
Formal Verification of Model Refactorings for
Hybrid Control Systems

vorgelegt von
Diplom-Informatiker

Sebastian Schlesinger
geb. in Dresden

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Andreas Vogelsang
Gutachterin: Prof. Dr. Sabine Glesner
Gutachter: Prof. Dr. Holger Giese
Gutachterin: Prof. Dr.-Ing. Ina Schäfer

Tag der wissenschaftlichen Aussprache: 19. Juli 2018

Berlin 2018

Abstract
The ever growing complexity in modern embedded systems require to incorpo-

rate increasingly many functions into a single system. Such increasing functionality
leads to growing design complexity. Model Driven Engineering (MDE) has been
proposed to improve the complexity management for development of embedded
systems. An industrially widely used technique to reduce the complexity of models
and establish compliance with industrial MDE guidelines are refactorings. However,
refactorings are often performed manually and may introduce erroneous behaviour.
This may be critical especially in safety-critical environments. Thus, techniques to
formally establish behavioural equivalence of source and target model of a refactor-
ing are highly desirable.

The main challenge for defining an approach for formal verification of be-
havioural equivalence of embedded systems is that these systems typically are
hybrid control systems in the sense that they comprise both time-discrete and time-
continuous behaviour. As a consequence, the data flow-oriented languages that are
used to model such systems inherently have an approximate nature. This means that
even though two models may be equivalent if interpreted in an ideal mathematical
domain, their evaluation by a semantics of a data flow-oriented language may yield
different values due to numerical approximations.

In this thesis, we present an approach for the semi-automatic formal verification
of behavioural equivalence of hybrid control systems modelled in data flow-oriented
languages. Our approach is formally well-founded, addresses the approximate na-
ture of data flow-oriented languages, is automatable, and scales comparatively well
for many industrially relevant applications. Our major contribution is twofold:
Firstly, we provide a sound methodology for the formal verification of behavioural
equivalence of hybrid control models on data flow-oriented languages. Secondly, we
largely automate our methodology for a subset of such models. We select Simulink
as major representative of industrially relevant data flow-oriented languages. Our
theoretical methodology is based on a formal operational semantics for Simulink,
which we have adopted and extended to fit our needs. Based on the operational
semantics, we define a novel denotational semantics, our so-called Abstract Repre-
sentation, which describes an idealised behaviour of Simulink in terms of differential
and difference equations. We show the soundness of our Abstract Representation
with respect to the operational semantics. Then, we enable the formal verifica-
tion of behavioural equivalence of semantical refactorings. An example for such
a semantical refactoring is the replacement of an explicitly modelled differential

iv

equation by its analytical solution. To address the approximate nature of data flow-
oriented languages, we adapt the equivalence notion of approximate bisimulation to
Simulink. States are approximately bisimilar with a precision ε ≥ 0 if the distance of
their values is at most ε. We provide sufficient conditions to conclude approximate
bisimulation for two given models executed in the same finite simulation interval
I, and we provide means to calculate the precision ε(#I), which depends on the
length of the simulation interval. Note that this differs from the usual application
of approximate bisimulation in the literature. There, approximate bisimulation is
applied to transition systems with infinite runtimes, i.e., the precision ε holds for
arbitrary lengths of execution intervals.

We have largely automated our approach for the subset of models expressible as
linear differential or difference equations. Via Laplace transform and z-transform,
we are able to provide an almost fully automated, modular verification approach that
uses a Computer Algebra System to perform the equivalence checks and calculations.
We have implemented our automation approach and demonstrated its performance
with experimental results.

Zusammenfassung
Die wachsende Komplexität moderner eingebetteter Systeme erfordert es, immer
mehr Funktionalität in die Systeme zu implementieren. Solch wachsende Funktion-
alität führt zu wachsender Komplexität im Design. Modellgetriebene Entwicklung
(MDE) ist ein Mittel, um das Management der Komplexität zu verbessern. Eine
industriell weit verbreitete Technik zur Reduktion der Modellkomplexität und zur
Herstellung der Konformität der Modelle mit industriellen MDE Richtlinien sind
Refactorings. Refactorings werden jedoch oft manuell durchgeführt und können da-
her oft fehlerhaft sein. Dies kann kritisch sein, insbesondere in sicherheitskritischen
Umgebungen. Techniken, die es erlauben, die Verhaltensäquivalenz von Quell- und
Zielmodell von Refactorings formal zu verifizieren sind daher wünschenswert.

Eine besondere Herausforderung bei der Definition einer Methodik für die
formale Verifikation von Verhaltensäquivalenz für eingebettete Systeme ist, dass
diese Systeme typischerweise hybride Kontrollsysteme sind, d.h. sie beinhalten
zeit-diskretes und zeit-kontinuierliches Verhalten. Aus diesem Grunde weisen daten-
flussorientierte Sprachen, die zur Modellierung solcher Systeme verwendet werden,
eine approximative Natur auf. Damit ist gemeint, dass obwohl zwei Modelle, in-
terpretiert in einer idealisierten, mathematischen Weise, äquivalent sein mögen,
es vorkommen kann, dass die Auswertung dieser Modelle durch eine Semantik
einer datenflussorientierten Sprache zu abweichenden Werten durch numerische
Approximationen führt.

In dieser Dissertation präsentieren wir einen Ansatz für die semi-automatische
formale Verifikation der Verhaltensäquivalenz von hybriden Kontrollsystemen,
die in einer datenflussorientierten Sprache modelliert sind. Unser Ansatz ist for-
mal fundiert, berücksichtigt die approximative Natur der datenflussorientierten
Sprachen, ist automatisierbar und skaliert relativ gut für viele industriell relevante
Anwendungen. Der Ansatz besteht aus zwei Hauptteilen. Zunächst definieren wir
eine theoretische Methodik für die formale Verifikation der Verhaltensäquivalenz
von hybriden Kontrollmodellen auf datenflussorientierten Sprachen. Danach au-
tomatisieren wir weitgehend die Methodik für eine Teilmenge dieser Modelle. Wir
wählen Simulink als Hauptvertreter der industriell relevanten datenflussorientierten
Sprachen. Unsere theoretische Methodik basiert auf einer formalen operationalen
Semantik für Simulink, die wir angepasst und erweitert haben, um sie für unsere
Zwecke nutzbar zu machen. Wir beginnen mit der Definition einer denotationellen
Semantik, unserer sogenannten Abstract Representation, die ein idealisiertes Ver-
halten von Simulink mittels Differential- und Differenzengleichungen beschreibt.
Wir zeigen die Korrektheit unserer Abstract Representation in Bezug auf die op-
erationale Semantik. Die Abstract Representation ermöglicht die Verifikation der

vi

Verhaltensäquivalenz bei semantischen Refactorings, z.B. der Ersetzung eines Mod-
ells, das durch eine Differentialgleichung repräsentiert wird durch ein Modell, das
deren analytische Lösung repräsentiert. Um die approximative Natur der datenflus-
sorientierten Sprachen zu berücksichtigen, passen wir den Äquivalenzbegriff der
approximierten Bisimulation an Simulink an. Zustände sind approximativ bisimilar
mit einer Präzision ε ≥ 0 wenn ihre Werte höchstens ε voneinander entfernt sind.
Wir präsentieren anschließend hinreichende Bedingungen, um auf die approximierte
Bisimulation für zwei gegebene Modelle, die im selben endlichen Simulationsin-
tervall I ausgeführt werden, schließen zu können. Dies beinhaltet Methoden zur
Berechnung der Präzision ε(#I), die von der Länge des Simulationsintervalls ab-
hängt. Beachten Sie, dass dies von der in der Literatur üblichen Anwendung der
approximierten Bisimulation abweicht. In der Literatur wird approximierte Bisimu-
lation üblicherweise auf Transitionssysteme mit unendlicher Laufzeit angewandt,
d.h. die Präzision ε gilt für beliebig lange Zeiten der Ausführung.

Wir haben unseren Ansatz für eine Teilmenge von Modellen, die als lineare
Differential- oder Differenzengleichungen darstellbar sind, weitgehend automa-
tisiert. Mit Hilfe der Laplace- und z-Transformation sind wir in der Lage, eine
nahezu vollständig automatisierte, modulare Lösung zur Verifikation zu präsen-
tieren. Sie verwendet ein Computer Algebra System für die Äquivalenzcheckes und
zur Berechnung. Wir haben unseren Automatisierungsansatz implementiert und
dessen Leistung mit experimentellen Ergebnissen demonstriert.

Danksagung
Die folgende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mi-
tarbeiter im Fachgebiet „Software and Embedded Systems Engineering“ unter der
Leitung von Prof. Dr. Sabine Glesner. Bei ihr möchte ich mich herzlich bedanken. Sie
hat immer an mich geglaubt und meine Finanzierung auch in schwierigen Zeiten
durchgesetzt. Ohne sie wäre die Arbeit nicht zustande gekommen.

Darüber hinaus möchte ich mich bei meinen beiden Kollegen und Freunden
Dr.-Ing. Paula Herber und Dr.-Ing. Thomas Göthel sehr herzlich bedanken. Ich
danke Euch sehr für all die inhaltlichen Diskussionen, wiederholtes Korrekturlesen
und dass ihr immer für mich da wart. Ihr seid echt sehr gute Freunde! Ganz herzlich
danke ich auch meinem Kollegen und Freund Marcus Mikulcak. Mit ihm hatte ich
stets jemanden, mit dem ich mich jederzeit sehr gut verstand und der mir auch
mental schwierige Zeiten zu überstehen half. Allen meinen Kollegen möchte ich
danken für viele hilfreiche Diskussionen und für die sehr angenehme Atmosphäre
in unserer Gruppe. Wir sind alle von Kollegen zu Freunden geworden.

Zuletzt möchte ich meiner Familie und all meinen Freunden für ihre Unter-
stützung danken, insbesondere meiner Frau Silva und meinen Eltern Gabriele
Schlesinger und Matthias Großmann.

ix

Contents

1 Introduction 1

2 Background 7
2.1 Model Refactorings in Model Driven Engineering 7
2.2 Mathematical Foundations . 10

2.2.1 Topological Preliminaries . 10
2.2.2 Sequences and Difference Equations 14
2.2.3 Functions, Functional Analysis, and Differential Equations . . 16
2.2.4 Laplace Transform and z-Transform 24
2.2.5 Numerical Mathematics Preliminaries 26

2.3 MATLAB/Simulink . 33
2.3.1 Syntax of Simulink models . 34
2.3.2 Simulink Operational Semantics 35

2.4 Summary . 41

3 Related Work 43
3.1 Hybrid Systems Verification and Analysis 43

3.1.1 Control Flow-Oriented Hybrid Systems Modelling Languages 43
3.1.2 Data Flow-Oriented Hybrid Systems Modelling Languages . 46

3.2 Model Refactorings for Data Flow-Oriented Languages 49
3.3 Summary . 50

4 Verification Approach 51
4.1 Limitations and Assumptions . 52

4.1.1 Methodology Limitations . 52
4.1.2 Automation Approach Limitations 53

4.2 Theoretical Methodology . 54
4.3 Automation of our Equivalence Proof Methodology 58
4.4 Summary . 60

x

5 Denotational Abstract Representation 61
5.1 Abstract Representation . 62

5.1.1 Simulink Syntax . 62
5.1.2 From Simulink to the Abstract Representation 65

5.2 Interpretation of the Abstract Representation 72
5.3 Soundness of Abstract Representations with Operational Semantics . 76
5.4 Extension of the Operational Semantics for Simulink 81
5.5 Summary . 86

6 Approximate Bisimulation for Simulink Models 89
6.1 Adaptation of Approximate Bisimulation for Simulink 89

6.1.1 Concept of Approximate Bisimulation 90
6.1.2 Adaptation of Approximate Bisimulation to Simulink 91

6.2 Behavioural Equivalence for Purely Time-Discrete Models 94
6.3 Behavioural Equivalence for Purely Time-Continuous

Models . 95
6.3.1 Epsilon Calculation . 97

6.4 Behavioural Equivalence for Hybrid Models 99
6.4.1 Time-Hybrid Models . 99
6.4.2 Hybrid Models . 100

6.5 Summary . 107

7 Automated Equivalence Checking for Hybrid Control Systems 109
7.1 Obligations to ensure Applicability of our Methodology 110
7.2 Data Flow Model Calculation and Partitioning 111

7.2.1 Data Flow Model Calculation 112
7.2.2 Partitioning . 113

7.3 Symbolic Equivalence Checking . 120
7.3.1 Partition-Wise Symbolic Equivalence Checking 120
7.3.2 Model Equivalence Checking 123

7.4 Epsilon Calculation and Propagation 124
7.4.1 Epsilon Propagation through Partitions 126

7.5 Approximate Bisimulation Verification 130
7.6 Summary . 133

8 Evaluation 135
8.1 Implementation . 135
8.2 Case Studies and Evaluation . 137

8.2.1 Case Studies . 137

xi

8.2.2 Experimental Results . 141
8.3 Discussion . 142

8.3.1 Limitations and Opportunities 142
8.3.2 Complexity Assessment . 145

8.4 Summary . 148

9 Conclusion and Future Work 149
9.1 Conclusion . 149
9.2 Future Work . 150

A Proofs 153

1

Chapter 1

Introduction

Embedded systems are ubiquitous. They are employed in various domains, e.g.
avionics, automotive, consumer electronics, telecommunications, and healthcare
technology. Embedded systems carry out observation and control functions. They
combine time-continuous and time-discrete parts, which is referred to as hybrid
behaviour. The development of hybrid control systems often follows a Model
Driven Engineering (MDE) approach. In MDE, executable models are the focal
entities being developed in the process. Typical attributes of embedded systems
such as hybrid behaviour, obtaining environmental data, calculating a response
to adapt the behaviour, and feed it back to the environment via actuators, call for
signal flow-oriented or data flow-oriented languages to support the development
process. Examples are MATLAB Simulink [TM17b] and Modelica [Ass17]. The
time-continuous part in such models introduces an approximation error caused by
the numerical execution on machines with finite execution time and storage space.
Mathematically, the time-continuous parts form a continuous function, i.e., values
are assigned to uncountably many time steps. However, the execution is performed
in finite steps. This implies that during the execution, the values are approximated.

Software development for embedded systems is increasingly complex: Accord-
ing to [BBH+14], a typical upper class vehicle in 2007 contained about 270 im-
plemented functions to interact with its driver. Upper class vehicles in 2014, the
year of the article, contain more than 500 of such functions. Model refactoring is
a common technique to cope with the ever-increasing complexity in nowadays’
applications and to establish compliance with industrial MDE guidelines via model
transformations, e.g. as defined in ISO 26262 [Int11] for safety-critical systems in
the automotive domain. However, such model transformations are often performed
manually or by utilising unverified tools. They therefore bear the risk of introducing
unwanted or even erroneous behaviour in the process. Especially in safety-critical
environments, it is crucial to rigorously ensure correct refactorings, i.e., that source
and target model are semantically equivalent. Currently, there exists no approach

2 Chapter 1. Introduction

for proving behavioural equivalence of systems modelled in data flow-oriented
languages for hybrid control systems.

In this dissertation, we aim for a semi-automated approach to verify the be-
havioural equivalence of hybrid control systems modelled in a data flow-oriented
language and their refactored counterpart.

We require the following criteria to be met by our approach.

1. Formal Foundation: Since this thesis aims for a formal verification approach,
we require an unambiguous, precise semantics.

2. Approximate Nature: We aim at supporting the approximate nature of data
flow-oriented modelling languages for hybrid control systems, which is intro-
duced by the numerical execution.

3. Behavioural Equivalence: We require a suitable and concise notion for be-
havioural equivalence.

4. Automation: Manual verification is time-consuming and error prone. An at
least semi-automated solution is therefore desired.

5. Scalability: We aim for an approach capable of verifying behavioural equiva-
lence on models of industrially relevant sizes.

In the following, we describe the key ideas of our proposed solution.
We select Simulink as major representative of an industrial modelling language

for hybrid control systems. The reasons are 1) Simulink has a broad acceptance, it is
widely used across many industries, e.g. automotive, aerospace industry, and 2) it
exhibits typical properties of modelling languages used in the industrial context for
MDE of embedded hybrid control systems, such as data-flow orientation, numerical
simulation, use of various arithmetic, stateful, and control flow blocks. The former
reason strengthens the claim for industrial applicability, while the latter reason
implies that the concepts of this thesis can be transferred to other data flow-oriented
languages that are used for hybrid control systems.

With our approach, we provide 1) a well-founded methodology that enables
formal verification of behavioural equivalence of Simulink models, and 2) an au-
tomation of our approach for behavioural equivalence checking of a subset of hybrid
control systems modelled in Simulink. The subset we support are basically models
whose behaviour can be expressed by linear differential or difference equations. We
perform the automated verification of behavioural equivalence with the help of a
Computer Algebra System.

Chapter 1. Introduction 3

Our main contributions are:

1. Denotational Semantics We define an Abstract Representation (AR) that describes
the behaviour of Simulink models in terms of differential and difference equa-
tions. The function that solves the differential or difference equations provides
us with a well-defined denotational semantics. Our denotational semantics is
sound with the formal operational semantics [BC12] for MATLAB/ Simulink,
which we use as our formal basis. The reason we introduce our AR and use it
for verification of behavioural equivalence is that we compare whole trajecto-
ries rather than steps in the operational semantics. Trajectories are solutions of
the AR’s equations. They describe an idealised behaviour of the models. This
in turn enables use of symbolic approaches via Computer Algebra Systems.
Moreover, it enables us to support refactorings expressing analytical solutions
of underlying differential or difference equations. We show the soundness of
our AR and denotational semantics with the operational semantics [BC12] for
Simulink in the following sense: Executions by the operational semantics with
decreasing simulation step size yields a sequence of trajectories that uniformly
converge against the solutions induced by our AR.

2. Equivalence Notion We adapt the concept of approximate bisimulation (introduced
e.g. in [GP11]) to obtain a suitable, well-established formal equivalence notion
that properly addresses the approximate nature of the Simulink semantics. The
approximate nature means that although two models interpreted as dynamical
systems in our denotational semantics may represent the same solution from
a mathematical perspective, the operational semantics may yield differing
values. Approximate bisimulation introduces a precision ε, i.e., a maximal
distance or ε tube in which the values of the executions of source and target
model may reside. This ε generally increases with the length of the interval
of the execution of the Simulink models. Note that this differs from the appli-
cation of approximate bisimulation as given in [GP11]. There, approximate
bisimulation is applied to transition systems with infinite runtimes, i.e., the
precision ε holds for arbitrary lengths of execution intervals.

3. Proof Scheme We provide a proof scheme, i.e., a methodology for showing
behavioural equivalence on the basis of our AR. We symbolically verify equa-
tions derived from our AR, automatically calculate the precision ε of the ap-
proximate bisimulation, and provide proof obligations that address differing
behaviour at control flow elements of the model.

4 Chapter 1. Introduction

4. Symbolic Verification and Automated Epsilon Calculation We automate our me-
thodology for a subset of Simulink models whose AR contains only linear
differential and difference equations. We calculate all possible data flows,
partition the data flows, and perform partition-wise symbolic verification with
the help of a Computer Algebra System. We combine the results to obtain
symbolic equivalence for the overall model. Moreover, we automatically
calculate a local precision εl of the approximate bisimulation at the point
where the refactoring took place, and propagate it through the model to obtain
a global precision εg that is valid for the overall model.

We have published our work as follows: In [SHGG15, SHGG16b], we have
introduced the AR, the denotational semantics, and have shown the soundness with
the operational semantics [BC12]. Moreover, we have adapted the approximate
bisimulation to Simulink and laid out how to prove behavioural equivalence for
purely time-discrete and purely time-continuous models together with a calculation
of the precision ε of the approximate bisimulation in these cases. In [SHGG16a],
we have extended our proof scheme to cope with hybrid Simulink models with
control flow in the form of Switch blocks. To this end, we have added additional
proof obligations for the control signal of the Switch block that exclude time-delayed
behaviour. We have described our overall approach comprehensively in [SHGG18].

With our approach, we enable designers of embedded systems to verify refac-
torings on data flow-oriented hybrid control models on a largely automated basis,
and to gain control over the precision of the disturbance that is caused by the ap-
proximate nature of such models. Our approach is a substantial contribution to
enhance the safety of embedded systems. Unlike approaches for testing, which are
not able to explore the whole state space, we formally prove equivalent behaviour
before and after a model transformation. Approaches for formal verification are
of high importance in safety-critical environments, i.e., where either life is at stake
or at least loss or erroneous behaviour is unacceptable due to tremendous costs.
Examples for safety-critical systems with impact on life are pilot systems, braking
and steering systems, anti-collision systems, infusion pumps, pacemaker, and de-
fibrillators. Examples for safety-critical systems for which erroneous behaviour
would be unacceptable even though not life-threatening are satellite control systems,
engine control in cars, and adaptive cruise control systems.

The rest of this thesis is structured as follows. In Chapter 2, we introduce various
concepts that are necessary for the understanding of this thesis. In Chapter 3, we
discuss related work and distinguish this thesis from this research. In Chapter 4,
we provide an overview over our approach. Chapters 5 to 7 contain the details
of our approach. We start with the definition of the Abstract Representation (AR),

Chapter 1. Introduction 5

our denotational semantics, and the proof of soundness of it with the operational
semantics in Chapter 5. We continue with the adaptation of the approximate bisim-
ulation, our equivalence notion in Chapter 6. There, we also provide sufficient
conditions to conclude approximate bisimulation for Simulink models. In Chapter
7, we describe our automation approach. In Chapter 8, we provide some details on
our implementation, introduce our case studies, and discuss experimental results.
We close our thesis with a conclusion and discussion of future work in Chapter 9.

7

Chapter 2

Background

In this chapter, we provide preliminaries that are the foundation of this thesis. We
start with a brief introduction of Model Refactorings, particularly for Simulink. We
proceed with mathematical preliminaries, and we close with an introduction to the
semantics of Simulink.

2.1 Model Refactorings in Model Driven Engineering

Model Driven Engineering (MDE) has evolved from object-oriented development.
While the main principle in object-oriented development is everything is an object, the
main principle in MDE is everything is a model. A model is a simplified view of reality
[Sel03]. In other words, a model is a set of statements describing the behaviour of
something being developed for a specific purpose. The idea is that a model abstracts
from the reality due to one of the following reasons.

• Reality is too complex to be able to describe it entirely.

• It would be too expensive to describe reality entirely.

• The full set of desired features and behaviour of the targeted product is not
entirely known. In this case, the development process follows a strategy of
iterative refinements, i.e., models developed in the process move from high
abstraction to increasing concreteness.

The central artifact in MDE is the model. It defines the desired behaviour of the
targeted product. In MDE, model transformations play an important role. The main
reasons for this are [GDD+09]:

• Nowadays’ products are too complex to be properly represented in a single
model. Therefore, various parts covering certain aspects of the product are
modelled in parallel. Transformations help to patch the diverse parts together
in an overall architecture.

8 Chapter 2. Background

FIGURE 2.1: Example for a Simulink Refactoring: Subsystem Merge

• The systems often comprise multiple modelling languages because various
domain experts are required in the development. Transformations help to map
the various parts together.

• Reusability of models is very important. Consequently, transformation engines
are used to automatically generate executable code from the models.

• Models become very complex and often violate various modelling guidelines.
This is particularly important for safety-critical environments. For instance,
ISO 26262 [Int11] is very important for MDE in the automotive sector. It
defines a risk assessment for model parts, which yields a criticality for those
parts. Based on the criticality, modelling guidelines are defined. During
MDE, models often violate these guidelines. To control the ever-increasing
complexity of models on the one hand and to establish on the other hand
compliance with modelling guidelines, model refactoring approaches play an
important role. Refactorings are model transformations that ensure that the
behaviour before and after the transformation is equivalent.

This thesis focusses on refactorings for signal-oriented languages capable of
modelling hybrid control systems. We therefore address a major business case of
modern embedded systems development. As major representative we have chosen
MATLAB / Simulink to demonstrate our approach of a verification methodology
for behavioural equivalence of source and refactored target model on signal flow-
oriented modelling languages.

An example for an often occurring Simulink refactoring is a merge of subsystems.
Figure 2.1 provides this example. The figure is taken from the article [TWD13]. Sub-
models can be grouped into subsystems in Simulink. Such subsystems are Simulink
submodels that are embedded in a surrounding Simulink model. Subsystems can
in turn contain subsystems. A Simulink model can therefore contain a hierarchy of
subsystems. A subsystem merge is an operation that combines the content of two
subsystems into a single subsystem. The model transformation must ensure that the
connections in the resulting model are properly established to guarantee equivalent

2.1. Model Refactorings in Model Driven Engineering 9

1
s

Integrator

1
s

Integrator1

-1

Gain

Scope

ScopeSine Wave

FIGURE 2.2: Example for a Simulink Refactoring: Solution of an ODE

Add

1

In1

2

In2

3

In3

1

Out1

1

In1

2

In2

3

In3

1

Out1
Add

Add1

FIGURE 2.3: Example for a Simulink Refactoring: Adder Replace-
ment

behaviour. Subsystems do not have an impact on the Simulink semantics. They are
means to visually group entities of the model together. A refactoring like subsystem
merge is therefore a representative of a syntactical refactoring.

Another example for a Simulink refactoring is given in Figure 2.2. There, the
model on the left side represents an ordinary differential equation (ODE). This ODE
can analytically be solved, i.e., its solution can be expressed by a closed mathematical
expression, in this case by sin(t). Such a model transformation is an example of
a semantical refactoring. Syntactically, both models are very different from each
other. However, mathematically interpreted, both models yield the same values
because one is the solution of the other. Actually, the execution by Simulink does
not yield the exact same values because of the numerical approximation performed
by Simulink. Providing conditions to show behavioural equivalence in case of
syntactical and semantical refactorings and estimates for the maximal deviation of
the values due to numerical approximation are major contributions of this thesis.

Figure 2.3 depicts a third example. The source model contains an Adder block
with three entries, the refactoring splits this Adder into two blocks with two entries
each. It is an example that establishes compliance with modelling guidelines. From
our industrial partners, we know that companies often request to restrict arithmetic
blocks in models to two entries.

10 Chapter 2. Background

2.2 Mathematical Foundations

In this section, we cover mathematical preliminaries. We start with some concepts
from topology. They help us to understand concepts of time-discreteness and time-
continuity and are used for various notions of continuity. We also introduce metrics
and metric spaces in this subsection. These are the formal foundation to enable
measurement of distances of observations of Simulink models. We proceed by
introducing sequences and difference equations. We use these concepts to describe
time-discrete behaviour of Simulink models. For the time-continuous part, we
introduce topics from mathematical analysis, differentiation, and differential equa-
tions. Then, we introduce Laplace transform and z-Transform, which we use in our
automation approach to obtain expressions that can be checked automatically for
symbolic equivalence. We close our overview of mathematical preliminaries with an
introduction in numerical mathematics, which we use to cope with the approximate
nature of the semantics of Simulink.

2.2.1 Topological Preliminaries

In this thesis, notions like time-discreteness or time-continuity play an important
role. This thesis is closely related to the area of mathematical analysis, differential
and difference equations, and numerical mathematics. We introduce some basic
topological concepts that are the foundation of various theorems we use in our
approach. The material presented in the following is based on [Con10, Tim08].

We start with the most basic concept, topological spaces.

Definition 1 (Topological Space). Let X be a set, T ⊆ P(X). T is called a topology of X
if and only if the following holds.

• ∅ ∈ T,X ∈ T

• A1, ..., An ∈ T ⇒
⋂n

ν=1Aν ∈ T (closed under finite intersection)

• If I is an index set (countable) and ∀ν ∈ I : Aν ∈ T ⇒
⋃

ν∈I Aν ∈ T (closed under
arbitrary union)

The elements of T are called open sets. (X,T) is called a topological space.

If the open sets are clear from the context, we can abbreviate (X,T) to X . The
complements of open sets are called closed sets.

Definition 2 (Neighbourhood). Let (X,T) be a topological space and p ∈ X . A neigh-
bourhood of p is a set V ⊆ X that contains an open set U ∈ T that contains p. Formally: V

2.2. Mathematical Foundations 11

is a neighbourhood of p if
∃U ∈ T : p ∈ U ∧ U ⊆ V

If V is an open set itself, i.e., V ∈ T , then V is called open neighbourhood of p. For sets of
points S ⊆ X , we define a neighbourhood V ⊆ X of S if V is neighbourhood for all p ∈ S.

The concept of neighbourhoods enables us to identify distinguished points in
topological spaces.

Definition 3 (Distinguished Points in Topological Spaces). Let (X,T) be a topological
space, S ⊆ X , p ∈ X . p is said to be

• an inner or interior point of S if there exists a neighbourhood of p that is contained
in S, i.e., there is an environment V ⊆ X of p with V ⊆ S.

• a limit point of S if every neighbourhood of p contains at least one point of S
different from p itself, i.e., for all V ⊆ X , which are neighbourhoods of p there exists
x ∈ S ∩ V : p ̸= x

• an isolated point of S if there exists a neighbourhood of p that does not contain any
other points of S, i.e., ∃V ⊆ X that is an environment of p such that ∀x ∈ V : x ̸=
p⇒ x /∈ S.

• a boundary point of S if every neighbourhood of p contains at least one point of
S and one point outside of S, i.e., for every neighbourhood V ⊆ X of p holds that
∃x ∈ V : x ∈ S and ∃y ∈ V : y /∈ S. We denote the set of boundary points of S as
δS.

A very useful characterization of closed sets, which were defined as complements
of open sets, is the following.

Lemma 1 (Closed Sets and Limit Points). Let (X,T) be a topological space, S ⊆ X . S
is closed if and only if every limit point of S is contained in S.

Proof. See for instance [For11].

In this thesis, we make use of notions such as time-discreteness and time-
continuity. We introduce the following two notions that are the basis for the notions
of time-discreteness and time-continuity in our approach.

Definition 4 (Discrete Spaces and Sets). A topological space (X,T) is said to be discrete
if and only if no subset of X has a limit point. A subset of a topological space M ⊆ X is
called discrete if M contains no limit point.

12 Chapter 2. Background

Discrete spaces are related with the concept of time-discreteness.Another impor-
tant concept are perfect sets, which are related with the concept of time-continuity
in this thesis.

Definition 5 (Dense-in-itself and Perfect Sets). A subset S ⊆ X of a topological space
(X,T) is said to be dense-in-itself if S contains no isolated points. It is called perfect if it
is dense-in-itself and closed in X.

The notions discrete space and perfect set are not complementary, i.e., non-
discrete spaces are not necessarily perfect and vice versa. An example for a dense-
in-itself set is Q because in every neighbourhood of a rational number there is
another rational number. Hence, it does not contain isolated points. However, Q
is not perfect because it is not closed. This is because it does not contain all of
its limit points. Limit points of Q are also irrational numbers because in every
neighbourhood of an irrational number there is a rational number.

We introduce a very important concept, the compactness of sets. Many theorems
we use in our approach assume a compact set.

Definition 6 (Open Cover, Compact Set). Let (X, ∥.∥) be a normed space, M ⊆ X .

1. An open cover F of M is a non-empty set of open sets in (X, ∥.∥) with the property

M ⊆
⋃
Q∈F

Q := {x ∈ X|∃Q ∈ F : x ∈ Q}

This means, every x ∈M is contained in at least one Q ∈ F .

2. M is called compact if every open cover F of M contains a finite subcover, i.e., a
finite subset F0 ⊆ F that is an open cover of M as well.

Metric and Normed Spaces

Topological spaces are very general concepts. In this thesis, we require some addi-
tional structure. Specifically, we need to be able to measure the distances between
observations. This concept is called a metrical function or metrics, the spaces on which
it operates are called metric spaces.

Definition 7 (Metric Space). Let X be an arbitrary set. A function d : X ×X → R is
called metric on X if for all x, y, z ∈ X the following holds.

• (positive definiteness): d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y

• (symmetry): d(x, y) = d(y, x)

2.2. Mathematical Foundations 13

• (triangular inequality): d(x, y) ≤ d(x, z) + d(z, y)

(X, d) is called a metric space if d is a metrics on X .

In metric spaces, we can identify ε-environments or ε-balls. Intuitively, they are
balls around a point with the radius ε.

Definition 8 (ε-environment). Let (X, d) be a metric space, x ∈ X, ε > 0. Then

Bε(x) := {y ∈ X|d(x, y) < ε}

is called the ε-environment of x or open ε-ball around x.

The set of ε-balls for arbitrary values of ε and all points p ∈ X in a metric space
X forms a topology, i.e., (X,T) with T := {Bε(p)|p ∈ X, ε ∈ R} is a topological
space, the ε-balls are the open sets.

A special case of metric spaces are normed spaces. Normed spaces are vector
spaces over R or C.

Definition 9 (Normed Space). Let X be a vector space over the field F = R or F = C. A
map ∥.∥ : X → R is called a norm on X if the following holds.

• (positive definiteness) - ∀x ∈ X : ∥x∥ ≥ 0 and ∥x∥ = 0⇔ x = 0.

• (homogeneity) - ∀λ ∈ F∀x ∈ X : ∥λx∥ = |λ|∥x∥.

• (triangular inequality) - ∀x, y ∈ X : ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

(X, ∥.∥) is called a normed space if X is a vector space and ∥.∥ is a norm on X .

Normed spaces are always metric spaces because d(x, y) := ∥x − y∥ induces
a metric. We can therefore also transfer the ε-environment concept to normed
spaces using Bε(x) := {y ∈ X|∥x − y∥ < ε}. Typical norms on Rn as vector space
over R are the maximum norm ∥x∥∞ = max(x1, ..., xn) (x is the n-dimensional
vector with components xi), the sum norm ∥x∥1 =

∑n
ν=1 |xν |, or the Euclidean

norm ∥x∥2 =
√∑n

ν=1 x
2
ν . The indices ∥.∥∞, ∥.∥1, or ∥.∥2 are used to distinguish

between different norms. If it is clear what is meant, the indices can be omitted.
For vector spaces whose elements are sequences (an)n ∈ RN, the supremum norm
∥(an)n∥∞ = supn∈N |an| is a typical representative.

In this thesis, we use elements from Rn mainly to express the evolution of values
over time for systems with n stateful blocks, e.g. Integrators or Unit Delays. In our
approach, these values can be disturbed if compared between source and refactored
target model. Since we are interested in the largest deviation, the maximum or
supremum norm are of utmost importance in this thesis.

A special case of norms are matrix norms.

14 Chapter 2. Background

Definition 10 (Matrix Norm). A Matrix norm is a norm on ∥.∥ : Rn×n → R, i.e.,
for which positive definiteness, homogeneity, and triangular inequality hold. In addition,
submultiplicativity must hold, i.e.,

∀A,B ∈ Rn×n : ∥A×B∥ ≤ ∥A∥ · ∥B∥

An important example for a matrix norm that we use in this thesis is the maxi-
mum norm

∥A∥∞ := max
1≤i≤n

n∑
j=1

|aij |

for a matrix A = (aij)1≤i,j≤n. We use this maximum norm to obtain an estimate for
the Jacobi matrix, which is the differential of multi-dimensional functions. Such an
estimate in turn is used to calculate the diameter of the ε-tube in which the values of
source and refactored target model vary.

2.2.2 Sequences and Difference Equations

In this subsection, we briefly introduce sequences and difference equations. We use
difference equations to describe the behaviour of time-discrete models. Sequences
are solutions of difference equations.

Definition 11 (Sequences). Let X be some space (topological, metric, or normed). A
sequence is a mapping

N→ X, i ↦→ ai

We therefore refer to a single element from the sequence with ai and to the whole sequence as
(an)n.

An important property of a sequence is the convergence to a limit.

Definition 12 (Limit of a Sequence). Let (an)n be a sequence in a metric space (X, d).
x ∈ X is said to be a limit point of the sequence if and only if

∀ε > 0∃n0∀n ≥ n0 : d(an, x) < ε

We denote this with
lim
n→∞

an = x

The concepts of sequences and limits allow us to obtain an equivalent statement
for compactness: Compact sets always contain limits of sequences that consist of
members of the set. Limits of sequences containing elements of non-compact sets

2.2. Mathematical Foundations 15

may be outside of the set. The next lemma therefore provides a very intuitive view
for compactness.

Lemma 2 (Sequential Compactness). Let (X, ∥.∥) be a normed space and ∅ ≠M ⊆ X .
M is compact if and only if M is sequentially compact, i.e., every sequence in M contains
a subsequence with a limit in M .

Proof. See for instance [For11]

In Rn, compactness has another very intuitive interpretation described in the
theorem of Heine-Borel.

Lemma 3 (Heine-Borel Theorem). Let ∅ ̸= M ⊆ Rn. M is compact if and only if M
is closed and bounded. A set ∅ ̸= M ⊆ Rn is bounded if there exists an r > 0 such that
M ⊆ Br(0), i.e., M can be enwrapped by a sphere with finite radius.

Proof. See for instance [For11]

In this thesis, time-discrete systems are described by difference equations, which
we introduce in the following. The theory can be found e.g. in [KN12].

Definition 13 (Difference Equation). Let D ⊆ Rn and f : N×D → R be a function. A
difference equation of first order is an equation of the form

yn+1 = f(n, yn)

where y0 is given (the initial value). A solution is a sequence (an)n fulfilling the equation,
i.e.,

∀n ∈ N, n ≥ 1 : an+1 = f(n, an) ∧ a0 = y0

According to [Tau64], difference equations have always a unique solution. The
reason is that the value a1 = f(1, a0) is uniquely determined since f is a function
and per assumption defined on N×D. The same applies to a2, a3, The proof is
performed by natural induction.

In this thesis, we pay special attention to linear difference equations, which we
introduce in the following.

Definition 14 (Linear Difference Equation Systems). Let A : N→ Rn×n a continuous
function (Rn×n denotes the space of real-valued n× n matrices), b : N→ Rn a continuous
function. Then

yn+1 = Ayn + b, y0 given

is called a linear difference equation system. Note that A can also only contain real
values, i.e., constants.

16 Chapter 2. Background

Linear difference equation systems are also always uniquely determined. In our
automation approach, we verify behavioural equivalence for subsets of Simulink
models whose behaviour can be expressed by linear difference or differential equa-
tions.

2.2.3 Functions, Functional Analysis, and Differential Equations

For the time-continuous part of models, we deal with continuous and also with
differentiable functions. In this subsection, we recapture the basic notions for such
functions. We denote the set of functions A→ B with BA.

We start with various forms of continuity. Continuity of functions is a necessary
prerequisite in many theorems we use in this thesis.

Definition 15 (Continuous Function). Let M ⊆ R, f : M → R be a function, a ∈ M .
f is said to be continuous at a if for every neighborhood V of b := f(a) there exists a
neighborhood U of a such that

f(U ∩M) ⊆ V , i.e., ∀x ∈ U ∩M : f(x) ∈ V

f is said to be continuous on M if it is continuous for all a ∈M . We denote the set of
continuous functions M → R with C(M,R).

The following lemma provides two equivalent statements for continuity. The first
one intuitively translates to: A function is continuous if and only if the arguments
are close enough, the values of the function must be close to each other as well.
The second statement connects limits of sequences of values of a function with
continuity.

Lemma 4. Alternative Continuity Definitions for Functions Let f :M → R be a function,
a ∈M . Equivalent forms for continuity of f at a are

1.
∀ε > 0∃δ > 0∀b ∈M : |a− b| < δ ⇒ |f(a)− f(b)| < ε

2. For every sequence (an)n in M with limn→∞ an = a the following holds

lim
n→∞

f(an) = f(a) = f
(
lim
n→∞

an

)
Proof. See for instance [For11]

In the following definition, we introduce a stronger form of continuity, the
uniform continuity. While continuity is explained for a single point a in the domain

2.2. Mathematical Foundations 17

of a function, uniform continuity applies either to the whole domain or not. The
main difference to continuity is that the ε, which can be determined for every single
point to establish continuity, must hold for all points in the function’s domain for
uniform continuity. Uniform continuity is the type of continuity resulting in an
important theorem, the Theorem of Arzelà-Ascoli. We use this to prove soundness of
our Abstract Representation, which is an equation-based representation of Simulink
models, with the operational semantics.

Definition 16 (Uniform Continuity of Functions). Let (X, dX) and (Y, dY) be metric
spaces. A function f : X → Y is said to be uniformly continuous if

∀ε > 0∃δ > 0∀a, b ∈ X : dX(a, b) < δ ⇒ dY (f(a), f(b)) < ε

Lipschitz continuity, which we introduce in the next definition, is another form
of continuity. It is a sufficient precondition for uniqueness of solutions of ordinary
differential equations, which we use to describe the behaviour of time-continuous
models. Intuitively, a function is Lipschitz continuous if its growth is bounded.

Definition 17 (Lipschitz Continuity). Let (X, dX) and (Y, dY) be metric spaces. A
function f : X → Y is said to be Lipschitz-continuous if a constant L ∈ R, L ≥ 0 exists
with

∀a, b ∈ X : dY (f(a), f(b)) ≤ L · dX(a, b)

A weaker condition is local Lipschitz continuity. A function is locally Lipschitz
continuous if the Lipschitz condition holds in an environment for every point of the
function’s domain.

Definition 18 (Local Lipschitz Continuity). Let (X, dX) and (Y, dY) be metric spaces.
A function f : X → Y is said to be locally Lipschitz-continuous if for every x ∈ X
there exists an environment U of x such that there exists a constant L ∈ R, L ≥ 0 with

∀a, b ∈ U : dY (f(a), f(b)) ≤ L · dX(a, b)

In other words, the Lipschitz condition must hold in the environment.

