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Abstract
Measuring the time it takes to remove an electron from an atomormolecule during photoionization
has been the focus of a number of recent experiments using newly developed attosecond
spectroscopies. The interpretation of suchmeasurements, however, depends critically on the
measurement protocol and the specific observables available in each experiment. One such protocol
relies on high harmonic generation. In this paper, we derive rigorous and general expressions for
ionisation and recombination times in high harmonic generation experiments.We show that these
times are different from, but related to, ionisation timesmeasured in photoelectron spectroscopy: that
is, those obtained using the attosecond streak camera, RABBITT and attoclockmethods.We then
proceed to use the analyticalR-matrix theory to calculate these times and compare themwith
experimental values.

1. Introduction

The problemof time-resolving the removal of an electron during photoionization and studying the time delays
associatedwith this process is an intriguing one [1]. Besides the fundamental implications for our understanding
of atom-light interaction, suchmeasurements have the capacity to serve as a sensitive probe ofmultielectron
dynamics [2, 3] and have an important role to play in calibrating attosecond recollision-based pump-probe
experiments [4].

Indeed, recent experimental developments—including the attosecond streak camera [5], the attoclock [6, 7],
attosecond transient absorption [8], RABBIT [9–11] and high harmonic spectroscopy [4, 12, 13]—havemade it
possible tomeasure ionisation times down to the level of tens of attoseconds, both in the one-photon [5, 9, 10]
andmulti-photon regimes [4, 6–8, 12–14]. In each case, however, a thorough theoretical understanding [15–21]
of the underlying physics has been crucial to correctly interpret the experimental results. To do so, it is necessary
to formulate a connection between the classical concept of time, the quantumwavefunction and the
experimental observables. The times obtained are inherently very sensitive to theway inwhich this is done.

In the one-photon case, the theoretical basis for doing so is nowwell-established (e.g. see [1, 22]). Ionisation
is thought of as a half-scattering process and time delays are defined in terms of the Eisenbud–Wigner–Smith
(EWS) time [23, 24]: the derivative of the scattering phase-shift of the photoelectronwith respect to its energy,
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In themultiphoton regime, however, the situation is notably less straightforward. If we think of ionisation as
a tunnelling process, we are presentedwith a number of different possible definitions for the tunnelling time,
and it is not clear from the outset which is the ‘correct’ time to use (e.g. see [25–27]).What’smore, the use of any
of these definitions in the context of strong field ionisation necessarily restricts us to the tunnelling limit. It is not
clear a-priori how to take non-adiabatic effects into account or how to investigate the effect on time delays aswe
move towards the few-photon limit [28].
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Alternatively, the concept of ionisation time arises in anotherwaywithin certain analytical approaches to
strongfield ionisation. These include thewidely used and broadly successful strong field approximation (SFA)—
whichwe use here as an umbrella term for the relatedwork of Keldysh [29], Perelomov et al [30, 31], Faisal [32]
andReiss [33]—aswell as themore recently developed analyticalR-matrix (ARM)method [34–39]. The latter is
a fully quantum theory that is able to accurately describe the long-range Coulomb interaction between the
outgoing electron and the core—the absence of which is themain limitation of the SFA. In each of these
approaches, it is necessary to integrate over a time variable that describes the instant at which the bound electron
first interacts with the field. In analytical approaches, this integral is typically evaluated using the saddle point
method, and the real part of the complex saddle point solution, = i[ ]t tRei , is interpreted as themost probable
time of ionisation—that is, the time at which the electron appears in the continuum. The concept of saddle point
time as ionisation time also features in theCoulomb-corrected SFA approach [40, 41] (see also recent review [42]
and recent update of the theory [43]), which takes the SFA ionisation amplitude as its starting Q1point.

