
backscattered electrons (BSE) or secondary electrons (SE), from the interaction of the electron beam
with the specimen’s surface.

We can classify optical 3D shape acquisition techniques into two groups: passive and active methods.
Image based techniques are passive methods which do not interact with the objects while range
scanning techniques are active methods which make contact with the objects by projecting light on
them.

1.2.3.1 Active Optical Methods

Active range scanning methods are based on time of flight, depth from defocus [NAYAR, 1995],
active stereo and projected light triangulation. Range imaging sensors determine depth either by
measuring the time of flight or by triangulating the position of a projected laser pulse. The result is a
range image which samples depths on a regular grid.

1.2.3.1.1 Active Stereo

In stereo methods, a feature in one image is searched along the epipolar line in the other image in
order to find correspondences. Stereo methods fail on non-textured areas. In the active stereo method,
structured light is projected on the objects surface and recorded by two or more cameras. By passive
use of structured light the surface of the object is textured with large number of dots and evaluated
with correlation techniques. [MAAS, 1992]

1.2.3.1.2 Shape from Projected Texture (Interferometry)

Scanning an object with light is a method to obtain 3D information about its shape. It is also the main
principle of depth perception in machine vision. Shape from projected texture (interferometry) is based
on active triangulation of projected light. Many techniques are developed based on structured light as
Moiré techniques or coded light approaches. Different from active stereo, spatially or temporally
varying periodic pattern is projected on the object’s surface. In standard stereo vision, triangulation is
performed to compute 3D coordinates of the corresponding points. In structured light, the scene is
illuminated with a light pattern of known geometry and captured with a single CCD camera to observe
how the structured light is distorted by objects. In order to get dense range information either the laser
plane is moved in the scene or multiple stripes are projected at once with coded colors. The object
surface is then reconstructed by matching projected light features to observed edges in the image. In
other words, projector profiles are matched to sensor profiles.

 1.2 3D Shape Acquisition Techniques 5

Optical • Photogrammetric Measuring Device

Mechanical
• Coordinate Measuring Machine (CCM)

• Jointed Arm

Physical

Contact

Destructive Slicing (Microtome)

Transmissive

• Industrial Computed Tomography (CT)

• Ultrasound

• Magnetic Resonance Imaging (MRI)

• Transmission Electron Microscope

Non-Optical

• Sonar

• Microwave Radar

• Scanning Electron Microscope

Active variants of passive methods

• Active Stereo

• Shape from Projected
Texture (Interferometry)

• Active depth from defocus

Time of Flight

Active

Triangulation

3D Shape
Acquisition

Reflective

Optical

Passive

• Shape from Silhouettes

• Shape from Stereo

• Shape from Shading

• Shape from Focus/Defocus

• Shape from Motion

• Photogrammetric
triangulation

Table: 1-1: Automatic and semi automatic shape acquisition systems based on the taxonomy
provided by [CURLESS-II, 1997], [RUSINKIEWICZ-I, 2001]

6 1 Introduction

1.2.3.1.3 Active Depth from Defocus
Depth from defocus addresses the reconstruction of the depth information by using the fact that the
blur in images increases with the increasing distance from the location of focus. In other words, the
objects that are at a specific distance from the camera are focused on the image while the objects at
other distances are blurred with respect to their distances. For example when we focus the lens to a
close distance in the image the foreground will be well focused but the objects in the background
would appear blurred. The basic idea of depth from defocus method is to correlate the grade of the
blurring to the distance, by doing so blurring, in other words image defocus is measured in order to
compute 3D positions. In passive methods the amount of blurring is determined by surface reflectance.
Therefore the depth from defocus method is dependent on the objects texture. Defocus is not the only
source of blur but can also be disguised by smooth brightness changes in the scene. Active methods
avoid this problem by projecting structured light on the objects surface.

1.2.3.1.4 Time of Flight

In time-of-flight (TOF) methods (imaging radar), a pulse of light is emitted and the round time
required for the signal to return from a reflective surface is measured. This is the main principle used
in electronic distance measurement instruments (EDM), radar etc. Different from microwave radar,
time of flight laser range finders operates in optical frequencies. This method requires precise timing
in close range applications where the distance is short and the desired resolution is high.

1.2.3.1.5 Optical Triangulation

Optical triangulation is the most popular range scanning approach. Optical devices consist of an
emitter and a sensor, which is typically a CCD sensor, in a well known geometrical context. The laser
emits a line or a laser-plane into the scene and the reflected light is detected by a CCD camera. Since
we know the exact position of the sensor with respect to the emitter we can obtain the depth value by
performing triangulation.

The illuminant and the reflected light intersect the object at one point which gives a depth value. Each
range image is the depth information of an object from one point of view. In order to reconstruct the
shape of an object we require multiple images. Therefore images should be aligned with respect to
each other in the same coordinate system. The surface reconstruction is then obtained by merging
aligned multiple images. In his PhD thesis, Brian Curless presents an efficient volumetric method for
merging large number of range images which yields high detail models up to 2.6 million triangles
[CURLESS, 1997].

Usually, laser triangulation works in combination with a scanning device, which moves the projection
over the objects surface, either in one direction, or in a circular motion. It can also be combined with a
mechanical arm, which was mentioned in Chapter 1.2.1. Instead of a tactile tip, a laser triangulation
device is attached to the mechanical arm. While the user is moving the scanner along the object, the
arm delivers its position and orientation. This way, a very dense coverage of the object can be
achieved.

 1.2 3D Shape Acquisition Techniques 7

Projection
lens

Sensor

Object

Sensor image

Laser

Figure 1-2: A scheme of optical scanner where 3D points are computed by triangulation

1.2.3.2 Passive Optical Methods

Passive methods include computer vision techniques for example shape from shading, shape from
motion, shape from focus/defocus and stereo triangulation for image pairs. Passive methods do not
contact the object being scanned physically. They require low cost equipment and their general
application is object recognition. In this thesis, passive methods are referred, in particular volumetric
modeling from multiple images. Since shape from silhouettes and shape from stereo will be discussed
in detail in following chapters, it will not be described here.

1.2.3.2.1 Shape from Shading

It is possible to recover the shape of objects from a single image. Different parts of the surface of an
object are oriented differently thus they appear with different brightness. Spatial variance of
brightness, namely shading, is used to estimate this orientation of the surface patches. Shape from
shading [HORN, 1970] methods use these variations in brightness and shading in images in order to
recover the shape of the objects. This method delivers 3D information from image irradiance and
known positions of the cameras and light sources. In this technique the reflectance of objects is
modeled as a function of the angles of incidence i and emergence e. There are different shape from
shading techniques like using multiple images with different illumination or using image sequences
with moving light sources. Shape from stereo works best with textured images while shape from
shading works best with images contains smooth brightness variations. This method is applicable to
some tasks where the lighting can be controlled. On the other hand, the shape from shading method is
also used in order to generate DEMs when the traditional stereo processing methods are not applicable
on areas such as deserts or forests.

8 1 Introduction

1.2.3.2.2 Shape from Motion
Shape from motion is one of the approaches which gained attention by the computer vision scientists
during the last decades. Motion can be used as another dimension which is time in computer vision
and a great deal of information can be recovered from images over time. In order to recover the shape,
we can use the movement of the camera relative to the static scene in the same way as using multiple
camera positions. The moving camera captures a succession of images over time that span a baseline
similar to stereo images. Therefore it is possible to obtain depth information of the object by tracking
object features in multiple images. However we should know the velocities of the camera and the
moving shape in the scene. Shape from motion is a technique to recover a set of 3D structure
parameters and time varying motion parameters from a set of image features. This method computes
the structure from a set of matched points and the performance is significantly improved by using least
squares approach. Numerous shape from motion algorithms have been developed. [JEBARA, 1999],
[TOMASI, 1992], [SZELISKI-III, 1994]. They are two main variants, shape from motion with
calibrated and uncalibrated cameras. In general the scene is captured at video rates therefore the
disparities are smaller. In video sequences points are tracked automatically and the matches are
validated. Both points and lines can be used for reconstruction. Although the quality of structure and
motion is reasonable, the metric accuracy is weak and it needs good feature trackers.

1.3 Image-Based Modeling and Rendering

Generating images of a scene for new viewpoints which can convince the observer that they look
photorealistic compared to input images is an important aspect and the basic goal of computer vision.
Since real images are being used to model and render the scene therefore photorealistic as a result,
computer vision is especially interested in image-based modeling and rendering (IBMR). The main
goal of IBMR is to create new views of real environments from a set of its images or of its 3D model
and achieve faster and more realistic renderings. With the recent advances in computer vision
algorithms in recent years, image-based modeling and rendering has become an alternative to classical
computer graphics.

In traditional computer graphics the 3D model of the scene is constructed at first, and then an image of
the scene is created by projecting this 3D model onto an image plane using the geometry and camera
model and determining the color of image pixels and lighting. This is 3D to 2D transformation. The
constructed model includes the geometry of the scene which consists of polygon patches and the
surface properties such as reflectance, color or opacity. The realism can be increased using wire frame
models, shadow calculation techniques and the realistic renderings can be achieved by tracing the
paths that light might take. However, it is hard to model some objects with classical computer graphics
techniques such as complicated objects with detailed concave surfaces or fuzzy surfaces with difficult
reflectance characteristics. It is because the tools of creating complex models are labor intensive and
requires a great deal of talent and when images are rendered complex computations are carried out. In
other words, in our world there is an imperfection and we still cannot model these imperfections and
real world effects correctly. However, images give us great amount of information about the real
world objects since detailed real world affects are captured with images. Moreover taking images is
easy, besides it is much more photorealistic.

 1.3 Image-Based Modeling and Rendering 9

In computer vision, the images of the scene are given in order to reconstruct the 3D model of the real
environment; therefore 2D to 3D transformation is concerned. By image-based modeling algorithms
we can model the scene and look at it from different viewpoints with different angles and distances. In
IBMR, images are used to determine scene geometry, lighting and reflectance properties of the objects
and new rendered images are obtained. In this case, the transformation is from 2D to 2D. This
transformation can be achieved either by using computer vision techniques to reconstruct 3D model of
the real environment or can also be achieved skipping 3D modeling stage. This is when IBR steps in.
An image-based model represents the images of the scene with corresponding 3D locations of the
image points and the rendering is obtained by resampling the reference images for a new viewpoint.

IBMR is attractive mainly because of its speed and realism. The modeling of complex scenes is
simplified by using images. Furthermore, rendering time is not affected by the scene complexity.
Image-based rendering uses large amounts of images in order to provide a high degree of realism. An
important characteristic of image-based rendering is that previous modeling is not required. The
samples of the environment are captured by photographs or video sequences and they are sampled
during the rendering. For example the photographs might be taken in all directions of the object of
interest and can be grouped as a panorama so that we can look around the object by displaying
different sections of this panorama. In order to move around the scene and look from an arbitrary
position we can take as many images as desired from different viewpoints. An early work of the image
based rendering approach is Lippman’s movie-map. In his work, images of several streets of a city
were captured at periodic intervals and simulated by playing back with respect to the closest virtual
camera position [LIPPMAN, 1980]. Examples of recent imaged-based rendering systems can be given
as; Panoramic Image Mosaics [CHEN-II, 1995], Concentric Mosaics [SHUM, 1999], View
Interpolation and View Morphing [CHEN-I, 1993] [SEITZ-I, 1996], Lightfield Rendering and
Lumigraphs [LEVOY, 1996] [GORTLER, 1996], Layered Depth Images and Sprites with Depth
[SHADE, 1998], Plenoptic Stitching [ALIAGA, 2001]. The main idea of the above image-based
rendering systems is sampling the environment with two or more images and generating novel views
by using image warping and blending. Since the scope of this dissertation is image-based modeling of
real world objects and scenes with voxel based methods, IMR systems will not be mentioned here in
detail. You can refer to the papers [SZELISKI-V, 2001] and [OLIVERIA, 2002] for more information
about these systems.

In image-based rendering systems, if we want to move around the scene and observe the scene at any
direction as we desire we would need a large number of images. If we build accurate full 3D models
however, we can reduce the number of required images. This is where we can use image-based
modeling. In image-based modeling, 3D model reconstruction is performed from images as opposed to
polygons; hence, the modeling step is simplified. Apart from avoiding the labor intensive geometric
modeling step, the combination with image-based rendering is very attractive because fine details are
hard to render with classical rendering algorithms.

Geometric representations of the scene can be derived by photogrammetric methods, image correlation
or by range scanning. The acquired geometry can then be rendered by projecting the colors to the
models from photographs. Both range scanning techniques and image-based techniques have
advantages and disadvantages in many ways.

10 1 Introduction

Image-Based
RenderingImage-Based

Modeling

Modeling

Traditional Modeling and Rendering

IBMR

Rendering

Images,
Range Scans of
Real Scene

Geometry

Physics

User Input,
Calibration data

Model

Model Images

Images

Figure 1-3: Image-based rendering and traditional modeling and rendering methods

The computer vision science is concentrating on image-based techniques where the main goal is to
extract useful information from the images automatically. The images are acquired easily with widely
available inexpensive cameras. Therefore, image-based techniques are attractive in many applications.
In this thesis image sequences acquired by a still video camera are used. Range scanning techniques
alone are insufficiently realistic renderings of the object. Therefore the images are required to obtain
texture of the object. Besides, some architectural objects which we want to reconstruct might not be
existent any longer. In such cases, image-based approaches should be used in order to reconstruct the
architecture based on its old, still existing photographs. For the reconstruction of destroyed historic
buildings, refer to [WIEDEMANN, 2000]. Debevec presents both geometry based and image-based
modeling techniques in order to model and render architectural scenes from photographs [DEBEVEC,
1996]. Debevec recovers the basic geometry of the scene with photogrammetric modeling methods
which yield effective and robust results. In order to recover how a real scene deviates from the basic
model he presents a model-based stereo algorithm. Finally, Debevec renders the scene with view-
dependent texture mapping method. In this method, he uses a combination of views of a scene in order
to simulate geometric details better on the models.

Image-based modeling and rendering has become more attractive, because when compared to
polygonal based renderings, the number of polygons in the scene is approaching the number of the
pixels in the images. However, the disadvantages are large storage requirements and the lack of
guarantee to obtain the complete object reconstruction. Even when a large number of images are used,
some parts of the objects might not be visible in any of the images captured. Therefore some gaps
might appear on the modeled surfaces. Hence, further research is concentrating on methods to
determine how many images should be used in order to represent the scene successfully, and if those
images contain enough information without artifacts due to visibility or insufficient sampling.

 1.4 Aim of the Study 11

1.4 Aim of the Study

The main goal of this dissertation is to create photorealistic models of the real-world objects. In order
to reconstruct object models, it is aimed to use low-cost equipment. In general, the 3D object
acquisition can be performed by active methods using range sensors such as laser scanners or by
passive methods using CCD cameras. Nowadays laser scanners are used in many applications to
acquire the 3D shape of the objects by producing very dense point clouds. Although using cameras to
acquire 3D models is cheaper, it is not as commonly used as laser scanners. Since one of the goals of
this dissertation is to create 3D models of the objects keeping the system requirements as low as
possible, the image sequences of a CCD camera are used which is a low cost alternative and therefore
attractive for many applications.

Another aim of this thesis is create photorealistic models of the objects. Photorealistic scene
reconstruction is a challenging task in computer graphics. Even after many hours of tedious work with
3D CAD programs, the results are synthetic images which cannot deliver the desired photorealism.
Since images contain enormous information about the real-world effects, in this thesis images are used
to model the object. The final model is textured using the images also and when it is rendered to
arbitrary positions it produces high photorealistic new images.

In this thesis it is aimed to reconstruct complex objects containing concave areas. While man made
objects can be easily reconstructed due to their regular and linear shape, many natural objects are
harder to model since they contain concave, critical areas. Examples of such objects can be given as
flowers or leaves of a tree.

Another aim is to develop efficient voxel processing algorithms. 3D object modeling is traditionally
done by polygonal methods. In this thesis however, voxels are used as 3D representation primitives. In
voxel based representations the scene is divided into cube-shaped elements, named voxels, which
might provide a more flexible representation of 3D surfaces. In this thesis the aim is to create a voxel
surface that would correctly represent the 3D geometry of the true shape of the object.

This thesis aims to create a robust algorithm to create 3D voxel-based surfaces. Therefore fast
computer vision techniques are used and then the accuracy is improved by photogrammetric
techniques.

1.5 Problem Statement

This dissertation presents a reconstruction method for textured objects. The object is reconstructed in
several steps and each step has different kind of problems. The first step of the reconstruction pipeline
is image acquisition. Hence, we have to clarify which is the most convenient system setup to acquire
the images. Thus, the type of the camera and where to place those camera(s) should be considered.
Another issue is the illumination source which affects the image quality and color of the images.
Therefore, it should be considered what kind of illumination source should be used and where to place
it.

The acquired images need to be oriented. The projections can only be performed in a high accurate
way when precise image orientation parameters are known. The accuracy of the image orientation
parameters derived from the turntable positions should be investigated and if necessary the accuracy
should be improved by using bundle block adjustment.

12 1 Introduction

When working with voxels, one of the most important problems encountered is the memory
requirements since voxels consume large amounts of memory. Therefore, the voxel cube should be
defined so that it can approximate the area of interest in the best way.

Since color images are captured instead of gray images, we should make best use of color information.
Therefore existing image matching algorithms can be evaluated for color image matching.

The volume intersection method results in the approximate shape of the object and contains some
extra voxels in concave areas. Thus, it is necessary to investigate algorithms to get into these critical
areas and remove those extra voxels correctly.

Visibility information recovery is an important problem. It should be known if a voxel of interest is
visible from a certain viewpoint or not. This is especially important when we perform image matching,
since only voxels on the true surface of the object project into similar regions on the images. Hence,
visibility of a voxel should be computed correctly and efficiently. One problem encountered during
visibility recovery is determining where a voxel of interest is heading towards. Another problem is
tracing a line efficiently.

Line tracing is required in several steps during the reconstruction process. However, tracing a ray of
sight is a time consuming process. Therefore a sensible geometric limitation should be defined to trace
the line only within the defined voxel space.

Another problem in image matching is caused by perspective distortions from different viewpoints. It
is essential to grab the slave patch taking into distortions into account. This will improve the reliability
and robustness of image matching. One problem encountered is deriving the tangential surface of a
voxel.

The solutions of the above addressed problems will be given in the following chapters of the thesis.

1.6 Areas of Application

Our research is motivated by many applications. Volumetric representations of 3D objects can be
applied to variety of fields as described below.

1.6.1 Reverse Engineering

Reverse engineering is a process of taking a part of a product and see how it works and model it
precisely in order to duplicate it. The parts of the products nowadays are designed by Computer Aided
Design (CAD). However, in some cases, the CAD model of a part does not exist or the CAD model
should be updated to reflect the dimensional changes that occurred during prototyping. In this case the
part is taken out from a working system and a set of measurements are made by various sensors to
digitize it precisely for re-manufacture. Reverse engineering is applied in applications like when a part
of a machine is broken or worn out which has been modeled manually therefore no CAD exists.

 1.6 Areas of Application 13

1.6.2 Medicine

The volume visualization is commonly used in medicine applications in order to visualize the inner
parts of the organs.

3D reconstruction of the body models is used in surgical planning laboratories as a studying tool
before you go through with the surgery. It will show you where to cut and give you some preparation
before you actually do the surgery. In plastic surgery, modeling the topography of the patient’s body
or face surface enables the doctors decide how much fat to remove or how large the implant should be.
3D images also enable doctors to communicate with their patients before the surgery and simulate the
surgery results in a more realistic way.

In radiation treatment in oncology the tumor should be destructed precisely without giving damage to
the vital structures near the tumor area. Radiation treatment planning enables irradiating ray from
different angles that intersects in the tumor area preventing the side affects in surrounding tissue.
Modeling the shape of the patients body help the doctors visualize the radiation distribution.

When 3D reconstruction of the anatomical map of the patient is acquired in high precision,
calculations and measurements can be performed in order to design prosthetic implant. This enables
the physician high accurately plan the prosthetic and increase the patient comfort.

1.6.3 Entertainment

In entertainment, reconstruction of objects and characters by using CAD software is a labor-intensive
process and the result may not look realistic. Computer graphics is increasingly used in special effects
for movies. The animated characters in film industry should move and appear realistically in order to
satisfy today’s viewing public. As a result of high realism demand in computer graphics, film industry
in particular has adopted techniques from computer vision because complex scenes would look more
realistic if they are generated from its images. Therefore image based scene reconstruction, has
attracted significant interests since images provide tremendous details, yet can be acquired fast, cheap
and easily even with inexpensive amateur cameras.

Voxel-based graphics is used by a number of computer games. Computer games industry uses voxel
techniques as a hybrid system along with polygonal methods. For example polygons are used to
represent nearby features and voxels are used to render the terrain.

1.6.4 Virtual Worlds, Virtual Walkthrough, Telepresence

Virtual worlds are computer generated, 3D environments in which virtual world users can participate
interactively. Some examples are virtual museums, virtual library and virtual university. Virtual
worlds provide users to view virtual objects from different distances and angles. In virtual worlds there
are large numbers of dynamic virtual objects which change their position with respect to the viewer.
Therefore virtual objects should be modeled effectively. In a virtual walkthrough application, a person
can visit a specific place with access to the internet or locally. When viewer walks through the virtual
world the information about the virtual objects are rendered into images and viewed by use of
monitors or devices like head-mount displays.

14 1 Introduction

Similar to the virtual reality where presence in computer simulation is desired, telepresence is a
human/machine system which provides the perception of being present in a remote location. Real
environments which are not attainable can be visited by telepresence technologies.

In all these applications, information about virtual objects with their position and shape should be
obtained. In order to increase realism of the virtual world, objects can be modeled from their images.

1.6.5 Cultural Heritage

A virtual museum is a virtual environment where the artifacts and information resources of the
museum can be viewed locally or on the internet for cultural, research or educational purposes. 3-D
reconstruction, modeling, documentation, monitoring, and visualization of cultural heritage artifacts
can be done by volumetric displays. Also refer to [KUZU-IV, 2003]. In virtual museums the
representation of historical artifacts are enriched by online explanations, animations, music, video and
narrations.

A full three-dimensional reconstruction serves as a permanent record of the heritage artifacts in their
original position. Such a reconstruction can be used to detect the changes for conservation purposes.
The models may also serve as a manufacturing blueprint for machine production of a replica for
exhibition purposes. If the object is an historical device for example the visitors might like to see it in
action and perform their experiments. High precise reconstruction of the artifacts or replica can be
made accessible to scholars and visitors.

1.6.6 Home Shopping

Home shopping is the ability to purchase all kinds of goods by placing orders over a communications
network. As a result of the widespread use of internet, commercial vendors are taking advantage of
marketing their products on the World Wide Web. By displaying 3D models of the products, the
vendors allow their customers to explore the products interactively before purchase.

1.6.7 Industrial Inspection

Industrial inspection is to detect the deviations of the manufactured industrial products with respect to
its CAD model for quality control or to calibrate the production process. The real industrial object can
be captured by any scanning or imaging system and the geometric model is reconstructed. The
captured data and the ideal CAD model are matched and the difference is analyzed to see if the real
object differs from the planned CAD model in some regions. Detected errors can be also used for
quality control, in order to discard the worn out industrial parts.

1.6.8 Design

Three dimensional shapes are traditionally designed by CAD tools from scratch on the modeling
system. Despite the advances in CAD tools, they still don’t provide high realistic representations.
Since appearance is important for some consumer products with high aesthetic values, cars for
example, the combination of digital and physical modeling is becoming an important principle in
computer aided industrial design. The artist manually creates a physical model using a material like
clay or wood. This hand made model can be photographed in order to create a 3D computer model. 3D
reconstruction of the sculpture is used to create a CAD model for manufacture.

 1.7 Contents of the Thesis 15

1.7 Contents of the Thesis

The following chapters of the thesis are as follows:

Chapter 2 discusses the general 3D representation techniques and introduces the primitives used for
3D reconstructions. Since voxel data and volumetric reconstruction techniques are not so commonly
used in photogrammetry, Chapter 2 also introduces the voxel data. Moreover, in Chapter 2, the
fundamental concepts of volume data and voxel topology are provided as well as storage of the
volume data and morphological operations with voxels. The comparison of surface graphics and
volume graphics is also presented in this chapter, the weaknesses and the advantages of voxel data is
discussed.

In Chapter 3, the coordinate systems used in this thesis are given and the transformations between
them are presented. The calibration and image orientation techniques used are also presented in this
chapter.

In Chapter 4, some state of the art volumetric object reconstruction techniques using images are
discussed and contributions of this dissertation to these techniques are also explained and experimental
results are provided. Furthermore, in Chapter 4, image matching techniques are given and block
matching algorithm is proposed to refine the approximate model of the object. Also in this chapter,
color image matching algorithms which are used in Chapter 5 are introduced and compared.

In chapter 5, a new volumetric reconstruction algorithm is proposed and some reconstruction results of
the new method are presented.

Chapter 6 concludes the thesis. The contributions are summarized and some areas of future work are
described in this chapter.

Some material presented in this thesis has been published by Kuzu, Sinram and Rodehorst previously.
[KUZU-I, 2001], [KUZU-II, 2002], [KUZU-III, 2002], [KUZU-IV, 2003].

 2.1 3D Primitives 17

Chapter 2 : 3D Representation Techniques

2.1 3D Primitives

Three dimensional visualization techniques can generally be classified in two methods as surface
graphics and volume graphics. Surface graphics use polygons, lines and points as geometric primitives
when volume graphics use voxels as unit volume elements. According to the data structures they use
we can say that in the same way surface graphics is the 3D counterpart of vector graphics, volume
graphics is the 3D counterpart of raster graphics.

We can classify the data structures mainly into two groups as geometry-based models and digital
images. The 3D primitives of geometry based models are lines, points, curves, polygons and surfaces.
Geometry based models are data structures that represent objects in terms of their geometrical
descriptions like size, position and orientation. For example in computer graphics pictures are created
from geometry-based models.

In digital images, colors as well as gray values are represented as 2D arrays. However digital images
do not contain information about the geometry of the objects that have been imaged. A digital image is
a 2D array of data that represents color values or gray values of sample points that lay on a plane area.
The unit element of a digital image is called pixel, in other words “picture element” and it is regarded
as a small rectangular area. The digital image is obtained by scanning of a photograph or obtained by
capturing the real time signal of a digital camera and displayed on a raster output device. Image
processing deals with manipulation of digital images and has several kinds of objectives, for example
image enhancement and image understanding.

In former computer graphics techniques objects were represented by lines, curves, surfaces and
boundary representations with meshes of polygons. With the advent of raster technology, image
processing and geometry based computer graphics adopted techniques from each other. For example,
remote sensing applications combine satellite images with geographic maps which are based on
geometric descriptions of the earth. In computer graphics today texture mapping is used as an image
processing technique in order to produce more realistic looking images of the surface.

