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Zusammenfassung

Die technischen und ökonomischen Aspekte drahtloser Kommunikationssysteme wurden in

der Forschung meist getrennt betrachtet. In dieser Arbeit wird ein axiomatischer Ansatz für

die Gewährleistung bestimmter erwünschter Systemeigenschaften von interferenzgekoppelten

drahtlosen Systemen vorgestellt. Dieser stellt einen ersten Schritt in Richtung einer einfachen,

aber umfassenden Modellierung bestimmter ökonomischer Aspekte dar, basierend auf Eigen-

schaften der physikalischen Schicht (wie beispielsweise dem Signal–zu–Rausch–Abstand).

Unter Benutzung des axiomatischen Ansatzes werden Ergebnisse aus den folgenden drei

Bereichen vorgestellt.

1. Ergebnisse zur der Nichtrealisierbarkeit bestimmter Ressourcenzuweisungsstrategien in

interferenzgekoppelten Systemen, sowie deren Auswirkungen im Hinblick auf Fairness,

Schicht- abstraktion, Robustheit bezüglich der Kanalschätzung und die Stabilität des Ar-

beitspunktes unter einer variierenden Anzahl an Nutzern.

2. Betrachtung eine allgemeine Nutzenfunktionsmodellierung für interferenzgekoppelte Sys-

teme und ihre Implikationen auf Konvexitäts- und Konkavitätseigenschaften. Für die

größtmögliche Klasse von Nutzenfunktionen und interferenzgekoppelten Systemen wird

eine konvexitäts- und konkavitätserhaltende Transformation des Problems auf einen ange-

messenen Arbeitsbereich untersucht.

3. Eine Betrachtung interferenzgekoppelter Systeme im Hinblick auf Implementierungsasp-

ekte und “Mechanism Design”, wobei die Nutzer über die Möglichkeit und auch die Ab-

sicht verfügen, der Basisstation bzw. dem Serviceprovider falsche Angaben über ihre

Nutzenfunktionswerte zu übermitteln. Diese Ergebnisse haben Einfluß auf die Stetigkeit,
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ii Zusammenfassung

die Fairness, die Effizienz und die Manipulationssicherheit von Ressourcenallokation-

sstrategien. Desweiteren werden Resultate über universelles “Pricing” dargestellt. “Pric-

ing” stellt beim Systementwurf ein Werkzeug zur Verfügung, mit dem ein erwünschter

Arbeitspunkt des Systems erreicht werden kann. Es kann auch für die Implementierung

einer bestimmten Kostenfunktion für den Verbrauch einer Systemressource verwendet

werden, die zum Beispiel die Einhaltung von Leistungsbeschränkungen, die Energieef-

fizienz sicher stellen oder der Interferenzkoordination zu ermglichen.

Bei der Betrachtung drahtloser Netzwerke spielen viele Aspekte eine Rolle. Dazu gehören Fra-

gen der Frequenzbandzuweisungen, neuer regulatorischer Bestimmungen und der zunehmenden

Bereitstellung drahtloser Zugänge anstelle von Festnetzzugängen. Dienstanbieter werden zunehmend

zu Entwicklern von Anwendungen und neuen Technologien; Medien, Dienste und Marktteil-

nehmer kommen beständig hinzu. Zunehmend, insbesondere im Hinblick auf den Klimawandel,

spielt die Energieeffizienz eine wichtige Rolle. Darüber hinaus sind viele informationstheoretis-

che Fragen bezüglich der effizienten Ausnutzung der Systemressourcen (Kapazitätsregionen)

noch ungelöst, ganz abgesehen von bestimmten vorgenommen Vereinfachungen der zugrun-

deliegenden elektromagnetischen Gesetzmäßigkeiten. Angesichts einer derartigen Komplex-

ität der Zusammenhänge zwischen physikalischen und ökonomischen Fragestellungen können

diese hier nicht abschließend geklärt werden. Diese Arbeit soll jedoch einen Anstoß für weitere

Untersuchungen auf diesem Gebiet geben.



Abstract

Investigating the engineering and economic aspects of wireless systems have often been con-

sidered two disparate themes in the research community. We utilize an axiomatic framework

to represent certain desirable properties of resource allocation strategies in interference cou-

pled wireless systems. Our approach is an initial attempt towards a simplistic, however uni-

fied modeling of certain economic aspects of interference coupled wireless systems based on a

signal–to–interference (plus noise) based physical layer modeling of wireless systems.

Via the utilization of an axiomatic framework we shall be presenting results in the following

three directions.

1. Impossibility results for resource allocation strategies in interference coupled wireless

systems with implications to fairness issues, layer abstraction, robustness to channel es-

timation and prediction errors and stability of operating point of the resource allocation

strategy to varying number of users in the system.

2. General utility modeling for interference coupled wireless systems with implications on

convexity and concavity properties, transformation of the problem to a suitable domain

to preserve convexity and concavity properties for the largest class of utility functions

frequently encountered in wireless systems and the largest class of the corresponding

interference coupled systems.

3. A mechanism design and implementation theoretic perspective of interference coupled

wireless systems, where the users (end user equipment) have the ability and incentive to

misrepresent their utilities to the base station or the wireless service provider (wireless

operator). These results have implications on the continuity, fairness, efficiency and non-

manipulation properties of the operating point of resource allocation strategies. Further-
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iv Abstract

more, certain results on universal pricing mechanisms will be presented. Pricing can be

one possible tool for a system designer to shift the operating point of a wireless commu-

nication system to a desired region/point. Pricing could also be utilized for implementing

a certain cost function for utilizing a resource, e.g. enforcing power constraints, energy

efficiency, interference coordination and management etc.

In the wide gamut of spectrum allocation issues, new regulatory frameworks, cable operators

turned wireless service providers, service providers turned application developers, vendors con-

tinuously attempting to maintain heterogeneous networks, arrival of new media, services, play-

ers and interest groups and an ever expanding and flux in the market, along with new constraints

added from a climate change perspective, i.e. energy efficiency and green technology, let alone

the hitherto unsolved problem of finding certain capacity regions and attaining certain better

rates in these capacity regions, despite certain inconsistencies with certain electromagnetic the-

ories – this thesis, if anything provides certain food for thought and by far is neither a panacea

nor a step towards a so called “grand unified theory” for wireless communications for economic

and physical layer modeling.
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Chapter 1

Introduction

This thesis is a collection of three essays utilizing different sets of tools to obtain certain results

for resource allocation strategies. We begin with the case of cooperative resource allocation

strategies. Cooperative communication has gained a fair amount of attention as an emerging

transmit paradigm for future wireless network. We utilize axiomatic bargaining theory to an-

alyze cooperation scenarios in interference coupled wireless systems (ICWS). A bargaining

situation is a situation in which two or more players have a common interest to cooperate, but

have conflicting interests over how to cooperate. These situations are frequently encountered

in ICWS. We utilize an axiomatic framework of interference functions to represent interference

coupling in wireless systems and model various trade-offs and dependencies between the users.

We assume a centralized system, which implies user cooperation allowing them to efficiently

conduct interference management and coordination.

We utilize a collective choice function (CCF) to represent resource allocation strategies. The

CCF chooses one point from a set. The chosen point is the operating point. The axioms in the

axiomatic bargaining framework satisfied by the CCF represent desirable properties of resource

allocation strategies. In Chapter 3 we prove theorems about implemented ICWS and hope that

our theorems might eventually help to construct future ICWS.

We then turn our attention towards the investigation of convexity and concavity properties of

resource allocation strategies in Chapter 4. It can be argued that the dividing line between “easy”

and “difficult” problems in optimization is convexity [BV04, LY06]. In this thesis we attempt to

check for joint (convexity) concavity of functions, which are functions of the (inverse) signal–

1



2 Chapter 1. Introduction

to–interference (plus noise) ratio (SINR), which is an important measure for link performance in

wireless systems. Such functions are frequently encountered as loss minimization problems in

wireless communications, e.g. minimum mean square error (MMSE) and bit error rate (BER).

Proving inherent boundaries on the problems, which can be characterized as jointly convex

problems could help in channelizing future research directions and obtaining practically imple-

mentable resource allocation strategies utilizing the wide gamut of convex optimization tools.

We focus our attention on a problem, namely that of characterizing the sub-class of general

interference functions for which we can get a meaningful convex optimization problem from a

wireless systems perspective. Solving problems with real time constraints is a critical issue in

current wireless systems. Being able to represent a problem as a convex optimization problem

could significantly help in solving the problem.

In general, interference coordination and management is an important research topic and

has potential to address problems in future generations of wireless systems, e.g. indoor interfer-

ence problem, possibility to enhance capacity by utilizing interference positively via relaying

in overlay cognitive radio systems.

[BS08c, BS08b] discuss the structure and modeling of interference via interference func-

tions. [BS08c, BS08b] have focused on the properties of interference functions and character-

ization of interference coupling in wireless systems. Chapter 4 focuses on a related, however

different topic of investigating convexity properties of functions of inverse SINR and concavity

properties of functions of SINR. The paper [BN09] proves that there exists no SINR based util-

ity functions, which are convex or concave in the power domain. Furthermore, [BN09] showed,

that the weighted sum of such functions can never be convex or concave in the power domain.

In Chapter 4 we investigate for possible transformations to other domains to exploit hidden

convexity and concavity properties, respectively.

Then, in Chapter 5 we consider the problem of users having the ability to misrepresent

their utilities. From the evolution of wireless infrastructure from second generation to third

generation, there has been a gradual transition from voice centric to data centric applications.

Many of these applications are quality–of–service (QoS) based. A QoS application typically

requires users to report their channel qualities to the base station or central controller. The
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vendors manufacturing end user equipment have an incentive to report a higher channel quality,

than the true channel quality experienced by the user. Such a misrepresentation of the channel

quality is motivated by the vendor’s intention of over provisioning for its users.

There can be other instances, where the users have an incentive to misrepresent their mea-

sured channel quality or interference temperature (where the misrepresentation could be initi-

ated from the vendor or from the user). The result of solving a resource allocation problem with

misrepresented utilities is that outcome might not always be the one desired by the central con-

troller, e.g. base station, operator. Such a misrepresentation of utilities can have an undesirable

effect on the resource allocation.

Expecting the resource allocation strategy to be strategy proof could be one possible solu-

tion to the central controller’s dilemma of solving an optimization problem with misrepresented

utilities. Much of previous strategy proofness literature relating to wireless networks has been

motivated from the following perspective. The users might have the motivation and the ability

to misrepresent their utilities. As observed, since the vendors might also have the motivation

for misrepresenting utilities makes strategy proofness not only a theoretically desirable but also

a relevant property in current wireless systems∗.

In Chapter 5, we utilize the social choice function (SCF) to represent resource allocation

strategies in ICWS. The goals of the designed resource allocation strategies can be viewed in

terms of social choice, which is simply an aggregation of the preferences of the different users

towards a single joint decision.

In the last section of Chapter 5, we consider a special class of pricing mechanisms for utility

maximization problems in ICWS. Game theoretic tools have often been used to analyze such

problems. An interesting aspect of such problems is the ability to shift the solution outcome

of the utility maximization problem to a desired point in the region. Pricing can be one possi-

ble tool for a system designer to shift the operating point of a wireless communication system

to a desired region/point. Furthermore pricing could also be utilized for implementing a cer-

tain cost function for utilizing a resource, e.g. enforcing power constraints, energy efficiency,

∗A more practical and relevant, however more stricter property would be that of group strategy proofness.
However, as shall be observed in Chapter 5, since strategy proofness is already quite restrictive, we have not
discussed group strategy proofness in this thesis.
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interference coordination and management etc.

1.1 Outline of the Thesis

The thesis is divided into three parts. Each part takes a different perspective on ICWS. Hence,

the problems addressed in these three parts are seemingly different.

1. In Chapter 3 we utilize an axiomatic bargaining framework to investigate certain proper-

ties of resource allocation strategies in ICWS. An axiomatic framework of interference

functions is utilized to represent ICWS. A CCF is utilized to capture certain desirable

properties of resource allocation strategies.

Efficiency of a resource allocation strategy is represented by the Pareto optimality of the

CCF. Robustness of a resource allocation strategy to channel estimation and prediction

errors is represented by the property of feasible set continuity of the CCF.

Chapter 3 presents results in relation to fairness constraints and layer abstraction in ICWS.

Among other results, it is shown that it is not possible to design a resource allocation

strategy, which is efficient, robust to channel estimation and prediction errors, satisfies the

property of strong entitled fairness and allows abstraction between the layers in wireless

system, e.g. physical and application layers.

2. In Chapter 4 we investigate the possibility of having convex or concave formulations of

optimization problems for ICWS. This chapter shows that under certain very natural as-

sumptions the exponential transformation is the unique transformation (up to a positive

constant) for convexification of resource allocation problems for linear interference func-

tions. This chapter shows that under certain intuitive assumptions, it is sufficient to check

for the joint concavity (convexity) of sum of weighted functions of SINR (inverse SINR)

with respect to s (p = es), where p is the power vector of the users, if we would like the

resulting resource allocation problem to be concave (convex).

Furthermore, chapter 4 characterizes the largest classes of utility functions and the largest

classes of interference functions, which allow a convex and concave formulation of a
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problem for ICWS, respectively. The chapter shows that the largest class of interference

functions, which ensures concavity for resource allocation strategies are the log-convex

interference functions. It extends previous literature on log–convex interference func-

tions and provides boundaries on the class of problems in wireless systems, which can be

algorithmically tackled by convex optimization techniques.

3. The Chapter 5 investigates the properties of social choice functions, that represent re-

source allocation strategies in ICWS. The resources can be physical layer parameters

such as power vectors or beamforming vectors. Strategy proofness and efficiency proper-

ties of SCF are used to capture the properties of non–manipulability and Pareto optimality

of solution outcomes of resource allocation strategies, respectively.

Then, this chapter introduces and studies additional concepts of (strong) intuitive fairness

and non-participation in ICWS. The analysis points towards certain inherent limitations

when designing strategy proof and efficient resource allocation strategies, when addition-

ally desirable and intuitive properties are imposed. These restrictions are investigated in

an analytical mechanism design framework.

This chapter investigates the permissible SCF, which can be implemented by a mecha-

nism in either Nash equilibrium or dominant strategy, for utility functions representing

ICWS. Among other results, it is shown that a strategy proof and efficient resource alloca-

tion strategy in ICWS cannot simultaneously satisfy continuity and the often encountered

property of non–participation.

Finally, this chapter investigates pricing mechanisms for utility maximization in ICWS.

Pricing mechanisms are used as a design tool to shift the solution outcome of a utility

maximization problem to a desired point in the region. This chapter explores the re-

strictions required on the class of utility functions and the restrictions on the class of

interference functions such that a pricing mechanism can always guarantee the designer

the ability of being able to shift the solution outcome to any desired point in the region,

i.e. it is a universal pricing mechanism.
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1.2 Related Work

As mentioned in Section 1.1 we present results in three different directions. At the end of each

chapter, there is a literature survey pertaining to that particular chapter. The reference list is by

no means comprehensive and we have provided a brief overview of the vast literature available.



Chapter 2

Mathematical Preliminaries

In this chapter, an overview of main mathematical results that will be used in the thesis is given.

The principal tools of interest are convex analysis, axiomatic bargaining theory and mechanism

design. There are some smaller sections of the results based on basic game theory. The theory

behind these results shall be introduced directly at the point, where it is being utilized. Before,

delving into the problems and theory behind the problems, we shall present certain preliminaries

and notation, which will be utilized throughout the thesis.

2.1 Preliminaries and Notation

Let K be the number of users in the system, where k ∈ {1, . . . ,K} =: K . Matrices and vectors

are denoted by bold capital letters and bold lowercase letters, respectively. Let y be a vector,

then yl = [y]l is the lth component. Let y−l denote the vector y without the lth component.

Likewise Gmn = [G]mn is a component of the matrix G. The notation y ≥ 0 implies that yl ≥ 0

for all components l. x 	 y implies component-wise inequality with strict inequality for at least

one component. Similar definitions hold for the reverse directions. x , y implies that the vector

differs in at least one component. Let Y, denote a set of vectors and a family of functions or

tuples. We use yk for indexing of individual components of vectors, tuples of functions, where

yk ∈ Yk. We use YK =: ×k∈KYk to denote cardinality of the concerned set, unless otherwise

specified. The set of non-negative reals is denoted as R+. The set of positive reals is denoted as

R++. Let R+,0 = R+\0.

7
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The set of all affine combinations of points in some setU ⊆ RK
+,0 is called the affine hull of

U and denoted aff U: aff U = {θ1u1 + . . . + θnun|u1, . . . ,un ∈ U, θ1 + . . . + θn = 1}. The affine

hull is the smallest affine set that containsU, in the following sense: ifU is any affine set with

V ⊆ U, then aff V ⊆ U. The relative interior of the setU, denoted relintU is:

relintU = {u ∈ U|B+(u, ε) ∩ aff U ⊆ U for some ε > 0} (2.1)

where B+(u, ε) = {v|v ∈ RK
+,0, ‖v − u‖ ≤ ε}, the ball of radius ε and center u in the norm ‖ · ‖.

comp(u) is the comprehensive hull of u and is defined as follows:

comp(u) := {v|0 ≤ v ≤ u, v ∈ RK
+,0}. (2.2)

2.2 Convex Optimization Theory

A brief overview of convex optimization starts with the basic definitions of convex sets, convex

functions, and convex optimization problems.

Definition 2.1 (Convex Sets [BV04]). A set S ∈ RN is convex if for any x ∈ S and y ∈ S, and

any θ, 0 ≤ θ ≤ 1, it holds that θx + (1 − θ)y ∈ S.

The optimization in this work is often performed over convex cones. A set C is a convex

cone if for any x, y ∈ C, and θ1, θ2 ∈ R+, θ1x + θ2y ∈ C. A well-known example is the second

order cone (SOC), also known as quadratic, Lorentz, or the ice-cream cone [BV04]

LN+1 ,
{
(x, y) : x ∈ RN , y ∈ R+, ‖x‖2 ≤ y

}
. (2.3)

It can be proved that the set of positive semidefinite matrices forms a convex cone, as well

[BV04]. At this point, it is important to remark that, as common in the literature on convex

optimization, the definitions in this thesis refer to sets in RN .

Definition 2.2 (Convex Function [BV04]). A function f : RN → R is convex if its domain is
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convex, and if for all x and y from the domain,

f (θx + (1 − θ)y) ≤ θ f (x) + (1 − θ) f (y) (2.4)

for any θ, 0 ≤ θ ≤ 1.

Definition 2.3 (Convex Optimization Problem [BV04]). A convex optimization problem has

the form

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,M

aT
l x = bl, l = 1, . . . , P

(2.5)

where f0, . . . , fM are convex functions, and al, bl, l = 1, . . . , P, are fixed parameters.

The convexity is often considered as a criterion that separates efficiently solvable from diffi-

cult optimization problems. Almost all convex problems can be solved, either in a closed form

or using iterative algorithms. Some classes of them have very efficient numerical solutions.

Among the used algorithms, the interior point methods are considered to be one of the most

promising techniques, applicable to a wide range of convex problems.

2.3 Interference Coupled Wireless Sytems

In a wireless system, the utilities of the users can strongly depend on the underlying physical

layer. An important measure for the link performance is the SINR ratio. Consider K users with

transmit powers p = [p1, . . . , pK]T andK := {1, . . . ,K}. The noise power at each receiver is σ2.

Hence, the SINR at each receiver depends on the extended power vector p where

p =

 p

σ2

 =
[
p1, . . . , pK , σ

2
]T
. (2.6)
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The resulting SINR of user k is

SINRk(p) =
pk

Ik(p)
= γk(p), (2.7)

where Ik is the interference (plus noise) as a function of p. In order to model interference cou-

pling, we shall follow the axiomatic approach proposed in [SB06]. This framework is closely

related to the standard interference functions introduced in [Yat95]. The approach was extended

in [HY98, LSWL04, BS10]. The Yates framework of standard interference functions (discussed

below) is general enough to incorporate cross-layer effects and it serves as a theoretical basis

for a plethora of algorithms.

Certain examples, where the interference function framework has been utilized is as fol-

lows: beamforming [BO01, HBO06, WES06], CDMA [UY98], base station assignment, robust

design [VB09, VGL03], transmitter optimization [YL07, BS08b] and characterization of the

Pareto boundary [JLD08] The framework can be used to combine power control [ABD06] and

adaptive receiver strategies. In [BCP00] it was proposed to incorporate admission control to

avoid unfavorable interference scenarios. In [XSC03] it was proposed to adapt the QoS require-

ments to certain network conditions. In [KG05] a power control algorithm using fixed-point

iterations was proposed for a modified cost function, which permits control of convergence

behavior by adjusting fixed weighting parameters.

The general interference functions possess the properties of conditional positivity, scale

invariance and monotonicity with respect to the power component and strict monotonicity with

respect to the noise component. Examples of such interference functions subject to different

power constraints are provided in Section 2.4.

The structure of the SINR region depends on the interference coupling in the system. For

axiomatic interference functions it is not obvious what would be an appropriate system to define

interference coupling. Let P be the set of all power vectors. In our thesis, we have P := RK+1
+

unless explicitly mentioned otherwise.

Definition 2.4. We say that I : P 7→ R+ is an interference function, if the following axioms are
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fulfilled:

A1 conditional positivity I(p) > 0 if p > 0

A2 scale invariance I(αp) = αI(p) for all α > 0

A3 monotonicity I(p) ≥ I( p̂) if p ≥ p̂

A4 strict monotonicity I(p) > I( p̂) if p ≥ p̂, pK+1 > p̂K+1.

Note that we require that I(p) is strict monotone with respect to the last component pK+1.

An example is I(p) = vT p + σ2 where v ∈ RK
+ is a vector of interference coupling coefficients.

Remark 2.5. Consider an arbitrary p̃ > 0 and a sequence of p(n) which converges to p̃ for

n→ ∞. Then,

lim
n→∞
Ik(p(n)) = Ik( p̃), 1 ≤ k ≤ K.

Hence, Ik(p) is continuous for p > 0. The proof is available in Section 2.1.2 of [SB06].

The axiomatic framework A1 - A4 is connected with the framework of standard interference

functions [Yat95].

Definition 2.6. Standard interference functions: A function Y : RK
+ 7→ R++ is said to be a

standard interference function if the following axioms are fulfilled:

Y1 positivity Y(p) > 0, for all p ∈ RK
+ ,

Y2 scalability Y(αp) < αY(p), for all α > 1,

Y3 monotonicity Y(p) ≥ Y( p̂) if p ≥ p̂.

For any constant noise power pK+1 = σ2 the function Y(p) = I(p) is standard. Conversely

every standard interference function can be expressed within the framework A1-A4. Let Y be

a standard interference function then I(p) = pK+1 · Y
( p1

pK+1
, . . . , pK

pK+1

)
is an interference function

fulfilling A1-A4. We have Y(p) = I(p) for all p > 0, pK+1 = 1. The details about the rela-

tionship between the model A1-A4 and Yates’ standard interference functions were discussed

in [SB06] and further investigated in [BS10]. For the purpose of this thesis it is sufficient to be
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aware that there exists a connection between these two models and the results of this thesis are

applicable to standard interference functions.

We introduce the property of log-convexity, which we shall exploit in this section. Log-

convexity is a useful property that allows one to apply convex optimization techniques to certain

non-convex problems.

Definition 2.7. Log-convex interference function: An interference function I : RK+1
+ 7→ R+ is

said to be a log-convex interference function if A1 - A4 are fulfilled and I(exp{s}) is log-convex

on RK+1.

Linear interference functions are also log-convex interference functions.

Let f (s) := I(exp{s}). The function f : RK+1 7→ R+ is log-convex on RK if and only if

log f is convex or equivalently f (s(λ)) ≤ f (s(1))1−λ f (s(2))1−λ, for all λ ∈ (0, 1), s(1), s(2) ∈ RK ,

where s(λ) = (1− λ)s(1) + λs(2), λ ∈ (0, 1). Note that the log-convexity in Definition 2.7 is based

on a change of variable p = exp{s} (component-wise exponential). Such a technique has been

previously used to exploit a “hidden convexity” of functions, which are otherwise non-convex.

2.4 Power Constraints and Corresponding Utility Regions

Let SINR be our utility measure and we investigate certain SINR regions corresponding to

different power constraints. We shall call SINR regions also as γ-regions.

1. SINR Region with Combined Individual and Total Power Constraints:

Here we consider a total power constraint of Ptotal on the system and the individual power

limits for each user, written in vector form as p̂ = [ p̂1, p̂2, . . . , p̂K]T . We introduce the

interference balancing function (C) to represent the γ region as follows:

C(γ, p̂, Ptotal) = inf
p∈P

max
k∈K

γkIk(p)

pk

where

P =
{
p | 0 < p, pk ≤ p̂k,∀k ∈ K ,

∑
k∈K

pk ≤ Ptotal
}
.
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The γ region is defined by (2.8).

U( p̂, Ptotal) = {γ ∈ RK
+,0 : C(γ, p̂, Ptotal) ≤ 1}. (2.8)

Since the constraints defining these SINR regions change, e.g. depending on the power

constraints, we have different optimization variables for the C functions in (2.8), (2.9) and

(2.10) respectively.

2. SINR Region with Total Power Constraints:

Here the γ region is defined by (2.9) as follows:

U(Ptotal) = {γ ∈ RK
+,0 : C(γ, Ptotal) ≤ 1} (2.9)

where

C(γ, Ptotal) = inf
p∈P

max
k∈K

γkIk(p)

pk
,

where

P =
{
p | 0 < p,

∑
k∈K

pk ≤ Ptotal
}
.

3. SINR Region with Individual Power Constraints:

Here the γ region is defined by (2.10) as follows:

U( p̂) = {γ ∈ RK
+,0 : C(γ, p̂) ≤ 1} (2.10)

where

C(γ, p̂) = inf
p∈P

max
k∈K

γkIk(p)

pk

where

P =
{
p | 0 < p, pk ≤ p̂k,∀k ∈ K

}
.

We now state the well accepted definition of pure exchange economies.

Definition 2.8. Let r = [r1, . . . , rK]. A result is said to be presented for the case of pure exchange
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economies, if the resource set is defined as follows:

R = {r ∈ RK
+ |

∑
k∈K

rk ≤ C,C ∈ R+}. (2.11)



Chapter 3

Axiomatic Bargaining Framework for

Resource Allocation

In this chapter we utilize a particular subset of game theory called cooperative game theory,

which could also be called bargaining theory (explained in more detail later in this chapter.).

Game theory is a technique for analyzing how people, firms, governments, users, computer,

hand–held devices etc should behave in strategic situations (in which they must interact with

each other), and in deciding what to do must take into account what others are likely to do and

how others might respond to what they do. For instance, competition between two user in an

ICWS can be analyzed as a game in which the users play to achieve a long term advantage, e.g.

maximizing their obtained data rates over time. The theory assists each user to develop its own

optimal strategy for say, utilizing the channel (transmitting or signaling) and in turn interfering

with the other user. It could help a user anticipate in advance what its interfering users will do.

Game theory indicates how best to respond if the competitor does something unexpected.