Recently, the above ideawas applied to analyse [3] the results of the attoclock experiment [6, 7, 14], the basic
premise of which relies on using short pulses of circularly or nearly circularly polarised light to induce ionisation
and deflect electrons in different directions, depending on their time of ionisation. UsingARM to describe this
experimental setup and applying saddle point analysis, it was possible to derive an expression for ionisation time
as a function of the angle andmomentum q( )p, at which the photoelectron is observed [3]:

q q= + D( ) ( ) ( )t t p t p, , . 2C
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0

Thefirst term, q w q= + D ( )t t p,i
0 env , is the SFA saddle point result, accurate in the limit of short-range

potentials (where w is the angular frequency of the laser field and qD ( )t p,env is a small correction due to the
shape of the pulse envelope). The second termDtC is an additional delay that comes about due to the long-range
electron-core interaction. It takes the form
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where fC is the phase accumulated by the outgoing electron due to its interactionwith the ionic core and Ip is the
ionisation potential of the bound state fromwhich the electron escaped [3]. Expression (3)has also been derived
within the ARMmethod in [37]. Applying this relationship to analyse the results of ab initio numerical
experiments, it was shown that accounting for the delayDtC was vital to correctly interpret experimental results
and reconstruct the ionisation time [3].

In fact, equation (3), whichwe can think of as the delay accumulated in a long-range potential compared to a
short-range potential, coincides with an expression for ionisation delay derived in an entirely different way. In
[28], the idea of the Larmor clock—originally proposed in the context of tunnelling times—was applied to
ionisation. It was shown to reduce to the EWS time in the single-photon limit and reproduce equation (3) in the
strongfield regime. Thus, the different definitions for times are not unrelated: there is a link between the saddle
point-based ionisation time, the Larmor tunnelling time and the EWS single-photon delay.

The attoclock, however, is not the onlymeans bywhich ionisation times can bemeasured in the strong field
regime. Two-colour high harmonic spectroscopy experiments offer another elegant and powerful approach to
this problem, using aweak probe pulse to perturb the ionisation dynamics in a controlledway [4]. In light of this,
a number of questions naturally arise. Are the timesmeasured inHHG the same as thosemeasured by the
attoclock? If not, how are they related?Howdoes the electron-core interaction imprint itself on the ionisation
and recombination times in this case?

Here, we address these questions by extending the saddle point analysis discussed above toHHG.After
briefly reviewing the basic approaches for describing time inHHG in section 2, we present a general analysis that
incorporates electron-core interaction in section 3, and discuss how such a calculation can be implemented in
practice usingARM in section 4. In section 5, we present results of this calculation and compare our findings to
times reconstructed from two-colour high harmonic spectroscopy experiments. Finally, we discuss the results
and analyse themagnitude of Coulomb corrections to times in section 6. Section 7 concludes thework.

2. Ionisation and recombination times inHHG: a brief overview

2.1. The classicalmodel
The simplest theoretical description of ionisation time in the context ofHHGcomes from the classicalmodel,
which describes the process in terms of three steps: tunnel ionisation, classical propagation in the continuum
and recombination. In the standard classicalmodel [44] (see also pertinent [45–48]), electron-core interaction is
neglected during the classical propagation step, and it is assumed that the electron starts its continuummotion
with a velocity of zero. If we also assume that recombination occurs when the electron returns to its starting
point and relate its kinetic energy at this instant to the energy of the emitted photon, we obtain the following
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three equations:
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where = +( ) ( )t tv p A is the electron velocity, A is the vector potential that describes the laserfield  = -¶
¶t

A ,
and w=wE N is the energy of the emitted photon.

For any given photon energy wE , the above equations can be solved for the ionisation time ti, the
recombination time tr and the canonicalmomentum p. As such, we can associate an ionisation and
recombination time to each harmonic number: this defines themapping between experimental observable and
time in this case. However, although excellent as a first approximation, thismodel is clearly rather crude. It
artificiallymatches a quantummechanical description of the ionisation stepwith classical propagation, assumes
very simple initial conditions for the electron’s continuummotion and ignores the influence of the positively
charged ionic core. It is not surprising, therefore, that a comparison of the above predictionswith times obtained
in high harmonic spectroscopy experiments revealed a notable discrepancy [4].

2.2. The SFA
Asmentioned in the introduction, the SFA offers amore sophisticated quantum approach to the problemof
time in strongfield ionisation, which is based on saddle point analysis. In essence, the key approximation of the
SFA is to neglect the interaction between the electron and its parent ion after the instant ionisation or,
equivalently, to assume that the core potential is short range. Doing so, the induced dipole can be expressed as
[49]:

ò ò òw = - ¢ ¢ - - ¢ - ¢w( ) ( ) ( )( ) ( )N t t P t tD p pi d d d , , e e e , 7E t I t t S t t pi i i , ,p V

where SV is theVolkov phase
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andP is a prefactor that varies relatively slowly. The times ¢t and t over whichwe integrate can be associatedwith
ionisation and recombination respectively.

