
 Foundations of computing Volume 10

Universitätsverlag der TU Berlin

David S. Karcher

Event Structures with Higher-Order Dynamics

David S. Karcher
Event Structures with Higher-Order Dynamics

Die Schriftenreihe Foundations of Computing der Technischen Universität Berlin
wird herausgegeben von:
Prof. Dr. Rolf Niedermeier,
Prof. Dr. Uwe Nestmann,
Prof. Dr. Stephan Kreutzer

Foundations of Computing | 10

David S. Karcher

Event Structures with Higher-Order Dynamics

Universitätsverlag der TU Berlin

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de abrufbar.

Universitätsverlag der TU Berlin, 2019
http://verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133
hrefmailto:publikationen@ub.tu-berlin.depublikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2017
Gutachter: Prof. Dr. -Ing. Uwe Nestmann
Gutachter: Prof. Thomas T. Hildebrandt, Ph. D. (IT University of Copenhagen, Dänemark)
Gutachterin: Prof. Dr. Sabine Glesner
Die Arbeit wurde am 21. Dezember 2017 an der Fakultät IV unter Vorsitz
von Prof. Dr. Stephan Kreutzer erfolgreich verteidigt.

Diese Veröffentlichung – ausgenommen Umschlagfoto –
ist unter der CC-Lizenz CC-BY lizensiert.
Lizenzvertrag: Creative Commons Namensnennung 4.0
http://creativecommons.org/licenses/by/4.0

Druck: docupoint GmbH
Satz/Layout: David S. Karcher

Umschlagfoto:
https://commons.wikimedia.org/wiki/File:Herakles_Kerberos_Louvre_F204.jpg | CC0
https://creativecommons.org/publicdomain/zero/1.0/

ISBN 978-3-7983-2995-9 (print)
ISBN 978-3-7983-2996-6 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Zugleich online veröffentlicht auf dem institutionellen Repositorium
der Technischen Universität Berlin:
DOI 10.14279/depositonce-6989
http://dx.doi.org/10.14279/depositonce-6989

http://dnb.dnb.de
http://verlag.tu-berlin.de
http://creativecommons.org/licenses/by/4.0
https://commons.wikimedia.org/wiki/File:Herakles_Kerberos_Louvre_F204.jpg
https://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.14279/depositonce-6989

“Even if there is only one possible unified theory, it is just a set of rules and
equations. What is it that breathes fire into the equations and makes a universe for
them to describe? The usual approach of science of constructing a mathematical
model cannot answer the questions of why there should be a universe for the model
to describe. Why does the universe go to all the bother of existing?”

Stephen Hawking, A Brief History of Time

v

Zusammenfassung

Ereignisstrukturen wurden 1979 [18] als formales Modell eingeführt um die
Theorie der Petri Netze mit der Theorie der Verbände zu verknüpfen. Ursprüng-
lich bestanden sie aus atomaren nicht wiederholbaren Ereignissen, einer binären
kausalen Abhängigkeitsrelation und einer binären Konfliktrelation auf den Er-
eignissen. Lange Zeit wurden verschiedene Erweiterungen des Ursprungsfor-
malismus genutzt, um Semantiken für andere Strukturen zu definieren (z. B.
Klassen von Petri Netzen und Prozesskalkülen).

In dieser Arbeit werden Ereignisstrukturen (ESs) als deklarativer Modellie-
rungsformalismus betrachtet und nicht, um Semantiken für andere Strukturen
zu definieren.

Um hochdynamische Prozesse (also Prozesse, in denen Ereignisse die Abhän-
gigkeiten anderer Ereignisse verändern können) aus der realen Welt in einem
präzisen, aber kleinen Modell abbilden zu können, muss die Dynamik inhärenter
Bestandteil des Modellierungsformalismus sein.

Um dieses leisten zu können, wurden die Higher-Order Dynamic-Causality
ESs (HDESs) eingeführt. Sie bestehen aus einer endlichen Menge atomarer
und nicht wiederholbarer Ereignisse, einer kausalen Abhängigkeitsrelation auf
diesen Ereignissen und einem regelbasierten Formalismus, mit dem Ereignisse
die Abhängigkeiten anderer Ereignisse (und auch eben diese Regeln) verändern
können.

Der Formalismus wird bezüglich seiner Ausdrucksstärke im Vergleich zu Tran-
sitionssystemen, zu einigen Unterklassen von HDESs und zu Dynamic Condition
Response Graphs (DCR-Graphs) betrachtet.

Des Weiteren wird ein Web-Tool vorgestellt, das es ermöglicht, HDESs zu
definieren und zu erforschen, indem man Ereignisse ausführt, das zugehörige
Transitionssystem erzeugt oder vordefinierte Transformationen anwendet.

vii

Abstract

Event Structure were introduced in 1979 [18] as a formal model to connect the
theory of Petri nets and domain theory. Originally they consisted of atomic non-
repeatable events, a binary causal dependency relation, and a binary conflict
relation between those events. For a long time various extensions of the original
formalism were used to define semantics for other structures such as classes of
Petri nets and process calculi.

In this thesis the Event Structures (ESs) are considered solely as a declarative
modelling tool than as a formalism to define semantics for other structures.

In order to model highly dynamic real-world processes (i.e. processes in which
occurrences of events may change the dependencies of other events) with a concise
model the dynamics must be an inherent part of the modelling formalism.

Therefore, the Higher-Order Dynamic-Causality ESs (HDESs) were introduced.
They consist of a finite set of atomic non-repeatable events, a causal dependency
relation between these events, and a rule-based formalism for events to change
the dependencies and the existing rules.

This formalism is studied with the respect to its expressive power in comparison
to transition systems, some subclasses of HDESs, and to Dynamic Condition
Response Graphs (DCR-Graphs).

A web tool was created in which HDESs can be defined and explored by execut-
ing events, creating the corresponding transition system, or even applying some
predefined transformations.

ix

Acknowledgements

First of all I would like to express my sincere gratitude to my supervisor Uwe for
giving me the opportunity to do my Ph.D. in his group and for all his advice and
support in the whole time, and for sharing my sense of humour.

My sincere thanks also goes to my referee Thomas for hosting me in Copen-
hagen and for very interesting discussion on DCR-Graphs and their connection
to HDESs.

Besides Uwe and Thomas, I would like to thank Stephan for making time to
chairing my defence and for his insightful comments on my work.

I am also deeply grateful to the research training group SOAMED for funding
my Ph.D. and giving me many opportunities for fruitful discussion with other
supervisors and Ph.D. students.

I thank all my colleagues, both current and former. It was always fun working
with you guys. A particular thanks goes to Youssef for sharing his research area
with the new guy and introducing me to the world of Event Structures, also to Ben
for all the time he invested into understanding my ideas, spotting inaccuracies
and errors, creating the web tool, and for his help in proof-reading this thesis.

I thank Jonas and Julian for their help in improving my English.
I also thank all friends who only saw little of me during the past few years

while I was stuck in front of my computer writing this. I hope this will change
now.

Finally, I thank my parents Dorothea and Reinhard for supporting me through-
out my whole life and my brother Michael for being such a reliable source of
information on any topic and for his help in proof-reading this thesis.

Last but not least, I would like to thank my wife Sophia for her patience and
support and my son Nikolai for being such a sunny boy, who can always lift my
mood. I love you both.

xi

Contents

1 Introduction and Motivation 1
1.1 Introduction . 1

1.1.1 Declarative Modelling . 3
1.1.2 Dynamic Causality-Based Formalisms 4
1.1.3 Research Question . 8

1.2 Overview . 8
1.3 Own Publications . 10

2 Technical Preliminaries 13
2.1 Prime Event Structures . 13
2.2 Event Structures for Resolvable Conflicts 14
2.3 Dynamic-Causality Event Structures 16
2.4 Dynamic Condition Response Graphs 19

3 Higher-Order Dynamics 25
3.1 Higher-Order Dynamic-Causality ESs 25
3.2 The Web Tool . 31

3.2.1 The Syntax of the Web Tool 31
3.2.2 The GUI of the Web Tool 32

3.3 Concepts for Working with HDESs 33
3.3.1 Clean-Up . 33
3.3.2 Synchronisation Pattern 36

3.4 Alternative Approaches . 42
3.4.1 Alternative Rule Update Strategy 42
3.4.2 Event Transition Systems 45
3.4.3 Rule Set Reduction . 61

3.5 On the Expressive Power of HDESs 64
3.5.1 Encoding DCESs in HDESs 65
3.5.2 Orthogonal Extensions . 67
3.5.3 From Configuration Structures to HDESs 68
3.5.4 Expressive Power with Respect to the Level of Dynamics 74

xiii

Contents

4 Encoding of DCR-Graphs 81
4.1 Concurrency Semantics . 81
4.2 Encoding of DCR-Graphs into HDESs 86

4.2.1 Explanation and Definition of the Encoding 86
4.2.2 Correctness of the Encoding 93

5 Application 109
5.1 Case Study . 109

5.1.1 The Surgery . 109
5.1.2 Some Modelling . 110
5.1.3 Conclusion . 112

5.2 Requirements for Further Applicability 113
5.2.1 Syntactic Sugar . 113
5.2.2 Proper Extensions . 115
5.2.3 Closing Remarks . 116

6 Conclusion 119
6.1 Main Contributions . 119
6.2 Open Problems and Future Work 120

Bibliography 123

xiv

List of Figures

1 Example PES of an agricultural process 2
2 The example of Figure 1 enhanced by exceptional behaviour . . 5
3 Transition introduction . 6
4 Synchronisation in Petri nets . 6
5 A square in a finite state machine 8

6 Transition graphs of example RCESs 15
7 An order-sensitive DCES . 17
8 Encoding of conflicting events in CRESs into DCR-Graphs . . . 23

9 A HDES example with second-order dynamics 26
10 Sketch for Definitions 3.32 and 3.33 54
11 Sketch for the proof of Theorem 3.39 61
12 Example HDES for Subsection 3.5.2 68
13 A transition-equivalent HDES HρH for ρH (as in Definition 3.62) 75
14 The HDESs H5 and H′

5 (as in Definitions 3.68 and 3.69) 76
15 The HDESs G5 and G′

5 (as in Definitions 3.71 and 3.72) 78
16 The HDESs D2 (as in Definition 3.74) 80

17 Sketch for the proof of Lemma 4.26 96
18 The rule sets for the proof of Lemma 4.26 97

19 Example with set-based dynamics 111
20 Example with set-based and second-order dynamics 112
21 Example for bundling of dynamics 115

xv

List of Examples in the Web Tool

3.1 HDES example from Figure 9 . 31
3.2 HDES example for the synchronisation pattern 37
3.3 HDES example for the extended synchronisation pattern . . . 40
3.4 A HDES with a redundant rule that never gets cleaned up . . . 66
3.5 A transition-equivalent HDES encoding for the DCES in Figure 7 66

5.1 A list of all dependencies and rules of the ES in Figure 20 . . . 113

xvii

List of Algorithms

1 The HDES rule set update algorithm 29
2 An alternative HDES rule set update algorithm 44

xix

1 Introduction and Motivation

1.1 Introduction

Formal models are nowadays needed in almost every branch of computer science.
There are a lots of formal models tailored for the different needs and features of
application domains. In concurrency theory a variety of models exist and some
focus on the possibly observed traces, some on the branching behaviour and other
aspects. Causality-based models like Petri nets or Event Structures focus on the
causal dependencies between the modelled objects.

Causality-based models are in particular useful for areas where it is interesting
and important to track which events were responsible for which action. The
causality-based approach follows the so-called declarative modelling paradigm.
Therefore the modelling is based on constraints like ordering, conflicts, causal
and other dependencies. For legal reasons it is crucial to know why an action was
performed in a hospital, it is therefore suitable to use causality-based models in
this domain.

We conducted a case study in cooperation with the German Heart Center
Berlin (DHZB) in which two Bachelor students modelled the treatment of a
patient suffering from coronary heart disease and a mitral valve insufficiency [22,
13]. They used two different causality-based formalisms which also supported
some dynamic adaptations of the processes. The dynamicity was strongly needed
since the patient treatment process is not nearly static but is often adapted due
to new diagnoses. The case study exhibited that causality-based modelling is well
suited for medical workflows.

In this thesis we first introduce various kinds of event structures and related
causality-based approaches.

Event Structures (ESs) were introduced by Nielsen, Plotkin, and Winskel
[18] in 1979 to connect the theory of Petri nets and domain theory. In most
cases these consist of atomic and non-repeatable events and relations between
those events, mostly a causality relation (in the meaning of enabling) and a
conflict relation. The semantics of an ES itself is usually provided by the sets

1

1 Introduction and Motivation

of traces compatible with the constraints and some also have transition-based
semantics. The relations differ from structure to structure and they might be
binary on the set of events or relating sets of events with events. The conflict
relation might be a symmetric one. Depending on these choices for those relations
and possibly additional constraints, one gets different expressive power for the
resulting structures.

We first take a closer look at the earliest and one of the simplest are the Event
Structures [18]. They have a partial order as causality relation and a symmetric,
irreflexive conflict relation. The authors showed that these event structures can
define semantics for causal nets [18]. In his PhD thesis in 1980 Winskel studied
the ESs in more depth and called them Prime Event Structures (PESs) since they
correspond to prime algebraic domains [25].

Figure 1 shows a small example Prime Event Structure without conflicting
events: Before planting crop, it is needed to plough and water the field. After the
planting one might harvest. The events are denoted as dots and dependencies as
solid arrows. We omitted reflexive and transitive arrows for simplicity.

plough

water

plant
harvest

Figure 1: Example for a PES modelling an agricultural process.

Later on other types of event structures were used to define semantics for
process calculi [6], [17].

In 2004 Plotkin and v. Glabbeek [12] introduced the general Event Structures
for Resolvable Conflicts (RCES). They can provide semantics for general Petri
nets and are at least as expressive as all ESs defined up to then.

In 2015 Arbach, Karcher, Peters and Nestmann [3] developed the Dynamic-
Causality ESs (DCESs) which represents a generalisation of the ESs in [18]. The
purpose of DCES is to be used to model highly dynamic processes (i.e. processes

2

1.1 Introduction

in which events may change the causal dependencies of other events). Such
processes can be found in the medical sector (e.g. the above-mentioned treat-
ment process of a patient in a hospital). Surprisingly DCESs and RCESs are
incomparable with respect to expressive power. In 2015 Karcher and Nestmann
[16] presented as well a generalisation of DCESs named Higher-Order Dynamic-
Causality ESs (HDESs). The HDESs are not only more expressive than DCESs
but also more expressive than RCESs.

In this thesis we analyse the HDESs, on their own and in comparison with
other structures.

1.1.1 Declarative Modelling

This subsection follows [21].
The essence of formal modelling is to create abstractions of real-world or virtual

entities. With these abstractions the modeller can focus on those aspects he or
she is interested in. Furthermore, formal models allow for formal analysis to be
applied (e.g. model checking, reachability checking).

Similar to the area of programming languages, there are different paradigms
one can follow while modelling. Procedural modelling focusses on how things
are executed; this is often times achieved with an explicit control flow. In the
declarative approach, the modelling is based on the what; this is typically achieved
by imposing constraints (e.g. conflicts, conditioning, ordering).

One commonly known example of a declarative programming language is the
general-purpose logic programming language Prolog. In contrast to traditional
procedural programming, the logic of a computation is expressed without any
control flow. In Prolog, one defines facts and rules, a computation is then initi-
ated by a query. This declarative approach is also very interesting for process
modelling. But first we consider a traditional approach.

In imperative workflow modelling (e.g. BPMN [23]), the focus is on how a
process should be executed. “This often leads to rigid and overspecified process
descriptions, that fail to capture why the activities must be done in the given order.”
([21] page 1). In the declarative approach a process is modelled by its constraints,
which means in what particular order events can or must be executed. As long as
events do not violate these constraints, they might occur in any order. With this
more flexibility is gained in the execution and the model more accurately reflects
the reasons for the specific observed orderings of events.

