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Zusammenfassung

Gegenstand dieser Dissertation ist die Untersuchung von Laughlins Wellenfunktion auf einem
Zylinder. Die Ergebnisse sind sowohl für die Theorie des fraktionalen Quanten-Hall-Effekts
als auch für die klassische statische Mechanik geladener Teilchen in einem neutralisierenden
Hintergrund von Interesse.

Wir zeigen, dass Laughlins Wellenfunktion als “Quanten-Polymer-System” dargestellt
werden kann. Die L2-Norm ist die Zustandssumme eines Polymersystems mit translations-
invarianter Aktivität. Die Aktivität kann zu einer stabilen Aktivität reskaliert werden. Das
Polymersystem steht wiederum in engem Zusammenhang mit einem Erneuerungsprozess.
Unter der Voraussetzung einer endlichen mittleren Wartezeit in diesem Prozess zeigen wir,
dass Laughlins Zustand einen wohldefinierten thermodynamischen Limes besitzt. Dabei
lassen wir die Länge des Zylinders bei konstanter Dichte und konstantem Radius gegen un-
endlich gehen. Der Grenzzustand ist invariant und mischend bzgl. bestimmter Translationen
längs der Zylinderachse. Bei Füllfaktor 1/p ist die Periode gerade das p-fache der Periode
des gefüllten Landaubandes. Für hinreichend dünne Zylinder zeigen wir, dass die Wartezeit
des Erneuerungsprozesses tatsächlich endlich ist und die soeben erwähnte Periode auch die
kleinste Periode ist.

Weiter definieren wir modifizierte Zylinder- und Torusfunktionen, die ebenfalls in Ver-
bindung zu Polymersystemen stehen. Die Definition verwendet Funktionen mit kompaktem
Träger. Bei hinreichend kleinem Träger entspricht die Zylinderfunktion einem Monomer-
Dimer-System, während die Torusfunktion einem Monomer-Dimer-System auf einem Ring,
möglicherweise noch mit einem zusätzlichen langen Polymer, entspricht. Dieses Monomer-
Dimer-System ist explizit lösbar; Torus- und Zylinder- Monomer-Dimer- Funktionen sind im
Limes langer Zylinder äquivalent.

Wir gehen auf die Bedeutung unserer Ergebnisse im Sinne von Laughlin’s Plasmaanalogie
ein. Wir zeigen, dass im Limes dünner Zylinder unsere Ergebnisse bzgl. der Normierungskon-
stanten bzw. freier Energien und bzgl. der Einteilchendichten konsistent mit bekannten
Ergebnissen über eindimensionale Plasmasysteme sind. Ferner zeigen wir, dass unsere Schran-
ken über Normierungskonstanten gut zu Asymptotiken der freien Energien breiter halbperi-
odischer Streifen passen.

Laughlins Funktion bei Füllfaktor 1/3 ist der exakte Grundzustand eines geeigneten
Hamiltonoperators. Wir weisen nach, dass Grundzustände dieses Hamiltonoperators mit un-
endlich vielen Teilchen bei Füllfaktor 1/3 notwendigerweise eine Symmetriebrechung aufweisen,
wenn es eine Spektrallücke über dem Grundzustand gibt.

Schließlich betrachten wir ein einfaches Modell für Ladungstransport auf Zylindern und
untersuchen den Zusammenhang zwischen der Periodizität der Einteilchendichte und frak-
tionalem Ladungstransport.
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Abstract

We investigate Laughlin’s wave function on a cylinder. The results are of interest for the
fractional quantum Hall effect and for the classical statistical mechanics of charged particles
moving in a neutralizing background.

We show that Laughlin’s cylinder function is related to a “quantum polymer” system.
The L2-norm squared is a polymer partition function with translationally invariant activity.
The activity can be rescaled to a stable activity. The polymer system is related to a renewal
process. We show that if the renewal process has finite mean, Laughlin’s state on the cylinder
has a well-defined thermodynamic limit as the cylinder gets infinitely long, the radius being
kept fixed. The limiting state is invariant and mixing with respect to shifts along the axis. At
filling factor 1/p, the period is p times the period of the filled Landau band. On sufficiently
thin cylinders, we show that the associated renewal process has indeed finite mean and the
period mentioned above is the smallest period.

We define a class of modified torus and cylinder Laughlin-type wave functions. These
are still associated with polymer systems. The definition uses functions of compact support.
If the support is small, the cylinder function is associated with a monomer-dimer system,
and the torus function with a monomer-dimer system on a ring with possibly one additional
long polymer. The monomer-dimer case is solvable, and monomer-dimer cylinder and torus
functions are equivalent in the limit of long cylinders.

We interpret our result in view of Laughlin’s plasma analogy. We show that in the limit
of thin cylinders, our results on normalization / free energies and the one-particle density
are consistent with existing results on one-dimensional systems. We show that our bounds
on normalization constants are consistent with large strip asymptotics of the free energy of
a jellium system on a semiperiodic strip.

Laughlin’s function at filling factor 1/3 is the ground state of a suitable Hamiltonian.
We show that, on the cylinder, gapped infinite volume ground states of this Hamiltonian
necessarily display a kind of translational symmetry breaking.

Finally, we look at a simple model of bulk charge transport on the cylinder and examine
the relationship between our symmetry breaking result and fractional charge transport.
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Introduction

The classical Hall effect, named after its discoverer E. Hall, is a well-known electrodynamic
phenomenon: when a current IH flows through a thin sheet of conducting material in the
form of a bar, subject to a magnetic field perpendicular to the sheet, a potential difference
VH between opposite sides of the bar appears. According to classical electrodynamics, the
Hall conductance σH = IH/VH is a linear function of the ratio n/B of the areal charge carrier
density and magnetic field strength.

Hundred years after the discovery of the Hall effect, K. von Klitzing and his collaborators
[KDP80] observed experimentally that at low temperatures, the Hall conductance is not a
linear function of n/B; instead, it has plateaus where the conductance equals an integer
multiple of a fundamental unit. This is the integer quantum Hall effect (IQHE). Later,
plateaus at fractional multiples were found [TSG82], giving rise to the fractional quantum
Hall effect (FQHE).

Since their discovery in the early 1980s, the integer and fractional quantum Hall effects
have spurred a wealth of research among experimental, theoretical and mathematical physi-
cists. A large body of knowledge is now general consensus and can be found in one of the
many books and reviews on the quantum Hall effect, see e.g. [PG87, Yos98, DDPR04]. A
number of mathematical results are available (a good review can be found in [BvESB94]).
Some questions are still controversial while others have well-accepted, but yet unproved an-
swers. Meanwhile, the theory of the quantum Hall effect has reverberated on other fields,
including quantum computation [Day05], models for Mott insulators [LL04], spin systems
[KL87] and rotating Bose condensates [WGS98].

The integer quantum Hall effect is in general explained in terms of independent elec-
trons (see however [SG04]). In contrast, electron interactions are of utmost importance for
the understanding of the fractional effect. Consequently, the FQHE led to an intense research
on the nature of the ground state of the electron gas in FQHE samples. Early numerical
computations confronted theoreticians with an interesting phenomenon: the degeneracy of
the ground state depends on the geometry of the sample. On rectangles with quasiperi-
odic boundary conditions - i.e., tori - a degeneracy, associated to a translational symmetry
breaking, was observed, whereas explicitly isotropic geometries like the disk and sphere had
non-degenerate ground states (see [Hal85] and the references therein). The degeneracy of
FQHE ground states on tori was initially dismissed as physically irrelevant [Hal85]. Later,
the very fact that degeneracy depends on geometry has been considered as an intrinsic fea-
ture of FQHE systems, in close connection with the notion of topological order now popular
among physicists [WN90]. From a more mathematical point of view however, it is not very
suprising that boundary conditions affect the finite volume degeneracy, and the interesting
question is whether infinite volume ground states are degenerate or not.

Today, it is widely accepted that electrons at FQHE fractions form an “incompressible
quantum fluid” whose bulk properties are well described by Laughlin’s wave function [Lau83].
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2 INTRODUCTION

The wave function has been initially proposed to describe electrons on a disk, but since then
has been adapted to the cylinder [Tho84], torus [HR85b] and sphere [Hal83]. Laughlin in-
voked a plasma analogy to conclude that his disk function describes a homogeneous electron
gas. While the existence of the thermodynamic limit of the free energy for Coulomb systems
has been proved a while ago [LL72], analytical results pertaining to correlation functions are
more sparse, see the review by Brydges and Martin [BM99]. The homogeneity of the plasma
related to Laughlin’s function follows from numerical results; proofs are to our knowledge
still missing.

The present work is devoted to the study of Laughlin’s wave function on a cylinder. This
choice is motivated by the use of the cylinder geometry in another famous contribution by
Laughlin [Lau81], which has now come to be known as Laughlin’s argument. Let us briefly
sketch the main mathematical problem underlying this thesis. Consider the function ΨN of
N complex variables zj = xj + iyj defined through

ΨN (z1, .., zN ) :=
∏

1≤j<k≤N

(ezj/R − ezk/R)pe−
1
2

PN
j=1 x2

j ,

where R is a positive number and p an odd integer. The function ΨN has the period 2πR in
each yj . Thus we may consider that it describes a gas of N electrons moving on a cylinder
of radius R. The position of each particle is specified by a complex number z = x+ iy; x is
the coordinate along the cylinder axis, y is an angular variable. ΨN is Laughlin’s cylinder
wave function. The density of the gas at position z is

ρN (z) =
N

||ΨN ||2L2

∫

(R×[0,2πR])N−1

|ΨN (z, x2 + iy2, .., xN + iyN )|2dx2 dy2..dxN dyN .

One can show that the density is a function of the coordinate x alone and decays exponentially
outside [0, pN/R]. Thus Laughlin’s cylinder function describes a gas of electrons living on a
finite cylinder. The quantity ν = 1/p is related to the average density and is called the filling
factor. At filling factor 1/p = 1 (referred to as the filled Landau level), the density can be
computed explicitly and is a sum of equally weighted Gaussians centered in integer multiples
of 1/R. The following conjecture pertaining to p > 1 is at the heart of the present work:

In the limit N → ∞, well in the middle of the finite cylinder, the electronic
density approaches a function of the coordinate along the cylinder axis that is
periodic with minimal period p/R.

We will be interested not only in the one-particle density but also in other correlation func-
tions. We will look at the problem both in the FQHE context and from the point of view of
classical Coulomb systems.

The question of non-trivial periodicity on the cylinder is motivated by the combination
of the contributions of Laughlin to the integer [Lau81] and the fractional [Lau83] quantum
Hall effect. In [Lau81], Laughlin uses a the cylinder geometry and gauge invariance argu-
ments to explain the IQHE. It has been suggested [TW84] that a ground state degeneracy is
required on cylinders in order to reconcile Laughlin’s argument with fractionally quantized
Hall conductances; the simplest picture is a p-fold degeneracy associated to a p-fold transla-
tional symmetry breaking, as conjectured for Laughlin’s cylinder state. This rather heuristic
connection between ground state degeneracy is rigorously established for systems on tori. In
the Chern number approach, fractional quantization of the Hall conductance implies ground



INTRODUCTION 3

state degeneracy [KS90].

Our results are backed by a number of existing works. Rezayi and Haldane [RH94] in-
vestigated the dependence of the cylinder density ρN on the cylinder radius. They showed
that if the numbers of particles is finite and fixed, there is a well pronounced periodicity as
the radius R gets small. Similar results have been obtained numerically for the Laughlin-type
wave functions on tori [SFL+05, LL04]. Let us mention here that the thin torus picture has
also been used for investigations on more complicated filling fractions, see e.g. [BK06].

Laughlin connected his wave function to the theory of classical Coulomb systems by ob-
serving that the modulus squared of the disk function is the Boltzmann weight of a classical
one-component plasma. This plasma analogy can be transferred to the cylinder geometry.
The symmetry breaking phenomenon is well-known at coupling constant Γ = 2, correspond-
ing to filled Landau level functions (i.e., Laughlin functions with filling factor 1/p = 1)
[CFS83]. Translational symmetry breaking has been proved to occur for one-dimensional
systems [Kun74, BL75]. Based on the Γ = 2 and one-dimensional results, [ŠWK04] have
investigated numerically jellium tubes at coupling constants Γ = 2p. Unlike in [RH94], they
vary the number of particles as well as the radius, and find that a periodicity appears in the
limit of long jellium strips; again, the amplitude of oscillations is large when the strip is thin.
The periodicity of the charge density in jellium tubes is conjectured also in [AGL01].

In view of the plasma analogy, results on the L2 norm of Laughlin’s wave function give
information on free energies. The asymptotic behavior of the jellium strip free energy as the
strip gets large has been examined by Forrester [For91], who also studied the plasma analogy
on tori [For06], motivated by the question of universal finite-size corrections of Coulomb free
energies (see also [TT04]).

Laughlin’s wave function is essentially the power of a Vandermonde determinant. It can
be expanded in Slater determinants of lowest Landau level basis functions; the expansion
coefficients are closely related to the expansion coefficients of powers of Vandermonde deter-
minants, written as a sum over monomials. Di Francesco et al. [FGIL94] and Dunne [Dun93]
investigate Laughlin’s disk wave function from this point of view. The relation with the FQHE
has also spurred combinatorial work on the Vandermonde determinant [STW94, KTW01].

The main point behind the proof of our results is a product rule for expansion coefficients
of Vandermonde determinants established in [FGIL94]. We use this product rule to represent
Laughlin’s wave function as a quantum polymer system: we choose this denomination because
of the analogy to the quantum dimer model, proposed by Rokhsar and Kivelson [RK88] as
an idealization of resonating valence bond states.

The thesis is organized as follows:

Chapter 1 gives a synthetic presentation of the Laughlin-type wave functions and some back-
ground material on particles in magnetic fields and Laughlin’s plasma analogy.

In Chapter 2, we prove the main results of our thesis: For sufficiently small cylinder
radius, the thermodynamic limit of Laughlin’s cylinder state exists and defines a periodic,
mixing state with minimal period p/R. The key ingredient is the representation of Laughlin’s
wave function as a quantum polymer. The L2-norm is a one-dimensional polymer partition
function. It satisfies a recurrence relation known in stochastics as a renewal equation. If
the associated renewal process has finite mean interarrival time, the (non-quantum) polymer
system has a well-defined thermodynamic limit, closely related to the thermodynamic limit
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of Laughlin’s state.
We define a class of solvable models by replacing Gaussians with functions of compact

support. The cylinder and torus functions can still be represented as polymer systems. When
the support of the compact functions is small, the system is a pure monomer system. As
the support gets larger, the system becomes a monomer-dimer system and then - without
intermediary steps - a system where polymers of arbitrary length have non-vanishing activity.
The monomer and monomer-dimer cases define solvable models. When the cylinder system
is a monomer-dimer system, the modified torus function is a monomer-dimer system on a
ring, with possibly one long additional polymer covering the whole ring, and we can prove
the equivalence of cylinder and torus wave functions in this setting.

We translate our results into the jellium picture. This allows an interpretation of results
on the asymptotics of normalization constants in terms of free energies, and also sheds some
light on the renewal equation.

In the last section, we reexamine the results in the light of the characterization of Laugh-
lin’s wave function at filling factor 1/3 as an exact ground state of truncated interactions
[Hal83, PT85, TK85]. We adapt an argument by Koma [Kom04] that shows that the sym-
metry breaking is to be expected if the truncated interaction has a gapped ground state.
This result should be understood as a consistency check of different assumptions on FQHE
systems: the FQHE ground state at simple filling fractions is expected to be gapped and
incompressible. If the truncated interaction with Laughlin’s wave function as ground state
reproduces this feature, symmetry breaking necessarily follows.

In Chapter 3, we examine the charge transport on cylinders (and tori). We recall Laugh-
lin’s argument and the Chern number approach. We present the Chern number approach in
a way that allows a simple comparison with the cylinder setting and prove that the adiabatic
curvatures in absence of background interactions can be expressed in terms of the one-particle
density. We examine a simple model of charge transport on cylinders, closely following the
approach to the IQHE in [Ric00], Chapter 1.

Acknowledgements At this point I would like to express my gratitude to Prof. R. Seiler
and Prof. E.H. Lieb for their continous support and their invaluable help. This thesis would
not have been possible without their contribution. I thank Prof. H. Schulz-Baldes for useful
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me, and R. Siegmund-Schultze for his help on renewal processes. I would also like to thank
Prof. Y. Avron for bringing [Osh00] to my attention and Prof. D. Brydges for pointing
out [TT04]. Furthermore, I am deeply indebted to colleagues, friends and family for their
support, patience and encouragement.



Chapter 1

Laughlin’s wave function

The object of this thesis is the investigation of Laughlin’s wave function on a cylinder. The
Laughlin wave function is essentially a power of a Vandermonde polynomial; it is a very
simple function, and in principle we could write down the function and the integrals defin-
ing the reduced correlation matrices, and formulate in a few lines the problem we wish to
solve as sketched in the Introduction. We take a different approach and give some back-
ground information, in more detail than strictly necessary for the proofs of the main results
of this thesis. The connection to the fractional quantum Hall effect is explained in Chapter 3.

Laughlin’s wave function was introduced as an approximate ground state for electrons in a
magnetic field. We start by recalling some basic facts on particles in a magnetic field (Section
1.1). Then we give the definition of Laughlin-type wave function in different geometries (Sec-
tion 1.2). The Laughlin wave functions are indexed by odd integers p, related to the average
density of the electron gas they describe. The function pertaining to p = 1 corresponds to
the filled Landau level; on a cylinder, it describes an electron gas with a periodicity along
the cylinder axis (Section 1.3). The Laughlin functions can be characterized as exact ground
states of truncated interactions, which we present in detail in Section 1.4. The existence of
gaps, of truncated interactions as well as “real” Hamiltonians, is related to the notion of in-
compressibility. Since the connection between these notions is often left implicit, we explain
this precisely in Section 1.5. Finally, we present the plasma analogy relating the modulus
squared of the wave functions considered to Boltzmann weights of classical one-component
plasma (Section 1.6).

Most of the material presented in this chapter summarizes well-known facts. The presentation
given here differs from the usual presentation by the simultaneous treatment of different
geometries and the addition of some details and proofs generally omitted in the physics
literature.

1.1 Particles in a magnetic field

The Laughlin wave functions are considered as good approximations to the ground state
of a two-dimensional, spin-polarized interacting electron gas in a magnetic field. Before we
introduce the wave functions, let us summarize some facts about the quantum mechanics of
charged particles in a magnetic field.

5



6 CHAPTER 1. LAUGHLIN’S WAVE FUNCTION

In the following, the same symbol is used for functions and their multiplication operators;
the notation will not distinguish between a formal differential operator and the closed or self-
adjoint operators arising with suitable domain of definition. We do not specify the precise
nature of commutators.

Consider an electron of m and charge −e < 0 moving in the x, y-plane. A magnetic field
B = Bzez is applied perpendicular to the plane. Let A = (Ax, Ay) : R

2 → R
2 be a

differentiable function such that ∂xAy − ∂yAx = Bz. A is the vector potential generated by
the magnetic field. The motion of the electron is described by the Landau Hamiltonian

H =
1

2m
(p+ eA)2 =

1

2m

(
(−i~∂x + eAx)2 + (−i~∂y + eAy)2

)
. (1.1)

With a suitable domain of definition, H defines a self-adjoint operator with discrete spectrum

σ(H) = {(n+
1

2
)~ω | n ∈ N0}, ω :=

e|Bz|
m

. (1.2)

Note that H does not include any spin contribution: the electrons are assumed to have all
their spins aligned (spin-polarized gas). The quantity ω is called cyclotron frequency. Other
useful quantities are the flux quantum φ0 and the magnetic length defined through

φ0 :=
h

e
=

2π~

e
, l :=

√
~

e|Bz|
.

The magnetic flux through a disk of radius l equals the flux quantum: |Bz| 2πl2 = φ0. The
Hamiltonian commutes with the center operators

cx := x+
1

mω
(py + eAy), cy := y − 1

mω
(px + eAx)

and the magnetic translations

t(a) = ei(a1cy−a2cx)/l2 , a = (a1, a2) ∈ R
2.

The magnetic translations act like usual translations except for a phase factor: (t(a)ψ)(z) =
eiγ(z;a)ψ(z − a). Here and in the following, we identify C and R2 in the usual way: z =
x+ iy ≡ (x, y). The magnetic translations satisfy

t(a+ b) = e−i(a∧b)/2l2t(a)t(b), a ∧ b = a1b2 − a2b1

whence the commutation relation t(a)t(b) = ei(a∧b)/l2t(b)t(a). As a consequence, two mag-
netic translations t(a) and t(b) commute if and only if the area of the parallelogram spanned
by a and b is an integer multiple of 2πl2. Let b := 1

l
√

2
(cx − icy). Then [b, b∗] = 1. The lowest

Landau level N (H − ~ω/2) has a complete orthonormal set Ωm, m ∈ N0 such that

(c2x + c2y)Ωm = (2b∗b+ 1)l2Ωm = (2m+ 1)l2Ωm. (1.3)

The center operators are closely related to the coordinates x, y: for example, for all φ in the
lowest Landau level, the following identities hold:

(φ, xφ) = (φ, cxφ), (φ, (x2 + y2)φ) = (φ, (c2x + c2y + l2)φ),

(φ, yφ) = (φ, cyφ) (φ, ei(q1x+q2y)φ) = (φ, ei(q1cx+q2cy)e−q2l2/4φ).



1.1. PARTICLES IN A MAGNETIC FIELD 7

There are different possible choices for the vector potential A, giving rise to different, but
unitarily equivalent Hamiltonians. Two gauges are particularly useful: the symmetric gauge
and the Landau gauge. We give some details on these gauges. In the following, we suppose
that the magnetic field points downwards: Bz < 0. This leads to the expression of lowest
Landau level wave functions in terms of holomorphic functions. The opposite choice Bz > 0
would lead to antiholomorphic functions.

Symmetric gauge. In the symmetric gauge A = (−Bzy/2, Bzx/2), the lowest Landau
level is

N (H − ~ω/2) = {ψ ∈ L2(R2) | ψ(z) = f(z)e−|z|2/4l2 for some holomorphic f}

and the set of functions (Ωm)m∈N0
defined through

Ωm(z) :=
1√

2πl2m!(2l2)m
zme−|z|2/4l2 . (1.4)

is a complete orthonormal set of the lowest Landau level fulfilling (1.3). The magnetic
translations are (

t(a)ψ
)
(z) = e

i
2l2

a∧zψ(z − a).

Landau gauge. In the Landau gauge A = (0, Bzx),

N (H − ~ω/2) = {ψ ∈ L2(R2) | ψ(z) = f(z)e−x2/2l2 for some holomorphic f}.

The magnetic translations become

(
t(a)ψ

)
(z) = ei(a1y− 1

2a1a2)/l2ψ(z − a).

For φ ∈ S(R), let

(V φ)(x, y) :=
1√

2π
√
π

∫ ∞

−∞
φ(k)eiky/le−(x−kl)2/2l2dk.

Note that (V φ)(x, ·) is related to the Fourier transform of k 7→ φ(k)e−(x−kl)2/2l2 . V extends
to a unitary map from L2(R) onto the lowest Landau level. Moreover,

V kV −1 = cx/l, V i
d

dk
V −1 = cy/l

and we can set Ωm := V Fm where Fm are the Hermite functions. The set of functions (Ωm)
then forms a complete orthonormal system of eigenfunctions of c2x + c2y.

The previous considerations apply to infinite samples. In practice, we wish to model finite
samples. The most popular geometries are the disk, cylinder or semiperiodic strip, and torus,
which we now describe.

Disk. In principle, the motion of an electron in a disk BR = {z ∈ C ≡ R
2 | |z| ≤ R} should

be modeled by a Hamiltonian in L2(BR) with suitable boundary conditions. However, it is
more common to look at the Hamiltonian H in L2(R2) restricted to a spectral subspace of
c2x + c2y. The corresponding lowest Landau level is simply span{Ωm | 0 ≤ m ≤ M} where
M ∈ N is the largest integer such that (2M + 1)l2 ≤ R2, and Ωm are as in (1.3).
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Infinite cylinder. Let R > 0. The expression (1.1) with periodic boundary conditions
t(2πRey)ψ = ψ defines a self-adjoint operator in L2(R× [0, 2πR]) with spectrum as in (1.2).
The semiperiodic strip can be seen as a cylinder of radius R, the y-coordinate plays the
role of an angular variable. In the Landau gauge, the lowest Landau level has the complete
orthonormal set ψk, k ∈ Z with

ψk(z) :=
1√

2πRl
√
π
eiky/Re−(x−kγl)2/2l2

where γ := l/R. They are eigenfunctions of the center operator cx. The eigenvalue gives the
center of the Gaussian part of ψ: cxψk = kγlψk. The magnetic translations act as follows:

t(nγlex)ψk = einγcy/lψk = ψk+n, t(aey)ψk = e−iacx/l2ψk = e−ika/Rψk

for all n ∈ Z and a ∈ R. The Hamiltonian commutes with all translations in the y-direction,
but only with a discrete set of translation in the x-direction: t(aex) preserves the boundary
condition t(2πRey)ψ = ψ if and only if a · 2πR ∈ 2πl2Z.

Torus. Let L > 0. We wish to define a Hamiltonian H in L2([0, L] × [0, 2πR]) through
(1.1) and the boundary conditions

t(Lex)ψ = ψ, t(2πRey)ψ = ψ.

This is possible if t(Lex) and t(2πRey) commute, i.e., L2πR = Nf · 2πl2 for some Nf ∈ N.
In this case, the flux through the surface is an integer multiple of the flux quantum φ0:
|Bz| · 2πRL = Nfφ0, whence the denomination number of fluxes of Nf . The resulting
Hamiltonian has the same spectrum as in (1.2). Each eigenvalue is Nf -fold degenerate. In

the Landau gauge, the lowest Landau level consists of functions ψ(x, y) = f(z)e−x2/2l2 where
f is holomorphic and satisfies

f(z + 2πR) = f(z), f(z + L) = eNf z/R+L2/2l2f(z). (1.5)

The lowest Landau level has the orthonormal basis ψ̃k, k ∈ Z/NfZ, where

ψ̃k =
∞∑

r=−∞
ψk+rNf

.

The Hamiltonian commutes with magnetic translations t(aex + bey) for vectors (a, b) in the
lattice γlZ × 2πR

Nf
Z, and

t(γlex)ψ̃k = eiγcy/lψ̃k = ψ̃k+1, t(
2πR

Nf
ey)ψ̃k = e−i2πγcx/Nf lψ̃k = e−i2πk/Nf ψ̃k

Finite cylinder. Let L > 0, R > 0 and a, b ∈ R, a < b. In the spirit of the disk approach
described above, the lowest Landau level on a cylinder is often modeled by a restriction to
the spectral subspace of cx where a ≤ cx ≤ b, i.e. the considered space is

span{ψk | a ≤ kγl ≤ b} ⊂ L2(R × [0, 2πR]). (1.6)

A more satisfactory approach uses the spectral or chiral boundary conditions introduced in
[AANS98]. These are described in more detail in Chapter 3. Let us only mention the follow-
ing: the expression (1.1) together with spectral boundary conditions defines a Hamiltonian
in L2([a, b] × [0, 2πR]) with a spectrum of the form

σ(H) = {en(kl2/R) | n ∈ N0, k ∈ Z}
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where e0(ρ) < .. < en(ρ) < ... are the eigenvalues of a norm-continuous family of operators
h(ρ) in L2([a, b]). The “ground state curve” e0(·) satisfies e0(ρ) ≥ ~ω/2 with equality if and
only if a ≤ ρ ≤ b. Thus the ground state energy of H is ~ω/2. The ground state has the
orthogonal basis ψk where k ∈ Z is such that a ≤ kγl ≤ b and the functions ψk are considered
as elements of L2([a, b] × [0, 2πR]). Thus we recover essentially the space (1.6).

1.2 Laughlin-type wave functions

The previous section describes particles moving in a two-dimensional world subject to mag-
netic field, but otherwise free. The one-particle Hamiltonians have a discrete spectrum and
explicitly known eigenfunctions. The next step is to ask for the ground state of a gas of elec-
trons that interact between themselves and with a neutralizing background. We are looking
for the ground state of a Hamiltonian of the type

HN =

N∑

j=1

1

2m
(pj + eA(zj))

2 +

N∑

j=1

W (zj) +
∑

1≤j<k≤N

V (zj − zk).

V is essentially a 1/r-Coulomb interaction, adapted to the geometry (torus, cylinder..). In
the limit of large magnetic fields |Bz| → ∞, the gap ~ω ∝ |Bz| separating the lowest Landau
level from the excited states of the one-particle Hamiltonian becomes large. Thus as an
approximation, one can look for ground states of Π⊗NHNΠ⊗N where Π is the projection
onto the lowest Landau level. In the lowest Landau level, the kinetic energy gives a constant
N~ω/2, and we are left with the Hamiltonian

Π⊗N
( N∑

j=1

W (zj) +
∑

1≤j<k≤N

V (zj − zk)
)
Π⊗N .

Laughlin [Lau83] proposed a lowest Landau level wave function in the disk geometry that is
commonly accepted as a good approximation to the ground state, as far as bulk properties
are concerned. Later, Thouless [Tho84] adapted Laughlin’s wave function to the cylinder
geometry, and Haldane and Rezayi defined torus Laughlin-type wave functions [HR85b].
There is also an analogue for a spherical geometry, defined by Haldane [Hal83], but we shall
not use this wave function here. Let us mention however that the spherical geometry is
advantageous for numerical computations [HR85a, FOC86].

Definition 1.1. Let l, R, L > 0 and N, p ∈ N and 2πRL = pN2πl2. Set γ := l/R. Let

ΨD
N (z1, .., zN ) :=

1√
N !

∏

N≥j>k≥1

(zj − zk)pe−
PN

j=1 |zj |2/4l2

ΨC
N (z1, .., zN ) :=

1√
N !

∏

N≥j>k≥1

(ezj/R − ezk/R)pe−
PN

j=1 x2
j/2l2 e

− 1
2p2γ2 PN−1

j=0 j2

(2πRl
√
π)N/2

ΨT
N (z1, .., zN ) := F cm(

N∑

j=1

zj)
∏

1≤j<k≤N

θ1(
i(zj − zk)

2R
|i L

2πR
)pe−

1
2l2

PN
j=1 x2

j

where θ1 is Jacobi’s odd elliptic theta function and F is in the p-dimensional subspace of
holomorphic functions such that

F (Z + i2πR) = (−1)p(N−1)F (Z), F (Z + L) = (−1)p(N−1)epZ/RepL/(2R)F (Z). (1.7)
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These functions will be called disk, cylinder and torus Laughlin wave functions.

For N = 1, the products
∏

1≤j<k≤N are empty. We follow the convention that the product

over an empty set is 1. The multiplicative factor in the definition of ΨC
N is chosen so that

the normalization constant CN = ||ΨC
N ||2 has properties derived in the next chapter. We

refer the reader to [AS72] for a list of properties and to [FK01] for a modern account on
theta functions. Let us recall some facts: let τ ∈ C with ℑτ > 0. Jacobi’s odd elliptic theta
function is defined as

θ1(z | τ ) = −i
∞∑

n=−∞
(−1)neiπτ(n−1/2)2e2i(n−1/2)z.

As a function of z, it is holomorphic, doubly quasiperiodic (see (1.8) below) with periods 1
and τ , and

θ1(z | τ ) = 0 ⇔ ∃m,n ∈ Z : z = m+ nτ.

The zeroes of θ1(· | τ ) are simple. The fact that the holomorphic solutions of (1.7) form a
p-dimensional subspace follows from the theory of theta functions ([FK01], Chapter 7).

The wave functions of the previous definition are symmetric if p is even, and antisymmetric
if p is odd. They lie in the disk, cylinder and torus lowest Landau level introduced in the
previous section:

Lemma 1.2. 1. ΨD
N ∈ ⊗N span{Ωm | 0 ≤ m ≤ p(N − 1)}, the lowest Landau level on a

disk with radius ((2p(N − 1) + 1))1/2l (symmetric gauge).

2. ΨC
N ∈ ⊗N span{ψk | 0 ≤ k ≤ p(N − 1)}, the spectral subspace 0 ≤ cx ≤ p(N − 1)γl in

the lowest Landau level on a cylinder (Landau gauge).

3. ΨN ↾ ([a, b] × [0, 2πR])N is made up of wave functions in the ground state of the
Landau Hamiltonian in L2([a, b]× [0, 2πR]) with spectral boundary conditions, provided
a ≤ 0 < p(N − 1)γl ≤ b (Landau gauge).

4. ΨT
N ∈ ⊗N span{ψ̃k | k ∈ Z/pNZ}, the lowest Landau level on the torus R/pNγlZ ×

R/2πRZ (Landau gauge).

Proof. 1. Let

VN (z1, .., zN ) := det
(
zk−1
j

)
1≤j,k≤N

=
∏

N≥j>k≥1

(zj − zk)

be the Vandermonde determinant. Its p-th power can be expanded in monomials

VN (z1, .., zN )p =
∑

m1,..,mN

bN (m1, ..,mN )zm1
1 ..zmN

N .

The Vandermonde determinant is a polynomial of maximal degree N−1 in each variable, thus
V p

N is a polynomial of maximal degree p(N − 1) in each variable and only 0 ≤ m1, ..,mN ≤
p(N − 1) contributes to the sum above. The disk Laughlin function is V p

N multiplied by
a Gaussian factor. The basis functions Ωm are monomials zm times the Gaussian factor
e−|z|2/4l2 . Thus ΨD

N is a sum of tensor products of functions Ωm with 0 ≤ m ≤ p(N − 1).
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2. and 3. The cylinder function is VN (ez1/R, .., ezN /R)p times a Gaussian factor. Using

ψk(z) = (2πRl
√
π)1/2ekz/Re−k2γ2/2e−x2/2l2 , we get

ΨC
N (z1, .., zN ) =

1√
N !

(
VN (ez1/R, .., ezM /R)

)p
e−

PN
j=1 x2

j/2l2 e
−p2γ2 PN−1

j=0 j2

(2πRl
√
π)N/2

=
1√
N !

∑

0≤m1,..,mN≤p(N−1)

aN (m1, ..,mN )ψm1
⊗ ..⊗ ψmN

where

aN (m1, ..,mN ) := bN (m1, ..,mN )eγ2 PN
j=1(m

2
j−p2(j−1)2)/2.

This proves 2.. The functions ψk are in the ground state of the Hamiltonian with spectral
boundary conditions in L2([a, b] × [0, 2πR]) if a ≤ kγl ≤ b, whence also 3.

4. The N -fold tensor product of the torus Landau level is the space of functions of the form
f(z1, .., zN ) exp(−∑N

j=1 x
2
j/2l

2) where f is holomorphic and satisfies the quasiperiodicity
condition (1.5) in each complex variable zj , Nf = pN . Theta functions are holomorphic,
thus it remains to prove that

f(z1, .., zN ) := F (
N∑

j=1

zj)
∏

1≤j<k≤N

θ1(
i(zj − zk)

2R
|i L

2πR
)pe−

1
2l2

PN
j=1 x2

j

is quasiperiodic. This is checked using (1.7) and

θ1(z + π | τ ) = −θ1(z | τ ) = θ1(−z | τ ), θ1(z + πτ | τ ) = −e−2iz−iπτθ1(z | τ ). (1.8)

Filling factor. In view of the previous lemma, the Laughlin wave functions describe N -
particle states living on samples of size essentially pN ·2πl2. This leads to an average density
1/(p · 2πl2) (see also Corollary 2.15). The one-particle lowest Landau level of e.g. the torus
space has dimension pN . Therefore the case p = 1 is called the filled Landau level. It
corresponds to an average density 1/(2πl2) (see also the next section). The ratio 1/p of the
average density and the filled Landau level density is called the filling factor.

1.3 Filled Landau level

The filled Landau level function (p = 1), e.g., on the cylinder, is

ΨC
N = ψ0 ∧ ψ1 ∧ .. ∧ ψN−1.

The one-particle density and other correlation functions have simple expressions. The n-point
reduced density matrix associated to an N -particle wave function ΨN ∈ L2(ΩN ) is

ρN (z′1, .., z
′
n; z1, .., zn) =

N !

(N − n)!

∫

ΩN−n

ΨN (z1, .., zn, wn+1, .., wN )

ΨN (z′1, .., z
′
n, wl+1, .., wN )dw/||ΨN ||2. (1.9)
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For ΨC
N as above, it can be written as

ρN (z′1, .., z
′
n; z1, .., zn) = n!

∑

0≤m1<..<mn≤N−1

ψm1
∧ .. ∧ ψml

(z′1, .., z
′
n)ψm1

∧ .. ∧ ψml
(z1, .., zn).

If we shift the function on the cylinder so that the origin is in the middle of the cylinder, the
sum ranges from −M to N − 1 −M where M is an integer close to N/2. Taking then the
limit N → ∞, we get the expressions for the filled Landau level reduced matrices

ρ(z′1, .., z
′
n; z1, .., zn) = n!

∑

m1,..,mn∈Z:
m1<..<mn

ψm1
∧ .. ∧ ψml

(z′1, .., z
′
n)ψm1

∧ .. ∧ ψml
(z1, .., zn).

The one-particle density is

ρ(z) := ρ(z; z) =

∞∑

m=−∞
|ψm|2(z) =

1

2πRl
√
π

∑

m∈Z

e−(x−ml2/R)2/l2 .

Using Poisson’s summation formula, this can be rewritten as

ρ(z) =
1

2πl2
(1 + 2

∞∑

n=1

e−n2π2R2/l2 cos(2πnxR/l2)).

In particular, the one-particle density is independent of the coordinate y around the cylinder
and is periodic in the direction of the cylinder axis, of period l2/R = γl. The amplitude of the
oscillations is large when the radius of the cylinder is small. The average of the one-particle
density is 1/(2πl2), which is the value of the constant one-particle density of the filled Landau
level on the infinite plane:

ρplane(z) =

∞∑

n=0

|Ωn|2(z) =
1

2πl2

∞∑

n=1

|z|2n

n!(2l2)n
e−|z|2/2l2 =

1

2πl2
.

Note that as the radius R goes to infinity at fixed magnetic length l, we recover ρplane from
the cylinder density ρ.

The aim of the next chapter is to prove a similar statement for the cylinder function at
general filling factor 1/p, namely, that the one-particle density is a periodic function of the
coordinate along the axis. The period is just p times the filled Landau level period γl. The
amplitude of the oscillations is large when the radius of the cylinder is small. The average
density is 1/(p · 2πl2).

1.4 Truncated interactions

Laughlin’s wave functions are widely accepted as good approximations to the ground state
of the “true” lowest Landau level projected Hamiltonian Π⊗NHNΠ⊗N . An additional inter-
esting feature is that Laughlin’s state is the exact ground state of a modified Hamiltonian,
as observed in [Hal83, PT85, TK85].

This observation is interesting for several reasons. First, it allows an indirect approach to
the question of how far away Laughlin’s state is from the exact ground state: in the spirit of
numerical backward error analysis, we can compare Hamiltonians instead of ground states. It
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has been suggested to treat the difference between the lowest Landau level projected Coulomb
interaction and the truncated interaction as a small perturbation [HR85a].
Second, we can consider the truncated interaction as a toy Hamiltonian for the FQHE and ask
whether it reproduces features such as incompressibility and existence of gaps. The modified
Hamiltonian has been used also as a toy Hamiltonian for investigations on Mott insulators
[LL04]. Finally, the characterization of the Laughlin state as an exact ground state will be
used in section 2.4 to investigate the equivalence of the cylinder and torus functions.

There are two a priori distinct definitions of truncated interactions. Haldane (see his contri-
bution in [PG87]) defines the interaction in terms of projections onto eigenfunctions of the
relative angular momentum, where as [TK85, PT85] characterize Laughlin’s wave function
as a ground state of projected ∆jδ-interactions. Both approaches give the same result, as we
will see in this section.

The Laughlin wave functions at filling factor 1/p are characterized by the order of their ze-
roes: as two particles get close zj − zk → 0, the wave function is O((zj − zk)p). This makes
Laughlin’s wave function an exact ground state of ∆jδ-interactions [TK85, PT85] projected
to the lowest Landau level. These lowest Landau level projected interactions define bounded
operators. In the lowest Landau level on infinite samples (or in the disk geometry), the
bounded operators are projections on eigenfunctions of the separation of the particles, mea-
sured through the center operators.

The definition of the operator in the disk geometry follows Haldane’s presentation in [PG87].
For the cylinder, the operators are presented in a slightly different way in [RH94]. The second
quantized expressions for the torus and cylinder that can be found in [SFL+05] and [LL04]
will be recovered from our definition in Corollary 1.7.

Let H ⊂ L2(R2) be the lowest Landau level in the symmetric gauge. The two-particle space
H⊗H has a complete orthonormal set

ψn,m(z1, z2) = cn,m(z1 + z2)
n(z1 − z2)

me−(|z1|2+|z2|2)/4l2 , m, n ∈ N0

(with cn,m suitable normalization constants). Let

M =
1

4l2
(
(c(1)x − c(2)x )2 + (c(1)y − c(2)y )2

)
− 1

2
.

Here, we use the notation c
(1)
x = cx ⊗ 1, c

(2)
x = 1 ⊗ cx and similarly for c

(1)
y , c

(2)
y . Then

Mψn,m = mψn,m. Thus σ(M) = N0. The operator M is sometimes called relative angular
momentum.

Definition 1.3. Let ψn, ψ̃n be the cylinder and torus lowest Landau level basis functions,
and γ = l/R. For m ∈ N0, let Fm be the m-th Hermite function (eigenfunction of −∂2

k + k2)
and let Pm, PC

m , PT
m be the following two-particle operators acting respectively in the lowest

Landau level on the plane, cylinder and torus:

• Pm = PD
m is the projection on the eigenspace N (M−m) of M.

• PC
m is the bounded operator determined through

(ψk1
⊗ ψk2

, PC
mψn1

⊗ ψn2
) = γ

√
2δk1+k2,n1+n2

Fm(
(k1 − k2)γ√

2
)Fm((

n1 − n2)γ√
2

). (1.10)
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• PT
m is the unique bounded operator such that

(ψ̃k1
⊗ ψ̃k2

, PT
mψ̃n1

⊗ ψ̃n2
)

= γ
√

2
∑

r∈Z

δk1+k2,n1+n2+rNf

∑

s,t∈Z:
s−t=r mod 2

Fm(
(k1 − k2 + sNf )γ√

2
)Fm(

(n1 − n2 + tNf )γ√
2

).

(1.11)

Remark. Pm is bounded because it is a projection. The boundedness of (1.11) follows from
the fact that the lowest Landau level on a torus is finite-dimensional. The decay properties
of the Hermite functions can be used to show that (1.10) defines a bounded operator of norm

||PC
m || ≤

√
2γ

∑

k∈Z

Fm(
kγ√

2
)2;

see also (1.19) below.

The operators PR
m, R = D,C, T are associated to the projection of the delta function inter-

action
4πl2

j!
e|z1−z2|2/4l2 l2j∆j

z1−z2
δ(z1 − z2)

to the lowest Landau level. More precisely:

Lemma 1.4. Let ∆z1−z2
:= ( ∂

∂z1
− ∂

∂z2
)( ∂

∂z̄1
− ∂

∂z̄2
) be the Laplacian with respect to z1 − z2.

Let HD be the lowest Landau level in the symmetric gauge, HC the lowest Landau level on
the cylinder and torus. Let D = R2, C = R × [0, 2πR], T = [0, L] × [0, 2πR]. Then for
R ∈ {D,C, T} and f, g ∈ HR:

(f, PR
j g) =

4πl2

j!

∫

R

(
l2j∆j

z1−z2
(e|z1−z2|2/4l2 f̄g)

)
(z, z)dxdy. (1.12)

Proof. Assume without loss of generality l = 1. For z1, z2 ∈ C let Z := (z1 + z2)/
√

2,
z := (z1 − z2)/

√
2.

We start with the symmetric gauge. First, remark that the right-hand side of (1.12) defines
a bounded sesquilinear form. To see this, consider first

φ(z) = f(z)e−|z|4/2, ψ(z) = g(z)e−|z|2/4

two functions in the lowest Landau level. Thus f and g are holomorphic. By a classical result
on Bergman spaces, for r > 0 and m ∈ N0 there exists a constant cm > 0 such that

|∂
mf

∂zm
(0)| ≤ cm

∫

|z|<r

|f(z)|2dxdy ≤ cme
r2/4||φ||.

and similarly for g, ψ. Thus

|
(
∆j φ̄ψe|z|

2/2
)
(0)| = |

(
(4

∂2

∂z∂z̄
)j f̄g

)
(0)| ≤ 4jer2/2c2j ||φ|| ||ψ||.

The boundedness of the right-hand side of (1.12) can be inferred from this. Since the left-
hand side is bounded too, it is enough to check (1.12) for functions f, g in a suitable complete
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orthonormal system. Let Ωm, m ∈ N0 be the functions defined in (1.4). Let M,N,m, n ∈ N0

and
f(z1, z2) := ΩM (Z)Ωm(z), g(z1, z2) := ΩN (Z)Ωn(z). (1.13)

Then

(
∆j

z1−z2
e|z1−z2|2/4(f̄g)

)
(w,w)

= (Ω̄MΩN )(
√

2w)
1

2π
√

2m+nm!n!

