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Instability of forced planar liquid jets: mean
field analysis and nonlinear simulation
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Germany

(Received xx; revised xx; accepted xx)

The stability of forced planar liquid jets in a still gaseous environment is explored using
nonlinear simulation and spatial linear stability analysis. Harmonic modulation of the
transverse component of the inlet velocity leads to an excitation of sinuous modes in the
jet. Two forcing amplitudes, 1 % and 5 %, are investigated. While for 1 % forcing, the
interfacial disturbance retains a sinuous shape throughout the domain, for 5 % forcing,
an increasing downstream deviation from the sinuous wave shape is found. Both forcings
lead to sufficient mean flow correction to render linear stability analysis on a base flow
unfeasible. Hence, an analysis on the time-averaged mean flow is performed. A correction
scheme is introduced, to account for the spreading of the interface position in the mean
flow. Comparison of eigenfunctions and growth rates with their counterparts from the
nonlinear simulation shows an excellent agreement for 1 % forcing. For 5 % forcing,
agreement of the eigenfunctions deteriorates significantly and growth rates are falsely
predicted, resulting in a break-down of the stability model. Subsequent analysis reveals a
strong interaction of the fundamental wave with the second higher harmonic wave for 5
% forcing and a reversed energy flow from the coherent motion to the mean flow. These
findings provide an explanation for the failure of the linear stability model for large
forcing amplitudes. The study extends the applicability of mean flow stability analysis to
convectively unstable planar liquid/gas jets and supports previous findings on the limits
of mean flow stability, involving pronounced influence of higher harmonic modes.

Key words:

1. Introduction

The breakup of liquid jets is relevant to a broad range of industrial applications,
including ink-jet printers or fuel injection in e.g. diesel engines or gas turbines. In such
cases a high velocity liquid stream is injected into a still gaseous environment through a
high pressure nozzle. The resulting two-fluid system is subjected to extrinsic and intrinsic
mechanisms of destabilisation. Extrinsic factors for instance, are given by pressure
fluctuations in the supplied liquid stream or forced oscillatory movement of the jet within
the nozzle. Forced destabilisation can be achieved with the use of a fluidic oscillator,
to create a spatially or temporarily oscillating jet (Bobusch et al. 2013; Krüger et al.
2013; Schmidt et al. 2018). These effects possibly promote the development of intrinsic
destabilisation mechanisms that arise through the shear of the adjacent parallel fluid
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layers, the presence of surface tension at the liquid/gas interface or unstable stratification
of denser and lighter fluid.

Besides experiments or direct numerical simulation (DNS) to capture the full nonlinear
dynamics of the flow, assessment of the various occurring flow instability can be made by
means of linear stability analysis (LSA). The early studies of Rayleigh (1878) consider the
inviscid analysis of a low-velocity cylindrical liquid jet. In this configuration disturbances
in the jet radius, and thus in the capillary pressure gradient, with wavelengths exceeding
the jet perimeter may grow in time and break up the jet under the influence of surface
tension.

Investigations by Squire (1953), however, showed that surface tension acts stabilising
if the jet is planar since there is no circumferential connection of the upper and lower
interface. Instability has therefore to be rooted in the shear layer of the fluids, caused
by either the momentum, density or viscosity defect (Drazin & Reid 2004; Yih 1967).
With increasing jet velocity aerodynamic effects become relevant. Thus the incorporation
of the surrounding fluid is necessary as investigated by Hagerty & Shea (1955) for an
inviscid ambient gas and later in the studies of Lin et al. (1990), Li & Tankin (1991) and
Li (1993) for a viscous gas. However, neither considered a gas boundary layer, which was
studied by e.g. Tammisola et al. (2011). For a fully viscous shear layer, approximated by
a tanh-profile, Boeck & Zaleski (2005) found three competing unstable modes, attributed
to the viscosity ratio (H mode), the inviscid Kelvin-Helmholtz and the viscous Tollmien-
Schlichting mechanism. In the context of plane liquid jets Söderberg (2003) found up
to five unstable modes, three asymmetric and two symmetric modes using both spatial
and temporal LSA. The jet velocity profile was obtained by numerical analysis and
the gas velocity profile was approximated by a spatial transformation of Stokes first
problem (Schlichting & Gersten 2006). Downstream amplitude growth was evaluated and
compared to experimental results with good agreement. Similarly, a cylindrical jet in the
first wind-induced break-up regime was analysed by Gordillo & Pérez-Saborid (2005)
using a constant jet velocity. In the above works either the gas phase or liquid phase
baseflow profiles were modeled using analytical approximations of the actual velocity
profile. A fully numerical baseflow computation by means of Direct Numerical Simulation
was used by Tammisola et al. (2012) for global stability analysis of confined planar liquid
jets and wakes.

The classical approach to LSA by linearising the Navier-Stokes operator around
a theoretical, steady baseflow, however, neglects possible nonlinear dynamics of the
underlying flow as well as any incoherent, turbulent fluctuations. A way to account
for these aspects is to linearise around the time-averaged mean flow. The approach has
been successfully used for e.g. the prediction of finite vortex shedding behind a cylinder
at post-critical Reynolds numbers (Pier 2002; Barkley 2006) or the spatial development
of a forced single-phase jet (Oberleithner et al. 2014b). Limits of the mean flow model
have been revealed by Sipp & Lebedev (2007) for an open cavity flow due to significant
resonance of the fundamental wave with its first harmonic. To the best of the authors
knowledge the concept of mean flow stability has not been applied to the scenario of
forced liquid jets so far.

In the present work a jet is forced sinusoidally at the domain inlet, resulting in the
development of finite amplitude waves that grow and decay in downstream direction,
resulting in a convectively unstable flow. The aim of the investigation is twofold. First, we
explore the potential of the mean field model for LSA to predict the spatial development
of the excited instability waves in a forced liquid jet. Modelling using mean flow analysis
has the potential of providing a simplified model to capture coherent structures of an
unsteady flow without the necessity of computing the full nonlinear representation of the
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flow. Second, the subsequent downstream nonlinear evolution of fundamental wave and
interaction with developing higher harmonic waves are studied using direct numerical
simulation of the jet. The fully nonlinear, unsteady flow representation also allows for a
thorough study of the phenomenological manifestation of the nonlinear wave interaction
in the flow.

The paper is structured as follows: In Section II we briefly summarise the numerical
methods and present the general results of the nonlinear simulation to establish a
phenomenological overview of the studied cases. In Section III the mean flow perturbation
equations are derived and the methodology for two-phase flows is explained. We present
the parameterisation of the mean flow and analyse general stability properties of an
unforced and forced jet. A detailed comparison of the nonlinear results and the LSA
is conducted in Section IV where growth rates and mode shapes, derived for both
methods, are presented. To conclude, in Section V shortcomings of the stability model
are investigated by help of the nonlinear simulations. The developing nonlinearities in
the downstream development of the excited waves are analysed and linked to the vortex
dynamics of the unsteady flow.

2. Nonlinear simulation of a liquid jet

Physically, the conservation laws for flows involving two immiscible and incompressible
fluids are derived with two additional assumptions over the single-phase formulation,
regarding the interface, separating the two phases. First, the interface is assumed to have
negligible thickness, resulting in a discontinuity of the density and viscosity field. Second,
the imbalance of molecular forces along the fluid interface results in a surface tension
force located at the interface. Consequently, velocity and tangential stress are continuous
across the interface, while the normal stress encounters a jump, balanced by the surface
tension. Numerically, the system is modelled in a unified formulation over both phases,
known as the one-fluid formulation (Tryggvason et al. 2011), where continuity equation
and momentum balance are given by

∂ρ

∂t
+
∂ρui
∂xi

= 0, (2.1a)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ σκniδS, (2.1b)

with ui = (u, v)T representing the components of the velocity vector (i = 1, 2), xi =
(x, y)T the spatial coordinates, ρ the density, µ the dynamic viscosity and p the pressure.
The density and viscosity field are given as

ρ = ρg + (ρl − ρg)C, (2.2a)

ν = νg + (νl − νg)C, (2.2b)

where the indices g and l refer to the gaseous or liquid phase, respectively. Thus,
density and viscosity vary between the phases but are constant within each phase. The
volume fraction C(xi, t) is a Heaviside function, defined as the ratio of liquid volume to
total volume.

The term σκniδS in equation (2.1b) accounts for surface tension forces along the
interface where σ denotes the surface tension coefficient, κ is the mean interface curvature,
and ni is the outward pointing normal vector. It is formulated according to the continuum
surface force method (CSF) (Brackbill et al. 1992). The equations are solved using
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the finite volume method in the open-source toolbox basilisk, developed by Stéphane
Popinet (http://basilisk.fr). For a detailed description of the implemented numerical
schemes, see Popinet (2003, 2009).

The interface is tracked with the Volume-of-Fluid (VoF) method (Hirt & Nichols 1981)
using the advection of C(xi, t) as

∂C

∂t
+
∂Cui
∂xi

= 0. (2.3)

Computational cells where C = 1 are located in the liquid phase and cells with C = 0
are situated in the gaseous phase. Consequently, in interfacial cells 0 < C < 1. Given the
velocity field, the volume fraction field is successively advected along each dimension with
a one-dimensional scheme. The local volume fraction fluxes are calculated from the local
velocities and geometric reconstruction of the interface. In two dimensions the interface
segment, dividing a computational cell, is reconstructed by knowledge of the value of
C in the cell. Therefore, the orientation of the segment is evaluated by computing the
normal vector to the segment ni = ∂C/∂xi. The segment then is described by nixi = c,
where c is the shortest distance from the segment to the current coordinate below the
segment. In practice, c can be determined by an analytic formula (Scardovelli & Zaleski
1999).

The surface tension term in equation 2.1b is implemented using a balanced CSF
formulation (Francois et al. 2006) to avoid the problem of parasitic currents (Harvie et al.
2006). The method relies on an accurate computation of the interface curvature which
is obtained with a height-function method, that gives second-order accurate curvature
estimates (Torrey et al. 1985; Cummins et al. 2005).

For large density ratios in e.g. water/air flow, a momentum conserving scheme is used
for the advection term in equation (2.1b) in order to avoid numerical instabilities.