3

1 Introduction and Motivation

Retrospectively, the declarative approach often enables us to reason about why
actions (or events) that took place since we know the constraints (e.g. causal
dependencies, conflicts).

In contrast to the imperative approaches, it can get complicated to create a
step-by-step process description since the process might be underspecified when
modelling declaratively.

1.1.2 Dynamic Causality-Based Formalisms

As result of the case studies, we are looking for dynamic causality-based for-
malisms. Since Event Structures (ESs) are causality-based, we investigated their
extensions. For a long time the use of Event Structure had been limited to define
semantics for other structures like Petri nets, process calculi, etc. (e.g. RCESs can
give give semantics to general Petri nets). However, when ES-based formalism
were used for modelling [14, 3], there was a need for more dynamicity than any
ESs could offer: For example, the above-mentioned RCESs lacked the capability
of generally adding or dropping causal predecessors for other events.

First, we introduce Higher-order Dynamic-Causality ESs (HDESs). Second, we
mention Dynamic Condition Response Graphs as a causality-based formalism
and later in this thesis we will discuss them in depth. Third and fourth, we briefly
present Petri nets and Higher Dimensional Automata – two further causality-
based formalisms – and explain why those are not suited for our purpose.

Higher-order Dynamic-Causality ESs

We introduced Higher-order Dynamic-Causality ESs (HDESs) in [16] and inten-
sively study them in this thesis as a causality-based modelling formalism for
dynamic processes. HDESs consist of non-repeatable atomic events, a causality
relation on those events (defining causal predecessors), and a rule set, which
allows for events to alter the dependencies and also the rule set itself. We cre-
ated a web tool, in which HDESs can be defined, visualised, and executed at
http://hdes.mtv.tu-berlin.de/.

The HDES model in Figure 2 represents an exemplary agricultural process of
planting and harvesting (this is an enhanced version of the example in Figure 1):
In order to plant, one needs to plough and water the field. After planting one
might harvest. This is only the regular behaviour (and exactly the same as in
Figure 1). We extend the model with the possibility of rain; now rain would
delete the dependency of watering for planting. A further extension is a potential

4

http://hdes.mtv.tu-berlin.de/

1.1 Introduction

pest infestation; then, one is forced to do a pest control before one can harvest.
The fact that an event can insert or delete a dependency is represented by an
arrow between the event and the dependency. A filled arrowhead indicates an
insertion and an empty arrowhead with a reversed orientation a deletion. Initially
absent dependencies which may be added dynamically are denoted dashed. In
this example, we modelled the exceptional behaviour (triggered by rain or pest
infestation) as deletion and insertion of dependencies. We name such a insertion
(resp. deletion) of a dependency a first-order rule. An insertion or removal of a
first-order rule is called second-order rule, etc. for higher levels of dynamicity. In
general HDES allow for arbitrary high order of dynamics and for sets of events to
add or delete a rule (static i.e. causal dependencies or dynamic).

plough

water

plant
harvest

rain

pest infestation

pest control

Figure 2: The example of Figure 1 enhanced by exceptional behaviour.

Dynamic Condition Response Graphs

Dynamic Condition Response Graphs (DCR-Graphs) were introduced as an event-
based modelling formalism designed for dynamic processes [14]. In contrast to
HDESs the dynamicity is obtained by dynamic exclusion and inclusion of events;
this means that excluded events are not needed for acceptance or enabling of
other events, unless the said events are included again. Another difference to
the HDESs approach is the repeatability of events. There are two web tools
for DCR-Graphs: a scientific one at http://tiger.itu.dk and a commercial one at
www.dcrgraphs.net. A formal definition can be found in Section 2.4.

5

http://tiger.itu.dk
www.dcrgraphs.net

1 Introduction and Motivation

s1

s2

s1

s2

t

Figure 3: Transition introduction. Between the places s1 and s2 a transition t
gets introduced.

s1

s2

s3

s4

t1 t2

s1

s2

s3

s4

t

Figure 4: Synchronisation in Petri nets. On the left hand side are two indepen-
dent transitions t1 and t2. On the right hand side we merged them
into the synchronised transition t.

Petri nets

Petri nets are a well-known causality-based formalism. Their origin lies in the
PhD thesis of Petri, “Kommunikation mit Automaten”, in 1962 [19].

They are based on the idea of having multiple finite automata in parallel. For
steps in the respective automata, now called places, transition in between the
states get introduced (as in Figure 3). In order to establish communication (i.e.
synchronisation) between automata, different transitions are merged into a single
one (as in Figure 4).

Thus, formally a Petri net is a bipartite directed graph (partitioned into places
and transitions). A state of the net is a marking, which refers to a state in each

6

1.1 Introduction

automaton, indicated with tokens on these places. In general the number of
tokens per place is not restricted. To perform a transition in a net, there must be
at least one token on each pre-place (i.e. places with an edge to this transition). As
a result of the transition one token of each pre-place gets consumed (i.e. removed)
and on each post-place (i.e. places with an edge from this transition) a token is
added.

Causal dependencies of two actions can be encoded quite naturally in Petri nets
by encoding them as transitions with one place in-between. Thus, the dependent
action can not take place until the causal predecessor produced a token on its
post-place that is also a pre-place of the dependent transition. However, in a huge
Petri net it becomes complicated to derive all dependencies. Since in Petri nets
transition cycles occur quite naturally, it is not always easy to precisely track
causality. Moreover, if there are several interfering cycles, it becomes even more
complicated to do so.

Even if we know all the dependencies it is still very complicated to manipu-
late them, since a transition has to shut down the part of the net with the old
behaviour and activate the part with the new behaviour. With this approach, we
create an extremely huge static net. Yet we aim for a concise model with built-in
dynamics. Thus, Petri nets are generally not well suited for modelling processes
in which the causal dependencies evolve during run time.

Higher Dimensional Automata

A Higher Dimensional Automaton (HDA) is a traditional automaton enriched
with a notion of concurrency (respectively independence). The HDA were first
introduced by Pratt in [20]. Here we follow van Glabbeek [9].

Traditionally, finite state machines do not have any concept of concurrency.
Thus, the possible behaviour of the automaton in Figure 5 would be reading the
sequence ab or the sequence ba.

The key feature of HDAs is that such situations as in Figure 5 can be defined
as concurrent. That means a and b can occur concurrently or sequentially. Such
a two-dimensional square can easily be generalised to arbitrary n-dimensional
hyper cubes. The resulting formalism is at least as expressive as Petri nets and
automata (cf. [9]).

In order to achieve our goal of dynamising a causality-based formalism in
order to create concise models of dynamic processes, HDAs are not suited. Three-
dimensional cubes (if there are three concurrent events in a state) already are

7

1 Introduction and Motivation

ab

ba

Figure 5: A square (responsively a two-dimensional hyper cube) in a finite state
machine.

hard to visualise. This approach becomes even more complicated if there are even
more than three concurrent events.

1.1.3 Research Question

Since we are interested in a declarative dynamic causality-based modelling ap-
proach, we conducted the above-mentioned case study (more details in Section 5.1)
using DCESs. We further theoretically explored the expressive power of DCESs
[2]. Based on the incomparability of DCESs and RCESs and also the needs of the
case study the following research questions arise:

• Is it possible to generalise DCESs

– to be as least as expressive as RCESs,

– and to be capable of expressing the features needed in the case study?

• What is the expressive power of the generalised structure in comparison to
itself and to other formal models?

1.2 Overview

In Chapter 2 we present three different event structure formalisms and related
causality-based approaches: In Section 2.1 we present a relaxed Prime Event
Structures (rPESs), a relaxation of Prime Event Structures (PESs) [24], as the fun-
damental event structure formalism. In Section 2.2 we present Event Structures

8

1.2 Overview

for Resolvable Conflicts (RCESs) [12] as very general event structures, to compare
to with respect to expressive power. In Section 2.3 we present Dynamic-Causality
Event Structures (DCESs) [2], a dynamisation of the rPESs, and summarise the
results on its expressive power. In Section 2.4 we present a dynamic causality-
based declarative modelling approach, called the Dynamic Condition Response
Graphs (DCR-Graphs).

In Chapter 3 we introduce and analyse Higher-order Dynamic-Causality ESs
(HDESs). In Section 3.1 we start with an revised version of the HDES definition
from [16]. In Section 3.2 we explain the web tool for working with HDESs. In
Section 3.3 we define two concepts that are useful for dealing with HDESs both
in designing and proving work: First, the so-called clean-up in Subsection 3.3.1
which allows for deletion of unnecessary rules in a specific state. Second, the
synchronisation pattern in Subsection 3.3.2 – a set of rules that enforces an effect
if and only if some events occur in the same transition.

In Section 3.4 we provide a different perspectives onto HDESs. First we define
an alternative rule update strategy in Subsection 3.4.1. Second in Subsection 3.4.2
we give an alternative representation, namely transition systems. We show
that a specific class of transition systems is exactly as expressive as HDESs,
independent of the rule update strategy. This implies that both rule update
strategies result in the same expressive power. Finally in Subsection 3.4.3 we
present a state-independent approach of detecting unnecessary rules (without
taking the whole rule set into consideration) and discuss the connection to the
above defined clean-up.

The last Section 3.5 of this chapter contains various results with respect to
the expressive power of HDESs: In Subsection 3.5.1 we show that the HDES
indeed generalise the DCESs, this is not fully obvious since the semantics differ.
In Subsection 3.5.2 we show that both dimensions of the generalisation from
DCESs to HDESs are orthogonal, that means neither set-based dynamics can be
generally expressed with higher-order singleton rules, nor the other direction. In
Subsection 3.5.3 we recap the result of [16], which relates the expressive power
of configuration structures to the one of HDESs. In Subsection 3.5.4 we present
some basic results showing that some orders of dynamicity (maximal depth of a
rule) yield different expressive power and formulate a conjecture that this holds
for any two different levels of dynamicity.

In Chapter 4 we present an encoding for basic DCR-Graphs into HDESs. There-
fore, we present the Section 4.1 true-concurrency semantics for DCR-Graphs as
in [8]. Next in Subsection 4.2.1 we define the encoding of basic DCR-Graphs into
HDESs and in Subsection 4.2.2 prove that this encoding preserves the behaviour.

9

1 Introduction and Motivation

In Chapter 5 we take a look at future applications of the HDES formalism. To
this end, in Section 5.1 we present a case study modelling the treatment process
of a patient in a hospital, using the HDES formalism. Based on the results of
the case study and other observations, we further discuss in Section 5.2 which
features are still needed to be able to apply HDESs in real-world use cases.

We conclude in Chapter 6. In Section 6.1 we summarise the contribution
of this thesis before exploring some interesting avenues for future research in
Section 6.2.

1.3 Own Publications

In the following, we list our own publications, shortly summarise them and point
out for which parts of the publications the author was responsible.

Dynamic-Causality in Event Structures

In [3] and [4] we first considered the insertion and deletion of dependencies
separately. Then we analysed Shrinking Causality ES (SES) with only deletion
of dependencies, and Growing Causality ES (GES) with only insertion of depen-
dencies, on their own with respect to their expressive power in comparison to
other ESs. Thereafter, we combined both approaches and defined and analysed
the Dynamic-Causality ES (DCES). My main focus was on the comparisons of the
GES to the other ESs, on the comparison of DCES to ES for resolvable conflicts
and on the transition definition of the DCES.

Dynamic-Causality in Event Structures (Journal)

In [2] we combined both previous publication in one journal article. Additionally,
we came up with a simpler transition definition for SES, GES, and DCES, by
adapting the causal dependencies in the transitions if they were dropped or
inserted. This idea is based on the definition for Higher-Order Dynamic-Causality
ESs (DCESs) in [16]. We also inserted a section on the semantics of ESs since we
were using many different ESs and wanted to point out their relationship more
clearly. This was the focus of Kirstin Peters.

10

1.3 Own Publications

Higher-Order Dynamics in Event Structures

In [16] we presented the Higher-Order Dynamic-Causality ESs (HDESs) and
showed that they are at least as expressive as some configuration structures (a
reworked version can be found in Subsection 3.5.3). Sections 2 to 4 were written
by myself, whereas the introduction and conclusion were written jointly with
Uwe Nestmann.

11

2 Technical Preliminaries

In this chapter we present three kinds of event structures, which we will later
use to build on and to compare to. We also present the related causality-based
approach Dynamic Condition Response Graphs. We first introduce relaxed Prime
Event Structures (rPESs) (as a relaxation of [24]) as a foundation for the later
event structures (ESs). Second we will present the very general Event Structure
for Resolvable Conflicts (RCESs) [12]. Finally we present our dynamisation of
the rPESs, the Dynamic Causality Event Structures (DCESs) [2], and state an
incomparability result between DCESs and RCESs. This chapter is based on our
work in [2].

2.1 Prime Event Structures

Relaxed Prime Event Structures (rPESs) consist of a set of events and two
relations. One relation describes conflicts and the other causal dependencies.
To cover the intuition that events causally depending on an infinite number of
other events can never occur, it is required for rPESs to satisfy the axiom of finite
causes.

Additionally for the original Prime Event Structures (PES) [24], the enabling
relation is assumed to be a partial order, that means it is transitive, reflexive,
and anti-symmetric. Furthermore, the concept of conflict heredity is required;
that is an event conflicting with a second event is required to conflict with all
causal successors of that second event.

If we allow causal dependencies to be added or dropped, it is hard to maintain
the conflict heredity as well as transitivity and reflexivity of the enabling relation.
Therefore, we drop the partial order property and the axiom of conflict heredity
in our definition of rPESs. The same applies for the finite causes property which
is covered through finite configurations. Please note that the resulting rPESs
has the same expressive power as the original PESs in [24] with respect to finite
configurations since the axiom of finite causes is trivially satisfied for finite
configurations. The concept of conflict heredity does not influence the expressive

13

2 Technical Preliminaries

power but ensures that syntactic and semantic conflicts coincide. In order to
avoid confusion we call those structures relaxed Prime Event Structures (rPESs).

Definition 2.1. A relaxed Prime Event Structure (rPES) is a triple π= (E,#,→)
where

• E is a set of events,

• #⊆ E2 is an irreflexive symmetric relation (the conflict relation),

• and →⊆ E2 is the enabling relation.

The computational state of a process that is modelled as a rPES, is represented
by the set of events that have occurred. Given a rPES π= (E,#,→) we call such
sets C ⊆ E that respect # and → configurations of π.

Definition 2.2 ([24]). Let π = (E,#,→) be a rPES. A set of events C ⊆ E is a
configuration of π if

• it is conflict-free, that means for all e, e′ ∈ C .¬(︁
e#e′

)︁
,

• downward-closed, that means for all e, e′ ∈ E . e→e′∧ e′ ∈ C =⇒ e ∈ C,

• and the transitive closure of the enabling relation is acyclic, that means
→∗ ∩ C2 is free of cycles.

We denote the set of configurations of π by C(π).

An event e is called impossible in a rPES if it does not occur in any of its config-
urations. Events can be impossible because of enabling cycles, an overlap between
the enabling and the conflict relation, or because of impossible predecessors.

2.2 Event Structures for Resolvable Con�icts

Event Structures for Resolvable Conflicts (RCESs) were introduced in [12] as
generalisation of earlier types of ESs to give semantics to general Petri nets. They
allow to model the case where a and c cannot occur together until b takes place
(i.e. initially a and c are in a conflict until the occurrence of b resolves this conflict,
and therefore, the naming). An RCES consists of a set of events and an enabling
relation between sets of events. Here, the enabling relation also models conflicts

14

2.2 Event Structures for Resolvable Conflicts

between events. The behaviour is defined by a transition relation between sets of
events that is derived from the enabling relation ⊢.

Definition 2.3 ([12]). An Event Structure for Resolvable Conflicts (RCES) is a
pair ρ = (E,⊢) where

• E is a set of events

• and ⊢⊆ 2E ×2E is the enabling relation.

