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Abstract
Compressor stations are the heart of every high-pressure gas transport network. 
Located at intersection areas of the network, they are contained in huge complex 
plants, where they are in combination with valves and regulators responsible for 
routing and pushing the gas through the network. Due to their complexity and lack 
of data compressor stations are usually dealt with in the scientific literature in a 
highly simplified and idealized manner. As part of an ongoing project with one of 
Germany’s largest transmission system operators to develop a decision support sys-
tem for their dispatching center, we investigated how to automatize the control of 
compressor stations. Each station has to be in a particular configuration, leading in 
combination with the other nearby elements to a discrete set of up to 2000 possi-
ble feasible operation modes in the intersection area. Since the desired performance 
of the station changes over time, the configuration of the station has to adapt. Our 
goal is to minimize the necessary changes in the overall operation modes and related 
elements over time while fulfilling a preset performance envelope or demand sce-
nario. This article describes the chosen model and the implemented mixed-integer 
programming based algorithms to tackle this challenge. By presenting extensive 
computational results on real-world data, we demonstrate the performance of our 
approach.
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1  Introduction

Throughout the past years, the mathematics of gas transport has been an intensively 
studied topic. Natural gas was, is, and will be one of the primary energy sources in 
Germany, making efficient and safe transport a field of high economic and politi-
cal relevance according to the German Federal Ministry for Economic Affairs and 
Energy (2019). Furthermore, the task is also challenging from a mathematical point 
of view. One such challenge is in the compressors, which push the gas through the 
network by increasing its pressure. Compressors are typically set up as a compres-
sor station consisting of multiple compressor units, each representing the union of 
one single compressor machine and its associated drive. These compressor units are 
dynamically switched on or off and used in different sequences to meet the current 
needs in terms of compression ratios and flow rates. Out of the theoretically pos-
sible arrangements of compressor units, the set of technically feasible arrangements 
are known as the configurations of a compressor station. The intersections of major 
transportation pipelines are usually composed of multiple compressor stations as 
well as other elements like valves or pressure regulators. Such a structure makes it 
possible to adjust the connections of the intersecting pipelines and operate the sys-
tem for various pressure levels. To optimize control of these areas, which includes 
all the discrete decisions that need to be made for the single elements while taking 
into account the corresponding technical restrictions, is itself already a combinato-
rial challenge. The physics of gas flow further increases the complexity of the prob-
lem. In pipes, the Euler Equations describe the flow of gas. This set of nonlinear 
hyperbolic partial differential equations (PDEs) yields even in simplified versions 
computationally challenging constraints, see Osiadacz (1996).

Research in this field first focused on the simulation of gas flow, i.e., dealing 
with the partial differential equations given all the discrete decisions. This topic 
has been studied for many decades already, see for example Brouwer et al. (2011) 
and the references therein. In recent years however, the optimization of gas 
transport, including the consideration of the combinatorial aspects, has gained 
increased attention. In the article of Ríos-Mercado and Borraz-Sánchez (2015), a 
general overview of optimization problems related to natural gas is given, includ-
ing the transport of gas. The majority of the referenced literature considered 
the stationary (or steady-state) gas transport problem. There, they deal with one 
stable network state which allows for an algebraic description of the gas flow. 
Koch et al. (2015) and Pfetsch et al. (2014) give an overview of state-of-the-art 
approaches tackling the stationary problem on large real-world instances with a 
considerable amount of detail regarding the different network elements.

The more challenging variant is the transient gas transportation problem, which 
we consider in this article. Here, the goal is to find a set of control decisions for the 
elements over a future time horizon discretized into individual time steps. For this 
problem, research is still in the early stages. One of the first publications on transient 
gas transport optimization was the thesis of Moritz (2007) in which they presented 
a mixed-integer programming (MIP) model for the problem. In contrast to the pos-
sible configurations described above, they only used a model consisting of single 
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compressor units, whose compression capabilities are limited by a given minimum 
and maximum value for the power used for the compression. The nonlinear con-
straints resulting from these power bounds, as well as the nonlinear pipe equations, 
are approximated by piecewise linear functions. To solve the model for the objective 
of minimizing a combination of the compressors’ fuel consumption and the cost to 
switch the elements, they used a special branching scheme for the piecewise lin-
ear functions as well as a simulated annealing heuristic described in the article of 
Mahlke et al. (2007). A little later, Domschke et al. (2011) also presented a solution 
to the problem of minimizing the fuel consumption of compressors. They consid-
ered a similar problem formulation as Moritz (2007), using the same model for com-
pressors and approximating the nonlinear constraints by piecewise linear functions. 
However, they combined solving this MIP with solving a nonlinear problem (NLP) 
formulation of the problem in an alternating way. From the solution of that nonlin-
ear problem, they deduce a refinement of the piecewise linear approximations and 
repeat this procedure until finally ending up with a solution to the overall mixed-
integer nonlinear problem (MINLP) within a chosen approximation error. In other 
articles dealing with transient transport optimization, the discrete nature of the prob-
lem is neglected, which leads to NLP formulations. As an example, we mention the 
work of Zlotnik et al. (2015) and Mak et al. (2016), who decide on the compression 
ratios of compressors that are assumed to be always active, while again minimizing 
their fuel consumption. Very recently, a few more studies on transient gas network 
optimization have been published. Hahn et  al. (2017) use a specialized branching 
rule to solve a MINLP formulation of the problem with the objective of minimizing 
fuel consumption. For the compressors, they introduced the theoretical concept of 
different modes to switch between configurations, which each have separate feasible 
regions. However, in the end, they restrict to exactly one mode with nearly unlim-
ited compression capabilities for their experiments. Another approach combining 
different specialized solving techniques is presented by Gugat et al. (2018), where 
a MIP model and an NLP model are iteratively solved for each single time step to 
determine an instantaneous control of the problem, i.e., a control that only looks 
one time step ahead when making a decision. The two used models are based on 
a specific discretization of the Euler equations. For compression, both models use 
single compressor units featuring a linear feasible region. In contrast to the other 
previously mentioned publications, Gugat et  al. (2018) do not minimize fuel con-
sumption. Rather, the objective is to deviate as little as possible from a set of future 
pressure and flow values given at the boundary nodes. To close, we mention the 
work of Burlacu et al. (2019), who consider maximizing the amount of temporarily 
stored gas in the network while maintaining a feasible transient control of the ele-
ments. They also introduce a new discretization of the Euler Equations resulting in 
a formulation close to the algebraic form of the stationary model. However, for the 
compressors, they model only single units restricted by upper and lower bounds in 
the compression ratio as well as the absolute pressure difference. This problem is 
solved by alternating between solving a MIP model, which they obtain by replacing 
the nonlinear constraints by piecewise linear functions, and an NLP model, in which 
the discrete decisions from the MIP are already fixed. Using this approach they are 
able to obtain globally optimal solutions for their model.
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All approaches in the publications on transient gas network optimization men-
tioned above use a somewhat idealized model for the compressor stations. In con-
trast to this, we present in this article a transient gas network optimization problem 
featuring a compressor model with a so-far unmatched amount of detail. The model 
is based on the modeling presented by Koch et al. (2015) for the stationary case and 
takes the above described substructures for compressors into account. We consider 
the problem not on the complete network, but on those individual network areas that 
contain the compressor stations as well as additional active elements. We call these 
subgraphs network stations, an example station is presented in Fig.  1. The set of 
all network stations contains the majority of active elements in the whole network. 
Regarding the number of contained elements, a single network station is comparable 
to or even larger than the networks considered in the literature on transient optimi-
zation. Hence, they constitute challenging instances even though only representing 
a subgraph of the original gas network. Furthermore, precise control recommenda-
tions for network stations can help gas network operators to manage critical situa-
tions that arise during day-to-day operation.

One difference to general gas network problems is the shortness of pipes due to 
the proximity of the elements in a network station, see Table 1 in Sect. 5. Because of 
their shortness, the pipes’ ability to store gas is negligible owing to their small vol-
umes. Furthermore, the pressure loss induced by friction in the pipe depends on its 
length and has therefore reduced impact. This allows us to use a linear pipe model 
as introduced by Hennings (2018) without losing much accuracy and still producing 
realistic results.

As inputs to the problem, we are given the topology of the network station under 
consideration, an initial state for each of the contained network elements, and future 
demands in terms of both inflow and pressure levels at the station’s boundaries. The 
goal is to then find a feasible control of all the network elements over time, which 
can be interpreted as a recommendation for network operators on how to best oper-
ate the network station in the future. The overall objective is split into two parts and 
will be realized as the minimization of one weighted sum over the different terms. 
On the one hand, we try to meet the future demands as best as possible, i.e., allow-
ing and penalizing the deviation from these. On the other hand, we minimize the 
total number of control changes. Having such a stable control with a small number 
of changes is preferable since it reduces strain on the technical elements and enables 
the gas network operators to understand and actually perform the desired control 
recommendations.

To solve this problem, we formulate it as a MIP model. However, the model 
turns out to be quite challenging, according to our experiments. On larger net-
work stations, state-of-the-art MIP solvers cannot solve it reliably, even for a 
small number of future time steps. For this reason, we present a heuristic algo-
rithm that can efficiently and reliably solve the problem also on harder instances. 
Its main idea is to determine a majority of the discrete control decisions by solv-
ing independent stationary variants of the original MIP model for each of the 
future time steps. Based on these we create a solution for the overall transient 
problem by again solving a variant of the original MIP. Apart from the complex-
ity reduction gained from splitting the MIP model, our algorithm also allows to 
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enforce certain technical restrictions outside of its MIP subroutines. Note that the 
decisions determined by the stationary model yield good solutions for the origi-
nal transient problem too, since network stations only have a limited amount of 
pipeline volume due to the pipes’ shortness. Therefore, only small amounts of 
gas can be stored in the network station, which makes the corresponding transient 
optimization problem a “stationary-flavored” one.

The rest of the article is structured as follows: In Sect. 2, we will describe the 
mathematical constraints for all used elements and formulate the original MIP 
model. We highlight that we do not present a MIP formulation for the restrictions 
introduced in Sect. 2.8 since these will be satisfied by our heuristic algorithm with-
out including them in the solved model variants. In Sect. 3, we describe the preproc-
essing needed to convert the given compressor data into a linear description of the 
feasible operating range. Our heuristic algorithm is the topic of Sect. 4, which also 
introduces additional variants of the MIP model. Sect. 5 then presents the results of 
our algorithm when applied to a large number of real-world network situations. We 
finish by concluding this work in Sect. 6.

2 � Mathematical model

In this section, we give a detailed description of the considered transient gas network 
optimization problem on a network station. At the same time, we introduce the cor-
responding variables and constraints to create a MIP formulation for the problem. 

Fig. 1   Example of the medium-size network station E, see Table 1 for more details to its properties. The 
colored triangles represent the entry  and exit  nodes of the station. Furthermore, we have denoted 
the single network elements by  (pipe),  (valve),  (regulator), and (compressor station). 
(Color figure online)
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The exception to this is the restrictions presented in Sect. 2.8 for which the formu-
lation is not given. Our algorithm developed in Sect. 4 produces control decisions 
that satisfy these restrictions without their explicit inclusion in any MIP subroutine. 
Therefore, a corresponding MIP formulation is not required for these restrictions.

We model the topology of a network station as a directed graph G = (V,A) in 
which the arcs A represent the different network elements and nodes V represent the 
junctions of the arcs. We split A into individual sets A = Api ∪Ava ∪Ars ∪Arg ∪Acs 
for the network elements contained in a network station, i.e., pipes, valves, resistors, 
regulators, and compressor stations. Note that regulators are also often referred to 
as control valves in literature, e.g., in Ehrhardt and Steinbach (2003) or Koch et al. 
(2015). Likewise, we split the set of nodes V = Vb ∪ V0 into boundary nodes and 
inner nodes of the network station, respectively. Here, boundary nodes Vb repre-
sent those having inflow and pressure level demand values for future time steps. We 
define the set of considered time steps as T0 ∶= {0,… , k} where T ∶= T0 ⧵ {0} is 
the set of future time steps having demand conditions at boundary nodes. Each time 
step t has an associated value �(t) representing the time difference in seconds from 
t to the initial state time step 0. However, some restrictions may not be aligned with 
this discrete set of time points but consider intermediate time points instead. For 
those cases, we define that all variable values at some t ∈ T0 are present for the open 
interval between t and the subsequent discrete time point t + 1 at which a new value 
might be set.

The essential quantities we use to describe the gas flow are pressure and mass 
flow. We have pressure variables pv,t at each node v ∈ V and time t ∈ T0 as well as 
variables qa,t for the flow from � to r on each non-pipe arc (�, r) = a ∈ A ⧵Api and 
time t ∈ T0 . For a pipe (�, r) = a ∈ Api , we have two flow variables q

�,a,t represent-
ing the inflow into the pipe at end node � and qr,a,t representing the outflow out 
of the pipe at end node r, similar to the model of Ehrhardt and Steinbach (2003) 
on pipes or the one of Domschke et  al. (2011) on all arcs. The last flow quantity 
we introduce is the inflow dv,t entering the network station at each boundary node 
v ∈ Vb and t ∈ T0 . Although we are given flow demands for the future, we allow 
deviations from them, and hence have to have a variable capturing the actual inflow 
value.