The next notion we introduce is the equicontinuity of functions. Unlike other
continuity notions, equicontinuity is a concept that refers to sequences of functions
rather than points in function’s domains. We use the equicontinuity as a precondition
to apply the Theorem of Arzelà-Ascoli, which we use to prove soundness of our
Abstract Representation with the operational semantics.

18 Chapter 2. Background

Definition 19 (Equicontinuity of Functions). Let (X, dX) and (Y, dY) be metric spaces,
F ⊆ Y X a family (i.e., a set) of functions. F is said to be equicontinuous if

∀ε > 0∃δ > 0∀f ∈ F∀a, b ∈ X : dX(a, b) ≤ δ ⇒ dY (f(a), f(b)) ≤ ε

Equicontinuity extends the concept of uniform continuity to a family of functions.
If F consists only of one function, equicontinuity and uniform continuity are the
same. If there is more than function in F , equicontinuity requires uniform continuity
for all functions in F and moreover that δ can be chosen depending on ε only, i.e.,
without dependence on the functions in F .

After having introduced the various forms of continuity, we define two forms of
convergence of sequences of functions. We start with the pointwise convergence,
which is intuitively the convergence of the sequence of values at a point in the
function’s domain. It yields a limit function.

Definition 20 (Pointwise Convergence of Function Sequences). Let (X, dX) and
(Y, dY) be metric spaces, (fn)n : X → Y be a sequence of functions. The sequence (fn)n is
said to be pointwise convergent to a function f : X → Y if the sequence of values fn(t)
converges to f(t) for all t ∈ X . In symbols

∀t ∈ X : lim
n→∞

fn(t) = f(t)

The uniform convergence, which we introduce next is a stronger form of conver-
gence than pointwise convergence. Intuitively, an εmust suffice for all functions and
all values of the function’s domain to keep them in a distance of at most ε around the
limit function. A big advantage of uniform convergence over pointwise convergence
is that continuity of the functions in the sequence transfers to the limit function. We
exploit this when we show the soundness of our Abstract Representation with the
operational semantics for time-continuous models.

Definition 21 (Uniform Convergence of Function Sequences). Let (X, dX) and (Y, dY)

be metric spaces, (fn)n : X → Y be a sequence of functions. The sequence (fn)n is said to
be uniformly convergent to a function f : X → Y if

∀ε > 0∃n0 ∈ N∀x ∈ X∀n ≥ n0 : dY (fn(x), f(x)) < ε

Equivalent to that, we can also formulate that

lim
n→∞

sup
x∈X

dY (fn(x), f(x)) = lim
n→∞

∥fn − f∥∞ = 0

The latter equation only applies if Y is also a normed space with supremum metric ∥.∥∞.

2.2. Mathematical Foundations 19

Some of the theorems we use in this thesis require a function to be bounded, i.e.,
the values of a function must be finite for all points in the function’s domain.

Definition 22 (Boundedness of Functions). Let (X, dX) and (Y, dY) be metric spaces,
F ⊆ Y X a family (i.e., a set) of functions. F is said to be

• point-wise bounded if

∀x ∈ X∃M ∈ R∀f ∈ F : ∥f(x)∥ ≤M

• uniformly bounded if

∃M ∈ R∀x ∈ X∀f ∈ F : ∥f(x)∥ ≤M

The next theorem, the Theorem of Arzelà-Ascoli [Tim08], provides conditions
for which a sequence of functions on a compact domain converge uniformly. We
use this theorem in our soundness proof of our Abstract Representation with the
operational semantics.

Theorem 1 (Theorem of Arzelà-Ascoli). Let F ⊆ C(M,R) be a family of continuous
functions, M ⊆ R a compact set. Then every sequence of F contains a uniformly convergent
subsequence if and only if F is point-wise bounded and equicontinuous. In this case, F is
even uniformly bounded.

Differentiation and Differential Equations

In this subsection, we introduce differentiation for multidimensional functions.
In this thesis, we use this concept in various situations. It is the foundation for
differential equations, which we use to describe behaviour of time-continuous
models. Moreover, we use the multidimensional differential, the Jacobi matrix, in
the calculation of the maximal difference ε of values from source and refactored
target model.

Definition 23 (Differentiable Functions, Differential, Jacobi Matrix). Let a ∈M ⊆ Rn

and f ∈ (Rm)M .

1. f is called differentiable in a if M is a neighbourhood of a and there exists a matrix
A such that

lim
x→a

f(x)− (f(a) +A(x− a))
∥x− a∥

= 0

2. Is ∅ ≠ E ⊆ M then f is called differentiable on E if f is differentiable in every
point of E.

20 Chapter 2. Background

3. f is called differentiable if f is differentiable on M .

The matrix A is uniquely determined. It is called the differential of f . If f is differentiable
in a, then the differential is determined by the Jacobi Matrix.

Jf (a) =
(
δfi
δaj

(a)

)
1≤i≤m,1≤j≤n

=

⎛⎜⎜⎝
δf1
δa1

(a) . . . δf1δan
(a)

...
...

δfm
δa1

(a) . . . δfmδan
(a)

⎞⎟⎟⎠
We also may write f ′(a) = Jf (a) or d

dxf(a) to denote the derivative.

Note that in this formula the following implicitly was assumed.

f(a) =

⎛⎜⎜⎝
f1(a)

...
fn(a)

⎞⎟⎟⎠ , a =

⎛⎜⎜⎝
a1
...
an

⎞⎟⎟⎠
The formulas δfi

δaj
(a) are the partial derivatives.

We briefly capture some rules for differentiation, which we use for calculation of
the ε, the maximal distance of values of source and refactored target model.

Lemma 5 (Rules for Differentiation). Let a ∈M ⊆ Rn.

1. Linearity: If f, g ∈ RmM are differentiable in a and α ∈ R, f + g and αf are
differentiable in a as well with

(f + g)′(a) = f ′(a) + g′(a), (αf)′(a) = αf ′(a)

2. Product Rule: If f, g ∈ RmM are differentiable in a, then fg is differentiable in a as
well with

(fg)′(a) = g(a)f ′(a) + f(a)g′(a)

3. Chain Rule: If f ∈ RmM is differentiable in a, N ⊆ Rm with f(M) ⊆ N , and
g ∈ RlN is differentiable in b := f(a), then g ◦ f is differentiable in a with

(g ◦ f)′(a) = g′(f(a))f ′(a)

Proof. See e.g. [For11]

The following lemma, the Mean Value Theorem, intuitively means that there is a
point in an open set where a function is differentiable whose differential is parallel to

2.2. Mathematical Foundations 21

the secant connecting the function’s values at the edge of the open set. We provide
it for the multidimensional case. The Mean Value Theorem is used as precondition
in various statements.

Lemma 6 (Mean Value Theorem). Let ∅ ≠M ⊆ Rn be an open set, a, b ∈M such that

]a, b[:= {a+ t(b− a)|0 < t < 1} ⊆M

which is the connecting line between a and b, is contained in M . Is f : M → Rn is
continuous on [a, b] = {a + t(b − a)|0 ≤ t ≤ 1} and differentiable on]a, b[, then there
exists z ∈]a, b[such that

f(b)− f(a) = f ′(z)(b− a)

Proof. See e.g. [For11]

In the following, we define ordinary differential equations. We use this concept
to describe the behaviour of time-continuous Simulink models.

Definition 24 (First Order Ordinary Differential Equation). Let M ⊆ Rn+1, f :M →
Rn, (t0, y0) ∈M . An ordinary differential equation of first order (ODE) is of the form

d

dt
y(t) = f(t, y(t)),y(t0) = y0

In this definition, we denote vectors with bold variables, i.e., y(t) =

⎛⎜⎜⎝
y1(t)

...
yn(t)

⎞⎟⎟⎠. A solution

of the ODE is a function λλλ : I → Rn on an interval I ⊆ R that fulfills the ODE equations,
i.e.,

t0 ∈ I ∧ ∀t ∈ I :
d

dt
λλλ(t) = f(t,λλλ(t))

Figure 2.4 shows a vector plot of an ODE and a solution. There, at each point
(t, y), a vector arrow in direction (1, f(t, y)) is depicted. The vector arrows indicate
the ascending slope for the solution at that particular point. A solution runs through
the initial point (t0, y0) and fits in the vector plot as shown in Figure 2.4. An
important question is under which circumstances a solution exists for an ODE and
when it is unique. In this thesis, we describe time-continuous behaviour via ODEs.
In order to show behavioural conformance of source and refactored target model, we
reason on solutions of ODEs. We provide sufficient conditions in our methodology
to conclude approximate behavioural equivalence. One of these conditions is the
uniqueness of the solution of ODEs. In the following two Theorems, we provide
conditions for existence and uniqueness of solutions for ODEs.

22 Chapter 2. Background

FIGURE 2.4: Vector Plot for an ODE

Theorem 2 (Existence Theorem of Peano). Let f : [a, b]×BR(y0)→ Rn be a continuous
function with BR(y0) = {y ∈ Rn|∥y − y0∥ ≤ R}. Let furthermore

d

dt
y(t) = f(t, y), y(a) = y0

be an ordinary differential equation and

M := max{∥f(t, y)∥|(t, y) ∈ [a, b]×BR(y0)}

This means, M is the maximal value of f on the compact set (which always exists due to
the Extreme Value Theorem (cf. [For07]) for continuous functions). Then, this ODE has a
solution on [a, a+ α] where

α := min

(
b− a, R

M

)
The case M = 0 is included by setting R

0 :=∞.

Proof. See e.g. [Aul04].

This includes the cases where f is defined on [a, b]× Rn and continuous. Then,
the solution exists on the whole interval [a, b].

Theorem 3 (Existence and Uniqueness Theorem of Picard-Lindelöf). Let f : S → Rn

with S := [a, b]×BR(y0) be a locally Lipschitz-continuous function in y, i.e.,

∃L ≥ 0∀t ∈ (t, y1), (t, y2) ∈ S : ∥f(t, y1)− f(t, y2)∥ ≤ L∥y1 − y2∥

Let furthermore
d

dt
y(t) = f(t, y), y(a) = y0

2.2. Mathematical Foundations 23

be an ordinary differential equation and

M := max{∥f(t, y)∥|(t, y) ∈ [a, b]×BR(y0)}.

Then, this ODE has a unique solution on [a, a+ α] where

α := min

(
b− a, R

M

)
.

If S = [a, b]×Rn and the Lipschitz condition holds globally there, then there exists a unique
solution on the whole interval [a, b].

Proof. See e.g. [Aul04].

The following lemma provides means to calculate the Lipschitz constant, which
is the bound for the maximal increase of a function. This constant in turn is used
for the calculation of the ε, the maximal distance of values of source and refactored
target model.

Lemma 7 (Sufficient Condition for Lipschitz Continuity). Let U ⊆ I ×O, I ⊆ R an
interval, O ⊆ Rn an open set, and f : U → Rn a function for which all partial derivatives
δfi
δyj

are continous, i.e., f is said to be continuously partially differentiable with respect to
y = (y1, ..., yn)

T . Then f is locally Lipschitz continuous. If O is convex and ∥Jf (y)∥∞ is
bounded on U , then f is globally Lipschitz continuous with respect to y. The value

L := ∥Jf (y)∥∞

is a suitable Lipschitz constant.

Proof. See e.g. [For11, Aul04]. The proof for the estimate of L uses the Mean Value
Theorem.

In our automation approach, we pay special attention on linear ODEs.

Definition 25 (Linear ODEs). Let I ⊆ R be an interval, A : I → Rn×n a continuous
function (Rn×n denotes the space of real-valued n× n matrices), b : I → Rn a continuous
function. Then

d

dt
y = A(t)y + b(t), y(t0) = y0

is called a linear ODE. Note that A can also only contain real values, i.e., constants.

The solutions of linear ODEs always exist and are unique. This follows directly
from Theorem 3 and Lemma 7.

24 Chapter 2. Background

2.2.4 Laplace Transform and z-Transform

In this subsection, we briefly introduce Laplace transform and z-transform. We use
these in our automation approach. They allow to represent ODEs and difference
equations as algebraic expressions. Such algebraic expressions can be automatically
checked for equivalence via symbolic unification with the help of a Computer
Algebra System.

Laplace Transform

A Laplace transform is a function that operates on a vector space of functions
mapping them to functions. The original function f is in this context sometimes
referred to as the function in time space, the Laplace transformed L(f) as the
respective function in the frequency domain. This terminology originates from
the Fourier series theory. There, periodical functions can be represented as infinite
sum of weighted sine and cosine waves. The Fourier theory is extended to cover
non-periodical signals as well. The coefficients for the frequencies of the involved
sine and cosine waves are calculated by an expression that is very similar to the
Laplace transform. The Laplace transform is a more generalised version of that.
Formally, the Laplace transform can be defined as follows [Gra12, Kai80].

Definition 26 (Laplace Transform). Let f : [0,∞[→ R a function with ∀t < 0 : f(t) =

0. The Laplace transform of f is defined as

L : C0([0,∞[→ C),L(f)(s) :=
∫ ∞

0
f(t)e−stdt

for all s ∈ C for which this limit exists.

Since in our automation approach, our equivalence check relies on Laplace
transform, we require a criterion for the existence of the Laplace transform. This
uses a notion that describes a property for functions, the at most exponential growth.

Definition 27 (Functions of at most exponential growth). A function f : [0,∞[→ R
is of at most exponential growth if
∃α > 0 : ∃M > 0 : ∃t0 > 0 : ∀t ≥ t0 : ||f(t)|| ≤Meαt.

Lemma 8 (Existence of the Laplace Transform). Let f : [0,∞[→ R be a continuous
function, and of at most exponential growth. Then β ≥ 0 exists such that L(f)(s) exists for
all s ∈ C with Re(s) > β, i.e., on a complex half plane, and converges absolutely.

The Laplace transform has some important properties that we exploit in our
approach for automated equivalence checking of Simulink models.

2.2. Mathematical Foundations 25

In particular, for linear ordinary differential equations (ODEs), the Laplace
transform yields algebraic equations, which can automatically be solved using
Computer Algebra Systems (CAS). The formal foundation for this are linearity and
the first derivative property of the Laplace transform.

Lemma 9 (Properties of Laplace Transform). Let f, g : [0,∞[→ C and L(f) exist for s
with Re(s) > α, L(g) exist for s with Re(s) > β.

• L(f + g) exists for s with Re(s) > max(α, β) and L(af + bg) = aL(f) + bL(g)
(linearity).

• Let f be differentiable, d
dtf continuous on]0,∞[and of exponential growth with rate

at most α > 0. Then L
(
d
dtf
)
(s) = sL(f)(s)− f(0+) for s with Re(s) > α. Note

that f(0+) := limt→0,t>0 f(t) (first derivative).

In our automation approach, we transform complex ODEs via Laplace transform
to algebraic expressions. We show in our approach that two expressions that are
the result of the Laplace transform are equivalent, which can be done automatically
with a CAS. In order to conclude that the original functions are equivalent as well,
we require the injectivity of the Laplace transform.

Lemma 10 (Injectivity of Laplace Transform). Let f, g : [0,∞[→ C be continuous and
of exponential growth with rate at most α > 0, β ≥ 0 the left bound of the half plane of
convergence. If ∀s ∈ C : Re(s) > β ⇒ L(f)(s) = L(g)(s), then ∀t > 0 : f(t) = g(t).

The requirement for continuity of the functions can be amended: Laplace trans-
form is also injective for piecewise-smooth functions as described in [AG08]. A
function is smooth if it is arbitrarily often continuously differentiable. It is piecewise-
smooth on the interval I if it is smooth there except for finitely many places
t0 < t1, ..., < tm. We require this relaxation if time-discrete partitions feed into
time-continuous partitions. In such cases, the signal or output function of the time-
discrete partition is not continuous. However, we require the injectivity in the
subsequent time-continuous partition. In essence, if we amend the prerequisite for
these cases, we are able to cope with them in our approach as well.

z-Transform

The analogon of the Laplace transformation for time-discrete functions is the z-
transform [EA06]. This enables to transform difference equations to algebraic ex-
pressions, which in turn enables automated symbolic equivalence checking via a
Computer Algebra System in our automation approach.

26 Chapter 2. Background

Definition 28 (z-Transform). Let (ak)k be a sequence of complex (or real) values. The
z-transformation of (ak)k is a function Z that associates a power series with the sequence.
For z ∈ C, this power series is defined as Z ((ak)k)(z) :=

∑∞
ν=0 aν

1
zν .

As for the Laplace transform, we define the notion of exponential growth for
sequences, which is used in the lemma for the existence of the z-Transform.

Definition 29 (Sequences of at most exponential growth). A sequence (ak)k is of at
most exponential growth if ∃α > 0∃M > 0∀ ≥ 0 : ||ak|| ≤Mαk =Meln(α)k.

As for the Laplace transform, we introduce conditions for the existence of the
z-Transform.

Lemma 11 (Existence of the z-Transform). If (ak)k as above fulfills the at most exponen-
tial growth condition of rate α > 0, then exists Z ((ak)k)(z) for z ∈ C, ||z|| > α.

Analogously to the Laplace transform, in our automation approach, we conclude
the equivalence of the solutions of the difference equations describing the behaviour
of time-discrete models, from the equivalence of z-Transformed expressions. To
enable this conclusion, we require conditions for the injectivity of the z-Transform.

Lemma 12 (Injectivity of the z-Transform). If (ak)k, (bk)k as above both fulfill the at
most exponential growth condition of rates α, β > 0 and ∀z ∈ C, ||z|| > max(α, β) :

Z ((ak)k)(z) = Z ((bk)k)(z). Then ∀k ≥ 0 : ak = bk.

As for Laplace transform, we introduce properties of the z-Transform. They
justify the transformation of linear difference equations to algebraic expressions,
which we exploit in our automation approach.

Lemma 13 (Properties of z-Transform). Let (ak)k, (bk)k sequences as above, of exponen-
tial growth of rates at most α, β > 0, c, d ∈ C.

• Z (c(ak)k + d(bk)k) exists for z with ||z|| > max(α, β) and Z (c(ak)k + d(bk)k) =

cZ ((ak)k + dZ ((bk)k) (linearity)

• Z (0, ..., 0, a1, ...)(z) = z−nZ ((ak)k)(z) (a shift/delay by n positions).

2.2.5 Numerical Mathematics Preliminaries

One of our criteria of this thesis is that we consider the approximate nature of the
semantics of signalflow-oriented languages. The reason for approximation coming
into focus is that although dataflow-oriented languages define blocks for time-
continuous signals, these cannot actually be evaluated in a mathematically precise

2.2. Mathematical Foundations 27

manner. Tools interpreting dataflow-oriented languages always run on machines
with finite space and computation duration. Therefore, they depend on numerical
approximation to solve time-continuous problems, e.g. ODEs.

It should be noted that basically there are two kinds of numerical approximations:
1) deviations originating from the application of approximation techniques in order
to solve time-continuous problems, e.g. use of Euler method to obtain a solution of
an ODE, and 2) deviations caused by imperfect arithmetics. The latter comes into
play because we deal with machine precisions, i.e., finitely many storage results in
finitely many digits that can be represented by machines. However, real numbers
may need infinitely many digits to represent them precisely. Hence, there is a gap,
which may be intensifyed by arithmetics running on machines.

In this thesis, we only consider the former approximation errors, i.e., those
resulting from approximation of time-continuous problems. This is consistent with
the operational semantics that is our formal foundation. However, our approach can
be extended to cope with imperfect arithmetics as well, which is left for future work.

In this section, we introduce the basic numerical concepts to provide an orienta-
tion in the domain of numerical approximation.

Basic concepts

Consider f : X → Y to be a function operating on some normed spaces X,Y . Let
x ∈ X be an undisturbed value and x̃ = x+ ε be a disturbed value. Let furthermore
be f̃ : X → Y a function representing the results from the application of a numerical
algorithm. The following properties are interesting to describe the relation between
f and f̃ .

• Condition: ∥f(x̃) − f(x)∥ What is the impact on the original problem on
disturbances?

• Stability: ∥f̃(x̃)− f̃(x)∥
How sensitive is the numerical algorithm to disturbances?

• Consistency: ∥f̃(x)− f(x)∥
How well does the numerical algorithm actually solve the problem?

• Convergence: ∥f̃(x̃)− f(x)∥
How well does the numerical algorithm solve the problem with disturbed
input?

28 Chapter 2. Background

The errors in the respective category are named like the category, e.g. we speak
of the consistency error, the convergence error. The first item concerns with distur-
bances of the original problem, the others concern with disturbances that occur due
to the approximation.

Consistency plays an important role for the soundness of our Abstract Repre-
sentation (AR) in Chapter 5. The AR is our mathematically precise representation
of dataflow-oriented models in terms of equations, particularly ODEs for time-
continuous models. We show in Chapter 5 that for time-continuous models, the
sequence of executions of the operational semantics of Simulink for sample step
sizes converging to 0 converges uniformly to a function that fulfills the equations
of the AR. The proof makes use of the consisteny of the numerical algorithms in
Simulink. We estimate a conditional error in our automation approach. There, we
partition given models, and propagate local disturbances ε through subsequent
partitions.

Consistency and stability play an important role in Chapter 6. There, we use
them to calculate the disturbance due to numerical execution in various model types.
We calculate a conditional error in 7. In this chapter, we automate our approach.
There, we provide a mechanism for propagation of the local error εl to obtain a
global error εg.

Single Step Approximation Techniques

Although theoretically a solution for an ODE exists in many cases, it is often not
possible to obtain an analytical solution, i.e., a function that can be formulated as
a closed mathemtatical expression. Therefore, solutions are approximated. Such
approximations or simulations run on a computer with finite amount of space
and run time. Hence, the theoretically uncountably many time steps can only be
approximated in finite runtime steps.

In this section, we provide a very basic introduction to approximation techniques
for ODEs. We restrict ourselves on single step techniques, particularly on the Euler
method, to make the concepts transparent. There are more sophisticated techniques
available, also in Simulink. However, our framework focusses on the concepts. Our
framework can easily be transfered to more sophisticated techniques. For more
details and a more detailed overview, e.g. the textbooks [Her04, But05, SWP12,
But16] can be used for reference.

A very basic but intuitive technique to calculate an approximated solution for an
ODE

d

dt
y(t) = f(t, y(t)), y(t0) = y0

2.2. Mathematical Foundations 29

FIGURE 2.5: Euler Method Principle

is the Euler method. Note that y can be a multi-dimensional vector. The concepts are
the same for this case. The Euler method defines a traverse, the Euler polygonal line,
to construct the approximated solution. Let h be a sample step size, then we define
the following sequence.

yn+1 = yn + h · f(tn, yn)

In the formula, y0 is given by the initial condition. The time steps tn are defined as
tn := t0 + n · h. Between time steps, the graph of the Euler polygonial line connects
the points (tn, yn) and (tn+1, yn+1) linearly. The idea of the Euler method is that
f(tn, yn) defines the derivative of the wanted solution at the point (tn, yn). This
is exactly the direction of the vectors (1, f(tn, yn)) in Figure 2.4. Hence, at point
(tn, yn) we take this derivative and move along the line pointing in the direction
(1, f(tn, yn)) for a distance of h until we reach the next sampling point (tn+1, yn+1)

where the calculation starts again.
Figure 2.5 illustrates one step of the Euler method. There, x is the exact solution

where (xn)n denotes the approximation. In the figure, the consistency error is called
local discretisation error, a synonymous notion. The method performs the same
iteration step at xn+1 as at xn. However, due to the approximation, we obtained a
consistency error, which needs to be considered in the next step. This implies that in
addition to the consistency error, a stability error needs to be considered. In other
words, the local discretisation errors sum up to a global error. We provide more
details in the next subsection.

A more general view on single step methods is that they define a process function
ϕ such that

yn+1 = yn + hn · Φ(h, f)(tn, yn)

30 Chapter 2. Background

The Euler method is then a special case with

Φ(h, f)(t, y) = f(t, y).

Another example is the Heun method with

Φ(h, f)(t, y) =
1

2
(f(t, y) + f(t+ h, y + hf(t, y)))

Very important in Simulink are also the Runge-Kutta techniques with the approxima-
tion being defined as follows.

Φ(h, f)(t, y) =
1

6
(k1 + 2k2 + 2k3 + k4), k1 = f(t, y), k2 = f

(
t+

1

2
h, f

(
y +

1

2
hk1

))

k3 = f

(
t+

1

2
h, y +

1

2
hk2

)
, k4 = f(t+ h, y + hk3)

All these techniques only use one time step to calculate the next time step. That
is why they are being called single step techniques. Multi step techniques use more
sophisticated calculations to provide better approximations. However, the concepts
stay the same.

Error Analysis for One Step Techniques

We need to consider the following errors that occur during the approximation.

1. The consistency error. This is the error that occurs during one sample step. This
is connected with the consistency of the numerical technique as introduced in
Section 2.2.5. Another more common term for this error is the local discretisation
error.

2. The stability error. In one step, the local error εl occurs. The value of the current
approximation step is being used to calculate the next step, which is expressed
by the formula

yn+1 = yn + hΦ(h, f)(tn, yn)

Hence, to calculate the inclination of the line for the next step, we use a
disturbed value. This issue is connected with the stability of the numerical
method as introduced in Section 2.2.5.

3. The convergence error. As we have seen in Section 2.2.5, the error we are
ultimately interested in is the convergence error, which can be calculated from

2.2. Mathematical Foundations 31

the consistency and stability error.

∥f̃(x̃)− f(x)∥ = ∥f̃(x̃)+ f̃(x)− f̃(x)− f(x)∥ ≤ ∥f̃(x̃)− f̃(x)∥+ ∥f̃(x)− f(x)∥

The first expression is the convergence, i.e., the distance of the overall approx-
imation to the exact solution. The last two summands are the stability and
consistency. So, the sum of both partial errors yields an estimate for the con-
vergence error. This error is also more commonly called the global discretisation
error.

An estimate for the global discretisation error for the Euler technique can be
given as followsn [SWP12].

Lemma 14 (Global Error for Euler Approximation Method). Let
d
dty(t) = f(t, y(t)), y(a) = y0 be an ODE that is approximated on the interval I :=

[a, b] ⊂ R with sample step sizes hn via the Euler method, i.e., we have an approximation
sequence

yn+1 := yn + hn · f(tn, yn), tn+1 := tn + hn

Let L be the global Lipschitz constant for the ODE, i.e.,

∀(t, y1), (t, y2) ∈ [a, b]× Rn : ∥f(t, y1)− f(t, y2)∥ ≤ L · ∥y1 − y2∥

Let moreover be λ : I → Rn be the (unique) solution of the ODE, which is two times
continuously differentiable.

Then, for the global error

εn+1 := ∥λ(tn+1)− yn+1∥

which is the convergence error, holds

εn ≤
1

2
(b− a)e(b−a)L max

a≤t≤b

 d2dt2λ(t)
 max
j=0,...,N−1

hj

where N is the maximal amount of sample steps.

The idea behind the proof is to provide an estimate for the local discretisation
error, i.e., the error that is made in one step. An estimate for the local discretisation
error is found with the help of the Taylor series of the solution of the ODE. With this,
the second derivative of this solution is introduced into the term. The local errors
sum up to a global error, which in turn can be estimated by the exponential function
as given in the formula.

32 Chapter 2. Background

Note that in Lemma 14, the consistency, i.e., the error in a single approximation
step, and the stability, i.e., the error due to disturbances from local consistency errors
of former approximation steps, have been considered. The ε increases with the
duration of the simulation interval.

We have now a specific error estimate for the Euler method available. Generally,
for single step techniques, we can define consistency and provide an error estimate
as well.

Definition 30 (Consistency of Single Step Methods). Let d
dty(t) = f(t, y(t)), y(t0) =

y0 be an ODE that is approximated on the interval I := [a, b] ⊂ R with sample step sizes
hn via a single step method, i.e., we have an approximation sequence

yn+1 = yn + hn · Φ(hn, f)(tn, yn), tn+1 := tn + hn

Let L be the global Lipschitz constant for the ODE, i.e.,

∀(t, y1), (t, y2) ∈ [a, b]× Rn : ∥f(t, y1)− f(t, y2)∥ ≤ L · ∥y1 − y2∥

Let moreover be λi : I → Rn be the (unique) solution of the ODE

d

dt
y(t) = f(t, y(t)), y(ti) = yi

.
The single step method is called consistent if

lim
h→0

sup
ti∈[a,b],yi∈Rn

∥yi+1 − λi(ti+1)∥
hi

= 0

The method has consistency order p ∈ N if

∃C > 0∃h0 > 0∀0 < h < h0 : sup
ti∈[a,b],yi∈Rn

∥yi+1 − λi(ti+1)∥ ≤ Chp+1

The constant C depends on the ODE. In Lemma 14, we have given a specific
formula. The order p depends on the chosen approximation method. Euler has
order 1, Runge-Kutta methods have higher orders.

Lemma 15 (Global Error of Single Step Methods). Let

λ : I → Rn

2.3. MATLAB/Simulink 33

be the solution of the ODE

d

dt
y(t) = f(t, y(t)), y(a) = y0

with Lipschitz continuous f in the second argument, Lipschitz constant L. Let furthermore
be

yn+1 = yn + h · Φ(h, f)(tn, yn), tn+1 := tn + h

be the sequence defined by a single step method, sample step size h. Then the following holds

1. Is the method consistent, then

εn = max
0≤i≤n

∥yi − λ(ti)∥
h→0−−−→ 0

2. Has the method consistency order p, then

∀0 < hi < h0 : εn = max
0≤i≤n

∥yi − λ(ti)∥ ≤
eL(b−a) − 1

L
Chp

where C, h0 > 0 are the constants from the definition of the consistency order.

Proof. See for instance [SWP12]

In this dissertation, we restrict ourselves to the Euler method for concrete cal-
culations of the global error ε, which plays an important role for the precision of
approximate bisimulation, i.e., the maximal deviation between source and target
model of a given refactoring. As we have seen, Euler has a very bad error estimate.
However, we want to demonstrate the principle in this dissertation. The users are
free to choose other approximation techniques and consequently use better estimates
as they instantiate our framework.

In the next section, we introduce MATLAB / Simulink, which we have chosen
as major representative for modelling languages capable of hybrid control system
development.

2.3 MATLAB/Simulink

Simulink is an addon package to MATLAB from The MathWorks, Inc. [TM17b]. It
is a graph-based, signalflow-oriented modelling language and development tool.
Simulink is widely used in the Model Driven Engineering process for the following
reasons: Its language is intuitive to use, provides a large block library, and supports
automatic code generation.

34 Chapter 2. Background

This demonstration models a flight control
for the longitudinal motion of a Grumman Aerospace F-14.

F-14	Longitudinal	Flight	Control

w, ft/sec

qdot

q, rad/sec

NzPilot, g

Pilot G-force
calculation-1

-1

-1

wg

qg

Dryden Wind
Gust Models

Stick, in

α, rad

q, rad/sec δcmd, deg

Controller

δ
e
, deg

wGust, ft/sec

qGust, rad/sec

w, ft/sec

qdot, rad/sec2

q, rad/sec

α, rad

Aircraft
Dynamics

Model

Actuator
Model

Scope2

1

In1

2

In2

3

In3

qGust

wGust

q, rad/sec

alpha, rad

NzPilot, g

Stick

FIGURE 2.6: Simulink Model Example

2.3.1 Syntax of Simulink models

A Simulink model is a graph. The vertices are called blocks, the edges are called
signal lines. An example of a Simulink model is depicted in Figure 2.6. There, a
model of an F-14 longitudinal flight control is depicted. The figure illustrates blocks,
signal lines, and subsystems, which contain submodels. One of the subsystems
contains a model to simulate wind gusts. Another subsystem contains the controller
that interprets the input coming from the stick, which is controlled by the pilot. We
also use this model as one of our case studies.

Simulink distinguishes between the following block types:

• Input blocks

• Output blocks

• Function blocks or direct-feedthrough blocks, e.g. sum, product, exponential
function

• Stateful blocks, e.g. Delay block, Integrator

• Subsystem blocks

Blocks can be associated with parameters. Stateful blocks like Delay blocks
or Integrator blocks have an initial value. Delay blocks keep a sample step time.
Figure 2.7 gives an overview over some block types. The user creates the model by
dragging and dropping the blocks from the library to the respective model page.

2.3. MATLAB/Simulink 35

FIGURE 2.7: Examples for Simulink blocks

The blocks are connected via point and click. A submodel can be grouped to a
subsystem via the context menu of the tool.

In the next subsection, we explain how Simulink models are interpreted.

2.3.2 Simulink Operational Semantics

The goal of this thesis is to obtain a methodology for formal verification of the
correctness of refactorings on data-flow oriented graph-based models. We choose
Simulink as representative for data-flow oriented models. However, The MathWorks,
Inc. only provides informal descriptions for the semantics of Simulink [TM17b].
This precludes the rigorous analysis of Simulink models. A formalisation of the
Simulink semantics is given in [BC12]. In the following, we briefly summarise the
phases of the semantics of Simulink informally. After that, we introduce the formal
operational semantics [BC12], which is our formal foundation.

Informal Semantics

As stated in the informal description for Simulink [TM17b], the system performs
the following steps for executing its models.

1. The first phase is the Initialisation phase. There, the model is compiled to
an executable format, linked, the parameters are initialised, and the model
hierarchy is flattened.

2. The actual simulation phase is a loop. In each cycle, the outputs for each
block are calculated and the states, i.e., the internal values for time-discrete
and time-continuous blocks. This yields the output for the simulation in the
current simulation step, i.e., at the current simulation time.

36 Chapter 2. Background

FIGURE 2.8: Overview over the evaluation steps of Simulink

3. If a variable step size solver is selected, after the calculation of the simulated
values, the next step size is calculated.

4. The whole simulation ends with a cleanup.

Figure 2.8 gives an overview over the simulation steps. After this informal
introduction we go over to a formally defined operational semantics.

Formal Operational Semantics

We provide a brief summary of the operational semantics [BC12], which is our
formal foundation. It is assumed that all signal lines are labelled in the form li.
Time-discrete blocks have an internal state denoted with di and time-continuous
blocks have an internal state denoted with xi.

Definition 31 (Semantical State of Simulink). A semantical state of Simulink is a
mapping σ : V → R where V = {li|1 ≤ i ≤ nb} ∪ {di|1 ≤ i ≤ nd} ∪ {xi|1 ≤ i ≤
nx} ∪ {t, h} that assigns values to all output variables li, and to the internal variables di
and xi of discrete respectively continuous blocks. The numbers nb, nd and nx express the
amounts of variables for the output of blocks, discrete and continuous respectively. The
distinguished variables t and h are used for the simulation time and the simulation step size.
We denote the set of semantical states of Simulink with Σ.

Parameters that are provided by the user are denoted by a function π. For
instance, π(t0) expresses the simulation start time, π(tend) the simulation end time,
π(h0) the initial simulation step size.

The operational semantics is defined by providing a set of inference rules. The
Simulink model is assumed to be flattened, i.e., all subsystems have been removed

2.3. MATLAB/Simulink 37

and the entire model is on one level. This is consistent with the informal semantics.
Simulink flattens the subsystem hierarchy prior to evaluating the model. As further
preparation, a set of syntactical equations and assignments, denoted with Eq, is
derived from the Simulink model. They are built by going through the model and
assigning a set of equations to each block. This is done as follows. Let lo denote
the output signal and li the input signal annotation, or l1, ..., ln if there are multiple
incoming signals.

• For direct-feedthrough blocks, the arithmetic or logical expression or the
instantiated function (in case of source blocks) is directly expressed. For
example, the constant block with constant c yields lo = c, the plus block with
two operands yields lo = l1 + l2.

• Time-discrete blocks keep an internal variable d, and sample steps, which
are contained in a set S. The idea behind that is that time-discrete blocks
are only evaluated at sample time steps in S. Between those time steps, the
values remain constant. We provide further details in the inference rules.The
equation set for instance for the Unit Delay block, which holds the input value
for one sample period, is given by lo =S d; d :=S li, d(0) := init, where the last
equation denotes the initialisation at the simulation start.

• For time-continuous blocks, consider the internal variable given as x. Then
the equation set is lo = x; ẋ = li;x(0) := init.

After these preparations, the inference rules are given.

Global Simulation Rule The global simulation rule is defined as

σ(t) ≥ π(tend)
Eq, π ⊢ σ → σ

σ(t) ≤ π(tend) Eq, π ⊢ σ M−→ σ1 Eq, π ⊢ σ1
u−→ σ2 Eq, π ⊢ σ2

s−→ σ′

Eq, π ⊢ σ → σ′

The symbolEq stands for all syntactical equations associated to blocks as defined
above. The symbol π (for parameter) is a function that associates values to distin-
guished variables, such as π(h) defines the global sample step size for fixed-step
solvers. The symbol σ denotes a state, i.e., σ ∈ Σ.

The first semantic rule lets the simulation end as soon as the user-defined sim-
ulation end time has been reached. Note that the user must always define a finite
execution time for an execution of a Simulink model. The second semantic rule

38 Chapter 2. Background

splits the simulation into three parts. The first transition is the M− transition (major
step transition), which basically evaluates all direct-feedthrough blocks and block
outputs. This includes equations of the form l = e and l =S e. The second tran-
sition is the u− transition (update transition), which evaluates the internal state
of all time-discrete blocks, i.e., sampled equations of the form d =S l. The third
transition is the s− transition (solver transition), which evaluates all internal states of
time-continuous blocks, i.e., equations of the form ẋ = li, and if necessary calculates
the next simulation step size. An update of the simulation step size is only necessary
if the user has activated the variable step size solver option. The alternative is the
fixed step solver option, which leaves the simulation step size constant.

Next, we describe the major step, update and solver transitions in detail.

Major step transitions For the major step transitions, an auxiliary o− transition
is introduced. This transition basically applies arithmetic or logic functions in
expressions. The connection with the o− transition is defined in the main major step
transition rule.

⟨Eq(M), σ⟩ o−→ σ′

Eq, π ⊢ σ M−→ σ′

The notation Eq, π ⊢ σ M−→ σ′ means that one can derive from the set of equations,
which is denoted by Eq that the state σ and the state σ′ are in relation via the major
step transition relation. The notation ⟨Eq(M), σ⟩ o−→ σ′ means that the state σ is in
relation with state σ′ via the o− transition under the determination given by the
equation set Eq(M). The set Eq(M) ⊆ Eq is the set of equations of the forms l = e

and l =S e, i.e., equations that determine the output of blocks.
We now provide the inference rules and give an explanation of their meaning.

⟨r, σ⟩ o−→ r ⟨l, σ⟩ o−→ σ(l)

⟨e1, σ⟩
o−→ r1 ⟨e2, σ⟩

o−→ r2

⟨e1 ⋄ e2, σ⟩
o−→ r1 ⋄ r2

⟨e1, σ⟩
o−→ true ⟨e2, σ⟩

o−→ r2

⟨if(e1, e2, e3), σ⟩
o−→ r2

⟨e1, σ⟩
o−→ false ⟨e3, σ⟩

o−→ r3

⟨if(e1, e2, e3), σ⟩
o−→ r3

⟨e, σ⟩ o−→ r

⟨l := e, σ⟩ o−→ σ[l← r]

The first set of inference rules describes how expressions are evaluated. The
symbol r in the first rule is a constant. This evaluates to its value. The second rule
states that the value of a variable symbol is determined by its value in the state.The
third rule is the application of arithmetic or logical functions, e.g. addition, product,
exponential function, and, or. The symbol ⋄ refers to the respective operation. In

2.3. MATLAB/Simulink 39

the second line, the first two rules define the behaviour for switch blocks, which
are represented by the if(e1, e2, e3) symbol in the preparation. The third rule in the
second line defines how an assignment is treated. The value replaces the value of
the respective variable in the state. The notation σ[l← r] is defined as

σ[l← r](x) :=

⎧⎨⎩r if x = l

σ(x) otherwise

The next set of rules defines how sampled outputs are calculated, i.e., it deals
with assignments of the form l :=S e. Such equations occur at time-discrete blocks,
e.g. the unit delay block. They have two kinds of variables - internal (denoted as d)
and output variables (denoted as l). The update of the internal variables is defined
in the u− transitions, which we introduce in the next paragraph. The update of the
(sampled) output variables are part of the M− transitions.

σ(t) ̸∈ S
⟨l :=S e, σ⟩

o−→ σ

σ(t) ∈ S ⟨e, σ⟩ o−→ r

⟨l :=S e, σ⟩
o−→ σ[l← r]

The first rule states that the value of the output remains constant, i.e., the state does
not change if the sample step time has not been reached. The state σ keeps for
variable t the current simulation time. The second rule deals with precisely this case
where the sample time has been reached. In this case, the expression is evaluated
and the respective value replaces the value in the state for variable l.

In the next paragraph, we explain how the internal variables for time-discrete
blocks are updated.

Update transitions The update transitions deal with the evaluation of internal
variables of time-discrete blocks. The respective assignments are of the form d :=S l.
The variable l is in this case associated with the incoming signal line of the respective
block.

d :=S l ∈ Eq σ(t) ̸∈ S
Eq, π ⊢ σ u−→ σ

d :=S l ∈ Eq σ(t) ∈ S
Eq, π ⊢ σ u−→ σ[d← σ(l)]

The first rule states that the value of the internal variable remains constant, i.e., the
state does not change if the sample time has not been reached. If the sample time
has been reached, the second rule applies. In this case, the value of the internal
variable is replaced by the value of the incoming signal, which is represented by the
evaluation of the state for the variable l.

