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Statistics of fully turbulent impinging jets
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Direct numerical simulations (DNS) of subsonic and supersonic impinging jets with
Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical
properties with respect to heat transfer. The Reynolds number range is at low or
moderate values in terms of practical applications, but very high regarding the
technical possibilities of DNS. A Reynolds number of 8000 is technically relevant
for the cooling of turbine blades. In this case, the flow is dominated by primary
and secondary vortex rings. Statistics of turbulent heat fluxes and Reynolds stresses
as well as the Nusselt number are provided and brought into accordance with these
vortices. Velocity and temperature fluctuations were found to have a positive influence
on cooling of the impinging plate. Beside the description of the flow, a second aim
of this article is the provision of data for improvement of turbulence models. Modern
large eddy simulations are still not able to precisely predict impingement heat transfer
(Dairay et al., Intl J. Heat Fluid Flow, vol. 50 (0), 2014, pp. 177–187). Common
relations between heat and mass transfer respectively temperature and velocity fields
are applied to the impinging jet. These relations include the Reynolds and Chilton
Colburn analogy, the Crocco–Busemann relation and the generalised Reynolds analogy
(GRA). It was found that the first two deliver useful values if the distance to the jet
axis is larger than one diameter, away from the strong pressure gradient around the
stagnation point. The GRA, in contrast, precisely predicts the mean temperature field
if no axial velocity gradient is present. The estimation of temperature fluctuations
according to the GRA fails. As third main topic of this article, the influence of the
Mach number on heat transfer and the flow field, is studied. Against the common
practise of neglecting compressibility effects in experimental Nusselt correlations, we
observed that higher Mach numbers (up to 1.1) have a positive influence on heat
transfer in the deflection zone due to higher flow fluctuations.

Key words: jets, turbulent flows, vortex dynamics

1. Introduction
Impinging jets are widely used: for cooling of hot surfaces such as turbine blades,

as rocket engine or vertical and/or short take off and landing aircraft aero engine.
Therefore impinging jets have been studied for decades. Schematic illustrations of
the flow field as well as distributions of local Nusselt numbers for plenty of different
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geometrical configurations and Reynolds numbers Re can be found in several reviews,
such as Hrycak (1981), Jambunathan et al. (1992), Viskanta (1993) and Weigand
& Spring (2011), based on experimental and numerical results. Since experiments
cannot provide all quantities of the flow spatially and temporally well resolved, the
understanding of the turbulent flow requires simulations. For example, the investigation
of the generation of tones and the connection between vortex dynamics and heat
transfer require precise simulations.

Following the above mentioned reviews, the impinging jet contains three zones:
the free jet, the deflection zone and the wall jet. The free jet region is characterised
by a shear layer between gas leaving the nozzle with high velocity and surrounding
stagnant fluid. Due to the Kelvin–Helmholtz instability, vortices develop and grow
as they are transported downstream. These vortices are called primary vortices.
Their growth leads to a broadening of the jet and a decrease of the potential core.
According to Livingood & Hrycak (1973), the potential core for turbulent free jets is
6–7 nozzle diameters. For smaller nozzle-to-plate distances, the potential core ends in
the region of the deflection zone. In the deflection zone, the axial velocity component
decreases and the radial component as well as the static pressure rise. This region
is also called stagnation flow and extends around 1.2 to two nozzle diameters in the
wall-normal direction. At around one diameter away from the stagnation point, the
radial velocity reaches its maximum. The wall jet forms two shear layers caused by
the impinging plate and the above stagnant gas and widens with increasing radial
distance to the jet axis. In Wilke & Sesterhenn (2015b) it is shown that the primary
vortices are initially transported with the flow. The shear layer at the impinging
plate leads to the development of new vortices (secondary vortices) that pair with
the primary vortices. The movement of this pair along the wall causes an increased
heat transfer at a radial distance r of around one to two diameters D from the axis.
Due to interaction, this pair then detaches from the wall and finally breaks down
into smaller vortices. In Wilke & Sesterhenn (2016a) and Wilke (2017) it is shown
that the formation of primary and secondary vortices is a periodical phenomenon
appearing with a characteristic frequency that depends on the Mach number. The
mode is mainly axisymmetric, but can be distorted due to leapfrogging within the
free jet region and feedback waves occurring as a result of impinging tones. Owing
to its shapes, the primary and secondary vortices are referred to as vortex rings. In
the case of supersonic under-expanded impinging jets, shocks within the free jet and
standoff shocks in and above the deflection zone occur. Since the analyses within this
article concentrate on the wall jet, the appearance of shocks is not further discussed.
In Wilke & Sesterhenn (2016b) and Wilke (2017), the shocks are investigated in the
context of impinging tones.

Most existing publications of a numerical nature use either turbulence modelling
for the closure of the Reynolds-averaged Navier–Stokes (RANS) equations, e.g.
Zuckerman & Lior (2005), or large eddy simulation (LES), e.g. Cziesla et al. (2001).
Almost all available direct numerical simulations (DNS) are either two-dimensional,
e.g. Chung & Luo (2002), or do not exhibit an appropriate spatial resolution in
the three-dimensional case, e.g. Satake & Kunugi (1998) and Hattori & Nagano
(2004). This is due to the lack of computing power in the past. For example,
Hattori & Nagano (2004) performed a 2.5-dimensional ‘DNS’ with 3 million grid
points (Re = 9120) on a huge domain: 26 × 2 × 1.6 diameters. As a comparison,
the simulations described in this article with Re = 8000 are performed with more
than one billion grid points. Recent investigations with an appropriate resolution
come from Dairay et al. (2014, 2015). This group conducted DNS of a round
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Statistics of fully turbulent impinging jets 797

incompressible impinging jet with a nozzle to plate distance of h/D= 2 and focused
on the secondary maximum of the heat transfer distribution and on the connection to
elongated structures. The results were compared to LES with different subgrid-scale
models. It was found that conventional subgrid-scale models based on eddy viscosity
(dynamic Smagorinsky, WALE models) deliver unrealistic heat transfer predictions
in the impingement region whereas LES using a discrete viscous operator delivered
significantly better results. Still none of the tested LES models was able to clearly
predict the secondary peak in the Nusselt number distribution that occurred in their
measurements and DNS. The simulations presented in this article have a larger
nozzle-to-plate-distance (h/D = 5 versus h/D = 2) and are compressible. Due to the
high costs and long computing time of DNS, cooling configurations are in practice
designed using Nusselt number correlations based on experimental data or flow
simulations using turbulence models. As stated above, even LES are nowadays not
able to precisely predict heat transfer at the impinging plate.

Using DNS we are able to provide statistical information of the impinging jet,
such as the Reynolds stress tensor and turbulent heat fluxes, that are needed to
improve turbulence models of RANS and LES. Furthermore, the computation of
correlations between flow variables allows us to assess the applicability of common
relations between velocity and temperature field to the impinging jet. These so called
Reynolds analogies (RAs) were developed for canonical compressible wall-bounded
turbulent flows, like pipes, channels and flat-plate boundary layers. With this article,
we want to contribute to close the present knowledge gap in the literature concerning
turbulence of impinging jets, as it was done for the pipe and channel flow, e.g. Eggels
et al. (1994) and Lechner, Sesterhenn & Friedrich (2001).

A second aim of this publication is the quantification of the effects of primary and
secondary vortices on heat transfer and the Reynolds stress tensor. Since an increased
heat transfer occurs at 1 . r/D . 2, the study concentrates hereon. The quantification
and understanding of turbulence within that region is crucial since LES fails especially
here. Additionally, an important topic of research concerns the increase of heat transfer
efficiency due to pulsating impinging jets. The pulsation aims an increase of strength
of primary vortex rings in the free jet shear layer and consequently to an increased
additional heat transfer at 1 . r/D . 2.

Different utilisations of impinging jets involve different flow conditions: sub-
and supersonic impinging jets, jets with ambient temperature or cold jets in a hot
environment. In this article we address the influence of those parameters. Modern
supercomputers limit DNS studies of impinging jets to Reynolds numbers

Re=
v∞D
ν

(1.1)

up to approximately 104. The diameter, the fully expanded jet inlet velocity and
the kinematic velocity are denoted by D, v∞ and ν. Within this article, we
performed simulations with Re = 3300 and Re = 8000. The second case represents
a technical relevant Reynolds number for the cooling of turbine blades. However,
other applications can require much greater Reynolds numbers, e.g. 105 or higher.
The consideration of compressibility effects goes beyond common Nusselt number
correlations that do not involve the Mach number Ma. Due to the huge amount
of parameters (Re, Ma, cold/hot environment, radial and axial position within the
domain), in this article a detailed description of the turbulence statistics is given only
for the cold impinging jet in a hot environment (Re = 8000, Ma = 0.8). We further
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798 R. Wilke and J. Sesterhenn

concentrate on the wall jet region. The flow close to the nozzle exit is equal to the
free jet and therefore not analysed within this article. Free jets have been computed
with the same numerical code within our research group. Extensive validation studies
taking into account experimental data as well as numerical results of other groups
and codes can been found in Schulze (2013).