In [12] several versions of configurations are defined. Here we consider only
configurations which are both reachable and finite. Please note that the enabling
relation ⊢ can be considered as a witness relation in the following definition. For
each subset of the new configuration we need a witness in the old one.

Definition 2.4 ([12]). Let ρ = (E,⊢) be an RCES and X ,Y ⊆ E. Then:

X 7→ρ Y ⇐⇒ (X (Y ∧∀Z ⊆Y . ∃W ⊆ X . W ⊢ Z)

We omit the subscript ρ and just write X 7→Y if the RCES ρ is obvious from the
context. The set of configurations of ρ is defined as

C
(︁
ρ
)︁= {︂

X ⊆ E |∅ 7→∗
ρ X ∧ X is finite

}︂
,

where 7→∗
ρ is the reflexive and transitive closure of →rc.

As an example consider the RCES ρ = (E,⊢) where E = {a,b, c}, {b}⊢ {a, c}, and
∅ ⊢ X if and only if X ̸= {a, c}. It models the initial conflict between a and c
described above that can be resolved by b.

∅

(ρ) {a}

{b}

{c}

{a,b}

{b, c}

{a,b, c} ∅

(ργ)

{b}

{a}

{c}

{a,b}

{a, c}

{b, c}

{a,b, c}

Figure 6: Transition graphs of RCESs with resolvable conflict (ρ) and disabling
(ργ)

In Figure 6 (ρ) the respective transition graph is shown (i.e. the nodes are all
reachable configurations of ρ and the directed edges represent 7→ρ).There is no
transition from ∅ 7→ρ {a,b, c} because of {a, c}({a,b, c} and ∅ ̸⊢ {a, c}.

15

2 Technical Preliminaries

We consider two RCESs as equivalent if they have the same transition graphs.
Since we consider only reachable configurations, the transition equivalence de-
fined below is denoted as reachable transition equivalence in [12].

Definition 2.5 ([12]). Two RCESs ρ = (E,⊢) and ρ′ = (︁
E′,⊢′)︁ are transition

equivalent, denoted by ρ ≃t ρ
′ if

• they have the same set of events E = E′

• and 7→ρ ∩(︁
C

(︁
ρ
)︁)︁2 = 7→ρ′ ∩(︁

C
(︁
ρ′)︁)︁2 the transition relations on the reachable

configurations coincide.

We adapt the notion of transition equivalence to arbitrary types of ESs with a
transition relation. Let x and y be two arbitrary types of ESs on that a transition
relation is defined. We denote the fact that x and y have the same transition
graphs by x ≃t y. For RCESs transition equivalence is the most discriminating
semantics studied in the literature. We consider two RCESs as behaviourally
equivalent if they have the same transition graphs.

2.3 Dynamic-Causality Event Structures

In [2] we started to dynamise the causal dependencies of events in event struc-
tures, meaning we allowed events to insert or to delete dependencies. There we
have investigated both approaches first separately and then combined into the
Dynamic-Causality ESs (DCESs). Here we directly present the DCESs and the
most important result for this work: The incomparability of DCESs and RCESs.
Note that we may omit the conflict relation from this definition because it can be
modelled by mutual disabling using adders.

Figure 2 on Page 5 presents an agricultural example DCES. In the following,
we use the events a, c,d, and t, they refer to specific roles the event have: An
adder adds a cause to a target and a dropper removes a cause from a target.

Definition 2.6 ([2]). A Dynamic-Causality ES (DCES) is a quadruple ∆ =
(E,→,◃,Ï) where

• E is a set of events,

• →⊆ E2 the initial causality relation,

16

2.3 Dynamic-Causality Event Structures

c

t

a d

Figure 7: An order-sensitive DCES. The order of the adder a and the dropper d
determines the if the cause c is needed for the target t.

• ◃⊆ E3 is the shrinking causality relation (the triple (d, c, t) ∈◃ is normally
written as d◃[c → t] to denote that the dependency c → t is absorbed by
the dropper d),

• and Ï ⊆ E3 is the growing causality relation (the triple (a, c, t) ∈ Ï is nor-
mally written as aÏ [c → t] to denote that the dependency c → t emerges
from the adder a)

such that for all a,d, c, t ∈ E:

(1) d◃[c → t]∧Øa ∈ E . aÏ[c → t]=⇒ c → t,

(2) d◃[c → t]=⇒ d ∉ {c, t},

(3) aÏ[c → t]∧Ød ∈ E . d◃[c → t]=⇒¬(c → t),

(4) aÏ[c → t]=⇒ a ∉ {c, t},

(5) aÏ[c → t]=⇒¬(a◃[c → t]).

The Conditions (1) and (3) are sanity constraints (i.e. a deletion of a dependency
is only allowed if this dependency is initially present or could be added by another
event, and vice versa). The Conditions (2) and (4) forbid that an adder or a dropper
targets itself. Adding or dropping itself as a cause is obliviously not needed since
we we add or drop a true condition. Adding or dropping itself as a target is also
not needed since events are non-repeatable. If there are droppers and adders
for the same causal dependency, we do not specify whether this dependency is
contained in the initial causality because the semantics depend on the order in
which the droppers and adders occur. Condition (5) prevents that a modifier adds
and drops the same cause for the same target.

17

2 Technical Preliminaries

The order in which droppers and adders occur determines the causes of an
event. For example, assume aÏ[c → t] and d◃[c → t] (as depicted in Figure 7),
then after first a then d, t does not depend on c, whereas after first d then a,
t depends on c. Thus, configurations like {a,d} are not expressive enough to
represent the state of such a system.

Therefore, a state in a DCES is a pair of a configuration C and a current
causality relation →C , which contains the current causal dependencies. Please
note that the initial state is the only state with an empty set of events; for non-
empty sets of events there may be multiple states. For the next definition we
need a little additional notation:

Definition 2.7. Let ∆= (E,→in,◃,Ï) be a DCES and old,new⊆ E.
Then the set of dependencies dropped by events in (new\old) is defined as

old,new := {(c, t) | ∃d ∈ (new\old) . d◃[c → t]}.

And the set of dependencies added by events in (new\old) is defined as

old,new := {(c, t) | ∃a ∈ (new\old) . aÏ[c → t]}.

The behaviour of a DCES is defined by the transition relation on its reachable
states with finite configurations.

Definition 2.8 ([2]). Let ∆= (E,→in,◃,Ï) be a DCES and old,new⊆ E.
Then (old,→old) 7→d (new,→new) if:

(1) old(new

(2) ∀t ∈ new\old . {c | (c, t) ∈→old}⊆ old

(3) →new = (︁→old \ old,new
)︁∪ old,new

(4) ∀(c, t) ∈ old,new ∩ old,new . (c ∈ old∨ t ∈ old)

(5) ∀t,a ∈ new\old .∀c ∈ E . aÏ[c → t] =⇒ c ∈ old.

Condition (1) ensures the accumulation of events. Condition (2) ensures that
only events which are enabled after old can take place in new. Condition (3)
ensures the correct update of the current causality relation with respect to this
transition. To keep the theory simple, Condition (4) avoids race conditions; it
forbids the occurrence of an adder and a dropper of the same still relevant causal

18

2.4 Dynamic Condition Response Graphs

dependency within one transition. Condition (5) ensures that DCESs generalises
the GESs, it prevents the concurrent occurrence of an adder and its target since
they are not independent. One exception is when the target has already occurred.
In that case, the adder does not change the target’s predecessors.

Definition 2.9 ([2]). Let ∆= (E,→in,◃,Ï) and ∆′ = (E′,→′
in,◃′,Ï′) be two DCESs.

We call them transition equivalent if they allow for the same transition sequences
and write ∆≃ts∆

′.
That means

• for any sequence ∅= X0, X1, . . . , Xn with X i (X i+1 and Xn ∈ E∩E′,

• we have current causality relations →X0=→in,→X1 , . . . ,→Xn such that
(X i,→X i) 7→d (X i+1,→X i+1) in ∆,

• if and only if we have current causality relations →′
X0

=→′
in,→′

X1
. . . ,→′

Xn
such that (X i,→′

X i
) 7→d (X i+1,→X ′

i+1
) in ∆′.

As visualised by the DCES in Figure 7, the order of events may be relevant for
the behaviour of a DCES.

DCESs and RCESs are incomparable. On the one hand RCESs can express
the disabling of an event c after a conjunction of events a and b as visualised by
ργ of Figure 6 on Page 15, whereas DCESs can only model disabling after single
events.

Lemma 2.10 ([2]). There is no transition-equivalent DCES to ργ of Figure 6.

On the other hand RCESs cannot distinguish the order of occurrences of events
as it is done for the order of a and d in the DCES in Figure 7. Therefore, both
structures are incomparable.

Theorem 2.11 ([2]). DCESs and RCESs are incomparable.

2.4 Dynamic Condition Response Graphs

In 2010 Hildebrand and Mukkamala [14] introduced the Dynamic Condition
Response Graphs (DCR-Graphs): “The model language is inspired by and a
conservative generalization of the declarative process matrix model language used
by our industrial partner and prime event structures.” There is a web tool for
working with DCR-Graphs at http://tiger.itu.dk.

19

http://tiger.itu.dk

2 Technical Preliminaries

Before introducing the DCR-Graph definition, we present the authors’ deriva-
tion of. First PESs were extended to Condition Response ESs (CRESs) by introduc-
ing an acceptance criterion, that checks if some initially specified or subsequently
added response events occurred (or some conflicting events). Thereafter the au-
thors allowed for events to re-occur and also to exclude and re-include events from
the structure (therefore, DCR-Graphs are called dynamic). Since DCR-Graphs
allow for the re-occurrence of events a finite representation of possibly infinite
behaviour is gained. It is also shown that there is a natural inclusion of CRESs
into DCR-Graphs.

Hildebrand and Mukkamala first recap the definition of labelled Prime ESs,
but in contrast to our approach they allow for infinite event sets, a set of action
Act and a labelling function l for the events into the actions. They demand two
properties of the causality relation which we omitted, namely conflict heredity
and the finite cause property. In order to avoid confusions we use the abbreviation
lPES for these labelled PES. All definitions and the proposition in this subsection
are originally from [14].

Definition 2.12. A labelled Prime Event Structure (lPES) is
a 5-tuple P = (E,Act,≤,#, l) where

• E is a (possibly infinite) set of events,

• Act is the set of actions,

• ≤⊆ E×E is the causality relation between events which is a partial order,

• # ⊆ E×E is a binary conflict relation between events which is irreflexive
and symmetric,

• l : E →Act is the labelling function mapping events to actions.

The causality and conflict relations must satisfy the conditions:

(1) (conflict heredity) ∀e, e′, e′′ ∈ E . e#e′∧ e′ ≤ e′′ =⇒ e#e′′,

(2) (finite cause property) ∀e ∈ E . e ↓:= {e′ | e′ < e} is finite.

A configuration of P is a set C ⊆ E of events satisfying the conditions:

(1) conflict-free: ∀e, e′ ∈ C .¬e#e′,

(2) downwards-closed: ∀e ∈ C, e′ ∈ E . e′ ≤ e =⇒ e′ ∈ C.

20

2.4 Dynamic Condition Response Graphs

A run ρ of a lPES P is a (possibly infinite) sequence of labelled events (e1, l(e1)),
(e2, l(e2)), . . . such that for all i ≥ 0 the set

⋃︁
0≤ j≤i{e j} is a configuration. A run

(e1, l(e1)), (e2, l(e2)), . . . is maximal if any enabled event eventually happens or
becomes in conflict, formally ∀e ∈ E, i ≤ 0 . e ↓⊆ e i ↓ ∪{e i} =⇒ ∃ j ≥ 0 . (e#e j∨e = e j).

Next Hildebrand and Mukkamala extended the lPES to Condition Response
ESs by introducing a notion of acceptance. Therefore, they introduced a third
relation on the events, namely the response relation and a set of initially needed
responses. The semantics are inherited from the lPESs but extended with the
acceptance criterion: Any pending response event (initial or added by an event
with the response relation) must eventually happen or be in conflict with the
current configuration.

Definition 2.13. A labelled Condition Response ES (CRES) over an alphabet
Act is a 6-tuple (E,Re,Act, , ,#, l) where

• (E,Act, ,#, l) is a lPES, referred to as underlying ES,

• ⊆ E×E is the response relation between events,
satisfying that ∪ is acyclic,

• Re⊆ E is the set of initial responses.

The configuration C and run ρ of a CRES are defined as respectively a configu-
ration and a run of the underlying ES. A run (e1, l(e1)), (e2, l(e2)), . . . is accepting
if ∀e ∈ E, i ≥ 0 . e i e =⇒ ∃ j ≥ 0 . (e#e j ∨ (i < j ∧ e = e j)) and ∀e ∈ Re . ∃ j ≥
0 . (e#e j ∨ e = e j). In words, any pending response event must eventually happen
or be in conflict.

Definition 2.14. A Dynamic Condition Response Graph (DCR-Graph) is the
7-tuple G := (E, M,Act, , ,±, l) where

• E is the set of events,

• M ∈M (G) := 2E×2E×2E is the marking and M (G) is the set of all markings,

• Act a set of actions,

• ⊆ E×E is the condition relation,

• ⊆ E×E is the response relation,

• ± : E ×E ↾ {+,%} defines the dynamic inclusion/exclusion relations by
e + e′ if ±(e, e′)=+ and e % e′ if ±(e, e′)=%,

21

2 Technical Preliminaries

• l : E →Act is a labelling function, that maps every event to an action.

The semantics of a DCR-Graph are defined by a transition system on its
markings labelled with pairs of events and their labels. A run of a DCR-Graph
correspond to a path in the transition system. Such a run is considered to be
accepting if no response event is continuously included and pending without
it happening (note for finite runs to be accepting this means that there are no
included restless events in the final marking).

Definition 2.15. For a DCR-Graph G = (E, M,Act, , ,±, l) the correspond-
ing labelled transition system T(G) is the 3-tuple (M (G), M, →⊆M×(E×Act)×M)
with

• M (G) is the set of markings of G,

• M ∈M (G) is the initial marking,

• and →⊆M × (E×Act)×M is the transition relation given by M′ (e,a)−−−→ M′′

where

• M′ = (Ex′,Re′,In′) is the marking before transition,

• M′′ = (Ex′∪{e},Re′′,In′′) is the marking after the transition,

• e ∈ In′ and l(e)= a,

• {e′ ∈ In′ | e′ e}⊆Ex′,

• In′′ = (In′∪{e′ | e + e′})\{e′ | e % e′},

• Re′′ = (Re′\{e})∪ {e′ | e e′}.

A run (e0,a0), (e1,a1), . . . of the transition system is a sequence of labels of a

sequence of transitions Mi
(e i ,ai)−−−−→ Mi+1 where Mi = (Exi,Rei,Ini) and M0 = M.

A run is accepting if ∀i ≥ 0, e ∈ Rei . ∃ j ≥ i . (e = e j ∨ e ∉ In j). In words, a run is
accepting if no response event is continuously included and pending without it
happening.

There is a simple encoding of CRES into DCR-Graphs. First any event should
exclude itself as in DCR-Graphs they are re-executable in contrast to CRESs.
Second the conflict e#e′ in a CRES can be modelled by mutual exclusion in a
DCR-Graph (cf. Figure 8).

22

2.4 Dynamic Condition Response Graphs

e # e′

(1) conflict relation in CRES

e e′

(2) encoding in DCR-Graph

%
%

% %

Figure 8: Encoding of conflicting events. (1) the conflicting events e and e′ in a
CRESs. (2) conflict is modelled as mutual exclusion in DCR-Graphs.

Proposition 2.16. Let C = (E,Re,Act, , ,#, l) be a CRES
and D = (E, M,
Act, , ,±, l) be a DCR-Graph with

• the initial marking M = (∅,Re,E)

• and dynamic exclusion ±(e, e′)=% if e = E′ or e#e′ and undefined otherwise.

Then C and D have the same runs and accepting runs.

