
1

Modeling Spatial and Temporal Data in an
Object-Oriented Constraint Database Framework

vorgelegt von
Diplom-Informatikerin

Annalisa Di Deo

von der Fakultät IV-Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktorin der Ingenieurwissenschaften
- Dr.-Ing -

genehmigte Dissertation

Promotionsausschu”s:

Vorsitzender: Prof. Dr. K.Obermayer
Berichter: Prof. Dr. S.Jähnichen
Berichter: Prof. Dr. F.Turini

Tag der wissenschaftlichen Aussprache: 17. December 2001

Berlin 2002
D 83

2

Abstract

Constraints provide a flexible and uniform way to represent diverse data captur-
ing spatio-temporal behavior, complex modeling requirements, partial and incom-
plete information etc, and have been used in a wide variety of application domains.
Constraint databases have recently emerged to deeply integrate data captured by
constraints in databases.

This thesis is aimed at defining a constraint data model, able to represent spatial
and temporal information and, to exploit existing spatial and temporal tools, like
the one of Oracle8, preserving the declarativeness of the first-order languages.

In detail, we present an object-oriented model to represent constraint databases.
Constraints are basic data types (classes) of the model, defined by exploiting alge-
braic structures as monoids and semirings. Instances of the constraint classes are
linear constraints, spatial and temporal predicates. The focal point of our work
is achieving the right balance between expressiveness and complexity, making the
model as general as possible and suitable to exploit features of existing tools.

We investigate the usefulness of our framework for two possible applications.
The first application consists of two parts, showing how the framework models two
different representations of spatial data. In the first part, we employ our framework
on top of Spatial Cartridge of Oracle8. In the second part, we describe a mapping on
linear constraints. The second application shows how the model is able to represent
temporal and spatio-temporal information. Firstly, temporal data are represented as
time intervals. Secondly, we extend the schema of our model, in order to represent
and manage spatio-temporal objects, whose spatial part is represented by Oracle
spatial objects. In this way we extend the features of the Spatial Cartridge, which
so far handles exclusively with spatial data.

To my big uncle Nunziato

Acknowledgments

I would like to thank all the persons, who helped me during these years. First of
all, I am very grateful to my advisors Stefan Jähnichen, Fosca Giannotti and Luca
Simoncini for supporting me with their high competence.

Many thanks to Prof. Ulrich Geske, who has always stimulated my work and,
to Dmitri Boulanger, with whom I have shared very useful discussions, he has been
a good friend of mine and together we have had the key idea, that has brought to
the accomplishment of this work. Then I express my gratitude to all my colleagues
and friends at the GMD. A particular mention goes to my roommate Kathleen
Steinhöfel, with whom I have shared many days and beautiful moments.

A very important experience has been to participate at the DeduGIS Working
Group. I thank the members of this group, and in particular Alessandra Raffaeta’,
who has contributed to the development of this thesis and has reviewed it, giving
me useful suggestions.

I would like to thank all my friends in Berlin and in particular my “sweet”
roommate Judith Wahrheit, the “crazy” Silvia Schmehlik, the “indefatigable” Carlos
Garaycochea, the “nostalgic” Ivan De Pablo and my berliner best friend Michael
Fuhs. Without them my experience in Berlin would not have been so pleasant and
exciting, as it has been.

Finally, I want to express my gratitude to my family, who has always helped me
in the difficult moments. The most important thank goes to my boyfriend Pasquale,
who with his love and support has made everything easier and surmountable.

Contents

1 Introduction 1
1.1 Main Contributions of the thesis . 3
1.2 Plan of the thesis . 5

2 Overview on Constraint Databases 7
2.1 Theoretical background . 8

2.1.1 First-order logic and models 8
2.1.2 Constraints . 13

2.2 Constraint databases . 14
2.2.1 The constraint database model 15
2.2.2 Modeling with constraints relations 17

2.3 Formalisms to query constraint databases 19
2.3.1 Constraint queries . 19
2.3.2 Constraint query languages 20
2.3.3 Constraint algebras . 22

2.4 Constraints in the object-oriented framework 26
2.4.1 Object-oriented constraint databases 28

3 Spatial and Temporal Data Models 31
3.1 Temporal data models and algebras 31

3.1.1 Temporal algebras . 32
3.1.2 Temporal databases . 35
3.1.3 Time in object-oriented models 37
3.1.4 Time in constraint databases 39

3.2 Spatial models and formalisms . 40
3.2.1 Spatial data models . 40
3.2.2 Formalisms for spatial reasoning 48
3.2.3 Space in constraint databases 49

3.3 Spatio-temporal data models . 52

4 How to build Constraint Objects 57
4.1 Constraints families . 57

4.1.1 Atomic formulas . 58

ii CONTENTS

4.1.2 Structure of the logical formulas 59
4.1.3 An Algebraic structure for FCO(Ω) 61

4.2 The data model . 67
4.2.1 Constraint types . 67
4.2.2 Constraint objects and algebra 71
4.2.3 Monoids and semirings as abstract data types 73

4.3 Constraint calculus . 75
4.3.1 The monoid/semiring comprehension calculus 76
4.3.2 Queries on monoids and semirings 77
4.3.3 Syntax and semantics of queries 79

4.4 Constraint classes . 80
4.4.1 The classes Monoid and Semiring 80

4.5 Considerations . 83

5 Modeling Spatial Information 85
5.1 Mapping constraints to OracleSpatial 85

5.1.1 Spatial constraints . 86
5.1.2 Extension of the data model with OracleSp types 94
5.1.3 Example . 97

5.2 Mapping flat constraints to linear constraints 101
5.2.1 Extending the data model with the LinearConstraint class . . 102
5.2.2 Examples . 103

6 Modeling Temporal Information 107
6.1 Mapping flat constraints to Allen’ s predicates 107

6.1.1 The temporal domain . 107
6.1.2 Temporal constraints . 111
6.1.3 Temporal classes . 115
6.1.4 Example . 116

6.2 Modeling spatio-temporal information 118

7 Conclusions 127

Bibliography 129

List of Figures

2.1 Database with rectangles . 14
2.2 Schema of the Generalized Relational Model of [KKR90] 15
2.3 Figure in the real plane represented by the formula ϕr 17
2.4 Figure in the real plane represented by the linear constraint formula ϕs . . 18
2.5 Consistency of a constraint query . 20
2.6 Evaluation of Constraint Queries . 22
2.7 Navigating an object data structure with OQL 27

3.1 Ahn and Snodgrass Classification . 38
3.2 A generalized temporal relation . 39
3.3 A temporal table and the global constraint G 40
3.4 Raster model. 42
3.5 Some spatial objects. 42
3.6 Geometric primitive types . 46
3.7 Other geometric types supported by Spatial 46
3.8 Example Geometry Obj 1 . 47
3.9 Topological relations between two 2-dimensional objects 49
3.10 Representation of a polygon with a hole 52
3.11 A spatio-temporal object . 53
3.12 ST-complex . 54
3.13 Parametric 2-spaghetti model. 55

4.1 Families of CO objects . 60
4.2 Families of CO objects with operations 62
4.3 Linear constraint . 66
4.4 The object ”House” . 67
4.5 The schema of the classes . 82

5.1 A database of polygons . 85
5.2 The new object C8 = C3 touchC4 touchC6 86
5.3 Representation of multiobjects . 87
5.4 Interpretation of the atomic constraint touch(p1, p2) 89
5.5 Interpretation of the atomic constraint overlap(p1, p2) 89
5.6 Interpretation of the constraint disjoint(x1, x2) ∧ touch(x2, x3) 93

iv LIST OF FIGURES

5.7 Simplified schema of the constraint classes 96
5.8 Complete schema of the spatial constraint model 96
5.9 Map of subway and city-train lines . 98
5.10 Extension of the schema with the LinearConstraint class 102
5.11 An instance of a desk with drawer in the room 103
5.12 A schema for the desk’s example . 104
5.13 Distance between two rectangles . 106

6.1 Representation of a linestring object in OracleSpatial 108
6.2 Representation of multinterval objects 109
6.3 John’s usual places during a day . 110
6.4 overlap and during of multi-intervals 113
6.5 Schema of the temporal classes . 116
6.6 A possible trajectory of a car. 119
6.7 Trajectory of a car represented in OracleSpatial 120
6.8 The operator ()T | . 121
6.9 Extension of the schema to model trajectories 121

Chapter 1

Introduction

With the increasing complexity of applications that store and manage spatial and
temporal data, database research community is facing new challenges to efficiently
represent and query such data, preserving the declarative and user-friendly features
of the query languages [EJS98, Par95a, TCG+93].

The amount of spatial information is growing very rapidly. To satisfy the need of
applications, different systems have been developed for various subareas related to
multidimensional data. Among them, geographic information systems (GIS) consti-
tute a large field of interest [Wor95, EH95]. Basic issues concern the representation
of geometric information at different levels of abstraction, the description of spa-
tial relationships and data types, the definition of user-friendly query languages,
and other topics. Most systems devoted to the manipulation of geographic data
are based on an architecture coupled with a relational DBMS, but dedicated to
geographic information with special purpose tools for manipulating spatial data.
This is the case of the most prominent systems for geographic information, namely
ARC/INFO [Mor89]. Although these systems have been widely used for more than
a decade, it is clear that the lack of integration between spatial data processing and
standard data management is rather not desirable. There has been a large number
of proposals in the literature for integrating spatial features with other traditional
thematic alphanumeric features of geographic objects in a single framework [Güt94].
The first and most recent example of commercial spatial database is to assign to Or-
acle, which has developed a spatial cartridge offering predefined spatial data types
and operators; in particular, Egenhofer topologic relationships ([EF91, Ege91]) have
been implemented on top of a relational and an object-relational data model [Ora].
However, because of the complexity of spatial data and the variety of GIS ap-
plications, there has not been a common agreement on a satisfactory model for
representing spatial data. Among various limitations there is no high level query
facility.

On the other side, Temporal Database Management Systems (TDBMS) came
into existence based on extensions to the relational, entity-relationship or object-
oriented paradigms. This is due to the increased demand for functionality to handle

2 CHAPTER 1. INTRODUCTION

both static and dynamic time related information in databases. Traditional systems
retain only the latest state of the modeled system (or the state at a specific point of
time), presenting an up-to-date, but static view of the environment. Proposals for
temporal data models are reviewed in [Sno92, TCG+93]. Basic issues concern the
representation of time, the selection of appropriate temporal granularity, the level at
which temporality should be introduced, support for temporal reasoning, and other
topics. Allen’ s temporal algebra hold parallels with spatial topological and order
related relationships, and can serve as framework for adding temporal operators to
the database. Most of these concerns have been addressed; the creation of TSQL2
[Sno95b] points to a steady progress toward establishing a TDBMS standard.

However, recently the problem of dealing with correlated spatial and tempo-
ral data has become an important topic to which a large effort has been devoted
[AR99, BJS99], due to the need of many applications in which space and time are
closely interconnected: much information which refers to space refers to time as well.
Spatiotemporal systems would provide benefits in areas such as environmental mon-
itoring, administration, real-time navigational systems, transportation scheduling,
cadastral systems etc.

Traditional databases are not able to handle these complex data at a high level
of abstraction. And, in most cases [GS95], the models consist in extending relational
DBMSs with abstract data types encapsulating structures and operations. Due to
the extensive range of applications which handle spatial and temporal data, there
has not been so far a convergence towards a commonly accepted data model with
well-defined data types and operations.

In this context, we place our project, whose aim is the definition of a data
model, that provides data types and operations to handle spatial, temporal and spatio-
temporal information in a uniform way.

To achieve our purposes, we choose the constraint database as framework. The
recent field of constraint databases, initiated at the beginning of the decade [KKR90,
KKR95], has lead to sound data models and query languages for multi-dimensional
data [GK96, GRS98b, PdBG94]. The big challenge of constraint databases is to
introduce constraints as basic data type in databases. The main principles are
based on a simple and fundamental duality: a constraint can be seen as a relation,
or, vice versa, that a relation can be interpreted as a simple form of constraint.
This enables us to manipulate relations of the underlying DMBS in a symbolic way
enjoying expressive power of first-order logic, i.e. the syntax consists of constraints,
i.e. symbolic expressions; the semantics are the corresponding relations.

The use of constraints offers many advantages. At the data level, constraints
are able to represent possibly infinite sets in a finite way. In particular, they are
shown to be a powerful mechanism for modeling spatial and temporal concepts
[BBC97a, CR97, Kou94, PdBG94]. For instance, the constraint 0 ≤ x ≤ 3 ∧ 0 ≤
y ≤ 3 represents the square area with corners (0, 0), (0, 3), (3, 0) and (3, 3) and

1.1. MAIN CONTRIBUTIONS OF THE THESIS 3

1993 ≤ t ≤ 1997 represents the time interval between 1993 and 1997. From this
data modeling perspective, constraints are used as a unifying data type for the
conceptual representation of different sorts of multi-dimensional data; by varying
the constraint theory, one can accommodate a variety of different data models.

The research trend on this field has focused on definition of constraints as first-
class object of object-oriented models. In fact, the existing prototypes, implementing
spatio-temporal constraint databases, namely [GRS98b, BSCE97], define constraints
as C++ classes. Both rely on linear constraints, first appeared in [GST94, GRSS97].
They allow to manipulate relations of arbitrary dimension between points in a sym-
bolic manner. In spite of their expressiveness, the existing constraint databases are
not always efficient enough for real problems where the size and the complexity of
data are high. In particular, spatial data might be so complex, e.g. non-convex ge-
ometries with multiple holes, that constraint database models cannot handle them
efficiently and need to refer to optimized structures of the objects and operations
possibly implemented in an underlying DBMS.

It is on the analysis of features and drawbacks of these prototypes, that we
base the general principles of our project. In this context, the general objective is
the design of a constraint data model for representing spatial, temporal and spatio-
temporal information which fulfills the following requirements:

• In terms of constraint domains and operators, a careful balance between ex-
pressiveness and complexity must be achieved.

• The language and the model should be object-oriented, since many object-
oriented features are important for the target applications.

• The model should be extensible with respect to (constraints and other) data
types, operators and predicates.

• The model should interact with different data models.

• The model should allow an easy interaction with underlying existing commer-
cial tools in order to exploit their optimization features.

• Provided the previous principles are met, the language should be high-level
and easy to use.

1.1 Main Contributions of the thesis

The main achievement of the thesis is the definition of a constraint data model,
able to represent spatial and temporal information and, to exploit existing spatial
and temporal tools, like the one of Oracle8, preserving the declarativeness of the
first-order languages.

4 CHAPTER 1. INTRODUCTION

The design of the model is based on two principles. Firstly, constraints must
be treated as first-class objects, whose methods are typical logical operations, such
as conjunction, disjunction and existential quantification. Secondly, an underlying
object-based representation of data must be wrapped as constraints.

For this purpose, we define a formal background for a component-based pro-
gramming tool, which enables to build constraints as instances of basic data types
in object-relational/oriented DBMSs.

The general framework is an extended monoid comprehension model [FM95],
in which constraint objects serve as special type. The data model of extended
monoid comprehension is based on the notion of the algebraic structures monoids
and semirings [BL97, HJA71], that can be used as conceptual data types, capturing
uniformly aggregations and collections, and other types on which one can iterate.
This approach offers the ability to treat constraints as collections. Constraints are
defined as elements of a domain; the usual operations of conjunction and disjunction
are operationally formalized as binary operations on and to elements of the domain.

The ability to treat disjunctive and conjunctive constraints uniformly as collec-
tions is a very important feature of our framework: it allows to implement many
constraint operations through nested monoid comprehensions, i.e. in the same lan-
guage as hosting queries. For example, the satisfiability test of a disjunction of
conjunctions of constraints is expressed as a monoid comprehension query that it-
erates over the disjuncts (each being a conjunction), and tests the satisfiability of
every conjunction.

The data model is adapted from flat constraints [GSG94], i.e. atomic formulas
of first-order logic defined on a vocabulary of just predicates and constants. New
constraint objects are constructed using logical connectives, existential quantifiers
and variable renaming, within a multi-typed constraint algebra.

Flat constraints possess great modeling power and as such can serve as a uniform
data type for conceptual representation of heterogeneous data, including spatial and
temporal behavior. Because of their indefiniteness, flat constraints can be mapped
either to linear constraints or to sets of spatial and temporal objects. To the best
of our knowledge, this is the first constraint data model, whose constraints express
relations between objects, whose implementation and representation is hidden.

To highlight the usefulness of the framework we investigate two possible applications.

The first application consists of two parts, showing how the framework models
two different representations of spatial data.

In the first part, we employ our framework on top of Spatial Cartridge of Ora-
cle8 [Ora]. The Spatial Cartridge implements efficiently Egenhofer’ s spatial rela-
tionships ([EF91, Ege91]) on objects of high complexity, e.g. polygons with multiple
holes, arcs, composed polygons etc.; these relationships can be wrapped as flat con-
straints. By means of this “wrapping step”, Spatial Cartridge is provided with a
high-level layer, i.e. first-order based language, to express relations between objects.

1.2. PLAN OF THE THESIS 5

This provides a more friendly interface for spatial analysis. In fact, a problem of
Oracle8 is that querying requires the knowledge of composition of the spatial objects
and of filtering mechanisms; this is not that simple. With a higher-level querying
facility, the user will not front these problems, nevertheless he can exploit their
advantages.

In the second part, we show how the model works when flat constraints are
mapped to linear constraints. Linear constraints have been shown to fit the need
of spatial data in the vector model; the vector model is a way to represent spatial
data in the database, and it is used in most of applications. The fundamental dif-
ference between linear constraint data model and vector model relies on the explicit
definition of the spatial objects in the data model (e.g. a polygon is explicitly the
infinite set of points it contains versus the implicit definition by the sequence of
border points). It is possible to manipulate spatial objects through standard set
operations. Furthermore, efficient algorithms have been developed, that implement
operations on linear constraints, e.g. simplex algorithm to implement conjunction
of linear constraints.

The second application shows how the model is able to represent temporal
and spatio-temporal information. Firstly, temporal data are represented as Ora-
cle objects (intervals) and temporal relationships are Allen’ s temporal relation-
ships [All83, All84]. Secondly, we extend the schema of our model, in order to
represent and manage spatio-temporal objects, whose spatial part is represented by
Oracle spatial objects. In this way we extend the features of the Spatial Cartridge,
which so far handles exclusively with spatial data.

1.2 Plan of the thesis

Chapter 2 gives first some theoretical backgrounds on first-order logic and model
theory which we largely use in the thesis, then it presents the intuition on which
constraint database is based, its data model and it describes some approaches in
literature; above all C3, the approach of Brodsky et al. [BSCE97], on which our
framework is based.

Chapter 3 briefly recalls the basic concepts of modeling temporal and spatial
data, focusing particularly on those using constraints, and it describes some ap-
proaches in literature for handling temporal, spatial and spatio-temporal informa-
tion.

Chapter 4 presents our general framework. The resulting model is obtained
extending and applying the C3 model to flat generic constraints. It defines flat con-
straints and the corresponding data types, the flat constraint monoid comprehension
and the schema of classes, with relative operations.

Chapter 5 describes the first application. It shows how the model can represent
Oracle spatial data and linear constraints as flat constraints, defining the respective

6 CHAPTER 1. INTRODUCTION

vocabulary and interpretation structure and presenting some query examples.
Chapter 6 describes the second application. It shows first how we can model

temporal information using our framework. Furthermore, it gives an extension of
the schema to model spatiotemporal information. At the end, it presents some query
examples.

Finally, Chapter 7 contains some concluding remarks and future work.

Chapter 2

Overview on Constraint Databases

In this chapter we introduce the constraint database (CDB) framework.
The basic idea in constraint databases is the introduction of constraint formulas

as a basic data type in databases. The notion of constraint data relies on a simple
and fundamental duality: a constraint (formula) ϕ in free variables x1, . . . , xn is
interpreted as a set of tuples (a1, . . . , an) over the schema x1, . . . , xn that satisfy ϕ;
and conversely, a finitely representable object in n-dimensional space can be viewed
as a constraint. That is, the syntax is constraint, i.e. symbolic expressions; the
semantics are the corresponding, possibly infinite, relations.

Constraints are usually represented with a sub-family of first-order logic and a
family of atomic constraint, such as real polynomial, linear, or dense order con-
straints. In general constraints possess great modeling power and as such can serve
as uniform data type for conceptual representation of heterogeneous data, including
spatial and temporal behavior, complex design requirements and partial incomplete
information.

Querying constraint databases is made by means of constraint query languages,
i.e. database query language augmented by constraints. They are declarative and
very expressive. The evaluation of queries can be optimized, defining a procedural
language layer between the constraint query languages and low-level access methods.
This intermediate language is the so-called constraint algebra. Corresponding to dif-
ferent classes of constraints, several algebras were developed, defining the operation
on constraints, such as intersection, union, containment etc.

The first constraint database proposals are based on the relational model, but
since the last five years several prototypes extend the object-oriented model and
represent constraints as data types. The resulting prototypes combine the features
of object-oriented databases with those of constraint databases. This combination
opens to the possibility of using Java and efficient tools for the implementation of
constraint databases, that makes them competitive in the commercial world.

The chapter is organized as follows: Section 2.1 introduces some theoretical back-
grounds on first-order logic and on constraints, and fixes the notation used in the
whole thesis; Section 2.2 describes the data model of CDBs and presents some exam-

8 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

ples of modeling with constraints; Section 2.3 defines queries on CDB and presents
some well-known constraint query languages and algebras; finally, Section 2.4 de-
scribes the existing prototypes, that extend the object-oriented model.

2.1 Theoretical background

In this section we recall some basic definitions, which introduce first-order languages
and their interpretation by means of models. Furtherly we introduce the notion of
quantifier elimination, explaining its fundamental role in logical theories. These
notions are necessary to understand the basic theory on which constraint database
model lies. Most of the definitions has been taken from [dBar] and [CK90b].

2.1.1 First-order logic and models

We set up the first-order logic with identity, specifying a list of symbols and then
giving precise rules by which sentences can be built up from the symbols.
A language is a sequence of symbols, defined by a vocabulary.

Definition 2.1 (Vocabulary) A vocabulary, or signature Ω consists of three sets:
a set F of function symbols, a set P of predicate symbols, and a set C of constant
symbols, together with an arity function that associates a natural number to each
element of F and P .

For instance, Ω = (+, ·, 0, 1, <) is a vocabulary with two function symbols of
arity two (+, ·), one predicate symbol of arity two <, and two constant symbols (0
and 1).
We denote function symbols with f1, . . . , fn and g1, . . . , gn, predicate symbols with
p1, . . . , pm and q1, . . . , qm and constant symbols with c1, . . . , ck.
To formalize a language Ω, we need the following logical symbols:

variables v1, . . . , vn, . . .,

connectives ∧, ¬,

quantifiers ∀,

one binary relation symbol ≡ (identity).

We assume, of course, that no symbol in Ω occurs in the above list. We can now
define the fundamental elements of the first-order language, namely, terms, denoted
with t1, . . . , tn, atomic formulas and formulas, denoted with ϕ1, . . . , ϕn, ψ1, . . . , ψm.

Definition 2.2 (First-order logic over Ω) Terms are defined inductively as ei-
ther a variable, or a constant from C, or f(t1, . . . , tn), where f ∈ F is of arity n, and

2.1. THEORETICAL BACKGROUND 9

t1, . . . , tn are terms.

An atomic formula is a formula of the form t ≡ t′ or p(t1, . . . , tn), where t, t′, t1, . . . , tn
are terms, and p ∈ P is an n-ary predicate.

Formulas are either an atomic formula, or if ϕ and ψ are formulas, then (ϕ ∧ ψ)
and (¬ϕ) are formulas. If v is a variable and ϕ is a formula, then ∀vϕ is a formula.
A sequence of symbols is a formula only if it can be shown to be a formula by a
finite number of applications of the rules above. 2

Further symbols are used to compose formulas in first-order logic, making them
more readable. The symbols ∨, →, ↔ and ∃ are abbreviations defined as follows:

(ϕ ∨ ψ) for (¬((¬ϕ) ∧ (¬ψ))),

(ϕ→ ψ) for ((¬ϕ) ∨ ψ),

(ϕ↔ ψ) for ((ϕ→ ψ) ∧ (ψ → ϕ)),

∃vϕ for ¬∀v(¬ϕ).

Formulas might contain free variables, i.e. variables that do not occur in the scope
of any quantifier. A sentence is a formula without free variables.
After setting up the language, we need a model to specify the truth values of the
formulas. The truth definition is the bridge connecting the formal language with its
interpretation by means of models. If the truth value “true” goes with the sentence
ϕ and a modelM, we say that ϕ is true inM and also thatM is a model of ϕ.
A model for the language Ω consists, first of all, of a universe A, i.e. a non empty-set,
where

an n-ary predicate symbols p corresponds to an n-relation r ⊆ An,

an m-ary function symbol f corresponds to an m-ary function g : Am → A,

a constant symbol c corresponds to a constant a ∈ A.

The correspondence is given by an interpretation function J mapping symbols
of Ω to relations, functions and constants in A. To define them formally, we need an
algebraic structure providing a domain and a set of operations on and to the domain.

Definition 2.3 (Model for Ω or Ω-structure). Given a non-empty set D and a
signature Ω, a modelM for Ω (or an Ω-structure) is defined assigning to each f ∈ F
of arity n a function fM : Dn → D, to each p ∈ P of arity n an n-ary predicate on
D, that is, a set PM ⊆ Dn, and to each c ∈ C an element cM ∈ D. D is called the

10 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

domain1 of the structure.

When it will not cause confusion, we will use the two words Ω − structure and
model for Ω interchangeably. We introduce some conventions as regards the func-
tions and constants. When

Ω = {p0, . . . , pn, f0, . . . , fm, c0, . . . , cq}

we write the models for Ω in displayed form as

M = {A, r0, . . . , rn, g0, . . . , gm, a0, . . . , aq}

For example, a model for Ω = (+, ·, 0, 1, <) is M = {R, +R, ·R, <R}, where R
is the set of real numbers, and +R, ·R, <R the usual addition, multiplication, and
the ordering on R, and by interpreting 0R and 1R as 0, 1 ∈ R.
Note that we always omit the superscript, since the interpretation of the signature
symbols is typically understood from the context.

Before introducing the notions of satisfaction of formulas, we give an important
convention of notation. We use t(v0, . . . , vn) to denote a term t whose variables form
a subset of {v0, . . . , vn}. Similarly, we use ϕ(v0, . . . , vn) to denote a formula ϕ whose
free variables form a subset of {v0, . . . , vn}.

The notion of satisfaction is related to the possibility to answer to the question:
“Given a formula ϕ(v0, . . . , vp) and a sequence a0, . . . , ap of elements of the universe
A, is ϕ true inM if the variables v0, . . . , vp are taken to be a0, . . . , ap?”

This is making examining every sub-formula ψ(v0, . . . , vp) of ϕ and all elements
a0, . . . , ap. It was proven in [CK90b] that the answer depends only on the elements
a0, . . . , aq, q ≤ p corresponding to free variables of ϕ. We can now give the formal
definition.

Definition 2.4 (a0, . . . , aq satisfies ϕ inM)[CK90b]. LetM be a fixed model for
Ω.
The value of a term t(v0, . . . , vq) at a0, . . . , aq, denoted by t[a0, . . . , aq], is defined as
follows:

i. If t = vi, then t[a0, . . . , aq] = ai.

ii. If t is a constant symbol c, then t[a0, . . . , aq] is the interpretation of c inM.

iii. If t = f(t1, . . . , tm), where f is an m-ary function symbol, then

t[a0, . . . , aq] = g(t1[a0, . . . , aq] . . . tm[a0, . . . , aq]),

where g is the interpretation of f inM.

1In the literature can be found other terms: universe, carrier, etc.

2.1. THEORETICAL BACKGROUND 11

The statement a0, . . . , aq satisfies ϕ inM, denoted byM |= ϕ[a0, . . . , aq] is defined
as follows:

i. If ϕ(v0, . . . , vq) is the atomic formula t1 ≡ t2, where t1(v0, . . . , vq) and t2(v0, . . . , vq)
are terms, then

M |= (t1 ≡ t2)[a0, . . . , aq] if and only if t1[a0, . . . , aq] = t2[a0, . . . , aq].

ii. If ϕ(v0, . . . , vq) is the atomic formula p(t1, . . . , tn), where p is n-placed relation
symbol and t1(v0, . . . , vq), . . . , tn(v0, . . . , vq) are terms, then

M |= p(t1, . . . , tn)[a0, . . . , aq] if and only if r(t1[a0, . . . , aq], . . . , tn[a0, . . . , aq]),

where r is the interpretation of p inM.

The third and last case is that ϕ(v0, . . . , vq) is a formula of the language Ω.

i. If ϕ is θ1 ∧ θ2, then M |= ϕ[a0, . . . , aq] if and only if both M |= θ[a0, . . . , aq]
andM |= θ[a0, . . . , aq].

ii. If ϕ is ¬θ, thenM |= ϕ[a0, . . . , aq] if and only if notM |= θ[a0, . . . , aq].

iii. If ϕ is ∀viψ, where i ≤ q, then M |= ϕ[a0, . . . , aq] if and only if for every
a ∈ A,M |= ψ[a1, . . . , ai−1aai+1 . . . aq].

iv. If ϕ is ∃viψ, where i ≤ q, then M |= ϕ[a0, . . . , aq] if and only if there exists
a ∈ A such thatM |= ψ[a1, . . . , ai−1aai+1 . . . aq].

2

Logical Theory

In this paragraph we give some notions about logical theories. A theory is simply
defined as a set of sentences. We denote theories with Σ, Γ, etc. New sentences can
be deduced from a theory as logical consequences. Given a theory Σ, we say that
M is a model for Σ iffM is a model for each σ in Σ. A sentence that holds in every
model for Ω is called valid. A sentence ϕ is a consequence of Σ, in symbols Σ |= ϕ,
iff every model of Σ is also a model of ϕ.

Theories can be closed iff they are closed under the |= relation, and they are
complete iff they contains all their consequences. In constraint databases only de-
cidable logical theories are considered.

Definition 2.5 (Decidable logical theory) A language with an interpretation struc-
ture forms a decidable logical theory if there exists an algorithm which determines
for each sentence whether the sentence is a consequence of the theory.

12 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

We will see in the next paragraph that quantifier elimination is a crucial property
of decidable theories.

A theory Γ can be described by a set of axioms, i.e. a set of sentences with the
same consequences as Γ. The next example shows well known closed theories.

Example 2.1 Let Ω consist of the single two-place relation symbol ≤. The theory of
partial order has three axioms:

1. (∀xyz)(x ≤ y ∧ y ≤ z → x ≤ z),

2. (∀xy)(x ≤ y ∧ y ≤ x→ x ≡ y),

3. (∀x)(x ≤ x).

They are respectively the transitive, antisymmetric, and reflexive properties of partial
orders. Any model 〈A,≤〉 of this theory consists of a non-empty set A and a partial order
relation ≤. If we add the comparability axiom

4. (∀xy)(x ≤ y ∨ y ≤ x)

we obtain the theory of linear order. Adding two more axioms

5. (∀xy)(x ≤ y ∧ x 6≡ y → (∃z)(x ≤ z ∧ z 6≡ x ∧ z ≤ y ∧ z 6≡ y)),

6. (∃xy)(x 6≡ y).

we have the theory of dense order. The rationals with the usual ≤ is an example of a
model of this theory. 2

Quantifier Elimination

Quantifier elimination can be defined as a property of very special theories. Be-
fore describing it, we need some more notation. In the previous paragraph we have
introduced the notion of a sentence ϕ being a logical consequence of a set Σ of
sentences. What’s happen if ϕ is a formula? A formula ϕ(v0, . . . , vn) is a conse-
quence of Σ, symbolically Σ |= ϕ, iff for every model M of Σ and every sequence
a0, . . . , an ∈ A, a0, . . . , an satisfies ϕ. It follows that a formula ϕ(v0, . . . , vn) is a
consequence of Σ if and only if the sentence (∀v0, . . . , vn)ϕ(v0, . . . , vn) is a conse-
quence of Σ. Two formulas ϕ, ψ are Σ− equivalent iff Σ |= ϕ↔ ψ.

Definition 2.6 A theory Γ is said to admit quantifier elimination if for every sen-
tence ϕ of Γ there exists a quantifier-free formula ψ over Ω such that

Γ |= (ϕ↔ ψ)

If such a ψ can be effectively computed, given ϕ, we say that the quantifier elimi-
nation is effective. 2

2.1. THEORETICAL BACKGROUND 13

Only in the context of theories admitting quantifier elimination that we will be
able, in principle, to implement constraint database systems with first-order logic
query languages. Popular theories, that satisfy this property, include the real field
and its restrictions that exclude multiplication, or include only order. That the
real field admits quantifier elimination was essentially provided by Tarski’ s famous
decision method for the theory of the reals. A well known illustration of quantifier
elimination over the reals is provided by high-school mathematics, the formula

∃x(ax
2 + bx+ c = 0)

is equivalent to the quantifier-free formula

b2 − 4ac ≥ 0.