In the next paragraph, we describe the evaluation of time-continuous blocks.

40 Chapter 2. Background

Solver transitions Note that the output variables are calculated in the major step
transition phase. The assignment defining the output for time-continuous blocks of
the form lout := x, where x is the internal variable of the respective block.

We provide the solver transition rule from the operational semantics.

Eq, π ⊢ σ i−→ σso Eq, π ⊢ σso
zc−→ σzc Eq, π ⊢ σzc

h−→ σ′

Eq, π ⊢ σ s−→ σ′

This rule splits the solver transition into three parts. Firstly, the integrator
transition (i− transition) is executed, which calculates the next approximation step
for time-continuous blocks. Note that although the blocks are called time-continuous,
their evaluation in the simulation semantics, which is defined in the operational
semantics, is not continuous in the mathematical sense. It has a finite step size,
which is generally smaller than for time-discrete blocks, and may be of variable step
size. However, its size is a finite number. The evaluation of time-continuous blocks
is therefore always an approximation. This results in the challenges we deal with in
this thesis. During the solver transition, the simulation step size can be modified.
However, this only applies if the user has activated the variable step size simulation
option.

The second part is the zero-crossing detection (zc− transition). This is required
if blocks impacting the control flow, e.g. switch blocks, are present in the model.
Such blocks feed through either one signal or another depending on the crossing of
the defined threshold by the control signal. If the user activated variable step size
simulation, the system tries to approximate the location of the threshold crossing up
to a user-defined precision.

The third part constitutes the calculation of the next simulation step size. During
the integrator transition, the simulation step size can already be modified. The zero-
crossing detection may modify the simulation step size again. The h− transition
takes the minimum of both.

Note that parts of the first (integrator transition), the second (zero-crossing
detection) and third (next simulation step size calculation) parts of the rule only
apply if variable step size calculation has been activated. Otherwise, the solver
transition consists only of the approximation parts of the integration transition.
Since in this thesis, we only consider fixed-step simulation (variable step simulation
is part of future work), we skip the semantical rules for zero-crossing detection and
calculation of the next simulation step size.

For fixed-step simulations, the solver transition therefore consists only of the
integrator transition. The integrator transition is the application of the chosen
approximation method, e.g. Euler, with the fixed simulation step size. In essence,

2.4. Summary 41

the solver transition reduces to the following in the context of this thesis.

Eq, π ⊢ σ i−→ σ′

Eq, π ⊢ σ s−→ σ′

In this rule, the integrator transition is the application of the chosen approximation
technique.

Note that just like the update and major step transitions, the integrator transi-
tions are applied for all time-continuous blocks simultaneously, i.e., the operational
semantics is a synchronous semantics.

2.4 Summary

In this chapter, we have provided the preliminaries that we use in this thesis. We
have started with a brief introduction to model refactorings and how they embed
into Model Driven Engineering, which is a common development approach for
embedded systems.

We have proceeded with mathematical preliminaries. In particular, we have
introduced some topological concepts, which are the basis of many aspects of
mathematical analysis and help to understand the concepts time-discreteness and
time-continuity. We then have introduced difference equations, sequences, and most
important properties of sequences. We use difference equations and sequences to de-
scribe the behaviour of time-discrete models in this thesis. We then have introduced
differentiation of functions, important properties of functions and sequences of
functions, and differential equations. The concepts of this section are of concern for
time-continuous models. We have introduced Laplace transform and z-Transform.
We use these transformations to obtain algebraic expressions from ODEs and dif-
ference equations. These expressions can automatically be checked for symbolic
equivalence with the help of a Computer Algebra System in our automation ap-
proach. We have closed the mathematical preliminaries with an introduction of
concepts from numerical mathematics. We use these concepts to obtain estimates
for the maximal difference between source and refactored target model due to the
approximation induced by the semantics.

We have closed this chapter with a discussion of the informal and formal se-
mantics for Simulink. The formal operational semantics [BC12], which we have
presented in this chapter, is the formal foundation of our approach.

In the next chapter, we discuss related work.

43

Chapter 3

Related Work

Hybrid systems can be modelled in control flow-oriented languages, and data
flow-oriented or signal flow-oriented languages. The most prominent control flow-
oriented hybrid systems modelling language are hybrid automata. The most im-
portant data flow-oriented or signal-oriented modelling languages are MATLAB/
Simulink, Modelica, and LabView. For both types of modelling languages, a broad
spectrum of work related with hybrid systems modelling, analysis and verification,
and verification of behavioural equivalence exists. Additionally, various articles
concerning model refactorings on signal flow-oriented modelling languages, par-
ticularly on Simulink, exist. However, to the best of our knowledge, there is no
known approach that concerns with formal verification of behavioural equivalence
on data flow-oriented languages such as Simulink available. Approaches concerning
behavioural equivalence do not account for the approximate nature that industrial
signal flow-oriented languages such as Simulink exhibit.

In this chapter, we give an overview over related work and distinguish our
approach from it.

3.1 Hybrid Systems Verification and Analysis

In this section, we discuss approaches related with verification and analysis of
hybrid systems modelling languages. We start with control-flow oriented hybrid
systems modelling languages and proceed with data flow-oriented languages. For
both types of modelling languages, we discuss verification approaches for properties
of models, and verification approaches to show behavioural equivalence.

3.1.1 Control Flow-Oriented Hybrid Systems Modelling Languages

There are various languages to model hybrid systems in a control flow-oriented
manner. The classical and most prominent representative are hybrid automata

44 Chapter 3. Related Work

FIGURE 3.1: An example for a hybrid automaton

[ACHH93]. An operational semantics for hybrid automata is defined e.g. in [LZ05],
a denotational semantics in [EP06].

Figure 3.1 depicts a simple example of a hybrid automaton taken from
[ACHH93]. In timed and hybrid automata, variables can be defined. The semantic
state is a pair consisting of the current location and the assignment storing the
values for each variable. There are two possible transitions: timed transitions (timed
automata) or continuous change (hybrid automata), and discrete changes. Timed
transitions are changes of the assignments, i.e., the variables’ values change. For
timed automata this means a strictly monotonic increase of the real values assigned
to variables. For hybrid automata, this means a continuous evolvement of real values
assigned to variables that follow the trajectories of differential equations given in
the location that is currently active in the semantical state. According to [MMP91], it
is possible to define both time-discrete and time-continuous variables. Time-discrete
variables keep their values constant in a defined interval, while time-continuous
variables define an arbitrary change of values over time - as long as it follows a
continuous function. Discrete transitions are changes of the location. This is possible
if the property of a guard associated with a transition originating from the current
location is fulfilled. The focus for this kind of modelling is therefore at the definition
of value evolvement over time and control flow rather than defining signal flow. We
therefore speak of control flow-oriented hybrid modelling languages, among which
hybrid automata are the major representatives.

Verification of properties for general hybrid systems quickly becomes undecid-
able, e.g. the question if a run exists is undecidable [ACHH93, HKPV95]. Therefore,
hybrid systems are restricted to be able to verify some properties for constrained
systems. An example for such constrained systems are linear hybrid systems
[SRKC00, VCSS03, HHWT97], i.e., systems that are defined by linear differential
equations.

Alternative representations of hybrid systems, i.e., apart from hybrid automata,
describe the behaviour directly as differential equation systems. This can be enriched
by conditions for discrete jumps, as for example in switched systems [Bra98, PP03].

3.1. Hybrid Systems Verification and Analysis 45

Switched systems define a set of differential equations that apply if a given condition
is met. This is a concept analogous to the discrete transitions that change the
trajectory defined as differential equation in one location to a trajectory defined by a
different differential equation in the subsequent location. The trajectories between
switches in such systems are smooth, i.e., arbitrariliy often differentiable. There exist
other forms and variations of hybrid systems, e.g. a subform of switched systems
are sampled-data hybrid systems [SK00b], which force the discrete jumps to occur
at defined sampling times. This is a restriction to guards at transitions. Moreover,
an important variation is the representation of hybrid systems as hybrid programs,
where Platzer defined hybrid programs together with a Differential Dynamic Logic
[Pla08], a hybrid analogon to Timed Logics.

Property Checking

There exists a very broad spectrum for hybrid system analysis and verification ap-
proaches. One major domain is a calculation of an over-approximation for reachabil-
ity sets, i.e., subsets of the state space where the trajectories resulting from executions
of the system are located. Examples for such over-approximations are calculations
of flow pipe polyhedra [CK03] and Taylor approximations [LT05]. Other approaches
follow a symbolic analysis [AHH96], or use abstractions [AHLP00, Tiw08], i.e., re-
duce the state space by defining a less complex model that presumes the properties
of interest. Moreover, symbolic simulation has been discussed in [DM07, JFA+07].
Such approaches bundle inputs by using symbolic analysis techniques to identify
such simulation traces that do not differ with respect to the property that is desired
to be verified.

Besides reachability analyses, stability and robustness analyses are of special
interest for hybrid systems, e.g. in [GST12, Laz06, PL96], or for switched hybrid
systems in [PP03, Bra98]. Stability basically means that a variation of initial values
does not lead to diverging behaviour. Either a global threshold, i.e., a maximal
distance of the disturbed solution in comparison to a distinguished solution, the
equilibrium or attractor can be given, or disturbed solutions converge against the
equilibrium. The downside of these approaches is that they require a Lyapunov
function [Tes12]. Such a function guarantees stability. It is important especially for
non-linear systems. While the check for a given function to establish if it is Lyapunov
is a simple task, an automated search for a suitable Lyapunov function is impossible.
In our approach, we do not consider stability of the differential equations. Our
estimate for the maximal disturbance, which in turn yields the precision ε of the
approximate bisimulation, is possible without constraints.

46 Chapter 3. Related Work

There are various tools available that support automated verification. HyTech
[HHWT97, AHH96] was the first model checker for reachability analysis on hy-
brid systems. It uses polyhedra over-approximation. The models are restricted
to linear hybrid systems. The tools CheckMate [SRKC00, SK00a, CK99] and d/dt
[ABDM00] also calculate over-approximations of reachable sets using polyhedra.
SpaceEx [FLGD+11] is an approach that scales better than the previous approaches.
It uses other over-approximation techniques than polyhedra for linear hybrid sys-
tems. Another important tool, which is a theorem prover capable of machine-
assisted verification of hybrid programs and Differential Dynamic Logic is KeY-
maera [QML+15, PQ08].

Equivalence Checking

An important part of hybrid systems analysis concerns the verification of behav-
ioural equivalence. To this end, the equivalence notion of approximate bisimulation
has been introduced [GP11]. We adapt this concept in our approach to data flow-
oriented languages, particulary Simulink, to cope with the approximate nature of
such models. There are various approaches that apply the concept of approximate
bisimulation and describe verification of behavioural equivalence for hybrid systems.
Examples are [GP07a, Gir05] for constrained linear systems, and [PGT08, GP05] for
non-linear systems. In [GP07b], an approach has been proposed to calculate a
precision ε for approximate bisimulation. It requires a Lyapunov-like function
[Tes12] for the estimate. Another approach for conformance in hybrid models is
[AMF14]. There, the authors introduce a new notion of approximately equivalent
behaviour, which takes time step distances besides the distances of values into
account. Furthermore, the authors calculate the conformance, i.e., approximately
equivalent behaviour, based on running tests, e.g. between simulated model and
generated code.

All these approaches assume an exact evaluation of the differential equations.
They therefore do not account for the approximate nature we consider for industrial
signal flow-oriented languages.

3.1.2 Data Flow-Oriented Hybrid Systems Modelling Languages

Important representatives for data flow-oriented languages that are widely used are
Simulink, Modelica, and LabView.

Simulink is a data flow-oriented language for hybrid control systems. It is an
extension of MATLAB. For Simulink’s semantics [TM17b] only informal descriptions
exist. While it is sufficient to work with Simulink from a user perspective, they are

3.1. Hybrid Systems Verification and Analysis 47

insufficient to provide a formal foundation for formal verification. There therefore
have been various approaches to formalise the semantics and perform verification on
Simulink models. In most cases, a formal semantics has been achieved by mapping
subsets of Simulink to some well-established formal languages. For example, in
[HRB13], Simulink models are mapped to UCLID. In [TSCC05], this is done with
the synchronous data flow language LUSTRE. In [Bos11], the semantics of Simulink
is described via synchronous data flow graphs. All these approaches only cope
with time-discrete models. In [BCC+17], the authors translate hybrid Simulink
models to Zélus, a synchronous language that conservatively extends Lustre with
ODEs to program systems that mix time-discrete and time-continuous signals. In
[ASK04], Simulink models are translated to hybrid automata. This enables further
investigation of hybrid automata semantics, e.g., in [EP06] or [LZ05]. The same
is performed in [MMBC11]. There, the authors use the tool HyLink to translate
Simulink models to hybrid automata. However, the approximate nature of Simulink
is no concern in these approaches.

Modelica is an equation-based, data flow-oriented or signal flow-oriented lan-
guage for modelling hybrid systems. The models are defined textually, in a data
flow-oriented way. Modelica also has a data flow-oriented visualisation. As it is
the case with Simulink, Modelica has only an informal description [Ass17, FE98].
In [Kå98], a first approach has been proposed to provide a formal semantics for
parts of Modelica. There, Modelica structures are translated to a formal language
called Flat Modelica. Another approach is given by [FTCW16]. In this article, the
authors develop a theory of hybrid relations inspired by Hybrid CSP [LLQ+10] and
Duration Calculus [CRH93]. With this, semantics for a subset of Modelica can be
expressed.

LabView [WA10, EVZH07] is a graphical programming language for data flow-
oriented hybrid control models. In [MS98], a real-time semantics for a basic subset
of LabView has been proposed.

In most of these approaches, only parts of the languages have been consid-
ered, e.g. [HRB13, TSCC05] considers only time-discrete Simulink models. While
[MMBC11, ASK04] opens the possibility to use tools for hybrid systems for verifi-
cation, the approximate nature of data flow-oriented languages is not taken into
account. [BCC+17] expresses hybrid Simulink models in terms of a functional
language. However, they also do not consider approximate executions. The first
and only known approach to describe Simulink’s semantics comprehensively and
formally as operational semantics has been conducted in [BC12]. We use this as our
formal foundation. Based on this, we construct a denotational semantics.

48 Chapter 3. Related Work

Property Checking

Above, we have provided an overview over existing approaches to formalise se-
mantics of data flow-oriented modelling languages. Many of these approaches
aim at property checking and define a formal semantics as prerequisite for formal
verification. Hence, many of the approaches from above apply as well to property
checking. For instance, in [HRB13], the SMT (satisfiability modulo theories) solver
UCLID is used for verification of properties on Simulink models. In [TSCC05], this
is done with the synchronous data flow language LUSTRE. In [Bos11], an approach
for contract based verification is presented.

In [RG14], the authors use Boogie, a verification framework developed at Mi-
crosoft Research, for verification of time-discrete Simulink models. A different
approach for time-discrete Simulink models is [AKRS08]. There, the authors symbol-
ically execute time-discrete Simulink models in order to obtain a set of initial states
such that the execution of Simulink starting from those states leads to behaviour
equivalent to a given initial state. Simulink also comes with a tool for verification
itself: the Simulink Design Verifier [HDE+08]. The idea is to provide additional
blocks for Simulink allowing to check various properties for signals, and to check
for compliance with modelling guidelines.

In [KKR09], an approach for formal verification of properties of LabView models
with the ACL2 Theorem Prover [KM97] has been proposed. To this end, annotated
LabView programs are translated to ACL2.

All these approaches do not consider behavioural equivalence of data flow-
oriented models.

Equivalence Checking

There are various approaches considering verification of behavioural equivalence
of Simulink models. In [MSUY13, SSD12, CMKSP10, RS09], approaches are pre-
sented to verify equivalence between Simulink models and generated code. They
distinguish themselves from our approach by comparing model to code rather than
comparing two models. The same applies to [SDS15, SSD12], where the authors
compare Simulink with low level implementations. In [HKAS14], an approach
to verify constrained equivalence for Simulink models is desribed. The authors
translate Simulink models to the formal language PVS [ORS92] and use this system
to verify behavioural equivalence. However, this approach is also only capable
of dealing with simple directed models without feedback loops. Moreover, the
approximate nature of Simulink is not taken into account.

3.2. Model Refactorings for Data Flow-Oriented Languages 49

To the best of our knowledge, there are no known approaches for Modelica or
LabView concerning behavioural equivalence.

3.2 Model Refactorings for Data Flow-Oriented Languages

For the design and application of refactorings in Simulink, several approaches exist.
In [Mat14], a taxonomy of model mutations is defined. The author’s idea is to inject
various small modifications of the model to enable enhanced clone detection. Clone
detection, e.g. described for Simulink in [DHJ+10], is a major source for model
refactorings. Model clones in a narrow sense are subgraphs of the model that occur
multiple times in the model. In a broader sense, a model clone is a subsystem
occuring multiple times in the overall model, and exhibiting the same or equivalent
behaviour. This means, the clones can be of different appearance from graphical
or syntactical perspective, but have an equivalent behaviour. An induced model
refactoring in this case is to delete all occurences of the found clones, establish a
new subsystem with one of the representative of the clones, and correctly reconnect
the newly established subsystem. In [ABSH11], this is further developed yielding a
normalisation of Simulink models. Simulink offers model clone detection as part of
their product Simulink Check [TM17a]. However, all these approaches are limited
to syntactical or very simple algebraic refactorings. In particular, they support
renaming of blocks, assembling of model parts into subsystems, and changes of
multiplications of constants or similar simple arithmetic changes. They do not
provide an approach for formal verification of behavioural equivalence.

In [TWD13], the authors present Simulink refactorings that allow subsystem
and signal shifting in arbitrary layers. This means, blocks can be assembled to
subsystems, signals in busses. This operation can be reversed: A signal can be
extracted from busses, blocks can be shifted in the subsystem level hierarchy as well.
The approach ensures a correct reconnection in the process. The approach is limited
to syntactical or very simple algebraic refactorings as well.

For Modelica refactorings, only few approaches exist. In [FPNB08], ideas for text-
based refactorings for Modelica are proposed. The aim of the presented approach is
to provide a pretty-printer for Modelica that keeps remarks and formatting in the
refactoring process. The refactorings are only of syntactical nature. In [HNNA09],
refactorings in the form of renaming are supported.

In [SLZ08], a general approach for refactoring on Dataflow Visual Programming
Languages (DFVPLs) is presented and applied to LabView. There, the authors
present a framework for data flow-oriented languages. The supported refactorings
are adding and removel of parameters, change order of parameters, renaming,

50 Chapter 3. Related Work

function or subsystem removal or extraction. These refactorings therefore also
mainly focus on syntactical refactorings.

In summary, there are various approaches for refactoring of data flow-oriented
languages. However, they mainly focus on syntactical refactorings. Semantical
refactorings, e.g. the replacement of a subsystem represented by a differential
equation by a subsystem representing its analytical solution, are not considered in
these approaches. Moreover, they do not provide formal verification of behavioural
equivalence.

3.3 Summary

There exists a broad spectrum of approaches that is related to our thesis. First of all,
there is the wide area of control flow-oriented hybrid system modelling languages,
of which hybrid automata is the most prominent representative. However, these
approaches assume an exact evaluation of time-continuous model parts. In this the-
sis, we aim for behavioural equivalence on industrially relevant data flow-oriented
or signal-oriented languages. Such languages are executed on machines with finite
execution time. Their semantics therefore involves approximations, which control
flow-oriented hybrid system modelling approaches do not account for.

Secondly, there are various approaches concerning data flow-oriented or signal
flow-oriented languages. The most prominent representative is Simulink, which
we have choosen in our approach to demonstrate our concepts. They lack formal
semantics, which is typically overcome by translating subsets of the languages to
formal languages. [BC12] provides a formal operational semantics for Simulink,
which is comprehensive, and accounts for the approximate nature of industrial
signal-oriented languages, particularly Simulink. We therefore use this approach as
our formal foundation. Approaches for verification of data flow-oriented hybrid
modelling languages do either not concern with behavioural equivalence or do not
account for the approximate nature that industrial signal-oriented languages exhibit.

Thirdly, there are various approaches considering refactorings of data flow-
oriented hybrid models. However, firstly they aim mainly at syntactical refactorings
such as subsystem merge, or simple arithmetic changes in models without feedback
loops. Secondly, they do not consider verification of behavioural equivalence.

To the best of our knowledge, there is no approach available yet that allows for
the automated verification of refactorings for hybrid data flow-oriented or signal-
oriented models.

51

Chapter 4

Formal Verification of Behavioural
Equivalence of Hybrid Control
System Models

Embedded systems are often employed in safety-critical environments. Models tend
to become very complex in the model-driven engineering process and often violate
modelling guidelines. Refactorings are very common to reduce complexity and
establish compliance with guidelines. However, they are often performed manually,
e.g. as in [TWD13]. In this process, it is likely to introduce erroneous behaviour.
To overcome these problems, we propose an approach to verify the results of the
transformation, i.e., we define a methodology that enables automated verification
of behavioural conformance of a hybrid control system model and its transformed
counterpart.

Our approach is twofold. Firstly, we provide a theoretically well-founded me-
thodology for the formal verification of behavioural equivalence of dataflow-orien-
ted hybrid system models. Secondly, we provide an approach for checking be-
havioural conformance for a linear subset of hybrid control systems. This approach
enables largely automated proofs. We achieve this by automatically generating
proof obligations for data flow-oriented hybrid control system models, and by
checking symbolic equivalence by using a Computer Algebra System (CAS). We
have published our methodology and automation approach in [SHGG18].

In this chapter, we firstly discuss limitations and assumptions of our approach.
Then, we provide an overview of our methodology. Finally, we briefly introduce
of our approach for a semi-automated equivalence checker for a subset of data
flow-oriented hybrid control models.

52 Chapter 4. Verification Approach

4.1 Limitations and Assumptions

We split our limitations and assumptions to those that apply to our methodology
and those that apply to our automation approach.

4.1.1 Methodology Limitations

The following limitations and assumptions apply to our methodology.

1. We do not consider MATLAB S-Function blocks, libraries, and external code.

2. While we consider virtual subsystems, we do not consider atomic subsystems.

3. We do not support algebraic loops, i.e., each cycle must contain at least one
stateful block.

4. Our approach is only able to verify correctness of refactorings that keep the
control flow, i.e., control flow elements are not reduced.

5. Time-discrete and time-continuous blocks are not used in the same feedback
loop.

6. While we do consider approximation errors resulting from numerical solving
of ODEs, we do not consider approximation errors resulting from arithmetical
operations on floating point values.

7. We assume fixed simulation step size.

The first three limitations concern the blocks that we currently support. We do
not support external code or MATLAB code. In this thesis, we focus on data flow-
oriented languages and do not consider textual programming languages. We refer
atomic subsystems to future work. Algebraic loops do not play an important role
in industrially relevant applications. The idea for the usage of feedback loops is
mainly to model reactive behaviour, which requires a stateful block within the loop.
The fourth limitation concerns with completeness of our approach. Our approach
declines refactorings altering the control flow - even though the refactoring may be
correct. An example for a refactoring that would be declined although exhibiting
equivalent behaviour would be if one data flow path is never reached because the
control flow condition is never fulfilled. In this case, the particular data flow path
and the control flow block could be removed, which would be a correct refactoring.
However, our approach is not able to verify this automatically, i.e., our approach
is not complete. It should be noted that due to Rice’s theorem [HMU01], it is not
possible to obtain an automated approach that decides if two arbitrary data flow

4.1. Limitations and Assumptions 53

models behave equivalently. The fifth contribution limits supported models. Our
theoretical methodology in principle also supports models where time-discrete and
time-continuous parts occur together in the same feedback loop. However, models
containing both time-discrete and time-continuous parts, mathematically represent
delay differential equations. Such equations generally only allow interval-wise
solutions, which limits the possibilities substantially for refactorings. Since we
aim at verifying correctness of relevant refactorings, our restriction is reasonable.
However, we discuss cases where time-discrete and time-continuous parts occur
together in a feedback loop in Chapter 6 and point into directions for future work
to cover this aspect as well. The sixth constraint is conform with the operational
semantics [BC12], our formal foundation. In this thesis, we focus on numerical
approximation errors from discretisation of time-continuous model parts rather than
floating point arithmetic errors. We have not considered variable step size semantics
in this thesis. However, by considering the additional semantical rules for variable
step size solving, our methodology can be extended. We leave this for future work.

There are some additional constraints whose purpose is mainly to simplify the
notation.

1. We assume that all stateful time-discrete blocks (if present) are sampled with
the same step size.

2. The simulation start is t0 ≥ 0.

The first limitation simplifies the notation. If we allowed varying sample step sizes
among time-discrete blocks, sequences would not suffice to describe the behaviour
of time-discrete models. However, our methodolgy can be extended to cope with
differing sample step sizes among time-discrete blocks. The second assumption
is a prerequisite to apply the Laplace transformation in our automation approach.
However, it is always possible to translate the simulation start time to 0 if this is not
directly the case.

4.1.2 Automation Approach Limitations

In order to obtain a largely automated solution for behavioural equivalence ver-
ification, our automation approach is limited to a subset of Simulink models. In
particular, we apply the following additional constraints to our automation approach
and our implementation.

1. We only consider Switch blocks as elements impacting the control flow.

54 Chapter 4. Verification Approach

2. We only consider Delay blocks and Discrete Transfer Function blocks as rep-
resentatives for time-discrete stateful blocks, and Integrator and Transfer
Function blocks as representatives for time-continuous stateful blocks.

3. All differential or difference equations that are extracted from the models must
be linear for the automation approach. Input signals are connected to cyclic
submodels via Sum blocks only.

The main focus of our automation approach and implementation is to 1) provide a
semi-automation, and 2) demonstrate the applicability on a prototypical, conceptual
level. The first constraint limits the control flow elements. Control flow elements in
data flow-oriented languages control which data is fed through. This is to a certain
extend comparable to an if-then-else-statement of textual programming languages.
Hence, on a conceptual level, the basic Switch block incorporates the main attributes
of a control flow element. The second constraint limits the stateful blocks. However,
conceptually, the blocks we support exhibit the relevant time-discrete and time-
continuous behaviour. Moreover, even with the restriction to these blocks, our
automation approach allows to verify correctness of many industrially relevant
refactorings. The third constraint is a tribute to obtain a largely automated approach.
Non-linear equations required a case by case consideration in many cases, which
would lead to a mechanised approach with many manual interactions rather than
semi-automation.

We are confident that our approach can be extended to cope with all limitations
in future work.

4.2 Theoretical Methodology

Figure 4.1 provides an overview over our methodology for verification of behav-
ioural conformance of hybrid control system models. We consider three levels.
Firstly, on the syntactical level, we have the Simulink models we wish to compare.
These models are semantically interpreted in the second level, the operational
semantical level as depicted in Figure 4.1. The third level is the denotational level.
It describes the behaviour of the models in a denotational style. In Figure 4.1, our
main contributions are depicted in numbered boxes. The numbers refer to the order
in which we describe the contributions in this section.

Automated Extraction of the Abstract Representation As depicted in Figure 4.1,
the Simulink models are interpreted by an operational semantics. We use the se-
mantics described in [BC12] as formal foundation. It defines a transition system.

4.2. Theoretical Methodology 55

FIGURE 4.1: Overview over the Equivalence Proof Methodology

The transitions between states are formally described by inference rules. We have
provided a summary of the approach [BC12] in Chapter 2. However, the operational
semantics is not suitable for an automated verification of behavioural conformance if
semantical refactorings, such as replacement of a differential or difference equation
by its analytic solution, are involved. The reason is the following: To prove be-
havioural conformance, we compare the trajectories of the executions of the models.
The operational semantics describes the behaviour step-wise rather than considering
the trajectories as a whole. We have therefore defined a formal semantics of Simulink
on a denotational level, which we call Abstract Representation (AR). We denote the
AR of the model M as JMK. It consists of equations describing the behaviour of the
model. In case of time-continuous models, the AR comprises differential equations,
in case of time-discrete models, the AR comprises difference equations. To cope
with control flow elements, we define a set of models that represents all possible
data flows. We call these data flow models. A data flow model represents an execution
of the Simulink model if the conjunction of conditions given as parameter at control
flow elements is fulfilled. For each data flow model, the AR is extracted. The union
of ARs of all data flow models together with the conjunction of conditions at control
flow elements properly represents the semantics of the Simulink model.

The solutions or interpretations of the AR, denoted as f |= JMK, represent the
trajectories of the execution of the models in an exact, mathematical sense. For
time-continuous models, the solutions are time-value functions, for time-discrete
models, the solutions are sequences, which in turn represent interval-wise constant

56 Chapter 4. Verification Approach

functions. Our AR is sound with regard to the operational semantics in the following
sense: Consider a sequence of operationally semantical executions with decreasing
simulation step size. Then, this sequence of trajectories at the points of observations
converges uniformly to the mathematical interpretation f |= JMK, i.e., the function
f solving the AR JMK. In our first main contribution, we define the AR, prove
its soundness, and describe how the AR can be automatically extracted from the
models. We have published this in [SHGG15, SHGG16b] and describe it in Chapter
5 in this thesis.

Operational Semantics Extension In order to be able to cope with a subset of
Simulink models that is relevant for several industrial applications, we extend
the operational semantics [BC12]. Our extension comprises semantics of Transfer
Function blocks and logical blocks. Particularly Transfer Function blocks play
an important role in many applications. We extend the operational semantics by
providing alternative expressions for the blocks that we add that exhibit equivalent
behaviour in the operational semantics. The extension of the semantics is then
achieved by reducing the semantics of those blocks to semantic rules that are already
covered by the operational semantics. Additionally, we demonstrate how stateful
blocks apart from those we have described in Section 4.1 can be expressed by
semantically equivalent subsystems we already support. With that, we demonstrate
how our approach can be extended to cope with other blocks as well. This forms
our second contribution.

Approximate Bisimulation for Simulink The question our approach answers can
be found on the operational semantical level and can be stated as ‘Do the transition
systems conform to each other?’ As described in Chapter 1, we cannot always
conclude that the semantical executions of both models yield exactly the same val-
ues. The reason for this is basically that although time-continuous functions map
values to uncountably many time steps, concrete solutions of data flow-oriented
languages such as Simulink are only able to calculate values for finitely many time
steps. Consequently, these tools need to approximate operations such as approximate
integration. However, we can calculate a maximal distance for the values at the
points of observation. This maximal distance depends on some parameters deter-
mined by the model, the chosen approximation method, the sample step size, and
the interval length of the execution of the Simulink model. It increases with the
simulation interval length. Hence, we provide this distance for a specific execu-
tion with a specific interval length. To obtain a formally well-founded equivalence
notion that accounts for approximal distances rather than exact values, we adapt

4.2. Theoretical Methodology 57

the approximate bisimulation [GP11] to Simulink. This is our third contribution.
We have published this in [SHGG15, SHGG16b] and describe it in Chapter 6 of this
thesis.

Automated Derivation of Proof Obligations To prove aproximately equivalent
behaviour of Simulink models, we focus on the denotational level and show exact
equality for the interpretations of the respective ARs. The central theorem, which
forms our third contribution, can chiefly be reduced to the following statement:
Consider the interpretations of the ARs

f, g : I → R, f |= JMK, g |= JMtK

Here, I stands for the simulation interval, M,Mt for the models we wish to compare.
If we can show

∀t ∈ I : f(t) = g(t)

then we can conclude
M ∼ε Mt

The latter formula stands for approximate bisimulation with precision ε between M
and Mt. In our contribution, we provide various proof obligations that need to be
checked in the process of automated verification in order to draw the conclusion
for approximate bisimulation. The main part is a symbolic equivalence check to
show that the interpreting functions of the ARs of source and target model in all
data flow models are the same. We have published this in [SHGG15, SHGG16b].
Another set of proof obligations concerns with conditions at control flow elements.
They ensure that no time-delayed behaviour due to different switching in source
and target model occurs, or identify time intervals in which such behaviour may
occur. We have published this in [SHGG16a]. We describe this fourth contribution
in Chapter 6 of this thesis.

Automated Epsilon Calculation Approximate bisimulation is a notion to express
behavioural equivalence within an ε environment, i.e., the values the execution
yields vary around each other with a maximal distance of ε. The case ε = 0 implies
a coincidence of approximate bisimulation and traditional bisimulation. We show
that the case ε > 0 occurs if a refactoring is the (partial) replacement of an ODE by
its analytical solution. Moreover, we provide means to calculate ε. In general, the
calculation of ε depends on the chosen approximation technique, the simulation
step size, an estimate of the upper bound of the second derivative of the solution of

58 Chapter 4. Verification Approach

the AR, the length of the simulation interval, and the Lipschitz constant, which is
a constant being inherent with the ODE of the AR. We describe how each of these
parameters can automatically be obtained from the AR, and how they are used to
automatically calculate the ε. If ε > 0, the value of ε increases with the simulation
interval length. If we want to explicitly emphasise thie dependency, we denote this
by ε(#I), where #I denotes the length of the simulation interval I.

We have published this in [SHGG15, SHGG16b, SHGG16a] and describe this
fifth contribution in Chapter 6 of this thesis.

The contributions depicted in Figure 4.1 form our methodology. We provide a
semi-automated approach for verification of behavioural equivalence for a subset of
Simulink models whose AR only contains linear differential or difference equations.
We describe the elements of our semi-automation in the next section.

4.3 Automation of our Equivalence Proof Methodology

Our automation approach applies our methodology. The general idea is as follows.

1. We automate the extration of the AR. Prior to that, the data flow models are
being identified, and the model is partitioned into subcomponents, whose
equivalence can be verified separately.

2. We symbolically verify equivalence of the ARs for all data flow models with
the help of a Computer Algebra System (CAS). In addition, we verify the
supplemental proof obligations, e.g. the conditions concerning time-delayed
behaviour at control flow elements, to conclude approximate bisimulation
according to our methodology.

3. We calculate the local precision εl of the approximate bisimulation with the
help of a CAS, and we propagate the local εl to obtain a global precision εg.

Figure 4.2 provides an overview over our automation approach. The arrows depict
the direction of the process. It starts with two Simulink models we wish to compare
at the top of Figure 4.2.

Data Flow Models In the first step, we calculate all possible data flows in the
model. This addresses the semantics of the control flow blocks. This step yields a
set of Simulink models in which the Switch blocks have been eliminated. Each data
flow model represents a possible data flow, i.e., an execution. Which data flow is
active depends on the conditions at the control flow elements.

4.3. Automation of our Equivalence Proof Methodology 59

FIGURE 4.2: Overview over the Automation Process

Partitioning In the second step, we partition these data flow models. This means,
we split the data flow models into components 1) whose behavioural equivalence
can be verified separately and 2) that can be of pairwise different type, time-discrete
or time-continuous. We obtain a directed acyclic graph of partitions for each data
flow model. These first two steps conclude the syntactical part of our automation
approach.

AR Extraction and Symbolic Equivalence Check We extract the ARs of source
and target model. We directly calculate the Laplace transform or z-Transform
of the ARs. This yields simple algebraic expressions rather than differential or
difference equations. Then, we symbolically verify the equivalence of the ARs with
the help of a Computer Algebra System (CAS). The symbolic verification follows an
assume-guarantee strategy within the data flow models along the partitions, which
we interpret as directed acyclic graphs.

Epsilon Calculation and Propagation If we are able to establish symbolic equiv-
alence for all data flow models, we calculate the precision of the approximate
bisimulation ε. This is performed on AR level to obtain a local εl, which is greater
than 0 at time-continuous partitions that have been replaced by their analytical
solution. This local εl is then propagated through the model to 1) obtain a global

60 Chapter 4. Verification Approach

εg at the points of observation, and 2) to be able to verify the proof obligations at
the control flow elements. To obtain an approach for ε propagation, we consider the
convergence error of the ODEs and difference equations of partitions subsequent to
the partition causing the local εl.

4.4 Summary

Our approach consists of two main parts: 1) our theoretical foundation forms a
methodology to prove approximate behavioural equivalence of two Simulink mod-
els, 2) an automation approach for behavioural equivalence for a subset of Simulink
models. The latter is an application of our methodology. Our methodology adapts
the notion of approximate bisimulation to Simulink. With this, we adapt an estab-
lished equivalence notion capable of considering the approximate nature of Simulink
models. To enable automated verification, we introduce an Abstract Representation
(AR) that describes the behaviour of the models in a denotational manner. We
show the soundness of the AR with regard to the operational semantics of Simulink
defined in [BC12]. We then provide an approach to derive proof obligations to estab-
lish behavioural equivalence. To support an industrially relevant set of semantical
refactorings, we extend the operational semantics by various relevant blocks, e.g.
the Transfer Function block. We demonstrate an application of our methodology
that is semi-automated. Our automation approach uses Laplace and z-transform
to enable automated verification. The equality checks and verification of the proof
obligations are performed with the help of a Computer Algebra System (CAS).

In the following chapters, we discuss the details of the elements of our approach.
We go through each contribution as depicted in Figure 4.1 and the elements in
Figure 4.2. We start with the Abstract Representation and the soundness proof with
the operational semantics of Simulink in the next chapter. We then continue in
Chapter 6 with the adaptation of the approximate bisimulation and the derivation
of proof obligations to establish behavioural equivalence of the models. Finally, in
Chapter 7, we apply our methodology yielding an automated solution for a subset
of Simulink models.

61

Chapter 5

Abstract Representation - A
Denotational Interpretation of
Dataflow-Oriented Hybrid Control
Systems

The goal of this dissertation is to establish a framework for automated proofs of
behavioural equivalence of Simulink models. Moreover, we require our methodol-
ogy be able to support semantical refactorings such as replacement of submodels by
analytical solutions as introduced in Chapter 2. The operational semantics [BC12],
which serves as our formal foundation, defines a transition system. Operational
semantics evaluate the execution step by step. From a Simulink perspective, this
means that the operational semantics describes how the next simulation step, i.e.,
the values at the upcoming simulation time step, are calculated. However, this
format is not suitable for our aim for enabling equivalence proofs for semantical
refactorings. One of our objectives is to be able to proof semantical refactorings,
such as replacements of ODEs by analytical solutions, as correct. A representation
describing an idealised, mathematical behaviour of Simulink’s semantics in terms of
equations is more suitable to enable automated verification of behavioural equiv-
alence of source and refactored target model. We call this representation Abstract
Representation (AR). Solutions of these equations are trajectories. This enables us
to compare trajectories of source and target model rather than single steps in the
operational semantics to show behavioural equivalence. This in turn enables us to
use symbolic approaches via Computer Algebra Systems.

In this chapter, we introduce this AR and prove the soundness with the opera-
tional semantics [BC12]. One particular challenge for Simulink, or dataflow-oriented
models in general, is that the output function cannot be formulated directly. We can
only describe it indirectly with the help of ordinary differential equations (ODEs)

62 Chapter 5. Denotational Abstract Representation

or difference equations. Another challenge is that the operational semantics [BC12]
yields behaviour different from solutions of our AR. This is due to the approximate
execution or simulation for time-continuous parts. Solutions of our AR are math-
ematically precise descriptions that describe an idealised behaviour of Simulink
models. We show the soundness of our AR and the denotational semantics with
respect to the operational semantics for Simulink [BC12] in the following sense:
Executions by the operational semantics with decreasing simulation step size yields
a sequence of trajectories that uniformly converge against the solutions induced by
our AR.

In this chapter, we proceed as follows. Firstly, we describe the AR from syntacti-
cal and semantical perspective. Then, we show the soundness with the operational
semantics [BC12]. Finally, we extend the operational semantics [BC12] to cope with
additional industrially relevant blocks. We do this by reducing the semantics of
these blocks to elements we have already considered in the operational semantics
and our AR.

5.1 Abstract Representation

In this section, we introduce the Abstract Representation (AR) of a given Simulink
model. It is an equation set derived directly from a given Simulink model. Firstly,
the equations describe how the output of the blocks are connected with their input,
i.e., in what way the respective blocks modify the incoming signals with respect to
the simulation time. Secondly, altogether, the equations describe the behaviour of a
given model in a denotational style.

In this section, we go through the following items. Firstly, we introduce some
syntactical preliminaries. We define Simulink models formally from a syntactical
perspective. Then, we define the AR block-wise. The composition of the block-wise
equations is the AR of a given model.

5.1.1 Simulink Syntax

We start with a formal definition for Simulink models that emphasises their nature
as a graph.

Definition 32 (Simulink Syntax). A Simulink model is a tuple
(B,E, I,O, S,C, port, fun, p). B is a finite set of blocks, E ⊂ B × B the signal lines,
I ⊂ B the set of input blocks, O ⊂ B the set of output blocks (for which ∀b ∈ O, ∀b′ ∈ B :

(b, b′) /∈ E applies), S ⊂ B the set of stateful blocks, and C the set of control flow blocks.
port : B ×N+ → E ∪ {⊥} is a function that provides the edge e = port(b, n) for the block

5.1. Abstract Representation 63

b at the nth position (⊥ if the port does not exist).
fun is a function assigning function symbols to blocks in B\(I ∪O), e.g. the sum block is
associated with a function symbol +.
Moreover, control flow elements s ∈ C keep a predicate of the form ⋄ξ, where ⋄ is one of the
symbols <,≤,=,≥, >, and ξ ∈ R. We denote this predicate with p(b) if b ∈ C.