In Chapter 4 we consider a slightly different definition of DCR-Graphs that
allows more easily to define true concurrency semantics for DCR-Graphs in order
to present an encoding of DCR-Graphs into HDESs.

In Section 5.1 we present a case study once modelled using both DCESs and
DCR-Graphs. The focus is on the DCES modelling, however.

23

3 Higher-Order Dynamics

Based on the incomparability result in Theorem 2.11, we extend the DCES
formalism by two means, set-based dynamics and higher-order dynamics. This
will also solve certain shortcomings of the DCES formalism exhibited in the case
study in Section 5.1.

3.1 Higher-Order Dynamic-Causality ESs

Higher-Order Dynamic-Causality ESs (HDESs) are a recent generalisation of
DCESs [16]. They allow for higher-order dynamicity (e.g. an adding of an adding)
and also for set-based (i.e. conjunctive) modifications (e.g. a dropping after a and
b). Figure 9 on Page 26 presents a small example of a second-order adding: After
a diagnosis, a treatment becomes possible. Now, a doctor might join the treatment
team and nothing changes. But if she read a medical paper before joining, in
which an additional test before the treatment was suggested, the joining of the
doctor leads to an additional precondition, namely the test for the treatment. This
behaviour is modelled with a second order rule, dr_x_reads_paper Ï[dr_x_joins
Ï[test → treatment]], and the zeroth order rule diagnosis → treatment (for

enhanced readability of the rules we used the notation of the web tool, as in
Section 3.2).

Our approach is similar to the definition of DCESs in [2], but instead of updat-
ing a causality relation, we use a rule set which is updated after each transition.
The following definitions are revised versions of those in [16]. We indicate were
we differ from the original version. Again, we omit the conflict relation from our
new structures. Now, we define HDES rule sets, further notation is necessary
before we are ready to define HDESs:

25

3 Higher-Order Dynamics

diagnosis

treatment

dr_x_joins

dr_x_reads_paper

test

Figure 9: A HDES example with second-order dynamics.THESIS Example 2
with second-order dynamics: Dashed arrows denote initially absent
dependencies or initially absent dynamic rules. Advice for a printed
version: Please visit http://hdes.mtv.tu-berlin.de and load THESIS
Example 2.

Definition 3.1. For a given set of events E, a HDES rule is produced by the
following grammar, with start symbol S:

S−→Z |F |H
Z−→ [c → t] c, t ∈ E
F−→ MÏ[c → t] | M◃[c → t] M ⊆ E∧ (c, t ∈ E \ M)

H−→ AÏ[R] | D◃[R] A,D ⊆ E
R−→H |F

A rule is either a zeroth order rule created by Z, or a first order rule created by
F, or a higher order rule created by H. A higher order rule adds or drops a rule
recursively generated by R that itself is either a higher order rule or a first order
rule.

• For a given rule r, we call the rank of r or the order of r, written as rk(r),
the number of Ï symbols plus the number of ◃ symbols occurring in r.

• For a rule set R, we call its restriction on the rules of rank zero the causality
relation, written as →R (or → if the rule set is obvious from the context).

26

http://hdes.mtv.tu-berlin.de/#thesis-hdes-second-order
http://hdes.mtv.tu-berlin.de

3.1 Higher-Order Dynamic-Causality ESs

• Let r = M1 op1[. . . Mk opk[c → t] . . .] with opi ∈ {◃,Ï} for 1≤ i ≤ k be a rule of
rank k. Then r i denotes the sub-rule

r i = Mi opi[. . . Mk opk[c → t] . . .]

for 1≤ i ≤ k.

• The set of all rule sets with respect to an event set E is called RuleSets(E).

The grammar defined above is more complicated than the original in [16],
because we want to prevent that the target or the cause are members of the
modifier set in first-order rules. This is a generalisation of the condition in
DCESs, that neither adder nor dropper may be the cause or the target, as defined
in [2]. Based on the HDES rule sets we can now define Higher-Order Dynamic-
Causality ESs:

Definition 3.2. A Higher-Order Dynamic-Causality ES (HDES) is
a tuple H = (E,R) where

• where E is an event set

• and R ∈RuleSets(E), that means R is a HDES rule set with respect to E.

The order of a HDES H = (E,R) is the maximal order of any rule r ∈ R.

Like in DCESs, configurations are not expressive enough to capture the be-
havioural state of a HDES.

Definition 3.3. Let H = (E,R) be a HDES, C ⊆ E, RC ∈RuleSets(E).
Then we call

• (C,RC) a state of H

• and S0 := (∅,R) the initial state of H if not explicitly defined differently.

For a state s = (C,R) we define

• its rule set as the projection to the rule set rs(s) := R

• and its configuration as the projection to the configuration con(s) := C.

27

3 Higher-Order Dynamics

Like in the case of DCESs, the behaviour of a HDES is defined by the transition
relation between its states, but before we can define such transitions, we define a
rule update for a state with respect to a set of events. In the rule update for a
transition, we only consider rules whose modifier sets are subsets of the new set
of events, but were no subsets of the old set of events in the old state. Dropping
rules are executed first (if they are not dropped themselves), and adding rules are
executed thereafter. Further, we forbid certain concurrent occurrences of events
for an adding rule: If a rule adds a dependency AÏ[c → t], then t is only allowed
to be in the same transition as A if the cause c is element of the old set of events.

Definition 3.4. Let sold = (old,Rold) be a state of a HDES H = (E,R)
and new⊆ E with old(new. Then we call

• a rule M op[r] active denoted as r ∈ ac(sold,new) if (M ⊆ new)∧ (M ̸⊆ old),

• otherwise we call it passive.

• We call a rule r independent denoted as r ∈ ind(old,Rold)
if there is no active rule r′ dropping r.

The rule update Rnew is the result of applying Algorithm 1 to sold and the new set
of events. We denote this relation as sold −→new Rnew.

The algorithm consists of three parts. In the first part the dropping rules are
taken into consideration (Lines 2 to 8) and the independent ones are executed (if
active — Line 6) or copied to the new set (if passive — Line 8) step by step. Note
that the set of independent rules might change since Rold gets modified by the
algorithm. In the second part (Lines 11 to 16) each adding rules is executed if
active (Line 14), else copied to the new set (Line 16). Finally, all causality rules
(rules of the form [c → t]) are copied to the new set (Line 19) and the result is
returned.

Definition 3.5. Let H = (E,R) be a HDES, and sold = (old,Rold) and snew =
(new,Rnew,) two of its states. Then sold 7→H snew if

(1) old(new

(2) ∀t ∈ new\old .∀c ∈ E . c →Rold t =⇒ c ∈ old

(3) sold −→new Rnew

(4) ∀r ∈ Rold . (r = MÏ[c → t]∧ (r ∈ ac(sold,new)∧ t ∈ new\old) =⇒ c ∈ old

28

3.1 Higher-Order Dynamic-Causality ESs

input :A HDES state sold = (old,Rold) of a HDES H = (E,R) and a set
of events new, with old(new⊆ E

output :A set of HDES rules Rnew

1 Rnew ←∅; // The output set is constructed step by step.

2 while ∃ r ∈ Rold, M ⊆ E . r = M◃
[︁
r′

]︁
do // while there are dropping

rules

3 let r = M◃
[︁
r′

]︁ ∈ Rold ∧ r ∈ ind((old,Rold)); // chose a independent

dropping rule (with respect to the current Rold)

4 Rold ← Rold \{r}; // remove the rule from the old set

5 if r ∈ ac(sold,new) then // active or passive rule?

6 Rold ← Rold \{r′}; // drop the target from old set

7 else
8 Rnew ← Rnew ∪ {r}; // copy the rule to the new set

9 end
10 end
11 foreach r = MÏ[︁

r′
]︁ ∈ Rold do // for each adding rule

12 Rold ← Rold \{r}; // remove the rule from the old set

13 if r ∈ ac(sold,new) then // active adding rule?

14 Rnew ← Rnew ∪ {r′}; // add the target to the new set

15 else
16 Rnew ← Rnew ∪ {r}; // add the rule to the new set

17 end
18 end
19 Rnew ← Rnew ∪Rold; // copy the causal rules to the new set

20 return Rnew;
Algorithm 1: The HDES rule set update algorithm

29

3 Higher-Order Dynamics

Condition (1) ensures an accumulation of events and Condition (2) the down-
ward closure under the current causality relation. Condition (3) ensures that
all rules, whose modifier sets are included in new but not in old are executed,
and the new rule set is adjusted. The last Condition (4) is a generalisation of the
DCES condition which forbids the concurrency of an adder and its target if the
cause did not occur previously.

The original paper [16] imposed an additional condition that was meant to
prevent that one rule is added and dropped by the same modifier in a single
transition, but as stated in the paper it forbids certain possibly interesting
behaviour. Thus, the condition is dropped.

By this definition, we may add rules which never become active: For example,
if we have an active adding rule like M1Ï[M2Ï[r]], and M2 is contained in the
current configuration old unified with the modifier set M1. Such a behaviour
could be prevented by a more strict version of Condition (4). Such rules will be
removed by the clean-up (see below in Subsection 3.3.1), certain rules could even
be removed initially (cf. redundant rules in Subsection 3.4.3).

To compare two HDESs, we define a proper equivalence based on the transition
behaviour. This is a straightforward generalisation of the equivalence definition
for DCESs in Definition 2.9.

Definition 3.6. Let H = (E,R∅) and H′ = (E′,R′
∅) be two HDESs. We call them

transition-equivalent if they allow for the same transition sequences with respect
to the events and write H≃ts H′. That means

• for any sequence ∅= X0, X1, . . . , Xn with X i (X i+1 and Xn ∈ E∩E′,

• we have rule sets RX0 = R∅,RX1 . . . ,RXn such that
(X i,RX i) 7→H (X i+1,RX i+1) in H,

• if and only if we have rule sets R′
X0

= R′
∅,R′

X1
. . . ,R′

Xn
such that

(X i,R′
X i

) 7→H (X i+1,R′
X i+1

) in H′.

This equivalence definition abstracts from the non-observable internal be-
haviour. For example, we do not want to distinguish between two structures if
they only differ in the names of some impossible events.

30

3.2 The Web Tool

3.2 The Web Tool

We1 have developed a web tool (http://hdes.mtv.tu-berlin.de/) with the purpose of
simulating and exploring the behaviour of HDESs (and also DCESs). Example 3.1
shows the web tool version (THESIS Example 2) of the HDES from Figure 9.
Advice for a printed version: Whenever you read THESIS Example X , please
load THESIS Example X in the web tool.

3.2.1 The Syntax of the Web Tool

The first line @hdes declares that we define a HDES. We could have also used @dces

1 @hdes

2

3 diagnosis(x=50, y=50)

4 dr_x_joins(x=200, y=50)

5 dr_x_reads_paper(x=350, y=125)

6 test(x=350, y=200)

7 treatment(x=50, y=200)

8

9 diagnosis → treatment

10 dr_x_reads_paper Ï[dr_x_joins Ï[test → treatment]]

11

12 @c "An example HDES with second -order adding."

Example 3.1: HDES example from Figure 9.

to define a DCES (or even @rpes for rPESs). The next block contains positioning
information for visualising the ES. For example diagnosis(x=50, y=50) means
that the event diagnosis will be initially positioned 50 pixel to the right and
50 pixel below the upper left corner. If one omits such declarations, the tool
tries to position the events automatically. Dependencies are denoted as c --> t,
the addition of a dependency as a +> [c --> t] (higher order adding works the
same way as in the above example dr_x_reads_paper +> [dr_x_joins +> [test

--> treatment]]), and the deletion is denoted as d |> [c --> t]. There can be

1 that means mostly our student assistant Benjamin Bisping

31

http://hdes.mtv.tu-berlin.de/
http://hdes.mtv.tu-berlin.de/#thesis-hdes-second-order

3 Higher-Order Dynamics

arbitrary finite sets as modifiers (adders and droppers), for example {x,y,z}

+> [c --> t], separated by commas and encapsulated with curly brackets, and
comments can be stated as @c "This is a comment."

Note that the notation in this thesis a Ï[c → t] and d ◃[c → t] is slightly
different to the pure ASCII notation used in the web tool a +> [c --> t] and
d |> [c --> t].

The keyword @addThenDrop applies the alternative rule update strategy as
defined below in Subsection 3.4.1.

3.2.2 The GUI of the Web Tool

The GUI of the web tool consists of three main parts: The menu bar on the top,
the text window on the left, and the visualisation window on the right. Using the
menu bar one can load predefined examples (e.g. all examples of this thesis) or
local files, export the current structure as a textual representation or as SVG file,
apply the encodings of this thesis (see Subsection 3.4.2 for a kind of normalisation
of HDESs, Subsection 3.5.1 for embedding DCES into HDES, and Chapter 4
for simulating basic DCR-Graphs with HDES), and switch between straight
and bended arrows (the later ones are helpful if arrows are displayed on top of
each other like in c → t and c ◃[c → t] see THESIS Example 3) or activate
(respectively deactivate) an automatic rule clean-up after each transition (see
Subsection 3.3.1) in the settings.

In the second row, one can switch between the editing (Edit) and the execution
(Run) mode. Depending on the mode, the tool shows different buttons in the third
row. In editing mode, the first button allows one to move events, the second one
to create or rename events, the third one to insert dependencies, the fourth one
to introduce binary conflicts (in rPESs), the fifth button to insert an adding, the
sixth one to insert a dropping, and the last one is for event refinement, which is
currently under development.

In the upper left corner of the visualisation window is a small button to toggle
the text window (if the text window is hidden, this button is on the left border
with the line numbers).

In execution mode, the text window contains the current rule set with respect
to the selected rule update strategy (Definition 3.4 or Definition 3.20). The history
of already performed steps is in @hdesCfg . Initially it is empty. One can click on
enabled events like diagnosis depicted as big green discs (disable events have
big grey discs and executed ones smaller black discs). After the execution, the
event will appear in the left window @hdesCfg "{diagnosis}" and the rule set

32

http://hdes.mtv.tu-berlin.de/#thesis-bended-arrows

3.3 Concepts for Working with HDESs

will get updated with respect to this transition. One can also select more than one
event by holding Shift ⇑ and drawing a frame with a pressed left mouse button,
or by hold Shift ⇑ and adding events by left clicking them. . A button labelled
Parallel Step will appear. If the selected events are concurrently enabled, the
button is green and one can press it to perform the concurrent step if not this
button is greyed out. Using the arrow buttons in the third row, one can undo
and redo transition steps. Using the button, one can perform a clean-up
step on the current rule set, which will remove certain superfluous rules (see
Subsection 3.3.1). In the Transition System menu, one can create a graphviz file
(at http://www.graphviz.org/ a web tool for those can be found) or create a list of
all possible paths in the transition system.
Remark 3.7. The web tool was extremely useful for testing purposes when de-
signing HDES encodings (as in Subsection 3.4.2 and Section 4.2) since we could
check if the encoding did what it was supposed to do. This made it possible to
identify many mistakes before proving.

3.3 Concepts for Working with HDESs

In the following section, we introduce two tools: a clean-up of a state (in Sub-
section 3.3.1), which removes certain obsolete rules, and the synchronisation
pattern (in Subsection 3.3.2), with which we enforce certain effects if events occur
simultaneously.

3.3.1 Clean-Up

Here, we define a rule set clean-up with respect to a specific state (i.e. we remove
rules from the rule set which do not influence the observable behaviour). The
idea is to remove all rules which will clearly never have any observable effect.

In a state (C,RC) any rule r = M1 op1[. . . Mk opk[c → t] . . .] ∈ RC can be removed
from the rule set RC if there is a 1 ≤ i ≤ k with Mi ⊆ C.This will not affect
the behaviour, since r will have no influence on enabled events or constrain
concurrency. We can also remove any rule M1 op1[. . . Mk opk[c → t] . . .] ∈ RC – even
the causality rule c → t itself, if c ∈ C or t ∈ C. This dependency is meaningless if
the target or the cause this dependency has already occurred. Adding or dropping
it has no observable effect.