2.1.2 Constraints

Before introducing the framework of constraint databases, we need to define con-
straints formally.

Definition 2.7 (Constraints) Let Ω be a vocabulary. A constraint over Ω is an
atomic first-order formula over Ω, or the negation of an atomic formula.

The representational power of constraints is characterized by their extension de-
fined in the following definition.

Definition 2.8 (Extension of constraints) Given a vocabulary Ω and a struc-
ture H = (D, Ω), a set X ⊆ Dn is called the extension of the Ω-constraint ϕ if it
can be obtained as a finite boolean combination of sets of the form

{(a1, . . . , an) ∈ Dn |H |= ϕ(a1, . . . , an)}

Given H = (D, Ω) and H′ = (D, Ω′), we said that Ω- and Ω′-constraints are equiv-
alent over D if they have exactly the same extensions. 2

The following are class of constraints that we will often use in the rest of the
chapter:

• Polynomial inequality constraints are constraints over Ω = (+, ·, 0, 1, <). Such
constraints correspond to conditions of the form p > 0 or p ≤ 0, where p is a
polynomial with integer coefficients. These constraints are usually interpreted
over the structures R=(R,Ω), Q=(Q,Ω), Z=(Z,Ω), and the like.

• Linear constraints are constraints over Ω = (+, <, 0, 1). Such constraints
correspond to conditions of the form p > 0 and p ≤ 0, where p is a linear

14 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

function a1x1 + · · · + ajxj + a0 with integer coefficients. These constraints
are usually interpreted over the structures Rlin = (R,Ω), Qlin = (Q,Ω),
Zlin = (Z,Ω), and the like.

• Dense order constraints over rationals are constraints over Ω = (<, (c)c∈Q),
interpreted over the structure (Q,Ω), that is rational numbers with order
and constants for every c ∈ Q. Such constraints are conditions of the form
x < y, x ≥ y, x < c or x ≥ c, where x and y are variables and c is a constant.
Similarly, one can define dense order constraints over the reals, or for the
matter, over any set on which a dense order is available.

• Equality constraints over an arbitrary infinite domain U are constraints over
the signature ((c)c∈U). Such constraints are conditions of the form x = y, x 6=
y, x = c, x 6= c, where x and y are variables, and c is a constant.

2.2 Constraint databases

The fundamental idea, on which the design principles of constraint databases are
based, is that a conjunction of constraints is the correct generalization of a ground
fact [KKR90]. Tuples and relations of relational models can be mapped to quantifier-
free first-order formulas. This enables us to manipulate information in a symbolic
way. Let’s show it with the following example.

Example 2.2 We suppose to have a database consisting of a set of rectangles in the
plane, as shown in Figure 2.1.

(a1,b1) (c1,b1)

(a1,d1) (c1,d1)

(a2,b2) (c2,b2)

(c2,d2)(a2,d2)

one

two

Figure 2.1: Database with rectangles

In the classical relational model, one possibility is to store the data in a 5-ary relation
named R. This relation will contain tuples of the form (n, a, b, c, d), where n is the name
of the rectangle with corners at (a, b), (a, d), (c, b) and (c, d).
In a constraint database model, the set of rectangles can be modeled by a ternary relation
R(z, x, y), that can be interpreted to mean that (x, y) is a point in the rectangle with

2.2. CONSTRAINT DATABASES 15

name z. The rectangle that was stored above by (n, a, b, c, d), would now be stored as the
generalized tuple (z = n) ∧ (a ≤ x ≤ c) ∧ (b ≤ y ≤ d). 2

In the pioneer work of Kanellakis, Kuper and Revesz, [KKR90], a first constraint
database model was designed extending the relational model. Tuples and relations of
the relational model were “re-defined” as conjunctions and disjunctions of quantifier-
free first-order formulas, respectively. The new model, called generalized relational
model, see a schema in Figure 2.2, introduces constraints as “first-data type” in data
models.

�
�

�
�ϕ1 ∧ · · · ∧ ϕn��

��
��
�� �

�
�

�
�

�

x1 x2 · · · · · · xk

d11 d12 · · · · · · x1k

ψ1 ∨ · · · ∨ ψm��
��

��
��

6 6

x1 x2 · · · · · · xk

�
�

�
�dm1 dm2 · · · · · · xmk

-

- d11 d12 · · · · · · x1k

d21 d22 · · · · · · x2k

�
�

�
�...

...

Figure 2.2: Schema of the Generalized Relational Model of [KKR90]

After the proposal of Kanellakis et al., a lot of constraint data models, which
extend the object-oriented model, have been proposed. We present some of them in
detail in Section 2.4.

2.2.1 The constraint database model

We are now ready to define formally a constraint database model. The definition is
taken from [KKR90, KKR95].

Definition 2.9 (Constraint database model) Fix a vocabulary Ω.

i. A constraint k-tuple, in variables x1, . . . , xk, over Ω, is a finite conjunction
ϕ1 ∧ · · · ∧ϕN , where each ϕi, for 1 ≤ i ≤ N , is an Ω-constraint. The variables
in each ϕi are all among x1, . . . , xk.

16 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

ii. A constraint relation of arity k, over Ω, is a finite set r = {ψ1, . . . , ψM},
where each ψi, for 1 ≤ i ≤ M , is a constraint k-tuple in the same vari-
ables x1, . . . , xk. The corresponding formula is quantifier-free and it is the
disjunction ψ1 ∨ · · · ∨ ψM .

iii. A constraint database is a finite collections of constraint relations.

2

In the database theory, a k-ary relation r is assumed to be a finite set of k-tuples,
or points in a k-dimensional space, but normal relations are not able to represent
infinite sets of points. The constraint relations of Definition 2.9 provide a finite
representation of possibly infinite sets of points in a k-dimensional space.

The possibly infinite sets of points in a k-dimensional space constitute the in-
terpretation of constraint relations. We denote them as extended relations. This
concept is better exposed by the following definition.

Definition 2.10 (Interpretation of Constraint Relations) Let Ω be a vocab-
ulary, and H = (D,Ω) an Ω-structure. Let r be a constraint relation of arity k over
Ω, and let ϕr(x1, . . . , xk) be the formula corresponding to r. Then r represents all
points (a1, . . . , ak) such that ϕr(a1, . . . , ak) is true in H. That is, it represents the set

{(a1, . . . , ak) ∈ D
k |H |= ϕr(a1, . . . , ak)}

2. 2

Observe that interpretations of constraint relations over H are precisely the set,
we called extensions of Ω-constraints defined in Definition 2.8.

A very important concept of CDB, that concerns their representational power,
is the definability with constraints, [dBar].

Definition 2.11 (Definability with constraints). Given a vocabulary Ω and a
structureM = 〈U ,Ω〉, a set X ⊆ Un is called definable onM with Ω-constraints if
it can be obtained as a finite Boolean combination of sets of the form

{(a1, . . . , an) ∈ Un|M |= ϕ(a1, . . . , an)},

where ϕ is an Ω-constraint. 2

In database theory, a k-ary relation r is assumed to be a finite set of k-tuples (or
points in a k-dimensional space). We shall use the term unrestricted relation for
arbitrary finite or infinite sets of points in a k-dimensional space. One can develop
query languages using such unrestricted relations; however, in order to be able to

2The set of the definition is also called extended relation. An extended database is defined as
union of extended relations.

2.2. CONSTRAINT DATABASES 17

do something useful with them, we need a finite representation that can be manip-
ulated. This is exactly what the constraint tuples provide.

Definition 2.12 (Definable databases). Any finite collection of unrestricted
relations is called an unrestricted database. An unrestricted database is called
definable if all its relations are definable in the sense of Definition 2.11. A con-
straint database D represents a definable database D′ if D consists precisely of one
representation for each unrestricted relation in D′.

2.2.2 Modeling with constraints relations

We have seen in Section 2.1.2, that varying the vocabulary Ω, and the interpretation
structure H, it is possible to define different classes of constraints. We will show
now, how the constraint relations, corresponding to those classes of constraints, are
naturally suitable to model different data sets.

Polynomial Inequality Constraints

Let the constraint relation r consists of the two constraint tuples

(2y ≥ 1) ∧ (−3x+ 4y ≤ 8) ∧ (3x+ 4y ≤ 8) and (x2 + y2 = 1) ∧ (2y ≤ 1)

The corresponding DNF formula is:

ϕr(x, y) = ((2y ≥ 1)∧(−3x+4y ≤ 8)∧(3x+4y ≤ 8))∨((x2 +y2 = 1)∧(2y ≤ 1))

The formula ϕr describes the infinite set of points in 2-dimensional space shown in
Figure 2.3: namely the triangle formed by the intersection of the three half planes
described by the first constraint tuples, and the part of circle resulting from the
intersection between x2 + y2 = 1 and the half-plane 2y ≤ 1.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

Figure 2.3: Figure in the real plane represented by the formula ϕr

18 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

Linear Constraints

We now illustrate the framework using linear constraints. Let the constraint relation
s consist of the two constraint tuples

(y = 2x ∧ ¬(x = y)) and (1 ≤ x+ y).

Corresponding to s is the DNF formula

ϕs(x, y) = (y = 2x ∧ ¬(x = y)) ∨ (1 ≤ x+ y).

ϕs describes an infinite set of points in 2-dimensional space: namely the half plane
x+ y ≤ 1 and the line y = 2x without the point x = y = 0, see Figure 2.4.

Figure 2.4: Figure in the real plane represented by the linear constraint formula ϕs

Equality constraints

Let’ s consider a relation q, that consists of the tuples (1, 2) and (3, 4). These tuples
are equivalent to the constraint 2-tuples x = 1∧y = 2 and x = 3∧y = 4. Therefore,
q corresponds to the formula ϕq ≡ (x = 1 ∧ y = 2) ∨ (x = 3 ∧ y = 4).
In general, every finite k-ary relation r on a set D with n tuples ai

1, . . . , a
i
k, i =

1, . . . , n, can be represented as a constraint relation using just equality constraints.
The corresponding formula is

ϕr =
∨n

i=1((x1 = ai
1) ∧ · · · ∧ (xk = ai

k)).

Dense Order Constraints over Rationals

We consider the constraint relation p consisting of two constraint tuples

x = 1 and 2 ≤ x ∧ x ≤ y ∧ y ≤ 6

2.3. FORMALISMS TO QUERY CONSTRAINT DATABASES 19

The corresponding formula is

ϕp = (x = 1) ∨ (2 ≤ x ∧ x ≤ y ∧ y ≤ 6)

In 1-dimensional space ϕp represents the point 5 and the infinite set of subinter-
vals of the interval (2, 6).

2.3 Formalisms to query constraint databases

In this section, we formally define queries on constraint databases, obtained com-
bining constraints with the fundamental notion of database query and we introduce
firstly the relational calculus (augmented with constraints) as a basic constraint
query languages and, secondly the family of constraint algebras proposed in the
literature.

2.3.1 Constraint queries

Recall Definition 2.9 and Definition 2.10. A constraint database is defined as a finite
collection of constraint relations. It is useful to give these relations a name, when
querying them. Therefore, we define a database schema as a finite non-empty set
SC of relation names, each of which has a given arity. A constraint database with
schema SC then becomes a mapping, associating to each relation name R ∈ SC a
constraint relation of the arity given for R. An extended database with schema SC
is defined analogously.

We discuss now the definition of a query on constraint databases. A query on
a relational database can be considered as a mapping, associating to each database
an answer relation. In the constraint setting, it is more complicated. Conceptu-
ally, constraint databases are symbolic representations of extended databases. So
we can think of a query in two ways: on the conceptual level, as a mapping on
extended databases (extended queries); or on the representation level, as a mapping
on constraint databases (constraint queries). A query on the representation level is
consistent only if it corresponds to a query on the conceptual level, as in the diagram
in Figure 2.5:

Consistency lets to avoid that a constraint query maps two different constraint
representations of a same extended database to constraint relations representing dif-
ferent extended relations. Note that the extended query represented by a consistent
constraint query is uniquely defined.

Another important property of constraint queries is the closure property, i.e.
the output of a constraint query applied to any constraint relation must be also a
constraint relation.

Example 2.3 illustrates the above definitions in the concrete contest of polynomial
inequality constraints over the real field R (recall Section 2.2.2).

20 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

D
constraint
database Q(D)

D0 Q0 (D)0

extended query Q 0

output constraint
relation

output extended
relation

representsrepresents

extended
database

query Q
constraint

Figure 2.5: Consistency of a constraint query

Example 2.3 Fix SC to consist of a single relation name T of arity 3. So the extended
database consists of a set of tuples in R3, which can be obtained as a finite union of
extended representation sets of polynomial inequality constraints.

Define the following 2-ary constraint query Q: given a constraint database D with
D(T) = {ψ1, . . . , ψM}, consider the formula

χ := ∃x3
(ψ1 ∨ · · · ∨ ψM).

Since R admits effective quantifier elimination, we can compute from χ a quantifier-free
formula ϕ, in the variables x1 and x2, equivalent to χ over R. We then transform χ into
disjunctive normal form:

χ ≡ γ1 ∨ · · · ∨ γl.

Then define Q(D) := {γ1 ∨ · · · ∨ γl}.
This constraint query is consistent; it represents the 2-ary extended query mapping

each semi-algebraic set in R3 to its projection on the x1x2-plane. 2

Finally we give an example of a constraint query that is not consistent.

Example 2.4 Consider a query that maps each constraint database D to the singleton
set consisting of that constraint tuple in D(T) that has the largest sum of all constants
appearing in it. Consider the constraint databasesD1 andD2 withD1(T) = {0 < x1∧x1 <

3, 1 < x1 ∧ x1 < 4} and D2(T) = {0 < x1 ∧ x1 < 3, 2 < x1 ∧ x1 < 4}. Both represent
exactly the same extended relation, namely the interval (0, 4). However, on D1 the output
of the query is {1 < x1∧x1 < 4}, while on D2 it is {2 < x1∧x1 < 4}. These two singleton
constraint relations represent different extended relations. Hence, this constraint query
cannot possibly represent some extended query, as the latter, being a mapping, cannot
have two different results on the same input. 2

2.3.2 Constraint query languages

The relational calculus (first-order logic), with a given class of constraints, consti-
tutes a very basic constraint language, which we next introduce. The extension with

2.3. FORMALISMS TO QUERY CONSTRAINT DATABASES 21

constraints was first made by Kanellakis et al. in [KKR90, KKR95] for developing
a constraint query language.

Let’ s fix some database schema SC and a vocabulary Ω. A relational calculus
formula over Ω is a first-order logic formula over the extended vocabulary (Ω, SC),
obtained extending Ω with the predicate symbols belonging to the schema SC. We
denote with FO(Ω, SC) this set of formulas.

Example 2.5 shows some well-known classes of formulas, obtained extending the
calculus with linear constraints and polynomial inequality constraints, respectively.
Recall from Section 2.2.2 the vocabularies of linear constraint and polynomial in-
equality constraints be (+, <, 0, 1) and (+, ·, 0, 1, <), respectively.

Example 2.5 Let R denote a relation name of arity 2, the following is a formula of
relational calculus + linear constraints, e.g. over Ω = (+, <, 0, 1)

R(x1, x2) ∨ ∃y(R(x1, y) ∧R(y, x2) ∧ (x1 + x2 < y) ∧ (x2 − y < 0)):

and the following is a formula of relational calculus + polynomial linear constraints, e.g.
over Ω = (+, ·, 0, 1, <):

R(x1, x2) ∨ ∃y(R(x1, y) ∧R(y, x2) ∧ (x1 · x2 < y) ∧ (x2 − y
3 < 0)). 2

These are pure syntactical examples; the semantics of relational calculus formulas
is defined next.

Given an Ω-structure M, relational calculus formulas over Ω express total (i.e.
everywhere defined) extended queries overM in the obvious manner:

Definition 2.13 (Interpretation of FO(Ω, CS) formulas) Fix an Ω-structure
M = (U ,Ω). A FO(Ω, SC) formula ϕ(x1, . . . , xk) expresses the k-ary extended
query Q overM defined as follows. Given an unrestricted database D with schema
SC over M, we can expand M to a structure 〈M, D〉 = 〈U ,Ω, D〉 over the ex-
panded vocabulary (Ω, SC) by adding the interpretation D(T), for each relation
name T ∈ SC in D, toM. Then

Q(D) := {(a1, . . . , ak) ∈ U
k| 〈M, D〉 |= ϕ(a1, . . . , ak)}. 2

The semantics of a relational constraint query is depicted in Figure 2.6.
In Figure 2.6, φ = ϕ(x1, . . . , xm) is a constraint query with free variables x1, . . . , xm.

Let predicate symbols R1, . . . , Rn in φ be the name of the input constraint relations
and let r1, . . . , rn be the corresponding constraint relations. Let φ[r1/R1, . . . , rn/Rn]
be the formula of the logical theory obtained by replacing in φ each database atom
Ri(z1, . . . , zk) by the DNF formula for input generalized relation r4, with its variables
appropriately renamed to z1, . . . , zk. Let D be the domain, then the constraint query
φ applied to the constraint database containing the constraint relations r1, . . . , rn

is a formula of the logical theory of constraints used, i.e., φ[r1/R1, . . . , rn/Rn]. The

22 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

r ,..., r1 n

ri DNF formulae of D

Input Constraint DB
D()

(R1 ,..., R n : x1 ,..., xm)φ
Constraint Query

Constraint in

(r / R1)R/r,...,1 n nφ
Φ:

,..., a(a1 m ,..., a(a1 m{ φ):) is true }

Quantifier Elimination

Closure Condition

Constraint in Φ

Figure 2.6: Evaluation of Constraint Queries

output is the possibly infinite set of points in m-dimensional space Dm, that satisfy
the formula. This brings to the following fundamental theorem ([dBar]):

Proposition 2.14 M admits effective quantifier elimination if, and only if, every
relational calculus formula ϕ expresses a consistent, effectively computable, total
constraint query, that represents the extended query expressed by ϕ.

The proof of the proposition can be found in [dBar].

Example 2.6 We illustrate the above proposition using relational calculus + polynomial
inequality constraint formulas over R. Assume that the schema consists of one binary rela-
tion name R, and consider the simple formula ϕ(y) ≡ ∃xR(x, y). Let D be the constraint
database in which D(R) equals the singleton {y = x2}. To evaluate ϕ on D, we replace
the occurrence of R in ϕ by its defining formula to get

χ(y) ≡ ∃x(y = x2).

This formula is equivalent, in R, to the quantifier-free formula

ϕ(y) ≡ y = 0 ∨ y > 0,

which is already in disjunctive normal form. Hence, we can define the result of the con-
straint query Qϕ defined by ϕ applied to D as Qϕ(D) := {y = 0, y > 0}.

Note that this example would fail if we would omit the < predicate, i.e., if we work
in the constraint structure 〈R,+, ·, 0, 1〉. In this context the extended query expressed by
ϕ would not be closed. The motivation is that the structure 〈R,+, ·, 0, 1〉 does not admit
quantifier elimination either. 2

2.3.3 Constraint algebras

Just like relational algebras, constraint algebras are used for program optimization.

2.3. FORMALISMS TO QUERY CONSTRAINT DATABASES 23

Two families of algebras were defined for manipulating constraint relations. First,
algebras that correspond exactly to the traditional relational algebra, and whose
semantics is defined with respect to the effect of the usual algebraic operators on
infinite relations [GST94, PdBG94]. Second, algebras that apply on special encoding
for relations and constraint tuples [KG94]. Furthermore, we distinguish a third group
of proposals, aiming to design algebras modeling complex objects [BBC98, GRS98a].

Before introducing the two families, we recall some useful definitions from [dBar].
A set X consisting of tuples of domain elements is definable (with constraints) if it
can be obtained as a finite union of extensional representation sets of constraints.

Definition 2.15 (Real Semi-Algebraic and Semi-Linear Sets) A set X con-
sisting of tuples of domain elements is called semi-algebraic if it is definable with
polynomial inequality constraints over the reals. X is called semi-linear if it is de-
finable with linear constraints over the reals.

Thus, the constraint relations definable with polynomial inequality constraints
over the reals are precisely the semi-algebraic sets, and the constraint relations
definable with linear constraints over the reals are precisely the semi-linear sets.

Relational Algebra for Constraint Relations

The algebras, which belong to this family, differ from each other on the constraint
theory, on which they are defined. Algebras have been defined to manipulate dense
order constraints [GK96], polynomial constraints [PdBG94] and, linear constraints
[GST94]. The last two ones have been strongly exploited in spatial databases.
Both are classical relational algebras with the standard operators on relations, the
difference is that in this case the operators are defined on constraint tuples. We
present in the following the algebra for polynomial constraints, and we postpone a
description of the linear algebra in Section 3.2.2.

Algebra for Real Polynomial Inequality Constraints [PdBG94] The under-
lying constraint data model consists of:

• A database scheme that is a finite set of relation names. Each relation name
R has a type τ(R), which is a pair of natural numbers [n,m].

• An intensional tuple (or i-tuple) of type [n,m] is a tuple (a1, · · · , an;φ) with
a1, · · · , an ∈ U, which has been assumed to be a countably infinite domain of
atomic values, and φ is a quantifier-free real formula of arity m.

• An instance I of a scheme S is a mapping on S, assigning to each relation name
R of S a finite set of i-tuples of type τ(R), that is called i-relation.
Intensional tuples and relations are finite representations of possibly infinite
subsets of Un× Rm which are called extensional relations or e-relations.

24 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

• For an i-tuple t = (a1, · · · , an;φ), let S be the semi-algebraic set defined by φ.
t represents the e-relation {(a1, · · · , an)}×S, denoted by ext(t). An i-relation
r represents the e-relation ext(r) :=

⋃

t∈r ext(t).

In the model, a relation type of the form [n, 0] is called flat. Flat relations are
the standard value-based relations of classical relation databases, in which there is
no difference between intensional and extensional level.

On the other hand, relation types of the form [0,m] are called purely spatial and
are exactly those considered in [KKR90].

The operators of the algebra have been defined. Given an i-tuple t = (a1, · · · , an;φ),
let val(t) denote the value part (a1, · · · , an) and spat(t) the spatial part φ; r, r1 and
r2 be i-relations of type [n,m]:

• The union r1 ∪ r2 is the standard set-theoretic union.

• Let veqi(t), i = 1, 2 denote the set {t′ ∈ ri|val(t
′) = val(t)}. The difference

r1 − r2={(val(t);
∨

t′∈veq1(t) spat(t
′) ∧ ¬

∨

t′∈veq2(t) spat(t
′))|t ∈ r1}

• The Cartesian product r×r′ = {(val(t), val(t′); spat(t)∧spat(t′))|t ∈ r, t′ ∈ r′},
of type [n+ n′,m+m′]

• The value selection σi=j(r) = {t ∈ r|val(t)(i) = val(t)(j)}.

Let φ be a quantifier-free real formula on the variables x1, · · · , xm. The spatial
selection σφ(r) = {(val(t); spat(t) ∧ φ)|t ∈ r}.

• For 1 ≤ i1, · · · , ip ≤ n, the value projection πi1,···,ip = {(val(t)(i1), · · · , val(t)(ip);
spat(t))|t ∈ r}, of type [p,m].

Let 1 ≤ i1, · · · , ip ≤ m and let y1, · · · , yp be real variables different from each
xi. For a real formula φ with free variables x1, · · · , xm, define φxi1

,···xip
(φ) as

the quantifier-free formula equivalent of the real formula

(∃x1) · · · (∃xm)(φ ∧
p∧

l=1

yl = xil)

Then the spatial projection πi1,···,ip = {(val(t);πi1,···,ip(spat(t)))|t ∈ r}, of type
[n, p].

• The algebra includes the constant Rk for each k, standing for the “full” relation
of type [0, k].

Paradeans et al. in [PdBG94] have proved, that the calculus and the algebra are
equivalent and that the spatial calculus (algebra) is a conservative extension of the
standard relational calculus (algebra). Consider an example. The query

“Give the pairs of persons living at least 10 miles apart”

2.3. FORMALISMS TO QUERY CONSTRAINT DATABASES 25

is
π1,2σ(x3−x1)2+(x4−x2)2≥100(Lives× Lives)

The disadvantage of this approach is that it may be too general in an implemen-
tational perspective. For this reason, the set of spatial objects has been restricted
in various ways. The basic idea is to focus on “linear” data types. This choice is
motivated by two factors: this class of data types includes most of the common used
spatial data, and operations on typical linear data, such as lines, and polygons, can
be implemented by efficient algorithms.

Algebras for Encoded Constraint Relations

The algebras defined by Kanellakis and Goldin in [KG94, GK96] belong to this sec-
ond family . Their approach defines a first-order algebra for dense order constraints
interpreted on a countably infinite set D, which is equivalent to the calculus defined
in [KKR90], and it’s based on the assumption that the generalized tuples have a
specific form, beyond being conjunctions of constraints. In their algebra they use
generalized tuples that are ”tightest” or canonical. Kanellakis et al. proved that this
algebra has the desiderable closure property. The usual operators of the relational
Algebra are defined on a special encoding of generalized tuple.

Algebras for Nested Constraint Models

The algebras, we consider in this paragraph, have been proposed in [BBC98]. Their
expressions are defined on terms that are constraint relations, interpreted under the
nested relational model. In this model, a constraint relation is represented as a finite
set of (possibly) infinite sets, each representing the extension of a single constraint
tuple, contained in the considered relation.

The use of different semantic reference model for constraint databases leads to
the definition of new languages. New connectives, and not only conjunction as
proposed in [KKR95], can be used. For example, to model concave sets inside a
constraint tuple, disjunction must be used.

External functions are also inserted in the constraint language, to handle specific
procedures and implementations needed by different applications.

The model is the one proposed by [KKR90]. In that case, the constraint tuples
were interpreted on Φ (a decidable logical theory) and a signature Ω = {∧}. In the
nested constraint model, the constraint tuples are interpreted on Φ and Ω = {∧,∨}
and represent all sets that can be characterized in first-order logic without quantifiers
and are called disjunctive constraint tuples or d-constraint tuples. Other operators
have been defined, considering the extension of each constraint tuple as a single
object.
The algebras dealing with the new model, are divided in two classes:

• R-based algebras: extend the usual relational algebra to constraint databases.

26 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

• N-based algebras: are based on the nested relational algebras, defined for com-
plex objects, [AHV95].

The algebra contains two classes of operators: one class handling constraint rela-
tions as an infinite set of relational tuples (tuple operators), and one class handling
each constraint relation as a finite set of sets (set operators).

NON-CONTIGUOUS INTERVAL (intD)
(i1 ∪ . . . ∪ in) ∪ (int1 ∪ . . . ∪ intm)

-

int1 i1 intmin

C(intD) ≡

(Cinstant(i1) ∨ . . . ∨ Cinstant(in))∨

(Cinterval(int1) ∨ . . . ∨ Cinterval(intm))

Analytical and graphical representation Representation using d-gen. tuples in ΦD

Table 2.1: Representation of non-contiguous subsets of the time axis in the dense-order
constraint theory

The Table 2.1 shows how non-contiguous intervals can be represented using dis-
junctive constraint tuples. In such representation, each disjunct represents an in-
stant or an interval belonging to the representation of the noncontiguous interval.

These algebras offer more facilities to express queries than [GK96], mostly be-
cause of its set-operators and of the non presence of the tuple-identifier, but it is
equivalent to it when identifiers are introduced in input databases. The study of the
data complexity proved the extended algebra is in class C or in NC.
In this case, the constraint tuples are not represented in any canonical form like
[GK96].

2.4 Constraints in the object-oriented framework

Before describing how constraints have been modeled in object-oriented frameworks,
we briefly recall the main concepts of the object-oriented model:

• The basic modeling entities are the object and the literal. Each object has
a unique identifier. A literal has no identifier.

• Objects and literals can be categorized by their types (in Java settings,
classes). All elements of a given type have a common range of states (i.e.
the same set of properties) and common behavior (i.e. the same set of defined
operations). An object is sometimes referred to as an instance of its type.

• The state of an object is determined by the values of its set of properties. These
properties can be attributes of the object itself or relationships between

2.4. CONSTRAINTS IN THE OBJECT-ORIENTED FRAMEWORK 27

the objects and one or more other objects. Typically the value of object’s
properties can change over time.

• The behavior of an object is defined by the set of operations, methods, that
can be executed on or by the object. Operations may have a list of input
and output parameters, each with a specified type. Each operation may also
return a typed result.

• There are two kinds of relationships between objects: inheritance, that is
a hierarchy relationship between classes, in which the methods of a class are
inherited by its sub-classes; and composition, that is reference relationship,
with which an object can refer to other objects. By means of these relationships
it is possible to navigate through the population of objects of a databases.

• A database stores objects, enabling them to be shared by multiple users and
applications. A database is based on a schema that is defined in ODL (Object
Definition Language) and contains instances of the types defined by its schema.
Querying object is performed by means of a OQL (Object Query Language).

On this framework, constraints are usually defined as instances of particular pre-
defined classes. In the next section, we will see some example of existing prototypes,
which implement constraints as objects.

Example 2.7 The following is an example of an SQL query on the structure depicted
in Figure 2.7:

select c.address
from Person p, p.chidren c
where p.address.street.name = “Main Street”
and count(p.children) ≥ 2
and c.address.city 6= p.address.city

City

Address Street

Person

Person

Person

Figure 2.7: Navigating an object data structure with OQL

The “dot” notation used in the query traverses the data structure as shown in Fig-
ure 2.7. The query inspects all children of all “Persons” to find people who live on Main
Street with at least two children. It returns only those addresses of children who do not

28 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

live in the same city as their parents. It navigates from the Person class using the child
reference to another instance of the Person class and then to the Address and City classes.

2

2.4.1 Object-oriented constraint databases

In the object-oriented data model, constraints must be objects, i.e instances of a pre-
defined class. Object query languages, like OQL or SQL, have no logic foundation,
so that the representation of constraint objects implies an ad-hoc construction of
quantifier-free formulas, like in [GRSS97], where a class Relation is defined, whose
instances are generalized relations. We show in the following an example, taken
from [GRSS97].

Example 2.8 The example describes the schema for the geographic object GO (stand-
ing for Ground Occupancy), that is represented by some descriptive attributes followed by
a geometric attribute of type Relation (a generalized relation) representing the set of its
generalized tuples: each generalized tuple has two attributes, x and y coordinates of the
plane. The generalized relation describes the spatial extent of the object.

class GO (
No: integer,
ground− type : string,
owner : string,
geometry : Relation

);

Generalized relations are defined according to the following schema:

class Relation (class Tuple (
tuples : set(Tuple) constraints : list(Constraint),

); geo− type : GEO-TYPE
);

where GEO-TYPE = {Point, Segment, Polygon}.
The type Constraint defines linear constraints, i.e. constraint of the form

a1x1 + a2x2 . . . + akxk op b

where k is the arity of the relation, xi is the variable associated with the Ai attribute,
each ai and b are rational and op belongs to OP = {=, <, ≤, ≥, >}. Therefore a con-
straint is represented as

class Constraint (
constants : list(rational),
op : OP

);
where the vector of constraints constants is a list of k + 1 rationals. 2

2.4. CONSTRAINTS IN THE OBJECT-ORIENTED FRAMEWORK 29

Anyway, also if the proposal of Grumbach et al. is interesting and represents
one of the first prototypes, the way of representing constraints is made ad-hoc and
it is fixed, i.e. it works only with quantifier-free formulas, whose atomic formulas
are linear constraints. This implies the application of an algorithm of quantifier
elimination whenever a quantifier occurs and it is well-known that such an algorithm
is exponential with the number of variables to eliminate.

More expressive formalisms than the mentioned one were defined to represent
and query objects. Kim et al. in [KKS92] propose the language XSQL, that is built
around the idea of extended path expressions and on an adaptation of first-order
formalization of object-oriented languages.

Furthermore, Fegaras and Maier in [FM95] propose an algebraic formalism, called
monoid calculus and prove its effectiveness for object-oriented query language, such
as OQL. The monoid calculus readily captures such features as multiple collection
types, aggregation, arbitrary composition of type constructors and nested query
expression. It is based on the representation of data types as monoids and queries
on them. As we based our proposal on this framework, we will not go deeply in its
explanation and postpone it to Chapter 4.

Both formalisms were extended with linear constraints, to define constraint ob-
ject query languages. The formalism of Kim et al. [KKS92] was extended in [BK95],
to define LiriC language, and the formalism of Fegaras and Maier in [BSCE97,
BSCE99] to define the CCUBE language. CCUBE is a constraint object-oriented
system, that implements linear constraints. Constraints in this framework have
canonical forms, and as such they can be represented as monoids. The resulting
constraint monoid calculus is a very expressive constraint query language.