(
∆j

z1−z2
z̄mzn

)
(0)

= (Ω̄MΩN )(
√

2w)
1

2π2m+n
√
m!n!

)
(
∆j

z1−z2
(z1 − z2)

m(z1 − z2)
n
)
(0)

= (Ω̄MΩN )(
√

2w)
1

2π2m+n
√
m!n!

δm,jδn,jm!n!4j

= Ω̄MΩN (
√

2w)
j!

2π
δm,jδn,j .

Since ∫

R2

Ω̄MΩN (
√

2x,
√

2y)dxdy =
1

2
(ΩM ,ΩN ) =

1

2
δM,m

we obtain ∫ (
∆j

z1−z2
e|z1−z2|2/4f̄g)

)
(w,w) =

j!

4π
(f, PD

j g).

Functions of the form (1.13) form a complete orthonormal set in the lowest Landau level,
thus using the boundedness of PD

j we get the desired result.

Now let us turn to a cylinder of radius R. Let γ = l/R = 1/R. Again, it is enough
to check (1.12) for functions in a complete orthonormal system. The lowest Landau level
basis functions are ψγ

n(z) = (γ/(2π
√
π))1/2 exp(iny/R) exp(−(x− nγ)2/2), n ∈ Z. A simple

computation gives

ψn1
(z1)ψn2

(z2) =
√

2ψ
γ/

√
2

n1+n2
(Z)ψ

γ/
√

2
n1−n2

(z).

Hence for f := ψm1
⊗ ψm2

, g := ψn1
⊗ ψn2

(
∆j

z1−z2
e|z1−z2|2/4(f̄g)

)
(w,w)

= 2(ψ̄
γ/

√
2

m1+m2
ψ

γ/
√

2
n1+n2

)(
√

2w)
( 1

2j
∆je|z|

2/2ψ̄
γ/

√
2

m1−m2
ψ

γ/
√

2
n1−n2

)
(0) (1.14)

The Hermite polynomials Hn(x) satisfy the following generating function identity:

e2xt−t2 =

∞∑

n=0

Hn(x)
tn

n!
.

From this we deduce

ψ̄γ
k (z)ψγ

n(z)e|z|
2/2 =

γ

2π
√
π
e−γ2(k2+n2)/2eγkz̄eγnze−x2

e(x
2+y2)/2

=
γ

2π
√
π
e−γ2(k2+n2)/2eγkz̄−z̄2/4eγnz−z2/4

=
γ

2π
√
π
e−γ2(k2+n2)/2

∞∑

r,s=0

Hr(kγ)Hs(nγ)

2r+sr!s!
z̄rzs.
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Since ∆ = 4∂∂̄, we get

(
∆jψγ

k (z)ψγ
n(z)e|z|

2/2
)
(0) =

γ

2π
√
π
e−γ2(k2+n2)/2Hj(kγ)Hj(nγ) =

2jj!γ

2π
Fj(kγ)Fj(nγ)

(1.15)

where Fn(x) = (2nn!
√
π)−1/2Hn(x)e−x2/2 is the n-th Hermite function. Combining (1.14)

and (1.15), we obtain

(
∆j

z1−z2
e|z1−z2|2/4(f̄g)

)
(w,w) =

j!γ

π
√

2
(ψ̄

γ/
√

2
m1+m2

ψ
γ/

√
2

n1+n2
)(
√

2w)
(
Fj(

kγ√
2
)Fj(

nγ√
2
)
)
.

But now

∫ 2π/γ

0

dy

∫ ∞

−∞
dx(ψ̄

γ/
√

2
m1+m2

ψ
γ/

√
2

n1+n2
)(
√

2x,
√

2y)

=
1

2

∫ 2π
√

2/γ

0

dy

∫ ∞

−∞
dx(ψ̄

γ/
√

2
m1+m2

ψ
γ/

√
2

n1+n2
)(x, y) =

1

2
δm1+m2,n1+n2

.

Thus we get
∫ (

∆j
z1−z2

e|z1−z2|2/4(f̄g)
)
(w,w) =

j!γ

2π
√

2
δm1+m2,n1+n2

Fj(
kγ√

2
)Fj(

nγ√
2
) =

j!

4π
(f, PC

j g).

Now let us turn to the torus. Let Tγ = [0, Nfγ] × [0, 2π/γ], Nf ∈ N. The lowest Landau

level basis functions ψ̃m are related to the cylinder functions through ψ̃m =
∑

k∈Z
ψm+kNf

.
If f, g are two smooth functions, let

qj(f, g) :=

∫

T

(
∆j

z1−z2
e|z1−z2|2/4(f̄g)

)
(w,w)dxdy.

Mimicking the reasoning done for the cylinder case, we get

qj(ψk1
⊗ ψk2

, ψn1
⊗ ψn2

) =
j!γ

2π
√

2
δK,N

( 1√
π

∫ √
2Nf γ

0

e−(x−Kγ/
√

2)2dx
)
Fj(

kγ√
2
)Fj(

nγ√
2
)

(1.16)

where we used capital letters for sums of indices and small letters for differences (K =
k1 + k2, k = k1 − k2). We are interested in

qj(ψ̃k1
⊗ ψ̃k2

, ψ̃n1
⊗ ψ̃n2

) =
∑

s1,s2,t1,t2∈Z

qj(ψk1+s1Nf
⊗ψk2+s2Nf

, ψn1+t1Nf
⊗ψn2+t2Nf

) (1.17)

In view of (1.16), the sum vanishes unless K +SNf = N + TNf for some S, T ∈ Z. Suppose
that K −N = rNf with r ∈ Z. Note that

∑

s1,s2,t1,t2∈Z

δs1+s2−t1−t2,ra(s1 + s2)b(s1 − s2)b(t1 − t2)

=
∑

S,s∈Z:
S=s mod 2

∑

T,t∈Z:
T=t mod 2

δS−T,ra(S)b(s)b(t)

=
∑

S∈Z

a(S)
∑

s=S mod 2

b(s)
∑

t=S+r mod 2

b(t)

=
1∑

α=0

(∑

S∈Z

a(2S + α)
)(∑

s∈Z

b(2s+ α)
)(∑

t∈Z

b(2t+ r + α)
)
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Combining this with (1.16) and (1.17), we get

qj(f, g) =
j!γ

2π
√

2

∑

s,t∈Z:
s−t=r mod 2

Fj(
(k + sNf )γ√

2
)Fj(

(n+ tNf )γ√
2

).

Lemma 1.5. The operators PR
j are bounded, self-adjoint and non-negative. Let m ∈ N0 and

V0, V1, .., Vm > 0. Let ψ be in the disk, cylinder, or torus lowest Landau level depending on
R ∈ {D,C, T}. Then

ψ ∈ N (
m∑

j=0

VjP
R
j ) ⇔ ∀Z : ψ(Z + z, Z − z) =

z→0
O(|z|m+1). (1.18)

Proof. The operators are bounded by definition (see also the remark following Definition
1.3), the self-adjointness is obvious for PC

m . For PC
m and PT

m the symmetry follows from
Fj(−x) = (−1)jFj(x) or from (1.12). As a projection, PD

m is obviously non-negative. To see
that PC

m is positive, let

U : HC ⊗HC → l2(Z2) ≡ l2(Z) ⊗ l2(Z2), ψn1
⊗ ψn2

7→ (δn1+n2,mδn1−n2,n)m,n∈Z.

U is only a partial isometry since n1 + n2 = n1 − n2 mod 2. Then

UPC
j =

(
1 ⊗ (γ

√
2|F γ

j 〉〈F γ
j |)

)
U, F γ

j := (Fj(
nγ√

2
))n∈Z. (1.19)

This implies the positivity of PC
j . To treat the torus case, let δ̂n,s take the value 1 if n = s

mod 2Nf and 0 else, and let ên = (δ̂n,s)s∈Z. Define

Ũ : HT ⊗HT → l2((Z/2NfZ)2) ≡ l2(Z/2NfZ)⊗2 (1.20)

ψ̃n1
⊗ ψ̃n2

7→ 1√
2
(ên1+n2

⊗ ên1−n2
+ ên1+n2+Nf

⊗ ên1−n2+Nf
). (1.21)

Again, Ũ is a partial isometry. Let

Gj := (
∑

k∈Z

Fj(
(n+ 2kNf )γ√

2
))n∈Z, Hj := (Gj(n+Nf ))n∈Z.

Then
ŨPT

j = γ
√

2
(
1⊗ (|Gj〉〈Gj | + |Hj〉〈Hj |)

)
Ũ ,

whence the positivity of PT
j . Thus the operators PR

j are positive and ψ ∈ N (
∑m

j=0 VjPj) if

and only if (ψ, PR
j ψ) = 0 for j = 0, 1..,m. Let ψ(z1, z2) be in the lowest Landau level of two

particles and let l = 1. Write ψ(z1, z2) = f( z1+z2

2 , z1 − z2)e
−|z1−z2|2/8 so that

(ψ, PR
j ψ) =

4π

j!

∫

R

(∆j
z|f |2)(Z, 0)dXdY

where the Laplacian ∆z acts on the second variable of f(Z, z). Note that ψ(Z + z, Z − z) =
O(|z|m+1) if and only if f(Z, z) = O(|z|m+1). Since functions in the lowest Landau level are
holomorphic up to a factor of the type exp(−ax2 − by2), we can write for sufficiently small z

f(Z, z) =
∑

m,n∈N0

am,n(Z)zmz̄n, |f(Z, z)|2 =
∑

m,n∈N0

bm,n(Z)zmz̄n
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and we get

(ψ, PR
j ψ) = 4j+1j!π

∫

R

bj,j(Z)dXdY.

We proceed by induction on m. Suppose first (ψ, PR
0 ψ) = 0. Since b0,0(Z) = |f(Z, 0)|2 we get

f(Z, 0) = 0 for all Z and thus f(Z, z) = O(|z|). Now suppose (ψ, PR
j ψ) = 0 for j = 0, ..,m+1

and by induction f(Z, z) = O(|z|m+1). Then

f(Z, z) =
m+1−k∑

k=0

ak,m+1−kz
kz̄m+1−k +O(|z|m+2), bm+1,m+1(Z) =

m+1∑

k=0

|ak,m+1−k|2.

Thus (ψ, PR
m+1ψ) = 0 implies ak,m+1−k = 0 for k = 0, ..,m+ 1.

Now we can characterize the Laughlin-type wave functions as ground states of suitable Hamil-
tonians.

Proposition 1.6. Let p ∈ N, V0, .., Vp−1 > 0 and N ∈ N, N ≥ 2. Define the Hilbert spaces

HD
N := ⊗N span{Ωj | 0 ≤ j ≤ p(N − 1)}

HC
N := ⊗N span{ψj | 0 ≤ j ≤ p(N − 1)}

HT
N := ⊗N span{ψ̃j | j ∈ Z/NfZ}.

Let ΠD
N be the projection onto HD

N in ⊗N span{Ωn | n ∈ N0}, and ΠC
N the projection onto

HC
N in ⊗N span{ψj | j ∈ Z}. Let ΠT

N be the identity in B(HT
N ). For R ∈ {D,C, T} let HR

N

be the N-particle Hamiltonian in B(HR
N ) defined as

HR
N = ΠR

N

∑

1≤j<k≤N

(V0P
R,jk
0 + ..+ Vp−1P

R,jk
p−1 ) ΠR

N

where P jk refers to P acting on the j-th and k-th variables.Then HR
N , HC

N have unique ground
states ΨD

N , ΨC
N . HT

N has a p-fold degenerate ground state, the space of ΨT
N functions.

Proof. By Lemma 1.5, HR
N is positive and a function Ψ ∈ HR

N is in the null space of HR
N if

and only if for any j < k, Ψ(z1, .., zN ) = O(|zj − zk|p) as |zj − zk| goes to zero, the sum
zj + zk and the variables zn, n 6= j, k being fixed. From this we see that the Laughlin-type
wave functions are indeed ground states, and it remains to show that these are the only ones.

The argument for the disk is simple (see Haldane’s article in [PG87]): let Ψ ∈ HD
N . Then

there is a a polynomial of degree ≤ p(N − 1) in each variable such that

Ψ(z1, .., zN ) = P (z1, .., zN )e−
P

j |zj |2/4l2 .

If Ψ(z1, .., zN ) = O(|zj − zk|p) as zj − zk → 0, P is a multiple of (zj − zk)p. Thus if
Ψ ∈ N (HD

N ), there is a polynomial Q so that

P (z1, .., zN ) = Q(z1, .., zN )
∏

N≥j>k≥1

(zj − zk)p.

Since P has maximal degree p(N −1) in each variable, Q is a constant and Ψ is a multiple of
ΨD

N . The argument for the cylinder is similar: note that if Ψ is in HC
N , there is a polynomial

P of degree ≤ p(n− 1) in each variable such that

Ψ(z1, .., zN ) = PN (ez1/R, .., ezN /R)e−
1

2l2

PN
j=1 x2

j .
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If Ψ ∈ HT
N , there is a holomorphic function f with the quasiperiodicity

f(z1, .., zj + 2πRi, .., zN ) = f(z1, .., zN ),

f(z1, .., zj + L, .., zN ) = eNf zj/ReN2
f l2/2R2

f(z1, .., zN )

in each variable zj such that Ψ(z) = f(z1, .., zN )e−
1

2l2

PN
j=1 x2

j . If Ψ ∈ N (HT
N ), there is a

holomorphic function g such that

f(z1, .., zN ) = g(z1, .., zN )
∏

1≤j<k≤N

θ1(i
zj − zk

2R
| i L

2πR
)p. (1.22)

The function g satisfies for each j ∈ {1, .., N}

g(z1, ., zj + i2πR, .., zN ) = (−1)p(N−1)g(z1, .., zN )

g(z1, ., zj + L, .., zN ) = (−1)p(N−1)ep
PN

k=1 zk/RepL/2Rg(z1, .., zN ). (1.23)

Define a function G through g(z1, .., zN ) = G(
∑N

j=1 zj , z2 − z1, .., zN − z1); equivalently,

G(Z, z′2, .., z
′
N ) = g(z1, z1 + z′2, .., z1 + z′N ), z1 :=

1

N
(Z −

N∑

j=2

z′j).

G is holomorphic. It follows from (1.23) that for b1, .., bN ∈ Z,

g(z1 + b1L, .., zN + bNL) = (−1)p(N−1)BepBZ/ReLB2/2Rg(z1, .., zN ), B =

N∑

j=1

bj .

This can be used to show that G is doubly periodic in z′j with periods iN2πR and NL in
each variable z′j . Since it is holomorphic, this means that G(Z, z′2, .., z

′
N ) = F (Z) for some

holomorphic function F . Thus g(z1, .., zN ) = F (z1 + .. + zN ). Together with (1.22) and
(1.23), this proves that Ψ is a torus Laughlin wave function ΨT

N as in Definition 1.1.

To summarize, we have shown that the lowest Landau level projections of ∆jδ-interactions
are the bounded operators defined in the beginning of this section, The Laughlin-type wave
functions can be characterized as the ground states of Hamiltonians defined with these trun-
cated interactions. This holds for even p as well as for odd p and requires no assumption
on the parity of the wave function. Some simplifications are possible when we do assume
something on the parity. We exemplify this for Laughlin’s 1/3-function and antisymmetric
functions.

Second quantized version. If we restrict to antisymmetric functions, we can express the
various Hamiltonians used in terms of fermionic creation and annihilation operators. Let us
recall their definition. For Ω ⊂ R

2 and H ⊂ L2(Ω), let F =
⊕∞

N=0 ∧NH be the associated
fermionic Fock space. For r, s ∈ N, the wedge product of f ∈ ∧r(H) ⊂ L2(Ωr) and g ∈ ∧sH
is the element of ∧r+sH determined through

(f ∧ g)(z1, .., zr+s) =

√
(r + s)!

r!s!
Ar+s(f ⊗ g)(z1, .., zr+s)

=
1√

r!s!(r + s)!

∑

π∈Sr+s

sgn(π)f(zπ(1), .., zπ(r))g(zπ(r+1), .., zπ(r+s)).
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where An is the antisymmetrisation operator in L2(Ωn) ≡ H⊗n. The wedge product of
f ∈ ∧0H ≡ C with g ∈ ∧sH is f · g. The map thus defined extends uniquely to a bounded
bilinear map ∧ : F ×F → F . For f ∈ H, the creation operator c∗(f) ∈ B(H) is the operator
ψ 7→ f ∧ ψ, and the annihilation operator c(f) is its adjoint. The truncated interaction has
a simple expression [LL04, SFL+05]:

Corollary 1.7. Let p = 3, N ∈ N\{1} and R > 0. Let ψn, ψ̃n be the cylinder and torus low-

est Landau level basis functions, and cn = c(ψn), c̃n = c(ψ̃n). Let f(n) = ne−n2γ2/4, f̃(n) =∑
k∈Z

f(n + 6kN). The N-particle Laughlin states at filling factor 1/3 on the cylinder and
torus can be characterized as the ground states of

∑

0≤k1,k2,n1,n2≤3N−3

δk1+k2,n1+n2
f(k1 − k2)f(n1 − n2)c

∗
k2
c∗k1
cn1

cn2
, (1.24)

and ∑

R,x,y∈Z/6NZ

R=x=y mod 2

f̃(x)f̃(y)c̃∗R−x
2

c̃∗R+x
2

c̃R+y
2
c̃R−y

2
(1.25)

acting in ∧N span{ψn | 0 ≤ n ≤ 3N − 3} resp. ∧N{ψ̃n | n ∈ Z/(3N)Z}.

Sketch of proof. (1.24) is obviously a second-quantized version of PC
1 projected to ∧2span{ψk |

0 ≤ k ≤ 3N − 3}, up to a positive multiplicative constant. The projection of PC
2 and PC

0 to
antisymmetric functions vanish. Applying Proposition 1.6 with p = 3, we see that ΨL

n is the
unique ground state of (1.24).
The argument for the torus is similar. The computation needed to check that (1.25) is the
second-quantized version of PT

1 uses essentially the following: if (R, x) ∈ (Z/6NZ)2 is such
that R and x are both even or odd (this does not depend on the choice of representants
because 6N is even), ((R + x)/2, (R − x)/2) is well-defined as an element of (Z/3NZ)2.
Furthermore if (k1, k2) ∈ (Z/3NZ)2,

{
R+x

2 = k1 mod 3N
R−x

2 = k2 mod 3N
⇔

{
k1 + k2 = R mod 6N,

k1 − k2 = x mod 6N
or

{
k1 + k2 = R + 3N mod 6N,

k1 − k2 = x+ 3N mod 6N.

Comparison of truncated interaction and projected Coulomb interactions. Let
V (|z1−z2|) be a rotationally invariant interaction and Π the projection on the lowest Landau
level H of in the plane. Then Π⊗2V (|z1−z2|)Π⊗2 can be expanded in terms of the projections
Pm:

Π⊗2V (|z1 − z2|)Π⊗2 =
∞∑

m=0

VmPm.

The numbers Vm, m ∈ N0 are called pseudopotential parameters (see Haldane’s contribution
in [PG87]). For the Coulomb interaction V (z) = 1/|z1 − z2|, they can be computed as

Vm =
Γ(m+ 1

2 )

2m!
.

The truncated interactions
∑p−1

j=0 VmPm can be viewed as the short-range part of ΠVΠ. This
raises the question how large the error done by cutting off the long-range part is. Here, one
should be aware that two questions show up:
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1. Is
∑p−1

j=1 VmPm a good approximation to Π⊗2VΠ⊗2?

2. Is the truncated many-body Hamiltonian from Proposition 1.6 that has Laughlin’s
function as its ground state, a good approximation to the lowest Landau level projected
Hamiltonian

Π⊗N
∑

1≤j<k≤N

V (zj − zk)Π⊗N + Π⊗N
N∑

j=1

W (zj)Π
⊗N ?

The comparison of truncated and “true” lowest-Landau level projected Hamiltonians has been
performed by [HR85a] in a spherical geometry. On the sphere, the background potential W
gives only a constant contribution to the total Hamiltonian and the distinction between the
two questions blurs. [HR85a] found that the truncated Hamiltonian is a good approximation
to the lowest Landau level projected Hamiltonian. In samples with boundaries, the situation
is quite different: the truncated interaction is in general not a good approximation to the
true interaction.

Consider for example two particles in a disk. Let Π3 be the projection in ∧2L2(R2) onto
span{Ωm ∧ Ωn | 0 ≤ m,n ≤ 3}, the Hilbert space of two fermions in the lowest Landau
level with center c2x + c2y ≤ 3. The ground state of the truncated interaction Π3P1Π3 is

(z1 − z2)
3e−(|z1|2+|z2|2)/4l2 . The ground state of Π3VΠ3, on the other hand, is Ω2 ∧ Ω3, as

can be shown by a simple computation. This reflects the fact that excess charge in Coulomb
systems accumulates at the boundary; this feature of Coulomb interaction is due to its long
range part and thus not captured by a truncated interaction.

Thus in samples with boundaries, the answer to the first question is in general negative.
However, this does not exclude that truncated Hamiltonian and the lowest Landau level
Hamiltonian including the contribution from a neutralizing background have similar ground
states.

It is interesting to examine the way the physics literature treats samples with boundaries.
For example, Laughlin [Lau83] compares his wave function to various “true” ground states:
these are obtained as ground states of Hamiltonians without background potential, projected
to the space of lowest Landau level many-body functions with total angular momentum
pN(N − 1)/2. The restriction of angular momentum is justified on grounds that this is the
angular momentum of Laughlin’s function at filling factor 1/p. A similar approach is used by
Dev and Jain [DJ91], and Girvin and Jach [GJ83] who even define the filling factor through
the total angular momentum (equation (9)). The conclusion of the numerical investigations
cited is that “true” ground states are close to the Laughlin state, but it seems to us that the
treatment or rather neglection of the background as well as the restriction to a given angular
momentum sector require more justification. Thus we feel that the numerical comparisons
of exact and Laughlin states in the spherical geometry [HR85a, FOC86] are much more
convincing.

1.5 Incompressibility and gaps

The aim of this section is to discuss the notion of a gap above the ground state and its relation
to incompressibility. We do this mainly because we will use gap conditions in Section 2.4 and
Chapter 3, and we wish to clarify the relation between the two in general different gaps that
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are used. However, apart from making things (hopefully) a little bit clearer, the following
considerations are not necessary for the understanding of the remainder of the thesis.

In the ground state of a quantum Hall system at certain densities, the electrons form an
incompressible gas (see below). This is justified by numerical results on the ground state
energy per particle and by the existence of a gap above the ground state. The relation
between gaps and incompressibility is often only sketched (see however [Yos98]); we give some
details here. As soon as one refers to systems of interacting particles, there are several natural
notions of gaps; this is implicit when one talks of the gappedness of different excitations and
raises the question which gap leads to incompressibility of the system.

Incompressible fluid at zero temperature. Consider a system of N particles moving in
a domain of volume V , modeled by a Hamiltonian with ground state energy E(N,V ). Sup-
pose that the limit u(n) := limN→∞E(N,V )/N taken along suitable sequences of domains
such that N → ∞, N/V → n, exists. The limit u is the energy per particle at density n and
temperature 0. Numerical computations [YHL83] suggest that for quantum Hall systems, u
is a piecewise differentiable function of n with a “cusp” at certain densities: for example,
du/dn is discontinuous at n∗ = (3 · 2πl2)−1. The discontinuity of du/dn is the manifestation
of incompressibility. A system is usually called incompressible if its volume is independent
of the pressure. Let us briefly explain the connection to the cusp in u(n) and other charac-
terizations, e.g. discontinuity of the chemical potential (see also [Yos98]).

The bulk thermodynamics of a system with one species of particles is described by a set of
intensive parameters among which, at zero temperature, “only one is independent”: suppose
that in a neighborhood of a certain density n∗, the bulk thermodynamics is described by a
continuous curve J ∋ s 7→ (u, n, p, µ)(s), where J is an open interval and u, n, p, µ are the
energy per particle, density, pressure and chemical potential. We interpret the projections
of the curve to the (n, u) and (n, p) planes as the graphs of (possibly multi-valued) functions
u(n), p(n). Suppose that the energy per particle u is a continuously differentiable (single-
valued) function of the density n except at n = n∗ where it has different left and right
derivatives. Then by the usual thermodynamic laws, for n 6= n∗,

p(n) = n2 du

dn

(this is just a different way of writing du = −pdv, with v = 1/n the volume per particle). In
particular, the pressure is a single-valued function of n except possibly at n = n∗. Let

p± := n2
∗ lim

n→n∗±
du

dn
.

We require that the system has a non-negative compressibility, i.e., the density increases
when the pressure increases and vice versa. Then p− < p+ and the pressure is a continuous,
increasing function of n except at n = n∗ where it jumps from p− to p+. In view of the
continuity of s 7→ (n(s), p(s)), it follows that at n = n∗, the pressure can take any value
between [p−, p+]. Equivalently, we may say that the density is constant along the pressure
interval [p−, p+]: the system is incompressible.

Now let us turn to the behavior of the chemical potential. At zero temperature, the chemical
potential is

µ = u+ pv = u+ p/n =
d(nu)

dn
(1.26)
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where the last identity holds only in points of differentiability of u. Let µ± = u + p±/n. If
n = n∗, the chemical potential can take any value in [µ−, µ+]; by a slight abuse of language,
we may say that the chemical potential is a discontinuous function of the density. Equiva-
lently, the density is constant along the chemical potential interval [µ−, µ+].

To conclude, we have the following manifestations of incompressibility:

• du/dn is discontinous at n = n∗

• the volume per particle v is constant along a pressure interval [p−, p+]

• the chemical potential is discontinous at n = n∗

• the density is constant along a chemical potential interval [µ−, µ+].

Different energy gaps. The incompressibility of a system, characterized through the
discontinuity of the chemical potential, is related to the existence of gaps. For example,
Girvin [Gir05] writes the discontinuity of the chemical potential at filling factor 1/3 as
∆µ = 3(∆+ + ∆−), where ∆± represent quasielectron / quasihole excitation energies (p.
158). On the other hand, the existence of a gap is also invoked to justify the application of
adiabatic theorems in the various quantum Hall effect arguments involving slow addition of a
flux quantum. This gap however is in general different from the gaps related to incompress-
ibility. For systems of interacting particles, two gaps can be considered: the gap at a fixed
number of particles, and the gap of a grand-canonical Hamiltonian H − µN̂ . The disconti-
nuity of the chemical potential is related to these quantities, but in generals differs from them.

Let H be the Hilbert space for the motion of one particle moving. For simplicity, sup-
pose dimH = d < ∞. Let F :=

⊕d
N=0 ∧NH be the corresponding fermionic Fock space,

HN ∈ B(∧NH) the Hamiltonian for N -particle systems.

Gap at a fixed number of particles. The first natural notion of a gap is simply the gap at a
fixed number of particles: let E0(N) < E1(N) < .. be the (possibly degenerate) eigenvalues
of HN . We shall refer to E1(N) − E0(N) as the gap above the ground state of HN (we
assume that HN is not a multiple of the identity). This gap is essentially the gap used in
adiabatic theorems: typical quantum Hall effect gedanken experiments involve flux depen-
dent Hamiltonians HN (φ) and use a condition of the type E1(N,φ) − E0(N,φ) ≥ gmin > 0
for some φ-independent gmin, at a given number of particles.

Discontinuity of the chemical potential. Since incompressibility can be characterized in terms
of the chemical potential, it is natural to turn to the grand-canonical ensemble. Let µ ∈ R

be a chemical potential, and

H − µN̂ :=

d⊕

N=0

(HN − µNPN ) ∈ B(F).

PN is the projection on ∧NH, considered as a subspace of F . At zero temperature, the
expected number of particles is N(µ) = trPµN̂/trPµ, where Pµ is the projection on the

ground state of H − µN̂ . For each number of particles N ∈ N, we define left and right
chemical potentials µ−(N) := E0(N) − E0(N − 1) and µ+(N) := E0(N + 1) − E0(N) 1 We

1The definition of the chemical potentials µ±(N) appears in the work [LW68] on Mott insulators; there,
the nonvanishing of µ+ − µ− is related to Mott insulating behavior.
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assume that
∀N ∈ N : µ−(N) < µ+(N), (1.27)

i.e., E0(N) is a strictly convex function of N . For µ−(N) < µ < µ+(N), Pµ is the projection
on the ground state of HN , considered as a subspace of F , so that

µ−(N) < µ < µ+(N) ⇒ N(µ) = N. (1.28)

In order to apply one of the criteria of incompressibility, we have to take thermodynamic
limits. We do this only at a formal level and restore the dependence of the volume in the
notation by writing µ±(N,V ), E0(N,V ) instead of µ±(N), E0(N). For large N , E0(N,V ) ≈
Nu(N/V ) = Nu(n) with n = N/V . Then

E0(N + 1, V ) − E0(N,V ) ≈ (N + 1)u(n+
1

V
) −Nu(n) ≈ u(n) + nu′+(n) =: µ+(n)

E0(N,V ) − E0(N − 1, V ) ≈ Nu(n) − (N − 1)u(n− 1

V
) ≈ u(n) + nu′−(n) =: µ−(n)

where we assume that u has left and right derivatives u′− and u′+. The previous relations are
consistent with (1.26). In the thermodynamic limit, (1.28) becomes

µ−(n) ≤ µ ≤ µ+(n) ⇒ n(µ) = n.

The system is incompressible at a density n if the limiting value µ+(n)−µ−(n) of the differ-
ence µ+(N,V ) − µ−(N,V ) as N → ∞, N/V → n does not vanish. Thus incompressibility
at zero temperature involves only the ground state energies E0(N,V ), and the existence of
gaps above the ground states of HN in ∧NH is irrelevant.

Gap of H − µN̂ . The discontinuity of the chemical potential has nothing to do with the gap
of HN at fixed N . However, it is related to the gap of H−µN̂ in F . More precisely, suppose
µ−(N) < µ < µ+(N) so that the ground state of H − µN̂ coincides with the ground state of
HN . Then the gap

g(H − µN̂) := min σ(H − µN̂)\{E0(N) − µN} − (E0(N) − µN)

above the ground state of H − µN̂ is bounded by the discontinuity of the chemical potential
and the gap E1(N) − E0(N) above the ground state of HN in HN :

g(H − µN̂) ≤ min(E1(N) − E0(N), µ+(N) − µ−(N)). (1.29)

Proof of (1.29). Note that

g(H − µN̂) ≤ min{E1(N) − E0(N)} ∪ {E0(N
′) − E0(N) − µ(N ′ −N) | N ′ 6= N}

= min{E1(N) − E0(N), µ+(N) − µ, µ− µ−(N)}
≤ min{E1(N) − E0(N), µ+(N) − µ−(N)}.

The second line is obtained by using (1.27) and writing for N ′ ≥ N + 1

E0(N
′) − E0(N) − µ(N ′ −N) =

N ′−N∑

k=1

(E0(N + k) − E0(N + k − 1) − µ)

≥ E0(N + 1) − E0(N) − µ.

An analogous inequality holds for N ′ ≤ N − 1.
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To summarize, we have the following relationship between the discontinuity of the chemical
potential and the two gaps: the discontinuity of the chemical potential has nothing to do
with the existence of gaps at a fixed number of particles, but involves only ground state en-
ergies E0(N). In contrast, if H−µN̂ has a gapped ground state, then the chemical potential
is discontinous and there is a gap at fixed number of particles, and the gap of H − µN̂ is
bounded from above by these two quantities.

Finally, let us mention how the quantities are related for FQHE states: the FQHE state ad-
mits a curve of “collective excitations” depending on a wave vector k. The curve approaches
the discontinuity of the potential at small wavelengths (k large), but has a minimum smaller
than ∆µ ([HR85a, Gir05]). Thus the gap at a fixed number of particles is smaller than the
discontinuity of the chemical potential.

Remarks: 1. Independent particles. For non-interacting particles, the distinctions made
above are superfluous: the gaps and the discontinuity of the chemical potential equal the gap
of the one-particle Hamiltonian.

2. Different gaps for different excitations. In solid state physics, it is common to talk
of gaps for specific excitations. In this perspective, the gap at fixed number of particles
E1(N) − E0(N) is the gap for excitations that preserve the total number of particles. In
contrast, the differences E0(N

′)−E0(N) show up when we allow excitations that do change
the number of particles. This aspect reappears in the C∗-algebraic definition of gaps for
systems with an infinite number of particles: two algebras of operators are introduced (in
Section 2.4, AU(1) and A), and there are two notions of ground states and gappedness.

3. Gapless edge excitations. At this point we stress that the incompressibility and gappedness
of the FQHE ground state refer to bulk properties. It is well-known that on samples with
boundaries, there are gapless excitations. This can be explained with the spectral boundary
conditions (see p. 8 and p. 113). The Hamiltonian H with spectral boundary conditions
determines a splitting of the Hilbert space into invariant subspaces Hb and He corresponding
to bulk and edge states. The gap of H restricted to bulk states Hb is larger or equal to ~ω.
In contrast, the gap of H on the whole space L2([a, b] × [0, 2πR]) is bounded by

min
{
e0(kl

2/R) − ~ω/2 | k ∈ Z, kl2/R /∈ [a, b]
}
,

where e0(ρ) is a continuous function with minimum ~ω/2. In the limit R→ ∞, the magnetic
length l and the interval [a, b] being fixed, the gap vanishes. Thus in the limit of large samples,
the Hamiltonian has gapless excitations, associated to edge states.

1.6 Plasma analogies

Laughlin interpreted the modulus squared of his wave function as the Boltzmann weight of
a two-dimensional one-component plasma. This analogy can be made in different geometries
and provides useful intuition when it comes to the translational symmetry breaking. In
this section, we shall describe the relevant plasma models, and give the Laughlin - plasma
analogy in the various geometries used. In order to compare free energies, special care must
be devoted to additive constants in the definition of energy functions.
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We use the following “Coulomb potentials”:

VD(z) = − log |z|/R0 (z ∈ C\{0}),

VC(z) = − log |2R
R0

sinh
z

2R
| (z ∈ C\{2πRki | k ∈ Z}),

VT (z) = − log |2R
R0

θ1(
iz
2R | iL

2πR )

θ′1(0 | iL
2πR )

| + x2

2RL
, (z ∈ C\(LZ + 2πRiZ)).

The index D,C, T refers to the geometry (disk, cylinder, torus). The cylinder has radius
R, the torus is R/LZ × R/2πRZ, and R0 is a reference length scale. The notation θ′1(z|τ )
refers to the derivative of θ1 with respect to the complex variable z. The potentials fulfill
suitable Poisson equations, the cylinder and torus potentials have appropriate periodicity,
and all potentials behave as VD for small |z|:

Properties: The functions VD, VC , VT define tempered distributions φ ∈ S(R2) 7→
∫

R2 V φ.
Let δa : φ 7→ φ(a). The following equations hold in the sense of distributions:

−∆VD = 2πδ0, −∆VC = 2π
∑

k∈Z

δ(0,2πRk) − ∆VT = 2π
( ∑

m,k∈Z

δ(mL,k2πR) −
1

2πRL

)
.

Furthermore, for k,m ∈ Z, we have

VC(z + 2πRi) = VC(z), VT (z +mL+ k2πRi) = VT (z).

and VC,T = VD(z) + o(1) as z → 0.

Thus VD is a two-dimensional Coulomb potential. VD is the 2D potential adapted to a sys-
tem confined to a strip [0, L]× [0, 2πR] with periodic boundary conditions in the y-direction
(i.e., a cylinder). Similarly, VT is a torus Coulomb potential, i.e., adapted to the rectangle
[0, L] × [0, 2πR] with periodic boundary conditions. VT is the potential created by a charge
(the δ0-part in the Poisson equation), its images (the other Dirac distributions), and their
neutralizing background (the constant term).

Now consider a system of N particles of charge q and positions zj = xj + iyj moving in a
neutralizing background of charge density −nq on a disk, a cylinder or a torus. For R,L > 0,
let

D := {z ∈ C | |z| < R}, C := [−L/2, L/2] × [0, 2πR] =: T.

Now we can define the potential energy Uα, α ∈ {D,C, T} through

Uα(z1, .., zN ) :=
∑

1≤j<k≤N

q2Vα(zj − zk) − nq2
N∑

j=1

∫

α

Vα(zj − z)dz

+
1

2
(nq)2

∫

α×α

Vα(z − z′)dzdz′ (1.30)

where n = N/πR2 if α = D (disk) and n = N/(2πRL) if α ∈ {C, T} (cylinder or torus). The
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expression of the Boltzmann weights are:

e−βUD =
∏

j<k

|zj − zk

R0
|Γe−Γ πn

2

PN
j=1 r2

j eΓ
N2

2 ( 3
4−log | R

R0
|) (1.31)

e−βUC =
∏

j<k

|2 sinh
zj − zk

2R
|Γe−Γπn

PN
j=1 x2

j e−
λ2

12 N3

, if R = R0 (1.32)

e−βUT =
∏

j<k

|2R
R0

θ1(
iz
2R | iL

2πR )

θ′1(0 | iL
2πR )

|Γe−Γπn
P

j<k(xj−xk)2/Ne−N3λ2/12e−
N2Γ

2 log R
R0

∞∏

n=1

(1 − u2n)2.

(1.33)

where Γ = βq2, λ2 = Γ/(4πnR2) and u := e−2πR2/L. Details on the computation can be
found in [FGIL94] for the disk energy UD, [ŠWK04] for the cylinder and [For06] for the torus
energy.

Remark: The reader may feel that we have done some overcounting in the definition of the
torus energy, since the interaction VT already includes a background contribution. There is
however, a standard approach to the definition of energy functions for long range interactions
in periodic geometries (see [BST66] for the Coulomb interaction). In the following paragraph,
we briefly sketch this approach, which allows not only to check that our definition of the
torus energy UT coincides with the more standard definition, but also to give a meaning to
a “periodic 1/r interaction” (used for quantum Hall samples on tori in [YHL83]).
To simplify matters, we replace first the logarithmic interaction with an interaction V ∈
S(R2). The potential created by a uniform background, charges located in z1, .., zN ∈ [0, L1]×
[0, L2] and their images is

W (z; z1, .., zN ) =
N∑

j=1

∑

m∈Λ

V (z − zj −m) − N

L1L2

∫

R2

V (z − z′)dzdz′

where Λ = L1Z × L2Z. Let µ :=
∑N

j=1 δzj
− N

L1L2
be the charge density in the unit cell

[0, L1] × [0, L2]. Then

U(z1, .., zN ) :=
1

2
(

∫

[0,L1]×[0,L2]

Wdµ−NV (0))

represents the energy of the unit cell minus the self-interaction of the particles. The energy
is in general reexpressed as [BST66]

U(z1, .., zN ) =
∑

j<m

ψ(zj − zm) +
N

2
(ψ(0) − V (0)) (1.34)

where ψ(r) = 2π
L1L2

∑
k∈Λ′\{(0,0)} V̂ (k)eik·r, and Λ′ denotes the lattice dual to Λ. But U can

also be expressed by the formula (1.30) with integrations carried out on [0, L1] × [0, L2] and
interaction potential

Ṽ (z) =
∑

m∈Λ

V (z −m) −
∑

m∈Λ\{0}
V (m) = ψ(z) − ψ(0) + V (0)

so that Ṽ (0) = V (0). In view of VT (z) = VD(z) + o(1) as |z| → 0, this is the analogue of the
formula we used in order to define UT . In contrast, (1.34) gives the more familiar expression

U(r1, .., rN ) =
∑

j<m

∑

k∈Z2\{(0,0)}

1

k2
eik·(rj−rm) + const.
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A similar expression is used in [YHL83] to define the energy function used for numerical com-
putations for quantum Hall systems on a torus, except that 1/k2 is replaced with const/|k|,
the two-dimensional Fourier transform of 1/|r|, and the resulting Hamiltonian is projected
to the lowest Landau level.

The plasma analogy relates the Boltzmann weights to the modulus squared of the Laughlin
type wave functions:

Proposition 1.8. Let ΨD
N , ΨC

N , ΨD
N be the Laughlin wave functions at filling factor 1/p

defined on p.9, and e−βUD , e−βUC , e−βUT the Boltzmann weigths as in (1.31), (1.32) and
(1.33). Suppose that Γ = 2p and n = (p · 2πl2)−1. Then

|ΨD
N |2 = e−βUDe−Γ N2

2 ( 3
4−log | R

R0
|) (1.35)

|ΨC
N (z1, .., zN )|2 =

1

N !

1

(2πRl
√
π)N

e
Nλ2

12 e−βUC ({zj − p(N − 1)l2/(2R)}) (1.36)

|ΨT
N (z1, .., zN )|2 ∝ |F cm(

N∑

j=1

zj)|2e
1

Nl2
(
PN

j=1 xj)
2

e−βUT (z1, .., zN ). (1.37)

where the multiplicative constant in (1.37) can be determined from (1.33).

Sketch of proof. The first identity (1.35) is obvious. (1.36) uses the identities es − et =
2 exp s+t

2 sinh s−t
2 and

∑

1≤j<k≤N

(xj + xk) =
N − 1

2

N∑

j=1

xj .

(1.37) is shown using

∑

1≤j<k≤N

(xj − xk)2 = N

N∑

j=1

x2
j − (

N∑

j=1

xj)
2.

The plasma analogy was used by Laughlin [Lau81] in the disk geometry to transfer knowledge
on plasma systems to the electron gas described by Laughlin’s wave function. The existence
of the thermodynamic limit of the free energy of the two-dimensional jellium system has
been proved in various geometries [SM76]. There is a wealth of numerical results on two-
dimensional jellium systems (see the references in [FGIL94]). They suggest that for coupling
constants below Γ ∼ 140, the plasma is translationally invariant, whereas it becomes crys-
talline above.

Semi-periodic strips should be seen as quasi one-dimensional systems rather than two-di-
mensional. The formation of Wigner crystals in one-dimensional jellium has been proved
[Kun74, BL75]. Motivated by this and the exact results on plasmas at coupling Γ = 2 (corre-
sponding to the filled Landau level), [ŠWK04] investigated numerically symmetry breaking
on jellium strips.

It is interesting to observe that the very analogy invoked by Laughlin to show that his function
describes a homogeneous gas suggests a non-trivial periodicity of the density on cylinders.



Chapter 2

Thermodynamic limits

The filled Landau level on a cylinder corresponds to an electron gas whose density is not
uniform, but has a periodicity in the direction along the cylinder axis, as we have seen in
Section 1.3. The main result of this thesis is that for Laughlin cylinder functions at lower
filling factor 1/p, a similar statement can be proved provided the cylinder radius is sufficiently
small. The period of the one-particle density is p times the period of the filled Landau level.
Furthermore, for thin cylinders the thermodynamic limit of all correlation functions exists.
The limiting state is mixing with respect to a suitable translation group. The proof of these
results is the object of Section 2.1. It makes crucial use of the representation of Laughlin’s
wave function as a polymer system and a relationship to discrete renewal processes. The
fundamental result is a statement on the asymptotics of normalization constants (Theorem
2.12) which allows to infer that on thin cylinders, the associated renewal process has finite
mean interarrival time.

Interestingly, the relationship with polymer systems subsists when we consider modified
Laughlin type wave functions. In Section 2.2, we define modified cylinder and torus wave
functions and show that, for a certain range of parameters, they are associated with monomer-
dimer systems, define solvable models, and monomer-dimer torus and cylinder wave functions
are equivalent in a suitable limit.

In Section 2.3, we look at the problem from the point of view of classical jellium systems.
We compare the jellium tube to one- and two-dimensional systems, and derive an inequality
from Newton’s electrostatic theorem. This inequality is related to a recurrence relation ful-
filled by the normalization constant of Laughlin’s wave function. The semiperiodic Coulomb
interaction is translationally invariant with respect to translations along the cylinder axis by
any real value. Therefore in the jellium tube picture, our results imply symmetry breaking
for all values of the radius. On thin strips, we know that the period is pl2/R, whereas on
large strips, the period might be l2/R, but in any case the one-particle density cannot be
constant.

In Section 2.4, we examine infinite volume ground states, among which we find the limits of
Laughlin’s wave function, of truncated interactions. The main interest lies in the relationship
between the existence of gaps and symmetry breaking.

29
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2.1 Laughlin’s cylinder wave function

In this section, we prove the main result of this thesis, namely that, at least for sufficiently
thin cylinders, the thermodynamic limit of Laughlin’s state at filling factor 1/p exists and
defines a state with a translational period that is p times the period of the filled Landau
level. The key ingredient is the representation of Laughlin’s cylinder function as a polymer
system. The norm squared CN of Laughlin’s function is the polymer partition function of
a system of hard rods on the one-dimensional lattice Z with translationally invariant activ-
ity. It satisfies a recurrence relation known in stochastics as a renewal equation. When the
associated renewal process has finite mean, the thermodynamic limit of the polymer system
exists; Laughlin’s function essentially inherits this feature from the polymer system, as well
as clustering properties. The translational invariance of the limiting polymer state translates
into periodicity of Laughlin’s state. For sufficiently thin cylinders, the associated renewal
process has indeed finite mean, and pl2/R is the smallest period of the thermodynamic limit
of Laughlin’s state.