2.1.1 Surface Graphics

In surface graphics, raster technology is used for display and surface graphics has the geometry-based
approach of vector graphics to maintain and manipulate the display list of geometric objects. After
every change in scene the frame buffer is regenerated. Polygons require intensive processing,
therefore, hardware is supported by powerful geometry engines for hardware acceleration which
makes surface graphics state of the art of computer graphics. In surface graphics geometric primitives
are kept in the display list and these primitives are transformed and mapped to the screen coordinates
and then converted into pixels by scan conversion algorithms, in the end stored in the frame buffer or
in a database. This process is called pixelization or rasterization. This process is repeated when there is
a change in the scene like when viewing parameters are changed.

2.1.2 Volume Graphics

Volume graphics is an advancing field in computer graphics. Voxels and pixels both represent the
sampled data by volumetric data sets and images. In volumetric data, the samples are represented in

18 2 3D Representation Techniques

3D instead of 2D therefore it is the counterpart of digital images. As scientific visualization becomes
more demanding and sophisticated the research, in order to develop better techniques to create 3D
representation other than traditional computer graphics techniques gained speed in recent years.
Volume visualization is the method to extract information from volumetric data sets for manipulation
and rendering. Volume graphics use volume buffer for representations of 3D scenes instead of using a
list of geometric objects. The scene is discretized and converted into unit volume elements, voxels.
While volume visualization is generally concerned with sampled data sets, volume graphics is
concerned with modeled geometric scenes. A geometric model which is created by conventional
surface graphics methods can also be converted into volume model. Geometric model which is defined
by an analytic formula is voxelized and stored in volume buffer. This process is also used to convert
some objects which are not sampled into the volume model. Surgery tools for example can be
voxelized and intermixed in the volume buffer with the sampled organ.

2.1.3 Comparison of Voxel Methods with Polygonal Methods

In general, the advantages of voxels are; they are not affected by scene and object complexity, they
can represent sampled data and inner information effectively and they support block operations. The
main disadvantages are memory and processing power requirements, the loss of geometric
information, and its discrete form. In the following section the advantages and weaknesses of
volumetric methods will be discussed based on the comparison table presented by Arie Kaufman
[KAUFMAN-I, 1993], [KAUFMAN-II, 1996].

 Surface Graphics Volume Graphics

Rendering Sensitivity to
Scene/Object Complexity

- +

Block Operations - +

Sampled Data - +

Interior Parts - +

Memory and Processing + -

Aliasing + -

Transformations + -

Geometric Information + -

Table: 2-1: Comparison of surface and volume graphics based on the table provided by Arie Kaufman
[KAUFMAN-I, 1993], [KAUFMAN-II, 1996]

2.1.3.1 Advantages of Voxels

Voxel methods have several advantages over the polygonal methods. Although modeling stage is
affected by object and scene complexity, rendering is insensitive to scene and object complexity.
Because the rendering stage is only affected by the resolution of the volume buffer not the number of

 2.1 3D Primitives 19

the objects in the scene or how complex the objects are. Therefore objects can be rendered without
increasing the amount of processing power greatly. Anti-aliasing and texture mapping is performed
only once and a color value is assigned to each voxel. When an object is hard to render by
conventional methods volume graphics is preferable.

Voxel methods seem to be more natural since they can represent inner parts of the objects and
represent digital samples directly and easily. In some applications such as computational fluid
dynamics and volume microscopy sampled data is already in hand therefore such fields are the main
application areas of volume graphics.

In polygonal methods an object is represented by edges and surfaces approximated to polygons.
However, in our environment 3D objects might not consist of edges and surfaces and might have
critical concavities.

Imagine the image of a tree. To have a realistic representation we would choose to use of a raster
image scanned from a photograph or from a digital camera directly. Since this is an image of the real
world, it will look accordingly real, depending on the image resolution. If we were to represent a tree
(here 2 dimensional) with lines and polygons, we would have tremendous work to do yet it would be
incomplete and still look unreal.

There is an irregularity in our nature so real world objects do not have sharp edges. Moreover, they
might have information inside them. Not only can the shell of the objects, but also the interior parts
also can be represented by voxels. This is very important for applications like medicine when inner
organs have to be visualized. On the other hand, objects without surfaces or real phenomenon like
cloud, fire and smoke are hard to be represented by polygons. Therefore, polygons might not provide
accurate representation of natural objects. However, they can represent many man-made objects very
accurately. A table for example can be represented by polygons very easily and quickly since it
consists of flat surfaces. Some objects like tree or flower on the other hand, require millions of
polygons to create a very approximate representation. In order to reconstruct a complex scene, we can
make use of voxel representations. Even when texture mapping is applied, polygonal representations
might not provide realistic representations of real world objects. Scientific data like topological data
and medical scans can be understood more easily when it is visualized with voxels. Furthermore,
voxels can be given an opacity value in addition to their appearance (e.g. color). So by manipulating
the opacity of designated voxels, we can look into an object, layer by layer.

Volume graphics uses a 3D volume buffer for representations and manipulation of 3D scenes instead
of geometric objects. Rendering process of voxels is affected by the resolution of the voxel cube not
by the scene and object complexity since it has been converted into a constant volume size previously.
Therefore complex objects with curved surfaces which require large polygon meshes can be rendered
easier with voxel methods.

Voxel methods are also viewpoint independent in contrast to polygonal methods. This is because all
objects have been converted into voxels and for each voxel a unit memory is allocated where in
polygonal methods the memory is assigned to complete surface patches.

Voxels are closely related to pixels due to their discrete form and many of the problems in raster
graphics also exist in voxel based methods. Therefore, many of the problems that have been solved in
2D graphics like anti aliasing and block operations can be adapted to voxels methods easily. For
example block operations as quadtree in raster graphics is applied to volume graphics as octree. Filter
operations like blurring, sharpening or gradient operations (e.g. Sobel filter) can be enhanced to the
third dimension and be directly applied to the voxel space.

20 2 3D Representation Techniques

2.1.3.2 Disadvantages of Voxels

Due to huge memory and capacity requirements, voxel methods are going to be applied more with the
advances in computer hardware. Volumetric representations use voxels to model the scene, which
consume large amounts of memory. For example 256³ bytes (16.77 mbytes) of memory is required for
a rather small cube (256 units in each direction). When linear resolution is increased, the memory
requirements increase in proportion to the cube. For example when 2D image with dimension n has n2
pixels, 3D cube with dimension n has n3 voxels. However, the rapid advances in hardware provide
faster, larger and cheaper memories and in the near future this advantage will become less of a
problem and volumetric representations become more attractive. On the other hand volume engines
which will load, store, manipulate and render volumetric scenes in real time are configures as
accelerators of existing geometric engines.

There are some disadvantages of voxels due to their discrete form. When low resolution is used it
yields high aliasing artifacts. When compared to 2D images, we can not get more information by
zooming into the image. At some stage, it will only reveal the pixel structure, or the voxel structure,
respectively. When zooming into a polygonal model, some details might be uncovered, that have been
invisible before (e.g. two very close parallel lines). We cannot derive more information, but on the
other hand, we will not see a pixel structure either.

Although some measurements are easier with voxels, the finite resolution of cube limits the accuracy
of the measurements which are dependent on voxel counting like volume or area measurements. When
the discrete volume is manipulated or transformed, some information is lost and image quality is
decreased since subsequent rotations will distort the image. However, the techniques applied to raster
images can be applied to lessen distortion. And also a discrete object does not have geometric
information about objects surface description. We could say that one voxel knows nothing about its
neighbor. Therefore when exact measurements are required polygonal methods might be the
preferable because objects geometric definition is available.

2.2 Volume Data

As mentioned previously, in general, there are two main three dimensional data structure to create and
manipulate images; geometry-based models and digital images. In this thesis another type of data
structure is used, voxel data, which recently becomes important with the new advances in computer
hardware. A voxel is a rectangular cuboid and have 6 faces, 8 corners and 12 edges.

Volume data was first introduced in mid 70’s in medicine in order to visualize inner parts of the body
and nowadays it is commonly used in research and development. The name voxel stands for
volumetric pixel. A voxel is a unit volume and it simply adds another dimension to digital picture
element, pixel. If the definition of pixel can be extended to 3D; just as we think of pixels as square unit
elements in an image, we think of voxels as cubic elements in 3D voxel space.

Voxels define geometrical, physical and radiometric properties of every point in 3D space and they are
stored in a three dimensional matrix. Every voxel has a numeric value which represents some
measurable properties or independent variables, for example color, opacity, density, heat of the real
phenomenon or object. These variables can also be a vector representing variables like velocity and
time.

 2.2 Volume Data 21

2.2.1 Voxel Definition

Let volume)(nnnV ×× is the point samples taken from the real environment in 3D Euclidean space
R3. V is the subset of natural volumes in R3 which forms a grid with integer coordinates. The voronoi
neighborhood of a grid point P is used to represent its local geometric environment and it is the set of
all points that lie nearest to P. The voronoi neighborhood of a 3D grid point is a closed unit cube
called as a voxel.

Figure 2-1: A nnn ×× volume and a voxel with coordinates (Xv, Yv, Zv)

In Figure 2-1 voxels form a 3D array “ nnn ×× ” in real space R3 and cover the local space defined with
coordinates below:

X <= 0 < nx

Y <= 0 < ny

Z <= 0 < nz

2.2.2 Voxel Adjacencies

In digital images each pixel is surrounded by other pixels. We can distinguish those pixels that are
directly connected with an edge, from those that are only indirectly connected by a vertex, from the
center pixel. We can define these as 4-neighborhood and the 8-neighborhood.

Voxels extend this definition to the third dimension. For every voxel there are 26 adjacent voxels.
Hence, 6 voxels share a face, 12 voxels share an edge and 8 voxels share only a vertex with the center
voxel. We might call these neighbors of first, second and third order. As seen in Figure 2-2, face
sharing voxels are called 6-adjacent, face and edge sharing voxels are called 18-adjacent and face,
edge and vertex sharing voxels are called 26-adjacent. This becomes important, when we define the
surface voxel list (see Chapter 2.2.3) where its density will depend on which neighborhood we choose.

22 2 3D Representation Techniques

a) b)
c) d)

Figure 2-2: the 6- (b), the 18- (c) and the 26-adjecenies (d) of the voxel (a)

2.2.3 Surface Voxel List

The surface voxel list is designed to contain all voxels which lie on the object’s surface. While the
storage details are a matter of programming and may vary greatly, the definition of this list is quite
clear. In general, we should say that a surface voxel is the voxel which lies on the border of two voxel
classes. In our case we are dealing with non-transparent objects. Hence, the properties of inner voxels
are of no interest. Therefore, we have only two classes: object and non-object. In other cases, like
medicine, the inner voxels are of great importance and we might encounter classes like skin, bone,
liver, etc. (see Figure 2-8 for Visible Human Project [TVHM]). Here, we could define surface voxels
for each class, i.e. those voxels, which for example separate a liver from the rest. For simplicity and
because in this work we are mostly dealing with solid voxel models, we will be limited to the classes
object and background.

Before we can construct the surface voxel list, we have to define what makes an arbitrary voxel a
surface voxel. There are mainly two conditions:

1. The voxel itself is an object voxel.

2. At least one neighbor is not an object voxel.

These conditions are sufficient to distinguish inner voxels from surface voxels. But if we go into
detail, we will discover that this might not be an adequate definition. First of all, we would have to
specify what kind of neighborhood we want to allow (see section 2.2.1). Depending on the
neighborhood order fewer or more voxels are considered to be surface voxels and the whole set
becomes more or less dense.

Secondly, with the above definition any isolated voxel or noise voxel will be regarded as surface
voxel. If noise is likely to be the case but not desired, the second condition should be restated as:

2. At least one neighbor is not an object voxel, and at least one other neighbor is again an object
voxel.

By varying the number of neighbors which also should be object voxels, we can influence the
tolerance against noise.

Nevertheless, the set of all surface voxels forms the surface voxel list (SVL). We will be limited to one
SVL for the whole voxel cube regardless of the number of separable objects inside the cube. The
simplest solution constructs a dynamic linked list where each item contains the voxels coordinates.

 2.2 Volume Data 23

The voxels property is implicitly defined by the list itself. In the simplest case they are all surface
voxels. In the case of more complex classes, we may have several surface voxel lists, e.g. the liver
surface, lung surface, etc., where each list defines the property of its very voxels.

Creating the SVL might speed up some operations tremendously. When applying texture mapping, for
instance, it is obvious that inner voxels are completely uninteresting in the case of non-transparent
objects. Therefore, only surface voxels have to be considered. Compared to the total amount of object
voxels, the SVL contains only a small percentage.

2.2.4 Vector Line

For many tasks it is necessary to trace voxels along a line. In Chapter 5.1.1 some examples are given
where it becomes useful and how it can be accomplished. In this chapter, some definitions and
properties concerning voxel lines are explained.

As with the surface voxel list, which actually forms a voxel surface, the voxel line is dependent on the
degree of neighborhood. The number of voxels varies with the neighborhood. Since by definition all
voxels in a line are connected to each other, we can influence the line by defining the connection.
Figure 2-3 shows a line with 18-connected voxels and 6-connected voxels.

a)

b)

Figure 2-3: a) 18- and b) 6-connected voxel line

In the case of the 6-connected line, only fewer voxels are considered connected. So the line has to
make detours to trace from start to end and hence becomes thicker. In the 18-connected case, the line
consists of fewer voxels, but the mathematical line may traverse a voxel which is not part of the voxel
line. Furthermore, the thin line has the disadvantage of being able to intersect an 18-connected surface
without detection (see Figure 2-4). Algorithms and applications of line tracing will be explained in
detail in chapter 5.1.1.

24 2 3D Representation Techniques

Figure 2-4: Line intersecting a plane without detection

2.2.5 Surface Normal Vector

In some occasions, knowing where a surface is heading towards might be useful information. This is
required information, when it comes to photo realistic lighting simulation and shading. But we might
use this information to evaluate a usefulness of some selected operations. For example, if we perform
image matching, we would like to decide, whether a certain point is a sensible candidate. One criterion
is its radiometric properties, described by an interest-operator. Another criterion would be where this
part of the surface is heading. If it looks away from the camera, we can expect a highly distorted
pattern, but when it looks in the direction of the camera it might yield a good result.

Figure 2-5: Tangent plane and surface normal vector

The derivation for the tangential plane and therefore the surface normal vector is trivial for polygonal
models. It is also more or less simple for mathematically described surfaces. But it is a little bit more
complicated for voxel models. Here we are dealing with a number of regularly arranged coordinates.
A detailed solution for this problem will be introduced in Chapter 5.

2.2.6 Volumetric Data Set Definition

A volume data set in other words, volumetric data is the set of voxels represented as a 3D discrete
volume. A volume data set contains sample values associated with the points of a regular grid in 3D

 2.2 Volume Data 25

space. Therefore, volume data sets can be treated as 3D images with optical properties, like color and
opacity. For example for 8 bit images, voxel gray values are derived from the corresponding pixel gray
values and each voxel V has a value ranging from 0 to 255. The color value can be written as the
function of the point coordinates as;),,(zyxgV = . If the volumetric data set contains binary data, the
black voxels with the value “0” represent transparent regions and the white voxels with the value “1”
represent the object.

Figure 2-6 is an example of a volume data set in a technical chemistry experiment. It shows an
example of a flow tomography sequence in a turbulent mixing process [MAAS, 1994].

Figure 2-6: Volume datasets: 5 consecutive volumina with 50 layers of 256 by 256 pixels each (total
16 MB = 0.5 seconds of flow data) [MAAS, 1994]

2.2.6.1 Sources of Volume Data

Since everything in the real world has three spatial dimensions, any application that produces image
data can be the source of volume data set. This thesis specifically focuses on image sequences
acquired by a video camera. In general, source of volume data are sampled data of real world objects
and phenomenon, modeled data generated from a geometric model and simulated data acquired by
computer simulation [KAUFMAN-I, 1993], [KAUFMAN-II, 1996].

2.2.6.1.1 Sampled Data

In medicine, when we want to study an organ, CT (computed tomography) exposures are taken
through several parallel slices. These 2D slices can then be stacked into a volume data set and
reconstructed into a volume model in order to study 3D structure of an organ. In a similar way, other
methods to obtain volume datasets are magnetic resonance imaging (MRI), ultrasound imaging, the
positron emission tomography (PET) and single-photon emission computed tomography (SPECT)
methods of nuclear medicine all can similarly produce volume data sets. The “Visible Human Project”
can be given as a good example of sampled data [TVHP]. This project was founded by the National
Library of Medicine, USA in 1991 for developing a digital database of volumetric data representing a
complete adult male and female for teaching and research purposes in applications as virtual surgery.
The goal of the project was to provide radiological and photographic representation of a complete,
human male cadaver at a resolution of 1mm in all three dimensions. Imaging of the cadaver was
performed using the magnetic resonance imaging (MRI) and computed tomography (CT) equipments.
The photographs were obtained by sectioning the body at 1mm increments and capturing a 2048 x

26 2 3D Representation Techniques

1216 digital image in 24-bit color at every level. These images have been registered and therefore, can
be restacked to define the human body at every location in space with 1mm voxels. The voxels have
attributes of RGB color in addition to the electron density provided by the CT images.

Figure 2-7: Unlabeled, labeled, MRI and CT images respectively “Visible Human Project” [TVHP]

Figure 2-8: 3D Visualization of the female cadaver, from the “Visible Human Project”, extracted
from a low-resolution animated gif [TVHP]

Figure 2-9: Virtual surgery “Visible Human Project” [TVHP]

 2.2 Volume Data 27

Seismic exploration is another application area which results in sampled volume data sets for
exploration of petroleum and mineral resources. The basic technique of seismic exploration is to
generate artificial elastic waves by means of an acoustic energy source and to detect the energy
reflected from geological interfaces within the earth. The receivers are generally located on the earth
forming 2D grids. And each receiver gets the data in terms of time series. The amplitude of the
reflected pulse carries information about the rock layers and the arrival time is directly related to the
depth of these layers. Seismic data is a large volume set with voxels representing the acoustic
amplitude and the time dimension is the depth of the layer.

2.2.6.1.2 Modeled (Generated) Data

When the shape and dimension of an object is known, it can easily be generated with voxels. This is
especially the case, when it is a regular object, like a sphere, a box or a cylinder. Figure 2-10 shows
voxel models of consumer products, as they could be placed in a virtual shop. If the visualization
software allows, they can be zoomed, rotated and investigated. In the following case, the objects are
very much simplified, but the natural texture, plus any possible software shading, gives them a very
realistic appearance.

Figure 2-10: Generated objects, based on the known geometry and texture

28 2 3D Representation Techniques

Although volumetric representations can be seen more advantageous for sampled data, because they
represent the digital samples and the interior parts of the objects, it is also commonly used in
applications that deal with modeling and rendering of the synthetic scenes represented by geometric
models. Surface representations are converted to volume data using a method called voxelization.
Some examples are rendering of fur gases and CAD models and terrain models for flight simulators.
Photorealistic volume based modeling of real world terrains are created from a single elevation map
and a satellite or aerial photograph of the terrain. This is achieved using voxelization, 3D texture
splatting and ray casting. However these systems can only handle 2.5D voxels which causes 3D
aliasing, when the viewpoint is changed or when viewing a region of sharp boundaries.

2.2.6.1.3 Simulated Data

The simulations of complex physical phenomena present new challenges for computational scientists
including analyzing and visualizing complex three dimensional data. In many computational fields
like computational fluid dynamics, volume data sets arise by running such a simulation on a
supercomputer. Three dimensional fields are quantities associated with the points in defined region of
3D space and these quantities differ in time from point to point. The simulations sample 3D fields
numerically on finite sets of sample points. These points are arranged in regular grids or can be
mapped to regular grids therefore can be visualized as volume data. Other examples of computational
simulations can be given as storm prediction in meteorology, oil reservoir simulation, stress and
thermal studies in engineering as well as computational chemistry and quantum physics. In
computational fields applications there is no limit to the size of the volume because the study is
continuous. As in a 3D simulation, millions of sample points might be used, the resolution is
dependent on the power of the machine.

2.2.7 Storage of Voxels

Memory requirements are the biggest disadvantage of voxels this is because the scene is divided into
cubes and even the empty voxels need to be represented in the memory. When we increase the
resolution, the memory requirements also increases by power of 3. The amount of memory to store
voxelized scene is large but we can keep it to a minimum by a number of techniques.

Some storage techniques include volume buffer, octrees, binary space-partitioning trees and run-
length-encoding (RLE). In this thesis run-length encoding and octrees are referred as compression
methods. Some methods which are the variations of octrees i.e. linear octrees, PM Octrees are not
mentioned.

2.2.7.1 Volume Buffer

The simplest way of storing volumetric data set is the volume buffer. This is the large 3D array of
voxels where each voxel represent either a value or a blank space. This method requires the most
memory because it does not provide data compression. For smaller objects it might be the preferable
method.

2.2.7.2 Binary Space Partitioning Trees

Binary space partitioning trees recursively divide the space by a plane into two subspaces. In contrast
to octrees subdivision is dimension independent because separating plane has arbitrary orientation and
position. Each node has two pointers on each side of the plane. The elements are classified according

 2.2 Volume Data 29

to which subspace they belong to. Assuming the normal points out of the object, the left subspace is
defined as “in” the plane and the right subspace is defined as “out” the plane. Each node also has a
thickness and any point lying within this distance is defined as “on” the plane. If a side of the plane is
homogeneous, it has no child; otherwise it is further divided just as in octree method. Although BSP
has the advantage of dimension independence, it is computationally more expensive.

2.2.7.3 Run-Length-Encoding (RLE)

A quite old and simple, yet efficient method of data compression may be achieved by run-length-
encoding. Instead of writing an exact copy of the data into the file, the algorithm takes into account,
that data might be homogeneous and repetitious. The simplest way to store data is to let each sample
be represented by one byte and write it. Run-length-encoding would count the number of repetitive
data and store the value and the number of occurrences. The more homogeneous the data is, the more
efficient the algorithm will work. In the case of voxel cubes, we will encounter many empty voxels, as
well as many occluded inside voxels, meaning; there are wide areas with homogeneous data.

An advantage is, that this algorithm can be very powerful, but is easy to implement. Furthermore it is a
lossless compression technique, i.e. the data will be restored without information being lost.

The above will be valid for data stored with 8 bit per sample or less. If the voxels are stored in true
color (24 bit) run-length-encoding is unlikely to be helpful. Instead, lossy compression techniques
would be the choice, i.e. unnecessary information is deliberately suppressed, as the JPEG-compression
does, in the case of 2D-images.

2.2.7.4 Octrees

Many researchers have dealt with octrees since it is discovered in late 70’s [POTMESIL, 1987],
[SRIVASTAVA, 1990], [SZELISKI-I, 1990]. The octree structure is a hierarchical representation of a

nnn 222 ×× voxel array. Octrees are the most common method to store voxels because of good data
compression and ease of implementation. A typical voxel raster contains huge homogenous regions. It
is possible to reduce the memory requirements if these homogenous regions are not represented.
Octree method derives from quadtrees which is a well known method to store 2D raster image.
Quadtrees work successively dividing the area of the image into equal quadrants. The division is made
in three dimensions in octrees and the space is dived into 8 equal octants at each division. Each octant
may be full, partially full or empty. Octants are referred by numbers beginning from 0 to 8. When
eight sibling octants are homogenous, either full or empty, they are deleted and partially full parent is
replaced with full or empty node. This process continues until a proposed tree depth is reached or all
octants are homogenous. A maximum tree depth is set by user to limit the memory requirements and
to define the resolution of the voxel cube. Figure 2-11 shows the subdivision of a 333 222 ×× voxel
array with resolution 888 ×× . Most of volume data sets contain large areas of empty space. In this
case, it can be compressed and stored in an octree because it is very economic and provides high
resolution and low memory consumption.

30 2 3D Representation Techniques

Figure 2-11: Numbering of octants in an octree and subdivision of the voxel cube

2.3 Morphological Operations in 3D

Mathematical morphology is a method to extract image components which are useful for
representation and description. Mathematical morphology is proposed by Matheron and Serra in the
sixties and has been used in image and signal analysis to provide quantitative description of
geometrical structures [MATHERON, 1975], [SERRA, 1982]. In general morphological operators are
based on expanding and shrinking operations. Morphology can be used to extract object boundaries,
skeletons or convex hulls as well as they can be used in post processing techniques like edge thinning.

Primary usage of morphology occurs in binary and gray level images. By use of structuring elements
(SE) many deformation effects can be generated by adding or removing pixels according to the pattern
of neighboring pixels. There are two basic types of mathematical morphology operations which are
dilation and erosion. Erosion, dilation and their combined usage add or remove pixels from the
boundaries of features, join separated portions of features or remove isolated noise from the images.

As volumetric objects are presented with a set of binary voxels, mathematical morphology can be
easily adapted to 3D. The main goal is to analyze volume for noise elimination.

3D dilation of the object A, by 3D binary structuring element SE, can be provided as follows:

()
),;(

,),(nnn

nnn

kjiAtrans
SEkjiSEAdilation ∈= U (2.1)

where: trans is the translation operator which is defined as follows;

(){ }AnmlknnjmmillnmlnknjniAtrans tttttt ∈+=+=+==),,(,,,|,,),;((2.2)

The erosion operator is defined as the intersection of each voxel of A which is translated with a
structuring element SE in the negative direction.

()
),;(

,),(nnn

nnn

kjiAtrans
SEkjiSEAerosion −−−

∈= I (2.3)

As it is in 2D an opening is an erosion followed by a dilation. An opening provides smoothing of the
surface and removing irrelative floating volumes.

opening (A, SE) =dilation [erosion (A, SE), SE] (2.4)

A closing is a dilation followed by an erosion. A closing provides filling the holes in the surface and
combining neighbor voxels.

closing (A, SE) =erosion [dilation (A, SE), SE] (2.5)

 3.1 Coordinate Systems 31

Chapter 3 : Camera Calibration and Image Orientation

3.1 Coordinate Systems

In order to reconstruct the shape from images we should know the relation between image and world
coordinate systems. There is a similar relation between digital and photogrammetric coordinate
systems for images and for voxel cubes. The digital coordinate system is closely related to the memory
structure of the computer (left-handed and the origin is in the corner), while the photogrammetric
coordinate system is right-handed and the origin is mostly found in the center. The following chapters
will introduce the coordinate systems of the digital and photogrammetric image coordinates and the
world and voxel coordinates. The relation between these systems will be mathematically explained.