2. Computational set-up
The governing Navier–Stokes equations are formulated in a characteristic pressure–

velocity–entropy formulation (p, u, v,w, s), where the inviscid part is decomposed into
several plane waves (Sesterhenn 2001). This formulation has advantages in the fields
of boundary conditions, space discretisation and parallelisation.

Due to the use of this characteristic approach, the direction from which information
comes is known in the entire flow domain including the boundaries. In order to obtain
the desired behaviour at the boundaries, all waves entering the domain have to be set.
In the easiest case of a non-reflecting plane, all incoming waves are set to zero so
that the fluid and acoustic waves can leave the domain. This boundary is applied at
four sides of the cuboid.

The incoming waves of the other two sides (impinging plate and orifice plate)
are controlled, determining the temporal derivation of velocity and total temperature
(∂v/∂t, ∂Tt/∂t). Isothermal walls are obtained with ∂v/∂t = 0, ∂Tt/∂t = 0 and a
zero-velocity initial condition. The walls are fully acoustically reflective, which
means that pressure waves are reflected at the boundary condition without change in
amplitude. At the inlet, ∂v/∂t and ∂Tt/∂t likewise control the inflowing gas. In the
case of supersonic inflows, ∂p/∂t needs to be set additionally. This method can be
used to set turbulent or laminar conditions. In this investigation, all simulations are
carried out with a laminar inflow.

Isothermal wall and inlets are described with the same set of equations. This makes
it very easy to switch between those two conditions. Firstly we define ∂v/∂t, ∂Tt/∂t
(and in case ∂p/∂t) for the inflow and secondly we multiply them with a spatial
function fx (r, θ). The description of this boundary is taken from Wilke (2017), based
on Wilke & Sesterhenn (2015a):

Walls are obtained for fx= 0 and inlets for fx= 1. This treatment makes it very easy
to define one or multiple inlet areas (nozzles) by adjusting fx. The location of a single
nozzle is defined using a hyperbolic tangent with a thin laminar annular shear layer
described by a thickness function b:

f (n)x (r, θ)=
1
2
−

1
2

tanh
[(

r
D
−

D
2
+ tanh−1(1− g)

)
b(n) (θ)

]
. (2.1)

The parameter g determines the location of the shear layer with respect to the wall
of the artificial nozzle. A similar profile has been used by Freund (2001) for free jets
(Ma = 0.9, Re = 3600). He applied random perturbations of the thickness function b
in order to accelerate the transition of the jet. In agreement with his investigation, our
impinging jet with Re= 3300 remained laminar and symmetric for thousands of time
steps, unless a perturbation is added:

b(n) (θ) = e−τb(n−1) (θ)+
(
1− e−τ

)
×

[
b0 +

1
N

N∑
n=1

c(n)1 cos
(

2π
v∞

D
c(n)2 t+ c(n)3

)
cos(θ + c(n)4 )

]
. (2.2)
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Statistics of fully turbulent impinging jets 799

The time correlation of b at time step n to the previous time step n− 1 is achieved
by the introduction of a decay function eτ with the time constant τ . Here c1, c2, c3 and
c4 are random variables. This approach was implemented based on Freund (2001) and
Davidson (2007). In this article, we used the following values: bo = 26.47, g= 10−2,

N=100 and τ =10−2. The defined ranges of the random variables are: 06 c1 620, 06
c2 6 20, 0 6 c3 6 2π, 0 6 c4 6 2π. The resulting random distribution of the thickness
function b has the following properties: max[1b]/bo =max[b(n) − b(n−1)]/bo = 8.87×
10−4, std[1b/bo] = 1.30× 10−4 and 26.31 6 b 6 26.63.

A sponge region is applied for the outlet area (radius r > 5D), that smoothly
forces the values of p, u, v, w and entropy s to reference values obtained by a
preliminary LES of a greater domain. This destroys vortices before leaving the
computational domain and touching the non-reflecting boundary. To avoid Gibbs
oscillations in the vicinity of the standoff shock (for supersonic impinging jets), an
adaptive shock-capturing filter developed by Bogey, de Cacqueray & Bailly (2009) that
automatically detects shocks is used. In order to avoid the detection of non-existent
shocks within the wall-bounded flow due to strong gradients near to the wall, the
filter is only enabled in areas where standoff shocks occur.

The computation is done on a Cartesian grid with applied refinement in wall-
adjacent regions. This ensures a maximum value of the dimensionless wall distance y+

y+ =
uτy
ν

(2.3)

of the closest grid point to the wall not larger than approximately one for both plates.
Here uτ , τw and ρ are the friction velocity, the wall shear stress and the density:

uτ =
√
τw

ρ
, τw = η

√(
∂u
∂y

)2

+

(
∂w
∂y

)2
∣∣∣∣∣∣

w

. (2.4a,b)

Details are given in table 1. For simulations with a total temperature difference
between wall Tw and inlet Tt,i (#1, #4, #5 and #6), heat transfer is of interest.
Therefore, the resolution close to the wall is even finer: max y+ 6 0.67. In the other
two cases (Tw − Tt,i = 0; simulations #2 and #3), much smaller temperature gradients
occur at the wall and a slightly larger maximal y+-value is set due to a modification of
the grid stretching. y+-values of around one are, according to the literature, sufficient
for sub- and supersonic boundary layer flows like pipes or channels, e.g. Eggels et al.
(1994). The special characteristic of the impinging jet is mainly the deflection zone.
Since the velocity is zero in the stagnation point and low in its vicinity, the resulting
y+-values are even lower (y+ � 1) in the deflection zone. The above mentioned
maximal values can be found in the wall jet at similar conditions to those of the
cases studied in literature.

For the wall-parallel directions, a slight symmetrical grid stretching is applied,
which refines the jet shear layer. The refinements use hyperbolic tangent respectively
hyperbolic sin functions resulting in a change of mesh spacing lower than 1 % for
all cases and directions. Table 1 shows the physical and geometrical parameters of
the simulations.

The use of DNS does not involve any kind of turbulence model and leads to huge
grid sizes of more than one billion points for Re= 8000. The storage of one time step
with the necessary five variables requires about 41 GB of storage. For this reason,
statistics are computed on-the-fly in order to avoid the storage of thousands of samples.
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FIGURE 1. (Colour online) Convergence of averaged values: εr is the root mean square
of the residuum within the domain, normalised with the respective value of the first time
step of the averaging. (a) Simple averages (p, u, v,w, s), (b) averages of terms including
fluctuations (Reynolds stress transport terms TDij, VDij, PSij, DSij, see § 7). The vertical
grey line indicates the start of averaging step two.

No. po/p p∞ Ma Tt,i T∞ = Tw Re Pr κ R
(Pa) (K) (K) (J kg−1 K−1)

#1 2.15 105 1.106 293.15 373.15 3300 0.71 1.4 287
#2 2.15 105 1.106 293.15 293.15 3300 0.71 1.4 287
#3 2.15 105 1.106 293.15 293.15 8000 0.71 1.4 287
#4 1.12 105 0.408 293.15 373.15 3300 0.71 1.4 287
#5 1.50 105 0.784 293.15 373.15 3300 0.71 1.4 287
#6 1.50 105 0.784 293.15 373.15 8000 0.71 1.4 287
No. Domain size Grid points max. y+w grid width x, z grid width y

[D] [D] [D]
#1 12× 5× 12 512× 512× 512 0.67 0.0199..0.0588 0.0017..0.0159
#2 12× 5× 12 512× 512× 512 0.77 0.0199..0.0588 0.0017..0.0159
#3 12× 5× 12 1024× 1024× 1024 1.02 0.0099..0.0296 0.0012..0.0072
#4 12× 5× 12 512× 512× 512 0.62 0.0184..0.0636 0.0017..0.0159
#5 12× 5× 12 512× 512× 512 0.63 0.0165..0.0388 0.0017..0.0159
#6 12× 5× 12 1024× 1024× 1024 0.58 0.0099..0.0296 0.0008..0.0078

TABLE 1. Geometrical and physical parameters of the simulation. po, p∞, Tt,i, T∞, Tw, Ma,
Re, Pr, κ , R and y+w denote total and ambient pressure, total, ambient and wall temperature,
Mach, Reynolds and Prandtl number, ratio of specific heats, the specific gas constant and
the dimensionless wall distance at the wall.