We shall analyze the resource allocation problem using axiomatic bargaining theory. A

bargaining game for K users is defined as the pair (U, d) whereU ⊂ RK
+,0 is the utility set and

d ∈ {u ∈ U : ∃u′ > u,u′ ∈ U} is the disagreement point (see Figure 3.1). u ∈ U is a particular

utility vector, where u = [u1, u2, . . . , uK] and uk is the utility of the kth user. A bargaining

solution can be seen as the unanimous agreement on some utility point u from a convex feasible

set U (e.g. rates from a capacity region). The K users cooperate in order to achieve a solution

15



16 Chapter 3. Axiomatic Bargaining Framework for Resource Allocation

d
d2

d1

bargaining game (U,d)
u2

u1

U

Figure 3.1: Illustration of a bargaining game (U, d) over a convex, compact, comprehensive set
U with disagreement point d ∈ U. The solution outcome is contained in the shaded region.

outcome u which is component-wise greater than the disagreement point d ∈ U. The vector d

contains the minimum QoS requirements of all users. For the sake of simplicity, we can assume

that d = 0. This assumption is set by focusing on a sub-region of Q, with modified utilities

q̃k = qk − dk where q̃k, qk are the new and old utility for the kth user respectively, for all k ∈ K .

In this chapter we utilize an CCF framework as an abstraction to prove certain results for

resource allocation strategies in ICWS. While proving these results we adopt the following

abstraction of real world wireless systems.

• A CCF (in our abstraction) represents resource allocation strategies (in real world wireless

systems).

• An axiom satisfied by the CCF represents a property of the resource allocation strategy.

This abstraction has been displayed in Figure 3.2. Some desirable properties of resource allo-

cation strategies captured by our abstraction are listed below.

• Legal restrictions that have to be satisfied by an operator to obtain a license from the

regulator, e.g. ratio of a certain service area to coverage area; fairness amongst various

served users, e.g. guaranteeing a certain user performance at the cell-edge.

• Physical layer restrictions to construe a meaningful electrical engineering problem, e.g.

efficiency of the operating point; robustness to channel estimation and prediction errors;

stability of the operating point to incoming and outgoing users in the system.

These axioms will be explained in detail in Section 3.3. The axiomatic framework is only

one side of a two–sided coin. The other being the domains over which we characterize our
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resource allocation strategies. The domains are the families of utility sets on which the resource

allocation problem has to be solved. The properties of these families of utility sets or domains

are crucial in finding an appropriate solution outcome to a resource allocation strategy. For

example, if the utility set is convex, then the symmetric Nash bargaining solution (NBS) is the

unique solution satisfying the axioms of weak Pareto optimality, independence of irrelevant

alternatives, symmetry and scale transformational covariance (explained in detail in Section

3.3). If the utility sets are non–convex, then there need not exist a unique solution satisfying

these properties.

The degrees of freedom permitted while designing resource allocation strategies are based

on the domains (depicted in the left column of the Figure 3.2). Some of the influential factors

(depicted in the right column of the Figure 3.2) which characterize the domains are: transceiver

strategies, availability of channel state information, network architecture, amount of coopera-

tion between operators, base-stations and users, and types of channels.

We differentiate ourselves from the previous work described in Section 3.5 as follows. We

check for consistencies between the various axioms, i.e. we check if a meaningful combination

of these axioms can be simultaneously satisfied by a CCF.

• If and when these consistencies exist, we characterize all possible resource allocation

strategies satisfying these properties (axioms).

• If there exist inconsistencies, then we specify the relations amongst these axioms and

consider only the most important axioms to obtain resource allocation strategies.

All our results are derived for a certain family of sets introduced in Definition 3.3 in Section

3.1.1. The main contributions of this chapter lie in addressing the following problems.

Problem 1. What are the possible efficient, robust (to channel estimation and prediction er-

rors) resource allocation strategies, which satisfy the axioms of entitled fairness (these are the

fairness axioms FAIR and S FAIR defined in Section 3.3.3)?

Problem 2. Can we have an efficient, fair, robust (to channel estimation and prediction errors)

resource allocation strategy and abstract between layers? (Abstraction between layers in an

ICWS is modeled by the axiom Generic introduced in Section 3.3.3.)
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Basic Approach
(abstraction)

Interference Coupled
Wireless Systems

Collective Choice
 Function 

Domains 

Axiomatic Framework

Properties of resource allocation
 strategies, e.g. efficiency

robustness to channel estimation
and prediction errors, fairness etc

Network architecture

Channel state information

Amount of cooperation

Transceiver strategies

(Families of feasible
utility sets)

Resource Allocation Strategy
(Φ)

Figure 3.2: Basic approach: Interplay between the axiomatic structure and the domains

Problem 3. Is it possible to have efficient, robust (to channel estimation and prediction errors)

resource allocation strategies which are stable to incoming and outgoing users in ICWS?

3.1 Utility Regions

In mathematical economics the modeling of users utilities is an initial step towards character-

izing the preferences of the users and in turn utilizing the framework of mechanism design and

implementation theory. In our system model each user can choose its own utility function. For

a user, announcing its true utilities to the operator might not be in its best interest, i.e. the users

can choose to reveal a utility function, which differs from their true utility functions, so as to

obtain more utility.

Generally, it is not possible to accurately communicate a non-parametric utility function

in an Euclidean space. However, for the purpose of obtaining certain initial intuition on the

topic we have not concerned ourselves with this issue. For a practical implementation we can

utilize approximations, e.g. a parametrization, where one could transmit a scalar and choose a

function from a look up table based on the transmitted scalar or transmission of a finite number

of scalars (based on the system constraints, e.g. bandwidth, time duration of block fading etc.),

which represent coefficients of a polynomial utilized to approximate the utility function. Scalar

parametrized mechanisms have been discussed in [JT09].
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We are particularly interested in analyzing the class of utility functions, which are functions

of the SINR, given by (2.7). The utility functions, which shall be introduced in Definition 3.1

are motivated based on two factors listed below.

• Users in a wireless system are coupled by interference and can be competitive in nature.

• Performance indicators in wireless systems are influenced by physical layer parameters.

Definition 3.1. SINR based utility (SBU) function: For user k, uk is said to be an SBU function,

if there exists a strictly monotonic and increasing continuous function q and an interference

function Ik such that

uk(p) = q
( pk

Ik(p)
)

= q
(
γk(p)

)
. (3.1)

Remark 3.2. Let u = [u1, . . . , uK] ∈ UK , whereUK is the family of SBU functions for K users.

In this thesis, “utility” can represent certain arbitrary performance measures, which depend on

the SINR by a strictly monotonic and increasing continuous function q defined on R+. The

utility of user k is

uk(p) = q(γk(p)), k ∈ K . (3.2)

An example of the above case is capacity: q(x) = log(1 + x) and effective bandwidth q(x) =

x/(1 + x) [TH99]. The same theory can be developed for strictly monotonic and decreasing

continuous functions q̂. For the following performance indicators we would like to minimize

the objective function, e.g. MMSE: q̂(x) = 1/(1 + x), BER: q̂(x) = Q(
√

x) and high-SNR

approximation of BER q̂(x) = x−α with diversity order α.

The utility regions encountered in this chapter could as well be QoS regions. We abbreviate

the QoS regions as Q region. In general, it is not possible to have a one-to-one mapping from

the γ region to the Q region for all functions of γ. There exist certain functions fk, which map

the supportable γ region into some Q region. The class of all such functions is investigated in

Section 3.1.2. We now characterize the structure of the rate region in Section 3.1.1 below.



20 Chapter 3. Axiomatic Bargaining Framework for Resource Allocation

3.1.1 Structure of the Utility Regions

We call the feasible utility set (or just the utility set) as the set of all feasible SINR vectors γ,

that can be supported for all users by means of power control, with interference being treated

as noise. The utility regions described above are completely characterized by the interference

balancing functions C functions (these functions balance the SINR). C functions are also in-

terference functions, satisfying the axioms A1 - A3. Classical Nash bargaining theory [Nas50],

assumes that the regions (sets) are convex. In wireless systems, we can completely characterize

the conditions, which when imposed on the interference balancing functions, result in convex

regions. The utility region is convex, if and only if the corresponding C function is a convex

interference function. However, in general the C functions are not convex [BS08b].

We focus on utility sets with the following properties:

• U is a non–empty closed and bounded subset of RK
+,0. We consider a communication

system, where at least a single user participates in the communication, i.e.

relintU ∩ RK
+,0 , ∅.

• U is comprehensive: A set U ⊂ RK
+,0 is called comprehensive if for all u(1) ∈ U and

u(2) ∈ RK
+,0, u(2) ≤ u(1) implies u(2) ∈ U. This may be interpreted as free disposibility of

utility.

The family of all sets with the above properties is denoted asUK . Hence

UK := {U|U ⊂ RK
+,0,U is comprehensive, compact}

A fundamental problem is to find a suitable operating point or solution outcome on the boundary

of the utility setU. For this purpose, we now introduce another family of sets called PO(UK),

which is a restriction of the family of setsUK and where PO stands for Pareto optimal.

Definition 3.3. PO(UK): If for all u ∈ U, such that @v > u, v ∈ U, there exists no ũ , u with

ũ ≥ u, thenU ∈ PO(UK).

The family PO(UK) as compared to the family UK excludes all sets whose boundary is

parallel to one of the axis. This has been displayed in Figure 3.3.
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Figure 3.3: The set (region)U1 is in the family of setsUK but not in the family of setsPO(UK),
U2 is in both the families

Example 3.4. We provide an example of a power control problem, where the solution outcome

is Pareto optimal. We consider the case of multicell communication networks. A set of K

transmitter-receiver pairs share the same channel. The link gain between transmitter k and

receiver j is denoted by hk j and the kth transmitter’s power is pk. We want to minimize the

overall transmitted power under the constraint that each user k has a γk ≥ γk,threshold where

γk,threshold is the target SINR for user k for acceptable link quality.

min
K∑

k=1

pk, subject to [I − DF]p ≥ n, (3.3)

which is essentially SINRk ≥ γk,threshold, for all k ∈ K in matrix notation. In (3.3) let p =

[p1, p2, . . . , pK]T denote the power vector for the K users and let F be a non–negative matrix

defined as follows:

F jk =


0 if j = k
h jk

hkk
> 0 if j , k

I is a K × K identity matrix,

D = diag{γ1,threshold, . . . , γK,threshold}

and n is an element-wise positive vector whose elements are defined as

nk =
γk,thresholdNk

hkk
,
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where Nk is the thermal noise value experienced by user k.

The SINR thresholds (γ1,threshold, . . . , γK,threshold) are achievable, if there exists at least one

solution vector p that satisfies [I − DF]p ≥ n. If the spectral radius of DF is less than unity,

i.e, ρ(DF) < 1, [I − DF] is invertible and positive. In this case, the network is feasible and the

optimal solution to the power–control problem is given by p∗ = [I − DF]−1n. It is interesting

to note that this solution is Pareto optimal, i.e. for each feasible p ≥ 0, p ≥ p∗.

In Section 3.1.2 below, we introduce a K–tuple of functions f , which map utility regions

into Q regions. These Q regions are also comprehensive, compact sets. Let QK be the family of

all closed, bounded and comprehensive QoS regions Q.

3.1.2 Performance Metric Functions

In this chapter we consider resource allocation over the family of sets QK . The rate regions

defined by the C functions are one instance of utility sets over which the users can bargain

for resources. Now, let f be some functional mapping from a rate region to the Q region,

where Q ∈ QK . Let fk : γk 7→ Qk for all k ∈ K be strictly increasing and continuous and

f = [ f1, . . . , fK]T . Then, there exists a one–to–one mapping and inverse mapping between the

γ region and Q region. The K–tuple f is vector valued. The K–tuples f are representation

of performance metrics in the wireless systems. We define a family of such K–tuples having

certain desired properties below.

Definition 3.5. Performance metric function: PM is the class of performance metric functions,

where

PM = { f | f : R+,0 7→ R+,0, strictly increasing and continuous} (3.4)

and the set of all f = [ f1, . . . , fK]T with fk ∈ PM, ∀k ∈ K is PMK .

Example 3.6. Consider the following mapping γ 7→ log(1 + γ). This is an example of a mono-

tonic increasing and continuous transformation which maps the γ-region to the rate region.

The family of functions PM characterizes all QoS measures/performance metrics, which

are strictly monotonic and continuous and can be written as a function of the rate. The γ-

region, rate region and the Q region are different examples of possible utility regions. Let us
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define the family of all feasible γ regions as γK . The family of rate regions, the family γK , and

the family QK are certain examples ofUK .

We now state an important remark, which clearly depicts the relationship between different

families of feasible utility sets through the performance metric function.

Remark 3.7. Let f ∈ PMK be a fixed K–tuple of functions. Then, f : QK 7→ QK and f :

PO(QK) 7→ PO(QK).

Remark 3.7 states that K–tuple of functions from the class PMK map utility sets from one

particular family of utility sets to the same family of utility sets. In Section 3.2 below we present

the CCF and certain related properties of the same.

3.2 Collective Choice Function and Certain Related Proper-

ties

We consider a cooperative game theoretic setting, where the users have the possibility of signal-

ing and communicating with the central controller, e.g. base station, operator before choosing

their strategies and the resource allocation process. The users could agree or disagree on the

resource allocation strategies. Such a framework is traditionally called a bargaining framework.

We propose a general axiomatic framework, which helps understand the trade-offs between

user requirements and different solution outcomes by characterizing resource allocation strate-

gies using a CCF [Mar00]. The CCF chooses one point from a certain set, which is the operating

point of the resource allocation strategy. A common approach is to model the CCF along with

a set of axioms, also known as axiomatic bargaining theory [Pet92]. A CCF Φ represents a

resource allocation strategy in the wireless scenario. These game-theoretic axioms are used to

emulate certain desirable properties of the resource allocation strategy. We begin by defining

the CCF Φ. Let Φ : Q 7→ RK
+,0 be any function whose outcome is the solution to a bargaining

game, where Q ∈ QK .

Definition 3.8. A collective choice function (CCF) on the family QK of sets Q is defined as any

function Φ : QK 7→ RK
+,0 such that Φ(Q) ∈ Q, ∀Q ∈ QK .
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Figure 3.4: Monotone Path Collective Choice Function (MPCCF): The Figure shows an exam-
ple of a MPCCF in 2 user case, in the utility space of the two users which is a subset of R2

+,0. The
intersection point of the MPCCF with the boundary of an utility region results in the solution
outcome.

Φ(Q) is as per definition single–valued. We now present the definition of monotone path.

These tools will be utilized to obtain the results in this chapter.

Definition 3.9. A monotone path is a continuous curve φ(s) ∈ RK
+,0, where s ∈ (0,∞), such that

φ(ŝ) ≥ φ(s) for ŝ > s and a strict monotone path is a curve for which φ(ŝ) > φ(s), for ŝ > s.

Certain CCFs can be described in terms of a monotone path and are called monotone path

collective choice functions (depicted in Figure 3.4).

Remark 3.10. As shall be seen in Section 3.4 the monotone path collective choice function has

certain interesting properties and proves to be a useful tool in axiomatic bargaining theory.

Definition 3.11. Φ is a monotone path collective choice function (MPCCF) on QK if, there

exists a monotone path φ, such that ∀Q ∈ PO(QK), Φ(Q) = φ(ŝ) where ŝ = inf s, such that

φ(s) < Q}.

Similarly, if φ is a strict monotone path, then the resulting CCF Φ is called a strict MPCCF

on PO(QK).

Even though, from an initial glance Definition 3.11 might suggest that φ(ŝ) < Q is a valid

choice, it must be noted that from Definition 3.8, that Φ(Q) chooses a point in Q. Hence the

MPCCF as well chooses a point φ(ŝ) in Q. The structure of Φ is dependent on the choice of the

performance metric functions f .

Definition 3.12. Dictatorial solution: A CCF Φ is said to be dictatorial, if there exists some

user k such that ∀Q ∈ QK we have Φ(Q) = [0, . . . , 0, qk(Q), 0, . . . , 0]T , with qk(Q) = maxq∈Q qk.
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Figure 3.5: Two–user Users SIR region, Φegalitarian is the egalitarian resource allocation strategy;
SIR region shown is for a total power constraint Ptot

The dictatorial solution is the solution in which a single user, who is the dictator maximizes

it’s utility and all the other users get zero utility.

Example 3.13. An example of a resource allocation strategy, which results in a dictatorial

solution is a system where a single user occupies the entire frequency resource at any give time

(slot) e.g. TDMA or the entire time resource at any given frequency e.g. FDMA.

We now present the definition of the egalitarian solution.

Definition 3.14. Egalitarian Solution: The solution outcome for a choice function Φ on the

family of sets U ∈ UK is said to be egalitarian if: Φ(U) = λ(U)1, where λ(U) = maxλ1∈U λ

and 1 is a vector of length K with all components equal to 1.

A particular Φegalitarian representing an egalitarian resource allocation strategy is shown in

Figure 3.5. The point at which Φegalitarian intersects the boundary of the region is the operating

point of the resource allocation strategy.

Example 3.15. A practical example of the egalitarian solution (depicted in Figure 3.5) is SINR

min–max balancing. Consider a fixed parameter z, which defines a particular choice of receiver

strategy e.g MMSE, matched filter. Based on this parameter we have an expression of the SINR

of the kth user, where k ∈ K given by

SINRk(p, zk) =
pk

[V(z)p + σ2]k
.
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The egalitarian solution outcome is the solution to the optimization problem

C(γ, z) = inf
p>0:‖p‖1=1

(
max
1≤k≤K

γk[V(z)p + σ2]k

pk

)
,

where the feasible SIR targets are given by C(γ, z) ≤ 1.

We introduce a new type of sets Q(λ) called basic bargaining sets. These sets prove to be a

useful tool for comparing different utility vectors.

Definition 3.16. Basic bargaining sets: Q(λ) are called basic bargaining sets, if and only if

Q(λ) := {q ∈ RK
+,0 :

∑
k∈K

qk ≤ λ} (3.5)

where λ ∈ R+ and q = [q1, . . . , qK]T .

We define the curve φ1(λ) by applying the CCF on basic bargaining sets, i.e.

φ1(λ) := Φ(Q(λ)) (3.6)

where 0 < λ < ∞. φ1 is completely specified by the basic bargaining sets. For the basic

bargaining sets, we can test different curves φ1 corresponding to different resource allocation

strategies (CCFs) and check if they are strict monotone and conclude which properties the

corresponding CCF (Φ) satisfies. If the behavior of the solution outcome is known on the basic

bargaining sets, then we can characterize the properties of the solution outcome of the resource

allocation strategy for all feasible utility regions.

3.3 Axiomatic Framework

In this section we shall discuss the axiomatic bargaining framework, which we shall utilize

to capture certain properties of resource allocation strategies. The abstraction we use in this

chapter is as follows:

• A CCF satisfies an axiom or multiple axioms.
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• The resource allocation strategy represented by the CCF satisfies the property correspond-

ing to the axiom or the properties corresponding to these axioms.

The axioms we shall present here are divided into three parts:

1. axioms, which are part of a traditional axiomatic bargaining setup and have been men-

tioned in earlier literature [Nas50], [Pet92]: presented in Section 3.3.1;

2. axioms related to varying number of users in a wireless system; and

3. axioms, which we introduce here to capture certain properties specific to wireless systems

presented in Section 3.3.3.

3.3.1 Basic Axioms

WPO Weak Pareto Optimality: For every set Q ∈ QK , Φ(Q) ∈ W(Q), where W(Q) is the weak

Pareto optimal set defined as follows: W(Q) := {q(1) ∈ Q : there is no q(2) ∈ Q with

q(2) > q(1)}.

PO Pareto Optimality: For every set Q ∈ QK , Φ(Q) ∈ P(Q), where P(Q) is the Pareto Optimal

set defined as follows: P(Q) := {q(1) ∈ Q : @ q(2) ∈ Q with q(2) ≥ q(1), q(2) , q(1)}.

IIA Independence of Irrelevant Alternatives: For all sets Q(1), Q(2) ∈ QK with Q(1) ⊂ Q(2) and

Φ(Q(2)) ∈ Q(1), we have that Φ(Q(1)) = Φ(Q(2)).

S CONT Feasible Set Continuity: For every sequence of sets Q, Q(1), Q(2), . . .Q(n) ∈ QK , if Q(n) →

Q in the Hausdorff metric∗, then Φ(Q(n))→ Φ(Q), then Φ satisfies S CONT on the family

of sets QK .

S Y M Symmetry: For every Q ∈ QK , if Q is symmetric set then, Φ1(Q) = Φ2(Q) = . . . = ΦK(Q).

∗For our setting it is sufficient for us to have a metric. The Hausdorff metric is used here for generality.
Hausdorff distance or Hausdorff metric: Let Q(1) and Q(2) be two compact subsets of a metric space QK . The
Hausdorff distance dH(Q(1),Q(2)) is the minimal number r such that the r–neighborhoods of Q(1) contains Q(2) and
the closed r-neighborhood of Q2 contains Q1. In other words, if d(q(1), q(2)) denotes the distance in QK , then

dH(Q(1),Q(2)) = max
{

sup
q(1)∈Q(1)

inf
q(2)∈Q(2)

d(q(1), q(2)), sup
q(2)∈Q2

inf
q(1)∈Q1

d(q(1), q(2))
}
.
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S TC Scale Transformation Covariance†: For every Q ∈ QK , and all a, b ∈ RK
+,0, a > 0 and

(aQ + b) ∈ QK , we have Φ(aQ + b) = aΦ(Q) + b.

S IR Strong Individual Rationality: For every Q ∈ QK , Q ∩ RK
++ , ∅, and k ∈ K , Φk(Q) > 0.

WPO implies that the users should not be able to collectively improve upon the solution out-

come. WPO has important practical implications, which shall be investigated further in com-

bination with other axioms later in this chapter. It implies that it is impossible to find another

point which leads to strictly superior performance for all the users in the systems simultane-

ously. Hence, as can be concluded we would like all resource allocation strategies to have a

solution outcome which operates on the boundary and hence satisfies the axiom of WPO.

In this chapter, efficiency of the operating point of a resource allocation strategy is emulated

by the axiom of PO, i.e. users always make full utilization of available resources. Efficiency

typically implies getting the most out of the resources used. Pareto optimality is the gener-

ally favored definition of efficiency by economists‡. It is a situation in which nobody can be

made better off without making somebody else worse off. If an economy’s resources are being

used “inefficiently”, it ought to be possible to make somebody better off without anybody else

becoming worse off.

IIA implies that, if the feasible set shrinks, but the solution outcome still remains feasible,

then the solution outcome of the smaller set should be the same. We would like to be able to

reduce the resource allocation problem to a numerical optimization problem so that meaningful

practical algorithms could be designed. We now define the CCF Φu in terms of a utility function

u as follows:

Φu(Γ) := arg max
γ∈Γ

u(γ). (3.7)

IIA is a necessary condition, however not a sufficient condition for a CCF to be expressed

according to (3.7).

Robustness of the operating point to channel estimation and prediction errors is emulated

by the axiom of S CONT . If Φ satisfies the axiom of S CONT on PO(QK), then it implies that

†Here we use the notation aQ = {q : ∃s ∈ Q with q = as}, where as is defined as component-wise multiplica-
tion.

‡Named after Vilfredo Pareto (1842–1923), an Italian economist
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the solution is robust to estimation and prediction errors, since small changes in the set lead to

small changes in the solution outcome. We shall introduce later in this section the definitions of

lower semi-continuity and upper semi-continuity, which are closely connected with the axiom

S CONT .

A resource allocation strategy, which bestows equal priority on all users is emulated by the

axiom of S Y M, i.e. the resource allocation strategy chooses an operating point, which is inde-

pendent of permutations between the users. This does not imply that the region is symmetric,

rather that all the users have the same priorities. A motivation of the symmetry axiom is that,

if the description of the bargaining situation does not contain any information that enables a

meaningful distinction between the users, then the solution should not distinguish between the

users either.

An operating point of a resource allocation strategy, which is invariant with respect to

component-wise scaling of the utility region has been emulated by the property of S TC. We

now present two definitions, which are closely connected with the axiom S CONT .

Definition 3.17. Lower semi-continuity: Let Q, Q(1), Q(2), . . ., Q(n) ∈ QK , Q(n) ⊆ Q(n+1), for all

n ∈ N and Q(n) → Q in a Hausdorff metric. Then, we have that Φ(Q(n))→ Φ(Q).

Definition 3.18. Upper semi-continuity: Let Q, Q(1), Q(2), . . ., Q(n) ∈ QK , Q(n+1) ⊆ Q(n), for all

n ∈ N and Q(n) → Q in a Hausdorff metric. Then, we have that Φ(Q(n))→ Φ(Q).

It can be shown that Φ satisfies the axiom of S CONT , if and only if Φ satisfies the properties

of lower semi-continuity and upper semi-continuity. In Sections 3.4 the axiomatic framework

along with Definitions 3.17 and 3.18 introduced here will be used to obtain desired solution

outcomes to CCFs. We now introduce a special case of the axiom S TC called linear invariance,

which shall be used in proving certain results in Section 3.4.

Definition 3.19. A CCF Φ satisfies the property of linear invariance if: Φ(aQ) = aΦ(Q), where

Φ(Q) = q̂ and aq = [aq1, . . . , aqK]T , where a is a non-negative scalar.

Example 3.20. Consider a case of sum power constraint at the base station for a particular

channel condition. If the base station has a slackened power constraint due to the change in

certain parameters, i.e. it has more total power to distribute across all the users for the same
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Figure 3.6: PMON for the 2 and 3 users scenarios

channel condition, then in this case we see that the region grows as compared to the previous

case. If the same resource allocation strategy can be used in both these cases, then the resource

allocation strategy is said to satisfy the property of linear invariance.

The axioms of WPO, S Y M, IIA and S TC characterize the symmetric Nash bargaining

solution (NBS) for convex sets. If the utility set Q is compact convex comprehensive, then we

obtain a unique symmetric NBS fulfilling these four axioms.

3.3.2 Axioms for Varying Number of Users

For the axioms of population monotonicity and weak stability the following convention has been

used: Q2K1
implies the set Q2 where bargaining is restricted to the set ofK1 := {1, . . . ,K1} users.

Similarly, ΦK1 implies Φ whose outcome is restricted to only K1 users. K1 ⊂ K2 implies that

K2 := {1, . . . ,K1,K1 +1, . . . ,K2}. Population monotonicity was first introduced under a different

name in [Tho83] and was used in the context of cooperative bargaining theory in [Pet92].

PMON Population Monotonicity: Φ is said to satisfy the axiom PMON, if for all K1 ⊂ K2,

for all sets Q1 ∈ PO(QK1) and for all sets Q2 ∈ PO(QK2), if Q1 = Q2K1
, implies that

Φ(Q1) ≥ ΦK1(Q2).

WS T AB Weak Stability: Φ is said to satisfy the axioms of WS T AB, if for allK1 ⊂ K2, for allQ1 ∈

PO(QK1) and for all Q2 ∈ PO(QK2), if Q1 = (Q2,Φ)K1 , implies that Φ(Q1) ≥ ΦK1(Q2).
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PMON implies the following. Consider a system currently has the set of K1 users bargaining

over a set Q2 and if the set of users K2\K1 are not currently present in the system, where

K1 ⊂ K2. Then in such a scenario, the set of users K1 would bargain for resources over the set

Q2K1
= Q1, with the resultant operating point being Φ(Q1). If the set of users K2\K1 now arrive

in the system and we aim to have a new strategy, then none of the users in K1 should be better

off, i.e., ΦK1(Q2) ≤ Φ(Q1). Geometrically this implies that (refer to Figure 3.6) the projection of

the solution outcome involving a large number of users onto the coordinate subspace pertaining

to a smaller set of users from the initially larger set is Pareto-dominated by the solution outcome

of the intersection of the large problem with that subspace.