This section is organized as follows:

• In the first subsection, we give some basic properties of Laughlin’s wave function, and
in particular its expansion into Slater determinants of lowest Landau level basis func-
tions. The main result is that the expansion coefficients satisfy a product rule and that
Laughlin’s wave function can be represented as a polymer system. The product rule has
been shown to hold for expansion coefficients of powers of Vandermonde determinants
[FGIL94]. The novelty here is the observation that on cylinders, the product rule holds
also for the expansion coefficients of Laughlin’s function.

• In Subsection 2.1.2, we review well-known results on polymer systems and renewal
processes that will be used later on. The main message is that systems of hard rods
on a lattice with stable, translationally invariant activity are associated with discrete
renewal processes. When the associated renewal process has finite mean, the system
of rods has a nicely behaved thermodynamic limit, while processes with infinite mean
give rise to complications.

• As a consequence, in order to make the polymer representation of Laughlin’s wave
function useful, we have to answer two questions: Is the activity of the associated
system stable? Does the associated renewal process have a finite mean? These ques-
tions are answered in Subsection 2.1.3 by looking at the asymptotics of the L2 norm
squared of Laughlin’s wave function. The answer to the first question is always positive.
For the second question, we have a positive answer only for thin cylinders; the proof
uses the polymer analogy and combines the well-known results presented in Subsection
2.1.2 with the fact that in the limit of large radii, all polymers except monomers have
vanishing activity. What happens for large radii is open.

• In Subsection 2.1.4, we prove that under the assumption of a finite mean, Laughlin’s
state has a well-defined thermodynamic limit. The limiting state is periodic in the
direction along the cylinder axis, and pl2/R is a period; furthermore, the limiting state
is mixing with respect to shifts by multiples of pl2/R. The results on one-dimensional
systems of hard rods presented in Subsection 2.1.2 serve as a guiding intuition, but our
results are quantum mechanical and thus go beyond Subsection 2.1.2.

• In the last subsection, we prove that on thin cylinders, the limiting state of Subsection
2.1.4 has pl2/R as its smallest period. Since Laughlin’s state can be characterized as
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the ground state of a Hamiltonian with period l2/R (see Section 2.4), this result shows
that there is symmetry breaking.

2.1.1 Basic properties

Laughlin’s wave function has a few number of basic, but important properties that we present
in this subsection. The simplest are two symmetry properties (Lemma 2.1). The second ob-
servation is that the one-particle density is a sum of Gaussians centered on the lattice lγZ,
and therefore, in the limit of infinite cylinders, the one-particle density cannot be constant:
at best, it can have a period that is a multiple of l2/R = γl (Lemma 2.2). Laughlin’s wave
function is a sum of products of lowest Landau level basis functions (see (2.1) below). The
most important result of this subsection is that the expansion coefficients satisfy a product
rule (Lemma 2.4) that allows the representation of Laughlin’s function as a polymer system
(Lemma 2.6). Later, we will give an estimate of the activities of the associated polymer
system based on an auxiliary result proved in this subsection (Lemma 2.5).

The starting point is the intimate relation between Laughlin’s wave function and powers of
a Vandermonde determinant. Recall from the proof of Lemma 1.2 that

ΨC
N (z1, .., zN ) =

1√
N !

∑

0≤m1,..,mN≤p(N−1)

aN (m1, ..,mN )ψm1
⊗ ..⊗ ψmN

(2.1)

aN (m1, ..,mN ) := bN (m1, ..,mN )eγ2 PN
j=1(m

2
j−p2(j−1)2)/2 (2.2)

where ψm(z) ∝ eimy/Re−(x−mγl)2/2l2 are the normalized cylinder lowest Landau level basis
functions and the coefficients bN are defined through the expansion of the p-th power of the
Vandermonde determinant:

VN (z1, .., zN )p =
∑

m1,..,mN

bN (m1, ..,mN )zm1
1 ..zmN

N .

Remember that we give empty products the value 1, so that

V1(z)
p =

∏

1≤j<k≤1

(zk − zj)
p = 1 = b1(0)

and

ΨC
1 (z) =

1√
2πRl

√
π
e−x2/2l2 = a1(0)ψ0(z), a1(0) = 1. (2.3)

Let us explain here how the geometry affects the expansion. As observed by Dunne [Dun93],
the expansion coefficients of Laughlin’s function as a sum of normalized lowest Landau level
basis function is made up of two parts: in (2.2), we see that aN (m1, ..,mN ) is the product of
bN (m1, ..,mN ), coming from the expansion of the polynomial V p

N , and an exponential factor

that accounts for the fact that z 7→ ez/Re−x2/2l2 is not normalized. A similar expansion holds
for the disk function. It suffices to replace the cylinder basis functions ψk in (2.1) with the

disk basis functions Ωk(z) = zke−|z|2/4l2(2πl2k!(2l2)k)−1/2 and to set

aD
N (m1, ..,mN ) := bN (m1, ..,mN )(2πl2)N/2

( N∏

j=1

mj !(2l
2)mj

)1/2
. (2.4)

A comparison of this formula with (2.2) shows how the geometry enters the scene. The
difference in the contributions from normalization constants is responsible for the fact that
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cylinder expansions coefficients satisfy the product rule of Lemma 2.4 while disk expansion
coefficients do not.

The relationship of Laughlin’s function to powers of a Vandermonde determinant has been
exploited in [Dun93, FGIL94] and motivated combinatorial investigations [STW94, KTW01].
We use here two properties of the expansion coefficients bN ({mj}) proved in [Dun93, FGIL94]:
the reversal invariance (2.10) and the product rule and admissibility conditions (Lemma 2.4
for the bN ’s instead of aN ’s).

Let us mention that although, to our knowledge, there is no closed expression giving bN ({mj})
as a function of the mj ’s, a number of formulas is available for specific mj ’s: for example,

bN (0, p, .., pN − p) = 1,

bN (1, p, .., p(N − 2), pN − p− 1) = (−1)N−1p(p− 1)N−2, (2.5)

bN (s(N − 1), s(N − 1) + 1, .., (s+ 1)(N − 1)) = (−1)
sN(N−1)

2

(
(s+ 1)N

)
!

N !(s+ 1)!N
, p = 2s+ 1,

(2.6)

see [Dun93], Section 6 for the p = 3 case of the formulas and [FGIL94], Section 5, for a proof
of the third identity. The equality (2.5) is proved in a way similar to (2.75) in the proof of
Lemma 2.23 below. Similar formulas are verified for N ≤ 8, p odd, in [RH94]. Additional
formulas can be found also in [KTW01].

Laughlin’s cylinder function is an eigenvector of total y-momentum and of a rotation by 180◦,
which is defined as follows: let (s0ψ)(z) := ψ(−z) and for a ∈ R,

(saψ)(z) := (t(aex)s0t(−aex)ψ)(z) = ei2ay/l2ψ(2a− z).

The rotation sa preserves the boundary condition ψ(z+ i2πR) = ψ(z) if and only if a ∈ γl
2 Z.

Moreover,

∀r ∈ 1

2
Z, ∀k ∈ Z : srγlψk = ψ2r−k. (2.7)

Lemma 2.1. Laughlin’s cylinder function is an eigenfunction of the total y-momentum and
of an overall 180◦ rotation around the middle of the cylinder:

N∑

j=1

cx,jΨ
C
N = −il2

N∑

j=1

∂

∂yj
ΨC

N =
pN(N − 1)

2
γlΨC

N (2.8)

s⊗N
p(N−1)γl/2Ψ

C
N = ΨC

N . (2.9)

Proof. The translational invariance in the y-direction (2.8) follows from the fact that V p
N is

a homogeneous polynomial of total degree p(0 + 1 + .. + N − 1) = pN(N − 1)/2 so that
aN (m1, ..,mN ) vanishes unless m1 + .. + mN = pN(N − 1)/2. In [Dun93] (Section 6) and
[FGIL94] (Section 4, Property 0) it is shown that

bN (p(N − 1) −mN , ..., p(N − 1) −m1) = bN (m1, ..,mN ). (2.10)

This follows from

N−1∏

j=1

z
p(N−1)
j VN (

1

z1
, ..,

1

zN
)p = (−1)pN(N−1)/2VN (z1, .., zN )p
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and the antisymmetry / symmetry bN (mπ(1), ..,mπ(N)) = (sgn(π))pbN (m1, ..,mN ); the per-

mutation 1 7→ N, 2 7→ N − 1, etc., has the sign (−1)⌊N/2⌋ = (−1)N(N−1)/2 where ⌊N/2⌋ is
the integer part of N/2. Combining (2.10) and (2.2), we obtain

aN (p(N − 1) −mN , ..., p(N − 1) −m1) = aN (m1, ..,mN ). (2.11)

The rotational invariance (2.9) then follows from (2.7) and (2.1).

Remark. Following [Dun93], we will also say reversal invariance instead of rotational invari-
ance.

The symmetries have simple consequences for the reduced n-point matrices which we now
introduce. It is convenient to use the language of second quantization. We work out the
details only for odd p. Most of the statements however, hold for even p also; the most impor-
tant technical difference comes from the unboundedness of bosonic creation and annihilation
operators [BR79b].

Let F := ∧H, H = L2(R × [0, 2πR]) be the fermionic Fock space over the infinite cylinder
and A the anticommutation algebra over H, i.e., the closed sub-algebra of B(F) generated
by 1B(F) and the creation and annihilation operators c∗(f), c(f), f ∈ H. Laughlin’s wave
function defines a state on A through

〈a〉ΨC
N

= 〈ΨC
N , aΨ

C
N 〉/||ΨC

N ||2.

If 〈·〉 is a state on A, the reduced n-point matrix ([BR79b], Section 6.3.3), if it exists, is the
function ρ(n) : (R× [0, 2πR])n × (R× [0, 2πR])n → R such that for all f1, .., fn, g1, .., gn ∈ H,

〈c∗(f1)..c∗(fn)c(gn)..c(g1)〉

=

∫

((R×[0,2πR])2n

g1(z′1)..gn(z′n)ρ(n)(z′1, .., z
′
n; z1, .., zn)f1(z1)..fn(zn)dz′1..dzn.

Put differently, it is the integral kernel of the operator ρ(n) in ⊗nH with expectation values

〈g1 ⊗ ..⊗ gn, ρ
(n)f1 ⊗ ..⊗ fn〉 = 〈c∗(f1)..c∗(fn)c(gn)..c(g1)〉.

Using (c(f)ΨN )(z2, .., zN ) =
√
N

∫
f(z1)ΨN (z1, .., zN )dz1, one sees that the reduced density

matrices of 〈·〉ΨC
N

are given by integrals of the type (1.9). Thus the definitions given in
the section on the filled Landau level are consistent with the definitions given here. Let
ck = c(ψk). The r-point reduced density matrix of ΨC

N can also be expressed as

ρ
(r)
N (z′1, .., z

′
r; z1, .., zr) = r!

∑

0≤n1<..<nr≤pN−p
0≤m1<..<mr≤pN−p
n1+..+nr=m1+..+mr

〈c∗m1
..c∗mr

cnr
..cn1

〉ΨC
N

ψm1
∧ .. ∧ ψmr

(z′1, .., z
′
r)ψn1

∧ .. ∧ ψnr
(z1, .., zr).

The restriction to m1 + ..+mr = n1 + ..+ nr comes from

ρ
(r)
N (z′1 − ia, ..; .., z′r − ia) = ρ

(r)
N (z1, ..; ..zr),

which is a consequence of the translational invariance (2.8). In particular, the one-particle
density

ρN (z) := ρ
(1)
N (z; z) =

pN−p∑

k=0

〈c∗kck〉ΨC
N
|ψk(z)|2 =

1

2πRl
√
π

pN−p∑

k=0

〈c∗kck〉ΨC
N
e−(x−kγl)2
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is a sum of Gaussians, independent of the coordinate y around the cylinder. This will subsist
in the thermodynamic limit. Thus instead of looking at the one-particle density, we can look
at the sequence of occupation numbers 〈c∗kck〉. The following lemma ensures a one-to-one
relation between the periodicity of the one-particle density and of the sequence of occupation
numbers.

Lemma 2.2. Let (nk)k∈Z be a sequence of numbers in [0, 1] that is not identically zero and
ρ(x) :=

∑∞
k=−∞ nk|ψk(x)|2. Then any period of ρ(·) is a multiple of l2/R = γl. Moreover,

for p ∈ N, ρ is periodic with period pγl if and only if (nk) is p-periodic. In this case the
Fourier coefficients of ρ can be expressed as

1

pγl

∫ pγl

0

e−ikxρ(x)dx =
1

p

1

2πl2
e
−π2k2

p2γ2

p−1∑

j=0

nje
−i2πjk/p. (2.12)

Proof. ρ = f ∗ µ is the convolution of a function f and a measure µ

f(x) :=
1

2πRl
√
π
e−x2/l2 , µ :=

∑

k∈Z

nkδkγl.

Taking Fourier transforms, we get

ρ̂ =
√

2πf̂ · µ̂ =
1

2πR
e−(lx)2/4µ̂ (2.13)

which should be read in the distributional sense, i.e., ∀φ ∈ S(R) :
∫ ∞
−∞ ρφ̂ =

√
2π

∫ ∞
−∞

̂̂
fφdµ.

Suppose µ and ν are tempered measures such that f ∗ µ = f ∗ ν. Then f̂ · µ̂ = f̂ · ν̂. Since f̂
is a continuous, strictly positive function this implies µ̂ = ν̂ and the injectivity of the Fourier
transform gives µ = ν. For h ∈ R, let τhµ be the shifted measure τhµ(B) = µ(B + h).
Suppose ρ = f ∗ µ is periodic with period h, then

(f ∗ µ)(x) = ρ(x) = ρ(x− h) =

∫ ∞

−∞
f(x− h− y)dµ(y) = (f ∗ τh)µ(x)

and thus τ−hµ = µ. Thus the support of µ is invariant by a shift by h. Since the support
is non-empty by the assumption

∑
k nk > 0, and obviously suppµ ⊂ γlZ, h has to be a

multiple of γl. Now let p ∈ N0. If ρ is pγl periodic, so is µ, whence nk+p = nk. Conversely,
if nk+p = nk, ρ is obviously pγl-periodic. Let

ak(ρ) :=
1

pγl

∫ pγl

0

e−i2πkx/(pγl)ρ(x)dx,

ak(µ) =
1

pγl

∫

[0,pγl[

e−i2πkx/(pγl)dµ =
1

pγl

p−1∑

j=0

nje
−i2πkj/p.

Then

ρ̂ =
∑

k∈Z

ak(ρ)
√

2πδ2πk/(pγl), µ̂ =
∑

k∈Z

ak(µ)
√

2πδ2πk/(pγl).

(See [Sch73], p. 224–229 for an account on periodic distributions and their Fourier series.)
Together with (2.13) we obtain (2.12).
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Remarks. 1. The previous lemma shows in particular that ρ cannot be constant, since con-
stant functions admit periods that are not multiples of γl.

2. The mapping (nk) 7→ ρ is actually injective.

3. If we set p = 1, we recover the result of Poisson’s summation formula for the filled Landau
level (see Chapter 1).

4. There is an analogue of (2.12) for finitely many particles:

ρ(x) =
∑

k∈Z

nk|ψk(x)|2,
∑

k∈Z

nk = N

⇒ 1

Npγl

∫ ∞

−∞
e−2πikx/(pγl)ρ(x)dx =

1

p

1

2πl2
e
−π2k2

p2γ2
1

N

∑

j∈Z

nje
−i2πjk/p.

5. For even p, Laughlin’s wave function describes bosons and the occupation numbers can
be greater than 1. We can relax the condition nk ∈ [0, 1] to nk ≥ 0 and the requirement that
(nk) is polynomially bounded in −∞ and +∞ (i.e., it defines a tempered measure).

Di Francesco et al. proved a necessary condition for the non-vanishing of bN (m1, ..,mN )
([FGIL94], Property 3) and a product rule for the expansion coefficients bN (Property 5).
These properties also hold for the expansion coefficients aN . Before we state them, we give
some auxiliary definitions.

Definition 2.3. Let N ∈ N, m = (m1, ..,mN ) ∈ Z
N . We say

• m is N-admissible if 0 ≤ m1, ..,mN ≤ p(N − 1) and

∀k ∈ {1, .., N} :

k∑

j=1

mj ≥
k∑

j=1

p(j − 1)

with equality for k = N :
∑N

j=1mj = pN(N − 1)/2.

• k is a renewal point of m if k ∈ {0, .., N} and
∑k

j=1(mj −p(j−1)) = 0. R(m) denotes
the set of renewal points of m. If m is N-admissible, R(m) contains 0 and N .

• m is reducible if it has a renewal point in {1, ....N −1}, and irreducible in the opposite
case.

The notion of admissibility is related to the majorization partial order ([HLP64], p.45): for
α, α′ ∈ RN

+ , one writes α ≺ α′ if the finite sequences (αj) and (α′
j), rearranged in decreasing

order (ασ(1) ≥ ..ασ(N), α
′
τ(1) ≥ ..α′

τ(N)), satisfy
∑k

j=1 α
′
τ(j) ≤

∑k
j=1 ασ(j) for all k ∈ {1, .., N}

with equality for k = N . Then

(mπ(1), ..,mπ(N)) is N-admissible for all π ∈ SN

⇔ (m1, ..,mN ) ≺ (0, p, 2p, .., (N − 1)p). (2.14)

Furthermore, by a classical theorem ([HLP64], p.49) a sequence is majorated by the reference
sequence (0, .., (N − 1)p) if and only if there is a doubly stochastic matrix P such that

(m1, ..,mN )T = P (0, p, 2p, .., (N − 1)p)T . (2.15)



36 CHAPTER 2. THERMODYNAMIC LIMITS

Renewal points of m correspond to block-diagonal stochastic matrices: if P is block-diagonal
with an upper left k × k block, k is a renewal point of m. By the Birkhoff-von Neumann
theorem, the set of doubly stochastic matrices is the convex hull of permutation matrices.
We will see that if aN (m1, ..,mN ) 6= 0, m is majorated by (0, ..., p(N −1)) and the stochastic
matrix in (2.15) can be chosen as a simple average of p permutation matrices: P = 1

p (Pπ1
+

..+ Pπp
).

Lemma 2.4. Let (m1, ..,mN ) ∈ Z
N .

1. If aN (m1, ..,mN ) 6= 0, then (m1, ..,mN ) is N-admissible.

2. Suppose m is reducible with a renewal point k ∈ {1, .., N − 1}. Then

aN (m1, ..,mN ) = ak(m1, ..,mk)aN−k(mk+1 − pk, ..,mN − pk). (2.16)

Moreover, if m1 ≤ .. ≤ mN , then (m1, ..,mN ) is N-admissible if and only if (m1, ..,mk)
is k-admissible and (mk+1 − pk, ..,mN − pk) is N − k-admissible.

Note that the product (2.16) is 0 if one of the sequences does not have the correct admissibility.
Before we turn to the proof of the lemma, let us stress that the product rule (2.16) really
uses the cylinder geometry: remember that the Laughlin function expansion coefficients
are made up of two contributions. The first, bN (m1, ..,mN ), coming from the power of
the Vandermonde polynomial, always satisfies the factorization rule [FGIL94], while the
normalization contribution (see (2.2) and (2.4)) does so only in the cylinder geometry.

Proof. The lemma is based on similar results holding for the coefficients bN (m1, ..,mN ),
proved in [FGIL94]. We give slightly different proofs. The proof of the equivalence of admis-
sibilities follows [KTW01]. For simplicity suppose p = 3. The reasoning for other values of p
is strictly analogous.

1. Suppose aN (m1, ..,mN ) 6= 0. Then by (2.2), we must have bN (m1, ..,mN ) 6= 0. Writing

VN (z1, .., zN )p = (
∑

π∈SN

sgnπz
π(1)−1
1 ...z

π(N)−N
N )p (2.17)

=
∑

π,σ,τ∈SN

sgnπστ

N∏

j=1

z
π(j)+σ(j)+τ(j)−3
j (2.18)

we obtain
bN (m1, ...,mN ) =

∑

π,σ,τ∈SN :

∀j: mj=π(j)+σ(j)+τ(j)−3

sgnπστ. (2.19)

Thus bN (m1, ..,mN ) 6= 0 implies that there exist permutations π, σ, τ ∈ SN such that mj =
π(j) + σ(j) + τ (j) − 3 for all j ∈ {1, .., N}. Since π is in SN , for all k ∈ {1, .., N},

k∑

j=1

π(j) ≥
k∑

j=1

j (2.20)

with equality if k = N . Similar inequalities hold for σ and τ . Adding them up, we obtain

k∑

j=1

mj =
k∑

j=1

(π(j) + σ(j) + τ (j) − 3) ≥
k∑

j=1

(3j − 3), (2.21)
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with equality for k = N , whence 1.

2. Now suppose (m1, ..,mN ) ∈ ZN is such that m1 + .. + mk = 3k(k − 1)/2 for some k in
{1, .., N − 1}. Let π, σ, τ ∈ SN be such that mj = π(j)+ σ(j)+ τ (j)− 3 for all j ∈ {1, .., N}.
Then there is equality in (2.21) and in (2.20) for π, σ, τ . This implies that π, σ and τ leave
{1, .., k} and {k + 1, .., N} invariant, Let π′ ∈ Sk be the restriction of π to {1, .., k} and
π′′ ∈ SN−k such that π(k + j) = π′′(j) + k for all j ∈ {1, .., N − k}. Define σ′, τ ′, σ′′, τ ′′ in
a similar way. Then mk+j − pk = π′′(j) + σ′′(j) + τ ′′(j) for all j ∈ {1, .., N − k}. Therefore
(2.19) becomes

bN (m1, ..,mN )

=
( ∑

π′,σ′,τ′∈Sk :

∀j: mj=π′(j)+σ′(j)+τ′(j)−3

sgnπ′σ′τ ′
)( ∑

π′′,σ′′,τ′′∈SN−k :

∀j: mk+j−3k=π′′(j)+σ′′(j)+τ′′(j)−3

sgnπ′′σ′′τ ′′
)

= bk(m1, ..,mk)bN−k(mk+1 − 3k, ..,mN − 3k).

Since

N∑

j=k+1

((mj − 3k)2 − 32(j − k − 1)2)

=
N∑

j=k+1

(m2
j − 32(j − 1)2) − 6k

N∑

j=k+1

(mj − 3(j − 1)) =
N∑

j=k+1

(m2
j − 32(j − 1)2),

the exponential factors satisfy a product rule too, whence

aN (m1, ..,mN ) = ak(m1, ..,mk)aN−k(mk+1 − 3k, ..,mN − 3k).

Finally, let (m1, ..,mN ) be N -admissible and increasing 0 ≤ m1, ..,mN ≤ pN − p. We obtain
immediately the k-admissibility of (m1, ...,mk). It remains to see that (mk+1−pk, ..,mN−pk)
is N − k-admissible. For r ≥ 1, write

r∑

j=1

(mk+j − pk − p(j − 1)) =

k+r∑

j=k+1

(mj − p(j − 1))

=

k+r∑

j=1

(mj − p(j − 1)) ≥ 0

with equality for r = N . If in addition m1 ≤ .. ≤ mN , the previous inequalities imply
0 ≤ mk+1 − pk ≤ .. ≤ mN − pk ≤ p(N − k − 1), so that (mk+1 − pk, ..,mN − pk) is
N − k-admissible. Conversely, if (m1, ..,mk) is k-admissible, (mk+1 − pk, ..,mN − pk) is
N − k-admissible, one can check that (m1, .,mN ) is N -admissible.

Depending on the parity of p, the coefficients aN (m1, ..,mN ) are either symmetric or anti-
symmetric functions of the mj ’s. Thus if aN (m1, ..,mN ) 6= 0, any permutation of the mj ’s
is N -admissible, i.e., (m1, ..,mN ) is majorized by the reference vector (0, p, .., p(N − 1)) and
can be written as a doubly stochastic matrix times this vector. In the proof of the previous
lemma, for p = 3, the only sequences that occur are of the form

mj = π(j) + σ(j) + τ (j) − 3, j = 1, .., N.
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Put differently,

(m1, ..,mN )T =
1

3
(Pπ + Pσ + Pτ )(0, 3, .., 3(N − 1))T .

Thus we can choose the stochastic matrix as a simple average of permutation matrices. This
holds for all p ∈ N with the obvious modifications.

If aN (m1, ..,mN ) 6= 0, the N -tupel (mj) is majorized by (p(j − 1)). This means that the
mj ’s are less spread out than 0, p, .., p(N − 1). The following lemma quantifies this “less” for
irreducible sequences by comparing their variances. This amounts to a comparison of sums
of squares, since

1

N2

∑

j<k

(mj −mk)2 =
1

N

N∑

j=1

m2
j − (

1

N

N∑

j=1

mj)
2 =

1

N

N∑

j=1

m2
j − (

1

N

N∑

j=1

p(j − 1))2.

Lemma 2.5. Let m ∈ ZN be N-admissible, irreducible and increasing: m1 < .. < mN . Then

N∑

j=1

(
m2

j − p2(j − 1)2
)
≤ −(p+ 1)(N − 1). (2.22)

If m1 ≤ .. ≤ mN , the upper bound is −p(N − 1).

Proof. Let 0 < m1 < .. < mN ≤ p(N − 1) be N -admissible. Then

∀k ∈ {0, .., N} : nk :=

N∑

j=1

(
mj − p(j − 1)

)
≥ 0,

n0 = nN = 0, and mj = p(j − 1) + nj − nj−1, j = 1, .., N. The monotonicity of (mj)
translates into

nj+1 − 2nj + nj−1 + p ≥ 1, j = 1, .., N. (2.23)

A summation by parts gives

N∑

j=1

(m2
j − p2(j − 1)2) = −

N∑

j=1

nj(p+ nj+1 − 2nj + nj−1) ≤ −(p+ 1)
N−1∑

j=1

nj

The irreducibility of (m1, ..,mN ) implies nj ≥ 1 for j ∈ 1, .., N − 1, whence (2.22). If
m1 ≤ .. ≤ mN , the lower bound in (2.23) is 0, and the summation by parts gives the upper
bound −p(N − 1).

The previous lemma will be important later on. It allows to prove that long polymers in an
associated polymer system have small activity.

The factorization rule (2.16) leads to a representation of Laughlin’s wave function in terms
of “building blocks” that is reminiscent of polymer systems (see next section). Let Γ :=
{{j, .., j + n − 1} | j ∈ Z, n ∈ N}. Elements of Γ will be referred to as rods or polymers.
For X,Y ∈ Γ, we write X < Y if x < y for all x ∈ X, y ∈ Y . For N ∈ N, let PN

be the set of ordered partitions (X1, .., XD) of {0, .., N − 1} into rods: X1 < .. < XD,
{0, ..., N − 1} = X1∪̇..∪̇XD. For j ∈ Z, N ∈ N and odd p, define:

u{j,..,j+N−1} =
∑

0≤m1≤..≤mN≤pN−p
irreducible

aN (m1, ..,mN )ψm1+pj ∧ .. ∧ ψmN+pj .
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(The definition for even p is similar: ⊗s instead of ∧.) In view of (2.3), the monomer functions
are simply

u{j} = ψpj . (2.24)

Thus for X ∈ Γ with N(X) ≥ 2,, uX is an antisymmetric function of N(X) = |X| complex
variables made up of Gaussians ψk with k ∈ pX. Moreover, the magnetic translations act as

t(jpγlex)⊗N(X)uX = uj+X , j ∈ Z.

Lemma 2.6. Let p ∈ N odd, N ∈ N and PN the set of increasingly ordered partitions of
{0, .., N − 1} as defined above. Let I ⊂ R and Ω = I × [0, 2πR]. Then

ΨN =
∑

D

∑

(X1,...,XD)∈PN

uX1
∧ .. ∧ uXD

(2.25)

||ΨC
N ||2L2(ΩN ) =

∑

D

∑

(X1,..,XD)∈PN

Φ(X1) · .. · Φ(XD) (2.26)

where Φ(X) := ||uX ||2
L2(ΩN(X))

.

If p is even, a formula similar to (2.25) holds with symmetric products ⊗s instead of wedge
products; (2.26) holds unchanged.

Proof. We start with

ΨC
N =

∑

0≤m1<..<mN≤p(N−1)

aN (m1, ..,mN )ψm1
∧ .. ∧ ψmN

. (2.27)

Only admissible sequences contribute to the sum. Let m be an admissible sequence with
renewal points R(m) = {r0, .., rk}, 0 = r0 < r1 < .. < rk = N . Then

aN (m1, ..,mN )ψm1
∧ .. ∧ ψmN

=

(
ar1

(m1, ...,mr)ψm1
∧ .. ∧ ψmr

)

∧ ... ∧
(
ark−rk−1

(mrk+1 − prk, ...,mr − prk)ψmrk−1+1
∧ .. ∧ ψmN

)
,

and the subsequences (m1, ...,mr1
),..,(mrk+1 − prk, ...,mr − prk) are irreducible. When R =

{r0, .., rk} is kept fixed and we sum over sequences m with renewal points R(m) = R, we
obtain

ur1
∧ t(r1pγl)⊗(r2−r1)ur2−r1

∧ .. ∧ t(rk−1pγl)
⊗(N−rk−1)uN−rk−1

. (2.28)

Each strictly increasing sequence 0 = r0 < r1.. < rk = N defines a partition of {0, .., N − 1}:
the points are interpreted as starting points of rods, we get the partition X1 = {0, .., r1 − 1},
X2 = {r2, .., r3 − 1},.., Xk = {rk−1, .., N − 1}. The function (2.28) is nothing else but
uX1

∧ .. ∧ uXk
. Thus if in (2.27) we sum first over sequences m with a given set of renewal

points and then over all possible sets, identified with the corresponding partition, we obtain
(2.25). For the normalization constant, note that

||ΨC
N ||2L2(ΩN ) =

∑

0≤m1<..<mN ≤p(N−1)

|aN (m1, ..,mN )|2
N∏

j=1

||ψmj
||2L2(Ω)

||u{j,..,j+N−1}||2L2(ΩN ) =
∑

0≤m1<..<mN ≤p(N−1)
irred.

|aN (m1, ..,mN )|2
N∏

j=1

||ψmj
||2L2(Ω).

(2.29)
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This follows from the orthogonality of the functions with respect to y-integration:

{m1, ..,mN} 6= {n1, .., nN} ⇒
∫

[0,2πR]N

(
(ψm1

∧ .. ∧ ψmN
)ψn1

∧ .. ∧ ψnN

)
(x1 + iy1, .., xN + iyN )dy1..dyN = 0.

Summing in two steps, as for the proof of (2.25), gives (2.26).

Example. It is instructive to work out by hand the polymer representation for two particles
and p = 3. We have

ΨC
2 (z1, z2) =

1√
2
(ez2/R − ez1/R)3e−(x2

1+x2
2)/2l2 e

− 1
2γ232 P2

j=1(j−1)2

2πRl
√
π

=
1√
2

(
(e3z2/R − e3z1/R) − 3(e2z2/Rez1/R − ez2/Re2z1/R)

) e−9γ2/2

2πRl
√
π

= e
1
2γ2(02+32−9)ψ0 ∧ ψ3 − 3e

1
2 γ2(12+22−9)ψ1 ∧ ψ2

= ψ0 ∧ ψ3 − 3e−2γ2

ψ1 ∧ ψ2.

This can be rewritten as

ΨC
2 = u{0} ∧ u{1} + u{0,1}, u{0} = ψ0, u{1} = ψ3, u{0,1} = −3e−2γ2

ψ1 ∧ ψ2.

The previous lemma gives the normalization constant as a polymer partition function. It
turns out that the correlation functions are closely related to those of the associated polymer
system, which we describe in the next section. Moreover, there is an analogy to the dimer
model introduced by Rokhsar and Kivelson [RK88] as an idealization of resonating valence
bond states (RVB). Consider a lattice of spin 1/2-particles. To each dimer covering of the
lattice, we can associate a state where lattice sites in a dimer form a singlet. The sum of states
corresponding to different dimer coverings is an RVB state. Different dimer coverings do not
give rise to orthogonal functions. Nonetheless, [RK88] propose a model of hard core dimers
on a lattice, where wave functions corresponding to different dimer coverings are defined as
orthogonal. The representation obtained in the previous lemma is similar: Laughlin’s wave
function is a sum of contributions from different polymer coverings, and the contributions
from different coverings are orthogonal. Thus we may call the Laughlin function a quantum
polymer system.

2.1.2 Associated polymer system

By the results of the previous subsection, the L2 norm squared CN of Laughlin’s wave function
is a polymer partition function. More precisely, it is the grand-canonical partition function
for a system of hard rods on the one-dimensional lattice Z. The normalization CN satisfies a
recurrence relation known in stochastics as a renewal equation. In this subsection, we give a
short overview of results on polymer systems, discrete renewal processes and thermodynamic
limits of systems of hard rods on Z. This will allow us to infer results on the asymptotics of
(CN ) and will serve as a useful guiding intuition for the thermodynamic limits of correlation
functions in Laughlin’s state.

We begin with a brief overview on systems of polymers on a lattice. We proceed with a short
summary on discrete renewal processes, and then present results on the thermodynamic limits
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of systems of hard rods. Let us summarize the main aspect of the hard rod system. The
recurrence relation satisfied by the partition function is equivalent to the formal power series
identity

1 +

∞∑

n=1

Cnt
n =

1

1 − ∑∞
n=1 αntn

.

The number αn ≥ 0 is the activity of a rod of lenght n. We assume that the power series
have a non-vanishing radius of convergence (this amounts to a stability assumption on the
activity (αn)). Then one of the following conditions must hold:

1. There exists some r > 0 such that
∑

n αnr
n = 1 and

∑
n nαnr

n < ∞. (The renewal
process with interarrival distribution (rnαn) is positive recurrent.)

2. There exists some r > 0 such that
∑

n αnr
n = 1, but

∑
n nαnr

n = ∞. (The renewal
process with interarrival distribution (rnαn) is null recurrent.)

3. The radius of convergence r of
∑

n αnt
n satisfies

∑
n r

nαn < 1. (The renewal process
with interarrival distribution (rnαn) is transient.)

In the first case, the polymer system has a well-behaved thermodynamic limit (see Propo-
sition 2.9 below). In the second and third cases, one needs in general additional knowledge
on the coefficients (αn). Typically, in those cases for large volumes, the polymer system will
tend to fill the whole volume with a few number of long rods ([Gia07]). For Laughlin’s cylin-
der function, we will see that we are actually in the first case for sufficiently thin cylinders.
What happens on thick cylinders is open.

The summary on lattice polymer systems follows [GK71]. An account on discrete renewal
processes can be found e.g. [Fel62] in the sections on recurrent events. The recurrence relation
for the one-dimensional system of hard rods is used in [IVZ06]. For monomer-dimer systems,
it boils down to the two-step recurrence relation of [HL72], Section III. Generating functions
and renewal theory have been applied to a large variety of biochemical models and the models
are still an active field of research in probability theory [Lif64, BD77, Fis84, CGZ06, Gia07].
These are frequently termed polymer models. Let us stress however that there is a slight
difference in the use of the word “polymer”: in this thesis, we use “polymer” essentially
as a synonym for “hard rod” and look at partitions of intervals into rods. Renewal points
correspond to starting points of rods. In the biochemical models evoked above, one typically
looks at the configuration of one single long polymer (a molecular chain, a double string of
DNA..), possibly in more than one dimension. Renewal points are points where “something
happens”, e.g., the polymer chain hits a wall.

In a lot of models, the coefficients (αn) are functions of some parameter. When the parameter
is varied, it is possible to switch between one of the three cases above. This gives rise to a
phase transition; depending on the model described, one finds among others, the denomina-
tions localization-delocalization transition, wetting transition, denaturation transitions. The
intermediate case 2. corresponds to a critical regime.

Lattice polymer systems

We start with a brief overview following [GK71]. A polymer is a set X ⊂ Zd. The cardinality
of X is denoted N(X) and may be viewed as a number of sites in X. Monomers are polymers
with N(X) = 1, dimers correspond to N(X) = 2, n-mers to N(X) = n (n ∈ N). The activity
is a map Φ : Γ → [0,∞[. Allowed configurations of the system are subsets {X1, .., XD} of Γ
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that define a partition of Λ: Λ = X1∪̇ · ..∪̇XD. The activity Φ defines a probability measure
P through

PΛ({{X1, .., XD}}; Φ) = Φ(X1) · .. · Φ(XD)/QΛ[Φ]

with the polymer partition function

QΛ[Φ] :=
∑′

{X1,..,XD}
Φ(X1) · .. · Φ(XD). (2.30)

The sum ranges over all partitions of Λ into polymers. If the activity of monomers is Φ({j}) =
1, the monomers can be interpreted as empty sites and we can rewrite QΛ as

QΛ[Φ] =
∑

X1,..,XD⊂Λ:

N(Xj )≥2

Φ(X1) · ..Φ(XD)e−βU(X1,..,XD)

where U(X1, .., Xd) is 0 when Xi ∩Xj = for all i 6= j, and ∞ else. Thus QΛ is the grand-
canonical partition function for a hard core interaction. The pressure and correlation func-
tions are defined through

βpΛ :=
1

|Λ| logQΛ,

ρΛ(X1, .., Xp) :=
∑

{Y1,..,Yn}:

X1∪̇..XD ∪̇Y1∪̇..Yn=Λ

Φ(X1)..Φ(Xp)Φ(Y1) · .. · Φ(Yn)/QΛ.

The correlation functions give the probability of finding the polymers X1, .., Xp. The sum
rule

∀x ∈ Λ :
∑

X∋x

ρΛ(X) = 1 (2.31)

expresses the fact that every site of Z is covered by exactly one polymer. One can show that

QΛ∪̇Λ′ ≥ QΛQΛ′ . (2.32)

For ξ > 0, ξNΦ denotes the rescaled activity

(ξNΦ)(X) := ξN(X)Φ(X).

The probability measure PΛ and the correlation functions ρΛ are invariant with respect to
such a rescaling, whereas

QΛ[ξNΦ] = ξ|Λ|QΛ[Φ].

The activity is called stable if
∑

X∋0

Φ(X)

N(X)
<∞

and translationally invariant if Φ(a+X) = Φ(X) for all a ∈ Zd.

We will be interested in one-dimensional lattice systems where Φ(X) = 0 if X is not of the
form {j, ..j+N(X)− 1} for some j ∈ Z. Such systems are closely related to discrete renewal
processes, which we now briefly describe. Details can be found in the book by W. Feller
[Fel62] in the sections on recurrent events.
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Discrete renewal processes

A point process on N is a (discrete) renewal process if the waiting times between consec-
utive events are independent identically distributed random variables. More precisely, let
(Ω,F , P ) be a probability space, E := P(N), and E0 the standard σ-algebra on E 1. Let
R : (Ω,F) → (E, E0) be a random variable. We call R a renewal process with interarrival
distribution (pn)n∈N∪{∞} if there is a family (Tn)n∈N of N ∪ {∞}-valued, independent iden-
tically distributed random variables on Ω such that P (Tj = n) = pn for all n ∈ N ∪ {∞}
and

R(ω) = {Sn(ω) | n ∈ N, Sn(ω) <∞}
for all ω ∈ Ω, where

Sn(ω) =
n∑

j=1

Tj(ω).

The elements of R(ω) are called renewal points, and the renewal probability is

un := P (“n is a renewal point”) = P (n ∈ R) = P (∃k ∈ N0 : Sk = n).

If Tj takes the value ∞ with a non-zero probability, the process is called transient.

Example: Bernoulli process. Let 0 ≤ p, q ≤ 1 with p+q = 1, and let (Xn)n∈N be independent
random variables such that P (Xn = 0) = q, P (Xn = 1) = p. Define R as

R(ω) := {n ∈ N | Xn(ω) = 1}.
Then R is a renewal process with geometric interarrival distribution and constant renewal
probability:

∀n ∈ N : pn = pqn−1, un = p =
1∑

k kpk
.

More generally, the renewal theorem says that if (pn) is aperiodic (i.e. the greatest common
divisor of {n ∈ N | pn > 0} is 1)

lim
n→∞

un = 1/µ, µ :=
∑

n∈N∪{∞}
npn (2.33)

with the convention 1/∞ = 0 and ∞ · 0 = 0. The proof makes heavy use of the renewal
equation

∀n ≥ 1 : un = p1un−1 + p2un−2 + ..+ pn−1u1 + bn, bn := P (S1 = n). (2.34)

Here, bn = pn, but the equation holds also for renewal processes where T1 = S1 is allowed to
have a distribution different from (pj). These are called delayed renewal processes. This is
best seen by writing

un = P (∃k : Sk = n) = P (S1 = n) +

n∑

k=2

n−1∑

j=1

P (Sk = n and Tk = j)

= P (T1 = n) +

n−1∑

j=1

n∑

k=2

P (Sk−1 = n− j)P (Tk = j)

= bn +
n−1∑

j=1

un−jpj .

1Subsets A ⊂ N are identified with their characteristic functions χA ∈ {0, 1}N, and on {0, 1}N we consider
the σ-algebra generated by the cylinder sets.
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This recurrence relation is equivalent to the formal power series identity

∞∑

n=1

unt
n =

∑∞
n=1 bnt

n

1 − ∑∞
n=1 pntn

or, if bn = pn and with u0 := 1

∞∑

n=0

unt
n =

1

1 − ∑∞
n=1 pntn

.

For a given interarrival distribution (pn)n∈N∪{∞}, the problem “find a probability distribu-
tion (bn)n∈N on N so that the associated delayed renewal process has a constant renewal
probability” has a solution if and only if µ =

∑
n∈N∪{∞} npn < ∞. In this case the unique

solution is bn =
∑∞

k=n pk/µ and the constant renewal probability is 1/µ.

If µ < ∞, the delayed process with constant renewal probability can be extended to a
stationary process on Z as follows: Let S0 : Ω → {0,−1,−2, ..}, S1 : Ω → N be two random
variables with joint distribution

m ≤ 0, 1 ≤ n : P (S0 = m and S1 = n) = pn−m/µ.

S0 and S1 represent the renewal points that are closest to the origin 0. Note that

P (S1 = n) =

∞∑

k=n

pk/µ = bn, P (S1 − S0 = n) = npn/µ.

Let (Tn)n∈Z\{1} be a family of independent identically distributed random variables with

values in N, P (Tk = n) = pn. For n ≤ −1, let Sn := S0 − ∑|n|
k=1 T−k, and for n ≥ 2,

Sn := S1 +
∑n

k=2 Tk. We will call

R : Ω → P(Z), ω 7→ {Sn(ω) | n ∈ Z}

a stationary renewal process on Z. The renewal probability un = P (n ∈ R(ω)) is constant:
for all n ∈ Z, un = 1/µ. Moreover, the sequence (Sn)n≥1 defines the delayed renewal process
with constant renewal probability described above. If we look at (Sn)n≥1 and condition on
S0 = 0, we recover the (non-delayed) renewal process on N.

A subset of Z can also be described by the sequence of its points, arranged in increasing
order and suitably numbered. Thus the renewal process R on Z is described by the sequence
(Sn)n∈Z, the numbering is chosen so that S0 ≤ 0 < S1. Equivalently, we may describe the
process through its waiting intervals

Xn = {Sn, Sn + 1, ..., Sn+1 − 1}, n ∈ Z.

These define a partition of Z. If we interpret the waiting intervals as polymers, the dis-
tribution of R is a probability distribution on infinite polymer configurations; it turns out
that this distribution arises as the thermodynamic limit of suitable finite volume polymer
distributions PΛ.
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Rods on a one-dimensional lattice

Let us go back to the one-dimensional lattice polymer system. Suppose the activity is trans-
lationally invariant and supported by “rods”:

Φ(X) =

{
αN(X), if X = {j, j + 1, .., j +N(X) − 1} for some j ∈ Z,

0, else

for some sequence (αn) of non-negative numbers with
∑
αn > 0. For N ∈ N, let

CN = Q{0,..,N−1}[Φ].

Then (2.30) can be rewritten as

CN =
∑

n1+..+nD=N

αn1
· .. · αnD

.

Together with C0 := 1, this implies the formal power series identity

∞∑

n=0

Cnt
n = (1 −

∞∑

n=1

αnt
n)−1 (2.35)

and the recurrence relation

Cn = α1Cn−1 + α2Cn−2 + ..+ αn−1C1 + αn (n ≥ 1). (2.36)

The thermodynamic limit of the pressure exists and can be expressed in terms of (αn).

Lemma 2.7. Let r := max{t ≥ 0 | ∑∞
n=1 αnt

n ≤ 1}. Then with the convention − log 0 := ∞
we have

βp := lim
N→∞

1

N
logCN = sup

1

N
logCN = − log r.

Proof. The supermultiplicativity (2.32) together with the translational invariance of the ac-
tivity implies CN+M ≥ CNCM . This shows that lim 1

N logCN = sup 1
N logCN . The limit is

− log rC , with rC the radius of convergence rC of
∑
Cnt

n. It remains to show that r = rC .
Note first that (2.36) implies Cn ≥ αn, thus rC ≤ rα, where rα is the radius of convergence
of

∑
αnt

n. We continue by looking more closely at r. It follows from
∑

n αnt
n = ∞ if

t > rα that r ≤ rα. If rα = 0, obviously r = 0. If rα > 0, there are two possibilities: either
r < rα and α(r) = 1, r > 0, or r = rα, in which case Abel’s theorem on power series with
nonnegative coefficients implies

α(r) = α(rα) = lim
tրrα

α(t) ≤ 1.