Below is an example of a definition of my desk of the class DESK in CCUBE,
taken from [BSCE97]:

Desk my desk = desk(
catalog no = 22354,
name = ”one drawer desk”,
color = ”red”,
extent = (−4 ≤ w ≤ 4 ∧ −2 ≤ q ≤ −1),
drawer = new drawer(

color = ”blue”,
center = (p = −2 ∧ −3 ≤ q ≤ −1),
extent = (−1 ≤ w1 ≤ 1 ∧ −1 ≤ z1 ≤ 1),
translation = (w = w1 + p ∧ z = z1 + q)

)
);

In the above example, the attribute extent is of type CST, which represents the
linear constraint class. The CST class is defined as sub-class of the monoid class,
providing the methods to perform the operations ∧ and ∨. Variables are syntactic

30 CHAPTER 2. OVERVIEW ON CONSTRAINT DATABASES

objects, i.e. strings.
The next query finds, for each desk in all desks, its extent in the rooms coordi-

nates, assuming the center of the desk is located at the point (6, 4) and its translation
equation (with respect to the room’ s coordinate) is u = w + x ∧ v = z + y:

select new CST((u,v) | (dsk→extent ∧
u = w + x ∧ v = z + y∧
x = 6 ∧ y = 4))

into {bag〈CST〉} result
from all desks as {desk} dsk

Note that {bag〈CST〉} in the into clause indicates the type of the result, and CST
is the constraint type, that can be used as the other data types. In this case
{bag〈CST〉} denote a bag (set) of constraint objects and in the select there is the
creation of a new CST object, where (u,v)| denotes the projection on the variable
u,v.

Chapter 3

Spatial and Temporal Data Models

In this chapter, we briefly recall the basic concepts of the modeling of temporal
and spatial data focusing particularly on those using constraints, and we describe
some approaches in literature for handling temporal, spatial and spatio-temporal
information. The chapter is structured as follows: Section 3.1 presents temporal
data models and distinguishes two strands: temporal algebras 3.1.1 and temporal
databases 3.1.2, in 3.1.4 we describe some main approaches, using constraint data
models.

3.1 Temporal data models and algebras

Interest in research concerning the handling of temporal information has been grow-
ing steadily over the past two decades. On the one hand, much effort has been
spent in developing formalisms modeling temporal relationships, among them there
temporal logics (see, e.g., [OM94]) and algebras. On the other hand, in the field
of databases, many approaches have been proposed to extend existing data models,
such as the relational, the object-oriented and the deductive models, to cope with
temporal data (see, e.g., the books [TCG+93, EJS98] and references therein). It is
clear that a close connection exists between these two strands of research, since tem-
poral formalism can provide solid theoretical foundations for temporal databases,
and powerful knowledge representation and query languages for them [Cho94, GM91,
Org96].

We skip the description of temporal logic as they are not concerning the topic of
the thesis, concentrating ourself on algebras reasoning with time. Before presenting
some well-known temporal algebras and giving an overview on temporal databases,
we introduce some concepts of general interest in temporal knowledge representa-
tion. In particular we list the alternatives choices for the structure of time and
temporal relations. We refer the reader to The Consensus Glossary of Temporal
Database [EJS98] for a complete collection of definitions of concepts related to time.

32 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

Structure of time

If we want to deal with time, then each fact, assertion, or predicate must be as-
sociated with a temporal entity that specifies when it is true. There are several
alternatives for the definition of such temporal entities, as listed below.

• Instants vs. time intervals. An instant is a time point on an underlying time
axis, while a time interval is the time between two instants. Correspondingly
we can distinguish two view points according to the granularity of time: point-
based and interval-based. In the database context the point-based view is
predominant (e.g., see [TCG+93, Cho94]), on the other hand, there is a lot of
Artificial Intelligence research (e.g., the Allen’ s seminal work [All83, All84])
that takes the interval-based view.

• Discrete vs. dense vs. continuous. The instants in a discrete model of
time are isomorphic to the natural numbers, i.e., there is the notion that
every instant has a unique successor. Instants in the dense model of time are
isomorphic to (either) the real or rational numbers: between any two instants
there is always another one. Time is continuous if it is isomorphic to real
numbers.

• Bounded vs. unbounded. This concerns the question of whether time is
considered infinite in either or both directions.

• Linear vs. branching vs. cyclic. On time instants is imposed an order.
Time is linear if it is provided with a total ordering relation. A partial order
that satisfies left-linearity is used to model branching time [Eme90], i.e., time
is linear from the past to the present and branching from the present to the
future in order to represent the possible evolutions of the world. Moreover,
a linear transitive order which is not irreflexive or anti-symmetric is used to
model cyclic time.

Temporal relations

Time is said to be absolute if it is independent of, e.g., the time of another fact and
of the current time, now, for instance it is expressed in terms of dates. Time is said
to be relative if it is related to some other time, e.g., the time of another fact or the
current time, now. Relationships between times can be qualitative, such as before,
after, as well as quantitative if they involve some kind of metrics, such as “interval
I lasts 2 hours” or “3 days before”.

3.1.1 Temporal algebras

The family of algebras of temporal relationships can be divided in three sub-families,
each of them modeling a different information:

3.1. TEMPORAL DATA MODELS AND ALGEBRAS 33

• algebras modeling ordering information,

• algebras modeling metric information,

• algebras modeling ordering and metric information.

Each category includes point-based-as well as interval-based formalisms.

Modeling Ordering Information The most commonly used interval-based for-
malism is Allen’ s interval algebra[All83]. It models the relationship between any
two intervals as a suitable subset of a set of 13 basic relations, namely, equal, before,
meets, overlaps, starts, during and finishes, showed in Tab. 3.1 where t and s are
two time intervals and t− and t+ indicate respectively the lesser and the greater
end-point of t, together with their inverses:

Interval relation Equivalent relations on endpoints
t equal s (t− = s−) ∧ (t+ = s+)
t before s t+ < s−

tmeets s t+ = s−

t overlaps s (t− < s−) ∧ (t+ > s−) ∧ (t+ < s+)
t starts s (t− = s−) ∧ (t+ < s+)
t during s (t− > s−) ∧ (t+ < s+)
t finishes s (t− > s−) ∧ (t+ = s+)

Table 3.1: Allen’ s interval relations defined by endpoints

Allen describes then a method of representing the relationships between temporal
intervals in a hierarchical manner using constraint propagation techniques. Tempo-
ral information is maintained in a network and when a new relation is entered, all
consequences are computes. This is done by computing the transitive closure of the
temporal relations. For instance, if the fact that i is during j is added and j is
before k, then it is inferred that i must be before k. The Tab. 3.2 shows a part of
the Allen’ s transitivity table, the complete table can be found in [All83].

(Ar1B) ∧ (B r2C) < > d di
before (<) < all <, o, m, d, s <
after (>) all > >, oi, mi, d, f >
during (d) < > d all
contains (di) <, o, m, di, fi >,oi, di, mi, si o, oi, d, di, = di

Table 3.2: Part of the transitivity table for the temporal relations.

In 3.2, the symbols m, o, s, f stand respectively for meets, overlaps, starts and
finishes, and mi, oi, si, fi, for their respective inverses.

34 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

Point algebras were also proposed, (see [MP93] for an overview), that model
the relationship between any two points as a subset (disjunction) of a set of three
basic relations (<, >, =). Relations between intervals are expressed as compositions
(conjunctions) of relations between their endpoints. As an example, the interval
relation I1 (before ∨ meets ∨ overlaps) I2 can be expressed as the conjunction of
the point relations:

I−1 < I−2 ∧ I
+
1 < I+

2

Modeling Metric Information Interval and point algebras deal only with order-
ing temporal relations. A formalism that permits the representation and processing
of metric temporal information is Dechter, Meiri and Pearl’s distance algebra, which
models distances between time points and duration of intervals [DMP91]. Accord-
ing to a point-based approach, it consider variables over continuous domains, whose
value can be constrained using both unary and binary constraints. Let X1, . . . , Xn

be a set of variables. A unary constraint Ci on Xi restricts its domain to a finite set
of intervals I1, . . . , In (domain constraints) and it is represented by the disjunction

I−1 ≤ Xi ≤ I+
1 ∨ . . . ∨ I

−
n ≤ Xi ≤ I+

n

A binary constraint Ci,j on variables Xi and Xj constraints the admissible values
for the distance Xj − Xi to belong to a finite range R1, . . . , Rn. Each range Rk

is an ordered pair 〈mink,maxk〉, where mink and maxk are an upper and lower
bound on the distance separating Xi and Xj in time, respectively. A constraint
Ci,j = {R1, . . . , Rn} is represented by the disjunction

min1 ≤ Xj −Xi ≤ max1 ∨ . . . ∨minn ≤ Xj −Xi ≤ maxn

Point algebra can be easily encoded within distance algebra on the basis of a
suitable set of equivalences, on the other hand, interval algebra cannot be encoded
within distance algebra, i.e. they have orthogonal expressive power. Properties like
disjointedness cannot be represented by a binary constraint, but require a 4-ary
constraint.

Modeling Ordering and Metric Information Formalisms that integrate in-
terval and distance algebras to deal with both ordering and metric information in a
uniform framework have been developed by [KL91, Mei91].

[KL91] define a simple logical formalism for expressing both kinds of temporal
information. They assume a linear model of time, where time points are identified
with the rationals under the usual ordering relation < and time intervals are repre-
sented as pairs of points 〈n,m〉, with n < m. They also define a subtraction function
that return the rational number corresponding to the difference between two time
points. They formalize such a model of time using a typed predicate calculus with
equality and providing a suitable set of axioms.

3.1. TEMPORAL DATA MODELS AND ALGEBRAS 35

Meiri [Mei91] defines a model of time capable of dealing with disjunctive con-
straints, involving both metric and ordering. It consists of a set of variables {X1, . . . , Xn},
which may represent points as well as intervals so that one does not have to commit
to a single type of objects, and a set of unary and binary constraints. The domains
of point and interval variables are the set of real numbers and the set of ordered
pairs of real numbers, respectively. Ordering constraints are disjunctions of the form

O1(r1)O2 ∨ . . . ∨O1(rn)O2

where O1, O2 are points or intervals, and each one of the ri’s is an admissible rela-
tion between O1 and O2, belonging to set of basic interval/interval, point/point/,
point/interval and interval/point relations. Metric constraints are borrowed from
distance algebra.

The relevant feature of these models is that they extend the expressive power of
point algebras, preserving their expressive power.

3.1.2 Temporal databases

The design of a Temporal Database consists of three fundamental phases:

• definition of a temporal domain;

• definition of a temporal data model;

• definition of a query language;

We skip the third point, and describe the first two ones.

Temporal Domains The definition of a temporal domain implies, first, the choice
of the temporal ontology, i.e., we establish the structure of time choosing among
the different alternatives listed above. Second, a mathematical structure must be
defined. The most common structure imposed on time instants is order: partial or
total (linear). In the existing temporal databases the orders are usually linear, but
there exist exceptions: for instance, a linear transitive order that is not irreflexive or
asymmetric is used to model cyclic time or a partial order that satisfies left-linearity
is used to model branching time [Eme90].

The standard temporal domains in the linear context are: natural numbers
N=(N , 0, <), integers Z =(Z , 0, <), rationals Q=(Q , 0, <) and reals R =(R
, 0, <). Equality is usually assumed to be available in the temporal domain (it is
violated, for example, by TSQL2, a temporal extension of SQL2 [ea94b, ea94a]).
In most temporal database applications, it is assumed that time is discrete and
isomorphic to natural numbers [Sno92]. In the AI view [All83, DMP91], however,
time is usually assumed to be dense. Moreover, continuous time has turned out to
be extremely valuable in mathematics and physics, and is now the standard in the
area of hybrid systems [GNRR93]. The notion of constraint formula [KKR90] makes
possible to finitely represent dense sets in computer storage.

36 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

Temporal Data Models Chomicki in [Cho94] splits the conceptual level of a
temporal database in abstract temporal database and concrete one. An abstract
database captures the formal, representation-independence meaning of a temporal
database, while a concrete one provides a specific, finite representation for it in
terms of a specific temporal data model. Moreover, he defines three different, but
equivalent, ways to view an abstract temporal database. The model-theoretic view,
which is the most basic, treats an abstract temporal database as a first-order struc-
ture. The snapshot view treats it as a function that maps every instant to a set
of tuples. Finally, the timestamp view treats it as a mapping associating a set of
instants with every tuple. The notion of abstract temporal database is not sufficient
to deal with temporal database applications, because they may be infinite, while
only finite objects can be explicitly represented in computer storage; it is necessary
to design concrete data models that are specific finite representations of abstract
temporal databases.

The essential aim of the definition of a temporal data model is to associate
temporal characteristics to data and to provide temporal data management and
retrieval functionalities. [MP93] introduces the notion of basic temporal entities
as any elementary entity in a database, for instance, an attribute in a relational
database or an instance of an object, with which temporal information is associated
with. In general, a basic temporal entity has values varying with the time; for
instance, the salary of an employee is increased at a given date or the air temperature
of a room is sampled at regular intervals. The values of basic temporal attributes
have been classified according to their persistence in time as follows:

• Stable values.

• Uniformly changing values.

• Values changing according to a given function of time.

• Irregular values.

• Discrete values.

The association of time-related characteristics is not limited to time sequences
for a single attribute of an entity or a relation. In general, reasoning on time-
dependent data requires modeling all time-related characteristics of an entity and
of other entities related to it.
The first thing to consider is the identification of parts of a schema that present
homogeneous characteristics in terms of their time-related aspects. Several proposals
in the literature in this direction are based on the relational model of data. Most of
the data models that have attempted to extend the relational model to incorporate
the time dimension have generally taken one of the following approaches. In the first
approach (e.g. [Sno87, ea94b]) each relation scheme is extended to include some
time attributes (see Table 1(a)). Values of these time attributes come from some

3.1. TEMPORAL DATA MODELS AND ALGEBRAS 37

(a) A temporal relation from [Sno87] (b) A temporal relation from [Gad88]

Name Rank From To Name Salary Dept.
Jane Assistant 9.71 12.76 [11,61)John [11,50)15K [11,45)Toys
Jane Associate 12.76 11.80 [50,55)20K [45,61)Shoes
Jane Full 11.80 ∞ [55,61)25K

Table 1

fixed temporal domain. Given a tuple, the values of these time attributes indicate
when the information (i.e. the remaining values of the tuple) is valid. Unlike the
first approach that stays within first-normal form relations, the second approach
(e.g. [CT85, Gad88]) deals with non first-normal form relations. Under the second
approach, a timestamp is associated with each attribute value of a tuple (see Table
1(b)). The intuition is that the actual value of a particular attribute at a particular
time point is the value whose attached timestamp contains that time point.

[Sno87] proposes a distinction based on characteristics of durations of temporal
properties: event relations concerns attributes representing events that take place
at an instant of time in the real world, while in interval relations the valid time is an
interval of time, and a value of the attribute is considered to apply to the duration
of the interval.

Multidimensionality of time Multiple temporal dimensions are necessary to
model intervals (as pairs of points) or multiple kinds of time, e.g., valid time (the
time when a fact is true in the modeled reality) and transaction time (the time when
a fact is stored in the database) [SA86]. Based on this classification of the time,
four models of data are defined, depending on which time they support:

• Snapshot databases do not offer any temporal support (Figure 3.1a).

• Rollback databases support transaction time (Figure 3.1b).

• Historical databases support valid time (Figure 3.1c).

• Bitemporal databases support both valid and transaction time (Figure 3.1d).

3.1.3 Time in object-oriented models

Adding the time dimension to object-oriented systems aims at modeling how the
entities and the relationships the objects denote may change over time. Often an
entity or a relationship is created at a given time and it relevant to a system for
only a limited period of time. It may also happen that an entity could be killed
and reincarnated many times before being definitively destroyed. Object-oriented
temporal systems must then support mechanisms to create, to kill, to reincarnate,

38 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

valid
time

valid
time

valid
time

valid
time

transaction time

c) Historical database d) Temporal database

transaction time

a) Snapshot database b) Rollback Database

Figure 3.1: Ahn and Snodgrass Classification

and to definitively remove objects [MP93]. Furthermore, during their existence ob-
jects may change the values of their properties or their operations. Object-oriented
temporal systems must provide mechanisms to update the structure and behavior of
objects to model their temporal evolution. The introduction of the time dimension
also result in the definition of new object constructor, for example, constructors
that allow one to compose elementary events into processes, and to assert temporal
integrity constraints.

Modeling Temporal Objects

The first refinement to the object structure allowed by the introduction of time,
concerns the value of object attributes. Systems, without time dimension, associate
to each single-valued (multiple-valued) attribute of objects only a single value or a
set of values, usually the current one(s). If and when an attribute’s value is update,
its previous value is lost. On the contrary, object-oriented temporal systems provide
each attribute of an object with a value for each time instant. The sequence of values
in time of a given attribute is called its history.

Research on temporal object-oriented databases is still in its early stage. Al-
though various object-oriented temporal models have been proposed (see for an
overview [Sno95a]), there is no amount of theoretical work comparable to the work
reported for the relational model. Some approaches associate a timestamp with the
whole object state, whereas other associate a timestamp separately with each ob-
ject attribute. Among the approaches associating timestamps with single attribute
values, the majority regard the value of a temporal attribute as a function from
a temporal domain to the set of legal values for the attribute. Another impor-
tant characteristic, along which the existing approaches can be classified, is whether
temporal, immutable and non-temporal attributes are supported. An immutable
attribute is an attribute whose value cannot be modified during the object lifetime.
For instance, in T CHIMERA [BFG96], a set temporal types is defined, that type
variable for which the history of changes over time is recorded and variables for
which only the current value is kept. Classes in T CHIMERA can be static or his-
torical. A class is static if all its attributes are static, i.e. they do not have as

3.1. TEMPORAL DATA MODELS AND ALGEBRAS 39

On Service
Veh City Time Con
V1 Athens i1 9 ≤ i1L, i1R ≤ 15
V2 Patra i2 10 ≤ i2L, i2R ≤ 14

Figure 3.2: A generalized temporal relation

domain a temporal type, it is historical otherwise. Moreover a lifespan is associated
with each class, representing the time interval during which the class has existed.

3.1.4 Time in constraint databases

An interesting application of constraint databases to the modeling of time is the
approach by Koubarakis [Kou94]. The aim of Koubarakis’ proposal is to unify into
a single framework the representation of definite, indefinite, finite, and infinite tem-
poral information about valid time of tuples by introducing a hierarchy of temporal
data models: temporal relations, generalized temporal relations, and temporal tables.
The temporal relations model is simply a theoretical tool for providing semantics for
the other two models. The model of generalized temporal relations offers the ability
to represent infinite temporal information in a finite way. The model of temporal
tables extends the model of generalized temporal relations by allowing indefinite
(i.e., imprecise and/or qualitative) temporal information.

Time is assumed to be linear, dense and unbounded. There is a single time line
which is isomorphic to the set of rational numbers Q. The time entities are points
and intervals, defined as pairs of points.

In order to show how infinite and indefinite information is represented in this
approach we present two examples taken from [Kou94]. In Figure 3.2 the generalized
temporal relation represents the availability of some vehicles: vehicle V1 is on service
from 9am to 3pm in Athens. The constraint 9 ≤ i1L, i1R ≤ 15 allows one to express
that the vehicle is on service for each subinterval in the interval [9am, 3pm], thus a
generalized relational tuple is a finite representation of an infinite set of relational
tuples. Generalized temporal relations extend temporal relations in the following
way:

• variables are allowed as values for temporal attributes, and

• every tuple is tagged with a local temporal constraint on its variables.

Variables in a generalized relational tuple are essentially universally quantified.
On the other hand, Figure 3.3 shows a temporal table which allows the repre-

sentation of indefinite information by using existentially quantified variables called
e-variables. E-variables represent values that exist but are not known precisely. The
global temporal constraint asserts all the known constraints on such variables. In

40 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

On Service
Veh City Time Con
V1 Athens i1 w1L ≤ i1L, i1R ≤ w1R

V2 Patra i2 w2L ≤ i2L, i2R ≤ w2R

G : w1L = 9, 14 ≤ w1R ≤ 16, 10 ≤ w2L ≤ 10.5, 2 ≤ w2R − w2L ≤ 4

Figure 3.3: A temporal table and the global constraint G

particular in the example, w1L, w1R, w2L and w2R are e-variables and the global
constraint G states that (i) interval w1 starts at time 9 and ends at some time be-
tween 14 and 16, (ii) interval w2 starts at some time between 10 and 10.5 and its
duration is 2 to 4 units of time.

Temporal tables are syntactic devices for the representation of indefinite (finite
or infinite) temporal data. Each table is semantically equivalent to a set of pos-
sible worlds, which capture all the possible ways the domain of application could
have been according to the indefinite information. Each possible world can be repre-
sented by a generalized temporal relation. One can determine all the possible worlds
represented by a table as follows:

• Find an assignment to the e-variables which satisfies the global constraint.

• Substitute these values for the e-variables in the table.

3.2 Spatial models and formalisms

Following Güting [Güt94], a spatial database is a database system that offers spatial
data types in its data model and query language and supports such data types in
its implementation, providing at least spatial indexing and efficient algorithms for
spatial join.

Like in the case of temporal information, also in this field we can distinguish
two different strand of research, the one aiming to develop efficient representation
of spatial data and the other designing formalism to reason with spatial entities.

3.2.1 Spatial data models

The spatial data models proposed in the literature have been classified as follows
[Par95b]:

• the Raster Model [GS93, Sam90]. An object is given by a finite number of its
raster points. Raster points are equally distributed following an easy geometric
pattern, which is normally a square.

3.2. SPATIAL MODELS AND FORMALISMS 41

• the Spaghetti Model or Vector Model [LT92]. An object is intensionally de-
duced from its contour, which is approximated by segments and points, and
it is usually represented by a list of points.

• The Peano Model [LT92] also uses a finite number of object-points, but here
these points are distributed non-uniformally, according to the form of the
object. This distribution is based on the Peano curve.

• Polynomial Model [KKR90, PVV94]. The spatial information is stored in
relations. Each relation contains at most one spatial attribute for representing
spatial objects described by a semi-algebraic set of the form

{(x1, . . . , xn) | x1, . . . , xn ∈ R ∧ φ(x1, . . . , xn)}

where φ(x1, . . . , xn) is a semi-algebraic formula that contains boolean opera-
tors, existential and universal quantifiers and whose terms are comparisons,
using <, ≤, >, ≥, =, 6=, between polynomial whose coefficients are rational
numbers. x1, . . . , xn are free variables of φ.

• PLA-Model [LT92]. Only some kind of topological information is handled
without dealing with the exact position and form of the spatial objects.

Applicative Data Models (Storage oriented Data Models)

The Raster model [GS93, Sam90] and the Vector model [LT92] or Spaghetti model
are the basic models for the representation of spatial data in Geographical Informa-
tion Systems (GIS). The focus is more on practical issues such as implementation
efficiency and less on theoretical concerns such as genericity [PK98]. Let us give a
more detailed description of such models.

Raster model The space is regularly divided into cells. Thus raster data are
structured as an array or grid of cells 3.4. Each cell in a raster is addressed by
its position in the array (row and column). Rasters are able to represent a large
range of computable spatial objects. Among the advantages of rasters are the fact
that they require simple data structures (many commonly used programming lan-
guages support array handling and operations), and they are well adapted to set
intersection operations, such as map overlay. On the other hand, among the limits
of rasters are their size (a raster when stored in a raw state with no compression
can be inefficient in terms of usage of computer storage), and the cost of computing
topological relations, for instance to find all neighbor cells with same function value.

Vector model or 2-Spaghetti Model The vector model allows one to represent
only spatial objects that are composed of a finite set of closed polygons. Actually,
each object can be decomposed into a set of triangles (some are degenerate triangles

42 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

t1

l1

Figure 3.4: Raster model.

like line segments or points) where each triangle is represented by its three corners
in a single relational database table. Worboys [Wor92] uses the notion of simplex to
capture this basic component of the object.

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t1

p2

l1

p1

r1

Figure 3.5: Some spatial objects.

Example 3.1 Let us consider Figure 3.5. In the 2-spaghetti data model this figure is
represented by the following relation.

ID x y x′ y′ x′′ y′′

p1 10 4 10 4 10 4

l1 5 10 9 6 9 6

l1 9 6 9 6 9 3

t1 2 3 2 7 6 3

r1 1 2 1 11 12 11

r1 12 11 12 2 1 2

p2 3 8 5 3 6 5

p2 3 8 6 5 4 9

p2 4 9 6 5 7 6

3.2. SPATIAL MODELS AND FORMALISMS 43

Each tuple specifies the name of the object it belongs to, the vertex coordinates of the
simplex. For instance, notice that a rectangle is represented by two triangles. 2

The abstract semantics of a 2-spaghetti data model is for each object the set of points
that belong to the area of the plane that is within any of the triangles associated with
that object. Thus, it is point-based. Usually, the query languages hide the internal
representation of spatial objects, referring explicitly to the objects themselves. They
provide operators that work on polygons, e.g. overlap, union, intersection, however
the semantics of those languages is also point-based.

This model is popular because there exist very efficient algorithms for triangu-
lating polygons [Sam90] and for detecting properties, such as whether two polygons
overlap, whether a point lies in a polygon and so on.

Polynomial model

Among the models which are primarily geared to handle theoretical issues we de-
scribe the polynomial model, interested mainly in representing the exact position of
objects, as the representative one of the class of theoretical models.

The Polynomial Model is more general than the Spaghetti Model since it allows
to represent all geometrical figures definable in elementary geometry, i.e. first-order
logic over the reals. As a representative of this class, we describe the approach of
Paredaens et al. [PVV94] which extends constraint databases and offers a calculus
for specifying spatial queries.

A spatial database scheme, S, is a finite set of relation names. Each relation
name, R, has a type τ(R) which is a pair of natural numbers [n,m]. Here, n denotes
the number of non-spatial columns and m the dimension of the single spatial column
of R. Consider a relation type [n,m]. An intensional tuple (or ituple) of type [n,m]
has the form (a1, . . . , an;φ(x1, . . . , xm)), with a1, . . . , an non-spatial values of some
domain, B, and with φ(x1, . . . , xm) a quantifier-free real formula of arity m. An
i-relation of type [n,m] is a finite set of ituples of type [n,m]. An i-instance of a
scheme S is a mapping on S, assigning to each relation name R of S an i-relation
of type τ(R).

This model differs from constraint databases because it allows more general for-
mula in the spatial component (∧ and ∨ of constraints) and it distinguishes a spatial
and a value part (ordinary attribute) of an ituple. This distinction is needed to define
the notion of genericity (consistency criterion) for spatial queries.

Example 3.2 In the following table, we show how Figure 3.5 is modeled in the Polyno-
mial model of Paredaens et al. [PVV94].

44 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

ID x, y

p1 x = 10 ∧ y = 4

l1 (5 ≤ x ∧ x ≤ 9 ∧ y = −x+ 15) ∨ (x = 9, 3 ≤ y, y ≤ 6)

t1 2 ≤ x, x ≤ 6, 3 ≤ y, y ≤ 7, y ≤ −x+ 9

r1 1 ≤ x, x ≤ 12, 2 ≤ y, y ≤ 11

p2 3 ≤ x, 5 ≤ y, x− 1 ≤ y, y ≤ −x+ 13, x+ 5 ≥ y

The spatial component is modeled by its analytic representation. 2

The semantics of an ituple t = (a1, . . . , an;φ(x1, . . . , xm)) of type [n,m] is the
possibly infinite subset of Bn ×Rm called e-relation, denoted by ext(t) and defined
as the Cartesian product {(a1, . . . , an)}× S, in which S ⊆ Rm is the semi-algebraic
set defined by {(x1, . . . , xm) | φ(x1, . . . , xm)}. The semantics of an i-relation r is
the e-relation denoted as ext(r) and defined as

⋃

t∈r ext(t). The semantics of an
i-instance I is defined in the obvious way in term of the e-relations of I(R), where
R is a relation name of the database.

The provided query language gives the usual set of operations of the relational
algebra (union, difference, Cartesian product, selection, projection) suitably mod-
ified in order to deal with the spatial component of the ituples. For instance the
Cartesian product between two i-relations r1 of type [n,m] and r2 of type [n′,m′] is
defined as follows:

r1×r2 = {(val(t), val(t′); spat(t)∧spat(t′)) | t ∈ r1, t
′ ∈ r2}, of type [n+n′,m+m′]

where val(t) and spat(t) respectively denote the value and spatial part of the ituple
t. The ituples belonging to the Cartesian product have as value part the value parts
of an ituple t in r1 and an ituple t′ in r2 and as spatial part the conjunction (∧) of
the spatial parts of t and t′.

The disadvantage of this approach is that it may be too general in an implemen-
tational perspective. For this reason, the set of spatial objects has been restricted
in various ways [VGV95, BBC97b, Gru97]. The basic idea is to focus on “linear”
data types, that is object represented by formulas built from linear polynomials.
This choice is motivated by two factors: this class of data types includes most of
the common used spatial data, and operations on typical linear data, such as lines,
and polygons, have efficient algorithms. In Section 3.2.3 we give further hints on
the linear constraint model.

OracleSpatial database

In this section we present the first commercial spatial database, released by Oracle.
Oracle8i Spatial, referred to as Spatial, provides a standard SQL schema and

functions that facilitate the storage, retrieval, update, and query of collections of
spatial feature in a Oracle8i database. It consists of four components:

3.2. SPATIAL MODELS AND FORMALISMS 45

1. a schema that describe the storage, syntax, and semantics of supported geo-
metric data types,

2. a spatial indexing mechanism,

3. a set of operators and functions for performing area-of-interest and spatial join
queries,

4. administrative utilities.

The spatial attribute of a spatial feature is the geometric description of its shape
in some coordinate space. This is referred to as geometry.

This release of Spatial supports two mechanisms of representing geometry. The
first, an object-relational scheme, and the second a relational scheme. The first
corresponds to a ”SQL with Geometry Types” implementation of spatial feature
tables, and the second an implementation of spatial feature tables using numeric
SQL types for geometric storage. We consider the first one.

Data model The Spatial data model is a hierarchical structure consisting of ele-
ments, geometries, and layers, which correspond to representations of spatial data.
Layers are composed of geometries which in turn are made up of elements.

An element is the basic building block of a geometry. the supported spatial
elements are those illustrated in Figure 3.6 and Figure 3.7. For example, elements
might model star constellations (point clusters), roads (line strings), and country
boundaries (polygons). Each coordinate in an elements is stored as an (x, y) pair.
The exterior ring and the interior ring of a polygon with holes are considered as two
distinct elements that together make up a complex polygon.

Spatial supports three geometric primitive types:

• 2-D point and point cluster,

• 2-D line strings,

• 2-D n-point polygons.

2-D points are elements composed of two ordinates, x and y, often corresponding
to longitude and latitude. Line strings are composed of one or more pairs of points
that define line segments. Polygons are composed of connected line strings that
form a closed ring and the interior of the polygon is implied. Figure 3.6 illustrates
the supported geometric primitive types.

Self-crossing polygons are not supported although self-crossing line strings are.
If a line string crosses itself, it does not become a polygon.

Together with primitive types, Spatial supports six further geometric types,
shown in Figure 3.7:

• 2-D arc line strings (all arcs are generated as circular arcs),

46 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

Figure 3.6: Geometric primitive types

• 2-D arc polygons,

• 2-D compound polygons,

• 2-D compound line strings,

• 2-D circles,

• 2-D optimized rectangles.

Figure 3.7: Other geometric types supported by Spatial

A geometry is the representation of a user’s spatial feature, modeled as an ordered
set of primitive elements. A geometry can consist of a single element, which is
an instance of the supported primitive types, or a homogeneous or heterogeneous
collection of elements. A multi-polygon, such as one used to represent as set of
islands is a homogeneous collection. A heterogeneous collection is one in which the
elements are of different types. Spatial supports the following geometry types:

• polygons with multiple holes,

• collection, that a heterogeneous collection of elements, where the polygons
must be disjoint,

• multipoint,

• multistring,

• multipolygon, composed of multiple, disjoint polygons.

3.2. SPATIAL MODELS AND FORMALISMS 47

A layer is a heterogeneous collection of geometries having the same attribute set.
For example, one layer in GIS might include topographical features, while another
describes population density, and a third describes the network of roads and bridges
in the area (lines and points). Each layer’s geometries and their associated spatial
index are stored in the database in standard tables.

Example 3.3 The example shows how to store a polygon with hole in the database.
The polygon is illustrated in Figure 3.8. The coordinate values for element 1 and 2 are:

Element 1= [p1(6,15), p2(10,10), p3(20,10), p4(25,15), p5(25,35), p6(19,40), p7(11,40),
p8(6,25), p1(6,15)]

Element 2= [h1(12,15), h2(15,24)]

p1

p2 p3

p4

p7

h1

h2p8

p6

p5

Element 1

Element 2

Figure 3.8: Example Geometry Obj 1

We assume that a table Parks was created as follows:

create table Parks (name, varchar(32),
shape mdsys.sdo geometry);

The SQL statement for inserting the data for geometry Obj 1 is:

insert into Parks
values (’Obj 1’, mdsys.sdo geometry(3, null, null,

mdsys.sdo elem info array(1,3,1, 19,3,3)
mdsys.sdo ordinate array (6,15, 10,10, 20,10, 25,15, 25,35,
19,40, 11,40, 6,25, 6,15, 12,15, 15,24)));

The geometry Obj 1 is stored using the predefined Spatial type sdo geometry, in which
the number 3 specifies the type of the geometry (in this case polygon with hole), the
array mdsys.sdo elem info array(1,3,1, 19,3,3) specifies how to interpret the ordinates stored
in the sdo ordinate attribute. It has two triplets (1,3,1, 19,3,3), because there are two
elements. The first number indicates the offset with the sdo ordinate array where the first
ordinate for this element is stored, and the other two numbers indicate the element type.