3.1.1 Image and World Coordinate System

It is well known that in order to reconstruct the geometric situation of the image acquisition, we need
to have knowledge about the cameras interior and exterior orientation. In other disciplines, we may
encounter terms like intrinsic and extrinsic parameters. Regardless of the title, they describe the
general properties of the camera (interior) and its position at the time of the image acquisition
(exterior). In simple words, we have to know what kind of camera we were using and where it was.
This is expressed by the cameras internal parameters, the calibrated focal length, the position of the
principal point and eventually advanced parameters to describe lens distortion. While these properties
are more or less constant, the external parameters are highly variable. Any picture taken with a camera
however stores these parameters at the precise moment of acquisition. They consist of the position
(projection center) and the orientation (rotation) of the camera. So regardless of lens correction terms,
the geometric situation is described by nine parameters. It is described later, how these parameters can
be derived.

The relation between image coordinates (x ,y) of an image point p and the coordinates X,Y,Z of an
object point P is shown in Figure 3-1.

Figure 3-1: Relation between image and object coordinates under central projection

32 3 Camera Calibration and Image Orientation

Where:

 O : Projection center with the coordinates X0, Y0, Z0.

 p0 : Principal point with the coordinates x0, y0.

 M : Image center, or fiducial center respectively

 P : Real world point with the coordinates X, Y, Z

 p : Image point with the coordinates x, y.

The transformation from world coordinates into image coordinates is defined by the collinearity
equations:

() ()
() ())(

)(

033023013

031021011
0 ZZrYYrXXr

ZZrYYrXXr
cxx

−−−+−
−−−+−

−= (3.1)

() ()
() ())(

)(

033023013

032022012
0 ZZrYYrXXr

ZZrYYrXXr
cyy

−−−+−
−−−+−

−= (3.2)

Where, parameters rik are the elements of the rotation matrix R, with three rotations α, ν, κ. Since we
are assuming the terrestrial case, we can use Krauss equations for terrestrial photogrammetry in
construction of the rotation matrix [KRAUS, 1997].

1st rotation α along Z axis: 2nd rotation ν along X axis: 3rd rotation κ along Z axis:

x

y

z

α

α

α x

y

z

ν

ν

ν

x

y

z

κ

κ

κ















 −
=

100
0cossin
0sincos

αα
αα

αR















−=

νν
ννν

cossin0
sincos0
001

R














 −
=

100
0cossin
0sincos

κκ
κκ

κR

Figure 3-2: Three sequential rotations

Multiplication of the three matrices gives the complete rotation matrix:

















⋅⋅
⋅−⋅⋅+⋅−⋅⋅+⋅

⋅⋅⋅−⋅−⋅⋅−⋅
=

νκνκν
νακνακακνακα

νακνακακνακα

ανκ
coscossinsinsin

sincoscoscoscossinsinsincoscoscossin
sinsincoscossinsincossincossincoscos

R (3.3)

 3.1 Coordinate Systems 33

Note that a change in the order of rotation will result in a different rotation matrix. Depending on the
task at hand the one or the other way is more efficient.

Every object point projects into exactly one image point. But the converse transformation is not
possible because for every image point there are infinite object points, along the projection line.
Therefore it is impossible to reconstruct an object from a single image. By using a second image, we
are able to derive an object point in space. Otherwise, we need extra information about the Z
coordinates of the object, e.g. all object points lie in a horizontal plane of known height.

Every object point along a line of sight may be projected into the same pixel. Therefore, according to
the rules of central projection, each pixel has its individual scale factor λ, depending on the point’s
distance from the projection centre. This scaling factor, however, is normally unknown, as well as not
required.

Nevertheless, if we happen to know this factor, or if we just define it, we are able to refer to a specific
point in space. Depending on the scale factor λ, the transformation equations from image coordinates
into world coordinates are defined as follows:

















−
−
−

⋅=
















−
−
−

0

0

0

0

0

ZZ
YY
XX

R
c

yy
xx

λ =>















+

















−
−
−

⋅⋅=















−

0

0

0

0

0
1

Z
Y
X

c
yy
xx

R
Z
Y
X

λ (3.4)

from the equations above we can derive the formulas:

() () 013012011 XcryyrxxrX +−−+−= λλλ

() () 023022021 YcryyrxxrY +−−+−= λλλ (3.5)

() () 033032031 ZcryyrxxrZ +−−+−= λλλ

where:

 c : calibrated focal length

 X, Y, Z : object point coordinates

 X0, Y0, Z0 : projection center

 x, y : image point

 x0, y0 : principal point

 rik : elements of the rotation matrix

 λ : scaling factor

3.1.2 Voxel and World Coordinate System

Voxel coordinates differ from world coordinates in a way that they only exist as integer numbers in a
predefined three dimensional array of samples.

34 3 Camera Calibration and Image Orientation

g = g(x, y, z) 0 <= x < Nx

0 <= y < Ny

0 <= z < Nz

where: Ni denotes the number of voxels along the three major axes. There can be no information
outside these boundaries. As in digital images, the axes form a left-handed system. The coordinates
refer to the voxels center. Information “between” voxels is not available and could only be guessed by
suitable interpolation algorithms.

However, we want these voxels to represent very specific points in space, so we will have to supply
means of transformation from voxel coordinates into world coordinates, and vice versa. This
transformation will have to include an individual shift along the three major axes, and a scaling factor,
which represents the size of a voxel. If for example, we choose a voxel size of 2mm, we simply have
to multiply this value with the number of voxels along the major axes, let’s say 256x256x128, to learn
about the cubes dimension in the world coordinate system. It would correspond to an area of
512x512x256mm in world coordinates.

Furthermore, we would like to strictly limit the voxel cube to the area of interest in object space, we
can think of it as a bounding box, so it might become handy to be able to rotate the cube about the z-
axis. The transformation routine will be designed accordingly. We will end up with a similarity
transformation for x and y, and a simple scale and shift in z, see equation below. The idea is depicted
in Figure 3-3. This transformation could easily be extended to a full three dimensional rotation, by
simply using a full rotation matrix (see equation 3.3), but it seems a sufficiently approximated area of
interest, when considering one rotation only. After all, a full rotation matrix would also slow down the
computers performance.

Prior to the transformation into world coordinates, we will shift the X- and Y-coordinate to the center
of the cube. We will furthermore swap the X- and Y-axis into a right-handed system,

so that:























−

−

=
















′
′
′

V

xV

y
V

V

V

V

Z

NX

N
Y

Z
Y
X

2

2

 (3.6)

 3.1 Coordinate Systems 35

Figure 3-3: Relation between world and voxel coordinates

The transformation from voxel coordinates to world coordinates can finally be given as:

0sincos vVvVv XYsXsX +′⋅⋅−′⋅⋅= αα

0cossin vVvVv YYsXsY +′⋅⋅+′⋅⋅= αα (3.7)

0
vVv ZZsZ +′⋅=

or,



















′
′
′

⋅














 −
⋅=



















+
















′
′
′















 −
=

















1
100
0cossin
0sincos

100
0cossin

0sincos
.

0

0

0

0

0

0

v

v

v

v

v

v

v

v

v

v

v

V

V

v Z
Y
X

Z
Y
X

s

Z

Y

X

Z
Y
X

s
Z
Y
X

αα
αα

αα
αα

 (3.8)

36 3 Camera Calibration and Image Orientation

where:

 sv : metric size of a voxel

 X, Y, Z : World coordinates

 X’V, Y’V, Z’V : Voxel coordinates (cube-centered and right-handed)

 Xv
0, Yv

0, Zv
0
 : voxel cube origin in world coordinates

 α : rotation angle about Z

The inversion describes the transformation from object space to voxel coordinates:



















−

−

−

⋅















−=

















′
′
′

0

0

0

100
0cossin
0sincos

1

v

v

v

v
V

V

V

ZZ

YY

XX

s
Z
Y
X

αα
αα

 (3.9)

And decentered, left-handed voxel coordinates:























′

+′

+′

=
















V

x
V

y
V

V

V

V

Z

NX

NY

Z
Y
X

2

2

 (3.10)

When we are transforming world coordinates into voxel coordinates, we have to keep in mind that
information is only available within the cubes dimension. Hence, the result of the transformation into
voxel coordinates should always be boundary checked. Furthermore, true information exists only for
integer coordinates, which will be the exceptional result from the above transformation. The simplest
way is to round the coordinates to the closest integer number, corresponding to the nearest neighbor
algorithm. Other approaches could take the neighboring voxels into consideration and perform an
interpolation in between.

3.1.3 Pixel and Image Coordinates

As voxel coordinates differ from world coordinates in a way that they are integer numbers defining 3D
array in space, in the same way pixel coordinates differ from image coordinates as they are integer
numbers defining a 2D array in a CCD plane. Therefore, it is important to understand
photogrammetric and pixel coordinate systems in order to perform transformations.

A digital image is actually a 2D array of pixels containing color values. Locations in the image grid
are defined by rows and columns, where the horizontal axis is called x axis, and the vertical axis is
called y axis. Each pixel covers the same amount of area in which the points share the same attribute,
mostly brightness in one or more channels. Mainly we can distinguish between 8 bit gray, 8 bit color
and 24 bit true color images. The first describes an image of 256 possible gray values, with g = g(x, y).

 3.1 Coordinate Systems 37

The second uses a look-up-table to provide color information in a limited palette of 256 entries, from a
total choice of usually 256³ = 16.77mio. colors. The table holds arbitrary RGB-triplets, so that gRGB =
LUT(i). The color of a pixel can be obtained with gRGB = LUT(g(x, y)). In the last case, every pixel
stores three byte of information, allowing the image to hold the full information of the 256³ possible
colors, hence gRGB = gRGB(x, y).

The width and the height of the digital image may differ and it is called x- and y-resolution. It is a
most sensible assumption that integer image coordinates refer to a pixels center. To be compatible
with zero based arrays in our source code, we will assign the origin (0, 0) to the upper-left pixel. This
will result in negative coordinates (-0.5, -0.5) for the very upper-left image corner, however this will
not cause any problems. Hence, the lower-right pixel of the image will have the coordinate (cols-1,
rows-1). Figure 3-4 shows the origin of the pixel coordinate system. Note that the digital coordinates
are part of a left-handed system.

The digital image exists purely virtual, unless printed. So its metric size depends on the means of
display and will vary on each monitor. However, the elements of the CCD chip, or more generally the
pixels of a digital image, represent a very specific size. Multiplying the size with the number of rows
and columns, we can calculate the true image size in metric values. Furthermore, the size information
is required when we want to transform digital into metric image coordinates. It is a sensible
assumption that the pixels are squared. There are exceptions, but we will neglect them and only
consider square pixels. Nevertheless, non-squared, rectangular pixels can be considered with
additional camera parameters, like affine distortion.

Metric image coordinate systems define spatial positions in image space. Its origin is in the projection
center and the principal point on the image plane, so that image points have coordinates [x, y, -c]. The
principal point however, is not marked and can only refer to another origin that can be reconstructed.
In metric cameras, fiducial marks define the fiducial center, which we will just title the images middle
point M. In non-metric cameras the image center may serve as a restorable origin. The offset between
the fiducial center (or the image center) and the principal point, P0, can be derived from the camera
calibration process.

(0;0)

(0;0)

Figure 3-4: Relationship between pixel and image coordinate systems

38 3 Camera Calibration and Image Orientation

In order to transform pixel into metric coordinates (vice versa accordingly) there are three steps to
consider:

1. Inverting the y-axis (left-hand to right-hand).

2. Translating the upper-left pixel (-center) to the image center.

3. Dividing the pixel coordinate by the pixel size.

In mathematic terms, the transformation of pixel into metric coordinates is described as:

() 




 −+⋅=
2

5.0 x
pp

n
xsx (3.11)

()







+−⋅= 5.0

2 p
y

p y
n

sy (3.12)

And the inversion:

5.0
2

−+= x

p
p

n
s
xx (3.13)

5.0
2

−−=
p

y
p s

yn
y (3.14)

with:

 xp, yp : pixel coordinates

 x, y : metric image coordinates

 sp : size of a square pixel, e.g. in mm or µm

 nx, ny : dimension of the digital image in pixels

If true metric cameras are available, we can take fiducial marks into consideration, and include a
rotation a skew and individual scaling to the transformation, hence an affine transformation. Since we
are limited to digital CCD cameras, we will use the simpler solution, as shown above.

 3.2 Camera Calibration 39

3.2 Camera Calibration

The system used in this thesis consists of a simple CCD video-camera with the ability to acquire still
images of higher resolution, 1020 by 1360 pixels to be exact. Furthermore, a calibration object is
required to compute the interior orientation parameters of the camera.

As a very basic precondition to any subsequent spatial object reconstruction, before starting the image
acquisition, the sensor has to be calibrated. The interior and, as a byproduct, the exterior parameters of
the camera must be computed, i.e. the position and orientation of the camera and the focal length and
principal point. Assuming, that our camera does not change during the image acquisition process, the
derivation of the interior orientation can be seen as a first step, while the exterior orientation gives
individual results for each image. It cannot be pre-calculated, but will be evaluated in a bundle-block-
adjustment. So we will assume one camera, with constant interior orientation for the time of image
acquisition.

In our experiment, there is no way of using a calibration certificate for the sensor, since we are using a
standard non-metric video camera with auto-focus. Although the focus can be fixed, we cannot assure
that it has been unchanged since the last use. So we have to calibrate it anew, using several images
with a special calibration object, as shown in Figure 3-5. The calibration object consists of three
square perpendicular faces containing 25 control points on each side.

Figure 3-5: Calibration object with 75 spatially well distributed control points

In this example, the camera parameters were calibrated in a bundle block adjustment with self
calibration, using five images and 75 control points each. The system had approximately 750
observations and 33 unknowns, 6 for each image and three for the camera. Additional parameters, like
lens distortion or affine distortion, were intentionally ignored, since previous calibrations have shown
that they are insignificant.

40 3 Camera Calibration and Image Orientation

The resulting parameters for the camera were as follows:

 Calibrated focal length: c = 34.133 ± 0.185 mm

 Principal point: xp = 0.211 ± 0.146 mm

 yp = 0.050 ± 0.137 mm

As mentioned above, the focus remained fixed throughout the subsequent processes.

There is another challenge to the calibration. It is the unknown metric size of the image, or the CCD-
array respectively. In order to obtain correct metric values for the interior orientation, we have to use
metric image coordinates, hence the pixel size must be known. Unfortunately it has to be considered
unknown, since it is not, or insufficiently documented. Eventually the size of the chip is stated in the
manual, but again we might not know, whether this refers to the whole chip, or the active part.
Consequently, the pixel size is unknown.

The best we can do is to just define a sensible size. The interior parameters will be calculated
according to our definition. They will represent correct values, referring to our defined pixel size,
only. The error that we make, estimating the pixel size will be the same in the resulting parameters, so
that finally we will end up with internally correct camera parameters. In simple words, an enlargement

of the image (by varying the pixel size) causes an equally enlarged focal length, so that:
2

2

1

1

pp s
c

s
c

=

Figure 3-6 shows the relation between different image sizes and their according focal length.

0 c1 c2P

p1
p2

p01 p02

Figure 3-6: Relation of different image sizes and referring focal length

 3.3 Image Orientation 41

3.3 Image Orientation

The reconstruction of spatial objects requires knowledge of the original situation. The camera can be
assumed to be well known due to the previous calibration (see above). We have to learn about the
location and the rotation of the images. Reminding Figure 3-6, we have 6 unknown parameters per
image:

 X0, Y0, Z0 : Projection center in world coordinates

 α, ν, κ : three dimensional rotation angles

The derivation of these parameters can be achieved most conveniently with the use of control points.
The most common approach is the bundle block adjustment. Every control point here will give three
observations, but will cause no unknowns.

Besides the correspondence of control points in world- and image coordinates, we can introduce tie
points between images, which have no immediate correspondence in space, but can strengthen the
relation of several images. The introduction of tie points gives two observation for each image in
which they are observed, plus 3 unknowns for the according new point in space. So a tie point in two
images already introduces an additional observation. Any further image in which this tie point is
measured introduces two more observations.

For the whole bundle we will have the following conditions:

• 6 unknowns per image

• 3 unknowns per new point (tie point)

• 2 observations per measured control point

• 2 observations per measured tie point

If control points are available, we can perform an absolute orientation, i.e. orientation parameters, that
correspond to our world coordinate system. Without control points, we would only be able to achieve
a relative orientation. All newly produced object points, would correspond to a local coordinate
system, which, for example, we can define, by setting one images projection center to (0, 0, 0). This
system would be of undefined scale, which we have to define, e.g. by a known distance in object
space.

However, the bundle adjustment is a non linear problem. It follows, that we require approximation
values for the unknowns. In an iterative process, we will try to correct the unknowns step by step. The
delivery of approximation values for the unknowns, in this case for the image orientations, can be a
problem, but it certainly is a limitation towards a more automatic approach.

During our work, we had a circular camera setup, by rotating the object on a turntable, so the
derivation of estimated orientation was quite simple. Nevertheless, it mostly is a manual process that
can be quite time consuming.

Another way to achieve approximation can be done with the direct linear transformation (DLT). This
approach requires no less than six control points per image, however. We will not go into detail here,
additional information can be learned from a great variety of literature. It will be shown later, that the
DLT does not solve all our problems, last not least because we would like to use as few control points
as possible.

42 3 Camera Calibration and Image Orientation

Prior to the image orientation, we had to apply some control points to the object itself. In this
experiment, it was out of question to mark points artificially, so we had to choose ‘natural’ textures,
instead.

We used the coordinates of the calibration object to define a local coordinate system, in which we
derived the control points on the object. This is an arbitrary system, without relation to a geodetic
reference system. Figure 3-7 illustrates the control points on the object, which served as reference for
the subsequent image orientation.

Figure 3-7: Determination of object control points by bundle block adjustment

For an accurate object reconstruction the exact image orientation must be known. Consequently, the
images were adjusted in a bundle block adjustment, in this experiment for example, using 22 images in
a circular setup. Figure 3-8 shows a visualization of the setup situation. Tie points are measured in
every image which stabilizes the whole system and is a requirement for those images in which the
control points are not visible. As depicted in Figure 3-7, we were able to use control points on the
front part of the object. Using enough tie points in all the images, it was possible to perform a bundle
block adjustment with all the surrounding images. With the previously calibrated camera, we managed
to achieve very accurate results. The image projection centers have accuracies of 1-2 mm, the rotations
were determined with 0.05-0.1 gon.

Figure 3-8: The virtual camera setup, using VRML-visualization

 4 Volumetric Object Reconstruction Techniques Using Images 43

Chapter 4 : Volumetric Object Reconstruction Techniques Using
Images

This chapter focuses on the present techniques to compute full 3D representations of real world scene
from its multiple 2D images. Before the proposed algorithm is introduced in chapter 5, an overview of
other possible scene reconstruction algorithms is given here. This chapter also includes the
contributions of this thesis to current algorithms. And some reconstruction results we acquired are also
presented here. In this chapter only passive reconstruction methods are presented, which means scene
is captured using inexpensive cameras. Therefore, these techniques are often referred to image based
modeling. Active methods mentioned in chapter 1.2.3.1 that project structured light on the scene or
laser range imaging are out of our scope.

The goal of all the methods presented here to reconstruct the outer surfaces of objects. The
reconstruction of inner parts that requires special purpose equipments such as in medical imaging is
not our interest. All algorithms mentioned in this chapter require full calibration data, so to say, a
voxels projection in an image is known.

In many reconstruction algorithms more than one camera is used or the scene is captured from several
viewpoints. Because of this, the surface of the object is not occluded on all images. Visibility
computation, in other words, occlusion determination is the main problem in volumetric
reconstructions. Visibility of a voxel is determined with different algorithms in all methods described
here. As a result we know, on which image a specific voxel is visible.

The volumetric approaches in this chapter model the scene in 3D discrete space. This space is defined
as a voxel cube so that it encloses the scene to be modeled. Many algorithms start with an opaque
volume and true shape of the objects is computed by occupancy classification. Voxels are classified
with binary decision either as opaque representing the object or transparent representing empty
regions. In some methods voxels store color information. In some algorithms voxels are classified into
three groups as surface voxels representing outer shell of the objects, interior voxels representing
voxels that occluded by surface voxels and empty voxels representing empty space. Some methods use
octrees to carve away large empty spaces to accelerate the algorithm.

Stereo vision is the traditional process for scene reconstruction. The correspondences are computed
and then converted into the object space as 3D points by triangulation. Traditional stereo techniques
alone are limited for several reasons which are views must be close to each other and occlusions are
hard to compute. When tracking techniques are used in video sequences however, stereo vision is
more effective. In contrast to traditional stereo techniques, when voxel based methods are used,
occlusions are modeled correctly.

The earliest attempts of volumetric scene representations from photographs are based on volume
intersection methods. These methods are often referred to as shape from silhouette algorithms. As a
precondition of volume intersection methods images should be segmented in order to distinguish
object pixels from background pixels. Although segmentation is a limitation, this is an attractive
method because of its effectiveness. The intersection of silhouette cones from multiple images defines
estimate geometry of the object called the visual hull. This technique is fast and easy to compute and
gives a good approximation of the model. However, the concavities on an object cannot be recovered
since the viewing region doesn’t completely surround the object.

44 4 Volumetric Object Reconstruction Techniques Using Images

In many applications like automatic 3D model reconstruction, telepresence, virtual walkthroughs there
is a need for developing photorealistic 3D models of real environments from their images that look
realistically. The recent attempts are based on voxel coloring algorithms where the main goal is to
reconstruct the volumes or surfaces that are color consistent with the input images. Voxel Coloring
techniques assume the surfaces are Lambertian which means they reflect light equally in all directions.
You can also refer to survey papers [DYER, 2001] and [SLABAUGH-III, 2001] for more information
about the present volumetric scene reconstruction techniques.

4.1 Volumetric Intersection (Shape from Silhouettes)

One of the well-known approaches for 3-D modeling is shape from silhouette, which recovers the
shape of the objects from their contours. A silhouette image is a binary image and easily obtained by
image segmentation algorithms. Image pixels indicate if they represent an object point or background
point. These algorithms intersect all silhouette cones from multiple images to achieve the estimate
geometry of the object which is called the objects visual hull. Shape from silhouettes algorithms used
in many applications such as 3D object recognition, 3D object reconstruction and human motion
tracking.

Voxel-based visual hull reconstruction is the most popular shape from silhouette method in computer
vision and in computer graphics due to its fast computation and robustness. Besides, silhouettes can be
obtained very easily especially in indoor environments where a monochromatic background can easily
be applied during image acquisition step and where the cameras can be stationary.

When the greater number of views is used, this technique progressively refines the object model. If we
could use infinite number of silhouette images, this method would model the object’s true shape.
However, if only a few views are used, the recovered shape can be very coarse. Shape from silhouette
method is sensitive to camera calibration errors and silhouette quality. Noisy silhouettes might cause
voxel misclassification. And if we don’t know the precise camera calibration and image orientation
data the carving of the volume might go too far. Silhouette based constructions have the principal
inability to detect object concavities. Therefore, silhouette contours alone cannot recover the object
model geometry precisely and should be supported by another technique to get into the critical,
concave areas. However, since the result encloses the largest possible volume where the true shape lies
and the implementation is straightforward and easy, it is an attractive method for applications where
approximate shape is required. It can also be used as the first step of shape reconstruction.

The first work on the construction of volumetric models from multiple views has been done by Martin
and Aggarwal [MARTIN, 1983]. Chien and Aggarwal used orthographic projection for the
construction of volume models [CHIEN, 1986]. [POTMESIL, 1987] and [SRIVASTAVA, 1990] used
arbitrary views and perspective projection. Numerous researchers have dealt with the shape from
silhouette technique to convert visible contours into a visual hull, i.e. [SZELISKI-II, 1991], [NIEM,
1994] and [VENDULA, 1998]. Some researchers applied voxel-based shape from silhouette technique
to human motion capture [BOTTINO, 2001].

In the next section the volumetric intersection method we used will be explained. Since it is a good
approximation of the object, we begin our volumetric reconstruction algorithm with the model
acquired by shape from silhouette algorithm and we refine this model using several tools described in
chapter 5. We also applied polychromatic block matching as a refinement algorithm in chapter 4.3.3 in
order to get into visual hull.

 4.1 Volumetric Intersection (Shape from Silhouettes) 45

4.1.1 Experimental Setup

In this experiment to construct visual hull, we use a system configuration which consists of a single
stationary video CCD camera and a turntable as a controlled motion platform on which the object is
placed. Moreover, we use a calibration object to compute the interior orientation parameters of the
camera. In Figure 4-1 the virtual camera positions are shown for the calibration (left) and the object
reconstruction of the sample (right). We capture multiple views of the object simply by rotating the
turntable. Since the camera is fixed and the coordinate system is tied to the turntable and therefore
rotating itself, we show virtual camera positions.

Figure 4-1: Virtual camera positions according to the turntable-fixed coordinate system

Before starting the image acquisition, the system must be calibrated. The interior and exterior
parameters of the camera such as the position and orientation of the camera and the principal distance
must be known. We perform a system calibration by using a special calibration object shown in Figure
4-1 (left). Also refer to Figure 3-5 in Chapter 3.2. The calibration object provides a good coverage of
the object with three square faces containing 25 control points on each face. Our mathematical camera
model uses central projection without a lens distortion as shown in Figure 4-2. For detailed
explanation please refer to chapter 3.1.1.

Figure 4-2: Mathematical camera model for central projection

46 4 Volumetric Object Reconstruction Techniques Using Images

4.1.2 Automatic Image Segmentation

Shape from Silhouette method is sensitive to silhouette noise. When an object pixel is misclassified as
background pixel, object voxels which project into them might be carved from the volume. As a result,
there might be gaps in the objects model. Accordingly, when a background pixel is classified as object
pixel there might be noise in the object’s model. Therefore image segmentation should be performed
precisely. In our experiment, the turntable is rotated in controlled steps and the video images are
captured and the contour of the real object is extracted. For this purpose a monochromatic blue
background was used to distinguish the object from the environment. Since blue background is
homogenous enough it is easy to define a hue domain representing the background. For a small frame
(see dotted line in Figure 4-3) the background color is estimated using a histogram of the hue values.

For every color pixel (R, G, B) a transformation into the IHS color space is computed:

3
BGRI ++

=
() 05.0,,,min1 >−= I

I
BGRS (4.1)

GB
BGBRGR

BRGRH <













−−+−

−+−
= ,

)).(()(

)()(arccos
2

 (4.2)

Figure 4-3: Background estimation using an IHS color space histogram (left) and the resulting
silhouette extraction (right)

The automatic segmentation algorithm compares all the hue data with the estimated background
information using a simple threshold and a minimum saturation value. Finally, a morphological
operation (‘opening’) eliminates isolated pixel.

 4.1 Volumetric Intersection (Shape from Silhouettes) 47

The automatically derived results where then checked with the academic software HsbVis (HSB-
Visualization) that allows interactive segmentation and color channel splitting and merging on a
graphical user interface [HSBVIS].