The presence of a large phase, which leads to rapid oscillations of the integrand,makes it possible to evaluate
the above integral using the saddle pointmethod. It tells us that the integral will be accumulated predominantly
in the vicinity of points where the derivative of the phase vanishes, which are defined by the saddle point
equations [49, 50]:
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We shall denote the solutions to these equations by i rt tp, ,s
0 0 0.

In fact, it is easy to check that equations (10) and (11) coincide exactly with equations (5) and (6) from the
classicalmodel, while equation (9) is amodified version of equation (4): ¢ = -( )v t I2 p

2 . The latter, in fact, gives
rise to a key difference between the two descriptions.Whereas the solutions in the classicalmodel are fully real,
their counterparts in SFA are complex in general (see e.g. discussion in [51, 52]). Nevertheless, asmentioned in
the introduction, the real parts of the saddle point solutions comewith an interpretation.We can associate

= i[ ]t tRei
0 0 , = [ ]p pRe s

0 0 and = r[ ]t tRer
0 0 with the time of ionisation, canonicalmomentum and time of

recombination respectively. For short-range potentials, this interpretation is particularly transparent (e.g. see
discussion in [3]). As such, equations (9)–(11) again define amapping between time and harmonic number,
albeit a somewhat different one.

Using thismodel, it was shown that agreement with times reconstructed fromhigh harmonic spectroscopy
experiments is notably improved [4]. However, what both the classicalmodel and the SFAhave in common is
the neglect of the long-range electron-core interaction throughout the electron’smotion in the continuum. In
the context of the attoclock, we have seen that this is not sufficient: ignoring the influence of the core potential on
saddle point solutions leads to qualitatively and quantitatively incorrect results [3].Motivated by this, let us now
consider how the above solutions aremodified if we allow for an electron-core interaction term.
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3. Influence of electron-core interaction on times inHHG: a general analysis

It was shown in [34] that, within ARM, the SFA expression for the ionisation amplitude—the analogous quantity
to the induced dipole given by equation (7)—ismodified by the addition of aCoulomb term -e Wi C. This term
accounts for the effect of the long-range interaction between the outgoing electron and its parent ion. Let us now
consider what a termof this naturewould imply for times inHHG.

In particular, suppose that the integral in equation (7)now includes some additional factor - ¢( )e F t t pi , , , which
takes electron-core interaction into account. AlthoughARMcan provide uswith an explicit expression for F, to
whichwe shall return in section 4, we shall keep the analysis general for the time being.We assume only that F is
small compared to SV and allow it to be complex in general. The real part of F then specifies the phase associated
with the electron-core interaction, whichwe shall denote by f = [ ]FRe .

The saddle point equations (9)–(11) are thenmodified as follows
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and since F is small compared to SV, we can search for solutions of the form + D + D + Di i r r( )t t p p t t, ,s s
0 0 0 ,

where i r( )t p t, ,s
0 0 0 satisfy equations (9)–(11). Expanding about the SFA saddle points, keeping only first order

terms in F, and using the chain rule to rewrite the derivatives, we arrive at the following result (see appendix A):
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In general, since F is complex, these correctionswill also be complex. However, as before, we can assign an
interpretation to their real parts:D = D i[ ]t tRei andD = D r[ ]t tRer encode the delays due to the electron-core
interaction imprinted upon ionisation and recombination times respectively:

f f
D = -

¶
¶

-
¶
¶ w

( )t
I E

, 17
p

i

f
D = -

¶
¶ w

( )t
E

. 18r

There are a few thingsworth noting about the above results. First, notice that the expression for the
correction to the recombination time, fD = -¶ ¶ wt Er , is reminiscent of the EWS time given by equation (1).
Indeed, we can understand this if we recall that recombination is simply single-photon ionisation run in reverse.
Varyingwith respect to the photon energy is directly equivalent to varyingwith respect to the kinetic energy of
the recombining electron. Second, note that the correction to ionisation time inHHG,

f fD = -¶ ¶ - ¶ ¶ wt I Epi , has an extra term compared to its counterpart in strong field ionisation given by
equation (3). Subtracting the above expressions forDtr andDti yields

f
D - D = D - =

¶
¶

( ) ( )t t t t
I

. 19
p

r i r i

In otherwords, the derivative of the phasewith respect to the ionisation potential inHHG tells us howmuch
more (or less) time the electronwill spend in the continuumbefore it recombines, as a consequence of electron-
core interaction.