We assume that there are upper and lower bounds on all stated quantities for each 
point in time t ∈ T0 , represented by bars above and below the variable, respectively. 
Note that while pressure is always positive, flow can be negative, representing flow 
against its orientation in the case of arcs and flow out of the network in the case of 
boundary nodes.

Gas flowing through a network always induces a loss of pressure in flow direction 
due to friction. However, we only consider friction-induced pressure loss in pipes 
and resistors. For valves, regulators, and compressor stations, we either assume the 
friction to be small enough to be negligible or to be captured by resistors surround-
ing the element in the network station.

For the formulation of the MIP model, we often use indicator constraints. Here, 
a constraint aTx ≤ a0 for a set of variables x = {x1,… , xi} with a ∈ ℝ

i , a0 ∈ ℝ is 
only active when a logical condition holds, i.e., a binary variable y attains the value 
b ∈ {0, 1} . We denote such a constraint by
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Since we have bounds on all the variables, constraints of this kind can be reformu-
lated as linear constraints in a bigM approach, see Bonami et al. (2015) for more 
details. A list of all used variables can be found in the appendix in Table 3.

2.1 � Compressor stations

Compressor stations are the most complex elements in the network. They are 
responsible for increasing the pressure and thereby are essential in controlling the 
gas flow. We based our model on the description of Fügenschuh et al. (2015), where 
the elements are called compressor groups instead.

2.1.1 � Structure of a compressor station

A compressor station (�, r) = a ∈ Acs has three different modes, referred to as 
bypass, closed, and active mode. In bypass mode, the element is bypassed and there-
fore allows unrestricted gas flow without changing the pressure level. For the closed 
mode, the element blocks the gas flow, which disconnects the network between both 
end nodes. Finally, in active mode, gas is compressed and the pressure is increased 
along the direction of the flow.

When compressing, the station uses its set of associated compressor units 
Ua . These represent the union of a single turbo compressor machine, the tech-
nical element performing the actual compression of the gas, and a correspond-
ing drive delivering the power needed for this process. In the compressor station, 
these units are combined in series and/or parallel to allow proper reactions to dif-
ferent compression requirements. The set of all allowed serial-parallel compres-
sor unit combinations is called the set of configurations Ca for a compressor sta-
tion a ∈ Acs , from which exactly one has to be chosen if the compressor station 
is in active mode. For each of these configurations c ∈ Ca , we create a polytope 
describing the feasible operating range of the compressor station using configura-
tion c. The polytope is embedded in the three dimensional space of incoming pres-
sure p

�
 , outgoing pressure pr and flow q . It is described as the intersection of a 

set of half-spaces Hc = {(�0, �1, �2, �3) ∈ ℝ
4} encoding inequalities of the form 

�0 ⋅ p𝓁 + �1 ⋅ pr + �2 ⋅ q + �3 ≤ 0 . In Sect. 3 we describe how we create these fea-
sible operating range polytopes for the single configurations of the compressor sta-
tions based on the operating ranges of the corresponding compressor units used in 
the configuration.

2.1.2 � Compressor station model

To model the above-described constraints, we use the disjunctive formulation of 
Balas (1985, 2018). Thus, we introduce binary “selection” variables mcf

c,a,t
 for each 

configuration c ∈ Ca of a compressor station (�, r) = a ∈ Acs , as well as mby
a,t and mcl

a,t
 

for bypass and closed mode, respectively, where a value of 1 indicates the selected 

y = b → aTx ≤ a0.
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configuration or mode. Furthermore, we introduce corresponding sets of pressure 
and flow variables:

Note that we do not need all variables for each mode since p
�
= pr holds true for 

bypass, and q = 0 holds true for closed. Using the binary variables, we force the 
pressure and flow variables of all non-selected configurations or modes to be zero 
and only enforce the constraints of the selected configuration or mode. The actual 
pressure and flow variables of the compressor station can hence be represented 
as the sum of the corresponding variables for the configurations and modes. The 
bounds of these variables specific to the configurations and modes are equal to those 
for the compressor station. The bound interval may not include zero however. In 
these cases we expand the interval by replacing its endpoint with the smallest abso-
lute value by zero to make the non-selected variable values feasible.

The formal constraints for all (�, r) = a ∈ Acs and t ∈ T  are then given as:

p
by
a,t q

by
a,t bypass mode variables

pl-cl
a,t

pr-cl
a,t

closed mode variables

pl-cf
c,a,t

pr-cf
c,a,t

qcf
c,a,t

∀c ∈ Ca configuration variables

(1)1 =
∑

c∈Ca

mcf
c,a,t

+ m
by
a,t + mcl

a,t

(2)p
�,t = p

by
a,t + pl-cl

a,t
+
∑

c∈Ca

pl-cf
c,a,t

(3)pr,t = p
by
a,t + pr-cl

a,t
+
∑

c∈Ca

pr-cf
c,a,t

(4)qa,t = q
by
a,t +

∑

c∈Ca

qcf
c,a,t

(5)pl-cf
c,a,t

mcf
c,a,t

≤ pl-cf
c,a,t

≤ p̄l-cf
c,a,t

mcf
c,a,t

∀c ∈ Ca

(6)pr-cf
c,a,t

mcf
c,a,t

≤ pr-cf
c,a,t

≤ p̄r-cf
c,a,t

mcf
c,a,t

∀c ∈ Ca

(7)qcf
c,a,t

mcf
c,a,t

≤ qcf
c,a,t

≤ q̄cf
c,a,t

mcf
c,a,t

∀c ∈ Ca

(8)pby
a,t
m

by
a,t ≤ p

by
a,t ≤ p̄

by
a,tm

by
a,t
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2.2 � Pipes

Gas flow in pipelines is for operational purposes modeled as one-dimensional flow 
through a straight cylindrical pipe. We use the friction dominated model derived from 
the isothermal Euler Equations and the equation of state for real gases, see the model 
(FD1) of Brouwer et al. (2011) and the model (ISO3) of Domschke et al. (2017).

For the discretization, we use the implicit box scheme introduced by Domschke et al. 
(2011); Kolb et al. (2010). Here, the spatial domain is the length La of pipe a = (�, r) , 
and the time domain is the set of time steps T0 . For two adjacent time points t0 and t1 , 
the discretized model reads as

Here Rs denotes the specific gas constant, T  the gas temperature, za the compressibil-
ity factor, Aa the cross-sectional area of the pipe, �a the friction factor of the pipe, Da 
the diameter of the pipe, and g the gravitational acceleration. With sa ∈ [−1, 1] we 
denote the slope of the pipe, i.e., the quotient of the elevation increase between the 
pipes endpoints and the length La of the pipe. We assume that all these values are 
predetermined parameters.

For the friction factor, we use the formula of Nikuradse (1950) for hydraulic 
rough pipelines assuming full turbulence:

(9)qby
a,t
m

by
a,t ≤ q

by
a,t ≤ q̄

by
a,tm

by
a,t

(10)pl-cl
a,t
mcl

a,t
≤ pl-cl

a,t
≤ p̄l-cl

a,t
mcl

a,t

(11)pr-cl
a,t

mcl
a,t

≤ pr-cl
a,t

≤ p̄r-cl
a,t

mcl
a,t

(12)

�0p
l-cf
c,a,t

+ �1p
r-cf
c,a,t

+ �2q
cf
c,a,t

+ �3m
cf
c,a,t

≤ 0

∀(�0, �1, �2, �3) ∈ Hc ∀c ∈ Ca

m
by
a,t,m

cl
a,t

∈ {0, 1}

mcf
c,a,t

∈ {0, 1} ∀c ∈ Ca.

(13)p
�,t1

+ pr,t1 − p
�,t0

− pr,t0 +
2RsTza(�(t1) − �(t0))

LaAa

(
qr,a,t1 − q

�,a,t1

)
= 0

(14)
pr,t1 − p

�,t1
+

�aRsTzaLa

4DaA
2
a

(
|q

�,a,t1
|q

�,a,t1

p
�,t1

+
|qr,a,t1 |qr,a,t1

pr,t1

)

+
gsaLa

2RsTza

(
p
�,t1

+ pr,t1

)
= 0.
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Apart from the pipe diameter, it depends only on the integral roughness parameter 
ka of the pipe and is commonly used in gas network optimization. As an example, 
we refer to the article of Pfetsch et al. (2014), which furthermore provides additional 
background information on friction factor formulas. Regarding the compressibil-
ity factor, the approximation formula developed by Papay (1968) is used, see Saleh 
(2002) for an English reference. It is valid for natural gas of up to 150 bar and there-
fore fits our use-case of pressure values usually being between 1 bar and 100 bar.

The formula is based on the pseudo-critical pressure pc and temperature Tc . Both 
values depend on the mixture of the gas, which we assume to be constant all over 
the network. The constant compressibility factor za per pipe a = (�, r) , which we 
use in the pipe equations, is determined as the average of the corresponding val-
ues derived from the initial state pressure values of the pipes’ end nodes, i.e., by 
za = (z(p

�,0) + z(pr,0))∕2.
In our model, we use a linearized variant of Eq.  (14) as proposed by Hennings 

(2018). Analogous to them, we fix the absolute velocity |v| = RsTza

Aa

|q|
p

 to a predefined 
constant in the friction term. As mentioned before, we found that pipes in network 
stations are relatively short in comparison to those in the rest of the network. For 
example, the network stations considered in our computational experiments in 
Sect. 5 have an average length per station of at most 500 m, according to Table 1. On 
the other hand, the transport pipelines that are incident to the stations are routinely 
100km or longer. Therefore, the pipes have much less impact inside stations, which 
allows us to assume a linear pipe model without losing much in terms of overall 
accuracy.

The final equations for each pipe (�, r) = a ∈ Api and all adjacent time points 
t0, t1 ∈ T0 reduce to: 

Note that (13) stays the same as above. The constant velocity |vx,a| for one of the end 
nodes x ∈ {�, r} of pipe a = (�, r) is determined based on the flow and pressure val-
ues of the given initial state, i.e.,

�a =

(
2 log10

(
Da

ka

)
+ 1.138

)−2

.

z(p) = 1 − 3.52
p

pc
e
−2.26

T

Tc + 0.247

(
p

pc

)2

e
−1.878

T

Tc

p
�,t1

+ pr,t1 − p
�,t0

− pr,t0 +
2RsTza(�(t1) − �(t0))

LaAa

(
qr,a,t1 − q

�,a,t1

)
= 0 (13)

(15)
pr,t1 − p

�,t1
+

�aLa

4DaAa

(
|v

�,a|q�,a,t1 + |vr,a|qr,a,t1
)

+
gsaLa

2RsTza

(
p
�,t1

+ pr,t1

)
= 0.
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2.3 � Resistors

Resistors are artificial elements created to model places of high friction in the net-
work, e.g., caused by non-standard network elements without further relevance for 
the operation of the network. The pressure drop over a resistor arc (�, r) = a ∈ Ars 
at time t ∈ T  is, according to Fügenschuh et al. (2015), defined by the Darcy-Weis-
bach equation:

Here, the friction factor of the resistor is called the drag factor and is represented 
by the parameter �a . We determine the constant compressibility factor za in the same 
way as for pipes. Note that the formula depends on the flow’s direction due to pin,t 
representing the pressure of the incoming gas. The similar looking friction term in 
the Eqs. (14) and (15) of the pipe model does not contain this dependency thanks to 
the chosen discretization scheme.

Analogous to the approach for pipes in Eq.  (15), we linearize the model by 
assuming a constant velocity |v| = RsTza

Aa

|q|
p

 , which also includes the flow direction 
dependent pressure value. The equation for each arc (�, r) = a ∈ Ars and time t ∈ T  
then reads as

The constant velocity value is again calculated based on the initial element state 
and is defined as an average of the two velocities using the pressure from the cor-
responding resistor’s end nodes as

2.4 � Valves

By being open or closed, valves connect or disconnect two nodes of the network. 
Closed valves work exactly as described by the closed mode of a compressor sta-
tion, while open valves imply the same behavior as the corresponding compres-
sor station’s bypass mode. The valve’s mode is captured by the binary variable 
m

op
a,t , which attains the value 1 for the open mode and 0 for closed. For a valve arc 

(�, r) = a ∈ Ava and time t ∈ T  , we can capture the modes’ behavior using indicator 
constraints as:

|vx,a| =
RsTza

Aa

|qx,a,0|
px,0

.

p
�,t − pr,t =

�aRsTza

2A2
a

(|qa,t|qa,t
pin,t

)
.