Definition 3.8. Let H = (E,R) be a HDES and s = (C,RC) a state of H.
The clean-up of s is the state cu(s) := (C,R′

C), where

33

http://www.graphviz.org/

3 Higher-Order Dynamics

• R′
C can be obtained from RC as follows:

– Drop every rule r = M1 op1[. . . Mk opk[c → t] . . .] ∈ RC
if there is a 1≤ i ≤ k with Mi ⊆ C,

– or c ∈ C,

– or t ∈ C

– else add it to R′
C .

• Note, that for k = 0 the rule r reduces to c → t.

Now, we can state the claim that the clean-up does not change the behaviour.

Lemma 3.9. Let H = (E,R) be a HDES and s = (C,RC) a state of H and
s′ := cu(s) be the clean-up of s.
Then Hs := (E,RC) with initial configuration C and Hs′ := (E,rs

(︁
s′

)︁
) with initial

configuration C are transition-equivalent.

We show this equivalence via induction over the rank of the deleted rule.

Proof. Let r be a rule removed by the clean-up with rk(r)≤ 1. W have r = c → t
with c ∈ C or t ∈ C. In both cases, the dependency does not constrain any future
transitions (by Definition 3.4), or r = MÏ[c → t] or r = M◃[c → t]. If M ⊆ C, by
Definition 3.4, r never becomes active in Hs. It cannot change the rule set. On
the other hand, an adding rule could only influence the behaviour by restricting
concurrency if it was active. Thus, deleting r does not change the observable
behaviour and Hs≃ts Hs′ . If M ̸⊆ C, it follows c ∈ C or t ∈ C. But then, this rule
will only add or drop a meaningless dependency and can be deleted.

Let now r be a rule removed in the clean-up with n := rk(r)> 1 such that for all
1≤ i ≤ k . Mi ̸⊆ C. It follows c ∈ C or t ∈ C, but then this rule will finally only add
or drop a meaningless dependency and can be deleted.

For the remainder of the proof we may assume there is a 1≤ i ≤ k . Mi ⊆ C. Let
now r be a rule removed in the clean-up with n := rk(r)> 1 if r = M◃

[︁
r′

]︁
and r

never becomes active (or active but always not independent), it can obviously be
removed. Assume there is a transition sequence in Hs such that r gets executed.
Then, the rule r′ will get removed (if it exists), but since r got deleted in the
clean-up, there is a modifier set Mi with i > 1 contained in C (otherwise r would
not be active since then M1 ∈ C). Thus, Mi is also a modifier of r′, and therefore,

34

3.3 Concepts for Working with HDESs

r′ and any rule which could add r′ would also be deleted in the clean-up. By
induction and since rk(r′) < rk(r), we also know that the removal of r′ does not
change the behaviour. The only difference would be when those rules get deleted.
Also in this case Hs≃ts Hs′ .

Let finally r be a rule removed in the clean-up with n := rk(r)> 1 and r = MÏ[︁
r′

]︁
, and assume there is a transition sequence in Hs such that r gets executed

(if none exists, we clearly have Hs ≃ts Hs′). So in Hs the rule r would add a
rule r′ such that there is a modifier in r′ which is already contained in C and
rk(r′)< rk(r). Thus by induction, r′ does not change the behaviour and there is
no need to add it, and therefore, Hs≃ts Hs′ .

Up to now, we have removed irrelevant rules. The following lemma shows
that in certain situations there are irrelevant events in the configuration of the
current state which can be removed.

Lemma 3.10. Let H = (E,R) be a HDES and let s = (C,RC) be a state of H, let
D ⊆ C such that

• no d ∈ D occurs in any rule of RC

• neither as modifier

• or as part of the targeted dependency.

Then the HDES H′ := (E \ D,RC) allows initially for exactly the same transition
sequences as H in the state s, where the initial state of H′ is (C \ D,RC).

Proof. By Definition 3.5 (resp. by Definition 3.21), the events in D are considered
at two points. First, in order to check if events are enabled (i.e. all predecessor
have occurred), and second in the rule update to check if a rule is active or not.
But since no d ∈ D occurs in any modifier set (or targeted dependency) of RC , nor
in any causality rule, it is possible to reduce the structure to a HDES over E \ D
with an initial state (C \ D,RC).

Corollary 3.11. In the special case D = C, the reduction according to Lemma 3.8
yields a HDES over the reduced event set E \ C with initial state (∅,RC).

Proof. Immediate by Lemma 3.10.

Note, that in Subsection 3.4.3 a state independent approach for detecting
superfluous rules is stated. That approach will detect potentially less rules to be
superfluous, but can do it before the system runs.

35

3 Higher-Order Dynamics

On the one hand, there are rules that will be detected as superfluous but will
never get cleaned up (cf. Lemma 3.45 and Example 3.4). On the other hand, there
are non-redundant rules with respect to the definitions in Subsection 3.4.3 which
will eventually get cleaned up (cf. Lemma 3.46) .

3.3.2 Synchronisation Pattern

In this subsection we define a synchronisation pattern (i.e. a set of rules such
that there is an effect if certain events occur concurrently, but not if they occur in
different transitions). We also define an extended synchronisation pattern, which
works nicely with the clean-up (cf. Definition 3.8).

In the following, we define a set of five rules which insert or delete an arbitrary
rule r depending on op (op=◃ would delete and op=Ï would insert) if x and y
occur concurrently, but have no effect if x and y occur in different transitions.

Definition 3.12. Let op ∈ {◃,Ï}, let x, y ∈ E with x ̸= y, and let r be a HDES rule
over E. Then we define the synchronisation pattern consisting of the following
five rules

{x, y}op r, (3.1)

x◃[{x, y}op r] , (3.2)

y◃[{x, y}op r] , (3.3)

{x, y}◃[x◃[{x, y}op r]] , (3.4)

{x, y}◃[y◃[{x, y}op r]] . (3.5)

The set Sync({x, y}op[r]) consists by definition of exactly the five Rules (3.1)
to (3.5).

Example 3.2 (in the tool THESIS Example 4) is a small example HDES using
the synchronisation pattern for a and b: If they occur synchronised they enable
an event x; if they occur in the order first a then b they enable the event y and if
they occur in the reversed order, they enable the event z.

Now, before we prove the correctness of the synchronisation pattern we need a
little further definition. We now define when a rule set R does not affect any rule
in a rule set S.

Definition 3.13. Let R and S be two HDES rule sets over E. We say R does not
affect S if there is now rule r or sub-rule r i in R adding or dropping any rule s or
sub-rule si of S.

36

http://hdes.mtv.tu-berlin.de/#thesis-synchronisation-pattern

3.3 Concepts for Working with HDESs

1 @hdes

2

3 a(x=100, y=100)

4 b(x=300, y=100)

5 x(x=175, y=200)

6 y(x=75, y=200)

7 z(x=275, y=200)

8 x → x

9 y → y

10 z → z

11

12 @c "Synchronisation pattern for a AND b enabling x"

13 {a, b} ◃ [x → x]

14 a ◃ [{a, b} ◃ [x → x]]

15 b ◃ [{a, b} ◃ [x → x]]

16 {a, b} ◃ [a ◃ [{a, b} ◃ [x → x]]]

17 {a, b} ◃ [b ◃ [{a, b} ◃ [x → x]]]

18

19 @c "a adds the enabling of y AFTER b"

20 a Ï [b◃ [y → y]]

21

22 @c "b adds the enabling of z AFTER a"

23 b Ï [a ◃ [z → z]]

Example 3.2: HDES example for the synchronisation pattern as defined in
Definition 3.12. Concurrently a and b enable x. In the order
first a then b the enable y, and in the reversed order they enable
z.

37

3 Higher-Order Dynamics

The next two lemmata state that the synchronisation pattern does what it was
designed to do.

Lemma 3.14. Let H = (E,Sync({x, y}◃[r])∪R) such that

• r ∈ R

• and R does not affect the rules of the synchronisation pattern
(as defined in Definitions 3.12 and 3.13),

• and r is not activated by x, y, or both of them.

Then

• the concurrent occurrence of x and y
removes r from the current rule set of H,

• but if only one occurs (or both but one after the other)
then r remains in the current rule set of H

• if not removed by any other rule in R.

Proof. Let H as defined in Lemma 3.14. Let us first assume without loss of
generality x occurs but y does not occurs concurrently. Then, by Definition 3.4
only Rule (3.2) becomes active, and since it is independent it drops Rule (3.1).
Thus, we have no rule in the synchronisation pattern anymore, which could drop
r.

Let us now assume x and y occur concurrently. Then all five rules of the
synchronisation pattern become active (cf. Definition 3.4), but only the Rules (3.4)
and (3.5) are independent and so they drop the Rules (3.2) and (3.3). Thus,
Rule (3.1) becomes independent and drops r as claimed.

Lemma 3.15. Let H = (E,Sync({x, y}Ï[∪])R) such that R does not affect the rules
of the synchronisation pattern (as defined in Definitions 3.12 and 3.13).
Then,

• the concurrent occurrence of x and y adds r to the current rule set of H,

• but if only one occurs (or both but one after the other)
then r is not added to the the current rule set of H

• if there were no other active rules in R adding r.

38

3.3 Concepts for Working with HDESs

Proof. Like in the proof of Lemma 3.14, this is an immediate consequence of
Definition 3.4.

One possible downside of the above definition of the synchronisation pattern
Sync({x, y}op[r]) is that if only one event x or y occurs, there are rules of no further
use, which cannot be removed by the clean-up (e.g. if only x occurs, consider the
Rules (3.3) and (3.5). They have no further use but are not removed in a clean-up).

To circumvent this situation, we define the extended synchronisation pattern,
which works nicely with the clean-up, but consists of nine instead of five rules.

Definition 3.16. Let op ∈ {◃,Ï}, let x, y ∈ E with x ̸= y, and let r be a HDES rule
over E. Then we define the extended synchronisation pattern consisting of the
following nine rules

{x, y}op r, (3.6)

x◃[{x, y}op r] , (3.7)

y◃[{x, y}op r] , (3.8)

y◃[x◃[{x, y}op r]] , (3.9)

x◃[y◃[{x, y}op r]] , (3.10)

x◃[y◃[x◃[{x, y}op r]]] , (3.11)

y◃[x◃[y◃[{x, y}op r]]] , (3.12)

{x, y}◃[x◃[y◃[x◃[{x, y}op r]]]] , (3.13)

{x, y}◃[y◃[x◃[y◃[{x, y}op r]]]] , (3.14)

The set containing exactly the Rules (3.6) to (3.14) is defined as eSync({x, y}op[r]).

Example 3.3 (in the tool THESIS Example 5) shows an example HDES using
the extended synchronisation pattern for a and b: If they occur synchronised they
enable an event x, if they occur in the order a then b they enable the event y and
if they occur in the reversed order they enable the event z.

39

http://hdes.mtv.tu-berlin.de/#thesis-extended-synchronisation-pattern

3 Higher-Order Dynamics

1 @hdes

2 a(x=100, y=100)

3 b(x=300, y=100)

4 x(x=175, y=200)

5 y(x=75, y=200)

6 z(x=275, y=200)

7 x → x

8 y → y

9 z → z

10

11 @c "Extended synchronisation pattern for a AND b enabling

x"

12 {a, b} ◃ [x → x]

13 a ◃ [{a, b} ◃ [x → x]]

14 b ◃ [{a, b} ◃ [x → x]]

15 a ◃ [b ◃ [{a, b} ◃ [x → x]]]

16 b ◃ [a ◃ [{a, b} ◃ [x → x]]]

17 a ◃[{b} ◃ [a ◃ [{a, b} ◃ [x → x]]]]

18 b ◃[{a} ◃ [b ◃ [{a, b} ◃ [x → x]]]]

19 {a,b} ◃[a ◃[{b} ◃ [a ◃ [{a, b} ◃ [x → x]]]]]

20 {a,b} ◃[b ◃[{a} ◃ [b ◃ [{a, b} ◃ [x → x]]]]]

21

22 @c "a adds the enabling of y AFTER b"

23 a Ï [b◃ [y → y]]

24

25 @c "b adds the enabling of z AFTER a"

26 b Ï [a ◃ [z → z]]

Example 3.3: HDES example for the extended synchronisation pattern as
defined in Definition 3.16

40

3.3 Concepts for Working with HDESs

The next two lemmata state that the extended synchronisation pattern does
what it was designed to do.

Lemma 3.17. Let H = (E,eSync({x, y}◃[r])∪R) such that

• r ∈ R

• and R does not affect the rules of the extended synchronisation pattern
(as defined in Definitions 3.13 and 3.16),

• and r is not activated by x or y or both of them.

Then,

• the concurrent occurrence of x and y
removes r from the current rule set of H,

• but if only one occurs (or both but after each other)
then r remains in the current rule set of H.

• And after any occurrence of x or y, a clean-up
removes all remaining rules of the extended synchronisation pattern.

Proof. Let H be as defined in Lemma 3.17. Let us first assume that, without lost
of generality, x occurs but y does not occur concurrently. Then, by Definition 3.4
only the Rules (3.7), (3.10) and (3.11) becomes active, and since they are inde-
pendent they drop the Rules (3.6), (3.8) and (3.9). Since x occurred, a clean-up
with respect to x removes the Rules (3.12) to (3.14). Thus, we have no rule in the
extended synchronisation pattern anymore, which could drop r.

Let us now assume x and y occur concurrently, then all nine rules of the
extended synchronisation pattern become active (cf. Definition 3.4), but only
the Rules (3.13) and (3.14) are independent, and so, they drop the Rules (3.11)
and (3.12). Now, the two Rules (3.9) and (3.10) become independent and drop the
two Rules (3.7) and (3.8). Thus, Rule (3.6) becomes independent and drops r as
claimed. Since all rules of the extended synchronisation have become active, none
is in the next rule set (in this case the clean-up is not necessary).

Lemma 3.18. Let H = (E,eSync({x, y}Ï[r])∪R) such that R does not affect the
rules of the extended synchronisation pattern (as defined in Definitions 3.13
and 3.16).
Then,

41

3 Higher-Order Dynamics

• the concurrent occurrence of x and y adds r to the current rule set of H,

• but if only one occurs (or both but after each other) then r is
not added to the the current rule set of H.

• And after any occurrence of x or y, a clean-up
removes all remaining rules of the extended synchronisation pattern.

Proof. Like in the proof of Lemma 3.17, this is an immediate consequence of
Definition 3.4.

Both synchronisations have the same effect, but the extended one interacts
nicely with the clean-up, and it might therefore be easier for some proofs. For
purposes of modelling and understanding, on the other hand, the basic one is
to be preferred, since it only consists of five instead of nine rules. Moreover, the
maximal rank of any rule is two less than in the extended pattern +9.

Remark 3.19. Please note that those patterns can be easily lifted from two distinct
events x ̸= y to two distinct sets X ̸=Y with X ,Y ⊆ E.

3.4 Alternative Approaches

In this section we first present an alternative rule update strategy (in Subsec-
tion 3.4.1), second in Subsection 3.4.2 we present a representation of HDESs
as transition systems and use this representation to show that both rule up-
date strategies have the same expressive power. Finally, in Subsection 3.4.3, we
present an approach to initially remove certain superfluous rules.

3.4.1 Alternative Rule Update Strategy

The approach chosen in Definition 3.4 above (to first evaluate the dropping rules
and thereafter the adding rules) seems a little arbitrary. But, if we want to
archive a deterministic rule update, which we do because we want to model
deterministic real-world workflows, many approaches can be discarded (like take
a random active rule). The key decision is whether to first execute the dropping
or the adding rules. There are more complex strategies, e.g. an ordered list of
rules, but then much simplicity in the models would be lost.

In the following, we define a different rule update strategy by first executing
the adding rules and then the dropping rules. Please note that we also allow for

42

3.4 Alternative Approaches

newly added rules to be dropped in the same transition; this is similar to the
dropping of active adding rules in the upper approach).