WS T AB implies that in order for a fully cooperative system to result in a stable solution

outcome, all users who are part of a sub-group of the total number of users in the system have

a certain cost assigned to them. WS T AB is a weaker condition as compared to PMON. In

WS T AB the solution outcome is taken as the starting point as versus in PMON.

3.3.3 New Axioms

The axioms described so far are the basic axioms of our framework. We now introduce certain

new axioms§. Fairness constraints and abstraction in wireless systems, have many varied inter-

pretations, see [HZW05], [OK04], [LCS03], [Kno02], [LK05] and [RWM06], [RSVG03] and

references therein respectively.

FAIR Entitled Fairness: For every Q1 ⊆ Q2, Φ is said to satisfy FAIR, if and only if Φ(Q1) ≤

Φ(Q2), where Q1,Q2 ∈ PO(QK).

§Certain relation definitions and previously known axioms, which are related to our new axioms are briefly
reviewed here.

Definition 3.21. Utopia point: uk(Q) := max{qk : q ∈ Q} exists for every k ∈ K . Then, the point u(Q) =(
u1(Q), . . . , uK(Q)

)
is called the utopia point of Q.

Let hk(Q) := max{qk : q ∈ Q, q > 0}, Q ∈ PO(QK) for every k ∈ K .

MON Restricted Monotonicity: For all Q1,Q2 ∈ PO(QK) with Q1 ⊂ Q2 and h(Q1) = h(Q2), we have Φ(Q1) ≤
Φ(Q2).

S MON Strong Monotonicity: For all Q1,Q2 ∈ PO(QK) with Q1 ⊂ Q2, Φ(Q1) ≤ Φ(Q2).

MON and S MON are definitions from [Pet92], which have been introduced here solely for the purpose of distin-
guishing them from our entitled fairness constraints
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S FAIR Strong Entitled Fairness: For every Q1 ⊆ Q2, Φ is said to satisfy S FAIR, if and only if

Φ(Q1) ≤ Φ(Q2) and Q1 ⊂ int(Q2), implies that Φ(Q1) < Φ(Q2), where Q1,Q2 ∈ PO(QK).

FAIR implies that for a particular set of users if the utility region increases or stays the same as

compared to a previous utility region, then a CCF chooses a solution outcome, which should be

better or stay the same for this set of users.

S FAIR is closely related to the previous axiom and implies that for a particular set of users,

if the new utility region grows compared to the previous utility region, such that, the intersection

of the old region with the axis and Pareto boundary of the new region is an empty set, then a

CCF chooses a solution outcome, which should be strictly better for this set of users.

Traditional fairness constraints imply that there is some kind of fair distribution of resources

amongst the different users which restricts the objective function from being maximized without

any consideration to the marginalized users.

Example 3.22. One example of the general idea of fairness in wireless networks is the propor-

tional fair scheduling algorithm described in [VTL02]. Our fairness constraints have a different

interpretation compared to the example just stated. Let the CCF Φ represent a certain resource

allocation strategy.

If we have two different rate regions corresponding to two different channel conditions such

that Q1 ⊆ Q2 then according to axiom FAIR it is only “fair” to expect that the solution outcome,

e.g. such as a rate maximizing strategy Φ conforms to the rule Φ(Q2) ≥ Φ(Q1). So the solution

outcome Φ, ∀k ∈ K is better or at least as good as, for Q2 than Q1.

The axioms of WPO, S CONT and S FAIR are independent of the transformational map-

pings on the family of sets PO(QK), with respect to the performance metric functions. This

implies that if one of these axioms is satisfied by the CCF on the set Γ, where Γ ∈ PO(ΓK) then

it is also satisfies Φ on the transformed family Q where Q ∈ PO(QK).

The strongest form of abstraction, which we permit, is when the solution outcome is inde-

pendent of the transformational mapping, i.e. independent to performance metrics (IPM). We

represent an IPM abstraction by the axiom generic (GEN) defined below.:
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GEN Generic : A CCF Φ is said to satisfy the axiom GEN on the family of sets PO(QK) if:

f
(
Φ(Q)

)
= Φ

(
f (Q)

)
, (3.8)

for all sets Q ∈ PO(QK) and for all K–function tuples f ∈ PMK .

As can be observed this GEN-type abstraction is a very strong abstraction, in the sense that the

solution outcome is independent of the region in which the solution outcome was obtained. The

CCF Φ is commutative with respect to all possible performance metrics, such that the desired

solution outcome can be obtained in the γ-region and then be transferred to the Q-region with

the help of the desired performance metric function.

3.4 Results of the Analysis Using the Axiomatic Bargaining

Framework

Equipped with the axiomatic framework and the CCFs, we are now in a position to present the

main results of this chapter. We have divided the results into the following sub–sections:

1. entitled fairness constraints,

2. robustness to channel estimation and prediction errors,

3. layer abstraction and

4. population monotonicity.

3.4.1 Entitled Fairness Constraints

In this section we shall answer the following problem.

Problem 4. What are the possible efficient, robust (to channel estimation and prediction er-

rors) resource allocation strategies, which satisfy the axioms of entitled fairness (These are the

fairness axioms FAIR and S FAIR defined in Section 3.3.3)?
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We begin by presenting the following two results, which state when a resource allocation

strategy is a MPCCF and a strict MPCCF. The MPCCF and the strict MPCCF possess certain

desirable properties of resource allocation strategies and they will be used in later sections of

this chapter to prove other results in relation to axiomatic bargaining theory.

Theorem 1. A CCF Φ satisfies the axioms of WPO, FAIR and the property of upper semi–

continuity on the family of sets PO(QK), if and only if Φ is a MPCCF, i.e. the corresponding φ

is a monotone path.

Proof. “⇐=”: This direction can be easily verified by taking a MPCCF and checking that the

axioms of of WPO, upper semi-continuity and FAIR are satisfied.

“=⇒”: We define a number λ̂ =
∑K

k=1 Φk(Q) implying that Φ(Q) ∈ Q(λ̂), where Q(λ̂) := {q ∈

RK
+,0 :

∑K
k=1 qk ≤ λ} which are the basic bargaining sets. Here we can have one of two possible

cases:

Φ
(
Q ∪ Q(λ̂)

)
∈ Q(λ̂) or (3.9)

Φ
(
Q ∪ Q(λ̂)

)
∈ Q\Q(λ̂). (3.10)

Let us consider the case that Φ
(
Q ∪ Q(λ̂)

)
∈ Q\Q(λ̂). Since, Φ satisfies the axiom of FAIR we

have that Φ
(
Q ∪ Q(λ̂)

)
≥ Φ(Q). However, we know that Q ∈ PO(QK). Furthermore, Φ satisfies

the axiom of WPO. This implies that

Φ
(
Q ∪ Q(λ̂)

)
= Φ(Q) ∈ Q(λ̂)

and our assumed case is not possible.

Therefore, we have Φ
(
Q ∪ Q\(λ̂)

)
∈ Q(λ̂) and Φ

(
Q ∪ Q(λ̂)

)
≥ Φ

(
Q(λ̂)

)
= φ(λ̂) from FAIR

and Q(λ̂) ∈ PO(QK). Since the CCF Φ satisfies WPO, Φ
(
Q ∪ Q(λ̂)

)
= φ(λ̂). From the axiom of

FAIR we have Φ(Q) ≤ Φ
(
Q ∪ Q(λ̂)

)
= φ(λ̂). However, we have that Φ(Q) ∈ PO

(
Q(λ̂)

)
, which

is the Pareto boundary of Q(λ̂), implying that Φ(Q) = φ(λ̂). Hence, Φ is a MPCCF. �

Theorem 2. A CCF Φ satisfies the axioms of WPO, S CONT , S FAIR on the family of sets

PO(QK), if and only if Φ is a strict MPCCF, i.e. the corresponding φ is a strict monotone path.
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Figure 3.7: Restriction of the operating point, due to strong entitled fairness constraint

Proof. On the similar lines of the previous proof. �

If we have no knowledge of the special physical layer structure then we can only work

with general interference functions. Then the only Φ satisfying WPO, FAIR and upper semi-

continuity on the family of sets PO(QK) is MPCCF. Similarly, the only CCF Φ satisfying the

axioms of WPO, S CONT and S FAIR is a strict MPCCF. We further characterize the properties

of the CCF Φ, or the monotone path φ representing it.

Example 3.23. We consider an example of cell edge performance. As shown in Figure 3.7

when the utility region grows asymmetrically a fair resource allocation scheme would yield a

different operating point as compared to one, whose objective to maximize the sum of users

utilities. In a real wireless system a user at the cell-edge experiences suffers from significant

path loss and fading. The regulatory authority might expect a wireless operator to guarantee a

certain cell edge performance. Such a legal restriction in the system is reflected in our model

by the axioms of entitled fairness. Certain previous work, which try and optimize resource

allocation algorithms for cell edge performance are [XRG+06], [XTWZ06].

Lemma 1. 1. Φ satisfies the properties of WPO, FAIR and upper semi-continuity on the

family of sets PO(QK), if and only if

φ1(λ) := Φ
(
Q(λ)

)
, λ > 0, (3.11)

where φ1 is a upper semi–continuous monotone path.
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2. Φ satisfies the properties of WPO, S CONT and S FAIR on the family of sets PO(QK),

if and only if in (3.11) φ1 is a continuous strict monotone path, i.e. a monotone path

satisfying the properties of upper semi–continuity and lower semi–continuity.

Proof. 1. “⇐=”: This direction can be easily verified.

“=⇒”: Let us choose some arbitrary λ1, λ2 such that, 0 < λ1 < λ2, which implies that

Q(λ1) ⊆ Q(λ2). Hence, we have

φ1(λ1) = Φ
(
Q(λ1)

)
≤ Φ

(
Q(λ2)

)
= φ1(λ2).

The above expression follows from the axiom FAIR. Furthermore, φ1 is continuous.

Hence, from these two properties we can state that φ1 is a upper semi-continuous mono-

tone path.

2. “⇐=”: This direction can be easily verified.

“=⇒”: Similarly, using the axioms S FAIR it can be proved that φ1 is a continuous strict

monotone path.

�

The representation of a MPCCF according to Theorem 1 cannot be extended to the family of

setsQK . The representation of a MPCCF according to Theorem 2 can be extended to the family

of sets QK . Different users in a wireless system in the same priority class could have different

willingness to pay for their QoS. Hence it is required for scheduling schemes (resource allo-

cation strategies) to maintain fairness by scheduling the users appropriately. There are several

available fairness measures in wireless systems:

• Delay bounds and throughput shall be guaranteed subject to certain constraints;

• Short-term fairness: the difference between the normalized QoS received by any two

users in the system that are continuously backlogged and are in the same state during a

particular time interval shall be bounded;
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• Long-term fairness: Suppose a user is dropped due to a system constraint. As long as the

user has enough demand for being served, it would be compensated over a sufficiently

long time period for loss in its’ service due to the system;

• Proportional fairness: described in Example 3.24;

• min-max fairness.

Example 3.24. The symmetric NBS (mentioned in Section 3.3.1), ΦNBS (Q), Q ∈ QK can be

obtained by maximizing the product of the utilities as follows:

ΦNBS (Q) = arg max
q∈Q

K∏
k=1

qk.

This product optimization approach is equivalent to proportional fairness [KMT98], as shown

below.

q̂ = arg max
q∈Q

K∏
k=1

qk = arg max
q∈Q

log
K∏

k=1

qk

= arg max
q∈Q

K∑
k=1

log qk.

INBS (q) = (
∏K

k=1 qk)
1
K is an interference function, where INBS (q) is the NBS interference func-

tion. We now present a result in relation to a property of φ1(λ) (3.6).

Corollary 3.25. Let φ1(λ) be a strict monotone path. Let the corresponding Φ satisfy the axioms

of WPO and S CONT on the family of sets PO(QK). Then, Φ satisfies the axiom S FAIR on the

family of sets PO(QK).

Proof. We know from Theorem 1 and Theorem 2 that if the CCF Φ satisfies the axioms of

WPO, S CONT , FAIR then φ1(λ) is a monotone path. Similarly, if Φ satisfies the axioms of

WPO, S CONT , S FAIR then φ1(λ) is a strict monotone path. Q(λ) satisfies the axioms of WPO,

S CONT on PO(QK). This implies that Φ
(
Q(λ)

)
= φ1(λ). If we have φ1(λ), where 0 < λ < ∞ is

monotone, then φ1(λ) is monotone for the family of sets PO(QK). �

Example 3.26. Let for two different channel realizations the corresponding rate regions be

Q1 and Q2. If Q1 ⊆ Q2, then Φ(Q1) ≤ Φ(Q2) in addition if Q1 ⊂ int(Q2) then the solution
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φ(λ)

φ(λ)

λ1 λλ2

Figure 3.8: φ is a monotone path but bot a strict monotone path, λ ∈ [λ1, λ2]

Φ(Q2) > Φ(Q1). That is if a particular rate region is contained completely in the interior of

another rate region, and Φ satisfies the stated axioms, then the solution in the latter case has to

be strictly better than in the previous region.

Theorem 3. A CCF Φ satisfies the axioms of WPO, FAIR and upper semi–continuity on the

family of sets PO(QK), if and only if Φ(Q) = φ
(
λ(Q)

)
, where λ(Q) = maxφ(λ)∈Q λ.

Proof. “⇐=”: This direction can be easily verified by assuming that Φ(Q) = φ
(
λ(Q)

)
, ∀Q ∈

PO(QK) and checking that it satisfies the axioms of WPO, upper semi-continuity on PO(QK)

and FAIR.

“=⇒”: We consider the numbers λ(Q), λ̄(Q). We define the following, λ̂ = λ(Q) =∑K
k=1 Φk(Q). We have Φ(Q) ∈ Q(λ̂) and

Φ
(
Q ∪ Q(λ)

)
< Q(λ) since if

Φ
(
Q ∪ Q(λ)

)
∈ Q(λ) then we have

Φ
(
Q ∪ Q(λ)

)
≥ φ(λ).

However, since we have that Φ
(
Q ∪ Q(λ)

)
∈ Q(λ) and that Φ

(
Q ∪ Q(λ)

)
≥ φ(λ), we must have

that Φ
(
Q ∪ Q(λ)

)
= φ(λ). This leads us to φ(λ) = Φ

(
Q ∪ Q(λ)

)
≥ Φ(Q), which results in a

contradiction according to the definition of λ̄. �

Theorem 4. There exists no CCF Φ such that Φ satisfies the axioms of WPO, S CONT , FAIR

without the axiom of S FAIR on the family of sets QK .
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q2

φ(λ2)

q1

Figure 3.9: Φ(Q∗) = φ(λ2)
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q2

q1

N

q̂

Φk0(λ1) +
1
N

Φk0(λ1)

fN (q) ≤ 1

Q1

Figure 3.10: Sequence of functions fN(q)m such that fN(q) ≤ 1; Q1 is a basic bargaining set.

Proof. We begin with φ being a monotone path, but not a strict monotone path. There exists

k0 in the interval [λ1, λ2], such that φk0 is constant for λ ∈ [λ1, λ2]. We take some λ2 such that

φk0(λ) > φk0(λ2) for λ > λ2, displayed in Figure 3.8. We have that Q∗ = {q : q ≤ φ(λ2)}, which

implies that Φ(Q∗) = φ(λ) as shown in Figure 3.9.

Now we take q̂ = φ(λ2) and a sequence of functions fN(q) such that they are linear in q

and QN = {q : q ≤ φ(λ2) and q such that fN(q) ≤ 1} (see Figure 3.10). Hence, we have that

Q(N) → Q∗ as N → ∞ in the Hausdorff metric. Now if Φ(QN) = φ(λ1) then, limN→∞Φ(QN) =

φ(λ1) , φ(λ2) = Φ(Q∗). Then, we have that the CCF Φ is not continuous on the family of sets

QK . �

Theorem 4 implies that if Φ satisfies WPO, S CONT and FAIR then it must satisfy S FAIR

on the family of sets QK .
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3.4.2 Robustness to Channel Estimation and Prediction Errors

In this section we shall answer problem 1. We begin by presenting a result about a resource

allocation strategy, which satisfies the properties of weak Pareto optimality, fairness and upper

semi-continuity (which is connected to the property of feasible set continuity, which captures

robustness to channel estimation and prediction errors).

Lemma 2. Let a CCF Φ satisfy the axioms of WPO, FAIR and upper semi–continuity on the

family of sets QK . Then, for all sets Q ∈ QK , there exists λ, λ̄ ∈ R+,0 such that

1. φ(λ) 	 Φ(Q), ∀λ > λ̄

2. φ(λ) ≤ Φ(Q), ∀λ ≤ λ

3. for λ ∈ (λ, λ̄) we have

• Φ
(
Q ∪ Q(λ)

)
∈ Q\Q(λ)

• Φ
(
Q ∪ Q(λ)

)
≥ Φ(Q).

Proof. 1. Q is a comprehensive compact set. There exists a λ1 > 0 such that Q ⊂ Q(λ),

∀λ ≥ λ1, implying that, Φ(Q) ≤ Φ
(
Q(λ)

)
= φ(λ). Let λ̄ be the smallest number λ such

that, φ(λ) 	 Φ(Q), ∀λ > λ̄.

2. Since Q ∩ RK
+,0 , ∅, then there exists λ2 > 0, such that Q(λ) ⊆ Q, for all λ ≤ λ2. This

implies that φ(λ) = Φ
(
Q(λ)

)
≤ Φ(Q), for all λ ≤ λ2. So let λ be the largest number such

that, φ(λ) ≤ Φ(Q).

3. We have (since Φ is continuous, as it satisfies upper semi–continuity from assumptions)

λ ≤ λ̄. We cannot compare φ(λ) with Φ(Q) with respect to the “natural order” ≤. But we

have,

Φ
(
Q ∪ Q(λ)

)
≥ Φ(Q)

Φ
(
Q ∪ Q(λ)

)
≥ φ(λ)

(
as Φ(Q) = φ(λ)

)
.

Furthermore from the definition of a CCF we have, that Φ(Q ∪ Q(λ)) ∈
(
Q ∪ Q(λ)

)
. We

define a number λ̂ =
∑K

k=1 Φk(Q), which implies that Φ(Q) ∈ Q(λ̂). Then, we have that
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φ(λ̄)

Φ(Q) is inside

the shaded region.

φ(λ)

q1

q2

Figure 3.11: Uncertainty region; Φ(Q) is inside the shaded region.

Φ
(
Q ∪ Q(λ̂)

)
≥ Φ

(
Q(λ̂)

)
= φ(λ̂). However, we know that

Φ
(
Q ∪ Q(λ̂)

)
∈ Q(λ̂).

Then, we have that

Φ
(
Q ∪ Q(λ̂)

)
= φ(λ̂).

Hence, Φ(Q) ≤ Φ
(
Q ∪ Q(λ̂)

)
= φ(λ̂) and

∑K
k=1 Φk(Q) = λ̂ we must have that Φ(Q) ∈

PO
(
Q(λ̂)

)
, which implies that Φ(Q) = φ(λ̂).

�

Example 3.27. The region shown in Figure 3.11 can be the region, which results when there

are estimation or prediction errors in the channel coefficients, resulting in filter or beamforming

coefficients which are not exactly matched to the actual channel parameters. For example con-

sider a MIMO system with t transmit and r receive antennas. The discrete time channel can be

modeled as: Yn = HnXn + Zn, where the dimensions of Yn, Hn, Xn and Zn are r × 1, r × t, t × 1

and r×1 respectively. Each component of the matrix Zn is AWGN and ZMCSCG¶. H = Ĥ + E,

where Ĥ are the channel estimates and E is the estimation error and these two matrices are un-

correlated. Let φ be a monotone path corresponding to a particular resource allocation strategy

such that the uncertainty due to the matrix E is captured by the parameterization λ. Hence for

‖E‖ = c, where c is some constant, the solution outcome Φ corresponding to the monotone path

¶ZMCSCG stands for zero mean circular symmetric complex Gaussian.
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φ lies in the uncertainty region λ < λ < λ̄.

Remark 3.28. The example provided above serves only as an abstraction of real systems. The

topic of MIMO channel estimation (blind and semi-blind) and the developments of performance

bounds is beyond the scope of this thesis.

Remark 3.29. The resource allocation strategy is robust to channel estimation errors, prediction

errors, if the CCF representing it satisfies the axiom of S CONT , i.e. small changes in the region

cause only small changes in the solution outcome corresponding to the operating point.

3.4.3 Abstraction Between Layers

In this section we tackle problem 2. We take an initial step in quantifying the loss in not having

a unified cross layer perspective while designing a communication system, with the help of the

following results.

Theorem 5. Let Φ satisfy the axioms of WPO, S CONT and S FAIR on the family of sets

PO(QK). Let Φ be linear invariant on the family of sets PO(QK). Then, there exists a weight

vector ω, such that

Φ(Q) = ΦweightedEgalitarian(Q),∀Q ∈ PO(QK),

where ΦweightedEgalitarian(Q) is the weighted egalitarian solution given by

ΦweightedEgalitarian(Q) = max
q∈Q

min
k
ωkqk,

where ωk and qk are the weights and the utilities of the kth user respectively.

Proof. The proof is a direct application of the property of linear invariance to a strict MPCCF

(Theorem 2). �

Figure 3.12 displays different weighted egalitarian solutions, corresponding to different

weight vectors. The weight vector ω is not completely characterized by Φ satisfying the axioms

of WPO, S CONT , S FAIR and the property of linear invariance.

Corollary 3.30. A CCF Φ results in a dictatorial solution, if and only if it satisfies the axioms

of WPO, S CONT, S FAIR and S TC on the family of sets PO(QK).



3.4. Results of the Analysis Using the Axiomatic Bargaining Framework 43

φ1(s)

φegalitarian(s)

φdictatorial(s)

φ2(s)
q2

q1

Figure 3.12: Figure displays different weighted egalitarian solutions φ1(s) and φ2(s); Dictatorial
solution φdictatorial(s); Egalitarian solution φegalitarian(s)

Proof. From Theorem 2 and S TC. �

The dictatorial resource allocation strategy, which is independent of transformational map-

pings as can be seen from the Figure 3.12 is linear invariant and satisfies also the axiom of S TC

(from Corollary 3.30). From Corollary 3.30 we have the following result in relation to layer

abstraction.

Corollary 3.31. There exists no CCF Φ, which satisfies the axioms of WPO, S CONT, S FAIR

and GEN on the family of sets PO(QK).

Proof. From 3.30 we have that a strict MPCCF along with the axiom of S TC results in a

dictatorial solution. From the axiom of GEN we require a resource allocation strategy, which

satisfies f
(
Φ(Q)

)
= Φ

(
f (Q)

)
, for all Q ∈ PO(QK) and for all K–tuple of mapping functions

f ∈ PMK . It can be clearly seen, that there exists no such resource allocation strategy. �

Example 3.32. Consider an operator who would want to design a fair and efficient pricing

strategy for services at the application layer while taking into account physical layer issues of

robustness. Then we require our CCF to satisfy WPO, S FAIR, S CONT on PO(QK) and GEN.

According to Theorem 3.30, there exists no such strategy.

If we expect the solution outcome to be robust against changes in transformation of the

utility region, then the only possible solution is the dictatorial solution. If we further attempt to

add the constraint, that the CCF satisfies strong individual rationality S IR, then there exists no

solution outcome.
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Application/Services

Physical/Link Layer

γ region

Q region

f

Figure 3.13: It is not possible to abstract between layers, if it is required to satisfy the axioms
of WPO, IIA, S CONT and S IR on PO(QK).

The Figure 3.13 shows a mapping between the γ region corresponding to the physical layer

and the Q region corresponding to the application layer. There cannot be any abstraction be-

tween the layers, if we would like a strictly increasing and continuous K–tuple of functions f

to satisfy the stated intuitive axioms.

Remark 3.33. There exists no CCF, which satisfies the axioms of WPO, S CONT , S IR and

GEN on the family of sets PO(QK), i.e. we cannot have a strong rational behavior of all the

users in the system while simultaneously satisfying the other axioms.

3.4.4 Population Monotonicity

In this section we provide an answer to problem 3.

Theorem 6. A CCF Φ satisfies the axioms of WPO, IIA, S CONT , S Y M and PMON on the

family of sets PO(QK), if and only if it results in an egalitarian solution.

Proof. “⇐=”: This direction can be easily verified by assuming that Φ is an egalitarian solution

and checking if the axioms of WPO, IIA, S CONT , S Y M and PMON are satisfied.

“=⇒”: We begin by constructing a monotone path (which is a continuous curve). Let

ψ(s) = {q ∈ RK
++ |

K∑
k=1

qk ≤ s}

and choose φ(s) = Φ(ψ(s)). Let Φ(Q1) = q1 and Φ(Q2) = q2. To obtain a contradiction, assume

that, u1 and q2 are not WPO comparable. By IIA (see Figure 3.14) the solution outcome is still
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feasible after shrinking the set, which results in the following expressions:

Φ
(
comp(q1)

)
= q1, and

Φ
(
comp(q2)

)
= q2

as comp(q1), comp(q2) ∈ PO(QK).

From IIA we have, that either

Φ
(
comp(q1, q2)

)
= q1

or

Φ
(
comp(q1, q2)

)
= q2.

Assume w.l.o.g that Φ
(
comp(q1, q2)

)
= q2. Now, let there be some f such that f (α) =

Φ(comp{q1, αq2}) and 0 ≤ α ≤ 1. From IIA, if Φ(α) ∈ comp{q1}, then f (α) = q1. If

f (α) < comp(q1), then we have that f (α) ≤ αq2 ≤ q2. Furthermore, f (0) = q1 and f (1) = q2.

Then, f cannot be continuous if q1 > q2 are not WPO. This results in a contradiction with

S CONT .

Now to check that the function φ(s) is strictly increasing. We define, q1 and q2 and the

function f (α) as above and suppose in contradiction that q1 ≤ u2 but q1 , q2. Then, we have

that

Φ(comp{q1, q2}) = q2.

Now we have that, f (α) = q1,∀α < 1 but f (1) = u2 again contradicting S CONT .

Let Q ∈ PO(QK) be any arbitrary set then we have that, Φ(Q) is comparable with all of φ(s),

for s ∈ R+. That is, we have Φ(Q) ≥ φ(s) or φ(s) ≥ Φ(Q). Now, for a certain parameter s

suitably large enough we have, Φ(Q) ≤ φ(s). Similarly for s suitably small enough we have,

φ(s) ≤ Φ(Q). Let s̄ be the smallest number such that Φ(Q) ≤ φ(s), for all s ≥ s̄ and let s be

the largest number such that φ(s) ≤ Φ(Q), ∀s ≤ s. Due to the properties of continuity and

monotonicity from the definition of the function φ (refer definition 3.9), we have s = s̄. This

implies that φ(s) = Φ(Q). By imposing S Y M on this Φ(Q), the only resulting solution is the
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q2

Q2

Q1

q1

q2

q1

comp(q1)

comp(q2)

Figure 3.14: Φ(Q2) = q2, Φ(Q1) = q1

egalitarian solution. �

Remark 3.34. It can be observed from the “only if” direction of the proof of Theorem 6, that

the axiom PMON is independent of the other axioms.

Theorem 7. A CCF Φ satisfies the axioms ofWPO, S Y M, S CONT , PMON and WS T AB on

the family of sets PO(QK), if and only if it results in an egalitarian solution.