The spatial discretisation is based on a uniform or non-uniform structured grid. In the
latter case, a hierarchical quad-/octree structure is used to dynamically refine the grid
at each time step according to a specified adaptation criterion. The dynamic grid helps
to retain a high resolution in regions of large gradients while simultaneously allowing
for coarse resolution away from the region of interest and therefore greatly decreases
computational costs.

2.1. Problem formulation

The basilisk solver is used to simulate the temporal and spatial evolution of a
transversely forced planar liquid jet in a still ambient gas. The computational domain
is square with an edge length L = 200D, the inlet has a width D = 2 × 10−3 m and
is located in the centre of the left boundary. The computational domain is significantly
larger then the relevant area for this study. For the remaining sections of this work, only
the area −5 < y/D < 5, 0 < x/D < 40 will be considered and referred to as domain.
The domain is initialised with ui = 0, C = 0. We use Dirichlet boundary conditions at

http://basilisk.fr
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Name Variable Value Unit
liquid density ρl 997 kg/m3

gas density ρg 1.177 kg/m3

liquid viscosity µl 8.90× 10−4 kg/(ms)
gas viscosity µg 1.84× 10−5 kg/(ms)
surface tension σ 72.5× 10−3 N/m

Table 1: Fluid properties of the liquid and gas phase

the inlet and impose a sinusoidal oscillation in the transverse velocity component. The
inlet conditions at Ω1 in the centre of the left domain edge reads

u|Ω1
= U, (2.4a)

v|Ω1
= U ×A sin(2πf∗t), (2.4b)

∂p

∂x
|Ω1

= 0, (2.4c)

C|Ω1 = 1, (2.4d)

where U = 4 m/s is the plug flow velocity at the inlet. The forcing frequency is f∗ = 200
Hz and A = 0.01, 0.05. Additionally, a simulation of the unforced jet is conducted. On
the remainder of the left edge (Ω2) a no-slip boundary is imposed. The top and lower
edges Ω3 are equipped with symmetry boundaries. Along the right edge Ω4 a standard
outflow condition

∂ui
∂x
|Ω4

= 0, (2.5a)

p|Ω4
= 0, (2.5b)

∂C

∂x
|Ω4

= 0, (2.5c)

is imposed. Further, a sponge region is employed, by enforcing a coarse mesh for
x > L/4. Thereby, vorticity is efficiently dissipated in order to avoid backflow issues
at the domain outlet. A schematic description of the computational domain is given in
figure 1a.

The fluid properties of the respective phases, corresponding to water and air, and the
corresponding dimensionless quantities based on U , D and the forcing frequency f∗ are
given in tables 1, 2. The flow parameters and the domain extend are chosen such that the
complete destabilisation cycle of the velocity field, including growth, saturation and onset
of decay of the forced instability wave is captured within the area of interest. Further,
the choice of flow parameters ensures that the jet remains intact throughout the domain
such that no breakup of liquid structures occurs.

A dynamic quadtree-structured grid is chosen as spatial domain discretisation. To
check whether a cell needs refinement, its level is reduced by one and increased again.
This corresponds to down- and up-sampling of the stored scalar fields. The original field
ψ is compared to the up-sampled field ψ∗ to estimate the error ε = ||ψ−ψ∗||. The cell is
refined if ε > θ and coarsened if ε < 2/3 θ where θ is the error threshold of the specific
scalar field. A more detailed description is given by van Hooft et al. (2018).

For the present work, we set θ = 5×10−3 for both velocity components and the volume
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Name Relation Value
liquid Reynolds number Rel = ρlUD/µl 8962
gas Reynolds number Reg = ρgUD/µg 512
Weber number We = ρlU

2D/σ 440
Strouhal number St = f∗D/U 0.1

Table 2: Dimensionless numbers, based on U , D and the forcing frequency f∗

(a) (b)

Figure 1: Schematic illustration of the computational domain and the adaptive grid (a)
and grid sensitivity assessment using the stream-wise development of the time-averaged
shear layer momentum thickness δ for A = 0.05 (b)

fraction. The maximum resolution is limited to 15 levels of refinement, corresponding to a
minimum nondimensional cell edge length of ∆x/D ≈ 0.0157. To evaluate the adequacy
of the chosen adaptation criteria and mesh resolution, the time-averaged shear layer
momentum thickness, defined as

δ(x) =

∫ ∞
0

u

U

(
1− u

U

)
dy, (2.6)

where u denotes the time-averaged stream-wise velocity, is computed for 13 to 15 levels
of refinement in figure 1b. No visible improvement is seen between the latter two levels,
hence the chosen parameters should be sufficient.

Simulations are run for TU/D = 409.6 nondimensional time units, corresponding to
40.96 oscillation cycles. Time stepping is adaptive based, on a Courant condition

∆t 6 0.5 min

{
∆x

u
,

√
ρl∆x3

πσ

}
. (2.7)

2.2. General jet evolution

The liquid jet, injected on the left side of the domain, evolves in stream-wise direction
and remains intact throughout the area of interest. The harmonic transverse forcing
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(a)

(b) (c)

Figure 2: Instantaneous view of the interface via the volume fraction field C for (a)
A = 0.01, (b) A = 0.05. The blue area corresponds to C > 0.5, denoting the liquid phase
while the white area, C < 0.5, denotes the gas phase. In (c) the envelope of the interfacial
instability wave is shown as an iso-line of C = 0.01.

at the inlet introduces an initially monochromatic wave that grows in space while being
convected downstream. The disturbance amplitude is clearly visible in the fluid interface,
shown in figure 2, for A = 0.01 and A = 0.05. For further illustration, the envelope of the
interfacial instability wave is shown for both forcing amplitudes by plotting an iso-line
of the time-averaged volume fraction field C.

For both amplitudes, the interface disturbance grows in stream-wise direction over
the whole domain. For x > 15D the interfacial disturbance wave starts saturating
and approaches its maximum amplitude. The point where the interfacial disturbance
is saturated completely is outside the investigated domain (x/D ≈ 45). For A = 0.05,
the influence of the harmonic forcing on the interface is much more prominent, resulting
in significantly larger amplitude growth. Further, for A = 0.05 an increasing deviation
from the initial wave pattern is evident from figure 2 for x/D > 20. This results in a
characteristic agglomeration of liquid around the wave crests as well as a shift from a
sinuous wave shape to a triangular shape.

The spatio-temporal evolution of the interfacial wave and secondary structures is
illustrated by the diagram of C(x, y = 0, t) and the instantaneous vorticity field Ω =
∂v/∂x − ∂u/∂y in figure 3. The contour lines of C illustrate the amplitude growth and
saturation of the interfacial wave, while Ω visualises the interaction of the interface with
the instability growth in the respective fluid phases. Initially, the interfacial amplitude
is small and the vorticity of the liquid phase is virtually zero which is marked as white
area in the diagram. Downstream of around x/D = 10, the amplitude growth leads to
sufficient deflection of the interface to intermittently expose the growing non-zero gas
phase vorticity. In the subsequent development, the saturation of the interfacial wave
is seen in the diagram as the gaps approach a constant thickness. The development
of secondary structures is indicated by increasingly complex vortical patterns which
manifest in the appearance of clockwise and anti-clockwise rotating vortical patterns
in each gap during their downstream evolution.

For further clarification of the evolving vortical structures, the instantaneous vorticity
field for both forcing amplitudes is shown in figure 4. For A = 0.01, a single vorticity sheet
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Figure 3: Spatio-temporal diagram of the nondimensional centre-line vorticity Ω
U/D (x, y =

0, t) (filled contour) and the centre-line volume fraction C(x, y = 0, t) = 0.5 (black
contour line) for A = 0.05

(a)

(b)

Figure 4: Instantaneous view of the nondimensional vorticity field Ω
U/D for (a) A = 0.01,

(b) A = 0.05. The Interface C = 0.5 is shown as black contour line.

evolves along each side of the interface and remains intact throughout its downstream
development, indicating linear disturbance growth. Contrastingly, for A = 0.05, the
vorticity sheet in the initial shear layer is disturbed by the growing oscillation of the
interface, which promotes agglomeration into discrete vortical structures from around
x/D ≈ 15. Theses structures develop along the interfacial wave crests when the curvature
of the deflected interface becomes sufficiently large such that the vorticity sheet detaches
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from the interfacial curve. The formed structures travel in the wave troughs of the excited
jet. While initially a single vortical structure is present, additional, secondary structures
form during the downstream evolution of the jet.

Similar flow features are observable in the flow visualisation conducted by Tammisola
et al. (2011). In their experimental work a planar liquid sheet is sinusoidally forced with
loudspeakers. Although their focus lies on frequency variation and the influence of gas
co-flow, the sheet’s response to the forcing produces comparable results to this study.
In particular, for higher amplitudes, the shift from a sinusoidal to a triangular wave
pattern is clearly seen. The increased interface corrugations further suggest a pronounced
influence of gas-phase vorticity on the jet.

A somewhat extreme illustration of the effects of large forcing amplitudes on a liquid jet
is given in Schmidt et al. (2018) where a liquid jet, emitted by an industrial-type fluidic
oscillator is studied numerically and experimentally. The primary instability mechanism
studied in the present case is likely to play no role at that scale, as turbulence and
early onset of breakup are too pronounced for instability growth to manifest. However,
it is observable that the oscillation at large amplitudes, induces significant instabilities
along the liquid jet surface. These in turn, have been found to drastically facilitate jet
destabilisation, leading to reduced breakup length and smaller diameters in the produced
droplet spectrum.

3. Linear stability model

In this section, we establish a local linear stability model for a forced liquid jet
and apply it to the configurations described in the previous section. The aim is to
quantify the observed instability wave growth and decay using a simplified linear model.
Therefore, we derive the linearised perturbation equations for infinitesimal disturbances
of an interfacial flow. We briefly describe the implementation and validation and give
notes about the parameterisation of the mean flow on which the stability analysis is
conducted. Thereafter, stability properties are analysed. Special attention is given to the
spatial development of the eigenfunction shapes and the corresponding growth rates.