(16)p
�,t − pr,t =

�a|va|
2Aa

qa,t.

|va| ∶=
1

2

(
RsTza

Aa

|qa,0|
p
�,0

+
RsTza

Aa

|qa,0|
pr,0

)
.
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2.5 � Regulators

A regulator or control valve is a valve with a variable opening degree, used to 
reduce the pressure along the direction of the flow. Regulators can reduce the pres-
sure in active mode and also be bypassed or closed like a compressor station. For 
each mode, there is a binary selection variable, where a value of 1 again indicates 
the uniquely selected mode per time. For each arc a ∈ Arg and all times t ∈ T  , the 
behavior is captured by the following constraints:

Note that for the logical condition in (23), the sum mby
a,t + mac

a,t
 can only be ∈ {0, 1} 

due to (21) and therefore acts as an implicit binary variable. Furthermore, all reg-
ulators have a flap trap preventing gas flowing against the topological orientation, 
which is modeled by (25).

2.6 � Nodes

The nodes do not represent technical elements but rather establish the connec-
tions between them. The pressure coupling is realized by using the node’s pressure 

(17)m
op
a,t = 1 → p

�,t ≤ pr,t

(18)m
op
a,t = 1 → p

�,t ≥ pr,t

(19)m
op
a,t = 0 → qa,t ≤ 0

(20)
m

op
a,t = 0 → qa,t ≥ 0

m
op
a,t ∈ {0, 1}.

(21)mcl
a,t

+ m
by
a,t + mac

a,t
= 1

(22)m
by
a,t = 1 → p

�,t ≤ pr,t

(23)m
by
a,t + mac

a,t
= 1 → p

�,t ≥ pr,t

(24)mcl
a,t

= 1 → qa ≤ 0

(25)
0 ≤ qa

mcl
a,t
,m

by
a,t,m

ac
a,t

∈ {0, 1}.
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variables in the constraints of all its incident arcs. To connect the mass flow vari-
ables of the arcs, we have the following flow conservation constraints for all t ∈ T :

Note that pipes have separated inflow and outflow variables, while all other arcs 
only have a single flow variable, as explained in the beginning of Sect. 2.

2.7 � Network station

In addition to the constraints imposed by the single elements contained in the net-
work station, we also consider restrictions associated with the network station itself. 
The model described below is an extension of the one described in Fügenschuh et al. 
(2015) for similar structures. There, network stations are called compressor stations, 
and the elements we call compressor stations are called compressor groups. Our 
project partner suggested adjusting the naming scheme here since the previous one 
can be misleading, especially so as a network station does not need to contain an 
element with compression capabilities.

2.7.1 � Network station structure

For a network station, two main decisions have to be made for each point in time. 
We have to choose exactly one flow direction from the set F  of available flow direc-
tions and exactly one operation mode from the set O of available operation modes.

A flow direction represents the general orientation of the gas flow through the 
station, for example, flow from the northern and eastern boundary nodes to those at 
the southern border of the station. Hence, a flow direction is defined as a partition 
of the boundary nodes into entry nodes, exits nodes, and no-flow nodes, at which 
respectively, gas enters the station, gas leaves the station, or the gas inflow and out-
flow is zero. Only a subset of the theoretically possible partitions is feasible for the 
station, forming the set F .

Similarly, the modes and configurations of the network station’s elements cannot 
be arbitrarily combined. For example, separating an active compressor station from 
the network by closing all surrounding valves would not be feasible in reality. There-
fore we are given the operation modes, which represent the available mode and con-
figuration combinations of all valves and compressor stations of the network station. 

(26)

∑

(�,v)=a∈Api

qv,a,t −
∑

(v,r)=a∈Api

qv,a,t

+
∑

(�,v)=a∈A⧵Api

qa,t −
∑

(v,r)=a∈A⧵Api

qa,t + dv,t = 0 ∀v ∈ Vb

(27)

∑

(�,v)=a∈Api

qv,a,t −
∑

(v,r)=a∈Api

qv,a,t

+
∑

(�,v)=a∈A⧵Api

qa,t −
∑

(v,r)=a∈A⧵Api

qa,t = 0 ∀v ∈ V0.
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The set of feasible mode combinations for valves and compressor stations is, most 
of the time, very small in comparison to the set of all possibilities. Often, a feasible 
combination prescribes only one or a few specific paths for the gas flow through the 
station using non-closed elements. However, imagine a situation in which a com-
pressor station is in active mode in a particular operation mode of the network sta-
tion. In this case, all available configurations of the compressor station generally 
yield feasible operation modes when combined with the same settings for the other 
elements.

Note that operation modes do not prescribe the mode of regulators. For these, the 
network operator cannot set the desired mode directly but chooses target values for 
the incoming and outgoing pressure of the element as well as its flow. The regula-
tor tries to meet these values by adjusting its opening degree according to a given 
set of rules, which also determines the mode. Since target value modeling is out 
of scope for this paper, we simply do not include regulator modes in the operation 
mode restrictions.

Finally, not all combinations of flow directions and operation modes are valid. 
One could, for example, think of a compressor station that is only active when the 
network station operates in a south to north flow direction. Hence, we are given the 
set Q ⊂ F ×O of valid combinations of flow directions and operation modes.

2.7.2 � Operation modes model

We introduce binary variables mom
o,t

 for each o ∈ O and t ∈ T0 , where a value of 1 
represents the selection of o at time t. Furthermore, we define the function M(o, a) 
that maps operation modes to the individual modes and configurations of valves and 
compressor stations:

Using M(o, a), we can state the constraints modeling the relations related to opera-
tion modes for all t ∈ T  as:

M(o, a) ∶= x where x is the mode or configuration of arc a

in operation mode o ∀o ∈ O ∀a ∈ Ava ∪Acs

with x ∈ {op, cl} if a ∈ Ava

x ∈ {by, cl} ∪ Ca if a ∈ Acs.

(28)
∑

o∈O

mom
o,t

= 1

(29)m
op
a,t =

∑

o∈O∶M(o,a)=op

mom
o,t

∀a ∈ Ava

(30)m
by
a,t =

∑

o∈O∶M(o,a)=by

mom
o,t

∀a ∈ Acs
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Note that either Eqs. (30), (31) or one of the constraints of Eq. (32) for one of the 
configurations c ∈ Ca can be omitted, since it follows from the remaining constraints 
combined with Eq. (1).

2.7.3 � Operation mode unavailability

Certain operation modes are not available at specific points in time, and we set the 
corresponding variables mom

o,t
 for each associated operation mode o and time t to 

zero. The basis for this is the non-availability of compressor units over time, which 
is part of the model input data. As explained in Sect. 2.1, a configuration c ∈ Ca of 
some compressor station a ∈ Acs represents the serial and/or parallel combination of 
a subset of the compressor station’s compressor units. Hence, the unavailability of 
a certain compressor unit at time t results in the unavailability of all configurations 
using this unit, which causes all operation modes using these configurations to be 
unavailable as well.

The unavailability period of a compressor unit may not be aligned with the set 
of discrete time points T0 . According to the definition given at the start of Sect. 2, 
the network station operation mode of some time t ∈ T0 is also used in the open 
interval (t, t + 1) . Thus, the unavailability of an operation mode k ∈ (t, t + 1) with 
t, t + 1 ∈ T0 results in the unavailability of that operation mode for time t. At the 
same time, it stays potentially available for time t + 1.

2.7.4 � Flow directions model

Similar to the way we handle operations modes, we introduce binary variables mfd
f ,t

 
representing the selection of a flow direction f ∈ F  at time t ∈ T0 if the variable 
attains the value 1. As explained above, a flow direction f  is defined by the signs of 
the flows on boundary nodes. We write f + for entry nodes with positive inflow and 
f − for exits with negative inflow, i.e. outflow. Hence, using the power set P , a flow 
direction f  is defined as

Note that if v ∉ f + and v ∉ f − for flow direction (f +, f −) , then node v is a no-flow 
node, and its inflow and outflow are zero.

Using the inflow variable dv,t for boundary node v and time t, we can define the 
flow direction constraints for each t ∈ T  as:

(31)mcl
a,t

=
∑

o∈O∶M(o,a)=cl

mom
o,t

∀a ∈ Acs

(32)
mcf

c,a,t
=

∑

o∈O∶M(o,a)=c

mom
o,t

∀c ∈ Ca ∀a ∈ Acs

mom
o,t

∈ {0, 1} ∀o ∈ O.

(f +, f −) = f ∈ F ⊆ P(Vb) × P(Vb) where f + ∩ f − = �.
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Note that in the constraints  (34) and (35), the sum of the mfd
f ,t

 variables act as an 
implicit binary variable since its value can only be in {0, 1} due to (33).

The restriction to feasible combinations of operation modes and flow directions is 
implemented as:

2.7.5 � Flow direction exit pressures

Apart from the consequences that the flow direction choice has on the correspond-
ing boundary node inflows, it may add restrictions to the upper pressure bounds on 
some boundary nodes. Each node v in the set Vb-ex ⊆ Vb is given a limiting upper 
pressure value p̄exit

v
 that is only considered if the node is in the outflow set of the 

currently active flow direction, i.e., serving as exit node of this flow direction. These 
exit pressure restrictions originate from the historical development of the network 
infrastructure and may, for example, occur when a transport pipeline has been 
upgraded to allow for higher maximum pressure values. If then the adjacent network 
station contains equipment, for example a metering station, that is a) only used when 
gas leaves the station in the direction of this pipeline and b) has an upper pressure 
bound in line with the old pipeline, we have to model this bound explicitly when gas 
is flowing in this direction. Before the pipeline’s upgrade, this upper pressure bound 
was implied by the corresponding pressure bounds of the nodes in the pipeline. The 
corresponding constraint is the following for each time t ∈ T

Again, the sum of the mfd
f ,t

 variables acts as an implicit binary variable due to (33).

2.7.6 � Flow direction conditions

Denoting the final constraints concerning flow directions, there can exist a special 
set of conditions W that concern the amount of flow over sets of boundary nodes. 
Each condition w = (f ,Vw1 ,Vw2) ∈ W states that the flow over the set of boundary 

(33)
∑

f∈F

mfd
f ,t

= 1

(34)
∑

f=(f+,f−)∈F∶v∉f−

mfd
f ,t

= 1 → 0 ≤ dv,t ∀v ∈ Vb

(35)

∑

f=(f+,f−)∈F∶v∉f+

mfd
f ,t

= 1 → 0 ≥ dv,t ∀v ∈ Vb

mfd
f ,t

∈ {0, 1} ∀f ∈ F.

(36)mom
o,t

≤

∑

(f ,o)∈Q

mfd
f ,t

∀o ∈ O t ∈ T.

(37)
∑

f=(f+,f−)∈F∶v∈f−

mfd
f ,t

= 1 → pv,t ≤ p̄exit
v

∀v ∈ Vb-ex.
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nodes Vw1 has to be smaller than or equal to the flow over the second set of boundary 
nodes Vw2 . These conditions must be met if an associated flow direction f = (f +, f −) 
is active. By definition the node sets Vw1 and Vw2 have to be a subset of either f + or 
f − , while they do not need to belong to the same set.

An example of a relation requiring the constraints is as follows: Consider a trans-
port pipeline intersecting a network station. These constraints can then be used to 
model a flow direction that not only restricts the flow at the boundary nodes, but 
also enforces that gas is directed into the intersecting transport pipeline. We do this 
by stating that the outflow of the transport pipeline at the network station’s boundary 
is larger than its inflow into the network station.

Note that the flow over a set of boundary nodes Vw for time t is defined as ∑
v∈Vw �dv,t� , which is potentially a nonlinear expression due to the absolute value. 

However, by the above definition, the boundary node sets Vw1 and Vw2 of some (
(f +, f −),Vw1 ,Vw2

)
∈ W are subsets of either f + or f − . For this reason, we always 

know the sign of the flow over Vw in advance, and hence using the following func-
tion definition for easier notation

we can write the constraints for each t ∈ T  as:

2.8 � Operation mode transition times

In addition to the characterization of operation modes given previously, there exists 
additional restrictions, namely those concerning transition times between any two 
operation modes. In contrast to the rest of Sect. 2, we only give a verbal descrip-
tion and do not present a MIP model formulation here, since none of the MIP vari-
ants solved in our heuristic algorithm uses these constraints, see Sect. 4. Instead, it 
explicitly checks potential solutions for complying with this restriction.