Later, when studying the expressive power, we show that both approaches are
equivalent (i.e. a HDES with one rule update strategy can be translated to one
with the other one yielding the same transition sequences).

It is also straightforward to see that both synchronisation patterns (cf. Def-
initions 3.12 and 3.16) work as defined and proved above with respect to this
alternative update strategy (even in a set-based variant).

Definition 3.20. Let sold = (old,Rold) be a state of a HDES H = (E,R) and new⊆
E with old(new. Then

• the rule update (AD, Adding Dropping) Rnew is the result of
applying Algorithm 2 to sold and the new set of events.

• We denote this relation as sold −→AD
new Rnew.

The Algorithm 2 consists of three parts, like the Algorithm 1 above. However,
firstly, the adding rules are considered (Lines 3 to 8) and executed (if active —
Line 6) or copied to the new set (if passive — Line 8). Secondly (Lines 12 to 18)
the dropping rules are considered, and step by step the independent rules are
executed, (if active — Line 16) or copied to the new set (if passive — Line 18).
Note that the independence of a rule might change since Rold gets modified
by the algorithm. Finally, all causality rules (rules of the form [c → t]) and
remaining adding rules are copied to the new set (Line 21). We use ac(sold,new)
and ind((old,Rold)) as in Definition 3.4 for the set of active rules in a state and
independent rules with respect to a configuration and rule set.

For this new rule update strategy, we also get a new transition relation based
on it. The following definition is, except for the rule update, exactly the same as
Definition 3.5.

Definition 3.21. Let H = (E,R) be HDES, and sold = (old,Rold) and snew =
(new,Rnew,) two of its states. Then sold 7→alt

H snew if

(1) old(new

(2) ∀t ∈ new\old .∀c ∈ E . c →Rold t =⇒ c ∈ old

(3) sold −→alt
new Rnew

(4) ∀r ∈ Rc . (r = MÏ[c → t]∧ (r ∈ ac(sold,new)∧ t ∈ new\old) =⇒ c ∈ old

43

3 Higher-Order Dynamics

input :A HDES state sold = (old,Rold) of a HDES H = (E,R) and a set
of events new, with old(new⊆ E

output :A set of HDES rules Rnew

1 Rnew ←∅; // The output set is constructed step by step.

2 R′ ←∅; // This is an intermediate rule set, for dealing with adding

rules.

3 foreach r = MÏ[︁
r′

]︁ ∈ Rold do // for each adding rule

4 Rold ← Rold \{r}; // remove the rule from the old set

5 if r ∈ ac(sold,new) then // active adding rule?

6 R′ ← R′∪ {r′}; // add the target to the intermediate set

7 else
8 R′ ← R′∪ {r}; // add the rule to the intermediate set

9 end
10 end
11 Rold ← Rold ∪R′; // Insert the newly added and the passive adding rule

to the old set such that the dropping rules can influence them.

12 while ∃r ∈ Rold, M ⊆ E . r = M◃
[︁
r′

]︁
do // while there are dropping rules

13 let r = M◃
[︁
r′

]︁ ∈ Rold ∧ r ∈ ind((old,Rold)); // chose a independent

dropping rule (wrt. the current Rold)

14 Rold ← Rold \{r}; // remove the rule from the old set

15 if r ∈ ac(sold,new) then // active or passive rule?

16 Rold ← Rold \{r′}; // drop the target from old set

17 else
18 Rnew ← Rnew ∪ {r}; // copy the rule to the new set

19 end
20 end
21 Rnew ← Rnew ∪Rold; // copy the causality and adding rules to the new

set

22 return Rnew;
Algorithm 2: An alternative HDES rule set update algorithm

44

3.4 Alternative Approaches

3.4.2 Event Transition Systems

In this subsection, we define Event Transition Systems (ETSs), as a special
kind of Labelled Transition System (LTS) additionally fulfilling certain further
properties and equipped with one fixed event set E as superset for all state labels,
meaning each label is a set of events.

Thereafter, we firstly show that we obtain such ETSs for both rule update
strategies of HDESs. Secondly, we show that for each ETS and both rule update
strategies a HDES can be constructed with exactly this ETS as a semantic model.

Thus, we show that the rule update strategy does not change the expressive
power of HDESs (at least for the two strategies considered above). We have
further characterised the expressive power of HDESs by the ETSs.

We start by giving a standard definition for LTSs where we consider labelled
states and one explicit initial state. In contrast to Debois et al. in [8], we do not
use asynchronous transition systems (since our transition might contain more
than one event and thus the independence is encoded in the transition definition).
We further do not label the transitions, but the states.

Definition 3.22. A Labelled Transition System (LTS) is
a 5-tuple L = (S , s0 , 7→ ,Λ ,λ) where

• S is the set of states,

• s0 is the initial state,

• 7→⊆ S×S the transition relation
(with s 7→ t indicating a transition from s to t),

• Λ is a set of state labels,

• and λ : S −→Λ is a total function labelling the states.

In order to define the additional properties a LTSs must fulfil to be an ETSs,
we need further definitions. First, we define the the set of enabled event sets
En(s) for a state s of a LTSs with labels in the power set of an event set E.

Definition 3.23. Let E be a set of events, L = (S, s0, 7→,Λ,λ) a LTS with

• Λ= 2E

• and s ∈ S with λ(s)= X .

45

3 Higher-Order Dynamics

Then the set of enabled sets of events in the state s is defined as

EnL(s) := {D ⊆ E \ X | (D ̸=∅)∧∃t ∈ S . (s 7→ t)∧ (λ(t)= D∪ X)},

if the LTS L is unambiguous we omit the subscript and write En(s) instead.

Secondly, in the same setting as in the previous definition, we define the notion
of parallelism A ∥s B and conflict A ∦s B, for two enabled event sets A,B ∈En(s)
in a state s.

Definition 3.24. Let E be a set of events, L = (S, s0, 7→,Λ,λ) a LTS with

• Λ= 2E ,

• s ∈ S with λ(s)= X ,

• A,B ∈En(s) with A∩B =∅.

Then

• the sets A and B are concurrently enabled in s,
also called enabled in parallel,denoted as A ∥s B,

• if and only if there is a state t such that there is
a transition from the state s to twith λ(t)= X ∪ A∪B.

• If A and B are not concurrently enabled in s
we call them conflicting, denoted as A ∦s B.

Now, we are ready to define the Event Transition Systems (ETS) as LTSs where
Λ= 2E for an event set E and λ(s0)=∅ with additional five properties that are
explained right below the definition.

Definition 3.25. An Event Transition System (ETS) E with respect to an event
set E is a LTS L = (S, s0, 7→,Λ,λ) where

• Λ= 2E ,

• λ(s0)=∅,

• and s 7→ t, with λ(s)= old and λ(t)= new implies the following properties :

(1) Monotonicity: old⊆ new

46

3.4 Alternative Approaches

(2) Progress: old ̸= new

(3) Downward closed enabling:
∀D ∈En(s) .∀D′ ⊆ D . D′ ̸=∅ =⇒ D′ ∈En(s)

(4) Weak parallel consistency:
∀D ∈En(s) .∀D′ (D .∀t ∈ S .
(s 7→ t)∧ (λ(t)= old∪D′) =⇒ ∀d ∈ D \ D′ . {d} ∈En(t)

(5) Reachability:
∀s ∈ S . s0 7→∗ s, where 7→∗ s is reflexive and transitive closure of the transi-
tion relation 7→ of E .

Property (1) ensures that we do not lose any event, and Property (2) guarantees
that new events occur. Property (3) ensures that each non empty subset D′ of an
enabled set D is also enabled. In other words, we do not have any forced paral-
lelism where some events may only occur concurrently . Property (4) formulates
the condition that the remainder of a set of concurrently enabled events D stays
enabled if a non-empty proper subset D′ of D occurs. Note, however, that they
might not be concurrently enabled any longer. Finally, Property (5) ensures that
all states of E are reachable from the initial state s0.

In the following, we define a corresponding LTS for a HDES (independent of
the rule update strategy).

Definition 3.26. Let H = (E,R) be a HDES.
Then we define the corresponding LTS LH = (SH , (∅,R), 7→H ,2E ,π1) where

• SH is the set of reachable states H (consisting of a configuration and a
current rule set),

• 7→H is the transition relation of H,

• and π1 is the projection to the configuration – the first component of a state.

Since only the new rules set is defined differently in the transition Defini-
tions 3.5 and 3.21 of HDESs, Properties (1) to (3) of the Definition 3.25 are
independent of the rule update strategy. Property (4) imposes a condition on the
new state t after the transition s 7→ t. In this case the rule update strategy could
matter, but the prove shows it does not. Finally, since we only consider finite
structures, it is sufficient to consider reachable states (Property (5)). But before
starting the proof we show that an additional property always holds for ETSs.

47

3 Higher-Order Dynamics

Singleton-based conflicts make sure that any conflict between some sets A and B
already exists between a subset X of A∪B and some event x ∈ A∪B.

Definition 3.27. Let E be a ETS as in Definition 3.25.
With singleton-based conflicts we denote the following property:

∀A,B ∈En(s) . A ∦s B =⇒ ∃x ∈ A∪B, X (A∪B . {x}∦s X

Lemma 3.28. Let E be a ETS as in Definition 3.25.
Singleton-based conflicts as in 3.27 is always fulfilled.

Proof. By the definition of conflict for two sets A and B in Definition 3.24, we only
demand A∪B not to be enabled concurrently. Thus, the singleton-based conflicts
property is trivially fulfilled: Since A and B are non-empty (because they are
enabled), we can just chose an arbitrary element in A∪B as x and A∪B\{x} as X .
Then we have {x}∦s X , because {x}∪ X = A∪B is not enabled concurrently.

Lemma 3.29. Let H = (E,R) be a HDES and LH = (SH , (∅,R), 7→H ,2E ,π1) its
corresponding transition system as in Definition 3.26.
Then LH is an ETS with respect to E.

Proof. Since Λ = 2E and λ((∅,R)) =∅, we have to show Properties (1) to (5) of
Definition 3.25. Thus, let s 7→ t, with λ(s) = old and λ(t) = new, Properties (1)
and (2) are equivalent to Condition (1) of Definition 3.5. Conflicts are created
by Condition (4) since this is the only concurrency-constraining dondition of
Definition 3.5, but since here all conflicts are singleton-based, as claimed in
Lemma 3.28, we are done. If a set of events D is enabled in (old,Rold), then by
Condition (2), all causality rules e → d for d ∈ D are fulfilled by old (i.e. e ∈ old).
Therefore, also each non empty subset of D is enabled and Property (3) is satisfied.
To show Property (4), we have to show that subsets of enabled sets do not disable
events from the enabled super set. In HDESs, the only way of disabling an event
d is to add a not-yet happened precondition to d. Assume D′Ï [x → d] ∈ ROld
and still is there when it gets evaluated, meaning there is no rule dropping it
when first evaluating dropping rules, since we want to have the effect. Also, in
the case of first evaluating adding rules, there is no rule dropping the effect,
[x → d] since we want to have this effect with some x ∈ E \ (old∪ D′). With
Condition (4) of Definition 3.5, it follows that there is no transition from s to a
state t where λ(t)= old∪D′∪{d}. But, since D is enabled in s and so all non-empty
subsets of D (by Property (3)), in particular D′∪ {d} is enabled in s. This is a
contradiction. Therefore, the assumption is false and Property (4) is satisfied.
Finally, Property (5) is fulfilled since we only considered the reachable states of H

48

3.4 Alternative Approaches

and thus, we have reachability also for LH (since the transition relation of both
structures coincide by Definition 3.26).

In order to define a corresponding rule set for a state in an ETS, we need
further tools and notations.

Definition 3.30. Let E = (S, s0, 7→,2E ,λ) be a ETS. Let s ∈ S be an arbitrary state
of E . Then

maxEn(s) := {A ∈En(s) | ØA′ ∈En(s) . A (A′}

is the set of inclusion-maximal enabled sets in the state s. With

singleEn(s) := {e ∈ E | {e} ∈En(s)}

we denote the set of all events that are enabled in the state s. For a fixed set of
enabled events X ∈En(S), we define

confX (s) := {e ∈ singleEn(s) | ØA ∈maxEn(s) . (e ∈ A)∧ (X ⊆ A)}

to be the set of all events that are in the state s conflicting with X . Let λ(s) be the
set of already occurred events. We define the local behaviour of a state as

bh(s) :={e → e | e ∈ E \ (L∪singleEn(s))}∪
{AÏ[e → e] | A ∈En(s)∧ e ∈ confA(s)}.

Definition 3.31. A rule context c is

• a function from a rule set RE over an event set E to RE ;

• a rule context c is either a hole [·],
• or recursively defined as MÏ[︁

c′
]︁(︁

respectively M◃
[︁
c′

]︁)︁
where M ⊆ E and c′ is a rule context.

• The application of a rule context c on a rule r, denoted as c[r],
is to fill the hole [·] in c with a rule r.

Let c be a rule context. Then

• mod(c) denotes the outermost modifier set of c, that means
if c = M op c′ we have mod(c)= M, otherwise (if c = [·]) mod(c)=∅,

49

3 Higher-Order Dynamics

• modi(c) further denotes the set of all modifier sets of c, defined as
modi(c) := {M}∪modi

(︁
c′

)︁
if c = M op c′, and modi(c) :=∅ if c = [·].

Now, we are ready to define a corresponding HDES rule set for a state cur of an
ETS E . In Definition 3.32, we define the rule set Rda

cur with respect to the original
rule update definition, and in Definition 3.33 we define the rule set Rad

cur with
respect to the alternative rule update definition.

The main idea of these rule sets is first to encode the local behaviour of the state
cur and second to update the set with respect to all possible transitions (i.e. add
recursively the behaviour of the successor state and prune all other branches).

Definition 3.32. Let E = (S, s0, 7→,2E ,λ) be an ETS and

• cur one of its states,

• {s1, . . . , sn}= {s ∈ S | cur 7→ s} the possible successor states of cur,

• and X i =λ(si)\λ(cur) as in Figure 10 on Page 54.

The rule set Rda
cur (the superscript indicates that this rule set is designed for the

original rule update strategy (first dropping, then adding), it is formally defined
as:

Rda
cur := behave(cur)∪upBh(cur)∪addRec(cur)∪prune(cur) (3.15)

Where the four big rule sets are defines as follows

behave(cur) := bh(cur) , (3.16)

upBh(cur) :=
n⋃︂

i=1
upBh(cur, si) , (3.17)

addRec(cur) :=
n⋃︂

i=1
addRec(cur, si) , (3.18)

prune(cur) :=
n⋃︂

i=1
prune(cur, si) , (3.19)

50

3.4 Alternative Approaches

and the branch rule sets (parametrised by the branch si) are defined as follows

upBh(cur, si) := {X i◃[r] | (r ∈ bh(cur)\bh(si))∧
((r = X iÏ[e → e]) =⇒ e ∈ singleEn(si))} , (3.20)

addRec(cur, si) :=
{︂

X iÏ[r] | r ∈ Rda
si

}︂
, (3.21)

prune(cur, si) := {pc[r] | r ∈ (upBh(cur, si)∪
addRec(cur, si)),pc[·] ∈ pcsi [·]

}︁
. (3.22)

The pruning context pcsi [·] for the branch si in the rule set (3.22) is defined as
follows:

pcsi [·]1 := {︁
X j◃[·] | (X j ∈En(cur))∧ (X j ̸= X i)

}︁
pcsi [·]1c := f ∗cur(pcsi [·]1)

pcsi [·]k+1 :=
{︂

X j◃[c] | (X j ∈En(cur))∧ (X j ∉modi(c))∧
(X j ̸= X i)∧ (c ∈ pcsi [·]k

c)
}︂
∪pcsi [·]k

c

pcsi [·]k+1
c := f ∗cur(pcsi [·]k+1)

pcsi [·] := pcsi [·]n−1
c

Possibly the above recursion reaches a fix point already before n−1 steps, but
by construction we are sure that a fix point is reached after n−1 steps as each
iteration adds a different X j context to the dropping rules. There are only n
different values for X j, and one of them is X i which has been excluded explicitly.

