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Abstract
In this paper we present a novel approach for the description
of speech rhythm and the extraction of rhythm-related features
for automatic language identification (LID). Previous methods
have extracted speech rhythm through the calculation of fea-
tures based on salient elements of speech such as consonants,
vowels and syllables. We present how an automatic rhythm
extraction method borrowed from music information retrieval,
the beat histogram, can be adapted for the analysis of speech
rhythm by defining the most relevant novelty functions in the
speech signal and extracting features describing their periodic-
ities. We have evaluated those features in a rhythm-based LID
task for two multilingual speech corpora using support vector
machines, including feature selection methods to identify the
most informative descriptors. Results suggest that the method is
successful in describing speech rhythm and provides LID clas-
sification accuracy comparable to or better than that of other
approaches, without the need for a preceding segmentation or
annotation of the speech signal. Concerning rhythm typology,
the rhythm class hypothesis in its original form seems to be only
partly confirmed by our results.
Index Terms: speech rhythm, beat histogram, language identi-
fication, novelty functions, rhythm typology

1. Introduction
Speech rhythm and its quantification has been an interesting and
controversial matter of research, with implications for language
rhythm typology and the possible existence of two or more
rhythmic classes of languages (stress- and syllable-timed) [1, 2],
dubbed the Rhythm Class Hypothesis [3]. In the last years, anal-
ysis of speech rhythm has focused on the attempt to obtain met-
rics of acoustic correlates of speech rhythm which could pro-
vide information about the rhythmic patterns of speech, gen-
erally by manually annotating vowels, consonants and stresses
in the speech signal and consequently calculating statistics of
the durations between intervals of those language prominence
units, resulting in measures such as the ∆C, %V , nPVI and
VarcoC [3, 4, 5, 6]. Those metrics have been proven useful
as first attempts to design descriptors of speech rhythm and
were very often used to investigate language rhythm typology,
by testing for significant differences between languages and at-
tempting to position the languages in a rhythm continuum be-
tween stress- and syllable-timed [4, 5]. For various small speech
corpora, they have provided evidence that supports the rhythm
class hypothesis and have therefore been seen as adequate mea-
sures of speech rhythm [4, 5, 6]. However, the scientific dis-
cussion about speech rhythm and its measurement continues up
to the present day [7, 8, 9, 10]. In this context, the aforemen-
tioned metrics have also been criticized [9, 11, 12, 13] as not

being robust with respect to the information they hold about
speech rhythm, since differences between languages have not
been consistent or significant across all studies, presumably due
to the existence of many non-language specific factors affect-
ing speech rhythm [9]. Other shortcomings are the manual
annotation necessary for the procedure (which is tedious and
can be subjective or erroneous), their derivation on basis of ab-
stract language elements (i.e., syllables) as opposed to quan-
tities physically manifest in the speech signal (e.g., its ampli-
tude envelope or other measures) and, finally, their variabil-
ity with respect to other, non-rhythm-related speech parame-
ters such as speaker or elicitation method [6, 9]. However, sev-
eral promising studies on the description of speech rhythm have
taken a different direction, attempting to extract rhythmic quan-
tities directly from the acoustic signal, specifically by extracting
salient periodicities and their characteristics from its amplitude
envelope [14, 15]. Furthermore, studies from the field of lan-
guage discrimination [16, 17] have used measures derived from
fundamental frequency and amplitude to discriminate between
pairs of languages with relative success. Other studies from the
field of rhythm- or prosody-based automatic language identifi-
cation (LID) [18, 19, 20, 21, 22] have conducted rhythm mod-
eling by using schemes such as automatic segmentation of the
speech signal in pseudosyllables and extracted statistical fea-
tures describing energy and fundamental frequency which pro-
duced good results (in the area of 60 − 80%) in LID tasks,
showing that those features can indeed be useful for describing
speech rhythm. The crux of those approaches is that the focus is
shifted on quantities in the speech signal rather than on the reg-
ularities of more linguistically defined speech elements. This
paper follows in that rationale, introducing a novel method for
speech rhythm description, inspired from similar rhythm anal-
ysis methods from the field of Audio Content Analysis [23],
which have been used for tasks such as musical genre classi-
fication [24] with success. We assume that the rhythmic con-
tent of a sound can be captured through the signal-inherent pe-
riodicities and their properties. This definition does not differ-
entiate between musical and speech signals, providing a uni-
fied concept for rhythm which has been called for [25, 26]. In
the following chapters, the rhythm features are described, after
determining the signal properties whose periodicities are rele-
vant for rhythm. The features are evaluated in an automatic
LID task for two established multilingual speech corpora in or-
der to draw conclusions about their suitability for rhythm-based
LID and on rhythm language typology. Results are encouraging
regarding the feature capacity, but with certain caveats which
are discussed. Moreover, findings concerning language rhythm
classes are ambivalent. Finally, advantages and disadvantages
of the proposed method and the most informative features are
discussed and perspectives for further research are given.