4.1.3 The Visual Hull Computation

If we know the calibration information and image orientation data, we can construct a bounding
pyramid for each silhouette image. This is performed by the lines of sight from the camera focal point
through all contour points of the object silhouette. Each point in silhouette defines a line in object
space that intersects the object at some depth. The combination of all these rays for all foreground
silhouette points defines a cone in which the objects should lie. In Figure 4-4, for simplicity, the
constructed volume is shown in 2D with its input images in 1D. In the figure, black lines on the
images represent foreground pixels. Foreground pixels on each image are back projected into the voxel
space and intersected. The result is shown with black polygon which is the visual hull of the object.

Figure 4-4: The visual hull computation

Shape from silhouette algorithms start by initializing a voxel cube that encloses the entire scene which
is desired to be reconstructed. This volume is discretized into voxels. To begin with, all the voxels in
the cube is set to 255 (white) which means the starting cube is fully opaque. The shape is computed
volumetrically by carving away all voxels outside the projected silhouette cone. We mean with carving
to label the voxels as transparent. When a voxel is carved the value is set to 0 (black) since it
represents the empty space in the cube.

In Figure 4-5, silhouette cones are represented for two images. The intersection of all silhouette cones
from multiple images defines estimate geometry of the object called visual hull [LAURENTINI,
1995], [MATUSIK, 2000].

48 4 Volumetric Object Reconstruction Techniques Using Images

Figure 4-5: Carving of a voxel cube using various silhouettes under central projection.

In Figure 4-6 the intersection of the silhouette cones are depicted using 1, 3, 5 and 9 images. As seen
in the figure with the increasing number of images, object’s model is recovered successfully with the
exception of concave areas.

Figure 4-6: Intersection of silhouette cones using 1, 3, 5 and 9 images

4.1.4 Voting-Based Voxel Carving

The visual hull is the conservative approximation of the true shape. Shape from silhouette algorithms
should not carve the voxels which are on the object surface since the visual hull should contain the
objects true shape. One way to find the projected voxel on the images is projecting centroid of the
voxel. Another way is to project eight corners and compute the convex hull of the projected points. If
the projected points define background pixels we say the voxel is transparent and should be carved
away. This implementation might cause misclassification of the voxel due to silhouette noise or at
border voxels where it projects partly background pixels. In order to prevent misclassification of the
voxel we implemented voting based carving. Voxels are not immediately carved when they project
into background pixels on only one image, but carving of the voxel is confirmed at least by another
image. Our carving algorithm use the position for each voxel in real-world coordinates (X, Y, Z) and
perform a projection into image coordinates (ix iy) using the well known collinearity equations (3.1)
and (3.2) which were given in Chapter 3.1.1.

 4.1 Volumetric Intersection (Shape from Silhouettes) 49

If the image coordinate defines a background pixel, the voxel is marked to be deleted (voting). After
the processing of all voxels, the algorithm continues with the next image. Finally, the voxels are
purged using a threshold for the number of votes.

The pseudo-code of the voxel-based shape from silhouettes algorithm we implemented is as follows:

#initialization
define cube dimensions
initialize all voxels as opaque

#voting
for every image I
{
 for every voxel V
 {
 project V into I
 if projected into background pixel
 mark V
 }
}

#thresholding
for every voxel V
{
 if V > threshold
 set V as Background
 else
 set V as Object
}

Figure 4-7 shows an experimental result for the visual hull with a real toy kangaroo using the
presented volume intersection algorithm.

Figure 4-7: Voxel model of the 3-D shape reconstruction using 60 images and 3256 voxels with
texture mapping

As seen in Figure 4-8, the visual hull is only the approximation of the 3D shape of the objects which
surrounds the true volume. In particular, concavities of the object are not visible on the images since
the viewing region doesn’t completely surround the object. The accuracy of the visual hull depends on
the number of the images and the complexity of the object. Although visual hull is only the
approximation of the true shape of the object, it has an important characteristic which guarantees to

50 4 Volumetric Object Reconstruction Techniques Using Images

contain the true shape of the object. Which means visual hull is the maximal shape of the object. If
more precise reconstruction is desired, this method should be supported by another technique to get
into the concave areas.

Figure 4-8: Concave areas in shape from silhouette reconstruction.

4.1.5 Hierarchical Processing Using Octrees

In order to make voxel carving more efficient most methods use an octree representation. Also refer to
Chapter 2.2.7.4 for more information about octrees. Voxels are projected into images and checked if
they intersect the silhouette on each image. If a voxel does not intersect a silhouette in any of the
images, it is removed from the voxel space. If a projected voxel intersects only silhouette pixels at
every image it is marked opaque. Otherwise, the voxel intersects both silhouette and background
pixels in the images therefore it is subdivided into octants and each sub-voxel is processed recursively.

Figure 4-9: Iterative generation of an octree model using 43, 163, and 643 voxels

We enhanced the voted-based voxel carving by using a simple octree structure [POTMESIL, 1987]
and [SRIVASTAVA, 1990]. The voxels at one level can be derived from the results of the preceding
level by applying a modified algorithm. Some examples of the iterative generation are shown in Figure
4-9. The restrictions to areas, which contain relevant object information, accelerate the computation
time significantly. (see Table 4-1)

 4.1 Volumetric Intersection (Shape from Silhouettes) 51

Table 4-1: Speed optimization using hierarchical processing

4.1.6 Improved Volume Intersection with Adjusted Image Orientations

Shape from Silhouette methods is sensitive to camera calibration errors. The carving may go too far if
the exact image orientation data is not know. In order to project voxels to images the interior and
exterior orientation must be known. The interior orientation, meaning the focal length and the
principal point of the camera, is calculated in a separate camera calibration process as seen in Figure
4-1 (left). For the exterior orientation parameters (the location and rotation of the projection center),
we are able to get very good estimation values, due to the scene setup, which allows the turntable to be
rotated in controlled steps. However, since we use a non-calibrated turntable, the orientation
parameters turned out to be quite noisy. Therefore the projections of the voxels would not yield the
true pixel, instead the projection spread around the true position.

Theoretically the image orientations should only be dependent on the rotation angle of the turntable.
Two rotations (ν, κ), Z0 and the distance of the projection center to the coordinate system’s origin
should be constant. The third rotation (α) is a direct function of the turntable position. But since the
setup is not high accurate, for example a small eccentricity of the coordinate system’s origin, would
result in changing parameters.

The introduction of independent, individual orientation parameters for the images, removes the
limitations concerning the scene setup. The images can be taken from arbitrary positions.

Figure 4-10 shows the consequences of inaccurate parameters to the volume intersection. On the left
image adjusted parameters were used, minimizing the projection error.

On the right image we see the result when using the estimated orientation parameters. Due to the
errors in projections some voxels might be falsely considered as background, which will delete too
many voxels. In Figure 4-10 it is clearly visible that the stem disappeared almost completely. As seen
on the left image however, it remains when projected with adjusted parameters.

52 4 Volumetric Object Reconstruction Techniques Using Images

Figure 4-10: Volumetric intersection with adjusted (left) and estimated (right) orientation parameters

The orientation was done in two steps. Before we make the bundle block adjustment which delivers
the final orientation parameters, we first perform camera calibration and calculate the interior
orientation parameters. This process also yields one camera position when replacing the calibration
object with the actual object. With this first image and a number of tie points the camera setup can be
reconstructed except for the scale. This can be eliminated using one single control point. As an
alternative, a distance between two arbitrary points can be taken as well, if no control points exist at
all.

In this experiment, the whole bundle was adjusted with the following parameters:

12 known parameters (c, x0, y0, α, ν, κ, X0, Y0, Z0, XP, YP, ZP for camera, one image and one
control point)

267 unknowns (15⋅6 for the images, 59⋅3 for object points)

638 observations (319 observed tie points)

It yielded the image orientations for all 16 images, see Figure 4-1 (right), as well as object coordinates
for the observed tie points. Those object points were not the goal but just a byproduct, because the
very object will be reconstructed by the techniques described in the following chapters. After the
adjustment the image orientations were calculated with an accuracy of 5-7 mm in position and 0.3 and
0.5 gon in rotation. However, the introduction of control points can only improve the results.

 4.1 Volumetric Intersection (Shape from Silhouettes) 53

4.1.7 An Application of the Volume Intersection in a Medical Project

In a student project at our department, we have adapted the volume intersection method to a medical
project. The goal of the experiment is to measure deformations in the human leg due to long distance
flights. Therefore, the volume of the leg before and after the flight should be computed. With
volumetric methods volume calculations are quite easy since it is only a matter of voxel counting. In
the system setup, we used a blue homogenous background to segment the leg from empty space. The
images are captured by moving the camera around the leg to be reconstructed. Figure 4-11 shows the
image acquisition.

Figure 4-11: Image acquisition step

Figure 4-12 shows some slices of the reconstruction acquired by using the academic program “Slicer”
which was developed at our department. As seen in the histogram on the right, the volume of the leg is
calculated simply by counting the voxels of the final reconstruction, then the volume is computed
considering the resolution of the voxel cube, in this experiment for example, 1 voxel = 1.5 mm3.

54 4 Volumetric Object Reconstruction Techniques Using Images

Figure 4-12: Slices of the reconstruction along three axes and the histogram for volume calculation

In Figure 4-13 the reconstruction results are presented from different views. As mentioned previously,
in this method the accuracy is dependent on the number of the images, hence, as it can be observed in
the Figure 4-13 there are flattened areas where the adequate images are not provided. Therefore a large
number of images from a widely spread viewpoints should be used in order to achieve the desired
accuracy of volume computation.

 4.1 Volumetric Intersection (Shape from Silhouettes) 55

Figure 4-13: Reconstruction results of the leg with 16 images

4.2 Shape from Photo Consistency

In Chapter 4.1, performing image segmentation, binary images are obtained and these images are used
to compute the visual hull of the object. However, when color images are captured instead of binary
images, the photometric information can be used to reconstruct a 3D scene that is color consistent with
input images. In Chapter 4.3.3 polychromatic block matching method is used to refine the visual hull
which makes use of color images. In this chapter, instead of stereo algorithms, voxel coloring methods
are examined for reconstructing photorealistic models of the objects. The main task of voxel coloring
algorithms is to determine surface voxels of the objects by using a color consistency test and assign
color values to those which pass the test. Thus, when we render the model from different viewpoints
we should obtain synthetic images as realistic as the real-world scene. Therefore, the final
reconstruction should be accurate and dense.

56 4 Volumetric Object Reconstruction Techniques Using Images

Voxel Coloring [SEITZ-II, 1997], Space Carving [KUTULAKOS-I, 1998] and Generalized Voxel
Coloring [CULBERTSON, 1999] have been relatively recent solutions to the 3D scene reconstruction
problem. Seitz and Dyer’s voxel coloring algorithm restricts the position of the cameras in order to
simplify visibility information. Their algorithm works coloring the voxels in a special order similar to
Collins’ Space-Sweep approach [COLLINS, 1996], which performs an analogous scene traversal.

Kutakulos and Seitz's space carving method removes the constraint of camera placement. However,
space carving algorithm does not use the full visibility of the scene. Both voxel coloring and space
carving scans voxels for color consistency by evaluating a plane of voxels at a time.

Culbertson et al. introduced an efficient voxel coloring algorithm called Generalized Voxel Coloring
(GVC) that computes visibility correctly and the result is a color consisting model [CULBERTSON,
1999]. Unlike Voxel Coloring, GVC removes the constraint on camera positions. On the other hand, it
uses all images to check voxel consistency unlike Space Carving, which uses only a subset of the
images. There are two variants of the algorithm called GVC and GVC-LDI which will be explained in
detail in Chapter 4.2.5.

Volumetric reconstruction algorithms in general assume that the objects are opaque therefore
transparency and aliasing effects can be ignored. Even though the object in the scene does not contain
transparent regions and completely opaque, the boundary regions might require transparency since
they are partially filled. In their approach, Szeliski and Golland [SZELISKI-IV, 1998] consider to
represent partially transparent regions by using real valued transparencies. An accurate model of
partially occupied voxels is useful to represent semi transparent materials like colored glass.

De Bonet and Viola [DE BONET, 1999] proposed an optimization method for voxel coloring that
represents transparency and color of 3D voxel space. They call their approach Responsibility
Weighted 3D Volume Reconstruction (Roxel) algorithm. Roxel algorithm is able to reconstruct
volumes from images which contain both opaque and partially transparent objects. In their approach
opacities are assigned to voxels as well as color values. Roxels also attempt to minimize reprojection
error. They observe that image pixels are linear combinations of the colors of the voxels along the
each visual ray through the volume. And when projected into the images it minimizes the errors of the
input images. The coefficients of the linear combinations are called responsibilities of the voxels.
Roxel algorithm is a multi step procedure which alternates between estimation of the colors,
responsibilities and opacities. They use an iterative algorithm that solves the responsibilities and then
uses the responsibilities to estimate the opacities.

Voxel coloring algorithms reconstruct small scale scenes successfully but it is not well suited to
capture the environment like cloud or background objects. It is hard to reconstruct large scale scenes
with voxel coloring algorithms, since it requires extensive number of voxels. Furthermore, it is
unnecessary to present the further objects with high resolution voxels. Slabaugh et al. presented
volumetric warping method using a frustum warping function to reconstruct large scale scenes with
spatially adaptive voxel size that increases away from the cameras [SLABAUGH-II, 2000]. In this
method a hybrid voxel space is developed consisting of two regions: interior space to reconstruct the
objects and the exterior space to reconstruct the background surfaces. The interior space is modeled
with a fixed voxel resolution, thus, volumetric warping technique does not affect the interior space and
it provides compatibility to other volumetric reconstruction techniques.

Voxel coloring algorithms might result in thicker reconstruction than the true object. Level set
methods, however, provides thinner reconstruction and avoids the floating extraneous geometry. Level
set theory is developed by Osher and Sethian [OSHER, 1988]. The method considers tracking of

 4.2 Shape from Photo Consistency 57

motion of a surface whose speed depends on the local curvature. The algorithm has many application
areas including computer vision and image processing. Faugeras used level set method in scene
reconstruction problem [FAUGERAS, 1998]. Slaubaugh et al. combined the method with space
carving algorithm [SLABAUGH-IV, 2002]. In their level set method, they produce a smooth
reconstruction composed of manifold surfaces. The initial surface is embedded as the zero level set of
the volumetric function. This surface then moves along its inwardly pointing normal through the
scene. Level set theory solves the partial differential equations that characterize the motion of the
surface. The speed of the motion is controlled by photo consistency check similar to voxel coloring
algorithms. The initial surface is deformed until it forms the desired shape. The authors provide a
multi resolution approach, when the resolution is increased; they dilate the surface and re execute the
surface evolution with higher resolution. The visibility is calculated by using item buffers. The result
of the algorithm is a polygonal model which is later textured mapped using the images.

In the following chapter some of the voxel coloring algorithms will be introduced. These algorithms
mainly differ in the way they compute the visibility information.

4.2.1 Comparison of Voxel Coloring Methods with Area-Based Image Matching

Voxel coloring algorithms do not perform area-based image matching to compute correspondences.
Different from stereo methods, they project voxels into the images and compare the color values of the
pixel sets on which the voxel’s projection overlaps. Voxel coloring algorithms assume that the
surfaces are Lambertian, in other words surface points project onto the similar colors in the images
where they are visible. However, the normalized cross-correlation takes differences in illumination
into account. Therefore, it is less sensitive to image illumination. Another difference of voxel coloring
algorithms from traditional stereo methods is that the occlusions are taken into consideration and fully
modeled during the reconstruction. Cameras can be positioned far from each other, in other words a
small base line is not required and it would not cause inaccuracies. In area-based image matching,
large base line would cause high patch deformations due to perspective distortions; as a result image
matching would fail. However, in least squares matching method mentioned in Chapter 4.3.1.5 or the
proposed knowledge based patch distortion algorithm explained in Chapter 5.2.1, this effect is reduced
since these deformations are considered and accordingly transformed patches are grabbed for image
matching. Photo consistency algorithms use large number of images to reconstruct a dense model and
when this model is rendered, they produce high quality synthetic views. The main disadvantage of
these algorithms is they need very accurate calibration data in order to achieve high accuracy of stereo
methods. They are especially sensitive to calibration accuracy at highly textured regions like image
edges. Moreover, smaller voxels are more sensitive to calibrations errors than larger voxels since
photo consistency is checked with fewer pixels.

4.2.2 Color Consistency

Color consistency is introduced by Seitz to distinguish surface points from the other points in the
scene [SEITZ-II, 1997]. The final model of the scene includes the geometric information as well as
surface reflectance model and scene illumination. Color-consistency checks the consistency of a real
world point projecting it into given set of images in order to verify if it’s a surface voxel or not. This is
performed by making use of the fact that only surface points in a scene project into equal (consistent)
colors in the input images. In other words, the irradiance of the surface point is equal to the intensity
of the pixels which the voxel project into. Voxels that are color consistent with the images on which
they are visible are assumed to be on the surface of the object and given their corresponding color

58 4 Volumetric Object Reconstruction Techniques Using Images

value. However, inconsistent voxels are assumed to represent empty space and are removed from the
voxel space. Voxel coloring algorithms continue until no non-photo consistent voxels exist in the
model and the final set of voxels contain sufficient color and texture information.

In photo-consistent reconstructions, all surfaces are considered Lambertian. This means surfaces are
equally bright in all directions regardless of the illumination.

In Figure 4-14, the surface voxel A is projected into the same colors in the images while the voxel B
that is not on the surface is projected into different colors. Voxel A is seen red on both cameras while
voxel B is seen green on camera I and transparent (background) on camera II.

In the presence of noise and quantization effects the consistency of a set of pixels can be defined as
their standard deviation. The voxel is considered to be on the surface if it is less than a sensible
threshold, which varies according to the object, the sensor and lighting conditions. The voxels that
exceed this threshold are considered non-surface voxels and discarded or carved. Color consistency
should be accurate not to carve consistent voxels. Because carving a voxel falsely might affect the
other voxels visibility as well.

Figure 4-14: Color consistency is used to distinguish surface points from points not on the surface

4.2.2.1 Color Consistency Measures

The accuracy of the photo consistent reconstructions, in other words how well they produce the true
scene, depends on the color consistency test. The simplest way to compute photo consistency is to
threshold the colors of the pixels where the center of the voxel projects into the images it is visible.
Seitz and Dyer [SEITZ-II, 1997] compute photo consistency from the set of all pixels jπ from the

given m images in which the voxel projects onto:

U
m

j
j

1=

π

In order to determine the voxels consistency, the standard deviation σ, of the pixels colors is computed
and thresholded by using a specified threshold λ.

σ ≤ λ => voxel is consistent.

σ > λ => voxel is inconsistent.

 4.2 Shape from Photo Consistency 59

Photo consistency check can be easily adapted to RGB channels. Thresholding the standard deviation
also works with other color spaces rather than RGB. In general there is no single color threshold that is
ideal for reconstruction of all surfaces in the scene. Some surfaces might be better reconstructed with
lower threshold but using a lower threshold might cause other surfaces carved which are consistent.

The errors of photo consistency may cause fatter surfaces than true scene or false concavities, holes or
cusps. When the chosen threshold is too high the carving may go deeper and when it is too small the
concavities cannot be refined. The holes might be filled by hole-filling methods [CURLESS-I, 1996].
The fattening occurs due to homogenous surfaces. In the homogenous regions, the voxels in front of
the true scene pass the consistency test since they have low color variance therefore not carved.

Color consistency check fails on the surfaces with abrupt color boundaries like textured regions and
edges. Voxels that project on such boundaries might be visible from a set of pixels but not color
consistent. This problem can be solved using an adaptive threshold.

[STEVENS, 2002] computes the photo consistency of a set of pixels by comparing their histograms.
They use histogram intersection to compare the histograms. Unlike the methods mentioned above,
they do not pool all the pixels a voxel projects onto in all images it is visible; instead they make series
of test on image pairs. They first find the set of pixels, i

jπ from the image j, a voxel i is visible. They

test the consistency of a voxel by comparing all pairs of such pixel sets:

i
l

i
klk ππ ≈∀ , lk ≠

where i
kπ and i

lπ are not empty.

They use a 3D histogram over the complete RGB color space. They divide the color space into 512
bins (8x8x8) for each image of each voxel. A sub-space is defined as a bin and there are 8 bins per
channel. They construct histograms for each image that can see a voxel and the colors of the pixels are
inserted into the histogram. All pairs of histograms are compared by intersecting their corresponding
bins.

φππ ≠∀)()(,
i
l

i
klk HistHist I lk ≠

Pairs of histograms intersect if at least one pair of bins has a non-zero count. The voxel is found
inconsistent if any pair has no corresponding bins.

4.2.3 Voxel Coloring

Voxel coloring algorithm is introduced by Seitz and Dyer [SEITZ-I, 1997]. This algorithm constructs
a colorful scene using coloring consistency check. Voxel coloring algorithm does not begin with the
model acquired by volume intersection method but with initially opaque voxels. However, the authors
segment the background from object in order not to process most of the background pixels.

During the algorithm, opaque voxels are tested for color consistency and the voxels which pass a
certain threshold is given their corresponding color value. The voxels which are below the given
threshold are carved away from the voxel space. If all remaining voxels are consistent, in other words,
if they represent the scene correctly the algorithm ends. In order to evaluate color consistency test, first
of all, the voxels projection on an image should be computed. The authors compute the footprint of a
voxel based on voxels shape and the known calibration data. Footprint refers to the set of pixels that a

60 4 Volumetric Object Reconstruction Techniques Using Images

voxel’s projection overlaps on an image. In order to approximate voxels footprint the authors use a
square mask.

Since opaque voxels occlude each other, visibility information must be calculated previously, that
means the set of pixels that see a voxel should be determined. For proper handling of visibility, the
occluded voxels should be visited before the surface voxels. To simplify the voxel visibility
calculation and allow reconstruction of the scene with single scan of voxels, Seitz and Dyer introduced
ordinal visibility constraint on camera locations. They restrict the camera placement so that no scene
point is within the convex hull of the camera centers. This constraint requires the cameras should be
placed in a way that it can be swept with a single pass through the volume. This is done by placing all
cameras at one side of the scene and sweeping the voxel in near to far order away from the cameras.
Which means that voxel P occludes voxel Q in image I only if the distance of P to the cameras convex
hull is less than the distance of Q. Voxels are swept one layer at a time. The authors define two camera
placements that satisfy ordinal visibility constraint. One of which is an inward facing camera rotating
around an object. Figure 4-15 shows such a camera geometry that satisfy ordinal visibility constraint
and enables the voxels that occlude a surface voxel are visited before the surface voxel is checked for
color consistency. As seen in Figure 4-15, cameras are positioned in a plane and scene is slightly
below that plane so that no scene point is within the convex hull of the camera centers. The second
camera placement is for panoramic configurations with an outward facing camera.

When a voxel is found color consistent, the pixels that overlap voxels projection on the images are
marked. If subsequent voxels project to those marked pixels, they are not visible on those cameras thus
they are not considered. Since ordinal visibility constraint provides voxel evaluation in occlusion
compatible order, marking strategy is sufficient to ensure that pixels are processed only for the voxels
visible on the images. In Figure 4-15, voxel shown in gray is a photo-consistent surface voxel.
According to sweeping direction, voxel shown in gray is visited first and corresponding pixels are
marked on concerning images. Voxel shown in black projects into previously marked pixels on
camera II therefore it is not visible on camera II.

Figure 4-15: Visibility computation in voxel coloring

 4.2 Shape from Photo Consistency 61

The pseudo-code of the algorithm is as follows:

initialize all voxels as opaque
for every layer l
{
 for every opaque voxel V in the layer l
 {
 for every image I
 {
 compute the voxels footprint p into image I
 }
 compute correlation λV of pixel colors to evaluate voxel consistency
 if λV<threshold {
 color the voxel
 }
 mark image pixels
 }
}

In order to speed up the voxel coloring process Prock and Dyer [PROCK, 1998] used coarse to fine
fashion voxel coloring. Coarse to fine methods allow processing to be focused on the regions where
there are higher details. It starts with low resolution as input, and then resolution is increased to create
better reconstructions. Some voxels which actually contain small opaque sub-regions remain
uncolored at lower resolution. Therefore voxels with smaller occupied sub regions will be missing
which causes gaps in reconstruction. In order to compensate those missing voxels authors has chosen
nearest neighbor search strategy. All voxels within 1 norm neighborhood of the low resolution set is
added then subdivided into octants. They have also adapted voxel coloring to dynamic scenes
assuming temporal coherence. The scene at successive points in time is similar therefore the previous
voxel coloring is used as the next time voxel coloring. By doing so, the regions which contain empty
space are not analyzed again. This works when the scene is not changed too quickly. Rapid
movements will cause surfaces to be missed however they will be recovered at the next step.

4.2.4 Space Carving

Voxel coloring algorithm described previously is simple and computationally inexpensive since every
voxel is visited only once, but the restriction on camera placement is a significant limitation.
Kutulakos and Seitz remove camera placement restriction in voxel coloring by implementing a multi-
sweep procedure [KUTULAKOS-I, 1998]. Unlike Voxel Coloring which uses a single scan, space
carving evaluates a plane of voxels at a time that are in front of a subset of cameras. Each scan sweeps
the voxels in positive and negative directions of each three axis through the volume and the photo
consistency is checked only with the subset of cameras that are behind the plane. Each sweep
guarantees that occluded voxels are visited before. This is performed by choosing the cameras that lie
on the side of the plane at each sweep. In Figure 4-16, for all the cameras whose x coordinate is less
than x0, the plane is swept in the direction of increasing x coordinate to make sure that the voxel p
which occludes voxel q is visited previously. The cameras become active when the sweeping plane
passes over them. The visibility is maintained by marking pixels as it is in Voxel Coloring. Each scan
might change the visibility of other voxels since some voxels are carved each time, therefore sweeping
process continues until no change occurs and the resulting shape is photo hull.

62 4 Volumetric Object Reconstruction Techniques Using Images

In this method the input images are also segmented to remove background pixels. In one experiment
the authors change the background manually during the image acquisition step in order to avoid the
image segmentation process. Using different backgrounds ensures that non-object voxels are carved
from the voxel space since they project varying colors thus they are not photo consistent. So to say,
segmentation is achieved in object space not in image space. Since the background is outside of the
initial volume, it is not reconstructed. Space carving provides arbitrary camera placement and never
carves the voxels it should not.

sweeping
plane x=x0

Y

Z

X

p

q
sweeping
plane x=x1

Y

Z

p

q

X

Figure 4-16: Visibility ordering in space carving

4.2.5 Generalized Voxel Coloring

In order to improve efficiency of space carving algorithm, generalized voxel coloring algorithm is
developed by Culbertson, Malzbender and Slabaugh which maintains a structure that each pixel
indicates the closest opaque voxel along the line of sight of the pixel [CULBERTSON, 1999]. It uses
different data structures to compute visibility which are more sophisticated than pixel marking in
Voxel Coloring and Space Carving algorithms. There are two variants of the algorithm to compute
visibility namely Generalized Voxel Coloring with Item buffers (GVC-IB) and Generalized Voxel
Coloring with Layered depth images (GVC-LDI).