The function fcur over rule context sets is defined as follows

fcur(C) := {X◃[c] | c ∈ C∧ X ∈En(cur)∧mod(c)(X }∪C,

and f ∗cur(C) denotes the fix point of fcur with respect to a rule context set C.

In the next definition, we define the corresponding rule set for the state cur
of an ETS E with respect to the alternative rule update strategy: first adding
then dropping. Thus, it differs from the rules in Definition 3.32 since we now
first add the rules of the state si, reached with the event set X i, but we also add
all rules of states reached with subsets of X i. Therefore, we need extra rules to
tidy up: rwa(cur, si) (this stands for remove wrongly added) removes rules which
were accidentally added by proper subsets of X i, or disablings added by X i itself

51

3 Higher-Order Dynamics

which should not be in si, but only forbid concurrent occurrence of X i and some
e. The second point, the disablings added by X i, allows for an easier version of
the upBh(·) rules since we only need to drop those rule which belong to the old
but not to the new behaviour. On the other hand, we have to ensure that we do
not prune a rule of another branch X j that was also added by X i. Therefore we
introduce the filter(·) function for pruning contexts and rules, to filter out exactly
those cases. All other rules get adjusted to the new rule update strategy and the
extended rule set.

Definition 3.33. Let E = (S, s0, 7→,2E ,λ) be a ETS and

• cur one of its states,

• {s1, . . . , sn}= {s ∈ S | cur 7→ s} the possible successor states of cur,

• and X i =λ(si)\λ(cur) as in Figure 10 on Page 54.

We define the rule set Rad
cur. The superscript indicates that this rule set is designed

for the alternative rule update strategy (first adding, then dropping). Note that
certain sets are now mutually recursive. That means rwa(cur, si) will be affected
by any prune

(︁
cur, s j

)︁ad with X j (X i and therefore prune(cur, si)ad is affected by
prune

(︁
cur, s j

)︁ad with (X j (X i). As this is fortunately the only such case, we can
start constructing those sets starting with the inclusion-minimal enabled sets
and then proceed step by step, i.e. never consider a set if not all of its subsets
were already considered.

So formally we define:

Rad
cur := behave(cur)∪upBh(cur)ad∪

addRec(cur)ad ∪rwa(cur)∪prune(cur)ad
(3.23)

52

3.4 Alternative Approaches

Where the six big rule sets are defines as follows

behave(cur) := bh(cur) , (3.24)

upBh(cur)ad :=
n⋃︂

i=1
upBh(cur, si)ad , (3.25)

addRec(cur)ad :=
n⋃︂

i=1
addRec(cur, si)ad , (3.26)

rwa(cur) :=
n⋃︂

i=1
rwa(cur, si) , (3.27)

prune(cur)ad :=
n⋃︂

i=1
prune(cur, si)ad , (3.28)

and the branch rule sets (parametrised by the branch si) are defined as follows

rwa(cur, si) := {X i◃[r] | r ∈ rwaAuxI(cur, si)∪
rwaAuxII(cur, si)} , (3.29)

rwaAuxI(cur, si) :=
{︂
r | ∃r′ ∈ Rad

cur . (r′ = X jÏ[r])∧
(X j (X i)∧ (X iÏ[r] ∉ Rad

cur

}︂
, (3.30)

rwaAuxII(cur, si) := {e → e | X iÏ[e → e] ∈ bh(cur)∧
e ∈ singleEn(si)} , (3.31)

upBh(cur, si)ad := {X i◃[r] | r ∈ bh(cur)\bh(si))} , (3.32)

addRec(cur, si)ad :=
{︂

X iÏ[r] | r ∈ Rad
si

}︂
, (3.33)

prune(cur, si)ad := {pc[r] | r ∈ toBePruned(cur, si)∧
pc[·] ∈ filter

(︁
pcsi [·] , r

)︁}︁
, (3.34)

toBePruned(cur, si) := upBh(cur, si)ad ∪addRec(cur, si)ad∪
rwa(cur, si) . (3.35)

53

3 Higher-Order Dynamics

cur

s1

si

sn

...

...

X1

X i

Xn

Figure 10: Sketch for Definitions 3.32 and 3.33.

The pruning context used in prune(cur, si)ad is the same as for the original rule
update strategy and can be found in Definition 3.32 on Page 50. The function
filter

(︁
pcsi [·] , r

)︁
used in the same definition is defined as follows with r = X i op r̃:

filter
(︁
pcsi [·] , r

)︁
:=

⎧⎪⎨⎪⎩
pcsi [·]\{X j◃[·]}, if X jÏ[r] ∈ addRec

(︁
cur, s j

)︁
and X i ∩ X j =∅

pcsi [·] , otherwise
(3.36)

We now show that both rule sets defined above yield the same initial local
behaviour (i.e. a HDES with one of these rule sets as initial rule set, with respect
to the correct event set, and the respective rule update strategy, initially allows
for exactly the same transition as E).

Lemma 3.34. Let E = (S, s0, 7→,2E ,λ) be a ETS and

• cur ∈ S,

• Ecur := E \λ(cur),

• Rda
cur and Rad

cur the corresponding rule sets for the the state cur of the ETS E

as defined in Definitions 3.32 and 3.33.

Let H1 := (Ecur,Rda
cur) and H2 := (Ecur,Rad

cur) two HDESs with their correspond-
ing ETSs E1 (with initial state s1

0) and E2 (with initial state s2
0) as defined in

Definition 3.26. The following equality is satisfied:

EnE (cur)=EnE1

(︁
s1

0
)︁=EnE2

(︁
s2

0
)︁

54

3.4 Alternative Approaches

Proof. By the construction of Rda
cur and Rad

cur in Definitions 3.32 and 3.33 and the
HDES transition Definitions 3.5 and 3.21, the only rules that initially influence
the enabled sets are in both cases bh(cur) (cf. Definition 3.30) and addRec(cur, si)
(cf. Rule (3.21)), if some e gets disabled in si, since then [e → e] ∈ bh(si) ⊆ Rsi

and therefore there is the initial rule X iÏ[e → e]. By definition, events that are
not enabled as singletons in the state cur of E get initially disabled in H1 and
H2. Furthermore, if a set A is conflicting with an enabled event e in the state
cur of E , the concurrent occurrence in H1 and H2 gets blocked. Now, we have
to consider the rules X i Ï [e → e], caused by addRec(cur, si), they prevent the
concurrent occurrence of X i and e. Since E is an ETS we have that, if in the state
cur the set of events X i and the event e are concurrently enabled, Property (4)
ensures that e cannot get disabled in si. Thus, the rule X iÏ[e → e] did not block
desired behaviour.

Before proving that the above construction indeed yields HDESs with the
desired behaviour, meaning that not only initial behaviour but also the subse-
quent behaviour is the same as in E , we first show that certain properties for the
pruning contexts pcsi [·] are satisfied. We split the claim into two lemmata with
respect to the respective rule update strategy. This makes the following proof
shorter and easier to understand.

Lemma 3.35. Let E = (S, s0, 7→,2E ,λ) be a ETS and

• cur one of its states,

• s1, . . . , sn its successor states reachable with the event set X1, . . . , Xn,

• and Rda
cur be the corresponding rule set for the the state cur of E as defined

in Definition 3.32.

Then for the HDES H1 := (E \λ(cur),Rda
cur) in the state (∅,Rda

cur) the following
properties hold, for a transition (∅,Rda

cur) 7→H (X i,RX i):

(1) The set X i activates no rule r ∈ prune(cur, si), except of those, where X i is
the outermost modifier and was added by fcur.

(2) There are no dropping rules in Rda
cur \ prune(cur, si)da for any rule r ∈

prune(cur, si).

(3) In the clean-up of (X i,RX i), the set prune(cur, si) vanishes.

55

3 Higher-Order Dynamics

(4) The set X i activates certain rules of prune
(︁
cur, s j

)︁
(for X i ̸= X j) such that

in the transition to the state (X i,RX i) all rules plugged into pcs j [·] to ob-
tain prune

(︁
cur, s j

)︁
get dropped and the remainder of the pruning context

vanishes after a clean-up.

Proof. By Lemma 3.34 there is a transition in H to any X i, with 1 ≤ i ≤ n.
We prove the four properties one by one: For Property (1), by construction of
the pruning context, we only used modifier sets X j ̸= X i. Whenever there is a
context starting with X j (X i (which would become active with respect to X i),
another context will be created by the function fcur with X i as outermost modifier,
dropping the first context.

Property (2) follows immediately from Definition 3.32. By Properties (1) and (2),
the rules in prune(cur, si) are not dropped by X i or executed meaningfully. That
means the only rules that might get executed were added by fcur and their effect
is to drop certain other rules of prune(cur, si). The targeted rules, that were
plugged into pcsi [·] are not affected by execution of the pruning context. The
plugged in rules are in addRec(cur, si)∪upBh(cur, si), and therefore, they are all
starting with an X i. Thus each rule in prune(cur, si) get cleaned up after X i.

In order to prove Property (4), we take a closer look at pcs j [·]. By construction,
X i is the outermost modifier of some rule contexts in pcs j [·]n−1

c . These contexts
become active and are independent, thus they drop all contexts in pcs j [·]n−2

c ,
except those starting with X i. Now, by recursion we get that only those contexts
in pcs j [·]1c that start with an X i do not get dropped . Those rules are then active
and independent and drop the rules, that were plugged into them as stated above.
On the other hand, the rule contexts in pcs j [·]n

c which do not have X l ⊆ X i as
outermost modifier are untouched by the rule update, but get removed in the
clean-up since they have by construction X i as an inner modifier.

The same as stated in Lemma 3.35 is also fulfilled for the alternative rule
update strategy with the appropriate corresponding rule set Rad

cur:

Lemma 3.36. Let E = (S, s0, 7→,2E ,λ) be a ETS and

• cur one of its states,

• s1, . . . , sn its successor states reachable with the event set X1, . . . , Xn,

• and Rad
cur be the corresponding rule set for the the state cur of E as defined

in Definition 3.33.

56

3.4 Alternative Approaches

Then for the HDES H2 := (E \λ(cur),Rad
cur) in the state (∅,Rad

cur) the following
properties hold, for a transition (∅,Rad

cur) 7→alt
H (X i,RX i):

(1) The set X i does not activate any rule r ∈ prune(cur, si)ad, except of those
where X i is the outermost modifier and was added by fcur.

(2) For no rule r ∈ prune(cur, si)ad exists a dropping rule in the rule set (Rad
cur ∪⋃︁

X l⊆X i addRec(cur, sl)ad)\prune(cur, si)ad,

(3) In the clean-up of (X i,RX i) the set prune(cur, si)ad vanishes.

(4) The set X i activates certain rules of prune
(︁
cur, s j

)︁ad (for X i ̸= X j) such that
after X i all rules plugged into pcs j [·] to obtain prune

(︁
cur, s j

)︁ad get dropped
(if they were not also added by X i) and the remainder of the pruning context
vanishes after a clean-up.

Proof. We again prove the four properties one by one: For Property (1), the proof
is exactly the same as for Lemma 3.35. By construction of the pruning context,
we only used modifier sets X j ̸= X i. Whenever there is a context starting with
X j (X i (which would become active with respect to X i), there will an other
context get created by the function fcur with X i as outermost modifier dropping
the first context.

Property (2) follows immediately from Definition 3.33, as in the proof for
Lemma 3.35.

By Properties (1) and (2), the rules in prune(cur, si)ad are neither dropped by X i
nor executed meaningfully. In other words, the only rules that might get executed
were added by fcur and their effect is to drop certain other rules of prune(cur, si)ad.
The targeted rules which were plugged into pcsi [·] are not affected by execu-
tion of the pruning context. The plugged-in rules are in addRec(cur, si)ad ∪
upBh(cur, si)ad∪rwa(cur, si), and therefore they are all starting with an X i. Thus,
each rule in prune(cur, si)ad get cleaned up after X i, and we are done proving
Property (3).

In order to prove Property (4), we take a closer look at pcs j [·]. By construction,
X i is the outermost modifier of some rule contexts in pcs j [·]n−1

c . These contexts
become active and are independent, and thus they drop all contexts in pcs j [·]n−2

c ,
except those starting with X i. Now, by recursion, we get that only those contexts
in pcs j [·]1c which start with an X i do not get dropped. Those rules are then active
and independent and drop the rules that were plugged into them as stated above.

57

3 Higher-Order Dynamics

On the other hand, the rule contexts in pcs j [·]n
c which do not have X l ⊆ X i as

outermost modifier are untouched by the rule update, but get removed in the
clean-up since they have by construction X i as an inner modifier.

Now, we can prove that the correspondence of a rule set is transition-invariant.
If we start in a state of an ETS and compute the corresponding rule set, and
perform a transition in the corresponding HDES, we get the same rule set after
a cleaning up, as we get by making the corresponding transition in the original
ETS and computing the corresponding rule set in the successor state afterwards.

Lemma 3.37. Let E = (S, s0, 7→,2E ,λ) be an ETS and

• cur one of its states,

• s1, . . . , sn its successor states reachable with the event set X1, . . . , Xn,

• and Rda
cur the corresponding rule set (with respect to the original transition

definition) for the the state cur of E as defined in Definition 3.32.

• The n different event sets X1, . . . , Xn are initially enabled
in the HDES H1 := (E \λ(cur),Rda

cur),

• and for all 1≤ i ≤ n we have (∅,Rda
cur) 7→H (X i,RX i) such that

the clean-up cu
(︁
X i,RX i

)︁
yields the rule set R′

X i
:= rs

(︁
cu

(︁
X i,RX i

)︁)︁
.

Then, we have

• R′
X i

= Rda
si

where the second rule set corresponds to the state si

• and H1 in the cleaned-up state (X i,Rda
si

) allows for the same transition
sequences as H̃1 := (E \λ(si),Rda

si
) with the initial state (∅,Rda

si
).

Proof. By Lemma 3.34, exactly X1, . . . , Xn are the enabled sets. Let us now choose
i without loss of generality. Since X i is initially enabled in H1 := (E\λ(cur),Rda

cur),
we now consider the transition (∅,Rda

cur) 7→H (X i,RX i) and the clean-up cu
(︁
X i,RX i

)︁
of this state with its rule set R′

X i
:= rs

(︁
cu

(︁
X i,RX i

)︁)︁
. By Lemma 3.35 Property (4),

it follows that all other branches are pruned. By Property (3) of the same Lemma,
we have that prune(cur, si)da has no meaningful effect and is cleaned up. The only
remaining rules are bh(cur) , upBh(cur, si) , and addRec(cur, si). Thus, we first
execute the dropping rules upBh(cur, si) to remove all undesired local behaviour

58

3.4 Alternative Approaches

(but drop no rule in addRec(cur, si)). Thereafter, we add the remainder of the
local behaviour for bh(si) and all other rules in Rda

si
via addRec(cur, si).

Since by construction no rule in Rda
si

contains any event in X i, the second claim
follows by Corollary 3.11.

Lemma 3.38. Let E = (S, s0, 7→,2E ,λ) be an ETS and

• cur one of its states,

• s1, . . . , sn its successor states reachable with the event set X1, . . . , Xn,

• and Rad
cur the corresponding rule set (with respect to the alternative transition

definition) for the the state cur of E as defined in Definition 3.33.

• The n different event sets X1, . . . , Xn are initially enabled
in the HDES H2 := (E \λ(cur),Rad

cur),

• and for all 1≤ i ≤ n we have (∅,Rad
cur) 7→alt

H (X i,RX i) such that the clean-up
cu

(︁
X i,RX i

)︁
yields the rule set R′

X i
:= rs

(︁
cu

(︁
X i,RX i

)︁)︁
.

Then we have

• R′
X i

= Rad
si

, where the right-hand side corresponds to the state si

• and H2 in the cleaned-up state (X i,Rad
si

) allows for the same transition
sequences as H̃2 := (E \λ(si),Rad

si
) with the initial state (∅,Rad

si
).