Proof. “⇐=”: This direction of the Theorem is easily verified as follows. Let Φ is an egalitarian

solution. Now it can be easily shown, that the axioms of WPO, S CONT , S Y M, PMON and

WS T AB are satisfied.

“=⇒”: Consider that there areK1 ⊂ K2 active users in the system and Q1 ∈ PO(QK1). Since

we do not have a convexity constraint we need S CONT to prove that along with WPO our

solution outcome Φ operates on the boundary on the feasible utility region W(Q1) ∪ RK1
+,0. We

begin with a situation where we have 2 users and impose the condition of S Y M and PMON

resulting in a egalitarian solution on similar lines as in the proof of theorem 6. We now assume,

that we have Φ results in an egalitarian solution for the 2 user case and can prove by WS T AB

and induction that we have the egalitarian solution for all bargaining situations with less than

K1 users. �

Corollary 3.35. Let a CCF Φ satisfy the axioms of WPO, S Y M, S CONT and PMON on the

family of sets PO(QK). Then, the following two statements are equivalent.

1. Φ satisfies the axiom of IIA.
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2. Φ satisfies the axiom of WS T AB.

Proof. From Theorem 6 and Theorem 7. �

IIA is an axiom with strong implications. WS T AB is a much weaker axiom and is related

to the axiom PMON, except now the solution outcome is taken as the starting point. More gen-

erally, if the egalitarian solution outcome is regarded as socially just, then it can be interpreted

as follows: all users of a particular sub-group of users should be willing to pay a price in order

to satisfy the global welfare of the system.

Example 3.36. Consider a multiple access channel (MAC) with a beamforming array at the

base station [SBW05]. For fixed channels, we can easily calculate the optimal beamforming

weight vectors ωopt
k for the kth user, with respect to maximizing S INRk(p,ωopt

k ). The optimal

SINR for the kth can be written as:

S INRk(p,ωopt
k ) = pkhH

k (σ2I +
∑
j,k

p jh jhH
j )−1hk,

where pk, hk and σ2
k are the power, the channel gains at the base station array and the noise for

the kth user respectively. The interference function for the kth user can be written as follows:

Ik(p) =
1

hH
k (σ2I +

∑
j,k p jh jhH

j )−1hk
.

The structure of the feasible utility region depends on several factors, e.g. the receiver strategy.

For one set of beamformers ωk, for all users k ∈ K corresponds one particular utility region

SINR(p,ω) for fixed channels. For all possible beamforming vectors the corresponding utility

region is given by
⋃
ωk ,∀k∈K ,ω∈⊗ SINR(p,ω), where ⊗ is the set of all possible beamforming

vectors, for fixed channels. Utilizing duality between the MAC and the broadcast channel

(BC), similar utility regions can be constructed for the BC. While operating such a system,

if the operator wants it’s resource allocation strategy to be satisfy the axioms of WPO, IIA,

S CONT , S Y M and PMON, then the only solution is max–min balancing of the S INR(p,ω)

for the different users and power vectors.



48 Chapter 3. Axiomatic Bargaining Framework for Resource Allocation

3.5 Literature Survey

3.5.1 Bargaining Theory

Cooperative game theory was axiomatized by Nash in his seminal paper titled [Nas50]. Since

then, there has been a wide variety of literature on topic. There have been proposals for other

solution outcomes, e.g. [KS75]. The work [BRW86] establishes the relationship between the

static axiomatic theory of bargaining and the sequential strategic approach to bargaining.

3.5.2 Collective Choice Functions

The work by [Mar00] has been utilized as a motivation for the setting in this chapter. Certain

other papers dealing with the collective choice functions are [Mou88, LS10].

3.5.3 Previous Game Theoretic Literature in Wireless Systems

We briefly mention certain previous work, which use a game theoretic framework to address

problems in networks [MMD91, YMR00, SDHM07, TAG02, HJL05, Tho94]. We have done

some analysis on the non–symmetric Nash bargaining solution in [BNS07]. Our reference list

is by no means comprehensive. There have been a lot of different approaches of utilizing game

theory in wireless networks and certain other previous approaches can be found in the references

of the papers mentioned.

In our work, we shall quantify the amount of abstraction permitted between layers if we ex-

pect our resource allocation strategy to satisfy certain properties. Various approaches have tried

to capture cross layer aspects of communication in wireless systems using pricing and nodal

utility functions. We mention some of them along with a brief description. [KWM07, XJB04]

have considered a cross-layer design approach for joint routing and resource allocation for the

physical and MAC layers in multi hop wireless back-haul networks. A nonlinear optimization

problem is formulated, using dual decomposition and dual prices to maximize throughout under

certain constraints. In [HW07] a similar problem is considered. It utilizes a simulation–based

neurodynamic programming (NDP) method with an action-dependent approximation architec-

ture to address it. In [XLN06] it is proposed to have a price-based resource allocation framework
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in wireless ad hoc networks to achieve optimal resource utilization and fairness among compet-

ing end-to-end flows. In [LS06] an investigation of utility maximization problems for commu-

nication networks, where each user can have multiple alternative paths through the network, is

presented. They develop a distributed solution to the problem, which is amenable to online im-

plementation. In [KA03] pricing for multiple services offered over a single telecommunication

network is considered. It formulates the optimal pricing problem as a nonlinear integer expected

revenue optimization problem. They solve simultaneously for prices and the resource alloca-

tions necessary to provide connections with guaranteed QoS. The papers [FSvdS07, WS06]

consider the problem of multiuser resource allocation for wireless multimedia applications de-

ployed by autonomous and non-collaborative wireless stations (WSTA). They present a pricing

mechanism for message exchanges between the WSTAs and the Central Spectrum Modera-

tor (CSM). The messages represent network-aware resource demands and corresponding prices

and evaluate the impact of initial prices and network congestion level on the convergence rate of

message exchanges. The papers [JMT05, JT06] consider two objectives in the design of pricing

mechanisms for network resource allocation: a simple and scalable end-to-end implementation

and efficiency of the resulting equilibrium. They attempt to close this gap, by demonstrating

an alternative resource allocation mechanism which is scalable and guarantees a fully efficient

allocation when users are price taking. [PC06], [PC07] consider the problem of network utility

maximization to view layering as optimization decomposition. They presents a framework to

exploit alternative decomposition structures as a way to obtain different distributed algorithms,

each with a different trade-off among convergence speed, message passing amount and asym-

metry, and distributed computation architecture. [JVJ05], [JK05] consider pricing of network

resources in a reservation-based QoS architecture. The pricing policy implements a distributed

resource allocation to provide guaranteed bounds on packet loss and end-to-end delay for real-

time applications. In [PJ07] an incentive–compatible mechanism that leverages downlink de-

mand to ensure that users truthfully reveal their uplink utilities, enabling the socially optimal

uplink rate allocation, is provided. The papers [ZZHJ04, NY07] are certain other works in

relation to pricing and utility optimization in cooperative wireless networks.
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3.5.4 Axiomatic Approach in Networks

There has been another axiomatic framework presented in [LKCS10]. They present a family of

fairness measures satisfying certain axioms and present α–fairness, Jain’s index and entropy as

special cases of these measures. An alternative set of axioms to capture system efficiency and

feasibility constraints is also presented. In [FM04] cooperative game theory is utilized analyze

the capacity region in a code division multiple access system (CDMA). They introduce utility

functions and formulate a Nash bargaining problem in order to find an optimal element. They

extend this work in [FM05].



Chapter 4

Characterization of Convex and Concave

Resource Allocation Problems

In this chapter, we investigate for possible transformations to other domains to exploit hidden

convexity and concavity properties, respectively. There have been other papers before us, which

have investigated this topic and some of these papers have been listed in Section 4.6.2 at the end

of this chapter. We differentiate ourselves from previous work by checking the following:

let there exist a transformation to exploit hidden convexity or concavity properties. Then, is

this transformation unique?

Furthermore, we check for the largest class of utility functions and the largest class of in-

terference functions, which permit such transformations. This chapter sets limitations on the

class of utility functions, types of interference coupling in wireless systems and in turn resource

allocation problems, which can have desirable concavity and convexity properties.

Problems outside these characterized classes of functions can never be transformed into

suitable concave or convex characterizations.

4.1 Impact of Interference Coupling

Users in a wireless systems coupled by interference are intrinsically competitive. Each of them

is principally interested in maximizing their own utility. Such a characterization is accompanied

by a precondition that there must be at least one user k ∈ K who sees interference from another

51
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user j ∈ K and j , k, i.e. it must not be possible to completely orthogonalize all the users

in the system. If the users are completely orthogonalized, then they are coupled only by the

constraints on the resource allocation strategy and there is no “competition” in the sense as

we describe in this section. The example below highlights this point and displays the impact

of interference coupling. Let uk represent an utility function corresponding to a user k, where

k ∈ K .

Example 4.1. Consider the utility function uk(p) = log(pk/Ik(p)). The function

f (p,ω) =
∑
k∈K

ωkuk(p), (4.1)

for all weight vectorsω > 0 is never jointly concave with respect to p. Furthermore the function

(4.1) is not a convex optimization problem even for linear interference functions, e.g. Ik(p) =∑
l∈K vkl pl + σ2

k , where vkl is the link-gain between transmitter l and receiver k. This holds for

all non-orthogonal system of users, i.e. there exists at least one l such that vkl , 0 for k , l, i.e.

each users sees at least one other user as interference.

Similarly, the problem of minimizing the function f (p,ω) =
∑

k∈K ωk log
(Ik(p)

pk

)
for all

weight vectors ω > 0 is not jointly convex with respect to p.

[BN09] shows that if uk is the rate of user k, then the following sum of weighted rate max-

imization problem cannot be jointly concave in its current form. Similarly, if we have that uk

is the mean-square-error (MSE) of user k, then the following sum of weighted MSE minimiza-

tion problem cannot be jointly convex in its current form. None the less, through appropriate

substitution of variables, the above formulation can be converted into a convex or concave op-

timization problem.

4.2 Problem Statement and Contributions

In this section we precisely state the problems addressed in the chapter and follow it up with the

main contributions of the chapter.
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4.2.1 Problem Statement

Based on the observations from Section 4.1, the following important questions arise immedi-

ately.

Problem 5. Can the function Ik

(
ψ(s)

)
ψ(sk) be jointly convex after a suitable transformation (where

p = ψ(s) is a transformation) for linear interference functions?

1. Under what conditions is such a transformation unique?

2. Can these results be extended beyond linear interference functions?

Certain examples of linear interference functions beyond the case of linear interference

functions are as follows:

• convex interference functions: interference functions utilized to model worst-case mod-

els, e.g.

Ik(p) = max
c∈X

[V(c)p]k,∀k ∈ K , (4.2)

where the parameter c, chosen from a closed bounded set X can stand for the impact

of error effects. Examples of error effects could be channel estimation and prediction

errors. Performing power allocation with respect to worst case interference such as (4.2)

guarantees a certain degree of robustness (see e.g. [WES06] and references therein.) and

• concave interference functions: interference functions representing interference coupling

in uplink beamforming with K single-antenna transmitters and an M-element antenna

array at the receiver [BS08b, Section I.A and Section II].

There are many such examples frequently encountered in practical wireless systems The Prob-

lem 5 has been formulated for the convex case. We can formulate a similar problem for the

concave case as follows:

Problem 6. Can the function ψ(sk)

Ik

(
ψ(s)

) be jointly concave after a suitable transformation for

linear interference functions?

1. Under what conditions is such a transformation unique?
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2. Can these results be extended beyond linear interference functions?

In Problems 5 and 6 we have taken the perspective of an arbitrary user k ∈ K . To address

these problems, we shall formulate certain requirements. For formulating these requirements,

we shall briefly review the concepts of feasible SINR regions and feasible QoS regions. The

feasible SINR region F is the set of all feasible SINR vectors γ̂, that can be supported for all

users by means of power control, with interference being treated as noise. The feasible SINR

region F can be written as follows:

F = {γ̂ | ∃p ≥ 0, p ∈ P, γk(p) ≥ γ̂k, γ̂k ∈ R+,∀k ∈ K} (4.3)

and the corresponding feasible QoS region is

U = {û | ∃γ ∈ F , uk(γk(p)) ≥ ûk, ûk ∈ R+,∀k ∈ K}. (4.4)

Example 4.2. Consider the function log( p2
p1+σ2 ), which is concave with respect to p2 and convex

with respect to p1. The function log( p2
p1+σ2 ) in neither jointly convex nor jointly concave with

respect to p = [p1, p2]T .

We know from [SB07] and the references there in, that the feasible SINR region (F ) is in

general not convex.

Example 4.3. Consider an example with 2 users, where the SINR of user 1 is γ1(p) =
p1

v11 p1+v12 p2+σ2

and and the SINR of user 2 is γ2(p) =
p2

v21 p1+v22 p2+σ2 , where vk j is the channel gain between the

kth receiver and jth transmitter.

The feasible signal–to–interference ratio (SIR) region can also be defined as {γ > 0 | ρ(γ) ≤

1}, where ρ(γ) := ρ(diag{γ}Vres) is the Perron root of the weighted coupling matrix, where

V = [Vres, 1T ] and Vres is a K × K restricted weighted coupling matrix containing the inter-

ference coupling coefficients (without the dependency on noise. Furthermore, we also know

from [BN09], that we can never have joint convexity of the inverse SINR in the power domain.

Hence, we would like to investigate the possibility of finding a suitable transformation ψ (or

ψ−1), which
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γ1

γ2 u2

u1

log(1/(SINR))

F
U

Figure 4.1: Depiction of a feasible SINR region F for individual power constraints and the
corresponding feasible QoS regionU after a transformation log(1/SINR)

1. transforms the problem from the power domain to the s-domain, i.e. ψ−1 : R+ 7→ S ,

where S = R, s ∈ S and the inverse SINR and functions of inverse SINR are jointly

convex with respect to s = [s1, . . . , sK],

2. transforms the feasible SINR region into a convex feasible QoS set U, where ψ−1(γk) =

uk, for all k ∈ K and u ∈ U.

While looking for our transformation ψ−1, we make the following assumption. Transformation

ψ(s) = p is strictly monotonic increasing and twice continuously differentiable throughout

the chapter.

The feasible SIR region and the feasible SINR region are convex after the transformation

log(1/SIR) and log(1/SINR), respectively (see Figure 4.1 for an example of the convexity of the

transformed SINR region). The convexity of the feasible SINR region is a direct consequence

of the Perron root ρ(γ) being log-convex after a change of variable γ = es, where s ∈ RK

is the logarithmic SIR. Note that ρ(γ) fulfills the axioms A1 to A4, i.e. the Perron root is a

special case of the more general interference functions. This does not imply that log v11 p1+v12 p2+σ2

p1

is jointly convex, nor that ω1 log v11 p1+v12 p12+σ2

p1
+ ω2 log v21 p1+v22 p12+σ2

p2
is jointly convex, where

[ω1, ω2] = ω ≥ 0.

Remark 4.4. Even though the feasible QoS region U is a convex set (see Figure 4.1) after

a logarithmic transformation, the function log(1/γk(p)), for k ∈ K is not jointly convex with

respect to p.

Linear interference functions are the simplest type of interference functions and they are

frequently encountered in communication systems. Hence, expecting the feasible QoS region
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U to be convex (see 2) for all linear interference functions, is a natural requirement for com-

munication systems.

We now return to problem of finding a suitable transformation ψ. Let Γ := diag{γ1, . . . , γK},

where γk = ψ(uk). From [SB07] we know that, ρ
(
ΓV

)
is convex for all coupling matrices

V ∈ RK×K
+ and for all users k ∈ K , if and only if ψ is log-convex. Furthermore, this implies that

the feasible QoS region U resulting from the transformation γk = ψ(uk), for all users k ∈ K

without power constraints is convex. Now, to formalize the conditions 1) and 2) we introduce

the following requirement.

Requirement 4.5. For all linear interference functions, the ρ
(
ΓV

)
is convex for all V ∈ RK×K

+

for all users k ∈ K , where V is the link gain matrix.

Remark 4.6. If requirement 4.5 is satisfied, we have that the feasible QoS region is convex for

all linear interference functions. Then, from [SB07, Theorem 1] we have that ψ is log-convex.

The function ψ(s) = es is one such function satisfying requirement 4.5. We further introduce

another requirement, which expects joint convexity of the inverse SINR, which can be thought

of as loss minimization in wireless systems and joint convexity of the inverse SINR raised to α

for all α > 0.

Requirement 4.7. For all scalars α > 0 the function
(Ik(ψ(s))

ψ(sk)

)α is jointly convex with respect to

s.

Expecting the function (1/SINR)α, with α > 0 to be convex with respect to s, implies

that we expect the expression of the α-order diversity of a system with a certain inverse SINR

to be convex. We can briefly refresh that log(SINR) is the capacity of an AWGN channel at

high SINR. If we consider the behavior of maximum likelihood error probability of a particular

code with data rate R (where r := R/ log(SINR) is the multiplexing gain of the codes), then

as the probability of error decays as SINR−α, we say that this code has a diversity gain of α.

[TVZ04] provides a characterization of the multiplexing rate tuples of the users as a function

of the common diversity gain for each user. It characterizes the diversity multiplexing trade-

off in multiple access channels, when all users have the same diversity requirements. We now
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introduce the families of functions Conv and EConv below which will help us introduce our last

requirement.

Definition 4.8. Conv is the family of all strictly monotonic increasing, continuous and convex

functions g. EConv is the family of all strictly monotonic increasing, continuous function g,

such that g(ex) is convex.

The inclusion order of the classes of utility sets is Conv ( EConv. In fact, EConv is much

larger the Conv. If a utility function g is in the class EConv, then it has the property that g(ex)

is convex. The example g(x) = log x, which is frequently encountered in wireless communica-

tion systems shows that even a concave function could be transformed into a convex function.

Hence, we would like to investigate the possibility of ensuring convexity for the larger class

of EConv functions. For this purpose we introduce our last requirement, which expects joint

convexity of functions of inverse SINR, which are frequently encountered in wireless systems,

e.g. MSE: g(x) = 1/(1 + x) and high-SNR approximation of BER g(x) = x−α with diversity

order α.

We are now in a position to formulate the problems from a system level perspective, e.g. a

weighted sum of minimum square error minimization problem from the perspective of a base

station or a central controller.

Problem 7. Let g1, . . . , gK be strictly monotonic increasing, convex and continuous functions.

Consider the function ∑
k∈K

ωkgk

(
Ik

(
ψ(s)

)
ψ(sk)

)
. (4.5)

1. For linear interference functions, can the function (4.5) be jointly convex after a suitable

transformation?

2. Under what conditions is such a transformation unique?

3. If we relax the condition of linear interference functions, then for what kind of interference

coupling can we extend the above results?

We now present our final requirement.
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Requirement 4.9. For all functions gk ∈ EConv, the function (4.5) with
∑

k∈K ωk = 1 is jointly

convex with respect to s.

The function ψ(s) = es is one such function satisfying requirement 4.9.

We formulate a similar problem for the concave case. For this purpose we formally intro-

duce two classes of utility functions.

Definition 4.10. Conc is the family of all strictly monotonic increasing, continuous and concave

functions g. EConc is the family of all strictly monotonic increasing, continuous functions g,

such that g(ex) is concave.

The concavity of the function g(ey) is a stronger requirement, i.e. EConc ( Conc.

Problem 8. Let g1, . . . , gK be strictly monotonic increasing, concave and continuous functions.

Consider the function ∑
k∈K

ωkgk

(
ψ(sk)
Ik

(
ψ(s)

)). (4.6)

1. For linear interference functions, can the function 4.6 be jointly concave after a suitable

transformation?

2. Under what conditions is such a transformation unique?

3. If we relax the condition of linear interference functions, then for what kind of interference

coupling can we extend the above results?

While answering the above problems in the chapter, we shall have proved, that ψ(x) =

c exp(µx), with c, µ > 0 is the only family of transformations, which satisfies our requirement.

Hence, we shall utilize this transformation while analyzing problems 9 and 10.

Problem 9. Let us assume, that I1, . . . ,IK are linear interference functions. What is the largest

class of utility functions, i.e. functions g1, . . . , gK , which are not necessarily convex, such that

we can ensure the joint convexity of

gk

(
Ik

(
ψ(s)

)
ψ(sk)

)
? (4.7)
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Problem 10. What is the largest possible class of interference functions, such that for all utility

functions gk ∈ EConv, the function (4.5) is jointly convex with respect to s, for all weight vectors

ω > 0.

4.2.2 Contributions

The main contributions of this chapter are as follows:

• Linear interference functions are the simplest and most frequently encountered class of

interference functions. Theorem 8 shows, that under certain natural assumptions for linear

interference functions, the transformation pk = exp(µsk), µ > 0 where pk is the power

of an arbitrary user k and s ∈ R, is the unique transformation for “convexification” of

resource allocation problems.

• If we would like the resulting resource allocation problem to be convex, then Theorems 8

and 10 show that under natural assumptions, it is sufficient to check for the joint convexity

of the function (4.5) with respect to s.

• Theorem 11 and Remark 4.17 extend the above analysis beyond linear interference func-

tions. Theorem 11 and Remark 4.17 characterize the largest class of interference func-

tions (C interference functions), which allow a problem in ICWS to be formulated as

a convex optimization problem. C interference functions (see Definition 4.16), include

log-convex interference functions, extending previous literature on the topic of convex

characterization of resource allocation problems.

• Under certain natural assumptions, we present an impossibility result (Theorem 12),

which states that there exists no transformation ψ, such that the function ψ(sk)/Ik(ψ(s))

for all users k is jointly concave with respect to s.

• Theorem 14 establishes the largest class of utility functions (EConc), which are functions

of SINR in the s-domain and are concave. Due to a certain requirement of the Theorem

(explained in detail in Lemma 4), such a class of utility function is a restricted class.

Furthermore, it is shown that the family of exponential functions is the unique family
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of functions, such that relevant and frequently encountered functions in ICWS are jointly

concave for all linear interference functions and for all utility functions in the class EConc.

• Theorem 15 proves that the largest class of interference functions, which preserves con-

cavity of resource allocation strategies of ICWS is the family of log-convex interference

functions. Furthermore, it provided a complete characterization of the class of log-convex

interference functions, with respect to convexity and concavity properties of resource al-

location problems.

4.3 Analysis of Resource Allocation Problems: Convex Case

We now analyze the convexity properties of functions of inverse SINR for linear interference

functions.

4.3.1 Analysis of Convexity Properties of Resource Allocation Problems

for Linear Interference Functions

We check for a transformation of the problem from the power domain to the s-domain, with the

hope that the resulting problem is convex, for all linear interference functions.

We now present a result, which shows that if we expect the supportable QoS region to be

convex for all linear interference functions, then the only transformation (from the s-domain to

power domain) permitted under certain conditions, is the family of exponential transformations

(up to certain scalar µ).

Theorem 8. Transformation ψ satisfies requirements 4.5 and 4.7, if and only if there exists a

µ, c > 0 such that ψ(sk) = c exp(µsk), s ∈ R, for 1 ≤ k ≤ K + 1.

Proof. “⇐=”: This direction can be easily verified as follows. Let s(λ) = (1 − λ)s(1) + λs(2).

Let Ik(p) = pT vk, for 1 ≤ k ≤ K + 1, where vk ∈ R
K+1
+ is a vector of interference coupling

coefficients with the K +1th component of each vector being σ2. For a given power vector p, the

interference (plus noise) in the system is determined by the K × (K + 1) interference coupling

matrix V = [v1; . . . ; vK]. Since ex is a log-convex function and the point-wise product of two
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log-convex functions is log-convex, we have that for any user k ∈ K

vkes(λ)

esk(λ) ≤
(vkes(1)

es(1)
k

)1−λ(vkes(2)

es(2)
k

)λ
= exp

(
(1 − λ) log

(vkes(1)

es(1)
k

)
+ λ log

(vkes(2)

es(2)
k

))
, (since, x = exp log x)

≤ (1 − λ) exp log
(vkes(1)

es(1)
k

)
+ λ exp log

(vkes(2)

es(2)
k

)
= (1 − λ)

(vkes(1)

es(1)
k

)
+ λ

(vkes(2)

es(2)
k

)
.

We have shown the joint convexity of the function Ik(ψ(s))/ψ(sk) with respect to s. Hence

Requirement 4.7 is satisfied.

Now to show, that Requirement 4.5 is satisfied. We have to consider the feasible SINR

region without power constraints. Hence, we can analyze the SIR region instead of the SINR

region. Let vk ∈ R
K
+ is a vector of interference coupling coefficients without noise and the inter-

ference in the system is determined by the K ×K interference coupling matrix V = [v1; . . . ; vK].

The feasible SIR region can be written as, F = {γ̂ > 0 | ρ
(
diag{γ̂}V

)
≤ 1}, where ρ(γ̂) :=

ρ
(
diag{γ̂}V

)
is the spectral radius of the interference coupling matrix. The spectral radius is

log-convex after after a change of variable γ̂ = eu, where u is the logarithmic SIR. It is ob-

served, that the SIR set F is convex on a logarithmic scale. Hence satisfying Requirement 4.5.

Then, we have our desired result.

“=⇒”: From the assumptions of the theorem, we have that for all linear interference func-

tions, the supportable QoS region (without power control) is convex with respect to s, i.e.( 1
γk

)α
=

(Ik(ψ(s))
ψ(sk)

)α, is a convex function with respect to s = [s1, . . . , sK]. We shall investigate

the 2 user case, without any loss of generality. Therefore, we check for the convexity of
(ψ(s2)
ψ(s1)

)α,

for a certain fixed α > 0. We fix the power of user 2. Hence, we fix the value s2 and check for

the convexity of 1/(ψ(s1))α, for all α > 0. Then, we have that (ψ′(s1))2 − 1
α+1ψ

′′(s1)ψ(s1) ≥ 0.

Taking the limit of α→ 0, we obtain

(ψ′(s1))2 − ψ′′(s1)ψ(s1) ≥ 0. (4.8)



62 Chapter 4. Characterization of Convex and Concave Resource Allocation Problems

Since, requirement 4.5 is satisfied, ψ is log-convex and

(ψ′(s1))2 − ψ′′(s1)ψ(s1) ≤ 0. (4.9)

From (4.8) and (4.9) we have that

(ψ′(s))2 − ψ′′(s)ψ(s) = 0. (4.10)

If ψ is a solution of (4.10), with ψ(s) > 0 for s ∈ S, then we have that (ψ′(s))2−ψ′′(s)ψ(s)/(ψ(s))2 =

0. This gives us d
ds

(ψ′(s)
ψ(s)

)
= 0, i.e. ψ′(s)

ψ(s) = µ. Since, ψ is strictly monotonic increasing (from our

assumptions) we have that µ > 0. Therefore, dψ
ψ

= µds, i.e. ψ(s) = c exp(µs). �

Remark 4.11. Theorem 8 has addressed point 1 of the Problem 5.

We have that Ik(ψ(s))
ψ(sk) =

cIk(exp(µs))
c exp(µsk) =

Ik(exp(µs))
exp(µsk) . Hence, we can choose c = 1, The constant c

in the statement of Theorem 8 has the role of an initialization in the differential equation in the

proof and c has no impact on the SINR.