3.1. Perturbation and mean flow equations

The derivation of the perturbation equations is based on the Navier-Stokes equations
for an incompressible Newtonian fluid. In contrast to section 2, they are formulated
separately for each phase as

∂ui,l,g
∂xi

= 0, (3.1a)

∂ui,l,g
∂t

+ uj,l,g
∂ui,l,g
∂xj

= −∂pl,g
∂xi

+
1

Rel,g

∂2ui,l,g
∂x2j

, (3.1b)

where equation (3.1b) has been non-dimensionalised with the Reynolds number. The
subscripts l, g denote the liquid and gaseous phase respectively. For improved readability,
the phase-denoting subscripts will be dropped unless explicit distinction is necessary.
For analysing the growth of intrinsic disturbances, the velocity and pressure field are
decomposed into a basic state and disturbed state

ui(xi, t) = ub,i(y) + εu′i(xi, t) and p(xi, t) = pb,i(y) + εp′(xi, t). (3.2)

where ε � 1 is a small amplitude. The time-independent base flow is denoted by the
subscript b. Since a local analysis is performed, the base flow is assumed to be parallel



10 S. Schmidt, K. Oberleithner

and of the form ub,i(y) = (ub(y), 0)T . The parameter ε will be dropped for the remainder
of this work. The decomposition, equation (3.2), is substituted in equation (3.1). Since
the base flow satisfies equation (3.1), all base flow terms vanish. By ignoring the nonlinear

term u′j
∂u′

i

∂xj
the linearised form of the perturbation equations yields

∂u′i
∂xi

= 0, (3.3a)

∂u′i
∂t

+ ub,j
∂u′i
∂xj

+ u′j
∂ub,i
∂xj

= − ∂p
′

∂xi
+

1

Re

∂2u′i
∂x2j

. (3.3b)

The equations describe the response of the underlying steady base flow to infinitesimal
disturbances. However, basing the analysis on the base flow ignores any influence of
dynamic fluctuations on the time-averaged mean flow such as the nonlinear saturation of
the oscillatory flow (Noack et al. 2003). Additionally, in case of an externally forced flow,
a steady solution might not even exist. Therefore, since we are interested in the stability
of the time-averaged flow, obtained from the oscillatory flow, once it has reached its limit
cycle, it is appropriate to choose the triple decomposition of the flow field (Reynolds &
Hussain 1972),

ui(xi, t) = ui(y) + ũi(xi, t) + u′′i (xi, t) and p(xi, t) = p(y) + p̃(xi, t) + p′′(xi, t), (3.4)

where ui and p are the time-averaged velocity and pressure field respectively, ũi, p̃
the periodic parts and u′′i , p′′ the fluctuating parts. Upon substitution of the ansatz
into equation (3.1), phase-averaging and time-averaging, the time-averaged Navier-Stokes
equations are given as

∂ui
∂xi

= 0, (3.5a)

uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂x2j

+ Fi, (3.5b)

where

Fi = − ∂

∂xj

(
ũiũj

)
− ∂

∂xj

(
u′′i u

′′
j

)
(3.6)

is interpreted as nonlinear modification of the mean field by Reynolds stresses of the
periodic and fluctuating field. This also implies that the mean flow is not a solution of
the steady Navier Stokes equation, as noted by Barkley (2006).

The ansatz (3.4) is inserted in (3.1), phase-averaging is performed and (3.5) is sub-
tracted, to yield the dynamic equation of the fundamental wave

∂ũi
∂xi

= 0, (3.7a)

∂ũi
∂t

+ uj
∂ũi
∂xj

+ ũj
∂ui
∂xj

= − ∂p̃

∂xi
+

1

Re

∂2ũi
∂x2j

+ F∗i , (3.7b)

where
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F∗i = − ∂

∂xj
(ũiũj)−

∂

∂xj

(
ũ′′iu′′j

)
. (3.8)

For the mean flow analysis, we assume that the influence of the quadratic harmonic
interactions is small, although the harmonic waves themselves might not necessarily be
small. Further, we assume the fluctuating velocity is small compared to the harmonic
velocity (which is demonstrated in section 5). We therefore ignore F∗i and conduct an
a posteriori analysis of the nonlinear terms in section 5 to check the validity of this
assumption.

3.2. Solution method and validation

The coherent perturbations are decomposed into Fourier modes

ũi(xi, t) = ûi(y)eι(αx−ωt) and p̃(xi, t) = p̂(y)eι(αx−ωt) (3.9)

where ι denotes the imaginary unit, α the stream-wise wavenumber of the perturbation
and ω the stream-wise frequency, both of which are generally complex. ûi and p̂ are
the complex eigenfunctions of respective perturbations in velocity and pressure. We are
interested in the spatial growth and decay of disturbances. Hence, a spatial stability
analysis is pursued where ω is a known, real valued frequency and α is complex valued
and unknown. The ansatz (3.9) is introduced in equation (3.7) to obtain the Fourier-
transformed perturbation equations.

Note, that the assumption of a parallel mean flow in the present case is worth ques-
tioning. In case of a laminar unforced jet, the liquid phase might retain an approximately
constant diameter and an unaltered velocity profile between to respective downstream
positions. This is the case if the jet exhibits a block-like velocity profile, as in e.g.
Tammisola et al. (2011). However, for a parabolic inflow profile (Söderberg 2003), the
liquid interfaces notably contracts until it reaches a relaxed state. Additionally, the shear
layer spreading within the gaseous phase invalidates the strict assumption of a parallel
flow.

In case of a forced jet as in the present case, the downstream spreading of the mean
flow certainly violates the parallel flow assumption for both phases. Nevertheless, local
analysis has shown remarkable robustness in predicting stability properties for a variety
of nonparallel flows (see e.g. Cohen & Wygnanski 1987; Pier 2002; Oberleithner et al.
2014a; Terhaar et al. 2015; Emerson et al. 2016). Alternatively, axial spreading can be
accounted for by using a correction scheme for weakly non-parallel flows by introducing
a slowly varying axial scale (Crighton & Gaster 1976; Oberleithner et al. 2014b) or
within the framework of parabolized stability equations (Herbert 1997; Cheung & Zaki
2010). Yet, another approach is to compute the optimal response to a forcing from the
resolvent norm around the mean flow, taking into account the non-normality of the
linearised operator (Beneddine et al. 2016). However, for the present work, the focus
lies on the applicability of a simple linear model to capture the overall phenomena of
the underlying nonlinear flow. A detailed representation is already available through the
nonlinear simulation results. Therefore, we stick to the parallel flow assumption.

As noted above, for the analysis of immiscible interfacial flows, the perturbation
equations are formulated separately for each phase (see e.g. Söderberg 2003; Gordillo
& Pérez-Saborid 2005). By imposing symmetry conditions along the jet centre-line, it
is sufficient to only consider the top half of the jet. At the interface position, coupling
conditions are formulated to satisfy equation (3.7) across the interface. Formally the
interface position is of the form y = h(x, t) and is assumed to be decomposed and
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perturbed similarly to equations (3.4) (where the fluctuations are neglected) and (3.9)
so that

h(x, t) = h(x) + h̃(x, t) and h̃(x, t) = ĥ(x)eι(αx−ωt). (3.10)

For an unforced jet, the mean interface position is assumed to be approximately equal
to the unperturbed interface position of the steady base flow, which is taken to be
constant in x. Hence, h is constant. In the time-averaged flow of the forced state it
is not. Following the triple decomposition, h should be obtained by time-averaging the
instantaneous interface positions at each x. However, this approach yields unsatisfactory
results as seen in section 4. Therefore, an alternative modelling approach is given in
section 3.3 which does not follow the triple decomposition.

For the derivation of the coupling conditions, a constant h is assumed. Formally, these
conditions are valid at the perturbed interface h(x, t). However, by means of a Taylor
expansion of h(x, t) around y = h and by neglecting terms of second order or higher,
a linear approximation at the unperturbed interface is obtained. In the following, the
approximated conditions at the unperturbed interface are presented. For satisfying the
continuity of the velocity across the interface, it holds

s
ũ+ u+ h̃

du

dy

{

y=h, l

−
s
ũ+ u+ h̃

du

dy

{

y=h, g

= 0, (3.11a)

JṽKy=h, g − JṽKy=h, l = 0, (3.11b)

where quantities inside J·Ky=h, l,g belong to the liquid or gas phase respectively. Further,
the continuity of shear stress requires

s
∂ṽ

∂x
+
∂ũ

∂y
+ h̃

d2u

dy2

{

y=h, l

−m
s
∂ṽ

∂x
+
∂ũ

∂y
+ h̃

d2u

dy2

{

y=h, g

= 0, (3.12)

and the continuity of normal stress yields

s
p̃− 2

Rel

∂ṽ

∂y

{

y=h, l

−
s
rp̃− 2m

Rel

∂ṽ

∂y

{

y=h, g

+
1

We

∂2h̃

∂x2
= 0, (3.13)

where m = µg/µl is the ratio of the dynamic viscosities of the two fluids and r = ρg/ρl
is the density ratio. A detailed derivation of the stress conditions is given in appendix A.
The kinematic condition for the interface is

t
∂h̃

∂t
+ u

∂h̃

∂x
= ṽ

|

y=h, l,g

. (3.14)

Note that it is possible to formulate the kinematic condition for the gas phase velocity
at the interface as well as for the liquid phase velocity. The coupling conditions are
complemented by boundary conditions to close the system.