4. Coulomb corrections inHHGusingARM

Keeping the function F unspecified, this is as far as we can go. If wewant to determine the corresponding time
delays in practice, wemust evaluate F explicitly. Luckily, this is precisely what ARMallows us to do.

In particular, it was shown in [34] that if we apply ARM to strong field ionisation, -e Fi is replaced by -e Wi C
SFI
,

where
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Here,WC
SFI is the electron action associatedwith theCoulomb-laser coupling [53, 54], p is the electron

momentummeasured at the detector,T is the time of observation, ( )U r is the core potential and rs is the
Coulomb-free electron trajectory,
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The lower limit of the integral in equation (20), k= -k it t i 2, is determined by the boundary-matching
procedure for the outgoing electron [34, 37].

Indeed, this boundarymatchingwas crucial. Itmade it possible to smoothlymerge the asymptotic tail of the
bound electronwavefunctionwith the quasiclassical wavefunction of the escaping electron driven by the laser
field, and allowed us to avoid usingWC

SFI too close to the ionic core, beyond its range of applicability. In strong
field ionisation, it was only necessary to carry out thismatching once, when the electron departed from its parent
atomormolecule. InHHG, on the other hand, we know thatwemust also account for the recombination step,
when the electron returns to the core. Thismakes it necessary to perform thematching procedure oncemore, to
connect the phase due toCoulomb-laser coupling accumulated between ionisation and recombination to the
field-free continuum solution for the returning electron. Effectively, doing sowill tell us the correct endpoint
tend to use in place of the observation timeT in the upper integration limit of theHHGcounterpart to
equation (20).

Fortunately, an equivalent boundary-matching problemhas already been solved. In [17], single photon
ionisation in the presence of a probing infra-red fieldwas analysed in the context of the attosecond streak
camera. There, amatching argumentwas used to show that the effective starting point for an electron trajectory
with initial velocity v0 is given by
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Noting that recombination inHHG is simply the reverse of this process (that is, the emission, rather than
absorption, of a photon in the presence of an infra-red field), we can apply this result directly to determine the
boundary-matched endpoint tend. In particular, we now think of r0 as the end point of our electron trajectory
and set = ( )r r ts0 end . The corresponding velocity v0 is the velocity at recombination,

= = -w( ) ( )v v E I2 . 25p0 r

For any given photon energy wE , we then have

ò= = +w
i w
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t E

t

s0 r end
end

which can be used to solve for tend, using equations (22)–(25) to evaluate ( )r v0 r .
In doing so, it should be noted that rs(t) is complex in general for real times, whereas r0 is always real.

Consequently, in order to satisfy the above equation, wemust allow tend to be complex as well. This tells us that,
in contrast to ionisation, our integral forWCwill no longer end on the real axis: both start and end points are
now complex. The generalisation, however, is straightforward.When describing Coulomb effects in strong field
ionisation, the integration contour was chosen in two parts:first, down from tκ to =i[ ]t tRe i on the real axis,
and then along the real axis up to timeT [34, 38]. These two legs were interpreted in terms of tunnel ionisation
and the electron’smotion in the continuum respectively, following PPT [31]. ForHHG,we simply add a third
leg: down from [ ]tRe end on the real axis to tend (see figure 1).

We note that, in general, the interpretation of the real part of the complex saddle point as the ionisation time
is not connected to a certain choice of the integration contour. Analytic properties of the integrand inWC, of
course,make it possible to deform the contour considerably without influencing the result of the integration.
However, in contrast to the contour, the saddle point time itself is unique andwell-defined: it has a real and an
imaginary part. In fact, the real part of the saddle point can be directly probed experimentally using the attoclock
setup [3], as discussed in section 1. In the longwavelength limit, the attoclock observable (the so-called offset
angle) is simply equal to the real part of the saddle point timemultiplied by the angular frequency [28].What’s
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more, the expression for the ionisation timewe obtain from the real part of the saddle point coincides with that
derived using an alternativemethod in [28]. The lattermethod uses neither the concept of tunnelling nor
trajectories, nor does it rely on saddle point analysis, yet the result for the ionisation time remains the same.