2

48 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

Spatial relations and filtering Spatial uses filter methods to determine the spa-
tial relationship between entities in the database. The spatial relation is based on
geometry locations. The most common are based on topology and distance. For
example, the boundary of an area consists of a set of curves that separate the area
from the rest of the coordinate space. The interior of an area consists of all points
in the area that are not on its boundary. Given this, two areas are adjacent if
they share part of the boundary but not points in their interior. Next, the distance
between two spatial objects is the minimum distance between any points in them.
Two objects are said to be in a given distance of one another if their distance is less
than the given distance.

Spatial has two filter methods. One method evaluates topological criteria and a
second method determines if two spatial objects are within an Euclidean distance
of each other.

The filter evaluating topological criteria is called relate and implements the 9-
intersection model for categorizing binary topological relations between points, lines,
and polygons. The 9-intersection model has been described in Section 3.2.2. The
other filter is called within distance.

3.2.2 Formalisms for spatial reasoning

Among the numerous formalisms designed to query and reason with spatial data,
we can distinguish between the ones interested to describe the exact position of
objects, and that allowed then to perform quantitative reasoning and the ones ori-
ented to represent only certain kind of information, to perform qualitative reason-
ing. Formalism belonging to the first group are all the constraint algebras presented
in 2.3.3. Among those belonging to the second group, we recall the topological
ones [EF91, KPV95, KPV98, PSV96] which focus on topological information, and
those ones which are interested in directional (or orientation) relations, such as
[GE99, IC98, ZF96]. In the following we present the fundamental work by Egen-
hofer on topological relations [EF91, Ege91, Ege95].

9-intersection model

Egehnofer [EF91, Ege91] focuses on the class of topological relationships between
spatial objects. A topological relation is a property invariant under homeomor-
phisms, for instance it is preserved if the objects are translated or scaled or rotated.
We restrict our attention to a space with only two dimensions and we present the 9-
intersection model. Such a model is based on the intersection of the interior (A◦,B◦),
the complement (A−,B−) and the boundary (δA,δB) of two 2-dimensional connected
objects A and B. Therefore a relation between A and B is represented by R(A,B)

3.2. SPATIAL MODELS AND FORMALISMS 49

as follows:

R(A,B) =





δA ∩ δB δA ∩B◦ δA ∩B−

A◦ ∩ δB A◦ ∩B◦ A◦ ∩B−

A− ∩ δB A− ∩B◦ A− ∩B−





Each of these intersections can be empty or not empty. Of the 29 possible different
topological relations, only eight of these relations can be realized between two 2-
dimensional objects and they are illustrated in Figure 3.9.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

A �������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

B

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

A

	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

B

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

A

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����������
�����������
�����������
�����������

B

A

�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������

B
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

A

(d) covers(A,B)

coveredBy(B,A)

(e) contains(A,B)

inside(B,A)

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

A

B

B

(a) disjoint(A,B) (b) meet(A,B) (c) equal(A,B)

(f) overlap(A,B)

Figure 3.9: Topological relations between two 2-dimensional objects

As observed in [PSV96], these relations are not sufficient to fully characterize the
topological relationships between objects. For instance, if three regions A, B and C
pairwise overlap, the intersection of the three together might be or might not empty
but this cannot be expressed by the previous relations. [PSV96] defines languages
which are complete for topological properties.

3.2.3 Space in constraint databases

The constraint databases found their key intuition on finitely representing possibly
infinite sets, their data models offer a promising paradigm for the representation of
many sorts of data in a unified framework. These motivations lead to their suitability
for modeling spatial objects. In this way, a spatial object seen as an infinite set of
points, can be dealt with as a first class citizen with an explicit representation.
For instance a convex polygon, which is the intersection of a set of half-planes, is
defined by the conjunction of the inequalities defining each half-plane. A non convex
polygon by the union (logical disjunction) of a set of convex polygons.

To model spatial information in Constraint Databases, the linear constraints over
rationals or real polynomial constraints is often used as logical theory of constraints.
The trend, initiated by [PdBG94] to develop first-order based algebraic query lan-
guages using as underlying theory the real polynomial constraint theory, is moving
to the definition of languages based on the linear constraint theory because of its
efficient algorithms. Linear constraints have been shown to fit the need of spatial
data in the vector mode. The fundamental difference between the two approaches

50 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

relies on the explicit definition of the spatial objects in the data model (e.g. a poly-
gon is explicitly the infinite set of points it contains versus the implicit definition by
the sequence of border points). It is possible to manipulate spatial objects through
standard set operations (e.g. those of relational algebra).

Example 3.4 Here is an example of modeling with linear constraints:

S

P

C

Y

987654321 10 11

1

2

3

4

5

6

7 �� ID x y x′ y′ x” y”

P 6 7 6 7 6 7

S 8 6 7 1 7 1

S 7 1 11 2 11 2

C 1 2 2 4 5 1

C 2 4 5 1 5 5
2-spaghetti model

object(P, x, y) : − x = 6, y = 7.
object(S, x, y) : − y ≤ 6, 1 ≤ y, 5x− y − 34 = 0.
object(S, x, y) : − 7 ≤ x, x ≤ 11, x− 4y − 3 = 0.
object(C, x, y) : − y ≤ 2x, x+ 4y − 9 ≤ 0, x ≤ 5, x− 3y + 10 ≤ 0.

Linear constraint database model 2

A lot of research has developed, starting from Kanellakis et al. generalized rela-
tional model [KKR90], new models that can represent better spatial objects. Most
of the existing proposals define new generalized relational models using particular
classes of constraints to represent the tuples, and algebras that correspond exactly
to the traditional relational algebra, and whose semantics is defined with respect
to the effect of the usual algebraic operators on infinite relations. This is the case
of the real polynomial model of [PdBG94] (described in the previous section) and
the linear constraint model of Grumbach et al. [GST94]. Other proposals redefine
logically the generalized relational model to model complex objects as the nested
model of Bertino et al. [BBC98] and design algebras that apply on special general-
ized tuples. In the following we describe the linear constraint model and the nested
model.

Linear Constraint Model Linear constraint models consider linear constraints
in the first-order language L = {≤,+}∪Q over the structureQ = 〈Q,≤,+, (q)q∈Q〉 of
the linearly ordered set of the rational numbers with rational constants and addition.
Constraints are in this case linear equations or inequalities of the form

∑p

i=1 aixiΘa0,
where Θ is a predicate among = or ≤, the xi’s denote variables and the ai’s are
integer constants.
Let σ = {R1, . . . , Rn} be a database schema such that L ∩σ = ∅, where R1, . . . , Rn

are relation symbols. We distinguish between logical predicates (e.g., =,≤) in L and
relations in σ. The following defines finitely representable structures ([GST94]).

3.2. SPATIAL MODELS AND FORMALISMS 51

Definition 3.1 (Finitely representable structures) Let S ⊆ Dk be some
k-ary relation. The relation S is finitely representable in L over Q (L-representable
for short) if there exists a quantifier-free formula φ(x1, . . . , xk) in L with k distinct
free variables x1, . . . , xk such that:

Q |= ∀x1 · · · xk(S(x1, . . . , xk)↔ φ(x1, . . . , xk)).

Let A be an expansion of Q to σ. The structure A if finitely representable (over Q)
if for every relation symbol R in σ, RA is L-representable (over Q).

A (database) instance (of σ) is a mapping which associates with each k-ary
relation symbol R in σ a quantifier-free formula in DNF with k distinct variables.
The algebra of [GST94] called ALGL can be viewed as a simplified sub-language of
the algebra previously described. In this case a n-ary relation R is represented by a
quantifier-free formula φ, of the form:

φ ≡
k∨

i=1

li∧

j=1

φi,j

where the φi,j are atomic formulas. φ can also be represented as a collection of
constraint tuples ti in the set notation:

{

ti|1 ≤ i ≤ k, ti =
li∧

j=1

φi,j

}

Two restrictions are imposed on the class of all infinite relations: the first one
is to represent relations by quantifier free formulae and the second one enforces the
formulae to be in disjunctive normal form (DNF), as in the generalized relational
model of [KKR90]. Furthermore, they extend the previous classical concept of lin-
ear constraint relation and also consider relations that combine the uninterpreted
domain D with the interpreted one Q. The concept extends easily to such relations,
with representation formulas in L ∪ D, with two sorts of constraints, (i) equality
constraints over objects of cD, and linear constraints over objects of Q.

In terms of 2-dimensional applications, the restriction to DNF formulas implies
that polygons must be decomposed into convex component polygons (convexified).
Grumbach et al. in [GRS98a] call this restriction the convex normal form and gen-
eralize it, motivated both by its logical simplicity and its algorithmic efficiency, to
a representation of objects with “holes” (see Figure 3.10):

Definition 3.2 (Convex with holes normal form). A formula is in the convex
with holes normal form (CHNF) if it is either quantifier free in DNF, or it is of the
form F − F ′, where F and F ′ are two formulae in CHNF of the same arity, and −
is the set difference (i.e ∧,¬). 2

The Figure 3.10 shows how a spatial object can be represented by a formula in
DNF or in CHNF. In DNF it is seen as the union of the three polygons p1, p2, p3

while in CHNF it is seen as the outside polygon p1 minus the inner one p2.

52 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

CHNF representation : q1 - q2 DNF representation : p1 v p2 v p3

p1

p3

p2

q2

q1

Figure 3.10: Representation of a polygon with a hole

The symbolic algebra for the CHNF representation contains the traditional op-
erators of relational algebra. Let F1 = α − α′ and F2 = β − β ′ be two formulas in
CHNF, where α, α′, β and β ′ are CHNF.

• F1 − F2 is defined recursively by (α ∩ β)− (α′ ∪ β′).

• F1 × F2 is defined recursively by (α× β)− ((α′ × β) ∪ (β ′ × α)).

• σF (F1) is defined recursively by σF (α)− α′.

• F1∪F2 is defined recursively by (α∪β)−[(α′∪β′)−((α′∩β)∪(α∩β ′)−α′∩β′)].

• F1 − F2 is defined recursively by (α− α′)− (β − β ′).

• πx̄F1 is defined recursively using an algorithm slightly more complex than the
Fourier-Motzkin one but still quadratic when eliminating one variable. The
output is (πx̄α)− γ where γ is obtained by computing the intersection points
of α and β, and extracting those which are part of the boundary of γ.

Grumbach et al. in [GRS98a] compute the complexity of the new algebra, com-
paring it with linear algebra for the convex normal form. They showed that union,
intersection, Cartesian product, and projection are quadratic, while selection is lin-
ear and set difference is constant time. Under the DNF representation, the com-
plexity of union and set difference are inverted, that is union is constant time and
set difference is quadratic.

Other languages have been proposed to model complex objects in the generalized
relational model [BK95, GS95]. For example, LyriC is a language introducing con-
straints in an object-oriented framework, thus allowing any kind of nesting [BK95].

3.3 Spatio-temporal data models

Among the temporal and spatial approaches we presented in the previous sections
only constraint databases can provide a uniform data model for both time and space.
In fact, if we consider as class of constraints linear polynomials, we can model both
temporal and spatial data with efficient implementations.

3.3. SPATIO-TEMPORAL DATA MODELS 53

For instance, Grumbach et al. have extended their approach for handling spatial
information to include also the treatment of time, in [GRS98b].

Recall Definition 3.1 in Section 3.2.3. Linear constraint relations of Grumbach
et al. represent two-dimensional spatial objects, therefore are defined on Q2.

Moving objects, i.e. spatial objects changing with time, are represented as a
(spatio-temporal) linear constraint relation in Q3, adding a third dimension for time.
Figure 3.11 illustrates the trajectory of a moving object. There are 4 tuples that
associate space and time. Tuple A for instance has a geometry (a convex polygon in
the plane) which gives the valid position of the object during the interval [t1, t2]. It
can be finitely represented as a conjunction of one constraint on t and 5 constraints
on x and y (one for each of the 5 half-planes). By adding disjunction, one can easily
represent the evolution of the geometry (shape, position or both) with respect to
time: tuple B is for instance a segment in the plane associated with the time interval
[t2, t3]. Note that for each tuple T the following holds: T ≡ πspace(T)× πtime(T).

��

projection on (x,y)

t1
t2
t3

t4

t5

time

x

y

Figure 3.11: A spatio-temporal object

Another unified model for spatial and temporal information has been introduced
by Worboys [Wor92]. The basic idea is to attach to each elemental spatial object a
bitemporal element which is a finite set of pairs of intervals, representing respectively
the database and the event times of the object. The elemental spatial object is a
simplex which is either a single point, finite straight line segment or triangular area.
The pair 〈simplex, set of bitemporal elements〉 is called ST-simplex. A complex
spatial object, temporally referenced, is called ST-complex and it is modeled by a
finite set of ST-simplexes, subject to some constraints that we do not report.

Example 3.5 [Wor94] An example of ST-complexes is given in Figure 3.12. To each
vertex, line, and to the area (i.e the simplexes) of the triangle a bitemporal element is
associated, having on the horizontal the transaction time and on the vertical the valid
time.

2

The query language provides operators to make the union, difference and inter-
section of two ST-complexes, and the selection on the temporal and spatial compo-
nent. Moreover, it is also given a topological operator to return the boundary of an
ST-complex.

54 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

���

���

a

b

c
���
�

���
�

���
�

Figure 3.12: ST-complex

In the Worboys model, the temporal and the spatial dimensions are independent
and this prevents from describing spatial relations which may be parametric with
respect to time, i.e. with respect to their evolution, for instance the relationship
that exists between time and the area covered by an incoming tide.

Finally, Chomicki and Revesz [CR97, CR99] have introduced a new model, called
Parametric 2-spaghetti model, that generalizes the 2-spaghetti model by allowing
an interaction between spatial and temporal attributes. Vertex coordinates can now
be linear functions of time.

Example 3.6 [CR97] Let us suppose that we have a rectangular area on a shore and
a tide is coming in. The front edge of the tide water is a linear function of time. The
behavior of the tide is described in Figure 3.13: at 1:00 am the area flooded by the water
will be a point, at 8:00 a triangle and so on. These data are represented in the following
table.

ID x y x′ y′ x′′ y′′ From To

r1 3 10 3 10 3 10 1 +∞
r1 3 10 3 11− t 2 + t 10 1 8

r1 3 10 3 3 10 10 8 +∞
r1 3 3 10 10 3 11− t 8 10

r1 10 10 3 11− t 10 18− t 8 10

r1 3 3 10 10 3 1 10 +∞
r1 10 10 3 1 10 8 10 +∞
r1 3 1 10 8 t− 7 1 10 17

r1 t− 7 1 10 18− t 10 8 10 17

r1 3 1 10 1 10 8 17 +∞
r1 10 1 10 1 10 1 17 +∞

It is worth noting that this relation is not a standard one because its values are
parametric. 2

Query languages for the Parametric 2-spaghetti data model have not been defined
yet. This model has been used in [CLR99] to animate spatio-temporal objects.

3.3. SPATIO-TEMPORAL DATA MODELS 55

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r1

1:00 8:00 10:00

17:00

Figure 3.13: Parametric 2-spaghetti model.

Finally, we want to analyze the approach proposed by Erwig, Güting, Schneider
and Vazirgiannis [EGSV99, GBE+98]. They define collections of abstract data types
for spatial values changing over time. Essentially, they introduce data types for
moving points and moving regions together with a set of operations on such entities.

The design of the model for spatio-temporal data is based on a type constructor
τ which transforms any given atomic data type α into a type τ(α) = time → α
where time = R, that is a continuous model of time is supported. In particular this
constructor is applied to two spatial data types, point and region, allowing one to
represent two fundamental abstractions moving point and moving region. A moving
point is of type mpoint = time→ point and it is used to represent objects for which
only the position in space is relevant, whereas a moving region is of type mregion =
time → region and both the position and extent are of interest, i.e., the object can
change its position and/or grow or shrink.

Then a set of operations are defined on these types. For instance consider the
following functions

mdistance : mpoint ×mpoint → mreal
trajectory : mpoint → line
lenght : line → real

where mreal = τ(real) (a moving real) and line is a data type describing a curve
in two-dimension space. The function mdistance returns the distance between two
moving points at all times, and hence returns a time changing real number; trajectory
is the projection of a moving point onto the plane and length returns the total length
of a line value.

The presented data types can be embedded into any DBMS data model as at-
tributes data types, and the operations be used in queries. Consider, for example,
the relation flights defined as follows

flights(id: string, from: string, to: string, route: mpoint)

We can ask a query Give me all flights from Düsseldorf that are longer than 5000
kms:

56 CHAPTER 3. SPATIAL AND TEMPORAL DATA MODELS

SELECT id
FROM flights
WHERE from = “DUS” AND length(trajectory(route)) > 5000

In [ES99] this approach has been extended in order to provide a framework which
allows one to build more and more complex spatio-temporal predicates starting
with a small set of elementary ones. These predicates are particularly suitable to
characterize developments, for instance, a predicate for capturing the scenario of a
point entering or crossing a region can be easily modeled.

Chapter 4

A Formal Background to build
Constraint Objects

In this chapter, we describe the design of an object-oriented constraint database
model, based on flat constraints.

Our approach exploits algebraic structures to represent a general class of con-
straints, namely flat constraints, in an object-oriented framework, in order to have
a methodology to define in a correct way constraint classes, whose instances (con-
straint objects) are parameterized by their vocabulary and their domain of interpre-
tation. Algebraic structures generate constraint objects, (CO), i.e. instances of a
predefined class or type in the object-oriented model, that means that new CO are
constructed using logical connectives and existential quantifiers within a multi-typed
algebra. Hence, the data model is adapted from CO, conceptually represented by
constraints, i.e. symbolic expressions of a restricted first-order logic.

Following the approach of Brodsky et al. [BSCE97, BSCE99], we adopt the
Constraint Comprehension Calculus, as Constraint Calculus to manipulate the CO,
that is an integration of a constraint language (first-order logic + atomic constraints)
within monoid comprehensions, which were suggested by [FM95] as an optimization-
level language for querying object-oriented databases.

The chapter is organized as follows: Section 4.1 describes the family of con-
straints used to represent data; Section 4.2 presents the data model, defining the
constraint data types and operations; Section 4.3 introduces the formalism of monoid
comprehensions and our extension to query and manipulate the constraint objects;
in Section 4.4, we define the schema of classes, using the Java platform. Finally in
Section 4.5 we describe the motivations of our choices.

4.1 Constraints families

We start the design of our constraint data model with the definition of the constraint
families and the algebra.

58 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

A constraint family F is defined by the choice of:

• an atomic constraint domain,

• the structure of the logical formula allowed.

• the required canonical form (e.g. whether to eliminate existential quantifiers,
to eliminate each redundant disjunct etc.)

The definition of a constraint algebra amounts to choosing the operations, by which
formulas of the families are composed. For instance, in the frameworks of Grumbach
et al. [GST94], the atomic constraint domain is represented by linear constraints,
the structure of formulas are quantifier-free DNF formulas and constraint algebra is
the linear constraint algebra described in Section 3.2.3.

We follow the approach of Brodski et al. [BSCE97], in the choice of the families
of constraints, but we let the atomic constraint domain “undefined”, i.e. we define
abstract data types to represent atomic constraints, that can be instantiated with
different classes of constraints. The constraint families of our framework consist of
flat constraints, i.e. atomic formulas without function symbols. As we will see in the
following sections, this choice is due to have more facilities in modeling constraints
using algebraic structures.

4.1.1 Atomic formulas

Recall Section 2.1. Flat constraints are defined on a flat vocabulary.

Definition 4.1 (Flat vocabulary) A flat vocabulary Ω consists of two sets: a
set C of constant symbols and a set P of predicate symbols, together with an arity
function that associates a natural number to each element of P .

Terms of the first-order language over Ω consist only of variables and constants.
An Ω−structureM = 〈D,Ω〉, where Ω is flat is defined assigning to each predicate
symbol p ∈ P with arity n an n-ary relation, i.e a set in Dn and to each constant
an element of D.

Therefore, atomic flat formulas are n-ary predicates, whose terms are constants
and variables. We denote with AC(Ω) the set of atomic formulas defined over Ω.
In the following, Ω will denote a flat vocabulary.

The usage of flat formulas does not limit the expressiveness of the language. The
language of flat constraints is equivalent to the first-order language (see [CK90a]).
We show as example how to model two-dimensional linear constraints with flat
constraints.

Example 4.1 Two-dimensional linear constraints over reals, see Section 2.1.2, are atomic
formulas in free variables x, y, ϕ(x, y), such that

4.1. CONSTRAINTS FAMILIES 59

ϕ(x, y) ≡ a · x + b · y + c ≤ 0.

where +, · are the functions +(x, y) and ·(x, y) that compute respectively the sum
and multiplication between real numbers. Let plus(x, y, z) be a predicate that is true iff
x + y = z and times(x, y, z) that is true iff x · y = z, then ϕ(x, y) is equivalent to the
following flat formula in free variables x, y:

ϕflat(x, y) ≡ ∃w,x1,x2,y1
(p(w) ∧ plus(x1, x2, w) ∧ times(a, x, x1) ∧ plus(y1, c, x2)∧

times(b, y, y1))

where p(w) is true iff w ≤ 0.
Note that while ϕ(x, y) is interpreted over the structure (R,Ω) where Ω = (+, <, 0, 1),
ϕflat(x, y) is interpreted on the structure (R,Ωflat) where Ωflat = ({p, times, plus},
{1, 2, 3, . . .}).

2

4.1.2 Structure of the logical formulas

We defined the structure of the logical formulas over Ω, allowed in our framework.

Definition 4.2 (Flat constraints over Ω) Let V be a countable set of variables.
Flat constraints over Ω are defined recursively as follows:

i. An atom is an atomic formula of the form p(t1, . . . , tn), such that t1, . . . , tn are
terms defined from V and C and p ∈ P is an n-ary predicate.

ii. If ϕ1 and ϕ2 are formulas, then (ϕ1 ∨ ϕ2), (ϕ1 ∧ ϕ2) are formulas.

iii. If ϕ is a formula and x ∈ V is a free variable in ϕ, ∃xϕ is a formula.

iv. Formulas are generated only by a finite number of applications of (i), (ii) and
(iii).

2

General formulas are then built up from atomic formulas by using the connectives
defined in Definition 4.2. Given a formula (or flat constraint) ϕ(x1, . . . , xn) and
a1, . . . , an ∈ D, the satisfaction M |= ϕ(a1, . . . an) is defined in the usual manner,
see Section 2.1.1. The set of all flat formulas over a vocabulary Ω is denoted by
FC(Ω).

Before characterizing FC(Ω) as an algebraic structure, we have to define which
formulas are allowed in our framework. We distinguish four families of constraints.
Let ϕi, i = 1, . . . , k, . . . be a formula in FC(Ω) and X ⊆ V be a set of free variables
in ϕi, then:

60 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

FC(Ω): Conjunctive, stands for constraints represented in the form ∧n
i=1ϕi. The fam-

ily of conjunctive constraints contains conjunctions of quantifier-free atomic
formulas. For example generalized tuples , see Sections 2.2 and 2.3.2, belong
to this family.

FEC(Ω): Existential Conjunctive, corresponds to the form ∃X∧
n
i=1ϕi. To this family be-

long formulas, that are quantified conjunctions of eventually quantified atomic
formulas. Constraints of FC(Ω) are also constraints of FEC(Ω).

FDC(Ω): Disjunction of Conjunctions, corresponds to the form ∨m
i=1 ∧

n
j=1 ϕi,j . Like

FC(Ω), this family has quantifier-free formulas, but in this case the formulas
are disjunctions of conjunctions of atomic formulas. The generalized relations,
see Section 2.3.2, belong to this family. Constraints of FC(Ω) are also con-
straints of FDC(Ω).

FDEC(Ω): Disjunction of Existential Conjunctive, corresponds to the form ∨m
i=1(∃X ∧

n
j=1

ϕi,j), that is equivalent to ∃X ∨
m
i=1 ∧

n
j=1Ci,j

1. Constraints of FEC(Ω) and
FDC(Ω) are also constraints of FDEC(Ω).

From the definition of the constraint families it follows that FC(Ω) ⊆ FEC(Ω),FDC(Ω)
and FEC(Ω),FDC(Ω) ⊆ FDEC(Ω). Figure 4.1 shows the relationships between the
families of CO, the arrow indicates ⊆.

Disjuction of

Existential

Conjunctions

Disjunction

Conjunction

of Existential

Conjunctive

Conjunctive

Figure 4.1: Families of CO objects

Definition 4.3 (Constraint object) A Constraint Object, CO, is any formula
belonging to one of the constraint families FC(Ω), FEC(Ω), FDC(Ω), FDEC(Ω). Let
FCO(Ω) denote the set of all possible CO. Thus FCO(Ω) ⊆ FC(Ω).

1It follows from the axioms of first-order logic, see [CL73]

4.1. CONSTRAINTS FAMILIES 61

4.1.3 An Algebraic structure for FCO(Ω)

As defined in [JJL87], the semantics of constraints are given in terms of an algebraic
structure that interprets constraint formulas. In this section we introduce an incre-
mental algebraic specification for constraint objects, because we are interested in the
algebraic properties on which the semantic constructions are based. Constraints in
FCO(Ω) are then viewed as elements of an algebraic structure, providing a uniform
treatment of semantic domain (collections of constraints) and domain dependent
operators, [DB99, DB00a].

We start with the definition of monoid, which is the simplest algebraic structure
used having only one operation. Monoids are used to generate the constraint objects,
belonging to the families FC(Ω) and FEC(Ω).

Then, monoids will be extended to semirings, which have two operations and
can be used to generate constraints of the remaining families FDC(Ω) and FDEC(Ω).

Definition 4.4 (Monoid [BL97]) A monoid is an algebraic structure (C,Q), where
C is the domain and Q is an associative binary function ⊗, i.e. (a⊗b)⊗c = a⊗(b⊗c)
for all a, b, c ∈ C; and there is an identity element, say 1, such that a⊗1 = 1⊗a = a
for any a ∈ C. A monoid M = (C, 1, ⊕) is called commutative and idempotent if
the function ⊕ is commutative2 and idempotent3.

Definition 4.5 (Semirings4 [Eil74]) A semiring is an algebraic structure (D, 1, 0,
⊗, ⊕) satisfying the following properties:

R1. (D, 1, ⊗) and (D, 0, ⊕) are commutative and idempotent monoids.

R2. 0 is an annihilator for ⊗, i.e. for every c ∈ D, c⊗ 0 = 0⊗ c = 0.

R3. for any possibly infinite family {ai}i∈I of elements of D: the sum a1⊕a2⊕· · ·,
denoted

∑

i∈I

ai exists and is unique, i.e. it is a well defined element in D.

Moreover associativity, commutativity and idempotence of ⊕ apply to infinite
as well as to finite applications of ⊕.

R4. ⊗ is left− and right−distributive over applications of ⊕, i.e. for any a, b, c ∈
D, a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

2

Let’ s denote one of the families FC and FEC with FCO
∧ and one of the families

FDC and FDEC with FCO
∧,∨ to highlight the connectives used in the respective

families.
2∀ a, b ∈ C : a⊗ b = b⊗ a
3∀ a ∈ C : a⊗ a = a
4Actually, Definition 4.5 define closed semirings. We abuse with notation and we call them

semiring, but referring to the closed ones.

62 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

Conjunction

Conjunction
Conjunction

Disjunction

Disjunction

Conjunction

Disjuction of

Existential

Conjunctions

Disjunction

Conjunction

of

Conjunctive

Existential

Conjunctive

Figure 4.2: Families of CO objects with operations

Figure 4.2 shows the four families and the operations under which they are closed.
The set FCO

∧ of conjunctive and existential conjunctive formulas is closed under the
operation ∧ and contains as element true, while FCO

∧,∨ is closed under the opera-
tions ∧ and ∨ and contains elements as true and false. Hence the structures

M = (FCO
∧, true, ∧)

S = (FCO
∧,∨, true, false, ∧, ∨)

are algebraic structures (in a wide sense of the word). At this point, no alge-
braic equation formulated in terms of fundamental operations is identically satisfied
in these structures, for example the operations ∧ and ∨ are neither commutative
nor associative. The situation changes essentially when we introduce the notion of
consequence and use it to construct from M and S some derivative structures. To
this end we have first to explain how the formal language Ω can be interpreted, i.e.
how definite meanings can be ascribed to symbols, formulas, and sentences.

As a base for interpretation we choose an arbitrary relational structure R =
(D, r0, . . . , rξ, . . .)ξ<β, where D is an arbitrary non-empty set and r0, . . . , rξ, . . . are
finitary relations among elements of D. The sequence of relations rξ in R has the
same length as the sequence of predicates pξ in Ω; each relations rξ is assumed to
be of the same rank as the corresponding predicate pξ, so that, e.g. rξ is a binary
relation if pξ is a two-place predicate. This implies that the logical connectives
assumed the usual meaning.

The symbol true has the meaning of some particular sentence which is obviously
true and the symbol false as the negation of true.

The interpretation of Ω inR extends in an obvious way from symbols to formulas
and sentences, to which we can apply the equivalence relation, (see Section 2.1.1).
We can now define a set of axioms for the sets of families. In the following ϕ1, ϕ2, . . .

4.1. CONSTRAINTS FAMILIES 63

are arbitrary formulas belonging to FCO
∧, and ψ1, ψ2, . . . are arbitrary formulas be-

longing to FCO
∧,∨ and, the symbol ∀ bounds all free variables of the formulas to

which it is applied.

Axioms for FCO
∧:

a1: R |= ∀(ϕ1 ∧ ϕ2 ↔ ϕ2 ∧ ϕ1) (commutativity)

a2: R |= ∀(ϕ1 ∧ (ϕ2 ∧ ϕ3)↔ (ϕ1 ∧ ϕ2) ∧ ϕ3) (associativity)

a3: R |= ∀(ϕ ∧ ϕ↔ ϕ) (idempotence)

a4: R |= ∀(ϕ ∧ true↔ ϕ) (identity element)

Axioms for FCO
∧,∨:

b1: The axioms a1 − a4,

b2: R |= ∀(ψ1 ∨ ψ2 ↔ ψ2 ∨ ψ1) (commutativity)

b3: R |= ∀(ψ1 ∨ (ψ2 ∨ ψ3)↔ (ψ1 ∨ ψ2) ∨ ψ3) (associativity)

b4: R |= ∀(ψ ∨ ψ ↔ ψ) (idempotence)

b5: R |= ∀(ψ ∨ false↔ ψ) (identity element)

b6: R |= ∀(ψ ∧ false↔ false) (annihilator)

b7: R |= ∀(ψ1 ∧ (ψ2 ∨ ψ3) ↔ (ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3)) and ∀((ψ1 ∨ ψ2) ∧ ψ3 ↔
(ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)) (left- and right-distributivity)

The proof is obvious, as it comes directly from the axioms of the first-order logic,
see [CL73].

The two sets of axioms establish criteriums to derive equivalent formulas, i.e. the
equivalence relations is based on the above axioms. The equivalence relation parti-
tions our sets in mutually exclusive equivalence classes, that we called respectively
Φ∧

CO and Φ∧,∨
CO .

a1 − a4 and b1 − b7 prove the followings two theorems:

Theorem 4.6 The algebraic structureM = (Φ∧
CO, true, ∧) is a monoid.

Theorem 4.7 The algebraic structure S = (Φ∧,∨
CO , true, false, ∧, ∨) is a semiring.

Remark 4.8 Monoids and closed semirings summarize in an algebraic framework,
all aspects of dealing with composition of constraints, such as unification and set
union. Idempotence, associativity and commutativity are necessary to allow the
operator ∨ to model in a general way the merging together of information via set

64 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

union. The operator ∧ corresponds to conjunction of constraints and plays the
important role of collecting information during computation. Distributivity allows
the representation of constraints as possibly infinite disjunctions of conjunctions
(also called in [GSG94] simple constraints).
Monoids and closed semirings are thus an appropriate algebraic generalization to
model constraint construction.

Syntactic Equality and Projection

As explained in Rem. 4.8, monoids and semirings tailor all aspects of conjunctions
and disjunctions of constraints. Other two important operations are projection and
variable renaming/dependencies. Therefore, we need a further structure, which al-
lows us to define axioms for them.