Changing the operation mode of a network station can be a complex procedure 
if the two involved operation modes differ significantly in terms of the actively used 
elements. The changes in terms of modes and configurations that are needed for the 
transition are often required to happen in a particular order. Furthermore, it may be 
necessary to switch into a third, intermediate operation mode during the change to 
ensure safe operation at all times. However, for the scope of this paper, we are only 
interested in the implications of the transition process. Therefore, we define a feasi-
ble transition from operation mode A to mode B as follows: We allow the transition 
to happen instantly at some time point t ∈ T0 . However, we consider the time �(A,B) 
of the transition process from A to B by demanding that the network station is in 
operation mode A in the time interval [t − �(A,B)

2
, t) preceding t and in mode B for 

sgn ∶ F × Vb
→ {−1, 1} ,

(
(f +, f −), v

)
→

{
1 if v ∈ f +

−1 if v ∈ f −,

(38)
mfd

f ,t
= 1 →

∑

v∈Vw1

sgn(f , v)dv,t ≤
∑

v∈Vw2

sgn(f , v)dv,t

∀(f ,Vw1 ,Vw2) ∈ W.
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the subsequent time interval [t, t + �(A,B)

2
] . In addition, this whole transition period 

[t −
�(A,B)

2
, t +

�(A,B)

2
] is reserved for this transition to happen, i.e., two transition peri-

ods cannot overlap. Note that we allow the last transition period to exceed our time 
horizon, which makes operation mode changes up to the very end of the time hori-
zon possible.

As an example, we denote in Fig.  2 an operation mode sequence over time 
that includes the involved transition times. Here, each time point tX represents the 
switching time of the corresponding transition into the operation mode X, i.e., the 
first t ∈ T0 in which operation mode X is active. Note that the displayed example 
includes a conflict in the transitions from mode C to mode D and from mode D to 
mode E since the two corresponding transition periods overlap. Hence this sequence 
of operation modes does not represent a feasible solution.

2.9 � Scenario and initial state

For the future, we are given scenario values for the station’s boundary nodes in 
terms of pressure and inflow (where outflow is represented as negative inflow, see 
the beginning of Sect. 2). While we have one pressure value p̂v,t per boundary node 
v ∈ Vb for each future time point t ∈ T  , the flow demands are only given for sets of 
boundary nodes. These sets are called the fence groups of the network station and 
form the set G . For each g ∈ G and time point t ∈ T  , the sum of the inflow values of 
all boundary nodes in g should be equal to the demand value d̂g,t.

We do not require strict obedience of the given demand values p̂v,t and d̂g,t , but 
instead allow deviations from them, which we punish in the objective function. 
These deviations are captured in the slack variables � . For pressure, we have �p+

v,t  
and �p−

v,t  capturing the positive and negative difference between the pressure values 
of boundary node v at time t and the given demand p̂v,t . The slack variables �d+

v,t
 and 

�d−
v,t

 are associated with the inflow. They capture the positive and negative contribu-
tion to the difference between the inflow demand d̂g,t of fence group g ∈ G at time 
step t and the sum of the corresponding inflow variables of each boundary node v of 
the fence group g.

We model the described relations for each future time step t ∈ T  as:

Time
tB tC tD tEA B C D E

A → B

B → C

C → D

D → E

Fig. 2   Transition time example with five operation modes and four transitions, from which two conflict. 
The time point tX represents the switching time of the corresponding transition into the operation mode 
X, i.e., the first t ∈ T0 in which operation mode X is active
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Note that by using inflow slacks, it is possible to choose a flow direction that does 
not fit the inflow demand values d̂g,t in terms of the Eqs. (34–35).

The second set of prescribed values are those of the initial state represented by time 
0. All variables for this time are actually parameters of the model and fixed to the cor-
responding value.

2.10 � Objective

The objective function covers two different aspects. On the one hand, it should mini-
mize the deviation from the given future scenario in terms of inflow and pressure at 
the boundary nodes. On the other hand, we favor those solutions with stable control 
of the single elements and hence try to reduce the number of needed control changes. 
The latter is preferable for a couple of reasons. First, a limited number of changes ena-
bles the gas network operators to understand, evaluate, and actually perform the desired 
control recommendations. Due to the inertia of the gas, they are used to operating the 
network using a small set of essential adjustments rather than dynamically performing 
small changes all the time. Finally, a stable control also reduces strain on the technical 
elements.

To define a measure for the stability, we first quantify the discrete changes of the 
control in binary variables. The variable �om

t
 captures the change of the network station 

into a new operation mode at time t, while the variable �rga,t represents the change into a 
new mode of regulator a at time t. We have to track the regulator mode changes explic-
itly, since their modes are not prescribed by the operation modes, see the description of 
the network station structure in Sect. 2.7 for an explanation. Furthermore, we capture 
the start-up of compressor unit u at time t in the variable �us

u,t
 . Since starting a compres-

sor is a very time and energy intensive action, it should be avoided if possible. The fol-
lowing set of constraints guarantees for each future time step t ∈ T  that the variables 
attain the value 1 if a corresponding change occurs and 0 otherwise.

(39)p̂v,t = pv,t − 𝜎
p+
v,t + 𝜎

p−
v,t ∀v ∈ Vb

(40)d̂g,t =
∑

v∈g

(
dv,t − 𝜎d+

v,t
+ 𝜎d−

v,t

)
∀g ∈ G.

(41)�om
t

≥ mom
o,t

− mom
o,t−1

∀o ∈ O

(42)�om
t

≤ 2 − mom
o,t

− mom
o,t−1

∀o ∈ O

(43)�
rg
a,t ≥ mcl

a,t
− mcl

a,t−1
∀a ∈ Arg

(44)�
rg
a,t ≤ 2 − mcl

a,t
− mcl

a,t−1
∀a ∈ Arg
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In Eq. (49), the set Cu,a denotes the subset of configurations Ca of the compressor sta-
tion a ∈ Acs , for which compressor unit u ∈ Ua is turned on.

In order to obtain a smooth operation for network situations without discrete 
mode switching, we add variables tracking the change of the operation point of sin-
gle elements, i.e., their corresponding changes in flow, incoming pressure and out-
going pressure. We do this for all elements that can precisely control the point of 
operation, i.e., regulators and compressor stations in active mode, and for all times 
without discrete mode switching, i.e. a stable network station operation mode or reg-
ulator mode. The variables �rg-pla,t  , �rg-pra,t  , and �rg-qa,t  represent changes of the incoming 
pressure, outgoing pressure, and flow of an active regulator a, while �cs-pla,t  , �cs-pra,t  , and 
�
cs-q
a,t  represent the corresponding value changes of an active compressor station a. 

We establish the behavior of these variables using the following constraints for each 
(�, r) = a ∈ Arg ∪Acs and each t ∈ T

(45)�
rg
a,t ≥ m

by
a,t − m

by

a,t−1
∀a ∈ Arg

(46)�
rg
a,t ≤ 2 − m

by
a,t − m

by

a,t−1
∀a ∈ Arg

(47)�
rg
a,t ≥ mac

a,t
− mac

a,t−1
∀a ∈ Arg

(48)�
rg
a,t ≤ 2 − mac

a,t
− mac

a,t−1
∀a ∈ Arg

(49)

�us
u,t

≥

∑

c∈Cu,a

mcf
c,a,t

−
∑

c∈Cu,a

mcf
c,a,t−1

∀u ∈ Ua∀a ∈ Acs

�om
t

∈ {0, 1}

�
rg
a,t ∈ {0, 1} ∀a ∈ Arg

�us
u,t

∈ {0, 1} ∀u ∈ Ua∀a ∈ Acs

(50)p
�,t − p

�,t−1 ≤ 𝛿
X-pl
a,t + (m

by
a,t + mcl

a,t
+ 𝛿)(p̄

�,t − p
�,t−1

)

(51)p
�,t−1 − p

�,t ≤ 𝛿
X-pl
a,t + (m

by
a,t + mcl

a,t
+ 𝛿)(p̄

�,t−1 − p
�,t
)

(52)pr,t − pr,t−1 ≤ 𝛿
X-pr
a,t + (m

by
a,t + mcl

a,t
+ 𝛿)(p̄r,t − p

r,t−1
)

(53)pr,t−1 − pr,t ≤ 𝛿
X-pr
a,t + (m

by
a,t + mcl

a,t
+ 𝛿)(p̄r,t−1 − p

r,t
)
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In these constraints, we define X=rg as well as � = �
rg
a,t for a ∈ Arg , and X=cs as 

well as � = �om
t

 for a ∈ Acs.
Note that we needed to add the upper bound constraints (42), (44), (46), and (48) 

for the discrete change variables �om
t

 and �rga,t to allow them to be equal to 1 if and 
only if there is a discrete change. Otherwise, it would be possible to set them to 
1 independent of the corresponding mode variable values, thereby deactivating the 
associated constraints (50)–(55) and avoiding potentially higher costs imposed by 
the continuous change variables.

Finally, we can state our objective function, which minimizes the weighted sum 
of the change variables as well as the slack variables defined in Sect. 2.9 as

Here, the w∗ parameters denote the corresponding positive weights given to the sin-
gle quantities. Note that the weights for pressure and flow slack variables are addi-
tionally multiplied by the length of the corresponding time interval to represent the 
amount of deviation over time correctly.

2.11 � Final model

Putting everything together, we can formulate our problem in the following transient 
gas flow model P:

(54)qa,t − qa,t−1 ≤ 𝛿
X-q
a,t + (m

by
a,t + mcl

a,t
+ 𝛿)(q̄a,t − q

a,t−1
)

(55)qa,t−1 − qa,t ≤ 𝛿
X-q
a,t + (m

by
a,t + mcl

a,t
+ 𝛿)(q̄a,t−1 − q

a,t
).

(56)

min
∑

t∈T

((
�(t) − �(t − 1)

) ∑

v∈Vb

(
w�-p

⋅ (�
p+
v,t + �

p−
v,t ) + w�-d

⋅ (�d+
v,t

+ �d−
v,t
)
)

+ wom
⋅ �om

t
+

∑

a∈Arg

wrg
⋅ �

rg
a,t +

∑

u∈Ua,a∈A
cs

wus
⋅ �us

u,t

+
∑

a∈Arg

(
wrg-pl

⋅ �
rg-pl
a,t + wrg-pr

⋅ �
rg-pr
a,t + wrg-q

⋅ �
rg-q
a,t

)

+
∑

a∈Acs

(
wcs-pl

⋅ �
cs-pl
a,t + wcs-pr

⋅ �
cs-pr
a,t + wcs-q

⋅ �
cs-q
a,t

))
.
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Note that we apply the constraints only starting from time step 1, explicitly exclud-
ing the initial time step 0. We do this since the initial pressure values, flow values, 
and modes described in Sect. 2.9 are not guaranteed to fit our model, and only serve 
as a starting point for the calculations.

3 � Feasible operating range of compressor station configurations

In the following section, we describe the creation of the feasible operating range 
polytope for each configuration c ∈ Ca of a compressor station a = (�, r) . This poly-
tope is represented as the intersection of half-spaces Hc and was already used in the 
model description for compressor stations in Sect. 2.1 in Eq. (12).

min (56)

s.t. ∀t ∈ T (1) − (4), (8) − (11), (30) − (31), (50) − (55) ∀a ∈ Acs

(5) − (7), (32) ∀a ∈ Acs ∀c ∈ Ca

(12) ∀a ∈ Acs ∀c ∈ Ca ∀(�0, �1, �2, �3) ∈ Hc

(13) − (15) ∀a ∈ Api

(16) ∀a ∈ Ars

(17) − (20), (29) ∀a ∈ Ava

(21) − (25), (43) − (48), (50) − (55) ∀a ∈ Arg

(26), (34) − (35), (39) ∀v ∈ Vb

(27) ∀v ∈ V0

(28), (33)

(36), (41) − (42) ∀o ∈ O

(37) ∀v ∈ Vb-ex

(38) ∀w ∈ W

(40) ∀g ∈ G

(49) ∀a ∈ Acs u ∈ Ua

{0, 1} ∋m
by
a,t,m

cl
a,t

∀a ∈ Acs,

mcf
c,a,t

∀a ∈ Acs ∀c ∈ Ca,

m
op
a,t ∀a ∈ Ava,

mcl
a,t
,m

by
a,t,m

ac
a,t
, �

rg
a,t ∀a ∈ Arg,

mom
o,t

∀o ∈ O,

mfd
f ,t

∀f ∈ F,

�om
t
,

�us
u,t

∀u ∈ Ua ∀a ∈ Acs.
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We shortly recall the structure of a compressor station arc from Sect. 2.1. Each 
compressor station a ∈ Acs is associated with a set of compressor units Ua , which 
each represent the union of a compressor machine and the power providing drive. 
These compressor units can be combined in series and/or parallel to either allow 
for a higher compression ratio, a higher flow rate, or a mixture of both. The set of 
all available serial-parallel combinations is called the set of configurations Ca of a 
compressor station.

To create the set Hc for c ∈ Ca , we first obtain a feasible operating range polytope 
for each of the compressor station’s compressor units. This polytope includes a lin-
ear approximation of the nonlinear constraint resulting from the maximum power 
bound of the unit’s drive. Afterwards, we sketch the procedure of Walther and Hiller 
(2017) to combine these polytopes and obtain Hc.

Note that we drop the index a for the compressor station as well as the time index 
in this section for ease of notation.