Figure 1 exemplary shows the convergence of the main variables p, u, v,w, s (a) and
the Reynolds stress transport terms TDij, VDij, PSij, DSij (b, see § 7). The latter include
averages of fluctuations. Therefore, the averaging procedure of these terms starts after
simple averages of the main variables were already converged. As converged we
consider a reduction of the residuum of two orders of magnitude. This is achieved,
depending on the case, after about three perfusion times and 7.5× 104 time steps. A
loss of three orders of magnitude would require approximately a half million time
steps for each averaging step and would exceed the computational resources that can
be provided nowadays.
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x

y

x

D

r

z

FIGURE 2. (Colour online) Three-dimensional contour plot of the impinging jet (#6) at
QD2/v2

∞
= 5, coloured with pressure (0.8 6 p/p∞ 6 1.1, blue to red).

For post-processing purposes, a cylindrical coordinate system is used. Both
coordinate systems as well as the domain sizes are shown in figure 2. The choice
of the mesh width ∆ = (∆x∆y∆z)

1/3 was based on the Kolmogorov length scale
lη = (ν3/ε)1/4. The shear layer of the free and wall jet are resolved with ∆ 6 1.9lη,
respectively ∆ 6 1.4lη. The only values of ∆ exceeding 2lη up to 4lη can be found
in the viscous sublayer at the stagnation point close to the wall for supersonic cases.
However, since the flow in the viscous sublayer is not turbulent, the resolution in
terms of the Kolmogorov length scale is not of relevance. Dairay et al. (2015) used a
similar resolution for their DNS. Energy spectra of the simulations described in this
article are shown in Wilke (2017) and prove that the chosen resolution is appropriate.

In order to advance in time, a fourth-order five stage explicit Runge–Kutta scheme
is applied. This scheme combines accuracy with efficiency in terms of computational
costs. The spatial discretisation uses compact fifth-order upwind finite differences for
the convective terms and sixth-order compact central schemes for the diffusive terms.
The upwind scheme introduces dissipation for high wavenumbers and stabilises the
simulation in case some parts of the domain are (temporally) slightly under-resolved.
For a higher under-resolution, which is not the case of the presented simulations,
an additional filter would be necessary. The central scheme has no dissipation.
Both discretisation methods provide a low dispersion error and can be efficiently
parallelised on modern high performance computers. The load is partitioned between
thousands of processes, e.g. 16 384 for the case with Re= 8000. Each process solves
the governing equations for a subdomain (block), see Eidson & Erlebacher (1995).
Since information from adjacent blocks are needed for the calculation of compact
derivatives, the decomposed domain is rearranged so that each process receives grid
lines that span the entire domain in the particular direction. The total number of
grid points per process remains constant and is typically between 323 and 643. The
inter-process communication is managed via MPI libraries.

3. Deflection zone and wall jet
In § 4, RAs are tested for their applicability to impingement jets. First relations

of this kind were developed for canonical compressible wall-bounded turbulent flows
like pipes or channels. However, a more recent approach also takes into account
an existing wall heat flux and pressure gradient in the streamwise direction. In this
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FIGURE 3. (Colour online) Mean profiles of radial velocity (a,b) and temperature (c,d) at
y/D= 0.05: (blue), Tw = T∞ = 373.15 K and Tt,i = 293.15 K. (a,c) Influence of the
Mach number: , #4 (Ma = 0.4); , #5 (Ma = 0.8); , #1 (Ma = 1.1). (b,d)
Influence of the Reynolds number: , #5 (Re= 3300); , #6 (Re= 8000).

section, we want to highlight some particularities of the wall-bounded turbulent flow
of impinging jets.

According to the radial velocity, we divide the wall jet into four zones. The
accelerating zone (0 6 r/D . 0.8), the zone of maximal radial velocity (r/D ≈ 0.8),
the decelerating zone (r/D& 0.8) and a zone where the influence of the impingement
is not dominant any more (r/D & 2.5). According to the parameters Ma, Re, Tw the
position of the maximum radial velocity changes slightly. For the flow description,
the radial positions r/D= 0.3, 0.8, 1.4 and 3.5 are chosen.

Figure 3(a,b) shows the mean radial velocity ur at the wall distance of y/D= 0.05.
Starting from the stagnation point it strongly increases due to the stagnation pressure
and reaches a maximum value that is lower than the inlet velocity v∞. On the left, the
influence of the Mach number Ma is shown. The radial velocity is almost unaffected
by Ma, but slightly decreases with increasing Ma. The influence of the Reynolds
number (right) is stronger. ur decreases with increasing Re and the position of the
maximum moves to greater r/D.

Figure 3(c,d) shows the mean temperature at the same position. The temperature
profile is influenced by three effects: (i) the mixing of the wall jet with the hot
environment. This causes the main trend of increasing temperature with increasing
r/D. (ii) Heat transfer at the isothermal wall and (iii) compressibility effects. (a,c)
Shows the influence of the Mach number. At low Ma (#4; Ma ≈ 0.4), the average
temperature reaches the value of the total inlet temperature Tt,i. At higher Mach
number (sub- and supersonic jets), both temperatures in the stagnation point are
higher then Tt,i. This is an indication that the flow around the stagnation point has
lower fluctuations (is less unsteady) when the Mach number is low. A more unsteady
flow around the stagnation point entrains surrounding fluid. Since the surrounding
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FIGURE 4. Dimensionless pressure (a,b) and r.m.s. of pressure fluctuations (c,d) at the
impinging plate. (a,c) Influence of the Mach number: , #4 (Ma = 0.4); , #5
(Ma= 0.8); , #1 (Ma= 1.1). (b,d) Influence of the Reynolds number: , #5 (Re=
3300); , #6 (Re= 8000).

fluid is of higher temperature in the considered simulations, the temperature in the
deflection zone increases.

The effect of compressibility can be seen in the areas with high (radial) velocity.
A high velocity leads to a decreasing temperature, e.g. at r/D ≈ 0.8, the supersonic
case (#1) features a global minimum at the point where the axial velocity is maximal
(Figure 3a,b). The same effect is present for the highly subsonic jet (#5), but weaker
distinct. The position of decreased temperature variates in accordance with the position
of high axial velocity.

To further understand the unsteadiness of the flow around the stagnation point,
we look at the wall pressure and its fluctuations. Figure 4(a), it can be seen that
the pressure recovery decreases with increasing Mach number. At low Mach number
(#4, Ma = 0.4) a value of 0.97 is observed whereas the pressure recovery is only
0.9 at Ma = 1.1 (#1). We can understand the relation between pressure recovery
and pressure fluctuation with a simple thought experiment. We approximate the high
pressure around the stagnation point as a half-unit circle with the flat side to the
bottom and add a normally distributed random movement of the centre. In case
of a very small movement, e.g. with a variance of 0.1, the shape of the function
is still approximately a half-unit circle and the maximum value is still close to one
(0.995). This case represents simulation #4. If we increase the variance of the random
displacement (e.g. #5) to 0.3, the shape changes and the maximum value decreases
to 0.951. Consequently, the two curves have to cross each other at some point. This
crossing can be observed between simulations #4 and #5 as well as (#5, #6) on the
figure 4(b). However no crossing between (#1, #4) implies that the lower pressure
recovery in the supersonic case is mainly caused by losses due to the shocks present
in the free jet region as well as standoff shocks.
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FIGURE 5. Velocity (a–c) and temperature (d–f ) boundary layer at r/D = 1.4. (a,d)
Influence of the Mach number: , #4 (Ma = 0.4); , #5 (Ma = 0.8); , #1
(Ma = 1.1). (b,e) Influence of the Reynolds number: , #5 (Re = 3300); , #6
(Re = 8000). (c, f ) Influence of a heated environment: , #2 (not heated); , #1
(heated).

The corresponding raised root mean square (r.m.s.) values indicate an increased
movement of the stagnation point. The plots on the right show that also an increasing
Reynolds number leads to larger fluctuations of the stagnation point and consequently
to a lower pressure recovery.