In this definition, we assume that the model is flattened, i.e., all virtual sub-
systems have been eliminated. Since virtual subsystems have no impact on the
semantics of the Simulink models, this is no restriction. In our implementation, we
take care of the prior flattening. Note also that virtual subsystems have input blocks
and output blocks themselves, i.e., they form complete Simulink models themselves.
Stateful blocks are those with an internal variable during semantical execution. As
described in Chapter 2, we distinguish between time-discrete and time-continuous
blocks. Examples for the former are Delay block and Discrete Integrator, examples
for the latter are Integrator block and Transfer Function block. Examples for control
flow blocks are Switch blocks or Multiport Switch blocks. The function port is an
auxiliary function that provides the proper edge at the n−th place or port. Note that
functions associated with the blocks are not commutative in general. Therefore, the
order of ingoing signal lines plays an important role. The order is determined by the
natural numbers: lower numbers indicate that the signal line is connected before
a signal line with a higher number. Elements in I , i.e., input blocks for the model,
are only inport blocks in Simulink. This means in particular that we consider other
input blocks in Simulink, such as a Sine Wave Generator as arithmetic blocks rather
than input blocks. Our elements in I are meant to be interfaces for incoming signals
that are known at runtime only.

Next, we define the syntax of expressions. Firstly, we define the language, i.e.,
the character set of expressions. Then, we define terms and equations. Expressions
are used for the AR and to formulate mathematical expressions.

Definition 33 (Language of Expressions). The language for the Abstract Representation
consists of

• variable symbols t and h

• countably many variable symbols y1, y2, ..., i1, i2, l1, l2, ..., h1, h2, ...

• sequence variable symbols (yn)n, ...

• for every natural number n countably many function symbols fn1 , f
n
2 , ... of arity n.

• for every natural number n countably many predicate symbols pn1 , p
n
2 , ... of arity n.

64 Chapter 5. Denotational Abstract Representation

• additional symbols =, d
dt , ...

We denote the set of variable symbols except t, h, h1, h2, ... with V , i.e.,
V = {y1, ..., l1, ..., i1, ..., an, bn, ...}. Hence, the set V consists of all variable symbols that
are associated with a signal line, input variable or stateful block.

Note that constants are included in this definition as function symbols of arity 0.
Furthermore, we use common abbreviations if the context is clear, e.g. the symbol +
for the addition instead of a function symbol as in the definition. This also applies
to predicates like ≤.

We assume that in a given Simulink model, the following variables are assigned
to elements of the model as labels:

• Variables of the form lν are assigned to each signal line, i.e., each element of E.

• Variables of the form yν are assigned to signal lines at the exit of stateful blocks.

• Variables of the form iν are assigned to signal lines at the exit of input blocks.

If the context is clear, we identify the variable symbols yν , iν with the blocks or
exiting signal lines interchangeably to keep the notation as simple as possible.

We now define terms and equations inductively.

Definition 34 (Terms and Equations). Terms are inductively defined as follows.

• Variable symbols are terms.

• If t1, ..., tn are terms and fnν a function symbol of arity n then fnν (t1, ..., tn) is a term.

• If y(t) is a term with variable symbols y, t, then d
dty(t) is a term.

We denote the set of terms with Term. Let τ be a term, y, t, hν variable symbols, λ ∈ Z. An
equation is of the form

• y(t) = τ ,

• d
dty(t) = τ (representing differential equations),

• y(t+ λhν) = τ , or

• an+λ = τ (representing difference equations by recursive definition of a sequence).

We denote the set of equations with Eq.

The syntax enables us to build the Abstract Representations from Simulink
models, which in turn enables us to describe Simulink’s behaviour in terms of
mathematical expressions.

5.1. Abstract Representation 65

5.1.2 From Simulink to the Abstract Representation

We describe how we extract the AR from a given Simulink model. The process is
twofold. We start with hybrid Simulink models without control flow elements. After
that, we extend this definition for Simulink models with control flow elements. We
define the AR for hybrid Simulink models without control flow in two stages as
well. Firstly, we define the AR per block type. This yields equations describing a
functional connection between outgoing and incoming signal variables per block.
Secondly, exploiting equalities among these equations in turn allows to composition-
ally combine the equations to obtain a closed form of our AR. The AR’s final closed
form for a Simulink model without control flow elements consists of the following
items.

• A set of equations to describe the output of the model. The right hand side of
the equations depend on the input variables and state variables that occur in
the model.

• A set of equations that describe the state of the model. It describes how the
state variables relate to themselves and the input variables of the model.

If multiple output blocks or multiple stateful blocks are present in a given model,
the AR is denoted in a multi-dimensional vectorial format.

The AR for Simulink models with control elements consists of multiple ARs of
Simulink models without control flow elements, which we call data flow models.
Each of these data flow models represents a data flow in the given Simulink model
under the conjunction of conditions given at its control flow elements.

In the next subsection, we start with the ARs of Simulink models without control
flow elements.

AR for Hybrid Simulink Models without Control Flow Elements

We start by defining equations for each block of the model.

Definition 35 (AR for Simulink Models Without Control Flow Elements). Let M =

(B,E, I,O, S,C, port, fun, p) be a Simulink model with C = ∅. We assume that every
element of E is labelled with a variable symbol li. To distinguish the input and output
edges of the block, we denote the variables with lin and lout. For multiple input signals,
we use multi-indices, e.g. lini . Let the simulation start be at t0. We define a function
J.KB : B → P(Eq) that assigns a set of equations to each block.

• b ↦→ {lout(t) = lin(t)} if b ∈ I ∪O.

66 Chapter 5. Denotational Abstract Representation

• b ↦→ {loutn+1 = linn , lin0 = init} if the delay length of the block is 1 (i.e., a Unit
Delay block). If the delay length δ is greater than 1, we introduce auxiliary stateful
variables a1, ..., aδ−1. Then

b ↦→ {loutn+1 = aδ−1n , ..., a1n = linn , lin0 = init1, ..., aδ−10 = initδ}

init is the initial value as defined by the user.

• b ↦→
{

d
dt lout(t) = lin(t), lout(t0) = init

}
if b ∈ S is an Integrator block.

• b ↦→ {lout(t) = fun(b)(lin1(t), lin2(t), ..., linn(t))} for arithmetic blocks. fun(b) is
the function symbol associated with block b. The order of the variables for incoming
signal lines is determined by the auxiliary function port.

We define the Abstract Representation (AR) of the model M to be

JMK :=
⋃
b∈B

JbKB

Our AR consists of an equation set for each block of the model. The equations
relate the outgoing signal with the incoming signals of the block with respect to
the particular function of the block. For time-discrete blocks like the Unit Delay
block, we denote sequences, for other blocks we denote functions. We use sequences
for time-discrete blocks as a convenient way of describing interval-wise constant
functions. Note that the interpretation of a sequence (an)n is a function N→ R. The
natural numbers n indicate the number of the interval [tn, tn+1[where the value of
the time-discrete block remains constant. We discuss this in the section about the
interpretation of the AR.

Equalities among equations can be exploited to obtain a closed form of the AR.
For instance, if we have equations{

l3(t) = l1(t) + l2(t),
d

dt
l2(t) = l3(t), l2(0) = 1

}
,

we can combine this to {
d

dt
l2(t) = l1(t) + l2(t), l2(0) = 1

}
.

In particular, for a given hybrid Simulink model without control flow elements, we
always obtain the following equations.

5.1. Abstract Representation 67

1. An equation for the output variables in the form

o(t) = fo(i(t), y(t))

Bold variables indicate vectors, i.e., multidimensional elements. The dimen-
sion of the vector is equal to the amount of output variables in the model.
The variables i are input variables in vectorial form, the variables y are state
variables, i.e., variables at the exit of stateful blocks. We call this equation the
output equation of the AR.

2. Equations for the stateful blocks or auxiliary stateful variables in the form

yn+1 = fy(in, yn), yyy0 the initial value

for the time-discrete case,

d

dt
y(t) = fy(i(t), y(t)), yyy(t0) = yyy0

for the time-continuous case.

We call these equations the state equations of the AR.

The closed form of the AR is algorithmically extracted from the model by moving
backwards in the graph, i.e., along E−1 starting at the output blocks. At blocks
b, the AR at the block JbKB is calculated. The subexpressions are replaced by this
result accordingly. The algorithm stops at 1) input blocks and 2) stateful blocks. All
output equations are denoted in vectorial form to obtain the final output equation.
To calculate the state equation, the algorithm is repeated starting at stateful blocks
and moving backwards from there to build the expressions for the right hand side
analogously. We do not introduce a new symbol for the closed form. We use the
original AR and the closed form interchangeably if not stated otherwise to keep the
notation as simple as possible.

Our AR captures all equations of the Simulink model. The output equations de-
scribe the output, i.e., the signals at the output blocks of the model in a denotational
form. However, in some cases, we are interested in the trajectory of a signal within
the model rather than in the output of the model. This means in particular, we are
interested at the AR at the output of a block b ∈ B. In this case, we denote

JMK(b).

68 Chapter 5. Denotational Abstract Representation

We mean by this expression all state equations of the model together with the output
equation required to describe the output at block b.

In the next subsection, we extend our definition of the AR for hybrid Simulink
models without control flow elements to hybrid Simulink models with control flow
elements, or simply hybrid Simulink models.

AR for Hybrid Simulink Models

We start with a definition of configurations of Simulink models. An intuition behind
this is linked with the behaviour of control flow elements. Control flow elements
feed through one signal of one of their data ports to their exits. The choice of the
signal being fed through depends on the fulfilment of the condition defined at
the control flow element. For instance, at a Switch block b, a condition ≥ 0 may
be defined. Interpreted by the operational semantics, this yields the following
behaviour: If the signal at the control port, i.e., at port(b, 2), fulfills ≥ 0, then the
signal at the first data port, i.e., at port(b, 1) is fed through. Otherwise, the signal
at the second data port, i.e., at port(b, 3) is fed through. Note that the second data
port is actually at the third position of the switch block because the control signal is
at the second port. A configuration codifies a data flow in the Simulink model. It
consists of a tuple whose elements are either 1 or 2, which represents the data port
being fed through at control flow elements.

Definition 36 (Configuration of a Simulink Model). Let
M = (B,E, I,O, S,C, port, fun, p) be a hybrid model with control flow, C = {s1, ..., sn}.
We call an n− tuple

χ := (χ1, ..., χn)

with
∀1 ≤ i ≤ n : χi ∈ {1, 2}

a configuration of the model. We denote the set of configurations for a model by

X := {χi|1 ≤ i ≤ n}

We now can define data flow models. Data flow models are Simulink models
without control flow elements, associated with a configuration. They represent a
possible data flow through a given Simulink model. By defining data flow models,
we reduce models with control flow elements to a set of models without control flow
elements, each representing a possible data flow. A semantical evaluation yields
an interval-wise evaluation of the data flow models, i.e., there are intervals in a
given evaluation of the semantics where one data flow model is active. The control

5.1. Abstract Representation 69

signals together with the conditions at control flow elements determines the time
steps where changes between active data flow models occur. In our behavioural
equivalence verification approach, we compare the data flow models and verify
equivalence between data flow models in source and target model with the same
configuration. Moreover, we verify the equivalence of the control signals. This
altogether yields the equivalence of the overall model. In the following, we define
data flow models.

Definition 37 (Data Flow Models). Let
M = (B,E, I,O, S,C, port, fun, p) be a hybrid model with control flow, C = {s1, ..., sn},
χ = (χ1, ..., χn) a configuration. A data flow model is a Simulink model

Mχ := (Bχ, Eχ, I, Oχ, S, ∅, portχ, fun, ∅)

without control flow elements with

Oχ := O ∪ {bcontroli |1 ≤ i ≤ n}

Eχ := (E\{port(si, j)|1 ≤ i ≤ n ∧ j ∈ {1, 2, 3}}) ∪ {(bdataχi
, b′)|(si, b′) ∈ E}

where bdataχi
is the block b with (b, si) = port(si, 1) if χi = 1 and with (b, si) = port(si, 3)

if χi = 2, and bcontroli is the block b with (b, si) = port(si, 2). Moreover,

Bχ := I ∪Oχ ∪ S.

portχ is accordingly defined to reflect the updated Eχ.
In addition to that, we collect the newly added blocks bcontroli in a set CX , and define a

function pχ for 1 ≤ i ≤ n with

pχ(bcontroli) = ⋄bcontrolip(si)

where ⋄ is the negation symbol ¬ if χi = 2, and ⋄ is empty if χi = 1.
We define the set of data flow models for a given Simulink model as

MX := {Mχ|χ ∈ X}

So, the data flow models result from the original model by replacing the control
flow blocks by edges from active data ports to subsequent blocks. Active means the
data port χi at control flow block i. At control ports of control flow elements, we add
output blocks. The idea is that we also want to observe the signals at these positions
because control flow signals together with the conditions defined at the control

70 Chapter 5. Denotational Abstract Representation

flow elements determine the time steps where changes between data flow models
occur during semantical evaluation. Moreover, we keep the predicates defined at
the control flow elements, and modify them by a negation symbol if χi = 2. The
reason for this is that in these cases, the configuration of the given data flow model
at control flow element i expresses that the second data port is active. Semantically,
this is the case if the predicate of the control flow element i is unfulfilled. Note that
our approach of modelling control flow elements is strongly connected with the
Switch block. In particular, we define the control signal to be at the second port, the
data signals at the first and third port, which is the case at Switch blocks. However,
other control flow elements follow the same principle. For instance, a Multiport
Switch has multiple inports from which the first keeps the control signal. We have
aimed for a description that focusses on the conceptual level and keeps the notation
simple.

Data flow models do not contain control flow elements anymore. Hence, we can
extend our AR we have defined for Simulink models without control flow elements
to Simulink models with control flow elements. Our AR for models with control
flow elements is the set of ARs of all possible data flow models, which are without
control flow elements. To define the AR of data flow models, we can use Definition
35. Together with the ARs of the data flow models, we provide a function that
associates the condition under which the given configuration applies. This is the
conjunction of the conditions at the control flow elements.

Definition 38 (AR for Simulink Models with Control Flow Elements). Let M =

(B,E, I,O, S,C, port, fun, p) be a hybrid model with control flow, X the set of configura-
tions, MX the set of data flow models. We define the AR for M as

JMK :=

(
{JMχK|χ ∈ X} , cond(χ) =

n⋀
i=1

pχ(bcontroli)

)
for bcontroli ∈ CX .

We provide an example of an AR extraction.

Example 1. In Figure 5.1, an example is depicted. There, we have only one Switch block.
In this case, the configuration is only a 1-tuple. It is either 1 or 2. The respective data flow
models are depicted in Figure 5.2. The AR for the first data flow model is

JM1K = {out(t) = 2in(t),
d

dt
y(t) = 2in(t), y(t0) = 0}.

The AR for the second data flow model is

JM2K = {out(t) = 2y(t),
d

dt
y(t) = 2y(t), y(t0) = 0}.

5.1. Abstract Representation 71

 > 0

Switch

2

Gain

1

In1

1
s

Integrator

2

Gain1

Scope

FIGURE 5.1: Example Simulink model with control flow element

2

Gain

1

In1

1
s

Integrator

2

Gain1

Scope

1

Control

2

Gain

1

In1

1
s

Integrator

2

Gain1

Scope

1

Control

FIGURE 5.2: Data flow models for the example

The conditions for the configurations are

cond(1) = 2in(t) > 0, cond(2) = ¬2in(t) > 0 = 2in(t) ≤ 0.

We provide a final definition in this subsection to characterise model types by the
extracted AR. We use this to distinguish cases in Chapter 6 for showing behavioural
conformance of source and target model.

Definition 39 (Simulink Model Types). Let M be a Simulink model, JMK its AR.

1. If JMK only contains difference equations as state equations, we call the model purely
time-discrete.

2. If JMK only contains differential equations as state equations, we call the model purely
time-continuous.

3. If JMK contains both types and at least one ODE

d

dt
yyy(t) = fc(yyy(t), iii(t))

72 Chapter 5. Denotational Abstract Representation

with a state variable yi occurring in the vector yyy that is described by a difference
equation

yyyn+1 = fd(yyyn, iiin),

i.e., if ODEs and difference equations share variables, we call the model time-hybrid.

4. If the model is time-hybrid or contains control flow elements, we call it hybrid.

In the next subsection, we define how the syntactical ARs are interpreted, we
define a closed form of the AR, and we define what we understand by an observation
of a model.

5.2 Interpretation of the Abstract Representation

In this section, we define how the Abstract Representation is interpreted. Before
we come to that, we need to define the notion of assignment. An assignment is a
function that assigns time-value functions to input blocks.

Definition 40 (Assignment of an Abstract Representation). Let
M = (B,E, I,O, S,C, port, fun, p) be a Simulink model that is being evaluated on the
interval [t0, tend] =: I ⊂ R. An assignment is a mapping

φ : I → RI

It assigns a function operating on the simulation interval I to each input variable.

In other words, the assignment provides the information that is added at runtime
at the inport blocks.

In the following, we provide the definition of an interpretation of our AR for
hybrid Simulink models. To this end, we define the interpretation for each equation
type in the AR. We start with a definition of the interpretation of the AR for Simulink
models without control flow elements and extend this to Simulink models with
control flow elements. As discussed in Section 4.1, we assume that all time-discrete
blocks have the same sample step size h.

Definition 41 (AR Interpretation for hybrid Simulink models without control flow
elements). Let M = (B,E, I,O, S, ∅, port, fun, ∅) be a hybrid Simulink model without
control flow elements that is being executed on the interval I ⊂ R, t0 the simulation start, h
the sample step size of the time-discrete elements. Let furthermore JMK be the AR and φ
an assignment. An interpretation of the AR JMK under the assignment φ is a function
f : I → R that fulfills all equations of JMK in the following sense.

5.2. Interpretation of the Abstract Representation 73

• Input variables i(t) are being replaced by φ(i)(t).

• Sequence symbols (an)n are being replaced by interval-wise constant functions a(t0 +
n · h) for t ∈ [t0 + n · h, t0 + (n+ 1) · h[.

• Function symbols are replaced by respective functions, e.g. + is replaced by the
function that adds real numbers.

If an f : I → R exists that fulfills all of the AR’s equations, i.e., that solves the difference
and differential equations with initital value y0 at t0, we denote this by

f |= JMKφ;t0,y0 .

If the initial value is clear from the context, we can also briefly denote

f |= JMKφ.

f is an interval-wise defined function. The intervals are [tn, tn+1[with tn = t0 + n · h. If
M is purely continuous, it is a continuous function on the whole interval I.

If the model is purely time-discrete, the AR consists only of time-discrete blocks
yielding a set of difference equations and the output equation. In this case, the inter-
pretation is a sequence solving all difference equations, which in turn are interpreted
by interval-wise constant functions. If the model is purely time-continuous, the
AR consists of ODEs and the output equations. In this case, the interpretation is a
continuous function on I fulfilling all ODEs and the output equations. If the model
consists of both time-discrete, and time-continuous blocks, the AR consists of both
types difference equations and ODEs. In this case, the interpretation is an interval-
wise function. In each interval [tn, tn+1[, the respective ODE d

dtyyy(t) = fy(yyy(t), iii(t)) is
fulfilled where some of the elements in the vector yyy(t) are constants determined by
the solution of the difference equations from the time-discrete elements.

We now extend this definition of the interpretation of our AR for Simulink
models without control flow to Simulink models with control flow.

Definition 42 (AR Interpretation for hybrid Simulink models). Let
M = (B,E, I,O, S,C, port, fun, p) be a hybrid Simulink model that is being executed
on the interval I ⊂ R, t0 the simulation start, h the sample step size of the time-discrete
elements. Let furthermore JMK be the AR and φ an assignment.

The interpretation of the AR JMKφ of the model M is defined as an interval-wise defined
function f(t) := fi(t) if t ∈ Ii where Ii are intervals partitioning I, i.e., Ii = [tsi , tsi+1 [

74 Chapter 5. Denotational Abstract Representation

with ts0 = t0 (ts for switching time) such that for each function fi : Ii → R holds

fi |= JMχKφ;tsi ,fyi (fi−1(tsi),φ(i)(tsi)), f0 |= JMKφ,t0,y0χ

for a configuration χ with

|= cond(χ)[bcontrolj ← fcontrolji] for fcontrolji |= JMχKφ;tsi ,fyi (fi−1(tsi),φ(i)(tsi))(bcontrolj).

Here, |= cond(χ) means that the condition is fulfilled in the sense of predicate logic, and
cond(χ)[bcontrolj ← fcontrolj] means that in cond(χ), bcontrolj gets replaced by fcontrolj .
The function fyi determining the initial value for the ODE or difference equation of the AR
in the next data flow model is the respective state equation in this data flow model.

An interpretation of the AR of a hybrid Simulink model with control flow is
reduced to the interpretation of the data flow models. Which data flow model
applies is determined by the condition defined at control flow elements. It is the
conjunction of the predicates that the interpretations of the control signals fulfill.

When a switch occurs, the change from configuration χ1 to χ2 has two impli-
cations: Firstly, the equations determined by the AR change - the trajectory in the
subsequent interval follows then JMχ2K. Secondly, the initial value for the state
equations, i.e., the ODEs and difference equations, is determined by the value of
the trajectory of the preceding configuration, at the switching time step ts. We have
denoted this by stating

fi |= JMχKφ;tsi ,fyi (fi−1(tsi),φ(i)(tsi)).

Note that unlike in control flow-oriented languages, in data flow-oriented lan-
guages, the submodel at an inactive port is evaluated with evolving simulation time.
Particularly, this is of importance if the AR of two data flow models share state
variables.

We illustrate this behaviour with an informal example.

Example 2. Figure 5.3 depicts an example of a hybrid Simulink model with a Switch block.
At the beginning of the execution (at t0 = 0), data port 2 is fed through because the condition
is not fulfilled, i.e., the second data flow model is evaluated. The output is t+ 1 because the
Ramp block returns the values t at execution time t. From t = 2, the condition is fulfilled
and therefore the values from data port 1 are fed through, i.e., data flow model 1 is evaluated.
The behaviour of the system at data port 1 can be described by the ODE d

dty(t) = y(t).
However, during the evaluation for t ∈ [0, 2[, the path from the output of the Switch block to
the Integrator block and finally to data port 1 is also executed. This is consistent with the

5.2. Interpretation of the Abstract Representation 75

Ramp

 > 2

Switch

1
s

Integrator

Scope

Add
1

Constant

FIGURE 5.3: Hybrid Example With Control Flow and Simulation
Output

operational semantics. However, it may be counterintuitive because we may expect that the
whole data path at data port 1 is not executed. The operational semantics however states that
all blocks are still executed. Just the data from data port 1 to the the output of the Switch
block is blocked. This means that for t ∈ [0, 2[, the value at the exit of the Integrator block is

y(t) =

∫ t

0
(τ + 1)dτ

expressed as formula in precise mathematical way as we have introduced by the AR. Hence,
the intial value at time step 2 is ∫ 2

0
(t+ 1)dt = 4

and the solution of the ODE is given as

y(t) = out(t) = 4et−2

This is consistent with the output at the right hand side of Figure 5.3. The graph jumps to 4

at t = 2 and the curve follows y(t) = 4et−2.

Note that the value of the preceding trajectory at switching time ts is actually only
relevant in the time-hybrid case. If data flow models do not share state variables,
the initial value at ts just depends on the values of the input signals at ts.

Our definition of the AR and the interpretation respects this behaviour. This
argumentation also provides a justification for our decision to always extract state
equations in all data flow models, also if they may not impact directly the output of
a data flow model. Moreover, as we discuss in the next Chapter, our AR contains
sufficient information that we use to conclude behavioural conformance of source

76 Chapter 5. Denotational Abstract Representation

and refactored target model.
In the next section, we show the soundness of our AR interpretation with respect

to the operational semantics [BC12].

5.3 Soundness of Abstract Representations with Operational
Semantics

In this section, we clarify the relation between the AR and the transition system
from the operational semantics [BC12]. We show the soundness for time-discrete
and time-continuous block types. Then, we extend this to the soundness for models
without control flow. Finally, we discuss soundness for hybrid models.

To improve readability and avoid distractions of the reader, we refer the proofs
to Appendix A. We provide the idea of the proofs directly in this section.

To establish a comparability between the values from an evaluation of the opera-
tional semantics for a Simulink model as described in [BC12], and interpretations of
our AR, we introduce the notion of trajectories of a semantical evaluation.

As described in Chapter 2, semantical states in Simulink are mappings σ : V → R
where V = {li} ∪ {di} ∪ {xi} ∪ {t, h}. The li, di, xi are variables associated with
the exit of the blocks and internal variables for stateful blocks. The distinguished
variables t and h stand for the simulation time and global simulation step size.
Additionally, every block can have parameters associated, e.g. the sample step size
of a time-discrete block. In essence, a semantical state is a snapshot that carries the
information of the current simulation step. The operational semantics [BC12] defines
how the states change as the simulation time increases by providing inference rules.
Hence, an evaluation of the operational semantics yields a function I → R at each
signal line. We call it trajectory at the signal line. The symbol I is the simulation
interval. The trajectory of a signal line li is the result of the complete semantical
evaluation.

Definition 43 (Trajectory of Semantical Evaluation of Simulink Models). Let M =

(B,E, I,O, S,C, port) be a Simulink model, interpreted by a transition system defined
by the operational semantics [BC12] in the interval I. Let ΣM be the set of states of this
execution for model M . For a block b ∈ B with associated output variable v, we denote

J.KOS(b)(τ) ∈ RI ,M ↦→ σ(v) where σ ∈ ΣM such that σ(t) = τ

OS stands for operational semantics in the formula. Note that in this formula, it is implicitly
assumed that for all b ∈ I , we have values σ(v) available for all τ ∈ I as well. In other
words, we implicitly assume that the model has been instantiated with signals at the input

5.3. Soundness of Abstract Representations with Operational Semantics 77

blocks. An assignment φ determines the values of JMKOS(b)(τ) for all τ ∈ I and b ∈ I .
We denote this circumstance with JMKφOS(b)(τ) and call it the execution of the model M at
block b ∈ B under the assignment φ.

The graph
tb = {(τ, y)|τ ∈ I ∧ JMKOS(b)(τ) = y}

is called trajectory of b.

In essence, the trajectory describes the graph at the exit of b and is determined
by the sequence of all values for the associated variable of b at all time steps.

To prove soundness of our AR with respect to the operational semantics, we
show that the trajectory determined by JMKφOS(b) for a block b fulfills the equations
of our AR at block b. Since we have a synchronous semantics, this in turn yields the
soundness for the overall model.

We proceed by showing the soundness of our AR for time-discrete blocks. This
means, we show that the relation between outgoing and incoming signals of a block
as defined by the respective equation in the AR is fulfilled. We do not show that the
interpretation of the AR is unique at this point. We require the uniqueness in the
next chapter to prove behavioural equivalence.

Lemma 16 (Soundness of AR for Time-discrete Blocks). Let
M = (B,E, I,O, S, ∅, port, fun, ∅) be a time-discrete Simulink model that is being evalu-
ated in the interval I following the operational semantics [BC12], time-discrete blocks with
sample step size h, simulation start at t0. Let furthermore be b ∈ B, JMKφ the AR under
an assignment φ, and out(t) = f(iii(t)) be the equation associated with block b. Then the
following holds.

∀t ∈ I : JMKφOS(b)(t) = f(φ(iii)(t))

The proof is performed by performing a case distinction by block types. For
input blocks, output blocks, and arithmetic blocks, only major step transitions apply.
Please refer to Chapter 2 for an overview over the transitions of the operational
semantics. They are evaluated at sample steps h and at these sample times, they
directly feed through the ingoing signal. Input blocks feed through the signal
determined by the assignment φ at sample steps. In case of arithmetic blocks, the
arithmetic function is evaluated, the result fed through to the output. Between
sample steps, the output of the blocks remain constant. For time-discrete blocks like
the delay block, the ingoing signal is internally stored in an internal variable. This
happens at sample time steps as well. The output is determined by the value of the
internal variable. Since according to the global simulation rule, the calculation of the
outputs (major step transition) is applied before the update of the internal variables,

78 Chapter 5. Denotational Abstract Representation

this results in a delay, which is expressed by the difference equations. A detailed
proof can be found in Appendix A.

We proceed with the soundness for time-continuous blocks. The challenge
for the time-continuous case is that we cannot show that the equations of the AR
are fulfilled by the trajectory of the semantical execution directly. The semantical
execution is always performed with a finite sample step size, i.e., we always obtain
a discretized solution. Notions that occur in the AR like d

dty do not make sense if
naively applied to the trajectory of the semantical execution. We construct a limit
function for which a derivative makes sense and the AR’s equation is fulfilled. In
the following lemma, we restrict time-continuous blocks to Integrator blocks. The
reason for that is that Integrator blocks conceptually exhibit the relevant attributes
of time-continuous blocks. In the subsequent section, we additionally consider
more complex time-continuous blocks like Transfer Function blocks. We extend
the operational semantics [BC12] to support these blocks. To this end, we reduce
them to subsystems that only consist of arithmetic blocks and Integrator blocks. We
formulate the following lemma for the case where the Euler technique has been
chosen as approximation method to keep the notation simple. For other, consistent
approximation techniques, e.g. Runge Kutta techniques, the statement holds and
the proof works analogously. Please refer to Section 2.2.5 for an overview over
numerical approximation.

Lemma 17 (Soundness of AR for Time-continuous Blocks). Let
M = (B,E, I,O, S, ∅, port, fun, ∅) be a time-continuous Simulink model. that is being
executed in the interval I following the operational semantics [BC12], simluation start
at t0 under the assignment φ. We assume that Im(φ) ⊂ C(I,R), i.e., the input blocks
are instantiated with continuous signals. Moreover, Im(φ) are assumed to be piece-wise
bounded functions.

Let furthermore be b ∈ S an Integrator block, JMKφ the AR under an assignment φ.
For a sample step size h, we associate a function JMKφ,hOS (b) as follows.

JMKφ,hOS (b)(τ) =
σn+1(v)− σn(v)

h
(τ − tn) + σn(v) for τ ∈ [tn, tn+1[

where σn, σn+1 ∈ ΣM such that σn(t) = tn, σn+1(t) = tn+1, tn+1 = tn + h, and v being
the variable associated with block b. This function yields the same values as the execution by
the operational semantics JMKOS(b) for block b at time steps tn = t0 + n · h if the Euler
method has been chosen as approximation method by the user in Simulink.

Between time steps, i.e., for t ∈]tn, tn+1[, the function follows a linear curve connecting
the values at time steps tn, tn+1 rather than being constant as in the trajectory of JMKOS(b).
We assume that the trajectory of the function JMKφ,hOS (b) is bounded on I.

5.3. Soundness of Abstract Representations with Operational Semantics 79

Every sequence in the family

F :=

{
JMKφ,hOS (b)

⏐⏐⏐⏐h =
#I
n

for n ∈ N+

}
of evaluations with fixed sample step sizes contains a subsequence that converges uniformly
to a function f if limn→∞ hn = 0. For this function the following holds.

f |= JMKφ;t0,y0(b)

We also denote this relationship between JMKφOS(b) and JMKφ(b) with

JMKφOS(b) |=h→0 JMKφ(b)

For the detailed proof, we refer to Appendix A. The proof idea is as follows.
The function JMKφ,hOS (b) constructs an Euler polygonial curve. For a monotonically
decreasing sequence of sample step sizes (hk)k, we obtain a respective function
JMKφ,hk

OS (b). This forms the family or set of functions F . Analogously to the Theorem
of Peano [Aul04], we show that this family of functions is equicontinuous, and
piecewise-bounded. This allows us to apply the Theorem of Arzelà-Ascoli [Tim08].
It says that there exists a limit function to which the family of functions F converges
uniformly. For this limit function, we show then that it solves the ODE of the
Integrator block and therefore fulfills the equation of the AR.

Note that the boundedness of the input signal of the Integrator block b can be
guaranteed if the input signals of the model, i.e., φ(i) is bounded for all input blocks
i, and the function f(yyy(t), iii(t)) describing the input of block b is continuous.

In Lemma 17, we have shown the soundness of the AR for time-continuous
blocks if the Euler method has been chosen as approximation technique in Simulink.
The proof works analogously for other approximation techniques. The difference is
that in order to solve the ODE

d

dt
y(t) = f(t, y(t)), y(t0) = y0

the sequence for the approximation follows

yn+1 = Φ(tn, yn, h)

For the Euler method,
Φ(tn, yn, h) = hf(tn, yn)

The technique is consistent if the approximation converges to the solution as h→ 0.

80 Chapter 5. Denotational Abstract Representation

The approximation techniques used in Simulink are all consistent. In summary, this
means that for an approximation technique different from Euler, our construction of
JMKφ,hOS (b) needs to be amended according to the chosen technique. However, the
argumentation of the proof would remain the same.

The soundness for time-discrete and time-continuous blocks as shown in Lem-
mas 16 and 17, allows us to conclude the soundness for hybrid Simulink models
as follows: For a given model M , a block b and the set of configurations X , we
can for every χ ∈ X construct a limit function for the evaluation of the operational
semantics [BC12] for every sequence of decreasing sample step sizes. This function
fχ fulfills both the ODEs and difference equations of the AR JMχKφ for an arbitrary
but fixed assignment φ that is piecewise continuous. This function fχ follows a time-
continuous trajectory for time-continuous stateful blocks b (or arithmetic blocks b
depending on time-continuous blocks) in intervals]tn, tn+1[. The time-discrete steps
tn are assumed to be fixed and equal among all time-discrete blocks. At time steps
tn, a discrete jump occurs due to updates from time-discrete blocks. The output
at time-discrete blocks is constant in the intervals. Since due to the operational
semantics, all major step transitions, all update transitions, and all solver transitions,
are applied in parallel, i.e., we have a synchronous semantics, we can conclude that

fχ |= JMχKφ(b).

This means, for every configuration, the AR describes the idealised behaviour, i.e.,
the output of the constructed limiting function fχ correctly.

The configuration that applies is determined by the conditions at the control
flow elements. The relevant semantical rules that apply here is

⟨e1, σ⟩
o−→ true ⟨e2, σ⟩

o−→ r2

⟨if(e1, e2, e3), σ⟩
o−→ r2

⟨e1, σ⟩
o−→ false ⟨e3, σ⟩

o−→ r3

⟨if(e1, e2, e3), σ⟩
o−→ r3

as described in Chapter 2. The conditional statements are extracted at control flow
elements as described in the operational semantics [BC12]. In these rules, the control
signal has been associated with the variable e1, the data flow signals have been
associated with e2, e3. In our AR, we have the control signal associated with the
second port, the first data signal with the first port, and the second data signal
with the third data port, which is consistent with the Switch block in Simulink.
In the configuration χ, the i − th position determines the true or false case at the
i− th control flow element. Hence, the conjunction of all conditions, modified by
¬ if χi = 2, which expresses the negative case, describes correctly the condition
for which this particular data flow model applies. Moreover, the construction of

5.4. Extension of the Operational Semantics for Simulink 81

our data flow models as in Definition 37 reproduces correctly the semantics of the
inference rule for control flow elements as given above. The transfer of initial values
between configurations is also considered in our AR as described in the supplement
of Definition 42.

We can therefore conclude the soundness of our AR with the operational seman-
tics for hybrid Simulink models.

In the next section, we extend our AR to cope with more complex Simulink
elements, which are of high relevance for industrially motivated models.

5.4 Extension of the Operational Semantics for Simulink

To be able to support a relevant subset of Simulink models, we extend the operational
semantics [BC12] by various blocks. By extension we mean that we enable the
operational semantics to cope with more complex blocks. We do not mean to
introduce new inference rules. Instead, we reduce the blocks we add to subsystems
that only consist of blocks we already support and declare the extension as the
behaviour of these subsystems. We also reason why these extensions, or alternative
expressions by these subsystems are sound.

We start with (Discrete) Transfer Function blocks, continue with stateful blocks,
and close with some arithmetic and logical blocks. The key idea is to reduce the
additional blocks to elements that have been already considered in the operational
semantics [BC12] and consequently also in our Abstract Representation.

Extension by (Discrete) Transfer Function Blocks

In this section, we extend our formal foundation and explain the semantics of
Transfer Function blocks. Transfer Function blocks are time-continuous stateful
blocks. They are linked with the Laplace transform. The time-discrete analogon are
the Discrete Transfer Function blocks. They are linked with the z-transform. The
concept for Discrete Transfer Function blocks is analogous to the concept for Transfer
Function blocks. We therefore restrict our argumentation to Transfer Function blocks.

Syntactically, Transfer Function blocks have one inport only and show a rational
polynomial p(s)

q(s) .
Regarding semantics, the intuitive idea is that initially the incoming signal lin

is transformed via Laplace transform or z-transform yielding a function in the
complex domain L(lin). Then, the result is multiplied with the polynomial p(s)

q(s)

yielding p(s)
q(s) · L(lin). Finally this is inverted to obtain a signal at the output of the

Transfer Function block in time domain, i.e., L−1(L(lin)). The idea behind this comes

82 Chapter 5. Denotational Abstract Representation

FIGURE 5.4: Equivalent submodel for Transfer Function Block

from control theory [Kai80]. By introducing the transfer function, control theory
provides a direct link between output and input signals in the complex-valued
frequency domain. Self-references as in ODEs, which in turn are feedback loops in
Simulink models, are hidden. This in turn is a strong motivation for refactorings,
which often aim for complexity reduction of the models.

Our extension is twofold. Firstly, we replace a Transfer Function block by a
mathematically equivalent ODE system with constant coefficients. Secondly, we
express this ODE system as Simulink model and explain the semantics of the Transfer
Function block as the semantics of this model. In essence, we reduce the semantics
of the Transfer Function block to a model with elements that have already been
defined in the operational semantics.

For a Transfer Function block with the inscription

bms
m + ...+ b1s+ b0

ansn + an−1sn−1 + ...+ a1s+ a0

we associate the submodel depicted in Figure 5.4. All initial parameters of the
Integrators are set to 0. The inport and outport blocks of the depicted submode
coincide with the incoming and outgoing ports of the transfer function block. We
declare the semantics of the transfer function block by applying the rules from the
operational semantics [BC12] on the associated submodel.

In the following, we justify that the submodel given in the definition is mathe-
matically equivalent to the Transfer Function block.

5.4. Extension of the Operational Semantics for Simulink 83

To this end, we associate to a Transfer Function block with inscription

bms
m + ...+ b1s+ b0

ansn + an−1sn−1 + ...+ a1s+ a0

the following ODE:

dn

dtn
y = −

n−1∑
ν=0

aν
dν

dtν
y +

m−1∑
µ=0

dµ

dtµ
in(t) (5.1)

with y(0) = d
dty(0) = ... = dn

dtn y(0) = 0, where y denotes the outgoing signal and in
the incoming signal. Then, for continuous in : I → C with exponential growth of
rate at most α, the following holds:

∃β > 0 : ∀s ∈ C, Re(s) > β : L(y)(s) = bms
m + ...+ b1s+ b0

ansn + an−1sn−1 + ...+ a1s+ a0
L(in)(s)

if and only if y : I → C is the unique solution of the ODE as above. The proof for
this claim follows directly by applying Laplace transform on both sides of equation
5.4. Since the solution of the ODE is unique and the Laplace transform is injective in
this case, the equivalence of ODE and Transfer Function follows directly. Moreover,
Figure 5.4 is a direct expression of the ODE system.

Extension by Additional Stateful Blocks

In this subsection, we provide some extensions for additional stateful blocks. It
follows the same principle as for Transfer Function blocks: We provide alternative
expressions for the blocks by using only arithmetic blocks, Switch blocks, and al-
ready covered stateful blocks, i.e., the Unit Delay and Integrator block. Then, we
declare their semantics to be the semantics of the equivalent system executed by the
operational semantics [BC12]. We describe alternative expressions for two represen-
tatives. The principle of construction that we demonstrate gives an indication how
this can be used to construct other stateful blocks if required.

We start with the Discrete-Time Integrator. It is a representative for time-discrete
blocks. It has therefore a sample step size h. Between time steps, the value is kept
constant, at time steps tn = t0 + h, it changes its value at its exit. The block has two
parameters: a gain, i.e., a real value, and an initial value. Let the initial value be 0.
The semantics of the block is as follows: At sample step times, it feeds through the
internally stored value multiplied by the gain value. Moreover, it adds the internally
stored value to the value of the ingoing signal, and stores this result internally.
Hence, we can formulate the equations in the style of the syntactical equations used

84 Chapter 5. Denotational Abstract Representation

K Ts

z-1

Discrete-Time
Integrator

1

In1

1

Out1

Add

Unit Delay

1

In1
K

Gain

1

Out1

FIGURE 5.5: Discrete-Time Integator Block and equivalent expression

Z-2

Delay

1

In1

1

Out1

1

In1

1

Out1
Unit Delay Unit Delay1

FIGURE 5.6: Delay Block and equivalent expression

in the operational semantics [BC12] (cf. Section 2.3.2) as follows:

lout := λ · l1; l1 :=S d; d :=S d+ lin, dinit = 0

In the formula, we denote λ as the gain value. This results in AR equations

loutn+1 = λl1n , l1n+1 = linn + l1n , l10 = 0

Figure 5.5 shows the equivalent models.
Another example is a Delay block with delay > 1. We equivalently express a

Delay block with delay δ by introducing δ Unit Delay blocks.
Figure 5.6 depicts the equivalent systems.