3.1 � Feasible operating range for a single compressor unit

For each compressor unit, we are given a feasible operating range of the correspond-
ing compressor machine as a polytope in the space (Q, pr

p
�

) , where the volumetric 
flow rate Q is defined as

Note that we consider the density � and the pressure p at the incoming node � of the 
compressor. For this reason, we use for compressor units the incoming node’s com-
pressibility factor z

�
∶= z(p

�,0) instead of the average value za used for pipes and 
resistors as defined in Sect. 2.2.

Usually, the feasible operating range, sometimes also referred to as “character-
istic diagram” or “performance curve”, is given as area in the dimensions (Q,Had) 
restricted by a set of possibly concave quadratic curves, see ,e.g., the description of 
Fügenschuh et al. (2015) or Odom and Muster (2009). The quantity Had denotes the 
specific change in adiabatic enthalpy and is defined as

using for the isentropic exponent � the constant value 1.296, as stated by Fügens-
chuh et  al. (2015). We can transform such an operating range into our format by 
applying the unique transformation from Had to pr

p
�

 obtainable from (57).
In addition to the feasible operating range polytope, each compressor unit is given 

an upper bound on the absolute pressure increase 𝛥p ≥ pr − p
�
 achievable by the 

compressor machine and an upper bound on the maximum power P̄ that may be 
delivered by the drive. The power needed for compression is defined as

Q = q∕�
�
, with �

�
=

p
�

RsTz�
.

(57)Had = RsTz�
�

� − 1

[(
pr

p
�

) �−1

�

− 1

]
,
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Here, �ad denotes the adiabatic efficiency of the compression, which we assume to 
be a known constant per compressor unit. We give an example of a feasible operat-
ing range of a compressor unit combined with the two constraints in Fig. 3a, where 
different levels of the maximum pressure difference bound and the maximum power 
constraint are denoted based on different values for the incoming pressure p

�
.

We now create a first version of the feasible operating range of the compressor unit 
in the space (p

�
, pr, q) that does not include the maximum power constraint. Therefore, 

we transform each of the faces �0 + �1Q + �2
pr

p
�

≤ 0 of the original polytope in the 
space (Q, pr

p
�

) into constraints 𝛼̃0p� + 𝛼̃1pr + 𝛼̃2q ≤ 0 of the desired higher-dimensional 
space:

To bound the polyhedron described by the new constraints, we add the restriction of 
the absolute pressure difference as well as two pressure bounds of the end nodes of 
the compressor station arc (�, r) = a ∈ Acs containing the compressor unit.

(58)P =
qHad

�ad
=

q

�ad
RsTz�

�

� − 1

[(
pr

p
�

) �−1

�

− 1

]
.

𝛼0 + 𝛼1Q + 𝛼2
pr

p
�

≤ 0

⇔ 𝛼0 + 𝛼1
qRsTz�

p
�

+ 𝛼2
pr

p
�

≤ 0

⇔ 𝛼0p� + 𝛼1RsTz�q + 𝛼2pr ≤ 0

⇔ 𝛼̃0p� + 𝛼̃1pr + 𝛼̃2q ≤ 0.

Fig. 3   The feasible operating range of a compressor unit. The grey region shows the operating range 
given as a polytope. For different values of the incoming pressure p

�
 the blue dashed lines represent the 

upper bound on the absolute pressure increase 𝛥p , and the red solid lines illustrate the power bound P̄ . 
While the left picture shows the original nonlinear nonconvex constraint resulting from the power bound, 
the right picture shows the linearized version, see Sect. 3.2
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A picture of the corresponding three-dimensional polytope created based on the fea-
sible operating range of Fig. 3a is given in Fig. 4a. Note that it does not include the 
max power constraint yet.

3.2 � Power bound linearization

To complete the three-dimensional feasible operation range polytope, we now add 
the maximum power constraint described in 3.1. Note that this constraint P ≤ P̄ cuts 
into the original two-dimensional feasible operating range in a nonlinear and non-
convex fashion, see Fig. 3a. Since the same holds for the feasible operating range 
representation in (p

�
, pr, q) , we derive a linear approximation to this constraint.

For the approximation, we generate a set of N random sample points from within 
the three-dimensional operating range polytope of the compressor unit derived in 
the previous section. For each point, we determine the corresponding compression 
power using Eq.  (58). Given this, we apply an ordinary least-squares method in 
order to determine the coefficients of the linear representation of P . This enables us 
to ultimately add the constraint in the form

to the three-dimensional polytope of the operating range and thereby complete its 
definition. An example of the final polytope is illustrated in Fig. 4b, while the lin-
earized power bound projected to the original two-dimensional operating range can 
be seen in Fig. 3b.

pr − p
�
≤ 𝛥p p

�
≥ p

�
pr ≤ p̄r

𝛽0 + 𝛽1p� + 𝛽2pr + 𝛽3q ≈ P ≤ P̄ 𝛽0, 𝛽1, 𝛽2, 𝛽3 ∈ ℝ

Fig. 4   The feasible operating range of a compressor unit in the space (p
�
, pr , q) , computed from the two-

dimensional operating range shown in Fig. 3. While the left picture shows the lifted polytope based on 
the original feasible operating range, the maximum absolute pressure difference, and the end nodes pres-
sure bounds, the right picture also includes the linearized constraint resulting from the power bound, see 
Sect. 3.2
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3.3 � Feasible operating range for a compressor station configuration

As final step, we derive the polytope description for each configuration by combin-
ing the polytopes of the used compressor units. Each configuration is given as a 
serial sequence of parallel compressor machine arrangements. Therefore, we first 
combine the compressor unit polytopes of each parallel arrangement and then cre-
ate the final configuration polytope from these. The set of facets of this configura-
tion polytope ultimately defines the set of half-spaces Hc . The overall procedure was 
introduced by Humpola et  al. (2015), while we exactly followed the steps of the 
variant presented by Walther and Hiller (2017).

4 � Specialized network station algorithm

The MIP model P presented in Sect. 2.11 turns out to be quite challenging accord-
ing to our experiments, despite only considering a part of a larger gas network by 
restricting ourselves to a single network station. For this reason, we create a special-
ized heuristic algorithm to solve the problem. It should be able to efficiently solve 
the problem even on harder instances, i.e., those featuring complex network stations 
and many discrete time steps. Furthermore, we require it to reliably find feasible 
solutions for real-world instances and achieve a solution quality that is close to the 
optimum.

To reach these goals, we design the algorithm based on the before mentioned 
observation that pipes inside a network station are relatively short due to the proxim-
ity of the contained elements. This affects the pipes’ capability to store gas, which is 
often referred to as linepack. The consideration of linepack is the main improvement 
of a transient pipe model over a stationary one. However, for short pipes, linepack is 
insignificant in comparison to the long pipelines outside of network stations, making 
the presented transient optimization problem a “stationary-flavored” one.

This property inspired us to determine the network station’s operation modes and 
flow directions based on the solution of stationary (or steady-state) variants of P solved 
independently for each time step. The above description implies that these values 
should be similar to the ones of the optimal solution of the overall transient problem. 
Furthermore, the temporal decoupling results in a significant complexity reduction of 
the corresponding MIP models. In the algorithm, we ensure that the sequence of opera-
tion modes over time respects the transition time conditions introduced in Sect. 2.8, 
which we explicitly did not include in P.

After determining the operation modes and flow directions, we obtain our final solu-
tion by using another variant of P , which covers multiple time steps. By prescribing 
the values determined in the stationary calculations and solving the model in a rolling 
horizon fashion, we make this variant tractable as well. This procedure is called tran-
sientSmoothing and is the topic of Sect. 4.3. The whole algorithm is summarized 
in Algorithm 1, in which we split the creation of the sequence of operation modes and 
flow directions into the two-step procedure that we will present in Sect. 4.2.
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Note that our algorithm has no guarantee of global optimality. We step-wise deter-
mine the decision variables without considering all potential consequences for the 
subsequent routines, which may lead to sub-optimal solutions. However, the order in 
which these decisions are made matters. Algorithm  1 first determines the operation 
modes and flow directions in the subroutines initialSolutionCreation and 
improvementHeuristic, while taking into account the deviation from the given 
future demands. The objective function weights associated with these decisions are wom 
for changing operation modes, wus for starting new compressor units, as well as w�-p 
and w�-d for not fulfilling the demand requirements. Usually, these weights are the most 
dominant ones, see the used objective function values in our computational experi-
ments stated in Sect. 5.1. The remaining parts of the solution are obtained in the subse-
quent step transientSmoothing. Since here the operation modes and flow direc-
tions are already fixed, the remaining decisions may lead to higher values in the penalty 
variables, like for example those tracking the continuous change in the points of opera-
tion. However, due to the smaller objective weights these variables also have a smaller 
influence on the overall objective value. Hence we can summarize that Algorithm 1 is 
likely to obtain good overall solutions for the given problem, which is confirmed by the 
computational results we present in Sect. 5.

4.1 � Model variants

As mentioned above, we do not solve the transient model P directly, but rather use 
the following variants in our overall solution approach.

4.1.1 � Ps—Stationary model

For the first variant, we solve a stationary version of the model to determine the 
best operation mode and flow direction for one independent time step t. The neces-
sary changes in P mainly affect the pipes. Here, Eq. (13) is no longer part of the 
model. Furthermore, a pipe can no longer store gas, which balances the incoming 
and outgoing pipe flows, i.e., q

�,a,t = qr,a,t = qa,t holds for all pipes (�, r) = a ∈ Api . 
Thus, we can state the stationary version of the Momentum Eq.  (15) for pipe 
(�, r) = a ∈ Api and stationary time step t as

For all other elements, the constraints only consider variables of the same time step. 
Therefore we simply apply these for the time step t of the stationary case. As a final 
step, we adjust the objective function. We keep the slack penalties for each boundary 
node, which are defined based on individual time steps. In addition, we still track the 

pr,t − p
�,t +

�aLa

4DaAa

(
|v

�,a| + |vr,a|
)
qa,t +

gsaLa

2RsTza

(
p
�,t + pr,t

)
= 0.
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change to a new network station operation mode in variable �om
t

 as well as the start 
of new compressor units using �us

u,t
 for all u ∈ Ua a ∈ Acs . This is done by calling the 

model with the parameter prevMode, which represents the operation mode of the 
previous time step, see Algorithm 2. All the other variables that track changes are 
not considered. Therefore, we have the following stationary objective function for 
the time step t:

4.1.2 � P f—Transient with fixed operation modes and flow directions

In this variant, we are given for all future time steps t ∈ T  a f﻿ixed operation mode ot 
and flow direction ft of the network station. This removes the corresponding varia-
bles mom

ot ,t
 and mfd

ft ,t
 from the model by setting them to 1 or 0, depending on whether 

they are chosen or not. Since the modes of valves and compressor stations, as well as 
the configurations of active compressor stations, depend on the selected operation 
mode of the network station, their corresponding variables are eliminated as well. 
Furthermore, all indicator constraints that use the binary variables mentioned above 
in their logical condition are resolved, i.e., we either remove them from the model if 
the condition is not fulfilled or add the implied constraint otherwise. Finally, we no 
longer need to use a disjunctive model for compressor stations. Instead, we apply the 
corresponding constraints  (2)–(12) for the chosen mode and configuration of time 
step t directly to the variables p

�,t , pr,t , and qa,t of each compressor station 
(�, r) = a ∈ Acs.

4.1.3 � Psf—Stationary with fixed operation mode

For this last version of model P , we combine the two variants above and use the 
stationary version of the model for one independent time step t with an already f﻿ixed 
operation mode. Note that in contrast to model Pf , the flow direction of the network 
station is not determined yet, which results in more binary variables and more indi-
cator constraints that are not yet resolved.

min
(
�(t) − �(t − 1)

)
⋅

∑

v∈Vb

w�-p
⋅ (�

p+
v,t + �

p−
v,t ) + w�-d

⋅ (�d+
v,t

+ �d−
v,t
)

+wom
⋅ �om

t
+

∑

u∈Ua,a∈A
cs

wus
⋅ �us

u,t
.
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4.2 � Determining operation modes and flow directions

In this section, we present the procedure that finds a series of operation modes of 
the network station over time by solving the stationary variants of P . We split the 
approach into two steps. First, we create an initial solution by a greedy, forward-
oriented procedure presented in Sect. 4.2.1. It represents the function called ini-
tialSolutionCreation in Algorithm 1. In a second step, we try to improve 
this sequence of operation modes. Here, we replace certain operation modes of 
the sequence by similar ones in order to obtain a better solution. This second step 
is referred to as improvementHeuristic in Algorithm 1 and is described in 
Sect. 4.2.2. For the sake of efficiency, we try to reduce the number of times we need 
to solve model Ps and try to use model Psf instead. In Psf , we prescribe an opera-
tion mode for the network station, which makes the remaining problem very easy 
and extremely fast to solve. In contrast to this, the stationary model Ps considering 
all available operation modes is solved significantly slower, especially when used on 
larger network stations. Therefore, we only use it if necessary.