The boundary layer is resolved in all cases with a maximum y+ value of one in
the first grid point next to the wall, see table 1. Figure 5 shows the velocity and
temperature boundary layer of the impinging jets. The dimensionless wall distance u+,
dimensionless temperature T+ and friction temperature Tτ are defined as

u+ =

√
u2 +w2

uτ
, T+ =

Tw − T
Tτ

, Tτ =
qw

ρcpuτ
, (3.1a−c)

where qw is the wall heat flux. The u+-profile of the wall jet is for all computations
and r/D lower than the solution of the channel flow (figure 5). The maximum is
caused by the fact that the wall jet has a finite thickness. The above fluid is almost
at rest, neglecting a slight recirculation. If we move, starting from the wall, in the
positive y or y+ direction, the wall-parallel velocity increases from zero until we reach
approximately the middle of the wall jet. With further increasing wall distance, the
velocity decreases due to the mixing between wall jet and the surrounding fluid in
rest (upper shear layer). Neglecting recirculation, the velocity reaches again zero at
the end of the wall jet. Furthermore, no logarithmic region of the boundary layer is
observed. The investigated Reynolds numbers up to 8000 are too low to allow the
formation of such a layer under the condition of a limited wall-normal extent of the
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wall-bounded flow. Looking at figure 5(d–f ), we see that the computed T+-profiles are
higher in relation to the theoretical reference T+ = Pr y+ than the velocity profile in
relation to u+= y+. The choice of the wall temperature has a strong influence on both
profiles. A heated wall leads to higher T+ and lower u+ values. The influence of the
Mach number is in general smaller and depends on the radial position. More profiles
for validation purposes are given in Wilke (2017).

4. Reynolds analogies and correlations
Since impinging jets are used among other things for cooling of hot surfaces,

an accurate computation of heat transfer is needed. Furthermore, relations between
quantities affiliated to heat transfer and quantities affiliated to momentum transfer are
of great interest.

4.1. Mean field
Heat transfer at the impinging plate is quantified by the Nusselt number:

Nu=
D
1T
·
∂T
∂y

∣∣∣∣
w

= qw
DPr
1Tcpη

. (4.1)

Here D is the inlet diameter, 1T is the difference between total inlet temperature Tt,i
and wall temperature Tw, Pr, cp, η and qw are the Prandtl number, the ratio of specific
heats, the dynamic viscosity and the heat flux in the wall-normal direction at the wall.
Reynolds discovered that the similarity of the momentum and energy equation for
incompressible laminar boundary layers can be used to approximate heat transfer with
the use of fluid friction, see Kakag & Yenner (1995):

St=
Nu

RePr
≈

Cf

2
=

τw

ρv2
∞

. (4.2)

This is the well-known RA. The assumption made is a Prandtl number equal to one.
Cf and τw are the skin friction factor and the wall shear stress. This equation was
modified by Chilton & Colburn (1934), based on experimental data:

StPr2/3
=

Nu
RePr1/3 ≈

Cf

2
(4.3)

and considers Prandtl numbers different from one. Equation (4.3) is referred to as the
Chilton Colburn analogy (CCA). Figure 6 shows the skin friction coefficients of the
conducted simulations. (a) Indicates that Cf is almost independent of the Mach number
in the range 0.46Ma61.1. An increasing Reynolds number leads to a decreasing skin
friction factor for small radii of r/D . 2 (b). Comparing a jet with equal total inlet
temperature Tt,i, ambient T∞ and wall temperature Tw to another one with T∞= Tw >
Tt,i, it can be seen that the skin friction factor increases due to the heated environment.
The total inlet temperature has been kept constant.

In figure 7, Nusselt number profiles of the simulations with T∞ = Tw > Tt,i are
compared (otherwise 1T = 0). The influence of the Mach number (a) is strongest in
the vicinity of the stagnation point. The simulation with low compressibility (Ma ≈
0.4) has the global maximum at around r/D = 0.3 and not at the axis. Here Nu
increases with increasing Ma at the stagnation point. As we have seen in the previous

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

41
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 B

er
lin

 U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
, o

n 
11

 F
eb

 2
01

9 
at

 1
7:

35
:5

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.414
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


806 R. Wilke and J. Sesterhenn

0.06

 0.01

0.02

0.03

0.04

0.05

10 2 3 4

0.06

 0.01

0.02

0.03

0.04

0.05

10 2 3 4

0.06

 0.01

0.02

0.03

0.04

0.05

10 2 3 4

(a) (b) (c)

FIGURE 6. Mean Skin friction factor Cf . (a) Influence of the Mach number: ,
#4 (Ma = 0.4); , #5 (Ma = 0.8); , #1 (Ma = 1.1). (b) Influence of the
Reynolds number: , #5 (Re= 3300); , #6 (Re= 8000). (c) Influence of a heated
environment: , #2 (not heated); , #1 (heated).
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FIGURE 7. Mean Nusselt number Nu. (a) Influence of the Mach number: , #4 (Ma=
0.4); , #5 (Ma= 0.8); , #1 (Ma= 1.1). (b,c) Influence of the Reynolds number:

, #5 (Re= 3300); , #6 (Re= 8000).

section, a high Mach number leads to strong fluctuations within the deflection zone.
Furthermore, the temperature difference between cooling fluid and hot wall is strongest
in the case with the lowest Mach number. This means that the higher heat transfer
at the stagnation point for higher Mach numbers is not caused by the mean field
but rather by unsteady effects that lead to a high turbulent heat flux. All simulations
feature a secondary local maximum respectively shoulder or saturation zone around
r/D= 1.5. Nusselt number correlations of the shape Nu∼ Ren are in wide use. Also
the Prandtl number and geometrical parameters can be included. According to Lee &
Lee (1999), the exponents for plate distances h/D of 4 and 6 are n= 0.53 and n=
0.58, respectively. For the presently investigated simulations of h/D= 5, the exponent
n = 0.555 was chosen. The influence of the Reynolds number is illustrated in the
figure 7(b,c). As expected, heat transfer increases with Re. The scaling fits away from
the stagnation point r/D& 1. According to this simple correlation, heat transfer within
the stagnation point area of the higher Reynolds number (8000) is weaker than in case
of Re= 3300. The reason for this observation lies within a greater entrainment of hot
fluid in case of Re= 8000. This can be confirmed by a higher mean temperature in
the deflection zone (figure 3d).

The validation of the Nusselt number with experimental data is difficult, since
measurements found in literature vary significantly. The experimental set-up and in
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FIGURE 8. (Colour online) Stagnation point Nusselt number as function of the Reynolds
number. Adapted from Janetzke (2010): , single impinging jet; , impinging jet
array. Own simulations: square, #4 (Ma = 0.41); point, #5, #6 (Ma = 0.78); triangle, #1
(Ma= 1.11).
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FIGURE 9. Heat transfer at the impinging plate (Nusselt number): (a) simulation #5 (Re=
3300); (b) #6 (Re= 8000); , DNS data; , RA; , CCA.

particular the shape of the nozzle as well as the measurement position and method of
averaging have a strong influence on the measured heat transfer (Janetzke 2010). For
this reason reported Nusselt numbers differ by a factor of up to 2.4 and can only give
an approximate estimation of impingement heat transfer. Figure 8 shows that our DNS
data lay within the corridor described by heat transfer measurements. Furthermore,
it is observed that the common neglect of Mach number effects leads to a variation
of the stagnation point Nusselt number Nu0 of 26 %, comparing simulations #4
(Ma= 0.41) and #1 (Ma= 1.11).

The RA and the CCA are shown in figure 9. As they are developed for
wall-bounded flows, the analogies are not suitable for the stagnation point region.
In this region, the relative error is between approximately −80 % and −40 %. At the
position where Cf reaches its maximum, both analogies over-predict the heat transfer:
≈+30 % (RA) respectively ≈+65 % (CCA). Farther away from the axis r/D & 2,
the analogies fit much better. The best agreement is found in case of the higher
Reynolds number using the CCA. Here the error is between −9 % and −4 %. Taking
the flow properties of the impinging jet, described in § 3, into account, we observe
that the deceleration of the wall jet is not problematic for the analogies. The radial
velocity has its maximum at r/D≈ 0.8. At r/D& 1, the flow is strongly decelerating,
but both analogies estimate heat transfer with much better accuracy than at r/D . 1.
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The area of poor heat transfer estimation coincides with the area featuring a high
pressure gradient.