Having determined the correct integration endpoint tend by boundarymatching, it is straightforward to
write down theHHGcounterpart to equation (20). There are only twomajor changes we need tomake: (1) the
momentum at the detector p should be replaced by the saddle point solution w( )Eps , and (2) the observation
timeT should be replaced by the time tend. That is,

ò= ¢ ¢w w
k

( ) ( ( )) ( )W E t U E trd , , 27C
t

t

s
HHG

end

where

ò¢ = +  w w
¢

i w

( ) ( ( ) ( )) ( )
( )

E t E t tr p A, d . 28s
t E

t

s

Wecan readily determine the value of w( )Eps from equations (9)–(11).

5. Results: Coulomb time delays inHHG

Having determined tend and chosen a contour, we have all the ingredients we need in order to evaluate the
correctionWC as given by equation (27). In itself, this tells us thefirst order effects onHHG spectra due to the
long-range electron-core interaction.However, as we saw in section 3, we need one further step to learn about
times: wemust differentiate theCoulomb phase f = [ ]WRe C with respect to Ip and wE tofind the corrections to
the saddle point solutions, as given by equations (17) and (18). In practice, this can be done numerically by
evaluatingWC for two ormore closely spaced values of Ip, wE .

We shall now compare these results with times reconstructed fromhigh harmonic spectroscopy
measurements, originally published in [4]. In essence, in addition to the fundamental field responsible forHHG,
the experiment uses aweak probefield to deflect electrons laterally during theirmotion in the continuum. By
varying the delay of the probefieldwith respect to the fundamental and observing the associated variation in
harmonic signal, it is possible to determine the time at which ionisation and recombination occurred. The
details of the associated reconstruction procedure are described in [4] (see also SI of [4]) and analysed in detail in
[19]. For the benefit of the reader, we also briefly outline themain idea of the procedure in appendix B.

Figure 2 shows the results for the helium atom. The ionisation and recombination times obtained using
ARM (blue lines) are compared to SFA (black lines), the classicalmodel (grey lines) and times reconstructed
fromhigh harmonic spectroscopy experiments (pink and green dots, see [4]). Note that, as discussed in
appendix B, the experiment could only determine the difference between ionisation and recombination times,
and their dependence on harmonic number: the results are valid up to an overall additive constant. To plot
absolute times, we calibrate the experiment by shifting all ionisation and recombination times by afixed amount
until we achieve the best possible fit with the recombination times predicted by ourmodels (asfigure 2 shows,
there is relatively little variation in recombination times between differentmodels, so this is unambiguous).

Figure 1.Contour for theWC integral inHHG.
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Compared to the SFA, wefind that the corrected ionisation times inARMare shifted to earlier values. This
effect has only aweak dependence on harmonic number: the shift varies between∼33 and∼37 attoseconds,
decreasing slightly withN. The recombination times are notably less affected overall, though they display a
stronger dependence on the harmonic number. The shift in this case is between∼5 and∼19 attoseconds, again
decreasingwithN. Putting these two facts together, we see that the total amount of time the electron spends in
the continuum (given by f¶ ¶Ip) increases by∼18–28 attoseconds. The relative size of these corrections and
their dependence onharmonic number is analysed further in section 6.

Comparing our results with times reconstructed fromhigh harmonic spectroscopymeasurements, wefind
that ARMoffers a notable improvement over the SFA, where electron-core interactionwas neglected. Although
the corrections to ionisation and recombination times are only of the order of tens of attoseconds, they are
nevertheless clearly within the resolution of current state-of-the-art HHGexperiments.

We note that ourmethod alsomakes it possible to analyse theCoulomb corrections to imaginary times. The
results of doing so are presented in [13], where imaginary ionisation timeswhere reconstructed from
experimentalmeasurements.

6.Discussion: how canwe understand the size of the corrections?

If we consider the results presented in the previous section, it is natural to askwhy the shift in ionisation times
due to the electron-core interaction is notably larger than the shift in recombination times. Canwe estimate the
relative size of these two corrections and understand their dependence on harmonic number?What are the small
parameters associatedwith each of them?