Cylindric algebras, formed by enhancing semirings with a family of unary oper-
ations called cylindrifications, provide a suitable framework for this [HJA71]. The
intuition is that given a formula ϕ, the cylindrification operation ∃Xϕ yields the
constraint obtained by projecting out from ϕ all information about the variables in
X. To handle variable dependencies between constraints, cylindric algebras provide
the diagonal elements. Such elements, denoted by dx,y, model atomic formulas of
the form x = y for arbitrary variables x and y. This provides an algebraic charac-
terization for syntactic equality.

Given a set of variables V , let C = (Φ∧,∨
CO ,∧,∨, true, false,∃X , dx,x′)X⊆V;x,x′∈V

be an algebraic structure where

• true, false, dx,x′ are distinct atomic elements of Φ∧,∨
CO ,

• the structure (Φ∧,∨
CO ,∧,∨, true, false) is a semiring,

such that the following postulates are satisfied for any constraints ϕ, ϕ′ ∈ Φ∧,∨
CO ,

variables {x}, X, Y ⊆ V and x, x′x” ∈ V :

C1. ∃Xfalse = false;

C2. ϕ ∨ ∃Xϕ = ∃Xϕ;

C3. ∃X(ϕ ∧ ∃Xϕ
′) = ∃X(∃Xϕ ∧ ϕ

′) = ∃Xϕ ∧ ∃Xϕ
′;

C4. ∃X∃Y ϕ = ∃(X∪Y)ϕ;

C5. ∃X(ϕ ∨ ϕ′) = ∃Xϕ ∨ ∃Xϕ
′;

D1. dx,x = true

D2. dx,x′ = dx′,x

D3. dx′,x” = ∃{x}(dx′,x ∧ dx,x”) where x 6= x′, x”;

4.1. CONSTRAINTS FAMILIES 65

D4. ∃{x}(dx,x′ ∧ (ϕ ∧ ϕ′)) = ∃{x}(dx,x′ ∧ ϕ) ∧ ∃{x}(dx,x′ ∧ ϕ′).

Theorem 4.9 The structure C is a cylindric algebra.

The proof comes from the definition of cylindric algebra in [HJA71].

The meaning of existential quantification is given by the axioms C1 − C5, while
equality are specified by the axioms D1−D4. Notice that Axioms D3 and D4 relate
the notion of renaming of variables with equality.
It is possible to derive a family of operations δy

x, defined on Φ∧,∨
CO as follows, for

x, y ∈ V such that x 6= y:

δy
xϕ = ∃{x}(dx,y ∧ ϕ) (4.1)

These operations capture semantics of variable renaming, since intuitively they
allow to change variables names. In particular, notions of “independence” and
“occurrence” of variables apply in the obvious way to constraints in Φ∧,∨

CO . Let ϕ be
a constraint in Φ∧,∨

CO , given a variable x, we define:

x indϕ⇔ δy
xϕ = ϕ (4.2)

for any y ∈ V such that x 6= y. A renaming of ϕ with respect to x is a constraint
δy
xϕ such that x 6= y and x indϕ.

From the above axioms, it follows that for any constraints ϕ, ϕ′ ∈ Φ∧,∨
CO and

variables x ∈ V , X ⊆ V and y, y′, y′′ ∈ V such that x 6= y, the following properties
hold:

P1: ∃X∃Xϕ = ∃Xϕ;

P2: ∃{x}ϕ = ϕ if x ind ϕ (in particular ∃{x}dy′,y′′ = dy′,y′′ when x 6= y′, y′′);

P3: ∂y
x∃{x}ϕ = ∃{x}ϕ;

P4: ∃Xtrue = true; ∃Xϕ = false iff ϕ = false;

P5: ∃{x}dx,y = 1;

P6: (dy,y′ ∧ dy′,y′′) ∧ dy,y′′ = dy,y′′ (transitivity).

In particular, from P3 if x is bound in ϕ then x ind ϕ. Therefore, if ϕ is a
renaming apart of ϕ′ with respect to x, then x ind ϕ. The property P2 extends to
conjunctions of constraints and describes the interaction of projection with (hidden)
variables: for any constraints ϕ and ϕ′ and X a set of variables such that x ind ϕ
for every x ∈ X, holds:

∃X(ϕ ∧ ϕ′) = ϕ ∧ ∃X(ϕ′).

66 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

There is an important relation between existential quantification (hiding variables)
and renaming apart of constraints with “fresh” variables. Namely, given constraints
ϕ and ϕ′, holds:

ϕ ∧ ∃{x}ϕ
′ = ∃{y}(ϕ ∧ ∂

y
xϕ

′), for y ind ϕ, ϕ′ and y 6= x

Example 4.2 This example describes the case of linear constraints, already introduced
in Section 2.3.3. In this case the number of variables are restricted a priori to some fixed
value n. In the following ~x = (x1, . . . , xn) is a point in Rn and xi is its i-th element.
The atomic constraints, in this case, are the hyperplanes, i.e. the sets of points ~x ∈ Rn

satisfying the linear equation of the form:

a1x1 + · · · anxn = b

and the corresponding halfspaces:

a1x1 + · · · anxn < b

a1x1 + · · · anxn > b

The conjunctive constraints are the convex polyhedra, i.e. the (possibly unbounded) set of
points constituting the intersection of a finite number of half-spaces.
Let Vn = {x1, . . . , xn} be a set of n variables and P the set of all space regions in Rn

defined as possibly infinite unions of convex polyhedra. For any finite n, the constraint
system of n-dimensional linear constraints is

(P,∩,∪,Rn, ∅, ∃X , [xi, xj]){xi,xj},X∈V

Each constraint c ∈ P can be represented as a set of conjunctions of the above linear
equations and disequations on the variables Vn = {x1, . . . , xn}.
The variable restriction operation ∃ is performed by cylindrification parallel to an axis[HJA71].
For any constraint c ∈ P and i ≤ n, we define:

∃xi
c = {~y ∈ Rn|yj = xj for, ~x and j 6= i}

∃xi
c is the cylinder generated by moving the point set c parallel to the xi axis (see

Figure 4.3).

on X and Y
projection

X

YZ

c(x,y,z)
parallel to Z axis
cylindrification

X
X

Z Y Z Y

Figure 4.3: Linear constraint

2

4.2. THE DATA MODEL 67

4.2 The data model

Recall Section 2.4. A database consists of a set of object classes of different types.
Each object class has an associated set of objects; each object has a number of
attributes with values drawn from certain domains or atomic data types. There
may be additional features, such has object valued attributes, methods, object class
hierarchies, etc. But the essential features are the ones mentioned above.

In our model, we want to treat constraints as a normal data type, to do that
we exploit the properties of constraint families described in Section 4.1.3, that al-
low to treat constraints as collection data type. In fact, monoids and semiring are
particularly suitable in data models to formally define such types.

In this section, we define first the abstract data types to represent constraints.
Then, we describe how to use monoids and semirings to represent uniformly types
in the data model, and in particular way the type constraint.

4.2.1 Constraint types

Beside objects, we are interested in attributes describing “constraints”. Hence,
objects can refer to the “constraint”, representing particular features. In Figure 4.4,
the object “House” has among its attributes, two references to constraints, which
describe the geometry and life time of the house, respectively.

Address

Owner

Constraint

Geometry

History

Figure 4.4: The object ”House”

Therefore, we would like to define data types, or in fact many-sorted algebras
containing several related types and their operations, for constraints.

We distinguish between primitive (or atomic) types and constructed types, de-
picted in Table 4.1.

Types, generated by their signature are e.g. int, pred, set, dec, etc. The set type
constructor is applicable to all types in the kind BASE, hence all types that can be
constructed by it are set(int), set(real), set(string) and set(bool); in the same way

68 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

Type constructor Signature

int, real, string, bool −→ BASE
list BASE −→ LIST
pred −→ PREDICATE
atom PREDICATE −→ ATOM
c ATOM −→ C
ec C −→ EC
dc C −→ DC
dec EC ∪DC −→ DEC
set BASE ∪DEC −→ SET

Table 4.1: Signature describing the type system

the type constructors c, ec, dc and dec construct the types c(atom), dec(ec), dec(dc),
etc.

So far we have just introduced some names for types. In the sequel, we describe
their semantics by defining their carrier sets, i.e. the domain on which they will be
interpreted.

We start with the constant (or primitive) types, i.e. type constructors without
arguments, and then discuss proper type constructors.

Base types The base types are int, real, string and bool. All base types have
the usual interpretation, except that each domain is extended by the value ⊥ (un-
defined).

Definition 4.10 (Base types) The carrier sets for the types int, real, string and
bool, are defined as:

Aint = Z ∪ {⊥},

Areal = R ∪ {⊥},

Astring = V ∗ ∪ {⊥}, where V is a finite alphabet,

Abool = {true, false} ∪ {⊥}.

Constraint types The types defined in this paragraph describe constraints syn-
tactically and thus instances of constraint types are logical formulas.

We defined first the type for predicate arguments and names, coming from the
flat vocabulary Ω of Definition 4.1. Arguments consist of variables and constants.

Definition 4.11 (Variables and constants) The carrier set for the types var and
const are defined as:

4.2. THE DATA MODEL 69

Avar = V ∪ {⊥},

Aconst = C ∪ {⊥}.

Definition 4.12 (Predicates arguments) The carrier set of the types of predi-
cates arguments is defined as:

Aarg = Avar ∪ Aconst.

Predicates are defined together with its rank.

Definition 4.13 (Predicates) The carrier sets of the types predicate name is de-
fined as:

Apred name = P ∪ {⊥}.

Apred = Apred name × Aint,

Then, we define the type atom; instances of this type are predicates, which repre-
sent the atomic formulas. Atomic formulas are set of lists (pred, arg1, . . . , argrank(pred)).
The type constructor atom serves at this purpose. To do this, we need to define the
function rank that given a predicate, returns its rank.

Definition 4.14 (Predicate’s rank) The rank of a predicate is defined as follows:

rank : Apred → Aint

rank((p, i)) = i.

From the definition of rank, a class of sub-types of predicates can be defined,
namely predicates with the specific rank n, for instance to these sub-types belong
unary, binary predicates. We define a partition of the carrier set Apred, denoted with
Apred(i), such that:

Apred(i) = {p ∈ Apred : rank(p) = i}

Definition 4.15 (Atomic constraints’ carriers) The carrier set for the type
atom is defined as:

Aatom =
n⋃

i=0

(Apred(i)× Aarg × · · · × Aarg
︸ ︷︷ ︸

i times

).

In order to control the computational complexity, we design a more flexible first-
order logic structure by constructing four interrelated constraint classes, correspond-
ing to the constraint families depicted in Figure 4.1. The containment relationship
between the families corresponds to the type (class) hierarchy, in which the type
dec is the super-type of the classes dc and ec and, dc and ec are super-type of the
class c, meaning that a constraint object of type C may be used as an argument
wherever its super-types are allowed. Informally, constraints types are described in
the following:

70 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

• c(atom) is the type corresponding to the family of conjunctive constraints.

• ec(atom) is the type corresponding to the family of existential conjunctive.

• dc(atom) corresponds to the family of disjunction of existential conjunctive.

• dec(atom) corresponds to the family of disjunction of existential conjunctive.

The type constructor c yields for any subset of objects of given type atom, the
conjunction of the object.

Definition 4.16 (c’s carrier) The carrier set of type c is defined as follows:

Ac =
n⋃

i=1

{ p1 ∧ p2 ∧ · · · ∧ pi | ∀j, 1 ≤ j ≤ i, pj ∈ Aatom}.

The constraint types dc and ec are derived from the type c, and they yield for any
subset of objects of given type c, the disjunction and the projection of the objects,
respectively.

Definition 4.17 (dc’s carrier) The carrier set of the type dc is defined as follows:

Adc = Ac ∪
n⋃

i=1

{ c1 ∨ c2 ∨ · · · ∨ ci | ∀j, 1 ≤ j ≤ i, cj ∈ Ac}.

Before introducing, the carrier set of the type ec, and thus the particular type
of quantified constraints, we need a function variable, that given a conjunction of
constraints returns the set of their variables.

Definition 4.18 (Function variable) Let A∗
var = {X ⊆ Avar} and c ∈ Ac, c =

p1 ∧ · · · ∧ pn and ∀i, 1 ≤ i ≤ n, pi = (qi, mi, arg1, . . . , argmi
), where mi = rank(qi).

In fact each pi is of type Aatom. The function variable is defined as follows:

variable : Ac → A∗
var

variable(c) =







n⋃

i=1

(variable(pi)) : c = p1, . . . , pn

{x|x ∈ X ∧ ∃j, 1 ≤ j ≤ mi : x = argj} : c = pi

Definition 4.19 (ec’ carrier) The carrier set of the type ec is defined as follows:

Aec = {∃X1
c1 ∧ · · · ∧ ∃Xn

cn | ∀i, 1 ≤ i ≤ n : (ci ∈ Ac, Xi ⊆ variable(ci) ∪ {∅} ∨ ci ∈
Aec, Xi ⊆ freevar(ci) ∪ {∅})} ∪ Ac

The function freevar : Aec → A∗
var is defined as follows:

if c ∈ Ac then freevar(c) = variable(c)

4.2. THE DATA MODEL 71

if c = ∃Xs, s ∈ Ac then freevar(c) = variable(s)/X

if c = s1 ∧ · · · ∧ sj ∧ ∃Y1
sj+1 ∧ · · · ∧ ∃Yn−j

sn then

freevar(c) =
j⋃

i=1

freevar(si) ∪

n−j

n⋃

k=j+1

l=j+1

freevar(∃Yk
sl)

if c = ∃X(s1 ∧ · · · ∧ sj ∧ ∃Y1
sj+1 ∧ · · · ∧ ∃Yn−j

sn) then

freevar(c) = (
j⋃

i=1

freevar(si) ∪

n−j

n⋃

k=j+1

l=j+1

freevar(∃Yk
sl))/X 2

The last constraint type is dec. Instances of this type are disjunctions of even-
tually quantified conjunctive constraints.

Definition 4.20 (dec’s carrier) The carrier set of the type dec is defined as follows:

Adec = Aec ∪ Adc ∪ {c1 ∨ · · · ∨ cn : ∀i, 1 ≤ i ≤ n, ci ∈ Aec}

4.2.2 Constraint objects and algebra

Constraint objects, i.e. instances of the types defined in the previous subsection,
are manipulated by means of a constraint algebra, whose operators are expressed
using connectives of the first-order logic, renaming of variables, and atomic (i.e.
flat) constraints. For example, if ϕ and ψ are constraint objects in x1, . . . , xn, their
intersection can be represented by ϕ∧ψ; their union by ϕ∨ψ and the projection of
ϕ on x1, . . . , xi, 1 ≤ i ≤ n, by (x1, . . . , xi)|ϕ. Let’s denote with Aconstraint the union
of all the carriers sets defined for constraints, i.e. Aconstraint = Ac∪Aec∪Adc∪Adec,
then

∨, ∧ : Aconstraint × Aconstraint → Aconstraint,

∃X : Aconstraint × A
∗
var → Aconstraint,

∨ returns a constraint resulting from applying the union operation to the arguments.
∧ returns the intersection of two constraints and ∃X performs the projection. All
operations are defined on all constraints types, but they have a different definition
depending on the type of constraints to which they are applied. Table 4.2 describes,
for each family, the allowed operations and the type of the result, which may belong
to a different family.

From Table 4.2, it follows that operators can be overloaded: for example ∧
in c(atom) is different from ∧ in dc(atom); they will be implemented differently
and returns the results of different types (with different representations). The

72 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

∨ ∧ (any)

dec(ec, dc) dec(ec, dc) dec(ec, dc) dec(ec, dc)
dc(c) dc(c) dc(c) dec(ec, dc)
ec(c) dec(ec, dc) ec(c) ec(c)
c(atom) dc(c) c(atom) ec(c)

Table 4.2: Operations on constraint types.

actual operator applied depends on the types of its arguments. As an exam-
ple, ∧(c(atom), c(atom)) will use the c(atom) operator; whereas, ∧(dc(c), dc(c)),
as well as ∧(c(atom), dc(c)) will use the operator from dc(c). For the application of
c op(arg1, arg2) we will use the lattice structure of the type hierarchy, where

sub− type � super − type

that, following the Figure 4.1, is:

c(atom) � ec(c), dc(c), ec(c), dc(c) � dec(ec, dc) (4.3)

The actual c op chosen is the one of the constraint type that is the least upper
bound of type (arg1) and type (arg2) on which c op is defined. For every c op used,
the least upper bound, if exists, is unique; hence there is no ambiguity. If no such
bound exists, c op is not allowed on arg1 and arg2.

In addition to the logical algebraic operators, all families have the following
operators. Let ϕ be a constraint object with variables x1, . . . , xn:

• rename(ϕ, x1/e1, . . . , xn/en) where x1, . . . , xn are replaced with the variables
e1, . . . , en.

• satisfy(ϕ) to check satisfiability of the argument, i.e. whether there exists an
assignment of D into its free variables that makes it true.

• truth value(var assign, ϕ) returns the truth value of the constraint under the
assignment var assign of constants into the ϕ free variables.

Furthermore, constraint algebras operate on a family of canonical representations
of constraint objects. For constraint objects C1, . . . , Cn a first-order logic formula
φ(C1, . . . , Cn), such as δyi

xi
Ci ≡ ∃xi

(xi = yi ∧ C), 1 ≤ i ≤ n denotes the variable
replacement, defines the following constraint algebra operator op:

op : FCO × · · · × FCO −→ FCO

such that:

4.2. THE DATA MODEL 73

1. replaces each Ci by the corresponding constraint expression,

2. does all variable replacement,

3. transforms the resulting constraint expression into the required (equivalent)
representation in one of the families FΩ.

The operator op has an interpretation I(op), which maps n relations to one.
Given I(C1), . . . , I(Cn), where I(Ci), 1 ≤ i ≤ n, is the relational interpretation of
Ci, introduced in Section 4.1 and x1, . . . , xm, I(op) computes the following relation:

{(x1, . . . , xm) |φ(C1, . . . , Cn)} (4.4)

Clearly, the duality between constraints and sets carries over the constraint algebra,
that is, the following commutative property holds:

I(op(C1, . . . , Cn)) = I(op)(I(C1), . . . , I(Cn)) (4.5)

4.2.3 Monoids and semirings as abstract data types

Monoids are particularly suitable in data models, to represent abstract data types
[FM95], and in particular way collection data types, i.e. lists, sets, bags etc.

Example 4.3 Consider lists and sets. One way of constructing sets is to union together a
number of singleton set elements, e.g. {1} ∪ {2} ∪ {3} construct the set {1, 2, 3}. Similarly,
one way of constructing lists is to append singleton list elements, e.g. [1] ± [2] ± [3]
constructs the list [1, 2, 3] (where ± is the list append function). Both ∪ and ± are
associative operations. The empty set {} is the identity of ∪, while the empty list [] is the
identity of ±. Therefore we say both (set, {}, ∪) and (list, [], ±) are monoids. 2

Primitive types, such as integers and booleans, can be represented as monoids
too. For example, both (int, 0, +) and (int, 1, ∗) are integers monoids and both
(bool, false, ∨) and (bool, true, ∧) are boolean monoids. We take the denotation
of [FM95], in which the monoids for collection types are called collection monoids
and the monoids for primitive types primitive monoids.

Collection monoids have also a function that takes an elements of some type as
input and constructs a singleton value of the collection type. It follows the formal
definition of a collection monoid, taken from [FM95].

Definition 4.21 (Collection monoid) Let T (α) be a type determined by the type
parameter α andM = (T (α), zero,⊕) is a monoid. The quadruple

(T (α), fT (α), zero, ⊕),

74 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

where fT (α) is a type constructor, is a collection monoid.

We can consider semiring as “structured nested monoids”, i.e. commutative
and idempotent monoids, where the constructed type T (α) is a monoid, that has
a different function and a different identity elements, and the function of the inter-
nal monoid is right and left distributive over applications of the external operation.
The domain of the structure semiring consists in this case of instances of a collection
monoid. A formal definition of collection semiring follows.

Definition 4.22 (Collection semiring) Let T (α) be a type determined by the
type parameter α, M = (T (α), fT (α),1,⊗) is a collection monoid. Let T (M) be
a type determined by the collection monoid M and S = (T (M),1,0,⊗,⊕) is a
semiring, then the structure

S = (T (M), fT (M),0,⊕)

is a collection semiring.

The family FC(Ω), as simple conjunctions of conjuncts, is generated by a finite
number of applications of the operator ∧ on elements created by the type construc-
tor c, defined in the last paragraph and thus are characterized by the monoids

MC = (C, true, c, ∧)

Let p be of type atom, the type constructor performs a simple casting, such that

c : Aatom → Ac

c(p) = pc, where pc ∈ Ac

The family FEC(Ω) contains existentially quantified conjuncts, that are gener-
ated by elements of the class FC(Ω),

MEC = (EC, true, ec, ∧)

Let p be of type c, the type constructor is as follows

ec : Ac → Aec

ec(p) = ∃Xp, where X ⊆ freevar(p)

The families FDC(Ω) and FDEC(Ω), as proved in Section 4.1.3, can be represented
as semirings, where the operations are ∧ and ∨; this implies that the corresponding
types can be defined as collection semirings, following the Definition 4.22.

Elements of the family FDC(Ω), being disjunctions of unquantified conjuncts,
are simply generated by the monoid MC . From Definition 4.17 and the definition

4.3. CONSTRAINT CALCULUS 75

ofMC , it follows that:

SDC = (DC(MC), false, dc, ∨)

The type constructor performs also a casting:

dc : Ac → Adc

dc(ϕ) = ϕdc, where ϕdc ∈ Adc

where ϕ is an element of type C.
Elements of the family FDEC(Ω) are disjunctions of “eventually” quantified con-

juncts, therefore they are generated by both monoid types MEC and MDC . Let]
be the type union, then

SDEC = (DEC(MEC]MDC), false, dec, ∨)

In this case the type constructor performs the following casting:

dec : Aec ∪ Adc → Adec

dec(ϕ) = ϕdec, where ϕdec ∈ Adec

Remark 4.23MEC is a nested monoid, because its domain is constructed from the
monoid MC , but it is not a semiring, as the inner monoid has the same operation
∧, while a property of semiring is to have two different binary operations.

Remark 4.24 The definition of constraint monoids and semirings follows the struc-
tures of constraint families depicted in Figure 4.1. For instance, the family FC(Ω)
is a sub-family of the families FEC(Ω) and FDC(Ω), i.e. the type C is a subtype of
the types EC and DC, that implies the mechanism of generation defined above, i.e.
elements of structuresMDC andMEC are constructed from constraints inMC .

4.3 Constraint calculus

In this section we introduce the formalism to query the constraint object-oriented
model. Querying object-oriented databases implies dealing with collection types,
nesting of type constructors, methods, etc. We have defined in Section 4.2.3 con-
straint data types as collection types, so we have a uniform construction of data
types in the model. At this point we need a query language, suitable to query the
defined structures. For this task, we exploit the well-known monoid comprehension
calculus, see [FM95]. This calculus is based on monoids, that can capture most
collection and aggregate operators currently in use for object-oriented databases.

76 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

Monoid comprehensions give a uniform way to express queries that simultaneously
deal with more than one collection type.

4.3.1 The monoid/semiring comprehension calculus

We have shown in Section 4.2.3 that types can be represented as monoids, and in
particular way constraints types. We have shown also that particular classes of
constraints are representable as semiring that can be defined as nested monoids.

Since all types are represented as monoids, a query in our framework is a mapping
from some monoids to a particular monoid. These mappings are called in [FM95]
monoid homomorphisms. Recall Example 4.2.3, a monoid homomorphism from lists
to sets is captured by an operation of the form

homlist→set(f)A

where A is a list and f is a function that takes an element x of A and returns
the set f(x). In other words, homlist→set(f)A replaces [] in A by {}, ++ by ∪, and
the singleton [x] by f(x). That is, if A is the list [a1, . . . , an], which is generated by
[a1] + + · · ·+ +[an], then the result is the set f(a1) ∪ · · · ∪ f(an).

Not all monoid homomorphisms are allowed. For instance, sets cannot be con-
verted into lists as this would introduce nondeterminism.

There exists an order relation between monoids that establish the properties of
homomorphisms.

Recall Definition 4.4. A monoid (T,1,⊕) is called commutative (idempotent,
resp.) if the operation ⊕ is commutative (idempotent, resp.). For example, the
monoid setα = (set(α), {}, f ′,∪), where f ′(i) = {i} for each instance i of type α,
is a commutative and idempotent monoid, and bagβ = (bag(β), {{ }}, f”, ∪̂), where
f”(i) = {{i}} for each instance i of type β and ∪̂ is the additive bag union, is a
commutative monoid. Intuitively, less properties correspond to more structure. For
example, the monoid bag has more structure that the monoid set because repetitions
in a bag do matter (since it is not idempotent), whereas in a set do not (since it is
idempotent. Similarly, the monoid list, being not commutative, has more structure
then the monoid bag, which is commutative.

Fegaras and Mayer, in[FM95], have defined a mapping g from monoids to the
set {C, I} as: C ∈ g(M) iffM is commutative and I ∈ g(M) iffM is idempotent.
The partial order between monoid names � is defined as :

N � M ≡ g(N) ⊆ g(M) (4.6)

This corresponds to the intuitive notion that N has more structure than M.
From 4.6, it follows that bagβ � setα.

If N � M, then an instance of type N can be translated deterministically, by
using the merge function of the monoidM, into an instance of the typeM, but not
vice versa.

4.3. CONSTRAINT CALCULUS 77

The monoid homomorphism is the only form of bulk manipulation of collection
types supported in the calculus of [FM95]. Nevertheless monoid comprehension is
very expressive. They go also beyond that capturing operations over multiple col-
lection types, such as the join of a list with a bag that returns a set, plus predicates
and aggregates. For example, an existential predicate over a set is a monoid homo-
morphism from the set to the monoid (bool, false,∨), while an aggregation, such as
summing all elements of a list, is a monoid homomorphism from the list monoid to
the monoid (int, 0,+).

Definition 4.25 (Monoid homomorphism [FM95])
A homomorphism homM→N (f)A from the collection monoidM = (T (α),1, unitM,⊗)
to any monoid N = (S,0,⊕), where M� N , is defined by the following inductive
equations:

homM→N (f)(1) = 0

homM→N (f)(unitM(a)) = f(a)

homM→N (f)(x⊗ y) = homM→N (f)x⊕ homM→N (f)y

4.3.2 Queries on monoids and semirings

Queries on monoids are expressed as monoid comprehensions [FM95]. Informally a
monoid comprehension over the monoid M takes the form M{e|r1, . . . , rn}, where
e is an expression called the head of the comprehension, and r1, . . . , rn is a list of
qualifiers, each of which is either

• an iterator of the form v ← e′, where v is a variable, and e′ is an expression
that evaluates to an instance of a collection monoid of typeM or

• a selection− predicate, which is an expression that evaluates to true or false.

The expressions in turn can include monoid comprehensions. An important
condition for the monoid comprehension is that for each 1 ≤ i ≤ n, each free
variable (i.e. free variables in the expressions and predicates) appearing in ri, . . . , rn

must appear as variables of an iterator among r1, . . . , ri−1, and each free variable
in e must appear as the variable of an iterator among r1, . . . , rn. Formally, monoid
comprehensions are defined in terms of monoids homomorphisms. In particular all
qualifiers in the comprehension are eliminated from the left to right until no qualifier
is left:

• M{e | } = fM(e)

• M{e |x← u, q̄ } = homN→M(λx.M{e | q̄ })u.5

5λx.e is the function f such that f(x) = e.

78 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

• M{e | pred, q̄ } = if pred thenM{e | q̄ } else 0M

As semirings can be considered nested semirings, we can use monoid comprehen-
sions to query semiring structures. In our case, monoids comprehensions have the
fixed form

S{e|m1, . . . ,mn}

where e is the head of the comprehension, and m1, . . . ,mn is a list of iterators of
the form v ←M{e|r1, . . . , rk}, andM{e|r1, . . . , rk} is a monoid comprehension.

We assume that each instance of a semiring is represented as an expression in-
volving ∨, ∧, false, fM and true. For example the formula (p1 ∧ p2) ∨ p3 can be
represented as

∨ (∨ (false,∧ (∧ (true, fSdc(p1)), f
Sdc(p2))), f

Sdc(p3)).

We will assume that every semiring instance is conceptually represented in this
way, and thus, the notation S{M1, . . . ,Mn} will denote the expression

∨ (. . . ∨ (∨(false,M1),M2), . . . ,Mm)

where Mi, 1 ≤ i ≤ n are instances of type monoid and Mi{a1, . . . , am} will denote
the expression

∧ (. . . ∧ (∧(true, fMi(a1)), f
Mi(a2)), . . . , f

Mi(am))

Furthermore, S{} and n = 0 will both denote false, and if n = 1 then S{M} =
M.

Let M be a monoid comprehension over a monoidM = (T, zero, unit, merge),
we can define instances of type T by first initializing result with zero, and then in-
voking the procedure insert MC(result, M) (developed by Brodski et al. in [BSCE97])
defined recursively by the following rules:

(r1) insert MC(result,M{e|})
→ result := merge(result,unit(e))

(r2) insert MC(result,M{e|false, ~r})
→ nil

(r3) insert MC(result,M{e|true, ~r})
→ insert MC(result,M{e|~r})

(r4) insert MC(result,M{e|x← N{a1, . . . , an}, ~r})
→for i = 1 to n do insert MC(result,M{e|~r}[x/ai])

4.3. CONSTRAINT CALCULUS 79

4.3.3 Syntax and semantics of queries

The syntax of comprehensions is of the form:

select expr
into [{monoid type}] [result]
from iterators
where conditions

expr in the select clause is an arbitrary expression that evaluates to the type of
result’s element. expr may involve variables instantiated in the from clause and
may also contain nested monoid comprehensions. The first parameter in the into
clause specifies the type of result. Any number of iterators, separated by commas
can appear in the from clause; further, any number of predicates (conditions) may
appear in the where clause. The semantics of monoid comprehensions is defined by
the corresponding formal monoid comprehension. The basic evaluation is made by
the nested loop algorithm, described in Section 4.3.2. We show a query with the
next example.

Example 4.4 We want to represent parcels and buildings. We define two classes repre-
senting them:

class parcel { class building {
string owner int no of rooms
int area int no of floors
list(building) constructed} date year of construction}

Let all parcels be of type set(parcel). The query find a set of parcels, whose area is bigger

that 100mq with a building having no more than two floors can be written using the
following query:

select pc
into {set(parcel)} result
from all parcel as {parcel*} pc % iterator: pc iterates over set
where pc.area > 100
from pc.constructed as {building*} bu % iterator: bu iterates over list
where bu.no of floors < 2

The above query corresponds to the following monoid comprehension:

set { pc | pc ←− parcel,
pc.area > 100,
bu ←− pc.constructed,
bu.no of floors < 2 }

80 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

The semantics of the query is given by the following nested loop program:

result = empty set;
FOREACH pc IN parcel DO

IF pc.area > 100 THEN
FOREACH bu IN {list} pc.constructed DO

IF bu.no of floors < 2 THEN
INSERT pc INTO result 2

4.4 Constraint classes

In this section, we define and create constraints as classes in an object-oriented
model, using the Java platform. This automatically enables us to deploy them on a
database server and then use them as data types extending data types of SQL.
We follow the following basic principles:

• constraints are organized in classes as the other objects,

• constraints have methods, e.g. conjunction, disjunction etc.

• constraints can occur in attributes of any object, e.g. geometry of a region in
a GIS.

We start defining the classes Monoid and Semiring that constitute the bricks, on
which all the constraint classes, and not only, will be built. Then, it follows the
definition of classes implementing the types described in Section 4.2.

4.4.1 The classes Monoid and Semiring

To represent the minimum requirements for primitive and collection monoids, con-
sider the recursive rules defining the result of a monoid comprehension. For the
monoid M to appear in the result of the monoid comprehension, we only need to
(1) use false/true and (2) know how to perform

result := merge(result,unit(e))

which is, in fact the insert MC(result, M{e|}) operation (the operator merge of a
monoid). In order for the collection monoid N to appear inside the comprehension,
we only need to be able to iterate over N{a1, . . . , an}, i.e. to perform the for loop.

The representation of monoids and semirings in our framework is based on two
Java (abstract) classes, and a Java interface, parameterized with the type A of col-
lection elements.

interface CollectionMonoidI {
void Merge(Monoid m);

4.4. CONSTRAINT CLASSES 81

Iterator CreateIterator();
}

abstract class CollectionMonoid implements CollectionMonoidI{
Collection A; % class implementing the domain of the monoid
CollectionMonoid(); % constructor used as 0
void Merge(CollectionElement A);
Iterator CreateIterator()= return A.Iterator();

}

The class CollectionMonoid reflects the minimum requirements: it has 0, imple-
mented as class constructor, and Merge and CreateIterator as methods. An Iterator
object, created by CreateIterator, has First, More and Next methods which can be
directly used in the for loop. The class is an abstract class, because the method
Merge cannot be defined a priori, as it is different for each monoid.