Extension by Additional Direct-Feedthrough Blocks

In this section, we proceed with our extension and add direct-feedthrough blocks.

Logical Blocks We start with logical blocks, such as Not, And, and Or. We express
them equivalently by using only arithmetic blocks and Switch blocks. All blocks in
this paragraph are direct-feedthrough blocks.

The Not block has one inport. The semantics is as follows: If the ingoing signal
is equal to 0, the output is 1. Otherwise, the output is 0. Figure 5.7 depicts the Not
block and an alternative expression. The inport blocks are to carry the same signal.
The condition at the Switch block is ̸= 0, i.e., it checks if the signal is not equal to
0. If this is true, then the constant 0 is fed through, otherwise the constant 1. This
expression fulfills obviously the semantics of the Not block.

5.4. Extension of the Operational Semantics for Simulink 85

Logical
Operator

1

In1

1

Out1
1

In1

1

Out1

 ~= 0

Switch

0

Constant

1

Constant1

FIGURE 5.7: Equivalent expressions: Not block

Logical
Operator

1

In1

2

In2

1

Out1

1

In1

2

In2

1

Out1

 ~= 0

Switch
Product

1

Constant

0

Constant1

FIGURE 5.8: Equivalent expressions: And block

Figure 5.8 provides an alternative expression for the And block. Its semantics is
as follows: Its output is 1 if both incoming signals are not 0, otherwise the output
is 0. The product joins the signals and becomes 0 if one of the signals are 0. If this
is the case, 0 is fed through the Switch block, otherwise, i.e., if both are not 0, the
output of the Switch block is 1.

Finally, we consider the Or block. Its semantics is that it is 1 if one of the incoming
signals is ̸= 0. Otherwise it is 0. Since a ∨ b = ¬(¬a ∧ ¬b), we can express this by the
constructs we already have defined.

Arithmetic Blocks We want to demonstrate our extension by two additional direct-
feedthrough block, the Saturation block, and the absolute value block. The Satura-
tion block has two parameters: an upper and a lower threshold. It directly feeds
through the values of the ingoing signal if they are between the two thresholds.
However, if the incoming value exceeds the upper or falls under the lower limit, the
values are kept at these limits.

Figure 5.9 shows the two equivalent models. There, ut denotes the upper thresh-
old, lt denotes the lower threshold.

The absolute value block calculates the absolute value of the incoming signal.
This means particularly that if the value of the incoming signal is ≥ 0, then the

86 Chapter 5. Denotational Abstract Representation

Saturation

1

In1

1

Out1

 >=

Switch

1

In1

ut

Constant

 >=

Switch1

lt

Constant1

1

Out1

FIGURE 5.9: Saturation Block and equivalent expression

Abs

1

In1

1

Out1

 >= 0

Switch

1

In1

-1

Gain

1

Out1

FIGURE 5.10: Abs Block and equivalent expression

signal is directly fed through, otherwise the signal multiplied with −1. Figure 5.10
is a direct expression of this semantics.

This concludes our extension of the operational semantics. The examples are not
a comprehensive list, but they demonstrate the principle how our approach can be
used to cope with a broad variety of Simulink blocks. We are confident that this list
could be extended to be embedded in our approach. We leave this to future work.

5.5 Summary

In this chapter, we have described the extraction of a system of equations for
Simulink models, which we call the Abstract Representation (AR). This system of
equations describes the behaviour of Simulink models in a denotational style, i.e.,
the trajectory resulting from the execution of the operational semantics on the whole
simulation interval fulfills the equations of the AR. The AR consists of sequences
for time-discrete parts and continuously evolving functions for time-continuous
parts. Sequences are specified by difference equations, functions are specified by
ordinary differential equations. We have proven the soundness of this representation
with respect to the operational semantics as described in [BC12]. For time-discrete
models, the trajectory of the model fulfills the equations of the AR directly. For
time-continuous and hybrid models, we have constructed a sequence of trajectories
with decreasing simulation step size that converges uniformly to a function that
fulfills the equations of the AR.

The denotational style of the AR enables automated verification of correctness of
refactorings on Simulink models. In particular, it enables us to compare trajectories

5.5. Summary 87

of solutions of our AR for verification of behavioural equivalence rather than com-
paring single steps in the operational semantics. This in turn, enables us to identify
semantic refactorings as being correct such as a replacement of a model representing
an ODE by a model representing the analytical solution of the ODE.

To cope with more complex, industrially relevant blocks, we have extended our
AR. The key idea is to equivalently express blocks by elements we have already
considered in the operational semantics and our AR.

In the next chapter, we describe how we use the AR to verify behavioural
conformance of source and refactored target model.

89

Chapter 6

Approximate Bisimulation for
Simulink Models

In this chapter, we present our adaption of the concept of approximate bisimulation
to Simulink. Approximate bisimulation is an established equivalence notion capable
of expressing differences between values that are evaluated by a semantics. Two
states are equivalent with respect to the approximate bisimulation of precision ε if
their values differ by at most ε and their next states according to the operational
semantics are again equivalent. We use this equivalence notion to be able to consider
the approxiate nature of the semantics of data flow-oriented or signal flow-oriented
languages for hybrid control models, such as Simulink.

After our adaptation of approximate bisimulation to Simulink, we provide
sufficient conditions for approximate bisimulation based on our AR. With our
AR, we are able to reason on a mathematical level. This allows us to identify
semantical refactorings such as analytical solutions of ODEs as correct. However,
due to the approximate nature of Simulink’s semantics, time-continuous parts are
approximated as we have seen in Chapter 5. The key idea to conclude approximate
bisimulation is: Firstly, to symbolically verify equivalence with the AR. Secondly, to
calculate an estimate of the approximation, i.e., the difference between evaluated
values in Simulink and the mathematical solution of our AR. This in turn provides
an estimate for the precision ε of the approximate bisimulation. For cases ε > 0, the
estimate ε increases with the simulation interval length #I, which we denote by
ε(#I) if we want to emphasise this dependency.

6.1 Adaptation of Approximate Bisimulation for Simulink

In this section, we adapt the concept of approximate bisimulation to Simulink.
Approximate bisimulation weakens the definition of traditional bisimulation. While
traditional bisimulation demands the evaluated values of equivalent states after one

90 Chapter 6. Approximate Bisimulation for Simulink Models

step to be equal, approximate bisimulation allows them to be close to each other up
to a maximal distance ε. This ε is called precision of the approximate bisimulation.
For ε = 0, we have traditional bisimulation. Approximate bisimulation has been
presented e.g. in [GP11, GP07b, Gir05] and is an established concept in the hybrid
systems community.

In the following, we start by introducing the concept of approximate bisimulation.
Then, we adapt it to the operational semantics of Simulink.

6.1.1 Concept of Approximate Bisimulation

We introduce the notation for approximate bisimulation as defined in [GP11, GP07b,
Gir05].

Definition 44 (Approximate Bisimulation). Let T1 = (Q1,Σ,→1, Q
0
1,Π, ⟨⟨.⟩⟩1) and

T2 = (Q2,Σ,→2, Q
0
2,Π, ⟨⟨.⟩⟩2) be two labelled transition systems (LTS), where Qi are

the sets of states, Q0
i ⊆ Qi the sets of initial states, Σ the sets of input alphabet (labels),

→i⊆ Qi × Σ×Qi the transition relations, Π the set of observations and ⟨⟨.⟩⟩i : Qi → Π

mappings of states to observations (i ∈ {1, 2}; note that Σ and Π is in both LTS the same).
Let furthermore Π be a metric space with metric d : Π× Π→ R. The metric allows us to
measure distances in the set of observables.

A bisimulation relation Bε ⊆ Q1×Q2 of precision ε is a relation fulfilling the following
properties ∀(q1, q2) ∈ Bε.

1. d(⟨⟨q1⟩⟩1, ⟨⟨q2⟩⟩2) ≤ ε

2. ∃q′1 ∈ Q1 : q1
α−→ q′1 ⇒ ∃q′2 ∈ Q2 : q2

α−→ q′2 ∧ (q′1, q
′
2) ∈ Bε

3. ∃q′2 ∈ Q2 : q2
α−→ q′2 ⇒ ∃q′1 ∈ Q1 : q1

α−→ q′1 ∧ (q′1, q
′
2) ∈ Bε

The LTSs are bisimilar with precision ε, denoted as T1 ∼ε T2, if Bε ⊆ Q1 ×Q2 exists such
that

1. Bε is an approximate bisimulation relation of precision ε,

2. ∀q1 ∈ Q0
1∃q2 ∈ Q0

2 : (q1, q2) ∈ Bε

3. ∀q2 ∈ Q0
2∃q1 ∈ Q0

1 : (q1, q2) ∈ Bε

Note that Σ in this definition is the set of input alphabets for the LTS. It is the
same symbol as we have used to denote our states in the operational semantics. We
have left the symbol here as it has been introduced in [GP11, GP07b, Gir05]. In the
operational semantics [BC12] to which we adapt approximate bisimulation in the
next subsection, we do not have an input alphabet.

6.1. Adaptation of Approximate Bisimulation for Simulink 91

6.1.2 Adaptation of Approximate Bisimulation to Simulink

In this subsection, we adapt Definition 6.1.1 to the operational semantics of Simulink
[BC12], which is our formal foundation.

To obtain a transition system suitable to instantiate the definition for the approxi-
mate bisimulation, we need to define the set of states Q, the input labels Σ, the initial
states Q0, the transition relation→, the set of observations Π, and the observation
function ⟨⟨.⟩⟩.

Definition 45 (Transition System of Simulink). The TS for a Simulink model M =

(B,E, I,O, S,C, port, fun, p) is defined as

• Q ⊆ RV - the set of states (each variable is assigned with a value)

• We do not need a set of input labels Σ, i.e., Σ = {τ}, where τ is a symbol indicating
an empty element of the alphabet.

• τ−→⊆ Q×Q is defined by the operational semantics, i.e., σ τ−→ σ′ with σ, σ′ ∈ Q if and
only if

Eq, π ⊢ σ → σ′

• Q0 ⊆ Q assigns the initial values, i.e., for stateful blocks b ∈ S, associated variable v,
σ(v) = init, all other variables are initially set to 0

• Π ⊆ (R ∪ {∞})V - the set of observations.

• ⟨⟨.⟩⟩ : Q→ Π, ⟨⟨σ⟩⟩(v) := σ(v) if v is a variable associated with a sink block b ∈ O,
∞ otherwise. The observation map provides the value at the sink of the model - and a
symbol∞ otherwise. This is because to apply the concept of approximate bisimulation,
we are only interested in the values at points of observations, i.e., at output blocks.

We define the metric on Π as d∞ : Π × Π → R, d∞(σ1, σ2) := ∥σ1 − σ2∥∞ with
∥.∥∞ : Π→ R, ∥σ∥∞ := maxv∈

⋃
b∈O:v variable of b(σ(v)). It takes the largest distance of all

observations.

This definition of the transition system is obviously compatible with both, the
operational semantics [BC12] and the definition of the approximate bisimulation
introduced in Section 6.1.1. Note that each transition system has a finite runtime
yielding a specific interval length #I for the evaluation, which is given by the
user. The transition system contains the states evolving from each other via the
inference rules of the operational semantics [BC12]. However, as soon as the end of
the simulation interval has been reached, the final state does not change anymore as
per the global simulation rule (cf. Section 2.3.2).

We combine the concepts in the following theorem.

92 Chapter 6. Approximate Bisimulation for Simulink Models

Lemma 18 (Approximate Bisimulation for Simulink). Let
Mi = (Bi, Ei, Ii, Oi, Si, Ci, porti, funi, pi), i ∈ {1, 2} be two Simulink models, TSi =
(Qi, ∅,→i, Q

0
i ,Πi, ⟨⟨.⟩⟩i) the respective transition systems with the same user-defined finite

simulation interval length #I. Let moreover O1 = O2, i.e., the output blocks, which are
the points of observation, are the same in both models. Let ε ≥ 0. Let Bε ⊆ Q1 × Q2

be a relation on the two set of states. Bε is an approximate bisimulation relation of
precision ε if ∀(σ1, σ2) ∈ Bε

1. The maximal distance of observations is at most ε, i.e.,

d∞(⟨⟨σ1⟩⟩1, ⟨⟨σ2⟩⟩2) ≤ ε

A sufficient condition for this is

∀b ∈ O : ∥JM1K
φ
OS(b)(τ)− JM2K

φ
OS(b)(τ)∥∞ ≤ ε

for an assignment φ at a point in time τ ∈ I (I is the simulation interval). t is
determined by σ1(t) = σ2(t) = τ .

2. If ∃σ′1 ∈ Q1 : σ1 → σ′1, then ∃σ′2 ∈ Q2 : σ2 → σ′2 ∧ (σ′1, σ
′
2) ∈ Bε. This is

equivalent to

∃σ′1 ∈ Q1 : Eq, π ⊢ σ1 → σ′1 ⇒ ∃σ′2 ∈ Q2 : Eq, π ⊢ σ2 → σ′2 ∧ (σ′1, σ
′
2) ∈ Bε

3. If ∃σ′2 ∈ Q2 : σ2 → σ′2, then ∃σ′1 ∈ Q1 : σ1 → σ′1 ∧ (σ′1, σ
′
2) ∈ Bε. This is

equivalent to

∃σ′2 ∈ Q2 : Eq, π ⊢ σ2 → σ′2 ⇒ ∃σ′1 ∈ Q1 : Eq, π ⊢ σ1 → σ′1 ∧ (σ′1, σ
′
2) ∈ Bε

The transition systems are approximate bisimilar with precision ε, denoted as T1 ∼ε T2

if Bε ⊆ Q1 ×Q2 exists such that

1. Bε is an approximate bisimulation relation of precision ε,

2. ∀σ1 ∈ Q0
1∃σ2 ∈ Q0

2 : (σ1, σ2) ∈ Bε. This means equivalently

∀b ∈ O : ∥JM1K
φ
OS(b)(t0)− JM2K

φ
OS(b)(t0)∥∞ ≤ ε

for an assignment φ. ∀σ2 ∈ Q0
2∃σ1 ∈ Q0

1 : (σ1, σ2) ∈ Bε, which is equivalent to the
former case.

Proof. The lemma is the instantiation of the definition of the approximate bisimula-
tion 44 to the Simulink semantics. Recall that JMKφOS(b)(τ) = σ(v) if v is the variable

6.1. Adaptation of Approximate Bisimulation for Simulink 93

associated to b and σ(t) = τ . Also note that the operational semantics of Simulink is
deterministic. Hence, the statements in the enumeration items follow diretly from
the definitions.

If we identify the models with their transition systems, we also briefly denote

M1 ∼ε(#I) M2.

The expression ε(#I) emphasises the dependency of the maximal distance ε on
the user-defined finite simulation interval length #I. Note if ε > 0, the value ε
generally increases with the simulation interval length. The simulation interval
length is linked with the transition system, i.e., a transition system is determined
via the inference rules of the operational semantics by a model together with the
user-defined parameters, e.g. sample step size, approximation method, simulation
start, simulation end. As soon as the simulation end has been reached, the transition
system keeps the final state. Hence, our adaptation of approximate bisimulation for
Simulink is sound. However, to avoid the impression that approximate bisimulation
with a precision ε would imply a global threshold ε for arbitrary simulation interval
lengths, we emphasise this by denoting this dependency with ε(#I). If it is clear
from the context, we reduce the full notation ε(#I) to ε to keep the notation as
simple as possible. Also note that for ε = 0, this threshold holds globally, i.e., for
arbitrary lengths of simulation intervals.

Note that in Definition 45, we have only compared the values at the output
blocks b ∈ O. It is also possible to compare the output of blocks within a Simulink
model. We use this in various cases: The disturbance ε at control signal inputs
has an impact on the switching behaviour. It may cause time-delayed switching
behaviour. We consider this at the end of this Chapter. Moreover, in Chapter 7,
we calculate a local εl within a model and propagate this to a global εg through
subsequent submodels. The global precision εg is the maximal distance ε at the
output blocks as in Lemma 18. If the values calculated at the output of two blocks
b1, b2 in two models behave approximately bisimilar, we denote this by

JM1K(b1) ∼ε(#I) JM2K(b2).

In the next sections we link our adaptation of the approximate bisimulation
with our AR. We provide sufficient conditions that enable to conclude approximate
bisimulation, and means to calculate the precision ε. We discuss purely time-discrete
models, purely time-continuous models, and hybrid models. The reason for us not

94 Chapter 6. Approximate Bisimulation for Simulink Models

directly providing conditions for hybrid models is that in case of time-hybridity, we
are not able to directly calculate the precision ε of the approximate bisimulation.
We leave this case to future work. However, for purely time-discrete, purely time-
continuous, and hybrid models with control flow, we are able to provide sufficient
criteria and means to directly calculate ε. As in Chapter 5, we refer the proofs in
Appendix A. However, we provide the key ideas of the proofs directly in the text.

6.2 Behavioural Equivalence for Purely Time-Discrete Mod-
els

We start with purely time-discrete models. The key idea is to establish equivalence
between the solutions of the ARs of two Simulink models. This can be performed
symbolically with the help of a Computer Algebra System (CAS). In the time-discrete
case, we do not have an approximation. Hence, the precision ε is 0 in this case.

Theorem 4 (Behavioural Equivalence for Purely Time-Discrete Models). Let M1 and
M2 be purely time-discrete Simulink models that are executed on the interval I with the
same sample step size h, each time-discrete block with the same sample step size hd. Let
furthermore be (fn)n, (gn)n be real-valued sequences for which the following holds for all
assignments φ.

(fn)n |= JM1Kφ, (gn)n |= JM2Kφ

If
∀0 ≤ n ≤ nmax : fn = gn,

where nmax is the index of the last simulation step in the simulation interval I, then

M1 ∼0 M2

This means, the models are approximately bisimilar with precision 0. In this case, the
approximate bisimilarity coincides with traditional bisimulation.

For the proof, we refer to Appendix A. The key idea is that due to the uniqueness
of the sequences solving the AR’s equations, they yield exactly the same values in
both models. Note that sequences are always uniquely determined by difference
equations, i.e., if a solution exists, it is unique. This is because the difference equation
is a recursive definition: Starting from the initial value, the next value in each step
can be calculated by applying the arithmetic function on the previous value as
defined in the difference equation. Note that the sample time steps at both models
are assumed to be the same for the time-discrete blocks in both models. In Lemma

6.3. Behavioural Equivalence for Purely Time-Continuous
Models

95

16 we have shown that the values being calculated during an evaluation of the
operational semantics exactly solve the AR’s equations. There is no approximation
in time-discrete models. Therefore, the precision of the approximate bisimulation is
0 in this case.

Note that the sequences (fn)n, (gn)n that interpret or solve the ARs JMiKφ depend
on the arbitrarily chosen but fixed assignment φ. This is expressed by letting φ

appear in the formula (fn)n, (gn)n |= JMiKφ, and is consistent with the definitions
in Section 5.2, where we have introduced the interpretations of the AR. Also note
that our theorem requires the equality for all solutions fn = gn in order to conclude
approximate bisimulation, independent from the assignment. Hence, either the
models are independent from assignments at all, i.e., they have no input signals, or
an additional argument that allows to draw the conclusion for equality independent
from the assignment φ needs to be found if we want to apply the theorem. The
former leads to the idea that closed (sub-)systems, i.e., systems without input signals,
can alternatively be expressed by their analytical solution, if possible. The latter
leads to an application for models expressible by linear difference equations, which
we describe in Chapter 7.

6.3 Behavioural Equivalence for Purely Time-Continuous
Models

We proceed with purely time-continuous models. The key idea is firstly to establish
equivalence of the solutions of the ARs of two given Simulink models as in the
previous section. To obtain an estimate for the precision ε(#I) of the approximate
bisimulation, we provide an estimate for differing values due to approximation
during the evaluation of a given Simulink model. The sum of the estimates for source
and target model in turn yields the precision ε(#I) of approximate bisimulation.
After the main theorem, we also provide criteria for various special cases, for which
our general calculation approach can be relaxed.

Theorem 5 (Approximate Behavioural Equivalence for Purely Time-Continuous
Models). Let M1 and M2 be purely time-continuous Simulink models that are executed on
the interval I. Let furthermore be f, g : I → R be functions for which the following holds
for all assignments φ with Im(φ) ⊂ C(I,R).

f |= JM1Kφ, g |= JM2Kφ

96 Chapter 6. Approximate Bisimulation for Simulink Models

If f and g are uniquely determined by the equations of the AR and

∀t ∈ I : f(t) = g(t),

then there exists ε(#I) > 0 such that

M1 ∼ε(#I) M2

For the proof, we refer to Appendix A. The key idea for the proof is the following:
From Lemma 17, we know that the equations of our AR are fulfilled by a limit func-
tion emerging from sequences of semantical evaluations for decreasing sample step
size. The theorem assumes that these limit functions, which are the interpretations
of our ARs, are the same. This guarantees the approximate bisimulation. The preci-
sion ε(#I) is determined by an estimate of the approximations that occur during
evaluation of the solver transitions of the operational semantics. Lemmas 14 and 15
from the Background Chapter 2 provide a global error εyi(#I) (i ∈ {1, 2} indicating
the model M1 or M2) for the approximations of the state variables for both models.
The values of εyi(#I) are then propagated according to the output equations of the
ARs to the output of the models yielding εi(#I). For instance, if the output equation
is 2y, then the value of εyi(#I) is doubled. By applying the triangular equation,the
sum of both εi(#I) yields the precision ε(#I) for the approximate bisimulation,
which concludes the proof.

Note that the same remarks as in the supplement of Theorem 4 for time-discrete
models apply for this theorem. In short: The functions f, g being the interpretations
of the respective ARs depend on the arbitrarily chosen but fixed assignment φ. In
order to conclude approximate bisimulation, i.e., in order to apply the Theorem, the
user needs to guarantee equality among f and g for all assignments φ. This is either
implicitly fulfilled by closed models without input signals or an aditional argument
is required. We provide such an argument in Chapter 7 for a subset of Simulink
models.

Note that generally, the deviation increases with increasing interval of semantical
evaluation. However, since the calculation of ε depends on the sample step size,
which can be modified by the user, we have control over it. The user therefore can
calculate the required sample step size for a maximal deviation he or she can accept
in a given execution interval. Moreover, there exist ODEs for which the error are
globally bounded. This is related with stability analysis and left for future work.

Theorem 5 assumes the uniqueness of solutions of ODEs. In the following
Corollary, we provide a sufficient condition for the uniqueness.

6.3. Behavioural Equivalence for Purely Time-Continuous
Models

97

Corollary 1 (Sufficient Condition for Uniqueness of Solutions for Time-Continuous
Models). Let the same assumptions hold as in Theorem 5. If the ODEs in the ARs JM1Kφ

and JM2Kφ are globally Lipschitz continuous, then an ε(#I) exists with M1 ∼ε(#I) M2.

Proof. Global Lipschitz continuity guarantees uniqueness of the ODE solutions.
Hence, Theorem 5 is directly applicable.

Local Lipschitz continuity also suffices for local uniqueness as we know from the
Background chapter. However, in these cases, uniqueness may not be guaranteed on
the whole interval I . Further analyses are required if only local Lipschitz continuity
applies, which we leave for future work.

6.3.1 Epsilon Calculation

Theorem 5 guarantees a precision ε(#I) for the approximate bisimulation. The key
idea how to obtain such an estimate is given in the proof and supplement of the
theorem. The essential information we need to capture is an estimate for the the
differences of the approximation during the semantical evaluation of a given model
with the mathematical solution of our AR.

According to Section 2.2.5, the approximation error for an ODE

d

dt
y(t) = f(t, y(t)), y(t0) = y0

can be calculated by

εy(#I) ≤ ferr
(
h,#I, L,max

t∈I

 d2dt2λ(t)

∞

)
,

where ferr depends on the chosen approximation method (for Euler refer to Lemma
14), L is the Lipschitz constant of the right hand side of the ODE f(t, y(t)) for y, λ
is the solution of the ODE in the AR, I the simulation interval, #I its length. The
index y in εy(#I) indicates that this is the disturbance for the stateful equations,
i.e., ODEs. In other words, it is the disturbance at the output of stateful blocks.
The disturbance ε(#I) at the output of the model depends on the output equation
out(t) = f(y(t), i(t)), which in turn modifies εy(#I) (e.g. doubles εy(#I) if out(t) =
2y(t)). We clarify how we can obtain the various parameters to determine εy(#I),
the approximation error of the state equation of a given model.

The value for L can be calculated by

L = max
(t,y)∈M

∥Jf (t, y)∥∞

98 Chapter 6. Approximate Bisimulation for Simulink Models

where f is the right hand side of the ODE in the AR of the model (f needs to be
differentiable). In this formula, M is a domain [a, b]×M ′ for an M ′ ⊂ Rn where f is
defined. To actually calculate L, either one can find a bound for ∥Jf (t, y)∥∞ globally,
i.e., for [a, b]× Rn or the user has additional information on the boundedness of f
at his disposal. Please refer to Section 2.2.3 for background on the Jacobi matrix
Jf (t, y), and to Section 2.2.1 for the definition of the maximum on matrices. This
follows from the Mean Value Theorem provided in the Background chapter (Lemma
6). If we apply it to all coordinate functions of y, the Jacobi Matrix provides an
estimate for L. Note that the statement in the Mean Value Theorem per coordinate
function is exactly the same as required for the Lipschitz condition.

The value for maxa≤t≤b

 d2

dt2
λ(t)

∞

can be either calculated directly if λ is known,
or via⎛⎜⎜⎝

δf1
δt (t, y)

...
δfn
δt (t, y)

⎞⎟⎟⎠+

⎛⎜⎜⎝
δf1
δy1

(t, y) . . . δf1δyn
(t, y)

...
...

δfn
δy1

(t, y) . . . δfnδyn
(t, y)

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
f1(t, y)

...
fn(t, y)

⎞⎟⎟⎠ = ft(t, y) + Jfy(t, y) · f(t, y)

ft(t, y) is a abbreviation for partial derivatives in t direction. This follows from
Definition 23 and the Chain Rule from Lemma 5. It is

d2

dt2
λ(t) =

d

dt

d

dt
λ(t) =

d

dt
f(t, λ(t)) = Jy(t, λ(t)) =

ft(t, λ(t)) + Jfy(t, λ(t))
d

dt
λ(t) = ft(t, λ(t)) + Jfy(t, λ(t))f(t, λ(t))

On the left hand side of the bottom line of the equation, we have split the Jacobi
matrix Jf (t, λ(t)) and pulled out the first column, which is ft(t, λ(t)). Hence, if we
can obtain an estimate for

∥ft(t, y) + Jfy(t, y)f(t, y)∥∞

for (t, y) ∈M , we also obtain an estimate for ∥ d2

dt2
λ(t)∥∞.

In Theorem 5, we have shown the most general case: The ε is calculated as the
sum of approximation errors of both given models as per triangular equation. This
calculation is always possible (if the assumptions of Theorem 2 are met). However,
there are some cases that allow a simpler calculation of ε(#I):

1. If one ODE is completely resolved, i.e., the refactoring replaces the ODE by its
analytical solution, ε(#I) is only the approximation error of the model com-
prising the ODE. This is because the analytical solution is not approximated,

6.4. Behavioural Equivalence for Hybrid Models 99

but it expresses the mathematical solution, which is the interpretation of the
AR.

2. If the AR of two given models comprises the same ODEs, ε = 0. The reason is
that in both cases, the same approximation technique yields the same values.
Both approximations yield an error from the mathematical solution. However,
they yield exactly the same error and consequently the same values. Examples
for refactorings that leave the ODEs in the respective ARs untouched are an
exchange of Integrator block and Gain block, or a replacement of a linear ODE
by a Transfer Function block. The latter leaves the ODE unchanged because
the semantics of a Transfer Function block is the same as an equivalent linear
ODE as we have described in our extension of the operational semantics by
Transfer Function blocks in Section 5.4.

In the next subsection, we discuss behavioural equivalence for hybrid Simulink
models.

6.4 Behavioural Equivalence for Hybrid Models

In the previous sections, we have discussed approximate bisimulation for purely
time-discrete and purely time-continuous models. In this subsection, we extend
this to hybrid Simulink models with control flow. We start with a brief subsection
for time-hybrid models. The aim of this is to justify our decision for excluding
such models in this thesis and leave it for future work. The main reason is that it is
difficult to automatically calculate a disturbance ε of the approximation error in the
time-hybrid case. After the brief discussion of time-hybrid models, we proceed with
models with control flow elements.

6.4.1 Time-Hybrid Models

As introduced in Chapter 5, time-hybrid models are such models whose AR contains
ODEs that depend on time-discrete state variables, and vice versa. Such equations
are also referred to as Delay Differential Equations (DDEs) because ODEs contain
elements that refer to values from preceding time-steps, i.e., delays. In Section 4.1,
we have stated that in general, we do not support such models. In this subsection,
we briefly provide reasons for this decision.

Consider, we have a time-hybrid model M1 and a refactored counterpart M2.
From Chapter 5, we know that the AR consists of an output equation, and state

100 Chapter 6. Approximate Bisimulation for Simulink Models

equations. The state equations in the time-hybrid case are of the form

d

dt
yyyc(t) = fc(iii(t), yyyc(t), yyyd), yyydn+1 = fd(iiin, yyyc(tn), yyydn).

We omit the initial values here for simplicity. The input variables are replaced by
the assignment, which yields

d

dt
yyyc(t) = fc(t, yyyc(t), yyyd), yyydn+1 = fd(tn, yyyc(tn), yyydn).

The index c stands for continuous, d for discrete. An interpretation is an interval-
wise defined function that solves the interval-wise ODEs

d

dt
yyyc(t) = fc(t, yyyc(t), fd(tn, yyyc(tn), yyyd(tn))) for t ∈ [tn+1, tn+2[.

At time steps tn := t0 + n · hd, the time-discrete blocks are evaluated. This causes a
change of the ODE for the subsequent interval, which in turn determines the values
for the next update of the time-discrete variables.

As discussed in the previous section, it is key to obtain an estimate for the
approximation error during semantical evaluation of the models in order to obtain
the precision ε(#I) of the approximate bisimulation. However, the above discussion
illustrates why this is in general difficult to obtain. There are approaches available
that deal with this topic, e.g. [Arn84]. However, we leave the time-hybrid cases to
future work.

However, in our automation approach in Chapter 7, we allow systems where the
time-discrete and time-continuous parts do not appear in the same feedback loop.
In these cases, the ODE may depend on time-discrete state variables, but not the
other way around. Another possibility we support is that a difference equation may
depend on time-continuous state variables. But again, not the other way around.
Such models allow a partitioning into purely time-continuous, and time-discrete
model parts, which in turn can be treated as already discussed. We refer the details
to Chapter 7.

In the next subsection, we discuss hybrid models with control flow.

6.4.2 Hybrid Models

We now proceed with models with control flow elements that are not time-hybrid,
i.e., delay differential equations do not occur in the AR (cf. Definition 39). We
start by discussing an issue that may occur if refactorings yield a disturbance ε > 0

impacting control signals. In such cases, due to the disturbance, a time-delayed

6.4. Behavioural Equivalence for Hybrid Models 101

FIGURE 6.1: Time-Delayed Behaviour in Refactored Hybrid Models
with Control Flow

switching behaviour may occur. We provide conditions to preclude such time delays
or to identify time intervals in which such behaviour may occur. After that, we
provide the theorem allowing to conclude approximate bisimulation for hybrid
models with control flow together with the precision ε(#I) of the approximate
bisimulation, which is the maximum of all εχ(#I) from all data flow models. We
have published this approach in [SHGG16a].

Time-Delayed Switching

If a disturbance due to a refactoring impacts a control signal at a control flow
element, there may be a time-delay during the switch compared between source
and refactored target model. Figure 6.1 provides an example. There, two graphs are
depicted. One showing the trajectory of the source model, the other of the target
model. A switch occurs. The figure exhibits a time delay at the switch. The cause is
a disturbance εc > 0 at a control flow element.

In this subsection, we provide conditions that allow to preclude such unwanted
time-delays, or to isolate time intervals in which a time-delay may occur.

Before we come to the conditions, we define the phenomenon of a time-delayed
switch.

102 Chapter 6. Approximate Bisimulation for Simulink Models

Definition 46 (Time-Delayed Switch). Let M1,M2 be two hybrid Simulink models with
the same set of configurations X , evaluated in simulation interval I with the same sample
step size. Moreover, let

∀χ ∈ X : f1controlχ
= f2controlχ

for ficontrolχ
|= JMiχKφ(bcontrol)

There, φ is an assignment. We have assembled all control signals of the configuration χ in a
vector, abbreviated ficontrolχ

|= JMiχKφ(bcontrol). It means, the ARs of the control signals
determining the switching times yield the same values. Consider, there is a switch in M1,
i.e., a change from a configuration χ1 to a configuration χ2 in M1. This happens if the
fulfillment of a condition at at least one of the control flow elements changes at a time step
ts ∈ I.

1. If the change in M2 from χ1 to χ2 happens at the same time step ts, we call this a
perfectly synchronous switch.

2. It the change in M2 from χ1 to χ2 happen at a later step ts′ , then we call this a
time-delayed switch. The distance ts′ − ts is the delay.

For time-discrete models that fulfill the conditions of Theorem 4, the semantical
evaluation of both models yield the same values, particularly at all control flow
elements. Hence, the switching is always perfectly synchronous for time-discrete
models.The following conditions therefore only consider time-continuous submod-
els impacting the control signal. We exclude time-hybrid cases here as discussed in
the previous subsection. They are part of future work.

We provide each of the conditions for one control flow element. Since the
timing of switches, i.e., the time step of occurring changes between configurations
in a model, are determined by the conjunction of all conditions at all control flow
elements, the statements simply need to be applied to each control flow elements to
obtain a statement for the overall model.

We discuss two conditions. The first one is that control signals including the
disturbance εc at the control signal is too far away from the threshold to be able to
hit it, or a crossing of a control signal including the disturbance happens between
two sample steps. In this case, no switch happens in both models. The second
condition is that a crossing happens in both models. If the crossing of control signal
in both models happens between sample steps, the switch is perfectly synchronous.
Otherwise, the condition can be used to determine intervals where time-delayed
behaviour can occur.

We start with the first condition: Let M1 and M2 be hybrid Simulink models
with control flow containing a single Switch block, i.e., Ci = {bswitch}. Without loss

6.4. Behavioural Equivalence for Hybrid Models 103

0 1 2 3 4 5
0

2

4

6

8

10

FIGURE 6.2: First Timing Condition: No crossing

of generality, we assume that the condition associated with the Switch block is > ξ

for a real value ξ, i.e., p(bswitch) > ξ. Let the simulation interval be I. Let

λ1controlj
= λ2controlj

for λicontrolj
|= JMiχj

Kφ(bcontrol)

Let εc := maxi∈{1,2} εci with εci the numbers fulfilling

JM1iK
φ(bcontrol) ∼εci

JM2iK
φ(bcontrol).

The εci are the precisions of the approximate bisimulations at the control port
of the Switch block for the configurations i ∈ {1, 2}. They are guaranteed by
Theorem 4 for time-discrete submodels (in this case, εc = 0, which always results in
perfectly synchronous switching as discussed), and Theorem 5 for time-continuous
submodels.

For εc > 0, no switch occurs, if

∀t ∈ I : λc(t)− ξ > εc.

Figure 6.2 illustrates the condition: The curve in the middle of the figure is the
trajectory of the control signal λc, the dashed lines around it depict the εc tube
around it. The threshold at the control flow element is depicted as the dashed
line. The condition expresses that it is impossible for the trajectory including the
disturbance εc to cross the threshold. Hence, no switch occurs in both models. The
second condition (not depicted) treats with the negative case (then, the condition
> ξ is never fulfilled).

104 Chapter 6. Approximate Bisimulation for Simulink Models

The next condition also concerns with the case that no switch occurs in both
models. It relaxes the first condition: The trajectory including εc may cross the
threshold of the control flow element. However, the crossing happens between two
sample steps. More formally, consider

zero1(t) := λc1(t)− εc − ξ, zero2(t) := ξ − λc2(t) + εc.

It is the translation of the trajectory including the disturbance and the threshold to
the x-axis. Moreover, consider the zero crossings of these functions

Zi := zero−1
i (0) = {t ∈ I|zeroi(t) = 0}.

If zero1(t0) > 0 and Z1 = {t1, ..., tn} is a finite, discrete set (We have defined
discrete sets in Section 2.2.1) with an even amount of elements and without loss of
generality ordered, i.e., ∀1 ≤ i ≤ n : ti < ti+1, then no switch occurs if

∀1 ≤ i ≤ n : n odd ∀t ∈ S : t /∈ [ti, ti+1]

This means, that all zero crossings happen between time steps and are therefore
undetected in both models. The set S is the set of sample time steps. Figure 6.3
illustrates this case. There, the sample steps are depicted by dashed parallels to the y-
axis. The crossing of the threshold happens between sample steps. For zero2(t0) < 0,
an analogous condition with Z2 can be formulated.The same is the case for perfect
sets, i.e., if the zero crossings are not discrete but remain for an interval on the
x-axis. Then, this interval must as well be between two sample steps in order to be
undetected.

The last condition concerns with detection of intervals where time-delayed
behaviour may occur. This may happen if the conditions above cannot be guaranteed.
In this case, the ordered zero crossings of the functions

zero+− := λc1(t)− εc − ξ, zero++ := λc1(t) + εc − ξ,

zero−− := ξ − λc2 − εc, zero−+ := ξ − λc2 + εc

yield intervals during which time steps occur. These time steps are those where
time-delayed behaviour may occur. Figure 6.4 illustrates this. There, the trajectory
of the control signal crosses the threshold. The εc1 tube surrounding the trajectory
crosses the threshold left and right from it. The sample steps between the interval
(depicted as vertical dashed lines) are those where time-delayed behaviour may
occur.

6.4. Behavioural Equivalence for Hybrid Models 105

0 1 2 3 4 5
0

2

4

6

8

10

FIGURE 6.3: Second Timing Condition: Undetected Crossing

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

5

6

FIGURE 6.4: Intervals of Potentially Asynchronous Switching

106 Chapter 6. Approximate Bisimulation for Simulink Models

All functions in the above conditions can be analysed with a Computer Algebra
System (CAS) if the trajectory, i.e., the solution of the AR for the control signals can
be analytically solved. Then, the CAS can be used to determine potential intervals
for time-delayed behaviour.

Behavioural Equivalence of Hybrid Models with Control Flow

In this last subsection, we provide the main theorem that allows to conclude approx-
imate bisimulation for hybrid Simulink models.

Theorem 6 (Approximate Bisimulation for Hybrid Models). LetM1,M2 be two hybrid
Simulink models with the same set of configurations X , evaluated in simulation interval I
with the same sample step size. Moreover, for all assignments φ, let

∀χ ∈ X : f1χ = f2χ for fiχ |= JMiχKφ.

This means, the solutions of our AR yield all the same values for all output signals including
the control signals. Let all state equations in the AR be uniquely and globally solvable (which
is for difference equations always the case, for differential equations fulfilled if the right hand
sides of the equations are globally Lipschitz continuous). Let all data flow models be purely
time-discrete or purely time-continuous, i.e., no data flow model time-hybrid. Moreover, let

∀χ ∈ X : cond1(χ) = cond2(χ).

This means, all conditions associated with the configurations are the same. Let εχ(#I) be
the numbers such that

M1χ ∼εχ(#I) M2χ ,

i.e., εχ(#I) are the precisions of the approximate bisimulation for the data flow models with
the same configurations. Then

M1 ∼ε(#I) M2

with
ε(#I) := max

χ∈X
εχ(#I)

if no time-delayed switching as discussed in the previous section occurs. Otherwise, ε(#I) =
maxχ∈X εχ(#I) + maxt∈I,χ∈X ∥f1χ − f2χ∥∞.

For the proof, we refer to Appendix A. The key idea is that the assumption in
the theorem ensures that trajectories of all data flow models yield the same values.
Since we have also declared the blocks at control ports of control flow elements
to be output ports in our definition of the AR for hybrid models, this includes the

6.5. Summary 107

equality of the trajectories for the control signals. Control signals together with
the conditions of control flow elements determine the time step at which switches
between configurations occur. The equality ensures that these time steps are the
same, unless time-delayed switching has been identified as described in the previous
subsection. The global precision ε(#I) is the maximum of all possible disturbances
εχ(#I) for all configurations, i.e., all disturbances coming from a possible data flow
through the model.

6.5 Summary

In this chapter, we have presented our adaption of the concept of approximate
bisimulation to Simulink. With this, we are able to address the approximate na-
ture of signal flow-oriented modelling languages such as Simulink. Approximate
bisimulation is an established equivalence notion to compare trajectories that are
defined using an operational semantics with respect to a precision ε. Our adaptation
connects this equivalence notion with our AR. Moreover, we have provided proof
obligations, i.e., sufficient conditions for approximate bisimulation of source and
refactored target model. These conditions operate on the denotational level of the
ARs. Our approach includes the calculation of the precision ε of the approximate
bisimulation.

In the next chapter, we describe the automation of our approach for a relevant
subset of Simulink models.

109

Chapter 7

Automated Equivalence Checking
for Hybrid Control Systems

In this chapter, we describe the automation of our verification methodology. In order
to obtain a largely automated solution, we restrict the set of supported Simulink
models, mainly to those that can be described by linear ODEs or difference equations,
which is fulfilled for many applications. A detailed list of our assumptions and
limitations can be found in Section 4.1.