In (GVC-IB), item buffers are created for each image in order to get the full visibility information. In
the item buffers each pixel is assigned the ID of the closest visible surface voxel it corresponds to.
This way, only visible (non-occluded) voxels are considered. In (GVC-LDI), layered dept images
record a depth sorted list of all voxels that projects into the pixels in an image. GVC-LDI exactly
determines which voxels have their visibility changed when a voxel is carved while GVC re-evaluates
all voxels in the current model. Therefore GVC-LDI algorithm requires fewer color consistency
evaluations however GVC-LDI consumes more memory since it is the superset of the information in
an item buffer.

When a voxel is carved, the visibility of the remaining interior voxels might change. Thus, the item
buffers should be updated periodically. The authors keep track of the voxels which are on the surface
of the object by using the list of surface voxels. At each iteration surface voxels list is updated because
when the voxels are carved, the neighbor voxels become surface voxels. Item buffers are computed by
projecting the voxels on the surface voxel list on them. In GVC, item buffers are computed from

 4.2 Shape from Photo Consistency 63

scratch. In Figure 4-17 (left) both voxel A and voxel B project into the same pixel. Since voxel A
occludes voxel B, in the item buffer the ID of voxel A is recorded in the corresponding pixel.

Figure 4-17: Two variants of GVC using different data structures to compute visibility, item buffers
(left) and layered depth images (right)

Different from GVC, LDI store all the surface voxels that project on each pixel. In LDI the voxels are
sorted according to their depth from the image’s camera so that the closest voxel is processed first.
When a voxel is carved, LDI can be updated immediately and easily by deleting the carved voxel from
LDI and the voxel whose visibility is changed moves to the head of LDI.

Voxel Grid

Surface voxel
Carved voxel

Voxel with changed visibility
Inner voxel

Object

Figure 4-18: When a voxel is carved, the visibility of the adjacent inner voxels change

Once the item buffers are calculated for every image, each voxel on the surface voxel list is projected
into all the images. The ID of the projected voxel is compared to the ID stored in the image’s ID
buffer. If they are equal the pixel is added to the visibility list and the colors are recorded. Then all the
visible pixels are checked for color consistency. If the standard deviation for these pixels exceeds a
predefined threshold it is removed or carved from the volume. Otherwise it is given the average color
value of the visible pixels.

The algorithm continues until no carving occurs at the final iteration in other words, no non-photo
consistent voxels exist and the final set of voxels contains sufficient color and texture information to
accurately represent the original scene.

[SLABAUGH-I, 2000] post processed the photo hull in order to refine the reconstruction. They
considered this approach as an optimization problem. They examine the methods in order to minimize
the projection errors by using simulated annealing and greedy methods. They iteratively add or
remove border voxels until the sum of the squared differences between the input images and scene
model rendered in each image is minimized.

64 4 Volumetric Object Reconstruction Techniques Using Images

4.2.6 Multi-Hypothesis Voxel Coloring

Eisert and Steinbach presented a multi-hypotheses voxel coloring technique based color hypothesis
tests of the voxel model back projected into the images [EISERT, 1999], [STEINBACH, 2000]. Their
algorithm begins with hypothesis assignment step where each voxel is filled with several color
hypotheses from different camera views. In the following hypotheses removal step, by iterating
several times over all views, the assigned hypotheses are checked for consistency and only the
hypothesis remain in the voxels which are consistent with all camera views where the voxel is visible.
Voxels without a valid hypothesis are considered to be empty voxels and they are carved from the
voxel volume till correct shape of the object is recovered.

In hypothesis extraction steps, voxels center is projected into the images and if at least in 2 images
voxel projects into the consistent colors, a hypothesis is assigned to the voxel. Due to occlusions, a
voxel need not to be visible in all views and if it is an interior voxel it might not be visible in any
views at all. In the hypothesis extraction step occlusions are not taken into consideration since the
geometry of the object is not known yet. Therefore during the hypothesis extraction step, a voxel
might not be assigned correct color hypothesis.

In hypothesis removal step, for each camera view, voxels are traversed into the image in the order of
increasing depth from the camera view. Therefore voxels are projected into the image in occlusion
compatible order and the pixels they project is compared with voxels hypothesizes. The inconsistent
hypotheses are removed. This process continues with all viewpoints. If a voxel’s all hypotheses are
removed, it is carved from the voxel space since it is an empty background voxel. When a voxel is set
to be transparent in other words carved from the volume, the visibility of other voxel is changed.
Therefore the algorithm iterates multiple times until no more hypotheses are removed.

The advantage of multi hypothesis voxel coloring is carving process is performed one image at a time
which simplifies the visibility process. However, all voxels including the interior voxels are assigned
hypotheses which causes extra computation.

I

II

Voxel Grid

Object

blue
green

orange

III

II

Voxel Grid

Object

green

active camera

Figure 4-19: Multi-hypothesis voxel coloring

In Figure 4-19 on the left, hypothesizes are assigned to the voxel of interest by projecting it on the
images. On the right, hypothesizes removal step is shown which considers the visibility of the voxel.
The cameras I and II which observe the voxel as blue and orange are not considered.

 4.2 Shape from Photo Consistency 65

4.2.7 Voxel Coloring Using Ray Tracing for Visibility Computation

In GVC, an item buffer is constructed for each image in order to obtain the full visibility information.
Item buffers are used to store the visible voxels in the scene from a given viewpoint. In the item
buffer, each pixel has the ID of the nearest voxel it projects into. Our method differs from standard
GVC method in the way it computes item buffers. We do not project the voxels into the images
instead; we trace the pixels into the voxel cube in order to calculate item buffers. Also refer to
[KUZU-III, 2002]

Projection of a voxel into the image plane covers more than one pixel due to its cubic shape.
Depending on the scale of the whole scene a single voxel may project onto a footprint of pixels (for
large images) or several voxels merge into one pixel (for small images). If the exact projection of
voxels is not found, there might be gaps in the image’s item buffer. Through these holes far away
voxels may shine through, storing their ID in the item buffer, although they should not be visible. This
condition might lead to false visibility information and failure of color consistency check. Therefore
the item buffer should be dense, meaning that each pixel should contain the nearest voxel’s ID.

Hence, instead of taking the footprint of voxels, in this method we traced the pixels back into the scene
to find the first opaque voxel along the line of sight in the cube. To find the minimum and maximum
factors in the loop boundaries, we derived the lambda factor for each corner of the entire voxel cube.
This is the factor by which the distance of the image point to the projection center must be multiplied
to obtain the distance from the object point to the projection center.

The loop starts with greater step size, which decreases as soon as the cube is entered therefore the
process is accelerated. The loop ends when either a surface voxel is encountered, or the ray exits the
cube, not encountering any opaque voxel at all. This way each pixel, which does not have a
background value, is assigned the ID of a voxel, without leaving gaps in the image item buffer. This
approach would correspond to the indirect image resampling methods, which does a geometric
transformation indirectly from the destination back to the source.

We begin the algorithm by initializing a volume that encloses the 3D object to be reconstructed. In
order to accelerate the algorithm and carve the empty spaces easily we used a rough bounding volume
found by the volume intersection method. This bounding volume contains the true shape of the object
and it is calculated easily as described in detail in Chapter 4.1. As mentioned previously, although this
volume is a good approximation of the model, it does not fully cover the concavities. According to this
volume, all boundary voxels that completely separate empty regions of space from opaque regions are
created and defined in a list as surface voxel list (SVL) as it is in GVC. The SVL should be updated
during the reconstruction iterations to make sure that only a minimum number of voxels are processed.
We used item buffers in order to compute the visibility as it is in GVC.

The algorithm uses the image coordinates and performs a projection into voxel coordinates using the
equations (3.5) which was derived from equation (3.4) in Chapter 3.1.1.

Once the item buffers are calculated for each image, each voxel on the surface voxel list is projected
into each image. This is the inverse transformation compared to the creation of the ID buffers.

66 4 Volumetric Object Reconstruction Techniques Using Images

X

Y

Z

x

y

p

Figure 4-20: Tracing pixels back into the voxel cube

The ID of the projected voxel is compared to the ID stored in the image’s ID buffer. If they are equal
the pixel is added to the visibility list and the colors are recorded. Then all the visible pixels are
checked for color consistency. If the standard deviation for these pixels exceeds a predefined threshold
it is removed or carved from the volume. Otherwise it is given the average color value of the visible
pixels.

When a voxel is carved the adjacent opaque voxels become surface voxels. The previously derived
SVL becomes invalid and has to be re-evaluated in the next iteration. The algorithm stops when all the
inconsistent voxels are removed. The remaining surface voxels are photo consistent with the input
images and form the photorealistic 3D model of the scene. The final result can be seen in Figure 4-21.
It has been computed as a 256³ voxel cube, using 16 images, with a resolution of 1020 by 1360 pixels,
each. Pseudo-code of the algorithm is as follows:

Loop {
 initialize item buffers
 initialize SVL
 for every voxel V on SVL {
 find the set S of image pixels from which V is visible
 if V is consistent {
 color V
 }
 else {
 carve V
 }
 }
 if all voxels are consistent
 quit
}

Line tracing with the above explained method is time consuming. In Chapter 5.1 an improved line
tracing algorithm is introduced.

 4.2 Shape from Photo Consistency 67

Figure 4-21: Reconstruction of a flower by voxel coloring using 16 images

68 4 Volumetric Object Reconstruction Techniques Using Images

4.3 Model Refinement by Image Matching

One of the traditional methods to reconstruct 3D surfaces from images is area-based image matching.
The results of image matching are point clouds which can easily be represented by integer voxel
coordinates. However the reconstruction would not be dense. Hence, for denser reconstructions a hole
filling method might be used. Image matching methods can also be applied to voxel-based object
reconstruction methods. In Chapter 4.1, a visual hull reconstruction from image silhouettes is
examined. Both, silhouette methods and image matching methods have advantages and disadvantages.
For example image matching fails on homogenous and occluded areas. However, the visual hull
cannot recover concave areas even when large numbers of images are used because this method uses
the ray of sights from the projection center through the image silhouettes that are tangential to the
surfaces of the object. On the other hand, the visual hull contains the true shape of the object.
Volumetric intersection method improves the speed of the reconstruction while image matching is
helpful to recover the concave areas, thus these two methods can be used to recover the true shape of
the object. In the following chapter first the classical image matching methods will be explained.

4.3.1 Image Matching

Human eye captures light from two different positions in the left and right eye. The displacement of
the 3D feature in the two retinal images is called disparity. Disparity is computed by matching
corresponding points in two images. One of the most fundamental problems in photogrammetry is to
find conjugate points automatically in two or more images. The goal of image matching is to compute
3D location of the matched points in object space.

There are two image matching techniques: area-based and feature based matching. In area based
matching, gray levels of image patches are compared using correlation or least squared techniques. In
feature based matching edges or other features are compared to determine conjugate features. The
similarity like shape, strength of edges is measured by a cost function. We use correlation in order to
find conjugate points in two images because the objects might have natural textures without sharp
edges.

Before color image matching is discussed, basic single channel image matching is introduced in the
following chapters.

4.3.1.1 Correlation

Correlation techniques have been investigated in photogrammetry since fifties. The main idea is to
measure similarity between two image regions. Various names can be found in literature; however we
will refer to the templates as master and slave, describing a very clear relationship. We define a
position in the master image, create a master template around it, and search for this template in the
second, the slave image. While the master template remains fixed and constant, the slave template will
be moved within a limited search area, until a maximum similarity is found. Figure 4-22 depicts these
relations:

 4.3 Model Refinement by Image Matching 69

master image slave image

search area

master
template

slave template

Figure 4-22: Area-based template matching

Correlation is based upon texture information, so in homogeneous regions a correlation coefficient
will give a false result, since it always returns a high correlation factor. Consequently, it is not wise to
perform cross correlation in homogeneous regions. Moreover, due to occlusions a similar region might
not exist and correspondences are hard to find when base line increases.

4.3.1.2 Normalized Cross Correlation

The similarity is computed by a correlation factor. The result of the normalized cross correlation
ranges from -1 to +1. The value 1 is obtained if the master and slave template are identical. If there is
no correlation between image patches then the cross correlation factor is 0. And if the two templates
are identically inverse, the correlation is -1. So with this strictly defined range of the result we have an
absolute measure of similarity, i.e. we are not only able to tell that template ‘A’ is more similar to the
master template than ‘B’, but we can also tell how similar it is.

Differences in brightness and contrast of the image pairs are taken into consideration by observing the
differences of each pixel to the templates mean value. The following computer optimized equation can
be used to correlate the corresponding pixels. It is optimized in a way that, mean value and variance
can be computed in one loop only.

() ()

() () () ()∑∑
∑

∑∑
∑

⋅−⋅⋅−

⋅⋅−⋅
=

−⋅−

−⋅−
=

⋅
=

2
2

2
2

2
1

2
1

2121

2
22

2
11

2211

22
21

21

gnggng

ggngg

gggg

gggg
r

gg

gg

σσ

σ
 (4.3)

where:

 r : correlation coefficient

 g1, g2 : densities (gray values) in master and slave template

 21, gg : Arithmetic means of the densities of the master and slave template

 n : number of samples

70 4 Volumetric Object Reconstruction Techniques Using Images

The normalized cross correlation is the most common similarity calculation in photogrammetry. Some
other approaches will be introduced and evaluated in chapter 4.3.

4.3.1.3 Rank Correlation

The idea of rank correlation is to further improve the validity of the correlation result. In the
normalized cross correlation as described earlier, the input observations are of unknown range.
Depending of the images contrast, they can range from anything up to 255. Rank correlation does not
use the image’s gray values directly; instead it uses their rank in a sorted list. Finally, the observations
are part of a very specific set of numbers, consisting of 0…n. With this clearly defined set of numbers,
which always contain the same numbers in the master and slave template, it is hoped to better apply
statistical tests to the result, in order to check the similarities significance. The calculation of the rank
correlation is identical to normalized cross correlation, only with different input values, however, the
algorithm requires a sorted list, and a sorting algorithm is always time consuming. So the rank
correlation is another option, but it will not be focused any further.

4.3.1.4 Difference Correlation

If we are only interested in the most similar position, and not the quality of similarity, we may
consider the pure differences in the template pixels. Hence, the equation may look like this:

()
n

gg
rD

∑ −
=

2
21

 (4.4)

or,

()∑ −⋅= 21
1 ggAbs
n

rD
 (4.5)

In opposition to cross correlation we are here looking for the smallest result as highest similarity. The
range of the result is however unknown and it strongly depends on both input templates. So we can tell
the highest similarity, but we can not assess this value any further. For example if one image is
globally darker and lower in contrast than its partner, the results will be quite high. Nevertheless, the
smallest value still refers to the best match. If the similarity needs to be evaluated, one could find the
best match - or a number of best matches - with this difference operator, and evaluate those with the
cross correlation, applying a sensible threshold.

However, since we know the value range of the input data, we can normalize the result to a range of 0
(different) to 1 (equal), in the following way:

)(
1

minmax gg
rr D

D −
−=′

 (4.6)

This approach has the clear advantage of performance speed, obvious when compared to the equation
for cross correlation.

 4.3 Model Refinement by Image Matching 71

4.3.1.5 Least Squares Matching (LSM)

The previous algorithms can determine a best match at the accuracy of one pixel. If we are interested
in a better accuracy, we will somehow have to consider subpixel information. Furthermore, any of the
previous approaches compares two templates, directly grabbed from the input images. We want to use
area based matching as a means to find corresponding points in two images for three dimensional
reconstruction. Here we have two contradicting requirements. For the spatial reconstruction it is better
to have lines intersecting with a large angle, i.e. images that converge with a large angle. For the
image matching, it is better to have most similar images, i.e. images taken from very close positions. It
will not be discussed in this chapter how this contradiction can be solved, but it is important to stress
out that the images are different; therefore, the search templates are different. And they will be
distorted further, due to perspective projections. The estimation of these distortions and therefore
improved results is the goal of least squares matching.

Least squares matching was introduced in eighties by [ACKERMANN, 1984] and [GRUEN, 1985]
and least-squares matching in object space was first mentioned by [WROBEL, 1987] and [EBNER,
1987]. Just as cross correlation, LSM is based on the similarity of gray values. The idea of least
squares matching is to minimize the gray level differences between the master and slave template.
This is done by the adjustment process where the position and the shape of the slave template are
determined. The position and the shape of the slave template are changed until the gray level
differences reach a minimum so that all pixels in the window become conjugate with the master
template.

Due to surface slope, position and depth differences of the cameras, the conjugate images might have
geometrical distortions. Besides, illumination and reflection might cause radiometric differences in the
images. Moreover, noise and distortions of sensor might affect geometric and radiometric
correspondence of the conjugate images. Therefore cross correlation alone can not solve these
problems and it is not enough for the reconstruction of 3D objects. However, least squares matching is
suitable because it is the most accurate image matching technique. LSM is mostly used after image
correlation as an improvement, because the accuracy of LSM is dependant on the previous
approximation. The approximations should be known within the accuracy of a few pixels.

The relation between the master and the slave template can be approximated by a transformation, for
example the affine transformation. If there were no radiometric errors and the transformation
parameters were known exactly, the gray levels of template and search images can be transformed
identically.

g1(i, j) = g2[TG(i, j)] = g2(x, y) (4.7)

where:

 g1(i, j) : original master template

 g2(x, y) : transformed slave template

 TG : geometric transformation

72 4 Volumetric Object Reconstruction Techniques Using Images

However, due to radiometric errors and because we do not know transformation parameters exactly
there will be gray levels differences between conjugate images. The idea of LSM is to estimate
transformation parameters from gray level differences by a least squares adjustment.

A radiometric transformation of the matching window is described in order to compensate the
differences between brightness and contrast.

TR[g(i, j)] = r0 + r1⋅ g(i, j) (4.8)

where:

 r0 : radiometric brightness shift

 r1 : radiometric contrast stretching

This transformation will adjust the matching window radiometrically to the template. Radiometric
transformation can be introduced during the least squares process. However it is generally adjusted in
a pre-process.

Affine transformation models with six parameters are considered to sufficiently approximate
projective distortions. It will be applied as follows:









⋅








+








=








j
i

tt
tt

t
t

y
x

54

21

3

0 (4.9)

The affine transformation describes two translations, two scaling, one rotation and a skewing. With the
geometric transformation we can write the following generic observation equation:

vg(i, j) = g2 (T (i, j)) – g1(i, j) = g2(x, y) – g1(i, j) (4.10)

where:

 T : geometric affine transformation

 vg(i, j) : residuals of gray level differences between master and transformed slave template

In the following, g(x, y) will refer to the transformed gray values g2(i, j) of the slave template, with
rational coordinates. The linearization of g(x, y) with respect to the transformation parameters:









∆

∂
∂

+∆
∂
∂

+∆
∂
∂

∂
∂

+







∆

∂
∂

+∆
∂
∂

+∆
∂
∂

∂
∂

+≈ 5
2

4
1

3
0

2
2

1
1

0
0

0),(),(),(),(t
t
T

t
t
T

t
t
T

T
yxgt

t
T

t
t
T

t
t
T

T
yxgyxgyxg xxx

y

xxx

x
 (4.11)

 4.3 Model Refinement by Image Matching 73

and the partial derivatives:

 x
x

g
T

yxg
=

∂
∂),(

 y
y

g
T

yxg
=

∂
∂),(

 1
0

=
∂
∂

t
Tx 1

3
=

∂
∂

t
Tx

 1
1

=
∂
∂

t
Tx x

t
Ty =

∂

∂

4
 (4.12)

 y
t
Tx =

∂
∂

2
 y

t
Tx =

∂
∂

5

 g0(x, y) = g2(i, j) l = g1(i, j) – g2(i, j)

with:

 gx : gradient in x direction

 gy : gradient in y direction

pixel ∆t0 ∆t1 ∆t2 ∆t3 ∆t4 ∆t5 const

1, 1 gx1 gx1⋅x1 gx1⋅ y1 gy1 gy1⋅x1 gy1⋅y1 g1(1,1) – g2(1,1)

2, 1 gx2 gx1⋅x1 gx2⋅y1 gy1 gy1⋅x2 gy1⋅y1 g1 (2,1) - g2 (2,1)

…

n, m gxn gxn⋅xn gxn⋅ym gym gym⋅xn gym⋅ym g1 (n,m) - g2 (n,m)

The observation equations, the solution and the estimated variance of unit weight are given as follows:

ltAv +=
) : observation equations (4.13)

() PlAPAAt TT 1−
=

) : solution vector (4.14)

6
2

−⋅
⋅⋅

=
mn

vPvT
σ) : variance factor (4.15)

Since least squares matching is a non linear problem, the solution is found iteratively. The first
iteration begins with the approximate location of the slave template (RS, CS). The coefficients of the
design matrix are computed with the coefficients of the table and the transformation parameters ∆t1.

74 4 Volumetric Object Reconstruction Techniques Using Images

Figure 4-23 finally describes a possible effect of least squares matching on the slave template,
resulting in a sub-pixel correspondence.

master image slave image

master template
transformed
slave template

Figure 4-23: Transformed slave template after least squares matching

4.3.1.6 Epipolar Geometry

The search for a best match within a limited search area is still a time consuming process, since the
slave template changes with every new position. Here we can use epipolar constraints to further limit
the search area. Instead of considering the entire image, or a rectangular window region as a search
space, we can reduce it by using epipolar geometry. Epipolar lines are efficient constraint for
conjugate entities. If a matching entity in one image is chosen, the search region in the second image
can be narrowed down to a broad line since the image orientation is known. Although an object point
corresponds to exactly one image point, the reversion is not valid. Instead, every object point along a
line of sight may be projected into the same pixel. Only by the use of a second image, we are able to
derive a unique point in space. But we can also use this line of sight to limit the positions in the second
image, where the object point may appear. This situation is illustrated in Figure 4-24 and it is known
as the epipolar line.

X

Y

Z

x

y
x

y

p
p’

p”

P’ P”

Figure 4-24: Epipolar geometry

We can use this line to limit the search area for image matching, since it is a very time consuming
process.

 4.3 Model Refinement by Image Matching 75

4.3.2 Color Image Matching

Area-based image matching using single channel is a well-known technique in photogrammetry.
However one of the most important information to identify objects is color. Color image matching is
not new, especially in remote sensing some authors used image matching algorithms with 3 or more
channels. Hahn and Brenner have investigated quality differences between area-based image matching
of multi-channel images and images with one channel. [HAHN, 1995]. Also refer to Chapter 4.3.3.1
for polychromatic block matching [KOSCHAN-I, 1993].

When color images are available, we should make use of color information to further improve our
matching results. As shown in Chapter 4.3.2.2, color can be crucial and when ignored can lead to false
results. Now, the question is how the color information should be considered. Normally, the color is
directly available as an RGB triple, whether from a 24 bit true color image or an 8 bit image with color
palette. This is the basic color information at hand. If desired, this can be transformed into other color
spaces, like CMYK or IHS (see chapter 4.1.2).

In the following sections a few color image matching approaches are introduced and evaluated. These
color image matching algorithms are used in Chapter 5.

4.3.2.1 Color Theory

When we see color on the monitor, we see a combination of red, green and blue pixels of different
intensity. So color can be expressed by an additive mixing of red, green and blue (RGB). This means
to add the single channels together. The opposite, which we will encounter with printers, is the
subtractive model, consisting of yellow, magenta and cyan. Here, we can think of the single channels,
being removed from the basic white (paper). The mixture of two basic colors of one model gives a
basic color of the other:

Additive:

Subtractive:

red + green = yellow

green + blue = cyan

blue + red = magenta

yellow + cyan = green

cyan + magenta = blue

magenta + yellow = red

Figure 4-25: Basic color theory

Another important model is the HSL-model. This triple contains information about the color value
(Hue), its intensity (Lightness), and the degree of saturation. The color value is defined as a circular

76 4 Volumetric Object Reconstruction Techniques Using Images

sequence, starting with red, passing yellow, green, cyan, blue, magenta end ending again with red. The
value is defined as the circular angle 0° to 359° (0° = 360° = red). The intensity defines the lightness
of the color, where it is black with zero intensity. The color’s purity is described by the saturation, i.e.
the less saturated, the more the color fades to gray. In the cases of zero saturation or zero lightness, the
color value is undefined – black has no color.

We can use the HSL-model to reveal or enhance some phenomenon, which are not visible in the
normal RGB-color space. In particular we make use of the HSL-model to perform color segmentation
(see section). Figure 4-26 shows how we can distinguish a single color, which is disturbed by lighting
conditions, leading to differences in saturation and lightness. However, we can see that in the RGB-
and even in the gray scaled image, the turntable on the bottom can clearly be separated from the
background. In the hue image, there is no visible difference because the color value is the same,
lightness and saturation are suppressed.

a) RGB image b) gray scaled image c) the separated hue-channel

Figure 4-26: An image showing the properties of the hue-channel

4.3.2.2 Considering Color

We introduced some efficient approaches to search for image correspondences. But we did not take
into consideration that we do have color information available. The previous equations only require
simple gray values. However, it is obvious that an RGB-triplet contains more information than a single
gray value (refer to Figure 4-26).

Independent of a specific algorithm, the color information can be considered in various ways. In
general we might classify the possible approaches into two groups. First, we can throw all color
channels into one equation and get one correlation factor as a result. Second, we calculate a correlation
factor for each channel separately.

To the second approach, we can add additional information, like the variance in the single channels
and apply an according weight to them. This would enhance or suppress the channels according to
their texture. Figure 4-27 (a) shows a blue cross on a red background (it will not be visible in a black
and white copy). The colors were intentionally careful chosen, so that in the gray scaled image the
cross would disappear. But the separated red and blue channels reveal the information very clearly.
This example stresses out the how important the consideration of color might be.

 4.3 Model Refinement by Image Matching 77

a) RGB image

b) gray scaled image

c) red channel

d) blue channel

Figure 4-27: The importance of color

Furthermore, we can consider different color spaces, like RGB or HLS (see section). Which approach
is the most sensible, will be described later. We will then go into detail and present experimental
results.