Only asymmetric waves are considered in the stability analysis, since in the nonlinear
simulation, the jet is forced sinusoidally in the v-component of the velocity to excite
asymmetric modes. From the analysis of the simulation it is evident, that the dominant
mode at the forcing frequency remains asymmetric throughout the downstream develop-
ment of the jet and the aim of the work is to investigate the potential of the mean flow
stability model to predict the growth and saturation of this forced wave. Therefore, a
symmetry condition
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Interface mode Shear mode
present 1.003907431 + 0.001791888361ι 0.2578942009 + 0.0008778900946ι
Dongarra et al. (1996) 1.003907431 + 0.001791888368ι 0.2578942002 + 0.0008778915187ι

Table 3: Validation of two-layer Poiseuille flow using temporal analysis (α = 1).
Displayed are the corresponding unstable eigenvalues c ≡ ω/α

s
ũ = 0,

∂ṽ

∂y
= 0, p̃ = 0

{

y=0, l

for asymmetric modes (3.15a)

is imposed, as well as a no-slip condition

s
∂ũ

∂y
= 0, ṽ = 0,

∂p̃

∂y
= 0

{

y→∞, g

. (3.16)

The closed system (equations (3.7), (3.11) - (3.16)) with the ansatz (3.9), (3.10) is
solved using a Chebyshev spectral collocation method. The grid of the liquid phase
extends over 0 < y 6 h(x) where h(x = 0) = 0.5. The grid of the gas phase extends from
h(x) < y 6 4D. Each grid is discretised using N = 110 collocation points, resulting in
2×N × 3 = 1980 degrees of freedom. Convergence is demonstrated in appendix B. The
resulting quadratic eigenvalue problem is of the form

(α2A2 + αA1 + B)q = 0. (3.17)

The Matrices A2, A1 and B contain the mean flow profiles ul,g, and q =

(ûl, v̂l, p̂l, ûg, v̂g, p̂g, ĥ)T . Using the companion linearisation, equation (3.17) is reduced
to a linear problem [(

B 0
0 I

)
+ α

(
A1 A2

−I 0

)](
q
αq

)
= 0, (3.18)

where I is the identity matrix. The linear system, equation (3.18), is consecutively
solved at each stream-wise position using the QZ algorithm in MATLAB’s eig function
which simultaneously delivers all eigenvalues, to obtain the spatial evolution of α and the
corresponding eigenfunctions. The eigenvalues and -vectors added by αq are discarded.
For validating the code, the temporal stability results of the two-layer Poiseuille flow by
Dongarra et al. (1996) are reproduced. The resulting unstable eigenvalues are listed in
table 3 and the flow conditions are restated in appendix C. As their results exclude the
influence of surface tension, the results of Tammisola et al. (2011) (figure 16 a) in their
work) are qualitatively reproduced as well.

3.3. Mean flow configuration and parameterisation

The u-component of the mean flow velocity field, is obtained by averaging 211 con-
secutive snapshots of the fully developed flow of the nonlinear simulation in section 2
at time increments ∆tU/D = 0.15 and within an area −5 < y/D < 5, 0 < x/D < 40.
These are mapped on an equidistant Cartesian grid with a resolution of 800 × 200 px
where 1 px = 1× 10−4 m. The mean flow field should be symmetric with respect to the
jet centre-line. Therefore, remaining minor asymmetries in the time-averaged flow are
eliminated by taking the symmetric part
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(a) (b) (c)

Figure 5: Comparison of the mean flow profiles and an error-function profile (as in
Tammisola et al. (2011)) for the unforced flow (a), and forced flow with (b) A = 0.01,
(c) A = 0.05. Plot positions are x/D = 0.01, 1, 2, 5, 10, 20. For A = 0.05, positions
x/D = 10, 20 are omitted due to very large deviations from the error-function profile

usym =
1

2
(u(y) + u(−y)). (3.19)

The symmetric, time-averaged mean flow is shown in figure 6.
In Tammisola et al. (2011) and Gordillo & Pérez-Saborid (2005) analytic base flows

were used and a constant velocity profile of the liquid phase was assumed. The gas
boundary layer was approximated using an error function profile. A comparison of the
mean flow profiles with these analytic profiles is given in figure 5. It is seen that for
the unforced flow, the error-function profile slightly over-estimates the developing shear-
layer, although differences are minor. More prominent deviations are observed along the
interface, since the assumption of a constant liquid velocity does not hold for the nonlinear
simulation. Further, the zero Dirichlet condition for the gas velocity causes a reversed
flow in the gas phase close to the inlet, which possibly influences the development of
the initial boundary layer and could have an effect on the growth rate of the instability
wave. For the forced flow, the mean flow profile quickly deviates from the error-function
profile, as the oscillation significantly thickens the mean flow shear layer, especially for
A = 0.05. In conclusion, the analytic profile might be a sufficient approximation for an
unforced jet but not for a forced jet.

The necessity to model the position of the mean interface in the mean flow, noted
in the previous section, is addressed here. Within the parallel flow framework, the
interface between the liquid and gaseous phase is located at a fixed position y = hb
which is determined by the solution of the underlying steady base flow. For instance,
in Tammisola et al. (2011) and Gordillo & Pérez-Saborid (2005) the interface position
remained constant in downstream direction. In Söderberg (2003) a numerical base flow for
the liquid phase was computed with varying interface positions in downstream direction.

For this study a simple model is constructed, that requires the mass of the liquid
phase at x/D = 0 to be conserved for all stream-wise positions in the mean flow. The
initial mass is determined by the initial interface position h(x = 0) = 0.5. Then, the
time-averaged density field ρ is integrated at each x, from 0 < y < h(x). The upper
integration bound h(x), defining the interface within the mean flow, is chosen such that

∫ 0.5

0

ρ(x = 0, y)

ρlD
dy =

∫ h(x)

0

ρ(x, y)

ρlD
dy. (3.20)
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Figure 6: Mean flow profiles of the jet forced at A = 0.01 (blue); A = 0.05 (black). The
spreading of the mean interface position, derived from figure 7 is shown as dashed line.

An illustration of this procedure is shown in figure 7 along with the resulting interface
curve within the mean flow. As is seen, the model moves the interface reasonably into
the mean flow shear layer.

When using a true stationary solution, the interface position can simply be defined by
the volume fraction C = 0.5, as in the VoF method. However, this assumption does not
hold in the time-averaged flow (for the time-averaged volume fraction C ≈ ρ/ρl) which
is seen in figure 7: Using C = 0.5 the interface would move towards the centre-line of
the jet. A consistent approach to obtaining the interface position according to the triple
decomposition would be to take the time-averaged position. However, for a transverse
sinusoidal forcing, the growing interface disturbance should approximate a growing sine
wave on each side of the plane jet/sheet. As the jet oscillates symmetrically around its
(theoretical) centre-line, the time averaged position of the interface would be h(x) = ±0.5
for all stream-wise positions which corresponds to the position of the unperturbed flow.
Another approach to obtain the interface position in the mean flow that might seem
plausible at first sight, is to derive the location with the highest probability of interface
residence at each stream-wise position, i.e. a probability density. However, for a sine wave
this would yield an interface position at either of the extrema of the sine wave. This does
not seem plausible, since it traverses the interface almost out of the mean flow shear-layer.
The effect of the interface correction is further assessed in the following sections.

3.4. General stability properties of the jet

For the stability analysis, three different cases will be of interest. The first case is based
on the mean-flow of the unforced jet. As within the current numerical framework, natural
disturbances of the unforced jet remain very small (at least in the considered domain), it
closely corresponds to an equilibrium or base flow solution, i.e. the interface remains at
the initial, unperturbed position within the sampling accuracy (h(x) = 0.5), as has been
carefully checked. We denote this case as base flow model. The second case is based on
the mean-flow of the forced jet but ignores the interface displacement in the mean flow,
such that h(x) = 0.5 (equivalent to a triple decomposition of the interface). This case is
denoted as fixed interface model. The third case is similar to the second one but includes
the proposed interface correction model to account for the interface displacement. This
case is denoted as varying interface model.

To obtain a general overview on the stability properties of the present jet configuration,
in figures 8a and 8b the stream-wise distribution of spatial growth rates is derived for the
base flow model for a broad range of frequencies. There are two unstable modes found
which together render the jet convectively unstable for all applied frequencies within the
displayed domain.
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(a) (b)

(c) (d)

Figure 7: Illustration of the mean interface spreading. The top row shows a contour plot
of the mean volume fraction field ρ/ρl of the nonlinear simulation and the interpolated
interface position for the linear stability model as black line, for (a) A = 0.01; (b)
A = 0.05. The black dotted line represents the presumed, fixed interface position of the
unforced flow. Red areas corresponds to regions of small interface amplitudes while lighter
shades indicate areas of increased amplitudes. The second row shows the cumulative
integral of ρ

ρlD
along y for several stream-wise positions, for (c) A = 0.01; (d) A = 0.05.

The interface at x = 0 (vertical line) determines the initial mass of the liquid. The
interface is constructed such that the liquid mass is conserved (horizontal line).

In detail, mode I is unstable for all shown frequencies and shows an increasing
maximum growth rate as the frequency increases up to fD/U = 0.27. Characteristic
for this mode are the almost vertical contour lines within the initial region of the jet,
that make the upstream stability behaviour of the jet virtually similar for a range of
applied frequencies of approximately 0.1 < fD/U < 0.3. The upstream appearance of
the mode is qualitatively reminiscent of the sinuous mode of type I found in Söderberg
(2003).

For frequencies fD/U < 0.27 mode II is unstable as well in the upstream region
of the jet. However, prolonged downstream influence of this mode is only observed for
fD/U < 0.1 where the point of neutral stability moves beyond x/D = 10. Contrasting
to mode I, the contour lines follow a more horizontal trend, especially in the lower
frequencies. Additionally, the mode shows significantly smaller growth rates within the
initial jet region, compared to mode I. The low-frequency region of this mode partially
resembles the sinuous mode of type II found in Söderberg (2003). For better comparison
the stability maps are re-plotted in appendix D, using similar scaling as in Söderberg
(2003). However, contrastingly to his findings no third unstable physical eigenvalue is
found for the present configuration.

There is however one additional marginally stable eigenvalue found which might
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(a) (b)

(c) (d)

Figure 8: Stability map for the base flow model (Mode I (a), Mode II (b)), fixed interface
model (Mode I) at A = 0.01 (c), varying interface model (d). Shown is the spatial growth
rate −αιD and the curve indicating neutral stability, i.e. αιD = 0, in red.

correspond to the third mode found in Söderberg (2003) but since it is not unstable
we shall not investigate it further in this work. Also mode II is either stable or exhibits
weaker growth for the forcing frequencies applied in this work and thus will be excluded
from further investigations as well.