The key ideas are the following.

1. We provide a partitioning of each data flow model. We demand the partitions
to be purely time-discrete or purely time-continuous. However, the type may
change between partitions. This allows to apply our methodology even for
a subset of time-hybrid models. Moreover, our partitioning splits the model
into smaller components and therefore allows a modular verification.

2. In order to apply Theorems 4, 5, and 6, we perform verification of symbolic
equivalence with a Computer Algebra System. In order to obtain a largely
automated symbolic equivalence check, we make use of Laplace transform
and z-transform of the ARs. These transformations translate complex ODEs
into algebraic expressions. Symbolic equivalence can automatically be checked
for algebraic expressions.

3. After having established symbolic equivalence, we calculate the precision
ε(#I) of approximate bisimulation. Theorems 4, 5, and 6 provide the means
to calculate them for models where data flow models are purely time-discrete
or time-continuous. To support the described subset of time-hybrid mod-
els, we firstly apply the theorems to calculate a local precision εχl

(#I) (Miχ

(i ∈ {1, 2}) being the respective data flow model for models M1, M2) at sub-
models exchanging ODEs by analytical solutions, and secondly we provide a
propagation mechanism to calculate the global precision εχg(#I) for the overall

110 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

data flow models Miχ . The data flow models are approximately bisimlar with
precision εχg(#I). As per theorem 6, the maximum of the εχg(#I) of all data
flow models yields the precision ε(#I) of the overall model.

With our automated approach, we are able to verify the correctness of basically
the following refactoring types.

1. All kinds of syntactic refactorings, such as changes in subsystem or bus hierar-
chy.

2. All kinds of arithmetic refactorings, such as exploiting distributivity law,
exchange of Integrator and Gain blocks.

3. Exchanges of submodels representing ODEs or difference equations by (Dis-
crete) Transfer Function blocks or vice versa.

4. Exchanges of submodels representing ODEs or difference equations by sub-
models representing their analytic solutions or vice versa.

In essence, we are able to verify the state of the art refactorings that are currently
performed without verification, mostly manual. These are represented by items
(1) and (2). Moreover, we are able to verify correctness of important semantical
refactorings, which are represented by items (3) and (4).

In this chapter, we describe the elements of our automation approach in de-
tail. We go through each step, and discuss the soundness directly in the steps. We
start with guarantees the user needs to provide in the next section. These guaran-
tees ensure the applicability of our methodology. We continue with the data flow
model calculation and the partitioning in Section 7.2. Then, we present symbolic
equivalence checking in Section 7.3. We continue with the epsilon calculation and
propagation in Section 7.4. In Section 7.5, we combine the results of all steps, apply
6 to conclude approximate bisimulation of precision ε(#I) for two given Simulink
models fulfilling our limitations, and therefore directly discuss the soundness of our
overall approach there.

7.1 Obligations to ensure Applicability of our Methodology

To ensure applicability of our methodology, some prerequisites must be fulfilled.
These cannot be checked. Therefore, the user is asked to ensure them.

1. As described in Chapter 5, in Lemma 17, for the soundness of our AR in
the time-continuous case, it is required that the we have continuous, piece-
wise bounded values at stateful blocks. Due to the linearity of our subset of

7.2. Data Flow Model Calculation and Partitioning 111

supported models, this reduces to the requirement that ingoing signals fulfill
these properties. The user is asked to guarantee that.

2. In our approach, we conclude the equality of the solutions of the extracted ARs
of source and target model from the equality of the Laplace transformed or
z-transformed expressions. This demands injectivity of Laplace transform or
z-transform. According to Chapter 2, to guarantee injectivity of Laplace trans-
form or z-transform, the ingoing signals of the model need to be piecewise-
smooth or continuous and of at most exponential growth. Both conditions
need to be confirmed by the user.

3. The user is asked to guarantee the equality of the ingoing signals of source
and target model.

4. The user is asked to confirm that in source and target models the same approx-
imation method is selected.

The conditions are fulfilled for all practical applications: Signals that are un-
bounded or grow faster than the exponential function do not play important roles
in practice.

7.2 Data Flow Model Calculation and Partitioning

We start with data flow model calculation and partitioning. Since both are on a
syntactical level, we discuss them together as syntactical preparations. Data flow
models represent the possible data flows in the model as discussed in Chapter
5. The union of the ARs of all data flow models together with the equations and
conditions at control flow elements yields the AR of the overall model. As discussed
in Theorem 6, we verify equivalence for all data flow models in order to obtain
equivalence of the overall model. The purpose of partitioning is to prepare a modu-
lar verification, and to allow alternating types of Simulink submodels: partitions
containing purely time-discrete submodels can follow partitions containing purely
time-continuous submodels and vice versa. A partition represents an undivisible
submodel: Since a partition is purely time-discrete or purely time-continuous, and
perceivable as a Simulink model with ingoing signals from preceding partitions,
and outgoing signals to subsequent partitions in the partitioning, our Theorems
4 for behavioural equivalence of purely time-discrete Simulink models and 5 for
behavioural equivalence of purely time-continuous Simulink models are applicable.

112 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

FIGURE 7.1: Syntactical Preparations Overview

Figure 7.1 provides an overview over these steps. The figure should be read
from left to right. At the top, there is the source model, at the bottom the target
model. So, all steps are performed for both models.In the following, we describe
both steps of the syntactical preparations.

7.2.1 Data Flow Model Calculation

We start with the calculation of data flow models. Data flow models are associated
with configurations. We have defined them in Definition 37. This definition provides
a precise description what we perform to obtain the data flow models.

In particular, we perform the following steps for each configuration, i.e., each
n−tuple (χ1, ..., χn), n being the amount of Switch blocks, χi ∈ {1, 2} for all Switch
blocks si:

1. At Switch block si, we cut all edges to the block, i.e., the edges at ports 1 to 3

2. We newly create an output block bcontroli and connect it with the block that
carries the control signal for si.

3. We connect the block that precedes si at data port χi with all successors of the
Switch block si.

7.2. Data Flow Model Calculation and Partitioning 113

FIGURE 7.2: Partitioning Principle

4. We remove the Switch block si.

We also keep the predicate of all Switch blocks for the respective configuration, i.e.,
we keep pχ(bcontroli) = ⋄bcontrolip(si) as defined in Definition 37.

The process yields 2n data flow models.

7.2.2 Partitioning

Partitioning runs on the data flow models that we have calculated in the previous
step. Partitions in the partitioning are Simulink models with ingoing signals from
preceding partitions in the partitioning, and ougoing signals to subsequent partitions
of the partitioning. They represent indivisible submodels, whose equivalence can be
verified separately.

In the partitioning process step, we divide the data flow models in components
whose equivalence can be verified separately in a subsequent step of our approach.
Partitioning fulfills chiefly two objectives: 1) The verification becomes modular and
therefore performance of the verification is improved, 2) the submodel types between
partitions can change, i.e., time-discrete submodels can follow time-continuous
submodels or vice versa. After having performed the partitioning, we enrich the
partitions with output and input blocks. This allows us to treat each partition in
the partitioning as a submodel. For these submodels, we can apply Theorems 4
for behavioural equivalence of purely time-discrete Simulink models and 5 for
behavioural equivalence of purely time-continuous Simulink models later in the
verification process.

The partitioning process is threefold. In the first step, we give the user the
opportunity to mark partitions that are considered to be equivalent. In particular,

114 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

the user is required to tell the system which submodel in the original model has
been replaced by its analytical solution.

In the second step of the partitioning process, we identify cyclic components,
i.e., we collect strongly connected components to detect feedback loops. The idea is
that in order to obtain applicability of Theorem 4 or Theorem 5 to show behavioural
equivalence, we require cyclic submodels to be purely time-discrete or purely time-
continuous. If both types occurred in a cycle, this would yield a time-hybrid system,
which we have left for future work. Hence, cyclic submodels are indivisible in our
approach and therefore we collect strongly connected components in the Simulink
graph representation.

In the third step, we collect the non-cyclic components, i.e., singleton partitions
from the previous step together. As for the partitions containing strongly connected
components of the Simulink graph, we consider the directed acyclic graph parts
(DAG parts) as indivisible components that are either purely time-discrete or purely
time-continuous. Note that if these DAG parts are time-hybrid, an additional
separation into purely time-discrete or purely time-continuous parts would be
possible. However, we have omitted this here. An adaptation to support this would
easily be possible.

Figure 7.2 illustrates the concept of the second and third step. There, the blue,
dotted circles are the result of the second step in the given example. Every strongly
connected component is gathered in a partition. The green, straight circles depict the
result of the second step of the partitioning process. Partitions with more than one
element are kept, singleton partitions are collected together if they are connected.

In the following, we go through the details of each step and formalise the ideas.

First Partitioning Step - User-Defined Partitioning

With the user-defined partitioning, the user defines where an ODE in a given model
has been replaced by its analytical solution in the target model. The user provides a
list of pairs of blocks, one from the source, one from the target model. These blocks
together with all preceding blocks with respect to the Simulink graph are considered
to be in a partition.

The motivation for this step is that the resolution of a submodel representing
an ODE by its analytical solution may imply the resolution of a cycle to a DAG
component, i.e., in the target model, the cycle has gone. Figure 7.3 illustrates this.
There, the ODE at the beginning has been reduced by a Sine Wave generator. This
Sine Wave Generator is part of a larger DAG component. The other partitioning

7.2. Data Flow Model Calculation and Partitioning 115

FIGURE 7.3: Uder-Defined Partitioning Example

steps, i.e., cycle detection and DAG parts assembly, would yield differing partitions
for which a symbolic verification would fail.

We collect all blocks preceding the user-defined pair of blocks because replace-
ments of submodels by analytical solutions can only occur at the beginning of the
models with respect to the data flow. This becomes clear because of the meaning
of a replacement of a submodel by its analytical solution. It means, a model ex-
pressing an ODE d

dtyyy(t) = f(t, yyy) is replaced by a model expressing its solution φφφ(t)
(the time-discrete case with difference equations works analogously). The solution
does only depend on t. No further dependence, i.e., on stateful blocks, is possible.
Moreover, the expression f(t, y) does only depend on t and the stateful variables yyy,
not on arbitrary input variables. It would not be possible to provide an analytical
solution for unknown arbitrary input signals. This implies that such cases only may
occur at the beginning of the model with respect to the data flow or graph structure.
Hence, a partitioning combining all components together at the beginning is the
only reasonable possibility.

The algorithm that performs this first step is straightforward: Start with the
collection of the partition at the block defined by the user, move backwards in the
graph, i.e., along E−1, collect the blocks you encounter if not visited before. This
yields a partition (or multiple if the user defined multiple blocks) at the beginning
of the model. The partitions resulting from the first step are never modified by
subsequent partitioning steps.

116 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

Second Partitioning Step - Cycle Partitioning

The next partitioning step is the cycle detection and collection of cyclic components
in partitions. The result is a partitioning comprising partitions with cyclic graph
components and singleton partitions with elements that are not part of a cycle.
For the realisation of this step, we make use of the concept of strongly connected
components in a graph [CLRS01].

Definition 47 (Strongly Connected Components). Let G = (V,E) be a directed graph
with the finite set V of vertices and E ⊆ V × V the set of edges. A path in G from u ∈ V
to v ∈ V is a sequence v1, ..., vn of vertices where ∀1 ≤ i < n : (vi, vi+1) ∈ E, i.e.,
succeeding elements in the sequence are connected in the graph, and u = v1, v = vn. G is
called strongly connected if for every pair u, v ∈ V there is a path from u to v and vice
versa. The strongly connected components of G are the induced equivalence classes of
the equivalence relation

u ≡ v ⇔ exists a path from u to v and vice versa

The result of the partitioning of a data flow modelM = (B,E, I,O, S, ∅, port, fun, ∅)
is the graph M≡ = (B≡, E≡, I≡, O≡) with

• B≡ = B/ ≡, i.e., B≡ being the set of equivalence classes of the relation
≡⊆ B ×B.

• E≡ ⊆ B≡ ×B≡ with

E≡ := {(p1, p2)|p1, p2 ∈ B≡ ∧ p1 ̸= p2 ∧ ∃b1 ∈ p1, b2 ∈ p2 : (b1, b2) ∈ E}

This means, E≡ connects different partitions that contain elements being
connected in the original graph. We omit self-references, i.e., elements (p, p) in
E≡. E≡ lifts the connections existing in the graph to the partition level, This
means on the one hand that if in the graph two vertices are connected that are
located in different partitions, we have a connection in E≡. On the other hand
side, if we have a connection in E≡, then there is at least a connection in the
underlying graph between vertices located in the respective partitions.

• I≡ ⊂ B≡ with
I≡ = {p|∃b ∈ p that is an input block}

Note that such partitions are always singleton partitions, i.e., partitions con-
taining only one element because input vertices can never be part of a cycle.

• O≡ is defined analogously as I≡ for output blocks.

7.2. Data Flow Model Calculation and Partitioning 117

This yields the blue, dotted circles in the example depicted in Figure 7.2. The
elements of E≡ are the connections between the partitions.

Third Partitioning Step - Merging Singleton Partitions

In the third step, the singleton partitions, i.e., partitions containing a single element,
are merged. The result of this step are the plain circles depicted in Figure 7.2. Cyclic
partitions, (Discrete) Transfer Function blocks, and user-defined partitions are not
modified. They remain unchanged in this step. (Discrete) Transfer Functions are
not merged because we consider them also as cycles. This is because they can be
resolved to cyclic ODEs as described in Section 5.4.

The algorithm is as follows:

• We start at output ports of the model, i.e., at elements b ∈ O≡, and at singleton
partitions preceding a cycle or a singleton partition containing a (Discrete)
Transfer Function block, i.e., at p ∈ B≡ such that ∃p′ ∈ B≡ : (p, p′) ∈ E≡ and
#p′ > 1 or #p = 1 and p contains a (Discrete) Transfer Function block.

• We move backwards in the partitioning, i.e., alongE−1
≡ , and merge all singleton

partitions.

• We stop at cyclic partitions, user-defined partitions (result of step 1), singleton
partitions containing (Discrete) Transfer Function blocks, and at partitions
containing input blocks.

Note that the resulting partitioning can introduce new cycles. In this case, such
cycles are merged as well. Note that the reachability relation in our partitioning
imposes a partial order because it is a directed acyclic graph.

Definition 48. Let M = (B,E, I,O, S, ∅, port, fun, ∅) be a data flow model.We call the
result of the three algorithmic steps as described above Partitioning of the data flow model
and denote it with

(P,E)

The set P ⊆ P(B) conists of subsets of vertices from the original Simulink model graph. The
set E connects the elements of P. A connection is in EP if and only if there is a connection
in E, i.e., in the original graph, between two vertices being part of different partitions in P.
Hence, EP is analogously defined to E≡.

Note that the partitioning is a partitioning in mathematical sense, i.e., partitions
are pairwise disjoint, and the union of all partitions yield the whole set of vertices.

118 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

To prepare the subsequent process step, the symbolic equivalence check, we add
new distinguished vertices per partition, the interface vertices. The interface vertices
are considered as new input and output vertices for the respective partition. In our
verification, partitions are considered as Simulink submodels with ingoing signals
from preceding partitions in the partitioning, and outgoing signals to subsequent
partitions in the partitioning. The interface vertices complete the submodels in the
partitions to full Simulink models that can be verified separately. We call the result
Enriched Partitioning, which we define as follows.

Definition 49 (Enriched Partitioning). Let M = (B,E, I,O, S,C, port, fun, p) be a
Simulink model, Mχ a data flow model, (P,E) the result of the Partitioning process of Mχ,
and P ∈ P a partition. We identify the following interface edges in P :

EI
P := {(b′, b) ∈ E|∃P ′ ∈ P : b′ ∈ P ′ ∧ (P ′, P) ∈ E}

EO
P := {(b, b′) ∈ E|∃P ′ ∈ P : b′ ∈ P ′ ∧ (P, P ′) ∈ E}

The set EI
P contains the edges imposed by the graph structure of the original Simulink model

crossing adjacent partitions and ending in a vertex of the respective partition P . The set EO
P

contains the edges crossing adjacent partitions and originating from a vertex of partition
P . For each of these edges in the sets EI

P and EO
P , we add an auxiliary vertex. We define the

following sets:

IP := {b|∃(b1, b2) ∈ EI
P ∨ b ∈ I ∩ P}, OP := {b|∃(b1, b2) ∈ EO

P ∨ b ∈ O ∩ P}

We call the elements of IP Interface Input Vertices of P . The elements of the set OP are
the Interface Output Vertices of the partition P respectively. Interface vertices consist of
the newly created vertices at partition-crossing edges, and the input and output blocks of
the model. We ensure that the interface vertices are properly connected in the graph, i.e., we
form

EP := {(bI , b)|bI ∈ IP ∧ (b′, b) ∈ EI
P } ∪ {(b, bO)|bO ∈ OP ∧ (b, b′) ∈ EO

P }

We assemble all interface input and output vertices in sets.

I :=
⋃
P∈P

IP ,O :=
⋃
P∈P

OP

This yields a new data flow model with vertices B∪I∪O and edges E∪
⋃

P∈PEP . We also
obtain a new Partitioning by adding the vertices of IP and OP to the respective partition P .

7.2. Data Flow Model Calculation and Partitioning 119

FIGURE 7.4: Simple Example of a hybrid model with a Switch block

We call the quadruple
(P,E, I,O)

the enriched partitioning of the Data Flow Model.

The idea of adding the interface vertices to each partition is that we obtain
complete Simulink submodels if we consider only the subgraph induced by a
partition. It comprises output and input vertices, the interface vertices. This allows us
to formulate the equivalence checking and epsilon propagation approach partition-
wise.

Example 3. Figure 7.4 shows an example for a simple hybrid model. Figure 7.5, which is
an output of our implementation, shows the respective enriched partitioning for one data
flow model (where the first data port is active) as provided by our implementation. The
dark areas are the partitions. The Simulink model blocks are represented as vertices in the
graph. Edges are depicted as arrows. The dotted arrows are references to the interfaces of the
subsequent partition. The figure shows the added interface vertices in two partitions. In our
implementation, we also have added a data input vertex to the block at the inactive data port.

With the enriched partitioning, we close the syntactical preliminaries and pro-
ceed with the equivalence check. In the next section, we describe the subsequent
process step, the symbolic equivalence check.

120 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

FIGURE 7.5: Enriched Partitioning for the example

7.3 Symbolic Equivalence Checking

After the calculation of the data flow models and the partitioning, we proceed with
the symbolic equivalence check. The goal of this step is to establish equality of the
ARs between pairs of partitions of the enriched partitioning in pairs of data flow
models between source and target model. If this succeeds, we are able to apply
Theorems 1 and 2 because each partition is either a purely time-discrete submodel,
or a purely time-continuous submodel.

We describe the symbolic equivalence checking process in two steps. Firstly,
we describe how we establish symbolic equivalence between a pair of partitions,
one from an enriched partitioning of a data flow model of the source and one from
the target model. Secondly, we describe how we use this partition-wise check to
establish symbolic equivalence of the overall model.

7.3.1 Partition-Wise Symbolic Equivalence Checking

Consider we have two partitions P1, P2 originating from an enriched partitioning
of a data flow model of the source model and an enriched partitioning of a data
flow model from the target model. To check for symbolic equivalence between both
partitions, we proceed as follows.

1. We extract the ARs from the partitions yielding equations for the output
vertices and (if present) the stateful vertices. Note that in our enriched parti-
tioning, each partition has at least an output vertex - either an output vertex
originating from an output block of the model, or an interface output vertex
expressing a point of observation for subsequent partitions. Hence, in any
case, we obtain at least an output equation for a partition.

7.3. Symbolic Equivalence Checking 121

2. If stateful vertices are present, we extract the stateful equations directly in
Laplace transformed or z-transformed form.

3. We relay the extracted terms for the check of symbolic equivalence to a Com-
puter Algebra System (CAS).

In the first step, we extract our AR from each partition. If stateful blocks are
present in a partition, we have a linear ODE or difference equation system per
assumption. We express these equation systems in the second step directly by their
Laplace or z-transformed [EA06, Kai80]. Please refer to Sections 2.2.4 and 2.2.4 for
background information regarding Laplace and z-transform. Moreover, we derive
an equation describing the output for each partition.

We agree on the notation of the following variables.

• yi to the output of each stateful block, e.g. Integrator, Unit Delay, Transfer
Function block.

• ij the interface input vertices, i.e., elements from IPi .

• oi analogously for the interface output vertices, i.e., elements from OPi .

For each partition, we extract an output equation describing the observation at
its exits:

o = f(i,y)

We denote the equations in vectorial form in bold font. The dimension is determined
by the amount of occurring output variables in the partition. For non-stateful parti-
tions that have been defined as solutions by the user in the user-defined partitioning
step, we additionally apply Laplace transform or z-transform on the expression via
the CAS. If stateful blocks are present in a partition, we extract the equation directly
in Laplace- or z-transformed format. We illustrate this for the time-continuous case
and the associated Laplace transform. The time-discrete case is applied with the
z-transform analogously.

We extract the Laplace transformed state equation:

YYY = A(s)YYY + III(s)

We denote Laplace transformed variables with capital letters, i.e., Y := L(y) where
y : I → R is a function fulfilling the condition for existence of the Laplace trans-
formed as described in Section 2.2.4. This means, y is of at most exponential growth
(cf. Lemma 8). The matrix A(s) comprises expressions depending on the complex-
valued variable s, which are rational polynomials. These polynomials are deter-
mined by the stateful block: For instance, Integrator blocks yield the expression 1

s ,

122 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

FIGURE 7.6: Laplace Transformed AR Extraction Example

Transfer Function blocks yield a polynomial p(s)
q(s) given as parameter. The vector

III(s) contains incoming signal variables and constants resulting from initial values
of stateful blocks, multiplied with expressions depending on s. This equation is
transformed to

YYY = (Id−A(s))−1III(s).

In the formula, Id denotes the identity matrix. This operation, in particular the
calculation of the matrix inverse, is possible because the rank of Id− A is always
equal to the dimension of A.

Example 4. Figure 7.6 illustrates an example for a time-continuous partition. There, the
interfaces to preceding and subsequent partitions are represented by an input port and an
output port. We have a source and a target model in the figure. The stateful blocks are
associated with variables x, y. We obtain o = x as output equations in both cases, and

(
X
Y

)
=

(
1 − 1

s
1

s+1
1

)−1 (
1
s
I
0

) (
X
Y

)
=

(
1 − 1

s
1
s
1+ 1

s

)−1 (
1
s
I
0

)
as state equations for the respective models.

After we have extracted the equations, the symbolic verification of the equiva-
lence between two partitions is performed with the help of the extracted equations
via a Computer Algebra System (CAS).

For partitions without stateful blocks, we have only two output equations, one
from the source and one from the target model, i.e., ooo1 = f1(iii), ooo2 = f2(iii). We simply
ask the CAS to symbolically unify the terms

f1(iii) = f2(iii)

7.3. Symbolic Equivalence Checking 123

For partitions with stateful blocks, we have output equations

ooo1 = f1(yyy, iii), ooo2 = f2(yyy, iii)

and state equations

YYY 1 = (Id−A1(s))
−1III(s),YYY 2 = (Id−A2(s))

−1III(s)

We ask the CAS to symbolically verify the equivalence of

f1(yyy, iii) = f2(yyy, iii)

where the variables yyy have been replaced by the expressions in the resulting vectors
of the state equations.

The case of partitions where one represents an ODE or difference equation,
the other represents the analytical solution, which we obtain in the user-defined
partitioning step, reduced to the case where we have two stateful equations because
we have also transformed the analytical solution with Laplace transform or z-
transform. The only difference is that in these cases, no input variables occur in the
state equations. Instead, in both expressions are only polynomial that depend on s
or z. These expressions are analogously checked for symbolic equality.

Example 5. In our example 4 from Figure 7.6, we ask for instance if

π1

((
1 − 1

s

− 1
s+1

1

)−1 (
1
s
I
0

))
= π1

((
1 − 1

s
1
s
1+ 1

s

)−1 (
1
s
I
0

))

where π1 is the projection on the first component of the vector. We take π1 because the term
describing the output is just x, i.e., the first component of the vector.

Equivalence checking of two time-discrete partitions works analogously to the
time-continuous case if the linear ODE system is replaced by a linear difference
equation system and the Laplace transform by the z-transform.

In the next paragraph, we describe how this partition-wise equivalence check is
utilised to obtain an equivalence check for the overall model.

7.3.2 Model Equivalence Checking

For each data flow model with the same configuration in source and target model,
we perform symbolic equivalence checking with the help of a CAS as described in
the previous subsection. If this is successful for all data flow models, the overall

124 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

symbolic equivalence check is successful. Within data flow models, we perform
the symbolic equivalence check partition-wise by moving along the partial order
imposed by the partitionings as described in the previous paragraph. Note that this
partition-wise check is semi-automated only: Consider two partitionings. We move
along the partial order, i.e., we start at minimal elements and perform the partition-
wise equivalence check. Once verified, we move on with the minimal elements
succeeding the partitions we just successfully verified for symbolic equivalence.
If the minimal element at the current step is the smallest element, i.e., if there is
only one minimal element, it is obvious which partitions need to be checked for
equivalence because there is only one choice. However, if there is more than one
minimal element, we check each possible pair, and give a feedback to the user which
check has been successful. The user is then asked to confirm that the correct pair
has been selected. This is the second manual step in our automation approach.

If symbolic equivalence has been established for all partitions, the partitioning
and consequently the respective data flow model has been successfully verified for
symbolic equivalence. This in turn allows us to apply Theorems 4 and 5 respectively
for all partitions, which in turn guarantees approximately equivalent behaviour for
the models in the partitions.

Our symbolic equivalence check is sound because the partitioning imposes a
partial order. If the user guarantees equivalence of the ingoing signals of the overall
model, our partition-wise symbolic equivalence check can assume the equality of
ingoing signals in a partition, i.e., at the interface vertices. Hence, we follow an
assume-guarantee strategy.

The next step after establishing the symbolic equivalence for all Data Flow Mod-
els partition-wise is to calculate the local precision εl if necessary, and to propagate
this throughout the partitions.

7.4 Epsilon Calculation and Propagation

In this section, we explain how, within a data flow model Mχ, 1) the precision of
the approximate bisimulation is calculated locally, i.e., for stateful time-continuous
parts within a partition where the refactoring replaces an ODE by its analytical
solution yielding εl(#I) (I the simulation interval), and 2) how this local εl(#I)
is propagated through the subsequent partitions yielding a global εg(#I) for the
data flow model Mχ. The latter fulfills two purposes: 1) to obtain a global precision
εg(#I) for the approximate bisimulation of the overall data flow model Mχ, and
2) to be able to check for possible time delays at control flow elements. We have
performed the calculations described in this section with Mathematica [Wol15].

7.4. Epsilon Calculation and Propagation 125

The key idea of our epsilon calculation and propagation approach is the follow-
ing: We have purely time-discrete or purely time-continuous submodels in each
partition p of our partitioning. For these submodels, we can apply Theorems 1 or 5.
This yields εlp(#I) at the output of our enriched partitioning. This value εlp(#I) in
turn is transferred to succeeding partitions. If εlp(#I) > 0, this implies that the input
signals of a directly succeeding partition p′ are disturbed by εlp(#I). For partition p′

we can again apply Theorems 1 or 5. However, these theorems implicitly assume an
undisturbed signal. We therefore estimate an additional error due to the disturbance
of the input signals of magnitude εlp(#I). This additional disturbance consists of a
conditional error (the mathematical problem is disturbed), and a convergence error
(the effect on the numerical algorithm due to the disturbance). Please refer to Section
2.2.5 in Background Chapter 2 for details to numerical errors. Since we have limited
our subset of supported Simulink models for this automation approach to those that
can be represented by linear ODEs or difference equations, we can always provide
such an estimate. Our approach therefore is capable of dealing with alternations
between time-discreteness and time-continuity between partitions.

Calculation of Local Epsilon

To keep the notation simple, and to avoid too many subindices, we assume that
the calculation refers to a data flow model Mχ, and a partition p, without explicitly
mentioning this in the formulas. Hence, with εl, we mean the precision of the
approximate bisimulation at the exits of the partition p in the data flow model Mχ.

We start with the calculation of the local εly at the exit signals of stateful blocks
of a partition p (y indicates that we refer to the state equations). For all time-discrete
partitions, it is 0 - independent from the fact whether a refactoring took place in the
partition or not. Furthermore, it is 0 for time-continuous systems if it is (partially)
replaced with a Transfer Function block, or an arithmetic change has taken effect, but
the ODEs remain unchanged. The reason for that is that provided both models are
simulated with the same step size and the same numerical method, the calculations
yield the same values.

The precision εly can only be greater than 0 for 1) a time-continuous partition
and 2) if the ODE is resolved, i.e., the refactoring replaces the ODE d

dty(t) = Ay(t) +

i(t),y(0) = y0 by its solution λ or the other way around. Otherwise, the ODE is
not resolved, but the partitions are symbolically equivalent, which can only be the
case if an arithmetic refactoring has been performed, and the ODEs are the same.
As we know from Chapter 6 this implies εly = 0 because if the ODEs are the same,
the approximation technique in both models yields the same values. The matrix A,

126 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

which we use for the epsilon calculation, can be extracted analogously as described
in the previous subsection.

This also implies that refactorings causing a local εl > 0 are only possible
at minimal elements of the partitioning. Examples for such refactorings are the
alternative expression of components that are desired, but not implementable due
to engineering constraints. An example would be the replacement of a Sine Wave
Generator block by the ODE d2

dt2
y = −y, y(0) = 0, d

dty(0) = 1.
As described in Section 6.3.1, the calculation of εly in this case is generally

determined by a formula

εly(#I) = ferr

(
L, h,#I,max

t∈I

 d2dt2λ(t)

∞

)
where L is the Lipschitz constant, h the simulation step size, #I the length of the
simulation interval, and λ is the unique solution of the ODE. In this section, we have
also provided techniques to calculate the parameters of the formula. In particular,the
function ferr depends on the selected simulation technique, h and #I are given
as parameters by the user. We obtain an estimate for the Lipschitz constant L by
applying Lemma 7. Since the matrix A has constant coefficients, we directly obtain
an estimate for L. The Lemma says, that the estimate can be calculated by ∥Jf (yyy)∥∞
where f(t) = Ayyy(t) + iii(t). For A = (ai,j)1≤i,j≤n, this leads to

∥Jf (yyy)∥∞ = ∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |

To calculate maxt∈I

 d2

dt2
λ(t)

∞

, we use the available solution λ. The CAS can
calculate the maximum in the simulation interval automatically.

The process yields a disturbance εly(#I) associated with the exits of the stateful
blocks. To calculate the εl(#I) for partition p, we use the term of the output equation
of the partition fo(yyy, iii). Depending on the function fo, the disturbance εly(#I) can
increase. For instance for sums we obtain εly1 (#I) + εly2 (#I). For Gain blocks, i.e.,
multiplication with constant λ, we obtain λεly(#I) as resulting perturbance and so
on.

7.4.1 Epsilon Propagation through Partitions

The disturbance εl has an impact on subsequent partitions. If stateful blocks are
present, this means in particular the following: Consider one input to a partition
p′ subsequent to our partition p with εl. Then, this partition p′ is disturbed by εl at
the interface vertices. To illustrate this, consider Figure 7.7. On the left hand side,

7.4. Epsilon Calculation and Propagation 127

FIGURE 7.7: Vectorfields for Disturbed and Undisturbed Solution

an undisturbed vectorfield induced by an ODE d
dty(t) = f(t, y(t)) together with one

solution is depicted, on the right hand side the disturbed counterpart is depicted.
The arrows in the vectorfields depict the inclination of the solution for each point
(t, y) determined by the ODE, i.e., at point (t, y), the vector points in the direction
(1, f(t, y)). As illustrated there, the disturbance causes the initial value to shift and
the inclination to change. Hence, we obtain a different solution. We provide an
estimate for the maximal distance between these solutions. This is called conditional
error εycond

(#I) in accordance with the numerical errors as introduced in Section
2.2.5.

For time-discrete partitions, this conditional error εycond
(#I) is the final resulting

error. For time-continuous partitions, the disturbance εycond
(#I) in turn yields an

additional approximation error, a convergence error εyconv(#I), which can in turn be
calculated via the error formula ferr (cf. Section 2.2.5). The overall disturbance at
the Interface Output vertices depend on the output equations analogously as in the
calculation of the local epsilon.

Conditional Error Calculation

We firstly calculate an estimate of the disturbance caused by the ODE or difference
equation. For non-stateful partitions, it works as for the output equations to calculate
εl(#I). At stateful partitions, we describe the time-continuous case. The time-
discrete case works analogously. In the case of stateful blocks, we have ODEs

d

dt
y(t) = Ay(t) + iii(t), yyy(0) = yyy0,

d

dt
ŷyy(t) = Aŷyy(t) + iii(t) + εl(#I), ŷyy(0) = yyy0 + εl(#I)

128 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

where the latter is the disturbed ODE and the disturbance εl(#I) results from
preceding partitions.

We now show in the following Lemma how we can obtain an estimate of the
maximal deviation between undisturbed and disturbed ODE.

Lemma 19 (Maximal Disturbance of Disturbed and Undisturbed ODE). Let

d

dt
y(t) = Ay(t) + iii(t), yyy(0) = yyy0,

d

dt
ŷyy(t) = Aŷyy(t) + iii(t) + εl, ŷyy(0) = yyy0 + ε0

be undisturbed and disturbed ODE with constants εl, ε0. Let the solutions of the ODEs be
λλλ and λ̂̂λ̂λ. Then

λ̂̂λ̂λ(t) = λλλ(t) + λ̃̃λ̃λ(t)

where λ̃(t) is the solution of the ODE

d

dt
ỹ̃ỹy(t) = Aỹ̃ỹy(t) + εl, ỹ̃ỹy(0) = ε0

Hence, the maximal disturbance can be estimated by

∥λλλ− λ̂̂λ̂λ∥∞ = max
t∈I
∥λ̃̃λ̃λ(t)∥∞

Proof. We show that λ̂̂λ̂λ = λλλ + λ̃̃λ̃λ solves the initial value problem. Firstly, we show
that it fulfills the ODE. This follows from

d

dt
λ̂̂λ̂λ(t) =

d

dt
(λλλ+ λ̃̃λ̃λ)(t) = Aλλλ(t) + iii(t) +Aλ̃̃λ̃λ(t) + εl

= A(λλλ+ λ̃̃λ̃λ)(t) + iii(t) + εl = Aλ̂̂λ̂λ(t) + iii(t) + εl

Secondly, we verify if the intial value equation is fulfilled.

λ̃̃λ̃λ(0) = (λλλ+ λ̂̂λ̂λ)(0) = y0 + ε0

Since for linear ODEs, the solutions are unique because the right hand side of the
equation is Lipschitz-continuous, this concludes the proof.

We use this lemma to obtain disturbance error by relaying the ODE

d

dt
ỹ̃ỹy(t) = Aỹ̃ỹy(t) + εl(#I), ỹ̃ỹy(0) = εl(#I)

to the Computer Algebra System and asking for a solution, which always exists for
linear ODEs. The CAS also tells us the maximum in the simulation interval I. This
yields the disturbance εycond

(#I).

7.4. Epsilon Calculation and Propagation 129

The time-discrete case with difference equations can analogously be applied. We
demonstrate this by providing an analogous Lemma for difference equations.

Lemma 20 (Maximal Disturbance of Disturbed and Undisturbed Difference Equa-
tion). Let

yn+1 = Ayn + iiin, yyy0 initially given , ŷyyn+1 = Aŷyyn + iiin + εl, yyy0 + ε0 initial value

be undisturbed and disturbed difference equation with constants εl, ε0. Let the solutions of
the difference equations be (λλλn)n and (λ̂̂λ̂λ)n. Then

∀n ∈ N : λ̂̂λ̂λn = λλλn + λ̃̃λ̃λn

where (λ̃n)n is the solution of the difference equation

ỹ̃ỹyn+1 = Aỹ̃ỹyn + εl, ε0 the initial value

Hence, the maximal disturbance can be estimated by

∥λλλn − λ̂̂λ̂λn∥∞ = max
n∈N
∥λ̃̃λ̃λn∥∞

Proof. We have to show that λ̂̂λ̂λn = λλλn+λ̃̃λ̃λn solves the difference equation. We perform
this via natural induction. For n = 0, we have

λ̂̂λ̂λ0 = yyy0 + ε0 = λλλ0 + λ̃̃λ̃λ0

Consider now
λ̂̂λ̂λn+1 = Aλ̂̂λ̂λn + iiin + εl = A(λλλn + λ̃̃λ̃λn) + iiin + εl

The last equation holds due to the inductive assumption. We continue as follows

= Aλλλn + iiin +Aλ̃̃λ̃λn + εl = λλλn+1 + λ̃̃λ̃λn+1

This concludes the proof.

Convergence Error Calculation

The change from an undisturbed to disturbed solution causes a change of the
convergence error, i.e., the error due to the approximation of the ODEs. This applies
only for time-continuous partitions since there is no approximation at time-discrete
partitions. As described in the local epsilon calculation step, the convergence
error, i.e., the sum of consistency and stability error for single step approximation

130 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

techniques can be estimated by a function

εly(#I) = ferr

(
L, h,#I,max

t∈I

 d2dt2λ(t)

∞

)
We know from Lemma 19 that we can represent the solution of the disturbed ODE
λ̂̂λ̂λ = λλλ+ λ̃̃λ̃λ. Moreover, we know that the convergence error of the exact solution λλλ is
in both models the same. The reason for this is that at partitions that are not minimal
elements in the partitioning, no replacement of ODE by analytical solution or vice
versa may have occurred. Hence, the ODEs in such partitions remain unchanged and
therefore as pointed out in Section 6.3.1, the convergence error of the undisturbed
solution is 0. Therefore, we can conclude that the convergence error we need to
estimate can be calculated by

εyconv(#I) = ferr

(
L, h,#I,max

t∈I

 d2dt2 λ̃̃λ̃λ(t)

∞

)
We have calculated λ̃̃λ̃λ in the previous step and therefore are able to calculate the
estimate. Overall, this sums up to

εly(#I) = εycond
(#I) + εyconv(#I).

As described in the calculation of the local epsilon, we use this εly(#I) to obtain
the estimate εl(#I) for the partition, i.e., the disturbance at the interface output
vertices. We perform the calculation and propagation of the ε(#I) as described in
the previous subsections for all data flow models and take the maximum to obtain
the overall precision of the approximate bisimulation.

7.5 Approximate Bisimulation Verification

Finally, we describe how we combine the steps of our automation approach to be
able to apply Theorem 6 to conclude approximate bisimulation of two given models
with precision ε.

As described in Section 7.2, we calculate all possible data flow models, i.e.,
models describing the data flow for all possible configurations. Moreover, we
perform a partitioning. This results in a partitioning graph determined by the
underlying graph structure of the original model. We combine cycles and non-
cyclic parts. Each of the partitions of the partitioning can be considered as fully
executable submodels. We perform the symbolic equivalence check for all data
flow models with the same configuration in source and target model, i.e., under

7.5. Approximate Bisimulation Verification 131

the same switching condition. We perform the check following the graph structure
on partitioning level. The user is asked to guarantee that our check is compliant
with the structure of the partitionings, i.e., that the proper partitions within the
partitionings have been checked for symbolic equivalence. We apply an assume-
guarantee strategy: Equivalences of output signals of partitions imply equivalence
of respective ingoing signals of subsequent partitions. Overall, this yields a sound
symbolic equivalence check. Together with a check if all conditions at switch blocks
in source and target model are the same, this yields an overall applicability of
Theorem 6. The calculation of the precision ε(#I) of the approximate bisimulation
of source and target model is performed firstly locally at partitions that are minimal
elements in the partitioning graph, and secondly by a sound propagation through
the graph structure of the partitioning. For each data flow model Mχ, we perform
this calculation of the precision of the approximate bisimulation yielding for each χ
values εχg(#I). In accordance with Theorem 6, we can conclude that

ε(#I) := max
χ∈X

εχg(#I)

is the precision of approximate bisimulation of the overall model. Theorem 6 only
applies for models without time-hybrid components. However, since our ε provides
an overapproximation for our subset of time-hybrid models, the theorem’s statement
directly transfers to the case of our automation approach.

Checks for Time-Delayed Switching Behaviour

It remains to discuss the additional criteria for a potential time-delayed behaviour
as discussed in Subsection 6.4.2. There, we have provided criteria for models that
are not time-hybrid. We have on the one hand a sound overapproximation of ε, but
on the other hand may have time-hybrid submodels. We therefore re-consider the
conditions as described there and apply them in the following way. Consider an
enriched partitioning of a data flow model as described in this chapter. Consider
furthermore a control output block that has been created in the data flow model
calulation step (and intuitively keeps the control signal) in a partition p of the
partitioning. Then, we distinguish the following cases (for more than one control
output block in the same partition, the cases apply simultaneously for all blocks):

1. If the model in p is purely time-continuous, we apply exactly the same condi-
tions as described in Section 6.4.2. There, a solution of the trajectory for the
control signal is required. We simply need to calculate the solution within
the partition (and not the solution of the overall model for the control signal)

132 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

FIGURE 7.8: Intervals for potential time-delayed switching behaviour
for time-discrete disturbed partitions

because the εc at the control signal already considers disturbances from pre-
ceding partitions. Since we have linear ODEs with constant coefficients only,
these are always solvable.