Other relations involving mean temperature and mean velocity were developed by
Busemann (1931) and Crocco (1932), Walz (1962) and Zhang et al. (2014). In Zhang
et al. (2014), the derivation is explained in detail. All relations have the common form:

T
Tδ
=

Tw

Tδ
+

Tr − Tw

Tδ

ur

urδ
+

Tδ − Tr

Tδ

(
ur

urδ

)2

, (4.4)

with

Tr = Tδ + r
ur

2
δ

2cp
. (4.5)

The subscript δ denotes the boundary layer edge (δ = δ99). The recovery factor r
changes according to the authors. For r= 1, the Crocco–Busemann relation (CBR) is
derived. In the Walz’s equation or modified CBR, r= 0.88. The generalised Reynolds
analogy (GRA) proposed by Zhang et al. (2014) uses the general recovery factor
according to (4.6):

r=
(
Tw − Tδ

) 2cp

ur
2
δ

−
2Pr
urδ

qw

τw
. (4.6)

Those three relations were tested for the impinging jet. The difference between the
Crocco–Busemann and Walz’s equation was found to be negligible for the present
simulations. For the reason of lucidity, the approximation according to Walz is not
shown.

In figure 10, the boundary layer thickness of radial (wall-parallel) velocity urδ
and temperature Tδ are shown. Both boundary layers increase with increasing radial
distance in all cases. Additionally to the thinner boundary layer in the case of the
higher Reynolds number #6 (Re = 8000), compared with #5 (Re = 3300), another
difference occurs. At Re= 3300, the velocity boundary layer features a local decrease
at 1.9 6 r/D 6 2. In this area, the average radial velocity is strongly influenced by
the periodical movement of primary and secondary vortex rings. The drop in urδ is
caused by the separation of the vortex pair at this location. Figure 17 shows these
vortices. At higher Reynolds number, the vortex rings occur with the same frequency,
but due to the higher level of turbulence, the radial position of the separation as well
as the shape of the vortices vary more strongly than at Re= 3300. Consequently, no
exact repetitive location of separation is present and no drop in the velocity boundary
layer occurs.

Figure 11 shows the DNS data compared with the approximations of Crocco–
Busemann and the GRA. The mean temperature and mean wall-parallel (radial)
velocity are normalised by the values at the edge of the boundary layer (subscript
δ = δ99) as in Zhang et al. (2014). For both Reynolds numbers the GRA fits better
than the CBR for radial positions close to the stagnation point (r/D = 0.3 and
r/D = 0.8). Farther away (r/D = 1.4 and r/D = 3.5), the opposite can be observed.
This is a consequence of different curvatures of the DNS profiles and the fact that the
scaled mean temperature is always predicted higher according to the GRA. Further
can be ascertained that the GRA gives a precise prediction of the temperature field
for Re = 8000 and r/D = 0.8. At this radial position, the radial velocity has its
maximum. Given that no de- and acceleration is present, the conditions are most
similar to canonical compressible wall-bounded turbulent flows for which the relation
was developed. In CCWTFs the flow can be approximated as quasi-one-dimensional.
Examples for such flows are pipes and channels.
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FIGURE 10. (Colour online) Boundary layer thickness ( ): (a,b) radial velocity urδ;
(c,d) temperature Tδ; (a,c) simulation #5 (Re = 8000); (b,d) simulation #6 (Re = 8000).
Contour lines of ur respectively T are shown in the background.
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FIGURE 11. (Colour online) Relation between mean temperature and mean velocity in
the wall jet: (a) simulation #5 (Re= 3300); (b) simulation #6 (Re= 8000). Colours:
(sky blue), r/D= 0.3; (blue), r/D= 0.8; (red), r/D= 1.4; , r/D= 3.5.
Patterns: , DNS data; , CBR; , GRA.

4.2. Fluctuations
In addition to the relation between mean temperature and velocity, Zhang et al. (2014)
also derived a general analogy for fluctuations:

T ′ −
1

Prt

∂T
∂u

u′ + φ′ −
(ρv)′ φ′

(ρv)′ u′
u′ = 0, (4.7)

where φ′ is a residual temperature that needs to be modelled. The proposed model
chosen by Zhang et al. (2014) for ‘convenience’ is

φ′ =
(ρv)′ φ′

(ρv)′ u′
u′, (4.8)

so that (4.7) is reduced to

T ′ =
1

Prt

∂T
∂u

u′. (4.9)
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FIGURE 12. Joint probability distributions of radial velocity (a–d) and temperature (e–
h) fluctuation against the axial velocity fluctuation at 13 6 y+ 6 17 for different radial
positions (a–h r/D= 0.3, 0.8, 1.4 and 3.5), simulation #6 (Re= 8000).

Zhang et al. (2014) further describe that (4.9) is not valid, but the r.m.s. of T ′ and u′
can be approximated in a similar way:√

T ′2 ≈
∣∣∣∣ 1
Prt

∂T
∂u

∣∣∣∣√u′2 or
√

T ′2 ≈±
(ρv)′ T ′

(ρv)′ u′

√
u′2. (4.10a,b)

The plus sign applies to the flow region where the wall-normal gradients of the mean
temperature and velocity have the same sign. The minus sign applies to the opposite
situation. This approximation fails in case of the impinging jet. In the boundary layer
the term (ρv)′ u′ changes its sign. The approximation delivers huge values of

√
T ′2 in

the vicinity of the zero crossing. A further approximation is suggested by Zhang et al.
(2014) that reduces the connection between temperature and velocity fluctuations to
Rv′u′ ≈ Rv′T ′ . Where R is the correlation coefficient. Also this approximation is invalid
for the impinging jet. Figure 12 exemplary shows joint probability distributions of
simulation #6 (Re= 8000,Ma≈ 0.8) in the boundary layer at 13 6 y+ 6 17. The best
rendering was achieved with a classification of the data into 250 segments for each
variable covering 95 % of the velocity and 99 % of all other fluctuations. The database
consists of 550 equally spaced snapshots (symmetry planes) out of 175 000 that have
been computed after the flow reached its quasi-stationary state. The corresponding
correlation coefficients are given in table 2 for the same y+ value and additional for
38 6 y+ 6 42. It can be seen that neither the radial velocity nor the temperature is
correlated to the axial velocity. Despite both coefficients are close to zero, it cannot
be said that they are approximatively equal.

4.3. Additional correlations
The derivation of RAs is closely related to the development of models for compressible
turbulence. For instance, a similar equation to 4.10 was derived by Rubesin (1990).
He assumed that thermodynamic fluctuations behave in a polytropic manner:

p′

p
= n

ρ ′

ρ
=

n
n− 1

ρT ′′

ρT̃
. (4.11)
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FIGURE 13. (Colour online) The r.m.s. values of pressure and density for
subsonic impinging jets for different radial positions (a–d r/D = 0.3, 0.8, 1.4
and 3.5): , r.m.s.p/p (#5, Re = 3300); , r.m.s.p/p (#6, Re = 8000);
(red), r.m.s.ρ/ρ (#5, Re= 3300); (red), r.m.s.ρ/ρ (#6, Re= 8000).

R y+ r/D= 0.3± 0.05 r/D= 0.8± 0.05 r/D= 1.4± 0.05 r/D= 3.5± 0.05

Rv′u′r 15± 2 −0.04 0.01 0.04 0.08
Rv′T ′ 15± 2 −0.08 0.05 0.18 0.24
RT ′ρ′ 15± 2 −0.75 −0.80 −0.86 −0.94
Rρ′p′ 15± 2 0.70 0.58 0.41 0.14
Rv′u′r 40± 2 −0.11 −0.11 0.19 0.18
Rv′T ′ 40± 2 −0.02 0.11 −0.11 −0.24
RT ′ρ′ 40± 2 −0.79 −0.76 −0.75 −0.94
Rρ′p′ 40± 2 0.69 0.40 0.48 0.04

TABLE 2. Correlation coefficients for simulation #6.