The stability map of mode I is also derived for the fixed and varying interface model
with A = 0.01 at St = 0.1 in figure 8d. As can be seen, the mean flow for the fixed
interface model significantly alters the stability map. Using the forced flow, the threshold
for neutral stability moves into the domain for all frequencies and is located between
x/D = 20 and x/D = 30 for fD/U > 0.05. For lower frequencies the neutral point
reaches approximately x/D = 10. When the displacement of the mean interface position
is taken into account (varying interface model), the neutral stability curve shifts even
further upstream for most frequencies and renders all positions downstream x/D = 20
stable. This indicates that the spreading of the mean interface has indeed an impact on
the stability properties of the jet even at small forcing amplitudes and as shown below is
even necessary to correctly recover the point of neutral stability of the excited instability
wave. The maps derived for the fixed and varying interface model are obtained using
the time-averaged flow at St = 0.1. Therefore, the growth rates shown in figure 8c and
8d correspond to modes existing on this specific mean flow. For deriving maps where
the displayed growth rates correspond to the most unstable eigenmode at the forcing
frequency, a separate mean flow with a forcing at the respective frequency would have
to be used for each eigenmode.



18 S. Schmidt, K. Oberleithner

Case St A REYg REYl TAN NOR DISg DISl

fixed interface model 0.1 0.01 0.0012 0.0180 0.9903 0.0074 -1.4354e-4 -0.0168
varying interface model 0.1 0.01 0.0014 0.0580 0.9424 0.0107 -1.3422e-4 -0.0124
fixed interface model 0.1 0.05 0.0005 0.1066 0.8844 0.0262 -2.9122e-4 -0.0175
varying interface model 0.1 0.05 0.0013 0.5085 0.4395 0.0557 -2.6337e-4 -0.0047

Table 4: Energy budget of mode I of the linear stability model at x/D = 10

The origin of the unstable mode can be inspected by analysing its energy budget as
carried out by Boomkamp & Miesen (1996) and Otto (2012). Therefore an energy balance
over both fluid phases is derived as

MFLl + MFLg = REYl + REYg + TAN + NOR + DISl + DISg (3.21)

Where MFL is corresponding to the stream-wise mean energy flux. The flux is balanced
by a production term accounting for energy transfer from the mean flow to the perturba-
tion through Reynolds stresses REY. The energy transfer to the velocity perturbations
along the interface is accounted for by TAN and NOR, representing the work of tangential
and normal stress. The perturbation energy dissipation is given by DIS. It is always
negative by definition while the sign of the other quantities might change depending of
the flow configuration. Every quantity is normalised by the sum of all quantities. The
complete expressions for the respective terms are given in appendix E. The contributions
of the respective terms, calculated exemplarily at x/D = 10, are given table 4.

For A = 0.01 the energy budget is dominated by the contribution of tangential stresses,
caused by the viscosity jump across the interface. Additionally, the energy transfer from
the mean flow to the perturbed flow through Reynolds stresses within the liquid phase as
well as the contribution of normal stresses from the pressure jump have some influence,
although they are significantly weaker than the tangential stresses. Energy dissipation
almost exclusively takes place in the liquid phase. Overall the gaseous phase has negligible
contribution to the perturbation energy budget. For increased forcing the influence of
TAN and REYg decreases while for REYl and NOR it increases.

The interface correction is seen to increase the influence of the REYl and lower the
influence of TAN which is to be expected since the correction shifts the interface position
outwards into the mean flow shear layer where the mean flow gradient is larger than in
proximity to the jet centre-line and so are the Reynolds stresses.

When comparing the contributions at the respective amplitudes it is seen that the
contribution of REYg decreases for increasing forcing amplitude which seems counter-
intuitive. However, due to the increased mean flow spreading for larger forcing amplitudes,
the transverse gradient of the mean flow velocity in the gas phase, as seen in figure 6,
reduces which provides an explanation for the lower values of REYg. In contrast, the
gradient within the liquid part of the mean flow shows a slight increase which is in line
with the increase of REYl for larger forcing amplitudes.

4. Comparison of nonlinear simulation and linear stability model

The findings of the previous section have shown plausible results for A = 0.01 when the
stream-wise spreading of the mean interface position is accounted for. In the following,
the eigenfunctions and corresponding growth rates of the stability analysis are compared
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to their equivalents of the nonlinear simulation (DNS). Therefore, a decomposition of the
coherent flow field of the DNS into a Fourier series yields the complex Fourier coefficients

ûi,n(xi) =
1

2πT

∑
n 6=0

ũi e−ι2πnft. (4.1)

To obtain the coherent velocity ũi, formally, ui is subtracted from the phase averaged
velocity field to exclude any incoherent fluctuations. However, as demonstrated in section
5, the incoherent motion is negligibly small compared to the coherent motion. Therefore,
ũi ≈ ui − ui has proven as adequate choice.

We investigate the potential of the linear model for both forcings A = 0.01 and A =
0.05. For the sake of completeness and to underline the benefits of the mean flow model,
the main results of this section are reproduced for the base flow model in appendix F.

4.1. Stream-wise and cross-wise eigenfunctions

The eigenfunctions û and v̂ of the linear stability analysis and the fundamental wave
packet (n = 1) of the DNS, derived from equation (4.1), are shown in figure 9. The region
of linear growth is followed by the nonlinear saturation and decay of the amplitude.

For A = 0.01 and the fixed interface model, an overall very good agreement is found for
v̂. Particularly in the gaseous part of the shear layer, there is an excellent correspondence
of the eigenfunctions throughout the domain. Along the liquid jet centre-line, amplitude
prediction is very good as well up to around x/D = 20. However, beyond that point
there are some visible discrepancies around the interface where the steep gradient of the
amplitude is not followed as rigorously by the linear model. For x/D > 30 the agreements
between simulation and linear stability model deteriorates further within the liquid part
of the shear layer. The under-prediction for x/D < 5 within the liquid phase is possibly
attributed to the influence of the inlet wall in the simulation which should approximately
resemble the nozzle in the experiments of Orszag & Crow (1970) and Oberleithner et al.
(2014b). They argue that discrepancies in this area are likely caused by an interaction
of the instability wave with the nozzle that is not covered by the linear model. For û
similar agreement is found. The discrepancies along the interface are seen here as well
and visualised as a slight lateral shift of the amplitude maximum.

For the varying interface model the eigenfunctions of linear stability analysis and their
equivalents of the DNS become virtually indistinguishable throughout the domain (apart
from the near-nozzle region that remains unaffected by the correction). This shows
that accounting for the displacement interface in the spreading mean flow is indeed
necessary to obtain a correct representation of the eigenfunctions. In conjunction with
the findings in table 4, neglecting the interface spreading leads to a under-representation
of Reynolds stresses in the mean flow stability model and an insufficient representation
of the perturbation shear-layer.

For û a similar trend is found. With the fixed interface model, increasing discrepancies
along the interface are seen here as well for x/D > 15 and manifest in the absence of a
lateral shift of the amplitude maximum as well as the formation of a erroneous double
spike in the amplitude. For the varying interface model, the outward spreading of the
amplitude is followed by the linear model.

For A = 0.05, the overall agreement is significantly less accurate. Nevertheless for
x/D < 20, the v̂-component shows very good agreement despite the significant transverse
spreading of the shear layer (varying interface model). With the fixed interface model
this trend is not followed, resulting in visible deviations already at x/D = 7.5. However,
beyond x/D = 20 both methods fail to correctly represent the wave packet amplitude
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of the nonlinear flow. The portray of û shows the same trend, though the qualitative
differences are somewhat more pronounced.

4.2. Growth rates and phase velocity

In the linear model, growth rates of the instability wave are readily given through the
imaginary part of the eigenvalue αι, introduced in equation (3.9). Deriving a correspon-
dent measure for the amplitude growth from the DNS introduces an ambiguity to the
analysis. For the present work, the most suitable measure was found to be based on the
energy norm of the two-phase velocity field. The amplitude is computed as

Ãn(x; ρ̂n; ûn; v̂n) =

√
2

UD/2

(∫ ∞
0

|ρ̂n|
[
|ûn|2 + |v̂n|2

]
dy

)1/2

, (4.2)

where ρ̂n, ûn, v̂n are obtained from equation (4.1). This corresponds to the amplitude
of the velocity fluctuation of the respective harmonics, integrated across the shear layer
of the jet (Delbende et al. 1998; Oberleithner et al. 2014b). Other plausible energy
norms include a separate formulation for the velocity of the respective fluid phases or a
formulation for the density field only. A separate measure of the velocity of each fluid
phase did not reveal any significant differences in the evolution of the growth rates as
compared to the chosen method. However, when using a formulation over the density
field, a slower decay of the instability wave is observed (not shown). The stream-wise
growth rate then is defined as

− α̃ι(x) =
d(ln Ã1)

dx
. (4.3)

The predicted growth rates of both models are given in figure 10. For A = 0.01, very
good agreement is reached between the DNS and the linear stability model. For the
fixed interface model, the growth rates in the initial region up to x/D = 5 are very
well recovered. Thereafter, the predicted growth rate decreases slower than in the DNS
leading to a slightly delayed saturation and zero crossing of the growth rate of the linear
model. Further downstream, the stable wave decays slightly slower than predicted by
the DNS. Using the varying interface model, the initial growth rate is slightly over-
predicted. However, for 10 < x/D < 30 an excellent agreement is found and the neutral
point is (if slightly under-predicted) recovered better than for the fixed interface model.
In comparison, the growth rates obtained from the base flow model (appendix F) do not
predict the neutral point to be within the considered domain at all. Therefore, the mean
flow model generally seems to yield more accurate results than the base flow model.

For A = 0.05 in figure 10b, the agreement of the predicted growth rates is poor
throughout the domain which is to be expected from the substantial deviations of the
eigenfunctions shown above. The fixed interface model predicts the instability wave to
decay much faster than in the DNS, leading to a significant under-prediction of the
neutral point. For the varying interface model, the growth rate prediction of the linear
model is even worse and predicts an increasing destabilisation of the instability wave
such that no saturation is predicted at all.