Semirings are monoids as well, therefore objects of type semiring have to be
“casted” to monoid types. Java allows it, by using interfaces.

“A Java interface defines a set of methods but does not implement them. A class
that implements the interface agrees to implement all of the methods defined in the
interface, thereby agreeing to certain behavior”([Jav]). Defining a new interface
means in essence defining a new reference data type. One can use interface names
anywhere any other data type name can be used.

We define a semiring class as the following:

abstract class Semiring implements MonoidI {
CollectionMonoid M1;
Semiring();
void Merge(CollectionMonoid M2);
Iterator CreateIterator() return M1.CreateIterator();

}

The Subclasses C, EC, DC and DEC

The classes, representing the four constraint families, are subclasses of the classes
CollectionMonoid and Semiring. In these classes the collection elements are instan-
tiated as set of predicates, for C, a set of objects of type C, for EC and DC, and,
a set of objects of type EC and DC, for DEC. The casting operation between
classes is made possible by the relations between the corresponding interfaces, see
Figure 4.5.

Moreover, each class has methods to implement the operations described in Sec-
tion 4.2.2, and in particular way they implement the lattice structure expressed by
the formula 4.3

82 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

Monoid Semiring

C

EC

DC

DEC

implrments

extends

Figure 4.5: The schema of the classes

Constraint classes are abstract as well, since some of the operations, such as
projection, depend on the type of the atomic formulas. We will study this case
in the next chapters, where we will map atomic formulas on temporal and spatial
predicates and on linear constraints.

abstract class C extends CollectionMonoid {
C() { return CollectionMonoid()}
C(set(Predicate) atoms) { A = atoms };
void Merge(Collection A){
%implement *conjunction*}

%methods: rename, satisfy, op
};

abstract class DC extends CollectionSemiring implements C{
DC() { return CollectionSemiring()}:
DC(C conj) { A = conj };
void Merge(CollectionMonoid A){
%implement *disjunction*}

%methods: rename, satisfy, op
};

The class Predicate represents the atomic formulas and it is an abstract class,
which will be specialized by the predicates belonging to P of the vocabulary Ω,
on which the constraints are defined. The class C initializes the global variable A
with the set of atomic formulas, composing the conjunctive constraints. In the next
chapter, we will define the class Predicate as a set of classes, each one implementing

4.5. CONSIDERATIONS 83

a predicate of P .
The constructors C(), DC() are those of the parent classes, while the constructor

DC(C conj) initializes the variable A with the conjunctive constraints, (which are
of type CollectionMonoid), that constitutes the domain of the semiring structure,
represented by the disjunction of conjunction constraints.

Methods in the subclasses implement the operations conjunction and disjunction
and they are different depending on which constraint family they operate. On the
conjunctive families, the ∧ operator simply combines its arguments and it is constant
time.

On the disjunctive families, the ∨ operator is constant time, while D1 ∧ D2,
where D1 = ∨i=1,...,nC1i andD2 = ∨j=1,...,mC2j is more involved:

D1 ∧D2 =
∨

i=1,...,n

C1i ∧
∨

j=1,...,m

C2j =
∨

i=1,...,n,j=1,...,m

(C1i ∧ C2j) (4.7)

that is, the result consists of all combinations of C1i and C2j that are mutually
consistent (i.e. their conjunction is satisfiable). Since the constraint families are
monoids, D1 ∧D2 can be implemented as the following query:

select c1 ∧ c2
into {DEC} conj D1 and D2
from D1 as {EC} c1

D2 as {EC} c2
where satisfy(c1, c2)

The classes EC and DEC are similarly implemented to the classes C and DC,
respectively. They have a method more, which implements projection. The method
is abstract, because it will be specialized in the sub-classes.
Remark 4.26 Java gives the possibilities of defining interfaces, with which one can
simulate the inheritance (and multiple inheritance) relationships between classes.
Defining the four constraint classes as interfaces allows us to use the “casting”
between the constraint classes. In Section 4.2.1, we said that C is a sub-type of DC
and EC, i.e. a constraint of type C is also a constraint of type EC and DC and
operations defined on the types EC and DC have to apply to constraints of type C
as well. To model this relationship, we can declare C as interface, with the method
conjunction, then we force the classes/interfaces EC and DC to “implement” the
interface C, meaning that 1) the operation of conjunction must be defined on objects
of the classes EC and DC and, 2) objects (constraints) of the classes DC and EC
can be casted to objects (constraints) of the class C.

4.5 Considerations

In this section, we make some considerations about the usefulness of our choices,
described in the previous sections.

84 CHAPTER 4. HOW TO BUILD CONSTRAINT OBJECTS

In Section 4.1 we described the constraint families, chosen to represent data. The
challenge here is the development of constraint families and algebras, that strike a
careful balance between

(1) expressiveness,

(2) computational complexity,

(3) representation usefulness

An example of a very expressive, but having high (exponential) time data com-
plexity is the DISCO (Datalog with Integer and Set order Constraint) query lan-
guage [BR95].

On the other hand, Kanellakis, et al. in [KKR90] represent data by using a fairly
restricted sub-family of first-order logic, i.e. disjunction of unquantified conjunctions
of atomic constraints and the algebra allows quantifier elimination. Still, for some
atomic constraint families, such as linear inequalities over reals, this framework
may be computationally unmanageable: the quantifier elimination may result in a
constraint exponential in the size of the original conjunction, although for many
sub-families more efficient algorithms were developed.

Thirdly, the framework of [BSCE97] implements with low complexity linear con-
straints, and it is for our opinion a good compromise between the three requirements
described above. Anyway we think that the approaches, that choose a priori a par-
ticular class of atomic constraints limit in general the expressiveness and force the
employment of ad-hoc algorithms, to perform operations between constraints.

In Section 4.2 we defined types and operations for the four families. The four
types are carefully constructed with the complexity consideration in mind as follows.
First, all operations allowed on the families have polynomial data complexity. This
is the reason, for example, that c(atom) is not closed under general projection:
transforming the result into c(atom) will require quantifier elimination and thus
the size of the result (and, of course, time complexity) may be exponential in the
number of variables eliminated. Whereas, ec(atom) is closed under the general
projection since the general projection is lazy: ec(atom) allows quantifiers in the
internal representation and hence no physical quantifier elimination is performed.

Chapter 5

Modeling Spatial Information

In this chapter, we present an extension of the model described in Chapter 4, defining
spatial types and operators, to represent spatial information. The chapter is divided
in two main sections, proposing two different mappings: Section 5.1 presents a
mapping of flat constraints to predicates, interpreted as sets of spatial objects, of
the Spatial Cartridge of Oracle8; in Section 5.2 flat constraints are mapped to linear
constraints.

5.1 Mapping flat constraints to OracleSpatial pred-

icates

In this section we design a spatial constraint database, whose atomic constraints
consist of the OracleSpatial predicates, see Section 3.2.1. The challenge here is the
definition of the duality between spatial objects and constraints. Let’ s show this
concept with the following example.

Example 5.1 We suppose to have a database that stores polygons. As shown in Fig-
ure 5.1, the database contains seven polygons Pi, each of them belongs to a class-type
polygon and it is modeled by the constraint Ci

���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����

���
���
���

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

C1

C2

C4

C5

C7
C6

C3

Figure 5.1: A database of polygons

86 CHAPTER 5. MODELING SPATIAL INFORMATION

Suppose that we want to query for adjacent objects, and to store the result like a
new polygon, as shown in Figure 5.2, in which the objects C3, C4 and C6 are adjacent
and their relation can be expressed by the constraint C3 touchC4 touchC6, that can be
restored as the object C8.

�����
�����
�����

���
���
���

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

C8

Figure 5.2: The new object C8 = C3 touchC4 touchC6

2

Example 5.1 shows the particular nature of the constraint C3 touchC4 touchC6,
that is to express, in this case, a particular object in the space by means of relations
between other objects in the database. This duality is very important for defining
consistent and closed queries, (recall Section 2.3).

At this purpose, we map flat constraints to OracleSpatial predicates. In Chap-
ter 4 we have defined a data model based on constraints, whose vocabulary Ω and
interpretation structure M = 〈D,Ω〉 have been let unspecified. The process of
mapping defines first the vocabulary and the interpretation domain, then it defines
the spatial types and operations.

5.1.1 Spatial constraints

As described in Section 4.1, a flat vocabulary Ω is a pair 〈P , C〉, where P is the set of
predicates and C the set of constants, which will be used to define atomic constraints.

Definition 5.1 (Spatial vocabulary) The spatial vocabulary ΩS consists of the
set PS = SPbin ∪ SPuna, where SPbin contains the following two-place predicate
symbols: disjoint, equal, touch, contains, inside, covers, covered by, overlap and
SPuna = {point, line, polygon}.
CS = Astring.

The two-place predicate symbols correspond to the spatial predicates of Ora-
cleSpatial (see Section 3.2.1), that implements the spatial relationships between
2-dimensional spatial objects, defined by Egenhofer and described in this thesis in
Section 3.2.2. Astring is the set of strings defined in Definition 4.10. Therefore, spa-
tial constraints are made up from atomic formulas, defined on ΩS. We denote the
set of spatial formulas with FS.

Recall Definition 2.3. To define a modelMS for the spatial flat vocabulary ΩS,
first we have to define the spatial domain DS and then an interpretation of spatial
predicates on elements of the domain.

5.1. MAPPING CONSTRAINTS TO ORACLESPATIAL 87

We define DS as the set of geometries (i.e. spatial objects, supported by Ora-
cleSpatial). This implies that DS =⊥ ∪Apoint ∪Aline ∪Apolygon ∪Dmultiobjects, where

Apoint = {(x, y)|x, y ∈ R},

Aline = {(p1, . . . , pn)| ∀i, 1 ≤ i ≤ n, pi ∈ Apoint},

Apolygon = {(p1, . . . , pn, p1)| ∀i, 1 ≤ i ≤ n, pi ∈ Apoint}

The above three sets are the carrier sets of the OracleSpatial primitive types and
they show the way how simple spatial objects are represented by OracleSpatial, i.e. a
sequence of points. Among the objects of DS are included lines and polygons, whose
vertices are connected by straight line segments and circular arcs; Figure 3.6 and
Figure 3.7 illustrate all kind of objects of DS. Arcs are represented in OracleSpatial
by three vertices. We won’ t go into detail in defining them, and we assumed that
the above sets contain lines and polygons made up from arcs, as well.

Furthermore, OracleSpatial supports five types of multi-objects, namely polygons
with holes, point cluster, (Figure 5.3(a)), multilinestring, (Figure 5.3(b)), multipoly-
gon, (Figure 5.3(c)), and collections, (Figure 5.3(d)).

r r
r r

r
r

r
r

r
r

a) point cluster

�
�

�@
@

@
@ �

b) multilinestring

��
��

���
HHH

HHH
���

�
�

�
�

c) multipolygon

�

r
r

d) collection

Figure 5.3: Representation of multiobjects

Oracle requires that polygons in collection and multipolygon must be disjoint.
Thus, Dmultiobjects = Apolygon with holes ∪ Apoint cluster ∪ Amultilinestring ∪ Amultipolygon ∪
Acollections.

Hence, the interpretation of ΩS-constraints is given on the spatial domain DS,
assigning to each constraint a binary relation between elements of DS, that corre-
sponds to one of the spatial geometries described above. At this purpose, we define

88 CHAPTER 5. MODELING SPATIAL INFORMATION

an interpretation function. Let FS(n) be the set {ϕ ∈ FS | freevar(ϕ) = n}, D∗

denote {X ⊆ D}, then we define a class of functions:

In : FS(n) −→ (DS × · · · × DS
︸ ︷︷ ︸

n times

)

The following definition builds the interpretation functions, defined on atomic for-
mulas.

Definition 5.2 (Interpretation of atomic constraints). Let PS(i) be the set
of i-place predicates of PS, p ∈ PS and o, o1, . . . , on elements of DS, then the inter-
pretation function I on atomic formulas is:

In∈{1,2} : PS(n) −→ Dn
S

where I is defined for each predicate of PS as follows:

In∈{1,2}(p(x1, x2)) = {(o1, o2) | relp(o1, o2)}

where relp(o1, o2) is the OracleSpatial relation obtained by the following select:

select o1, o2

from obj1 o1, obj2 o2

where p(o1, o2)=’true’
2

Theorem 5.3 Each tuple of relp is representable as an OracleSpatial object.

Proof. To prove the theorem we define a family of functions

composen∈N : Dn
S −→ DS

such that

compose2(disjoint(o1, o2)) =







o ∈ Apoint cluster : (o1, o2) ∈ A
2
point

o ∈ Amultilinestring : (o1, o2) ∈ A
2
line

o ∈ Amultipolygon : (o1, o2) ∈ A
2
polygon

o ∈ Acollection : otherwise

compose2(touch(o1, o2)) =







o ∈ {o1, o2} : (o1, o2) ∈ A
2
point

oi, i ∈ {1, 2} : j 6= i, oj ∈ Apoint

o ∈ Aline : (o1, o2) ∈ A
2
line

o ∈ Apolygon : (o1, o2) ∈ A
2
polygon

o ∈ Acollection : (o1, o2) ∈ (Aline × Apolygon)∪
(Apolygon × Aline)

⊥: otherwise

5.1. MAPPING CONSTRAINTS TO ORACLESPATIAL 89

compose2(equal(o1, o2)) = o ∈ {o1, o2}

compose2(overlap(o1, o2)) = intersection(o1, o2)

where intersection(o1, o2) returns the spatial object resulting from the intersection
between o1 and o2.

Figure 5.4 and Figure 5.5 show the new polygon, generated by the constraints
touch(p1, p2) and overlap(p1, p2) respectively.

P1

P2

Figure 5.4: Interpretation of the atomic constraint touch(p1, p2)

P1 P2

O

Figure 5.5: Interpretation of the atomic constraint overlap(p1, p2)

compose2(covers(o1, o2))
compose2(contains(o1, o2))

}

= o2

compose2(covered by(o1, o2))
compose2(inside(o1, o2))

}

= o1

2

The spatial object o, resulting from the constraints disjoint, equal and touch, is
obtained by the following procedure:

1. In the first step, the OracleSpatial predicate sdo relate(obj 1, obj 2, rel), where
rel ∈ Mask = {DISJOINT, TOUCH, EQUAL}, is applied to x1, x2 to find the
pair (o1, o2) of objects in the database, which satisfies the relation specified in
rel.

90 CHAPTER 5. MODELING SPATIAL INFORMATION

2. In the second step the object o, is created from the objects resulting from the
first step and inserted in the appropriated table. This is made using the Oracle
construct insert.

Example 5.2 We show the two steps, taking as example the touch(x1, x2) constraint.
We create a view where we insert the object, that results from composition of the pairs of
spatial objects, which touch each other. We assume that the spatial objects are stored in
tables obji(idi, geo).

create view touching obj as
select o1.id1, o2.id2, sdo geom.sdo poly union(o1.geo, o2.geo)
from obj1 o1, obj2 o2
where mdsys.sdo relate(o1, o2, ’mask=touch, querytype=join’)=’true’

2

The objects intersection(o1, o2), resulting from the constraint overlap(x1, x2), is
the intersection of the objects, which satisfy the OracleSpatial predicate sdo relate(obj 1,
obj 2, overlap) and they are obtained by the following command:

create view overlap obj as
select o1.id1, o2.id2, sdo geom.sdo poly intersection(o1.geo, o2.geo)
from obj1 o1, obj2 o2

where mdsys.sdo relate(o1, o2, ’mask=overlap, querytype=join’)=’true’

Finally, the objects resulting from the interpretation of the constraints covers,
covered by, contains and inside are obtained by the following commands, where
rel1 ∈ {COVERS, CONTAINS} and rel2 ∈ {COVERED BY, INSIDE}:

create view rel1 obj as
select o1.id1, o2.id2, o2.geo,
from obj1 o1, obj2 o2

where mdsys.sdo relate(o1, o2, ’mask=rel1, querytype=join’)=’true’

create view rel2 obj as
select o1.id1, o2.id2, o1.geo,
from obj1 o1, obj2 o2

where mdsys.sdo relate(o1, o2, ’mask=rel2, querytype=join’)=’true’

The process of interpretation of atomic constraints assigns to each atomic formula
an OracleSpatial relation, i.e. a set of elements or pairs of elements of the spatial
domain, which are OracleSpatial objects themselves. For constraint formulas the
process is more complicated. In this case, we have to assign to the logical connectives
∧, ∨ and ∃, operations on OracleSpatial relations. As we said in Section 4.2.2, these
operations operate on canonical forms of constraints, performed by the operator op.
In the case of constraints on ΩS, op is reduced to the renaming operator δy

x, defined
by Eq. 4.1. The renaming of variables may change the type of the constraint, to

5.1. MAPPING CONSTRAINTS TO ORACLESPATIAL 91

which it is applied; from Eq. 4.2 it follows, that the operation δy
xϕ introduces an

equality constraint and a projection, if x is not independent in ϕ. This implies that,
for instance, if ϕ is of type C, the renaming would transform it in a constraint of
type EC.

Example 5.3 We consider the following C constraint:

disjoint(x1, x2) ∧ touch(x2, x3)

In the above formula, there is a variable dependency, due to the condivision of x2, thus
the operator op transforms it in the following EC constraint:

∃y(disjoint(x1, x2) ∧ equal(x2, y) ∧ touch(y, x3)) (5.1)

2

This transformation allows us to apply the equality in Eq. 4.5. Then, the in-
terpretation function I can be defined inductively, first on simple conjunction of
constraints, then on existentially quantified conjunctives and, finally on disjunc-
tions of existentially quantified conjunctives.

Definition 5.4 (Interpretation of simple conjunctives). Let
∧

1≤i≤n

j∈{1,2}

pj
i be a sim-

ple conjunctive, where pji

i , 1 ≤ i ≤ n are atomic formulas with rank ji, then

In(
∧

1≤i≤n

ji∈{1,2}

pji

i) = In(Iji
(pj1

1), . . . , Ij(p
jn
n))

where Iji
(pji

i), 1 ≤ i ≤ n is given by Definition 5.2. 2

We apply the function composen to generate the spatial objects corresponding
to each tuple of the relation corresponding to the simple conjunctive constraint

∧

1≤i≤n

j∈{1,2}

pj
i , with free variables x1, . . . , xk, k ≤ 2 ∗ n, as follows:

composen(In(
∧

1≤i≤n

j∈{1,2}

pj
i)[o1, . . . , ok]) =

composen(composej(Ij(p
j
1))[o1, o2], . . . , composej(Ij(p

j
n))[ok−1, ok])

The function compose, as the operator op in Section 4.2.2, is commutative as well.
Its application to a conjunction of atomic constraints can be translated as the inter-
pretation of the tuple whose each element is the result of the application of compose
to each atomic formula. Therefore, we need to define compose, when applied to n
spatial objects.

92 CHAPTER 5. MODELING SPATIAL INFORMATION

composen(o1, . . . , on) =






o ∈ Apoint cluster : ∀i, 1 ≤ i ≤ n, oi ∈ Apoint ∪ Apoint cluster

o ∈ Amultilinestring : ∀i, 1 ≤ i ≤ n, oi ∈ Aline ∪ Amultilinestring

o ∈ Amultipolygon : ∀i, 1 ≤ i ≤ n, oi ∈ Apolygon ∪ Amultipolygon

o ∈ Acollection : otherwise

(5.2)

Definition 5.5 (Interpretation of existentially quantified conjunctives).
Let n ∈ Z, n ≥ 1, an existentially quantified conjunctive is the constraint ϕ =
∃X(c1∧· · ·∧cn), where X ⊆ var(c1∧· · ·∧cn). Let var(ϕ) = {x1, . . . , xm,m ≤ 2∗n},
we suppose, without loss of generality, that Y = var(ϕ)/X = {x1, . . . , xj | j < m},
then ∃X(ϕ) is the projection of ϕ on Y , (Y)|ϕ, that is the following OracleSpatial
relation:

Ij((Y)|ϕ) = {(o1, . . . , oj) ∈ D
j
S | relϕ(o1, . . . , oj)} ≡

select x1.geo, . . . , xj.geo
from obj1 x1, . . . , objm xm

where mdsys.sdo relate(x1.geo, x2.geo, ’mask=p1 querytype=join’)=’true’ and
. .
mdsys.sdo relate(xm−1.geo, xm.geo, ’mask=pn querytype=join’)=’true’

2

It follows that

composej(∃X(c1 ∧ · · · ∧ cn))[o1, . . . , oj] = composej(o1, . . . , oj)

defined by Eq. 5.2.

Example 5.4 Recall Example 5.3. The process of interpretation of the constraint 5.1
generates first the table:

x1 x2 x3

p1 p2 p3

.

as result of the SQL query

select x1.geo, x2.geo, x3.geo

from obj1 x1, obj2 x2, obj2y, obj3 x3

where mdsys.sdo relate(x1.geo, x2.geo, ’mask=disjoint querytype=join’)=’true’ and
mdsys.sdo relate(x2.geo, y.geo, ’mask=equal querytype=join’)=’true’ and
mdsys.sdo relate(y.geo, x3.geo, ’mask=touch querytype=join’)=’true’

Depending on the spatial relationship existing between the two objects p1 and p3, the
resulting spatial object is one of the four objects shown in Figure 5.6.

2

5.1. MAPPING CONSTRAINTS TO ORACLESPATIAL 93

p1

p2

p3

p2
p3

p1

(a) (b)

(c)

p2
p3 p1

p3

p2

(d)

p1

Figure 5.6: Interpretation of the constraint disjoint(x1, x2) ∧ touch(x2, x3)

Definition 5.6 (Interpretation of disjunction of existentially quantified
conjunctives). Let n ∈ Z, n ≥ 1, a disjunction of existentially quantified con-
junctives is the constraint ϕ = (c1 ∨ · · · ∨ cn), where ∀i, 1 ≤ i ≤ n, ci is either a
conjunctive or an existential conjunctive constraint with xji

free variables. We de-
fine the interpretation function as follows:

Ij(c1 ∨ · · · ∨ cn) =
n⋃

i=1

Iji
(ci)

2

Therefore, the interpretation structure (or model) isMs = 〈DS, In∈N〉.
In order to have the spatial object/constraint duality, we have to prove that the

OracleSpatial unrestricted relations are definable onMS with ΩS-constraints1.

Definition 5.7 (Oracle unrestricted relations). An Oracle unrestricted tuple
consists of a spatial object, belonging to DS. An unrestricted relation is a set, that is
a union, of spatial object, i.e. a subset of DS. Any collection of Oracle unrestricted
relations defines an Oracle unrestricted database.

Theorem 5.8 The Oracle unrestricted database is definable on MS with ΩS-
constraints.

Proof: To prove the theorem, we just have to show how to represent each spatial ob-
ject in DS using ΩS-constraints. At this purpose, we define the function decompose,
which transforms an OracleSpatial object in a ΩS-constraint.
The function is defined for each object of DS and returns a constraint, that belongs
to one of the four families. First, we define the function on unrestricted tuples, i.e.

1Unrestricted relations and definability have been described in Section 2.2.1.

94 CHAPTER 5. MODELING SPATIAL INFORMATION

elements of DS, and then on unrestricted relations, unions of tuples, i.e. subsets of
DS.
The definition of decompose proves the theorem, as it translates unrestricted tuples
and relations in ΩS-constraints, and therefore proves that the Oracle unrestricted
database is definable onMS with ΩS-constraints:

decompose : DS −→ FS

decompose(x) =







point(x) : x ∈ Apoint

line(x) : x ∈ Alinestring

polygon(x) : x ∈ Apolygon

(
n∧

i=1

polygon(pi)) ∧ (
n−1∧

1=1

contains(pi, pi+1)) : x = (p1, . . . , pn) ∈ Apolygon

n∧

i=1

point(pi) : x = (p1, . . . , pn) ∈ Apoint cluster

n∧

i=1

line(li) : x = (l1, . . . , ln) ∈ Amultilinestring

n∧

i=1

polygon(pi) ∧
n∧

i,j=1

i6=j

disjoint(pi, pj) : x = (p1, . . . , pn) ∈ Amultipolygon

n∧

i=1

point(pi)
∨ m∧

j=1

line(lj)
∨

(
k∧

h=1

polygon(sh)
k∧

i,j=1

i6=j

disjoint(si, sj)) :
x = (p1, .., pn, l1, .., lm, s1, .., sk)
∈ Acollection

An OracleSpatial unrestricted relation {t1, . . . , tn|t ∈ DS} is a set of unrestricted
tuples, thus it follows that

{t1, . . . , tn|t ∈ DS} is definable by the constraint
n∨

i=1

decompose(ti)

2

Theorem 5.8 states that an arbitrary OracleSpatial relation is representable as
an ΩS-constraint, which proves that the mapping of ΩS-constraints to OracleSpatial
objects is complete.

5.1.2 Extension of the data model with OracleSp types

In this subsection, we define the spatial constraint types and extend the data model
defined in Section 4.2 with them. In that section, we drew Table 4.1, which gives a
scheme of the “abstract” constraint types, thus constraints types have been defined

5.1. MAPPING CONSTRAINTS TO ORACLESPATIAL 95

on a generic carrier set. In the following we specialize those types, instantiating
them with OracleSpatial constraints. Such instantiation is made defining the carrier
set of the type constructors PREDICATE ORA SP . Table 5.1 shows the spa-
tial constraint types. The types name ORA SP are subtypes of the corresponding
constraint types name defined in Section 4.2.

Type constructor Signature

disjoint, touch, equal,
overlap, inside, contains,
covers, covered by,
point, line, polygon −→ ORA SP PRED
atom oraSp ORA SP PRED −→ ORA SP ATOM
c oraSp ORA SP ATOM −→ C ORA SP
ec oraSp C ORA SP −→ EC ORA SP
dc oraSp C ORA SP −→ DC ORA SP
dec oraSp EC ORA SP ∪DC ORA SP −→ DEC ORA SP

Table 5.1: Signature describing the spatial constraint types

The type ORA SP PRED has several type constructors, each of them corre-
sponding to a different OracleSpatial predicate. This is made, because then we
can parameterize the type ORA SP ATOM with the predicates, since atomic con-
straints have different interpretations, according to the relation, they are expressing,
and for this they represent different spatial objects. Therefore, the carrier sets of
these type constructors are pairs, composed of a singleton {p} ∈ PS, where p is the
corresponding spatial predicate and the rank of p, e.g. the carrier set of disjoint is
Adisjoint = {(disjoint, 2)}. The carrier sets of the other types remain the same as
in Section 4.2.

The schema of the classes extends the one in Figure 4.5. Figure 5.7 shows a
simplified schema, where constraint classes have been “extended” with the OracleSp
class.

Actually, four OracleSpatial classes have to be defined, corresponding to the
four families of constraints, namely OracleSpC, OracleSpEC, OracleSpDC, OracleSp
(DEC), each of them has methods to implement renaming, intersection, union, pro-
jection and the function satisfy, which is actually a SQL query. Each class has
the methods compose and decompose: the first one is used by the constructor, to
create a constraint from an OracleSpatial object and, the second one is used to
create from a constraint a OracleSpatial object. Moreover, all classes need methods
to implement the Oracle functions area, length, within distance. They exist also as
Java “interfaces”, as in the abstract case and, all of them refer to all classes cor-
responding to the spatial predicates. The more detailed schema is illustrated by
Figure 5.8. The classes disjoint, . . . , touch have the method query, performing the

96 CHAPTER 5. MODELING SPATIAL INFORMATION

query to find tuples of objects, satisfying the atomic constraints, represented by the
class, and, the methods compose and decompose to create the spatial object from
the retrieved tuple.

Oracle Spatial Types

Object-Set Constraints:

touchdisjoint

Algebraic Structures:

Constraint Classes
representing four families

of constraints

......

Monoid, Semiring

Figure 5.7: Simplified schema of the constraint classes

C

EC

DC
OracleSp. OracleSp.

OracleSp.

extends

implements

OracleSpatial
(DEC)

C

EC

DC

Constraint
(DEC)

refers to

overlap touch disjoint equal inside contains covers covered_bypoint line polygon

Figure 5.8: Complete schema of the spatial constraint model

5.1. MAPPING CONSTRAINTS TO ORACLESPATIAL 97

Except for the atomic formulas, each constraint will be created using the com-
mand new OracleSp(arg1,. . ., argn), that uses the constructors of the spatial class
OracleSP, which is the most general one. The constructors, then, will call the con-
structor of the class, corresponding to the type of the constraint. The concept is
better understandable through Example 5.5.

Example 5.5 This example shows the mechanism, with which constraints are created.
As there doesn’ t exist an implementation yet, but only a design, some parts are resumed
and written in normal language.
Let’s suppose that we want to create the constraint object:

disjoint(x1, x2) ∧ disjoint(x3, x4)

Let’s assume that x1, x2, x3, x4 have been stored in the vector objs, as the array [(x1,x2),(x3,x4)].
To create the corresponding constraint we use the command:

new OracleSp(“disjoint”, objs)

The constructor of the class checks if the constraint has dependent variable, and if yes the
constraint has to be solved as a unique block as described in Definition 5.5 and therefore
one of the constructor of the class OracleSpEC will be called, otherwise it calls the con-
structor of the class OracleSpC.

OraclSp (String pred, OracleSp[] objs) {
if (dependentVariables(objs)== null) new OracleSpC(pred, objs)
else new OracleSpEC(pred, objs)

}

Below it is the constructor of the class OracleSpC:

OracleSpC (String pred, OracleSp[] objs
for i=1 to objs.length() atoms[i]= new pred(obj[i]);
A= Set(atoms);

The constructor initializes the global variable A with the set of atomic formulas, com-
posing the conjunctive constraint, i.e. the domain A of the monoid is instantiated. new
pred(objs) is the constructor of atomic formulas, i.e. in this case disjoint, and creates pairs
of disjoint objects.

2

5.1.3 Example

We give an example of spatial modeling using OracleSp constraints. The example
describes parts of subway and city-train nets in a city, depicted in Figure 5.9.

The sets of stations, each of them representing stations of a particular line,
can be modeled in OracleSpatial by multi-polygons. We define first a class Station,

98 CHAPTER 5. MODELING SPATIAL INFORMATION

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

�����������������������������������

�����������������������������������

���������
���������
���������
���������

��

��

	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���

���

�
�

�
�

�
�

�����
�����
�����

�������
�������
�������
�������
�������
������� ���������

���������
���������
���������

�������
�������
�������
�������
�������
�������

���
���
���
���
���

���
���
���
���
���

�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
������

���������
���������
������

1

1

22

14

U1

U2
U3

U4

U5

U6U7

City-train LinesCity-train Stations

S1

S2

S3

S4

S5

S6

line 1

line 2

line 3

Subway Stations Subway Lines

Figure 5.9: Map of subway and city-train lines

represented by its name and the extent, describing its shape and location, as follows:

class Station (
String name;

OracleSP extent;
Station (String n, Polygon ext) {

name = n;
extent =(OracleSP)ext;

}
);

The assignment extent =(OracleSP)ext contains a casting operation, which trans-
forms an object of type polygon, in an object of type OracleSp, i.e. a (atomic)
constraint. The possibility of casting is due to the relationships existing between
the two classes, see Figure 5.8. This means that the spatial extent of class Station
is represented by an OracleSp constraint.

Below is an example of creation of the object S5, (see Figure 5.9), as instance of
the class Station:

5.1. MAPPING CONSTRAINTS TO ORACLESPATIAL 99

Station S5 = new Station (“Ost bahnhof”,
new Polygon(
mdsys.sdo geom(null,null, 3,
mdsys.sdo array elem info(1,3,3),
mdsys.sdo coordinates ((22,14),(22,16),
(24,17),(29,14),(18,12),(25,12),(22,14)))
)

);

The extent of the object S5 is created using the spatial data type of OracleSpatial
mdsys.sdo geom, that with appropriate parameters defines the polygon S5 depicted
in Figure 5.9. The arguments null, null, 3 state that the type of geometry is polygon,
the array mdsys.sdo array elem info(1,3,3) serves to read the coordinates array, and
says that the geometry is composed of one element (as it has only one triplet), whose
type is polygon (specified by 3,3) and, that the first vertices can be read at position
1 of coordinates array. Finally, the mdsys.sdo coordinates specifies the vertices of the
polygon.