After assuming that T ′/T ≈ T ′′/T̃ and linearisation according to Lechner et al. (2001),
the relation

(n− 1)
ρ ′

ρ
≈
ρT ′

ρ T
(4.12)

is derived. As suggested, with n = 0 it follows that the correlation coefficient Rρ,T
is minus one, Rρ,p ≈ 0 and that pressure fluctuations are unimportant compared
to density fluctuations. The correlation coefficients are given in table 2, the joint
probability distributions are shown in figure 14. Here Rρ,T is strongly negative for all
observation points. Far away from the stagnation point (r/D = 3.5), the coefficient
reaches a value of −0.94 and justifies the approximations. The correlation between
density and pressure is not zero, as proposed. On the contrary, the coefficient is
strongly positive (≈0.7) close to the axis, but decreases with increasing r/D. Far
away from the stagnation point, the approximation Rρ,p ≈ 0 is valid. Similarly,
pressure fluctuations are not unimportant compared to density fluctuation in the entire
region where the flow is influenced by impingement. Farther downstream, r.m.s.ρ/ρ
is around three times as large as r.m.s.p/p for y+ & 5, as it can be seen in figure 13.

Lechner et al. (2001) assumed a linear relation between thermodynamic fluctuations.
Following the entropy definition s= cv ln (p/ρκ), the linearised gas law and the neglect
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FIGURE 14. Joint probability distributions at 13 6 y+ 6 17 for different radial positions
(a–t) r/D = 0.3, 0.8, 1.4 and 3.5, simulation #6 (Re = 8000). Approximation (4.13) is
included in row 3 and 4 (black solid line).

of pressure fluctuations with respect to density fluctuations, the approximation reads

s′

cv
≈−κ

ρ ′

ρ
≈ κ

T ′

T
. (4.13)

Figure 14 shows the joint probability distributions of (s′, ρ ′), (s′, T ′) and (s′, p′).
Approximation (4.13) is included in the plots (black solid line) and is found to be
reasonable for all radial positions.
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FIGURE 15. (Colour online) Influence of Reynolds number on turbulent heat flux in the
wall-normal direction ρv′′e′′ (a–c) and the radial direction ρu′′r e′′ (d–f ): (a,d) r/D = 1.4;
(b,e) y+ = 15; (c, f ) y+ = 40; , #5 (Re= 3300); , #6 (Re= 8000). For plots at
fixed r/D, the horizontal locations y+= 15 and y+= 40 are shown ( , blue). For plots
at fixed y+, the vertical position r/D= 1.4 is shown ( , blue).

5. Turbulent heat flux
In § 4.1, figure 7, Nusselt number profiles of simulations #5 (Re = 3300) and #6

(Re = 8000) are shown. In both cases, Nu decreases with increasing radial distance.
Superimposed to this main trend, a shoulder exists at 1 . r/D . 2, where the slope
is reduced. Depending on the parameters of the impinging jet, the slope can also be
positive in this area and form a secondary maximum. In Wilke & Sesterhenn (2015a),
this shoulder or secondary maximum was ascribed to the occurrence of secondary
vortex rings that locally increase heat transfer. Using the turbulent heat flux, we can
quantify this effect. Figure 15(a–c) shows the turbulent heat flux in the wall-normal
direction ρv′′e′′. Close to the wall, ρv′′e′′ is positive in the area of the Nu shoulder
((a,d) r/D= 1.4). This means that heat is transported in the positive y-direction (away
from the impinging plate). After reaching a maximum at y+ ≈ 15 to 20, the heat
flux decreases and turns negative. This is due to the fact that vortices present at the
upper border of the wall jet entrain hot fluid. The radial distribution at y+ = 15 (b,e)
proves that the zone where the turbulent heat flux is strongly positive coincides with
the Nu shoulder and that ρv′′e′′ is negative in the vicinity of this zone for the lower
Reynolds number. Further can be determined that in this zone the influence of ρv′′e′′
is weaker at the higher Reynolds number. This agrees with the fact that the Nu profile
is smoother and that the vortex rings are overlaid with small-scale turbulence, leading
to less strong structures.

Figure 15(d–f ) shows the turbulent heat transfer in the radial direction ρu′′r e′′. It is
of the same order of magnitude as the one in the wall-normal direction. Close to the
wall, ρv′′e′′ is positive at r/D=1.4 for the case of Re=3300. For the higher Reynolds
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number, this area of downstream turbulent heat flux is almost not present. At larger
wall distances, ρv′′e′′ is negative for both cases due to the direction of rotation of the
vortices in the shear layers.

6. Reynolds stresses
Modern high performance computers allow three-dimensional direct numerical

simulations of impinging jets with relevant Reynolds numbers since recently. However,
the computations are limited to academic cases for the foreseeable future. For the
improvement of turbulence models, that are widely used for industrial applications,
our DNS provide a database to compare with. An important term that rises among
others in the RANS equations is the Reynolds stress tensor ρu′′i u′′j that we describe
in this section. Since the mean circumferential velocity component is zero, the terms
ρu′′θv′′ and ρu′′θu′′r are not of relevance and therefore not shown. Figure 16 shows the
four main entries of the tensor. We analyse the flow close to the wall and at the
radial distance, where the shoulder of the Nusselt number is present. The profiles are
taken normal to the wall at r/D = 1.4 (a,d,g,j) and parallel to the wall at y+ = 15
(b,e,h,k) and y+ = 40 (c, f,i,l).

At r/D= 1.4, the θθ -component (a) increases until y+ ≈ 10 and then stays almost
constant within the boundary layer. The maximum stress occurs around a half-diameter
from the jet axis. At low Reynolds number (3300), a second maximum is present
at approximate r/D = 2–2.5. Another difference between the two simulations is that
the stress component is higher in the case of the higher Reynolds number (8000).
Additional to this area, another area of high stress is present farther away from the
wall and the jet axis and will be discussed later.

The yy-component is stronger in case of the low Reynolds number. The strength of
this entry of the tensor increases with the distance to the wall, until it decreases again
when approaching the upper end of the wall jet. Since the wall jet’s centre and upper
end is at higher y+-values in case of the higher Reynolds number, the maximum of
ρv′′2 occurs also at a higher dimensionless wall distance. The highest stress occurs at
a radial distance of around 1.5–1.8 diameters.

The distribution of the rr-component features two maxima in the wall-normal
direction, whereby this characteristic is distinct stronger in case of the lower Reynolds
number. The gap between the two maxima increases with the distance from the jet
axis. This shape is directly caused by the primary and secondary vortices that move
parallel to the wall and increase their diameter. In figure 17, the area of the highest
ρu′′2r -value is indicated by two dash-dotted lines. Those lines coincide with the path
of the primary vortex rings that have their origin in the shear layer of the free jet and
the counter-rotating secondary vortices that emerge due to wall friction. The maximal
fluctuations occur at r/D≈ 1, where the two vortices have the highest radial velocity.

The yr-component has a similar wall-normal distribution as the yy-component.
However, the radial location of the highest value is closer to the jet axis at
r/D≈ 1–1.3. The simulation with the lower Reynolds number features higher values
of ρv′′u′′r and a stronger distinct maximum.

Figure 17 summarises the locations of high stresses. The impingement of the
primary ring vortices cause strong stress in the θθ -direction. The movement of
the pair consisting of a primary and a secondary vortex causes strong stress in
the rr-direction. The components yr, yy and again θθ are strongly influenced
by the movement of the primary vortex and become important in this order with
increasing radial distance. The influence of the Reynolds number is observed for the
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FIGURE 16. (Colour online) Influence of Reynolds number on the main Reynolds stress
tensor components: (a–l) ρu′′2θ , ρv′′2, ρu′′2r and ρv′′u′′r ; (a,d,g,j) r/D=1.4; (b,e,h,k) y+=15;
(c, f,i,l) y+ = 40; , #5; , #6. For plots at fixed r/D, the horizontal locations
y+ = 15 and y+ = 40 are shown ( , blue). For plots at fixed y+, the vertical position
r/D= 1.4 is shown ( , blue).

θθ -component. In § 4.1, we already stated that the radial position of the separation
of the primary–secondary vortex pair as well as the shapes of both vortices vary
stronger in case of the higher Reynolds number. The observation of the transient flow
shows us that both cases (#5: Re = 3300, Ma = 0.8 and #6: Re = 8000, Ma = 0.8)
feature a mainly axisymmetrical mode. However, occasional leapfrogging within the
free jet induces slight asymmetries in case of the higher Reynolds number. These
asymmetries are transported into the wall jet and can lead, depending on their strength,
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FIGURE 17. Instantaneous flow field of simulation #6: QD2/v2
∞

in the range −85 (white)
to 85 (black). (a) Location of primary (P) and secondary (S) vortices. (b) Locations of
high Reynolds stress tensor components: , θθ ; , yy; , rr; , yr.

to dismemberment of the vortex rings. As a consequence, the circumferential velocity
fluctuation and consequently the Reynolds stress tensor component θθ is much
stronger for Re= 8000.