2. For time-discrete models at control signals, conditions from Section 6.4.2 say,
that we have nothing to check since εc = 0 in these cases. However, this is only
true if the overall model is time-discrete. However, we may have a purely time-
continuous partition preceding our time-discrete p implying a disturbance
εc > 0, which we calculate and propagate as described in Subsection 7.4 of
this chapter. Hence, we need to re-consider the conditions for time-delayed
switching behaviour in this case.

So, for the time-discrete, disturbed case, we re-consider the conditions for time-
delayed switching behaviour. In Section 6.4.2, we have provided three conditions.
Firstly, if the trajectory including εc is too far away from the threshold of the switch
to cross it, no switch occurs in both models and therefore no time-delayed switching
behaviour may occur. This criterion translates without change to our case. The
second condition, which treats a threshold crossing between sample steps and
therefore the threshold crossing is undetected, is not applicable because time-discrete
elements keep the signal constant between sample steps. Hence, if a threshold
crossing occurs, it definitely is detected. The third and last condition is used to
detect intervals where time-delayed switching behaviour may occur. To this end,
we have checked zero-crossings for the functions λ(t)− ε and λ(t) + ε. Translated to
the disturbed time-discrete case, this means that time-delayed switching behaviour
may occur in intervals [n1, n2] where

∀n : n1 ≤ n ≤ n2 : ∥an − ξ∥∞ ≤ εc,

where (an)n is the sequence fulfilling the AR at the control output block, ξ is the
threshold at the switch block.

7.6. Summary 133

Figure 7.8 illustrates the condition. There, the trajectory of a control signal
together with sourrounding ε environments is depicted. An interval where the con-
dition as defined above is fulfilled and therefore time-delayed switching behaviour
may occur, is marked. The other time steps do not fulfill the condition and therefore
no time-delayed switching behaviour can happen there.

The checks for purely time-continuous partitions can be performed with the
help of a CAS such as Mathematica as well. This is because such CAS are capable
of calculating zero crossings of functions. For time-discrete disturbed partitions, a
proof by natural induction or interval-wise check of the above condition is required.
This needs to be performed either manually or with the help of a subsequent system.
Hence, we have a restriction of our claim for full automation in this case. However,
many cases, such as purely time-continuous control signals, or if εc = 0, are fully
automatable supported.

7.6 Summary

In this chapter, we have described our automation approach. It is an application and
extension of the methodology we have presented in Chapters 5 and 6. Our approach
obtains two Simulink models and provides 1) an answer if the models are approxi-
mately equivalent, and 2) if positive, the precision ε of the approximate bisimulation.
Our approach consists of the following steps. We start with the calculation of the
data flow models for all configurations. They describe all possible data flows and
are Simulink models without control flow elements. We proceed with a partitioning
of the data flow models. The partitioning 1) separates the models into components,
which can be verified for equivalence separately, and 2) into purely time-discrete
and purely time-continuous parts. This way, we allow different types between parti-
tions: time-discrete partitions can follow time-continuous partitions and vice versa.
After the calculation of the data flow models and the partitioning, our approach
proceeds with a symbolic equivalence check. We perform this for all data flow
models, going through the partitions in the order of the directed graph imposed by
the partitioning. Where the structure is not uniquely determined, the user is asked
for confirmation that our symbolic verification was successful for the correct choice
of pairs of partitions. Our equivalence check follows an assume-guarantee strategy.
The partition-wise symbolic equivalence check extracts equations from the parti-
tions, transforms them via Laplace transform or z-transform, and tries to establish
symbolic unification via a Computer Algebra System. After symbolic equivalence
has been established, we proceed with the calculation of the precision ε(#I) of
the approximate bisimulation. To this end, we firstly calculate the local precision

134 Chapter 7. Automated Equivalence Checking for Hybrid Control Systems

εl(#I), located at the partition containing an ODE that has been replaced by its
analytical solution by the refactoring. Then, we propagate this local disturbance
εl(#I) through subsequent partitions to obtain a global precision εg(#I). We have
modelled the epsilon propagation by extending the epsilon calculation of Theorems
1 and 2 to support models with disturbed ingoing signals. To exclude time-delayed
behaviour at Switch blocks, we use the calculated precision εc at control output
blocks to identify intervals where time-delayed switching behaviour may occur.
We have updated the conditions from the last chapter, Subsection 6.4.2 that deal
with undisturbed purely time-discrete or purely time-continuous to the case for
disturbed submodels. With our automation approach, we have demonstrated an
important application for automated verification of behavioural equivalence on data
flow-oriented hybrid control modelling languages.

135

Chapter 8

Evaluation

We have implemented our approach and evaluated it by verifying the correctness
of three refactorings in three case studies, namely a time-continuous model of an
aircraft, a hybrid model of a water tank, and a hybrid model of a cruise control
system. In this chapter, we describe important aspects of our implementation
of our automation approach as described in Chapter 7. We introduce our case
studies and provide experimental results. We proceed with a discussion of our
approach. In particular, we discuss some limitations and opportunities of our
approach. Moreover, we provide a discussion of the complexity of the involved
computations of our implementation.

8.1 Implementation

Our implementation is based on a representation of Simulink in Java that has
previously been developed in our research group Software and Embedded Systems
Engineering in the course of the DFG research project Methods of Model Quality
(MeMo) [HWS+11]. In MeMo, a parser has been developed that transforms a given
Simulink model into an object representation in Java. This equips us with the means
to access structural information of the model as well as attributes of the Simulink
blocks like sample times via Java.

We have implemented our approach from Chapter 7 in Scala. Figure 8.1 provides
an overview over the architecture of our implementation. The top part of the figure
is the connection to the MeMo projectWe use the Simulink IR in Java from this project.
Our implementation chiefly consists of two parts: the syntactical preparation engine,
and the verification engine. The syntactical preparation engine performs three major
tasks. Firstly, it calculates a graph-based representation of the Simulink model.
In this process, the Simulink model is flattened, i.e., the subsystem hierarchy is
dissolved and the subsystems are removed. Secondly, the data flow models for
all configurations are calculated yielding models without control flow elements.

136 Chapter 8. Evaluation

FIGURE 8.1: Implementation Architecture

Note that our current implementation only supports Switch blocks as control flow
elements. Thirdly, we calculate the partitionings and the enriched partitionings as
described in Chapter 7. In the partitioning, the user is asked to define partitions
representing an ODE in the source model and its analytical solution in the target
model, if applicable.

After the syntactical preparations, the verification engine proceeds. Firstly, the
ARs are extracted. As discussed in Chapter 7, we directly extract the Laplace or
z-transformed terms. In the Expression Extractor step, we also calculate matrix
representations for each partition

YYY 1 = (Id−A1(s))
−1III(s),YYY 2 = (Id−A2(s))

−1III(s)

and calculate the proof obligations

f1(yyy, iii) = f2(yyy, iii)

The symbolic equivalence checking is performed via the CAS Mathematica. Our
verification engine coordinates these checks. Data flow models of source and target
model with the same configuration are compared, the conditions at control flow
elements are compared for equality. The checks in the data flow models follow
an assume-guarantee strategy through the respective partitionings as described in

8.2. Case Studies and Evaluation 137

Chapter 7. If this check is successful, and if a replacement of an ODE by its analytical
solution was part of the refactoring, which is identified in the partitioning step, then
ε > 0. In this case, a calculation of the local εl at the ODE and analytical solution
takes place. After that, the Epsilon Calculator propagates the local εl through the
partitions to obtain the global εg as described in Chapter 7. We perform the symbolic
verification for each pair of partition in the partitionings. The user needs to check if
the correct pairs resulted in a successful verification, i.e., if for the correct pairs the
result returned from the CAS was true.

There have been various Bachelor theses under our supervision that have con-
tributed to the implementation. Most of them have been an interim step to obtain
the final solution or have provided additional supporting tools. We provide a brief
overview. In [Dan16], Armin Danziger has provided a visualisation of the Simulink
IR. This is not part of the core implementation, but supports testing. In [Bas16],
Johannes Basler has implemented an approach that enables verification for simple,
closed models, i.e., models without input signals. This has been further improved to
also cover open signals in [Sal17] by Ahmet Salman. Ahmet has implemented the
equivalence check for open models, i.e., models with input signals using the CAS
MATLAB Symbolic Math Toolbox. In the Bachelor thesis [Wor16], Johannes Wort-
mann has implemented the formal semantics [BC12]. This enables us to compare
evaluations via the operational semantics with evaluations performed directly via
Simulink.

8.2 Case Studies and Evaluation

In this section, we describe the case studies that we have used to evaluate our
approach and present the experimental results.

8.2.1 Case Studies

To demonstrate the applicability of our approach, we have selected three case studies:
1) a time-continuous example from the Simulink examples website [The17], which
is a model of the longitudinal flight control of the Grumman Aircraft F14, 2) a model
for a water tank, and 3) a hybrid model for a cruise control system from [BC12].

F14 Model

The time-continuous F14 model [The17] controls the flight trajectory of an aircraft
F14. The aircraft dynamics is influenced by the pilot’s input signals and a wind gust
model. The output is the flight trajectory evolving with time.

138 Chapter 8. Evaluation

FIGURE 8.2: F14 Model Overview

FIGURE 8.3: Water Tank Model Overview

Figure 8.2 depicts the top-level subsystem view of the F14 model. As we know
from Chapter 7, only piecewise smoothness and at most exponential growth must
be guaranteed for them.

Water Tank Model

The second case study models a water tank with changing water supply. It has been
established in the course of David Skowronek’s Bachelor thesis [Sko17]. Figure 8.3
provides a high-level overview. The model calculates the pressure in the tube. After
reaching a certain threshold, the valve is opened. The valve’s status is indicated
by two input signals. A sinusoidal function models the periodic water fill over
days. We have created this model on our own to provoke time-delayed behaviour at
control flow elements.

Cruise Control Model

The hybrid cruise control model from [BC12] brings the vehicle to defined velocity.
It contains time-discrete and time-continuous parts, and a Switch block. Figure 8.4
provides a high-level overview over the components of the model.

The input signals are used to define an initial velocity and the desired velocity.
The time-continuous parts calculate the velocities and the response to reach the
desired velocity in a defined period of time. The time-discrete part also calculates
the response to reach the desired velocity. The output is the time-way diagram.

8.2. Case Studies and Evaluation 139

FIGURE 8.4: Cruise Control Model Overview

1

In1

1
s

Integrator

-1

Gain

1

Out1

2

Out2

1

In1

1

Out1

2

Out2

Transfer Fcn

Add

-1

Gain

FIGURE 8.5: Replacement ODE by Transfer Function

Performed Refactorings

In each case study, we have performed several refactorings: we have replaced ODEs
by Transfer Functions, performed arithmetic changes, and replaced an ODE being
part of the water tank model by its analytical solution with an ε greater than 0.

Figure 8.5 provides an example refactoring performed in the F14 model. There,
an ODE in the source model has been replaced by a Transfer Function in the target
model. Note that the refactored model parts are contained within a feedback loop in
the overall model.

Other examples of refactorings are arithmetic changes.
Figure 8.6 depicts an example where a gain, i.e., a multiplication with a constant

is altered. The multiplicative constant is pulled into the Transfer Function. This
yields a valid refactoring. Figure 8.7 shows another example. There, distributivity
law is exploited. Examples for a replacement of an ODE by its analytical soution are

Add

1
s

Integrator

2

Gain
Add1

-1

Gain1

1
s

Integrator1

1

In1 1

Out1
Add

Add1

-1

Gain1

1
s

Integrator1

1

In1 1

Out1Transfer Fcn

FIGURE 8.6: Arithmetic Refactoring Example 1

140 Chapter 8. Evaluation

Add

Product

1

In1

2

In2

3

In3

1

Out1

1

In1

2

In2

3

In3

1

Out1

Product

Product1

Add

FIGURE 8.7: Arithmetic Refactoring Example 2

1
s

Integrator

1
s

Integrator1

-1

Gain

Scope

ScopeSine Wave

FIGURE 8.8: Solution of an ODE: Sine Wave

1
s

Integrator

-1

Gain

1

Out1

1

Out1
Ramp

-1

Gain Math
Function

FIGURE 8.9: Solution of an ODE: Exponential Function

8.2. Case Studies and Evaluation 141

TABLE 8.1: Experimental Results Syntactical Preparations (CPU times
in milliseconds)

Model Blocks Refactoring Graph DF Models Total

Cruise Control 16
T2ODE 2 5 7
Arithmetic 2 4 6

Water Tank 30
T2ODE 1 1 2
Arithmetic 2 1 3
ODE sol 1 1 2

F14 60
T2ODE 40 0 40
Arithmetic 38 0 38

TABLE 8.2: Experimental Results Equivalence Checking (CPU times
in milliseconds or format m:ss)

Model Blocks Refactoring Partitioning Check Overall

Cruise Control 16
T2ODE 272 52316 52595
Arithmetic 298 53174 53478

Water Tank 30
T2ODE 312 51512 51826
Arithmetic 295 52016 52224
ODE sol 298 51942 52242

F14 60
T2ODE 4:46 46560 5:33
Arithmetic 4:45 46312 5:32

given in Figures 8.8 and 8.9. In Figure 8.8, the solution of the ODE is φ(t) = sin(t), in
Figure 8.9 it is φ(t) = e−t (initial values are not depicted, but available as parameters).
In our water tank model, we have replaced the ODE d

dy(t) = 5000(1+ sin(t)), y(0) =

5000 by its analytical solution. We have experimented with various of these kinds of
refactorings. We conducted valid and invalid changes. All were properly confirmed
or denied. The precision ε has been calculated and propagated properly in all cases.

8.2.2 Experimental Results

Tables 8.1 and 8.2 provide an overview over the experimental results. In both tables,
the case studies are in the first column together with the model size in the second
column. The third column contains an abbreviation for the refactoring: T2ODE for
Transfer Function to ODE (or vice versa), Arithmetic for arithmetic changes, and
ODE sol for ODE solution, i.e., the replacement of an ODE by its analytical solution.

In each experiment, ε had the value 0, except for the water tank model. The
replacement of the ODE in our water tank model by its analytical solution has
yielded ε(#I = 10) = 0.025 at the control port for a simulation interval length of
10, sample step size 10−8 and Euler method as selected numerical technique. This
ε(#I) increases linearly with the interval size in this case because the replaced ODE

142 Chapter 8. Evaluation

has Lipschitz constant L = 0. Note that an approximation technique of higher
consistency order, e.g. Runge-Kutta techniques would significantly improve this
ε(#I).

In Table 8.1, the runtimes for the preparation of the graph including flattening
and the calculation of the data flow models in milliseconds are given. In Table
8.2, the runtimes for partitioning and the runtimes of the Verification Engine are
provided. We have performed the experiments on a MacBook Pro with a 2.7 GHz
Intel Core i7 and 16 GB of RAM. The runtimes are averaged over 10 runs. The long
runtimes in the partitioning of the F14 model can be explained by the protoype
implementation and a large feedback loop occurring in the model. A more efficient
implementation utilising graph packages would be expected to reduce the runtimes
there.

Overall, the verification has been successfully performed in less than 6 minutes.
The overall complexity of our automation is exponential. This is due to our calcu-
lation of the data flow models, which yields 2#C models to check for equivalence,
where #C is the amount of control flow elements. However, apart from this, the
equivalence check is expected to scale well for larger, industrially-sized models. We
leave the setup of an industrially-sized case study to future work.

8.3 Discussion

In this section, we go through various items to discuss some limitations and strengths
of our approach in general and our automation and implementation in particular.
Moreover, we assess the computational complexity of our approach.

8.3.1 Limitations and Opportunities

We start with a discussion of the strengths and weaknesses of our automation
approach.

Semantic Gap to Simulink

Our formal foundation is the operational semantics [BC12]. We have based our
approach on this operational semantics to obtain a sound formal foundation. The
semantics of Simulink is not formally defined. In [BC12] as well as in our argumen-
tation, the soundness with Simulink is made plausible via informal argumentation
or by providing supplemental arguments that this is consistent with standard mathe-
matical techniques. However, there still exists a semantical gap due to the following
reasons.

8.3. Discussion 143

1. The operational semantics [BC12] is a synchronous semantics, i.e., basically all
blocks are evaluated at the same time, i.e., in parallel. As discussed in [RG14],
this is not conform to the simulation semantics of Simulink. The simulation
semantics in Simulink is a serial one.

2. The operational semantics does not consider numerical errors that occur in
reality because it is executed on a machine with a certain precision. We
therefore also exlude these numerical errors in our thesis. We focus on errors
caused by the approximation procedure in continuous models, which are of
greater magnitude and therefore of greater importance.

3. The operational semantics does not consider all optimisation techniques
Simulink applies. It is also not possible to extract details from the infor-
mal descriptions from [TM17b]. However, it is likely also from the informal
descriptions that there are several additional techniques that increase the
precision.

To make this semantical gap transparent, we have evaluated the semantical
gap to Simulink by implementing the operational semantics and comparing the
observations of runs with this implementation and Simulink in the context of a
Bachelor thesis [Wor16]. All experimental results revealed negligible deviations in
the magnitude of approximately 10−10. As a result, the residual semantic gap can be
considered as insignificant.

Remarks on Completeness of the Automation Approach

Besides the limitations presented in Section 4.1, we want to discuss some additional
issues related with our automation approach. The limitations and assumptions from
the mentioned sections ensure that our algorithm is sound. However, there has
been no comprehensive discussion of completeness yet. Completeness in general is
impossible due to Rice’s theorem [HMU01]. This theorem states that it is impossible
to decide if a Turing machine calculates a given function. This implies that it is
not possible to decide if two arbitrary machines behave equivalently. Hence, every
approach aiming for behavioural equivalence of models is only able to cover a subset
of all possible models.

Our automation approach and our implementation are able to verify behavioural
equivalence for various relevant models as we have shown in our experimental
results. However, we would like to emphasise that we have imposed some restric-
tions that on the one hand limit the set of correct refactorings that can be detected
properly, but on the other hand allow for large automation. Our approach is sound.

144 Chapter 8. Evaluation

Hence, our approach never returns correct refactoring in cases where a refactoring
is incorrect, i.e., false positives are not possible. However, we may obtain false
negatives, i.e., correct refactorings are labelled as being incorrect. This may happen
if the partitioning does not assemble equivalent parts in source and target model
together. We have provided a fully automated partitioning. However, in some cases,
this may yield partitionings whose symbolic equivalence cannot be verified. Such a
result is therefore always a motive for further investigation to the user: Either the
refactoring is actually incorrect or potentially it is correct, but our approach was not
able to detect it.

A particular limitation is caused by the way we have defined our partitioning.
In short, we assemble cyclic parts and DAG (directed acyclic graph) parts together.
We do this for the following reasons:

1. As we have seen in Section 5.4, (Discrete) Transfer Functions can equivalently
be understood as ODEs. In most cases, these ODEs are self-referring, i.e., of
the form d

dty = f(t, y) and therefore associated with a cyclic submodel. A
major source for refactorings is an alternative expression of an ODE as Transfer
Function (to reduce structural complexity) or vice versa (to reduce functional
coomplexity).

2. With our partitioning, we support the occurrence of both time-discrete and
time-continuous submodels in a model, i.e., we support a subset of time-
hybrid Simulink models. Our approach assumes that within a partition, the
submodel is either purely time-discrete or purely time-continuous. However,
it is possible that the paradigms change in different partitions.

3. Our partitioning allows to split the model into components that can be verified
separately. The AR expressions therefore do not get too large. Our approach
therefore improves scalability of the verification.

The first item is an assumption on the model structure. We have observed that it
is often fulfilled in models we obtained from our industrial partners. Feedback loops
occur quite often in industrial models. They are either modelled as cyclic submodels
or Transfer Functions. The output is often extracted from a single point of the cyclic
submodel. Counter examples of this observation are cases like the one depicted in
Figure 8.5. There, the output is taken from two points from the model: One exit point
is located directly after the Add block, one after the Integrator in the source model.
This yields in a refactored target model with two partitions: One partition containing
the Transfer Function, while the other partition contains the Gain block and the Add
block. However, the source model contains only the feedback loop in one partition.

8.3. Discussion 145

Then, our approach would return false because it cannot verify equivalence for all
partitions in the target model. This is a counterexample for completeness. In our
case study this issue for the example 8.5 did not come up because both submodels
were part of a larger feedback loop. However, consider the models were exactly as
depicted in the figure.

An expert would be able to perform the partitioning based on his experience,
and therefore would be able to avoid such false negatives. However, we have aimed
for a largely automated solution, and our approach is able to demonstrate that this is
conceptually possible. We leave improvements for the partitioning for future work.

8.3.2 Complexity Assessment

In this section, we assess the complexity of our approach. We do not guarantee that
our assessment yields the best complexity assessment possible. This means, parts
of our automation potentially could be improved. Since our approach is largely
modular, we explicitly support such an approach. Our performance assessment
is based on our current implementation. We go through each step, evaluate the
complexity, and reason on its correctness.

Graph Representation Calculation

In the first step, we 1) calculate our graph representation from the MeMo Simulink
IR in Java, and 2) flatten the submodel hierarchy. For the first part, the graph
representation calculation, we visit each block and each signal line. The resulting
graph is G = (B,E, I,O, S,C, port, fun, p). The computational effort is O(#E) as
we traverse the model only once. It suffices to consider #E because #E > #B since
we do not have isolated blocks, i.e., each block has at least one ingoing or outgoing
edge.

The flattening erases subsystems, and inports and outports that enter or leave
subsystems. Moreover, we re-wire the model properly. Again, we only traverse the
model once. We therefore obtain the overall complexity

O(#E).

Data Flow Model Calculation

In the Data Flow Model Calculation step, we remove control flow elements, and
for each control flow element, we split the given model into two data flow models.
Moreover, we associate each data flow model with the configuration. Hence, we

146 Chapter 8. Evaluation

obtain overall
O(2#C).

Partitioning of a Data Flow Model

The partitioning has three steps. Firstly, the user defined partitioning. This yields
a complexity of O(#B) because the user may at most define #B partitions. The
second part is the partitioning into cyclic and non-cyclic parts yielding a DAG graph.
The cycle detection is of complexity O(#B2) because in the cycle detection, we take
each pair of vertices (v1, v2) and determine is there a path from v1 to v2 and vice
versa. After the cycle detection, in the third step of the partitioning, the assembly
of singleton partitions to DAG parts takes O(#B). The final enrichment of the
partitioning just adds interface vertices to partitions, which yields O(#B). This
yields a total complexity of

O(#B2).

AR Extraction

AR extraction is performed by visiting each vertex once for each equation type
(output and state equation). This yields a complexity of

O(#B).

Symbolic Equivalence Checking

Symbolic equivalence checking checks for each data flow model with the same
configuration in source and target model for symbolic unifiability. Within data
flow models, the equivalence check is performed partition-wise. Let us denote
the complexity of the symbolic unification as O(µsv) (for Mathematica, symbolic
verification). Unfortunately, there is no public information available that gives us a
hint about the complexity of the algorithms in Mathematica performing algebraic
transformations and unification. As discussed in Section 7.3, we verify

f1(yyy, iii) = f2(yyy, iii)

where the yyy are replaced by the respective Laplace transformed or z-transformed
expressions for the state variables. The bold variables are vectors. If we have
multiple input variables, i.e., iii = (i1, ..., in)

T , then we do not know how they
match between source and target model. Note that the order of input variables in
partitions does not neecessarily to be the same in source and target model. To obtain

8.3. Discussion 147

an automated solution, we have overcome this problem by permuting all input
variables until a suitable unification has been found. If no unification can be found
for all permutations, the check fails. For the symbolic verification of a partition
p, we obtain O(#Ip! · µsv), where #Ip is the amount of input interface variables
of the partition. The complexity O(µsv) is multiplied with O(#Ip!) because the
equivalence check is performed for all permutations. This in turn can be estimated
to O(#B! · µsv), which is a rough estimate because the amount of interface input
variables is always below the amount of all blocks.

We perform symbolic equivalence checking for all possible pairs of partitions.
The user is asked to confirm that the pairs with verification result true are the
correct matches in the structure of the partitioning. The amount of partitions can be
estimated by the amount of blocks. Hence, we obtain for the symbolic equivalence
check of one data flow model the complexity ofO(#B!·#B2·µsv). If the user matches
the input signals per partition manually, the complexity reduces to O(#B · µsv).

For the symbolic equivalence check for all data flow models, we compare data
flow models with the same configuration. We identify the configurations in source
and target model via the conditions at the Switch blocks. We have to check all 2#C

data flow models. This yields an overall complexity of

O(2#C ·#B! ·#B2 · µsv)

Epsilon Calculation and Propagation

The epsilon calculation is an evaluation of a formula in the CAS. This in turn depends
on the internal algorithms Mathematica uses for calculation, which is unknown.
Let us denote it with O(µcal). The epsilon propagation solves ODEs and difference
equations for subsequent partitions, and performs evaluations of formulas, which
we also estimate by O(µcal). This is performed for all partitions and all data flow
models. Overall, we obtain

O(2#C ·#B · µcal).

Overall Complexity

The steps are performed sequentially. The overall complexity is therefore the sum
of all partial complexities, which can further be estimated to the maximum of the
partial complexities. The overall complexity is therefore

O(#E + 2#C ·#B! ·#B2 · µ)

Here, we have taken µ as the maximum of both µsv and µcal.

148 Chapter 8. Evaluation

Note that for models without control flow, the complexity substantially reduces
because we only need to consider two models (source and target model) rather than
2#C data flow models.

8.4 Summary

In this chapter, we have described our implementation, experimental results, and
complexity of our automation approach. Our implementation covers the most
important aspects of our automation approach as described in Chapter 7. We have
described our case studies: a time-continuous F14 model, a hybrid water tank model,
and a hybrid cruise control model. In these models, we have performed various
refactorings we support with our methodology. We have exchanged submodels
representing ODEs by analytical solutions, ODEs by Transfer Function blocks, and
performed arithmetic changes. With our approach, we were able to successfully
verify equivalence in under 6 minutes in each case.

Our automation approach is of exponential complexity. The exponentiality is due
to our calculation of data flow models, which generates two models to be checked
for equivalence per control flow element. However, the equivalence check and the
epsilon calculation is expected to be well scalable for industrially sized models. This
holds particularly for models with few control flow elements, which also occur in
the industries.

Our approach is not complete. We may obtain false negatives. This is due to how
we defined our partitioning, which may yield different amounts of partitions. In
such cases, not for all partitions can be found a suitable equivalent partner. This is
the price for a fully automated approach. User guidance during partitioning would
improve this.

149

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, we have presented an approach to verify the correctness of refactor-
ings on hybrid data flow-oriented or signal-oriented models. By correctness, we
understand behavioural equivalence of source and refactored target model. While
there are various approaches tackling behavioural equivalence of hybrid control
systems and modelling languages, there is none that considers the approximate
nature of such models that is present for executions of hybrid models on machines
with finite execution time and storage space. We have closed this gap in this thesis
and have provided an approach capable of showing behavioural conformance on
hybrid signal-oriented models being modelled and executed on industrially relevant
languages. We have chosen Simulink as major representative of signal flow-oriented
hybrid control modelling languages to demonstrate our approach.

With the operational semantics for Simulink [BC12], we have based our approach
on a formal foundation. With our Abstract Representation, we have defined a deno-
tational semantics for Simulink that is sound with the operational semantics. Both
semantics consider the approximate nature of data flow-oriented industrially rele-
vant languages. With our adaptation of the approximate bisimulation to Simulink,
we have defined an equivalence notion that is able to cope with the approximate
nature of Simulink’s semantics. It is based on a well-founded, formal equivalence
notion. We have provided sufficient conditions that allow formal verification of
behavioural equivalence for a large variety of Simulink models. Moreover, we have
provided means to calculate the precision ε, which is the maximal distance for values
of source and refactoreed target model that are evaluated by their semantics.

In addition to our approach for formal verification of behavioural equivalence,
we have provided an automation approach for a subset of Simulink models. Our
automation approach is largely automated. We have implemented our approach.
Its complexity is in general exponential. However, exponential runtime is mainly

150 Chapter 9. Conclusion and Future Work

imposed for models with many control flow elements. The verification and epsilon
calculation is well scalable for many indutrially-sized models. Our approach is
therefore very well applicable for industrially-sized models with few control flow
elements. We have successfully applied our automation approach to three case
studies: a model for an F-14 aircraft, a water tank model, and a cruise control model.
Verification has been successfully performed in under 6 minutes.

In essence, we have successfully met our criteria as introduced in Chapter 1.

9.2 Future Work

Our methodology for behavioural equivalence of signal flow-oriented modelling
languages opens up many interesting future research directions.

Our approach could be improved. We briefly describe three ideas for further
improvement.

Firstly, our approach could be extended to cope with refactorings altering the
control flow. Examples for refactorings changing control flow could be elimination
of data flow paths because they are not reachable or changes of conditions at control
flow elements, combined with changing data flow and control flow signals.

Secondly, our calculation of the precision ε of the approximate bisimulation
could be improved. There are approaches that provide better estimations of the
error during approximation, e.g. [NH04]. The idea there is that local discretisation
errors under specific circumstances can eliminate each other and therefore the global
discretisation error, which we calculate to obtain our precision ε, does not evolve
as strong as we predict. Another interesting aspect is that our ε currently increases
with simulation time, i.e., the length of the interval in which the evaluation of the
semantics is performed. It would be interesting to examine conditions under which
ε can be bounded globally, i.e., for simulation time going to infinity. Theories from
both stability of ODEs and numerical stability apply for a consideration of this topic.
In this direction also aims a consideration of numerical errors due to floating point
arithmetic, which we have excluded in this thesis. As we have pointed out in this
thesis, a decreasing sample step size reduces the error ε. However, according to
[SWP12], this only applies to a certain minimal value, which depends on the chosen
approximation technique. If sample the step size is further decreased, the numerical
floating point errors exceed the errors of the approximation to calculate the solutions
of the ODEs. These numerical dependencies should be further investigated to
improve the ε estimate.

Thirdly, our automation approach could be extended to cope with arbitrary types
of ODEs and difference equations. The challenge for non-linear ODEs or difference

9.2. Future Work 151

equations is that an automated approach as ours that exploits laws applicable to
Laplace transform or z-transform, is not attainable. Equivalence proofs for non-
linear equations often require manual, complex investigation and proofs. However,
our automation approach could be formalised in a theorem prover, and at least
provide mechanised proof capability for such cases.

Apart from improvements to our approach, many interesting future directions
are conceivable. Our approach compares two models and verifies their behavioural
equivalence. Hence, our methodology is applied after a refactoring has been per-
formed. It would however be beneficial for a developer to obtain suggestions for
potential refactorings for a given model. Based on our methodology, an approach
could be developed that provides suggestions for refactorings together with a cer-
tificate that guarantees approximate bisimulation up to a user-defined precision ε if
the refactoring is applied.

Moreover, an approach that significantly widens the notion of refactoring to
model transformations that are only approximately conform even at the idealised
mathematical level of our denotational AR would be an interesting research direction.
Examples for refactorings in this regard would be the replacement of a model
representing a complex solution by a polynomial solution. Mathematically, this is
possible due to the Weierstraß theorem, which guarantees that every continuous
function can be approximated by a polynomial that varies around the function by at
most a given threshold. This would introduce an additional disturbance to our ε.
Another interesting suggestion is to aim in the direction of security. State-of-the-art
security approaches are mainly considering low-level implementations. However,
considering security aspects in early modelling phases would be beneficial. To this
end, an approach with the following elements would be interesting to pursue:

Firstly, a formal specification language for security on model level. Secondly, an
approach for verification of preservation of such security properties under model
transformation, e.g. under refactorings or other, more general model transforma-
tions. Thirdly, an approach to verify preservation of security properties under
model-to-code transformations. This last part could then potentially close the gap to
existing low level security approaches.

153

Appendix A

Proofs

Proofs from Chapter 5

Lemma 1 (Soundness of AR for Time-discrete Blocks). Let
M = (B,E, I,O, S, ∅, port, fun, ∅) be a time-discrete Simulink model that is being evalu-
ated in the interval I following the operational semantics [BC12], time-discrete blocks with
sample step size h, simulation start at t0. Let furthermore be b ∈ B, JMKφ the AR under
an assignment φ, and out(t) = f(iii(t)) be the equation associated with block b. Then the
following holds.

∀t ∈ I : JMKφOS(b)(t) = f(φ(iii)(t))

Proof. For this proof, we recall the global simulation rule. The global simulation rule
is

σ(t) ≤ π(tend) Eq, π ⊢ σ M−→ σ1 Eq, π ⊢ σ1
u−→ σ2 Eq, π ⊢ σ2

s−→ σ′

Eq, π ⊢ σ → σ′

Since in this lemma, we only have time-discrete, arithmetic, input, and output blocks,
the solver transition does not apply. We only need to consider major step transitions
and update transitions. We distinguish by block types.

First case: if b ∈ I : Then, we have one equation loutn = linn . From Definition 41,
we know that input variables have been replaced by the sequence determined by
the incoming signal from the assignment φ, i.e., we have loutn = φ(in)n. According
to [BC12], the input block is associated with a syntactical equation lout :=S lin,
where the set S holds the sample steps, i.e., S = {t0 + nh|0 ≤ n ≤ N − 1}, where
t0 + h(N − 1) is the end of the simulation interval.

For this formula from the operational semantics lout :=S lin, only the major step
transition (M−) applies. This says

⟨Eq(M), σ⟩ o−→ σ′

Eq, π ⊢ σ M−→ σ′

154 Appendix A. Proofs

Hence, we need to check the output (o-) transitions that calculate the outputs of
blocks. They say

σ(t) ̸∈ S
⟨lout :=S lin, σ⟩

o−→ σ

σ(t) ∈ S ⟨lin, σ⟩
o−→ r

⟨lout :=S lin, σ⟩
o−→ σ[l← r]

The first transition rule says that if t ∈]t0 + n · h, t0 + (n + 1) · h[, the value at
JMKOS(b) = σ(lout) remains constant. The second transition rule ensures the update
at time steps t0 + n · h. The evaluation of ⟨lin, σ⟩

o−→ r to obtain the update value r is
performed via the inference rule

⟨lin, σ⟩
o−→ σ(lin)

This means, the value is picked from the assignment, which has just been updated.
In summary, this concludes the proof for blocks b ∈ I .

Second case: If b ∈ O: In this case, we have loutn = linn . The argumentation is
analogously to input blocks. Only major step transitions apply, the output of an
output block is an interval-wise constant function that is updated at time steps in
S. The input signal, which is defined in the state σ(lin) of the input signal is fed
through.

Third case: If b ∈ S is a Unit Delay block: In this case, our AR gives us the equa-
tion loutn+1 = linn . Regarding the operational semantics, we have a major step
transition.

σ(t) ̸∈ S
⟨lout :=S d, σ⟩

o−→ σ

σ(t) ∈ S ⟨d, σ⟩ o−→ r

⟨lout :=S d, σ⟩
o−→ σ[l← r]

On the right hand side of the equations, the internal variable d occurs. The inference
rules for the internal variable are the update transitions

d :=S lin ∈ Eq σ(t) ̸∈ S
Eq, π ⊢ σ u−→ σ

d :=S lin ∈ Eq σ(t) ∈ S
Eq, π ⊢ σ u−→ σ[d← σ(lin)]

The inference rule on the left hand side of the major step transition implies analo-
gously that in the interval]t0 + n · h, t0 + (n+ 1) · h[the output of the block remains
constant. This applies to the internal variable d as well. However, as the time steps
t0 + n · h are reached, firstly the value of the internal variable is written to the
output, and afterwards the value at the entry of the block is stored in the internal
variable. This explains the delay, i.e., the behaviour lout(t) = lin(t0 + (n − 1) · h)
for t ∈ [t0 + n · h, t0 + (n + 1) · h. This is precisely described by the equation for
Unit Delay blocks in the AR loutn+1 = linn . Note that we have used the sequences to

Appendix A. Proofs 155

abbreviate the interval-wise constant functions. Additionally the second equation
lin0 = init ensures the value in the interval [t0, t0 + h[. Hence, we have shown the
soundness for b ∈ S being a Unit Delay block as well. The proof for delays > 1

works analogously. With the auxiliary variables introduced if delay length is greater
than 1, we can reduce this case to the delay = 1 case.

Fourth case: b being an arithmetic block: In this case, our AR gives us an equa-
tion loutn = f(lin1n

, ..., linmn
). The operational semantics gives us the major step

transition that is applicable.

σ(t) ̸∈ S
⟨lout :=S f(lin1 , ..., linm), σ⟩

o−→ σ

σ(t) ∈ S ⟨f(lin1 , ..., linm), σ⟩
o−→ r

⟨lout :=S f(lin1 , ..., linm), σ⟩
o−→ σ[l← r]

The evaluation in the inference rules of f(lin1 , ..., linm) to the value r that is then
updating the output is ensured by the o− transitions that evaluate expressions.

⟨lini , σ⟩
o−→ σ(lini)

⟨lin1 , σ⟩
o−→ r1, ... ⟨linm , σ⟩

o−→ rm

⟨f(lin1), ..., linm), σ⟩
o−→ f(r1, ..., rm)

Hence, we have shown the soundness for all block types in time-discrete models.
This concludes the proof.

Lemma 2 (Soundness of AR for Time-continuous Blocks). Let
M = (B,E, I,O, S, ∅, port, fun, ∅) be a time-continuous Simulink model. that is being
executed in the interval I following the operational semantics [BC12], simluation start
at t0 under the assignment φ. We assume that Im(φ) ⊂ C(I,R), i.e., the input blocks
are instantiated with continuous signals. Moreover, Im(φ) are assumed to be piece-wise
bounded functions.

Let furthermore be b ∈ S an Integrator block, JMKφ the AR under an assignment φ,
and d

dty(t) = in(t) the equation of the AR at b.
For a sample step size h, we associate a function JMKφ,hOS (b) as follows.

JMKφ,hOS (b)(τ) =
σn+1(v)− σn(v)

h
(τ − tn) + σn(v) for τ ∈ [tn, tn+1[

where σn, σn+1 ∈ ΣM such that σn(t) = tn, σn+1(t) = tn+1, tn+1 = tn + h, and v being
the variable associated with block b. This function yields the same values as the execution by
the operational semantics JMKOS(b) for block b at time steps tn = t0 + n · h if the Euler
method has been chosen as approximation method by the user in Simulink.

156 Appendix A. Proofs

Between time steps. i.e., for t ∈]tn, tn+1[, the function follows a linear curve connecting
the values at time steps tn, tn+1 rather than being constant as in the trajectory of JMKOS(b).
We assume that the trajectory of the function JMKφ,hOS (b) is bounded on I.

Every sequence in the family

F :=

{
JMKφ,hOS (b)

⏐⏐⏐⏐h =
#I
n

for n ∈ N+

}
of evaluations with fixed sample step sizes contains a subsequence that converges uniformly
to a function f if limn→∞ hn = 0. For this function the following holds.

f |= JMKφ(b)

We also denote this relationship between JMKφOS(b) and JMKφ(b) with

JMKφOS(b) |=h→0 JMKφ(b)

Proof. We start with recalling the global simulation rule.

σ(t) = π(tend)

Eq, π ⊢ σ → σ

σ(t) ≤ π(tend) Eq, π ⊢ σ M−→ σ1 Eq, π ⊢ σ1
u−→ σ2 Eq, π ⊢ σ2

s−→ σ′

Eq, π ⊢ σ → σ′

As in Lemma 16, major step transitions ensure that the arithmetic functions are
properly evaluated before the solver transition, which is relevant to be considered
for time-continuous blocks. Update transitions are not relevant in this context
because we do not have time-discrete blocks in time-continuous models.

We recall the solver transition.

Eq, π ⊢ σ i−→ σ′

Eq, π ⊢ σ s−→ σ′

The solver transition consists of an integration (i−) transition. Note that we have
assumed fixed sample step size and therefore, the zero-crossing detection (zc−)
transition, and the transition to update the sample step size (h− transition) do not
apply for our case. The latter two are only applicable for variable step size solvers.
The integrator transition applies an approximation method to determine the value
for the next sample step.

Hence, the subsequent state at the Integrator stateful block with variable v, i.e.,
σn+1(v) is calculated as σn+1(v) = σn(v) + hnσ(v

′) (for the Euler method) where

Appendix A. Proofs 157

v′ is the variable of the block preceding the stateful block, i.e., the entrance of the
stateful block. Since arithmetic functions are evaluated prior the solver transition in
the major step transition, we can conclude that at the time steps tn, we have

JMKφ,hOS (b)(tn+1) = JMKφ,hOS (b)(tn) + hf(JMKφ,hOS (iii)(tn), JMKφ,hOS (yyy)(tn))

where the i are the input blocks, the y stateful blocks impacting the Integrator block
b.

Between the time steps, i.e., at]tn, tn+1[, we have

JMKφ,hOS (b)(τ) =
σn+1(v)− σn(v)

h
(τ − tn) + σn(v)

as defined in this theorem. When we combine this with the result we have just
obtained, we can conclude for τ ∈ [tn, tn+1[

JMKφ,hOS (b)(τ) =
JMKφ,hOS (b)(tn+1)− JMKφ,hOS (b)(tn)

h
(τ − tn) + JMKφ,hOS (b)(tn)

= f(JMKφ,hOS (iii)(tn), JMKφ,hOS (yyy)(tn))(τ − tn) + JMKφ,hOS (b)(tn) (A.1)

So, we now can focus on showing that for every sequence in the family F

consisting of functions for which equation A.1 holds and with limn→∞ hn = 0, there
exists a uniformly convergent subsequence for which the AR equations hold.