Besides the operation mode, we return for each time step t a flow direction. The 
returned flow direction for t is the one determined by the stationary model that com-
puted the optimal operation mode for t. For simplicity of notation, we omit the flow 
directions in the returned entities in the remainder of this section.

4.2.1 � Initial solution creation

To find a first feasible sequence of operation modes over time, we follow a rather 
simple idea: We determine an operation mode for time step t by first testing the used 
operation mode of the previous time step t − 1 using Psf . The general stationary 
model Ps to determine the best operation mode for t is only called when the previ-
ously used operation mode is infeasible or yields a costly solution in terms of the 
objective function value. Using this approach, we keep the number of needed opera-
tion mode changes small and speed up the algorithm by reducing the number of 
calls to Ps . A detailed description is given as Algorithm 2.
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In Algorithm 2, we call Ps with the parameter validModes, which replaces the 
set of valid network station operation modes O . Furthermore, we call the functions 
modeAvailable, transitionsWork, and notSoonInfeasible in Algo-
rithm  2. The function modeAvailable deals with the operation mode unavail-
ability introduced in Sect. 2.7, and checks if a given operation mode o is available 
at time t. In transitionsWork a given operation mode sequence is tested for 
validity regarding the transition time restriction presented in Sect. 2.8. Finally, we 
check in notSoonInfeasible, if choosing a new operation mode o for time t 
would result in an infeasibility at one of the subsequent time steps that is caused by 
a combination of operation mode unavailability and too long transition times. More 
specifically, we check if the new operation mode o for time t will become unavail-
able in one of the future time steps. If this is the case, we test if there is enough time 
left to transition into another operation mode until then. This also take into account 
the time needed by the transition from the old operation mode at time t − 1 to this 
new operation mode o at time t.

Note that Algorithm 2 may abort without a feasible solution at line 14. However, 
this is extremely unlikely to happen in real-world instances. A possible cause for 
failing at this line is that the algorithm may, due to a restrictive combination of oper-
ation mode availability and transition times, not find a valid operation mode to add 
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to the set validModes before the call of the model Ps . There are multiple rea-
sons why we do not expect this situation to happen. Firstly, the compressor units are 
rarely unavailable in practice, and even when all units of a compressor station are 
unavailable, the compressor station is still operational in bypass or closed modes. 
Secondly, the restrictions imposed by the transition times are usually rather mild in 
the sense that long transition times only occur for select pairs of operation modes. 
Finally, the function notSoonInfeasible prevents choosing an operation mode 
that may lead to a conflict in upcoming time steps. Hence it is likely that valid-
Modes contains at least one operation mode. A further possible cause for abort-
ing the algorithm occurs when Ps is infeasible for all given operation modes. This 
again is not expected for real-world instances, namely because the demand scenario 
in terms of pressure and flow is adjustable without limitation, even if these adjust-
ments would result in a massive usage of the corresponding slack variables. Hence, 
the model can only be infeasible if all available operation modes have a conflict in 
every possible demand scenario. Therefore, infeasibility is a sign of a structural con-
flict in the network elements’ modes and configurations imposed by the correspond-
ing operation modes of the network station and is not assumed to happen for well-
formed, realistic operation modes. The fact that Algorithm 2 has never aborted in 
one of our real-world test cases presented in Sect. 5.3 supports our argumentation. 
However, since we cannot guarantee feasibility here, we leave the removal of this 
theoretical weakness of Algorithm 2 open for future research.
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4.2.2 � An improvement heuristic

After having found an initial feasible solution, we look for further improvements 
using Algorithm  3. Therefore, we identify all sequences of identical operation 
modes over time in the solution. We call these sequences stable phases, or just 
phases, of a feasible solution. Obviously, the switch from one phase to the subse-
quent one happens when changing the operation mode. For each of these phases, 
we check if its operation mode can be replaced by a similar one that is more ben-
eficial in terms of the objective function value. The general idea is to compare 
different network station operation modes over longer periods of time, which is in 
contrast to the focus on individual time steps implemented in Algorithm 2. Note 
that we only use the fast solving MIP model variant Psf here.

To generate new operation modes to check for improvements, we call the 
function convexCombination, which is the main feature of Algorithm  3. 
To define it, we use the function M(o,  a) that returns the mode or active con-
figuration of a valve or compressor station a prescribed by operation mode o, 
see Sect. 2.7. Furthermore, we denote by U(x) the compressor units used in mode 
or configuration x ∈ {by, cl} ∪ Ca for some compressor station a ∈ Acs , where 
U(by) = U(cl) = � . We first define the function convexCombinationCSa on a 
tuple (x, y) with x, y ∈ {by, cl} ∪ Ca as

Note that convexCombinationCSa(x, y) ⊆ {by, cl} ∪ Ca holds. Now we can 
define convexCombination on a tuple (o1, o2) of operation modes as

For a compressor station a, we permit it to be in a configuration using a compres-
sor unit set “in-between” the used compressor unit set of the configurations used in 
o1 and o2 for a. However, we only allow the exact valve mode combination used in 
o1 or the one used in o2 . This choice is based on the structure of operation modes 
described in Sect.  2.7. While changing the configuration of an active compressor 
station in an existing operation mode usually yields another existing operation mode, 
the set of valid combinations of valve modes is rather limited. Therefore, finding a 
valid valve setting from the combination of valve modes of two operation modes is 
unlikely and hence not included in the algorithm.

Algorithm 3 uses the function transitionsWork, which works in the same 
way as described above for Algorithm 2. Furthermore, it calls allModesAvail-
able, which is similar to modeAvailable from Algorithm 2. Here, we check the 
availability of a whole sequence of operation modes at those times corresponding 

�������������������a(x, y) ∶= {x, y} ∪
{
c ∈ Ca |

(
∀u ∈ U(x)∩U(y) ∶ u ∈ U(c)

)
∧

(
∀u ∈ U(c) ∶ u ∈ U(x) ∪ U(y)

)}
.

�����������������(o1, o2) ∶=
{
o ∈ O |

(
∀a ∈ Ava ∶ M(o, a) =M(o1, a) ∨ ∀a ∈ Ava ∶ M(o, a) = M(o2, a)

)

∧ ∀a ∈ Acs ∶ M(o, a) ∈�������������������a
(
M(o1, a),M(o2, a)

)}
.
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to their positions in the sequence. Furthermore, we evaluate the objective function 
value of a sequence of operation modes using the function obj by successively 
calling Psf for each operation mode and time corresponding to its position in the 
sequence. If one of the models turns out to be infeasible, the returned objective 
function value is infinity.

Finally, we start the algorithm in the backward oriented mode since the initial 
solution is obtained by Algorithm 2, which works in the forward direction. Further-
more, we highlight that Algorithm 3 has the potential to reduce the total number of 
needed operation mode changes since the two original operation modes defining the 
change from one phase to the other are always part of the result of convexCombi-
nation. Since it is not possible to introduce new operation mode changes, we can 
even guarantee the new number of operation mode changes to be less than or equal 
to that in the initial solution.

4.3 � Transient solution smoothing

As a final step of our specialized network station approach presented in Algorithm 1, 
we solve the transient model variant Pf with fixed network station operation modes 
and flow directions. We obtain the operations modes as well as the flow directions 
for each time step from the stationary model solutions created in the previous steps 
of the algorithm.

In our computational experiments, we observed that, even though most of the 
binary decision variables of P are fixed in Pf , only a limited number of time 
steps can be solved for large network stations. Therefore, we use a rolling horizon 
approach to solve Pf , which we describe in Algorithm  4. The idea is to solve a 
series of smaller Pf models with a fixed time horizon size h representing the 
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number of time steps for which we solve, which include the time step for the given 
initial state. After each iteration, we save the solution regarding the earliest time step 
for the final result and shift the time horizon by 1 to prepare for the next call of Pf . 
In the function call to solve Pf in Algorithm 4, we pass the operation modes and 
flow directions that correspond to the current time horizon as well as the fixed initial 
state.

The main benefit of this method is that increasing the size |T0 ∶= {0,… , k}| 
of the overall time horizon only increases the number of equally sized MIP mod-
els to solve, which hence have similar complexity. Therefore, the increase of 
|T0 ∶= {0,… , k}| is expected to result in a proportional run time increase. If we 
would have solved Pf over the entire time horizon, increasing the time horizon 
would result in a larger complexity of the model, which may lead to an exponential 
increase in runtime instead.

5 � Computational experiments

When designing Algorithm 1, we wanted it to be competitive in terms of the reli-
ability to find a solution, the quality of that solution, and the overall execution time. 
In order to verify that we indeed achieved these objectives, we evaluated the algo-
rithm on a large number of test instances. These instances represent network stations 
in the network of our project partner Open Grid Europe (OGE), for which we gener-
ated scenario values based on historic real-world situations.

5.1 � Instances

We considered 7 different network stations from the network of OGE with different 
sizes and properties. An overview can be found in Table 1.

For each of these stations, we have a set of 159 instances. To create these 
instances, we solved a macroscopic gas flow model on an aggregated version of 

Table 1   Overview of different properties of the 7 network stations A to G

For station G, the topology changed during the considered time period. Hence, we denoted by G 
min

 the 
minimal values of all the quantities for station G and by G max the corresponding maximum values

Name |V| |A|
∑

a∈Api

L
a

�Api� (km)
|C

a
|∀a ∈ Acs |O| |F| |Vb-ex| |W|

A 14 11 0.001 16 34 3 1 0
B 11 12 0.001 18 23 2 1 0
C 27 34 0.012 2 13 4 2 0
D 25 31 0.404 2, 6 92 6 2 0
E 48 67 0.308 3, 5 82 12 1 4
F 51 66 0.024 2, 3, 6, 12 2836 3 3 0
Gmin 118 148 0.079 1, 1, 2, 7, 20 1267 15 2 0
Gmax 120 150 0.079 1, 1, 2, 7, 20 1285 20 2 0
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the complete network using simplified versions for all the network stations. A full 
description of this model is given by Hoppmann et al. (2019).

Each of the 159 instances corresponds to one point in time, for which we are 
given the actually occurred state of the network of our project partner. These points 
in time are distributed over 3 months and have a time difference of at least 12 hours. 
In addition to one of these states, we have measured pressure and flow values for the 
following 12 hours at the boundary nodes of the entire network. The macroscopic 
gas flow model can then be formulated using the state of the network as initial state 
and the pressure and flow values for the following 12 hours as demand values at the 
boundaries of the network. The solutions of the macroscopic gas flow model for 
each of these instances yield pressure and inflow values at the boundaries of each 
network station. The input data of one instance in the test set of this paper hence 
consists of a) the topology of one of the 7 network stations, b) the initial state values 
for the elements contained in this station for one of the 159 given points in time, and 
c) the pressure and inflow values at the network station’s boundaries for the follow-
ing 12 hours taken from the corresponding macroscopic gas flow model solution.

For the macroscopic gas flow model, the time horizon of 12 hours consists of 4 
periods of 15 minutes followed by 11 periods of 60 minutes, resulting in 15 future 
time steps in total. For our analysis, we created the following four different partitions 
of the 12 hour time horizon built from left to right:

Our partitioning of the time horizon can have additional or missing time points com-
pared to the 15 time steps used in the macroscopic model. In order to create scenar-
ios values that fit the time horizon, we interpolated using the original values.

To conclude, we used the following set of weights for the objective function for 
all instances for X ∈ {rg, cs}:

The values regarding flow are based on the unit 1000m3∕h for volumetric flow under 
normal conditions. Using the linear transformation [1000m3∕h] =

3600

1000�0
[kg∕s] 

based on the given normal density �0 parameter, we can transform the corresponding 
values into mass flow. The unit of w�-d is deduced by 1

1000m3∕h⋅h
=

1

1000m3
.

To give an impression of the instances’ complexity, we list in Table 2 the size of 
the original model P for each network station and each of the above-defined time 
horizon partitions. The given numbers state the number of continuous variables, 
binary variables, and constraints, each rounded to the nearest hundred. As one can 
see, the values increase proportionally to the number of time steps. Note that we did 
not solve P directly but rather used our Algorithm 1 presented in Sect. 4 to obtain 

12 time steps: 4 × 15min, 5 × 60min, 3 × 120min

24 time steps: 4 × 15min, 18 × 30min, 2 × 60min

48 time steps: 48 × 15min

96 time steps: 96 × 7.5min.

w�-p = 1000.0∕(bar h) w�-d = 100.0∕(1000m3) wom = 1000.0 wus = 1200.0

wrg = 50.0 wX-pl = wX-pr = 10.0∕(bar) wX-q = 1.0∕(1000m3∕h).
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solutions for the problem. This algorithm also takes care of the restrictions regarding 
the operation mode transition times from Sect. 2.8, which were not included in P.