Historically, there have been a number of different motivations for utilizing the log-scale for

measuring power in communication systems, e.g. the logarithmic nature allowing a represen-

tation of a very large range of ratios can be represented by a convenient number. Theorem 8,

provides another reason as to why it is advantageous to work in the log-domain, instead of the

power domain. Theorem 8 has been proved for the case, when we can scale the noise. We now

analyze the case, when we have noise and we do not scale the noise.

Theorem 9. Function ψ satisfies requirements 4.5 and 4.7, if and only if there exists a µ, c > 0

such that ψ(sk) = c exp(µsk), c > 0, s ∈ R, for k ∈ K .

Proof. “⇐=”: Since, we are analyzing the case, when we do not allow the scaling of noise, let

s(1) = [s(1), σ2]T and s(2) = [s(2), σ2]T , where s(1), s(2) ∈ RK . Let s(λ) = (1 − λ)s(1) + λs(2). Then,

s(λ) = (1 − λ)(s(1), σ2) + λ(s(2), σ2)

= (1 − λ)s(1) + λs(2), (4.11)
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where s(1), s(2) ∈ RK . The rest of the proof follows exactly as the proof of Theorem 8 (the

converse direction).

“=⇒”: From the assumptions of the Theorem, we have that for all linear interference func-

tions,
(

1
γk

)α
=

(
Ik(ψ(s))
ψ(sk)

)α
is jointly convex with respect to s = [s1, . . . , sK], for all α > 0. Now,

consider the function

(
Ik(ψ(s))
ψ(sk)

)α
=

(∑
j∈K\k vk jψ(s j) + vk(K+1)σ

2

ψ(sk)

)α
. (4.12)

As vk(K+1) → 0, the function (4.12) tends to the noise free case, i.e
∑

j∈K\k vk jψ(s j)
ψ(sk) . The noise free

case is identical to the case, when we can scale the noise. Furthermore, we know that the limit

function of a sequence of convex functions is convex. Now we can follow the same steps as in

the proof of Theorem 8 (the forward direction). �

Remark 4.12. Since, we can apply the same proof technique as in the proof of Theorem 9,

w.l.o.g. we prove all theorems throughout the chapter with noise scaling.

Remark 4.13. The composition of a convex and a concave function need not be convex. A

function f is convex, if and only if the function − f is concave. Hence, it is important to check

for the convexity of a function of inverse SINR.

Theorem 8 presents a result, from the perspective an arbitrary user k. We now extend the

result to a system level perspective in the Theorem 10 below.

Theorem 10. Function ψ satisfies requirements 4.5 and 4.9, if and only if there exists scalars

c, µ > 0 such that ψ(sk) = c exp(µsk), where s ∈ R, for 1 ≤ k ≤ K + 1.

Function ψ satisfies requirements 4.5 and 4.9, if and only if there exists a µ > 0 such that

ψ(sk) = exp(µsk), where s ∈ R, for all k ∈ K .

Proof. We know that under requirement 4.5, the function Ik(ψ(s))/ψ(sk) is convex, if and only

if ψ(sk) = exp(µsk) for µ > 0 (from Theorem 8). Therefore, it is sufficient to prove that the

function (4.5), with
∑

k∈K ωk = 1 is convex, if and only if Ik(ψ(s))/ψ(sk) is convex.

“⇐=”: ψ(sk) = c exp(µsk) with c, µ > 0 is a convex function. We know that the concatena-

tion of convex functions is convex. Hence, this direction can be easily verified. Hence, we skip

the proof.
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“=⇒”: We know that requirements 4.5 and 4.9 are satisfied. We can choose g(x) = xα, for

all α > 0. Then,
∑

k∈K ωk

(
Ik

(
ψ(s)

)
ψ(sk)

)α
with

∑
k∈K ωk = 1 and ω > 0 is jointly convex with respect

to s, for all α > 0. Let us choose weight vectors as follows:

ω(n)
k =


1 − 1

n k = j

1
(K−1)n k , j

Taking the limit as n tends to ∞, we obtain
(I j(ψ(s))

ψ(s j)

)α
= limn→∞

∑
k∈K ω

(n)
k

(Ik(ψ(s))
ψ(sk)

)α. The limit

function of a sequence of convex function is convex. Therefore,
(
I j(ψ(s))/ψ(s j)

)α is jointly

convex in s. Therefore, requirements 4.5 and 4.7 are satisfied. Then, from Theorem 8 we have

our desired result. �

Remark 4.14. Theorem 10 has addressed point 1 and point 2 of the Problem 7.

From Theorems 8 and 10, we have an equivalence between requirements 4.7 and 4.9. We

have established that for linear interference functions the unique transformation that satisfies our

requirements and allows us to obtain convex optimization problems is the exponential function

ψ(x) = c exp(µx), with c, µ > 0. This ψ will be utilized in Section 4.3.2. Furthermore, we

have shown that the exponential function is the unique mapping if we would like the natural

and practical requirement (4.9) to be satisfied. We would now like to extend our intuition to the

case beyond the framework of linear interference functions.

4.3.2 Analysis of Convexity Properties of Resource Allocation Problems

Beyond Linear Interference Functions

In this section we shall extend certain results obtained for linear interference functions to a

larger class of interference functions. We are interested in finding the largest class of interfer-

ence functions, which allow us to apply convex optimization techniques to certain non-convex

problems. We shall assume that ψ(x) = c exp(µx), with c, µ > 0. Then, (4.5) is a weighted

sum of functions of inverse SINR in the s domain. Hence, it plays the role of a loss function

in wireless systems. Intuitively, while tackling such a problem we would like to minimize such

a function so as to optimize the satisfaction of the users in the system. We now present a re-
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sult, that clarifies when such a function can be optimized by means of a convex optimization

techniques.

Theorem 11. Let ψ(x) = c exp(µx), with c, µ > 0. Then, (4.5) is jointly convex with respect to

s ∈ RK+1 for all weight vectors ω > 0 and for all convex, continuous and increasing functions

g1, . . . , gK , if and only if the functions Ik(es)/esk for all k ∈ K are jointly convex with respect

to s ∈ RK+1.

Let ψ(x) = c exp(µx), with c, µ > 0. Then, the function (4.5) is jointly convex with respect

to s ∈ RK for all weight vectors ω > 0 and for all convex, continuous and increasing functions

g1, . . . , gK , if and only if the functions Ik(es, σ2)/esk for all k ∈ K are jointly convex with respect

to s ∈ RK .

Proof. “⇐=”: This direction can be easily verified. When gk and Ik(es)/esk are convex func-

tions, we know that gk(Ik(es)/esk) is convex. Furthermore, since the weighted sum of convex

functions is convex, we obtain our desired result.

“=⇒”: We have that (4.5) is convex for all weight vectors ω > 0 and for all convex, con-

tinuous and increasing functions g1, . . . , gK . Choose gk(x) = x for all users k ∈ K . Let us

choose weight vectors as in the proof of Theorem 10. Taking the limit as n → ∞, we have

I j(es)/es j = limn→∞
∑

k∈K ω
(n)
k Ik(es)/esk . The limit function of a sequence of convex function is

convex. Therefore, I j(es)/es j is jointly convex with respect to s. �

Remark 4.15. Theorem 11 has addressed point 3 of the Problem 7.

The largest class of interference functions, resulting in convex resource allocation problems

would be equal to or larger than log-convex interference functions.

If interference functionsI1, . . . ,IK are log-convex interference functions, then
∑

k∈K ωk log esk

Ik(es) =

−
∑

k∈K ωk log Ik(es)
esk is jointly concave [BS08a].

From Theorems 8 and 10, we know that for all strictly monotonic increasing, continuous

and convex functions gk and for all weight vectors ω > 0, it is sufficient to check for the joint

convexity of the function
∑

k∈K ωkgk
(
Ik(es)/esk

)
with respect to s. Hence, we define a new class

of interference functions below:
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Definition 4.16. C interference functions: A general interference function Ik is said to a be C

interference function if the function Ik(ψ(s))/ψ(sk) is jointly convex with respect to s, where

ψ(sk) = eµsk , for k ∈ K , with µ > 0.

The inclusion of the different families of interference functions is as follows: Convex in-

terference functions ⊂ Log-convex interference functions ⊂ C interference functions ⊂ General

interference functions.We now define the following function, which we shall utilize in analyzing

the convexity of the function Ik(es)/esk .

f̃Ik(ω) := inf
p>0

exp(
Ik(p)

pk
)∏K

l=1(pl)ωl
(4.13)

The function f̃Ik defined by (4.13) is log-concave, for all users k ∈ K . A function f :

RK+1 7→ R+ is log-concave on RK+1, if and only if log f is concave or equivalently f (s(λ)) ≥

f (s(1))1−λ f (s(2))λ, for all λ ∈ (0, 1), s(1), s(2) ∈ RK+1, where s(λ) = (1 − λ)s(1) + λs(2), λ ∈ (0, 1).

Lemma 3. Let the function f̃Ik(ω) > 0, where f̃Ik(ω) is defined in (4.13). Then, the sum of the

weight vectors
∑

l∈K ωl = 0.

The proof of Lemma 3 can be found in [BNA]. From [BNA] we have the following re-

marks, which along with Theorem 11 help us obtain a complete characterization of the convex-

ity properties of resource allocation problems for ICWS beyond the case of linear interference

functions. These remarks along with Theorem 11 characterize the largest class of interference

functions (C interference functions), which allow a problem in ICWS to be formulated as a

convex optimization problem.

Remark 4.17. For all s ∈ RK+1 the function gk(s) := Ik(es)/esk is convex, if and only if

Ik(es) = esk log hIk(s), k ∈ K ,where (4.14)

hIk(s) := sup
ω: f̃Ik (ω)>0

f̃Ik(ω)
∏
l∈K

(eslωl).
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For all s ∈ RK the function gk(s) := Ik(es, σ2)/esk is convex, if and only if

Ik(es, σ2) = esk log hIk(s), k ∈ K ,where

hIk(s) := sup
ω: f̃Ik (ω)>0

f̃Ik(ω)
∏
l∈K

(eslωl).

It can be seen in Lemma 3, that the weight vectors ω can be less than zero. Although this

might seem surprising at first glance, it is justified from the fact, that we are now concerned

with the optimization of function f̃I(ω), which has the SINR as an inverse argument. We are

investigating the case in the s-domain (p = es). Hence, a more negative weight implies a larger

SINR in the power domain.

We notice in Remark 4.17, that Ik(es) is convex, which is stronger than the condition that

it is log-convex, since log hIk(s) is convex. We see that log-convexity plays a significant role in

the analysis. Remark 4.17 has characterized the class of interference functions C, which leads

to the inverse SINR function Ik(es)/esk to be convex in the s-domain, for all users k ∈ K . f̃I

has been introduced for the purpose of investigating the convexity properties of SINR.

From Theorem 11 and Remark 4.17 we make the following observation. The function (4.5)

is jointly convex with respect to s ∈ RK+1 for all weight vectors ω > 0 and for all convex,

continuous and increasing functions g1, . . . , gK , if and only if the functions Ik(es)/esk for all

k ∈ K possess the structure defined by (4.14).

Remark 4.18. Theorem 11 and Remark 4.17 have together answered point 2, of the Problem 5.

If I(es) is a log-convex interference function, then the corresponding function log(γ(es)) is

convex, i.e. γ(es) ≤
(
γ(1))1−λ(

γ(2))λ, where γ(es(1)
) = γ(1) and γ(es(2)

) = γ(2). If I(es) is a C

interference function, then we have that the corresponding function γ(es) is convex. Let I(n),

n ∈ N be a convergent sequence on log-convex interference functions and limn→∞ I
(n) = I∗.

Then, I∗ is also a log-convex interference function. Hence, we have that the class of log-convex

interference functions is closed with respect to point wise convergence. However, they (the class

of log-convex interference functions) are not dense with respect to the class of C interference

functions.

The class of C interference functions is much larger than the class of log-convex interference
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functions. These results extend the class of ICWS to which convex optimization techniques can

be successfully applied. The class of C interference functions is the largest class of interference

functions, permitting the use of convex optimization techniques to solve certain non-convex

problems.

Example 4.19. Consider the function qα(x) = x, for α ≥ 1. We are interested in minimizing

the function
∑

k∈K ωk
(Ik(es)

esk

)αk , with αk ≥ 1, for all users k ∈ K . Such a problem is met in the

form of minimizing the weighted probability of errors. Here, the probability of error for user k,

k ∈ K with diversity order αk for user k can be approximated as 1/
(
esk/Ik(es)

)αk . Examples of

comparison between the mean square error and inverse SINR can be found in [REG07, BP08,

SMR06]. Furthermore, details on the mean square error criterion and the probability of error

can be found in [Pro, Section 10.2.2]. A strategy for system resources by joint optimization

of transmit powers and beamformers for minimizing the sum of weighted inverse SIR was

considered. In [TVZ04], a method for choosing weighting factors so that the sum optimization

approach achieves optimal max-min fairness was provided.

We now investigate the possibility of obtaining a similar characterization for the concave

case in Section 4.4.

4.4 Analysis of Resource Allocation Problems: Concave Case

In this section we check for a transformation of the problem from the power domain to the

s-domain, with the hope that the resulting function is jointly concave with respect to s. The

feasible SINR region is convex on the logarithmic scale (similar to the convex case displayed in

Figure 4.1, we can have a figure for the concave case). This does not imply that log p1
v11 p1+v12 p2+σ2

is jointly concave, nor that ω1 log p1
v11 p1+v12 p12+σ2 + ω2 log p2

v21 p1+v22 p12+σ2 is jointly concave, where

[ω1, ω2] = ω ≥ 0.
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4.4.1 Analysis of Concavity Properties of Resource Allocation Problems

for Linear Interference Functions

We now present an impossibility result (Theorem 12), which has implications on the concavity

properties of resource allocation strategies. These resource allocation strategies aim to maxi-

mize functions of SINR in ICWS. We recollect that ψ(s) = eµs, µ > 0 always leads to jointly

convex behavior with respect to s, for all linear interference functions (Theorem 8).

Theorem 12. There exists no transformation ψ, such that for all linear interference functions,

the function ψ(sk)/Ik(ψ(s)), for 1 ≤ k ≤ K + 1 is jointly concave with respect to s.

Proof. For the sake of obtaining a contradiction, assume that the statement of the Theorem 12

is not true, i.e. there exists such a function. Choose Ik(p) =
∑

j∈K\k v j p j and fix s j, for all

1 ≤ j ≤ K + 1 and j , k. Then, the function ψ(sk)/
∑

j∈K\k v jψ(s j) is concave with respect to sk,

i.e. the transformation ψ is itself concave.

Now fix s1 (w.l.o.g) and consider the following expression ψ(s1)/ψ(s2), with s2 ∈ S. This

implies, that 1/ψ(s2) is a concave function. Now, choose s(1)
2 , s(2)

2 ∈ S, such that s(1)
2 , s(2)

2

arbitrarily. We have that ψ(s(1)
2 ) , ψ(s(1)

2 ). Let s2(λ) := (1 − λ)s(1)
2 + λs(2)

2 . Then, we have

1
ψ(s2(λ))

≥ (1 − λ)
1

ψ(s(1)
2 )

+ λ
1

ψ(s(2)
2 )

. (4.15)

On the other hand, we have ψ(s2(λ)) ≥ (1 − λ)ψ(s(1)
2 ) + λψ(s(2)

2 ) (since ψ is concave). This gives

us the following expression:

1
ψ(s2(λ))

≤
1

(1 − λ)ψ(s(1)
2 ) + λψ(s(2)

2 )

< (1 − λ)
1

ψ(s(1)
2 )

+ λ
1

ψ(s(2)
2 )

.

The strict inequality (above) follows from the fact that the function 1/x is strictly convex and

we have our required contradiction with (4.15). �

We have proved the statement of Theorem 12 for the case, when we can scale the noise.

Similarly, we can easily prove the Theorem 12 for the noise free case.
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Theorem 13. There exists no transformation ψ, such that for all linear interference functions,

the function ψ(sk)/Ik(ψ(s), σ2), for all 1 ∈ K is jointly concave with respect to s.

Proof. The proof follows the same direction as the proof of Theorem 9 and Theorem 12. We

consider the function
ψ(sk)∑

j∈K\k vk jψ(s j) + vk(K+1)σ2 . (4.16)

As vk(K+1) → 0, we have that (4.16) tends to the noise free case, which is the same as the case

with noise scaling (Theorem 9). Furthermore, we know that the limit function of a sequence of

concave functions is concave. Since, here we have that the limit function is not concave, we can

conclude that there exist individual sequences, which are not concave either. Hence, we have

our desired result. �

We have observed, that the concavity of g, e.g. g(x) = x is not sufficient to ensure the joint

concavity of g
(
ψ(sk)/Ik(ψ(s))

)
, k ∈ K with respect to s for a certain transformation. Hence, we

need to restrict the utility functions g, such that we can further investigate the joint concavity

of our desired function ψ(sk)/Ik(ψ(s)). The necessary condition, which ensures joint concavity

will be presented in Lemma 4 below.

Lemma 4. Let a strictly monotonic increasing and twice continuously differentiable function

ψ satisfy requirement 4.5. Let g be a monotonic increasing function. Let g
(
ψ(sk)/Ik(ψ(s))

)
for 1 ≤ k ≤ K + 1 be jointly concave with respect to s for all linear interference functions

I1, . . . ,IK . Then, g(ex) is concave.

Let a strictly monotonic increasing and twice continuously differentiable function ψ satisfy

requirement 4.5. Let g be a monotonic increasing function. Let g
(
ψ(sk)/Ik(ψ(s), σ2)

)
for all

k ∈ K be jointly concave with respect to s for all linear interference functions I1, . . . ,IK .

Then, g(ex) is concave.

Proof. Choose x1, x2 ∈ R arbitrarily. Then, for x(λ) = (1−λ)x1+λx2 and from the log-convexity

of the function ψ, we obtain the following inequality: ψ(x(λ)) ≤
(
ψ(x1)

)1−λ(
ψ(x2)

)λ. Since, g is a

monotonic increasing function, we have that g
(
ψ(x(λ))

)
≤ g

((
ψ(x1)

)1−λ(
ψ(x2)

)λ). Furthermore,

from the concavity of g(ψ(x)), we have that (1 − λ)g(ψ(x1)) + λg(ψ(x2)) ≤ g
(
ψ(x1)1−λψ(x2)λ

)
.

Now, let y1, y2 ∈ R be arbitrarily chosen. We choose x1, x2 such that ψ(xk) = eyk , for k ∈ {1, 2}.
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This is possible due to our assumption on the function ψ. Let y(λ) = (1 − λ)y1 + λy2. Then, we

have that (1 − λ)g(ey1) + λg(ey2) ≤ g(ey(λ)), i.e. g(ey) is concave. �

It can be seen that 0 ≥ (g(ey))′′ = (g′(ey)ey)′ = g′′(ey)e2y + g′(ey)ey. We have observed

that the concavity of g(ex) is a necessary condition to ensure the joint concavity of the function

g
(
ψ(sk)/Ik(ψ(s))

)
with respect to s, for all k ∈ K .

We have seen in Lemma 4, the existence of a function ψ such that the function g
(
ψ(sk)/Ik(ψ(s))

)
,

for all k ∈ K is jointly concave with respect to s, for all functions g ∈ EConc. We now show in

Theorem 14, that the function ψ = c1 exp(µs), is up to two constants c1, µ the unique transforma-

tion, which ensures the joint concavity of g
(
ψ(sk)/Ik(ψ(s))

)
, for all linear interference functions

and for all utility functions g ∈ EConc. We briefly compare this situation with the convex case,

i.e. minimizing the function g
(
Ik(s)/ψ(sk)

)
, where ψ is the exponential function. For the case

of linear interference functions and for all strictly monotonic increasing, continuous and convex

functions g, we have that g(Ik(s))/ψ(sk) is jointly convex with respect to s. In the convex case

we did not require any further restrictions.

Theorem 14. Let a strictly monotonic increasing and twice continuously differentiable function

ψ satisfy requirement 4.5. The function gk
(
ψ(sk)/Ik(ψ(s))

)
is jointly concave with respect to

s ∈ RK+1 for all linear interference functions I1, . . . ,IK and for all gk ∈ EConc, if and only if

ψ(s) = c1 exp(µs), with c1, µ > 0.

For all linear interference functions I1, . . . ,IK and for all g ∈ EConc, g
(
ψ(sk)/Ik(ψ(s), σ2)

)
is jointly concave with respect to s ∈ RK , if and only if ψ(s) = c1 exp(µs), with c1, µ > 0.

Proof. “⇐=”: Consider gk
(
ψ(sk)/Ik(ψ(s))

)
such that ψ(s) = c1 exp(µs), with c1, µ > 0. Let Ik

be a linear interference function for all users k ∈ K . It can be easily verified that g
(
eµsk/Ik(eµs)

)
is jointly concave with respect to s ∈ RK+1. Hence, we skip the proof.

“=⇒”: Let gk(x) = log x. Then, gk(ex) is in the class EConc. Now, let gk ◦ψ(sk) = logψ(sk).

Hence, gk ◦ ψ is concave. Furthermore, the function ψ is log-convex, i.e gk ◦ ψ is also convex.
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Therefore, we choose s(λ) = (1 − λ)s1 + λs2 and choose s1 = 0, s2 = 1. Then, we have that

logψ(s(λ)) = logψ(λ)

= (1 − λ) logψ(0) + λ logψ(1)

= logψ(0) + λ
(

log
( ψ(1)
ψ(0)︸︷︷︸
>0

))
. (4.17)

Let ψ(1)/ψ(0) = µ. Then, we have ψ(λ) = ψ(0)eλµ, where µ > 0. �

Remark 4.20. Theorem 12 and Theorem 14 has addressed point 1 and point 2 of the Problem

6.

We now extend our insight obtained from Theorem 12 and the Lemma 4, beyond the case

of linear interference functions.

4.4.2 Analysis of Concavity Properties of Resource Allocation Problems

Beyond Linear Interference Functions

In this section, we shall analyze the concavity properties of resource allocation problems for

interference functions, beyond the class of linear interference functions. We shall be particularly

interested in investigating Problem 8. It has been established in Section 4.4.1, that ψ(x) =

c exp(µx), with c, µ > 0 satisfies our requirements. Now, we check for the joint concavity of∑
k∈K ωkgk

(
ψ(sk)/Ik(ψ(s))

)
for all weight vectors ω > 0 and for all utility functions gk ∈ EConc

for the largest possible class of interference functions. Then, we have the following result.

Theorem 15. Let ψ(x) = c exp(µx), with c, µ > 0. The function (4.6) is jointly concave with

respect to s ∈ RK+1 for all ω > 0 and for all gk ∈ EConc , if and only if I1, . . . ,IK are all

log-convex interference functions.

Proof. “=⇒”: We choose the weight vectors as follows: ω(n)
k =


1 − 1

n k = j

1
(K−1)n k , j

Taking the

limit as n → ∞, we have that es j/I j(es) = limn→∞
∑

k∈K ω
(n)
k esk/Ik(es). We achieve that

gk(esk/Ik(es)) := G(s) is jointly concave with respect to s, for all g ∈ EConc. Since, the
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limit function of a sequence of concave function is concave. Choose gk(x) = log(x). Then, for

g ∈ EConc we have logIk(es) = s + log G(s), i.e. Ik(es) is log-convex.

“⇐=”: If interference functionsI1, . . . ,IK are log-convex, then for arbitrarily chosen s(1), s(2)

and s(λ) := (1 − λ)s(1) + λs(2), we have that

Ik(es(λ)) ≤
(
Ik(es(1)

)
)1−λ(
Ik(es(2)

)
)λ

i.e.
esk(λ)

Ik(es(λ))
≥

( es(1)
k

Ik(es(1))

)1−λ( es(2)
k

Ik(es(2))

)λ
.

Then, for a fixed gk ∈ EConc, we have

gk
( esk(λ)

Ik(es(λ))
)
≥ gk

(( es(1)
k

Ik(es(1))
)1−λ( es(2)

k

Ik(es(2))
)λ)

≥ (1 − λ)gk
( es(1)

k

Ik(es(1))
)

+ λgk

( es(2)
k

Ik(es(2))

)
. (4.18)

Inequality in (4.18) follows from the concavity of gk(ey). Hence, we have that gk
(
esk/Ik(es)

)
,

for all k ∈ K is jointly concave with respect to s. Hence, we have that
∑

k∈K ωkgk
(
esk/Ik(es)

)
for all weight vectors ω > 0 and for all gk ∈ EConc is jointly concave with respect to s. �

Remark 4.21. Theorem 15 has completely addressed the Problem 8.

Theorem 16. Let ψ(x) = c exp(µx), with c, µ > 0. The function
∑

k∈K ωkgk
(
esk/Ik(es), σ2)

)
is

jointly concave with respect to s for all ω > 0 and for all gk ∈ EConc , if and only if I1, . . . ,IK

are log-convex interference functions.

Proof. “⇐=”: If interference functions Ik(es1 , . . . , esK , σ2), for all k ∈ K are log-convex with

respect to s ∈ RK , then with a similar arguments as in the proof of Theorem 13, we have the

concavity of
∑

k∈K ωkgk
(
esk/Ik(es), σ2)

)
, for all gk ∈ EConc.

“=⇒”: With similar arguments as in the proof of Theorem 13, we can prove that Ik(es, σ2)

is log-convex with respect to s ∈ RK . Then from Theorem 8 in [BS10], we have that Ik(es, esK+1)

is also jointly log-convex. �

We contrast the result obtained from Theorem 15 to the convex case. In the convex case,

i.e. minimization of (4.5), where gk is a strictly monotonic increasing, continuous and convex
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function, it can be observed that with log-convex interference functions (have been discussed in

[BS09]) the function
∑

k∈K ωkgk
(
Ik(es)/es

k

)
is jointly convex with respect to s. We shall inves-

tigate the possibility of obtaining a larger class of utility functions, which preserves convexity

properties of functions of inverse SINR for interference functions, which are not log-convex in

Section 4.5.

4.5 Larger Class of Utility Functions

We have seen from Theorem 15 and from [BS08a], that log-convex interference functions play

a special role in the characterization of concavity properties of resource allocation problems. In

[BS08a] the main focus was clarifying the importance of log-convex interference functions. In

our chapter, we attempt to obtain the largest class of utility functions such that the considered

resource allocation problem still possesses convexity properties. We explore the trade-off be-

tween the generality of the class of utility functions and the generality of the class of interference

functions. We now return to the convex case and present the following result.

Lemma 5. Let ψ(x) = c exp(µx), with c, µ > 0. Function (4.7) is jointly convex with respect to

s ∈ RK+1
+ for all linear interference functions, if and only if the function g(ex) is convex.

Let ψ(x) = c exp(µx), with c, µ > 0. Function (4.7) is jointly convex with respect to s ∈ RK
+

for all linear interference functions, if and only if g(ex) is convex.

Proof. “=⇒”: Let s1 = 0. Then Ik(es) = es2 . Then, for s(1)
2 , s(2)

2 arbitrarily chosen and s2(λ) =

(1 − λ)s(1)
2 + λs(2)

2 we obtain g(es(λ)) ≤ (1 − λ)g(es(1)
2 ) + λg(es(2)

2 ), i.e. the function g(ex) is convex.