Referring back to equations (17) and (18) from section 3, it is clear that to answer these questions wemust
lookmore closely at the two partial derivatives

f
D º -

¶
¶

( )t
I

, 29
p

1

f
D º -

¶
¶ w

( )t
E

, 302

ofwhichDti andDtr are composed. Let us analyse each of these in turn.
First, consider fD = ¶ ¶t Ip1 .We recall from equation (3) in section 1 that this coincides withDtC, thefirst

order correction to the saddle point time in strongfield ionisation relative to the SFA result. To obtain a simple
analytical expression for the small parameter associatedwith this term, let us now take the tunnelling limit. In
this limit, the imaginary part of the SFA saddle point it

0 is given by t = ( )I t2 p i where ( )ti is themagnitude
of the laserfield at themoment of ionisation: this is thewell-knownKeldysh tunnelling time. The real part of the
saddle point can be chosen to be zero. At the same time, it is possible to show that, in the tunnelling limit, the
correctionDtC due to the electron-core interaction takes the valueD »it Z Ip

SF 3 2, whereZ is the charge of the
core (see derivation in [36, 37]). Its imaginary component vanishes tofirst order in this limit. Taking the ratio of
the norms of these two complex quantities, we obtain

*
z =

D
= =

i

∣ ∣
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( ) ( )t

t

Z t

I

n

S2 2Im

2

3
, 31

p
1

1
0

i
2 SFA

5 2

where * =n Z Ip
1 2 is the effective principal quantumnumber of a given quantum state and ImSSFA is the

imaginary part of the electron action associatedwith the electron’s dynamics in the laser field only. The quantum

Figure 2. Ionisation and recombination times predicted using the classicalmodel (grey lines), SFA (black lines) andARM (blue lines)
comparedwith times reconstructed fromhigh harmonic spectroscopy experiments (pink and green dots, see [4]) for helium atoms at
l = 800 nmand » ´I 3.8 1014 W cm–2.
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number n* characterises the action of the electron in the bound state, while SSFA characterises the action of the
electron driven by the laserfield. As long as the action due to the laser-driven dynamics exceeds the action in the
ground state—which is usually the case in strongfield ionisation—the ratio z1will remain small. Indeed, this
condition is essentially equivalent to the condition for applicability ofmost Coulomb-corrected SFA theories.

Let us now turn our attention to the second correction term fD = -¶ ¶ wt E2 . This term is the analogue of
thewell-knownWigner–Smith ionisation time given by equation (1), albeit the phasefhere is not the field-free
scattering phase, but incorporates the effects of the laser field and describes Coulomb-laser coupling. To obtain a
small parameter associatedwith this term, let us consider a ratio of velocities: z = Dq v2 r, whereDq is the shift
of electronmomentumdue toCoulomb-laser coupling, and vr is the velocity of the electron at themoment of
recombination, as given by equation (25). Using the expression forDq from [54], wefind

 
z =

-
=

w

( )
∣ ( ) ∣)

( ) ( )Z t

v E I

Z t

v2
, 32

p
2

r

r
3 2 3 2

r

r
4

where ( )tr is themagnitude of the laser field at the recombination time.
If we now compare expressions (31) and (32) for our two small parameters, we notice that they have a similar

structure. Both are of the form


z µ ( )Z

v
. 33

4

For z1, v is the electron velocity of the bound state =v I2b p and  is themagnitude of the laserfield at the
moment of ionisation. For z2, we have the velocity of the returning electron vr and the laser field at themoment
of recombination.

What can this tell us about the relative size ofDti andDtr? InHHG,we know that the velocity of the
returning electron is larger than that associatedwith the bound state. At the same time, the instantaneous value
of the laserfield is larger at ionisation than at recombination, or they are comparable, formajority of electron
trajectories (except those corresponding to lowharmonic numbers). Based on the small parameters above, this
suggests thatDt2 should be smaller thanDt1, which, in turn, helps explainwhy corrections to ionisation times,
given byD + Dt t1 2, are notably larger than corrections to recombination times, determined byDt2 alone.