Several cases can be distinguished:

1. rα = r = 0. Then by rC ≤ rα we also have rC = 0.

2. rα > r > 0. Then α(r) = 1, (2.35) is an identity of functions on [0, r[, and rC ≥ r.
Moreover ∞∑

n=0

rnCn = lim
tրr

1

1 − α(r)
= ∞

whence rC = r.
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3. rα = r > 0. Again, (2.35) is an identity of functions on [0, r[, rC ≥ r = rα. Since
rC ≤ rα because of Cn ≥ αn, we have rC = rα = r.

Remarks: 1. The quantity r can be characterized in a slightly more eloquent way as follows:
the equation

∑∞
n=1 αnt

n = 1, t ∈ [0,∞[ has either no solution or a unique solution. In the
first case, r equals the radius of convergence R of

∑
n αnt

n. In the second case, r is the
unique solution of the equation and lies necessarily in ]0, R].

2. Generalized ensemble. Lifson [Lif64] points out a relation between the “generating func-
tions approach” and “Guggenheim’s divergent generalized partition functions”. The generat-
ing function

∑
Cnt

n can be given the meaning of a partition function. The partition function
CV is the grand-canonical partition function for a system of rods on the lattice {0, .., V − 1}
with a hard core interaction. Let p > 0 be a pressure, β an inverse temperature. Then the
generating function

C(e−βp) =

∞∑

V =0

e−βpV CV

can be thought of as a partition function too. It corresponds to the so-called generalized
ensemble. More generally, let Q(β, {Nj}, V ) be the canonical partition function for a system
of particles of different species k = 1, .,K, each present with Nk particles, at temperature
β−1, in a volume V ; then the generalized partition function would be

Γ(β, pe, {µj}) =
∑

{Nj}

∞∑

V =0

e−β(pV +
P

j µjNj)Q(β, {Nj}, V ) =
∞∑

V =0

e−βpV Ξ(β, V, {µj}).

This partition functions differs from other partition functions (e.g. canonical, grand-canonical,
isothermal-isobaric..): it is a function of intensive parameters only. There is no free exten-
sive parameter. Thus the usual procedure of letting extensive parameters go to infinity for
taking thermodynamic limits does not work. In the grand-canonical ensemble, the pressure
is obtained through

βp = lim
V →∞

1

V
log Ξ(β, V, {µj})

if the limit exists. For this value of p, the generalized partition function Γ diverges. Thus
the procedure that replaces thermodynamic limits in the generalized ensemble is to look for
the point where Γ diverges, whence the name divergent partition function. This is just what
we do: in Lemma 2.7, we express the pressure in terms of the radius of convergence of C(t),
i.e., we look for the point where C(t) starts to diverge.

The recurrence relation (2.36) is similar to the renewal equation (2.34). Let us make the
connection to renewal processes more explicit. In the following, we suppose that the power
series

∑
αnt

n has a non-vanishing radius of convergence; equivalently, r > 0 or βp < ∞.
This is the case if and only if ξNΦ is stable for some ξ > 0, since

∑

X∋0

ξN(X)Φ(X)

N(X)
=

∞∑

N=1

ξN αN

N

∑

j∈Z:
0∈{j,..,j+N−1}

1 =

∞∑

N=1

αNξ
N .

Let r be defined as in Lemma 2.7 and pn := rnαn, p∞ := 1−∑
pn. This defines a probability

distribution on N∪{∞}. Let R0 be a renewal process on N with interarrival distribution (pn)
and renewal probabilities (un)n∈N. Combining pn = rnαn, C0 = u0 = 1 and the recurrence
relations (2.34), (2.36), we see that un = rnCn for all n ∈ N0. The renewal theorem (2.33)
gives us a more refined version of Lemma 2.7.
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Lemma 2.8. Let r be defined as in Lemma 2.7. If {n ∈ N | αn 6= 0} has greatest common
divisor 1,

lim
n→∞

rnCn =

{
(
∑∞

n=1 nαnr
n)−1, if

∑∞
n=1 αnr

n = 1,

0, if
∑∞

n=1 αnr
n < 1.

Remark: If
∑

n αnr
n = 1 and

∑
n nr

nαn = ∞, rnCn → 0. If
∑

n αnr
n < 1, (2.35) implies

the stronger statement
∞∑

n=1

rnCn = (1 −
∞∑

n=1

rnαn)−1.

The renewal process associated to the polymer system is not only useful to derive something
about the asymptotics of the partition functions, but also serves a better understanding of
correlation functions and their thermodynamic limit.

The finite volume correlation functions can be described in terms of conditional probabilities
of the renewal process. Let 0 < S1 < .. < Sn < .. be the renewal points, and let

I0 := {{0, .., S1 − 1}, {S1, .., S2 − 1}, .., {Sn−1, .., Sn − 1}, ..}

be the set of waiting intervals. Then if Xi 6= Xj for i 6= j,

ρ{0,..,N−1}(X1, .., Xk) = P (X1, .., Xk ∈ I0 | N ∈ R0).

If the associated renewal process has finite mean, we can define a stationary renewal process
R on Z. Let I be the collection of its waiting intervals. The previous relation becomes

ρ{a,..,b−1}(X1, .., Xk) = P (X1, .., Xk ∈ I | a, b ∈ R).

The thermodynamic limit a → −∞, b → ∞ is given by the probability distribution of R,
without any conditions.

Proposition 2.9. Suppose
∑

n αnr
n = 1, µ :=

∑
n nαnr

n < ∞, and gcd{n | αn 6= 0} = 1.
Let R be the associated stationary renewal process and P the distribution of R. Let I be the set
of waiting intervals (I is a random variable). Then for all rods X1, .., Xk, the thermodynamic
limit of the correlation functions for the polymer system with activities Φ(X) = αN(X) exists
and equals

ρ(X1, .., Xk) := lim
a→−∞
b→∞

ρ{a,..,b−1}(X1, .., Xk) =

{
P ({X1, .., Xk} ⊂ I), if Xi 6= Xj for i 6= j,

0, else.

The correlation functions are translationally invariant and mixing: for all sets of rodsX1, .., Xm,
Y1, .., Yn, we have

ρ(X1, .., Xm, Y1 + k, .., Yn + k) =
k→∞

ρ(X1, .., Xm)ρ(Y1, .., Yn) +O(|rkCk − µ−1|). (2.37)

Proof. Let X1, .., Xk be some rods. If Xi ∩Xj 6= ∅ for some i 6= j, the probability of finding
these rods as well as the probability that they are waiting intervals for the renewal process is
0. Thus we can suppose that they are non-overlapping and without loss of generality assume
X1 < ... < Xk, that is they are numbered from left to right. Write Xk = {sk, sk, .., sk +
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N(Xk) − 1} = {sk, .., ek − 1} and take |a|, b large enough so that X1, .., Xk are contained in
{a, .., b− 1}. Then, the correlation function can be written as

ρ{a,..,b−1}(X1, .., Xk) =
∑

Y1,..,YD :

Y1∪̇..∪̇Xk={a,..,b−1}

αN(Y1)...αN(YD)αN(X1)...αN(Xk)/Q{a,..,b−1}

= αN(X1).αN(Xk).Q{a,..,b=1}\(X1·∪..·∪XD}/Q{a,..,b−1}

= rb−aαN(X1).αN(Xk)Cs1−aCs2−e1
..Cb−ek

/(rb−aCb−a)

= us1−apN(X1)..pN(Xk)ub−ek
/ub−a

−→
b−a→∞

µ−1pN(X1)us2−e1
...ub−ek

µ−1/µ−1

= µ−1pN(X1)us2−e1
...pN(Xk) (2.38)

= P (X1, .., Xk ∈ I).

The expression (2.38) shows that ρ is translationally invariant. For the clustering properties,
letX1, .., Xm, Y1, ., Yn and denote as before their starting and endpoints with s1, .., sm, e1, .., em,
s′1, .., e

′
n. Then, for sufficiently large k,

ρ(X1, .., Xm, Y1 + k, .., Yn + k) = µ−1pN(X1)us2−e1
...pN(Xm)us′

1+k−em
pN(X1)us′

2−e′
1
...pN(Yn)

= ρ(X1, .., Xm)µus′
1+k−em

ρ(Y1, .., Yn)

whence (2.37).

Remarks: 1. Semi-infinite line. The same reasoning shows that the limits of correlation
functions ρ{0,..,N−1}, N → ∞, exist and can be described in terms of the renewal process on
N.

2. Probability distribution on the length of rods. The probability for finding a given rod
X = {j, .., j +N(X)− 1} is ρ(X) = qrN(X)αN(X). Let k ∈ Z. The probability that k is in a
rod, or waiting interval, X of length N(X) = n is, in loose notation

P (k ∈ X, N(X) = n) =
∑

X: k∈X,
N(X)=n

ρ(X) =
∑

j∈Z:
j≤k≤j+n−1

qrnαn = qnrnαn = µ−1npn.

The sum over n is 1: this is the sum rule
∑

X∋0 ρ(X) = 1. Thus if µ = q−1 is finite, there
is a natural probability distribution (qnrnαn) on the length of polymers. In the renewal
theory picture, this distribution is called the size-biased distribution. The expected length
of the polymer containing a given point (in the renewal setting, the expected lifetime or age
at death) is

∞∑

n=1

qn2rnαn =

∞∑

n=1

µ−1n2pn.

The lifetime expectation can be infinite although the process has finite mean µ. This is
related to the so-called inspection paradox.

3. Rate of clustering. In the previous proposition, the rate of clustering is determined by the
speed of convergence of un → µ−1, where un = rnCn is the renewal probability. We have
the following:

∞∑

n=1

|un − µ−1| <∞ ⇔
∞∑

n=1

n2pn <∞.
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The implication ”⇒” can be shown by taking the limit tր 1 in

∞∑

n=0

(un − µ−1)tn =
1

1 − ∑∞
n=1 pntn

− 1∑∞
n=1 npn(1 − t)

=
1

1 − p(t)
− 1

p′(1)(1 − t)
.

The converse uses results on rates of convergence in renewal theory, see [Sto65]. A closer
look at the generating functions also shows that if the radius R of convergence of

∑
n r

nαn

is strictly larger than r, un goes to µ−1 exponentially fast:

rnCn − q = un − µ−1 = O((r/R)N).

µ = ∞ as a close-packing limit. The previous proposition is of no help when the renewal
process has infinite mean µ. The case µ = ∞ should be thought of as a close-packing limit
(in [Gia07], Section 1.2 it is shown that in this regime the average density of renewal points,
i.e. the “contact density” in the picture used in the book, is typically 0). We illustrate this
by an example. Let ν ∈]0, 1[, c > 0 and

αn :=
δ

S

1

n1+ν
, S :=

∞∑

n=1

n−1−ν .

Then α(t) =
∑∞

n=1 αnt
n has radius of convergence 1. We look at sequences of volumes ΛN =

{−N/2, .., N/2 − 1}, N even, and ask for the limiting behavior of the polymer correlation
function

ρN (X) =
Ca+N/2αb−aCN/2−b

CN
, X = {a, .., b− 1}.

Depending on the value of the parameter c, we are in one of the three cases sketched in the
beginning of this subsection:

1. When δ > 1, the equation α(t) = 1 has a solution r < 1 and we are in the case where the
associated renewal process has finite mean, and the thermodynamic limit is described
by Proposition 2.9. In particular, limN→∞ ρN (X) exists and is strictly positive.

2. When δ = 1, the solution to the equation α(t) = 1 is r = 1, and
∑

n nαnr
n =∑

n n
−νδ/S = ∞. Then it is known ([Don97], Theorem B, [Gia07], Theorem A.7)

that there exists a cν > 0 such that

Cn ∼
n→∞

cν
n1−ν

.

As a consequence

Ca+n/2Cn/2−b

Cn
∼

n→∞
c2ν
n1−ν

(
(
1

2
+
a

n
)(

1

2
− b

n
)
)ν−1

and limN→∞ ρN (X) = 0 for every fixed X.

3. When δ < 1, the equation α(t) = 1 has no solution. It is known [Gia07], Theorem A.4,
that

un ∼
n→∞

αn

(1 − δ)2
=

δ

S(1 − δ)2
1

n1+ν

and we have again limN ρN (X) = 0 for each fixed rod X.
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Thus for this example, if the associated renewal process has infinite mean, each fixed rod X
has a probability that vanishes in the limit N → ∞. Since on the other hand the sum rule

∑

Y : k∈Y

ρN (Y ) = 1

(see (2.31)) must hold for all N ∈ 2N and k ∈ {−N/2, .., N/2 − 1}, we conclude that long
intervals tend to be filled with long polymers.

Later, we will apply the results of this subsection to Laughlin’s wave function. We can think
of this function as a polymer system where each polymer has internal degrees of freedom. We
prove in the next subsection that on thin cylinders the associated renewal process has finite
mean. What happens for large radius is open. If it happens that the associated renewal
process has infinite mean, the previous considerations tell us that the system is governed
by long polymers, and any statement about the thermodynamic limit would require a closer
look at the internal structure of long polymers.

2.1.3 Normalization

By Lemma 2.6, Laughlin’s cylinder wave function is closely related to a system of hard rods
on a one-dimensional lattice with activity

Φ(X) = ||uX ||2
L2

(
(I×[0,2πR])N(X)

).

The polymer representation is valid for any choice of interval I ⊂ R. Here, we will choose
I = R. This choice leads to a translationally invariant activity. Indeed, we have seen that
translation of a rod X results in magnetic translation of the function:

ua+X = t(a · pγlex)⊗N(X)uX .

Hence if we choose the infinite cylinder as domain of integration, I = R, we obtain a trans-
lationally invariant activity and we can write

Φ(X) = ||uX ||2L2((R×[0,2πR])N(X)) = αN(X)

αN =
∑

0≤m1≤..≤mN≤p(N−1)
irred.

|aN (m1, ..,mN )|2. (2.39)

Let us recall that the one-particle density of Laughlin’s N -particle function is a sum of
Gaussians with centers inside [0, pNγl]. Thus the one-particle density decays exponentially
outside the finite cylinder [0, pNγl]× [0, 2πR], even though we integrate on infinite cylinders
R × [0, 2πR]. By a slight abuse of language, we shall refer to the limit N → ∞ as the limit
of infinite cylinders.

In view of the results summarized in the previous section, two questions on the associated
polymer system naturally arise. The first question is whether the activity is stable or, more
generally, whether it can be rescaled to a stable activity. On p.46, we have observed that the
activity (αn) can be rescaled to a stable activity if and only if the radius of convergence of∑

n αnt
n is strictly positive. From Lemma 2.6 we know that the L2 norm squared of Laugh-

lin’s function, CN = ||Ψc
N ||2 is the polymer partition function associated with the activity

(αn). It follows from the relation (2.35) that
∑

n αnt
n has a positive radius of convergence if
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and only if
∑

n Cnt
n has. Thus the question of the stability of the associated activity boils

down to the question whether the radius of convergence r of
∑

n Cnt
n is strictly positive.

Lemma 2.10 below shows that r > 0 for all (finite) cylinder radii R.

The second question is whether the associated renewal process has a finite mean µ. By
Lemma 2.8, the normalization constant (Cn) obeys the asymptotics rnCn → q (the aperiod-
icity assumption of Lemma 2.8) is fulfilled because in the system associated with Laughlin’s
function, monomers have activity α1 = 1). The limit q is the inverse of the expected inter-
arrival time of the renewal process, q = µ−1. Thus the question whether µ < ∞ reduces
to the question whether limn r

nCn is strictly positive or not. This question is addressed in
Theorem 2.12, where we prove that q > 0 on sufficiently thin cylinders. The key ingredient
is an estimate on the radius dependence of the activity (Lemma 2.11).

The following lemma gives the asymptotics of the normalization constant. In particular, we
prove that the radius of convergence of

∑
n Cnr

n is strictly positive, for all values of the
radius. Apart from the information r > 0, we do not use the bounds (2.40) below in the
quantum Hall context. The bounds are however of interest in the plasma analogy, which is
why we prove them.

Lemma 2.10. For all p ∈ N and γ = l/R > 0, there exist r > 0 and q ≥ 0 such that

− log r = lim
N→∞

1

N
logCN = sup

N

1

N
logCN , q = lim

n→∞
Cnr

n.

Moreover, r = rp(γ) satisfies the bound

(
ep

∑

n1,..,np∈Z:

n1+..+np=0

e
− π2

pγ2 (n2
1+..+n2

p)
)−1

≤ rp(γ)p
1−p

2 (
eγ√
π

)1−p ≤ 1. (2.40)

Before we turn to the proof, let us briefly look at p = 1 (filled Landau level). Laughlin’s
cylinder function at filling factor 1 is simply

ΨC
N = ψ0 ∧ .. ∧ ψN−1.

It follows that CN = 1 for all N ∈ N, thus r = 1. This should be compared to the bound
(2.40) which for p = 1 reads e−1 ≤ r ≤ 1. Thus for the filled Landau level, the lower bound
is actually too small whereas the upper bound is exact.

Proof of Lemma 2.10. By Lemma 2.6 and the supermultiplicativity (2.32), we have CN+M ≥
CNCM . In particular, limN→∞

1
N logCN = supN

1
N logCN and r is well-defined (but possibly

0). Now let

φn(z) :=
1

(2πRl
√
π)1/2p

einy/Re
− 1

2pl2
(x−pnγl)2

.

Then

ΨN (z1, .., zN ) =
1√
N !

(det(φk−1(zj))1≤j,k≤N)p =:
1√
N !

(detA(z1, .., zN ))p

and |ΨN |2 = (detA∗A)p/N !. Lower and upper bounds on CN are now obtained with
Hadamard’s and Hölder’s inequalities. Using Hadamard’s inequality

| detA| ≤
N∏

j=1

(
N∑

k=1

|Ajk|2)1/2
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we see

CN ≤ 1

N !

(∫

R×[0,2πR]

(N−1∑

k=0

|φk(z)|2
)p
dxdy

)N

=
1

N !

(∫ ∞

−∞

1

l
√
π

(N−1∑

k=0

e
− 1

pl2
(x−pkγl)2)p

dx
)N

=
1

N !

(∫ ∞

−∞

1√
π

(N−1∑

k=0

e−
1
p (s−pkγ)2

)p
ds

)N

By Poisson’s summation formula,

∞∑

k=−∞
e−

1
p (x−kpγ)2 =

√
π

γ
√
p

∞∑

n=−∞
e−π2n2/(pγ2)ei2πnx/(pγ) =: f(x).

Thus
∫ (N−1/2)pγ

−pγ/2

1√
π

(N−1∑

k=0

e−
1
p (x−pkγ)2

)p
dx ≤ 1√

π
N

∫ pγ

0

f(x)pdx

= N
pγ√
π

( √
π

γ
√
p

)p ∑

n1+..+np=0

e
− π2

pγ2 (n2
1+..+n2

p)

= Np1− p
2 (

√
π

γ
)p−1

∑

n1+..+np=0

e
− π2

pγ2 (n2
1+..+n2

p)

=: Nb(γ).

The integral from −∞ to −pγ/2 can be bounded from above by

∫ −pγ/2

−∞
(

∞∑

k=0

e−(x−pkγ)2/p)pdx =: c

which is an N -independent, finite number. For symmetry reasons this is also a bound to the
integral from (N − 1/2)pγ to ∞. Thus we obtain

CN ≤ 1

N !
(Nb(γ) + 2c)N .

Using Stirling’s formula, we obtain the upper bound r ≥ 1/(eb(γ)) > 0. Now we turn to a
lower bound for CN . Let IN := [−pγl/2, (N − 1/2)pγl] × [0, 2πR]. With Hölder’s inequality
|
∫
Ω
f | ≤ |Ω|1−1/p(

∫
fp)1/p , we get

CN ≥ 1

N !

∫

IN
N

| detA|2p ≥ 1

N !

1

|IN
N |p−1

(∫

IN
N

| detA|2
)p

=
N !p−1

(Npγl2πR)p−1
||φ0 ∧ .. ∧ φN−1||2p

L2(IN
N )

=
N !p−1

(Npγl2πR)N(p−1)
(2πR)N(p−1)

N−1∏

k=0

∫ (N−k−1/2)pγ

−(k+ 1
2 )pγ

e−s2/pds

=
(N !

√
π

N

(Npγ)N

)p−1√
p

pN
N−1∏

k=0

(
1 − 1

2
erfc((N − k − 1

2
)
√
pγ) − 1

2
erfc((k +

1

2
)
√
pγ)

)p
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where erfcx := 2√
π

∫ ∞
x
e−t2dt is the complementary error function. The decay properties of

erfc can be used to show that the product
∏N−1

k=0 stays bounded away from zero. Making use
again of Stirling’s formula, we get

r ≤ (pγ)p−1ep−1

√
π

p−1√
pp

= (
γe√
π

)p−1p
p
2−1.

The asymptotics rnCn → q ≥ 0 follows from Lemma 2.8. 1/q is the expected interarrival time
of the associated renewal process. Note that the monomer activity of the system associated
to Laughlin’s function is α1 = 1, thus the aperiodicity condition gcd{n ∈ N | αn > 0} = 1
needed to apply Lemma 2.8 is fulfilled.

It follows from the previous lemma that r > 0, and therefore
∑

n αnt
n must have a non-zero

radius of convergence. Put differently, the activity can be rescaled to a stable activity. It is
still open whether the associated renewal process has finite mean µ < ∞, or equivalently, if
q = µ−1 > 0.

Remarks: 1. The bounds on r are interesting for small γ. They can be related to a conjecture
on the relation between strip free energies and bulk free energies of Coulomb systems (see
Section 2.3). We now turn to the large γ behavior.

2. For γ = 0, the activity cannot be rescaled to a stable activity. Let us first define the
activity for γ = 0. Note that for general γ, the activity and the normalization constants are
polynomials of e−γ2

with integer coefficients:

CN =
∑

0≤m1≤..≤mN ≤pN−p

|bN (m1, ..,mN )|2(e−γ2

)
PN

j=1(p
2(j−1)2−m2

j )

αN =
∑

0≤m1≤..≤mN ≤pN−p
irred

|bN (m1, ..,mN )|2(e−γ2

)
PN

j=1(p
2(j−1)2−m2

j )
(2.41)

where bN (m1, ..,mN ) are the expansion coefficients of the p-th power of the Vandermonde
determinant. The bN ’s are integers since they are sums of signs of permutations, see p.37.
These expressions are obtained by combining (2.29) and (2.2). Note that by Lemma 2.5,

the sums in (2.41) contain only non-negative powers of e−γ2

. For γ = 0, corresponding to
the limit of infinite radii, we may define CN and αN through (2.41). are well-defined for
γ = 0, corresponding to the limit of infinite radii. The value of CN for γ = 0 is known: it is
CN = (pN)!/(N !p!N ) see e.g. [FGIL94], Section 5, Property 6. It follows that for p ≥ 2 and
γ = 0, the series

∑
n Cnt

n has a vanishing radius of convergence: r = 0.

Lemma 2.10 shows that for all (finite) values of the radius R, the activity of the polymer
system associated with Laughlin’s function can be rescaled to a stable activity. Now it
remains to see whether the associated renewal process has finite mean. Before we turn to
this question, let us have a closer look at the activity (αn).

Lemma 2.11. The monomer activity is α1 = 1. Furthermore, there exist integers bN,m ∈ N0

such that

∀N ≥ 1 : αN =

∞∑

m=p(N−1)

bN,me
−mγ2

.

In particular, as γ → ∞, N-mers have activity O(e−p(N−1)γ2

).



54 CHAPTER 2. THERMODYNAMIC LIMITS

Proof. Recall from (2.24) that the monomer functions are u{j} = ψpj . Thus the monomer

activity is ||u{j}||2 = 1. By Lemma 2.5,
∑N

j=1(p
2(j − 1)2 −m2

j ) ≥ p(N − 1) for any increas-
ing, N -admissible irreducible (m1, ..,mN ). The second statement of the lemma now follows
immediately from the formula (2.41).

Remark. Rezayi and Haldane [RH94] have observed that for systems with a fixed, finite
number of particles, Laughlin’s wave function approaches the Tao-Thouless state 2 in the
limit of vanishing cylinder radius:

ΨC
N ≃ ψ0 ∧ ψp ∧ ... ∧ ψp(N−1) as γ → ∞.

Using the polymer representation, this can be rephrased as: in the limit of thin cylinders,
the system is a pure monomer system. We will see that a similar statement holds for systems
with infinitely many particles. This behavior is consistent with the fact that in the limit
of thin cylinders, all polymers except monomers have vanishing activity, as shown in the
previous lemma.

Now let us come back to the question whether q = limn r
nCn > 0, or equivalently, whether

the associated renewal process has finite mean. Recall that this is the case if and only if∑∞
n=1 αnr

n = 1 and
∑∞

n=1 nαnr
n <∞. The crucial observation is that these two conditions

are automatically fulfilled if
∑

n αnt
n has a radius of convergence R strictly larger than the

radius of convergence r of
∑

n Cnt
n. Thus we are going to compare domains of convergence.

Furthermore, observe that the monomer case is rather trivial: for a monomer system,

∞∑

n=1

αnt
n = t,

∞∑

n=0

Cnt
n =

1

1 − t

whence r = 1 and the “series”
∑

n t
nαn = t has an infinite radius of convergence.

Lemma 2.11 tells us that on thin cylinders, the system looks almost like a monomer system
and the associated renewal process should have finite mean. This heuristic argument gives
the main intuition behind the next theorem.

We wish to apply Lemma 2.11. Thus it is useful to keep track of the γ-dependence of the
various quantities involved. By (2.41), the activity and the normalization constants are

polynomials of e−γ2

with coefficients in N (see also the previous lemma). We make the

γ-dependence more explicit in the notation by writing αn(e−γ2

), Cn(e−γ2

). The power series

C(t, e−γ2

) := 1 +

∞∑

n=1

Cn(e−γ2

)tn, A(t, e−γ2

) := t+

∞∑

n=2

αn(e−γ2

) tn

are actually power series of two variables, t and e−γ2

. They have non-negative integer
coefficients. By the results of Section 2.1.2, C and A are related through

C(t, e−γ2

) =
1

1 −A(t, e−γ2)
.

2At filling factor 1/p, the Tao-Thouless state is a simple Slater determinant where every p-th Landau
orbital is occupied. It was proposed as a candidate FQHE ground state in [TT83] but later abandoned
[Tho85].
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The quantities r = r(e−γ2

) and R = R(e−γ2

) are γ-dependent too. They define curves that
may be characterized through the boundaries of the domains of convergence of C(t, u) and
A(t, u) in R

2
+, see Figure 2.1. We know that r(u) ≤ R(u) for all u. The case u = 0 corre-

sponds to the infinitely thin cylinder. By Lemma 2.11, in this limit we have a pure monomer
system. Consequently, r(0) = 1, R(0) = ∞ and r(0) < R(0).

The strategy in the proof of the next theorem is to show the strict inequality r(u) < R(u)
subsists for sufficiently small u. This will imply that on thin cylinders the associated re-
newal process has finite mean, or equivalently, rnCn → q > 0. Furthermore, we show some
analyticity results.

II

u = e−γ2

t

1

1e−γ2
p

t = R(u)

III

t = r(u)

I

I: A and C converge
II: A <∞, C = ∞
III: A and C diverge

0

Figure 2.1: Domains of convergence of A(t, u) and C(t, u) for p ≥ 2. The curve r(u) delimits the
domain of convergence of A, R(u) the domain of convergence of C. Both series diverge when u ≥ 1.

We know that r(u) = 1 + O(u) and R(u) ≥ const · u−p as u → 0. When u < e−γ2

, r(u) < R(u). It

is an open question whether the curves r and R touch for some up = e−γ2
p strictly below 1.

Theorem 2.12. Let p ≥ 2 be fixed. Define the functions C(t, u), A(t, u), r(u), R(u) as above.
Let r = rp(γ), q = qp(γ) as in Lemma 2.10. The following holds:

1. There exists a γp > 0 such that for u < e−γ2
p , r(u) < R(u).

2. The functions ]γp,∞[∋ γ 7→ rp(γ), qp(γ) are analytic and strictly positive. As γ → ∞,

rp(γ) = 1 +O(e−γ2

), qp(γ) = 1 +O(e−γ2

).

Proof. The main idea is to use Lemma 2.11 and look at what happens when e−γ2 → 0.
Observe that A(t, 0) = t. It follows that R(0) = ∞, C(t, 0) = 1/(1− t) and r(0) = 1 < R(0).
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Let

µ(u) :=

∞∑

n=1

nαn(u)(r(u))n = r(u)
∂A

∂t
(r(u), u). (2.42)

We have µ(0) = 1. The crucial obervation is that

lim
u→0

R(u) = ∞, ∀u ∈ [0, 1[: 0 < r(u) ≤ 1.

To see this, note first that R(u) ≥ r(u) and r(u) > 0 for u = e−γ2 ∈]0, 1[ by Lemma 2.10.
Next, let 0 < u < v < 1; by Lemma 2.5 , there exist nonnegative numbers bmn so that

αn(u) =
∑

m≥p(n−1)

bmnu
m ≤ (

u

v
)p(n−1)

∑

m≥p(n−1)

bmnv
m = (

u

v
)p(n−1)αn(v)

Since R(u) = 1/(lim supn(αn(u))1/n), this shows

upR(u) ≥ vpR(v).

For v < 1, R(v) > 0, thus letting u→ 0 in the previous inequality, we obtain limu→0R(u) =
∞. On the other hand, since A(1, u) ≥ 1 ≥ A(r(u), u) for all u ≥ 0, r(u) ≤ 1 for all u ≥ 0.
Thus for sufficiently small u, r(u) ≤ 1 < R(u).

Let γp > 0 such that r(u) < R(u) if u < e−γ2
p =: up. On [0, up[, the curve r(u) is in the

interior of the domain of convergence of A(t, u), thus µ(u) < ∞. Furthermore r(u) is the
solution of A(r(u), u) = 1. The power series A(t, u) defines a holomorphic function of two
variables, defined in

DA = {(z, w) ∈ C
2 | |z| < R(|w|)}.

We know A(1, 0) = 1 and ∂zA(1, 0) = 1 6= 0. Thus by an implicit function theorem, there
is a neighborhood U ⊂ C2 of (1, 0) such that for (z, w) ∈ U , the equation A(z, w) = 1 has
a unique solution z(w); furthermore, z(w) is holomorphic. But for w = u ∈ R, z(u) = r(u),

thus r(u) is analytic in a neighborhood of 0. Let u ∈ [0, e−γ2
p [. We know that (r(u), u) is in

the interior of DA, and (∂zA)(r(u), u) ≥ r(u) > 0. Thus the same reasoning as before gives

the analyticity of r(·) in a neighborhood of u. It follows that r(u) is analytic on [0, e−γ2

[.
Around u = 0, it has a power series expansion

r(e−γ2

) = 1 +
∑

n

βn (e−γ2

)n

whence r(e−γ2

) = 1 + O(e−γ2

). The quantity µ(u) from (2.42) inherits the analyticity, and

from µ(0) = 1 we get µ(e−γ2

) = 1 +O(e−γ2

). Since q = µ−1, this concludes the proof.

Remark. The characterization of r(u) and R(u) as boundaries of domains of convergence
gives access to convexity properties: for example, the set

{(log t, log u) | t, u > 0, C(t, u) <∞}

is convex (see e.g. the book [Hör90]). It follows that the functions log u 7→ log r(u) and

]0,∞[∋ γ2 7→ − log rp(γ)

are convex.
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2.1.4 Correlation functions and clustering

The normalization of Laughlin’s wave function was expressed as a polymer partition function.
For sufficiently thin cylinder (i.e. sufficiently large γ = l/R), the associated renewal process
has finite mean. In Section 2.1.2, we showed that this implies the existence of the thermo-
dynamic limit of correlation functions for the associated polymer system, the resulting state
is translationally invariant and mixing.

Laughlin’s wave function inherits the properties of the associated polymer system. The
thermodynamic limit of all correlation functions exist (Theorem 2.13). Since uj+X = t(j ·
pγl)⊗N(X)uX

3 , the translational invariance of the polymer system becomes invariance of
Laughlin’s state with respect to magnetic translations by multiples of pγl; moreover Laugh-
lin’s state is reversal invariant (Theorem 2.14). We prove also that Laughlin’s state is mixing
with respect to the group of translations t(n · pγl) (n ∈ Z) (Theorem 2.16). The question
whether pγl is the smallest period of the state is deferred to the next section.

In the following, the meaning of A depends on the parity of p ∈ N: when p is odd, A is the
canonical anticommutation algebra over H = L2(R × [0, 2πR], i.e. the C∗-algebra generated
by 1 and the creation and annihilation operators c∗(f), c(g), f, g ∈ L2(R × [0, 2πR]). When
p is even, it is the canonical commutation relation algebra over H, i.e. the algebra gener-
ated by the Weyl operators W (f) = exp(iΦ(f)) where Φ(f) is the closure of the operator
(c(f)+ c∗(f))/

√
2 defined in terms of the bosonic creation and annihilation operators, on the

bosonic Fock space (see [BR79b], Section 5.2).

Details of proofs will be worked out only for odd p.

Theorem 2.13. Suppose rnCn → q > 0. Then there is a state 〈·〉 on A such that for all
sequences (aN )N of integers with aN → −∞ and N + aN → ∞, the state 〈·〉N associated to
t(aNpγl)

⊗NΨN converges weakly to 〈·〉: for all a ∈ A,

〈a〉N = 〈t(aNpγ)
⊗NΨN , at(aNpγ)

⊗NΨN 〉/||ΨN ||2 →
N→∞

〈a〉. (2.43)

Proof. It is enough to prove the convergence (2.43) for operators a = c∗(f1)..c∗(fn)c(g1)..c(gm)
where f1, .., gm are elements of a complete orthonormal system of L2(R × [0, 2πR]). The ex-
pectation 〈a〉N vanishes if m 6= n. Since c(f)ΨN = 0 if f is orthogonal to the lowest Landau
level, it is enough to consider functions in the lowest Landau level. Thus we are left with the
case a = c∗ℓ′1 ..c

∗
ℓr
cℓr
..cℓ1 where again for k ∈ Z. ck = c(ψk). These operators anticommute

and we can take ℓ1 < .. < ℓr and similarly ℓ′1 < .. < ℓ′r.

Strategy. For L = {ℓ1 < .. < ℓr} ⊂ Z, let cL := cℓ1 ..cℓr
and c∗L := (cL)∗. Let bN := N + aN .

We will see that 〈c∗L′cL〉N can be written as

〈c∗L′cL〉N =

N∑

n=1

bN−n∑

j=aN

Cj−aN
CbN−j−n

CN
fn(L′ − pj, L− pj). (2.44)

for a suitable family of functions (fn)n∈N. We use the notation L− pj = {ℓ1, .., ℓr} − pj for
the set {ℓ1 −pj, .., ℓr −pj}. Let us anticipate and mention some of the properties of (fn)n∈N:

• ∀n ∈ N ∀L ⊂ Z : fn(L,L) ≥ 0.

3For a ∈ R, t(a) is a shorthand for a translation in the x-direction: t(a) = t(aex).
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• The functions have compact support: fn(L′, L) 6= 0 implies L ∪ L′ ⊂ {0, .., pn− p}.

For fixed j and n, Cj−aN
CbN−j−n/CN → qrn due to Cnr

n → q > 0. This suggests the
following definition:

〈c∗L′cL〉 :=

∞∑

n=1

qrn
∞∑

j=−∞
fn(L′ − pj, L− pj). (2.45)

The theorem is proved in three steps:

1. Define fn and prove (2.44).

2. Show 〈c∗LcL〉 ≤ 1 and 〈c∗LcL〉N → 〈c∗LcL〉.

3. Prove
∑

j,n qr
n|fn(L′ − pj, L− pj)| ≤ 〈c∗LcL〉1/2〈c∗L′cL′〉1/2 and 〈c∗L′cL〉N → 〈c∗L′cL〉.

1. Let L′, L ⊂ Z with |L′| = |L| = r. We start with the representation

〈ΨN , c
∗
L′cLΨN 〉 =

∑

m′,m

aN (m′)aN (m)〈ψm, c
∗
L′cLψm〉. (2.46)

The sum ranges over increasing N -admissible sequences m = (m1, .,mN ), m′ = (m′
1, .,m

′
N ),

and aN (m), ψm are short-hands for aN (m1, .,mN ), ψm1
∧ ..∧ψmN

. Suppose m and m′ have
common renewal points s, t such that L ∪ L′ ⊂ {ps, .., pt− p}. Then

〈ψm, c
∗
L′cLψm〉 =

∏

j∈{1,..,s}∪{t,..,N}
δmj ,m′

j
|as(m1, ..,ms)|2 |aN−t(mt+1 − pt, ..,mN )|2

· at−s(m′
s+1 − ps, ..,m′

t − ps)at−s(ms+1 − ps, ..,mt − ps)

· 〈ψm′
s+1

∧ .. ∧ ψm′
t
, c∗L′cLψms+1

∧ .. ∧ ψmt
〉. (2.47)

This motivates the following definitions: we call m,m′ L ∪ L′-irreducible if m and m′ have
no common renewal points except 0 and N that are below or above L ∪ L′:

k ∈ R(m) ∩R(m′) ∩ {1, .., N − 1}
⇒ (L ∪ L′) ∩ {0, .., pk − p} 6= ∅ and (L ∪ L′) ∩ {pk, .., pN − p} 6= ∅.

Similarly, we call a single sequence m L ∪ L′-irreducible if it has no renewal point except
possibly 0 and N below or above L ∪ L′. The function fN (L′, L) is defined by (2.46) except
that the sum runs over increasing N -admissible pairs of sequences that are L∪L′-irreducible.
With this definition, combining (2.46) and (2.47) we obtain (2.44).

2. For L = L′, the definition of fn gives

fN (L,L) =
∑′

m

|aN (m)|2χL⊂{m1,..,mN}

where the sum ranges over increasing N -admissible sequences that are L-irreducible. In par-
ticular, fN (L,L) ≥ 0. Moreover, if fN (L,L) 6= 0, there exists an N -admissible sequence m
such that L ⊂ {m1, ..,mN}, whence L ⊂ {0, .., pN − p}.
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Let d ∈ N. From (2.44) and fn(L,L) ≥ 0 we get

d∑

n=1

bN−j−n∑

j=aN

Cj−aN
CbN−j−n

CN
fn(L− pj, L− pj) ≤ 〈c∗LcL〉N ≤ 1

If fn(L− pj, L− pj) 6= 0 we must have L− pj ⊂ {0, .., pn− p}, thus only a finite number of
j’s contribute to the sum and we can take the limit N → ∞, which gives

d∑

n=1

∞∑

j=−∞
qrnfn(L− pj, L− pj) ≤ 1.

Letting d → ∞, we obtain the convergence of the sum defining 〈c∗LcL〉. The proof of
〈c∗LcL〉N → 〈c∗LcL〉 is completed by an ǫ/3 argument. For ǫ > 0, there exists an m ∈ N

such that
∞∑

n=d+1

∞∑

j=−∞
qrnfn(L− pj, L− pj) ≤ ǫ/3. (2.48)

By Lemma 2.10, 0 < Cnr
n ≤ 1 and Cnr

n → q. By the assumption q > 0, we get
minn r

nCn =: c > 0. Therefore

CjCN−j−n

CN
≤ CN−n

CN
≤ r−(N−n)

cr−N
=

1

c
rn.

It follows that

∞∑

n=d+1

bN−n∑

j=aN

Cj−aN
CbN−j−n

CN
fn(L− pj, L− pj) ≤ ǫ

3qc
(2.49)

Finally, there is an M ∈ N such that for N ≥M ,

|
d∑

n=1

(bN−n∑

j=aN

Cj−aN
CbN−j−n

CN
fn(L− pj, L− pj)−

∞∑

j=−∞
qrnfn(L− pj, L− pj)

)
| ≤ ǫ/3. (2.50)

Putting together (2.48), (2.49) and (2.50) we see that for N ≥M ,

|〈c∗LcL〉N − 〈c∗LcL〉| ≤
2 + (qc)−1

3
ǫ

and we obtain the desired convergence.

3. Let d ∈ N. As before, we have

d∑

n=1

qrn
∞∑

j=−∞
|fn(l′ − pj, l − pj)| = lim

N→∞

m∑

n=1

bN−j−n∑

j=aN

CjCbN−n−j

CN
|fn(l′ − pj, l − pj)|
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since due to n ≤ d only finitely many terms contribute to the sum. But now

d∑

n=1

bN−n∑

j=aN

Cj−aN
CbN−n−j

CN
|fn(L′ − pj, L− pj)|

≤
N∑

n=1

bN−n∑

j=aN

Cj−aN
CbN−n−j

CN
|fn(L′ − pj, L− pj)|

≤
∑

m,m′

|aN (m′)aN (m)〈ψm′ , c∗L′cLψm〉|/CN

=
∑

k∈ZN−r

|aN (ℓ′ ∪ k)aN (ℓ ∪ k)|/CN

≤
( ∑

k∈ZN−r

|aN (ℓ′ ∪ k)|2
)1/2( ∑

k∈ZN−r

|aN (ℓ ∪ k)|2
)1/2

/CN

= 〈c∗L′cL′〉1/2
N 〈c∗LcL〉1/2

N ≤ 1.

Here r = |L| = |L′| and ℓ, ℓ′ ∈ Zr are such that L = {ℓ1, ., ℓr}, L′ = {ℓ′1, .., ℓ′r}. The
notation k ∪ ℓ refers to the increasing sequence obtained by rearranging k1, .., kN−r, ℓ1, .., ℓr.
Letting first d and then N go to infinity, we get the absolute convergence of the sum defining
〈c∗L′cL〉 and the bound |〈c∗L′cL〉| ≤ 〈c∗L′cL′〉1/2〈c∗LcL〉1/2 (Cauchy-Schwarz for the state 〈·〉).
An argument strictly analogous to 2. then shows 〈c∗L′cL〉N → 〈c∗L′cL〉.

Now let us turn to the symmetries of Laughlin’s state. A unitary map U in B(H), H =
L2(R × [0, 2πR]) induces the unitary map Γ(U) :=

⊕
N∈N0

U⊗N in F and a map

τU : A → A, τU (a) := Γ(U)aΓ(U)−1.

The map τU is the unique C∗-automorphism such that τU (c(f)) = c(Uf) for all f ∈ H
(the Bogoliubov automorphism induced by U). This construction can be applied to the
180◦ rotation (or reversal) s0, introduced at the beginning of the chapter, to the magnetic
translation t(γlex) in the x-direction and to the translations t(aey) (a ∈ R) in the y-direction;
note that in the Landau gauge, magnetic translations in the y direction coincide with the
usual translation ψ 7→ ψ(· − ia). We will call the resulting morphisms of A τs, τx and τa

y .

Theorem 2.14. Suppose rnCn → q > 0 and let ω(·) = 〈·〉 be the limiting state of the previous
theorem. Then ω is invariant with respect to reversals, translations in the x direction by
multiples of pγl, and arbitrary translations in the y direction:

∀n ∈ Z, ∀a ∈ R : ω = ω ◦ τs = ω ◦ τnp
x = ω ◦ τa

y .

Proof. The invariance with respect to y-translations and reversal follow from Lemma 2.1:
the y-translational invariance is a direct consequence of (2.8). For the reversal invariance,
suppose N is odd and let aN := −(N − 1)/2. By (2.9),

s0t(aNpγlex)⊗NΨN = t(aNpγlex)⊗Nsp(N−1)γl/2ΨN = t(aNpγlex)⊗NΨN ,

whence the reversal invariance of 〈·〉N . Taking limits along sequences of odd integers N =
(2M + 1) → ∞, we obtain the reversal invariance of 〈·〉. The invariance with respect to τp

x
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follows from (2.45):

〈τp
x (c∗L′cL)〉 = 〈c∗L′+pcL+p〉 =

∞∑

n=1

qrn
∞∑

j=−∞
fn(L′ + p− pj, L+ p− pj)

=

∞∑

n=1

qrn
∞∑

j=−∞
fn(L′ − pj, L− pj)

= 〈c∗L′cL〉.

We were initially interested in the thermodynamic limit of the one-particle density. Using
the representation

ρN (z) =

bN∑

k=aN

〈c∗kck〉N |ψk(z)|2 =
1

2πRl
√
π

bN∑

k=aN

〈c∗kck〉Ne−(x−kγl)2/l2

we obtain immediately that, under the assumptions of Theorem 2.13, ρN (z) → ρ(z), where

ρ(z) =
1

2πRl
√
π

∞∑

k=−∞
〈c∗kck〉e−(x−kγl)2/l2 . (2.51)

Remark: Occupation numbers with even p. Strictly speaking, the previous expression holds
true only when p is odd. When p is even, the occupation number operator n̂k is unbounded
and thus n̂k /∈ A. The eigenprojections of n̂k are in A, thus we may write n̂k =

∑
k nkPk and

set 〈n̂k〉 =
∑

k nk〈Pk〉. It is implicit in the proofs of the following theorems that the sums
involved stay finite. Another procedure to give a meaning to 〈n̂k〉 is to check that the state
ω = 〈·〉 is regular ([BR79b] p.24), in which case there is a natural definition of an operator
n̂k,ω in the cyclic representation (Hω, πω,Ωω) and one can set 〈n̂k〉 := 〈Ωω, n̂k,ωΩω〉. In the
following, we will keep on writing 〈n̂k〉 without explicitly requiring p odd.