For comparing the real part of the eigenvalue, αρ, to the wavelength of the forced
instability, observed in the DNS, the phase velocity is derived as cph = ω/αρ. The
corresponding phase velocity c̃ph(x) from the DNS is obtained by the relation αρ =
(∂φ/∂x), where we define an integral measure for the phase angle of the fundamental
wave as φ(x) =

∫∞
0

arg(v̂1(x, y)) dy.
The comparison of the LSA and the DNS is shown in figure 11. For A = 0.01 very
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(a) (b)

(c) (d)

Figure 9: Illustration of the fundamental wave packet (n = 1), obtained from the DNS
and comparison of the computed amplitude functions from the linear stability model and
the DNS for (a) A = 0.01, û; (b) A = 0.01, v̂; (c) A = 0.05, û; (d) A = 0.05, v̂. Figures
show the real part, imaginary part, the absolute value and corresponding amplitudes (for
the fixed and varying interface model) normalised by their maximum value, from top to
bottom. Blue lines show the DNS while black lines show the LSA
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(a) (b)

Figure 10: Comparison of the computed growth rates −αιD from the linear stability
model and −α̃ιD from the DNS for (a) A = 0.01, (b) A = 0.05. LSAb denotes the base
flow model, LSAv and LSAf the varying and fixed interface model.

(a) (b)

Figure 11: Comparison of the computed phase velocities cph/U from the linear stability
model and c̃ph/U from the DNS for (a) A = 0.01, (b) A = 0.05. LSAb denotes the base
flow model, LSAv and LSAf the varying and fixed interface model.

good agreement away from the near-nozzle region x/D > 10 is found for the varying
interface model. For the fixed interface model, slightly increasing deviation is observed
downstream around x/D = 15. For A = 0.05, agreement deteriorates which is to be
expected in light of the poor reproduction of the growth rates at this forcing amplitude.
However, by taking the interface displacement into account the trend seen in the DNS is
partially recovered and the overall quantitative discrepancies are reduced.

4.3. Relation to previous studies on the stability of forced liquid jets

From the body of literature available on the linear stability of liquid jets, the works of
Söderberg (2003) and Tammisola et al. (2011) were found to bear closest resemblance to
the present study and a brief comparison shall be conducted here.



Instability of forced planar liquid jets 23

Although the forcing frequencies in Tammisola et al. (2011) are lower than in the
present case (the Strouhal number is approximately 1/10 that of the present case), as
are Re and We and no specific information on the forcing amplitude can be deduced,
some basic comparisons of the present scenario with figure 14, showing photographs of
the jet oscillation, in their work is possible. As has been discussed, the eigenfunctions of
the linear model show reasonable agreement with the DNS for x/D < 20 for A = 0.05.
The visual amplitude of the DNS at x/D = 20, derived from figure 2, reaches 1.2 y/D.
This amplitude is comparable to that observed in the region around xTam = 1500 in figure
14 (left) of Tammisola et al. (2011). Similarly, the amplitude for A = 0.01, at x/D = 20,
where excellent agreement with the DNS is found, reaches 0.6 y/D, corresponding to
the same region in figure 14 (right). As noted by Tammisola et al. (2011), the linear
analysis around the base flow was obtained far upstream of this region where linear growth
could be assumed (xTam = 600). Therefore, the mean flow model of the present work
could possibly extend the applicability of linear stability analysis in a similar framework
to positions further downstream. However, for larger amplitudes as seen in the lower
part figure 14 (left), the mean flow model is likely to fail as well. It is worth noting
that the growth rates obtained from the DNS and from the mean flow analysis are
substantially larger in the near nozzle region, than they are in Tammisola et al. (2011)
(max(αι,Tam) = 0.0054). However, as stated, the growth rates in their analysis were
obtained from a position sufficiently far away from the nozzle were growth rates are
expectedly smaller than close to the nozzle. In Söderberg (2003) the measured growth
rates close to the nozzle are larger than in Tammisola et al. (2011) and comparable to the
presently obtained growth rates (max(αι,Söd) = 0.4), though the corresponding Strouhal
number is approximately 10 times larger than in the present case and Re and We are,
significantly lower. So, again, no direct comparison is possible. Further, we have checked
the influence of using an analytic flow profile as in Tammisola et al. (2011) which results
in growth rates near the nozzle that are up to 6 times smaller than for the mean flow
profile. As discussed in section 3.3, the differences in the growth rates might be attributed
to the form of mean flow profiles near the nozzle.

5. Interaction of the fundamental wave with higher harmonics

In the previous section we revealed the potential and limits of the linear stability
model to predict the growth and decay of instability waves. While for A = 0.01 very
good agreement is found for both, eigenfunctions and growth rates, strong discrepancies
are found for A = 0.05 which raises the question why the linear model fails to predict the
stability behaviour of a jet forced with this amplitude. This is in contrast to the single-
phase experiments of Oberleithner et al. (2014b) where excellent agreement at similar
and higher forcing amplitudes was found.

Introducing the Fourier decomposition (4.1) in (3.7), we obtain

ιnωûi,n + Li,n = F∗i,n, (5.1)
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Figure 12: Variation of the cross-wise maximum of the total turbulent kinetic energy

where Li,n contains the linear terms. Similarly, we have an infinite expansion, governing
the harmonics of the flow

Fi = −
∑
m6=0

∂

∂xj
(ûi,mûj,−m)− ∂

∂xj

(
u′′i u

′′
j

)
, (5.2a)

F∗i,n = −
∑
m 6=n,0

∂

∂xj
(ûi,mûj,n−m)− ∂

∂xj

(
ũ′′i u

′′
j

)
, (5.2b)

where ûi,−n = û∗i,n, with the asterisk denoting the complex conjugate. The fluctuating
Reynolds stresses remain small in the present scenario, as is seen by evaluating the
turbulent kinetic energy normalised by either the inflow kinetic energy or the coherent
kinetic energy (figure 12). In both cases, the fluctuations remain below 1 % for most of
the domain.

The forcing in equation (5.2a) is expanded for the respective harmonics as follows

Fi = − ∂

∂xj
(ûi,1ûj,−1 + ûi,−1ûj,1 + ûi,2ûj,−2 + ûi,−2ûj,2) + ... , (5.3a)

F∗i,1 = − ∂

∂xj
(ûi,2ûj,−1 + ûi,−1ûj,2 + ûi,3ûj,−2 + ûi,−2ûj,3) + ... , (5.3b)

F∗i,2 = − ∂

∂xj
(ûi,1ûj,1 + ûi,3ûj,−1 + ûi,−1ûj,3 + ûi,4ûj,−2 + ûi,−2ûj,4) + ... , (5.3c)

F∗i,3 = − ∂

∂xj
(ûi,1ûj,2 + ûi,4ûj,−1 + ûi,−1ûj,4) + ... . (5.3d)

The terms for n = 0 represent the interaction of the fundamental and higher harmonic
waves with their respective conjugates, forming a steady flow field which modifies the
base flow (which is a solution of the stationary Navier-Stokes equation) towards the
mean flow. For the generation of higher harmonics, the following process emerges: The
second harmonic is generated by interaction of the fundamental wave with itself and
feeds back on the fundamental wave (through interaction with the fundamental wave
and higher harmonics), itself and subsequent higher harmonic waves. The third harmonic
and subsequent harmonics are generated similarly through interaction of the fundamental
wave or higher harmonics with other harmonics. The harmonics themselves are expanded
as
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A = 0.01 A = 0.05
||∂xj (ûi,1ûj,−1 + ûi,−1ûj,1) ||/||Li,0|| 0.1022 0.2356
||∂xj (ûi,2ûj,−2 + ûi,−2ûj,2) ||/||Li,0|| 0.0014 0.3481
||∂xj (ûi,3ûj,−3 + ûi,−3ûj,3) ||/||Li,0|| 0.0005 0.0983

||ui,b − ui||/||ui,b|| 0.0774 0.7288

Table 5: Influence of the quadratic harmonic interactions in the mean flow equation and
mean flow correction. The quasi-stationary solution of the unforced flow is taken as base
flow ui,b.

ui = ui + ûi,1 + ûi,2 + ûi,3 + ... . (5.4)

As noted by Turton et al. (2015), the harmonics then often decay as ûi,n ∝ O(εn)
where ε is the amplitude of the fundamental mode. Given the assumption holds for
the present case, when investigating equation (5.1), it should hold F∗i,1 ∝ O(ε3) while
L(ui,1) ∝ O(ε). Further it is then required that the amplitude of second harmonic is (at
least) approximately an order of magnitude weaker than that of the fundamental mode.

In the body of literature regarding mean flow stability analysis, a number examples
are found where the mean flow model fails to accurately predict the evolution of the
fundamental mode of the flow. For instance, Sipp & Lebedev (2007) performed a weakly
nonlinear analysis of a cylinder wake and an open cavity flow and determined which
contributions to the nonlinear terms had to be retained in order to fulfil the marginal
stability criterion of the mean flow. While they found excellent agreement for the the
cylinder wake, a similar analysis of the cavity flow revealed the mean flow to remain
strongly unstable. Similarly, Turton et al. (2015) found a disagreement for the case of
a standing wave in thermosolutal convection. In these cases, failure of the mean flow
model is due to a strong nonlinear interaction of the first and second harmonic such that
F∗i,1 is not small. In Boujo et al. (2018) the study of linear response to harmonic forcing
of a shear layer over a cavity revealed good agreement with a corresponding large eddy
simulation, despite non-negligible influence of the second harmonic, i.e. ||ûi,1|| 6� ||ûi,2||.
This is attributed to small interaction of the second harmonic with the fundamental
wave. The nonlinear modification of the mean flow is also the basis for a self-consistent
model, proposed by Mantič-Lugo et al. (2014), which retains the nonlinear forcing of the
fundamental wave on the mean flow, in order to iteratively (without a priori knowledge of
the mean flow) obtain stability properties of a cylinder wake, by requiring the resulting
mean flow to be marginally stable. In the light of these findings, we investigate the
development of higher harmonic waves in the present flow for A = 0.01 and A = 0.05,
based on the results of the DNS to pinpoint possible reasons for the failure of the linear
model for stronger forcings.

We inspect the energy ratio of the fundamental wave and higher harmonics by their
respective matrix norms, induced by the Euclidean norm, in figure 13a. A clear separation
between the fundamental wave and the second harmonic is seen for A = 0.01 (the ratio
of the respective norms is of almost 16). For A = 0.05 this separation is lost, with the
second harmonic being even more energetic than the fundamental wave (the ratio of the
norms is 0.9).