2. Method
Various approaches for rhythm description and quantification
have been developed in the field of Music Information Retrieval
(MIR) [27]. In the context of musical genre classification, the
focus lay on the extraction of signal periodicities from a musi-
cal excerpt. Beginning with the work of Scheirer [28], a rep-
resentation for periodicities of the signal amplitude envelope
in the lower frequency area was introduced for beat tracking.
Tzanetakis and Cook [29] modified and used this representa-
tion, called the beat histogram, for extracting rhythmic con-
tent features. Similar approaches followed also by Burred and
Lerch [30] and Gouyon et al. [31]. The fundamental assump-
tion is that those features are representative of the regularities in
the temporal structure of an acoustic signal, describing multiple
aspects of the signal’s inherent periodicities. For both music
and speech, the beat histogram captures periodicities related to
strong, recurring ’beats’, in effect salient onsets of the signal’s
constituent elements.

The beat histogram calculation can take place on basis
of the trajectory of various relevant signal quantities over
time [32]. As such, the representation will then express pe-
riodicities related to this quantity, which might have different
statistical and other properties than those which are amplitude
or energy related. Those temporal trajectories are called novelty
functions [33]. A careful consultation of the most important
works in phonetics, MIR and rhythm-based LID (mentioned
in Section 1), as well as a study of the important rhythm def-
inition approaches in music theory and cognition [34, 25, 35]
reveals that there are three essential quantities whose tempo-
ral evolution must be taken into account for the the extraction
of speech rhythm: The amplitude of the signal envelope is an
acoustic correlate of perceived loudness. This makes it the ba-
sis for the detection of rhythm which results from the changing
energy of the signal due to the application of stresses on spe-
cific parts of speech in comparison to others. As such, it de-
notes intonation. The pitch or value of a salient (for speech,
the fundamental F0) frequency in the signal and the temporal
trajectory thereof is the most important tonal rhythm carrier in
the signal and expresses speech prosody. Features derived from
its beat histogram can describe changes in voice melody tra-
jectories, regularities in rising or falling voice pitch or related
changes. Spectral changes are an acoustic correlate of change
in sound texture and timbre, which essentially characterize dif-
ferent categories of sounds (such as tonal or noisy) or changes in
spectral content (e.g. high or low-frequency content). Features
from a beat histogram based on spectrum novelty can serve as
descriptors for change of speech elements, such as consonants
and vowels, or even different formants. In our study, ampli-
tude novelty is extracted through the calculation of the RMS
amplitude of the signal. The fundamental frequency (F0) is
extracted through the use of a spectral harmonic product algo-
rithm on a filtered version of the speech signal (using a 4th-
order Butterworth lowpass with a 800 Hz cutoff-frequency), so
as to ensure tracking of the fundamental frequency alone. Three
standard features are extracted to track spectral changes [23]:
the spectral flux (SF) (indicating general spectral change), the
spectral flatness (SFL) (as a measure of signal tonalness or
noisiness) and the spectral centroid (SCD) (a measure of the
spectral centre-of-weight), the latter also on a filtered version
of the signal (using a 4th-order Butterworth bandpass filter be-
tween 300 Hz and 3200 Hz) to ensure that only formant area
frequencies are considered. More information on those features
can be found in [23]. Experiments in musical genre classifica-

tion using features based on similar amplitude, tonal and spec-
tral shape novelty functions have shown promising results for a
wide range of datasets [32], suggesting their suitability for LID,
a task analogue to genre classification [26].
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Figure 1: Novelty functions and corresponding beat histograms.