The expressions for z1 and z2 may also shed light on the dependence ofDti andDtr on harmonic number.
Higher harmonics are associatedwith higher recombination velocities vr and lower values of the instantaneous
field ( )tr , which, via z2, would explainwhy corrections to recombination times decrease with harmonic
number. Since, conversely, the instantaneous field at ionisation ( )ti displays a slow increase with harmonic
number, while vb is fixed, wewould expect thatDt1 growswithN. Putting these two facts, we can understand the
observed values ofDti. Its behaviour is governed by an interplay of both terms and—sinceDt2 decreases faster
thanDt1 increases—this would explain the slow decrease ofDti withN observed in our results.

Finally, it should be noted that bothDt1 andDt2 are inherently small, which canmake it difficult to resolve
Dti andDtr in practice. In particular, these corrections have not been seen in the numerical simulations of [55].

7. Conclusions and outlook

In this paper, we have shownhow ionisation and recombination times inHHGaremodifiedwhen the long-
range interaction between the active electron and the ionic core is taken into account. The resulting corrections
are closely related to the delays in strong field and single photon ionisation respectively, though they are not
identical. In particular, the expression for the ionisation delay inHHG, f fD = -¶ ¶ - ¶ ¶ wt I Epi

HHG ,

contains an additional term compared to its counterpart in strong field ionisation, fD = -¶ ¶t Ipi
SFI (derived

in [3, 28, 37]). In essence, this ‘additional’ ionisation delay stems from the differentmeasurement protocols used
in strongfield ionisation andHHGexperiments respectively.While the former detect photoelectrons, the latter
detect the XUVphotons that are generatedwhen electrons return to the core. Consequently, in the case ofHHG,
the ‘delay-line’ on theway to the detector is associated not only with ionisation (which includes propagation in
the continuum), but alsowith the recombination step, which brings with it a delay of its own.

Comparing the predictions of theARM theory—inwhich the electron-core interaction is accounted for—
with timesmeasured in high harmonic spectroscopy experiments, we find that the agreement is excellent. Thefit
is visibly better than for the SFA, where such effects are omitted. Thus, although relatively small, we can conclude
that the electron-core interaction leaves ameasurable and distinct signature on times inHHG.As such, it should
be taken into considerationwhen calibrating attosecond recollision-based pump-probe experiments and
interpreting experimental data.
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AppendixA.Derivation of general expression for saddle point corrections

In this sectionwe present the derivation of equations (15), (16). To do so, it will be convenient to introduce the
following vectors

= ¢( ) ( )t p ts , , , A1

= i r( ) ( )t p ts , , , A2
s

0 0 0 0

D = D D Di r( ) ( )t p ts , , , A3s

¡ = w( ) ( )I X E, , A4p

and the vector-valued function

 
-w w( ) ( ) ( )I X E I X E I

f :
, , , , . A5p p p

3 3

The gradient∇will be defined as a row vector, and  Fs0 will occassionally be used as shorthand for  ( )F ss
0 ,

where F is the function introduced in section 3.
Using this notation, the saddle point equations (12)–(14) can be expressed succinctly as

D D ¡ + +  + =( ) ( ) ( ) ( )S Fs s s s f , A6s sV
0 0

while their analogues in the SFA become

¡ =( ) ( ) ( )S s f , A7s V
0

wherewe have added a constant X 0 to the lhs of the second saddle point equation for convenience in both
cases.

If we now expand the solution to equation (A6) about s0, we obtain (tofirst order inDs and Fs )

D ¡ +  +  =( ) [ [ ]( )] ( ) ( ) ( )S J S Fs s s s f , A8T
s s sV

0
s V

0 0

where Js is the Jacobianwith derivatives takenwith respect to s. Using equation (A7) and the fact that the
Jacobian of a gradient is theHessian, we have

D = -[ [ ]( )] ( ) ( )H S Fs s s . A9T
ss V

0 0

Since theHessian is symmetric and invertible (in this case), we can rewrite this as

D = - -[ [ ]] ( )F H Ss . A10s s V
10 0

In principle, if we could evaluate  Fs0 , wewould be done.However, we do not have direct control over the
value of the complex saddle point s whenwe do the calculation numerically, whichmakes this a difficult
quantity toworkwith. Instead, what we can do is vary the parameters¡ and see how F changes as a result—this
makes it possible to evaluate ¡F numerically.With this inmind, wewould like to rewrite equation (A10) in
terms of ¡F instead of Fs .