“⇐=”: We have for all linear interference functions I and s(1), s(2) arbitrarily chosen and

s(λ) = (1 − λ)s(1) + λs(2) that I(es(λ)) ≤
(
I(es(1)

)
)1−λ(
I(es(2)

)
)λ. This give us, that

g
(
I(es(λ))

es1(λ)

)
≤ g

((
I(es(1)

)

es(1)
1

)1−λ(I(es(2)
)

es(2)
1

)λ)
≤ (1 − λ)g

(
I(es(1)

)

es(1)
1

)
+ λg

(
I(es(2)

)

es(1)
2

)
, (4.19)

is jointly convex with respect to s. �

Based on the the Lemma 5 we are now in a position to answer Problem 9.
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Theorem 17. The function
∑

k∈K ωkgk(Ik(es)/esk) is jointly convex with respect to s ∈ RK+1

for all monotonic increasing and continuous functions gk, k ∈ K , for ω > 0 and for all linear

interference functions, if and only if g(ex) is convex.

The function
∑

k∈K ωkgk(Ik(es, σ2)/esk) is jointly convex with respect to s ∈ RK for all mono-

tonic increasing and continuous functions gk, k ∈ K , for ω > 0 and for all linear interference

functions, if and only if g(ex) is convex.

Proof. “=⇒”: Can be proved in a similar manner as in the proof of Theorem 14.

“⇐=”: This direction follows from Lemma 5. �

Remark 4.22. Theorem 17 has completely addressed the Problem 9.

We now utilize the additional requirement obtained from Theorem 17, namely that of the

utility functions being in the class EConv.

Theorem 18. The function
∑

k∈K ωkgk(Ik(es)/esk) is jointly convex with respect to s ∈ RK+1,

for all ω > 0 and for all gk ∈ EConv with k ∈ K , if and only if I1, . . . ,IK are log-convex

interference functions.

The function
∑

k∈K ωkgk(Ik(es, σ2)/esk) is jointly convex with respect to s ∈ RK , for all

ω > 0 and for all gk ∈ EConv with k ∈ K , if and only if I1, . . . ,IK are log-convex interference

functions.

Proof. “=⇒”: We know that gk(Ik(es)/esk) is jointly convex for all functions gk ∈ EConv. We

choose, gk(x) = log x, then we have that gk(ex) = x, i.e. g′′k (ex) = 0, i.e. gk(ex) is convex. This

give us that the function Ik is log-convex.

“⇐=”: Can be proved as in the proof if Theorem 15. �

Remark 4.23. Theorem 18 has completely addressed the Problem 10 and point 3 of the Problem

7. Hence, Problem 7 has been completely addressed.

Each convex function g has the property that g(ex) is convex. However, the example that

g(x) = log x shows that even a concave function could be transformed into a convex function.

Theorem 18 is very interesting, since we observe that there is a trade-off between the generality

of the following two families (classes) of functions:
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1. family of utility functions, and

2. family of interference functions.

Theorem 18 has shown that we can obtain convexity for a large class of utility functions, how-

ever for a smaller class of interference functions. We have established that

1. log-convex interference functions are the largest class of interference functions, such that

the weighted sum of functions gk of inverse SINR are jointly convex in the s-domain, for

all gk ∈ EConv, with k ∈ K for all weight vectors ω > 0, and

2. log-convex interference functions are the largest class of interference functions, such that

the weighted sum of functions gk of SINR are jointly concave in the s-domain, for all

gk ∈ EConc, with k ∈ K for all weight vectors ω > 0.

The inclusion order of the families of utility functions are as follows: convex case: Conv ⊂

EConv, and concave case: EConc ⊂ Conc.

Example 4.24. Consider the function g(x) = x/(1 + x) (with domain [0,∞)), which is concave

function. Then, the corresponding function g(ex) = ex/(1+ex) (with domain (−∞,∞)), is neither

concave nor convex. Hence, we can see that the family of utility functions EConc is smaller,

than the family of utility functions, which are concave.

4.6 Literature Survey

4.6.1 Convex Analysis

The book from [BV04] is an excellent starting point on convex analysis. Furthermore, the books

[JBHU01, Lue69, Roc97] provide a comprehensive reading on the topic. A nice introduction on

the topic of convex optimization for communications and signal processing has been provided

in [LY06].
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Figure 4.2: Figure displaying the two functions g(x) = x/1 + x and g(ex) = ex/(1 + ex), respec-
tively.

4.6.2 Previous Work on the Exponential Transformation

There have been a lot of previous work, which utilizes the exponential transformation in com-

muncation systems and wireless networks. We provide a brief overview of the work here (our

review is by no means comprehensive). The work [Sun02] derives a log-convexity property of

teh feasible SIR region, which they claim is potentially useful for the design of certain power-

controlled systems. In [CIM04] an efficient algorithm for computing minimum power levels for

large-scale networks within seconds, is derived. It defines the capacity regions of a network by

the set of effective spreading gains. Furthermore, it reveals a duality between the uplink and

downlink capacity regions. In the case that teh channel gains are subject to log-normal shadow-

ing, we introduce the concept of a level α-capacity regions. Despite its complicated structure, it

is shown that this set is sandwiched by two convex sets coming close as variance decreases. The

work [BS04] provides sufficient conditions for the feasibility of QoS requirements to better un-

derstand the optimal QoS tradeoff. It provides insights into the inter-relationship between QoS

requirements and the minimum transmission power necessary to meet them. Then, [SWB06]

extends some of the ideas presented in [BS04] and presents results on the theory and algo-

rithms used in resource allocation in wireless networks. The work [JCOB02] proposes a suite
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of problem formulations that allocate network resources to optimize SIR, maximize throughput

and minimize delay. These formulations can also be used for admission control and relative

pricing. Both proportional and minmax fairness can be implemented under the convex op-

timization framework, where fairness parameters can be jointly optimized with QoS criteria.

[Chi05, CTP+07, CHLT08] exploit hidden convexity in the context of utility maximization us-

ing geometric programming. These contributions show that in the higher SINR regime, certain

nonlinear and apparently difficult, non-convex optimization problems can be transformed into

convex optimization problems in the form of geometric programming. Hence, they can be very

efficiently solved for global optimality even with a large number of users. [Sun09] uses a ma-

jorization technique to compute the optimal solution over a logarithmic utility function.



Chapter 5

Mechanism Design Perspective on

Resource Allocation

In this chapter, we utilize the social choice function (SCF) to represent resource allocation

strategies in ICWS. The goals of the designed resource allocation strategies can be viewed in

terms of social choice, which is simply an aggregation of the preferences of the different users

towards a single joint decision.

The difference of interest between the operator and users is one example in networks, where

the theory of mechanism design can be utilized. Mechanism design can be thought as reverse

game theory and is rather unique within economics in having an engineering perspective. It

is interested in designing economic mechanisms, just like computer scientists are interested

in designing algorithms. Mechanism design attempts implementing desired social choices in

a strategic setting, assuming that the different members of society act rationally in a game

theoretic sense [NRT07].

We utilize an axiomatic framework for social choice functions (discussed in detail in Section

5.1.1). An SCF represents a resource allocation strategy in ICWS. In our abstraction, if an SCF

satisfies a particular axiom, then the resource allocation strategy is said to satisfy the property

corresponding to the axiom. Some examples are as follows. We capture the non-manipulation of

the the resource allocation strategy by the property of strategy proofness of the SCF. A classical

example of a strategy proof SCF is the second price auction (Vickrey Clarke Groves (VCG)

79
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auction). Pareto optimality of the resource allocation strategy is captured by the property of

efficiency. This chapter studies such and certain other desirable properties of SCFs representing

resource allocation strategies.

We consider resource sets beyond pure exchange economies (see Definition 2.8). The only

constraints on our resource sets is that they satisfy the following properties:

• they are compact, and

• they satisfy the SINR based utility function framework (introduced in Section 3.1).

There has been a significant amount of economic literature on this topic. We give a brief

overview of this literature in Section 5.7. It can be observed from the literature, that previ-

ous work in networks and communication theory has typically focused on the design strategy

proof resource allocation strategies for particular wireless or communication systems. This

chapter characterizes certain boundaries while designing strategy proof and efficient resource

allocation strategies, when combined with certain desirable and intuitive properties. This chap-

ter provides certain new insights on a particular class of strategy proof and efficient resource

allocation strategies and has the following main contributions (presented in Section 5.2):

1. We introduce the property of intuitive fairness (see Section 5.1.1). Intuitive fairness im-

plies, that if a particular user scales down its demand for utility, then the other users must

obtain the same or better utility. For strong intuitive fairness, the users can choose from a

family of utility functions, i.e. the users can do more than scaling their utility functions.

(a) A strategy proof and efficient resource allocation strategy, which satisfies the prop-

erty of intuitive fairness (see Definition 5.8) is robust to a particular user’s scaling

down of the utility, when the utility functions of all other users are fixed.

(b) A strategy proof and efficient resource allocation strategy, satisfying either intuitive

fairness (see Definition 5.8) or strong intuitive fairness (see Definition 5.9), can be

altered only if two or more users change their utilities, i.e. the resource allocation

strategy is robust to the change in utilities of any singular user.

(c) If a strategy proof and efficient resource allocation strategy is not constant with
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respect to the utility of a user k, then another user j ( j , k) experiences a measurable

decrease in its performance, even if this other user j’s utility function is fixed.

2. We introduce the property of non-participation, which says that if a particular user does

not demand any utility, then it obtains no resource.

A strategy proof and efficient resource allocation strategy for ICWS cannot simultane-

ously satisfy continuity and the property of non-participation. Continuity is a desirable

property of resource allocation strategies for designing practical algorithms and for math-

ematical tractability. Hence, this result proves to be a impossibility result, i.e. a strategy

proof, efficient and non-participation resource allocation strategy is discontinuous.

3. Let a mechanism implement an SCF in Nash equilibrium. Then, there exists a “point”

in the set of physical layer resources, such that the SCF chooses this point for all possi-

ble utility functions in the family of SINR based utility functions. A similar result can

be proved for dominant strategy implementation. We provide examples showing that,

this result sets certain limitations on resource allocation strategies, e.g. beamforming,

minimum mean square error (MMSE) receiver design.

4. A resource allocation strategy for ICWS is strategy proof, if and only if the SINR function

γk for a particular user k is a constant function, independent of its own utility uk. The

constant mentioned in the previous sentence depends on the utility functions of the other

users u−k = [u1, . . . , uk−1, uk+1, . . . , uK].

5. Linear pricing in power pk of user k is not sufficient for achieving all points in a desired

region if we have ICWS.

6. Let us restrict ourselves to the case of linear interference coupling. It is proved that the

largest class of utility functions such that a pricing mechanism which is linear in βk and

logarithmic in pk is a universal pricing mechanism (the pricing mechanism can achieve

all points in a desired region) is the class of exponentially concave utility functions (de-

scribed in Chapter 4, Definition 4.10).
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7. Let the utility functions be from the class of exponentially concave utility functions (de-

fined in Chapter 4). It is proved that the largest class of interference functions such that a

pricing mechanism which is linear in βk and logarithmic in pk is a universal pricing mech-

anism is the class of log-convex interference functions (described in Chapter 2, Definition

2.7).

5.1 Social Choice and Mechanism Design Framework

In this section we review certain mechanism design and implementation theoretic notation

[SSY07], in the context of ICWS. We assume that the number of users K ≥ 2. Let R be an

arbitrary set of outcomes at the physical layer. Let R := ×k∈KRk and rk ∈ Rk. Resources at the

physical layer are power, antenna weights, spatial streams etc. A combination of these could

also be considered as resources and modeled by our framework.

Example 5.1. Consider a SIMO uplink scenario with a total power constraint or a MISO down-

link scenario with a total power constraint Ptotal and beamforming vectors for the users being

ωk, with k ∈ K . The set of resources R can be represented in this scenario as follows.

R = {(p,ω1, . . . ,ωK) | p ≥ 0,
∑
k∈K

pk ≤ Ptotal, ‖ω1‖2 = . . . = ‖ωK‖2 = 1}.

5.1.1 Social Choice Functions

Each user k has a preference relation defined over the set of outcomes R, which admits a nu-

merical representation uk : R 7→ R+. Different users in a wireless system could have different

preferences as to what they wish the resource allocation strategy should be. We shall utilize

the SCF to characterize resource allocation strategies. If a particular property (axiom) is satis-

fied by the SCF, then the corresponding property is satisfied by the resource allocation strategy,

i.e. we utilize certain properties (axioms) to emulate desirable properties of resource allocation

strategies. An SCF aggregates the preferences of all the users into a social choice for the entire

system, i.e. the resource allocation strategy.

Definition 5.2. Social choice function: An SCF is a function f : UK 7→ R that associates with
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u(~p) = q(~γ(~p))
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f : Q2 → P

Figure 5.1: Depiction of a the set of resources P and the QoS set Q2 for the case of 2 users in
a wireless system. a) Set of resources for 2 users. In this case the set of powers permitted by
the power constraints for the 2 users; b) SINR region corresponding to the set of powers, with
the transformation γ = γ(p); c) QoS region after the transformation of the SINR region via the
utility function mapping u(p) = q

(
γ(p)

)
. An SCF f maps the QoS region Q2 into the resource

regeion P.

f

Utility Space

p2

p1

f (u1, u2) = p̂

U1 × U2

Figure 5.2: Abstraction of an SCF f ,its domain and its range

every u ∈ UK a unique outcome f (u) in R.

In Figure 5.2, we have displayed an abstraction of the SCF, its domain and range for the

case of two users. The domain of the SCF is the Cartesian product of the utility space of the

two users U1 × U2. The range of the SCF is the set of resources. Given a particular tuple of

utilities u1 ∈ U1 and u2 ∈ U2, the SCF f chooses a point in the resource set (set of powers)

as follows: f (u1, u2) = p̂. We now clarify, what we mean by a strategy K-tuple and a strategy

set. A strategy is a complete contingent plan or decision rule that says what a user will do at

each of its information sets. Let Sk be the strategy set of a user k ∈ K and SK := ×k∈KSk be

the strategy set of the set of users K . We now present certain well known desired properties of

SCFs. We shall revisit strategy K-tuples and strategy sets, when we deal with mechanisms and

implementation theoretic concepts in Section 5.1.2.
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Review of Existing Properties of Social Choice Functions

: We formalize certain desirable properties of resource allocation strategies by means of an

axiomatic framework for SCFs to capture these properties. Our interest being in exploring the

interplay between the axiomatic framework and the possible implementable resource allocation

strategies.

Example 5.3. Consider for 2 users an SCF f , which satisfies the properties of efficiency and

strong intuitive fairness. We analyze the case for linear interference functions and for a total

power constraint Ptotal. Then we have that γ1(p) =
p1

v12 p2+σ2 and γ2(p) =
p2

v21 p1+σ2 , where v12 and

v21 are the normalized coupling between user 1 and 2. Let the utility sets for the users be as

follows:

U(1) = {ω1 log(γ1(p))}; U(2) = {ω2 log(γ2(p))},

where [ω1, ω2] = ω > 0. Let us choose the following f :

f (ω) = arg max
s:es1 +es2≤Ptotal

(
ω1 log γ1(es) + ω2 log γ2(es)

)
, (5.1)

where s = [s1, s2] and Ptotal is the total power constraint on the system for 2 users. The function

ω1 log γ1(es) + ω2 log γ2(es) is strictly convex and bounded. Therefore, there exists a unique

optimizer, i.e the function f is a well defined SCF. From (5.1) we can see that a user has an

incentive to misrepresent its utility function.

By misrepresenting its utility function, a user can manipulate the outcome of a resource allo-

cation strategy. Avoiding such behavior is a desired property from the perspective of an operator

or a regulator. The property, that a particular resource allocation strategy is non-manipulable is

emulated by the SCF f satisfying the property strategy proofness. The following two definitions

can also be found in [MCWG95].

Definition 5.4. Strategy Proof : An SCF f is said to be strategy proof, if for all users k ∈ K and

for all utility functions uk, ûk ∈ U, ∀û−k ∈ U
K−1, we have that

uk( f (uk, û−k)) ≥ uk( f (ûk, û−k)).
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An SCF is said to be strategy proof if the users have no incentive to misrepresent their

utilities to the central controller.

Definition 5.5. An SCF f is efficient if ∀u ∈ UK ,

1. there is no r ∈ R such that uk(r) ≥ uk( f (u)) for all users k ∈ K , and

2. uk(r) > uk( f (u)) for some user k ∈ K .

Efficiency from the point of view of wireless communication (physical layer perspective) of

the resource allocation strategies, implies choosing an operating point on the Pareto boundary

of the feasible utility region [Mas99].

Definition 5.6. Option set: The option set of a user k ∈ K , given a utility function (K −1)-tuple

u−k ∈ U
K−1 is the set

Qk(u−k) = {r ∈ R | ∃uk ∈ U, such that f (uk,u−k) = r}.

where r is a resource vector.

Remark 5.7. The option set Qk, is the set of resources for all the users, which user k can

influence with its utility function, given the utility function (K − 1)-tuples u−k ∈ U
K−1.

The use of option sets has proved to be a useful technique in analyzing strategy proof SCFs

[BP90]. The reader should bear in mind, that option sets are relative to a given function on

a given domain, even if this is not explicit in the notation. We shall now present certain new

properties, which are quite natural from a wireless system perspective.

Introduced Properties of Social Choice Functions

: In this section, we introduce the properties of (strong) intuitive fairness and non-participation

and connect them with certain well established concepts in literature.

Definition 5.8. Intuitive fairness: An SCF f is said to satisfy the property of intuitive fairness,

if for all utility function K-tuples u ∈ UK , for all user k ∈ K we have that, for arbitrarily chosen
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(uk,u−k) and 0 < λ < 1,

uk( f (λu j,u− j)) ≥ uk( f (u j,u− j)), k ∈ K , k , j.

An SCF is said to be intuitive fair, if for all users k ∈ K , we have the case, that if any

user linearly scales down its utility, then the other users should either obtain the same or better

utility as against the case, when the user had not scaled its utility. Definition 5.8 is similar to the

axiom of population monotonicity. The axiom of population monotonicity states the following.

Suppose a group of users K1 have arrived to play a particular resource allocation game. If the

users K2\K1 (with K1 ⊂ K2) do not show up, let the set of users K1 reach a particular solution

outcome. If the users K2\K1 show up afterwards, resource allocation is carried out again and

no user in K1 should be better off (refer to Section 3.3.2 for further details).

Now, we allow the user to possess the ability of not only scaling its utility function, but also

choosing other utility functions altogether.

Definition 5.9. Strong intuitive fairness: An SCF f is said to satisfy the property of strong

intuitive fairness, if for all users k ∈ K , for all utility function (K − 1)-tuples u−k ∈ U
K−1,

uk, ûk ∈ U and for 0 ≤ ûk(r) ≤ uk(r) for all r ≥ 0, we have that

uk( f (û j,u− j)) ≥ uk( f (u j,u− j)), k ∈ K\ j.

In the definition of strong intuitive fairness it can be seen, that the utility function ûk is

dominated by the utility function uk, for all users k ∈ K , for all resource vectors r ∈ R and all

utility function (K − 1)-tuples u−k ∈ U
K−1.

The properties of intuitive fairness and strong intuitive fairness are somehow connected to

the property of min-max fairness. For any resource allocation strategy providing QoS to the

users we can associate a specific notion of fairness. The consideration of fairness notions has

been mainly a wired network issue [MW00, MR02]. The most common fairness notion is min-

max fairness. It represents an equilibrium associated with an ideal social system characterized

by the fact, that no user’s QoS measure can be increased without decreasing an already lower

user’s QoS measure.
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Example 5.10. In the framework of ICWS the min-max fair power allocation solves the prob-

lem

min
p∈P

max
k∈K

qk(p)

q(req)
k

= min
p∈P

max
k∈K

f ( [V p]k
pk

)

f ( 1
γ

(req)
k

)
,

where qreq
k describes the QoS requirement of the kth user and γ

(req)
k the corresponding SINR

threshold. V is the link gain matrix for the ICWS. Fortunately, in cellular wireless networks

the intricacies associated with the so called bottleneck connections are nonexistent. Under non-

existing or equal QoS requirements the min-max fair power allocation equalizes all link QoS

measures and represents the right eigenvector of the interference matrix.

Comparing min-max fairness to intuitive fairness, we can see that, if a particular user k

reduces its demand for utility, then there are more resources for the remaining users. Hence,

another user j ∈ K\k could increase its utility without decreasing of a user m ∈ K\{ j, k}.

We now discuss another property of resource allocation strategies, namely point-wise con-

tinuity. We say that the sequence of functions {u(n)}n∈N, u(n) ∈ UK converges to u ∈ UK , if for

all constants Rtotal > 0, we have that

lim
n→∞

max
r≥0,

∑
k∈K rk≤Rtotal

‖u(n)(r) − u(r)‖l1 = 0.

The sequence of utility functions {u(n)
k }n∈N are defined by their values, so the utility functions

converge if their values converge. This reduces the convergence of real-valued functions to the

convergence of real numbers. Such a convergence is called point-wise convergence. We are

dealing with utility function K-tuples (K-tuple of utility functions) as against utility functions.

Hence, we use the l − 1 norm. We would like at this point to remind the reader that, we say that

an SCF f is continuous, if for all convergent sequences of utility K-tuples {u(n)}n∈N the following

expression holds:

lim
n→∞
‖ f (u(n)) − f (u)‖l1 = 0.

We now explain a very natural property, which is almost always satisfied for all resource allo-

cation strategies occurring in ICWS. The property states that, if a particular user demands no

utility, then the resource allocation strategy does not allocate any resource to this user.
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Definition 5.11. Non-participation: An SCF f is said to satisfy the property of non-participation,

if for a given user k ∈ K and for all utility function (K − 1)-tuples u−k ∈ U
K−1, we have that

fk(0,u−k) = 0.

Remark 5.12. In practical wireless networks it must be noted that if a user requires no utility,

i.e. it wants to demand no resources at a particular time instant, it still has to utilize certain re-

sources to report its utility function to the resource allocation agent (central controller). Hence,

the property on non-participation though seemingly intuitive and harmless, could lead to certian

restrictions for resource allocation strategies.

These restrictions are particularly experienced when the non-participation property is ex-

pected to be satisfied with certain other properties. This will be displayed in detail in the results

(where the interplay of the axioms of non-participation and continuity along with strategy-

proofness and efficiency is brought to light.

Equipped with the suitable notations and framework, we present the results of our analysis

in Section 5.2.

5.1.2 Mechanism Design and Implementation Theoretic Concepts

In the previous section, we have seen the SCF being used as a tool to capture certain desirable

properties of resource allocation strategies in a wireless system. We shall now like to shift our

focus to investigating the implementation aspects of resource allocation strategies in a wireless

network. For this purpose, we shall utilize the theory of mechanism design and implementation

theory. We begin by introducing the mechanism below.

Definition 5.13. Mechanism: A mechanism is a function g : SK 7→ R that assigns to every

strategy K-tuple s ∈ SK a unique element r ∈ R.

A mechanism is a procedure for determining outcomes. Who gets to choose the mechanism,

i.e. who is mechanism designer depends on the scenario in question, e.g. base station, operator,

regulator etc. In Figure 5.3, we have displayed an abstraction of a mechanism, its domain and
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g

Strategy Space p1

p2

g(s1, s2) = p̃

S1 × S2

Figure 5.3: Abstraction of a mechanism g, g’s domain and range

range for the case of two users. The domain of the mechanism is the Cartesian product of the

strategy space of the two users S1 × S2. The range of the mechanism is the set of resources.

Given a particular tuple of strategies s1 ∈ S1 and s2 ∈ S2, the mechanism g chooses a point in

the resource set (set of powers) as follows: g(s1, s2) = p̃.

Example 5.14. Consider an example, where the resources at the physical layer are only the

powers of the users, i.e. R = P, with P the set of powers defined as follows: P = {p |∑
k∈K pk ≤ Ptotal} and the utility function is defined by (3.2). With this scenario, Figure 5.1

displays the concepts of an SCF f , the set of outcomes P and the set of utilitiesUK .

Let g(Sk, s−k) be the attainable set of user k at s−k, i.e. the set of outcomes that user k can

induce when the other users select s−k. For k ∈ K , uk ∈ Uk and a resource vector r ∈ R, let

L(r, uk) = {r̂ ∈ R | uk(r) ≥ uk(r̂)} be the weak lower contour set of user k with uk at resource

vector r.

Definition 5.15. Nash equilibrium : Given a mechanism g : SK 7→ R, the strategy profile

s∗ ∈ SK is a Nash equilibrium of g at u ∈ UK , if and only if for all users k ∈ K and for all

(K − 1)-strategy tuples s−k ∈ Sk we have that

uk(g(sk, s∗−k)) ≤ uk(g(s∗k, s
∗
−k)). (5.2)

The Nash equilibrium of a mechanism, can also be characterized in terms of the weak lower

contour set as follows. Given a mechanism g : SK 7→ R, the strategy profile s ∈ SK is a

Nash equilibrium of g at u ∈ UK if for all k ∈ K , g(Sk, s−k) ⊆ L(g(s), uk). Let Ng(u) be the

set of Nash equilibrium of the mechanism g at utility function tuple u. We now introduce the

corresponding implementation theoretic concept of Nash equilibrium implementation.
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Definition 5.16. Nash equilibrium implementation: The mechanism g implements the SCF f in

Nash equilibrium, if for each utility function K-tuple u ∈ UK , the following two conditions are

fulfilled.

1. There exists a strategy K-tuple s ∈ Ng(u) such that g(s) = f (u).

2. For any strategy K-tuple s ∈ Ng(u), g(s) = f (u).

The SCF f is Nash implementable if there exists a mechanism that implements f in Nash

equilibrium. The second condition in Definition 5.16 ensures that irrespective of the choice of

the strategy K-tuple in the set Ng(u), we always obtain the same outcome in the set of outcomes,

namely f (u). Such a requirement is essential for implementation, since otherwise, we would

not be in a position to characterize the properties of the SCF f . We now turn to another concept

in game theory and mechanism design, namely that of strategic dominance, i.e. a particular

strategy sk is “better” than another strategy ŝk for a particular user k ∈ K , independent of the

other users j ∈ K\k strategies s−k. Even though, the concept of dominant strategy is sometimes

thought of as a simplification [CE04], it is still a useful analytical and practical tool to investigate

mechanisms and resource allocation strategies.

Definition 5.17. Dominant strategy: The strategy sk ∈ Sk is a dominant strategy for user k ∈ K

of g at utility function uk ∈ Uk if for all strategy (K − 1)-tuples ŝ−k ∈ S
K−1, g(Sk, ŝ−k) ⊆

L(g(sk, ŝ−k), uk).

Let DS g
k(uk) be the set of dominant strategies for user k of mechanism g at utility function uk.

The strategy K-tuple s ∈ SK is a dominant strategy equilibrium of g at utility K-tuple u ∈ UK

if for all users k ∈ K , sk ∈ DS g
k(uk). Let DS g(u) be the set of dominant strategy equilibrum of

mechanism g at utility K-tuple u.

Example 5.18. In the context of wireless systems [PJ07] show that with an appropriately de-

signed downlink scheduler the socially optimal uplink rate allocation emerges as a dominant

strategy for all users.

Definition 5.19. Dominant strategy implementation: The mechanism g implements the SCF f

in dominant strategy equilibrium if for each utility K-tuple u ∈ UK ,
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Figure 5.4: Abstraction: Investigation of the possibility of obtaining implementable resource
allocation strategies satisfying certain desirable axioms. The left hand side of the figure displays
axioms representing desirable properties of resource allocation strategies. The right hand side
of the figure gives examples of possible implementation solutions.

1. there exists a strategy K-tuple s ∈ DS g(u) such that g(s) = f (u) and

2. for any strategy K-tuple s ∈ DS g(u), g(s) = f (u).