Distribution Peak
Mean (ME) Salience of Strongest Peak (A1)

Standard Deviation (SD) Salience of 2nd Stronger Peak (A2)
Mean of Derivative (MD) Period of Strongest Peak (P1)
SD of Derivative (SDD) Period of 2nd Stronger Peak (P2)

Skewness (SK) Period of Peak Centroid (P3)
Kurtosis (KU) Ratio of A0 to A1 (RA)
Entropy (EN) Sum (SU)

Geometrical Mean (GM) Sum of Power (SP)
Centroid (CD)
Flatness (FL)

High Frequency Content (HFC)

Table 1: Subfeatures extracted from beat histograms.

Fig. 1 gives an overview of two novelty functions (F0 and
Spectral Flux) and their corresponding beat histograms for the
utterance Gestern war ich in einem Selbsterfahrungskurs. Ich
bin mir nicht wirklich sicher, ob es mir gefallen hat (from the
german subset of the MULTEXT corpus, signal 11). It is clear
that the two novelty functions show different periodicities and
therefore carry valuable information on multiple speech rhythm
levels. More specifically, the fundamental frequency follows
the prosody of the given utterance, whereas the spectral flux
measure is expected to track general changes of spectrum in the
signal, i.e. phoneme or stress changes.

The beat histogram computation follows the computation
in [29, 32]. All spectral-based features are calculated through a
Short-Time-Fourier-Transform (STFT), whereas the fundamen-
tal frequency and the RMS measure on basis of the time-domain
signal, both of which with the same temporal resolution param-
eters from the time domain signal. The complete procedure
for the generation of a feature vector representing each utter-
ance includes the following steps: the audio signal is down-
mixed to mono, resampled to 22.5 kHz, DC-freed and normal-
ized. Afterwards, the signal is separated in texture windows
with a length of 3 s and 50% overlap, on which the beat his-
tograms are extracted. The STFT is performed with a frame-
length of 46.4 ms, a Hann window and an overlap of 75%,
whereas for the time-domain features the same parameters are
used. The novelty function is computed through the calculation
of the temporal trajectory of the features and half-wave recti-
fication. The beat histogram is extracted through an Autocor-
relation Function (ACF) for each texture window, retaining the



area between 0.5 Hz and 10 Hz, as representative for the rele-
vant periodicities in speech [25]. Finally, the beat histograms
extracted from all 3 s frames for an utterance are averaged. For
each beat histogram, two categories of features can be extracted
(Table 2). Similar features on beat histograms have been used
in [29, 30, 31], providing valuable statistical information on the
temporal features of each language, similar to the work on LID
in [15]. In total, 5 novelty functions are used for the production
of as many beat histograms, from each of which 19 subfeatures
are extracted, producing in total 95 features.

3. Experimental Setup and Evaluation
For evaluation, extraction of a series of non-rhythmic features
was undertaken, by calculating their values over all texture
windows (keeping the average value inside an analysis win-
dow) on a speech file. Those non-rhythmic features serve
as a baseline for the comparison, since acoustic feature-based
LID-approaches are among those providing very high perfor-
mance [36, 37]. Acoustic features such as Mel Frequency Cep-
stral Coefficients (MFCCs) and Shifted Delta Cepstral (SDCs)
features have been used widely for non-rhythmic LID with good
results [38, 39]. However, for the sake of comparability with
the novel rhythm features, we used a baseline set which com-
prises all five novelty functions which were also utilized for the
calculation of the beat histograms. From their temporal trajec-
tories, the distribution features listed in Table 2 were extracted.
In total, the baseline feature set comprises 5 novelties times 11
subfeatures = 55 features. For supervised classification, the
Support Vector Machines (SVM) [40] algorithm under MAT-
LAB with a Radial Basis Function (RBF) kernel in a multiclass
setting was used. A grid search procedure (i.e. a search for the
optimal parameter values) was applied to determine the hyper-
parameters for this kernel (C, γ). All experiments took place
with a 10-fold cross-validation, with results averaged over the
folds. Z-score standardization was conducted prior to classifi-
cation, separately for the train and test set. Classification per-
formance was evaluated through accuracy, defined as the pro-
portion of correctly classified samples to all samples.