4.3.2.3 Single Vector Correlation

As several tests have shown that the simplest and at the same time the most reliable solution is the
correlation of all the input data in one vector. Assuming the normal case of having three channels of
color (RGB, CMY, IHS), we will now have three times as many observations as in gray images:

 3⋅⋅= heightwidthn

The idea is to put all these observation in one vector, resulting in one single correlation coefficient:

() ()

() ()∑∑∑∑∑∑

∑∑ ∑

−⋅−

−⋅−
=

ch x ych x y

ch x y

gggg

gggg
r

2
22

2
11

2211

 (4.16)

4.3.2.4 Separate Channel Mean Value

A small alteration of the above takes the channels separately into consideration, so that:

() ()

() ()∑∑∑∑

∑∑

−⋅−

−⋅−
=

x y

redred

x y

redred

x y

redredredred

red

gggg

gggg
r

2
22

2
11

2211

, (4.17)

rgreen and rblue accordingly.

This way we will get three results, for each channel separately. The most obvious way is to derive the
mean value.

78 4 Volumetric Object Reconstruction Techniques Using Images

3

bluegreenred rrrr ++
=

 (4.18)

4.3.2.5 Weighted Channel Mean Value

As with the above, we will again have three separate correlation coefficients. But now we do not
simply calculate the mean value. Instead, we would like to take differing texture properties within the
separate color channels into consideration. That is why we build a weighted mean value, according to:

321

321

www
rwrwrw

r bluegreenred

++

⋅+⋅+⋅
=

 (4.19)

This way, we would like to support channels with a stronger texture, i.e. whose variance is greater, at
the same time suppressing homogeneous channels. So we will have to base this weight upon the
variance in the single channels:

()
1

2

−⋅

−
=

∑∑

nm

gg
w x y

ch
xy

ch
 (4.20)

It is sensible to calculate this way upon the values of the master template, since this is the patch of
reference.

4.3.2.6 Difference Correlation

For this method, we can apply the same approaches, as for the normalized cross correlation. Hence, we
can calculate one value by summing up all the differences over the three channels (as will be done in
the future), or we can derive three separate values and calculate a weighted and a non-weighted mean
value.

As mentioned, we will only consider the single vector variant for this approach:

()

()minmax

21

3
1

ggheightwidth

ggAbs
r ch x y

D −⋅⋅⋅

−
−=

∑∑∑

 (4.21)

 4.3 Model Refinement by Image Matching 79

4.3.2.7 RGB-Correlation

Another approach is to regard the RGB triple itself as an observation vector and calculate the
correlation factor with a second one. This way the equality of color can be expressed.

]
3

)(
)[(]

3
)(

)[(

3
)()(

2
2222

2
2
2

2
2

2
1112

1
2
1

2
1

222111
212121

BGR
BGR

BGR
BGR

BGRBGR
BBGGRR

r
++

−++⋅
++

−++

++⋅++
−⋅+⋅+⋅

=

 (4.22)

The summation of these factors over a surrounding area about the center pixel will give the similarity
measure of an image patch.

4.3.2.8 Evaluation

The introduced approaches have been tested on three generated images (see Figure 4-28). The basic
image shows a target (in this case a simple cross) in its basic colors (red, green, blue, cyan, magenta,
yellow, white and black) on a slightly lighter background varying over the same basic colors. To the
basic image 10% noise were added, and a third was created, by adding 75% noise.

a) Test image

b) Test image with 10% noise

b) Test image with 75% noise

Figure 4-28: Test image to evaluate color image matching

The testing was done by taking each of the 64 targets as a master template and performing a matching
over the complete image itself, so that there should be at least one point of absolute similarity.

In case of the perfect non-noise image however, we observed cases where there were no similarities at
all or several points with 100% similarity. This is due to the absolute homogeneity in single channels,
so that in the correlation equation the denominator becomes zero and delivers a result that cannot be
interpreted. For example the separate channel approach, with the red cross on a blue background,
delivers 100% similarities for the red cross on green, blue and cyan backgrounds. In most cases this
methods delivers ambiguous results.

The RGB-correlation does not recognize targets on a lighter background of the same color, but works
fine otherwise. So it should not be applied on regions which do not vary in their color value.

Only the single vector correlation and the difference correlation delivered reliable results. The only
exception was that the single vector correlation could not distinguish the very light gray cross on white

80 4 Volumetric Object Reconstruction Techniques Using Images

background from the black cross on white background. Since by definition this method ignores
differences in brightness and contrast, this is a logical consequence.

However, in the presence of noise, all the approaches deliver reliable results. In these artificial images
if there was more noise, they would even become better.

Summarizing, the most reliable results were delivered by the single vector and the difference
correlation, since they worked best in all three test images. They are also the simplest equations so that
faster performance can be expected, especially the difference correlation.

Finally, Figure 4-29 shows the visualized results of the different matching algorithms. Note the
ambiguity in the separate channel approaches in the upper row.

Results on a noise-free image (from left to right: single vector, difference, weighted RGB, non-

weighted RGB, RGB correlation). Best matches are marked.

Results on an image with 10% noise

Results on an image with 75% noise

Figure 4-29: Visualizations of the color matching algorithms

 4.3 Model Refinement by Image Matching 81

4.3.3 A Visual Hull Refinement Algorithm Using Block-Matching

4.3.3.1 Polychromatic Block Matching

As mentioned previously, the visual hull contains more voxels than the true shape of the object should
contain due to concave areas on the object’s surface. If the surface contains enough texture, the
missing object concavities can be detected. The modeling error of the visual hull can be minimized
using a block matching approach of Koschan [KOSCHAN-I, 1993]. Although block matching is not
the most reliable technique, it is less time consuming than standard image matching. In Chapter 4.3,
color image matching is described as a more reliable technique to refine the object’s approximate
model.

The mathematical background of block matching algorithm is similar to standard image matching. The
main idea of Block Matching is a similarity check between two equal sized blocks in two images
(area-based stereo). The main difference from standard image matching is; instead of shifting the
master patch pixel by pixel in the master image, it is shifted block by block. The mean square error
MSE between the pixel values inside the blocks defines a measure for the similarity. However, the
slave patch is searched by shifting it pixel-wise inside a search area that is defined by the epipolar
geometry.

(){ }∆=
≤∆

,,min yxMSED COLOR
dMAX

 (4.23)

The block disparities (parallaxes) D are median filtered to avoid outliers and a rough depth map is
generated. Then a dense depth map is generated using a pixel selection technique. In this technique for
each pixel in question the best match is searched along the epipolar line shifting the block according to
its neighbor disparities.

Figure 4-30: Computed stereo depth maps of the flower (left, middle) and the combination of three
neighbored views (right)

82 4 Volumetric Object Reconstruction Techniques Using Images

4.3.3.2 Hierarchical Matching Using Image Pyramids

The enhanced algorithm [KOSCHAN-II, 1997] is more robust and shows better results. The
hierarchical approach can be implemented very efficiently in parallel to achieve high speed execution.
Furthermore, the combination of three views improves the quality of the matching results (see Figure
4-30). The correspondence analysis of a reference image with the neighbored images eliminates most
of the artifacts.

4.3.3.3 Integration of Volume Data and Depth Maps

The combination of the voxel data and the depth maps is realized in the voted-based carving stage.
During the voting-based voxel carving stage the voxels have been assigned votes representing how
many images they have been projected into background pixels. Each voxel get additional votes
according to the information provided by the depth maps. The results (see Figure 4-31) show the
importance of precise calibration data and additional constraints are necessary to reduce the number of
outliers.

Figure 4-31: The enhanced concave head of the flower using block matching (right)

 5.1 Utilities for Volumetric Processing 83

Chapter 5 : Proposed Volumetric Reconstruction Algorithm

5.1 Utilities for Volumetric Processing

5.1.1 Line Tracing

For many tasks it is necessary to process each voxel along a specific line. Visibility information can be
recovered this way, as will be described in the next chapter. In texture mapping, we would make use of
a line tracing, and if we were to simulate real world conditions, like lighting, shadow casting and
atmospheric effects, the appropriate technique is ray-tracing, hence voxel-line tracing.

As mentioned in chapter 2.2.4, there are different degrees of neighborhood, which influence the
resulting line. In the following, we will introduce two algorithms to construct a 6-connected and an 18-
connected line (also refer to Figure 2-3).

When we are constructing a line with a start and an end voxel, we want to visit each voxel in between
exactly once. While the voxel is defined by integer coordinates, there might be occasions, where
rational coordinates are advantageous. But still, for the sake of performance, each voxel should only
be visited once.

Figure 5-1 shows the difference between a 6-connected and an 18-connected line (for simplicity in
2D).

Figure 5-1: 18-connected (dark pixels) and 6-connected line (light+dark pixels) in 2D

5.1.1.1 18-Connected Line

The construction of the 18-connected line is quite simple, as it is shown in the following pseudo-code.
Although it is a simpler implementation than the 6-connected line, it produces rational coordinates,
which can easily be rounded to the closest voxel (nearest neighbor).

The basic idea is to find that direction of (∆X, ∆Y, ∆Z), in which the line has the greatest length.
According to this direction, we will normalize the steps for each direction, so that:

max∆
∆

=∆
Xx

max∆
∆

=∆
Yy

max∆
∆

=∆
Zz

84 5 Proposed Volumetric Reconstruction Algorithm

For the leading direction, the stepsize will become one, which will ensure the visiting of each voxel.
The other stepsizes are rational numbers between zero (including) and one (including). The following
pseudo-code should explain the functionality. It is furthermore depicted in Figure 5-2.

function linetracing_18connected (P0=start, P1=end)
{
 let dx = P1.x - P0.x
 let dy = P1.y – P0.y
 let dz = P1.z - P0.z

 let maxlength = MAX[ABS(dx), ABS(dy), ABS(dz)]

 let sx = dx / maxlength
 let sy = dy / maxlength
 let sz = dz / maxlength

 let P = P0

 for (0 … maxlength)
 {
 call operator (P)

 P.x = P.x + sx
 P.y = P.y + sy
 P.z = P.z + sz
 }
}

∆ =10X

∆ =−4Y

∆ =1x
∆ =−0.4y

Figure 5-2: The basic idea of an 18-connected line tracing

5.1.1.2 6-Connected Line

The construction of a 6-connected line is a little bit more complicated than of an 18-connected line.
We use a stepsize in each direction in this algorithm as well. But in this case, the stepsize describes the
length of a line section in which it remains inside the same voxel of the particular direction. In Figure
5-3 this is shown as ∆x and ∆y. A counter variable for each direction will be available, and for each
step the smallest counter is increased by its corresponding stepsize.

 5.1 Utilities for Volumetric Processing 85

∆ =10X

∆ =−4Y
∆x

∆y

Figure 5-3: 6-connected line tracing

In the example in Figure 5-3, the ray has to travel 1.077 units in order to traverse a voxel in x-
direction, but 2.692 units in y-direction. That means that every 2.499 voxels in average we need to
change the direction. The pseudo-code should clarify this algorithm. It is introduced in detail by
[AMANATIDES, 1987].

linetracing_6connected (P0=start, P1=end)
{
 vector v;
 vector Dp, dp, l, p;
 double len, dlen;

 let Dx = P1.x - P0.x
 let Dy = P1.y – P0.y
 let Dz = P1.z - P0.z

 let px = SIGN(Dx)
 let py = SIGN(Dy)
 let pz = SIGN(Dz)

 let length = SQRT(Dx² + Dy² + Dz²);

 /* division by zero possible */
 let dx = length / Dx
 let dy = length / Dy
 let dz = length / Dz

 /* Initialize: */
 let lx = dx / 2
 let ly = dy / 2
 let lz = dz / 2

 P = P0;

 loop
 {
 call operator (P)

 // Break condition:
 if (lx,ly,lz > length)
 break;

 if (lx = MIN[lx, ly, lz])
 {
 P.x = P.x + px;
 lx = lx + dx;
 }

 else if (ly = MIN[lx, ly, lz])
 {
 P.y = P.y + py;
 ly = ly + dy;
 }

 else if (lz = MIN[lx, ly, lz])
 {
 P.z = P.z + pz;
 lz = lz + dz;
 }
 }
}

5.1.1.3 Implementation of Line Tracing

Since we have a means of tracing a line voxel by voxel, we can now use this algorithm in several tasks
such as in checking if this voxel is within the defined voxel space after all. Hence we have to define an
operator which will work on the current voxel. This operator should be able to do arbitrary tasks and
return a value to indicate success or failure, continue or break, respectively.

86 5 Proposed Volumetric Reconstruction Algorithm

Very briefly, our line tracing algorithm would look as follows:

do initial work
for (p=P.start … P.end)
{
 call operator (p)
 if (break signaled)
 break loop
 else
 increase p
}
do cleanup work (success / failure)

The choice of C++ as programming language simplifies the implementation of such operator
constructs. As an example, we want to find out that voxel, which is first encountered, when we trace a
pixel back into voxel space. The operator will check if an object voxel is encountered, or if the defined
voxel space has been left. In both cases the operator should send a break signal, so that the shell
algorithm will stop. In the following chapters, some other operators will be introduced, when
appropriate.

Now, without going too much into detail about object oriented programming (OOP), we would like to
give an idea, how it is accomplished.

A crucial element of OOP is the use of classes (objects) and the consequences that go along with it.
For instance, a derived class inherits all data members and methods from its parent classes. In general
one can say that a derived class is a specialization of its parent. Since each object knows, from where it
is derived (if at all), it can very simply make use of methods, defined in the parent class.

In the following Figure 5-4, we use a simple example to clarify the idea of derivation. The basic class
of a family of geometric objects is a point. From this class we derived three more classes, each of
which inherits the point coordinates: a circle, a square and a line. Again, from the circle and the
square, we derived an ellipse and a rectangle. Each class is a specialization of its parents. So each of
these geometric entities has a position, and each child specializes its shape by an additional parameter.
The advantage of inheritance is that we do not have to implement a method for each object. While
each object would be responsible to draw itself, (apparently a square differs from a circle, although
they can be described by the same parameters) we will find some operations, which all object have in
common. For instance, if we want to move an entity, it is sufficient to move the base coordinate
defined in the point-class. Hence a move-method only needs to be defined in the very base class and
will be inherited by all its children.

 5.1 Utilities for Volumetric Processing 87

Figure 5-4: The use of classes and inheritance

We have seen that a child can easily use the methods of its parents. Sometimes it may be useful to go
up the family tree. For example, if we create a mixed list of geometrical entities, it would consist of a
number of point-derived objects. There might be occasions, where we want to call a method of an
object, but we would rather want the method of the youngest child to be executed first. In terms of
C++ this is realized by using virtual methods.

Coming back to the line tracing, we have implemented a base class to operate on a voxel. In this base
class we defined the three main virtual methods to do:

• An initialization

• A per-voxel operation (returning success or failure)

• A clean-up, depending on success or failure

Since this base class is only serving as an inheritance template, its methods are doing nothing. They
need to be defined, in order to make use of virtual method calls.

In specific, our base class is described in Figure 5-5, along with some derived operators.

// operator base class for the C++ method:
class CTraceLine
{
public:
 CTraceLine();
 virtual ~CTraceLine();

// methods:
 virtual void Init(vector& p0, vector& p1);
 virtual void CleanUp(bool) {};
 virtual bool operator ()(vector& v);

// data members:
 vector m_ptVoxel;
 vector m_ptStart, m_ptEnd;
};

Figure 5-5: The operator-class family

Since the programmer can derive his own class, he has full control of its behavior. In Figure 5-5 we
have given three example implementations for possible operators. As mentioned above, the base class
only serves as a template. As an example, the visibility class might recover visibility information of a

88 5 Proposed Volumetric Reconstruction Algorithm

voxel (see also chapter 5.1.4) and the CWriteToFile-class uses the method of its parent, but
additionally writes the results into a file.

The pseudo code of the actual line tracing algorithm has been introduced in the beginning of this
chapter. In particular, its function prototype looks like this:

 bool trace_line(vector p0, vector p1, CTraceLine& op);

The algorithm traces a line according to the two given vectors, where for each voxel the operator ‘op’
is called. Since we are free to derive our own operator, this way of performing a line tracing is highly
flexible. Moreover, C++ allows storing arbitrary information in an object. So we cannot only tell, that
the line tracing failed (as provided by the boolean return value), but we can also implement means to
tell us why and where.

Some operators will be introduced in the following chapters, when appropriate.

5.1.2 Line Segment Limiting

Tracing a line is a process which consumes time, directly related to the number of elements. Hence, if
we can narrow the line down to half length for instance, we would save half of the processing time. In
the previous chapter we wanted to find the first object voxel, corresponding to a given image point.
The line is therefore defined by the pixel and the images projection center. To be more accurate, it
begins with the image projection center, faces directly away from the image point and is of unknown
length. It would definitely be a waste of time to process the line like this.

It would be right to look for a sensible geometric limitation with two simple preconditions:

• Each voxel must be covered by the line.

• Not too much empty space should be swept by the line.

With the help of equation (3.4) from chapter 3.1.1, several approaches can be derived. Here is the
equation again, as a reminder:
















+

















−
−
−

⋅⋅=















−

0

0

0

0

0
1

Z
Y
X

c
yy
xx

R
Z
Y
X

λ

5.1.2.1 Global Minimum/Maximum Limitation

For the first approach, we will choose two values for λ, to define a start- and an end-point for the line.
It is based on the assumption, that a λ-factor according to the farthest and the nearest corner of the
voxel cube will completely enclose the whole cube. For this definition, all we have to do is to calculate
the distance to each of the eight corners, and determine the minimum and maximum of these values.
Those two λ-factors will be globally valid for all pixels of one image. Figure 5-6 shows a visualization
of this limitation. It might not be the best limitation, but its clear advantage is that it only needs to be
derived once per image.

 5.1 Utilities for Volumetric Processing 89

Figure 5-6: Min/Max λ limitation of a line

5.1.2.2 Spherical Limitation

A second limitation can be accomplished, by wrapping a sphere around the cube and calculating the
intersection of each ray with the sphere. If there is no or only one intersection point (the tangential),
the line can be skipped in the first place. In case of two intersection points, these will define the
limitation of the line. The disadvantage is obviously that a limitation needs to be calculated for each
image point separately, although it is probably a better approximation. This approach is described in
Figure 5-7.

Figure 5-7: Sphere-intersection limitation

The intersection of a line and a sphere is calculated as follows:

Vector equation of a line: P = P0 + u (P1 – P0) (5.1)

Equation of a sphere: (x - x3)2 + (y - y3)2 + (z - z3)2 = r2 (5.2)

90 5 Proposed Volumetric Reconstruction Algorithm

Substituting the line into the sphere yields: a⋅u2 + b⋅u + c = 0 (5.3)
with: a = (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2 (5.4)

 b = 2[(x2 - x1) (x1 - x3) + (y2 - y1) (y1 - y3) + (z2 - z1) (z1 - z3)] (5.5)

 c = x3

2 + y3
2 + z3

2 + x1
2 + y1

2 + z1
2 - 2[x3⋅x1 + y3⋅y1 + z3⋅z1] - r2 (5.6)

Solving a⋅u2 + b⋅u + c = 0 for u yields:

a
cabbu

2
42 ⋅⋅−±−

= (5.7)

The behavior of the square root determines the number of solutions. If the term b2-4⋅a⋅c is negative,
there is no solution at all and hence, no intersection. If the term is equal to zero, there is but one
solution, which is a tangential line to the sphere. A positive value yields two solutions, the two
intersection points we are actually looking for.

5.1.2.3 Cubical Limitation

The most accurate limitation is to determine the intersection of the line with the defined voxel space
itself. But that means we have to check the line for intersecting all six faces of the voxel cube. Also in
this approach, the subsequent line processing can be ignored if there is no intersection at all. Figure
5-8 describes this approach, where the limitation is individual for each image point, as in the spherical
approach.

Figure 5-8: Cubical intersection limitation

In order to find the intersections of the line with the cube sides, we first need to find the intersection of
the line with the corresponding plane. This is always the case, as long as the plane and the line are not
parallel. But now we need to check if the point of intersection lies within the rectangular region of the
cube side. Only if this condition is met, we have found one of two possible intersection points.

 5.1 Utilities for Volumetric Processing 91

5.1.3 Line Snapping

In some cases, we have to work with rational coordinates, for the sake of accuracy. But eventually, the
line tracing algorithm can only deliver integer coordinates of the voxel center. For instance, if we want
to trace the line of a reference image into the cube, and for each voxel we want to determine the
projection in another image. This would cause a tremendous inaccuracy if we used integer coordinates,
always depending on the voxel size, hence the cube resolution.

In most cases however, the definition of the line, the start- and end point are well known, just the
realization of the tracing algorithm may lose the rational part. Here we can use a simple trick to snap
the integer point onto the true line. Figure 5-9 (a) shows how the algorithm is projecting the points
onto the line.

a) The line itself, integer and snapped points

b) The idea of the two snapping methods

Figure 5-9: Snapping of integer points to the true line

There are two approaches to snap a point to a line, as seen in Figure 5-9(b). In the first approach the
point is projected perpendicular into the closest point P’ along the line. The second approach simply
rotates the point P” into the line. In the following two chapters, the mathematical background will be
given.

5.1.3.1 Perpendicular Projection

The perpendicular projection of a point to a line is looking for the shortest distance between that point
and the line. We will name the point to be projected with Pi and the projection on the line P’.

A vector line is given by:

)(010 PPuPP −⋅+= (5.8)

The vector describing the shortest distance is perpendicular to the original line, so that:

0)()(01 =−⋅′− PPPP ii (5.9)

and substituting P’ with the equation for the line:

0)())((01010 =−⋅−⋅−− PPPPuPPi (5.10)

92 5 Proposed Volumetric Reconstruction Algorithm

We have to solve this equation for u, in order to find the projected point P’.

2
01

2
01

2
01

010010010
2

01

010

)()()(

))(())(())((

)(

)()(

zzyyxx

zzzzyyyyxxxx

PP

PPPP
u iiii

−+−+−

−−+−−+−−
=

−

−⋅−
=

 (5.11)

())(
)(

)()(
012

01

010
0010 PP

PP

PPPP
PPPuPP i

i −⋅
−

−⋅−
+=−⋅+=′

 (5.12)

5.1.3.2 Point Rotation

The second approach is to rotate the integer point into the point P” on the line, so that |P0Pi| = |P0P”|.
The length of the line is:

2
01

2
01

2
01)()()(zzyyxxdline −+−+−= (5.13)

and the distance of the integer point to the beginning of the line is given by

2
0

2
0

2
0)()()(zzyyxxd iii −+−+−= (5.14)

We have to construct a new point on the line with the same distance as the integer point:

2
01

2
01

2
01

2
0

2
0

2
0

010010)()()(
)()()()()("

zzyyxx
zzyyxxPPPPP

d
dPP iii

line
i −+−+−

−+−+−
⋅−+=−⋅+=

 (5.15)

As can be seen from Figure 5-9 (b) the resulting points differ especially in the beginning of the line,
when the enclosing angle is larger. It becomes less significant, when the line advances further away
from its start point. Since there is no real difference, the choice can be made upon performance. When
we compare the two algorithms, we can see that they are almost the same, except for one square root,
by which the second approach is more computationally expensive.

In Figure 5-10, we are describing the consequences of processing voxels, which have inaccuracies due
to double-integer conversions. In Figure 5-10 (a), we defined a reference point, from which we are
tracing a line into the voxel cube. The next image shows each erroneous voxel projected back into the
reference image. A kind of flickering about the center is clearly visible. The two images in the second
row are showing the same line from another viewpoint. The right one shows the projected erroneous
voxels, while in the left image the snapped voxels where projected. Only the corrected voxels on the
left are forming a straight line, namely the epipolar line, in opposition to the noisy line on the right.

 5.1 Utilities for Volumetric Processing 93

a) The reference point

b) The integer-line projected back into the
reference image

c) The snapped voxels projected into a second
image

d) The rounded integer voxels projected into the
second image

Figure 5-10: Projecting corrected and uncorrected voxels

5.1.4 Recovering Visibility Information

It is often crucial to find out, when a voxel is visible and when it is occluded. There are mainly two
reasons, why a voxel is not visible to a specific image. First, it can be positioned on that side of the
object, which is facing away from the camera. The second reason is: it is occluded by another voxel in
between. When high realistic rendering is required, we might take atmospheric effects into
consideration such as fog. Then a voxel can just disappear due to a great distance to the camera.
Although with a few modifications the following proposal might cover this problem as well, we will
not consider it in detail.

When we compare visibility checking with polygonal models, we will find a clear separation between
the two mentioned cases of invisibility. The first case can very easily be determined by calculating the
normal vector of the according polygon. In many cases, those models are made of triangles. Hence the
calculation of the normal vector is simply the cross product of two of its sides. The point in question
can be excluded, as soon as the normal vector is facing away from the viewing direction that is if the
normal vector and the viewing direction enclose an angle greater than 90 degrees.

All other elements can still be occluded by triangles in between. In order to check this, each and every
triangle has to be processed in one way or the other.

94 5 Proposed Volumetric Reconstruction Algorithm

One way is to sort the triangles according to the distance to the camera and draw them from back to
front, so that further triangles will be overdrawn by the closer ones.

The second approach makes use of a distance buffer, the so called z-buffer. It corresponds in size to
the output screen resolution. Every pixel that is drawn into the screen buffer will have its distance
written into the z-buffer. If a pixel has a greater distance than the one stored in the z-buffer, it will be
skipped. Closer voxels will replace the distance value in the z-buffer, as well as the color value in the
screen buffer.

In volumetric models, we can not simply take over those techniques. The surface normal vector is a
criterion which can be applied, although it is much more expensive to compute and less accurate at the
same time. The use of a z-buffer is a sensible solution, which can easily be converted to volumetric
purposes. However, instead of using z-buffer, in this chapter another method is introduced which is
more general, fast, easy to implement and can detect all kinds of invisibility in one algorithm.

The proposed algorithm is based on the line tracing which is explained previously. The basic idea is to
define the line according to the voxel in question and the image projection center. We will trace this
line towards the image and we will stop as soon as an opaque voxel is encountered. If only transparent
voxels are encountered until the line exits the defined voxel space, we can assume that the voxel is
visible.

The distinction between different kinds of visibility works as follows: if the first voxel of the line is
already opaque, then we are most likely dealing with a voxel on the backside of an object. If we first
encounter some transparent voxels, but then again an opaque voxel, we are looking at a voxel facing
the camera, but occluded by others. Figure 5-11 describes the idea.

Figure 5-11: Recovering visibility information

Referring to Chapter 5.1.1.3, this is a method which makes use of the basic line tracing algorithm with
an accordingly designed operator.