Remark 5.20. The SCF f is dominant strategy implementable if there exists a mechanism that

implements f in dominant strategy equilibrium.

The mechanism g is called a direct revelation mechanism associated with the SCF f ifS = U

for all k ∈ K and g(u) = f (u) for all u ∈ UK . We do not distinguish between the SCF f and the

direct revelation mechanism associated with the SCF f . While analyzing the implementation

aspects in Section 5.2.4, when we say the SCF f , we also mean the direct revelation mechanism

g associated with the SCF f .

5.2 Analysis: Properties of Resource Allocation Strategies

For certain ICWS scenarios we would like to characterize resource allocation strategies, which

satisfy certain desirable properties from the axiomatic framework, which can be implemented

using mechanisms (see Figure 5.4). We shall present following results in this section.

1. Results pertaining to desired properties of resource allocation strategies captured by SCFs

– Sections 5.2.1, 5.2.2 and 5.2.3.

2. Results pertaining to Nash equilibrium implementation and Dominant strategy implemen-

tation of resource allocation strategies in a wireless network based on a SINR physical
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layer model – Section 5.2.4.

5.2.1 Non-manipulable and Efficient Social Choice Functions

We begin by presenting a result, which states the following. An SCF f is strategy proof, if and

only if for all users k ∈ K , the outcome of the resource allocation for the kth user, i.e γk(r) is

a constant, which is independent of its own utility function uk ∈ U. However, this constant is

dependent on the utility functions u1, . . ., uk−1, uk+1, . . ., uK , i.e. the utilities of the other users

u−k.

Theorem 19. An SCF f is strategy proof, if and only if for all users k ∈ K and for all utility

function (K −1)-tuples u−k ∈ U
K−1, there exists a constant ck(u−k) > 0 such that for all resource

vectors r ∈ Qk(u−k), γk(r) = ck(u−k), where γk is the SINR function of the kth user.

Proof. “=⇒”: Assume that the SCF f is strategy proof. Let there be an arbitrary user k ∈ K

and an utility function (K − 1)-tuple u−k ∈ U
K−1 also chosen arbitrarily but fixed. Then, for

utility functions uk, ûk ∈ U chosen arbitrarily, we have that

uk( f (uk,u−k)) ≥ uk( f (ûk,u−k)).

Since, γk is a special case of our utility function, the above expression follows from strategy

proofness. Then γk( f (uk,u−k)) ≥ γk( f (ûk,u−k)). However, due to strategy proofness, we also

have

ûk( f (ûk,u−k)) ≥ ûk( f (uk,u−k))

γk( f (ûk,u−k)) ≥ γk( f (uk,u−k)).

Then, γk( f (ûk,u−k)) = γk( f (uk,u−k)) = ck(u−k). Since we have chosen the utility function

ûk ∈ U arbitrarily, we have for all resource vectors r ∈ Qk(u−k) that γk(r) = ck(u−k).

“⇐=”: Let us choose a user k ∈ K arbitrarily. Let u−k ∈ U
K−1 be an arbitrarily chosen (but
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fixed) utility function (K − 1)-tuple. Let uk, ûk ∈ U be chosen arbitrarily. Then, we have that

γk( f (uk,u−k)) = γk( f (ûk,u−k))

uk( f (uk,u−k)) = ũk(γk( f (uk,u−k)))

= ũk(γk( f (ûk,u−k)))

= uk( f (ûk,u−k)). (5.3)

Equation (5.3) holds for all users k ∈ K . Hence, the SCF f satisfies the property of strategy

proofness. �

We now present a result for the 2 user case. This result shows the restriction of the available

SCFs f , if we want them to satisfy the properties of strategy proofness and efficiency, i.e. the

resource allocation strategy is non-manipulable and is Pareto optimal.

Theorem 20. Let the number of users K = 2. Then SCF f is efficient and strategy proof, if and

only if there exists a resource vector r∗ ∈ R with γ(r∗) a Pareto optimal resource allocation and

for all utility function 2-tuples (u1, u2) ∈ U2, we have that f (u1, u2) = r∗.

Proof. “=⇒”: We have the number of users K = 2. Let SCF f be strategy proof and efficient.

For u2 ∈ U (u−1 = u2) each resource r ∈ Q1(u−1) is on the Pareto boundary (γ1(r), γ2(r)) of the

SINR region.

From the strategy proofness of the SCF f , for all utility functions u1, û1 ∈ U, we have

f (u1, u2) = f (û1, u2). (5.4)

Let us choose a utility function û2 ∈ U for user 2 arbitrarily. Then, the following expressions

hold.

f (u1, u2) = f (u1, û2) (5.5)

f (û1, u2) = f (û1, û2). (5.6)

Then from (5.4), (5.5) and (5.6) for the utility functions u1, û1, u2, û2 chosen arbitrarily, we have



94 Chapter 5. Mechanism Design Perspective on Resource Allocation

that f (u1, u2) = f (u1, û2) = f (û1, û2). Hence, we have proved our desired result.

“⇐=”: Can be easily proved. �

The classical results [Gib73, Sat75] are for the case of pure exchange economies (see Defini-

tion 2.8). Our results are for the case of beyond pure exchange economies for ICWS. Theorems

19 and 20 provide certain initial intuition on the structure of strategy proof and efficient SCFs

for the case of ICWS. We observe that the structure imposed by the SINR based utility function

framework is quite restrictive. This structure is the basis of the impossibility results presented

in Theorems 21, 22 5.23 and 23.

5.2.2 Intuitive Fairness and Strong Intuitive Fairness Social Choice Func-

tions

Here we present our results in relation to the restrictions obtained, when we try to obtain strategy

proof and efficient resource allocation strategies, which satisfy the property of, either

• intuitive fairness or

• strong intuitive fairness.

We now present a result, which states the following: a non-manipulable, efficient and intuitive

fair resource allocation strategy is independent of the downwards scaling of the utility function

uk ∈ U of a particular user k ∈ K , when the utility function (K − 1)-tuple u−k ∈ U
K−1 is fixed,

i.e. the resource allocation strategy is robust to downwards scaling of the utility function of a

particular user, when the utility functions of all the other users are fixed.

Theorem 21. Let an SCF f be strategy proof and efficient. Then, the SCF f fulfills the property

of intuitive fair, if and only if for all users k ∈ K , for all utility functions u ∈ UK and for

0 < λ ≤ 1, we have that

uk( f (λuk,u−k)) = uk( f (uk,u−k)), 1 ≤ k ≤ K ,

i.e. for 0 < λ ≤ 1 we have that f (λuk,u−k) = f (uk,u−k).
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Proof. =⇒: Let SCF f be strategy proof, efficient and not a constant function. Let us assume

that SCF f is intuitive fair. Then, we have that for all users k ∈ K , for all utility function

K-tuples u ∈ UK for u(λ) = (λuk,u−k), 0 < λ ≤ 1 and for all users j ∈ K\k, we have that

uk( f (u(λ))) ≥ uk( f (u)).

Furthermore, we have that γk( f (u(λ))) ≥ γk( f (u)). For user j we have from Theorem 19, that

γk( f (u(λ))) = γk( f (u)). Then, for r(λ) := f (u(λ)) we have that uk(r(λ)) ≥ uk( f (u)) for k ∈ K .

Since, SCF f is efficient, we must have that uk(r(λ)) = uk( f (u)) for k ∈ K .

⇐=: This direction can be easily verified. Let an SCF f be strategy proof, efficient and

satisfy the following expression, for all users k ∈ K and λ ∈ (0, 1]:

uk( f (λuk,u−k)) = uk( f (uk,u−k))

i.e. f (λuk,u−k) = f (uk,u−k).

Then, it can be easily observed that the SCF satisfies the property of intuitive fairness. �

Remark 5.21. The SCF f (ω) defined according to (5.1) (in Example 5.1) satisfies the properties

of efficiency and intuitive fairness.

We now present a Corollary to Theorem 21, which states the following. Let a resource

allocation strategy be non-manipulable and efficient. If the resource allocation strategy is not

robust to downward scaling of the utility function of a particular user k ∈ K , then at least one

another user j ∈ K\k pays a price with a decrease in its performance, even if the utility functions

u−k are fixed.

Corollary 5.22. Let SCF f be strategy proof and efficient. For an arbitrarily chosen user k ∈ K ,

with uk ∈ U, u−k ∈ U
K−1 and λ̂ ∈ (0, 1), let

f (λ̂uk,u−k) , f (uk,u−k). (5.7)
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Then, there exists at least one user j ∈ K\k such that

u j( f (λ̂uk,u−k)) < u j( f (uk,u−k)).

Proof. Let the assumptions of the corollary be true. Let us assume, that for all users k ∈ K ,

for all utility functions uk ∈ U, for all utility function (K − 1)-tuples u−k ∈ U
K−1 and for all

j ∈ K\k with λ ∈ (0, 1) we have that

u j( f (λuk,u−k)) ≥ u j( f (uk,u−k)).

Since, the SCF f satisfies the axioms of strategy proofness and efficiency, we have that

u j( f (λuk,u−k)) = u j( f (uk,u−k)), j ∈ K\k.

From Theorem 19 we have for an arbitrarily chosen user k, that uk( f (λuk,u−k)) = uk( f (uk,u−k)).

Furthermore, we have that f (λuk,u−k) = f (uk,u−k) for 0 < λ < 1. �

We now present certain results, in relation to the stronger property of strong intuitive fair-

ness.

Theorem 22. Let an SCF f be strategy proof and efficient. Then, the SCF f fulfills the property

of strong intuitive fairness, if and only if for an arbitrary user k ∈ K , for all j ∈ K\k with utility

function (K − 1)-tuple u−k ∈ U
K−1, there exists a constant dk(u−k, j) such that for all resources

r ∈ Qk(u−k) we have that

uk(r) = dk(u−k, j).

Proof. “=⇒”: Let us choose a user k ∈ K arbitrarily. We shall take the perspective of user k

without any loss of generality. Let us arbitrarily choose a utility function (K − 1)-tuple u−k ∈

UK−1. We have to show that for utility functions uk, ûk ∈ U, the expression uk( f (uk,u−k)) =

uk( f (ûk,u−k)) holds for all k ∈ K . Let us assume that there exists a user k0, where k0 ∈ K\k,

such that

uk0( f (uk,u−k)) , uk0( f (ûk,u−k)).
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We define u∗k(r) as follows:

u∗k(r) = max(uk(r), ûk(r)).

The utility function u∗k is strictly monotonic increasing and continuous. For all resource vectors

r ∈ R, we have that u∗k(r) ≥ uk(r) and u∗k(r) ≥ ûk(r). Therefore, from the property of intuitive

fairness for all users j ∈ K\k, we have that

u j( f (u∗k,u−k)) ≤ u j( f (uk,u−k)), j ∈ K\k,

γ j( f (u∗k,u−k)) ≤ γ j( f (uk,u−k)), j ∈ K\k.

From Theorem 19 we have that γk( f (u∗k,u−k)) ≤ γk( f (uk,u−k)). Since, SCF f is efficient, we

must have that γk( f (u∗k,u−k)) = γk( f (uk,u−k)), for all k ∈ K . Therefore, from Theorem 19,

we have that f (u∗k,u−k) = f (uk,u−k). We can have the same expression also for (u∗k,u−k) and

(ûk,u−k). Then, for arbitrary utility functions uk, ûk ∈ U we have f (uk,u−k) = f (ûk,u−k). We

have proved the desired result.

“⇐=”: Let us choose a strategy proof and efficient SCF f . Let, for an arbitrary user k ∈ K

and for all other users j ∈ K\k with utility function (K − 1)-tuple u−k ∈ U
K−1, there exist a

constant dk(u−k, j) such that for all resource r ∈ Qk(u−k) we have that uk(r) = dk(u−k, j). Then,

it can be easily verified that the SCF f satisfies the property of strong intuitive fairness. �

From the above proof, we can obtain the following additional result. If a resource allocation

strategy satisfies the properties of strategy proofness, efficiency and strong intuitive fairness,

then changing the preference of a single user is not sufficient to change the resource allocation,

i.e. to affect a change in the resource allocation at least two users must change their preferences

or utility functions for the desired resources.

Corollary 5.23. Let an SCF f be strategy proof and efficient. Then, the SCF f fulfills the

property of strong intuitive fairness, if for all users k ∈ K and for all utility function (K − 1)-

tuples u−k ∈ U
K−1, we have that the cardinality of the option set Qk(uk) is equal to 1. Therefore,

for any utility functions uk, ûk ∈ U we have f (uk,u−k) = f (ûk,u−k).

Proof. The proof is a contained in the proof of Theorem 22. �
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We have stated that, for all utility function K-tuples u−k ∈ U
K−1 and for all utility functions

uk , 0 and for an arbitrarily chosen user j ∈ K\k, we have that

inf
r∈Qk(u−k)

rk = inf
uk,0

fk((uk,u−k)) > 0.

Theorem 5.23 has a certain connection to the axiom non-dummy introduced in [KO04]. An SCF

f is non-dummy, if ∀k ∈ K , ∃u ∈ UK and ûk ∈ U, such that f (u) , f (ûk,u−k). The non-dummy

axiom states that, each user can change the outcome of the SCF by changing its utility function.

It guarantees every user the minimum right to affect the social decision. Then, we can say that a

strategy proof, efficient and strong intuitive fair resource allocation strategy for ICWS does not

satisfy the axiom non-dummy.

5.2.3 Non-participation and Continuity Properties of Social Choice Func-

tions

In this section we present a result, which states that if the resource allocation strategy is non-

manipulable, Pareto optimal and satisfies property of non-participation, then the resource al-

location strategy has to be discontinuous. This has certain implications on the algorithmic

implementation of resource allocation strategies. Furthermore, continuity is a desirable prop-

erty for resource allocation strategies, e.g. in certain classes of widely used games, the Nash

equilibrium is a continuous function of the game parameters, which follows from the implicit

function theorem [Alp06].

Theorem 23. Let an SCF f be strategy proof and efficient. Then, the SCF f cannot simultane-

ously be continuous and satisfy the property of non-participation.

Proof. Let an SCF f be strategy proof and efficient. For the sake of obtaining a contradiction,

let us assume that the SCF f is continuous and satisfies the property of non-participation. Let

us choose a user k ∈ K arbitrarily and take the perspective of this user k, without any loss in

generality. Let us choose a utility function (K − 1)-tuple u−k ∈ U
K−1 arbitrarily. For all power

vectors p ∈ Qk(u−k) we have that γk(p) = ck(u−k) > 0. Therefore, pk
Ik(p) = ck(u−k), for all power
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vectors p ∈ Qk(u−k). Exploiting the fact, that Ik is an interference function, we have that

Ik(p) = Ik
(
(p, σ2

k)
)

≥ Ik
(
(0, σ2

k)
)

= σ2
kIk

(
(0, 1)

)
= σ2

kµk > 0,

where 0 < µk = Ik
(
(0, 1)

)
. For all power vectors p ∈ Qk(u−k) we have ck(u−k) =

pk
Ik(p) ≤

pk

σ2
kµk

,

where µk = Ik((0, 1)). Therefore, we have that the power vector pk ≥ ck(u−k)σ2
kλk, where

λ ∈ (0, 1). Let u(λ)(p) = (λuk,u−k)(p) for all Ptotal > 0. Then, we have that

lim
λ→0

(
max

p≥0,
∑

k∈K pk≤Ptotal
‖u(λ)(p) − (0,u−k)(p)‖l1

)
= lim

λ→0

(
λ max

p≥0,
∑

k∈K pk≤Ptotal
|uk(p)|

)
= 0.

Then, we have that

lim
λ→0

fk(u(λ)) = fk((0,u−k)) = 0. (5.8)

Equation (5.8), follows from the property of non participation (Definition 5.11), which we

have assumed that our SCF f satisfies (for the sake of obtaining a contradiction). However,

fk(u(λ)) ≥ ck(u−k)σ2
kµk > 0. As can be observed, the constant ck(u−k)σ2

kµk is independent of

λ. Therefore, inf0<λ<1 fk(u(λ)) > 0, which is in contradiction with (5.8). Hence, we have our

desired contradiction, which proves the result. �

The SCF f (ω) defined in (5.1) (in Example 5.1) satisfies the properties of efficiency, conti-

nuity and non-participation.

5.2.4 Nash Implementation and Dominant Strategy Implementation

In this section we present certain results pertaining to Nash equilibrium implementation and

dominant strategy implementation aspects for the class of SINR based utility functions. In this

chapter we have not concerned ourselves with existence and uniqueness issues of the Nash

equilibrium. For the analysis in this chapter, we assume that these issues have been addressed.

One such paper towards this direction is [NAB10]. We begin by presenting Lemma 6, which

characterizes the Nash equilibrium properties of a strategy K-tuple.
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Lemma 6. 1. Let u ∈ UK be a fixed utility function K-tuple. Let s ∈ Ng(u) be an arbitrary

strategy K-tuple. Then, we have for all utility function K-tuples û ∈ UK , that s ∈ Ng(û).

2. Let u, û ∈ UK be arbitrary utility function K-tuples. Then, we have that Ng(u) = Ng(û).

Proof. 1) Choose an arbitrary strategy K-tuple s ∈ Ng(u). Then, we have for all users k ∈ K ,

g(Sk, s−k) ⊆ L(g(s), uk), i.e. we have for all users k ∈ K and for all s̃k ∈ Sk, qk(γk(g(s̃k, s−k))) ≤

qk(γk(g(sk, s−k))), i.e. we have for all users k ∈ K and for all s̃k ∈ Sk, γk(g(s̃k, s−k)) ≤

γk(g(sk, s−k)). Let ûk := q̂k · γk, for any k ∈ K . We have for all users k ∈ K and for all

s̃k ∈ Sk that ûk(g(s̃k, s−k)) ≤ ûk(g(sk, s−k)), i.e. s ∈ Ng(û).

2) We need simply to exchange the order of û and u in part (1) of the proof and we have the

desired result. �

A similar result as in the Nash equilibrium implementation developed in Lemma 6, can

be proved for dominant strategy implementation, i.e. for arbitrary u, û ∈ UK , we have that

DS g(u) = DS g(û). We shall now develop the connection between the Nash equilibrium and an

SCF f , which can be implemented in Nash equilibrium and between an SCF f and its dominant

strategy implementation.

Theorem 24. An SCF f can be implemented in Nash equilibrium, if and only if it is a constant

function. Furthermore, an SCF f can be implemented in dominant strategy, if and only if it is a

constant function.

Proof. “=⇒”: We shall prove the result only for the first statement of the theorem.

Let u(1),u(2) ∈ UK be arbitrary utility functions in UK , where u(1) = [u(1)
1 , . . . , u(1)

K ] and

u(2) = [u(2)
1 , . . . , u(2)

K ]. Let s(1) and s(2) be two strategy K-tuples such that s(1) ∈ Ng(u(1)) and

s(2) ∈ Ng(u(2)). We have from Lemma 6, that s(1) ∈ Ng(u(2)). This gives us

f (u(2))
(a)
= g(s(2))

(b)
= f (u(1)). (5.9)

Equality (a) in (5.9) follows from condition 2 in Definition 5.16 and equality (b) in (5.9) follows

from s(1) ∈ Ng(u(1)).

“⇐=”: The other direction can be easily verified. The proof for the second statement of the

theorem can be carried out in a similar manner. �
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Remark 5.24. Theorem 24 states that an SCF f can be implemented in Nash equilibrium or

dominant strategy, if and only if it is a constant function. This result has been obtained by

exploiting the SINR structure. In the SINR structure, for each user, we have the desired power

in the numerator and the undesired power in the denominator. Then, by utilizing the condition

of Nash equilibrium or dominant strategy the result follows.

We now compare Theorem 24 with Maskin’s result in [Mas99]. Maskin’s result requires a

SCF to satisfy the following two properties: monotonicity and no-veto power. In [Mas99], an

SCF f : UK 7→ R satisfies Maskin’s monotonicity condition, if ∀r ∈ R and ∀u, û ∈ UK , if

r = f (u) and for all users k ∈ K , ∀r̂ ∈ R if uk(r) ≥ uk(r̂) implies ûk(r) ≥ ûk(r̂), then r = f (û).

Transitioning to our case of SINR based utility functions, let uk(r) ≥ uk(r̂), for all k ∈ K

and for some u ∈ UK . Then, from the definition of SINR based utility functions (Definition

3.1) we have γk(r) ≥ γk(r̂), for all users k ∈ K . Once again, from Definition 3.1 we have

ûk
(
γk(r)

)
≥ ûk

(
γk(r̂)

)
, for all users k ∈ K and for all û ∈ UK .

It can be observed that our class of SINR based utility functions always satisfies the mono-

tonicity property of Maskin. On the other hand, it does not satisfy the no veto property (see

[Mas99, page 31]). Furthermore, we analyze a smaller class of utility functions, compared to

the general class analyzed by Maskin. Therefore, the domain for our SCFs is smaller than the

domain of SCFs for the results from Maskin. Hence, the class of mechanisms, which can im-

plement our SCF in Nash equilibrium should be potentially larger. However, we observe from

Theorem 24, that for the class of SINR based utility functions the only permitted mechanisms,

which implement the SCF in Nash equilibrium or dominant strategy are constant functions.

Example 5.25. Consider a multiuser multiple access channel (MAC), with a beamforming ar-

ray at the base-station [SB02, SBW05]. For fixed channels, the optimal beamforming weight

vectors ωopt
k for the kth user, with respect to maximizing γk(p,ωopt

k )s can be easily calculated.

The optimal SINR for the kth user can be written as: γk(p,ωopt
k ) = pkhH

k (σ2I+
∑

j,k p jh jhH
j )−1hk

where pk, hk and σ2
k are the power, the channel vectors at the base station array and the

noise for the kth user respectively. The interference function for the kth user is, Ik(p) =(
hH

k (σ2I +
∑

j,k, j∈K p jh jhH
j )−1hk

)−1. The structure of the feasible utility region depends on

several factors, for instance, the receiver strategy. For one set of beamformers ωk, ∀k ∈ K cor-



102 Chapter 5. Mechanism Design Perspective on Resource Allocation

responds to one particular utility regionU(Ptotal,ω) for fixed channels, whereω = [ω1, . . . ,ωK]

and Ptotal is the total power constraint. Let a mechanism g implement f (γω
opt
1

1 , . . . , γ
ω

opt
K

K ) in Nash

equilibrium. Then from Theorem 24 the only permitted solution is the constant power alloca-

tion, i.e. a fixed power vector.

5.3 Pricing Mechanisms

In this section we shall formally introduce what we mean by a pricing mechanism. Then,

we shall present universal pricing mechanisms and investigate classes of utility functions and

classes of interference functions, where such universal pricing mechanisms are permissible.

Consider the function u(p,ω), where

u(p,ω) =
∑
k∈K

ωkgk

( pk

Ik(p)

)
. (5.10)

The function presented in (5.10) is a general utility maximization problem as a function of

SINR. Such a problem is frequently encountered in wireless systems. From now onwards,

“utility” can represent certain arbitrary performance measure, which depends on the SINR by a

strictly monotonic increasing continuous function gk defined on R+. The utility of user k is

gk(γk) = gk(
pk

Ik(p)
), k ∈ K . (5.11)

An example of the above case is capacity: gk(x) = log(1 + x) and effective bandwidth gk(x) =

x/(1 + x) [TH99]. With respect to the utility maximization problem presented in (5.10) we

present two pricing mechanisms below.

1. Linear pricing in βk and linear pricing pk: u(p,ω) −
∑

k∈K βk pk

2. Linear pricing in βk and logarithmic pricing in pk: u(p,ω) −
∑

k∈K βk log(pk)

LetU represent a family of functions u(p,ω). Let F represent a family of functions

u(p,ω) −
∑
k∈K

fk(βk, pk). (5.12)
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Figure 5.5: Pricing used as a mechanism to shift the operating point to a desired region.

We now present a formal definition of what we mean by a pricing mechanism (see Figure 5.5).

Definition 5.26. Pricing Mechanism: A pricing mechanism is a mapping fromU to F .

In each of the pricing mechanisms presented above: f is a function of a certain scalar

parameter βk and the power pk for user k. In each of these cases the pricing mechanism is a tool,

which the designer could utilize to shift the operating point of the system to a desired point. An

example of such a framework for the purpose of energy efficiency is [JBN10].

We now explain what me mean by the pricing problem. Given u(p,ω) ∈ U and given

a power vector p, the pricing problem is to choose a vector β̂ = β̂(p) and a K-tuple f =

[ f1, . . . , fK], such that

sup
p̃∈RK

+

(
u( p̃,ω) −

∑
k∈K

fk(β̂k, p̃k)
)

= u(p,ω) −
∑
k∈K

fk(β̂k, pk).

For the purpose of solving the pricing problem, such that every feasible point can be an operat-

ing point we introduce the definition of a universal pricing mechanism below.

Definition 5.27. Universal pricing mechanism: A pricing mechanism is said to be a universal

pricing mechanism, if it chooses the same point in the range F , independent of the choice of

u(p,ω) ∈ U.

Here we consider an ICWS, where the users always report their true utilities to the game

designer (system designer). The system works as a two step process:
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1. The users report their utilities g1, . . . , gK to the system designer.

2. The system designer wants to achieve a certain objective, e.g. maxp∈P u(p,ω), where

u(p,ω) is as defined in (5.10) and P is a set which is result of certain power constraints

on the system. The system designer now allocates the resources. In this case the powers

p to the users.

Based on the system model described above, we are interested in tackling the following prob-

lems.

Problem 11. For a given family of utility functions and for a certain structure of interference

coupling in the system, is it possible to design a pricing mechanism, such that every feasible

point can be an operating point?

Problem 12. For a system with linear interference functions, what is the largest class of utility

functions, such that we can have a universal pricing mechanism?

Problem 13. For a system with utility functions in the family EConc, are there restrictions on

the interference coupling of the systems systems

1. orthogonal or non-orthogonal systems and

2. dependency (classes of interference functions),

such that we can have a universal pricing mechanism?

Equipped with the necessary definitions and concepts we now go about investigating the

Problems 11, 12 and 13 presented above.

5.4 Universal Pricing Mechanism - Linear Interference Func-

tions

The work in [AP09] states that a pricing mechanism, which is linear in pk and linear in βk is

sufficient to achieve every feasible operating point in multiuser orthogonal systems. We extend

the result from [AP09] to the case of non-orthogonal systems when we have utility functions

from the class EConc.
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5.4.1 Universal Pricing Mechanism - Non-orthogonal Systems

In this section we begin with utility functions in the class EConc and a non-orthogonal system

with linear interference functions. We check if for such a system a pricing mechanism, which

is linear in pk and linear in βk is a universal pricing mechanism.

Theorem 25. Let utility functions g1, . . . , gK ∈ Conc be arbitrary (not constant). Let I1, . . . ,IK

be arbitrary linear interference functions, such that the system is not orthogonal. There exists a

vector ω > 0, such that not every power vector p > 0 is supportable by a pricing mechanism,

which is linear in βk and linear in pk for all users k ∈ K .

Proof. Assume that Theorem 25 is not true, i.e. there exists utility functions g1, . . . , gK ∈ Conc

and linear interference functions I1, . . . ,IK (non-orthogonal system), such that for all weight

vectors ω > 0 the following statement holds. For every power vector p > 0 there exists a

p̂ = β(p) such that
∑

k∈K

(
ωkgk(

pk
Ik(p) ) − βk pk

)
= sup p̃>0

(∑
k∈K ωkgk(

p̃k
Ik( p̃) ) −

∑
k∈K βk p̃k

)
= Gω(β).