The one-particle density ρ(z) is pγl-periodic in the direction along the cylinder axis and has
the correct average value:

Corollary 2.15. Suppose rnCn → q > 0 and let 〈·〉 be the state of Theorem 2.13. The
one-particle density ρ associated to 〈·〉 is independent of the coordinate y around the axis and
is periodic with period pγl in the direction along the axis. Moreover, it has average density
(p · 2πl2)−1:

1

pγl

∫ pγl

0

ρ(x)dx =
1

2πl2
1

p

p−1∑

k=0

〈c∗kck〉 =
1

p

1

2πl2
.

Proof. The one-particle density ρ(z) is given by (2.51) and obviously independent of y = ℑz.
The periodicity of ρ follows from the periodicity of 〈·〉 proved in the previous theorem. By
Lemma 2.2,

1

pγl

∫ pγl

0

ρ(x)dx =
1

2πl2
1

p

p−1∑

k=0

〈c∗kck〉.

Let nk := 〈c∗kck〉. It remains to prove n0 + n1 + ..+ np−1 = 1. A close look at the definition
of fn in the proof of Theorem 2.13 shows that fn({k}, {k}) can be expressed in terms of the
polymer functions uX from Lemma 2.6:

fn({k} − pj, {k} − pj) = 〈u{j,..,j+n−1}, n̂ku{j,..,j+n−1}〉.
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The formula (2.45) can be rewritten in terms of the polymer correlation functions ρP (X) =
qrN(X)αN(X) from Proposition 2.9 as

nk = 〈n̂k〉 =
∑

X

ρP (X)
〈uX , n̂kuX〉

||uX ||2 . (2.52)

This formula is of interest in itself: in a probabilistic language, the probability for finding
a particle in the lattice site k given that there is a given polymer X covering the site is
〈uX , n̂kuX〉/||uX ||2. For our purpose it is more convenient to write it as

nk =

∞∑

n=1

qrn
∞∑

j=−∞
〈un, n̂k−pjun〉, un = u{0,..,n−1}.

Using
∑∞

k=−∞〈un, n̂kun〉 = nαn (un is an n-particle wave function with norm ||un||2 = αn),
it follows that

p−1∑

k=0

nk =
∞∑

n=1

qrn

p−1∑

k=0

∞∑

j=−∞
〈un, n̂k−pjun〉 =

∞∑

n=1

qrn
∞∑

k=−∞
〈un, n̂kun〉

=

∞∑

n=1

qrnnαn = 1

(recall q = 1/(
∑

n nr
nαn)).

The formula (2.52) can be generalized: any expectation value of a product of occupation
numbers n̂k can be expressed in terms of the polymer correlation functions ρP from Proposi-
tion 2.9 and the functions uX of Lemma 2.6. For example, the diagonal two-point correlation
is

〈n̂kn̂ℓ〉 =
∑

X:
pX⊃{k,ℓ}

ρP (X)
〈uX , n̂kn̂ℓuX〉

||uX ||2 +
∑

X,Y :
pX∋k, pY ∋ℓ

ρP (X,Y )
〈uX , n̂kuX〉

||uX ||2
〈uY , n̂ℓuY 〉
||uY ||2 .

(2.53)
This suggests that the clustering properties of ρP transfer to the state 〈·〉: if k and ℓ are far
apart, the probability that they are in the same polymer is small, thus in (2.53) the second
summand dominates; but then recall ρP (X,Y )−ρP (X)ρP (Y ) = O(|udist (X,Y )−µ−1|), where
un = rnCn → µ−1 = q > 0. One can show that

〈n̂kn̂ℓ〉 − 〈n̂k〉〈n̂ℓ〉 −→
|k−ℓ|→∞

0.

The speed of convergence is essentially determined by
∑

n≥|k−ℓ| nr
nαn (this gives a bound to

the probability that k and ℓ are in the same polymer) and |u|k−ℓ|−µ−1|. Similar statements
hold for general correlation functions.

Theorem 2.16. Suppose rnCn → q > 0. Then the state ω(·) = 〈·〉 of Theorem 2.13 is
mixing with respect to the shifts τnp

x , n ∈ Z:

∀a, b ∈ A : lim
n→∞

ω(aτpn
x (b)) = ω(a)ω(b). (2.54)

Proof. Again, it is enough to check (2.54) for operators a = c∗L′cL, b = c∗K′cK , where
L,L′,K,K ′ ⊂ Z and we agree c∅ = c∗∅ = 1. The main idea is to write a formula simi-
lar to (2.53). The correlation function can be written as a sum of two parts: one where
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L ∪ L′ and K ∪ K ′ are in a same compound block (this will be the sum
∑

n g(..) defined
below) this part will be bounded by the probability amplitude that a long polymer occurs.
Another part of the sum consists of contributions where L ∪ L′ and K ∪ K ′ are in differ-
ent blocks; this converges to the product of the correlations as L∪L′ and K∪K ′ are far away.

We start by treating some special cases. Recall that 〈c∗L′cL〉 6= 0 implies |L| = |L′| and∑
k∈L′ k =

∑
k∈L = k (this comes from the translational invariance ω ◦ τa

y = ω, τa
y (ck) =

e−ika/Rck).

1. |L| + |K| 6= |L′| + |K ′|. Then ω(aτnp
x (b)) = 0 and we must have |K| 6= |K ′| or |L| 6= |L′|,

whence ω(a)ω(b) = 0.

2. |L| + |K| = |L′| + |K ′| but |K ′| 6= |K|. Then ω(a)ω(b) = 0. Suppose for example
|K ′| > |K|. Then

∑

k∈L′∪(pn+K′)

k −
∑

k∈L∪(pn+K)

k =
∑

k∈L′∪K

k −
∑

k∈L∪K

k + pn(|K ′| − |K|) > 0

for sufficiently large n, whence ω(aτpn
x (b)) = 0 for sufficiently large n.

3. |L| = |L′|, |K| = |K ′|, but
∑

k∈L∪K k 6= ∑
k∈L′∪K′ k. Then

∑

k∈L′∪(pn+K′)

k −
∑

k∈L∪(pn+K)

k =
∑

k∈L′∪K′

k −
∑

k∈L∪K

k 6= 0

thus ω(aτnp
x (b))0. Moreover

∑
k∈K k 6= ∑

k∈K′ k or
∑

k∈L k 6= ∑
k∈L k, therefore ω(a)ω(b) =

0.

We are left with the case |L′| = |L|, |K ′| = |K|, ∑
k∈K∪L k =

∑
K′∪L′ k. We will show that

ω(ab) − ω(a)ω(b) is small when d := minK ∪K ′ − maxL ∪ L′ is large.

Suppose m, m′ are increasing N -admissible and have a common renewal point between L∪L′

and K ∪K ′, i.e.:

s ∈ R(m) ∩R(m′) : L ∪ L′ ⊂ {0, .., ps− p} and K ∪K ′ ⊂ {ps, .., pN − p}.
Then

aN (m′)aN (m)〈ψm′ , abψm〉
= as({m′

j}1≤j≤s)aN−s({mj}1≤j≤s)〈ψm′
1
∧ .. ∧ ψm′

s
, aψm1

∧ .. ∧ ψms
〉

· aN−s({m′
j − ps}j≥s+1)aN−s({mj − ps}j≥s+1)〈ψm′

s+1
∧ .. ∧ ψm′

N
, bψms+1

∧ .. ∧ ψmN
〉

(2.55)

Thus if we define

gn(L′, L;K ′,K) :=
∑′

aN (m′)aN (m)〈ψm′ , c∗L′cLc
∗
K′cKψm〉

with a sum over L ∪ L′ ∪ K ∪ K ′ - irreducible pairs of increasing N -admissible sequences
m,m′ with no renewal point between L∪L′ and K ∪K ′ and the functions fn as in the proof
of Theorem 2.13, we obtain

fN (L′ ∪K ′, L ∪K) =
∑

0<i≤j<N

fi(L
′, L)Cj−ifN−j(K

′ − pj,K − pj) + gN (L′, L;K ′,K).
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For X = {j, .., j +N − 1}, it is convenient to define

fX(L′, L) = fN (L′ − pj, L− pj), gX(L′, L;K ′,K) = gN (L′ − pj, L− pj;K ′ − pj,K − pj).

Using the representation (2.45), we get 〈ab〉 = F +G where

F =
∑

X<Y

qrN(X)+N(Y )fX(L′, L)(Cd(X,Y )r
d(X,Y ) − q)fY (K ′,K)

G =
∑

X

qN(X)gX(L′, L;K ′,K)

Here, if X = {sX , .., sX +N(X)−1} and Y = {sY , .., sY +N(Y )−1}, d(X,Y ) := sY − (sX +
N(X)). The previous expressions should be compared with

〈a〉〈b〉 =
∑

X,Y

q2rN(X)+N(Y )fX(L′;L)fY (K ′;K).

We start by estimating F − 〈a〉〈b〉. Write X = {sX , .., eX − 1}, Y = {sY , .., eY − 1}. The
difference of F and 〈a〉〈b〉 is a sum over X,Y which we split into two parts. Let M ∈ N. The
first part is a sum over X,Y with sY − eX ≥M . It is bounded by

sup
n≥M

|1 − q−1rnCn|
(∑

X

qrN(X)|fX(L′, L)|
)(∑

Y

qrN(Y )|fY (K ′,K)|
)

≤ sup
n≥M

|1 − q−1rnCn|(〈c∗L′cL′〉〈c∗LcL〉〈c∗K′cK′〉〈c∗KcK〉)1/2 ≤ sup
n≥M

|1 − q−1rnCn|.

The second part is a sum over X,Y with sY − eX ≤ M − 1. Writing d = (min(K ∪K ′) −
psY ) + p(sY − eX) + (peX − max(L ∪ L′)), we obtain

min(K ∪ K ′) − psY ≥ (d − pM)/2 or peX − max(L ∪ L′) ≥ (d − pM)/2.

Using Cnr
n ≤ q, we can bound give a bound on the second part of the sum as

2
∑

X:
peX−max(L∪L′)≥(d−pM)/2

qrN(X)|fX(L′, L)| + 2
∑

Y :
min(K∪K′)−psY ≥(d−pM)/2

qrN(Y )|fY (K ′,K)|.

If we go back to the definition of fX as a sum over N -admissible, L∪L′ irreducible sequences
m′,m, we see that only m sequences with no renewal point between L∪L′ and eX contribute.
By a procedure similar to step 3. of the proof of Theorem 2.13, one can show that

∑

X:
peX−max(L∪L′)≥(d−pM)/2

qrN(X)|fX(L′, L)| ≤
∑

n≥(d−pM)/2p

nrnαn

the right-hand side representing the probability in the polymer ensemble of Proposition 2.9
that a given point is in a polymer of length greater or equal to (d− pM)/2p. The sum over
Y can be estimated in a similar way. Thus we get

|F − 〈a〉〈b〉| ≤ sup
n≥M

|1 − q−1rnCn| + 4
∑

n≥(d−pM)/2p

nrnαn.

It remains to give a bound on G. We start by looking at the non-vanishing contributions to
gn(L′, L;K ′,K). Without loss of generality, we may assume

∑
k∈L′ k ≥ ∑

k∈L k (otherwise,
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use 〈a∗〉 = 〈a〉 to interchange L′ and L).

Claim. Suppose m′,m are increasing N -admissible sequences and
∑

k∈L′ k ≥ ∑
k∈L k. and

〈ψm, c
∗
L′cLc

∗
K′cKψm′〉 6= 0. Then if s is a renewal point of m′ such that L∪L′ ⊂ {0, .., ps−p},

K ∪K ′ ⊂ {ps, .., pN − p}, s is also a renewal point of m.

Proof of the claim. Let m′,m,K,L,K ′, L′, s be as described above, and M = {m1, ..,mN},
similarly for M ′. Then we must have M ′\(K ′∪L′) = M\(K∪L). Intersecting with {0, .., ps−
p} we get M ′\L′ ∩ {0, .., ps − p} = M\L ∩ {0, .., ps − p}. In particular

∑s
j=1(m

′
j −mj) =∑

k∈L′ k −
∑

k∈L k ≥ 0. Thus

0 =

s∑

j=1

(m′
j − p(j − 1)) ≥

s∑

j=1

(mj − p(j − 1)) ≥ 0.

The inequality on the right-hand side must be an equality, and s is a renewal point of m.

As a consequence, if a pairm′,m contributes to gn(L′, L;K ′,K) andX ′
1, .., X

′
D is the partition

of {0, .., N − 1} determined by the renewal points of m′, there is a rod X ′
j such that pX ′

j ∩
(L′∪L) 6= 0 and pX ′

j∩(K ′∪K) 6= 0. In particular, N(X ′
j) ≥ min(K ′∪K)−max(L∪L′) = d.

Thus in the spirit of step 3. in the proof of Theorem 2.13, we have

|
N∑

n=1

N−n∑

j=0

CjCN−n−j

CN
gn(L′ − pj, L− pj;K ′ − pj,K − pj)|

≤
∑′

m,m′

aN (m)aN (m′)〈ψm′ , abψm〉|/CN

≤ 〈c∗KcKc∗LcL〉1/2
ΨN

(∑′

m′

|aN (m′)|2〈ψm′ , c∗L′cL′c∗K′cK′ψm′〉
)1/2

/CN .

where
∑′ is the sum over sequences m′ having no renewal point between L∪L′ and K ′ ∪K.

Taking the limit N → ∞ after shifting the origin to the middle of the cylinder, we obtain a
bound of G in terms of the square root of the probability that maxL ∪ L′/p is in a polymer
of length greater or equal to p. Finally, we obtain the bound

|〈ab〉 − 〈a〉〈b〉| ≤ sup
n≥M

|1 − q−1rnCn| + 4
∑

n≥(d−pM)/2p

nrnαn +
( ∑

n≥d/p

nrnαn)1/2 (2.56)

for any M ∈ N. Choosing M of the order of d/(2p), we see that |〈ab〉 − 〈a〉〈b〉| goes to zero
as d→ ∞.

Remark: Rate of convergence. Suppose
∑

n αnt
n has radius of convergence R > r. By

Theorem 2.12, this is the case for sufficiently large γ. For Λ ⊂ Z, |Λ| < ∞, let AΛ be the
algebra generated by 1, ck, c

∗
m, k,m ∈ Λ. If a ∈ AΛ, b ∈ AΛ′ , then 〈ab〉 − 〈a〉〈b〉 goes to zero

like (r/R)dist (Λ,Λ′)/4p: there is exponential clustering.

2.1.5 Symmetry breaking

In Theorem 2.14, we proved that the state ω = 〈·〉 of Theorem 2.13 is invariant with respect
to translations τnp

x by multiples of pγl. Thus pγl is a translational period. This leaves the
question open whether pγl is the smallest period. We will prove that for sufficiently thin
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cylinders, pγl is indeed the smallest period of ω. Since ω is an infinite volume ground state
of a Hamiltonian invariant with respect to translations by multiples of γl (see Section 2.4),
this means that there is symmetry breaking.

In principle, it is possible that the state has pγl as its smallest period, but a γl-periodic
one-particle density. We will prove that for sufficiently thin cylinders, this does not happen
and pγl is the smallest period of the one-particle density.

The proof of the non-trivial periodicity of the one-particle density uses the analyticity results
of Theorem 2.10. They are consistent with numerical results by [ŠWK04] and related to
numerical results for tori [SFL+05]. This work looks at torus wave functions at filling factor
1/3 and gives numerical estimates of the order parameter

O =
1

N

3N∑

j=1

ei2πj/3〈c∗(ψ̃j)c(ψ̃j)〉

(ψ̃k, k ∈ Z/3NZ are the torus lowest Landau level basis functions). The authors find that

the curve e−γ2 7→ O looks like e−c2/γ2

for some constant c > 0. In particular, for large radius
R = l/γ, O is very small but non-zero.

As a complement, we prove that the states ω, ω ◦ τx,..,ω ◦ τp−1
x are orthogonal if

∞∑

n=1

n2rnαn <∞. (2.57)

We call the states ω1, .., ωp on A orthogonal if for all positive functionals ω̃ on A, and all
k ∈ {1, .., p}, (

ω̃ ≤ ωk and ω̃ ≤
∑

j 6=k

ωj

)
⇒ ω̃ = 0

or equivalently, if in the cyclic representation (πω,Hω,Ωω) associated to ω := ω1 + ... + ωp,
there exist mutually orthogonal projections P1, .., Pp ∈ πω(A)′ such that

ωj(a) = 〈PjΩω, πω(a)Ωω〉 (j ∈ {1, .., p}), a ∈ A

(see [BR79a] Lemma 4.1.19, p.333). The analogous notion for probability measures is dis-
jointness of supports.

For the proof of the orthogonality, it is enough to restrict to a commutative subalgebra and
we can use a probabilistic picture. The proof then follows ideas of [AM80], who look at
thermodynamic limits of a classical one-dimensional jellium systems. They notice a simple
condition on the range of the electric field. This condition subsists in the thermodynamic
limit and shows that the distribution of the electric field cannot be translationally invariant.
[AM80] then use an ergodic theorem to prove that the electric field is a function of particle
positions and conclude that the distribution of particle positions cannot be translationally
invariant (see also p.71 for more details). Something similar can be done here. The second
moment condition (2.57) ensures the integrability of an auxiliary random variable, needed
for the ergodic theorem. A related approach is also used in [AGL01], who conjectured that
their results could be applied to jellium tubes.
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Theorem 2.17. Suppose Cnr
n → q > 0 and let ω = 〈·〉 be the state of Theorem 2.13.

1. Suppose that the second moment
∑

n n
2rnαn is finite. Then the states ω ◦ τk

x , k =
0, ..., p − 1 are orthogonal. In particular, ω ◦ τk

x = ω if and only if k is an integer
multiple of p.

2. Let γp be as in Theorem 2.12. Then we have:

(a) The second moment condition and the conclusions of 1. hold for all γ > γp.

(b) Let ρ, nk = ω(c∗kck) be the one-particle density and occupation numbers associated
to ω. Then the order parameter

〈Op〉 :=
1

pγl

∫ pγl

0

ρ(x)e−i2πx/(pγl)dx =
1

p

1

2πl2
e
− π2

p2γ2

p−1∑

j=0

nje
−i2πj/p

is an analytic function of γ ∈]γp,∞[, and 〈Op〉 = 1 +O(e−γ2

) as γ → ∞. Hence
on ]γp,∞[ 〈Op〉 cannot vanish except possibly on a discrete set, and for sufficiently
large γ, 〈Op〉 > 0.

Remark: For p = 3, the reversal symmetry implies n1 = n−1 = n2 and the order parameter
equals

〈O3〉 =
1

3γl

∫ 3γl

0

ρ(x)e−i2πx/(3γl)dx =
1

3

1

2πl2
e
−π2k2

9γ2 (n0 − n1).

Thus 〈O3〉 is really a measure of the amplitude of oscillations.

Again, we give details of the proof only for odd p. When p is even, the occupation numbers
n̂k are unbounded operators (thus n̂k /∈ A). We start with the simpler part of the proof,
namely with the proof of 2.

Proof of 2. Recall from Theorem 2.12 that for γ > γp, the series
∑

n αnt
n has a radius of

convergence R strictly larger than the radius of convergence r of
∑

n Cnt
n. It follows that for

γ > γp, the second moment condition (2.57) holds. Now let us turn to the order parameter.
The analyticity is essentially a consequence of the analyticity of rp(γ) and qp(γ) (see Theorem
2.12). For the asymptotics of the order parameter as γ → ∞, remember that the natural

variable is u = e−γ2

, and u = 0 describes a pure monomer system. The asymptotics follows
from an expansion around the point u = 0. We give more details now.

Let n̂k = c∗kck. Remember

nk =
∞∑

n=1

qrnαn

∑

j∈Z

〈un, n̂k−pjun〉/||un||2.

For n ∈ N, we have

p−1∑

k=0

e−i2πk/p
∞∑

j=−∞
〈un, n̂k−pjun〉 = p

∑

k∈Z

e−i2πk/p〈un, n̂kun〉 = p

pn−p∑

k=0

e−i2πk/p〈un, n̂kun〉

Let 〈Op〉′ := 1
p

∑p−1
k=0〈n̂k〉e−i2πk/p. Then

〈Op〉′ =
∞∑

n=1

qnrnαn〈Op〉′n, 〈Op〉′n :=
1

pn
〈un,

(pn−p∑

k=0

e−i2πk/pn̂k

)
un〉/||un||2.
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Recall that (qnrnαn) represents a probability distribution on the lengths of polymers. The
previous formula expresses the fact that each polymer contributes a part to 〈Op〉, depending

only on its length. Both ||un||2 = αn and 〈unn̂kun〉 are polynomials of e−γ2

, for example

〈unn̂kun〉 =
∑

0≤m1≤..≤mN ≤p(N−1)
irred.

χ{m1,..,mN}(k)|bN (m1, ..,mN )|2eγ2 PN
j=1(m

2
j−p2(j−1)2)

where bN (m1, ..,mN ) are integers. By Theorem (2.12), r(e−γ2

) and q are analytic functions

of e−γ2 ∈ [0, e−γ2
p [. Since |〈Op〉′n| ≤ 1, and αn(e−γ2

) ≤ αn(e−γ′2

) for γ ≥ γ′, the sum∑
n nr

nαn〈Op〉′n is a uniformly convergent sum of analytic functions, hence it is analytic

itself. In particular, it has a convergent power series expansion in e−γ2

= 0 around u = 0.
Since αn(e−γ2

= 0) = 0 for n ≥ 1, r(0) = 1 and q(0) = 1, we obtain 〈Op〉′n = 1+O(e−γ2

).

Proof of 1. The main ingredients of the proof of 1. are a lemma that we will state and prove
below and the observation that orthogonality of states needs only be checked on a subalge-
bra. In the problem at hand, there is a natural choice of subalgebra: it is the algebra A0

generated by the occupation numbers n̂k. The algebra A0 is abelian and thus can be treated
using a probabilistic language. The associated probability space Ω describes point particles
on a lattice. The state ω on A is associated with a probability measure P on Ω, and shifted
states ω◦τk

x correspond to shifted measures Pk. In order to prove orthogonality of the states,
we need to prove that the shifted measures are mutually singular. The singularity of the
measures follows from the existence of a random variable Q with the following property:
there is a set of pairwise different values q0, .., qp−1 such that for each k ∈ {0, .., p − 1}, the
random variable Q takes the value qk Pk-almost surely. This means that the measures Pk

have their supports in the disjoint preimages under Q of q0, .., qp−1.

The existence of such a random variable Q is the object of Lemma 2.18 below. The main
work to be done is the proof of this lemma, which we postpone to p.71 where the reader will
find also a description of the physical intuition behind this lemma.

Let A0 be the closed subalgebra of A generated by the occupation number operators n̂k =
c∗kck, k ∈ Z and the identity 1. We start by showing that it is enough to check orthogonality
on A0. Let ωn := ω ◦ τpn

x , and let ω̃ be a positive functional on A with ω̃(a) ≤ ω0(a) and
ω̃(a) ≤ (ω1(a) + ... + ωp−1(a)) for all a ∈ A. In particular, the inequalities hold for a ∈ A0.
If the states ωj |A0

are orthogonal, it follows that ω̃|A0
= 0. Since 1 ∈ A0, we have ω̃(1) = 0.

By the positivity of ω̃, for all a ∈ A, |ω̃(a)| ≤ ω̃(1)||a|| = 0, whence ω̃ = 0.

Thus we need only show that the restrictions of ω0, ., ωp−1 to A0 are orthogonal. But A0

is a commutative algebra and we can use a probabilistic language. Let us briefly recall
the construction of the probability space. The occupation number operator n̂k gives the
number of particles at lattice site k. The probability space Ω we will consider describes
particles on a lattice. Each particle configuration X ∈ Ω is characterized uniquely by the
sequence of occupation numbers (nk(X))k∈Z, where nk(X) gives the number of particles at
the lattice site k. For simplicity, suppose p odd. Then Laughlin’s function is antisymmetric
and thus describes fermions. There is at most one particle per lattice site and we may take
Ω = P(Z) ≡ {0, 1}Z, where we identify sets with their characteristic functions. We give {0, 1}
the discrete topology and {0, 1}Z the product topology, and let E be the Borel-σ-algebra. The
mapping n̂k 7→ nk(·) extends uniquely to a homomorphism φ from A0 to C(Ω), and there is
a unique probability measure P on (Ω, E) such that for all a ∈ A0, ω(a) =

∫
φ(a)dP .
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The probability of cylinder sets can be specified as follows: for K,A ⊂ Z,

P ({X | X ∩K = A}) = ω
(∏

k∈A

n̂k

∏

k∈K\A

(1 − n̂k)
)
. (2.58)

Equivalently, for all K = {k1, .., kr} ⊂ Z, |K| = r <∞, and all (ǫ1, .., ǫr) ∈ {0, 1}r,

P ({X | nk1
(X) = ǫ1, .., nkr

(X) = ǫr}) = ω
( ∏

k∈K
ǫk=1

n̂k

∏

k∈K
ǫk=0

(1 − n̂k)
)
.

Shifted states area associated with shifted measures: let τ : Ω → Ω, X 7→ X + 1. Then the
measures Pj associated to the states ωj = ω ◦ τ j

x are given by Pj = P ◦ τ j . To conclude the
proof, we need the following lemma:

Lemma 2.18. There is a map Q : Ω → RZ, X 7→ (QX(x))x∈Z such that:

• for all X ∈ Ω, for all x, s ∈ Z: QX+s(x) = QX(x− s), i.e., Q is “covariant”;

• for P -almost all X ∈ Ω, for all x ∈ Z: QX(x) ∈ −x/p+ Z.

The lemma will be proved a little later. For a given set of particles, QX(x) should be thought
of as the total charge accumulated in ]−∞, x[, where the particles account for a charge 1 and
a uniform background of density −1/p is added. By Lemma 2.18, there exists a measurable
subset M of Ω such that P (M) = 1 and for all X ∈ M and x ∈ Z: QX(x) ∈ −x/p+ Z. We
have

P (M) = 1 and for all X ∈ M : QX(0) ∈ Z.

It follows that for j ∈ Z, the shifted measures Pj = P ◦ τ j satisfy

Pj(M− j) = 1 and for all X ∈ M + j : QX(0) ∈ −j/p+ Z. (2.59)

To see this, let X ∈ M− j; we may write X = Y − j with y ∈ M and

QX(0) = QY −j(0) = QY (j) ∈ −j/p+ Z.

By (2.59), the measures P = P0, P1, .., Pp−1 are mutually singular.

As a consequence, the states ωj on A0 are orthogonal. Indeed, let ω̃ be a positive functional on
A0 with ω̃ ≤ ω0 and ω̃ ≤ (ω1 + ..+ωp−1). Let µ be the measure (not necessarily a probability
measure) on (Ω,F) associated to ω̃ through a relation similar to (2.58). Then, for all E ∈ F ,
µ(E) ≤ P0(E) and µ(E) ≤ (P1(E) + .. + Pp−1(E)). Applying this to Ej = M + j, we get
µ(Ej) = 0 for all j ∈ {0, .., p− 1}, hence µ = 0 and ω̃ = 0.

The proof of Lemma 2.18 follows ideas of [AM80, AGL01]. We start with a summary of the
ideas of these works that we shall use. In [AM80], Section 4, Aizenman and Martin consider
a one-dimensional classical jellium system, consisting of N particles of negative charge −e
moving in a neutralizing background of charge density ρe on a line segment [−L/2, L/2] ⊂ R.
For simplicity, we will assume e = 1. The one-dimensional Coulomb potential is −|x|. Each
particle configuration is characterized by a set of particle positions x1, .., xN . The electric
field at x is a function of the particle positions: for x ∈ [−L/2, L/2],

E(x; {xj}) = −
N∑

j=1

sgn(x− xj) + 2ρx. (2.60)
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(Actually, the field is not well-defined at the location of a particle, x = xj . We shall not
deal with this difficulty here.) Due to the overall neutrality of the system, the electric field
vanishes outside the volume containing the charges:

E(−L/2; {xj}) = 0 = E(L/2; {xj}). (2.61)

Furthermore, for x ≤ y,

E(y; {xj}) − E(x; {xj}) = 2ρ(y − x) − 2
∑

xj∈[x,y]

1. (2.62)

It follows that

E(x; {xj}) = E(x; {xj}) − E(−L/2; {xj}) = 2ρx+N − 2
∑

xj∈[−L/2;x]

1

Suppose we take N even; then

E(x; {xj}) ∈ 2ρx+ 2Z. (2.63)

This constraint will subsist in the limit N → ∞, the density ρ being kept fixed, and shows
that the limiting distribution of the field E cannot be translationally invariant. It can at
best be periodic with period 1/ρ. We would like to know whether the particle positions have
a translationally invariant distribution. In the limit of infinite volume, the particle positions
can be recovered from the electric field as the locations of its discontinuities. But a function
of a periodic quantity may very well be translationally invariant, so this is of no help. In
order to conclude that the particle positions have a non translationally invariant distribution,
we need to know that the field is a function of the particle positions. This is of course the
case for finite volumes, but for systems with infinitely many particles the formula (2.60) no
longer makes sense. Nevertheless, the field can be recovered from the particle positions. This
is shown in [AM80] using an ergodic theorem.

An abstract version of the argument previously described is considered in [AGL01], who look
at point processes and at one-dimensional charge distributions. Let us sketch some aspects
of [AGL01] for the special case of one species of particles moving on a lattice. Let P be
a translationally invariant probability distribution on the space of particle configurations
P(Z) ≡ {0, 1}Z. Let ρ be the average number of particles at a given site. We might think of
the particles as point charges with charge 1 moving in a neutralizing background of charge
density −ρ. For a given configuration X ⊂ Z and a, b ∈ Z (a < b), define

FX(]a, b]) := |X∩]a, b]| − ρ(b− a). (2.64)

FX(]a, b]) is the difference between the number of particles in ]a, b] in the configuration X
and the average number of particles in ]a, b]. It can also be considered as the total “charge”
in ]a, b]. [AGL01] prove that if the random variables X 7→ FX(]a, b]), a, b ∈ Z, a < b have
variances uniformly bounded in a, b (actually, [AGL01] give weaker conditions), there exists
a covariant antiderivative, i.e., there exists a family of random variables X 7→ EX(a), a ∈ Z,
such that for P -almost all X ⊂ Z and all a, b ∈ Z, a < b:

EX+1(a) = EX(a− 1), FX(]a, b]) = EX(b) − EX(a). (2.65)

Combining the second identity with (2.64) gives an expression for EX(b) − EX(a) analogous
to (2.62). Thus EX(a) can be thought of as the “field” in a, or simply as the total charge
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accumulated in ] − ∞, a]. Now the probability space can be partitioned into level sets of
X 7→ EX(0) (modulo 1). For θ ∈ R/Z, let

Mθ := {X ∈ P(Z) | EX(0) = θ mod 1}.

Using (2.65), one easily sees that the shift Tk : X 7→ X + k maps Mθ onto Mθ+kρ. If ρ is
not an integer, there are several sets Mθ, and [AGL01] prove that the probability measure
P decomposes into a mixture of mutually singular measures Pθ, supported in Mθ. In the
particular case that the density is rational and not integer: ρ = p/q, p, q coprime and q ≥ 2,
we obtain a decomposition of the probability space into q subsets invariant under shifts by
multiples of q. In particular, the probability measure P cannot be ergodic with respect to
shifts by multiples of q: in this sense, there is symmetry breaking.

Now let us come back to Lemma 2.18. The idea of proof is a combination of ideas found in
[AM80] and [AGL01]. From [AGL01] we take the idea to construct a generalized “electric
field” or “total charge” random variable. This is the variable QX(x) of Lemma 2.18. For the
construction of the random variable, we follow the idea [AM80] of looking at finite volumes
first and then making a detour involving a larger probability space and an ergodic theorem.
As we have seen in the proof of Theorem 2.17, the level sets of the field play an important
role for the symmetry breaking, just as in [AGL01] and [AM80].

Proof of Lemma 2.18. The starting point is the following: the state ω is associated with a
probability measure P on Ω = P(Z), where a particle configuration is characterized through
the set X ⊂ Z of occupied lattice points. The measure P is invariant with respect to shifts
(on Z) by multiples of p. By Corollary 2.15, the average density is

1

p

p−1∑

j=0

〈n̂j〉 =
1

p
.

We think of the particles as point charges of charge 1 moving in a neutralizing background
of charge density −1/p. Each configuration X ⊂ Z defines a “charge distribution” F on Z

through

FX(A) := |X ∩A| − 1

p
|A|, A ⊂ Z.

The previous considerations suggest to search for a covariant antiderivative of FX , i.e. to
search for a map X 7→ (QX(x))x∈Z such that

QX+s(x) = QX(x− s), FX([x, y[) = QX(y) −QX(x)

and to show that the probability measure P is supported in the set where QX(x) = −x/p
mod 1. We will proceed as follows:

1. We start by looking at finite volumes. For systems with finitely many particles N ,
we can simply define QN

X(x) as the total charge accumulated in ] − ∞, x[ (with a
suitable background distribution). The field thus constructed is not covariant, but
essentially satisfies the condition QN

X(x) = −x/p mod 1. We will see that finite volume
configurations may be characterized through an auxiliary space (Ω′

N ,F ′
N , P

′
N ); this

serves as a guide for the infinite volume case.

2. As a second step, we construct an auxiliary probability space (Ω′,F ′, P ′) space from
which the particle positions may be recovered, i.e., there is a random variable M : Ω′ →
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Ω = P(Z) such that the measure P is the image of P ′ under M : P = P ′ ◦M . The
approach in [AM80] suggests to take as larger probability space Ω′ the configurations
of the field, but we will see that in our setting, a different construction is more natural;
the auxiliary space arises roughly as infinite volume limit of the space Ω′

N of 1.

3. We proceed by showing that there exists a field Ω′ ∋ ν 7→ (Qν(x))x∈Z, defined on the
auxiliary space, that is an antiderivative of the particle positions in the sense that

FM(ν)([x, y[) = Qν(y) −Qν(x),

whereM : Ω′ → Ω reconstructs the particle locations from the auxiliary variable ν ∈ Ω′.
We show thatQ has a covariance property, thatQν(x) = −x/p mod 1 P ′-almost surely
and that ν 7→ Qν(x) has finite expectation value; this is the place where the second
moment condition (2.57) enters.

4. Just as in [AM80], we use an ergodic theorem for Qν(x) to show that the field Qν can
be recovered from the particle locations, i.e., there is a map Q : Ω ∋ X 7→ (QX(x))x∈Z

such that
∀x ∈ Z : Qν(x) = QM(ν)(x) for P ′ − almost all ν ∈ Ω′.

The map Q, suitably defined, is the map of Lemma 2.18.

1. Finite volumes. For N ∈ N, let 〈·〉N be the state defined by ΨN and PN the corresponding
probability measure on Ω = P(Z). Note that X ⊂ {0, .., pN − p} and |X| = N PN -almost
surely. More precisely, let aN (m1, ..,mN ) be the expansion coefficients of Laughlin’s N -
particle state, CN its L2-norm squared, then the probability PN is defined as

PN ({m1, ..,mN}) = |aN (m1, ..,mN )|2/CN

where for X ⊂ Z we write P (X) instead of P ({X}). Think of PN as describing N particles
located in {0, .., pN − 1}, with a uniform neutralizing background so that the total charge
accumulated in ] −∞, x[ vanishes if x ≤ 0 or x ≥ pN . Let

QN
X(x) :=

{
|X ∩ [0, x[| − 1

px, if x ∈ {0, .., pN},
0, else.

For X ⊂ {0, .., pN − 1}, |X| = N , we have

QN
X(0) = QN

X(pN) = 0.

This equation is the analogue of (2.61). If x, y are in {0, .., pN} and x ≤ y, we have obviously

QN
X(y) −QN

X(x) = |X ∩ [0, x[| − 1

p
x;

in this sense, QN
X is an antiderivative. Furthermore, it is obvious from the definition of QN

that
∀X ⊂ Z, ∀x ∈ {0, .., pN} : QN

X(x) = −x/p mod 1.

This is the analogue of the constraint (2.63) on the electric field for one-dimensional jellium.

Now let us use the additional structure present here. First, note that if X ⊂ Z has a
non-zero probability, PN (X) > 0, there exists an increasing, N -admissible finite sequence
m = (m1, ..,mN ) such that X = {m1, ..,mN}. Now, we claim that:
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Let m = (m1, ..,mN ) be increasing m1 ≤ .. ≤ mN and N -admissible. Let X =
{m1, ..,mN} with PN (X) > 0. Suppose k is a renewal point ofm. Then QN

X(pk) =
0 and for pk ≤ x ≤ pN ,

QN
X(x) = |X ∩ [pk, x[ | − (x− pk)/p.

Thus renewal points give zeroes of the field, and the field at x depends only on
the particle configuration up to the next renewal point.

To see why this holds, let m, X, k. PN (X) > 0 implies that (m1, ..,mk) and (mk+1 −
pk, ..,mN − pk) are k (resp. N − k)-admissible. In particular, 0 ≤ m1, ..,mk ≤ pk − p, and
pk ≤ mk+1, ..,mN ≤ pN − p, therefore if x ≥ pk

QN
X(x) =

(
|X ∩ [0, pk[ | − k

)
+

(
|X ∩ [pk, x[ | − (x− pk)/p

)

=
(
|{m1, .,mk}| − k

)
+

(
|X ∩ [pk, x[−(x− pk)/p

)

= |X ∩ [pk, x[−(x− pk)/p,

whence the claim.

Definition of an auxiliary probability space: finite volumes. We would like to use the obser-
vation on renewal points to define QX for infinite systems. However, defining renewal points
for infinite sets X ⊂ Z seems even harder than defining a total charge, thus we have to make
a little detour. Recall from the proof of Lemma 2.5 that N -admissible sequences can be
characterized in terms of sequences ν0, .., νN with

mj = p(j − 1) + νj − νj−1, ν0 = νN = 0

νj ≥ 0, νj+1 − 2νj + νj−1 + p ≥ 1.

Furthermore νk = 0 if and only if k is a renewal point of m. The probability measure PN

defines a measure P ′
N on the space Ω′

N of (νj)-sequences through

P ′
N ({(0, ν1, .., νN , 0)}) = PN ({(m1, ..,mN )}) = |aN (m1, ..,mN )|2/CN .

The factorization rule from Lemma 2.4 leads to

P ′
N ({0, ν1, .., νk−1, 0, νk+2, .., νN−1, 0)}) =

CkP
′
k({(0, ν1, .., νk−1, 0)})CN−kP

′
N−k({(0, νk+1, .., νN−1, 0)})/CN ,

moreover P ′
N (νk = 0) = CkCN−k/CN for all k ∈ {0, .., N}. Thus for k → ∞, N − k → ∞,

P ′
N (νk = 0) → µ−1 = q.

2. Auxiliary probability space: infinite volume. More generally, there is a natural probability
measure on the space of infinite sequences. Let Ω′ ⊂ N

Z
0 be the set of sequences (νj)j∈Z such

that
∀j ∈ Z : νj+1 − 2νj + νj−1 + p ≥ 1

and the set {j | νj = 0} is bounded neither from below nor above. Define a probability
measure P ′ on Ω′ by requiring that the zeroes of (νj) are distributed like a stationary renewal
process with interarrival distribution (pn) = (rnαn), constant renewal probability

P ′(νj = 0) = q = µ−1 = 1/(
∑

n

nrnαn),
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and for all a ∈ Z, N ∈ N, and ǫa+1, .., ǫa+N−1 in N0,

P ′({(νj) | νa = 0, νa+1 = ǫa+1, ..., νa+N−1 = ǫa+N−1, νa+N = 0})
= µ−1CNr

NP ′
N ({(0, ǫa+1, .., ǫa+N−1, 0)}).

The measure P ′ is invariant and mixing with respect to shifts (νj) 7→ (νj−1). The probability
measure P on Ω is recovered with

M : Ω′ → Ω, (νj) 7→ {p(j − 1) + νj − νj−1 | j ∈ Z}

as P = P ′ ◦M . Note that M((νj−1)) = p+M((νj)).

3. Definition of an auxiliary map Q. For ν ∈ Ω′ and x ∈ Z, let j ∈ Z be such that νj = 0
and pj ≤ x. Define Qν(x) := FM(ν)([pj, x[). This definition is motivated by the observation
made in 1. that a renewal point arising through νj = 0 give zeroes of the field Qν(pj) = 0.
Note that the definition does not depend on the choice of j: suppose pj′ < pj ≤ x and
νj′ = νj = 0. Let mk := p(k − 1) + νk+1 − νk. By the convexity property of (νk)k, (mk) is
increasing, furthermore νk ≥ 0 implies

mj′ ≤ p(j′ − 1), pj′ ≤ mj′+1 ≤ .. ≤ mj ≤ p(j − 1), pj ≤ mj+1..

whence M(ν) ∩ [pj′, pj[= {mj′+1, ..,mj} and

FM(ν)([pj
′, x[) − FM(ν)([pj, x[) = FM(ν)([pj

′, pj[) = 0.

Qν has a series of properties:

1. Qν satisfies a constraint on its range: Qν(x) = −x/p mod 1 for all ν ∈ Ω

2. Qν is an antiderivative of the charge density F : if x < y, Qν(y)−Qν(x) = FM(ν)([x, y[)

3. Qν is covariant: Qτν(x) = Qν(x− p), where (τν)j = νj−1

4. The field at x has finite expectation value:
∫
Ω′ |Qν(x)|dP ′(ν) <∞ for all x ∈ Z.

Indeed, let x ∈ Z, j ∈ Z with νj = 0, pj ≤ x, then

Qν(x) = FM(ν)([pj, x[) = |M(ν) ∩ [pj, x[| − (x− pj)/p = −x/p mod 1.

If x < y,
Qν(y) −Qν(x) = FM(ν)([pj, y[) − FM(ν)([pj, x[) = FM(ν)([x, y[).

Choose j small enough so that p(j + 1) ≤ x and let ν′j := νj−1. Then ν′j+1 = 0, and

Qτν(x) = Qν′(x) = FM(τν)([p(j + 1), x[)

= Fp+M(ν)([pj + p, x[) = FM(ν)([pj, x− p[) = Qν(x− p).

Finally, suppose pj ≤ x ≤ p(j + n − 1) and νj = νj+n = 0, j ∈ Z, n ∈ N. Then M(ν) ∩
[pj, p(j+n)−p] = {mj+1, ..,mj+n} and |Qν(x)| ≤ n+(x−pj)/p ≤ 2n. For ν ∈ Ω′, let nν(x)
be the smallest possible n. Then

∫
|Qν(x)|dP ′(ν) ≤ 2

∫

Ω′

nν(x)dP ′(ν) = 2
∞∑

n=1

n · nrnαn <∞,
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where we used that P (nν(x) = n) = nrnαn.

4. Definition of QX(x). We wish to define QX(x) such that Qν(x) = QM(ν)(x). Note that
by P = P ′ ◦M , for P -almost all X, there is a ν ∈ Ω′ such that X = M(ν). We need to check
however, that Qν(x) depends only on M(ν), i.e. M(ν) = M(ν′) implies Qν = Qν′ . This is
done by means of the ergodic theorem (P ′ is mixing with respect to shifts). Let

Q̄ :=
1

p

∫
(Qν(x) +Qν(x+ 1) + ..+Qν(x+ p− 1))dP ′(ν).

Then for P ′-almost all ν ∈ Ω′,

Q̄ = lim
k→∞

1

pk

k−1∑

r=0

(
Qτ−rν(x) + ..+Qτ−rν(x+ p− 1)

)

= lim
k→∞

1

pk

k−1∑

r=0

(
Qν(x+ pr) + ..+Qν(x+ pr + p− 1)

)

= lim
k→∞

1

pk

x+pk−1∑

y=x

Qν(y) = lim
k→∞

1

pk

x+pk−1∑

y=x

(Qν(x) + FM(ν)([x, y[))

It follows that for P ′-almost all ν ∈ Ω,

Qν(x) = Q̄− lim
k→∞

1

pk

x+pk−1∑

y=x

FM(ν)([x, y[).

The right-hand side depends on M(ν) only, hence Qν(x) = QM(ν)(x) for P ′-almost all ν with

QX(x) :=

{
Q̄− limk→∞

1
pk

∑x+pk−1
y=x FX([x, y[), if the limit exists

0, else.

If the limit QX(x) exists for some x ∈ Z, it exists for all y ∈ Z. Let M′ be the set of X ∈ Ω
such that the limit exists. Then

∀X ∈ M′ : QX(y) −QX(x) = FX([x, y[).

For s, x ∈ Z,

− 1

pk

x+pk−1∑

y=x

FX+s([x, y[) = − 1

pk

x+pk−1∑

y=x

FX+s([x, y[) = − 1

pk

x+pk−1∑

y=x

FX([x− s, y − s[)

= − 1

pk

x+pk−1−s∑

y′=x−s

FX([x− s, y′[)

hence if X ∈ M′, then also X + s ∈ M′ and QX+s(x) = QX(x − s). This relation is also
true if X /∈ M′, in which case it reads 0 = 0. Thus

∀X ∈ Ω, ∀x, s ∈ Z : QX+s(x) = QX(x− s).