 5.1 Utilities for Volumetric Processing 95

The pseudo-code for the initialization and per-voxel processing is as follows:

void Init(vector& p0, vector& p1)
{
 init base class with (p0, p1)

 // initialize all values with true
 // until proven otherwise:
 set visible = true
 set occluded = true;
 set hidden = true;
}

bool operator(vector v)
{
 set current_voxel = v

 if (v is outside)
 return false // stop algorithm

 if (v is object-voxel)
 {
 set visible = false
 set occluded = NOT hidden
 return false // stop algorithm
 }
 else
 set hidden = false

 return true // continue algorithm
}

The introduced algorithm covers all cases of invisibility. It works very fast for hidden voxels (those on
the backside) and it can tell us, why a voxel is invisible and at which position this has been discovered.
However, it is advisable to ignore on or two voxels at the very beginning of a line before evaluating
the operator, since a line might contain a neighboring surface voxel, although the true line just passes
by. As mentioned, the initial voxels to be ignored have to be surface voxels. As soon as an interior
voxel is encountered, the algorithm can stop anyway. This concession to tolerance can be implemented
into the operator itself, so that we don’t have to alter the end points of the line, nor the line tracing
algorithm. See Figure 5-12 for clarification.

Figure 5-12: Tolerance for recovering visibility information

When we are supplied with alpha values (transparency values), we can enhance the operator so that it
can take atmospheric effects into consideration. Consequently, when tracing a line the individual alpha
values are combined and when a certain threshold has been reached, the voxel can be considered
invisible. In this thesis however, this will not be applied. But it is worth mentioning.

Finally, we will demonstrate how the consideration of different voxels will affect a rendered image in
Figure 5-13.

96 5 Proposed Volumetric Reconstruction Algorithm

a) projecting
all voxels

(bottom to top)

b) projecting all
voxels (top to

bottom)

c) projecting
surface voxels

d) projecting
visible voxels

e) raytraced voxels

Figure 5-13: Different results for voxel rendering

On the very left, all voxels (including interior voxels) have been projected into a new image. A
medium gray value is given to the interior voxels. If inside voxels were white, there would hardly be
any difference to Figure 5-13(c). However, in Figure 5-13(b), we can see inside voxels through the
surface. The second image shows exactly the same algorithm, except for the sweeping direction in
which the voxels were projected (top to bottom).

In the next image (c) only surface voxels are considered, therefore voxels of the other side have a
chance to be projected through the gaps of the front side. According to the introduced algorithm, only
visible voxels are seen in Figure 5-13(d). Although it is the least dense image, it does not contain false
information. The last image shows a result that has been accomplished by tracing each pixel back into
the cube, until hitting the first object voxel. It corresponds to indirect pixel resampling, where we are
rather performing an inverse transformation to look for the source pixel. This gives naturally the best
result since it does not depend on the images but only depends on the cubes resolution.

5.1.5 Normal Vector on Voxel Surfaces

As introduced in Chapter 2.2.5, it might be interesting to learn about the viewing direction of a
specific voxel. We will now describe a way to derive the tangent surface to the surroundings of a
voxel.

The definition of a three dimensional plane is given as follows:

() 0=−⋅ pxn (5.16)

Expanding the term yields:

0=⋅−⋅+⋅−⋅+⋅−⋅ zzzyyyxxx pnznpnynpnxn (5.17)

 5.1 Utilities for Volumetric Processing 97

Renaming and rearranging:

0=+⋅+⋅+⋅ dzcybxa (5.18)

Now, we have to solve for the unknowns a, b, c and d. However, the translation and therefore the
exact position of the plane is given by the parameter d. But we are only interested in the direction, i.e.
the orientation of the plane, which is only given by the parameters a, b and c.

Now we can write the equation system with matrices:

A⋅X = 0, (5.19)

with the unknown vector:
















=
















=

z

y

x

n
n
n

c
b
a

X

 (5.20)

and the design matrix:
















=

MMM
222

111

zyx
zyx

A

 (5.21)

Before we can solve the mostly over conditioned system, we have to clarify, where the coordinates in
the design matrix come from.

When we want to learn about the tangential surface of a very specific voxel, we have to take a look at
its surroundings. Hence, we define a radius r of voxels, in which we specify surface voxels. Their
center coordinates will be introduced to the design matrix. Furthermore, we will consider them as local
coordinates, i.e. the origin voxel is assigned (0, 0, 0) and the surrounding voxels will only vary in
integer values between –r and +r. This assures a well balanced design matrix.

Figure 5-14 shows a part of a model, with its surface voxels, the area specified by the radius and the
surface normal vector. For a better understanding, Figure 5-15 shows a larger area, with several
surface normal vectors.

98 5 Proposed Volumetric Reconstruction Algorithm

Figure 5-14: Surface voxels (green) within the radius (red) around the voxel of interest (dark grey)
and their surface normal vector (blue).

Figure 5-15: Several surface normal vectors seen on a larger surface fragment

Within the defined radius, we will derive all first order surface voxels. On one hand, this will speed up
the search; on the other hand it delivers enough surface points for the solution of the tangential
surface. Obviously, the set of points will not exactly lie on one plane, so the solution is that of an
adjustment. Hence, it will only be a best fit surface.

Coming back to mathematics, we have to solve A⋅X = 0, where we are not interested in the obvious
solution X = 0. We will use the singular value decomposition (SVD) to compute the best solution, with
X ≠ 0. We will not go into detail about the SVD; instead we refer to literature about this subject
[HARTLEY, 2000]. Nevertheless, the SVD will be used to split the design matrix A into three new
matrices U, D and VT, such that A = U⋅D⋅VT, where U and V are orthogonal matrices and D is a

 5.1 Utilities for Volumetric Processing 99

diagonal matrix with non-negative entries. The SVD can be performed for non-square matrices. This is
especially the case when we have an over-estimated adjustment problem. Then we will have an A
matrix with clearly more rows than columns, i.e. more observations than unknowns. From adequate
literature we can learn that the solution to an equation AX = 0 corresponds to the column of the V
matrix, which corresponds to the smallest value in the D matrix. The solution of the above equation
can be written down as the following steps:

• Perform the SVD for the A matrix.

• Let i be the index of the smallest value in the D matrix.

• The solution vector X corresponds to the i.th column in the V matrix.

The recently derived unknown vector X directly contains the elements of the desired normal vector, so
that X = n. Furthermore, since we are only interested in the direction of the normal vector, we do not
have to worry about its length, as long as its not zero-length.

Now, let P be the vector of projection, along which the voxel of interest is projected onto the image
plane.

We can now compute the angle between the surface normal vector and the projection vector (Figure
5-16), according to the scalar product (or dot product):

Pn

Pn

⋅

⋅
=αcos

 (5.22)

The sign of the surface normal vector, calculated as above, is not always clear. So we do not really
know whether it is facing inside or outside the model. Assuming that we have a solid model, not only
a shell, we can easily solve this ambiguity. Since the only undetermined property is the vectors sign,
we can check the voxels on either side. On one side (inside) there should be object voxels present, on
the other side (outside) they should be background. This assumption is valid since we are considering
surface voxels. This final check was applied in Figure 5-15 and it can be seen that all vectors are
pointing outside.

100 5 Proposed Volumetric Reconstruction Algorithm

However, without knowledge of the sign of the surface normal vector, the angle will range from 0°
(looking directly towards or away from the camera) to 90° (facing away perpendicular). If we have
knowledge of the vectors sign, we can distinguish angles between 0° and 180° (looking straight away
from the camera).

n

α
P

Figure 5-16: Angle α between the surface normal n and the projection vector P

Figure 5-17 is a visualization of the angle between the surface normal and the projection vector. The
left picture is an original digital image, captured by camera, the middle and right picture show the
angle according to the approximated volume intersection model where the lighter the pixel, the smaller
is the angle. The right image is just a generalized version of the middle image. Angles are here
separated into three classes: less than 30° (white), 30°-60° (gray) and greater than 60° (dark gray).

a) original

b) gray

(light pixels = small angle)

c) classified gray

Figure 5-17: Visualization of the angle between surface normal and projection vector

 5.2 Model Refinement 101

5.2 Model Refinement

As we have seen in the previous chapters, the model derived from volume intersection consists of the
visual hull, which is a convex shape (see Figure 4-4). So if the object has some concave parts, as most
objects do, we will have to find means to carve away those superfluous areas.

The very crucial condition of a true surface point is that if projected into two or more images in which
it is visible, it will be projected into corresponding image points. In the following, we will always
assume that we have accurately oriented images. In Figure 5-18, we can see that if we project a voxel
of the (false) visual hull P0’ into two images it delivers the two image points p0 and p1’. But the images
are taken from the real world, i.e. the true object. Therefore, the image point, or the texture at this
point respectively, corresponds to the models texture at P0 for the left image and P1’ for the right
image, which is normally different. On the other hand, the texture at the image point p1 in the right
image corresponds to that of p0 in the left image. They both are projections of the true surface point P0.

Figure 5-18: Projection error due to concavities

Hence, we have a means of telling, whether a point is a true surface point or not, by comparing their
textures. Hence, if the object point is projected into different image points we assume that this voxel is
false and therefore should be carved.

However, there are some obstacles. Many times we have mentioned that we are comparing image
textures in small templates around the point of interest. If there is no texture, but only a region
homogeneous in color and lightness, there is no way of telling which template in a search region is the
best match. In other words, every homogenous master template is a very good match with any other
homogeneous slave template. Nevertheless, the human eye can still derive depth information from a
homogeneous object, but there are many other influences which help us in our evaluation. Last but not
least we simply recognize the object as a whole and just know its shape. However, with image
matching we try to derive a distance upon two small image patches alone. So without further
knowledge, we cannot make a decision for homogeneous areas.

102 5 Proposed Volumetric Reconstruction Algorithm

Another drawback especially in close range photogrammetry is that the image templates may be
highly distorted due to perspective geometry, or even rotated against each other. One solution is to
apply the least-squares-matching in order to transform the slave template in a way that it best fits the
master template. But still, this method requires good approximation values, at about one pixel, which
is mostly acquired by cross correlation for example. In case of perspectively distorted image patches,
there is hardly a way to find good matches with cross correlation.

In the following sections, knowledge will be introduced to the image matching algorithms in order to
take perspective distortion into consideration.

Subsequently, two approaches are presented for carving the concave areas of the approximate model.

5.2.1 Knowledge-Based Patch Distortion

This chapter shows how we can introduce previous knowledge into the basic image matching
algorithms. The more advanced algorithm, in particular the least-squares-matching will take an
approximated patch and distort it in a way, that it best fits the master patch. Since the patch is very
limited in size and shows only a small part of the original image, it is sufficient to model the distortion
by an affine approach with six parameters. The correct description would require an eight parameter
projective transformation, but many times it has been proven that an affine transformation is enough.
The LSM algorithm looks for the one distortion, which delivers the least difference in the correction
expression, hence least-squares-matching. This result does not necessarily have anything to do with
the reality, it is just mathematically the best result.

It would be desirable to be able to introduce some knowledge for verification. First, we have to clarify
what kind of knowledge we can offer. As mentioned above, we assume to have accurately oriented
images. So this is our basic knowledge. Furthermore, since we are considering very specific voxels,
we also have information about object space. Later it will become clear, that the latter information is
not necessary.

Let us now describe how we can apply this knowledge to the image matching. The idea is to estimate,
how the slave patch should be transformed in order to perspectively correspond to the master patch.
Since we have knowledge about distances and image orientations, it is possible.

In particular, the algorithm projects the master patch into object space. This can be done because we
know which distance we are dealing with. Furthermore, the patch is uniquely defined in the master
image, therefore delivering four image points. These four points will be projected into object space,
using the same distance as the voxel of interest. Those four object points are now simply projected into
the second image(s), forming the transformed slave patch. For clarification, Figure 5-19 shows the
same example situation from two viewpoints.

 5.2 Model Refinement 103

Figure 5-19: Master patch and distorted slave patch from two viewpoints

If we do not have knowledge about a particular point in space, we will have to estimate a position in
the slave image, which we want to compare. However, the position of the master and the slave patch
deliver an object point, when performing a forward section. So if we are looking for a best match, we
can project the slave patch for each position in the slave image individually, so that it will be correctly
transformed, according to the actual image point.

When we take a look at the mathematics behind, we first have to derive the distance. We will again
make use of the λ-factor from equation (3.4) (see chapters 3.1.1 and 5.1.2):

() () ()
0

031021011

xx
ZZrYYrXXr

m −
−⋅+−⋅+−⋅

=λ
 (5.23)

Using the same λ-value, we can construct four new object points, corresponding to the four corners of
the master patch:
















+

















−
−
−

⋅⋅=















−

0

0

0

0

0
1

Z
Y
X

c
yy
xx

R
Z
Y
X

i

i

i

i

i

λ

104 5 Proposed Volumetric Reconstruction Algorithm

with,

 xi, yi : the four corners of the master patch

These four object points are now being projected into the second image, using the collinearity
equations (chapter 3.1.1):

() ()
() ())(

)(

033023013

031021011
0 ZZrYYrXXr

ZZrYYrXXr
cxx

iii

iiislave
i −−−+−

−−−+−
−=

() ()
() ())(

)(

033023013

032022012
0 ZZrYYrXXr

ZZrYYrXXr
cyy

iii

iiislave
i −−−+−

−−−+−
−=

At this point, we already have the outline of the slave patch, but what we really want is a set of
transformation parameters, so that we can grab the patch from the image accordingly. As mentioned,
we will limit this transformation to a six parameter affine transformation for relatively small patches.

As the patch is stored in memory as a two dimensional array g[0…width][0…height], we want
the transformation to map these patch coordinates to the slave patch. Here we have two sets of
corresponding 2D points:

The patches array coordinates
(pa

i):
The projected image coordinates

(pt
i):

pa0 = (0 ; 0)

pa1 = (width ; 0)

pa2 = (width ; height)

pa3 = (0 ; height)

pt
0 = (x0 ; y0)

pt
1 = (x1 ; y1)

pt
2 = (x2 ; y2)

pt
3 = (x3 ; y3)

We have four points in order to derive six affine transformation parameters. This is an over
conditioned equation system, so the result is a best match, not necessarily the correct match. This is
consistent with the fact, that in reality it is a projective transformation. But we will be satisfied with
the affine result.

Now, here is how to find the transformation parameters. We have the design matrix A, the observation
vector l and the unknown vector x, so that:

A ⋅ x = l (5.24)

Where:

















=
MMMMMM

1000
0001

00

00
aa

aa

yx
yx

A ,
















=
M

t

t

y
x

l 0

0

 (5.25)

 5.2 Model Refinement 105

and,



























=

3
2
1
3
2
1

b
b
b
a
a
a

x

 (5.26)

for the affine transformation;
















⋅=
















⋅
















=

















11100
321
321

1
'
'

y
x

Ty
x

bbb
aaa

y
x

 (5.27)

The equation has to be solved for x. This can be done using the least-squares approach.

() lAAAx TT 1−
= , (5.28)

or the singular value decomposition, mentioned in chapter 5.1.5.

This transformation matrix can be used very conveniently to grab the template from the according
image:
















⋅=

















11
template

template

pixel

pixel

y
x

Ty
x

, (5.29)

where the template coordinates are looping over the template array [0…width][0…height]. So this
transformation corresponds to an indirect image resampling, so that we do not have to expect any gaps
in the template.

Finally, the following figure will illustrate the effect of the knowledge based patch distortion. On the
left side you will see a detail of the master image. Just below is the actual master patch. The right
column shows the corresponding part of the slave image. Below on the left is the raw slave patch and
on the right you can see the transformed patch. The patches are also illustrated as frames in the image
details. The second example shows very impressive, that even rotated patches can be grabbed
correctly, so that subsequent correlations will give reliable results.

106 5 Proposed Volumetric Reconstruction Algorithm

a) Two neighboring images and their patches

b) Rotated images and their patches

Figure 5-20: The effect of knowledge-based patch distortion

 5.2 Model Refinement 107

5.2.1.1 Introducing Knowledge about the Approximate Object Shape

Additionally to the image orientation, we can offer the knowledge of the approximate shape of the
object. This is especially the case, after performing volume intersection. The idea is to approximate the
image patch on the surface of the object itself. This patch will then be projected into all candidates for
the image matching. Hence, we need to construct the tangential surface at the voxel of interest. This
solution is already offered in Chapter 5.1.5 where the computation of the surface normal vector is
described. There we already have the surface in the form:

() 0=−⋅ pxn (5.30)

What we would like to do now, is to create a rectangular patch on that surface. It follows that we need
a local 2D coordinate system, as seen in Figure 5-21.

Figure 5-21: Creating a tangential surface patch

We will now create the vector x, with the following two conditions: it is perpendicular to n and
parallel to the XY plane.

It follows that:
















=⇒

0
|| y

x
xXYx (5.31)

108 5 Proposed Volumetric Reconstruction Algorithm

and,

00 =⋅+⋅=⋅+⋅+⋅⇒=⋅ xnxnxnxnxn yyxxzzyyxxxn (5.32)

Choosing xx = ny and yx = -nx delivers the desired vector.

The construction of the vector y can be derived by taking the cross product of n and x.

Figure 5-22 shows the improvement to the patches when considering the object shape. We can clearly
see a difference between the original slave patches while the knowledge based patches show less
variety.

Original images with marked surface patch

Grabbed slave patches without knowledge

Grabbed slave patches with considered distortion

Figure 5-22: The improvement of taking the object shape into account

 5.2 Model Refinement 109

5.2.2 Shell Carving

In this chapter we will introduce an approach to carve away concave areas of a model. We will make
use of some tools which we defined in Chapter 5.1.

As the name suggests, we want to carve away false voxels shell by shell. So we begin by creating the
surface voxel list, which can be considered as a kind of outer shell. Now we will process each voxel in
this list. For each voxel, we will check if it is part of the true surface, which was explained in the last
chapter. The algorithm will stop, if in a shell no voxels are considered false, or if a maximum carving
depth has been reached.

Very briefly, the algorithm can be separated into the following steps:

• Create surface voxel list.

• For each voxel:

• Select three, at least two images with the best view.

• Perform image matching in the selected images.

• Carve the voxel, if considered different; Set a fixed-flag, if considered equal.

If we take a closer look at all these steps, we will have to do more detailed explanation. The creation
of the surface voxel list (SVL) has already been explained. However, it might be worth mentioning,
that in our case it is managed by a dynamic double-linked list. This means that each list item has a
reference to its predecessor and its successor. Dynamic lists are predestined for inserting and deleting
operations, and they are crucial, when the resulting size of the list is known only after some time, as in
our case. As opposed, a fixed array needs to be allocated; therefore the size must be known in the very
beginning.

Now, we want to check each voxel, if it is part of the true surface, hence if it is projected into
corresponding image templates. Therefore, we need to find at least two images, in which this voxel is
visible. From the set of available images, we can first exclude those, where the voxel is occluded. For
this task, we have introduced an operator in chapter 5.1.4.

From the remaining set of images, we will have to choose two or three images, where we can assume
the best visibility. This assumption is based on the surface normal vector. See chapter 5.2.4 for a
detailed explanation. In order to make a comparison, we need at least two images. If only one image
can be determined, an evaluation of this voxel is not possible and it is set as fixed in order not to be
processed again.

If we have two images, we can perform an image matching to see whether the voxel projects into
corresponding image points or not. When three images are available, we can check the similarity with
another pair of templates to improve reliability. At this point, the knowledge based patch distortion
can be applied for a more accurate template matching.

Once a voxel has been found true, a flag is set, stating that this voxel is true and should not be
considered again. Voxels, which are projected to different image patches, will be carved. So shell by
shell, we will normally have an increasing number of fixed voxels, and a decreasing number of carved
voxels, until this number drops below a certain threshold or until a maximum carving depth has been
reached.

110 5 Proposed Volumetric Reconstruction Algorithm

The following pseudo code is once again summarizing the approach:

for (shell=1 … maximum_depth)
{
 create_svl
 for each voxel from svl
 {
 if (voxel is fixed)
 continue loop

 select best visibility images
 if (less than two images selected)
 {
 set fixed for this voxel
 continue loop
 }

 if (master template is homogeneous)
 {
 set fixed for this voxel
 continue loop
 }

 if (different image1, image2)
 {
 carve voxel
 continue loop
 }

 if ((image3 available) AND (different image1, image3))
 {
 carve voxel
 continue loop
 }

 set fixed for this voxel
 }

 if (carved voxels in this shell < threshold)
 break loop
}

In this approach we have several variables, which will influence the result. First there is the size of the
image patches. There is no thumb rule, which size is the best. It depends on the image resolution, the
texture and the differences in the viewpoints.

Furthermore, we can manipulate all the thresholds which appear in the process. In the pseudo code it
can be seen, that we skip homogeneous patches. We can influence the behavior by varying this
parameter. Additionally, we can vary all the thresholds for the similarity checks. The lower we set
those, the more tolerant the algorithm will be, and less voxels will be carved.

This approach is working rather fast, and is accelerating with each shell, due to the increasing number
of fixed voxels. However, it is not the most reliable approach to fix a voxel as true surface, when a
confidence threshold is exceeded. The voxel below can still deliver a better match, but it will never be

 5.2 Model Refinement 111

processed, because its predecessor was sufficiently convincing. It is comparable to the stock market.
At one point, there has to be a decision whether to buy or sell, but the next day could have been much
more profitable, we just did not consider it (because we cannot look into the future). In our carving
algorithm, the information about the next voxel (the future) is there, but we do not make use of it.

The next chapter will show an alternate approach, which does take a set of voxels into consideration,
to choose the best one at the end.

5.2.3 Shape Carving

As we have mentioned, the shell-carving approach is fast, but may not be too reliable. So the
following approach takes over the idea of a milling machine. The machine carves away parts of the
object in individual depths, so that after one pass, the object can theoretically be finished. As opposed,
the previous approach would only take away one voxel in depth at a time.

In our case, the images take over the function of the milling machine. Image by image and pixel by
pixel we will go forward and engrave into the object to a reasonable depth. The depth is, as in the last
chapter, based upon image correlation.

We will need some further explanation. Thus, by defining a pixel in an arbitrary image, we will be
able to find the corresponding object voxel. We have to define an operator for the line tracing, which
will stop, as soon as an object voxel is encountered. This line can now be defined by the pixel, as

p = (x, y, -c)

and the image projection center

p0 = (x0, y0, z0)

We have to trace this line into the voxel cube and apply an operator to detect the first object voxel.
This will also be the line which works as the engraving tool. It is in this direction, which the object
will be carved.

Up to now, our machine is defined by the engraving point and direction. But we need information
about the carving depth. In order to obtain this information, we need at least one other image. As in the
previous chapter, we will select one or two more images which promise the best view, next to the
master image.

Again, we will trace a line. It is the same line, which served to find the object voxel, but here, this very
voxel serves as a start point. A previously defined maximum carving depths delivers the end voxel.
When we define a much more complicated operator, we can trace this line and find the one voxel
which projects into the most similar templates of the two slave images. The master template is
constant throughout the whole tracing. Figure 5-23 illustrates how the depth is being derived.

112 5 Proposed Volumetric Reconstruction Algorithm

Figure 5-23: The ‘milling machine’ approach

During this operation, we can apply the knowledge based patch distortion to the template comparison.
It will definitely slow down the algorithm, but it will also make it more reliable.

After this step, we know the position of the most similar patch. We are not really interested in the
image’s patch coordinates, but only in the corresponding voxel itself. Once again, we will make use of
the line tracing algorithm. As we now will have a line, strictly defined by the first encountered object
voxel and the voxel of maximum similarity. We will run the line tracing with an operator, which sets
all encountered voxels to a predefined value, in this case background.

For each image pixel, we have made use of the line tracing algorithm three times, with the following
operators:

• Find the first object voxel.

• Find the voxel of maximum similarity.

• Set all voxels along the line to background.

While the basic algorithm remains unchanged, we only have to define three operators for these tasks.
This shows again, how powerful and flexible this kind of programming is.

The engraving process is repeated for each pixel in each image. Again, we can set a fixed-flag for the
voxels, to prevent ambiguous evaluation.

 5.2 Model Refinement 113

The pseudo code for this method:

for each image
{
 for each pixel
 {
 let v0 = trace line (find first object voxel)
 if (not found)
 continue loop

 select two images with best visibility
 if (none selected)
 continue loop

 let v1 = trace line (find maximum similarity voxel)
 if (similarity passes threshold)
 trace line [v0-v1](set voxels to background)
 }
}

This code looks simpler than that of the shell carving, but a lot of work is hidden inside the operators,
especially the maximum similarity operator. So it might be worth investigating this one a little bit
further.

As we can see in Chapter 5.1.1.3 the operator has three functions which are called during the line
tracing: an initialization method before the tracing starts, a cleanup method after the tracing breaks and
the per-voxel operator.

Furthermore, since the individual operator is a C++ class, we can store as much information as
necessary into the class. This information is valid and available through the whole tracing procedure
and even after that. In this case we need to store at least the following information:

• Reference to the two slave images

• Two slave templates

• One master template

• Two maximum similarity factors and their positions

In the initialization method we can check the master for possible homogeneous areas. In these cases,
we can already break the algorithm with a failure, before it even started. Furthermore, we need to
initialize the maximum value flags with starting parameters.

The cleanup method is not really necessary, but the major work is done by the per-voxel operator. The
master template is constant for the whole line, but the two slave templates change in position and, if
knowledge is applied, in shape. Therefore, during each call of the operator, the current voxel is
projected into the two slave images and the according templates are grabbed, with or without
distortion. The correlation factors are calculated and the maximum value with its position is updated.
After the tracing finishes, all class members remain valid and can be read from anywhere necessary.
This is where the above pseudo code continues, and eventually the third line tracing starts.

It might be helpful to display some more pseudo code and the definition of the maximum similarity
operator.

114 5 Proposed Volumetric Reconstruction Algorithm

The definition of the operator-class:

class CMaxSimilarity : public CTraceCubeLine
{
public:
 CMaxSimilarity();
 virtual ~CMaxSimilarity();

 virtual bool Init(const vector& start, const vector& end);
 virtual bool CleanUp(bool);

 virtual bool operator ()(const vector& v);

 CBuffer* m_pSlave1;
 CBuffer* m_pSlave2;

 CTemplate m_Master, m_Slave1, m_Slave2;
 CMatrix T1, T2;

 short m_nMaxDepth, m_nDepth;
 short m_nCount[4];
 double m_fMaxSimilarity[4];
};

Pseudo code for the initialization method:

bool CMaxSimilarity::Init(const vector& start, const vector& end)
{
 if (master template is empty OR homogeneous)
 return false // don’t even start

 m_fMaxSimilarity[0] = -1.0;
 m_fMaxSimilarity[1] = -1.0;
 m_fMaxSimilarity[2] = -1.0;

 m_nCount[0] = 0;
 m_nCount[1] = 0;
 m_nCount[2] = 0;

 m_nDepth = m_nMaxDepth;

 return true // ok, start the algorithm
}

 5.2 Model Refinement 115

Pseudo code for the per-voxel operator:

bool CMaxSimilarity::operator ()(const vector& v)
{
 Project voxel into first slave image.
 Grab the slave1 template. (with/without knowledge distortion)
 let c = correlation(master, slave1)
 update (m_nCount[0], m_nMaxSimilarity[0]) with c

 if (slave2 available)
 {
 Project voxel into second slave image.
 Grab the slave2 template. (with/without knowledge distortion)
 let c = correlation(master, slave2)
 update (m_nCount[1], m_nMaxSimilarity[1]) with c

 // cross check:
 let c = correlation(slave1, slave2)
 update (m_nCount[2], m_nMaxSimilarity[2]) with c
 }

 // consider maximum 'Depth' voxels, then stop.
 m_nDepth--
 if (m_nDepth == 0)
 {
 m_nDepth = m_nMaxDepth;
 return false // break the algorithm
 }

 return true // continue next voxel
}

5.2.4 Voting Based Shell Carving

The previously shown approaches will carve the voxels according to one or two evaluated image
patches. Hence, the result is likely to be noisy, i.e. falsely carved voxels.