7. Reynolds stress budgets

Performing DNS, we are able to compute the terms in the balance equations for
the Reynolds stress tensor components. Since the mean flow of the impinging jet is
axisymmetrical, we use a cylindrical coordinate system for the analysis. In Moser &
Moin (1984), the balance equations are derived for cylindrical coordinates using only
Reynolds averages. For compressible flows it is common practice to use Reynolds
(mean: ?, fluctuation: ?′) and Favre averages (mean: ?̃, fluctuation: ?′′) simultaneously.
After statistical averaging of the Navier–Stokes equations and some transformations,
we derived the Reynolds stress transport equation in the following form:

∂

∂t

(
ρu′′i u′′j

)
+

∂

∂xk

(
ũkρu′′i u′′j

)
︸ ︷︷ ︸

Cij

=−ρu′′i u′′k
∂ ũj

∂xk
− ρu′′j u′′k

∂ ũi

∂xk︸ ︷︷ ︸
PRij

+
∂

∂xk

[
ρu′′i u′′j u′′k + p′

(
u′iδjk + u′jδik

)]
︸ ︷︷ ︸

TDij

−τ ′ik
∂u′j
∂xk
− τ ′jk

∂u′i
∂xk︸ ︷︷ ︸

DSij

+
∂

∂xk

(
u′iτ ′jk + u′jτ ′ik

)
︸ ︷︷ ︸

VDij

+p′
(
∂u′i
∂xj
+
∂u′j
∂xi

)
︸ ︷︷ ︸

PSij

+u′′i

(
∂τjk

∂xk
−
∂p
∂xj

)
+ u′′j

(
∂τik

∂xk
−
∂p
∂xi

)
︸ ︷︷ ︸

Mij

. (7.1)

The terms mean the following: C, convection; PR, production; TD, turbulent
diffusion; DS, turbulent dissipation; VD, viscous diffusion; M , mass-flux variation,
and PS, pressure strain. The imbalance of the budget is denoted IB. The expressions
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FIGURE 18. (Colour online) Budget of the θθ -component ρu′′2θ D/(ρv3)∞: (a,c) #5
(Re = 3300); (b,d) #6 (Re = 8000); (a,b) r/D = 1.4; (c,d) y+ = 15;
(red), IB; , C; , PR; , TD; , VD; , M; , PS; , DS.
For plots at fixed r/D, the horizontal location y+ = 15 is shown ( , blue). For plots
at fixed y+, the vertical position r/D= 1.4 is shown ( , blue).

for the regarded components of cylindrical coordinates are given in appendix A.
The averaging was performed in time as well as in the circumferential direction.
Therefore all derivatives with respect to θ are zero. Despite the fact that the
circumferential velocity is small uθ/v∞ . 0.01, it was not neglected. The budgets
are presented for one radial position r/D = 1.4 and at one constant dimensionless
wall distance y+ = 15.

The budget of ρu′′2θ in figure 18 shows significant differences between the two
different Reynolds numbers. At r/D = 1.4, the two dominant terms in the boundary
layer, but not at the wall, are turbulent diffusion and pressure strain in simulation #5
(Re = 3300). Both are of equal strength and opposite sign. At the higher Reynolds
number, the turbulent diffusion is of less importance. As counterpart to the pressure
strain, also production and turbulent dissipation contribute to the loss of stress. At
the wall, stress is produced by viscous diffusion and lost by turbulent dissipation
in both cases. At y+ = 15, stress is mainly produced by pressure strain and lost by
convection (both cases). At Re = 3300, turbulent diffusion contributes positively at
r/D≈ 0.6 and negatively at other radial distances. In contrary, the turbulent diffusion
is negative for Re= 8000 for all radial distances.

The budget of ρv′′2 in figure 19 is dominated by turbulent diffusion and pressure
strain in both cases and all locations. Except for y+ & 35 at Re = 3300, TD
contributes positively and PS negatively. At this higher dimensionless wall distances,
also convection and production become more important and contribute with loss
respectively gain. In radial direction, the two opponents feature maxima at r/D≈ 0.25
and r/D≈ 0.8.

The rr-component of the Reynolds stress tensor has, compared with the other
components, much more significant terms in its budget. Figure 20 shows that the
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FIGURE 19. (Colour online) Budget of the yy-component ρv′′2D/(ρv3)∞: (a,c) #5
(Re = 3300); (b,d) #6 (Re = 8000); (a,b) r/D = 1.4; (c,d) y+ = 15;
(red), IB; , C; , PR; , T D; , VD; , M; , PS; , DS;

(blue), locations r/D= 1.4, y+ = 15.

dominant terms at the wall are viscous diffusion (gaining stress) and turbulent
dissipation (loosing stress). Farther away from the wall (y+ = 15), pressure strain
gains most stress. Its maximum is at r/D ≈ 0.8. At this location, stress is likewise
decreased by turbulent diffusion.

The budget of ρv′′u′′r in figure 21 contains two main terms: pressure strain and
turbulent diffusion. The first one gains stress at and nearby the wall and then turns
negative at higher dimensionless wall distances. In the boundary layer, the turbulent
diffusion behaves opposite. At higher values of y+, around 35, also production
becomes more important in case of Re = 3300. The radial distance of r/D = 1.4 is
located in a local extremum of the two main terms. Another stronger extremum with
opposite signs occurs at r/D≈ 0.8.

8. Conclusions
DNS of impinging jets have been carried out in the lower range of technical

relevant Reynolds numbers 3300, 8000 for three different Mach numbers 0.4, 0.8, 1.1.
At these Reynolds numbers, strong primary vortex rings develop within the shear
layer of the free jet region and are transported downstream. Due to the shear layer
adjacent to the impinging plate, secondary ring vortices develop and pair with the
primary ones. These couples cause an enhanced heat transfer at 1 . r/D . 2 that
results in a shoulder of the Nusselt number distribution over the radius. Modern LES
are not able to precisely predict this phenomenon (Dairay et al. 2014). With our DNS
data we provide statistical results of this zone, such as turbulent heat flux, Reynolds
stresses and Reynolds stress budgets for the improvement of turbulence models. The
flow paths of the vortices coincide with the areas of high mean Reynolds stresses.
Furthermore, strong fluctuations caused by these vortices lead to a high turbulent heat
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flux at the respective area of the impinging plate and consequently to the shoulder
in the Nusselt number profile. In case of the higher Reynolds number, the formation
of vortex rings is stronger distorted by slight asymmetries overlaying the main
axisymmetrical mode. Consequently, the above described effect is weaker and the
Reynolds stress in the θθ direction indicates that the rings are stronger fragmented.

The estimation of heat transfer due to the analogy to momentum transfer, as first
proposed by Reynolds, is still object of research. Different analogies were tested for
compressible impinging jets. The Nusselt number approximations according to the
RA and CCA deliver useful values, if the distance to the jet axis is larger than one
diameter. In contrast to canonical compressible wall-bounded turbulent flows, a high
pressure gradient is present in the deflection zone, where both relations deliver big
errors and cannot be recommended. The GRA was applied and compared with the
CBR. Both approximations relate the mean temperature field to the mean velocity
field with inaccurate results. Only the GRA can predict the temperature field with
good precision, in the area where the radial acceleration is zero (r/D = 0.8). Since
the wall jet exhibits in most of the domain different flow conditions, that do not meet
the assumed quasi-one-dimensional flow, the relation cannot be applied reliably to the
impinging jet. The relation between fluctuating temperature and velocity according to
the GRA is not applicable at all. The reason for this lies in the change of sign of
the term (ρv)′ u′, which creates singularities in the predicted temperature fluctuations.
Pressure fluctuations are not unimportant compared to density fluctuations in the entire
region where the flow is influenced by impingement. This is different to the channel
flow. Farther downstream however, the importance of pressure fluctuations decreases
as the influence of impingement vanishes. As a result, the impingement region needs
to be treated differently from the channel flow with regard on turbulence models. The
linear relation between thermodynamic fluctuations of entropy, density and temperature
as suggested by Lechner et al. (2001) can be confirmed for the entire wall jet.