Then, we have that

∑
k∈K

ωkgk(
pk

Ik(p)
) = inf

β∈RK

(
Gω(β) +

∑
k∈K

βk pk
)
.

Let us choose power vectors p(1), p(2) > 0 arbitrarily and choose p(λ) = (1 − λ)p(1) + λp(2). We

have

∑
k∈K

ωkgk
( pk(λ)
Ik(p(λ))

)
= inf

β∈RK

(
Gω(β) + (1 − λ)

∑
k∈K

βk p(1)
k + λ

∑
k∈K

βk p(2)
k

)
= inf

β∈RK

(
(1 − λ)

(
Gω(β) +

∑
k∈K

βk p(1)
k

)
+ λ

(
Gω(β) +

∑
k∈K

βk p(2)
k

))
≥ (1 − λ) inf

β∈RK

(
Gω(β) +

∑
k∈K

βk p(1)
k

)
+ λ inf

β∈RK

(
Gω(β) +

∑
k∈K

βk p(2)
k

)
= (1 − λ)

∑
k∈K

ωkgk

( pk

Ik(p(1))

)
+ λ

∑
k∈K

ωkgk

( p(2)
k

Ik(p(2))

)
,

i.e. the function
∑

k∈K ωkgk(
pk
Ik(p) ) is jointly concave for all weight vectors ω > 0, i.e. gk(

pk
Ik(p) ) is

jointly concave. This is in direct contradiction to the Theorem 31 (this result is presented in an

additional section (Section 5.6) towards the end of this chapter. This section has only be added
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for the sake of completeness of the current proof.). For further details see [BN09, Theorem 3,

Theorem 4]. �

The above result shows that linear pricing in βk and linear pricing in pk is a universal pricing

mechanism only for orthogonal systems. The above result partly addresses Problem 11 and

partly addresses Problem 13. We shall now investigate in the next section the possibility of

having a universal pricing mechanism for the largest class of utility functions, given systems

with linear interference functions.

5.4.2 Universal Pricing Mechanism - Largest Class of Utility Functions

In chapter 4 it was shown, that under certain intuitive restrictions, for all linear interference

functions I1, . . . ,IK and for all utility functions gk ∈ EConc, the function gk
(
ψ(sk)/Ik(ψ(s))

)
is

jointly concave with respect to s ∈ RK+1, if and only if ψ(s) = c1exp(µs), with c1, µ > 0.

Furthermore, it was shown that for all ω > 0, ω = [ω1, . . . , ωK]T with
∑

k∈K ωk = 1, the

function
∑

k∈K ωkgk
(
pk/Ik(p)

)
is jointly concave with respect to p, if and only if the utility

functions g1(p), . . . , gK((p)) are all jointly concave.

Theorem 26. Linear pricing in βk and logarithmic pricing in pk, for all users k ∈ K , is a uni-

versal pricing mechanism for all utility functions g1, . . . , gK ∈ EConc, for all linear interference

functions and for all weight vectors ω > 0.

Proof. From the result in Chapter 4, we have that the function
∑

k∈K ωkgk(pk/Ik(p)) is jointly

concave with respect to s, only after the transformation pk = esk . By applying our pricing

mechanism, which is linear in βk and logarithmic in pk (linear in sk) we have the following

expression: ∑
k∈K

ωkgk(
esk

Ik(es)
) −

∑
k∈K

βksk, gk ∈ EConc. (5.13)

It can be easily observed in (5.13), for each sk by an appropriate choice of βk every point s in

the above can be achieved. Hence, we have our desired result. �

Theorem 26 has completely answered Problem 12 and partly addressed Problem 11 for the

class of utility functions EConc. In Theorem 26 we have proved that a pricing mechanism,
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which is linear in βk and logarithmic in pk, for all users k ∈ K is a universal pricing mechanism

with the following two conditions being sufficient for the result:

1. The utility functions g1, . . . , gK are in EConc.

2. I1, . . . ,IK are linear interference functions.

Our next result will show that these two conditions are not only sufficient, however also nec-

essary for the pricing mechanism, which is linear in βk and logarithmic in pk to be a universal

pricing mechanism.

Theorem 27. Let utility functions g1, . . . , gK ∈ Conc, such that at least one of the gk, for k ∈ K

is not in EConc. Then, there exist linear interference functions and a weight vector ω > 0 such

that the following statement holds: not every power vector p > 0 is supportable by linear pricing

in βk and logarithmic pricing in pk, for all k ∈ K .

Proof. Assume for the sake of obtaining a contradiction that Theorem 27 is not true, i.e. for all

utility functions g1, . . . , gK ∈ Conc, such that at least one gk, with k ∈ K is not in EConc, for

all linear interference functions for all ω > 0 all power vectors p > 0 are supportable by linear

pricing in βk and logarithmic pricing in pk, for k ∈ K . Exactly as in the proof of Theorem 25 we

conclude, that
∑

k∈K
esk

Ik(es) is jointly concave for all linear interference functions for all ω > 0.

Then, we conclude that for all linear interference functions, for all users k ∈ K the function

gk( esk

Ik(es) ) is jointly concave. However, this implies that gk ∈ EConc for all k ∈ K . This is in

contradiction to the assumptions of Theorem 27. �

We observe that the largest class of utility functions, such that the corresponding pricing

problem is solvable, is the class EConc. Hence, we have concluded that Problem 11 is not

solvable for utility functions outside the class EConc.

5.5 Universal Pricing Mechanism - Beyond Linear Interfer-

ence Functions

In the previous section we have established the largest class of utility functions, namely EConc

which along with linear interference functions permit a universal pricing mechanism, which is
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linear in βk and logarithmic in pk, for all users k ∈ K . In this section we shall fix our class

of utility functions to EConc and look for the largest possible class of interference functions,

which permit a universal pricing mechanism, which is linear in βk and logarithmic in pk, for all

users k ∈ K .

Theorem 28. Let utility functions g1, . . . , gK ∈ EConc be arbitrarily chosen. Let I1, . . . ,IK be

arbitrary log-convex interference functions. Then, for allω > 0 the pricing mechanism, which is

linear in βk and logarithmic in pk, for all k ∈ K solves the pricing problem for
∑

k∈K ωkgk
( pk
Ik(p)

)
.

Proof. From results in Chapter 4 and following the same arguments as in the proof of Theorem

26. �

In Theorem 28 we have proved that a pricing mechanism, which is linear in βk and log-

arithmic in pk, for all users k ∈ K is a universal pricing mechanism with the following two

conditions being sufficient for the result:

1. The utility functions g1, . . . , gK are in EConc.

2. I1, . . . ,IK are log-convex interference functions.

Our next result will show that these two conditions are not only sufficient, however also nec-

essary for the pricing mechanism, which is linear in βk and logarithmic in pk to be a universal

pricing mechanism.

Theorem 29. Let utility functions g1, . . . , gK ∈ EConc be arbitrarily chosen. Let I1, . . . ,IK be

arbitrary interference functions, such that at least one interference function Ik, for k ∈ K is not

a log-convex interference function. Then, for all weight vectors ω > 0 the following statement

holds: not every power vector p > 0 is supportable by linear pricing in βk and logarithmic

pricing in pk, for all k ∈ K .

Proof. The proof follows in a similar manner as in the proof of Theorem 27. �

Theorems 28 and 29 have completely addressed Problem 13.

5.6 Additional Results on Impact of Interference Coupling

This section is a supplementary section, which is required only in the proof of Theorem 25.
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5.6.1 Impact of Competition – User Perspective

In this section we analyze the convexity and concavity properties of utility functions based on

SINR.

Theorem 30. If u ∈ U and u is not a constant function, then u is not a convex function.

Furthermore, u is not a concave function.

Proof. The proof will be achieved via contradiction. We first prove the case, that u cannot be a

convex function. Let us assume that u is a convex function. For all power vectors p(1), p(2) > 0

and a scalar λ ∈ (0, 1) with p(λ) = (1 − λ)p(1) + λp(2) let u(p(λ)) ≤ (1 − λ)u(p(1)) + λu(p(2)). We

take λ = 1/2, then we have that

u(p(1) + p(2)) = u
(1
2

(p(1) + p(2))
)

≤
1
2

u(p(1)) +
1
2

u(p(2)). (5.14)

Let u be aU function with respect to user k0. Since u ∈ U we have that for power pk0 > 0 the

limit limpk0→0 u(pk0 , p−k0
) = c1, i.e. the limit is independent of the power vector p−k0

. For all

power vectors p > 0 we always have that u(p) ≥ c1, i.e. u∗(p) ≥ 0, where u∗(p) = u(p) − c1. u∗

is as well convex. We have that u∗(0, p−k0
) = 0 for all p−k0

> 0. Now we let the power of user

k0 to tend towards zero, i.e. p(2)
k0
→ 0. From (5.14), we have that u∗(p(1) + (0, p(2)

−k0
)) ≤ 1

2u∗(p(1)).

The above expression holds for all p(2)
−k0

> 0. We shall only check the validity of the concerned

expression for p(2)
−k0

= δ1−k0 , where 1−k0 = [1, . . . , 1], is a vector of all ones of dimension K

(K − 1 user’s powers and noise).

u∗(p(1) + (0, δ1−k0)) = u∗(p(1) + δ(0, 1−k0))

≤
1
2

u∗(p(1)). (5.15)

From (5.15) we have monotonic behaviour and continuity of the u∗ function. Furthermore, we

have that

u∗(p(1)) = lim
δ→0

u∗(p(1) + δ(0, 1−k0)) ≤
1
2

u∗(p(1)). (5.16)

From (5.16) we have that u∗(p(1)) ≤ 0. However, u∗(p(1)) ≥ u∗((0, p(1)
−k0

)) = 0 implying that
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u(p(1)) = 0. Therefore, we have that u is a constant function and we have our required contra-

diction.

We now prove the case that u cannot be a concave function. For the purpose of obtaining

a contradiction, let us assume that u is a concave function. Then we have that for all power

vectors p(1), p(2) > 0 and a scalar λ ∈ (0, 1) that u(p(λ)) ≥ (1 − λ)u(p(1)) + λu(p(2)). For λ = 1/2

we have that

u(p(1) + p(2)) = u(
1
2

(p(1) + p(2)))

≥
1
2

(u(p(1)) + u(p(2))). (5.17)

Let power vector p(2)(µ) := (p(2)
k0
, µp(2)

−k0
). We have that limµ→∞ u(p(2)(µ)) = c2. In addition, the

above limit is independent of the power vector p(1) > 0. Therefore, limµ→∞ u(p(1) + p(2)(µ)) = c2.

Then from (5.17) we have that

c2 = lim
µ→∞

u(p(1) + p(2)(µ))

≥
1
2
(
u(p(1)) + lim

µ→∞
u(p(2)(µ))

)
=

1
2

u(p(1)) +
c2

2
.

Therefore, we have that

u(p(1)) ≤ c2. (5.18)

There exists a power vector p̂ > 0 and a scalar µ > 1 such that p̂(µ̂) = (p̂k0 , µ̂ p̂−k0
), u( p̂) >

u( p̂(µ̂)). From (5.18) and the monotonicity property, we have that c2 ≥ u( p̂) > u( p̂(µ̂)) ≥

limµ→∞ u( p̂(µ)) = c2. Hence, we have our desired contradiction and we have proved that u is

not a concave function. �

Remark 5.28. The results presented above, are for functions u ∈ U with reference to convexity

and concavity. These are functions, which model gain for the users. The convexity and concav-

ity results are directly applicable to functions, which model loss, e.g. by considering functions

of the type −1/u.
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5.6.2 Impact of Competition – System Perspective

Users can have their own individual utility functions, which differ from the other users. There-

fore, we have u1, . . . , uK ∈ U. In this section we investigate the impact of competition from a

system level perspective, i.e. we investigate the following problem.

Can we have utility functions, with the following properties:

• the function u(p,ω) defined in (5.10) is independent of the choice of weight vectors

ω1, . . . , ωK > 0 and

• the function u(p,ω) is concave or convex with respect to the power vector p?

The function defined by (5.10) is frequently encountered in wireless communication. It is the

function, which represents the weighted sum of utilities and it is often of interest to maximize

(5.10).

Lemma 7. For all weight vectors ω > 0 such that
∑

k∈K ωk = 1, the function
∑

k∈K ωkgk(p) is

concave with respect to p, if and only if functions g1, . . . , gK are all concave.

Proof. The proof shall be achieved via contradiction. Let us assume that there exists an index

k0 such that uk0 is not a concave function. Then for all weight vectors ω > 0 we have that

u(p,ω) =
∑

k∈K ωkgk(p) is concave. We investigate the case when we have the weight vectors

ω(n), n ∈ N with

ω(n)
k =


1 − 1

n k = k0

1
(K−1)n k , k0

Then we have convergence for all power vectors p > 0 as follows limn→∞ u(p,ω(n)) = gk0(p).

There exist arbitrary power vectors p(1), p(2) > 0 and a scalar λ ∈ (0, 1) chosen arbitrarily such

that

gk0(p(λ)) = lim
n→∞

u(p(λ),ω(n))

≥ lim
n→∞

((1 − λ)u(p(1),ω(n))

+λu(p(2),ω(n)))

= (1 − λ)gk0(p(1)) + λgk0(p(2)).
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Therefore, there exist arbitrary power vectors p(1) > 0 and p(2) > 0 such that gk0 is concave. We

have our desired contradiction. The other direction can be easily verified. Hence, we skip the

proof. �

From Lemma 7 we expect that if the function
∑

k∈K ωkgk(p) is concave, with weight vectors

ω > 0,
∑

k∈K ωk = 1 then the functions g1, . . . , gK are all concave. We present another Lemma

below, for the convex case.

Lemma 8. For all weight vectors ω > 0 such that
∑

k∈K ωk = 1, the function
∑

k∈K ωkgk(p) is

convex with respect to p, if and only if functions g1, . . . , gK are all convex.

Proof. The proof follows the same technique as in the proof of Lemma 7. �

Theorem 31. Let g1, . . . , gK be arbitraryU functions. There exists a scalar δ0 such that, for all

1 ≤ k0 ≤ K and for all weight vectors ω with ω > 0,
∑

k∈K ωk = 1, ‖e(k0)−ω‖ ≤ δ0, the function

u(p,ω) is not concave with respect to p. Furthermore, the function u(p,ω) is not convex with

respect to p.

Proof. Let us assume for the purpose of obtaining a contradiction that the statement of the

theorem does not hold. Then there exists an index k0, such that for all null-sequences {δn} with

δn > δn+1 > 0, we can find a corresponding weight vector ω(n), with ω(n) > 0,
∑

k∈K ω
(n)
k = 1,

‖e(k0) − ω(n)‖ ≤ δn and u(p,ω(n)) is a concave function. Then from Lemma 6 we know that

the function uk0(p) must be concave. However this is in contradiction with the statement of

Theorem 30. We have our desired contradiction, which proves a part of the statement (concave

case) of Theorem 31. That, the function u(p,ω) is not convex with respect to p under the given

conditions, can be proved in a similar manner. �

5.7 Literature Survey

5.7.1 Social Choice Functions

The work [SS74] prove a result, which was initially formulated by [Gib73, Sat73]. The theorem

is important because it provides an attractive means of viewing Arrow’s classical result on social
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welfare functions [Arr63]. The work [CB99] prove the existence of a social choice function

implementable via backward induction which always selects within the ultimate uncovered set.

Some other papers, which investigate distantly related topics on SCFs are as follows [PW74,

EK79, Tsu05, RR88].

5.7.2 Mechanism Design and Implementation Theory

An excellent starting point on mechanism design, which gives an overview of many related

topics is [NRT07]. The papers [Jac01, MS01] provide a concise, however, general enough

introduction to implementation theory.

5.7.3 Economic Literature on Strategy Proofness

All the work cited here is for the case of pure exchange economies (see Definition 2.8). [Hur72]

showed that there is no strategy proof, efficient and individually rational mechanism in 2 user

2 resource pure exchange economy. [DHM79] attempted to replace individual rationality in

Hurwicz’s result with a weaker axiom of non-dictatorship. Ameliorating upon both results

[Zho91] established an impossibility result that there is no strategy proof, efficient and non-

dictatorial mechanism in 2 user m resource (m ≥ 2) pure exchange economies. He conjectures

that there are no strategy proof, efficient and non-inversely dictatorial mechanisms in the case

of 3 or more users. In [KO02] Zhou’s conjecture has been examined and a new class of strategy

proof and efficient mechanisms in the case of four or more users (operators) were discovered.

The work by [SS81] and [KO04] provided examples of strategy proof, efficient and non-

dictatorial SCFs. These SCFs are also non-dummy. When we have 4 or more users, two-stage

dictator making mechanisms are strategy proof, efficient and non-dummy. When we have 3 or

more users, the SCFs provided by [SS81] are strategy proof and efficient. When we have 4 or

more users, [KO04] have shown existence of certain strategy proof, efficient, non-dummy and

dictatorial SCFs.

The property of strategy proofness, requiring revealing of a users’ preference is a dominant

strategy. However, as can be seen from the previous results, this concept has serious draw-

backs. In particular, many strategy proof mechanisms have multiple Nash equilibrium, some
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of which produce undesired outcomes. A possible solution to this problem is to require double

implementation in Nash equilibrium and in dominant strategies. [SSY07] characterize securely

implementable SCF and compare their results with dominant strategy implementations.

5.7.4 Networking Community Literature on Strategy Proofness

Our reference list is by no means comprehensive and the interested reader is further referred to

the references in the mentioned papers. The papers [LS98] and [JC09] introduce the concept of

a progressive second price auction. Lazar and Semret [LS98] have shown that a certain form of

the Nash equilibrium holds when the progressive second price auction is applied by independent

sellers on each link of a network with arbitrary topology. The papers [YH07, MB04, DJW06]

study rules and structure of games such that their outcomes achieve certain objectives.

[HJ04] proposes a strategy proof trust management system fitting to wireless ad hoc net-

works. This system is incentive compatible in which nodes can honestly report trust evidence

and truthfully compute and broadcast trust value of themselves and other nodes. [PT] has

developed a general method for turning a primal-dual algorithm into a group strategy proof

cost-sharing mechanism. The method was used to design approximately budget balanced cost

sharing mechanisms for two NP-complete problems: metric facility location, and single source

rent-or-buy network design. Both mechanisms are competitive, group strategy proof and re-

cover a constant fraction of the cost. [Sur06, SNM06] has called nodes selfish if they are owned

by independent users and their only objective is to maximize their individual goals. The paper

presents a game theoretic framework for truthful broadcast protocol and strategy proof pricing

mechanism. [GYZW04] has proposed an auction-based admission control and pricing mecha-

nism for priority services, where each user pays a congestion fee for the external effect caused by

their participation. The mechanism is proved to be strategy proof and efficient. [WL04] has ad-

dressed the issue of user cooperation in selfish and rational wireless networks using an incentive

approach. They have presented a strategy proof pricing mechanism for the unicast problem and

give a time optimal method to compute the payment in a centralized manner and discuss imple-

mentation of the algorithm in the distributed manner. They have presented a truthful mechanism

when a node only colludes with its neighbors. [GNG08a, GNG08b] have provided a tutorial
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on mechanism design and attempt to apply it to concepts in engineering. [HBH06b, HBH06a]

have utilized SINR and power auctions to allocate resources in a wireless scenario and present

an asynchronous distributed algorithm for updating power levels and prices to characterize con-

vergence using super-modular game theory. [WWLC09] have proposed a repeated spectrum

sharing game with cheat-proof strategies. They propose specific cooperation rules based on

maximum total throughout and proportional fairness criteria. [ST09] has presented a decentral-

ized algorithm to allocated transmission powers, such that the algorithm takes into account the

externalities generated to the other users, satisfies the informational constraints of the system

and overcomes the inefficiency of pricing mechanisms.

5.7.5 Pricing Literature

A variety of pricing schemes have been proposed in literature aiming to improve the perfor-

mance of the Nash equilibrium in communication and wireless systems with respect to a par-

ticular setting and a particular criterion [Sri04, SMG02, SMG01, CGM08, ZP08]. The topic of

efficiency of such a Nash equilibrium has recently aroused interest [JT09, YH07]. There exists

a lot of literature in the economics community, which are occupied with finding the fundamen-

tal bounds for certain games where the outcome satisfies certain given criteria, e.g. [Mas99]

and references therein. The work [KT09] implements a budget balanced, weakly Pareto opit-

mal allocations of the Nash equilibrium under a large class of utility functions. The work

[PT09] advocates the reconsideration of highly structured optimization problems in the context

of mechanism design. They argue that, in certain domains, approximation can be leveraged to

obtain truthfulness without resortin to payments.





Chapter 6

Conclusions

The concluding section of this thesis is presented in two parts.

1. Section 6.1 lists the contributions from the three essays presented in the thesis.

2. Section 6.2 lists certain future research directions.

6.1 Summary of Contributions

In this thesis, we have checked for consistencies between various axioms satisfied by a CCF and

a SCF. The CCF and the SCF were utilized to capture properties of resource allocation strategies

in ICWS. Furthermore, convexity (concavity) properties of functions of inverse SINR (SINR)

were investigated. During the course of this research, the following results were obtained:

• Chapter 3 characterized resource allocation strategies via a CCF and an axiomatic bar-

gaining framework. Results pertaining to robustness of strategies under efficiency and

entitled fairness constraints were presented. Even though the concrete shape of the CCF

is dependent on the region, it is always a monotone path or strict monotone path. The

structure of the family of feasible utility sets is important as it limits degrees of freedom

for obtaining solution outcomes.

A consequence of the fairness constraints is that there exists no resource allocation strat-

egy, which satisfies the properties of efficiency, robustness to channel estimation and pre-
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diction errors and entitled fairness that does not satisfy the property of strong entitled

fairness.

Furthermore, it has been shown that if a resource allocation strategy satisfies the proper-

ties of efficiency, robustness to channel estimation and prediction errors and stability, then

the only possible resource allocation strategy is the max-min balancing or more generally

the egalitarian solution. Stability constraints were introduced.

This chapter has applied the concept of collective choice functions to the domain of re-

source allocation strategies in ICWS. It has also analyzed the property of feasible set

continuity into lower semi-continuity and upper semi-continuity. It has characterized the

axioms required to obtain the result for the case of resource allocation strategies in ICWS.

• Chapter 4 has investigated the possibility of obtaining joint convexity or joint concavity

of resource allocation problems. For the convex case, it has shown that the exponential

transformation is the unique transformation resulting in “convexification” of the resource

allocation problem (function of inverse SINR) for linear interference functions. However,

in the concave case, for linear interference functions there exists no transformation, which

achieves joint concavity. This chapter has characterized certain requirements, which ex-

pect the transformed feasible SINR region, i.e. the feasible QoS region to be a convex set.

Under these natural requirements, this chapter has characterized the largest class of utility

functions and the largest classes of interference functions, respectively, which ensure joint

convexity and joint concavity of the resource allocation problem, respectively. In general,

convex quadratic programs are globally solvable in polynomial time, whereas non-convex

quadratic problems are NP-hard, even when the feasible set is a box or a simplex [PV92].

This chapter has elucidated that the largest class of interference functions, which ensures

joint concavity for resource allocation strategies are the log-convex interference func-

tions. This chapter has extended previous literature on log-convex interference functions

and established boundaries on the class of problems in wireless systems, which are jointly

convex or jointly concave. Furthermore, it is noteworthy to observe that the interesting

paper [LZ07] states the following. For certain examples of objective functions in wire-

less networks, e.g. weighted sum of utility maximization problems (where utility is a
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function of SINR and the objective function subject to certain constraints, e.g. individual

power constraints) the resulting problem is NP-hard. On the other hand we have utility

functions u1, . . . , uk < EConc and I1, . . . ,Ik are linear interference functions, such that

maximizing the function defined in (4.1) can be transformed into a convex problem. The

example just stated lies outside of the framework presented in chapter 4. However, as can

be observed it could still be converted into a convex problem. Hence, it would be inter-

esting to better understand the structure of NP-hard problems and in turn invest further

thought into understanding the demarcation between the classes of “convexificable” and

“non-convexificable” resource allocation problems in ICWS and the possible modifica-

tions in interference coupling constellations, which transition a problem from one class

to the other.

• Chapter 5 investigated certain properties of SCF representing resource allocation strate-

gies. It investigated the permissible SCF, which can be implemented by a mechanism in

either Nash equilibrium or dominant strategy.

1. It has been shown, that the only permissible SCF representing a resource allocation

strategy in ICWS which can be implemented in either Nash equilibrium or dominant

strategy is the trivial constant function.

2. The property of non–manipulation and Pareto optimality of the solution outcome of

resource allocation strategies is captured by the properties of strategy proofness and

efficiency of the SCF, respectively.

3. We introduced the certain desirable and natural properties of resource allocation

strategies, namely (strong) intuitive fairness and non–participation.

4. We proved that there are certain inconsistencies, among the properties of strategy

proofness, efficiency, (strong) intuitive fairness, non–participation and continuity.

These inconsistencies result in certain limitations while having algorithmic implementa-

tions and certain analytical investigations of these resource allocation strategies. Hence,

it can be observed that non–manipulation and Pareto optimality of the solution outcome
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of resource allocation strategies are stringent requirements and along with certain other

desirable properties is not always implementable.

6.2 Open Problems and Future Research

Interesting open problems for the future work are classified according to the various research

directions pursued in this thesis.

1. Investigation of risk averseness properties of resource allocation strategies via a CCF and

axiomatic bargaining framework (introduced in Chapter 3). Axiomatization of certain

aspects of non-cooperative game theory and extending results from families of convex,

compact, comprehensive sets to families of compact, comprehensive sets.

2. Investigation of the convergence speed and complexity of algorithms, which implement

resource allocation strategies for classes of convex and concave functions identified in

Chapter 4.

3. It would be interesting to further investigate pricing mechanisms for utility maximization

introduced in 5. This investigation would involve looking into the restrictions on the class

of utility functions and the restrictions on the class of interference functions such that a

pricing mechanism can always guarantee the designer the ability of being able to shift

the solution outcome to any desired point in the feasible utility region. Furthermore, we

would like to develop a general framework for analyzing auctions and pricing mecha-

nisms and their properties, e.g. efficiency, strategy proofness, incentive compatibility in a

unified optimization framework.
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BC Broadcast Channels

BS Base Station

CCF Collective Choice Function(s)

CSI Channel State Information

FAIR Entitled Fairness

GEN Generic

ICWS Interference Coupled Wireless Systems

IIA Independence of Irrelevant Alternatives

MAC Multiple Access Channels

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MMSE Minimum Mean Square Error

MON Monotonicity

MPCCF Monotone Path Collective Choice Function

MSE Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

PDF Probability Density Function

PMON Population Monotonicity

PO Pareto Optimality

QoS Quality of Service

RV Random Variable

SCF Soical Choice Function(s)

SCONT Feasible Set Continuity

SFAIR Strong Entitled Fairness

SIC Successive Interference Cancellation

SINR Signal to Interference plus Noise Ratio

SIR Strong Individual Rationality

SISO Single Input Single Output

SMON Strong Monotonicity

SNR Signal to Noise Ratio

STC Scale Transformational Covariance

SYM Symmetry

TDD Time Division Duplex

WPO Weak Pareto Optimality
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