There are four possible decisions and consequences:

Decision True state Result

Carve voxel Non-surface voxel Correct

Leave voxel Surface voxel Correct

Carve voxel Surface voxel Incorrect

Leave voxel Non-surface voxel Incorrect

Table 5-1: Different error types for carving

We can see that we have a fifty percent chance of making the wrong decision. It is therefore advisable,
to make this decision upon reliable information, or on as much information as possible.

In this approach, we will evaluate every sensible combination of image matching, before deciding,
whether to carve the voxel or not. For this purpose, a second cube is introduced, which will store the
votes of the single decisions.

116 5 Proposed Volumetric Reconstruction Algorithm

We will show in detail, how these votes are counted. As in the shell carving approach, we will
evaluate every surface voxel, shell by shell. Now for every voxel of the list, we are going to run two
more loops.

The first will run through all images, and take a master patch from those, in which the voxel is visible.
Now, for each master patch, we are running a second loop through all following images, where we are
grabbing a slave patch, wherever visible. Every combination of patches will now be available. We
introduce two counters. The first one keeps track of all comparisons we made. The second counts the
number of comparisons which were successful.

The comparison can be made with any of the previously introduced matching approaches, with or
without knowledge based patch distortion. However, the two counter numbers tell us now the
percentage of successful comparisons. Applying a threshold to this percentage will either carve or
leave the voxel.

As usual, we have several ways to influence the behavior of the algorithm. First of all, there is the size
of the patch that we use for comparison. The bigger the patch, the more smoothed will be the carving.
Another crucial element is the decision, whether the image patches are considered similar. This
decision alone consists again of different elements. For instance it depends on the algorithm, on
whether to use patch distortion, and finally the threshold for a successful comparison.

In Figure 5-24, 5 possibilities out of 6 images will be tested considering only direct neighbors. The test
results will give a percentage of success or failure. This percentage will serve as carving decision.

Figure 5-24: Voting-based carving

 5.2 Model Refinement 117

As a summary the pseudo code for this approach is given below:

for (depth=0…maxdepth)
{
 create surface voxel list
 for each voxel (surface voxel list)
 {
 set counter0 = 0
 set counter1 = 0
 for each image (n=0…maximage)
 {
 if (voxel is visible in image)
 {
 grab master patch
 for each image (m=n…maximage)
 {
 if (voxel is visible in image)
 {
 increase counter0
 grab slave patch

 compare master and slave
 if (successful)
 increase counter1
 }
 }
 }
 }

 set percentage = 100 * counter1 / counter0
 set vote-cube(voxel) to percentage
 }
}

This is a very rough version of the algorithm with many possibilities for optimization. For instance, we
ask several times, if a voxel is visible in a specific image. Since this is a time consuming operation,
this should be pre-calculated and stored in a list, so that the actual calculation is only done once per
image. Secondly, when we are sure, that a voxel is definitely a surface voxel, we might set a flag, to
prevent this voxel from being considered another time.

Nevertheless, we are storing the actual voting value inside a new cube. For visualization purposes, this
value is scaled to fit the value range of 0…255, hence percentage*2.55 is actually stored into the cube.
When we now visualize the cube, we can clearly see how the single surface voxels were considered.
The lighter the value, the more certainly it is a surface voxel, and the darker, the safer it is to carve.

The following figure illustrates the results of the voting.

118 5 Proposed Volumetric Reconstruction Algorithm

Figure 5-25: Different viewpoints of the Nefertiti cube. The result of shape from silhouette (left),
refinement by voting based carving (right)

 5.2.43 Texture Mapping 119

5.3 Texture Mapping

In Figure 5-26, you see an approximate, incomplete model acquired by volume intersection method.
Even if the model represented the true shape, it would still not contain color. The comparison of
textured model and non textured model is shown very clearly in Figure 5-26. As seen in the figure
even if we have a rough model, the realism can be increased by applying texture mapping.

Figure 5-26: The approximate model without and with color information

The task is now to apply a color value, typically from a color table to every visible voxel, i.e. every
surface voxel. The information we have is based on the available images from the object. From the
preceding processing steps, we can assume that we have correct orientation data for the images.
Furthermore, all the input images have been reduced 256 colors, so that all the images share the same
color table.

As it is mentioned in previous chapters, only true surface voxels will be projected onto its correctly
corresponding image pixel. Since we are here at the end of the processing chain, we are assuming that
we are supplied with a correct model. So now we have to look for color information for every voxel.
Since normally each voxel is visible in several images, we can chose, which image we take the color
value from. Remembering chapter 5.1.5, we will use the surface normal vector to determine its
enclosing angle with the current ray of sight:

ba
ba

⋅
⋅

= arccosα

We can expect the best visibility, where this angle is smallest. However, the voxel should be visible in
this image. The determination of the smallest angle is therefore not enough. The angle should only be
chosen from the set of images, in which the voxel is visible in the first place. The pseudo-code is as
follows:

120 5 Proposed Volumetric Reconstruction Algorithm

create surface voxel list;
for each voxel in list
{
 set n = surface_normal_vector(voxel);
 set min_angle = 360;
 for each image
 {
 if (voxel is visible in image)
 {
 set angle = VECTOR_ANGLE(n, ray_of_sight);
 set min_angle = MIN(min_angle, angle);
 }
 }
 set img = image corresponding to min_angle;
 set color from projected voxel into img;
 set voxel_color(color);
}

If we take a closer look at the vase, we will see that the handle is occluding some voxels for some
specific images. Hence these images, which have the best view to the occluded voxels, concerning the
viewing angle, cannot see the voxels and therefore should not be concerned. In Figure 5-27 the
example is depicted. We can see a slice from the vase and some camera positions. In three of those
positions, the specified voxel is not visible, although these images would be best candidates according
to the surface normal criterion. From the set of remaining images, the best candidate needs to be
chosen.

Figure 5-27: Considering occluded areas

To clarify this problem, we textured the above vase in the two described ways. It is not too obvious,
but on the left image, where we did not consider visibility, the texture on the handle can also be seen
underneath. Correctly textured, those voxels should contain a different texture, as shown in the right
image, where they are correctly shown black.

This method of texture mapping shows very clearly, how we can achieve an impressive result with the
use of a few simple tools. In this case we made use of the surface voxel list and the surface normal
vector in combination with the line tracing algorithm. On the line tracing we applied the operator to
recover visibility information, as introduced in chapter 5.1.4.

 5.2.43 Texture Mapping 121

a) Projecting color regardless of visibility.

b) Projected visible color.

c) Reference image

d) Voxels visible in the reference image.

Figure 5-28: Projecting color without and with consideration of visibility

 6.1 Contributions 123

Chapter 6 : Contributions and Future Work

6.1 Contributions

For the problems stated in the Chapter 1.5, several algorithms have been proposed. In this thesis fast
and robust voxel processing algorithms are used and the accuracy is improved by traditional
photogrammetric methods. For example, the improvement of the image orientations by bundle block
adjustment resulted in more reliable object reconstructions. Furthermore, since traditional
photogrammetric orientation parameters are introduced to the images individually, we are no longer
limited to a turntable setup, but instead we can chose our viewpoints freely.

The flexible definition of the voxel cube allows a good approximation of the bounding cube around
the object minimizing areas of empty space and therefore allowing making better use of memory,
resulting in a better voxel resolution.

Several algorithms for color image matching are proposed which give an advantage over matching the
images by their grey values ignoring the information stored in the color channels.

The image matching by cross correlation is lacking the ability to compare highly distorted or even
rotated image patches. The image matching, which is the means of comparing the image patches, was
significantly improved by the knowledge-based patch distortion. Knowing the image orientation, a
way to exploit this information is introduced in order to improve the robustness and reliability of cross
correlation. Although time consuming, it is now insensitive against rotation and scaling. However, the
found match can always be improved by least-squares-matching.

2D raster operations can be easily transferred to 3D space. By using 3D morphological filters, the
noise artifacts can be removed from the voxel space.

In the reconstruction process, many tools have turned out to be very helpful. The surface voxel list is
used in many occasions, for example in the computation of the surface normal vector. The surface
normal vector, as the normal vector to the tangential surface, proved to be very helpful, when referring
to an image from a voxel. This vector itself has been used for evaluating candidates for image
matching.

Visibility recovery is very crucial to many tasks. Visibility information is computed by using voxel
line tracing, which has turned out to be one of the most versatile and powerful tools, whose purpose
serves beyond this thesis, since it has been programmed in the most flexible way. The finding of the
first object voxel along the line of sight is yet another example for the simple use of the line tracing. A
more complicated example is the calculation of the highest similarity of image patches, considering
epipolar geometry. An operator is introduced that could solve this problem.

The approximate model from volume intersection is improved successfully by combining all these
tools.

124 6 Contributions and Future Work

6.2 Future Work

The major limitation of creating the approximate model by shape from silhouette is the silhouette
extraction which is performed by image segmentation. This requires a homogeneous background and
therefore poses an obstacle to the camera setup. We always have to ensure to place the object in front
of a homogeneous background, which is especially unlikely in outdoor projects under non perfect
conditions. It is preferable to get rid of this limitation, by either finding an extraction method without
homogeneous background or by getting rid of the approximation itself.

However, when worked under laboratory conditions, the results can be improved by optimizing the
illumination. This would also allow us to support critical regions by other methods like shape from
shading. Although the combination with the color image matching to get into the concavities gives
good results for textured regions of the object, it is not reliable for non-textured regions.

In the future, we would like to check the current algorithms for further automation, for example the
automatic measurement of tie points and the elimination of errors in the adjustment process. The scope
of this thesis is to model 3D objects from its images, therefore automatic measurement of tie points
were not investigated. The algorithms proposed here can be automated referring to the Ph.D. thesis of
Rodehorst [RODEHORST, 2004].

 Literature 125

Chapter 7 : Literature
[ACKERMANN, 1984] Ackermann F.: Digital Image correlation: performance and

potential application in photogrammetry, The Photogrammetric
Record, 11(64), 1984, pp. 429-439.

[ALIAGA, 2001] Aliaga D. G., Carlbom I.: Plenoptic Stitching: A Scalable
Method for Reconstructing 3D Interactive Walkthroughs,
Proceedings of SIGGRAPH, 2001, pp. 443-450.

[AMANATIDES, 1987] Amanatides, J., Woo A.: A Fast Voxel Traversal Algorithm for
Ray Tracing, Proc. Eurographics '87, pp. 1-10.

[BOTTINO, 2001] Bottino A., Laurentini A.: Non Intrusive Silhouette Based
Motion Capture, Proc. Of 4th World Multiconference on
Computer Graphics, Visualization and Computer Vision
WSCG’2001, pp. 5-9, 2001.

[CHEN-I, 1993] Chen S. E., Williams L.: View interpolation for image
synthesis, Computer Graphics, SIGGRAPH’93, pp. 279-288.

[CHEN-II, 1995] Chen S. E.: Quick Time VR – an image based approach to
virtual environment navigation, Computer Graphics
(SIGGRAPH’95), pp. 29-38.

[CHIEN, 1986] Chien C. H., Aggarwal J. K.: Identification of 3D Objects from
Multiple Silhouettes Using Quadtrees/Octrees, Computer
Vision, Graphics, and Image Processing 36, 1986, pp. 256-273.

[COLLINS, 1996] Collins R. T.: A space-sweep approach to true multi-image
matching, In Proceedings Computer Vision and Pattern
Recognition Conference, 1996, pp. 358-363.

[CULBERTSON, 1999] Culbertson W. B., Malzbender T., Slabaugh G.: Generalized
Voxel Coloring, International Workshop on Vision Algorithms,
Corfu, Greece, 1999, Springer Verlag Lecture Notes on
Computer Science, ISBN 3-540-67973-1, pp. 100-115.

[CURLESS-I, 1996] Curless B. and Levoy M.: A Volumetric Method for Building
Complex Models from Range Images, Proc. ACM SIGGRAPH
96, 1996, pp. 303-312.

[CURLESS-II, 1997] Curless B.: New methods for Surface Reconstruction from
Range Images, Ph.D. Thesis, Stanford University, 1997.

[DEBEVEC, 1996] Debevec P. E.: Modeling and Rendering Architecture from
Photographs, Ph.D. Thesis, University of California at
Berkeley, Computer Science Division, CA, 1996.

[DE BONET, 1999] De Bonet J. S. and Viola P.: Responsibility Weighted 3D
Volume Reconstruction, Proceedings of the IEEE International
Conference on Computer Vision, 1999, Vol 1, pp. 415-425.

126 Literature

[EBNER, 1987] Ebner H., Fritsch D., Gillessen W., Heipke C.: Integration von
Bildzuordnung und Objectrekonstruktion innerhalb der
Digitalen Photogrammetrie, Bildmessung und Luftbildwesen:
Zeitschrift fuer Photogrammetrie und Fernerkundung, 1987, 55
(5):194-203.

[DYER, 2001] Dyer C. R: Volumetric Scene Reconstruction from Multiple
Views, Foundations of Image Understanding, 2001, pp. 469-
489.

[EISERT, 1999] Eisert P., Steinbach E. and Girod B.: Multi Hypothesis,
Volumetric Reconstruction of 3-D Objects from Multiple
Camera Views, Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, 1999, pp. 3509-3512.

[FAUGERAS, 1998] Faugeras O., Keriven R.: Variational Principles, surface
evolution, pde’s, level set methods and the stereo problem,
IEEE Transactions on Image Processing, 1998, vol. 7, no. 3, pp.
336-344.

[GORTLER, 1996] Gortler S. J., Grzeszczuk R., Szeliski R., Cohen M. F.: The
Lumigraph, SIGGRAPH’96, 1996, Computer Graphics
Proceedings, Annual Conference Series, pp. 43-54.

[GRUEN, 1985] Gruen A.: Adaptive least squares correlation: A powerful image
matching technique, S Afr J of Photogrammetry, Remote
Sensing and Cartography, Vol. 14, No. 3, 1985, pp. 175-187.

[HAHN, 1995] Hahn M., Brenner C.: Area Based Matching of Colour Images,
International Archives of Photogrammetry and Remote Sensing,
vol. 30, part 5W1, Zurich, pp. 227-236.

[HARTLEY, 2000] Hartley R., Zisserman A.: Multiple View Geometry in
Computer Vision, Cambridge University Press, 2000.

[HORN, 1970] Horn B. K. P.: Shape From Shading: A New Method for
Obtaining the Shape of a Smooth Opaque Object from One
View, Ph.D. Thesis, Dept of EE, MIT, 1970.

[HSBVIS] Sinram O.: http://www.fpk.tu-berlin.de/~sinram/Cpp/

[JEBARA, 1999] Jebara T., Azarbayejani A., Pentland A.: 3D Structure from 2D
Motion, IEEE Signal Processing Magazine, 1999, vol. 16, no. 3,
pp. 66-84.

[KAUFMAN-I, 1993] Kaufman A., Cohen D., Yagel R.: Volume Graphics, IEEE
Computer, 1993, Vol. 26, No. 7, pp. 51-64.

[KAUFMAN-II, 1996] Kaufman A.: Voxels as a Computational Representation of
Geometry, SIGGRAPH Course Notes, 1996.

[KOSCHAN-I, 1993] Koschan A.: Dense Stereo Correspondence Using
Polychromatic Block Matching, In Proc. of the 5th Int. Conf. on
Computer Analysis of Images and Patterns (CAIP’93),

 Literature 127

Chetverikov D., Kropatsch W. (eds.), Budapest, Hungary, 1993,
pp. 538-542.

[KOSCHAN-II, 1997] Koschan A., Rodehorst V.: Dense Depth Maps by Active Color
Illumination and Image Pyramids, Advances in Computer
Vision, Solina F., Kropatsch W.G., Klette R., Bajcsy R. (eds.),
1997, Springer, pp. 137-148.

[KRAUS, 1997] Kraus K.: Photogrammetry, Dümmlers Verlag, 1997, Band 2.
pp. 15-19, Band 1. pp. 349.

[KUTULAKOS-I, 1998] Kutulakos K. N., Seitz S. M.: A Theory of Shape by Space
Carving, University of Rochester CS Technical Report 692,
1998.

[KUZU-I, 2001] Kuzu Y. and Rodehorst V.: Volumetric Modeling using Shape
from Silhouette, Fourth Turkish-German Joint Geodetic Days.,
2001, pp. 469-476.

[KUZU-II, 2002] Kuzu Y. and Sinram O.: Photorealistic Object Reconstruction
using Voxel Coloring and Adjusted Image Orientations,
ACSM/ASPRS Annual Conference, Washington DC, 2002,
Proceedings CD-ROM, Proceed\00437.pdf.

[KUZU-III, 2002] Kuzu Y.: Photorealistic object reconstruction using color image
matching, ISPRS Commission V Symposium 2002, Close-
Range Vision Techniques, Corfu, Greece, pp. 169-174, 2002.

[KUZU-IV, 2003] Kuzu Y. and Sinram O.: Volumetric Reconstruction of Cultural
Heritage Artifacts, CIPA 2003, 19th International Symposium,
Antalya, Turkey.

[LAURENTINI, 1995] Laurentini A.: How far 3D Shapes Can Be Understood from 2D
Silhouettes, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1995, Vol.17, No.2.

[LEVOY, 1996] Levoy M. and Hanrahan P.: Light Field Rendering, Computer
Graphics Proceedings, Annual Conference Series, 1996, pp 31-
42, SIGGRAPH’96.

[LIPPMAN, 1980] Lippman A.: Movie-Maps: An Application of the Optical
Videodisc to Computer Graphics, Proceedings of SIGGRAPH
1980, pp. 32-43.

[LUHMANN, 2000] Luhmann T.: Nachbereichsphotogrammetrie Grundlagen,
Methoden und Anwendungen, Herbert Wichmann Verlag,
2000, pp. 214-216, pp.463-464.

[MAAS, 1992] Maas H. -G.: Robust Automatic Surface Reconstruction with
Structured Light, International Archives of Photogrammetry
and Remote Sensing, 1992, Vol. XXIX, Part B5, pp. 102-107.

[MAAS, 1994] Maas H. –G., Stefanidis A., Gruen A.: From Pixels To Voxels:
Tracking Volume Elements In Sequences Of 3-D Digital

128 Literature

Images, International Archives Of Photogrammetry And
Remote Sensing, 1994, Vol. 30, Part 3/2.

[MARTIN, 1983] Martin W. N., Aggarwal J. K.: Volumetric Descriptions of
Objects from Multiple Views, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1983, Vol. PAMI-5, No.2.

[MATHERON, 1975] Matheron G.: Random Sets and Integral Geometry, New
York: Wiley, 1975.

[MATUSIK, 2000] Matusik W., Buehler C., Raskar R., Gortler S. J., McMillan L.:
Image-Based Visual Hulls, SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, 2000, pp.
369-374.

[NAYAR, 1995] Nayar S., M. Watanabe, M. Noguchi: Real-time focus range
sensor, Proceedings of IEEE International Conference on
Computer Vision, 1995, pp.995-1001.

[NIEM, 1994] Niem W.: Robust and Fast Modeling of 3D Natural Objects
from Multiple Views, Proceedings of Image and Video
Processing II, Vol. 2182, 1994, pp. 388-397.

[OLIVERIA, 2002] Oliveira M. M.: Image-Based Modeling and Rendering
Techniques: A Survey, RITA - Revista de Informática Teórica e
Aplicada, October 2002,Volume IX, Number 2, pp. 37-66.

[OSHER, 1988] Osher S. and Sethian J.: Fronts propagating with curvature
dependent speed: Algorithms based hamilton-jakobi
formulation, Journal of Computational Physics, 1988, vol. 79,
pp. 12-49.

[POTMESIL, 1987] Potmesil M.: Generating Octree Models of 3D Objects from
Their Silhouettes in a Sequence of Images, Computer Vision,
Graphics and Image Processing 40, 1987, pp.1-29.

[PROCK, 1998] Prock A. C. and Dyer C.R.: Towards Real Time Voxel
Coloring, Proc. 1998 Image Understanding Workshop, pp. 315-
321.

[RODEHORST, 2004] Rodehorst V.: Photogrammetrische 3D-Rekonstruktion im
Nachbereich durch Auto-Kalibrierung mit projektiver
Geometrie, Ph.D. Thesis, Berlin Technical University, 2004.

[RUSINKIEWICZ-I, 2001] Rusinkiewicz S.: Sensing for Graphics,
http://www.cs.princeton.edu/courses/archieve/-fall01/cs597d,
2001.

[SEITZ-I, 1996] Seitz S. M., Dyer C. R.: View Morphing, Computer Graphics
Proceedings SIGGRAPH’96, pp. 21-30.

[SEITZ-II, 1997] Seitz S. M. and Dyer C. R.: Photorealistic Scene Reconstruction
by Voxel Coloring, Proceeding of Computer Vision and Pattern
Recognition Conference, 1997, pp. 1067-1073.

 Literature 129

[SERRA, 1982] Serra J.: Image Analysis and Mathematical Morphology,
London: Academic Press, 1982.

[SHADE, 1998] Shade J., Gortler S., He L. –W., Szeliski R.: Layered Depth
Images, Computer Graphics Proceedings, SIGGRAPH’98, pp.
231-242.

[SHUM, 1999] Shum H. –Y., He L. –W.: Rendering with concentric mosaics,
Proceedings of SIGGRAPH’99, Los Angeles, pp. 299-306.

[SLABAUGH-I, 2000] Slabaugh G., Culbertson W. B., Malzbender T. and Schafer R.:
Improved Voxel Coloring via Volumetric Optimization,
Technical Report 3, Center for Signal and Image Processing,
Georgia Institute of Technology, 2000.

[SLABAUGH-II, 2000] Slabaugh G., Malzbender T. and Culbertson W. B.: Volumetric
Warping for Voxel Coloring on an Infinite Domain,
Proceedings of the Workshop on 3D Structure from Multiple
Images for Large Scale Environments (SMILE), 2000, pp. 41-
50.

[SLABAUGH-III, 2001] Slabaugh G., Culbertson W. B., Malzbender T. and Schafer R.:
A survey of methods for volumetric scene reconstruction from
photographs, In International Workshop on Volume Graphics,
Stony Brook, New York, 2001.

[SLABAUGH-IV, 2002] Slabaugh G., Schafer R. and Hans M.: Multi-Resolution Space
Carving with Level Set Methods, in ICIR, 2002.

[SRIVASTAVA, 1990] Srivastava S. K., Ahuja N.: Octree Generation from Object
Silhouettes in Perspective Views, Computer Vision, Graphics
and Image Processing 49, 1990, pp. 68-84.

[STEINBACH, 2000] Steinbach E., Girod B., Eisert P., Betz A.: 3-D Object
Reconstruction Using Spatially Extended Voxels and Multi-
Hypothesis Voxel Coloring, Proc. ICPR’00, Barcelona, Spain,
2000.

[STEVENS, 2002] Stevens R., Culbertson B., Malzbender T.: A Histogram Based
Color Consistency Test for Voxel Coloring, Proceedings of
ICPR, Quebec City, Quebec, Canada, 2002.

[SZELISKI-I, 1990] Szeliski R.: Real-time octree generation from rotating objects,
Technical Report 90/12, Digital Equipment Corporation,
Cambridge Research Lab, December 1990.

[SZELISKI-II, 1991] Szeliski R.: Shape from rotation, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR'91), 1991, pp. 625-630.

[SZELISKI-III, 1994] Szeliski R. and Kang S. B.: Recovering 3D shape and motion
from image streams using nonlinear least squares, Journal of
Visual Communication and Image Representation, March 1994,
5(1):10-28.

130 Literature

[SZELISKI-IV, 1998] Szeliski R. and Golland P.: Stereo Matching with transparency
and Matting, International Journal of Computer Vision, 1998,
pp. 517-523.

[SZELISKI-V, 2001] Szeliski R.: Image and Video- Based Modeling and Rendering,
The 4th International Workshop on Cooperative Distributed
Vision, March 22-24, Kyoto, Japan, 2001.

[TOMASI, 1992] Tomasi C., Kanade T.: Shape and motion from image streams
under orthography: A factorization method. International
Journal of Computer Vision, 1992, 9(2):137-154.

[VENDULA, 1998] Vedula S., Rander P., Saito H., Kanade T.: Modeling,
Combining, and Rendering Dynamic Real-World Events from
Image Sequences, Proc. 4th Conference on Virtual Systems and
Multimedia (VSMM98), November, 1998, pp. 326-332.

[TVHP] The Visible Human Project, National Library of Medicine,
http://www.nlm.nih.gov/research/visible/visible_human.html

[WIEDEMANN, 2000] Wiedemann A., Hemmleb M., Albertz J.: Reconstruction of
Historical Buildings Based on Images from the Meydenbauer
archives, IAPRS, Vol. XXXIII, Amsterdam 2000, B5/2, pp.
887-893.

[WROBEL, 1987] Wrobel B.: Digitale Bildzuordnung durch Facetten mit Hilfe
von Objektraummodellen, Bildmessung und Luftbildwesen,
1987, Vol. 55, No 3, pp. 93-101.

 Curriculum Vitae 131

Curriculum Vitae

Surname, Name: Kuzu, Yasemin

Date of Birth: 21. 01. 1971

Nationality: Turkish

Education:

 1999-2004 Berlin Technical University, Faculty of Civil Engineering and

Applied Geosciences, Division of Photogrammetry and
Cartography, Ph.D.

 1993-1996 Bogazici University, Kandilli Observatory and

Earthquake Research Institute,

Geodesy Department, M. Sc. Eng.

 1988-1992 Yildiz Technical University, Faculty of Civil Engineering,

 Department of Geodesy and Photogrammetry, BS.

 1984-1987 Erenkoy Kiz Lisesi, High School Degree

Work Experience:

 1998-Present Yildiz Technical University Division of

Photogrammetry and Remote Sensing

Research Assistant

 1996-1998 Baytur & Weidleplan J. V.

 Chief engineer of Infrastructure Department.

 1992-1996 Municipality, Surveying Engineer