Beside the model of heat transfer, it is common practise to estimate the Nusselt
number based on experimental correlations that usually involve the Reynolds and
Prandtl number as well as geometric information. Mach number effects are normally
not taken into account. Within this investigation, we observed that the flow field in the
deflection zone is strongly dependent on the Mach number. With rising values of Ma,
the fluctuation of the flow increases. Similarly to the observation in connection to the
primary–secondary vortex ring pair, strong fluctuations of velocity and temperature
lead to a higher turbulent heat flux in the vicinity of the stagnation point at high
Mach numbers. Another observation that deserves attention is that the entrainment of
surrounding hot fluid into the deflection zone is increased with the Reynolds number
(8000 versus 3300), leading to a decreased mean temperature difference between
cooling fluid and the hot wall and a negative effect for cooling.
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Appendix A. Reynolds stress transport equations in cylindrical coordinates

Convection

Cθθ = −

[
1
r
∂

∂θ

(
ũθρũ′′θu′′θ

)
+
∂

∂y

(
ṽρũ′′θu′′θ

)
+
∂

∂r

(
ũrρũ′′θu′′θ

)
+
ρ

r

(
2ũ′′r u′′θ ũθ + ũ′′θu′′θ ũr

)]
(A 1a)

Cyy =−

[
1
r
∂

∂θ

(
ũθρṽ′′v′′

)
+
∂

∂y

(
ṽρṽ′′v′′

)
+
∂

∂r

(
ũrρṽ′′v′′

)
+
ρ

r
ṽ′′v′′ũr

]
(A 1b)

Cyr = −

[
1
r
∂

∂θ

(
ũθρṽ′′u′′r

)
+
∂

∂y

(
ṽρṽ′′u′′r

)
+
∂

∂r

(
ũrρṽ′′u′′r

)
+
ρ

r

(
ṽ′′u′′r ũr − ṽ′′u′′θ ũθ

)]
(A 1c)

Crr = −

[
1
r
∂

∂θ

(
ũθρũ′′r u′′r

)
+
∂

∂y

(
ṽρũ′′r u′′r

)
+
∂

∂r

(
ũrρũ′′r u′′r

)
+
ρ

r

(
ũ′′r u′′r ũr − 2ũ′′θu′′r ũθ

)]
. (A 1d)

Production

PRθθ = −2ρ
[

ũ′′θu′′θ

(
1
r
∂ ũθ
∂θ
+

ũr

r

)
+ ũ′′θv′′

∂ ũθ
∂y
+ ũ′′θu′′r

∂ ũθ
∂r

]
+ ũ′′r u′′θ

(
1
r
∂ ũθ
∂θ
+

ũr

r

)
+ ũ′′rv′′

∂ ũθ
∂y
+ ũ′′r u′′r

∂ ũθ
∂r

]
(A 2a)

PRyy =−2ρ
[
ṽ′′u′′θ

1
r
∂ṽ

∂θ
+ ṽ′′v′′

∂ṽ

∂y
+ ṽ′′u′′r

∂ṽ

∂r

]
(A 2b)

PRyr = −ρ

[
ṽ′′u′′θ

(
1
r
∂ ũr

∂θ
−

ũθ
r

)
+ ṽ′′v′′

∂ ũr

∂y
+ ṽ′′u′′r

∂ ũr

∂r
+ ũ′′r u′′θ

1
r
∂ṽ

∂θ

+ ũ′′rv′′
∂ṽ

∂y
+ ũ′′r u′′θ

∂ṽ

∂r

]
(A 2c)

PRrr =−2ρ
[

ũ′′r u′′θ

(
1
r
∂ ũr

∂θ
−

ũθ
r

)
+ ũ′′rv′′

∂ ũr

∂y
+ ũ′′r u′′r

∂ ũr

∂r

]
. (A 2d)

Turbulent diffusion

TDθθ =
∂ρu′′θu′′θu′′r

∂r
+

1
r
∂ρu′′θu′′θu′′θ
∂θ

+
∂ρu′′θu′′θv′′

∂y
+ 3

ρu′′r u′′θu′′θ
r

+ 2

(
1
r
∂p′u′θ
∂θ
+

p′u′r
r

)
(A 3a)

TDyy =
∂ρv′′v′′u′′r

∂r
+

1
r
∂ρv′′v′′u′′θ
∂θ

+
∂ρv′′v′′v′′

∂y
+
ρv′′v′′u′′r

r
+ 2

∂p′v′

∂y
(A 3b)
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TDyr =
∂ρv′′u′′r u′′r

∂r
+

1
r
∂ρv′′u′′r u′′θ
∂θ

+
∂ρv′′u′′rv′′

∂y
+
ρv′′u′′r u′′r − ρv′′u

′′

θu′′θ
r

+
∂p′v′

∂r
+
∂p′u′r
∂y

(A 3c)

TDrr =
∂ρu′′r u′′r u′′r

∂r
+

1
r
∂ρu′′r u′′r u′′θ
∂θ

+
∂ρu′′r u′′rv′′

∂y
+
ρu′′r u′′r u′′r − 2ρu′′r u′′θu′′θ

r

+ 2
∂p′u′r
∂r

. (A 3d)

Viscous diffusion

VDθθ = 2

(
∂u′θτ ′θr

∂r
+

1
r
∂u′θτ ′θθ
∂θ
+
∂u′θτ ′θy

∂y
+

u′rτ
′

θθ + 2u′θτ ′rθ
r

)
(A 4a)

VDyy = 2

(
∂v′τ ′yr

∂r
+

1
r
∂v′τ ′yθ

∂θ
+
∂v′τ ′yy

∂y
+
v′τ ′yr

r

)
(A 4b)

VDyr =
∂v′τ ′rr

∂r
+

1
r
∂v′τ ′rθ

∂θ
+
∂v′τ ′ry

∂y
+
v′τ ′rr − v

′τ ′θθ

r
+
∂u′rτ ′yr

∂r

+
1
r
∂u′rτ

′

yθ

∂θ
+
∂u′rτ ′yy

∂y
+

u′rτ ′yr − u′θτ ′yθ
r

(A 4c)

VDrr = 2

(
∂u′rτ ′rr

∂r
+

1
r
∂u′rτ

′

rθ

∂θ
+
∂u′rτ ′ry

∂y
+

u′rτ ′rr − u′θτ ′rθ − u′rτ
′

θθ

r

)
. (A 4d)

Mass-flux variation

Mθθ = 2u′′θ

(
∂τθr

∂r
+

1
r
∂τθθ

∂θ
+
∂τθy

∂y
+
τrθ + τθr

r
−

1
r
∂p
∂θ

)
(A 5a)

Myy = 2v′′
(
∂τyr

∂r
+

1
r
∂τyθ

∂θ
+
∂τyy

∂y
+
τyr

r
−
∂p
∂y

)
(A 5b)

Myr = v′′

(
∂τrr

∂r
+

1
r
∂τrθ

∂θ
+
∂τry

∂y
+
τrr − τθθ

r
−
∂p
∂r

)
+ u′′r

(
∂τyr

∂r
+

1
r
∂τyθ

∂θ
+
∂τyy

∂y
+
τyr

r
−
∂p
∂y

)
(A 5c)

Mrr = 2u′′r

(
∂τrr

∂r
+

1
r
∂τrθ

∂θ
+
∂τry

∂y
+
τrr − τθθ

r
−
∂p
∂r

)
. (A 5d)

Pressure strain

PSθθ =
2
r

p′
(
∂u′θ
∂θ
+ u′r

)
(A 6a)

PSrr = 2p′
∂u′r
∂r

(A 6b)
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PSry = p′
(
∂u′r
∂y
+
∂v′

∂r

)
(A 6c)

PSyy = 2p′
∂v′

∂y
. (A 6d)

Turbulent dissipation

DSθθ =−2

[
τ ′θθ

(
1
r
∂u′θ
∂θ
+

u′r
r

)
+ τ ′θy

∂u′θ
∂y
+ τ ′θr

∂u′θ
∂r

]
(A 7a)

DSyy =−2
[
τ ′yθ

1
r
∂v′

∂θ
+ τ ′yy

∂v′

∂y
+ τ ′yr

∂v′

∂r

]
(A 7b)

DSyr = −

[
τ ′yθ

(
1
r
∂u′r
∂θ
−

u′θ
r

)
+ τ ′yy

∂u′r
∂y
+ τ ′yr

∂u′r
∂r

+ τ ′rθ
1
r
∂v′

∂θ
+ τ ′ry

∂v′

∂y
+ τ ′rr

∂v′

∂r

]
(A 7c)

DSrr =−2

[
τ ′rθ

(
1
r
∂u′r
∂θ
−

u′θ
r

)
+ τ ′ry

∂u′r
∂y
+ τ ′rr

∂u′r
∂r

]
. (A 7d)
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