5.2 � Computational setup

We performed our computations on a cluster using 4 cores and 16  GB of RAM 
of a machine composed of two Intel Xeon CPU E5-2670 v2 running at 2.50 GHz. 
As a solver for the underlying MIP problems, we used Gurobi in version 8.1.0, 
see Gurobi Optimization (2018), which we accessed via the Pyomo modeling lan-
guage introduced by Hart et al. (2011, (2017). Since the corresponding MIP models 
were numerically challenging, we used the solver with the maximal NumericFocus 
parameter. Furthermore, we specified the optimality conditions and maximum run 
times for each solved model variant as

Finally, we chose the rolling horizon parameter h to be 4, i.e., we solved the tran-
sient smoothing for 4 future time steps. We found in our experiments that this num-
ber represents a good trade-off between efficient model solving speed and foresight-
edness of the obtained solution.

5.3 � Results

As described in Sect.  5.1 above, we tested Algorithm  1 on 159 start times×

7 network stations × 4 time horizons = 4452 instances. For all of these instances, it 
found a feasible solution. In particular, we always found a feasible solution via the 
initial solution creation in Algorithm 2 described in Sect. 4.2.1, although the algo-
rithm itself does not guarantee this.

In Fig. 5, one can find an overview of the average run times of Algorithm 1 sorted 
by network station and number of solved time steps. As one can see, the ranking 
of the single stations regarding run time as well as the ratio between the single sta-
tions run times is stable over the different time horizon partitions. Furthermore, the 
run time per station corresponds roughly to the complexity deduced from the station 
statistics in the sense that more nodes, arcs, and operation modes make the overall 
problem more complex to solve and therefore increase the run time. The exception 
to this reasoning is station C, which has a rather high average run time, although its 
node and arc counts are comparable to station D. Its number of operation modes is 
even the smallest of all seven stations. We assume that this is due to the station’s 
topology, in which the regulators may be arranged in a way that is hard to solve for 
the final smoothing step of the algorithm. The higher portion of runtime spent in the 
smoothing of station C in comparison to station D is illustrated in Fig. 7. We have 
been unable to prove this assumption so far, however. Regarding model complex-
ity, we did not observe that the existence of a non-empty set W of flow direction 
conditions adds any notable difficulty to solving station E, which is the only station 

Variant Rel. Gap Abs. Gap Time limit

P
s,Psf 1E-4 1E-2 10h

P
f 5E-3 1E-2 60s.
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incorporating these constraints. The last fact we want to highlight here is the almost 
perfectly proportional average run time increase with increasing number of time 
steps. As mentioned in Sect. 4.3, this property was an explicit goal when designing 
the algorithm.

In addition to the average run times, we also depict the distribution of run times 
sorted by station in Fig. 6 for instances solved for 12 time steps. The distribution of 
the other time steps are quite similar in appearance and can be found in the Appen-
dix as Figs. 9, 10, and 11.

For the fast solving stations A, B, and D, the run times of the instances are all 
very similar in that the lines representing the 25th percentile and the 75th percentile 
are extremely close. Station C is again outstanding by having a rather large spread 
of run times only matched by the biggest and most complex station G. However, in 
general the maximum run time is less than an order of magnitude larger than the 
median run time for all of the stations. This means that for our instance set, even the 
extreme cases are still in reach and have a somewhat similar run time to the rest of 
the instances, making Algorithm 1 well suited for strict time limit situations, which 
we would face in a production environment.

As the last graphic related to the run time, Fig. 7 shows the average portion of 
run time spent in each individual subroutine of Algorithm 1 for 12 time steps as well 
as for 96 time steps. It states that the transient smoothing dominates the run time 
already for 12 time steps. This run time domination increases as the number of time 
steps do, while the heuristic’s run time proportion, and therefore impact, decreases. 
This can also be verified through the 24 and 48 time step instances displayed in 
Fig. 12 in the Appendix. The observed time distributions fit the structure of the sin-
gle subroutines from Sect. 4. While in the initial solve, as well as in the smooth-
ing, more instances of the harder model variants Ps and Pf are solved with each 
additional time step, the improvement heuristic iterates over pairs of subsequent 
time steps with different operation modes. Since the differently sized time horizon 

Fig. 5   Average run times for Algorithm 1 sorted by number of time steps and network station
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partitions all cover the same 12 hours, the number of total operation mode changes 
in the result of the initial solve is very unlikely to increase much with an increasing 
time granularity. This is also due to the initial solve algorithm itself, which tries to 
use the same operation mode as long as possible before changing to a different one.

Apart from the run time, we were also interested in the quality of the solution of 
Algorithm 1. Therefore, we solved the complete model P directly on the smaller 
network stations A to E to obtain a valid lower bound. Note that P itself is already a 

Fig. 6   Run times of instances with 12 time steps, sorted by station. One dot represents one instance, 
however, dots may overlap when too many have similar run time. In addition, we draw a typical whisker-
less box plot. Therefore the lines represent the 25th percentile, the median, and the 75th percentile

Fig. 7   Portion of run time spent in the single subroutines of Algorithm 1 displayed for each of the single 
stations. Figure 7a represents the results for 12 time steps, Fig. 7b the results for 96 time steps
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relaxation of the problem solved by Algorithm 1 since the transition time restric-
tions for operation modes introduced in Sect. 2.8 are not included in this model. The 
obtained lower bound can be used to give an upper bound on the relative difference 
of the solution found by Algorithm 1 to the optimal solution. We call this difference 
gap and define it as obj(solution)−lowerBound

obj(solution)
 . Since the lower bound cannot be negative, 

the gap is always smaller than or equal to 100%.
We solved model P on stations A to E for 12 time steps using the same computa-

tional setup as described above with a time limit of 10 hours. Furthermore, we gave the 
solution obtained from Algorithm 1 as a starting solution. The solver finished for all 
159 instances of the stations A and B within the time limit. For the stations C, D, and 
E, we hit the time limit for 47, 8, and 18 instances, respectively, resulting in potentially 
sub-optimal lower bounds in these cases. For the stations F and G, more than half of the 
instances did not finish in time, which is why we did not include these in our evaluation.

The results can be found in Fig. 8, where we plotted the gap for all 5 network 
stations on a logarithmic scale and then plotted the same data for stations C and E 

Fig. 8   Gap between the solution of Algorithm 1 and a lower bound obtained from solving P directly. 
We considered the stations A to E and solved them using 12 time steps. One dot represents one instance, 
however, dots may overlap when too many have similar run time. The instances with potentially subop-
timal lower bounds due to hitting the time limit are marked by triangles instead of dots. In addition, we 
draw a typical whiskerless box plot. Therefore the lines represent the 25th percentile, the median, and the 
75th percentile. The left graphic uses a logarithmic scale for the gap, and the right one displays the same 
data for stations C and E on a linear scale. For all instances in which the objective function value and 
the lower bound are smaller than 0.1, we defined the gap to be zero. Furthermore, we plotted all values 
below 10−3 as 10−3 for the logarithmic scale
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on a linear scale to better depict their distributions. Note that the instances that have 
a potentially suboptimal lower bound are marked with triangles instead of dots. As 
one can observe, we have good results for all of the network stations, with more than 
half of the instances for each station having a solution with at most 10% difference 
to the lower bound. For the best three stations A, B, and D, we can even state that 
at least 75% of the values have less than 1% difference to the optimal solution. The 
picture is more diverse for the other two stations, in which the 75% percentile is 
between 20% and 30% gap. However, for those stations, we have the highest number 
of instances for which P did not solve the problem in time. Therefore, there is the 
potential for further improvement of the gap by increasing the lower bound here. 
Most of the instances with potentially suboptimal lower bounds also have high gap 
values. The picture is extreme for Station C, where all but 3 instances above the 75% 
percentile had suboptimal lower bounds, making it very likely that one can further 
decrease the gap value by increasing the run time limit of P directly.

Altogether, the results show that Algorithm 1 is able to find good solutions reli-
ably and fast. Hence it can solve even large instances of the presented gas transpor-
tation problem, which would be far out of reach when trying to solve the original 
MIP model formulation P directly.

A comparison to experiments done in the existing literature on transient gas net-
work optimization confirms our claim of a competitive algorithm, albeit the fact that 
a detailed evaluation of the different approaches is not possible since every publica-
tion considers a different model. However, we are in general able to solve our tran-
sient gas transportation problem faster than the algorithms presented in the literature 
solve their corresponding problem versions. This is true, even though we consider 
larger instances. All the experiments conducted by Domschke et  al. (2011), Hahn 
et al. (2017), and Burlacu et al. (2019) consider networks of at most 20 nodes and 
arcs. Furthermore, the observed run times and given time limits are often larger than 
those of our algorithm. For the largest instance in Domschke et  al. (2011) solved 
using 4 time steps, their algorithm hits the time limit of 10000 seconds with a gap of 
34%. In Hahn et al. (2017), the time horizon was split into 180 time steps, while in 
only 10 of these time steps discrete control decisions were allowed. There, the solv-
ing times ranged from 2 hours up to the time limit of 50 hours. Finally, the largest 
instance considered in Burlacu et al. (2019) used 48 time steps, and their algorithm 
hits the time limit of 3 hours with a gap of 5.5%. However, as already mentioned 
above, the problems described in these publications differ from the one presented in 
this paper. In general, each of them considers a more accurate, nonlinear pipe model. 
At the same time, they only use simple models for the compressors consisting of sin-
gle compressor units without configurations or interdependent modes. Furthermore, 
we included a series of realistic constraint types, like the choice of flow directions 
together with the corresponding exit pressure constraints and flow direction condi-
tions, or the operation mode transition times. For these, only Burlacu et al. (2019) 
included a similar type of constraint by introducing switching times for valves and 
compressor units.
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6 � Conclusion

We presented the transient gas network transportation problem on network stations, 
which represent the intersection points of major transportation pipelines and con-
tain the majority of active elements to control the network. For this problem, we 
introduced a mixed-integer programming model, including a sophisticated model for 
compressor stations, as well as additional variables and constraints for the network 
station itself. For the pipes, we found that due to their shortness, they have less over-
all impact in network stations, which enabled us to use a linear description for them. 
The MIP model was observed, through the use of state-of-the-art solvers, to be 
intractable for large network stations or a large number of time steps. Therefore, we 
developed a specialized algorithm to solve the problem. Its design is influenced by 
the fact that network stations contain only short pipes and hence a negligible amount 
of linepack. This causes the transient problem to be a “stationary-flavored” one. For 
this reason, our algorithm determines the operation modes and gas flow directions 
of the network station based on solving multiple stationary (or steady-state) vari-
ants of the MIP. By using this approach, we were also able to satisfy the transition 
time restrictions for the operation modes, which we excluded from the original MIP 
formulation. In order to obtain a feasible solution for the problem, we finally solved 
another variant of the MIP with fixed operation modes and flow directions for the 
network station in a rolling horizon fashion.

To verify the competitiveness of our algorithm regarding run time, reliability to 
find a solution, and quality of that solution, we performed tests on 159 different sce-
narios based on past flow situations in 7 real-world network stations provided by our 
project partner. Our algorithm was able to compute feasible solutions for all of the 
presented instances very fast. Even for the largest of the presented network stations 
consisting of more than 100 nodes and arcs as well as over 1000 different network 
station operation modes, our algorithm terminates on average in under 20 minutes 
for each of the stations. By running experiments using 4 different types of granular-
ity, we found that the run time increases proportionally to the number of time steps 
used, indicating that our algorithm scales very well. In terms of quality of the solu-
tion, we tested the results against a lower bound obtained from solving the original 
MIP formulation for 12 time steps on all except the largest two network stations. For 
the worst of the five remaining stations, more than half of the instances had a solu-
tion with at most 10% difference to the lower bound. For the best three stations, we 
found near-optimal solutions with less than 1% difference for more than 75% of the 
instances. Altogether we were able to show that our algorithm can reliably find good 
solutions to the problem in a short amount of time.