Finally, QX inherits from Qν the condition on its range:

QX(x) = −x/p mod 1 for P -almost all X.
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Theorem 2.17 answers the question whether there is symmetry breaking in Laughlin’s state
only for thin cylinders. It leaves open what happens on large strips. In view of the numerical
results mentioned at the beginning of this section, we believe that, at least for small p, the
result applies to broad cylinders, but this still awaits a proof.

2.2 Solvable models

In this section, we define generalized Laughlin-type cylinder and torus wave functions. The
starting point for the cylinder function is the representation as a power of a Slater deter-
minant of Gaussians. The generalized function is obtained by allowing functions f different
from Gaussians. These functions are interesting mainly for two reasons.

The first reason is that for particular choices of f , the modified cylinder function defines a
solvable model: if we choose f as a function with sufficiently small, compact support, the
modified cylinder function is associated with a monomer-system on Z. The partition func-
tion of a monomer-dimer system on a linear chain satisfies a two-step recurrence relation (see
e.g. [HL72], p.196). Consequently the L2-norm squared of the modified function satisfies a
two-step recurrence relation, which is of course explicitly solvable. The correlation functions
can be computed explicitly as well. We look only at the one-particle density.

More generally, the modified cylinder functions retain a lot of the structure present for
Laughlin’s cylinder function, and most of the results of Section 2.1 have an analogue. In
particular, the modified wave functions are associated with polymer systems. An important
parameter in the description of Laughlin’s wave function is the ratio γ = l/R of magnetic
length and cylinder radius. We have seen that as γ → ∞, the system approaches a monomer
system. A similar phenomenon appears here: the definition of modified functions involves
not only the function f but also its translates f(· − pnγl), n ∈ Z. We choose f as a function
of compact support. Then we observe the following phenomenon:

1. When γ is very large, f(·) and its neighbors f(· − nγl) have non-overlapping supports,
and the associated polymer system is a monomer system.

2. When γ is such that only nearest neighbors f(·) and f(· ± γl) overlap, we obtain the
monomer-dimer system mentioned above.

3. As soon as γ is small enough so that next nearest neighbors f(·) and f(· − 2nγl) over-
lap, the associated polymer system has polymers of non-vanishing activity of arbitrary
length.

The second motivation is the comparison of cylinder and torus functions. Up to now, this
chapter has only been concerned with cylinder functions, and our goal was to show that they
display a kind of symmetry breaking. This kind of symmetry breaking is well-known for
torus functions [HR85b, Hal85]. A torus can be seen as a cylinder with periodic boundary
conditions. It is widely accepted that for small p (p ≤ 7), Laughlin’s function describes an
incompressible liquid. Thus boundary conditions should not affect the bulk behavior, and we
expect that the cylinder and torus wave functions are equivalent in the limit of long cylinder
/ tori. We check this equivalence for the solvable monomer-dimer model: when the cylinder
modified function is associated with a monomer-dimer system on a linear chain, a suitably
defined modified torus function is associated with a monomer-dimer system on a ring, with
possibly one additional long polymer covering the whole ring.
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2.2.1 Generalized Laughlin wave functions

We start by giving the definition of generalized cylinder and torus functions ΦC
N , ΦT

N . In
Proposition 2.20, we verify that the modified functions have periodicity properties that jus-
tify the denominations “cylinder” and “torus” functions. The definition of the modified
functions involves a function f : R → R. In Proposition 2.21, we check that we recover the
Laughlin wave functions of Definition 1.1 if we choose f as a suitable Gaussian.

Let f : R → C be a continuous even function (f(x) = f(−x)) such that
∫ ∞
−∞ |f |2p = 1. For

n ∈ N and N ∈ N, define

φn(z) =
1

2p
√

2πR
einy/Rf(x− pnγl), φ̃n(z) =

∞∑

k=−∞
φn+kN . (2.66)

Definition 2.19. Let f, φn, φ̃n be as above. The generalized Laughlin cylinder and torus
wave functions for N electrons at filling factor 1/p are the functions

ΦC
N (z1, .., zN ) =

1√
N !

(
det(φn−1(zj))1≤n,j≤N

)p

.

ΦT
N (z1, .., zN ) =

1√
N !

p∏

s=1

det(eiXsyj/(pNl2)φ̃n−1(zj −
Zs

N
))1≤n,j≤N

where Z1, .., Zp ∈ C satisfy
∑p

s=1Xs/(pNγl) ∈ Z,
∑p

s=1 Ys/(2πR) ∈ Z.

The conditions on Z1, .., Zp are similar to conditions imposed on the zeroes of theta functions,
see [FK01], Chapter 7. Let us remark that there is a small difference between the definitions
of ΦC

N and ΦT
N : the cylinder function is, up to a prefactor, the p-th power of a determinant,

whereas the torus function is in general only a product of p determinants.

Recall the expression of the magnetic translation in the x-direction:

(t(aex)ψ)(z) = eiay/l2ψ(z − a).

If Ψ is an N -particle wave function, we denote by tj(a), j ∈ {1, .., N} the magnetic translation
in the j-th variable. For example, (t1(aey)Ψ)(z1, .., zN ) = Ψ(z1 − ia, z2, .., zN ).

Proposition 2.20. The functions ΦC
N and ΦT

N have the following periodicity:

tj(2πRey)ΦT
N = ΦT

N , tj(2πRey)ΦC
N = ΦC

N ,

tj(pNγlex)ΦT
N = ΦT

N

for all j ∈ {1, .., N}.

Proposition 2.21. Let

f(x) =
1

2p
√
l
√
π
e
− 1

2pl2
x2

.

Then the modified cylinder functions equal Laughlin’s function ΦC
N = ΨC

N , and the functions
ΦT

N are torus Laughlin wave functions. Conversely, any torus Laughlin wave function ΨT
N is

of the form ΨT
N = λΦT

N with λ ∈ C and ΦT
N as in Definition 2.19.



78 CHAPTER 2. THERMODYNAMIC LIMITS

Proof of Proposition 2.20. The periodicity in the direction around the cylinder follows from
φn(z + 2πRi) = φn(z) and

ei
Pp

s=1 Xs2πR/(pNl2) = ei2π
Pp

s=1 Xs/(pNγl) = 1.

For the quasiperiodicity of the torus wave function, we compute

(
t1(pNγl)Φ

T
N

)
(z1, .., zN ) = eipNy1/RΦT

N (z1 − pNγl, .., zN ).

Using

eiNy1/Rφ̃0(z1 − pNγl − Zs

N
) = eiYs/Rφ̃0(z1 −

Zs

N
)

and
∑p

s=1 Ys ∈ 2πRZ, one can check t1(pNγl)Φ
T
N = ΦT

N . The periodicity in the variables
z2, .., zN is shown in an analogous way.

Proof of Proposition 2.21: cylinder function. The cylinder Laughlin wave function is

ΦC
N (z1, .., zN ) =

1√
N !

∏

N≥j>k≥1

(ezj/R − ezk/R)pe−
PN

j=1 x2
j/2l2 e

− 1
2 p2γ2 PN−1

j=0 j2

(2πRl
√
π)N/2

=
1√
N !

1

(2πRl
√
π)N/2

(
det(e(n−1)zj/R)1≤n,j≤N e

− 1
2pl2

PN
j=1 x2

j e−
1
2pγ2 PN

n=1(n−1)2
)p

=
1√
N !

1

(2πRl
√
π)N/2

(
det(ei(n−1)yj/Re

− 1
2pl2

(xj−p(n−1)γl)2
)1≤j,n≤N

)p

This is of the form given in Definition 2.19 provided we choose f(x) as a Gaussian with the
correct multiplication constant.

Torus functions. We start by showing that any ΦT
N function is a torus Laughlin wave function.

Note first that
ΦT

N (z1, .., zN ) = f(z1, .., zN )e−
1

2l2

PN
j=1 x2

j

for some holomorphic function f . This is checked using

eiXsy/Rφ̃n(z − Zs

N
) ∝

(
eXsz/(pNl2)

∞∑

k=−∞
e(n+kN)z/R−pγ2(n+kN)2/2

)
e−x2/(2pl2)e−X2

s /(2pl2N2).

Together with the quasiperiodicity of Proposition 2.20, this shows that ΦT
N is in the torus

lowest Landau level. On the other hand, ΦT
N has a zero of order at least p as two particles

get close (zj−zk) → 0. Thus by the results of Section 1.4 it is a torus Laughlin wave function.

The functions φ̃n can be considered as the basis functions of the lowest Landau level on a
torus [0, pNγl]× [0, 2πR] with a modified magnetic length l′ =

√
pl. The corresponding filled

Landau level wave functions are

G(z1, .., zN ) = F (

N∑

j=1

zj)
∏

1≤j<k≤N

θ1(
i(zj − zk)

2R
| iL

2πR
)e

− 1
2pl2

PN
j=1 x2

j

where L = pNγl and F is a holomorphic function satisfying

F (Z + i2πR) = (−1)N−1F (Z), F (Z + L) = (−1)N−1eZ/ReL/(2R)F (Z).
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But the space of filled Landau level wave functions is one-dimensional, hence there exists a
c ∈ R such that √

N !φ̃0 ∧ .. ∧ φ̃N−1 = cG. (2.67)

This gives

ΦT
N (z1, .., zN ) =

1√
N !

cpei(
Pp

s=1 Xs)(
PN

j=1 yj)/(pNl2)
p∏

s=1

G(z1 −
Zs

N
, .., zN − Zs

N
)

=
1√
N !

cpF cm(

N∑

j=1

zj)
∏

1≤j<k≤N

θ1(
i(zj − zk)

2R
| iL

2πR
)pe−

1
2l2

PN
j=1 x2

j (2.68)

F cm(Z) = F (Z − Z1)F (Z − Z2)..F (Z − Zp). (2.69)

Conversely, any torus wave function is of the form (2.68) for some holomorphic function F cm

satisfying the conditions (1.7). We know from the theory of theta functions ([FK01], Chapter
7) that any such function can be written, up to a multiplicative constant, as a product of
the form (2.69), where Z1, .., Zp are related to the zeroes of F cm and fulfill

∑
Xs ∈ LZ,∑

Ys ∈ 2πRZ, and F is an odd or even theta function depending on the parity of N . As
a consequence, every torus Laughlin wave function can be written in the form of Definition
2.19.

Remark. A more direct way of getting (2.67) uses a generalized Vandermonde identity in-
volving theta functions, see [For06], Proposition 3.1.

Now that we have defined the generalized functions, we can turn to their thermodynamic
limits. We start with the cylinder functions.

2.2.2 Cylinder wave functions

In this subsection we give some properties of the modified Laughlin function and investigate
the solvable monomer-dimer model. In Lemma 2.22, we prove that the modified cylinder
function is associated with a polymer system; this holds true for general f . In Proposition
2.23, we choose f as a function of compact support and show how the size of the support
compared to the “unit cell” [−pγl/2, pγl/2] affects the corresponding polymer system. When
the support of f is contained in [−pγl, pγl], the associated polymer system is a monomer-
dimer system. This system is solvable. In Proposition 2.24, we take p = 3 and determine the
normalization constant and the one-particle density for the solvable model (finite volumes),
from which we deduce the corresponding expressions in the infinite volume limit (Corollary
2.25).

Let N ∈ N and π ∈ S{0,..,N−1}. We define the set of renewal points of the permutation π as:

R(π) := {k ∈ {0, .., N − 2} | π({0, .., k}) ⊂ {0, .., k}}.

For n ∈ N, j ∈ Z and p odd, define

u{0,..,n−1} :=
√
n!A

( ∑

σ2,..,σp∈Sn:

R(σ2)∩..∩R(σp)=∅

sgn(σ2..σp)

φ0φσ2(1)..φσp(1) ⊗ ..⊗ φN−1φσ2(N−1)..φσp(N−1)

)
(2.70)

u{j,..,j+n−1} := t(jpγlex)⊗nu{0,..,n−1}. (2.71)
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For even p, the antisymmetrization A is replaced with the symmetrization S. In the following
||·|| refers to the L2((R×[0, 2πR])N ) for suitable N . The one-particle density of ΦC

N is denoted
ρN (z).

Lemma 2.22. Let p ∈ N odd, N ∈ N, then

ΦC
N =

∑

X1,..,XD

uX1
∧ .. ∧ uXD

ρN (z) =
∑

X

ρP
N (X)vX(z)

CN := ||ΦC
N ||2 =

∑

n1+..+nD=N

αn1
..αnD

where the first sum ranges over ordered partitions X1 < .. < XD of {0, .., N − 1} and

αN(X) = ||uX ||2, vX(z) :=
N(X)

||uX ||2
∫

|uX |2dx2..dyN(X).

Similar formulas hold for even p, provided we replace the wedge product with the symmetric
product and, in the definition of uX , the antisymmetrization A with the symmetrization
operator S.

Proof. To fix ideas, we take p = 3. ΨC
N can be expanded as

ΨN =
√
N ! A

(∑

σ,τ

sgn(στ )φ0φτ(0)φσ(0) ⊗ ..⊗ φN−1φτ(N−1)φσ(N−1)

)
, (2.72)

where the sum ranges over permutations of {0, 1, .., N−1}. The sum can be written as a sum
over (possibly empty) sets K ⊂ {0, .., N − 2} and permutations σ, τ with R(σ) ∩ R(τ ) = K.
The empty set K = ∅ gives (N !)−1/2u{0,..,N−1}. If K = {k1, .., kD} with k1 < .. < kD,

the summation over corresponding σ, τ gives rise to
∏

(N(Xj))
−1/2uX1

⊗ .. ⊗ uXD
with

Xj = {kj , .., kj+1 − 1}, k0 = 0, kD+1 = N . Using A(Af ⊗ Ag) = A(f ⊗ g), we obtain

ΨC
N =

∑

X1,..,XD

( N !

N(X1)!...N(XD)!

)1/2
A(uX1

⊗ ..⊗ uXD
) =

∑

X1,..,XD

uX1
∧ .. ∧ uXD

.

Let Xj = {kj , .., kj+1 − 1}, 0 = k0 < k1 < .. < kD+1 = N . Then

uX1
∧ .. ∧ uXD

= A(
∑′

m1<..<mN

ei(m1y1+..+mN yN )/Rfm(x1, ..., xN ))

for suitable functions fm, and the sum goes only over N -admissible partitions with renewal
points R(m) = {k1, .., kD+1}. This can be used to show

{X1, .., XD} 6= {Y1, .., YD′} ⇒
∫
uX1

∧ .. ∧ uXD
uY1

∧ .. ∧ uYD′dy2..dyN = 0 (2.73)

from which the representations of the norm CN and the one-particle density can be deduced.

The previous lemma is of particular interest when the Gaussian is replaced with a function
f of compact support suppf ⊂ [−s, s]. The parameter s controls the size of the support and
the overlap between the function and its translates f(· − kpγl), k ∈ Z. It takes the role of γ
as a parameter controlling the activities.
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Proposition 2.23. For large γ, the associated polymer system is a monomer system. As γ
is decreased, it becomes first a monomer-dimer system and then a system with polymers of
arbitrary length:

1. If pγ ≥ 2s, φkφn = 0 unless k = l, and uX vanishes unless N(X) = 1.

2. If pγ ≥ s, φkφn = 0 when |k − l| ≥ 2, and uX vanishes unless N(X) ∈ {1, 2}.
3. If φkφk+2 6= 0, uX 6= 0 for all rods X.

Proof. 1. Suppose pγ ≥ 2s so that suppf ⊂ [−pγ/2, pγ/2] and φkφl = 0 unless k = l. To fix
ideas, consider the case p = 3. The only permutations contributing to the sum in (2.72) are
σ = τ = id, so that

ΦC
N = φ3

0 ∧ .. ∧ φ3
N−1 = u{0} ∧ .. ∧ u{N−1}, u{n} = φ3

n.

2. Suppose pγ ≥ s. Again, chose p = 3. If σ, τ contribute to the sum in (2.72), they must
fulfill

∀k ∈ {0, .., N − 1} : |σ(k) − k| ≤ 1, |τ (k) − k| ≤ 1, |σ(k) − τ (k)| ≤ 1. (2.74)

This condition can also be expressed in terms of the permutation matrices Pid = 1, Pσ, Pτ :
the matrices Pσ, Pτ and PσP

−1
τ must be band-diagonal (only matrix elements pj,j and pj,j±1

are allowed to be non-zero). The first inequality in (2.74) implies that the cycle decompo-
sition of σ consists of nearest neighbor transpositions (r r + 1). If (r r + 1) is in the cycle
decomposition of σ, the condition ∀k : |σ(k)− τ (k)| ≤ 1 prevents (r− 1 r) and (r+ 1 r+ 2)
from appearing in the cycle decomposition of τ . Thus there is a set of disjoint nearest neigh-
bor transpositions (i1 i1 + 1), .., (ik ik + 1) consisting of the transpositions appearing in the
decomposition of σ or τ . The supports of the transpositions {i1, i1 +1}, .., {ik, ik +1} can be
completed by singletons {n} to give a partition of {0, .., N − 1} into monomers and dimers.
Following the arguments in the proof of Lemma 2.22, one sees that ΦC

N can be written as a
sum over monomer-dimer partitions.

3. Suppose φkφk+2 6= 0. Let σ1σ2, .., σp ∈ S{0,..,n−1} and (m0, ..,mN−1) := (σ1(0) + σ2(0) +
.. + σp(0), .., σ1(N − 1) + .. + σp(N − 1)). The N -tuple (m1, ..,mN ) can be considered as a
set of angular momenta, since

(φσ1(0)..φσp(0)) ⊗ ..⊗ (φσ1(N−1)..φσp(N−1)) = ei
PN

j=1 mjyj/RFσ,τ (x1, .., xN )

for some function F . Suppose that (m0,m1, ..,mN−1) = (1, p, 2p, .., (N − 2)p, (N − 1)p− 1).
We wish to determine the corresponding permutations σ1, .., σp. To do this, we start by
looking at the partition of m0 = 1 obtained by arranging σ1(0), .., σp(0) in descending order,
then at the partition of m1, etc. The only way of writing 1 as a sum of p non-negative integers
arranged in decreasing order is 1 = 1 + 0 + ..+ 0, hence the partition of m0 may be written
as (1 0p−1). Thus the sum m1 = p = σ1(1) + ..+ σp(1) has p non-negative numbers, among
which at least one is different from 1 and at most one is equal to 0. This leaves (2 1p−2 0)
as the only possible partition. Hence the partition associated to 2p consists of p integers
≥ 1 among which at least one is different from 2 and at most one is equal to 1. The only
possibility is (3 2p−1 1). Proceeding in this way, we get the sequence of partitions

(1 0p−1), (2 1p−2 0), (3 2p−2 1), ..., (N − 1 (N − 2)p−2 N − 3), ((N − 1)p−1 N − 2).

The corresponding product of functions

φ1φ
p−1
0 ⊗ φ2φ

p−2
1 ⊗ ..⊗ φN−1φ

p−2
N−2φN−3 ⊗ φp−1

N−1φN−2
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does not vanish since we assume that nearest neighbor functions overlap. Now we have to
figure out the corresponding permutations. Up to a numbering of the permutations, the only
way to get the first partition is by choosing σ1(0) = 1, σ2(0) = .. = σp(0) = 0. Therefore
σ2(1), ..σp(1) must be different from 0. Thus in order to obtain the partition (2, 1p−2, 0) we
must have, up to a renumbering of σ2, .., σp, σ1(1) = 0, σ2(1) = 2, σ3(1) = .. = σp(1) = 1. It
follows that σ2(2) = 3 and one of the permutations σ0, σ3, ., σp takes the value 1. Continuing
in this way and restoring the degree of freedom in the numbering of the permutations, we
see that the only cycles in the decompositions of σ1, .., σp are transpositions (r r + 1), and
each such transposition occurs in the decomposition of exactly one permutation. There are p
choices for the permutation that takes (0 1), p− 1 possibilities for the one taking (1 3), etc.,
in total p(p−1)N−2 choices. For each of these, the product of signs is sgn(σ1..σp) = (−1)N−1.
In total we get

u{0,..,n−1}

= p(p− 1)N−2(−1)N−1φ1φ
p−1
0 ⊗ φ2φ

p−2
1 ⊗ ..⊗ φN−1φ

p−2
N−2φN−3 ⊗ φp−1

N−1φN−2 + rn (2.75)

where the remainder rn has no contribution of the momentum type (1, p, .., p(N − 2), pN −
p− 1) and in particular is orthogonal to the first part of the sum. It follows that

u{0,..,n−1} 6= 0

and the associated polymer system has polymers of arbitrary length and non-vanishing ac-
tivity Φ({0, .., n− 1}) = ||u({0, .., n− 1})||2.

Remark: Formula (2.75) should be compared to the exact expression (2.5) of bN (1, p, .., pN−
2p, pN − p− 1).

When the associated polymer system is a monomer-dimer system, the normalization con-
stants and correlation functions can be determined explicitly. The following proposition
gives the one-particle density at filling factor 1/p = 1/3.

Proposition 2.24. Let p = 3 and suppose that φkφm = 0 if |k−m| ≥ 2. Let α := ||φ2
0φ1||2 =

||φ0φ
2
1||2 be a measure of the overlap between nearest neighbor functions 4. The one-particle

density of ΦC
N is

ρN (x) =

N−1∑

j=0

CjCN−j−1

CN
|φ3

j |2(x) +

N−2∑

j=0

CjCN−j−2

CN
9α

(
|φ2

jφj+1|2(x) + |φjφ
2
j+1|2(x)

)

where

CN =
λN+1

+ − λN+1
−

λ+ − λ−
, λ± =

1

2
±

√
1

4
+ 9α2.

Proof. We start by computing the monomer and dimer functions u{n}, u{n,n+1}. This can
be done directly from their definition (2.70), but it is more instructive to determine them
from Lemma 2.22. Remark that ΦC

1 = u{0} by that lemma, and ΦC
1 = φ3

0 by definition, thus
u{0} = φ3

0 and we get from (2.71) u{n} = φ3
n. Next, looking at the 2-particle wave function

4The equality ||φ2
0
φ1||2 = ||φ0φ2

1
||2 is checked using that f is even.
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ΦC
2 , we get

ΦC
2 =

1√
2
(φ0 ⊗ φ1 − φ1 ⊗ φ0)

3

=
1√
2
(φ3

0 ⊗ φ3
1 − 3φ2

0φ1 ⊗ φ0φ
2
1 + 3φ0φ

2
1 ⊗ φ2

0φ1 − φ3
1 ⊗ φ3

0)

= φ3
0 ∧ φ3

1 − 3φ2
0φ1 ∧ φ0φ

2
1

!
= u{0} ∧ u{1} + u{0,1}

which gives
u{0,1} = −3φ2

0φ1 ∧ φ0φ
2
1, u{n,n+1} = −3φ2

nφn+1 ∧ φnφ
2
n+1.

We know from the previous propositions that CN is the polymer partition function of a
monomer-dimer system. The recurrence relation (2.36) becomes

C0 = 1, C1 = 1, CN+2 = CN+1 + 9α2CN

where we used that α1 = ||φ3
0||2 = 1, ||u{0,1}||2 = 9α2. The normalization constant is then

expressed in terms of the roots λ± of the characteristic equation λ2 = λ+ 9α2 as

CN =
λN+1

+ − λN+1
−

λ+ − λ−
.

By Lemma 2.22, the one-particle density is a sum of monomer and dimer contributions

ρN (x) =
N−1∑

j=0

CjCN−j−1

CN
v{j}(x) +

N−1∑

j=0

Cjα2CN−j−2

CN
v{j,j+1}(x),

v{j}(x) = |φ3
j |2(x),

v{j,j+1}(x) =
2

||v{j,j+1}||2
∫

R×[0,2πR]

|v{j,j+1}|2(x, x2 + iy2)dx2dy2.

=
9α

α2

(
|φ2

jφj+1|2(x) + |φjφ
2
j+1|2(x)

)
.

The previous proposition leads immediately to the existence of the thermodynamic limit of
the one-particle density, away from the boundaries of the finite cylinder [0, pNγl]× [0, 2πR].

Corollary 2.25. Under the assumptions of the previous proposition, the one-particle density
has a limit away form the boundaries of the support of ΦC

N : for x ∈ [0, pNγl], |ρN (x)−ρ(x)| ≤
f(|x| + |pNγl − x|) with f(m) →m→∞ 0 and

ρ(x) =
1

λ+ − λ−

∑

j∈Z

(
|φ3

0|2 +
1

λ+

(
|φ2

0φ1|2 + |φ0φ
2
1|2

))
(x− 3jγl).

In particular, we see that the one-particle density is periodic with period 3γl. We have
observed in Proposition 2.23 that the system becomes a pure monomer system as γ gets
large. Our results allow us to check that, loosely speaking, the transition is smooth: indeed,
recall the roots λ± are defined are simple functions of the overlap parameter α := ||φ2

0φ1||2
(see Proposition 2.24). The transition from the monomer-dimer to the monomer system
corresponds to the transition from α > 0 to α = 0, and we see that λ± is a smooth function
of the overlap parameter α.
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2.2.3 Torus wave functions

The Laughlin-type torus wave functions proposed in [HR85b] form a p-dimensional space;
they are eigenfunctions of suitable center-of-mass translations. This invariance entails the
periodicity of the one-particle density, which is thus much simpler as in the cylinder case.
In Lemma 2.26, we check that this feature is reproduced by the generalized torus functions.
This holds for general functions f .

Next, we take f as a function of compact support such that the associated cylinder polymer
model is a monomer-dimer system and show that for a suitable choice of Z1, .., Zp (the de-
grees of freedom in the definition of torus functions), the torus function is associated with
a monomer-dimer system on a ring, with one additional long polymer covering the whole
ring (Proposition 2.27). As a corollary, we obtain that the one-particle density of the corre-
sponding torus function equals the one-particle density of the cylinder function in the limit
N → ∞ (Corollary 2.28).

Let us start by looking at the translational invariance of the torus functions. We have
seen that the torus functions are quasiperiodic in each complex variable z1, .., zN of periods
L = pNγl and i2πR. The space of such functions is invariant with respect to center-of-mass
translations by multiples of γlex and 2πR/(pN)ey (the lattice γlZ × (2πR/pN)Z already
appeared on p.8; see also p.94). The modified torus functions are invariant with respect to
overall shifts by p times the lattice vectors γlex and (2πR/pN)ey:

Lemma 2.26. For a ∈ R2, let T (a) := t(a)⊗N be the magnetic translation of all the parti-
cles. Then the torus wave functions are invariant with respect to overall shifts by pγlex and
2πR/Ney:

T (pγlex)ΦT
N = (−1)p(N−1)ΦT

N , T (
2πR

N
ey)ΦT

N = (−1)p(N−1)ΦT
N .

The periodicity is enhanced for particular choices of Z1, .., Zp. For example, if Zj = ij2πR/N ,
j = 1, .., p:

T (
2πR

pN
ey)ΦT

N = (−1)N−1ΦT
N .

Proof. Using eiy/Rφ̃k(z − pγ) = φ̃k+1(z) and φ̃0 = φ̃N , we see that

φ̃1 ∧ .. ∧ φ̃N = (−1)N−1φ̃0 ∧ .. ∧ φ̃N−1

and

(t(pγl))⊗NΦT
N (z1, .., zN ) =

1√
N !

eip
P

j yj/R
p∏

s=1

(
det(eiXsyj/(pNl2)φ̃k−1(zj −

Xs

N
− pγ))j,k

)

=
1√
N !

p∏

s=1

(
det(eiXsyj/(pNl2)φ̃k(zj −

Xs

N
))j,k)

=
1√
N !

(−1)p(N−1)ΦT
N (z1, .., zN ).
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Similarly, φ̃n(z − i2πR/N) = e−i2πn/N φ̃n, hence

T (i2πR/N)ΦT
N =

1√
N !

p∏

s=1

(
det(eiXs(yj−i2πR/N)/(pNl2)e−i2π(k−1)/N φ̃k−1(zj −

Xs

N
))j,k)

= e−i(
PN

s=1 Xs)2πR/(pNl2)e−i2πp
PN

k=1(k−1)/NΦT
N

= (−1)p(N−1)ΦT
N .

Suppose in addition that Zj = ij2πR/(pN), then

T (i2πR/pN)ΦT
N =

1√
N !

p∏

s=1

(
det(φ̃k−1(zj − ij

2πR

pN
− i

2πR

pN
))1≤j,k≤N )

=
1√
N !

(−1)N−1

p∏

s=1

(
det(φ̃k−1(zj − ij

2πR

pN
))1≤j,k≤N)

= (−1)N−1ΦT
N .

The previous lemma implies that the one-particle density of the torus wave functions is
doubly periodic with the period pγl in the x-direction and 2πR/N in the y-direction. The
periodicity of the one-particle density of the cylinder function would follow if we knew that
both functions are equivalent in the thermodynamic limit. We prove the equivalence only for
the special case of nearest neighbor overlapping.

Note that there is only one Laughlin function, but a p-dimensional space of torus functions.
One must thus be careful as to which torus function one compares the cylinder function.
The most natural candidates are the torus functions ΦT

N,1 and ΦT
N,2 obtained by choosing

Z1 = .. = Zp = 0 for ΦT
N,1 and Zj = ij2πR/(pN) for ΦT

N,2. The first function has in common

with ΦC
N the representation as the power of a determinant, while ΦT

N,2 and ΦC
N are both

eigenvectors of T (i2πR/(pN)) for the eigenvalue (−1)N−1.

For X = {j, .., j + n− 1}, N ∈ N, let uX be defined as in the previous section and

ûX :=
∑

k∈Z

t(kpNγlex)⊗N(X)uX

its periodification. The torus wave functions for Z1 = .. = Zs = 0 have a representation of
the form

ΦT
N =

∑

X1,..,XD

±ûX1
∧ .. ∧ ûXD

+ ũN

where X1, .., XD are partitions of the ring Z/NZ. However, in general ũN is not orthogonal
anymore to

∑
X1,..,XD

. For this reason we restrict to nearest neighbor overlapping. For
simplicity, we take p = 3.

Proposition 2.27. Let N ≥ 3. Suppose φkφl = 0 if |k − l| ≥ 2, take p = 3 and let ûX be
defined as above. Let û{0,N−1} := û{−1,0} and

ũN = 3(−1)N−1φ̃2
0φ̃1 ∧ .. ∧ φ̃2

N−1φ̃N + 3φ̃0φ̃
2
1 ∧ .. ∧ φ̃N−1φ̃

2
N .
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Then the torus function ΦT
N for Z1 = .. = Zp = 0 is represented as a polymer system on a

ring, made up of monomers, dimers, and one additional long chain:

ΦT
N =

∑′

X1,...,XD

ǫ{Xj}ûX1
∧ .. ∧ ûXD

+ ûN (2.76)

The sum ranges over two types of partitions:

1. partitions X1 < .. < XD of {0, .., N −1} into monomers {j} and dimers {j, j+1}. For
these partitions, ǫ{Xj} = +1;

2. X1 = {0, N − 1}, X2 < .. < XD partition of {1, .., N − 2} into monomers and dimers.
For this type of partition, ǫ{Xj} = (−1)N−1.

The different contributions to (2.76) are orthogonal and the normalization constants in
L2(([0, 3Nγl] × [0, 2πR])N ) as well as the one-particle density have representations similar
to Lemma 2.22, for the correct associated polymer system.

Sketch of proof. We start with

ΦT
N =

1√
N !

A(
∑

σ,τ∈S{0,..,N−1}

sgn(στ )φ̃0φ̃σ(0)φ̃τ(0) ⊗ ..⊗ φ̃N−1φ̃σ(N−1)φ̃τ(N−1)).

To derive (2.76), we use a reasoning similar to the proof of 2. in Proposition 2.23. If σ, τ
give a non-vanishing contribution to ΦT

N , (k, σ(k)) must be nearest neighbors on the ring
Z/NZ, and similarly for (k, τ(k)), (τ (k), σ(k)), for all k ∈ Z. This leaves two possibilities.
First, σ and τ can be products of nearest neighbor transpositions (including (0 N − 1)) with
disjoint support. Second, we can have σ, τ ∈ {1, c} or σ, τ ∈ {1, c−1} where c is the cycle
c = (0 1 2 ..N − 1). The transpositions give the sum over

∑
X1,..,XD

in (2.76). The sign

ǫ{Xj} is (−1)N−1 if the transposition (0 N−1) occurs: in this case we have to permute in the

wedge product. The cycles give ũN (note that φ̃N = φ̃0). For N = 2, the cycle c is a nearest
neighbor transposition; this is why we assume N = 3. In order to get representations of the
normalization constant and the one-particle density, one has to check that an orthogonality
relation similar to (2.73) holds. Again, this is done by looking at the y-momenta. The only
difference is that y-momenta are only defined modulo 3N .

Remark. Similar representations can be derived for torus functions withX1 = .. = Xp = 0 but
Y1, ., Yp possibly non-zero. The shift in y by Ys then leads to phase factors in front of the poly-
mer functions ûX . If the zeroes are chosen in a way that T (i2πR/(pN)ey)Φ

T
N = (−1)N−1ΦT

N ,
we obtain a formula with ũN = 0, there is no ”ring contribution”.

The previous proposition allows to check the equivalence of modified cylinder and torus
functions in the nearest neighbor overlapping case.

Corollary 2.28. Under the assumptions of the previous proposition, and with the overlap
parameter α = ||φ2

0φ1||2L2(R×[0,2πR]), and λ± as in Proposition 2.24, the torus normalization
constant satisfies

CT
N ∼

N→∞
λN

+

and the one-particle density of the torus function has as thermodynamic limit the function ρ
given in Corollary 2.25.
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Sketch of proof. Let Ω̂ = [0, pNγl]×[0, 2πR] and Ω = R×[0, 2πR]. Note that ||uX ||L2(ΩN(X)) =

||ûX ||L2(Ω̂N(X)) and ||ũn||2L2(Ω̂n)
= 18αn. For N ≥ 3, write ||ΦT

N ||2
L2(Ω̂N )

= DN + 18αn. DN is

a sum over monomers and dimers and can be written in terms of the cylinder normalization
constant as

DN = CN−1 + 2α2CN−2, α2 = ||u{0,1}||2 = 9α2

(see also [HL72], Section III, equation (3.8)). The first summand corresponds to partitions
where 0 is covered by a monomer, while 2CN−2 comes from partitions where 0 is in the dimer
{0, 1} or {N − 1, 0}. Thus we obtain, using λ+λ− = −9α2 and λ+ + λ− = 1:

CT
N ∼

N→∞
1

λ+ − λ−
(1 + 2 · 9α2 1

λ+
)λN

+ = λN
+

We get for the finite volume probabilities of finding a monomer or a dimer

ρP
N,T ({0}) =

CN−1

CT
N

∼ λN
+

λ+ − λ−

1

λN
+

=
1

λ+ − λ−

ρP
N,T ({0, 1}) = 9α2CN−2

CT
N

∼ λN−1
+

λ+ − λ−

1

λN
+

=
9α2

λ+

1

λ+ − λ−
.

The limits are the same as for the polymer system with non-periodic boundary conditions; the
long chain ũN does not contribute in the limit N → ∞. We conclude with a representation
of the type

ρN,T (z) =
∑

X

ρP
N,T (X)v̂X(z).

Thus for the solvable monomer-dimer case, the modified cylinder and suitable torus functions
give the same one-particle density.

2.3 Jellium tubes

In the beginning of the thesis, we have presented the plasma analogy: the modulus squared
of Laughlin’s wave function is essentially the Boltzmann weight of a classical one-component
plasma, with a logarithmic Coulomb interaction. The results on the normalization constants
and correlation functions of Laughlin’s wave function lead to results on the free energy and
correlation functions of the plasma system.

The plasma system related to Laughlin’s cylinder wave function lives on a cylinder, or
semiperiodic strip, and following [AGL01] we will refer to it as a jellium tube. When the
cylinder is very thin, the system is close to a one-dimensional jellium system, while for large
cylinder radius, the jellium tube approaches a fully two-dimensional one-component plasma.

For one-dimensional jellium systems, the symmetry breaking has been proved a while ago
[Kun74, BL75]. When N electrons are placed on a line of length L and interact between
themselves and with a neutralizing background through a one-dimensional Coulomb interac-
tion, they tend to minimize their Coulomb interaction by taking positions on a lattice. The
spacing between two consecutive positions is L/N . If we view the jellium tube as a quasi
one-dimensional system rather than a two-dimensional system, we may expect the same peri-
odicity. The tubes we consider have length pNl2/R. In the jellium context, the period pl2/R
is thus quite natural.
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Forrester [For91] has examined the asymptotics of jellium strip free energies as the strip width
gets large; he has also looked at torus Coulomb free energy finite size corrections, motivated
by the question of universal finite size corrections and a relation to Sine-Gordon fields (see
[For06] and the references therein).

In the first subsection, we look at the jellium tube in both limits: large and thin strips. We
give an expression for the jellium tube free energy. We compare the free energy and the
correlation functions of thin cylinders to the corresponding quantities for one-dimensional
systems and find that they are in good agreement with existing results. We also compare the
free energy of broad jellium strips to the bulk free energy; this leads to a conjecture consis-
tent with results by [For91] and with the bounds on the normalization constant of Laughlin’s
wave function derived in Lemma 2.10.

The plasma analogy also sheds some light on the recurrence relation satisfied by the nor-
malization constants. In the second subsection, we recall Lenard’s combinatorial treatment
of the one-dimensional two-component plasma. Lenard derived a renewal equality for the
isothermal-isobaric partition functions and interpreted it in terms of minimal electrically
neutral components. Then we derive a recurrence inequality for jellium tubes with the help
of Newton’s electrostatic theorem; the inequality looks similar to a renewal equation. Again,
there is a relation to minimal neutral blocks.

2.3.1 Interpolation between one- and two-dimensional jellium

The plasma analogy relates Laughlin’s cylinder wave function to a one-component plasma on
a semiperiodic strip of width 2πR, with a “Coulomb” interaction VC(z) = − log | 2R

R0
sinh z

2R |,
where R0 > 0 is a reference length scale. When the width of the strip goes to infinity, we
recover the full two-dimensional logarithmic interaction: if z 6= 0 and R0 > 0 are kept fixed,

lim
R→∞

VC(z) = − log |z/R0| = VD(z).

In the opposite limit of thin strips, for all z ∈ C with x = ℜz 6= 0,

VC(z) = − log
R

R0
− |x|

2R
+ o(1) as R→ 0.

The right-hand side represents a one-dimensional Coulomb interaction. Thus the semiperi-
odic strip interpolates in a natural way between the two-dimensional and the one-dimensional
systems, and it is instructive to compare our results to existing results on these systems. We
start by giving an expression for the cylinder free energy.

Let C := [−L/2, L/2] × [0, 2πR]. The free energy of the jellium tube is

βF := − log
( 1

N !h2N

∫

(R2)N×CN

e−β( 1
2m

PN
j=1 |pj |2+UC)

)
= − log

( 1

N !λ2N
β

∫

CN

e−βUC

)

(2.77)

where λβ :=
√
βh2/(2πm) is the thermal wavelength and h Planck’s constant. We will be

interested in the free energy per particle in the thermodynamic limit N → ∞ with a fixed
density n = N/|Ω|. For the cylinder and torus systems, we keep the radius R fixed when
taking the limit. The corresponding free energies (per particle) are

βf = βf0 − lim
N→∞

1

N
log

( 1

(2πRL)N

∫

CN

e−βUC

)
, βf0 = log nλ2

β − 1. (2.78)



2.3. JELLIUM TUBES 89

f0 is the free energy of a system of noninteracting particles: UC = 0 would give f = f0. In
view of the plasma analogy (1.36), if Γ = βq2 = 2p and n = (p · 2πl2)−1 for p ∈ N, the free
energy can be written as

βf = βf0 +
λ2

12
− lim

N→∞
1

N
log

N !lN
√
π

N

LN

∫

(I×[0,2πR])N

|ΨC
N |2

where I := [−L
2 + p(N−1)γl

2 , L
2 + p(N−1)γl

2 ]. In the following we assume that the result is
unchanged if integrations are carried out on the infinite cylinder instead of I × [0, 2πR]
(remember that ΨC

N decays exponentially outside (I × [0, 2πR])N . Under this assumption,
using Stirling’s formula, L = Npγl and

λ2 =
Γ

4πnR2
=

2p

4π(p · 2πl2)−1R2
= p2γ2, (2.79)

we get

βf = βf0 +
λ2

12
+ log

eλ√
π

+ log rp(γ) (2.80)

where rp(γ) comes from Lemma 2.10.

Comparison with a one-dimensional Coulomb gas. Let V (x) = −|x|/(2R) and for
L > 0, N ∈ N, n0 := N/L

U(x1, .., xN ) := q2
∑

1≤j<k≤N

V (xj − xk) − n0q
2

N∑

j=1

∫ L

0

V (xj − x)dx+

1

2
n2

0q
2

∫ L

0

∫ L

0

V (x− x′)dxdx′

be the energy of a one-dimensional Coulomb gas of N particles moving in a neutralizing

background. A useful quantity is Γ1 := βq2

2πRn0
, the plasma parameter or coupling constant ; it

is the ratio of a typical potential and kinetic energy. Large coupling constants correspond to
kinetic energies that are small compared to typical potential energies. In the thermodynamic
limit N,L → ∞ at fixed density n, the free energy per particle including kinetic energy can
be expressed as

βf (1) = βf
(1)
0 +

Γ1

12
− log

z0(
√

Γ1)

e
, βf

(1)
0 = log n0λβ − 1, (2.81)

where z0(λ) is an analytical function such that limλ→∞ z0(λ)λ/
√
π = 1 see [Kun74], and the

one-particle density ρ(x) is

ρ(x) = n0

∞∑

k=−∞
e−Γ1(n0x−k)2FΓ1

(n0x− k), lim
Γ1→∞

FΓ1
(x) = χ[−1,1](x), (2.82)

see [Kun74, BL75]. If we look at a one-dimensional system with density n0 = 2πRn, the
one-dimensional plasma parameter is nothing else but the quantity λ2 of (2.79):

Γ1 =
βq2

2R · 2πRn = λ2.
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Comparing (2.80) and (2.81), we see that the one- and two-dimensional free energies f − f0
and f (1) − f

(1)
0 get close as the strip gets thin, i.e., R → 0 or λ = pγ = pl/R → ∞ at

fixed two-dimensional density n. (Recall that limγ→∞ rp(γ) = 1.) The one-particle density
of Laughlin’s wave function on thin strips is

ρ(x) =
1

p · 2πl2
∑

k∈Z

nke
−(x−kγl)2/l2 with nk =

{
1 +O(e−γ2

), if k ∈ pZ,

O(e−γ2

), else.

This compares well to the one-dimensional density, since

Γ1(n0x− k)2 = (pγ
2πR

p · 2πl2x− pkγ)2 =
1

l2
(x− pγl)2.

Comparison with a two-dimensional Coulomb gas. The free energy βF of a two-
dimensional jellium system (particles of charge q + neutralizing background of charge density
−nq) with logarithmic Coulomb interaction VD(z) = − log |z/R0| is defined by a formula
similar to (2.77). The thermodynamic limit of the free energy per particle exists and is given
by an expression of the type

βf (2) = βf0 + g(Γ) − Γ

4
log nR2

0, βf0 = log nλ2
β − 1

for a suitable function g and Γ = βq2, see [SM76]. The value of the function at coupling
constant Γ = 2 is known and equals

g(2) = −1

2
log(2π) + log

e√
π
.

We expect that the strip free energy (2.79) approaches the two-dimensional energy as R→ ∞
if the length scale R0 is chosen consistently; we will choose R = R0. Forrester [For91] derives
more refined asymptotics for the strip free energies. He shows that if the thermodynamic
limit of correlation functions in the bulk (i.e., in the fully two-dimensional geometry) and in
the strip geometry exist, if the strip correlation functions converge to the bulk correlation
functions as the strip width goes to infinity, and if in addition the bulk correlation functions
satisfy sum rules typical for conducting Coulomb systems, then the following asymptotics
hold:

β(f − f (2)) =
π

6n(2πR)2
+O(

1

R4
) as R → ∞. (2.83)

Using (2.80), the expressions of βf (2) and g(2) given above, and the identifications Γ = βq2 =
2p, n = (p2πl2)−1, one finds that (2.83) is equivalent to

logAp(γ) =
(p− p2)γ2

12
+ g(2p) − pg(2) +O(γ4) as γ → 0 (2.84)

where the auxiliary quantity

Ap(γ) = rp(γ)(
eγ√
π

)1−pp1− p
2

is exactly the quantity on which we have given bounds in Lemma 2.10. As observed by
[For91], for Γ = 2, the relation (2.83) can be checked explicitly: the normalization constant
for the filled Landau level (p = 1) is CN = 1 whence r1(γ) = 1, A1(γ) = 1 and (2.84) holds.
For p ≥ 2, we do not have a proof of (2.83) (note that Forrester’s assumptions are quite
strong); however, (2.84) is consistent with Lemma 2.10 if

p(g(2) − 1) ≤ g(2p) ≤ pg(2).
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Is there a phase transition? The previous paragraphs picture the jellium tube as an
interpolation between one- and two-dimensional jellium systems. It can be characterized in
terms of the two parameters Γ = βq2, λ2 = βq2/(4πnR2) that are the coupling constants
of the related two- and one-dimensional plasmas. An interesting feature is that the one-
dimensional system exhibits no phase transition (Kunz [Kun74] proved that the free energy
is an analytic function of the coupling constant). On the other hand, there is numerical
evidence of a phase transition for jellium systems of dimensions 2 or 3 (see e.g. [BST66] for
three dimensions, [CLWH82] for two dimensions). It is believed that above Γ ≈ 140, the
one-component plasma is crystalline.
We proved that for all even plasma parameters Γ = 2p, there is a value γp such that for
γ = ℓ/R ≥ γp the free energy is an analytic function of γ, or equivalently of λ2 = (pγ)2.
One might speculate that for small γ, the nature of the limiting two-dimensional system and
hence the magnitude of Γ = 2p should play a role for large strips.