As speech material, two established multilingual speech
corpora for automatic LID were used: the MULTEXT PD [41]
and the OGI-MLTS corpus [42]. The first is a corpus of read,
high quality speech which contains five indoeuropean languages
which are assumed belong to the two basic rhythm groups (en-
glish and german to the stress-timed, french, italian and spanish
to the syllable-timed), making it useful to test the rhythm class
hypothesis when using the proposed novel features. The corpus
10 speakers per language (5 male and 5 female with an average
of 15 passages per speaker) and an average length of 20 s for
each utterance. The OGI-MLTS corpus contains spontaneous,
telephone quality speech from eleven languages (featuring apart
from indoeuropean also tonal languages such as mandarin chi-
nese, or even others, such as hindi or vietnamese), multiple
speakers per language (male and female) and an average length
of 45 s for each utterance. For the experiments in this paper, we
retained only the four languages which are common with the
MULTEXT PD corpus and which can be used for rhythm ty-
pology research. The two selected datasets represent two cases
of speech material with very different properties.

In order to identify the best performing descriptors and nov-
elty functions we conducted feature selection following two ap-
proaches: First, we apply a filter method (Mutual Information
with Target Data [43], using the maximum relevance CMIM
metric [44] from the MI-Toolbox [45]). From the feature rank-

ing, we retain theN best features which gave comparable accu-
racy to the full rhythmic feature set. Second, we evaluate each
of the five novelty functions separately, by retaining only the 19
subfeatures resulting from the corresponding beat histogram.
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Figure 2: Classification results, both datasets and feature sets

True/Predicted EN FR GE IT SP
EN 110 22 5 5 8
FR 4 76 5 9 6
GE 15 22 121 23 19
IT 3 21 5 114 7
SP 7 25 5 6 107

Acc. (%) 73.3 76 60.5 76 71.3
Prior (%) 20 13.3 26.7 20 20

Table 2: Confusion matrix for MULTEXT PD corpus lan-
guages, rhythmic features, average accuracy: 70.4%.

True/Predicted EN FR GE SP
EN 58 56 33 39
FR 38 76 27 45
GE 44 55 39 48
SP 44 56 27 49

Acc. (%) 31.2 40.9 21.0 26.3
Prior (%) 25 25 25 25

Table 3: Confusion matrix for OGI-MLTS corpus languages,
rhythmic features, average accuracy: 31.2%.

Rank MULTEXT PD OGI-MLTS
1 FL.SFL SP.HPS
2 GM.SF P3.HPS
3 A2.SF A2.HPS

Table 4: Best features after filter feature selection. Abbreviation
left of point denotes subfeature, otherwise novelty function.

Rhythmic feature subset MULTEXT PD OGI-MLTS
All features 70.4 31.2

RMS Amplitude 67.5 25.4
Fundamental Pitch 70.4 27.4

Spectral Flux 67.5 25.5
Spectral Flatness 66.8 24.7
Spectral Centroid 64.9 24.9

Table 5: Group feature selection, results given in percentages.

4. Results
Results of the classification procedure are presented in Fig. 2.
For the MULTEXT PD corpus, the rhythmic feature set per-



forms better than the baseline set. The performance of the base-
line set (54.3%) lies close to that of the rhythmic feature set
(70.4%). For the OGI-MLTS dataset, results show the exact op-
posite tendency: The baseline set with an accuracy of (37.5%)
outperforms the rhythmic set (31.5%). With regards to the per-
formance of the corpora, a great difference in accuracies can
be observed: Whereas the MULTEXT PD corpus shows a sat-
isfactory performance which lies well above the average prior
(20%), the OGI-MLTS corpus accuracy stays at relatively low
levels (which are, however, comparable to those in other rhythm
modeling LID studies [22]). In the case of the MULTEXT PD
corpus, high accuracy can be achieved for all languages. In
the case of the OGI-MLTS corpus, only french shows better
performance, whereas the accuracy for other languages is only
moderately above the prior. The confusion matrices for both
cases are given in Tables 2 and 3. It can be seen that in the
case of the MULTEXT PD corpus, the rhythm class hypothesis
is confirmed only partly: The hypothesized stress-timed lan-
guages english and german are not confused with each other
more than with others outside this group. In the syllable-timed
group, italian and spanish are confused with french, but not with
each other. However, the tendency towards misclassifications
toward french can be observed for all languages. For the OGI-
MLTS corpus, specific misclassifications between languages in
the hypothesized same rhythm class, such as english-german
or french-spanish, cannot be observed in this case as well. Fi-
nally, concerning feature selection for the rhythmic feature set,
results show that the same accuracy can achieved with the first
19 (MULTEXT PD) or 21 (OGI-MLTS) features of the CMIM
ranking. In Table 4, a list of the best features for both datasets
is given. It is noted that between the novelty functions, such
based on spectral flux, spectral flatness and pitch are most com-
monly among the best ones. Finally, selection based on novelty
feature groups (Table 5) shows that all novelty functions are al-
most equally important for accuracy, a result which is true for
both corpora. In both cases, the F0 feature subgroup seems to
perform marginally better than the others.