This is achieved analogously to the proof of the theorem of Peano [Aul04]: We
apply the theorem of Arzelà-Ascoli. To this end, we need to show 1) that F is
equicontinuous and piece-wise bounded.

First of all, the function JMKφ,hOS (b) is piece-wise bounded.We have assumed that
in the theorem. This assumption simply guarantees that the simulation yields finite
values across the simulation interval I, i.e, where the model is being executed.

Secondly, we need to show the equicontinuity of F . Let ε > 0, t1, t2 ∈ I. We
distinguish two cases.

1. If t1, t2 are in the same interval, i.e., ∃n : t1, t2 ∈ [tn, tn+1[. Then

|JMKφ,hOS (b)(t1)− JMKφ,hOS (b)(t2)| =

|(t1 − tn)f(JMKφ,hOS (iii)(tn), JMKφ,hOS (yyy)(tn)−

(t2 − tn)f(JMKφ,hOS (iii)(tn), JMKφ,hOS (yyy)(tn))| ≤

(max
t∈I

JMKφ,hOS)|t1 − t2|

Note that m := maxt∈IJMKφ,hOS exists per assumption.

158 Appendix A. Proofs

2. If t1, t2 are in different intervals, i.e., t1 ∈ [tn1 , tn1+1[, t2 ∈ [tn2 , tn2 + 1[for
suitable n1, n2 with n1 < n2. Then

|JMKφ,hOS (b)(t1)− JMKφ,hOS (b)(t2)| ≤

|JMKφ,hOS (b)(t1)− JMKφ,hOS (b)(tn1+1)|+
n2−1∑

ν=n1+1

|JMKφ,hOS (b)(tν)− JMKφ,hOS (b)(tν)|+

|JMKφ,hOS (b)(tn2)− JMKφ,hOS (b)(t2)| ≤

m(tn1+1 − t1) +
n2−1∑

ν=n1+1

(tν+1 − tν) + (t2 − tn2)) =

m|t1 − t2|

In essence, in both possible cases, we have

|JMKφ,hOS (b)(t1)− JMKφ,hOS (b)(t2)| ≤ m|t1 − t2|

Hence, we can choose δ := ε
m . Then with |t1 − t2| < δ, we obtain

|JMKφ,hOS (b)(t1)− JMKφ,hOS (b)(t2)| ≤ m|t1 − t2| < mδ = ε

This concludes the proof of equicontinuity of F . With the theorem of Arzelà-Ascoli,
we can conclude that every sequence in F contains a subsequence that converges
uniformly to a function ψ : I → R. This means, every sequence of functions
(JMKφ,hn

OS (b))n contains a subsequence (JMKφ,hnk
OS (b))k such that

lim
k→∞

JMKφ,hnk
OS (b) = ψ

for a function ψ : I → R, and the convergence is uniformly.
In the final step, we have to show that if b ∈ S, the function ψ is a solution of

the ODE d
dty(t) = f(iii(t), yyy(t)), y(t0) = y0, which is the only critical equation in the

AR whose validity remains to be shown. To this end, we recall that the ODE can
equivalently be formulated as

y(t) = y0 +

∫ t

t0

f(iii(τ), yyy(τ))dτ

due to the Fundamental Theorem of Calculus. From our previous argumentation
and the consisteny of the Euler method (cf. 2.2.5 in the Background chapter), we

Appendix A. Proofs 159

obtain immediately ⏐⏐⏐⏐ ddtJMKφ,hnk
OS (b)(t)− f(iii(t), yyy(t))

⏐⏐⏐⏐ hnk
→0

−−−−→ 0

Hence, we can conclude that

lim
hnk

→0

⏐⏐⏐⏐y0 + ∫ t

t0

d

dt
JMKφ,hnk

OS (b)(t)dt− y0 −
∫ t

t0

f(iii(t), yyy(t))dt

⏐⏐⏐⏐ =⏐⏐⏐⏐∫ t

t0

lim
hnk

→0

d

dt
JMKφ,hnk

OS dt−
∫ t

t0

f(iii(t), yyy(t))dt

⏐⏐⏐⏐ = 0

The first equation, which exploits the interchangeability of integral and limit, is
possible because of the uniform convergence.

In essence, the limit function of the subsequence in F being guaranteed by the
theorem of Arzelà-Ascoli fulfills the ODE in the AR of our integrator block.

Proofs from Chapter 6

Theorem 1 (Behavioural Equivalence for Purely Time-Discrete Models). Let M1 and
M2 be purely time-discrete Simulink models that are executed on the interval I with the
same sample step size h, each time-discrete block with the same sample step size hd. Let
furthermore be (fn)n, (gn)n be sequences for which the following holds for all assignments
φ.

(fn)n |= JM1Kφ, (gn)n |= JM2Kφ

If
∀0 ≤ n ≤ nmax : fn = gn

then
M1 ∼0 M2

This means, the models are approximately bisimilar with precision 0. In this case, the
approximate bisimilarity coincides with traditional bisimulation.

Proof. As we have seen in Chapter 5 in Theorem 16, the AR for time-discrete models
is sound with the operational semantics [BC12]. This means, the equations in JMiKφ

determine the exact behaviour at the output of the models. So, we know that

JMiK
φ
OS |= JMiKφ

160 Appendix A. Proofs

We furthermore know that the solutions of JMiKφ, say (ψin)n, are unique. Note that
sequences are always uniquely determined by difference equations, i.e., if a solution
exists, it is unique. This is because the difference equation is a recursive definition:
Starting from the initial value, the next value in each step can be calculated by
applying the arithmetic function on the previous value as defined in the difference
equation. This implies ∀n : ψ1n = fn = gn = ψ2n . Moreover, recall that (ψin)n, (fn)n,
and (gn)n actually describe interval wise functions, i.e., the functions are constant at
intervals [t0 + n · h, t0 + (n+ 1) · hd[. In essence, this implies

∥JM1K
φ
OS(τ)− JM2K

φ
OS(τ)∥∞ = 0

for all τ ∈ I and assignments φ. This concludes the proof.

Theorem 2 (Approximate Behavioural Equivalence for Purely Time-Continuous
Models). Let M1 and M2 be purely time-continuous Simulink models that are executed on
the interval I. Let furthermore be f, g : I → R be functions for which the following holds
for all assignments φ with Im(φ) ⊂ C(I,R).

f |= JM1Kφ, g |= JM2Kφ

If f and g are uniquely determined by the equations of the AR and

∀t ∈ I : f(t) = g(t),

then there exists ε(#I) > 0 such that

M1 ∼ε(#I) M2

Proof. We know from Lemma 17 in Chapter 5 that

JMiK
φ
OS |=h→0 JMiKφ.

This means that the sequence of semantical executions by decreasing sample step
size h converges uniformly to the solutions of ODEs (if present) that occur in JMiKφ,
say ψi. Since they are unique, we know that ψ1(t) = f(t) = g(t) = ψ2(t). So, the
solutions solving the ARs yield the same values. However, the operational semantics
differs from these exact solutions due to the approximations performed in the solver
transitions. We determine the maximal distance between the semantical evaluations
of the models, i.e., the maximal distance of the discretisation of these solutions. We

Appendix A. Proofs 161

know from the proof of Lemma 17 that at the sample steps tn the values of the
semantical executions at stateful blocks y follow the following rule.

JMiK
φ,h
OS (yyy)(tn+1) = JMiK

φ,h
OS (yyy)(tn) + hχi(JMKφ,hOS (iii)(tn), JMiK

φ,h
OS (yyy)(tn)) (A.2)

The expressions representing the functions χi coincide with the expressions in the
ARs JMiKφ(yyy) describing the ODEs. Between sample step sizes, i.e., for t ∈ [tn, tn+1[,
the values of JMiK

φ,h
OS (yyy) are constant. The formula A.2 assumes that the chosen

approximation technique is Euler. In general, we have

JMiK
φ,h
OS (yyy)(tn+1) = JMiK

φ,h
OS (yyy)(tn) + hΦ(h, χi)(tn, JMiK

φ,h
OS (iii(tn), JMiK

φ,h
OS (yyy(tn)))

with a processing function Φ. In any case, Lemmas 14 and 15 from the Background
Chapter 2 provide a global error εi(#I) for the distance

∥JMiK
φ,h
OS (yyy)− ψi∥∞ ≤ εi(#I)

This also applies to the actual semantical evaluation

∥JMiK
φ
OS(yyy)− ψi∥ ≤ εi(#I)

that keeps the values of the variables constant between time steps. Hence, the
maximal distance between the semantical evaluations is

∥JM1K
φ
OS(yyy)− JM2K

φ
OS(yyy)∥ = ∥JM1K

φ
OS(yyy) + ψ1 − ψ2 − JM2K

φ
OS(yyy)∥ ≤

∥JM1K
φ
OS(yyy)− ψ1∥+ ∥JM2K

φ
OS(yyy)− ψ2∥ ≤ ε1(#I) + ε2(#I)

with triangular equation.
Hence, we have obtained

M1(yyy) ∼ε1(#I)+ε2(#I) M2(yyy)

Thus, the output at stateful blocks in both models deviates or is disturbed by the
maximal magnitude of ε(#I) := ε1(#I) + ε2(#I).

To obtain an estimate for the overall model, we need to transfer this result to the
output of the models. The semantical evaluation of the output is expressed by an
equation

JMiK
φ
OS(t) = r(JMiK

φ
OS(iii)(t), JMiK

φ
OS(yyy)(t))

for a suitable function r (the output equation). This r modifies the disturbance ε(#I)

162 Appendix A. Proofs

that is located at the variables yyy according to the occurring arithmetic functions.
For instance if r(y1, y2) = y1 + y2, where both stateful variables yi are disturbed by
ε(#I) as just discussed, then the resulting deviation is ε(#I)+ε(#I) = 2ε(#I). For
other arithmetic functions, the resulting deviation can be calculated analogously. In
essence, we obtain a maximal deviation of the semantical evaluations of the models,
which concludes the proof.

Theorem 3 (Approximate Bisimulation for Hybrid Models). LetM1,M2 be two hybrid
Simulink models with the same set of configurations X , evaluated in simulation interval I
with the same sample step size. Moreover, for all assignments φ, let

∀χ ∈ X : f1χ = f2χ for fiχ |= JMiχKφ.

This means, the solutions of our AR yield all the same values for all output signals including
the control signals. Let all state equations in the AR be uniquely and globally solvable (which
is for difference equations always the case, for differential equations fulfilled if the right hand
sides of the equations are globally Lipschitz continuous). Let all data flow models be purely
time-discrete or purely time-continuous, i.e., no data flow model time-hybrid. Moreover, let

∀χ ∈ X : cond1(χ) = cond2(χ).

This means, all conditions associated with the configurations are the same. Let εχ(#I) be
the numbers such that

M1χ ∼εχ(#I) M2χ ,

i.e., εχ(#I) are the precisions of the approximate bisimulation for the data flow models with
the same configurations. Then

M1 ∼ε(#I) M2

with
ε(#I) := max

χ∈X
εχ(#I)

if no time-delayed switching as discussed in the previous section occurs. Otherwise, ε(#I) =
maxχ∈X εχ(#I) + maxt∈I,χ∈X ∥f1χ − f2χ∥∞.

Proof. The conditions for Theorems 4 and 2 are fulfilled because data flow models
are models without control flow elements, and the trajectories have the same values
(uniqueness of solutions of the AR is assumed in the theorem). We therefore obtain
εχ for each configuration χ. According to the interpretation of hybrid models 42, the

Appendix A. Proofs 163

time steps at which the respective configuration is fed through, is determined by the
condition, and the trajectory of the control signals, i.e., configuration χ applies if

|= cond(χ)[bcontrolj ← fcontrolji] for fcontrolji |= JMχKφ;tsi ,fyi (fi−1(tsi),φ(i)(tsi))(bcontrolj).

In the formula, the index i was the number of the partial interval Ii of I. Since the
conditions in both models are the same, and the trajectories of the control signals as
well (we have defined the blocks at the control ports bcontrolj as output blocks and
therefore, the trajectories yield the same values for them as well per assumption),
the time steps at which switches between configurations occur must be the same in
both models. The only divergence may occur due to time-delayed behaviour, for
which we have provided additional conditions. Also, the initial values of fi : Ii → R
with

fi |= JMχKφ;tsi ,fyi (fi−1(tsi),φ(i)(tsi)), f0 |= JMKφ,t0,y0χ

are the same at the beginning of the partial intervals because the time step of
the switch determines their value, which is the same per assumption. Note that
it is sufficient to check equality of solutions, i.e., f1χ = f2χ for solutions with
initial value t0, y0, which are given as parameters by the user. This suffices because
the state equations are fix and determined by the data flow models: Each data
flow model contains exactly one possible state equation the semantical evaluation
pursues. The time steps where the switches between data flow models occur are
unknown, but equal per assumption. Since we have assumed global uniqueness for
the solutions, the solutions after a switch are in turn equal. It remains to be shown
that ε = maxχ∈X εχ is properly calculated. Each data flow model that is possible is
represented. Hence, all possible disturbances εχ have been considered. Let ts be a
switch from configuration χ1 to χ2. Then, the initial value in the next interval of
semantical evaluation can be disturbed by εχ1 . However, εχ1 ≤ ε and εχ2 ≤ ε, and

ε(#I) = max
χ∈X

εχ = ferr

(
h,#I,max

χ∈X
Lχ, max

χ∈X,t∈I

 ddtfχ(t)

∞

)
.

From our numerical preliminaries in Section 2.2.5 of the Background chapter, we
know that the formula for ferr considers numerical stability, i.e., errors from sample
steps prior ts have been considered in the formula. Hence, ε already includes the
change of the initial value at time step ts because it exceeds both εχ1 and εχ2 . Note
that we have excluded time-hybrid data flow models, i.e., there are no switches
between time-discrete to time-continuous data flow models possible that share
common state variables. This justifies the choice of ε(#I).

164 Appendix A. Proofs

If time-delays may occur, then approximate bisimulation holds outside of these
intervals with the precision ε as well. However, within the intervals of time-delayed
behaviour, we need to add the maximal distance of the tranjectories because this
may be the maximal distance between the values of the semantical evaluation.

165

Bibliography

[ABDM00] Eugene Asarin, Olivier Bournez, Thao Dang, and Oded Maler. Ap-
proximate reachability analysis of piecewise-linear dynamical systems.
In International Workshop on Hybrid Systems: Computation and Control,
pages 20–31. Springer, 2000.

[ABSH11] Bakr Al-Batran, Bernhard Schätz, and Benjamin Hummel. Semantic
clone detection for model-based development of embedded systems.
In Model Driven Engineering Languages and Systems, pages 258–272.
Springer, 2011.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification
and verification of hybrid systems. In Hybrid systems, pages 209–229.
Springer, 1993.

[AG08] Mohammed A Al-Gwaiz. Sturm-Liouville theory and its applications.
Springer, 2008.

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic sym-
bolic verification of embedded systems. IEEE Transactions on Software
Engineering, 22(3):181–201, 1996.

[AHLP00] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, and George J.
Pappas. Discrete abstractions of hybrid systems. Proceedings of the IEEE,
88(7):971–984, 2000.

[AKRS08] Rajeev Alur, Aditya Kanade, S Ramesh, and KC Shashidhar. Symbolic
analysis for improving simulation coverage of simulink/stateflow mod-
els. In Proceedings of the 8th ACM international conference on Embedded
software, pages 89–98. ACM, 2008.

[AMF14] Houssam Abbas, Hans Mittelmann, and Georgios Fainekos. Formal
property verification in a conformance testing framework. In Proceed-
ings of the 12th ACM-IEEE International Conference on Formal Methods and
Models for System Design (MEMOCODE’14), pages 155–164. IEEE, 2014.

166 BIBLIOGRAPHY

[Arn84] Herbert Arndt. Numerical solution of retarded initial value problems:
local and global error and stepsize control. Numerische Mathematik,
43(3):343–360, 1984.

[ASK04] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic translation
of simulink/stateflow models to hybrid automata using graph trans-
formations. Electronic Notes in Theoretical Computer Science, 109:43–56,
2004.

[Ass17] Modelica Association. Modelica R⃝ - A Unified Object-Oriented Language
for Systems Modeling, Language Specification Version 3.4. Modelica Asso-
ciation, 2017.

[Aul04] Bernd Aulbach. Gewöhnliche Differenzialgleichungen: Hier auch später
erschienene, unveränderte Nachdrucke. Elsevier Spektrum Akademischer
Verlag, München, 2004.

[Bas16] Johannes Basler. Implementierung eines Checkers zum Nachweis
der Korrektheit von Refactorings auf diskreten und kontinuierlichen
Simulink Modellen. Bachelor thesis, Technische Universitaet Berlin,
2016.

[BBH+14] Peter Braun, Manfred Broy, Frank Houdek, Matthias Kirchmayr, Mark
Müller, Birgit Penzenstadler, Klaus Pohl, and Thorsten Weyer. Guiding
requirements engineering for software-intensive embedded systems
in the automotive industry. Computer Science-Research and Development,
29(1):21–43, 2014.

[BC12] Olivier Bouissou and Alexandre Chapoutot. An operational semantics
for simulink’s simulation engine. ACM SIGPLAN Notices, 47(5):129–138,
2012.

[BCC+17] Timothy Bourke, Francois Carcenac, Jean-Louis Colaço, Bruno Pagano,
Cédric Pasteur, and Marc Pouzet. A synchronous look at the simulink
standard library. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s):176, 2017.

[Bos11] Pontus Boström. Contract-based verification of simulink models. In
Formal Methods and Software Engineering (ICFEM 2011), pages 291–306.
Springer, 2011.

BIBLIOGRAPHY 167

[Bra98] Michael S Branicky. Multiple lyapunov functions and other analysis
tools for switched and hybrid systems. IEEE Transactions on automatic
control, 43(4):475–482, 1998.

[But05] John Charles Butcher. Numerical methods for ordinary differential equations.
Wiley, Chichester, 2005.

[But16] John Charles Butcher. Numerical methods for ordinary differential equations.
John Wiley & Sons, 2016.

[CK99] Alongkrit Chutinan and Bruce H Krogh. Verification of polyhedral-
invariant hybrid automata using polygonal flow pipe approximations.
In International workshop on hybrid systems: computation and control, pages
76–90. Springer, 1999.

[CK03] Alongkrit Chutinan and Bruce H. Krogh. Computational techniques
for hybrid system verification. IEEE Transactions on Automatic Control,
48(1):64–75, 2003.

[CLRS01] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms second edition, 2001.

[CMKSP10] T Erkkinen Conrad, T Maier-Komor, G Sandmann, and M Pomeroy.
Code generation verification–assessing numerical equivalence between
simulink models and generated code. In 4th Conference Simulation and
Testing in Algorithm and Software Development for Automobile Electronics.,
2010.

[Con10] John B. Conway. A course in functional analysis, volume 96 of Graduate
texts in mathematics. Springer, New York, 2010.

[CRH93] Zhou Chaochen, Anders P Ravn, and Michael R Hansen. An extended
duration calculus for hybrid real-time systems. In Hybrid Systems, pages
36–59. Springer, 1993.

[Dan16] Armin Danziger. Implementierung einer grafischen Lösung zur Darstel-
lung von MATLAB / Simulink Modellen. Bachelor thesis, Technische
Universitaet Berlin, 2016.

[DHJ+10] Florian Deissenboeck, Benjamin Hummel, Elmar Juergens, Michael
Pfaehler, and Bernhard Schaetz. Model clone detection in practice. In
Proceedings of the 4th International Workshop on Software Clones, pages
57–64, New York, 2010. ACM.

168 BIBLIOGRAPHY

[DM07] Alexandre Donzé and Oded Maler. Systematic simulation using sensi-
tivity analysis. Hybrid Systems: Computation and Control, pages 174–189,
2007.

[EA06] Refaat El Attar. Lecture notes on Z-Transform, volume 1. Lulu. com, 2006.

[EP06] Abbas Edalat and Dirk Pattinson. Denotational semantics of hybrid
automata. In Foundations of Software Science and Computation Structures,
volume 3921 of LNCS, pages 231–245, 2006.

[EVZH07] Chance Elliott, Vipin Vijayakumar, Wesley Zink, and Richard Hansen.
National instruments labview: a programming environment for labora-
tory automation and measurement. JALA: Journal of the Association for
Laboratory Automation, 12(1):17–24, 2007.

[FE98] Peter Fritzson and Vadim Engelson. Modelica—a unified object-
oriented language for system modeling and simulation. In European
Conference on Object-Oriented Programming, pages 67–90. Springer, 1998.

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. Spaceex: Scalable verification of hybrid sys-
tems. In Computer Aided Verification, pages 379–395. Springer, 2011.

[For07] Otto Forster. Integralrechnung im IRn mit Anwendungen. Vieweg-
Studium Aufbaukurs Mathematik. Vieweg, Wiesbaden, 2007.

[For11] Otto Forster. Differentialrechnung im R n, gewöhnliche Differentialgleichun-
gen. Studium : Grundkurs Mathematik. 2011.

[FPNB08] Peter Fritzson, Adrian Pop, Kristoffer Norling, and Mikael Blom.
Comment-and indentation preserving refactoring and unparsing for
modelica. In Proceedings of the 6th International Modelica Conference
(Modelica 2008), pages 3–4, 2008.

[FTCW16] Simon Foster, Bernhard Thiele, Ana Cavalcanti, and Jim Woodcock.
Towards a utp semantics for modelica. In International Symposium on
Unifying Theories of Programming, pages 44–64. Springer, 2016.

[GDD+09] Dragan Ga, Dragan Djuric, Vladan Deved, et al. Model driven engineering
and ontology development. Springer Science & Business Media, 2009.

BIBLIOGRAPHY 169

[Gir05] Antoine Girard. Approximate bisimulations for constrained linear
systems. Proceedings of the 44th IEEE Conference on Decision and Control,
pages 1307–1317, 2005.

[GP05] Antoine Girard and George J. Pappas. Approximate bisimulations for
nonlinear dynamical systems. In Proceedings of the 44th IEEE Conference
on Decision and Control, pages 684–689. IEEE, 2005.

[GP07a] Antoine Girard and George J. Pappas. Approximate bisimulation
relations for constrained linear systems. Automatica, 43(8):1307–1317,
2007.

[GP07b] Antoine Girard and George J. Pappas. Approximation metrics for
discrete and continuous systems. IEEE Transactions on Automatic Control,
52(5):782–798, 2007.

[GP11] Antoine Girard and George J. Pappas. Approximate bisimulation: A
bridge between computer science and control theory. European Journal
of Control, 17(5):568–578, 2011.

[Gra12] Urs Graf. Applied Laplace transforms and z-transforms for scientists and en-
gineers: a computational approach using a Mathematica package. Birkhäuser,
2012.

[GST12] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid Dy-
namical Systems: modeling, stability, and robustness. Princeton University
Press, 2012.

[HDE+08] Grégoire Hamon, Bruno Dutertre, Levent Erkok, John Matthews,
Daniel Sheridan, David Cok, John Rushby, Peter Bokor, Sandeep
Shukla, Andras Pataricza, et al. Simulink design verifier-applying
automated formal methods to simulink and stateflow. In AFM’08:
Third Workshop on Automated Formal Methods 14 July 2008 Princeton, New
Jersey, 2008.

[Her04] Martin Hermann. Numerik gewöhnlicher Differentialgleichungen: Anfangs-
und Randwertprobleme. Oldenbourg, München [u.a.], 2004.

[HHWT97] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech:
A model checker for hybrid systems. In International Conference on
Computer Aided Verification, pages 460–463. Springer, 1997.

170 BIBLIOGRAPHY

[HKAS14] Ashlie B Hocking, John Knight, M Anthony Aiello, and Shinichi Shi-
raishi. Proving model equivalence in model based design. In Software
Reliability Engineering Workshops (ISSREW), 2014 IEEE International Sym-
posium on, pages 18–21. IEEE, 2014.

[HKPV95] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing, pages 373–382.
ACM, 1995.

[HMU01] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction
to automata theory, languages, and computation. ACM SIGACT News,
32(1):60–65, 2001.

[HNNA09] Görel Hedin, Emma Nilsson-Nyman, and Johan Akesson. A plan
for building renaming support for modelica. In WRT’09: 3rd ACM
Workshop on Refactoring Tools, 2009.

[HRB13] Paula Herber, Robert Reicherdt, and Patrick Bittner. Bit-precise formal
verification of discrete-time matlab/simulink models using smt solving.
In International Conference on Embedded Software. IEEE Press, 2013.

[HWS+11] Wei Hu, Joachim Wegener, Ingo Stürmer, Robert Reicherdt, Elke
Salecker, and Sabine Glesner. MeMo – methods of model quality. 2011.

[Int11] International Organization for Standardization. ISO 26262 - Road
vehicles – Functional safety. (26262), 2011.

[JFA+07] A Agung Julius, Georgios E Fainekos, Madhukar Anand, Insup Lee,
and George J Pappas. Robust test generation and coverage for hybrid
systems. In International Workshop on Hybrid Systems: Computation and
Control (HSCC), volume 4416, pages 329–342. Springer, 2007.

[Kai80] Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood
Cliffs, NJ, 1980.

[KKR09] Matt Kaufmann, Jacob Kornerup, and Mark Reitblatt. Formal verifica-
tion of labview programs using the acl2 theorem prover. In Proceedings
of the Eighth International Workshop on the ACL2 Theorem Prover and its
Applications, pages 82–89. ACM, 2009.

[KM97] Matt Kaufmann and J. Strother Moore. An industrial strength theorem
prover for a logic based on common lisp. IEEE Transactions on Software
Engineering, 23(4):203–213, 1997.

BIBLIOGRAPHY 171

[KN12] Ulrich Krause and Tim Nesemann. Differenzengleichungen und diskrete
dynamische Systeme: eine Einführung in Theorie und Anwendungen. Walter
de Gruyter, 2012.

[Kå98] David Kågedal. A natural semantics specification for the equation-
based modeling language modelica. LiTH-IDA-Ex-98/48, Linköping
University, Sweden, 1998.

[Laz06] Mircea Lazar. Model predictive control of hybrid systems: Stability and
robustness. Dissertation, Technische Universiteit Eindhoven, Eindhoven,
2006.

[LLQ+10] Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao,
Chaochen Zhou, and Liang Zou. A calculus for hybrid csp. In Asian
Symposium on Programming Languages and Systems, pages 1–15. Springer,
2010.

[LT05] Ruggero Lanotte and Simone Tini. Taylor approximation for hybrid
systems. In Hybrid Systems: Computation and Control, pages 402–416.
Springer, 2005.

[LZ05] Edward A. Lee and Haiyang Zheng. Operational semantics of hybrid
systems. In Hybrid Systems: Computation and Control, pages 25–53.
Springer, 2005.

[Mat14] Stefan Matthew. Towards a taxonomy for simulink model mutations.
In IEEE Seventh International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 206–215. IEEE, 2014.

[MMBC11] Karthik Manamcheri, Sayan Mitra, Stanley Bak, and Marco Caccamo.
A step towards verification and synthesis from simulink/stateflow
models. In Proceedings of the 14th international conference on Hybrid
systems: computation and control, pages 317–318. ACM, 2011.

[MMP91] Oded Maler, Zohar Manna, and Amir Pnueli. Prom timed to hybrid
systems. In Workshop/School/Symposium of the REX Project (Research and
Education in Concurrent Systems), pages 447–484. Springer, 1991.

[MS98] Aloysius K Mok and Douglas Stuart. An rtl semantics for labview. In
Aerospace Conference, volume 4, pages 61–71. IEEE, 1998.

[MSUY13] Rupak Majumdar, Indranil Saha, Koichi Ueda, and Hakan Yazarel.
Compositional equivalence checking for models and code of control

172 BIBLIOGRAPHY

systems. In Decision and Control (CDC), 2013 IEEE 52nd Annual Confer-
ence on, pages 1564–1571. IEEE, 2013.

[NH04] Jitse Niesen and Trinity Hall. On the global error of discretization methods
for ordinary differential equations. PhD thesis, Citeseer, 2004.

[ORS92] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype
verification system. In International Conference on Automated Deduction,
pages 748–752. Springer, 1992.

[PGT08] Giordano Pola, Antoine Girard, and Paulo Tabuada. Approximately
bisimilar symbolic models for nonlinear control systems. Automatica,
44(10):2508–2516, 2008.

[PL96] Stefan Pettersson and Bengt Lennartson. Stability and robustness for
hybrid systems. In Proceedings of the 35th IEEE Conference on Decision
and Control. IEEE, 1996.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. Journal of
Automated Reasoning, 41(2):143–189, 2008.

[PP03] Stephen Prajna and Antonis Papachristodoulou. Analysis of switched
and hybrid systems-beyond piecewise quadratic methods. In American
Control Conference, 2003. Proceedings of the 2003, volume 4, pages 2779–
2784. IEEE, 2003.

[PQ08] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem
prover for hybrid systems (system description). In Automated Reasoning,
pages 171–178. Springer, 2008.

[QML+15] Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and
André Platzer. How to model and prove hybrid systems with keymaera:
a tutorial on safety. International Journal on Software Tools for Technology
Transfer, pages 1–25, 2015.

[RG14] Robert Reicherdt and Sabine Glesner. Formal verification of discrete-
time matlab/simulink models using boogie. In Software Engineering
and Formal Methods, pages 190–204. Springer, 2014.

[RS09] Michael Ryabtsev and Ofer Strichman. Translation validation: From
simulink to c. In International Conference on Computer Aided Verification
(CAV), volume 9, pages 696–701. Springer, 2009.

BIBLIOGRAPHY 173

[Sal17] Ahmet Salman. Beweismethodik für Verhaltensäquivalenz von
Simulink Modellen. Bachelor thesis, Technische Universitaet Berlin,
2017.

[SDS15] Muharrem Orkun Saglamdemir, Gunhan Dundar, and Alper Sen. An
analog behavioral equivalence checking methodology for simulink
models and circuit level designs. In Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD), 2015
International Conference on, pages 1–4. IEEE, 2015.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE software,
20(5):19–25, 2003.

[SHGG15] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Towards the verification of refactorings of hybrid simulink
models. In Alexei Lisitsa, Andrei Nemytyk, and Alberto Pettorossi,
editors, Proceedings of the Third International Workshop on Verification and
Program Transformation (VPT), volume 199 of EPTCS, page 69, 2015.

[SHGG16a] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Proving correctness of refactorings for hybrid simulink mod-
els with control flow. In Cyber Physical Systems. Design, Modeling, and
Evaluation, 2016.

[SHGG16b] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Proving transformation correctness of refactorings for dis-
crete and continuous simulink models. In The Eleventh International
Conference on Systems, EMBEDDED 2016, International Symposium on
Advances in Embedded Systems and Applications, pages 45–50, 2016.

[SHGG18] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Verified model refactorings for hybrid control systems. In PhD
Forum Design Automation and Test in Europe (DATE), 2018.

[SK00a] B Izaias Silva and Bruce H Krogh. Formal verification of hybrid systems
using checkmate: a case study. In American Control Conference, 2000.
Proceedings of the 2000, volume 3, pages 1679–1683. IEEE, 2000.

[SK00b] B Izaias Silva and Bruce H Krogh. Modeling and verification of
sampled-data hybrid systems. In Proceedings of the 4th International
Conference on Automation of Mixed Processes: Hybrid Dynamic Systems,
pages 237–242, 2000.

174 BIBLIOGRAPHY

[Sko17] David Skowronek. Lösungsmethoden für Differenzengleichungen, Dif-
ferentialgleichungen und retardierende Differentialgleichungen. Bach-
elor thesis, Technische Universitaet Berlin, 2017.

[SLZ08] Yang Yi Sui, Jun Lin, and Xiao Tuo Zhang. An automated refactoring
tool for dataflow visual programming language. ACM Sigplan Notices,
43(4):21–28, 2008.

[SRKC00] B Izaias Silva, Keith Richeson, Bruce Krogh, and Alongkrit Chutinan.
Modeling and verifying hybrid dynamic systems using checkmate.
In Proceedings of 4th International Conference on Automation of Mixed
Processes, volume 4, pages 1–7, 2000.

[SSD12] Muharrem Orkun Saglamdemir, Alper Sen, and Gunhan Dündar. A
formal equivalence checking methodology for simulink and register
transfer level designs. In Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), 2012 International
Conference on, pages 221–224. IEEE, 2012.

[SWP12] Karl Strehmel, Rüdiger Weiner, and Helmut Podhaisky. Numerik
gewöhnlicher Differentialgleichungen: nichtsteife, steife und differential-
algebraische Gleichungen. Springer Science & Business Media, 2012.

[Tau64] Selmo Tauber. Existence and uniqueness theorems for solutions of
difference equations. The American Mathematical Monthly, 71(8):859–862,
1964.

[Tes12] Gerald Teschl. Ordinary differential equations and dynamical systems,
volume 140 of Graduate studies in mathematics. American Mathematical
Society, Providence, RI, 2012.

[The17] Inc. The Mathworks. Longitudinal flight control of grumman aerospace
f-14, 2017.

[Tim08] Steffen Timmann. Repetitorium Topologie und Funktionalanalysis. Binomi
Verlag, 2008.

[Tiw08] Ashish Tiwari. Abstractions for hybrid systems. Formal Methods in
System Design, 32(1):57–83, 2008.

[TM17a] Inc. The Mathworks. Simulink R⃝ Check User’s Guide R2017b. The Math-
works, Inc., 2017.

BIBLIOGRAPHY 175

[TM17b] Inc. The Mathworks. Simulink R⃝ User’s Guide R2017b. The Mathworks,
Inc., 2017.

[TSCC05] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic.
Translating discrete-time simulink to lustre. ACM Transactions on Em-
bedded Computing Systems (TECS), 4(4):779–818, 2005.

[TWD13] Quang Minh Tran, Benjamin Wilmes, and Christian Dziobek. Refac-
toring of simulink diagrams via composition of transformation steps.
In The Eighth International Conference on Software Engineering Advances
(ICSEA), pages 140–145, 2013.

[VCSS03] René Vidal, Alessandro Chiuso, Stefano Soatto, and Shankar Sastry.
Observability of linear hybrid systems. In International Workshop on
Hybrid Systems: Computation and Control, pages 526–539. Springer, 2003.

[WA10] Guoqiang Wang and Hugo A Andrade. LabviewTM: A graphical
system design environment for adaptive hardware/software systems.
In NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages
82–82. IEEE, 2010.

[Wol15] Stephen Wolfram. An elementary introduction to the Wolfram Language.
Wolfram Media, Incorporated, 2015.

[Wor16] Johannes Wortmann. Implementierung einer operationalen Semantik
fuer Simulink. Bachelor thesis, Technische Universitaet Berlin, 2016.

177

Supervised Bachelor and Master
Theses

[Bas16] Johannes Basler. Implementierung eines Checkers zum Nachweis der
Korrektheit von Refactorings auf diskreten und kontinuierlichen Simulink
Modellen. Bachelor thesis, Technische Universitaet Berlin, 2016.

[Ben15] Matthias Bentert. Implementierung von Transformationen von MATLAB/
Simulink Modellen. Bachelor thesis, Technische Universitaet Berlin, 2015.

[Dan16] Armin Danziger. Implementierung einer grafischen Lösung zur Darstel-
lung von MATLAB / Simulink Modellen. Bachelor thesis, Technische
Universitaet Berlin, 2016.

[Fro18] Dennis Froehlich. Eine semantisch korrekte Transformation von datenflus-
sorientierten Blockdiagrammen zu Differential Dynamic Logic. Bachelor
thesis, Technische Universitaet Berlin, 2018.

[Kul15] Gino Kulej. Entwicklung und Implementierung von Refactorings für MAT-
LAB/ Simulink mittels eines Eclipse Modeling Frameworks. Bachelor
thesis, Technische Universitaet Berlin, 2015.

[Sal17] Ahmet Salman. Beweismethodik für Verhaltensäquivalenz von Simulink
Modellen. Bachelor thesis, Technische Universitaet Berlin, 2017.

[Sch17] Lukas Schaus. Automatic Assessment Generation fro Formalized Require-
ments for Model-Based Testing. Master thesis, Technische Universitaet
Berlin, 2017.

[Sch18] Katja Schmidt. Generierung von Modellbausteinen zur Laufzeitverifikation
von Simulink Modellen basierend auf formalen Anforderungen. Bachelor
thesis, Technische Universitaet Berlin, 2018.

[Sko17] David Skowronek. Lösungsmethoden für Differenzengleichungen, Dif-
ferentialgleichungen und retardierende Differentialgleichungen. Bachelor
thesis, Technische Universitaet Berlin, 2017.

178 SUPERVISED BACHELOR AND MASTER THESES

[Sta18] Georgios Stavrakakis. Information Flow Analysis for Simulink Models
with Cyclic Control Signals. Master thesis, Technische Universitaet Berlin,
2018.

[Tri17] To Minh Triet. Eine Repräsentation von Ausdrücken, Differential- und Dif-
ferenzengleichungen in MATLAB/ Simulink. Bachelor thesis, Technische
Universitaet Berlin, 2017.

[Wor16] Johannes Wortmann. Implementierung einer operationalen Semantik fuer
Simulink. Bachelor thesis, Technische Universitaet Berlin, 2016.

[Zbo16] Niklas Zbozinek. Implementierung einer Clone Detection fuer MAT-
LAB/Simulink Modelle. Bachelor thesis, Technische Universitaet Berlin,
2016.

179

Publications by Sebastian
Schlesinger

[DGL+15] Johannes Dyck, Holger Giese, Leen Lamber, Sebastian Schlesinger,
and Sabine Glesner. Towards the automatic verification of behavior
preservation at the transformation level for operational model trans-
formations. In Proceedings of the 4th Workshop on the Analysis of Model
Transformations co-located with the 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2015), pages 36–45,
2015.

[SHGG15] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Towards the verification of refactorings of hybrid simulink
models. In Alexei Lisitsa, Andrei Nemytyk, and Alberto Pettorossi,
editors, Proceedings of the Third International Workshop on Verification and
Program Transformation (VPT), volume 199 of EPTCS, page 69, 2015.

[SHGG16a] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Proving correctness of refactorings for hybrid simulink mod-
els with control flow. In Cyber Physical Systems. Design, Modeling, and
Evaluation (CyPhy), pages 71–86, 2016.

[SHGG16b] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Proving transformation correctness of refactorings for dis-
crete and continuous simulink models. In ICONS 2016, The Eleventh
International Conference on Systems, EMBEDDED 2016, International Sym-
posium on Advances in Embedded Systems and Applications, pages 45–50,
2016.

[SHGG18a] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Equivalence checking for hybrid control systems modelled
in simulink. In 2018 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pages 572–579. IEEE, 2018.

180 PUBLICATIONS BY SEBASTIAN SCHLESINGER

[SHGG18b] Sebastian Schlesinger, Paula Herber, Thomas Göthel, and Sabine
Glesner. Verified model refactorings for hybrid control systems. In PhD
Forum Design Automation and Test in Europe (DATE) 2018, 2018.

	Title Page
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Background
	Model Refactorings in Model Driven Engineering
	Mathematical Foundations
	Topological Preliminaries
	Sequences and Difference Equations
	Functions, Functional Analysis, and Differential Equations
	Laplace Transform and z-Transform
	Numerical Mathematics Preliminaries

	MATLAB/Simulink
	Syntax of Simulink models
	Simulink Operational Semantics

	Summary

	Related Work
	Hybrid Systems Verification and Analysis
	Control Flow-Oriented Hybrid Systems Modelling Languages
	Data Flow-Oriented Hybrid Systems Modelling Languages

	Model Refactorings for Data Flow-Oriented Languages
	Summary

	Verification Approach
	Limitations and Assumptions
	Methodology Limitations
	Automation Approach Limitations

	Theoretical Methodology
	Automation of our Equivalence Proof Methodology
	Summary

	Denotational Abstract Representation
	Abstract Representation
	Simulink Syntax
	From Simulink to the Abstract Representation

	Interpretation of the Abstract Representation
	Soundness of Abstract Representations with Operational Semantics
	Extension of the Operational Semantics for Simulink
	Summary

	Approximate Bisimulation for Simulink Models
	Adaptation of Approximate Bisimulation for Simulink
	Concept of Approximate Bisimulation
	Adaptation of Approximate Bisimulation to Simulink

	Behavioural Equivalence for Purely Time-Discrete Models
	Behavioural Equivalence for Purely Time-Continuous Models
	Epsilon Calculation

	Behavioural Equivalence for Hybrid Models
	Time-Hybrid Models
	Hybrid Models

	Summary

	Automated Equivalence Checking for Hybrid Control Systems
	Obligations to ensure Applicability of our Methodology
	Data Flow Model Calculation and Partitioning
	Data Flow Model Calculation
	Partitioning

	Symbolic Equivalence Checking
	Partition-Wise Symbolic Equivalence Checking
	Model Equivalence Checking

	Epsilon Calculation and Propagation
	Epsilon Propagation through Partitions

	Approximate Bisimulation Verification
	Summary

	Evaluation
	Implementation
	Case Studies and Evaluation
	Case Studies
	Experimental Results

	Discussion
	Limitations and Opportunities
	Complexity Assessment

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Proofs
	Bibliography