2.3.2 Minimal electrically neutral components

The normalization constants of Laughlin’s wave function satisfy a recurrence relation, the
renewal equation described in Section 2.1. This relation was used extensively to prove the
existence of thermodynamic limits. However, we did not give any physical meaning to it. The
aim of this subsection is to show that the plasma analogy gives some intuition that makes
the relation less surprising.

One-dimensional two-component plasma: Lenard’s combinatorial treatment. It
is interesting to observe that the renewal equality already appears in Lenard’s combinatorial
treatment of the two-component, one-dimensional plasma [Len61]. Let us briefly summarize
the model. Consider 2N particles of charges σ1, .., σN ∈ {±σ} moving on a semi-infinite line
[0,∞[. The potential energy of the system is

U(q1, σ1; ..; qN , σN ) = −2π
∑

1≤i<j≤N

σiσj |qi − qj |.

The system is assumed to be neutral,
∑

i σi = 0. Let β > 0 be an inverse temperature and
P > 0 an external pressure. It is convenient to work with a different set of parameters: write
σj = ǫjσ, ǫj = ±1, xj = 2πβσ2qj , γ̄ = P/2πσ2. Lenard considers the isothermal-isobaric
partition function

e−βG :=
1

N !2

∑

σ1,..,σN =±σ

∫

R2N×R2N
+

e−β
(

P2N
j=1 p2

j/2+U(q1,σ1;..;qN ,σN )+P maxj qj

)
dpdq (2.85)

=

√
2π

β

2N
1

(2πβσ2)2N
QN (γ̄),

QN (γ̄) :=
∑

ǫ1,..,ǫN =±1

∫ ∞

0

dx2N

∫ x2N

0

dx2N−1..

∫ x2

0

dx1e
P

1≤i<j≤2N ǫiǫj |xi−xj |−γ̄x2N ). (2.86)

The sequence (ǫ1, .., ǫN ) can be characterized in terms of the charges νi =
∑i

k=1 ǫk accu-
mulated to the left of charge number i. Lenard calls a configuration (ǫ1, .., ǫN ) irreducible
if νi 6= 0 unless i = 0 or i = 2N . Let Q̄N (γ̄) be defined through (2.86) except that the
summation is over irreducible ǫ-sequences only. Then

QN =

N∑

k=1

∑

n1+..+nk=N

Q̄n1
..Q̄nk

.
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This can be expressed in terms of a renewal equation and as a formal power series identity.

Q(z) =
1

1 − Q̄(z)
, Q(z) = 1 +

∞∑

n=1

Qnz
n, Q̄(z) =

∞∑

n=1

Q̄nz
n.

Lenard then proves (p. 688) that Q(z) is meromorphic in a disk of radius R with a unique
pole r inside that disk; r is real and

QNr
N =

1

rQ̄′(r)
+O((r/R)N), rQ̄′(r) <∞.

Later (p. 691), Lenard comes back to the significance of the irreducible configurations and
characterizes them as “the minimal electrically neutral parts of a general configuration”.
Let Pn := rnQ̄n. The numbers (Pn) define a probability distribution on N, they give the
probability that an irreducible block of a given length appears. The first moment

∞∑

n=1

nPn = rQ̄′(r)

is finite for all γ̄ > 0 and represents “a measure of the efficacy of electrostatic shielding”.
However, in the limit γ̄ → ∞, the moment gets infinite: “the number of particles within a
shielding distance tends to infinity”.

A renewal inequality for jellium tubes. Newton’s electrostatic theorem plays a crucial
role in the investigation of thermodynamic limits of Coulomb systems [LL72]. In one di-
mension, the Coulomb potential is essentially −|x| and disjoint neutral subsystems on a line
do not interact: this may be viewed as a one-dimensional version of Newton’s electrostatic
theorem. The y-average of the semi-periodic version of the logarithmic interaction gives the
one-dimensional Coulomb interaction. These observations and a clever partitioning of the
configuration state into neutral blocks allow the derivation of a renewal inequality.

Consider N particles of charge q moving on a cylinder [0, NT ] × [0, 2πR] in a neutralizing
background of charge density −nq = −q/(2πRT ). The Coulomb interaction is taken as
VC(z) = − log |2 sinh z

2R |, z = x+ iy ≡ (x, y) ∈ R2. Let

ZN :=
1

N !

∫

([0,NT ]×[0,2πR])N

e−βUN

be the associated partition function. We will be interested in a splitting of the system into
neutral subsystem and define the total charge accumulated to the left of x ∈ [0, NT ] as

Q(x;x1, .., xN ) = q|{j ∈ {1, .., N} | 0 ≤ xj ≤ x}| − nq · 2πRx.
If the subsystem to the left of x is neutral, the background charge qn2πRx = x/T com-
pensates an integer number of charged particles, so that x must be a multiple of T . It
is convenient to label particles from left to right and partition the configuration space ac-
cording to the set of zeroes of Q(·;x1, .., xN ): for k ∈ {1, .., N}, let RN,k be the set of
((x1, y1), .., (xN , yN )) ∈ ([0, NT ] × [0, 2πR])N such that

x1 ≤ .. ≤ xN and min{x > 0 | Q(x;x1, .., xN ) = 0} = kT.

The set RN,k may be seen as a minimal electrically neutral component, in the spirit of
Lenard’s treatment.

Now we are ready to state the renewal inequality:
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Proposition 2.29. For N ∈ N, let αN :=
∫
RN,N

e−βUN . Then Z1 = α1 and for N ≥ 2,

ZN ≥ α1ZN−1 + α2ZN−2 + ...+ αN−1Z1 + αN .

Proof. Z1 = α1 is obvious; for N ≥ 2, note that ZN =
∑N

k=1

∫
RN,k

e−βUN so that the

proposition follows from
∫
RN,k

e−βUN ≥ αkZN−k. We prove the inequality for k = 1, the

case k ≥ 2 is analogous. If Q(T ;x1, .., xN ) = 0, the system splits into two neutral subsystems,
consisting of the charges and the background located to the left /right of x = T ; there is only
one charge to the left of x = T . The potential energy can be written as

UN (z1, .., zN ) = U11(z1) + U12(z1, .., zN ) + U22(z2, .., zN )

where U11, U22 represent the energies of the separate subsystems and UN,12 their interaction.
Using Jensen’s inequality, we get

∫

RN,1

e−βUN ≥ e
−β

R

RN,1
U12e−β(U11+U22 )

∫

RN,1

e−β(U11+U22). (2.87)

The neutrality of the subsystems located to the left and right of x = T implies

∫

[0,2πR]N
U12(z1, .., zN )dy1dy2..dyN = 0.

Indeed,

− 1

2πR

∫ 2πR

0

log |2 sinh
x+ iy

2R
|dy = − |x|

2R
,

hence the y average of U12 reduces to a one-dimensional interaction which we may write

〈U12〉y(x1, ., xN ) = −
∫

[0,T ]×[T,NT ]

|x′1 − x′2|
2R

dρ1(x
′
1)dρ2(x

′
2) = 0

where ρ1 := δx1
− ndx′1 and ρ2 =

∑N
j=2 δxj

− ndx′2 represent the charge densities of the two

subsystems, and ρ1([0, T ]) = 0 = ρ2([T,NT ]) due to neutrality. Since e−β(U11+U22) and RN,1

are invariant with respect to translations (y1, y2, .., yN ) 7→ (y1 − a, .., yN − a), it follows that

∫

RN,1

U12e
−β(U11+U22) = 0. (2.88)

Due to translational invariance,

∫

RN,1

e−βU11e−βU22 = α1ZN−1.

Combining this with (2.87) and (2.88), we obtain
∫
RN,1

e−βUN ≥ α1ZN−2.

The previous proposition is an analogue of Lenard’s formula for the two-component plasma
partition function. The result is not completely satisfying and we would prefer an equality
instead of an inequality. However, we believe that it connects the renewal inequality to phys-
ical intuition, at least in the jellium picture. It would be interesting to have an interpretation
of the renewal equality in the quantum-mechanical setting of Laughlin’s wave function.
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2.4 A Lieb-Schultz-Mattis type argument

Up to now, we have not used the characterization of Laughlin’s wave function as the ground
state of a truncated interaction. Laughlin described his state as incompressible; in order to
apply the characterizations of incompressibility of Section 1.5, we need a Hamiltonian that
has Laughlin’s state as its ground state. The truncated Hamiltonians of Section 1.4 serve
this purpose. In this section, we show that if the truncated Hamiltonian reproduces the in-
compressibility of the ground state, then there must symmetry breaking. This can be shown
with a Lieb-Schultz-Mattis method as given by Koma [Kom04]. A drawback is that it has
not been proved that the truncated Hamiltonian give an incompressible ground state, see
the discussion by Haldane in [PG87], p.319 and the end of this section. Moreover, the argu-
ment in this form applies to short-range, translationally invariant interactions, and cannot
be applied to the lowest Landau level projected Coulomb Hamiltonian. Note that not only is
the Coulomb interaction long-ranged, but the neutralizing background on the cylinder gives
a potential attracting the electrons to the center of the cylinder: the background creates a
potential that is not translationally invariant.

Koma [Kom04] considers infinite volume ground states of electrons on a cylinder, confined to
finitely many Landau levels and interacting via a short range potential. Using a Lieb-Schultz-
Mattis type argument, he establishes a relation between the existence of a gap, spatial periods
and average density of a ground state. This section gives a simplified version of his argu-
ments, adapted to the truncated Hamiltonian that has Laughlin’s p = 3 wave function as
its ground state. Before we turn to the proof, we give a glimpse of the Lieb-Schultz-Mattis
argument for spin chains, its extension to electrons on a lattice by [Tas04, YOA97] (see also
[Osh00]), and point out a connection to the usual argument for degeneracy of ground states
on a torus.

In [LSM61], Appendix B, Lieb, Schultz and Mattis prove the nondegeneracy of the ground
state and absence of an energy gap for a Heisenberg spin chain with periodic boundary
conditions. The non-degeneracy is proved first; the existence of low-energy excitations is
then inferred from a nice interplay of two transformations ([LSM61] p. 457): an overall shift

Tx and a “twist” Ok = exp(ik
∑N

n=1 nS
z
n), where N is the length of the chain. Using the

commutation rule
TxOkT−1

x = OkeikNSz
1 e−ik

PN
n=1 Sz

n , (2.89)

it is shown that for suitable k the candidate excited state OkΨ0 is orthogonal to the ground
state Ψ0. A related argument is given in a setting with infinite spin chains in [AL86], where

the global twist was replaced with a local twist exp(iπ
ℓ

∑ℓ
j=−ℓ S

z
j (j + ℓ)).

Later, the argument has been adapted to fermions on a one-dimensional lattice, for the finite-
volume [YOA97] and the infinite volume [Tas04] case. The twist operator that is used is of
the type exp(ik

∑
j jn̂j), where n̂j is the occupation number operator of lattice site j. This

is applied in [Kom04] to electrons in a magnetic field on a lattice.

For electrons in a magnetic field on a torus, there is a simple argument establishing a relation
between the density and the degeneracy. It rests on the non-trivial commutation rules of
magnetic translations, reminiscent of (2.89). Let us briefly recall the argument: consider a
Hamiltonian of the type

HN =
1

2m

N∑

j=1

(pj + eA(xj , yj))
2 +

∑

1≤j<k≤N

V (zj − zk)
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in L2([0, L] × [0, 2πR]) with quasiperiodic boundary conditions as discussed on p.8. Define
the center of mass translations

Tx := t(
L

Nf
ex)⊗N , Ty := t(

2πR

Nf
ey)⊗N .

Then t(L/Nfex)t(2πR/Nfey) = ei2π/Nf t(2πR/Nfey)t(L/Nfex) and

[HN , Tx] = 0, [HN , Ty] = 0, TxTy = ei2πN/NfTyTx.

Suppose that H has an eigenspace of finite dimension d. Consider Tx, Ty as unitary operators
in this space, then

detTx detTy = detTxTy = det ei2πN/NfTyTx = ei2πdN/Nf detTy detTx

whence ei2πdN/Nf = 1 and dN/Nf ∈ N. Write N/Nf = p/q with p, q coprime and suppose
ν = p/q /∈ N. Then q divides d, and every eigenspace of HN is at least q-fold degenerate.
Moreover, if Ψ0 is a translationally invariant state, i.e. TxΨ0 = eiαΨ0 for some α ∈ R, it
breaks the y-invariance:

TxTyΨ0 = ei2πp/qTyTxΨ0 = ei2πp/qeiαTyΨ0,

Ψ0 and TyΨ0 belong to different eigenspaces of Tx and thus 〈Ψ0, TyΨ0〉 = 0.

This can be nicely related to the Lieb-Schultz-Mattis type argument for electrons on a lattice,
as given in [YOA97], if we restrict to the lowest Landau level. The lowest Landau level has
a basis ψ̃k, k ∈ Z/NfZ. Each basis function can be thought of as a lattice site. The effect

of the magnetic translations is t(L/Nfex)ψ̃k = ψ̃k+1, t(2πR/Nfey)ψ̃k = e−i2πk/Nf ψ̃k. Thus
the shift in the y-direction may be rewritten as

Ty = exp(−i
Nf∑

j=1

jn̂j)

and we recognize the twist operator of [YOA97]. From this point of view, Koma’s approach
looks like an infinite volume version of the torus degeneracy argument (let us mention how-
ever, that Koma allows a one-particle potential V (y)). The overall y-shift is replaced by a
local twist, and instead of orthogonality of Ψ0 and TyΨ0 we obtain orthogonality only in the
limit where the local twist becomes global (see Lemma 2.34 below).

In the following we restrict to the lowest Landau level. Let ALL be the canonical anti-
commutation algebra over the lowest Landau level, i.e., the sub-algebra of A generated by
1 and ck, c

∗
m, k,m ∈ Z. For Λ ⊂ Z, let AΛ be the sub-algebra of ALL generated by 1

and ck, c
∗
m, k,m ∈ Λ, and let Aloc := ∪Λ⊂Z,|Λ|<∞AΛ be the set of local observables. Let

n̂k := c∗kck and consider the formal expressions

H =
∑

k,k′,n,n′∈Z

δk+k′,n+n′f(k − k′)f(n− n′)c∗k′c∗kcncn′ , N̂ =
∑

k∈Z

n̂k

where f(n) := n exp(−γ2

4 n
2) and n̂k = c∗kck. The Hamiltonian H is the second quantized

form of the truncated interaction of Definition 1.3, see Corollary 1.7. For A ∈ Aloc, the sums

[H,A] :=
∑

k,k′,n,n′∈Z

f(n− n′)f(k − k′)[c∗k′c∗kcncn′ , A] [N̂ , A] :=
∑

k∈Z

[n̂k, A].
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are absolutely convergent: suppose A ∈ AΛ, Λ ⊂ Z, |Λ| < ∞. The commutator [n̂k, A]
vanishes unless k ∈ Λ, thus [N̂ , A] is a finite sum. Similarly, [c∗k′c∗kcncn′ , A] vanishes unless
one of the indices k, k′, n, n′ is in Λ. Let C, c > 0 such that |f(n)| ≤ C exp(−cn2). Then

∑

k∈Λ

∑

k′,n,n′∈Z

δk+k′,n+n′ ||f(n− n′)f(k − k′)[c∗k′c∗kcncn′ , A]||

≤ 2C||A||
∑

k∈Λ

∑

k′,n,n′∈Z

δk+k′,n+n′ |f(n− n′)f(k − k′)|

≤ 2C||A||
∑

k∈Λ,n∈Z

∑

k′,n′∈Z:

n′−k′=k−n

e−
c
2 ((n′+k′−n−k)2+4(k−n)2)

≤ 2C||A||
∑

k∈Λ,n∈Z

e−2c(k−n)2
∑

t∈Z

e−
c
2 t2 <∞.

For µ ∈ R, A ∈ Aloc, let δµ(A) := i[H−µN̂,A] = i[H,A]− iµ[N̂ , A]. Then δµ is a symmetric
derivation on Aloc. Its closure is the generator of a strongly continuous group (αµ

t )t∈Rof
C∗-automorphisms of ALL:

∀t ∈ R, ∀A ∈ Aloc :
d

dt
αµ

t (A) = iαµ
t ([H − µN̂,A])

see [Mat96], Theorems 1.1 and 2.9. The algebra AU(1) is the subalgebra of operators of ALL

that preserve the total particle number. More precisely, let γt be the ∗-automorphism of A
such that for all k ∈ Z, γt(ck) = e−itck and AU(1) the set of A ∈ ALL such that γt(A) = A for
all t ∈ R. Note that ∂tγt(ck) = +iγt([N̂ , ck]), γt is associated to the derivation a 7→ i[N̂ , a].
A local observable is in AU(1) if and only if [N̂ , A] = 0.

Definition 2.30. Let µ ∈ R and ω be a state on ALL.

• ω is a ground state of H − µN̂ if

∀a ∈ Aloc : ω(a∗[H − µN̂, a]) ≥ 0. (2.90)

• ω is a ground state at fixed density, or ground state for AU(1), if it is gauge-invariant
(ω ◦ γt = ω for all t ∈ R) and (2.90) holds for all a ∈ AU(1) ∩ Aloc.

For 2., the precise value of the chemical potential is irrelevant. This is due to [H − µN̂, a] =
[H, a] for all a ∈ AU(1) ∩ Aloc. It follows from 1. that ω ◦ αµ

t = ω (see Lemma 5.3.16 in
[BR79b]), and there exists a positive Hamiltonian Hω such that

HωΩω = 0, πω(αµ
t (a)) = eitHωπω(a)e−itHω ,

where (πω, Hω,Ωω) is the cyclic representation associated to ω. We will say that the state ω
is gapped if Hω has a gap above its (possibly degenerate) ground state. An equivalent, more
intrinsic definition is the following (see also [AL86], p.65):

Definition 2.31.

1. Let µ ∈ R, and ω be a ground state of H − µN̂ . Then ω has a gap w0 > 0 if for all
a, b ∈ ALL, the function ρab(t) = ω(aαµ

t (b)) has a distributional Fourier transform ρ̂ab with
suppρ̂ab∩]0, w0[= ∅.
2. Let ω be a ground state at fixed density. Then ω is gapped with respect to AU(1), i.e.,
excitations preserving the number of particles, with gap ≥ w0, if the previous condition on
ρab holds for all a, b ∈ AU(1).
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The thermodynamic limits of cylinder Laughlin wave functions are ground states at fixed
density, but also of H − µN̂ at chemical potential µ = 0. This follows from the positivity of
the truncated Hamiltonians. To see this, let (an)n∈N be such that an → −∞, n + an → ∞
and let ωn be the state on ALL associated to t(an3γlex)⊗NΨC

N . The weak-* limit points of
ω are ground states of H. Recall that the states form a weak*-compact set.

Proposition 2.32. Suppose that for a subsequence (ω)nk
of (ωn)n, ωnk

∗
⇀ ω. Then ω is a

ground state of H.

Proof. For simplicity suppose ωn
∗
⇀ ω. Let Λn := {3an, 3an + 1, .., 3(an + n − 1)} and let

HΛn
:=

∑
3an≤k,k′,n,n′≤3an+3n−3 δk+k′,n+n′f(k − k′)f(n− n′)c∗k′c∗kcncn′ be the finite volume

truncated Hamiltonian. The shifted Laughlin state is a ground state of HΛn
considered

as an operator in ∧nspan{ψk | k ∈ Λn}, of energy 0. But HΛn
is a positive operator in

∧span{ψk | k ∈ Λn}, and the shifted Laughlin state can also be considered as a ground state
in this larger space (i.e., changing the number of particles does not lower the energy, and we
can take µ = 0). Thus

∀a ∈ AΛn
: ωn(a∗[Hn, a]) ≥ 0.

Let a ∈ Aloc. By the absolute convergence of the sum [H, a], [Hn, a] converges to [H, a].
Thus

|ω(a∗[H, a]) − ωn(a∗[Hn, a])| ≤ |ω(a∗[H, a]) − ωn(a∗[H, a])| + ||a∗[H −Hn, a]|| → 0

thus ω(a∗[H, a]) = limn ωn(a∗[Hn, a]) ≥ 0.

Remarks: 1. Equivalence of torus and cylinder functions. In Section 2.2.3, we compared
modified cylinder and torus wave functions and proved their equivalence in special cases.
The description in terms of truncated Hamiltonians allows an indirect approach to a similar
question. The torus wave functions can be used to define lowest Landau level states (we map
ψ̃k to ψk); these are ground states of H on finite chains, with periodic boundary conditions,
and their limit points should be ground states of H as well. Thus in the thermodynamic limit,
torus and cylinder states are ground states of the same Hamiltonian. If they are different,
the infinite volume Hamiltonian has a degenerate ground state.

2. Equivalence of ensembles. It is often easily checked that the limits of N -particle finite
volume ground states are ground states at fixed density. To prove that they are also ground
states of H − µN̂ for suitable µ (equivalence of canonical and grand-canonical ensembles)
may require more effort and can be done by using general theorems (see [Mat96]).

3. Value of the chemical potential. The limit of Laughlin’s wave function at p = 1/3 is a
ground state of H − 0 · N̂ , but not the only one: the limits of Laughlin’s wave functions at
lower filling fractions 1/p′ give ground states as well, with a lower density. However, in view
of the incompressibility, we expect that there exists a positive chemical potential µ > 0 such
that the limits of the 1/3 functions are ground states of H−µN̂ , and the 1/p wave functions,
p > 3, are not (µ > 0 favors higher density). In Theorem 2.33 below, we have in mind such
a positive chemical potential µ > 0.

The remainder of the section aims at the proof of the following theorem on ground states of
H − µN̂ (among which we find Laughlin’s states):
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Theorem 2.33. Let µ ∈ R be a fixed chemical potential.

1. Suppose H − µN̂ has a unique ground state ω and ω is gapped. Then ω must be
translationally invariant and have an integer filling factor ν.

2. Suppose all ground states of H − µN̂ have a spatial period. Let ω be a pure, gapped
ground state with filling factor ν. Write ν = p/q, p, q ∈ N relatively prime. Then any
period of ω is a multiple of q, and the ground state of αµ

t is at least q-fold degenerate.

The theorem says essentially that at non-integer filling factor, the existence of a gap implies
symmetry breaking. If there is a gap, there are either ground states with no translational
period at all, or all ground states have a period related to the average density. If one tries
to write this down as a mathematical statement, one has to assign an average density to a
state that may have no translational period. The theorem is formulated slightly differently
to avoid that trouble.

In view of the discussion on gaps in the first chapter, let us remark that the low-lying energy
excitations are constructed by means of local twists Un ∈ AU(1) ∩ Aloc. Thus we actually
only use the gappedness of ω with respect to excitations that do not change the number
of particles. Nevertheless, we chose to formulate the theorem in terms of H − µN̂ because
ground states for AU(1) are less likely to fulfill the assumptions on the degeneracy of the
ground states (e.g. 1. will never hold, since there are different ground states for different
densities).

The strategy of the proof is to take a gapped ground state ω with period q and construct
candidate low energy states using a local twist. One proves that under suitable assumptions
among which an incommensurability of the period q and the filling factor, these candidate
states are orthogonal in the limit of global twists (Lemma 2.34) and have energies converging
to the ground state energy (Lemma 2.35). Thus if ω is gapped, the constructed low energy
states are close to a ground state, but orthogonal to ω. This gives a ground state degeneracy
and 1. follows. Lemma 2.36 below then allows to show that the candidate states are close to
ground states with no translational period at all, which is used to prove 2.

Lemma 2.34. (Orthogonality.) Let ω be a state on ALL with a period q ∈ N, i.e., ω◦τ q
x = ω.

Let ν := 1
q

∑q
j=1 ω(n̂j) be the filling factor. For n ∈ N, let

Un := exp(i
2π

n

n−1∑

j=0

jn̂j).

Suppose qν /∈ N and limn→∞( 1
n2

∑n−1
i,j=0 n̂in̂j) = ν2 (this is the case if ω is ergodic with

respect to τ q
x). Then limn→∞ ω(Un) = 0.

Proof. Let ℓ ∈ N. By a direct computation,

τ q
x(Uℓ) = Uℓe

−i 2πq
ℓ

Pℓ+q−1
j=q n̂jRℓ, Rℓ := ei 2π

ℓ

Pq−1
j=0 j(n̂j+l−n̂j).

Thus

ω(Uℓ) = ω(τ q
x(Uℓ)) = ω(Uℓe

−i 2πq
ℓ

Pℓ+q−1
j=q n̂jRℓ)

(1 − e−i2πqν)ω(Uℓ) = ω(RℓUℓ(e
−i 2π

ℓ

Pℓ+q−1
j=q n̂j − e−i2πqν1)) + e−i2πqνω(Uℓ(Rℓ − 1)).
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The second member of the sum goes to zero since ||Rℓ − 1|| = O(1/ℓ). Note that for A ∈ A,
α ∈ C,

(eiA − eiα)∗(eiA − eiα) = 4| sin A− α

2
|2 ≤ (A− α)∗(A− α).

RℓUℓ is unitary. Using Cauchy-Schwarz, we see

|ω(RℓUℓ(e
−i 2π

ℓ

Pℓ+q−1
j=q n̂j − e−i2πqν1))|2 ≤ 4π2q2ω((

1

ℓ

ℓ+q−1∑

j=q

n̂j − ν)2).

The upper bound goes to zero by the assumptions of the Lemma. Thus

(1 − e−i2πqν)ω(Uℓ) → 0 (ℓ→ ∞).

If qν /∈ N, this implies ω(Uℓ) → 0.

Lemma 2.35. (Low energy states.) Let ω be a state on A, µ ∈ R. Then

lim
ℓ→∞

(ω(U∗
ℓ [Hµ, Uℓ]) + ω(Uℓ[Hµ, U

∗
ℓ ])) = 0.

If ω is a ground state at fixed density, the two parts of the sum go to zero individually.

Proof. Let ℓ ∈ N. First note Uℓ ∈ Aloc, and Uℓ commutes with every number operator n̂j .

Thus [H − µN̂, Uℓ] is well-defined and equals [H,Uℓ]. Similarly, [H − µN̂, U∗
ℓ ] = [H,U∗

ℓ ].

Note also Uℓ, U
∗
ℓ ∈ AU(1)

loc . Thus if ω is a ground state for AU(1), ω(Uℓ[H,U
∗
ℓ ]) ≥ 0 and

ω(U∗
ℓ [H,Uℓ]) ≥ 0. In this case the sum converges to zero if and only if each summand

goes to zero. Let g(k) := kχ[1,ℓ−1](k). so that UℓckU
∗ = exp(i2π

ℓ g(k)n̂k)ck. Then, using

cosx− 1 = −2 sin2(x/2), we get

ω(U∗
ℓ [Hµ, Uℓ]) + ω(Uℓ[Hµ, U

∗
ℓ ]) = −4

∑

k,k′,n,n′∈Z

δk+k′,n+n′f(n− n′)f(k − k′)

sin2(
2π

ℓ
(g(n) + g(n′) − g(k) − g(k′)))c∗k′c∗kcncn′

hence

|ω(U∗
ℓ [Hµ, Uℓ]) + ω(Uℓ[Hµ, U

∗
ℓ ])|

≤ 4C ′ ∑

k,k′,n,n′∈Z

k+k′=n+n′

e−c((n−n′)2+(k−k′)2) sin2(
2π

ℓ
(g(n) + g(n′) − g(k) − g(k′)))

where c, C ′ are chosen so that |f(n)| ≤ C ′e−cn2

. The sum on the right-hand side can be split
into two parts. Let δ ∈]0, 1/3[. Let Σ1 denote the sum over indices such that k−n = n′ − k′

has modulus smaller or equal to ℓδ/2 for some δ ∈]0, 1/3[, and Σ2 the sum over indices where
k − n = n′ − k′ has modules greater than ℓδ/2. We claim that there is a constant C > 0 so
that for sufficiently large ℓ,

|Σ1| ≤ C
ℓ3δ

ℓ
, |Σ2| ≤ Cℓ

∑

k≥ℓδ/2

e−ck2..

Thus Σ1 and Σ2 go to zero as ℓ→ ∞.
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Estimate of Σ2. The only contributions to the sum come from indices k, k′, n, n′ where at
least one of them is in {1, .., ℓ − 1}. By a reasoning similar to the one used to prove the
convergence of [H,A] for A ∈ Aloc, we get

∑

k∈{1,..,ℓ−1}

∑

k,k′,n′,n∈Z

k−n=n′−k′,|k−n|>ℓδ/2

e−c((n−n′)2+(k−k′)2)

≤
∑

k∈{1,..,ℓ−1}

∑

n∈Z:|k−n|>ℓδ/2

e−2c(k−n)2
∑

t∈Z

e−ct2/2

The parts of the sum where k′, n′ or n lie in {1, .., ℓ− 1} are treated in a similar way. This
gives the claimed estimate on Σ2.

Estimate of Σ1. Let k, n ∈ Z such that |k − n| ≤ ℓδ/2. We claim that dist (g(k) −
g(n), {0,−ℓ, ℓ}) ≤ ℓδ. If k, n ∈ {1, .., ℓ− 1}. |g(k) − g(n)| = |k − n| ≤ ℓδ/2. If n ≥ ℓ > k ≥ 1,
g(k) − g(n) = k ≥ ℓ − ℓδ, thus |g(k) − g(n) − ℓ| ≤ ℓδ/2. The other cases are treated in a
similar fashion. Using sin(x+ π) = − sinx and | sin x| ≤ |x|, we see

∑

k∈{1,..,ℓ−1}

∑

k′,n,n′∈Z

k+k′=n+n′,|k−n|≤ℓδ/2

e−c((n−n′)2+(k−k′)2) sin2(
2π

ℓ
(g(n) + g(n′) − g(k) − g(k′)))

≤ 4π2 ℓ
2δ

ℓ

∑

k∈{1,..,ℓ−1}

∑

n∈Z:

|n−k|≤ℓδ/2

(
∑

n′∈Z

e−c(n−n′)2)(
∑

k′∈Z

e−c(k−k′)2)

≤ 4π2(
∑

t∈Z

e−ct2)2
ℓ3δ

ℓ
.

Again, the cases k′, n′ or n ∈ {1, .., ℓ − 1} can be treated in a similar way, and we get the
bound on |Σ2|.

Lemma 2.36. Let ω be a fixed state on A with a period q, l ∈ N. Let ωℓ(A) := ω(U∗
ℓ AUℓ).

ωℓ defines a state on A. Suppose that ωℓ is close to a periodic state, i.e., there exist an ǫ > 0
and a periodic state ω′ with ||ω′ − ωℓ|| < ǫ. Then ωℓ is close to ω:

||ωℓ − ω|| ≤ 2ǫ.

Proof. Let ω′ be a periodic state on A, i.e. ω′ ◦ τT
x = ω′ for some T ∈ N. Without loss of

generality we may assume that T is a multiple of q. Let A ∈ Aloc. Then for n ∈ Z

||ω′ − ω|| ||A|| ≥ |ω′(τnT
x (A)) − ωℓ(τ

nT
x (A))|| = |ω′(A) − ω(U∗

ℓ τ
nT
x (A)Uℓ)|

But for sufficiently large n, U∗
ℓ τ

nT
x (A)Uℓ = τnT

x (A) and ω(U∗
ℓ τ

nT
x (A)Uℓ) = ω(τnT

x (A)) =
ω(A), and we get

|ω′(A) − ω(A)| ≤ ||ω′ − ω|| ||A||

for all local elements. Since Aloc is norm-dense in A, this shows ||ω′ − ω|| ≤ ||ω′ − ωℓ||,
whence

||ω − ωℓ|| ≤ ||ω′ − ωℓ|| + ||ω′ − ω|| ≤ 2||ω′ − ωℓ|| ≤ 2ǫ.
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Proof of Theorem 2.33. 1. Let ω be the ground state of H −µN̂ . Since αµ
t is translationally

invariant, ω ◦ τx is a ground state too and by the unicity of the ground state ω ◦ τx = ω. Let
ν := ω(n̂1) be the filling factor. Suppose ν /∈ N. Since ω is the unique ground state and any
extremal ground state is pure, ω is a pure state. In particular, it is ergodic with respect to
τx. By the previous lemmata,

lim
ℓ→∞

ω(Uℓ) = 0, lim
ℓ→∞

ω(U∗
ℓ [H,Uℓ]) = 0. (2.91)

Let (Hω, πω,Ωω) be the cyclic representation associated to ω and Hω the unique self-adjoint
operator in Hω such that HωΩω = 0 and πω(αµ

t (A)) = eitHωπω(A)e−itHω . Let ψℓ :=
πω(Uℓ)Ωω. Note ||ψℓ|| = 1. (2.91) can be rewritten as

lim
ℓ→∞

〈Ωω, ψℓ〉 = 0, lim
ℓ→∞

〈ψℓ, Hωψℓ〉 = 0. (2.92)

Write ψℓ = ψ̃ℓ + 〈Ωω, ψℓ〉Ωω. Then

||ψ̃ℓ|| → 1, 〈ψ̃ℓ, Hωψ̃ℓ〉 → 0, 〈ψ̃ℓ,Ωω〉 = 0,

contradicting the uniqueness of the ground state and the existence of a gap above the ground
state.

2. Let ω be a gapped pure ground state of αµ
t with spatial period T and filling factor ν = p/q,

p, q coprime. Suppose Tν /∈ N. Let Hω, πω,Ωω, Hω, ψℓ be as above. Let G be the projection
on N (Hω) in Hω. Then (2.92) stays valid, thus 〈ψℓ, Hωψℓ〉 → 0. The existence of a gap
above the ground state implies limℓ→∞(1−G)ψℓ = 0. Thus for ǫ > 0 there exists l ∈ N and
a normalized ψ′ ∈ N (Hω) such that ||ψ′ − ψℓ|| < ǫ and |(Ωω, ψℓ)| ≤ ǫ. Let ω′ be the state
defined through ω′(A) = 〈ψ′, πω(A)ψ′〉. ω′ is a ground state of H − µN̂ , therefore by our
assumptions it has a period. Moreover, ||ω′−ωℓ|| ≤ 2ǫ. Thus by Lemma 2.36, ||ωℓ−ω|| ≤ 4ǫ,
i.e.,

∀A ∈ πω(ALL) : |〈ψℓ, Aψℓ〉 − 〈Ωω, AΩω〉| ≤ 4ǫ||A||. (2.93)

Since the bicommutant πω(ALL)′′ ⊂ B(Hω) is the closure of πω(ALL) with respect to the
seminorms |〈ξ, ·η〉|, (2.93) extends to πω(ALL)′′. But since ω is pure, Hω is irreducible with
respect to πω(ALL) and (πω(A))′′ = (C1)′ = B(Hω). Thus we may take A = |Ωω〉〈Ωω|, the
projection on CΩω in (2.93) and obtain

∣∣∣|〈ψℓ,Ωω〉|2 − 1
∣∣∣ ≤ 4ǫ, |〈ψℓ,Ωω〉| ≤ ǫ.

This is contradictory for sufficiently small ǫ. Thus qT ∈ N, i.e., T is a multiple of q.

Finally, recall that a state ω is called pure if for any positive functional ω′, ω′ ≤ ω implies
ω′ = λω for some λ ∈ [0, 1]. From this we see that ω ◦ τ j

x (j ∈ Z) inherits the purity of ω. Let
T be the minimal period of ω. Then ω, ω ◦ τx, .., ω ◦ τT−1

x must be distinct. The translational
invariance of αµ

t implies that they are all ground states. Thus we have T distinct pure ground
states, and the affine dimension of the ground state is greater or equal to T . Since T is a
multiple of q, this concludes the proof.

Is the truncated Hamiltonian gapped? Theorem 2.33 shows that the existence of a
gap above the ground state, at filling factor 1/3, implies some kind of symmetry breaking.
However, the question whether the the truncated interaction has a gap above its ground state
is open. Numerical computations [SFL+05] suggest that the truncated Hamiltonian has a
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non-vanishing gap above its ground state, for all values of the radius, but to our knowledge
this is yet unproven.

In the previous section on jellium tubes, we mentioned that the jellium tube interpolates
between a system with a phase transition (the one-dimensional jellium) and a system without
(the two-dimensional system). A similar aspect appears in relation to the question of gaps of
truncated interactions on cylinders. We start by observing that in the limit of thin cylinders,
the truncated interaction at filling factor 1/3 may formally be written as

H = HTT +O(e−5γ2

), HTT :=
∑

k∈Z

(e−γ2

n̂kn̂k+1 + 4e−2γ2

n̂kn̂k+2) (2.94)

see also [SFL+05], equation (9). The limiting Hamiltonian HTT has obviously the ground
state energy 0. Ground states consist of configurations where electrons sit in lattice sites
spaced apart at least by 3 sites. At density 1/3, the unique ground state having a particle in
0 is the state which we loosely write

... ∧ ψ−3 ∧ ψ0 ∧ ψ3 ∧ ψ6...

(the Tao-Thouless state). This state is exactly the limit of Laughlin’s state as γ → ∞, on
finite samples (see the remark on p.54) as well as on infinite samples (this is implicit in the
proof of the second part of Theorem 2.17). Furthermore, the Hamiltonian HTT has obviously

a gap of size 4e−2γ2

above the ground state at density 1/3.

By the results of Section 1.4, the cylinder Hamiltonian may be considered as a periodified
version of the plane interaction (see also the expressions of the Hamiltonians in [RH94] and
the corresponding expressions of the disk interaction in [PG87], p.307). Thus we expect that
in the limit γ → 0, the truncated interaction H on the cylinder has a gap above its ground
state if the disk truncated interaction has.

More generally, we can consider truncated interactions for different filling fractions 1/p,
p ∈ N and ask whether these have a gap. In the limit γ → ∞, we will again obtain a gapped
Hamiltonian without hopping terms as in (2.94) and thus expect that the Hamiltonian on
thin cylinders is gapped. In the limit γ → 0, the Hamiltonian approaches the disk truncated
interactions. In [PG87], p.319, Haldane argues that the disk Hamiltonian should be gapped
for p < 70 but gapless for p > 70; this is related to the expected phase transition of the
two-dimensional one-component plasma at coupling constant Γ ∼ 140.



Chapter 3

Charge transport

Laughlin’s work [Lau81, Lau83] is important for the understanding of both the integer and the
fractional quantum Hall effect. Laughlin’s argument refers to the subtle use of a clever geom-
etry - the cylinder - and gauge periodicity in an explanation of the integer effect. Laughlin’s
wave function is considered as a good approximation of fractional Hall effect ground states
at simple filling fractions. It has been suggested [TW84] that a degeneracy in the ground
states of electrons on cylinders is required in order to reconcile Laughlin’s cylinder argument
for the integer quantum Hall effect with fractional Hall conductances. If this is the case, and
if Laughlin’s function is indeed a good approximation to the ground state, it should reflect
this degeneracy. This is a heuristic argument; nevertheless, it is interesting to observe that it
is consistent with the symmetry breaking (on thin cylinders) proved in the previous chapter.

For quantum Hall systems on tori, the Hall conductance can be characterized in terms of a
Chern number, and fractional quantization of the Hall conductance requires indeed a ground
state degeneracy. This is a rigorous result. It is less clear what the significance, beyond
heuristics, of our symmetry breaking results is for the FQHE. This chapter is devoted to that
question. Let us anticipate and say that we do not give a full answer. The Hall conductance
for systems without impurities is related to the electronic density, and our results do imply
that the charge transport in Laughlin’s state has the correct quantization. However, as we
will see below, this uses only the fact that the density is periodic and has average value
(p · 2πl2)−1, but not that the minimal period is pγl. Another drawback is that the results
only pertain to samples without impurities. However, we think that this chapter is useful in
replacing our results in their FQHE context.

We start with a brief summary of the gedanken experiments involving slow addition of a flux
quantum, as described in [Lau81, Lau83]. Then we turn to a simple model of bulk charge
transport on a cylinder. First we consider cylinders with quasiperiodic boundary conditions
in the direction along the cylinder axis, i.e., we look at a system on a torus. We show that
in the absence of a background potential, the adiabatic curvature appearing in the Chern
number approach can be expressed in terms of the one-particle density. We pursue with
spectral boundary conditions, more suitable for the cylinder Laughlin wave functions, and
give an account on the number of approximations involved to recover the widely accepted
fact that Laughlin’s function describes a fractionally quantized charge transport.
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3.1 Laughlin’s argument(s)

Integer quantum Hall effect: cylinder geometry

In his paper on the integer quantum Hall effect [Lau81], Laughlin considers a gas of electrons
(charge −e) on a finite cylinder of radius R. A magnetic field is perpendicular to the surface,
an electric field of strength Ex is present on the cylinder in the direction along the cylinder
axis, and a flux φ threads the cylinder. This system is represented by the Hamiltonian

H(φ) =
1

2m

N∑

j=1

(
(−i~∂xj

)2 + (−i~∂yj
+ e(Bz −

φ

2πR
)2

)
+

N∑

j=1

eExxj

+

N∑

j=1

W (xj , yj) +
∑

1≤j<k≤N

V (xj − xk, yj − yk)

V is an interaction potential and W a background potential. For the moment, we leave open
the modelization of the cylinder edges. At fixed flux φ, the electric and magnetic fields lead
to a Hall current around the cylinder axis. The corresponding current operator is

Iy =
N∑

j=1

1

2πR

−e
m

(−i∂yj
+ e(Bz −

φ

2πR
)) =

∂H

∂φ
.

Now imagine that we are given a projection P (0) onto a many particle wave function at flux
φ = 0. If we consider the electrons as non-interacting, we may fill the one-particle states up
to a given Fermi energy and take P (0) to be the projection onto the corresponding many-
particle state. We wish to evaluate the current 〈Iy(0)〉 := trP (0)Iy(0). Suppose that P (0)
can be extended to a smooth family of projections P (φ) commuting with the Hamiltonian
H(φ): [H(φ), P (φ)] = 0. Then

〈Iy(0)〉 = trP (0)
∂H

∂φ
(0) =

∂trPH

∂φ
(0). (3.1)

If slow variation of the flux φ results in an adiabatic time evolution UA(φ), we may take
P (φ) = UA(φ)P (0)UA(φ)∗. Therefore the derivatives in (3.1) are referred to as adiabatic
derivatives. Now, the Hamiltonian is gauge periodic:

H(φ+ φ0) = ei
PN

j=1 yj/RH(φ)e−i
PN

j=1 yj/R

for all φ. The period is the flux quantum φ0 = h/e. This suggests the following approxima-
tion:

〈Iy(0)〉 ≃ trP (φ0)H(φ0) − trP (0)H(0)

φ0
, (3.2)

i.e., the derivative is approximated by a difference quotient with a flux difference ∆φ := φ0.
Now comes the key sentence of [Lau81]:

“Since, by gauge invariance, adding ∆φ maps the system back into itself , the
energy increase due to it results form the net transfer of n electrons (..) from one
edge to the other. The current is thus

I = c
neV

∆φ
=
ne2V

h
.”
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(Here, V is the difference in electrochemical potential between the left and right edge.) Several
difficulties are encountered when one tries to turn Laughlin’s argument into a mathematical
statement, giving rise to different versions of the argument, compare e.g. [FGW00, ASY87].
We do not give a detailed discussion of the various difficulties encountered.

Suppose first H(φ) has a non-degenerate ground state, for each φ, and let P0(φ) be the pro-
jection onto the ground state. If the ground state energy stays separated from the rest of the
spectrum by a gap g(φ) > gmin > 0 (see hypothesis H2 below), adiabatic time evolution fol-
lows the ground state: P0(φ) = P (φ). In this case, P (φ) is gauge periodic and the difference
quotient in (3.2) is 0. This is obviously not a good approximation to 〈Iy(0)〉.

To gain a better understanding, we have to take into account edges. We will consider only
independent particles (V = 0). The one-particle Hilbert space can be written as direct sum
of three orthogonal subspaces representing left edge, bulk and right edge states. Let P0(φ)
represent a state where bulk states are filled up to a given Fermi energy and edge states up
to local chemical potentials. The one-particle Hamiltonian restricted to the bulk state has
discrete spectrum with large gaps, whereas the restriction to the edge states has a spectrum
that becomes continuous in the limit of large radii. Thus intuitively, adiabatic time evolution
follows the ground state in the bulk, but not in the edges. In the words of [Lau81]:

“isothermal differentiation with respect to φ (..) is equivalent to adiabatic differ-
entiation in the sample interior.”