There are a lot of different possibilities to continue this research. To increase the 
model accuracy, the approximative linearization of the friction in pipes and resis-
tors, as well as the maximum power bound constraint of compressor units could 
be replaced by their original nonlinear versions. This would turn the model into 
a MINLP and thereby increase its complexity. From a theoretical point of view, 
extending Algorithm  2 such that it has the theoretical guarantee to always find 
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existing feasible solutions would improve its robustness. Finally, we name ramp-
up and cool-down times for compressor units, as well as using target value based 
control of regulators and compressor units, as examples of extensions to our model. 
These are examples of a never-ending list of unique elements and extra constraints 
that shapes the complicated business of real-world gas network operation.
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Table 3   List of all used variables, specifying their domain, meaning and unit. All variables are defined  
for t ∈ T  , not taking into account the given values for the initial state, see Sect.  2.9. Note that 
1 bar = 10

5
Pa

Variable Meaning Unit

pv,t ∈ ℝ
≥0 Pressure at node v ∈ V bar

qa,t ∈ ℝ Flow over arc a ∈ A ⧵Api kg/s

qv,a,t ∈ ℝ Flow into or out of pipe a ∈ Api kg/s

dv,t ∈ ℝ Inflow into boundary node v ∈ Vb kg/s

mcf
c,a,t

 ∈ {0, 1} Selection of configuration c ∈ Ca for a ∈ Acs 1

m
by
a,t ∈ {0, 1} Selection of bypass mode for a ∈ Arg ∪Acs 1

mcl
a,t

 ∈ {0, 1} Selection of closed mode for a ∈ Arg ∪Acs 1
mac

a,t
 ∈ {0, 1} Selection of active mode for a ∈ Arg 1

m
op
a,t ∈ {0, 1} Selection of open/closed mode for a ∈ Ava 1

p
by
a,t ∈ ℝ

≥0
Pressure in bypass mode for a ∈ Acs bar

q
by
a,t ∈ ℝ Flow in bypass mode for a ∈ Acs kg/s

pl-cl
a,t

 ∈ ℝ
≥0

Incoming pressure in closed mode for a ∈ Acs bar

pr-cl
a,t

 ∈ ℝ
≥0

Outgoing pressure in closed mode for a ∈ Acs bar

pl-cf
c,a,t

 ∈ ℝ
≥0

Incoming pressure in configuration c ∈ Ca of a ∈ Acs bar

pr-cf
c,a,t

 ∈ ℝ
≥0

Outgoing pressure in configuration c ∈ Ca of a ∈ Acs bar

qcf
c,a,t

 ∈ ℝ Flow in configuration c ∈ Ca of a ∈ Acs kg/s
mom

o,t
 ∈ {0, 1} Selection of mode o ∈ O 1

mfd
f ,t

 ∈ {0, 1} Selection of flow direction f ∈ F 1

�
p+
v,t  ∈ ℝ

≥0 Positive pressure slack for boundary node v ∈ Vb bar

�
p−
v,t  ∈ ℝ

≥0 Negative pressure slack for boundary node v ∈ Vb bar

�d+
v,t

 ∈ ℝ
≥0 Positive flow slack for boundary node v ∈ Vb kg/s

�d−
v,t

 ∈ ℝ
≥0 Negative flow slack for boundary node v ∈ Vb kg/s

�om
t

 ∈ {0, 1} Operation mode change 1
�
rg
a,t ∈ {0, 1} Mode change for regulator a ∈ Arg 1
�us
u,t

 ∈ {0, 1} Start of compressor unit u ∈ Ua for a ∈ Acs 1

�
rg-pl
a,t  ∈ ℝ

≥0
Change of incoming pressure of active a ∈ Arg bar

�
rg-pr
a,t  ∈ ℝ

≥0
Change of outgoing pressure of active a ∈ Arg bar

�
rg-q
a,t  ∈ ℝ

≥0
Change of flow over of active a ∈ Arg kg/s

�
cs-pl
a,t  ∈ ℝ

≥0
Change of incoming pressure of active a ∈ Acs bar

�
cs-pr
a,t  ∈ ℝ

≥0
Change of outgoing pressure of active a ∈ Acs bar

�
cs-q
a,t  ∈ ℝ

≥0
Change of flow over of active a ∈ Acs kg/s
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Fig. 9   Run times of instances with 24 time steps, sorted by station. One dot represents one instance, 
however, dots may overlap when too many have similar run time. In addition, we draw a typical whisker-
less box plot. Therefore the lines represent the 25th percentile, the median, and the 75th percentile

Fig. 10   Run times of instances with 48 time steps, sorted by station. One dot represents one instance, 
however, dots may overlap when too many have similar run time. In addition, we draw a typical whisker-
less box plot. Therefore the lines represent the 25th percentile, the median, and the 75th percentile



	 F. Hennings et al.

1 3

References

Balas E (1985) Disjunctive programming and a hierarchy of relaxations for discrete optimization prob-
lems. SIAM J Algeb Discrete Methods 6(3):466–486. https​://doi.org/10.1137/06060​47

Balas E (2018) The convex hull of a disjunctive set. Disjunctive programming. Springer, Cham, pp 17–39
Bonami P, Lodi A, Tramontani A, Wiese S (2015) On mathematical programming with indicator con-

straints. Math Prog 151(1):191–223. https​://doi.org/10.1007/s1010​7-015-0891-4
Brouwer J, Gasser I, Herty M (2011) Gas pipeline models revisited: model hierarchies, nonisother-

mal models, and simulations of networks. Multisc Model Simul 9(2):601–623. https​://doi.
org/10.1137/10081​3580

Fig. 11   Run times of instances with 96 time steps, sorted by station. One dot represents one instance, 
however, dots may overlap when too many have similar run time. In addition, we draw a typical whisker-
less box plot. Therefore the lines represent the 25th percentile, the median, and the 75th percentile

Fig. 12   Portion of run time spent in the single subroutines of Algorithm 1 displayed for each of the sin-
gle stations. Figure 12a represents the results for 24 time steps, Fig. 12b the results for 48 time steps

https://doi.org/10.1137/0606047
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1137/100813580
https://doi.org/10.1137/100813580


1 3

Controlling transient gas flow in real‑world pipeline…

Burlacu R, Egger H, Groß M, Martin A, Pfetsch M, Schewe L, Sirvent M, Skutella M (2019) Maximizing 
the storage capacity of gas networks: a global MINLP approach. Optim Eng 20(2):543–573. https​://
doi.org/10.1007/s1108​1-018-9414-5

Domschke P, Geißler B, Kolb O, Lang J, Martin A, Morsi A (2011) Combination of nonlinear and linear 
optimization of transient gas networks. INFORMS J Comput 23(4):605–617

Domschke P, Hiller B, Lang J, Tischendorf C (2017) Modellierung von Gasnetzwerken: Eine Übersicht
Ehrhardt K, Steinbach MC (2003) Nonlinear optimization in gas networks. Technical Report 03-46, ZIB, 

Takustr. 7, 14195 Berlin
Federal Ministry for Economic Affairs and Energy (2019) Still indispensable for a reliable energy supply. 

https​://www.bmwi.de/Redak​tion/EN/Dossi​er/conve​ntion​al-energ​y-sourc​es.html. Accessed 31 Oct 
2019

Fügenschuh A, Geißler B, Gollmer R, Morsi A, Pfetsch ME, Rövekamp J, Schmidt M, Spreckelsen K, 
Steinbach MC (2015) Physical and technical fundamentals of gas networks. In: Koch et al. (2015)

Gugat M, Leugering G, Martin A, Schmidt M, Sirvent M, Wintergerst D (2018) MIP-based instantaneous 
control of mixed-integer PDE-constrained gas transport problems. Comput Optim Appl 70(1):267–
294. https​://doi.org/10.1007/s1058​9-017-9970-1

Gurobi Optimization L (2018) Gurobi optimizer reference manual, version 8.1.0. http://www.gurob​i.com
Hahn M, Leyffer S, Zavala VM (2017) Mixed-integer PDE-constrained optimal control of gas networks. 

Preprint
Hart WE, Watson JP, Woodruff DL (2011) Pyomo: modeling and solving mathematical programs in 

Python. Math Prog Comput 3(3):219–260
Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, Siirola JD (2017) Pyomo-

optimization modeling in python, vol 67, 2nd edn. Springer, Berlin
Hennings F (2018) Benefits and limitations of simplified transient gas flow formulations. In: Operations 

research proceedings 2017. Springer, pp 231–237
Hoppmann K, Hennings F, Lenz R, Koch T (2019) Optimal operation of transient gas transport networks. 

Technical Report 19-23, ZIB, Takustr. 7, 14195 Berlin
Humpola J, Fügenschuh A, Hiller B, Koch T, Lehmann T, Lenz R, Schwarz R, Schweiger J (2015) The 

specialized MINLP approach. In: Koch et al. (2015)
Koch T, Hiller B, Pfetsch ME, Schewe L (eds) (2015) Evaluating gas network capacities, MOS-SIAM 

series on optimization, vol 21. SIAM
Kolb O, Lang J, Bales P (2010) An implicit box scheme for subsonic compressible flow with dissipative 

source term. Numeri Algorith 53(2–3):293–307
Mahlke D, Martin A, Moritz S (2007) A simulated annealing algorithm for transient optimization in gas 

networks. Math Methods Oper Res 66(1):99–115. https​://doi.org/10.1007/s0018​6-006-0142-9
Mak TW, Van Hentenryck P, Zlotnik A, Hijazi H, Bent R (2016) Efficient dynamic compressor optimiza-

tion in natural gas transmission systems. In: American control conference (ACC), 2016, IEEE, pp 
7484–7491. https​://doi.org/10.1109/ACC.2016.75268​55

Moritz S (2007) A mixed integer approach for the transient case of gas network optimization. PhD thesis, 
Technische Universität Darmstadt, Darmstadt

Nikuradse J (1950) Laws of flow in rough pipes. National Advisory Committee for Aeronautics 
Washington

Odom FM, Muster GL (2009) Tutorial on modeling of gas turbine driven centrifugal compressors. In: 
PSIG-09A4, Pipeline Simulation Interest Group

Osiadacz AJ (1996) Different transient flow models-limitations, advantages, and disadvantages. In: PSIG-
9606, Pipeline Simulation Interest Group

Papay (1968) A termeléstechnológiai paraméterek változása a gáztelepek muvelése során. OGIL Musz 
Tud Kozl

Pfetsch ME, Fügenschuh A, Geißler B, Geißler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann 
T, Martin A, Morsi A, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, 
Stangl C, Steinbach MC, Vigerske S, Willert BM (2014) Validation of nominations in gas network 
optimization: models, methods, and solutions. Optim Methods Softw. https​://doi.org/10.1080/10556​
788.2014.88842​6

Ríos-Mercado RZ, Borraz-Sánchez C (2015) Optimization problems in natural gas transportation sys-
tems: a state-of-the-art review. Appl Energy 147:536–555

Saleh JM (2002) Fluid flow handbook. McGraw-Hill, London
Walther T, Hiller B (2017) Modelling compressor stations in gas networks. Technical Report 17-67, ZIB, 

Takustr. 7, 14195 Berlin

https://doi.org/10.1007/s11081-018-9414-5
https://doi.org/10.1007/s11081-018-9414-5
https://www.bmwi.de/Redaktion/EN/Dossier/conventional-energy-sources.html
https://doi.org/10.1007/s10589-017-9970-1
http://www.gurobi.com
https://doi.org/10.1007/s00186-006-0142-9
https://doi.org/10.1109/ACC.2016.7526855
https://doi.org/10.1080/10556788.2014.888426
https://doi.org/10.1080/10556788.2014.888426


	 F. Hennings et al.

1 3

Zlotnik A, Chertkov M, Backhaus S (2015) Optimal control of transient flow in natural gas networks. In: 
54th IEEE conference on decision and control (CDC), IEEE, pp 4563–4570. https​://doi.org/10.1109/
CDC.2015.74029​32

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Affiliations

Felix Hennings1,2   · Lovis Anderson1   · Kai Hoppmann‑Baum1,2   · 
Mark Turner1,2   · Thorsten Koch2,1 

	 Lovis Anderson 
	 anderson@zib.de

	 Kai Hoppmann‑Baum 
	 hoppmann‑baum@zib.de

	 Mark Turner 
	 turner@zib.de

	 Thorsten Koch 
	 koch@zib.de

1	 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
2	 Chair of Software and Algorithms for Discrete Optimization, Institute of Mathematics, 

Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

https://doi.org/10.1109/CDC.2015.7402932
https://doi.org/10.1109/CDC.2015.7402932
http://orcid.org/0000-0001-6742-1983
http://orcid.org/0000-0002-4316-1862
http://orcid.org/0000-0001-9184-8215
http://orcid.org/0000-0001-7270-1496
http://orcid.org/0000-0002-1967-0077

	Controlling transient gas flow in real-world pipeline intersection areas
	Abstract
	1 Introduction
	2 Mathematical model
	2.1 Compressor stations
	2.1.1 Structure of a compressor station
	2.1.2 Compressor station model

	2.2 Pipes
	2.3 Resistors
	2.4 Valves
	2.5 Regulators
	2.6 Nodes
	2.7 Network station
	2.7.1 Network station structure
	2.7.2 Operation modes model
	2.7.3 Operation mode unavailability
	2.7.4 Flow directions model
	2.7.5 Flow direction exit pressures
	2.7.6 Flow direction conditions

	2.8 Operation mode transition times
	2.9 Scenario and initial state
	2.10 Objective
	2.11 Final model

	3 Feasible operating range of compressor station configurations
	3.1 Feasible operating range for a single compressor unit
	3.2 Power bound linearization
	3.3 Feasible operating range for a compressor station configuration

	4 Specialized network station algorithm
	4.1 Model variants
	4.1.1 —Stationary model
	4.1.2 —Transient with fixed operation modes and flow directions
	4.1.3 —Stationary with fixed operation mode

	4.2 Determining operation modes and flow directions
	4.2.1 Initial solution creation
	4.2.2 An improvement heuristic

	4.3 Transient solution smoothing

	5 Computational experiments
	5.1 Instances
	5.2 Computational setup
	5.3 Results

	6 Conclusion
	Acknowledgements 
	References