To do so, we note that equation (A7) establishes a functional relationship between s0 and¡. In principle, we
could solve this equation tofind ¡( )s0 . Taking the gradient of Fwith respect to¡ and applying the chain rule
gives

¡ ¡ = ¡ ¡( ( )) ( ) [ ( )] ( )F F Js s s , A11s
0 0 0

so

 = ¡ ¡
-[ [ ]] ( )F F J s . A12s

0 10

Wenowneed only evaluate the Jacobian ¡ [ ]J s0 . To do so, let us differentiate both sides of the SFA saddle
point equation equation (A7)with respect to¡:

¡ ¡ =¡ ¡[ ( ( ))] [ ( )] ( )J S Js f . A13s V
0
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Applying the chain rule again, we can rewrite this as

¡ ¡ =¡ ¡[ ( )] [ ( )] [ ( )] ( )J S J Js s f , A14s s V
0 0

and so (againmaking use of the fact that the Jacobian of a gradient is theHessian),

=¡ ¡
-[ ] [ ] [ ] ( )J H S Js f . A15s

0
V

10

Taking the inverse and substituting this into equation (A12) gives

 = ¡ ¡
-[ [ ]] [ ] ( )F F J H Sf . A16s s

1
V0 0

Finally, this allows us to rewrite equation (A10) as

D = -¡ ¡
- -[ [ ]] [ ] [ [ ]] ( )F J H S H Ss f , A17s s

1
V V

10 0

which simplifies to

D = -¡ ¡
-[ ] ( )F Js f . A181

In our case, ¡J f is very simple:

=
-

¡

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )J f

1 0 0
0 1 0

1 0 1
, A19

and

=¡
-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ] ( )J f

1 0 0
0 1 0
1 0 1

. A201

This allows us towrite down a solution forDs in terms of ¡F :

D = -
¶
¶

-
¶
¶ w

( )t
F

I

F

E
, A21s

p

D = -
¶
¶

( )p
F

X
, A22s

D = -
¶
¶ w

( )t
F

E
. A23r

Appendix B. Reconstruction procedure for times in high harmonic spectroscopy
experiments

SupposeHHG is driven by a strong laser fieldwith fundamental frequencyω, described by the vector potential
w=w

( ) ( )A t e A tsinx 0 . To probe the associated ionisation times, let us also apply an additional perturbative
control fieldwith frequency w2 , given by w a= +w

( ) ( )A t e A tsin 2y2 0 , which is phase locked to the
fundamentalfield and polarised in an orthogonal direction. This fieldwill effectively ‘kick’ the electron in a
lateral directionwhen it leaves its bound atomic state and exits from the tunnelling barrier at the ionisation time
ti. Themagnitude and sign of this kick is controlled byα, the relative phase between the twofields, referred to as
the ‘two-colour delay’.

Aswe varyα, we find that theHHGyield ismodulated. In particular, the harmonic signal attains its
maximumvaluewhen the lateral kick is equal to zero or, in otherwords, when the electron displacement
between ionisation and recombination isminimised. To good approximation, this occurs when the vector
potential of the control field at themoment of ionisation is close to zero: that is,

w a= + »w
( ) ( )A t e A tsin 2 0y2 i 0 i max if amax is the two-colour delay at which the harmonic signal is

maximised. This, in turn, gives us a relationship between the observed amax and the ionisation time ti:
a w»∣ ∣ti max . In the full reconstruction, corrections accounting for the kick during tunnelling are also

included.
Note that the second harmonic field breaks the symmetry in electron dynamics between the two consecutive

laser half cycles, which leads to the generation of even harmonics. This asymmetry is greatest at those values ofα
where the lateral velocity of the electron upon recombination is largest. In practice, recombination times are
reconstructed following themaximumHHG signal for even harmonics, as suggested and performed in [4] and
augumented in [55] by including complex (rather than real) SFA recollision times.

Note also that the experiment can only reconstruct (i) the delay between ionisation and recombination time,
(ii) the dependence of the ionisation and recombination times on harmonic energy. In order to determine the
absolute values of ionisation and recombination times inHHG, it is necessary to calibrate amax .We do this by
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shifting all times by afixed amount until we obtain the bestfit with the recombination times predicted by our
models. This is a consistent way to proceed since recombination times do not differ considerably between
models.
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