We would like to model a map of the stations in a city. We assume that the city
has a subway line and a city-train line, each of them having a set of stations. Each
set of stations is representable as a collection of disjoint polygons. To model a set
of stations, we define the following Station maps class.

class Stations map (
String name;
OracleSp[] station= new OracleSp[50];
OracleSp extent;
Stations map (String n, OracleSp[] s) {

name = n;
for i=0 to s.length() stations[i] = s[i];
extent = new OracleSp (”disjoint”, s)

};
Stations map (String n, OracleSp ext) {

name = n;
extent = ext;
station = ext.decompose();

};
);

The OracleSp constructor creates the constraint
s.length()∧

i,j=1

disjoint(s[i], s[j]), that

describes a multi-polygon object. Also in this case, the spatial extent is represented
by a constraint, that is an OracleSpC constraint. Instances of the Stations map are
easily created by:

100 CHAPTER 5. MODELING SPATIAL INFORMATION

Stations map city-train st =new Stations map (“City-train st”,
[S1.extent,S2.extent,S3.extent,
S4.extent,S5.extent,S6.extent]

Stations map subway2 st =new Stations map(“Subway2 st”,
[U1.extent,U2.extent,U5.extent,
U6.extent]

Stations map subway3 st =new Stations map(“Subway3 st”,
[U4.extent,U5.extent,U7.extent]

In the same way, we can represent train lines. We suppose, that each line is
composed of a set of segment lines. As each segment represents the line that joins
two stations together, the line belonging to one set are disjoint with each other. The
class to represent them is similar to Stations map.

class One line (
int number;
line[] segments= new line[50];
OracleSp extent;
One line (int no, line[] l) {

number = no;
for i=0 to l.length() line[i] = l[i];
extent = new OracleSp (“disjoint”, l)

};
);

Instances of One line are created giving the set of line segment. In Figure 5.9,
three lines are illustrated, e.g. line 1, line 2 and line 3.

- The following query creates a railway line, composed of stations and railway seg-
ments:

select new touch(x.extent, y.extent)
into Set(OracleSp) railway line
from Stations map x, One line y

The new touch(x1.extent, x2.extent) has been defined in Example 5.2 and creates
the set of touching objects. Let ϕ1(x1, . . . , xn) and ϕ2(y1, . . . , ym), n ≤ m be the
constraint formulas, which represent x1.extent and x2.extent, respectively. The result
of the query is the set of geometries, satisfying the constraint:

ϕ1(x1, . . . , xn) ∧ ϕ2(y1, . . . , ym) ∧ touch(x1, y1) ∧ touch(y1, x2) ∧ · · · ∧
touch(ym−1, xn) ∧ touch(xn, ym)

- Let’s suppose, we want to know in which station of the line 2 we can change to the
line 3. The query finds the stations that overlap.

5.2. MAPPING FLAT CONSTRAINTS TO LINEAR CONSTRAINTS 101

select new Stations map(“change st”, new overlap(x1, x2))
into Set(Stations map) result
from Stations map x1, x2
where x1.name = ’Subway2 st’
and x2.name = ’Subway3 st’

The above query creates a new object of the class Stations map, (using the second
constructor specified in the declaration of the class), giving the name “change st”
and the extent resulting from overlapping the extents of the objects x1 and x2.

- Display the part of lines which are inside the rectangle @rectangle drawn on
the screen.

select new overlap(@rectangle, x)
into Set(OracleSp) result
from railway line x

The above query exploits a feature of OracleSpatial, that uses the so called
query windows. new overlap(@rectangle, x) can be defined as a method of the class
overlap, which implements query windows in the following way:

select x.extent
from railway line x
where mdsys.sdo relate(x.extent, mdsys.sdo geometry(3,NULL,NULL,

mdsys.sdo elem info(1,3,3),
mdsys.sdo ordinates(x1,y1, x2,y2)),
’mask=overlap querytype=window’) = ’TRUE’)

5.2 Mapping flat constraints to linear constraints

In this section, we briefly show how the flat constraint model can be mapped to two-
dimensional linear constraints. The description will be short, as a lot of work has
been already done, for developing linear constraint databases and promising proto-
types already exist. Indeed, our model is based on the CCUBE model ([BSCE97]), a
constraint database, whose data are represented by linear constraints. The challenge
in this section is to show the versatility of our framework, in modeling constraints,
based on different theories.

Linear constraints have been already largely introduced in this thesis, for recall-
ing see Section 2.1.2 and Section 3.2.3. The vocabulary on which linear constraints
are defined is

Ωlin = 〈+, <,>, 0, 1〉

and atomic constraints are the formulas

102 CHAPTER 5. MODELING SPATIAL INFORMATION

ϕ(x1, x2) = ax1 + bx2 + cΘ 0 (5.3)

where a, b, c are constants and Θ = {<,>}. For a better readability, we denote
atomic formulas using the formula 5.3, also if it is not a flat constraint, but the
equivalence between linear constraint formulas and flat constraints has been already
explained by Example 4.1 on page 58. The Example 4.2 on page 4.2 explains how
linear constraint formulas are interpreted. Of course, it has to be assumed that an
underlying data model, like vector model (see Section 3.2.1) exists, to make data
representable as linear constraints.

5.2.1 Extending the data model with the LinearConstraint
class

After the previous assumptions, we can extend the schema, adding a LinearConstraint
class and C lin, EC lin, DC lin, DEC lin subclasses, representing the four constraint
families, as we have done for OracleSpatial constraints. Figure 5.10 shows a simpli-
fied extension.

Linear Constraints

Point-Set constraints:
Oracle Spatial Types

Object-Set Constraints:

touchdisjoint

Algebraic Structures:

Constraint Classes
representing four families

of constraints

......

Monoid, Semiring

Figure 5.10: Extension of the schema with the LinearConstraint class

The class LinearConstraint has a different method rename, such that for con-
straint objects c1, . . . , cn, the renaming replaces the variables as follows:

5.2. MAPPING FLAT CONSTRAINTS TO LINEAR CONSTRAINTS 103

∃y(c1[u1/y, v2/z] ∧ · · · ∧ cn[un/y, vn/z]).

The method satisfy implements the simplex algorithm, to verify the satisfaction of
formulas and conjunction of formulas.

5.2.2 Examples

This example has been taken from [BSCE97]. Consider a two dimensional desk
“my-desk” depicted in Figure 5.11 as the larger rectangle. The smaller square is
the desk’s drawer, which may be open, i.e. move relatively to the desk. Similarly,
the desk may be moved in the room. There are three systems of coordinates used
in Figure 5.11: U, V , the room’s system: W, Z, the desk’s coordinate system used
to describe the desk’s shape independently of the location of the desk in the room:
and W1, Z1, the drawer’ s coordinate system. The pair of variables (x, y) describes
the center of the desk in the room’ s coordinates; similarly, (p, q) describe the center
of the drawer in the desk’s coordinates.

1 6

4

1

V

U

W

Z

(x,y)

-4 4

2

-2

W1

Z1

(p,q)

-2

my_desk

Figure 5.11: An instance of a desk with drawer in the room

The constraint formula (−4 ≤ w ≤ 4)∧(−2 ≤ z ≤ 2) describes the extent of desk
in the desk’s coordinates. Similarly, the extent of the desk’s drawer in the drawer’
s coordinates can be described by the constraint (−1 ≤ w1 ≤ 1) ∧ (−1 ≤ z1 ≤ 1).
The possible location (p, q) of the drawer’ s center in the desk’s coordinates can be
described by p = −2 ∧ −3 ≤ q ≤ −1.

The translation between the desk’s W,Z and the room’ s U, V systems of coor-
dinates can be captured by the constraint u = x + w ∧ v = y + z. Suppose that
the desk’s center has room’ s coordinates (6, 4), i.e. x = 6 ∧ y = 4. Then, for
example, we can find the extent of the desk in the room’ s coordinate by simplifying
the following formula:

∃x, y, w, z(((−4 ≤ w ≤ 4)∧(−2 ≤ z ≤ 2))∧(u = x+w∧v = y+z)∧(x = 6∧y = 4))

104 CHAPTER 5. MODELING SPATIAL INFORMATION

where the first component is the desk’s extent in the local coordinates, the second
is the translation between the coordinate systems and the third is the position of
the desk’s center.

Consider now an architectural design example schema depicted in Figure 5.12.
We assume that the database keeps a set all office objects. Similarly, all desks and
all file cabinets are kept.

Desk

File_cabinet

 list(drawer) drs

is_a

is_a

Drawer

int Color

refers_to

Drawer dr

Office_object

int CatalogNo

string Name

int Color

LinearConstraint(w,z) extent

LinearConstraint(p,q) center

LinearConstraint(w1,z1) extent

LinearConstraint(w1,z1,p,q,w,z)

translation

Figure 5.12: A schema for the desk’s example

Objects of the class Office object have standard attributes such as Catalog, Name
and Color, and also the extent attribute, describing the object’s shape. The extent
attribute is declared as LinearConstraint(w,z), to indicate that it must be represented
as a constraint with free variables w and z.

The classes Desk and File cabinet are subclasses of Office objects, and, therefore,
inherit all its attributes. In addition, the classes Desk and File cabinet have an
attribute dr, which is declared as reference to an object of the class Drawer.

Each drawer, in turn, is characterized by possible locations of its center, declared
as LinearConstraint(p,q); its extent as LinearConstraint(w1,z1); and translation, de-
clared as LinearConstraint(w1,z1,p,q,w,z), which would hold an equation describing
the interconnection between (w1, z1), a point in the drawer’ s coordinates and (w, z),
the same point in the desk’s coordinates, provided that the center of the drawer is
at (p, q) in the desk’s coordinates.
Below is an example of instantiation of my desk of the class Desk:

Desk my desk = Desk (
22354, % Catalog
“one drawer desk”, % Name
“red”, % Color
(−4 ≤ w ≤ 4 ∧ −2 ≤ z ≤ 2), % extent

new Drawer(% dr
“blue”, % Color
(p = 2 ∧ −3 ≤ q ≤ −1), % center
(−1 ≤ w1 ≤ 1 ∧ −1 ≤ z1 ≤ 1), % extent
(w = w1 + p ∧ z = z1 + q) % translation
)

);

5.2. MAPPING FLAT CONSTRAINTS TO LINEAR CONSTRAINTS 105

The next query finds, for each desk in all desk, its extent in the rooms coordinates,
assuming the center of the desk is located at the point (6, 4) and the desk orientation
is aligned with the room’s walls, i.e. the translation equation is u = w+x∧v = z+y.

select new LinearConstraint((u,v)| (dsk.extent ∧
u = w+x ∧ v = z+y ∧
x=6 ∧ y=4))

into {Set(LinearConstraint)} result
from all desks as Desk dsk

The next query finds all pairs (dsk, dsk.extent) for all desks that, if centered at
(6, 4), would intersect the area (3 ≤ u ≤ 4 ∧ 8 ≤ v ≤ 10) in the room’s coordinates.

select new pair(dsk, dsk.extent)
into {Set(pair)} result
from all desks as Desk dsk
define area as LinearConstraint (3 ≤ u ≤ 4 ∧ 8 ≤ v ≤ 10)
define transl as LinearCostraint (u = x+ w ∧ v = y + z)
where satisfy(area ∧ dsk.extent ∧ transl ∧ x=6 ∧ y=4)

Here, the pair(dsk, dsk.extent) is a constructor of the class pair; expression define
expr1 as expr2 causes the replacement expr1 by expr2 in the remainder of the compre-
hension; they are used simply as shortcuts. satisfy performs the satisfiability test of
the constraint inside the parentheses which checks whether area intersects the desk’s
extent. Finally, the last query finds all desks whose drawer may intersect, if closed
or partly or fully open, the desk area (−1 ≤ w ≤ 1 ∧ −1 ≤ z ≤ 1).

select dsk
into {Set(Desk)} result
from all desks as Desk dsk
define dr ext as LinearConstraint dsk.drawer.extent
define dr loc as LinearConstraint dsk.drawer.center
define dr transl as LinearConstraint dsk.drawer.translation
define dr ext in dsk as LinearConstraint (w,z)|(dr ext ∧ dr loc ∧ dr transl)
where satisfy (dr ext in dsk ∧ -1≤ w≤ 1 ∧ -1≤ z ≤ 1)

Example of integration of the two models

This example shows a possible integration between two different data models. We
suppose that spatial objects are represented as linear constraints, and we will show
how to change their representation from linear constraints to OracleSp constraints,
in order to use particular OracleSpatial functions, as within distance(geo1, geo2),
which returns the distance between the two geometries geo1 and geo2.

We assume to have a database of rectangles, represented by the following class:

106 CHAPTER 5. MODELING SPATIAL INFORMATION

class LinearRectangles (
String name;
LinearConstraint(x,y) extent;
LinearRectangles (String n, LinearConstraint ext) {

name = n;
extent = ext;

};
);

R1 R2

3 8

6

10

12

4

12 15

Figure 5.13: Distance between two rectangles

Hence, to create the two rectangles, depicted in Figure 5.13, we use the following
commands:

LinearRectangles R1 = new LinearRectangles (“r1”,
3 ≤ x ≤ 8 ∧ 6 ≤ y ≤ 10)

LinearRectangles R2 = new LinearRectangles (“r2”,
12 ≤ x ≤ 15 ∧ 4 ≤ y ≤ 12)

The following query finds the distance between the two rectangles, using the Ora-
cleSpatial with distance function.

select sdo geom.sdo within distance(geo1, geo2)
into real result
define OracleSp geo1 as new OracleSp(r1.extent.vertices()),
define OracleSp geo2 as new OracleSp(r2.extent.vertices()),
from LinearRectangles r1,r2
where r1.name = ’r1’
and r2.name = ’r2’

Note that vertices() is a method of the class Linearconstraint, which given a linear
formula, representing a spatial object, returns its vertices.

Chapter 6

Modeling Temporal Information

In this chapter, we present first an extension of the model described in Chapter 4 to
represent temporal information. In particular we define temporal data types and flat
atomic formulas on the vocabulary, constituted by the Allen’s predicates, introduced
in Section 3.1.1. Secondly, we present an integration between the defined temporal
model and the spatial model of Section 5.1, to model spatio-temporal information.
The chapter consists of two main sections: Section 6.1 describes the temporal model
and Section 6.2 presents the spatio-temporal model.

6.1 Mapping flat constraints to Allen’ s predi-

cates

In this section, we design a temporal constraint database, whose constraints are built
up from atomic formulas, consisting of Allen’ s interval relations, see Section 3.1.1.
As in the spatial case, the challenge in designing the temporal constraint model is
the demonstration of its completeness, i.e. temporal objects can be represented as
constraints and vice versa.

Constraints are interpreted on a domain of temporal objects, that are time
points, time intervals and particular combinations of them, for instance meeting
intervals. Also in this case, we do use OracleSpatial as underlying model of data.
Moreover, differently from the spatial case described in Section 5.1, in which spatial
objects were already defined by OracleSpatial, in the temporal case, we will define
temporal objects as special subsets of the spatial point and line objects, i.e. unidi-
mensional points and lines. Then, the process of mapping consists of the definition
of the vocabulary ΩT and of the interpretation structureMT = 〈DT ,ΩT 〉.

6.1.1 The temporal domain

Let DT be a set of well-defined time intervals. We assume that well-defined intervals
are all closed intervals whose starting and ending points are finite and reals.

108 CHAPTER 6. MODELING TEMPORAL INFORMATION

Time intervals can be represented as OracleSpatial objects, in particular as a
subset of linestring objects. The data type linestring in Oracle is represented as a
list of two-dimensional points, i.e. the vertices of the line-string.

(7,0)

(7,14)

(14,10)

(21,16)

(23,8)

(14,0)

Figure 6.1: Representation of a linestring object in OracleSpatial

For instance, the object in Figure 6.1 will be stored as the sequence of points
((7, 0),(7, 14),(14, 10),(23, 8), (14, 0)); line strings are elements of the set Aline, de-
fined in Section 5.1.1. Time intervals are 1-dimensional lines and to define them,
we first define the set of 1-dimensional points, as subsets of Apoint, (also defined in
Section 5.1.1), as follows

A1−point = {(x, 0)|x ∈ R}.

It easily follows that A1−point ⊆ Apoint. Then the set of time intervals is defined as
follows

Ainterval = {(p1, p2)| p1, p2 ∈ A1−point ∧ p1 � p2},

where

p1 � p2 ⇔ p1 = (x1, 0), p2 = (x2, 0) ∧ x1 ≤ x2.

p1 and p2 represent the interval’s start and the ending point, respectively. Intervals
are particular cases of line-strings, i.e. Ainterval ⊆ Aline, therefore they can be
represented as OracleSpatial objects. Note that the particular case of intervals,
with p1 = p2 represents time points.

In the same way, we can define themultinterval object, as a subset ofAmultilinestring,
as follows

Amultinterval = {(l1, . . . , ln)| ∀i, 1 ≤ i ≤ n, li = (p1
i , p

2
i) ∈ Ainterval

Figure 6.2 shows two particular elements of Amultinterval, they are particular se-
quences which we will often use in time modeling and belong to a subset ofAmultinterval,
that we call the set of not overlapping intervalsA¬overlap. (a) illustrates amultinterval

6.1. MAPPING FLAT CONSTRAINTS TO ALLEN’ S PREDICATES 109

object composed of two disjoint intervals, represented by the sequence ((q1, q2), (q3, q4));
(b) shows three “meeting” intervals, i.e. ((p1, p2), (p3, p4), (p5, p6)), which have col-
lapsing ending points, i.e. p2 = p3 and p4 = p5.

p1 p2, p3 p4, p5 p6

(a)

q1 q2 q3 q4

(b)

Figure 6.2: Representation of multinterval objects

We are now ready to define formally the temporal domain DT as follows:

DT =⊥ ∪Ainterval ∪ Amultinterval (6.1)

In the follow, we denote with i, i1, i2, . . . , in elements of DT . We define the two
functions sp and ep on DT , as follows:

sp, ep : DT −→ A1−point, where

sp(i) =







p1 : i ∈ Ainterval, i = (p1, p2)
pl : i ∈ Amultinterval, i = ((p1, p2), . . . , (pn−1, pn)), 1 ≤ l ≤ n,

∧∀j, 1 ≤ j ≤ n, pl � pj

(6.2)

ep(i) =







p2 : i ∈ Ainterval, i = (p1, p2)
pl : i ∈ Amultinterval, i = ((p1, p2), . . . , (pn−1, pn)), 1 ≤ l ≤ n,

∧∀j, 1 ≤ j ≤ n, pj � pl

(6.3)

sp(i) and ep(i) return respectively the starting and the ending point of the in-
terval i. Thus the set of not overlapping intervals can be defined as the following:

A¬overlap = Ameet ∪ Adisj

where

Ameet = {(l1, . . . , ln) ∈ Amultinterval : ∀i, 1 ≤ i ≤ n− 1, ep(li) = sp(li+1)}.

Adisj = {(l1, . . . , ln) ∈ Amultinterval : ∀i, 1 ≤ i ≤ n− 1, ep(li) ≺ sp(li+1)}.

110 CHAPTER 6. MODELING TEMPORAL INFORMATION

Therefore, on A¬overlap, there is a linear order, while on the other multi-intervals,
the order of the elements is not linear, nevertheless there exists a linear order on the
ending points of the intervals. Hence, on DT , we can define a binary order relation
⊂, as follows:

i1 ⊂ i2 ⇔
sp(i2) ≺ sp(i1) and ep(i1) ≺ ep(i2) ∨ sp(i1) = sp(i2) and

ep(i1) ≺ ep(i2) ∨ sp(i2) ≺ sp(i1) and ep(i1) = ep(i2) iff i1, i2 ∈ Ainterval

(i11, . . . , i
1
n) ⊂ (i21, . . . , i

2
m)⇔

n ≤ m ∧ ∀h, 1 ≤ h ≤ n,∃j, 1 ≤ j ≤ m : i1h ⊂ i2j
iff (i11, . . . , i

1
n), (i21, . . . , i

2
m) ∈ Amultinterval

It is easy to proof that ⊂ is antisymmetric and transitive.

The next example shows the use of intervals and multi-intervals in modeling different
kinds of temporal information.

Example 6.1 We want to model the information about the places where John is during
his working day, assuming that John is a creature of habit. We assume that the time
granularity is one hour. We describe three places of John: John at the bar, John atwork
and John at home. Figure 6.3 illustrates the three temporal objects associated to the three
places.
Supposed that John goes to the bar only in the night, the associated timestamp is repre-
sented by one interval (21, 24), while in the other two cases the timestamps are supposed
not to be continued, therefore they are represented by a sequence of disjoint intervals, i.e
elements of Amultinterval. The time in which John is at work is represented by the multi-
interval ((9, 13), (14, 18)), while John is at home in the multi-interval ((0, 8), (19, 21)).

-r
0

r
1

r
2

r
3

r
4

r
5

r
6

r
6

r
7

r
8

r
9

r
10

r
11

r
12

r
13

r
14

r
15

r
16

r
17

r
18

r
19

r
20

r
21

r
22

r
23

r
24

r r
John at the bar

r r r r
John atwork

r r r r
John at home

Figure 6.3: John’s usual places during a day

2

6.1. MAPPING FLAT CONSTRAINTS TO ALLEN’ S PREDICATES 111

6.1.2 Temporal constraints

Allen in [All83] defined a set of binary relations between time intervals, which cover
all possible relations between two intervals. They are illustrated, together with their
semantics by Table 3.1 on page 33. We define the temporal vocabulary, as the set
of Allen’ s two-place predicates, plus two other one-place predicates.

Definition 6.1 (Temporal vocabulary). The temporal vocabulary ΩT consists of
the set T P = T Puna ∪ T Pbin, where T Pbin contains the following two-place pred-
icates: equal, before, after, meets, overlap, starts, during, finishes and T Puna

contains the 1-place predicates time point, time interval.
CT = Astring. 2

Hence, temporal constraint are built up from atomic formulas, defined on ΩT . We
denote the set of temporal formulas with FT . The following formulas are examples
of well-defined temporal formulas, i.e. elements of FT :

(1) meets(x1, x2) ∧ overlap(x2, x3),

(2) ∃x1(before(x1, x2) ∧ during(x1, x3)),

(3) starts(x1, x2) ∨ before(x1, x3)

The interpretation of ΩT -constraints is given on the temporal domain DT , defined in
Section 6.1.1, assigning to each constraint of FT a binary relation between elements
of DT , that results either to an interval or to a multinterval. At this purpose, we
define the interpretation function IT

i∈N. Let FT (n) = {ϕ ∈ FT |freevar(ϕ) = n},
then we define the following class of functions:

IT
n : FT (n) −→ (DT × · · · × DT

︸ ︷︷ ︸

n times

)

We present the interpretation function step by step, first defining it on atomic for-
mulas with the following definition.

Definition 6.2 (Interpretation of atomic constraints). Let PT (j) be the set
of j-place predicates of PT , p ∈ PT and i, i1, . . . , ik elements of DT , then the inter-
pretation function IT

n on atomic formulas is defined as follows:

IT
n∈{1,2} : PT (n) −→ Dn

T

where IT
n∈{1,2} is defined as follows:

112 CHAPTER 6. MODELING TEMPORAL INFORMATION

IT
n∈{1,2}(p(x1, x2)) = {(i1, i2)| relp(i1, i2)}

relp is an OracleSpatial relation, obtained by the SQL select:

select i1, i2
from obj1 i1, obj2 i2
where p(i1, i2) = “true′′

While in the spatial case the relationship p can be automatically translated in the
corresponding OracleSpatial operator, in the temporal case the translation is not
direct, but anyway easy, as i1, i2 are OracleSpatial objects. In the following, we
describe the relation p, in each of its case:

p(i1, i2) =







p(i1, i2) : p ∈ {equal, overlap}
disjoint(i1, i2) ∧ ep(i1) � sp(i2) : p = before
disjoint(i1, i2) ∧ ep(i2) � sp(i1) : p = after
touch(i1, i2) : p = meets
covered by(i1, i2) ∧ sp(i1) = sp(i2) : p = starts
inside(i1, i2) : p = during
covered by(i1, i2) ∧ ep(i1) = ep(i2) : p = finishes

(6.4)

p(i) =

{
sp(i) = ep(i) : p = time point
sp(i) � ep(i) : p = time interval

(6.5)

2

The above definition shows that the definition of temporal objects as particular
cases of OracleSpatial objects, makes the mapping on Oracle database possible.

The equations 6.4 and 6.5 hold for simple intervals, i.e. elements of Ainterval.
For multi-interval objects, the definition of some of them change. overlap, during
(and starts, finishes which can be considered particular cases of during) of multi-
intervals may have different number of overlapping intervals.

Figure 6.4 shows some examples. In during(i1, i2), the multi-interval i1 is wholly
contained in only one of the intervals of i2, while in during(i3, i4) each interval of
i3 is contained in exactly one interval of i4. Let’s assume that i1 = l11, . . . , l

1
m and

i2 = l21, . . . , l
2
n, it follows that

during(i1, i2)⇔ ∀j, 1 ≤ j ≤ m,∃k, 1 ≤ k ≤ n : during(l1j , l
2
k)

For starts and finishes, we add to the above condition, the ones for the starting
and ending points, respectively.

6.1. MAPPING FLAT CONSTRAINTS TO ALLEN’ S PREDICATES 113

i1 r r r r r ri2 r r r r
i3 r r r ri4 r r r rduring

i5 r r r ri6 r r r r
i7 r r r ri8 r r r r r roverlap

Figure 6.4: overlap and during of multi-intervals

starts(i1, i2)⇔ during(i1, i2) ∧ ∃j, k, 1 ≤ j ≤ m, 1 ≤ k ≤ n : starts(l1j , l
2
k)

finishes(i1, i2)⇔ during(i1, i2) ∧ ∃j, k, 1 ≤ j ≤ m, 1 ≤ k ≤ n : finishes(l1j , l
2
k)

In overlap, it is enough that at least two intervals overlap, for instance in
overlap(i7, i8), one interval of i7 is contained in one interval of i8, nevertheless as
there exist two overlapping intervals, the relation is overlap. Therefore, it follows
that

overlap(i1, i2)⇔ ∃j, k, 1 ≤ j ≤ m, 1 ≤ k ≤ n : overlap(l1j , l
2
k)

As we have done in OracleSpatial case, we will prove that the tuples of the rela-
tion relp can be stored as Oracle temporal objects.

Theorem 6.3 ∀p ∈ PT , each tuple of relp can be represented as a temporal object.

Proof. We define a family of functions, which we will use to transform tuples of
relp in intervals or multintervals:

t compose(n∈N) : Dn
T −→ DT

Each relp corresponds to the set of tuples {(i1, i2)|p(i1, i2)}, therefore we can denote
each tuple with p(i1, i2), (i1, i2) ∈ D

2
T .

t compose(p(i1, i2)) =

{
(i1, i2) ∈ Amultinterval : p = before,meet
(i2, i1) ∈ Amultinterval : p = after

114 CHAPTER 6. MODELING TEMPORAL INFORMATION

t compose(p(i1, i2)) = i2, p ∈ {starts, during, finishes}
t compose(equal(i1, i2)) = i1 t compose(overlap(i1, i2)) = i ∈ Amultinterval

where i =sdo geom.sdo poly intersection(i1, i2) 2

Example 6.2 The example shows how to create a multi-interval object by means of Ora-
cleSpatial queries. In the next, the multi-interval ((9, 13), (14, 18)), will be created as an in-
stance of the OracleSpatial type mdsys.sdo geom. The value 6 corresponds to the geometry
type, that ismultilinestring. The values 2,1, in the triplets of the mdsys.sdo array elem info,
state that type of each element of the multilinestring is a simple linestring. Note that all
the vertices have 0 as ordinate:

new Multinterval((9,13),(14,18))≡ mdsys.sdo geom(null,null,6,
mdsys.sdo array elem info(1,2,1, 5,2,1),
mdsys.sdo coordinate(19,0,13,0,14,0,18,0))

2

For the interpretation of the constraint formulas, i.e. simple conjunctives, exis-
tential conjunctive and disjunction of conjunctives formulas, we refer to the Defini-
tions 5.4, 5.5, 5.6, in Section 5.1.1.

The interpretation structure (or model) is M = 〈DT , In∈N〉. In order to have
the temporal object/constraint duality, we have to prove that the OracleSpatial un-
restricted relations are definable onMT with ΩT -constraints.

Definition 6.4 (Temporal unrestricted relations). A temporal unrestricted
tuple consists of a temporal object, i.e. an element of DT . A temporal unrestricted
relation is a set of temporal objects, i.e. a subset of DT . Any collection of temporal
unrestricted relation defines a temporal unrestricted database. 2

Theorem 6.5 The temporal unrestricted database is definable on MT with ΩT -
constraints.

Proof. To prove the theorem we have to show first that each temporal object, i.e.
each element of DT is definable as an ΩT -constraint. At this purpose, we define the
function t decompose:

t decompose : DT −→ FT ,

such that time points are definable as

t decompose(x) = time point(x) iff x ∈ Ainterval ∧ x = (p, p)

6.1. MAPPING FLAT CONSTRAINTS TO ALLEN’ S PREDICATES 115

simple time intervals are definable as

t decompose(x) = time interval(x) iff x ∈ Ainterval ∧ x = (p, q) ∧ p � q

multi-interval objects, composed of disjoint intervals as

t decompose(x) = before(i1, i2) ∧ · · · ∧ before(in−1, in),
iffx = (i1, . . . , in) ∈ Amultinterval ∧ i1 � i2 � · · · � in

multi-interval objects, composed of meeting intervals, as

t decompose(x) = meet(i1, i2) ∧meet(i2, i3) · · · ∧meet(in−1, in)
iff x = (i1, . . . , in) ∈ Amultinterval

∧∀j, 1 ≤ j ≤ n− 1,meet(ij, ij+1)
2

6.1.3 Temporal classes

In this subsection, we define the temporal constraint types and extend the data
model defined in Section 4.2 with them. We specialize the abstract data types of
the schema in Section 4.2, defining the appropriate carrier sets. The four fundamen-
tal temporal constraint types are called: TempC, TempEC, TempDC, Temp(DEC)
and they represent the four constraint families, whose atomic formulas are composed
of temporal predicates. Table 6.1 shows these types.

Type constructor Signature

before, after, equal,
overlap,meets, during,
starts, finishes, −→ TEMP PRED
atom oraSp TEMP PRED −→ TEMP ATOM
c temp TEMP ATOM −→ TempC
ec temp TempC −→ TempEC
dc temp TempC −→ TempDC
dec temp TempEC ∪ TempDC −→ Temp

Table 6.1: Signature describing the temporal constraint types

The type TEMP PRED has several type constructors, each of them correspond-
ing to a different Allen’ s temporal predicate. Therefore, the type TEMP ATOM
is parameterized by the predicates composing the atomic constraints. This is made,
because atomic constraints have different interpretations according to the relation,
which they express, and for this they represent different temporal objects.

116 CHAPTER 6. MODELING TEMPORAL INFORMATION

The four temporal types are defined as sub-types of the corresponding generic
constraint types, described in Section 4.2. To each of them corresponding a class
and the schema is depicted in Figure 6.5.

extends

implements

refers to

equal overlap meets during starts finishes before afterintervalpoint

C

EC

DC

Constraint
(DEC)

TempC TempDC

TempEC Temp (DEC)

Figure 6.5: Schema of the temporal classes

Temporal classes are designed like their corresponding spatial ones and, methods
are almost the same as the ones described in Section 5.1.2; therefore, they have
methods, to implement intersection, union and difference and the functions compose,
decompose and satisfy, they don’ t have the method area, as it doesn’ t have sense
to compute the area of intervals, but the other methods within distance, length, are
also available in the temporal classes, and they enables the performing of metric
queries, see 3.1.1.

6.1.4 Example

As example of temporal queries, let’ s recall the Figure 6.3, and let’ s suppose that
we want to model the persons’ activities. At this purpose, we define the class Activi-
ties, having as attributes the name of the person, his action, and the time interval(s),
during which the person is usually doing his activity.

6.1. MAPPING FLAT CONSTRAINTS TO ALLEN’ S PREDICATES 117

class Activities {
String name;
String action;
Temp time;
Activities(String name, String a, Temp t) {
name=n; action= a;
time=t };
Activities(String name, String a, Interval[] t) {
name=n; action= a;
time=new Temp(“before”, t) };

}

The second class constructor creates the temporal object of the class Temp, by
the array of intervals t. The resulting object is a multi-interval, obtaining solving
the constraint before(t[1], t[2]) ∧ · · · ∧ before(t[n− 1], t[n]).

In the following, we present some interesting queries, showing the features of our
model.

- Query1: What does John do after work?

select a2.action
into Set(String) result
define t1 as a1.time
define t2 as a2.time
from Activities a1, a2
where a1.name = a2.name=’John’
and a1.name = ’work’
and satisfy(after(t2,t1)∨meet(t1,t2))

Query1 shows the usefulness of the function satisfy, which can appear only in the
where clause, and which finds an assignment of the variables t1, t2 that satisfy the
constraint formula after(t2,t1)∨meet(t1,t2). The result of the query is a set of action
that John does after working.

- Query2: How long do Jonh and Mary stay together at the bar?

select sdo geom.sdo length(i)
into Set(real) result
define Temp i as new overlap(a1.time, a2.time)
from Activities a1,a2
where a1.name=’john’
and a2.name=’mary’
and a1.action=a2.action=’bar’

Query2 creates a new temporal constraint and assigns it to the variable i. Therefore,

118 CHAPTER 6. MODELING TEMPORAL INFORMATION

i is the constraint representing an interval or a multi-interval, resulting from the in-
tersection of the temporal timestamps, in which John and Mary are at the bar. The
possibility to create a new temporal object allows to use the OracleSpatial function
length, which computes how many hours John and Mary have been together at the
bar.