To get a more direct view on the growth of the harmonic waves, we compute their am-
plitudes from equation (4.2). They are shown in figure 14. All amplitudes are normalized
with respect to the initial value of the fundamental wave at x = 0. For A = 0.01 the
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(a) (b)

Figure 13: Ratio of the energy of the harmonics to the energy of the fundamental wave
(a) and ratio of nonlinear to linear terms in equation (5.3) (b)

(a) (b)

Figure 14: Amplitudes Ãn of the fundamental wave an its higher harmonics for (a)
A = 0.01, (b) A = 0.05

fundamental wave saturates around x/D = 20 and starts decaying shortly thereafter,
reaching a maximum gain of approximately 25. The second and third harmonic saturate
further downstream around x/D = 25 and reach a maximum gain of approximately 0.5
and 0.25, respectively. Again a clear separation is evident, as the gain of the fundamental
mode is higher by a factor of 50, respectively 100. At a forcing amplitude A = 0.05,
the maximum gain of the fundamental wave is slightly reduced to around 24 and the
point of saturation is shifted upstream to around x/D = 19. In contrast to A = 0.01
the saturation level is sustained much longer and the wave starts decaying only after
x/D = 30. As expected, the growth of the second and third harmonic is dramatically
increased, reaching gains of approximately 43 and 16 respectively. Both waves saturate
at around x/D = 28. Hence, the gain of the fundamental wave is exceeding that of the
second and third harmonic by a factor of 0.56 and 1.5 respectively.

The influence of the quadratic nonlinearities F∗i,n is shown in figure 13b. They are
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evaluated using the terms displayed in equation (5.3). For A = 0.01, they are dominated
by the first and second term for n = 0, 1 and the first term for n = 2, 3. For A = 0.05
all displayed terms have non-negligible contributions. For A = 0.01, the influence of F∗i,1
is negligible (F∗i,1 ∝ O(ε3)), leaving the dynamics of the fundamental wave unaffected
by higher harmonic interaction. In contrast, for A = 0.05, the influence is profound
and the nonlinear modification to the fundamental wave even exceeds that of the mean
flow (F∗i,1 � O(ε3)). Interestingly, for A = 0.01, F∗i,2 is non-negligible and exceeds
the zero-order terms, which is in contrast to the findings of Turton et al. (2015),
who argued that ∂

∂xj
(ûi,1ûj,1) (which generates ui,2) should be small compared to

∂
∂xj

(ûi,1ûj,−1 + ûi,−1ûj,1). However, since from equation 5.4 it should hold F∗i,2 ∝ O(ε2)

and L(ui,2) ∝ O(ε2), this does not violate our assumption. In summary, two main effects
are observed that likely lead to failure of the mean flow stability model for A = 0.05:
The missing spectral energy separation of the second (and third) harmonic compared to
the fundamental wave and the nonlinear modification of the fundamental wave through
harmonic-fundamental/harmonic-harmonic interaction which is explicitly violating the
assumption we have made for the mean flow analysis in section 3.1.

The influence of the harmonic interactions on the mean flow is assessed in table 5.
The mean flow correction for A = 0.01 is generally small and solely dominated by the
fundamental wave, whereas for A = 0.05 significant influence of the second and also
third harmonic is observed. To get a clearer picture of the spatial development of the
mean flow forcing, the energy transfer between the mean field and the harmonic-harmonic
interactions is investigated. Following Oberleithner et al. (2014b) and Reynolds & Hussain
(1972), by neglecting any viscous involvement, the energy equation for the mean flow
across both fluid phases can be stated as

1

2

d

dx

∫ ∞
0

u3 dy ≈ −
∞∑
n=0


∫ ∞
0

−ûnv̂∗n
∂u

∂y
dy︸ ︷︷ ︸

Pn

−
∫ ∞
0

−u′′v′′ ∂u
∂y

dy, (5.5)

where only terms dominating the balance have been retained and the coherent term
is expanded as in equation (5.3a). The first term on the right-hand side refers to the
energy production by action of the mean field on the coherent Reynolds stresses, while
the second term accounts similarly for the energy production by action of the mean field
on the fluctuating Reynolds stresses.

The stream-wise contributions of the coherent production terms Pn is given in figure 15.
Since the fluctuations are very small, they are, again, neglected. Further, the production
for A = 0.01 is essentially limited to the fundamental wave and therefore is not further
discussed. The balance is dominated by the energy production of the fundamental wave,
which draws energy from the mean field (since it is positive) throughout the domain and
reaches its maximum at x/D = 22 shortly downstream of the saturation point of the
fundamental wave P1. The energy that is fed to the now saturated fundamental wave
is distributed on the higher harmonics that are still growing as seen in figure 14. P2

is always negative, thus continuously transferring energy back to the mean flow. P3 is
positive for 15 < x/D < 25 and peaks around the same position as the fundamental
wave. For x/D > 22 the contribution P1 and P3 diminishes and P3 becomes negative as
well.

It might seem counter-intuitive that the production of the fundamental wave is signif-
icantly larger than that of the second harmonic, whereas, for the harmonics themselves
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(a) (b)

Figure 15: Energy production Pn of the fundamental wave an its higher harmonics for
(a) A = 0.01, (b) A = 0.05

and their self-interaction on the mean flow, the second harmonic dominates. Indeed, for
the normal Reynolds stresses the dominating influence is that of the second harmonic.
However, for the tangential stresses, the contribution of the fundamental mode is largest.
Since, ∂u/∂y � ∂u/∂x ≈ ∂v/∂y ≈ ∂v/∂x, the tangential stresses dominate P.

The negative production in P2, P3 corresponds to a reversed energy cascade from small
scale oscillations to the large scale mean flow. It was hypothesized by Oberleithner et al.
(2014b) that while such a reversed energy cascade is acting, there is no linear dependency
between the mean field and the coherent motion which could lead to a break-down of the
linear stability model. In the present case, although P1 remains positive, P2 is increasingly
feeding energy back to the mean flow during the growth phase of the forced instability
wave, while having a profound influence on the systems stability behaviour as is evident
from its gain. It therefore seems possible that the reversed energy cascade, caused by
modification of the mean flow through the second harmonic, is another cause for the
break-down of the stability model for A = 0.05.

The present work solely focuses on modal growth to explain the developing instabilities.
It is possible that non-modal growth, caused by non-orthogonality of the eigenvectors,
has an influence on the short-time behaviour of the forced jet and, if significant, possibly
could explain some of the short-comings of the linear stability analysis. There have been
some studies on transient growth on two-phase mixing layers and jets by e.g. Yecko &
Zaleski (2005) and De Luca (2001). In both studies a possibility of transient growth in
the respective flows was found, however, no validation using experimental or numerical
data has been conducted and it remains unknown whether these effects actually have
significant influence on the flow.

From a phenomenological viewpoint, the strong involvement of the higher harmonics
can be attributed to the formation of vortical structures, observed in the gas phase
around the oscillating jet. Further, while due to the transverse forcing at the inlet, the
fundamental mode is sinuous, the second harmonic wave is dilatational as can be deduced
from the display of the higher harmonic waves in appendix G. Similar findings of a strong
interaction between the sinuous fundamental wave and a dilatational second harmonic are
given by Mehring & Sirignano (1999) and Clark & Dombrowski (1972). The superposition
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of both modes leads to characteristic agglomeration of liquid along the wave crests and
thinning along the jet axis as seen in figure 2b.

5.1. Vorticity dynamics

The evolution of vortical structures shown in figure 4 shows increasingly complex
patterns starting with an initial vorticity sheet close to the inlet that develops into
discrete vortical structures with subsequent interaction and roll-up in the enlarging wave
troughs of the unstable liquid jet. Detailed numerical studies of liquid jets by Jarrahbashi
& Sirignano (2014) and Zandian et al. (2018) show significant interaction between
vortex and interface dynamics in the process of interface deformation and breakup. To
investigate the vorticity generation we evaluate the terms in the vorticity equation of an
incompressible fluid

∂Ωi
∂t

+ uj
∂Ωi
∂xj

= Ωj
∂ui
∂xj

+
1

ρ2
εijk

∂ρ

∂xj

∂p

∂xk
+ ν

∂2Ωi
∂x2j

(5.6)

where the terms on the right-hand side correspond to vortex stretching or tilting by
velocity gradients, the baroclinic torque and vorticity diffusion. In two-dimensional flows
the vorticity reduces to a scalar quantity and vortex stretching or tilting is absent so that
the vorticity equation reduces to

∂Ω

∂t
+ u

∂Ω

∂x
+ v

∂Ω

∂y
=

1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
+ ν

(
∂2Ω

∂x2
+
∂2Ω

∂y2

)
. (5.7)

As shown by Jarrahbashi & Sirignano (2014), the baroclinic term dominates for large
density ratios. Their results are in line with observations from experimental investigations
of liquid jets in high-velocity gas co-flow by Marmottant & Villermaux (2004). They
found that while primary destabilisation of the interface is due to Kelvin-Helmholtz type
shear instabilities, at later stages when the interface is significantly corrugated, secondary
instabilities evolve which they attribute to Rayleigh-Taylor type baroclinic instabilities.
In the present work the transverse oscillation of the jet induces an acceleration of the
interface perpendicular to the jet axis. Together with the curved interface this leads to
a misalignment of pressure and density gradients. As a result the baroclinicity along the
interface is expected to grow in downstream direction.

The normalised, instantaneous stream-wise development of the baroclinicity, integrated
across the jet

B(x, t) =
D

U2

∫ ∞
0

∣∣∣∣ (∇ρ×∇p)ρ2

∣∣∣∣dy, (5.8)

is given in figure 16. As can be seen the term varies periodically with half the wavelength
of the forced oscillation at a relatively steady amplitude for throughout the domain for
A = 0.01. For A = 0.05 the term shows a significant downstream growth and becomes
highly irregular for x/D > 20 with peaks which are about a factor 5 larger than the
initial amplitude.

From the viewpoint of instability waves the increase in baroclinicity coincides with
the growth of the higher harmonic waves analysed in section 5. In fact the Fourier
transformation of B shown in figure 18 expectedly shows the fundamental frequency
at twice the frequency of the forced oscillation. However, from the stream-wise evolution
of the harmonics it is evident that the energy content of the second harmonic exceeds
that of the fundamental frequency for 22 < x < 30 of the nonlinear region which concurs
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(a) (b)

Figure 16: Instantaneous, cross-wise integrated baroclinic vorticity B and snapshot of the
corresponding field normalised by its maximum for (a) A = 0.01, (b) A = 0.05

with the qualitative development of the harmonics in section 5. This suggests that the
steep increase in baroclinicity is linked to the growth of higher harmonic waves in the
unstable jet.