Therefore the adiabatically evolved bulk state should be gauge periodic, but changes may
occur in the edge states, the “net transfer of n electrons”.

However, it is not clear how to make sense of the separate application to edge and bulk
of adiabatic time evolution. The decomposition into edge and bulk Hilbert spaces is flux
dependent. During the flux increase left edge states typically flow into the bulk and bulk
states into the right edge. Another problem is related to the integrality of the charge transfer.

Fractional quantum Hall effect: infinite plane with flux tube

It is instructive to compare the previously described argument with the effect of slow addition
of a flux quantum as performed in [Lau83]. Consider a gas of electrons moving in a plane
with a perpendicular magnetic field. A solenoid carrying a flux φ pierces the plane at the
origin. A one-particle Hamiltonian H1(φ) can be defined whose spectrum consists again of
the eigenvalues ~ω(n + 1/2), n ∈ N0, and the lowest Landau level N (H1(φ) − ~ω/2) has a
complete orthonormal set

ψn,φ(z) = cn,φ|z|φ/φ0zne−|z|2/4l2 , n ∈ Z : n ≥ −φ/φ0,

see [EŠV02], Section III. Now consider the N -particle Hamiltonian

H(φ) =
N∑

j=1

H1,j(φ) +W (zj) +
∑

1≤j<k≤N

V (zj − zk)

describing N particles. Imagine that we start in a many-body ground state ΨN at flux φ = 0
and slowly increase the flux from 0 to the flux quantum φ0. If a suitable adiabatic theorem
can be applied, the final state in the adiabatic limit will be an eigenstate of H(φ0). But
H(φ0) is gauge periodic, thus applying a unitary U to the adiabatically evolved state we
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obtain an eigenvector of H(0). We wish to apply this procedure to Laughlin’s state as a
starting vector. (We suppose that it is an eigenvector for some interaction.) In [Lau83], the
adiabatically evolved state is given as

U−1UAΨL
N (z1, .., zN ) ≃ CN

N∏

j=1

zjΨ
L
N (z1, .., zN ), (3.3)

CN ∈ C. In [PG87], p. 260, Laughlin explains that (3.3) should be considered as a good
approximation to the adiabatically evolved state. This is motivated through the help of
several approximations. The background potential is chosen to be a lowest Landau level
projected Gaussian: W (zj) = Πα|zj |2Π. With this choice, Wψn,0 = 2α(n + 1)ψn,0. It is
stated that adiabatic time evolution away from the solenoid is not affected by interactions,
so that we can set V = 0. The one-particle states ψn,0 evolve, up to a phase, to ψn,φ0

, which
is unitarily related to ψn+1,0. The n-dependence of the normalization constants is neglected:
ψn+1,0(z) ≃ zψn,0(z). Thus if ΨL

N =
∑
a(m1, ..,mN )ψm1,0 ∧ .. ∧ ψmN ,0, the adiabatically

evolved state will be, up to the unitary U

U−1UAΨL
N (z1, .., zN ) ≃

∑

m1,..,mN

a(m1, ..,mN )ψm1+1,0 ∧ .. ∧ ψm1+1,0

≃
∑

m1,..,mN

a(m1, ..,mN )z1..zNψm1,0 ∧ .. ∧ ψm1,0

= z1..zNΨL
N (z1, .., zN ).

A plasma analogy gives access to the one-particle density ρh(z) of the obtained excited state:
ρh(z) should converge very fast to (3 · 2πl2)−1 away from the origin (|z| → ∞), and

∫

R2

(ρh(x, y) − 1

3 · 2πl2 )dx dy = −1

3
. (3.4)

The excited state is therefore called a quasihole state: in the limit of infinitely many particles,
it represents a uniform gas of charge density −e(3 · 2πl2)−1 except that there is a hole at
the origin which leads to an overall missing charge −e/3 (fractional charge of the quasihole).
Hence during the adiabatic flux increase, a charge −e/3 has been transferred from the origin
to infinity. This leads to a fractional Hall conductance.

It is interesting to observe that there is a double use of the adiabatic flux increase: it is
invoked to show that the Hall conductance is fractionally quantized, but also to show the
existence of exited states describing a fractionally charged hole.

Hall conductance as a relative index. The (integer) Hall conductance for non-interac-
ting electrons can be characterized as a Chern number when there is a doubly periodic
background potential on the plane, or when the electrons are placed on a torus. When the
background potential is not periodic, but macroscopically homogeneous, it can be expressed
as a non-commutative Chern number (see [BvESB94]), which in turn can be expressed as
the relative index of a pair of projections. In [ASS94] the Hall conductance is related to
an index without non-commutative geometry. Let H1(φ) be a one-particle Hamiltonian
representing a particle in an infinite plane with a flux tube in the origin and a magnetic
field perpendicular to the surface. Let P1(φ) be the projection onto the ground state of
H1(φ). Due to gauge periodicity, P1(φ0) = UP (0)U−1. The relative index gives a precise
meaning to trP1(φ0)− trP1(0) in case the traces are infinite-dimensional. The difference may
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be interpreted as a charge deficiency, i.e., the difference in the number of electrons in the
ground states at the two values of the flux. If we regard P1(φ) as the one-particle reduced
matrix of a many-particle state, trP1(φ0) − trP1(0) is an analogue of (3.4). Note however
that subtleties show up: due to gauge invariance, the one-particle densities of P1(φ0) and
P1(0) are identical, so that a strict analogue of (3.4) would give zero.

3.2 Charge transport on a cylinder

Based on Laughlin’s cylinder argument, Tao and Wu [TW84] have suggested that a fractional
transport on the cylinder requires ground state degeneracy. They present the picture that,
at filling factor 1/3, there are three ground states; adding one flux quantum shifts the system
from one ground state to the other. Only after addition of three units of flux does the system
return to itself, so that Laughlin’s argument would guarantee an integer transferred charge
only after addition of three flux units, leading to a fractional charge.

For Hall systems on tori, the Chern number approach requires indeed a ground state de-
generacy in order to explain fractional quantization of the Hall conductance. For cylinder
systems, the significance of ground state degeneracy is not quite clear. Since the connection
to charge transport has motivated the investigations of this thesis, let us go into some detail.

In the following, units are chosen so that ~ = 1, eBz = −1, l = 1,m = 1. We adopt a
simple model for the bulk charge transport, induced by a variable flux threading a cylinder
[0, L] × R/(2πRZ). Consider the N -particle Hamiltonian

H(φ) =
∑

j

1

2
(v2

xj
+ vyj

(φ)2) +
∑

j

W (zj) +
∑

j<k

V (zj − zk), (3.5)

where the velocity operators are

vxj
= −i∂xj

, vyj
(φ) = −i∂yj

− (x− φ

2πR
).

We do not yet specify boundary conditions. Let χ be a switch function, i.e., a function with
derivative χ′ ∈ C∞

0 (]0, L[) such that χ′ ≥ 0 and χ(0) = 0, χ(L) = 1. We suppose that χ′

has its support in the middle of the cylinder, away from boundaries. According to Faraday’s
law, a time-dependent flux φ(t) will generate an electric field of strength φ̇/(2πR) around
the cylinder axis which together with the magnetic field gives rise to a Hall current along the
cylinder axis. The χ′-averaged current in the x-direction is

Iχ = −1

2

N∑

j=1

(χ′(xj)vxj
+ vxj

χ′(xj)).

The flux φ is slowly increased from 0 to the flux quantum φ0 = 2π: let f ∈ C1([0, 1]; R) be a
monotone increasing function with f(0) = 0, f(1) = 2π and let φ(t) := f(t/τ ) for some time
scale τ > 0. The associated propagator in the rescaled time s = t/τ satisfies

i∂sUτ (s) = τH(f(s))Uτ (s), Uτ (0) = 1. (3.6)

Let the system be initially in a state described by a projection P of trace q, and let Pτ (s) :=
Uτ (s)P (0)Uτ (s)∗ be the time evolved projection. The current and total charge transport are
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given by

Iτ (s) :=
1

q
trPτ (s)Iχ, Qτ (s) := τ

∫ 1

0

Iτ (s)ds. (3.7)

We are interested in expectation values of this current when the flux φ is adiabatically
changed, i.e. in limits of the quantities above in the limit τ → ∞. In view of Ey =

φ̇(t)/(2πR) = −f ′(t/τ )/(τ2πR) this corresponds to the limit of small electric fields Ey. The
time average over the period of the flux increase of the field is φ0/2πR. A fractionally
quantized Hall conductance σH = 1

3e
2/h arises when the charge transported during the flux

increase by one flux quantum φ0 = h/e is fractional: Q = e/p, or when the charge trans-
ported during an increase by three flux units is Q = e.

We will look at two different choices of boundary conditions: quasiperiodic boundary condi-
tions lead to the characterization of Hall conductance as a Chern number, whereas spectral
boundary conditions are the natural setting for the cylinder Laughlin wave function.

It is commonly stated that the quantization of charge transport in Laughlin’s state follows
from the correct value of the average density. This is based on the picture that, in the
absence of impurities, the (bulk) conductance equals the electronic charge density. This can
be checked for the torus geometry (see the next subsection), where the adiabatic increase of
the flux results in an overall translation of the system. As a result, one gets, for W = 0, a
charge transport in terms of the one-particle density ρ(x, y)

QA(φ) ∝ 1

2πR

∫ φ

0

(∫

[0,L]×[0,2πR]

χ′(x)ρ(x− φ′

2πR
, y)dxdy

)
dφ′. (3.8)

For a cylinder with boundaries, such a formula holds at best in the limit of infinitely long
cylinders. If the one-particle density has period 3/R in the direction of the cylinder axis,
and we extend the x-integration in (3.8) to R, the average charge transport after addition of
three flux units is proportional to

1

2πR

∫ 3·2π

0

(∫

R×[0,2πR]

χ′(x)ρ(x− φ

2πR
, y)dxdy

)
dφ

= (

∫

R

χ′(x)dx)(

∫

[0,3/R]×[0,2πR]

ρ(u, y)dudy) = 3 · 2πρ̄

where ρ̄ is the average density. Thus if the average density is ρ̄ = (3 · 2π)−1, we obtain an
integer transport after addition of three flux units and a correct quantization of the Hall
conductance. The question whether 3/R is the smallest period of the one-particle density
does not play a role. However, the symmetry breaking is consistent with the heuristic that
“it takes three flux units before the system returns to itself”.

The following two subsections are devoted to the proof of formulas of the type (3.8) on
tori (i.e., cylinders with periodic boundary conditions) and cylinders with spectral boundary
conditions. The main interest on tori is to compare the formula to the interpretation of the
Hall conductance in terms of Chern numbers.

3.2.1 Periodic boundary conditions

This subsection presents the classical Chern number approach (see [KS90, ASS94]) in a way
slightly different from the usual way. Our presentation simplifies the comparison with charge
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transport on cylinders as defined in the next section. This section also aims at clarifying
the relationship between the characterization of the Hall conductance as a Chern number
and the common saying “the correct quantization of Hall conductance in Laughlin’s state is
obvious provided it has the right one-particle density”.

Quasiperiodic boundary conditions in the direction along the cylinder axis are defined in
terms of the magnetic translations t(L)ψ(z) = eiLyψ(z −L). It proves useful to consider the
family of boundary conditions t(L)ψ = eiβψ. Thus we should consider the Hamiltonian of
(3.5) with these boundary conditions; call it Ĥ(β, φ). In order to make the β-dependence
more explicit and get a nice representation of the current Iχ, we will work with the unitarily
related Hamiltonian

H(β, φ) =
N∑

j=1

1

2
(vxj

(β)2 + vyj
(φ)2) +

∑

j

W (zj) +
∑

j<k

V (zj − zk), (3.9)

vxj
(β) = −i∂xj

− βχ′(xj), vyj
(φ) = −i∂yj

− (x− φ

2πR
) (3.10)

with the β-independent boundary conditions t(L)ψ = ψ. The current can be represented as
a derivative:

Iχ(β, φ) =
∂H

∂β
(β, φ).

We will need the following hypotheses:

H1: We say a function ψ : [0, L] × [0, 2πR] fulfills the condition (QP) if it can be extended
to a function ψ̃ ∈ C∞(R2) satisfying the quasiperiodicity condition

ψ̃(x+ L, y) = e−iLyψ̃(x, y), ψ̃(x, y + 2πR) = ψ̃(x, y). (3.11)

Let D0 be the set of N -particle functions ψ ∈ L2(([0, L] × [0, 2πR])N ) that satisfy (QP) in
each variable. There is a family of self-adjoint operators H(β, φ) with common domain D
and common core D0, given on D0 by the expression (3.9).

H2: The family of Hamiltonians is smooth and has a band bordered by gaps:

(i) Consider (β, φ) 7→ H(β, φ) as a map from R2 to B(D,HN ), the space of bounded
operators from D equipped with the graph norm of H(0, 0) to HN . Then H(·, ·) is
twice continuously differentiable.

(ii) There are two real-valued, continous functions g− ≤ g+ and ǫ > 0 such that for all β, φ:

dist
{
g+(β, φ), g−(β, φ)}, σ(H(β, φ))

)
> ǫ

and the spectral projection P (β, φ) of of H(β, φ) associated with [g−, g+](β, φ) is finite-
dimensional, of (constant) dimension q > 0.

Remarks: 1. The family of Hamiltonians is gauge-periodic:

H(β + 2π, φ) = ei2π
PN

j=1 χ(xj)H(β, φ)e−i2π
PN

j=1 χ(xj)

H(β, φ+ 2π) = ei
PN

j=1 yj/RH(β, φ)e−i
PN

j=1 yj/R.
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2. The HamiltonianH(β, φ) is unitarily related to a more standard operator, used in [ASS94]:
let H̃(β, φ) be defined exactly as H(β, φ) except that the velocity operator in the y-direction
is vy(β) = −i∂y − β/L. Then

H(β, φ) = eiβ(χ(xj)−xj/L)H̃(β, φ)e−iβ
PN

j=1(χ(xj)−xj/L).

H1 and H2(i) ensure the existence and uniqueness of the propagator Uτ (β, s) (i∂sUτ (β, s) =
τH(β, f(s))Uτ (β, s)). Let Pτ (β, s) := Uτ (β, s)P (β, 0)Uτ(β, s)∗ be the time evolved projec-
tion. The adiabatic limits (τ → ∞) of the current and charge transport are characterized by
the following two theorems:

Theorem 3.1. ([ASY87, KS90]) Suppose H1 and H2 hold and define the current Iτ and
charge transport Qτ as in (3.7). Then the current is a 2π-periodic function of β whose
average in the large τ limit is

1

2π

∫ 2π

0

Iτ (β, s)dβ =
f ′(s)

τ

1

2πq

∫ 2π

0

trP [(∂βP ), (∂φP )](β, f(s))dβ +O(1/τ2) (3.12)

uniformly in s ∈ [0, 1]. As a consequence, the average charge transport is

1

2π

∫ 2π

0

Qτ (β)dβ =
1

q
c(P ) +O(1/τ )

where c(P ) = i
2π

∫
[0,2π]×[0,2π]

trP [(∂φP ), (∂βP )](β, φ)dβdφ is an integer, the Chern number

associated with the gauge periodic family of projections P (β, φ).

Theorem 3.2. Suppose in addition to H1 and H2 that there is no background potential:
W = 0 in (3.6). Let ρ(x, y;β, φ) be the one-particle density associated to the density operator
q−1P (β, φ). Then

Iτ (β, s) = −f
′(s)

τ

1

2πR

∫

[0,L]×[0,2πR]

ρ(x, y;β, f(s))χ′(x)dxdy +O(1/τ2) (3.13)

ρ(x, y;β, φ) = ρ(x− φ

2πR
, y +

β

L
; 0, 0). (3.14)

(3.13) holds uniformly in (β, s) ∈ R × [0, 1]. The current and the charge transport are
independent of β.

Remark. The one-particle density is the function ρ : [0, L] × [0, 2πR] → R such that for all
continuous f : [0, L] × [0, 2πR] → C,

1

q
trP

N∑

j=1

f(xj , yj) =

∫

[0,L]×[0,2πR]

ρ(x, y)f(x, y)dxdy.

In (3.14) we consider ρ as a doubly periodic function from R2 to R.

Proof of Theorem 3.1. Details of the proof can be found in [KS90]. We recall the key idea
behind (3.12): the current can be rewritten in terms of the persistent current formula

Iτ (β, s) =
∂Eτ

∂β
(β, s) +

i

qτ
trPτ [(∂sPτ ), (∂βPτ )](β, s). (3.15)
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where Eτ (β, s) := q−1trP (β, s)H(β, f(s)) is a 2π - periodic function of β. The adiabatic
theorem allows to prove

trPτ [(∂sPτ ), (∂βPτ )](β, s) = f ′(s)trP [(∂φP ), (∂βP )](β, f(s)) +O(1/τ )

uniformly in β, s. Inserting this into (3.15) and taking the average over β, we get (3.12).

Proof of Theorem 3.2. The key observation is that the Hamiltonian is not only gauge-periodic,
but gauge-constant. For ψ ∈ L2([0, L] × [0, 2πR]), let

u(β, φ)ψ(x, y) := eiβχ(x)ψ(x− φ

2πR
, y +

β

L
)

where ψ is identified with its quasiperiodic extension as in (3.11). The unitary u preserves
the set of smooth quasiperiodic functions. To see this, consider χ as a function in C∞(R)
with the quasiperiodicity χ(x + L) = χ(x) + 1 (this is compatible with χ′ ∈ C∞

0 (]0, L[),
χ(0) = 0 and χ(L) = 1). For ψ ∈ D0, let ψ̃ := u(β, φ)ψ̃. Then ψ̃ ∈ C∞(R2) and

ψ̃(x+ L, y) = eiβχ(x+L)ψ(x+ L, y +
β

L
)

= eiβ(χ(x)+1)e−iL(y+β/L)ψ(x, y +
β

L
)

= eiβχ(x)e−iLyψ(x, y +
β

L
) = e−iLyψ̃(x, y).

The y-periodicity of ψ̃ is obtained in a similar way. Thus u(β, φ) satisfies (QP). Let V (β, φ) :=
u(β, φ)⊗N . Then V (β, φ) leaves the domain of definition of H(β, φ) invariant, and

H(β, φ)V (β, φ) = V (β, φ)H(0, 0)V (β, φ)−1, H(β, φ) = V (β, 0)H(0, φ)V (β, 0)−1 (3.16)

for all β, φ ∈ R, and (3.14) follows from P (β, φ) = V (β, φ)P (0, 0)V (β, φ)−1. Moreover, the
propagators are related through Uτ (β, s) = V (β, 0)Uτ (0, s) so that the time evolved projec-
tions Pτ (β, s) and Pτ (0, s) are unitarily related. As a consequence, the energy Eτ (β, s) =
Eτ (0, s) does not depend on β, the persistent current ∂βEτ in (3.15) vanishes and

Iτ (β, s) =
if ′(s)

qτ
trP [(∂φP ), (∂βP )](β, f(s)) +O(1/τ2) (3.17)

uniformly in β, s. In order to evaluate trP [(∂φP ), (∂βP )], we use the Chern-Simons formula
(see [KS90], Lemma 3.2) which gives

trP [∂βP, ∂φP ](β, φ) = ∂βtrP (0, φ)V (β, 0)−1(∂φ(V (β, 0))) − ∂φtrP (0, φ)V (β, 0)−1(∂β(V (β, 0))

= −∂φtrP (0, φ)V (β, 0)−1(∂βV )(β, 0).

By an explicit computation, i∂βu(β, 0)ψ = ( i
L∂y − χ(x))u(β, 0)ψ, whence

trP [∂βP, ∂φP ] = −∂φtrP (β, φ)
N∑

j=1

(
i

L
∂yj

− χ(xj)). (3.18)
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Now let ψ ∈ L2([0, L]× [0, 2πR]) fulfill (QP). For β, φ ∈ R, let ψ̃ := u(β, φ)ψ. Again, consider
χ as a quasiperiodic function (χ(x+ L) = χ(x) + 1).

〈u(β, φ)ψ, (
i

L
∂y − χ(x))u(β, φ)ψ〉

=

∫ L+φ/2πR

φ/2πR

∫ 2πR

0

(ψ(x, y)
i

L
(∂yψ)(x, y) − χ(x+

φ

2πR
)|ψ(x, y)|2)dxdy

=

∫ L

φ/2πR

∫ 2πR

0

(ψ(x, y)
i

L
(∂yψ)(x, y) − χ(x+

φ

2πR
)|ψ(x, y)|2)dxdy

+

∫ φ/2πR

0

∫ 2πR

0

(ψ(x+ L, y)
i

L
(∂yψ)(x+ L, y) − χ(x+

φ

2πR
+ L)|ψ(x+ L, y)|2)dxdy

=

∫ L

0

∫ 2πR

0

(ψ(x, y)
i

L
(∂yψ)(x, y) − χ(x+

φ

2πR
)|ψ(x, y)|2)dxdy.

In passing to the last line, we used the relation

ψ(x+ L, y)∂yψ(x+ L, y) = ψ(x, y)∂yψ(x, y) − iL|ψ(x, y)|2

deduced from (3.11). Thus we get

〈u(β, φ′)ψ, ( i
L
∂y − χ(x))u(β, φ′)ψ〉|φ

′=φ
φ′=0 =

∫ L

0

∫ 2πR

0

(χ(x) − χ(x+
φ

2πR
))|ψ(x, y)|2dxdy.

A similar computation gives

trP (β, φ′)
N∑

j=1

(
i

L
∂yj

− χ(xj))|φ
′=φ

φ′=0 =

∫ L

0

∫ 2πR

0

(χ(x) − χ(x+
φ

2πR
)ρ(x, y)dxdy.

If we differentiate this equation, change variables (note that χ′ and ρ are periodic) and use
(3.18), we get

trP [∂βP, ∂φP ](β, φ) =
1

2πR

∫ L

0

∫ 2πR

0

χ′(x)ρ(x− φ

2πR
, y)dxdy

which gives, together with (3.17) and (3.14), the desired identity (3.13).

Thus we see how the representation of the Hall conductance through an adiabatic curvature
and the saying “Hall conductance = one-particle density” (in the absence of background
potential) fit together.

Theorem 3.2 is just one among several arguments relating the Hall conductance to the one-
particle density in the absence of a background potential. This way of proving it is interesting
insofar as it allows a direct comparison with the Chern number approach and facilitates the
comparison with the spectral boundary conditions setting of the next subsection.

Furthermore, this theorem generalizes a result by Tao and Haldane. In [TH86], they compute
the Chern number associated to the family of projections onto flux-dependent Laughlin-type
wave functions on a torus.
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3.2.2 Spectral boundary conditions

Instead of (quasi)periodic boundary conditions, we can use the spectral or chiral boundary
conditions introduced in [AANS98]. The treatment of charge transport in this subsection
follows closely the PhD thesis by Richter [Ric00]. Before we turn to the charge transport, let
us recall some facts about spectral boundary conditions.

Spectral boundary conditions: one particle. Let [a, b] ⊂ R, R > 0 and φ ∈ R.
Consider the formal operator in L2([a, b] × [0, 2πR]) given by

H(φ) =
1

2
(−i∂x)2 +

1

2
(−i∂y − (x− φ

2πR
))2.

We will consider H(φ) with periodic boundary conditions in the y-direction, thus it is useful
to work with Fourier series: let U be the unitary

U :
⊕

k∈Z

L2([a, b]) → L2([a, b] × [0, 2πR]), (fk)k∈Z 7→
∑

k∈Z

eiky/Rfk(x).

Then formally,

U−1H(φ)U =
⊕

k∈Z

h((k +
φ

2π
)
1

R
), h(ρ) =

1

2
(−∂2

x + (x− ρ)2). (3.19)

For ρ ∈ R, let Bρ be the set of functions f : [a, b] → C that are C∞ and satisfy the ρ-
dependent boundary conditions

ρ < a : f ′(a) = 0, f ′(b) = (ρ− b)f(b)

a ≤ ρ ≤ b : f ′(a) = (ρ− a)f(a), f ′(b) = (ρ− b)f(b)

ρ > b : f ′(a) = (ρ− a)f(a), f ′(b) = 0.

Then Bρ → L2([0, L]), f 7→ 1
2 (−∂2

x + (x − ρ)2)f is essentially self-adjoint. We take h(ρ)
as its self-adjoint closure and define H(φ) through (3.19). The spectrum of h(ρ) consists of
simple eigenvalues e0(ρ) < e1(ρ) < ... where the smallest eigenvalue e0(ρ) is always ≥ 1/2 and
e0(ρ) = 1/2 if and only if ρ ∈ [a, b]. The resolvents ρ 7→ (h(ρ) + i)−1 are norm-continuous,
but not norm-differentiable: the smallest eigenvalue has a non-zero left derivative in a. From
this we get the following properties of H(φ):

1. H(φ) is norm-resolvent continuous in φ.

2. For n ∈ Z, φ ∈ R, let ψn(x, y;φ) = exp(iny/R) exp(−(x− n+φ/2π
R )2/2). The Hamilto-

nian has the finite dimensional ground state

N (H(φ) − 1

2
) = span{ψn | n ∈ Z : a ≤ n+ φ/2π

R
≤ b}. (3.20)

Loosely speaking, one may say that the spectral boundary condition leaves the form
of the lowest Landau level basis functions unchanged; the only effect of the boundary
conditions is to pick out those Gaussians that are centered inside [a, b].

3. H(φ) is gauge periodic: H(φ+ 2π) = eiy/RH(φ)e−iy/R.
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In view of the definition of charge transport, it is important to notice that H(φ) does not
satisfy H1, since the domain of definition is φ-dependent. Moreover, the ground state does
not satisfy H2. Indeed, the gap above the ground state

g(φ) := min
E∈σ(H(φ)\{1/2}

(E − 1

2
) ≤ min{e0(

n+ φ/2π

R
) − 1

2
| n+ φ/2π

R
/∈ [a, b]}.

is strictly positive for all values of the flux φ, but discontinuous for flux values where
n + φ/2π ∈ {Ra,Rb} for some integer n ∈ Z and approaches zero in those points. These
values also correspond to discontinuities of the projection onto the ground state (3.20) of
H(φ).

The fact that H(φ) does not satisfy H1 and H2 leads to technical complications. For example,
the existence of time evolution becomes more complicated.

Proposition 3.3. Let τ > 0 and φ(·) ∈ C∞([0, 1]) such that φ̇ > 0. Then there exists
a unique map of unitaries Uτ (s), s ∈ [0, 1] that is strongly differentiable, and such that
DH(φ(0)) ⊂ D(H(φ(s)) for all s ∈ [0, 1] and

i∂sUτ (s) = τH(φ(s))Uτ (s), Uτ (0) = 1.

Proof. We give only a sketch of proof, following [Ric00], Lemma 1.4.1 but correcting a small
mistake done there. The main idea is to note that the Hamiltonian is equivalent to a (non
self-adjoint) operator with constant boundary conditions. First remark that it is enough to
prove the existence of the solution to the time-dependent Schrödinger equation

i∂su(s) = τh(ρ(s))u(s) (3.21)

in L2([a, b]). Define the ρ-dependent function

fρ(s) =






1
2

b−ρ
b−a (x− a)2, ρ < a,

1
2 (x− ρ)2, a ≤ ρ ≤ b.
1
2

a−ρ
a−b (x− b)2, ρ > b.

A smooth function g satisfies the boundary conditions (Bρ) if and only if g̃ = efρg satisfies the
von Neumann boundary conditions g̃′(a) = g̃′(b) = 0. Moreover, if i∂sg(s) = τh(ρ(s))g(s),
then

i∂sg̃(s) = (τefρ(s)h(ρ(s))e−fρ(s) + i
∂fρ

∂ρ

dρ

ds
)g̃(s) =: A(s)g̃(s)

The right-hand side is well-defined for ρ(s) /∈ {a, b}. On those intervals the operator A(s),
although not self-adjoint, is better behaved than h(ρ(s)) and a classical result (cf. [RS75])
ensures the solvability of the equation. We can patch together a continous, piecewise dif-
ferentiable solution and then apply e−fρ to obtain a continuous, piecewise differentiable
solution g(s) of the time-dependent Schrödinger equation (in particular, g(s) ∈ D(h(ρ(s))
for all s ∈ [0, 1]). Then (3.21) and the continuity of h(ρ) imply that g(·) is actually strongly
differentiable.

Multiparticle Hamiltonian. The previous considerations lead us to a different set of
assumptions on H(φ). Let W be a background potential and V an interaction potential
between the particles.
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H’1: For each φ ∈ R, the operator

H(φ) =

N∑

j=1

Hj(φ) +

N∑

j=1

W (zj) +
∑

1≤j<k≤N

V (zj − zk)

is selfadjoint, and its domain is the same as for W = V = 0; Hj(φ) is the spectral boundary
Hamiltonian for the j-th particle.

H’2: The time evolution exists and has an adiabatic limit:

(i) Let φ(·) ∈ C∞([0, 1]) with φ̇ > 0, and τ > 0. There is a strongly differentable unitary
Uτ (·) such that Uτ (0) = 1, Uτ (s)D

(
H(φ(0))

)
⊂ D

(
H(φ(s))

)
for all s ∈ [0, 1], and

i∂sUτ (s) = τH(φ(s))Uτ (s).

(ii) There is a continuous, piecewise differentiable family of finite-dimensional projections
P (φ) leaving the domain of H(φ) invariant and commuting with H(φ), such that

lim
τ→∞

Uτ (s)P (φ(0))Uτ(s)∗ = P (φ(s))

for all s ∈ [0, 1].

Lemma 3.4. Assume H’1 and H’2. Let the charge transport be defined as in (3.7). Let
q := trP (φ) and ρ(x, y;φ) be the one-particle density associated to q−1P (φ). Then the charge
transport in the adiabatic limit is

lim
τ→∞

Qτ = −q−1trP (φ(s))
N∑

j=1

χ(xj)|s=1
s=0

= −
∫ b

a

∫ 2πR

0

χ(x)(ρ(x, y;φ(1))− ρ(x, y;φ(0))dxdy.

Sketch of proof. We observe that i[H(φ),−∑N
j=1 χ(xj)] = Iχ in the sense of quadratic forms,

i.e. for all functions ψ in the domain of H(φ), we have

i〈H(φ)ψ,−
N∑

j=1

χ(xj)ψ〉 − i〈−
N∑

j=1

χ(xj)ψ,H(φ)ψ〉 = 〈ψ, Iχψ〉.

This is shown by an integration by parts. The spectral boundary conditions on ψ are needed
to ensure that the boundary terms arising in the integration by parts vanish. (With quasiperi-
odic boundary conditions, the previous commutator relation does not hold in the sense of
quadratic forms.) It follows that for ψ ∈ D(H(φ)),

∂s〈Uτψ,−
N∑

j=1

Uτψ〉 = 〈Uτψ, IχUτψ〉.

This implies that

Qτ = −1

q
trUτ (s)P (0)Uτ (s)∗

N∑

j=1

χ(xj)|s=1
s=0.

Passing to the limit τ → ∞, we obtain the desired result.
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Lemma 3.4 motivates the following definition:

Definition 3.5. Let P (φ), φ ∈ R be a norm-continuous family of projections in L2(([a, b] ×
[0, 2πR])N ) and χ ∈ C∞([a, b]) a switch function of finite dimension q > 0. Then

QA(φ) := −q−1tr(P (φ) − P (0))
N∑

j=1

χ(xj)

is called the adiabatic charge transport through suppχ′ when the flux is varied from 0 to φ.

Charge transport as adiabatic curvature. The map ψ ∈ L2([a, b]× [0, 2πR]) 7→ eiβχ(x)ψ
leaves the spectral boundary conditions unchanged. Define H(β, φ) through (3.5) with spec-
tral boundary conditions. Then H(β, φ) is unitarily related to H(φ) through

H(β, φ) = eiβ
PN

j=1 χ(xj)H(φ)e−i
PN

j=1 βχ(xj).

(This is to be compared with (3.16).) If P (φ) is a projection as in the previous lemma, let

P (β, φ) := eiβ
PN

j=1 χ(xj)P (φ)e−iβ
PN

j=1 χ(xj). Then the adiabatic charge transport QA(φ) can
be expressed as an integral of the adiabatic curvature P [∂βP, ∂φP ] and is independent of β:

QA(φ) = −q−1

∫ φ

0

trP [∂βP, ∂φP ](β, φ′)dφ′.

This is to be compared with Theorem 3.12. Thus the adiabatic charge transport on a finite
cylinder (spectral boundary conditions) is an integral of an adiabatic curvature, just as it is
for the torus. The projections P (β, φ) that arise typically are gauge constant in β, but not
gauge periodic in φ. Hence contrary to the torus case, there is no Chern number associated
to the projection.

Flux dependent Laughlin functions. The advantage of Lemma 3.4 is that it allows
to associate a “charge transport” to a family of projections without making reference to a
Hamiltonian or a time evolution. If we wish to apply this to Laughlin’s state, we need to
define a flux-dependent wave function that coincides with Laughlin’s wave function at flux
φ = 0. There are two natural candidates:

Ψ
(1)
N,φ(z1, .., zN ) :=

∏

1≤j<k≤N

(ezj/R − ezk/R)3e−
PN

j=1(xj− φ
2πR )2/2 (3.22)

Ψ
(2)
N,φ(z1, ..., zN ) :=

∑

0≤m1<..<mN≤3N−3

aN (m1, ..,mN )ψm1,φ ∧ .. ∧ ψmN ,φ (3.23)

In (3.23), aN (m1, ..,mN ) are the expansion coefficients of Chapter 2, and ψm,φ are normalized
ground state functions of H(φ) (spectral boundary conditions) restricted to the y-momentum
sector i∂yψ = m

Rψ: let fρ ∈ L2([a, b]) be a normalized ground state function of h(ρ), then

ψm,φ(z) =
1√
2πR

eimy/Rf(m+φ/2π)/R(x).

Note that

a ≤ m+ φ/2π

R
≤ b ⇒ ψm,φ(z) ∝ eimy/Re−(x−(m+φ/2π)/R)2 .

Both choices have their advantages and inconvenients. The function (3.22) shares the multi-
plicity of zeroes of Laughlin’s wave function: as two particles get close zj−zk → 0, it vanishes
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as O((zj − zk)3). It is the cylinder version of the function given in [TG91] for electrons on an
annulus. However, it is made of wedge products of eigenfunctions of the one-particle Hamil-
tonian with spectral boundary conditions in L2([a, b]× [0, 2πR]) only as long as a ≤ φ/2πR,
(3N − 3 + φ/2π)/R ≤ b.
The function (3.23) is built using adiabatic time evolution in the absence of interactions and
background potential. It is always a sum of Slater determinants of eigenfunctions of H1(φ).
But it does not have zeroes of order 3 as two particles approach.
Of course, we expect that both functions have the same bulk properties as the cylinder gets
infinite. Intuitively, in the bulk, for both functions, increasing the flux from 0 to φ just shifts
the function by an amount of φ/2πR along the cylinder axis, and we expect that the charge

transport is essentially given by a formula of the type (3.8). We check this for Ψ
(2)
N and time

evolutions that leave the wave function in the bulk.

Proposition 3.6. Let φ ∈ R, and P (φ) be the projection in L2(([a, b]× [0, 2πR])N ) on Ψ
(2)
N,φ,

d > 0, and χ a switch function with suppχ′ ⊂]a+d, b−d[. Let QA(φ) be the charge transport

associated with P (φ) through Definition 3.5. Suppose Ψ
(2)
N,0 and Ψ

(2)
N,φ are bulk states, i.e.,

a ≤ 0 ≤ (3N − 3)/R ≤ b and a− φ/2π ≤ 0 ≤ (3N − 3)/R ≤ b− φ/2π. Then

QA(φ) =

∫

[a,b]×[0,2πR]

(χ(x+ φ/2πR) − χ(x))ρ(x, y)dxdy + o(1) (3.24)

as dist (suppχ′, {a + |φ|/2πR, b − |φ|/2πR}) → ∞, uniformly in the number of particles N .

Here, ρ(x, y) is the one-particle density of Ψ
(2)
N,φ.

Proof. Let ρ(x;φ) :=
∫ 2πR

0
ρ(x, y;φ)dy be the y-integrated density of Ψ

(2)
N,φ. For φ ∈ R, let

φ′ := φ/2π. We consider only φ > 0 and suppose d ≥ φ′. Then

ρN (x;φ) =
3N−3∑

k=0

nkdk+φ′e−(x−(k+φ′)/R)2

where 0 ≤ nk ≤ 1 are φ-independent, and dρ = (
∫ b

a
e−(x−ρ/R)2dx)−1. Let 0 ≤ m < M ≤

3N − 3 and set

ρL(x;φ) =

m−1∑

k=0

nkdk+φ′e−(x−(k+φ′)/R)2 ρB(x;φ) =

M∑

k=m

nkdk+φ′e−(x−(k+φ′)/R)2

ρR(x;φ) =
3N−3∑

k=M+1

nkdk+φ′e−(x−(k+φ′)/R)2

(roughly, left edge, bulk and right edge contributions). We have to estimate the difference

∫ b

a

χ(x)(ρ(x;φ)− ρ(x; 0))dx−
∫ b

a

(χ(x+ φ′/R) − χ(x))ρ(x; 0)dx = R+B + L

where R,B,L are obtained from the left-hand side by replacing ρ with ρR, ρB, ρL. The three
contributions are estimated separately.
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Bulk. The bulk remainder can estimated as

|B| = |
∫ b

a+φ′

χ(x)(ρB(x;φ) − ρB(x− φ′/R; 0))dx+

∫ b

b−φ′

ρB(x; 0)dx|

≤
M∑

k=m

nk

∫

R

|dk+φ′ − dk|e−(x−(k+φ′)/R)2dx+
M∑

k=m

nkdk

∫ ∞

b−φ′

e−(x−k/R)2dx

≤ √
π

M∑

k=m

|dk+φ′ − dk| +
√
π

2
( max
m≤k≤M

dk)(

M∑

k=m

erfc(b− (k + φ′)/R)).

where erfc(u) := 2√
π

∫ ∞
u
e−x2

dx is the complementary error function. Let c ≥ maxρ/R∈[a,b] dρ

(c is essentially 2/
√
π when b− a is large). Then one can show that

|dk+φ′ − dk| ≤ c2
√
π

2
(erfc(

k

R
− a) + erfc(b− k + φ′

R
)).

By the good decay properties of erfc, we get a bound of the type

|B| ≤ F (
m

R
− a) + F (b− M + φ′

R
),

where F is independent of N,m,M, φ and goes to zero at infinity.

Left edge. Suppose (m+ φ′)/R ≤ a+ d. Then

|L| ≤
∫ b

a+d−φ′/R

ρ(x;φ)dx+

∫ b

a+d

ρ(x; 0)dx

≤ √
π

m∑

k=0

erfc(a+ d− k + φ′

R
) ≤ √

π

m∑

k=0

erfc(a+ d− k + φ′

R
)

≤ F (a+ d− m+ φ′

R
)

for some function F going to zero at infinity.

Right edge. Using
∫ b

a

ρR(x;φ)dx =

3N−3∑

k=M+1

nk =

∫ b

a

ρR(x; 0)dx,

one rewrite R as an integral involving χc := 1 − χ. As for the left edge, we obtain a bound

|R| ≤ F (
M + φ′

R
− (b− d))

if (M + φ′)/R ≥ b− d.

Choosing m/R well between a and a+d−φ′/R, (M +φ′)/R well in between b−d and b and
putting together the estimates of B,L,R one sees that the sum B + L+ R is small when d
is large.

Differentiating (3.24) with respect to φ and passing to the limit of infinite cylinders, we obtain
a formula for the charge transport of the type of (3.8). The discussion of the beginning of
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the section applies, and we obtain the “correct” charge transport if the one-particle density
has the “correct” value.

To summarize, we went into some lengths to show that if Laughlin’s wave function has
the right one-particle density, it is associated to a fractionally quantized charge transport.
The picture behind this is that in the absence of impurities, slow addition of a flux acts
like translation. This can be proved rigorously on cylinders with periodic boundary con-
ditions, i.e., tori. In contrast, cylinders with spectral boundary conditions model samples
with boundaries. We expect that in the bulk, adiabatic addition of a flux quantum still
acts like a translation. A proof of this would require a simultaneous on an adiabatic and a
thermodynamic limit. Especially for systems of interacting particles, this involves some work.

Additional difficulties come from the flux-dependence of the boundary conditions and the
fact that eigenvalues cross. The first problem can be handled, on finite cylinders, by relating
the Hamiltonian to an operator with flux independent boundary conditions, at the price of
obtaining an operator that is not self-adjoint. On an infinite plane pierced by a flux tube, the
situation is more delicate, see [AHŠ05]. The second problem can be addressed by restricting
to an invariant subspace (e.g., a given y-momentum) where the crossing does not occur, or
by the use of an adiabatic theorem without a gap condition [AE99].

The violation of the gap condition reflects the fact that adiabatic time evolution does not
follow the ground state. This is clearly behind Laughlin’s use of the adiabatic flux in-
crease to obtain the quasihole excitation. On the cylinder, the situation is as described in
[TG91, GT93]: as the flux increases, a bulk ground state moves into the right edge. This is
accompanied by an energy increase. Meanwhile, a many-body state partially living on the
edge moves into the bulk, thereby decreasing its energy. In the process, energy levels may
cross.





Conclusion

We have shown that on sufficiently thin cylinders, the thermodynamic limit at filling factor
1/p of Laughlin’s state exists. The limiting state is translationally invariant and mixing with
respect to shifts by multiples of pl2/R along the cylinder axis. The state is not l2/R-periodic.
Since Laughlin’s state is the ground state of a l2/R-periodic Hamiltonian, this means that
there is symmetry breaking.

The key ingredient to our proof is the use of a product rule of expansion coefficients
in the expansion of Laughlin’s wave function into lowest Landau level basis functions. The
product rule allows the representation of Laughlin’s cylinder function as a quantum polymer.
The normalization constant is the partition function of a polymer system with translation-
ally invariant activity. Using bounds on the normalization constant, we have shown that the
activity can be rescaled to a stable activity. The polymer system is associated with a one-
dimensional renewal process. Our proof of symmetry breaking relies on a condition on the
interarrival distribution of the renewal process. Using information on the radius dependence
of the activities, we have shown that for thin cylinders, the associated renewal process has
finite mean. What happens for broad cylinders remains open.

A torus can be considered as a cylinder with periodic boundary conditions. In this sense,
cylinder and torus wave functions differ merely by boundary conditions. It is commonly ac-
cepted that Laughlin’s wave function, for small values of p, describes an incompressible liquid.
Thus intuitively, boundary conditions should not affect the bulk behavior and we expect that
the torus and cylinder functions are equivalent in the limit of long cylinders. We have defined
a class of solvable models, using functions of compact support. Under certain conditions on
the supports of the functions (next nearest neghbors overlap), the torus and cylinder func-
tions are related to monomer-dimer systems and we have shown their equivalence in the limit
of long cylinders. We believe that the solvable model gives a hint on the mechanism behind
the equivalence of the cylinder and Laughlin-type wave functions and that the method of
proof may be extended to the general case.

In view of the plasma analogy, our results can be interpreted in terms of jellium tubes.
Semiperiodic Coulomb interactions are invariant with respect to any shift. But the limiting
state of jellium tubes cannot be completely translationally invariant, since any period must
be a multiple of l2/R. Thus there is symmetry breaking on jellium tubes, for all radii. If
we view jellium tubes as quasi one-dimensional systems and invoke known results on the
one-dimensional one-component plasma, we expect a periodicity L/N = pl2/R. From the
plasma point of view, the smaller period l2/R is surprising, and it would be interesting to
have a physical interpretation.

In the limit of thin strips, we recover the expressions of the excess free energies and one-
particle densities for one-dimensional jellium systems. The free energy at large radii should
approach the fully two-dimensional free energy. This leads to a conjecture consistent with
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bounds on the normalization constants that we have derived.
Thus the tube interpolates nicely between one- and fully two-dimensional systems. By

what is known on those systems, it follows that it interpolates between a system with no
phase transition and a system with a phase transition. This observation might be relevant
for large strips; in particular, the magnitude of p should play a role.

It is widely accepted that the ground state of FQHE system is a gapped, incompressible
liquid at FQHE fractions. It is believed that the truncated interactions reproduce this fea-
ture, at least for small p. We have shown that if the truncated interaction have a gapped
ground state, then at fractional filling there must be some kind of symmetry breaking. This
leaves open the question whether they do indeed have a gapped ground state, and of course
says nothing about “real” FQHE systems.

Finally, our results are consistent with heuristic arguments adapting Laughlin’s IQHE
argument on the cylinder to the fractional effect. In systems without background interac-
tion, the Hall conductance is directly related to the one-particle density; we have given one
derivation of this common wisdom using the Chern number approach. On cylinders with
spectral boundary conditions, we have obtained a similar result. The periodicity and the
correct average value of the density imply fractional quantization of the Hall conductance.
However, we have used a number of assumptions that are rather unsatisfying, although they
are commonly used. It would be worthwhile to obtain better results on the significance of
cylinder ground state degeneracy for the FQHE. We hope that our detailed presentation will
be useful for future investigations in this direction.
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