5. Discussion
The results presented in Section 4 suggest that the application
of the beat histogram features for automatic LID is indeed valu-
able, since it provides comparable performance to that of other
rhythm-based LID approaches [18, 19, 21, 22], although latest i-
vector-based methods provide even higher results [46, 47]. The
differences observed between the rhythmic and baseline fea-
ture sets are telling with respect to the robustness and quality
of the proposed features. In the case of the MULTEXT PD cor-
pus, which is a prosodic database, rhythmic features seem bet-
ter suited to capture differences between languages than more
general acoustic features. On the other hand, for the more
generic OGI-MLTS corpus, non-rhythmic features perform bet-
ter, showing that in that case rhythm features are informative
enough. Other reasons which could explain the difference in
performance between the two datasets are the signal quality,
which in case of the OGI-MLTS corpus might impair the extrac-
tion of rhythm features or features in general significantly; and
the difference in speech elicitation method, showing that spon-
taneous speech not only makes the extraction of robust features
much more difficult, but also does not allow rhythmic features
to achieve acceptable performance. Those observations are use-
ful in determining the scope of use of the suggested rhythmic
features, suggesting that they could be more suitable for read
speech with good signal quality, but their robustness could be

further improved. With regards to the best features, the fact that
novelty functions of pitch and spectral change features produce
the most salient beat histograms is a hint for their eligibility for
speech rhythm analysis. It is interesting that features such as
P1 and P2 (showing periodicities of prominent beats in speech)
are not among the best ones. This hints towards the fact that ei-
ther speech periodicities cannot help differentiate between lan-
guages (as they could be noisy because of variability due to
other factors) or that they cannot be reliably extracted from the
beat histograms through the subfeatures presented here. Con-
cerning language typology on basis of the beat histogram fea-
tures, the rhythm class hypothesis does not seem to be corrob-
orated in its pure form from our results on the MULTEXT PD
corpus: on the one hand it is clear that languages supposed to
be rhythmically close to each other, such as english and german
are not confused with each other more than with languages from
different supposed rhythm classes. On the other hand, spanish
and italian are more confused with french than with english or
german (which would hint towards a rhythmic similarity in this
group), however this can be an artifact of the specific dataset,
since french seems to act as an attractor for all other languages,
hinting that its rhythmic features are somehow representative
of other languages as well. In the case of the OGI-MLTS cor-
pus, results also do not confirm the rhythm class hypothesis di-
rectly. Those results can indicate that the novel features in their
present form are better suited for specific languages. However,
they might also be the consequence of our features not capturing
speech rhythm in the same form as the rhythm class hypothesis
first posited. More experiments are needed in order to deter-
mine of those results are dependent on dataset or the feature
extraction and classification methods.

6. Conclusions
The presented beat histogram features are shown to be good
descriptors of speech rhythm since they have been shown to
provide good accuracy in an automatic LID task. Further-
more, the features achieved accuracies comparable to those of
other speech rhythm feature approaches [21, 22] for the same
datasets, further attesting to the merit of the method. Amongst
the advantages of the presented rhythm description scheme is
that it does not require any preprocessing such as syllable anno-
tation or even automatic segmentation which is time-consuming
or could potentially insert erroneous assumptions. Further-
more, the method allows the automatic processing of greater
datasets and provides a novel perspective on the description of
speech rhythm through solely signal-based measures. How-
ever, more experiments with greater corpora (such as GLOB-
ALPHONE [48]), extraction parameters (to test, e.g., for effects
concerning the texture window size) and other classification
methods (such as artificial neural nets, as well as unsupervised
methods) will be conducted, so as to be able to check for result
consistency and improve robustness. Furthermore, the relation-
ship between the features and more abstract speech elements is
not entirely clear, prompting future research to establish con-
crete connections. Further future work on feature selection will
attempt to find out which novelty functions and features are the
most informative across many datasets and experimental setups,
in order to compare the results with those from phonetics or hu-
man speech rhythm perception research. Concerning language
typology, the presented rhythm-based LID does not seem to cor-
roborate the rhythm class hypothesis in its pure form, but gives
incentives to attempt and reformulate the hypothesis in a new
version so as to account for the empirical evidence.
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