For completeness the viscous dissipation of vorticity

D(x, t) =
D

U2

∫ ∞
0

|ν∆Ω|dy (5.9)

is shown in figure 17. Its qualitative stream-wise development is comparable to that of
the baroclinicity, although its influence is considerably weaker, given that values of the
baroclinicity are around an order of magnitude larger. Additionally, its growth within
the nonlinear region is not as pronounced as for the baroclinicity.

6. Summary and conclusions

The linear and nonlinear stability of a transversely forced planar liquid jet in a still
ambient gas is studied using nonlinear numerical simulation and local linear stability
analysis, based on a time-averaged mean flow representation of the unsteady nonlinear
flow.

The simulated jet, with a Rel = 8962 and We = 440, is forced at two forcing amplitudes
A = 0.01, 0.05. The forcing produces an initially monochromatic instability wave that
grows in space until it saturates and decays.

For the linear stability model, the time-averaged mean flow is obtained from the
nonlinear simulation. Due to the non-parallelism of the forced flow, a mass-conserving
model is proposed to account for the spreading of the interface position in the mean flow.

General stability properties are derived, based on the unforced flow, for a wide range
of frequencies. Two unstable modes are found of which mode I is relevant for the present
forcing cases. The modes are vaguely corresponding to the modes I and II found by
Söderberg (2003). By analysing the energy budget of mode I it is found that the instability
is mainly driven by the viscosity defect of the adjacent fluid streams in the shear layer.
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(a) (b)

Figure 17: Instantaneous, cross-wise integrated vorticity dissipation D and snapshot of
the corresponding field normalized by its maximum for (a) A = 0.01, (b) A = 0.05

(a) (b)

Figure 18: Stream-wise evolution of the Fourier decomposition of the cross-wise averaged
baroclinic vorticity for A = 0.05. The spectrum along the stream-wise coordinate is shown
(a) as well as the stream-wise development of the energy of the first three harmonics.

Detailed comparison of the stability model using the forced mean flow with the DNS
shows excellent agreement for A = 0.01 and the proposed interface correction results
in an improved replication of the transverse shear layer spreading in the eigenfunctions.
Also, without correction the position of the neutral point is somewhat over-predicted.
For A = 0.05, significant deviations in the eigenfunctions for x/D > 20 is observed. The
linear model completely fails to predict correct growth rates for this forcing amplitude.

Reasons for the failure of the linear model at A = 0.05 are found by analysis of
higher harmonic wave growth in the flow. While for A = 0.01 the fundamental wave
dominates the stability behaviour, for A = 0.05 significant influence of the second and
third harmonic is observed. The second harmonic thereby reaches gain levels exceeding
that of the fundamental wave. As a result, the fundamental wave exhibit strong nonlinear
modification through higher harmonics which explains the failing of the linear model.
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Similar limitations to mean flow stability have been revealed by (Sipp & Lebedev 2007)
and (Turton et al. 2015).

In conclusion, the linear stability model performs well for low forcing amplitudes
over the whole spatial extend even in the presence of moderate nonlinear effects. The
inclusion of a mean interface correction scheme has proven to increase reliability of the
mean flow based linear stability model. These results are in line with the conclusions
drawn by Oberleithner et al. (2014b). However, strong discrepancies arise for stronger
forcings when nonlinear interactions between the fundamental mode and higher order
modes significantly alter the flow. From the viewpoint of vorticity dynamics, the higher
harmonics waves correspond to a substantial growth of baroclinic vorticity along the
liquid/gas interface.

Appendix A. Derivation of the conditions for stress continuity

For an incompressible Newtonian fluid, the stress tensor of each fluid phase is written
as

S∗ij,l,g = p∗l,gδij + µl,g

(
∂u∗i,l,g
∂x∗j

+
∂u∗j,l,g
∂x∗i

)
. (A 1)

The stars indicate dimensioned quantities. To obtain the normal and tangential com-
ponents of equation (A 1), we need the unit normal vector of the interface which is given
as

n∗i =
∇H̃∗

|∇H̃∗|
=
−(∂h̃∗/∂x∗, 1)T√

(∂h̃∗/∂x∗)2 + 1
, (A 2)

where H̃∗(x, y, t) = y∗ − h̃∗(x, t) = 0 is the curve defining the interface. For small
surface displacements, we neglect quadratic terms of disturbed quantities and arrive at
n∗i = (−∂h̃∗/∂x∗, 1)T . The tangent vector is readily given as t∗i = (1, ∂h̃∗/∂x∗)T .

The continuity of shear stress is given as t∗iS∗ij,ln∗j = t∗iS∗ij,gn∗j . Inserting the decom-
position (3.4) (neglecting the fluctuations), using Taylor expansion of h∗(x∗, t∗) around

y∗ = h
∗

and neglecting quadratic terms of disturbed quantities, we obtain

µl

s
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dy2
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− µg

s
∂ṽ
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∂ũ

∂y
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{∗

y=h, g

= 0. (A 3)

Dividing by µlU/D we arrive at the dimensionless form

s
∂ṽ

∂x
+
∂ũ

∂y
+ h̃

d2u

dy2

{

y=h, l

−m
s
∂ṽ

∂x
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∂ũ

∂y
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dy2

{

y=h, g

= 0, (A 4)

where m = µg/µl.
Similarly, the continuity of normal stress is given as n∗iS∗ij,ln∗j = n∗iS∗ij,gn∗j −σ∂n∗i /∂x∗.

Using Taylor expansion again and dividing by ρlU
2/D we get

s
p̃− 2

Rel

∂ṽ

∂y

{

y=h, l

−
s
rp̃− 2m

Rel

∂ṽ

∂y

{

y=h, g

+
1

We

∂2h̃

∂x2
= 0. (A 5)
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(a) (b)

Figure 19: Convergence of the real part of the traced eigenvalue, αρ, at the neutral point
and position of the neutral point, x/D, for various numbers N of collocation points

Appendix B. Convergence analysis of the linear stability model

A convergence analysis, to estimate the necessary amount of collocation points, is
performed at the point of neutral stability for the varying interface model with A = 0.01.
The number of collocation points is successively incresed from N = 20 to N = 200 points
in each phase. The convergence of the stream-wise position of the neutral point and the
corresponding real part of the eigenvalue, αρ, is shown in figure 19. As is seen, the choice
of N = 110 is adequate.

Appendix C. Flow conditions of the two-layer Poiseuille flow by
Dongarra et al. (1996)

Dongarra et al. (1996) computed unstable eigenvalues for a two-layer plane Poiseuille
flow that is used for validating the present two-phase linear stability solver. The flow
conditions are restated here for convenience. The basic flow is

u1(y) = A1y
2 + a1y + 1, −1 < y < 0, (C 1)

u2(y) = A2y
2 + a2y + 1, 0 < y < n, (C 2)

where

A1 =
−(m+ n)

n(n+ 1)
, a1 =

n2 −m
n(n+ 1)

, A2 =
A1

m
, a2 =

a1
m
. (C 3)

The viscosity ratio is m = µ2/µ1 = 2, the depth ratio is n = d2/d1 = 1.2 where d
denotes the extend of the respective domains. The density ratio is r = 1 and the surface
tension is σ = 0. The obtained eigenvalues using temporal analysis with α = 1 are stated
in table 3.

Appendix D. Stability maps with the scaling of Söderberg (2003)

The stability maps, derived in section 3.4, are reprinted here using the axes scaling of
Söderberg (2003) for direct comparison (figure 20).

Appendix E. The energy budget for spatial modes in two-phase flows

Closely following Boomkamp & Miesen (1996) and Otto (2012), a balance for the
coherent kinetic energy ũiũi in each fluid phase is obtained by taking the inner product
of equation (3.7) with ũi. Upon averaging over one period, γ = 2π/ω, integration along
y and by adding the results over both fluid phases, equation (3.21) is obtained.
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(a) (b)

(c) (d)

Figure 20: Stability map for the base flow model (Mode I (a), Mode II (b)), fixed interface
model (Mode I) at A = 0.01 (c), varying interface model (d). Shown is the spatial growth
rate −αιD/2 and the curve indicating neutral stability, i.e. αιD/2 = 0, in red. The axes
scaling is as in Söderberg (2003), where ω = πfD/U .

The respective terms on the right-hand side of the equation are given as
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∂ṽl
∂y

)2
]

dy dt, (E 2a)

DISg =
1

γ

m

Rel

∫ γ

0

∫ ∞
D

[
2

(
∂ũg
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(a) (b)

Figure 21: Comparison of the computed amplitude functions, normalised by their
maximum value, from the base flow model and the DNS for A = 0.01, (a) û; (b) v̂.
Blue lines show the DNS while black lines show the LSA
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Appendix F. Comparison of DNS and the base flow model

For completeness, we briefly present the results of section 4 for the base flow model and
the DNS (A = 0.01) here. In figure 21, the stream-wise comparison of the eigenfunctions
is shown. The growth rates and phase velocities are compared in figure 22. The results
corroborate the advantage of the mean flow model. During the downstream development
of the jet increasing discrepancies are evident from the eigenfunction profiles, as the mean
flow spreading, induced by the oscillation is not taken into account in the base flow. As a
result, no point of neutral stability is predicted (as already evident from figure 8a), and
growth rates are generally overpredicted. Similar results are seen for the phase velocity.

Appendix G. Illustration of the Fourier modes

The higher harmonic waves, derived from the Fourier decomposition (equation (4.1))
of the velocity field, are displayed here for further clarification (figure 23).
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(a) (b)

Figure 22: Comparison of the computed growth rates −αιD from the linear stability
model and −α̃ιD the DNS (a) and phase velocities cph/U , c̃ph/U (b) for A = 0.01

(a) (b)

(c) (d)

Figure 23: Real part of the fundamental, second and third harmonic wave (from top to
bottom) for (a) A = 0.01, û; (b) A = 0.01, v̂; (c) A = 0.05, û; (d) A = 0.05, v̂. Note,
that each mode and component is normalized individually by its maximum for improved
readability.
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