- Query3: Give me the average of the person’ s working time.

select sdo geom.sdo length(i)
into avg(real) result
define Temp i as a.time
from all activities as Activities a
where a.action=’work’

In Query3 we assumed that all activities represents a set of activities, the query
shows the feature of the monoid comprehension calculus to perform in a easy way
aggregations. All intervals’ length, returned from the query, will be add to the vari-
able result, that is a collection monoid, whose merge operation is the average.

The next query shows how the constraint monoid calculus enriches Oracle query lan-
guage, allowing in one query the creation of new temporal objects. We assume to
have defined a global constant day=[0,24], i.e. an interval object storing a whole day.

- Query4: Give me the time intervals in which John is neither at work nor at the bar.

select sdo geom.sdo difference(day, t)
into Set(Temp) result
define Temp t1 as a1.time
define Temp t2 as a2.time
define Temp t as new Temp(t1 ∧ t2)
from Activities a1,a2
where a1.name=a2.name=’John’
and a1.action=’work’
and a2.action=’bar’

The clause define Temp t as new Temp(t1 ∧ t2) creates the new temporal object, re-
sulting from the composition of the intervals t1 and t2, calling the function compose
the returns a multi-interval (a tuple), that can be used as argument of the Ora-
cleSpatial function sdo geom.sdo difference.

6.2 Modeling spatio-temporal information

In this section, we show how to model spatio-temporal information, integrating
the spatial and the temporal models, described in Sections 5.1, 6.1. Among the

6.2. MODELING SPATIO-TEMPORAL INFORMATION 119

several examples of spatiotemporal information, we dwell upon moving objects, see
Section 3.3, i.e. spatial objects changing with the time. A highlighting example of
moving object is the trajectory of a car, see Figure 6.6.

x

y

(t=1)

(t=2)

(t=3)

(t=6)

(t=8)

Figure 6.6: A possible trajectory of a car.

The dashed line represents the route of the car, modeled as a curve in the two-
dimensional space, the time points (t=1), (t=2), etc. stating that in that particular
time point the car was in a particular two-dimensional point.

With linear constraints, it is possible to model trajectories in the three di-
mensional space, where time represents the third dimension and spatiotemporal
objects are expressed as functions in three free variables. Our model can model
them, as it has been developed to generalize the spatiotemporal constraint database
of [BSCE97].

Therefore, our aim in this section is to use OracleSpatial to model moving ob-
jects. At this purpose, we will follow the approach of [GRS98b] and we will not
define spatio-temporal classes, with specific methods, but rather we define classes,
referring to both space and time, whose class constructors satisfy particular integrity
constraints. For instance, to model trajectories, we define a class having as attributes
a spatial extent, that is the sequence of two-dimensional lines representing the route
of car, or person etc. and a temporal extent giving the sequence of time intervals
corresponding to these lines. For better understanding see Figure 6.7, which depicts
in a “discrete” way the trajectory of a car.

In Figure 6.7, to each line segment corresponds a time interval, saying that in
the interval of time ti the car moves along the line li. This is our way to model
trajectories. This implies that the number of intervals must be equal to the number
of line segments. Recall that line segments in Oracle can be arcs as well.

Hence, to model trajectories we use lines and intervals. Thus, we define the

120 CHAPTER 6. MODELING TEMPORAL INFORMATION

-

6

x

y

�
�
�
��

l1

t1
r r

�
�

��
l2

t2
r r

���l3
t3

r r�
�
�
�
�
�
�

l4

t4
r r

Figure 6.7: Trajectory of a car represented in OracleSpatial

classes touching lines and meeting intervals, which implements1 the classes touch and
meets, respectively and are subclasses of the classes OracleSpEC and TempEC re-
spectively. Instances of these classes are (eventually) quantified conjunctives.
Instances of touching lines are

touch(l1, l2) ∧ · · · ∧ touch(ln−1, ln) ∧
n∧

i=1

line(li)

while instances of meeting intervals are

meets(t1, t2) ∧ · · · ∧meets(tn−1, tn) ∧
n∧

i=1

time interval(ti)

Particular methods of the above classes include ()T |, that implements projection
on intervals. In the following we assume that m = meet(m1,m2) ∧meet(m2,m3) ∧
· · · ∧meet(mn−1,mn), 1 ≤ i ≤ j ≤ n and i ∈ Ameet

()T | : Ameet × Ameet −→ Ameet

(i)T |m = meet(mi,mi+i)∧· · ·∧meet(mj−1,mj)∧before(mi−1, i)∧after(i,mj+1)

and ()S|, that implements projection on touching lines. Let’ s assume that l =

1In this case “implements” has to be interpreted in the Java sense

6.2. MODELING SPATIO-TEMPORAL INFORMATION 121

touch(l1, l2) ∧ touch(l2, l3) ∧ · · · ∧ touch(ln−1, ln), 1 ≤ i ≤ j ≤ n and s ∈ Aline, then

()S| : Aline × Atouching lines −→ Atouching lines

(s)S|l = overlap(s, l)∧
(touch(li, li+i) ∧ · · · ∧ touch(lj−1, lj) ∧ disjoint(mi−1, i) ∧ disjoint(i,mj+1))

The above functions return an approximation of the real projection, because the
resulting object can be bigger than the real one, as in the example below. Fig-
ure 6.8 shows an example of projection on intervals. The interval resulting from the
projection of i on m is given by the composition of the three intervals m2, m3, m4,
which overlap with i. Note that the projection ()S| needs to check if the arguments
overlap, while ()T | don’ t. This due to linear order of meeting intervals, for them
it is enough to check that the interval i is contained in m just with the constraint
before(mi−1, i) ∧ after(i,mj+1), while in the touching line the order, given by the
Oracle storing method, described in Section 6.1.1, is not linear.

r r
i

r r r r r
m1 m2 m3 m4

m
(i)T |m

Figure 6.8: The operator ()T |

We are ready to model moving objects. Figure 6.9 shows a part of the classes
schema: the class trajectory is composed of a spatial extent of type touching lines and
a timestamp of type meeting intervals. Each moving object can then be modeled as
a class referring to trajectory.

composed_of

touching_linestouch meet

moving
object

trajectory

meeting_intervals
implements

Figure 6.9: Extension of the schema to model trajectories

At this purpose, we need two important functions, to perform trajectory projec-
tions. Let’ s suppose to have a trajectory of John, and we want to know where John
was in a given interval i, we need a function that projects the interval i on the trajec-
tory and returns the part of line, representing the route of John in the determinate

122 CHAPTER 6. MODELING TEMPORAL INFORMATION

interval. Vice versa, we want to know the time interval, in which John has gone
from work place to the bar, represented by the line s, for this we need a function,
projecting s on the trajectory and returning the desired interval. The definition of
these two functions uses the above projections ()T | and ()S|. Let’ s assume that
Atraj = {((t1, . . . , tn), (l1, . . . , ln)) : (t1, . . . , tn) ∈ Ameet, (l1, . . . , ln) ∈ Atouching lines}
and traj = ((t1, . . . , tn), (l1, . . . , ln)), then we define the following two functions:

ProjOnSpace : Ameet × Atraj −→ Atouching lines

ProjOnTime : Atouching lines × Atraj −→ Ameet

ProjOnSpace(i, traj) = (li, . . . , lj), 1 ≤ i ≤ j ≤ n ∧ (i)T |(t1, . . . , tn) = (ti, . . . , tj)

ProjOnTime(s, traj) = (ii, . . . , ij), 1 ≤ i ≤ j ≤ n ∧ (s)S|(l1, . . . , ln) = (li, . . . , lj)

The above functions first find the indices i, j calling the projections ()T |, ()S| and
the returned indices determine the lines or intervals of the result.

Furthermore, a new overlap operator has to be defined. Two trajectories over-
lap if and only if at the same time the spatial extents overlap. Let’ s assume that
traj1 = (i1, l1) and traj2 = (i2, l2), then

Soverlap : Atraj × Atraj −→ Atouching lines

Toverlap : Atraj × Atraj −→ Ameet

Soverlap(traj1, traj2) = overlap(ProjOnSpace(overlap(i1, i2)), P rojOnSpace(overlap(i1, i2)))

Toverlap(traj1, traj2) = overlap(ProjOnTime(overlap(l1, l2)), P rojOnTime(overlap(l1, l2)))

Below, there is the declaration of the class Trajectory. The class constructor
checks if the number of intervals is equal to the number of line segments, which will
create an instance of the class, in the case they are different, it returns error.

6.2. MODELING SPATIO-TEMPORAL INFORMATION 123

class Trajectory {
Touch lines: space;
Meet int: time;
Trajectory (Touch lines s,Meet int t) {

if (#(s)==#(t)) space = s; time = t
else Error }

Touch lines ProjOnSpace(Meet int i) {
Meet int I[i,j]= (i)T | time;
Touch lines s = findPart(space, I[i,j]);
return s };

Meet int ProjOnTime(Touch lines s) {
Touch lines S[i,j]= (s)S| space;
Meet int i = findPart(time, S[i,j]);
return i };

Touch lines Soverlap(Traj tr1,tr2){
Meet int I= overlap(tr1.time, tr2.time);
return overlap(tr1.ProjOnSpace(I), tr2.ProjOnSpace(I))};

Meet int Toverlap(Traj tr1,tr2){
Touch Lines S= overlap(tr1.space, tr2.space);
return overlap(tr1.ProjOnTime(S), tr2.ProjOnTime(S))};

} ;

The function findPart returns the segment of the multi-interval/multilinestring spec-
ified by the indices i, j.

In the following, we give some examples of queries. We model persons’ trajec-
tories and for this we define a class People, which refers to Trajectory, being people
moving objects, and a class Places, which represents particular places whose at-
tributes are name and a spatial extent, such as bar, terrace etc.

class People { class Places {
String: name; String: name;
Trajectory: traj; OracleSp extent

}; };

The first query shows the usage of ProjOnSpace applied to a user-defined interval.
- Query1: Where is Martin between 12 and 14?

select p.traj.ProjOnSpace([12,14])
into Set(Touch lines) result
from people p
where p.name = ’Martin’

The query returns the line, which Martin has covered in the given interval of time.
The next query is more complicated, and implies the creation of a new spatial ob-
ject. It shows the usage of the function ProjOnTime.

124 CHAPTER 6. MODELING TEMPORAL INFORMATION

- Query2: When does Monica stay at the bar’s terrace?

select p.traj.ProjOnTime(atTheTerrace)
into Set(Meet int) result
define Touch lines s as new overlap(p.traj.space, terr.extent)
define Touch lines atTheTerrace as (s)S|p.traj.space
from people p, places terr
where p.name = ’Monica’
and terr.name= ’terrace’

The result of the query is a time interval (or a sequence of time intervals), in which
Monica has been at the bar’ s terrace. The resulting time interval corresponds to
the line segment, resulting from the intersection of her trajectory with the spatial
extent of the bar’ s terrace.

The next query is similar to the above one, only a bit more complicated, as it needs
some more computations.

- Query3: Where is John while Monica is at the bar’s terrace?

select j.traj.ProjOnSpace(time)
into Set(Touch lines) result
define Meet int time as ProjOnTime(atTheTerrace)
define Touch lines atTheTerrace as (s)S|m.traj.space
define Touch lines s as new overlap(m.traj.space, terr.extent)
from people j,m, places terr
where j.name = ’John’
and m.name= ’Monica’
and terr.name= ’terrace’

The next queries show the usage of Soverlap and Toverlap, to perform the inter-
section of two trajectories. In Query4 we are interested to know where two persons
have met, and then we use Soverlap, while in Query5 we want to know when the
two given persons have met and therefore we use Toverlap.

- Query4: Where did John and Monica meet?

select new Soverlap(j.traj, m.traj)
into Set(Touch lines) result
from people j,m
where j.name = ’John’
and m.name= ’Monica’

The query returns the line segment that Monica and John have covered together in

6.2. MODELING SPATIO-TEMPORAL INFORMATION 125

the same interval of time.

- Query5: When did John and Monica meet?

select new Toverlap(j.traj, m.traj)
into Set(Meet int) result
from people j,m
where j.name = ’John’
and m.name= ’Monica’

For the next query we recall the class Activities defined in the previous section. Activ-
ities is a temporal class modeling persons’ activities. Here we made some reasoning
using the three classes, just defined. The usage of the functions makes the query
easy to write.

- Query6: Who ate in the skiing area?

select p.name
into Set(String) result
define eat as act.time
from People p, Activities act, Places pl
where act.action=’eat’
and pl.name=’skiing area’
and p.name=act.name
and satisfy(overlap(p.traj.ProjOnSpace(eat),pl.extent))

For further examples we refer the reader to [DB00b].

126 CHAPTER 6. MODELING TEMPORAL INFORMATION

Chapter 7

Conclusions

In this thesis we have proposed a framework based on constraints where temporal
and spatial information can be represented and handled, and, at the same time,
different information sources can be combined and integrated by means of generic
data types and operations.

In particular, we have introduced a formal background for a component-based
programming tool, which enables to use constraints as basic data types in an object-
oriented database management system. We have used algebraic structures, as
monoids, semirings and cylindric algebras, as a backbone since they allow to formal-
ize the notion of constraint objects, preserving all the most important ingredients
of constraint programming. Such structures are particular suitable in defining col-
lection types; the representation of constraints as algebraic structures inserts them
in the mechanism of type definition, where each type is represented as a domain, an
identity element and, a “merge” operation. Therefore, constraints in this framework
are treated as normal collection types, like sets, lists etc. The usual operations of
conjunction and disjunction are handled as algebraic operators, with a well-defined
operational semantics. Queries are solved as homomorphisms between the algebraic
structures.

Moreover, the employment of monoids and semirings enables the definition of
a model suitable to represent different classes of constraints, in particular a class
of “black box” constraints, i.e. constraints with an undefined vocabulary and in-
terpretation structure, but with a well-defined syntax. This particular construction
allows an easy mapping to “specific constraints”, like linear constraints, and par-
ticular classes of predicates, as spatial and temporal predicates and, constitutes a
layer where these different classes of constraints can coexist and be combined.

The model gives the possibility for the development of a toolkit, which, given
an object-oriented/relational database schema, enables its light-weight wrapping as
a set of corresponding constraints. The ”light-weight wrapping” means that the
interpretation of the corresponding constraint-based data manipulation statements
must be done directly by the underlying database management system.

We have shown how the framework can be used to represent different data models

128 CHAPTER 7. CONCLUSIONS

in a uniform way. In particular, we have mapped the constraints of our model to
linear constraints and to the spatial predicates of OracleSpatial; furthermore, we
have defined temporal objects (time points and intervals) as special OracleSpatial
objects and Allen’ s temporal predicates, using OracleSpatial predicates applied to
time intervals and, then we have mapped the black box constraints to them. The
process of mapping has been made defining a vocabulary and an interpretation
structure, corresponding to the class of constraints that we wanted to represent.
We have proved that all the defined mappings and the corresponding interpretation
models are complete.

Therefore, we mapped black box constraints to linear constraints, defining the vo-
cabulary Ω = 〈<,+1, 0〉, and the interpretation structureM = 〈R,Ω〉; the mapping
on the OracleSpatial model has been made defining a vocabulary whose predicates
correspond to the OracleSpatial relationships and the domain of interpretation has
been defined as the set of spatial objects, supported by that model. The specific
constraints are then solved by means of queries to the underlying model, that in
the case of OracleSpatial allows to exploit its efficient features of spatial indexing
and spatial join. A particular contribution of having defined spatial constraints as
sub-classes of monoids and semirings is the facility to model normal and nested
aggregation queries.

We have presented an example of integration between the linear constraint
database and OracleSpatial, by means of type conversion functions, which trans-
form an object represented by linear constraints to an OracleSpatial object and,
vice versa. Such a conversion allows, for instance, to compute the distance between
two spatial object and, therefore to overcome the lack of linear algebras in expressing
metric relationships.

Finally, a second example has been presented, that shows the integration be-
tween OracleSpatial and the temporal model. This example shows the feature of
our model to represent spatio-temporal information. In particular we have modeled
trajectories and moving objects, extending the features of OracleSpatial, which so
far handles exclusively with spatial data.

We believe that the features of our model fulfill the requirements, described in
the introduction.

Ongoing and future work concerns the implementation of the model. We believe
that a suitable Java-based implementation of the algebraic structures can be done
as a collection of components to be used as abstract super class of all constraints in
the system. This would allow to guide an implementation of particular constraints
just exploiting the type checking facilities of the standard Java compiler. In other
words, our ultimate goal is a component-based programming environment for de-
veloping different constraint databases. Basic elements of developing a particular
constraint system starting from underlying objects has been illustrated using spatial
and temporal objects.

Bibliography

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[All83] J.F. Allen. Maintaining knowledge about temporal intervals. In Com-
munication of the ACM, volume 26 (11), pages 832–843. November 1983.

[All84] J.F. Allen. Towards a general theory of action and time. Artificial Intel-
ligence, 23:123–154, 1984.

[AR99] T. Abraham and J.F. Roddick. Survey of spatio-temporal databases.
GeoInformatica, 3(1):61–99, 1999.

[BBC97a] A. Belussi, E. Bertino, and B. Catania. Manipulating spatial data in
constraint databases. In Proc. of Advances in Spatial Databases, volume
1262 of Lecture Notes in Computer Science, pages 115–141. Springer
Verlag, 1997.

[BBC97b] A. Belussi, E. Bertino, and B. Catania. Manipulating Spatial Data in
Constraint Databases. In Advances in Spatial Databases, fifth Interna-
tional Symposium, volume 1262 of Lecture Notes in Computer Science,
pages 115–141, 1997.

[BBC98] A. Belussi, E. Bertino, and B. Catania. An extended algebra for con-
straint databases. IEEE Transactions on Knowledge and Data Engineer-
ing, 10(5):686–705, September/October 1998.

[BFG96] E. Bertino, E. Ferrari, and G. Guerrini. A formal temporal object-
oriented data model. In EDBT, pages 342–356, 1996.

[BJS99] M.H. Böhlen, C.S. Jensen, and M.O. Scholl. Spatio-Temporal Database
Management, volume 1678 of Lecture Notes in Computer Science.
Springer Verlag, 1999.

[BK95] A. Brodsky and Y. Kornatzky. The lyric language: Querying constraint
objects. In Int. Conf. on Management of Data, ACM SIGMOD, 1995.

130 BIBLIOGRAPHY

[BL97] G. Birkhoff and S.Mac Lane. A Survey on Modern Algebra. AKPeters,
Ltd., 1997.

[BR95] J.-H. Byon and P. Revesz. Disco: a constraint database with sets. In
CONTESSA Workshop on Constraint Databases and Applications, 1995.

[BSCE97] A. Brodsky, V.E. Segal, J. Chen, and P.A. Exarkhopoulo. The CCUBE
constraint object-oriented database. Constraint: An International Jour-
nal, 2:245–277, 1997.

[BSCE99] A. Brodsky, V.E. Segal, J. Chen, and P.A. Exarkhopoulo. The CCUBE
constraint object-oriented database. In Proc. ACM SIGMOD Conf. on
Management of Data, pages 577–579, Philadelphia PA, 1999.

[Cho94] J. Chomicki. Temporal Query Languages: A Survey. In Temporal Logic:
Proceedings of the First International Conference, ICTL’94, volume 827
of Lecture Notes in Artificial Intelligence, pages 506–534. Springer Ver-
lag, 1994.

[CK90a] Chang and Keisler. Model Theory. 3. Ed., Amsterdam, Holland, 1990.

[CK90b] C.C. Chang and H. Jerome Keisler. Model Theory, volume 73 of Studies
in Logic and the Foundation of Mathematics. Elsevier Science B.V.,
North Holland, 1990.

[CL73] C.-L Chang and R. Char-Tung Lee. Symbolic Logic and Mechanical The-
orem Proving. Computer Science and Applied Mathematics. Academic
Press, New York, 1973.

[CLR99] J. Chomicki, Y. Liu, and P.Z. Revesz. Animating Spatiotemporal Con-
straint Databases. In Spatio-Temporal Database Management, volume
1678 of Lecture Notes in Computer Science, pages 224–241. Springer
Verlag, 1999.

[CR97] J. Chomicki and P. Z. Revesz. Constraint-Based Interoperability of Spa-
tiotemporal Databases. In Advances in Spatial Databases, fifth Interna-
tional Symposium, volume 1262 of Lecture Notes in Computer Science,
pages 142–161, 1997.

[CR99] J. Chomicki and P.Z. Revesz. Constraint-based interoperability of spa-
tiotemporal database. Geoinformatica, 3(3), September 1999.

[CT85] J. Clifford and A.U. Tansel. On an algebra for historical relational
databases: Two views. In S. Navathe, editor, Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 247–265, 1985.

BIBLIOGRAPHY 131

[DB99] A. Di Deo and D. Boulanger. Using objects to build constraint databases.
In International Workshop on Logic Programming (WLP99), 1999.

[DB00a] A. Di Deo and D. Boulanger. A formal background to build constraint
objects. In B.C. Desai, Y. Kiyoki, and M. Toyama, editors, International
Database Engineering and Application Symposium (IDEAS00), IEEE,
pages 7–15, Yokohama, Japan, September 2000.

[DB00b] A. Di Deo and D. Boulanger. Using generic constraints to represent
spatiotemporal data. In accepted by GIScience 2000, Savannah, Georgia,
2000.

[dBar] J. Van den Bussche. Constraint Databases, chapter 1. G. Kuper, L.
Libkin, and J. Paredaens, To appear.

[DMP91] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti-
ficial Intelligence, 49:61–95, 1991.

[ea94a] R. Snodgrass et al. Tsql2 language specification. SIGMOD Record,
23(1):65–86, March 1994.

[ea94b] R. Snodgrass et al. A tsql2 tutorial. SIGMOD Record, 23(3):27–34,
September 1994.

[EF91] Max J. Egenhofer and Robert D. Franzosa. Point-set topological spatial
relations. In International Journal of Geographical Information Systems,
volume 5, pages 161–174. 1991.

[Ege91] M. J. Egenhofer. Reasoning about binary topological relations. Lecture
Notes in Computer Science, 525:143–160, 1991.

[Ege95] M. Egenhofer. User interfaces. In R. Laurini T. Nyerges, D. Mark and
M. Egenhofer, editors, Cognitive Aspects of Human-Computer Interac-
tion for Geographical Information Systems, pages 1–8. Kluwer Academic
Publishers, Dortrecht, The Netherlands, 1995.

[EGSV99] M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-
temporal Data Types : An Approach to Modeling and Querying Moving
Objects in Databases. Geoinformatica, 3(3), 1999. To appear.

[EH95] M.J. Egenhofer and J. Herring, editors. Proc. Intl. Symp. on Large Spatial
Databases (SSD), volume 951 of Lecture Notes in Computer Science.
Springer Verlag, 1995.

[Eil74] S. Eilenberg. Automata, languages, and machines. In Academic Press,
volume A. 1974.

132 BIBLIOGRAPHY

[EJS98] O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases: Re-
search and Practice, volume 1399 of Lecture Notes in Computer Science.
Springer, 1998.

[Eme90] E.A. Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 16, pages 995–1072.
Elsevier/MIT Press, 1990.

[ES99] M. Erwig and M. Schneider. The honeycomb model of spatio-temporal
partitions. In Workshop on Spatio-Temporal Database Management, vol-
ume 1678 of Lecture Notes in Computer Science, pages 39–59, 1999.

[FM95] L. Fegaras and D. Maier. Towards an effective calculus for object query
processing. In Proc. ACM SIGMOD Conf. on Management of Data,
pages 47–58, 1995.

[Gad88] S.K. Gadia. A homogeneous relational model and query languages for
temporal databases. ACM Trans. on Database Systems, 13(4):418–448,
1988.

[GBE+98] R.M. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N. Lorentzos,
M. Schneider, and M. Varzigiannis. A foundation for representing and
querying moving objects. Technical report, Technical Report 238, Fer-
nUniversität Hagen, Informatik, september 1998.

[GE99] R.K. Goyal and M.J. Egenhofer. Cardinal directions between extended
spatial objects. IEEE Transactions on Knowledge and Data Engineering,
1999. in press.

[GK96] D.Q. Goldin and P.C. Kanellakis. Constraint query algebras. Constraint
Journal, 1st issue, pages 45–83, 1996.

[GM91] D.M. Gabbay and P. McBrien. Temporal Logic & Historical Databases.
In Proceedings of the Seventeenth International Conference on Very Large
Databases, pages 423–430, September 1991.

[GNRR93] R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid
Systems. LNCS 736. Springer-Verlag, 1993.

[GRS98a] S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for
complex spatial queries. In Intl. Conf. on the Management of Data,
SIGMOD, 1998.

[GRS98b] S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-temporal data han-
dling with constraints. In Robert Laurini, Kia Makki, and Niki Pissinou,
editors, Proceedings of the 6th International Symposium on Advances in

BIBLIOGRAPHY 133

Geographic Information Systems (GIS-98), pages 106–111. ACM Press,
1998.

[GRSS97] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. DEDALE, a spatial
constraint database. In Proc. Int. Workshop on Database Programming
Langages (DBPL’97), East Park, Colorado, USA, 1997.

[Gru97] S. Grumbach. Modeling and querying spatio-temporal data. In Sistemi
Evoluti per Basi di Dati, pages 11–28, 1997.

[GS93] R. Güting and M. Schneider. Realms: A foundation for spatial data
types in database systems. In D. Abel and B. C. Ooi, editors, Third
International Symposium on Large Spatial Databases, SSD ’93, volume
692 of Lecture Notes in Computer Science, pages 14–35. Springer, 1993.

[GS95] S. Grumbach and J. Su. Dense-order constraint databases. In Proc.
14th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, pages 66–77, 1995.

[GSG94] R. Giacobazzi, S.K.Debray, and G.Levi. Generalized semantics and ab-
stract interpretation for constraint logic programs. Journal of Logic Pro-
gramming, 1994.

[GST94] S. Grumbach, J. Su, and C. Tollu. Linear constraint query languages:
Expressive power and complexity. In D. Leivant, editor, Logic abd Com-
putational Complexity, Indianapolis, 1994. Springer Verlag. LNCS 960.

[Güt94] R.H. Güting. An introduction to spatial database systems. VLDB Jour-
nal, 3(4):357–400, October 1994.

[HJA71] L. Henkin, J.D.Monk, and A.Tarski. Cylindric algebras. part i and ii.
North-Holland, Amsterdam, 1971.

[IC98] A. Isli and A.G. Cohn. An Algebra for Cyclic Ordering of 2D Orienta-
tions. In Proceedings of AAAI-98, pages 643–649, 1998.

[Jav] http://java.sun.com/docs/books/tutorial/java/interpack/interfacedef.html.

[JJL87] J. Jaffar and J.-L.Lassez. Constraint logic programming. In Proc. 14th
Annual ACM Symp. on Principles of programming Languages, ACM,
pages 111–119, 1987.

[KG94] P.C. Kanellakis and D.Q. Goldin. Constraint programming and database
query languages. In Symposium on Theoretical Aspects of Computer
Software, volume 789 of LCNS, pages 96–120, Sendai Japan, April 1994.

134 BIBLIOGRAPHY

[KKR90] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query lan-
guages. In Proc. 9th ACM PODS, pages 299–313, 1990.

[KKR95] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query lan-
guages. Journal of Computer and System Sciences, 51(1):26–52, 1995.

[KKS92] M. Kifer, , W. Kim, and Y. Sagiv. Querying object-oriented databases.
In Int. Conf. on Management of Data, ACM SIGMOD, pages 393–402,
1992.

[KL91] H. Kautz and P. Ladkin. Integrating metric and qualitative temporal
reasoning. In Proc. of the 10th AAAI, Anaheim, 1991.

[Kou94] M. Koubarakis. Foundations of indefinite constraint databases. In Alan
Borning, editor, Principles and Practice of Constraint Programming, 2nd
International Workshop, PPCP94, volume 874 of Lecture Notes in Com-
puter Science, pages 266–280, Rosario, Orcas Island, Washington, USA,
May 1994. Springer-Verlag.

[KPV95] B. Kuijpers, J. Paredaens, and J. Van den Bussche. Lossless representa-
tion of topological spatial data. In M. J. Egenhofer and J. R. Herring,
editors, Advances in Spatial Databases, volume 951 of Lecture Notes in
Computer Science, pages 1–13. Springer, 1995.

[KPV98] B. Kuijpers, J. Paredaens, and L. Vandeurzen. Semantics in spatial
databases. In B. Thalheim L. Libkin, editor, Semantics in Databases, vol-
ume 1358 of Lecture Notes in Computer Science, pages 114–135. Springer,
1998.

[LT92] Robert Laurini and Derek Thompson. Fundamentals of Spatial Informa-
tion Systems. Number 37. Academic Press, New York, 1992.

[Mei91] I. Meiri. Combining qualitative and quantitative constraints in temporal
reasoning. In Proc of the 9th AAAI-91, Anheim, CA, 1991.

[Mor89] S. Morehouse. The architecture of ARC/INFO. In Proc. Intl. Symp. on
Computer Assisted Cartography (Auto-Carto 9), pages 266–277, 1989.

[MP93] A. Montanari and B. Pernici. Temporal Databases: Theory, Design
and Implementation, chapter Temporal Reasoning, pages 534–562. Ben-
jamin/Cummings, 1993.

[OM94] M. A. Orgun and W. Ma. An Overview of Temporal and Modal Logic
Programming. In Lecture Notes in Artificial Intelligence, volume 827,
pages 445–479, 1994.

[Ora] http://technet.oracle.com.

BIBLIOGRAPHY 135

[Org96] M. A. Orgun. On temporal deductive databases. Computational Intelli-
gence, 12(2):235–259, May 1996.

[Par95a] J. Paradaens. Spatial databases, the final frontier. In Proc. of the fifth
International Conference on Database Theory, volume 893 of Lecture
Notes in Computer Science, pages 14–32. Springer Verlag, 1995.

[Par95b] Jan Paredaens. Spatial databases, the final frontier. In Georg Gottlob
and Moshe Y. Vardi, editors, Database Theory—ICDT’95, 5th Interna-
tional Conference, volume 893 of Lecture Notes in Computer Science,
pages 14–32. Springer, 1995.

[PdBG94] J. Paradaens, J. Van den Bussche, and D. Van Gucht. Towards a theory
of spatial database queries. In Proc. 13th ACM Symp. on Principles of
Database Systems, pages 279–288, 1994.

[PK98] J. Paredaens and B. Kuijpers. Data models and query languages for
spatial databases. Data & Knowledge Engineering, 25:29–53, 1998.

[PSV96] C. H. Papadimitriou, D. Suciu, and V. Vianu. Topological queries in
spatial databases. In ACM, editor, Proceedings of the Fifteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, PODS 1996, Montréal, Canada, June 3–5, 1996, volume 15, pages
81–92. ACM Press, 1996.

[PVV94] J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory
of spatial database queries. In ACM, editor, Symposium on Principles
of database systems, volume 13, pages 279–288, New York, NY 10036,
USA, 1994. ACM Press.

[SA86] R. Snodgrass and I. Ahn. Temporal databases. IEEE Computer, 19(9),
1986.

[Sam90] Hanan Samet. The design and analysis of spatial data structures. 1990.

[Sno87] R. Snodgrass. The temporal query language tquel. ACM Transactions
on Database Systems, 12(2):247–298, July 1987.

[Sno92] R.T. Snodgrass. Temporal databases. In Proc. of the International
Conference on GIS - from Space to Territory: Theories and Methods of
Spatio-Temporal Reasoning in Geographic Space, volume 639 of Lecture
Notes in Computer Science, pages 22–64. Springer Verlag, 1992.

[Sno95a] R. Snodgrass. Modern Database Design: The object Model, Interoper-
ability and Beyond, chapter Temporal Object-Oriented Databases: A
Critical Comparison. Addison-Wesley/ACM Press, 1995.

136 BIBLIOGRAPHY

[Sno95b] R.T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Aca-
demic Publishers, 1995.

[TCG+93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass
editors. Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

[VGV95] L. Vandeurzen, M. Gyssens, and D. Van Gucht. On the desirability and
limitations of linear spatial database models. Lecture Notes in Computer
Science, 951:14–28, 1995.

[Wor92] Michael F. Worboys. A generic model for planar geographical objects.
In International Journal of Geographical Information Systems, volume 6,
pages 353–372. 1992.

[Wor94] M. F. Worboys. A unified model for spatial and temporal information.
The Computer Journal, 37(1):26–34, 1994.

[Wor95] M.F. Worboys. GIS - A Computing Perspective. Taylor & Francis, 1995.

[ZF96] K. Zimmermann and C. Freksa. Qualitative Spatial Reasoning Using
Orientation, Distance, and Path Knowledge. Applied Intelligence, 6:46–
58, 1996.