Proof. By Lemma 3.34, exactly X1, . . . , Xn are the enabled sets. Let us now
choose i without loss of generality. Since X i is initially enabled in H2 := (E \
λ(cur),Rad

cur), we now consider the transition (∅,Rad
cur) 7→alt

H (X i,RX i) and the clean-
up cu

(︁
X i,RX i

)︁
of this state with its rule set R′

X i
:= rs

(︁
cu

(︁
X i,RX i

)︁)︁
. Since we

apply the alternative rule update strategy, we have to consider all adding rules
first. Those can be divided into two groups: Rules belonging to bh(cur), designed
to prevent the concurrent occurrence of a set A and a conflicting event e, and
rules belonging to any addRec(cur, sl)ad with X l ⊆ X i.

After classifying the adding rules, we consider the dropping rules. They are
applied on a rule set with the adding rules already executed. First, we consider
the rules in rwa(cur, si): These drop any rule added by addRec(cur, sl)ad with
X l (X i which was not also added by another rule in addRec(cur, si)ad. Next,
there are dropping rules for rwa(cur, si) except of those in prune(cur)ad, but those

59

3 Higher-Order Dynamics

are either not active if they belong to prune(cur, sl)ad with X l ̸⊆ X i, or they get
already dropped by construction in their own pruning context if they belong to
prune(cur, sk)ad with Xk (X i.

Furthermore, we consider upBh(cur, si)ad. These drop the remainder of the
old local behaviour in the state cur, and also the disablings that were spuriously
added by rules AÏ[e → e] ∈ bh(cur) if e is enabled in si.

Finally, by Lemma 3.36 Property (4), all other branches are pruned. By
Property (3) of the same Lemma, we have prune(cur, si)ad which has no mean-
ingful effect and is cleaned up. To sum it up, we added all rules in Rad

si
via

addRec(cur, si)ad, and removed thereafter all rules which do not belong into the
new rule set.

The second claim follows with Corollary 3.11 since, by construction, no event in
X i occurs in any rule in Rad

si
.

The proof that a HDES with either rule update strategies exists for each ETS,
such that the corresponding ETS is the same as the original ETS, is based on
two steps: The first step uses Lemma 3.34 to show that the encoding has the
correct behaviour locally. The second step is based on the two Lemmata 3.37
and 3.38 and states that the corresponding rule set and the transition commutate
(cf. Figure 11).

Theorem 3.39. Let E = (S, s0, 7→,2E ,λ) be a ETS and

• Rda
s0

and Rad
s0

be the corresponding rule sets for the the initial state s0
of the ETS E as defined in Definitions 3.32 and 3.33.

• Let H1 := (E,Rda
s0

) and H2 := (E,Rad
s0

) two HDESs, EH1 and EH2

their corresponding transitions systems as in Definition 3.26.

Then E ,EH1 and EH2 are isomorphic, meaning that they only differ in the names
of the states.

Proof. By Lemma 3.34, we initially have the same transitions and by Lem-
mata 3.37 and 3.38, we have the transition invariance of the corresponding rule
set property for both rule update strategies: If we fist compute the corresponding
HDES for a state and then perform a transition in the HDES, we end up in a
HDES state that is transition-equivalent to the initial state of the HDES obtained
by first performing a transition in the ETS and then computing the corresponding
HDES (cf. Figure 11). By induction, we are done since all states of E are reachable
by Property (5) of Definition 3.25.

60

3.4 Alternative Approaches

cur

t

(∅,Rcur)Ecur

(D, (Rcur)
′)Ecur

cu
(︁
(D, (Rcur)

′)︁)Ecur

(∅,Rt)Ecur\D

D

D

clean-up

Figure 11: Sketch for the proof of Theorem 3.39. Here, D denotes an enabled
set in the state cur of an ETS leading to the successor state t. Fur-
thermore, the subscript E at a HDES state (C,RC)E denotes the
underlying event set. The underscore in Rcur and Rt is a wildcard for
the respective rule update strategy. Obviously, it must be instantiated
consistently.

Remark 3.40. The web tool can compute the rule sets Rad
∅ and Rda

∅ of the corre-
sponding ETS for the current HDES. The alternative rule update strategy can
be selected with the keyword @addThenDrop. Note that our tool can only process
very small HDESs with at most four events and not too many initially enabled
ones – otherwise it has memory issues. For example, the simple HDES consisting
of three events a,b and c and only one rule aÏ [b → c] already explodes to 113
rules. In order to perform this translation, select the button “HDES Semantical
Normalization” in the Translate menu.

3.4.3 Rule Set Reduction

Motivated by the huge rule set with many redundant rules obtained by the
construction above, we define two criteria for rules to be redundant in this
subsection. Redundancy in this context means that if the rules are removed from

61

3 Higher-Order Dynamics

any rule set, the behaviour of the HDES does not change. The first criterion
is independent with respect to the rule update strategy. The second, however,
depends on it which is why it is given separately for each strategy. Note that this
reduction is state-independent in contrast to the clean-up in Subsection 3.3.1. It
does not take any other rules in consideration.

Formally, redundancy is defined as follows:

Definition 3.41. A rule r is redundant for a specific update strategy if it could
be removed from the rule set of any HDES H without changing the behaviour of
H with respect to that strategy.
If r is redundant for both update strategies, we call it redundant without specify-
ing a strategy.

Lemma 3.42 (Criterion 1). Let r = M1 op1[. . . [Mn opn[c → t]] . . .].
If there is a k ∈N+ with

1≤ k ≤ n−1 such that c or t is contained inMk,

the rule r is redundant.

Proof. If c or t are contained in any Mi with i < n, then neither the dependency
c → t, nor it absence, nor a possible adding of the dependency MnÏ[c → t] has an
effect (see Definitions 3.5 and 3.21).

The second criterion is different for the two rule update strategies: The first
variant is for the original strategy (as in Definition 3.5), while the second variant
is for the alternative strategy (as in Definition 3.21).

Lemma 3.43 (Criterion 2). Let r = M1 op1[. . . [Mn opn[c → t]] . . .].
If there are k,m ∈N+ with

• 1≤ k ≤ n−1 such that opk =Ï
• and k < m ≤ n such that Mm ⊆⋃︁k

i=1 Mi,

the rule r is redundant for the original rule update strategy.

Proof. The possible effect of the rule r – after some steps such that Mk becomes
the outermost modifier set – is to add via Mk the rule r̃ = Mk+1 opk+1[. . . [Mn opn
[c → t]] . . .]. However, this rule has no observable effect .Firstly, it can never add or
drop its targeted dependency because the set Mm is already contained in

⋃︁k
i=1 Mi

62

3.4 Alternative Approaches

and never becomes active after Mk. Secondly, for m = n, we get Mm Ï [c → t],
which could restrict some concurrent occurrences of events, but since all events in
Mm already happened, this restriction cannot be observed. Thus, r is redundant
for the original rule update strategy.

Lemma 3.44 (Criterion 2 ad). Let r = M1 op1[. . . [Mn opn[c → t]] . . .].
If there is a k, l,m ∈N+ with

• 1≤ k ≤ n−1 such that opk =Ï,

• k < l < n−1, with opl =Ï,

• and l ≤ m ≤ n−1, such that Mm ⊆⋃︁k
i=1 Mi,

the rule r is redundant for the alternative rule update strategy.

Proof. The proof is the same as in Lemma 3.43.

The idea of the above redundancy criteria is as follows: If, in a system run of
a HDES with the redundant rule r, M1, . . . Mk become active step by step, the
remainder of the rule is meaningless. The following Lemma states that if we
apply a clean-up after a transition sequence such that M1, . . . Mk become active
step by step, we end up in exactly the same state, with exactly the same rule
set as if we initially removed r from the rule set, and thereafter do the same
transition sequence with a final clean-up step. Please note that it is not always
possible for the sets M1, . . . Mk to become active step by step since any Mi could
contain impossible events.

Lemma 3.45. Let H = (E,R) be a HDES and

• r = M1 op1[. . . Mn opn[c → t] . . .] ∈ R an redundant rule
for any rule update strategy,

• Mk and k as in the Criteria for the redundancy of r,

• (∅,R)=: s1 7→ · · · 7→ sn := (X ,Rx) be a transition sequence in H
(with respect to the same strategy for that r is redundant),

• such that there is a subsequence si1 , . . . , sik where
in the transition to si j the sub- rule r j would be active,

• the sub-rule is defined as r j := M j op j[. . . Mm opm[c → t] . . .])
(as in Definition 3.1),

63

3 Higher-Order Dynamics

• and let cu(sn)=: (X ,R′
X) be the clean-up of sn.

Then

• the HDESs H and H′ := (E,R \{r}) allow for the same transition sequences
(with respect to the same strategy for that r is redundant),

• that means there is a transition sequence (∅,R \{r}) := t1 7→ · · · 7→ tn in H′,

• such that for each 1≤ i ≤ n the equation con(si)= con(ti) is satisfied,

• and the clean-up of its final state cu(tn) is exactly cu(sn).

Proof. H′ allows for the same transition sequence since r is redundant (cf. Defini-
tion 3.41).

Assume there is a rule s ∈ rs(cu(tn))\rs(cu(sn)), this means s was dropped by r,
or some r i with i ≤ k. Therefore, it follows s = r j with j ≤ k+1, but then we have
a contradiction to s ∈ rs(cu(tn)) since the clean-up removes s.

Assume there is a rule s ∈ rs(cu(sn))\rs(cu(tn)), this means s was inserted (or
its dropping deleted) by r, or some r i with i ≤ k. If s was inserted, it has the form
s = r j with j ≤ k+1. On the other hand, if its dropping was deleted this was done
by some r i with i < k (since opk =Ï). Now again, s = r j with j ≤ k+1, and thus,
we have a contradiction to s ∈ rs(cu(sn)) since the clean-up removes s.

There are some HDES with redundant rules that never get cleaned up THESIS
Example 6:

On the other hand, it is clear that there are rules which are not redundant but
are cleaned up after a specific history. The following lemma states one example.

Lemma 3.46. The rule aÏ[bÏ[c → c]] is cleaned up after {b},
but is not spotted by any redundancy criterion in this subsection.

Proof. Immediate by the definitions.

3.5 On the Expressive Power of HDESs

In this section, we study the expressive power of HDESs with respect to other
event and configuration structures. We also show that both generalisations,
set-based modifiers and higher-order dynamics, from DCESs to HDESs are per-
pendicular with respect to their expressive power.

64

http://hdes.mtv.tu-berlin.de/#thesis-rule-set-reduction-no-clean-up
http://hdes.mtv.tu-berlin.de/#thesis-rule-set-reduction-no-clean-up

3.5 On the Expressive Power of HDESs

All proofs in this section only consider the original rule update strategy. If
we have general results that do not consider specific levels of dynamicity, they
are also fulfilled with the alternative rule update strategy (by Theorem 3.39 of
Subsection 3.4.2). However, any result like Subsection 3.5.4 would need another
proof with respect to the alternative rule update strategy.

3.5.1 Encoding DCESs in HDESs

We start this subsection with the expected result that HDESs are indeed a
generalisation of DCES, meaning that for each DCES ∆, there exists a transition-
equivalent HDES H∆. Note that this is not completely obvious as the transition
semantics differ: In a DCES, it is not possible for an adder and a dropper of the
same dependency (which is still relevant) to occur concurrently (Definition 2.8
Condition (4)), whereas, in the HDES setting, this would be allowed and, depend-
ing on the rule update strategy (Definitions 3.4 and 3.20), would lead to an absent
or present dependency.

Let us consider the DCES in Figure 7 on Page 17 (THESIS Example 7.1). There
are adder a and dropper d for an initially absent dependency between cause c
and target t.

In Example 3.5 (THESIS Example 7.2), we have a transition-equivalent HDES;
we need a fresh impossible event, here called i_ct, since it belongs to a possible
dependency between c and t, which is used to prevent concurrency between a

and d using the rules a Ï[i_ct → d] and a ◃[a Ï[i_ct → d]]. Note that the
blocking rule is dropped by c and t via the last two rules c ◃[a Ï[i_ct → d]]

and t ◃[a Ï[i_ct → d]].
This approach is fully compositional and can be applied to each situation in a

DCES where there is an adder and a dropper for the same dependency.

Definition 3.47. Let ∆= (E,→,◃,Ï) be a DCES and

• P := {(c, t) ∈ E2 | ∃d ∈ E . d◃[c → t]∧∃a ∈ E . aÏ[c → t]}
the set of all pairs of events such that there is at least one adder and at least
one dropper for the dependency c → t in ∆,

• and Ac,t := {a ∈ E | aÏ[c → t]} and Dc,t := {d ∈ E | d◃[c → t]}
for each (c, t) ∈ P be the set of all adders (resp. droppers)
for a given dependency with at least one adder and at least one dropper.

Now, we define the HDES encoding of ∆ as the HDES H∆ = (E′,R) where

65

http://hdes.mtv.tu-berlin.de/#thesis-order-sensitive-dces
http://hdes.mtv.tu-berlin.de/#thesis-hdes-encoding-dces

3 Higher-Order Dynamics

1 @hdes

2 c(x=50, y=50)

3 b(x=150, y=250)

4 a(x=50, y=150)

5 t(x=250, y=50)

6

7 a Ï [b Ï[{a,b}Ï[c → t]]]

8 b → b

9

10 @c"Example for a redundant rule that never gets cleaned

up."

Example 3.4: A HDES with a redundant rule that never gets cleaned up.

1 @hdes

2 a(x=100, y=100)

3 d(x=300, y=100)

4 c(x=200, y=30)

5 t(x=200, y=170)

6 i_ct(x=200, y=240)

7

8 i_ct → i_ct

9 a Ï[c → t]

10 d ◃[c → t]

11

12 a Ï[i_ct → d]

13 a ◃[a Ï[i_ct → d]]

14 c ◃[a Ï[i_ct → d]]

15 t ◃[a Ï[i_ct → d]]

16

17 @c "The transition -equivalent HDESs"

18 @c "for THESIS Example 7.1: Order -sensitive DCES."

Example 3.5: A transition-equivalent HDES encoding for the DCES in Figure 7.

66

3.5 On the Expressive Power of HDESs

• E′ = E∪ {ict | (c, t) ∈ P} with ict as fresh events and

• R = {c → t | (c, t) ∈→}∪ {d◃[c → t] | (d, c, t) ∈◃}∪
{aÏ[c → t] | (a, c, t) ∈Ï}∪⋃︁

(c,t)∈P {ic,t → ic,t}∪⋃︁
(c,t)∈P Rc,t

• and the rule sets Rc,t are defined as
Rc,t := {aÏ[︁

ic,t → d
]︁
, x◃

[︁
aÏ[︁

ic,t → d
]︁]︁ | a ∈ Ac,t,d ∈ Dc,t, x ∈ Ac,t ∪ {c, t}}.

Theorem 3.48. Let ∆= (E,→,◃,Ï) be a DCES and HDES H∆ = (E′,R) as defined
in Definition 3.47.
Then ∆ and H∆ are transition-equivalent.

Proof. The proof is straightforward by applying the respective transition Defini-
tions 2.8 and 3.5.

Remark 3.49. We also implemented this encoding in the web tool. It can be
applied with the button “DCES to HDES” in the Translate menu.

3.5.2 Orthogonal Extensions

In this subsection, we show that both dimensions of generalisation from DCESs
to HDESs, namely set-based dynamics and higher-order dynamics, are orthogonal
(i.e. there are restricted HDESs that use only one generalisation such that there is
no restricted HDES which uses the other so that both are transition-equivalent).
Two simple examples fulfilling these properties are depicted in Figure 12. They
can also be found in the web tool (THESIS Example 8 and THESIS Example 9).

Lemma 3.50. Let Hsb = ({a,b, c, t}, {{a,b}Ï[c → t]}) be a HDES.
There is no HDES Hho with only singletons as modifier sets such that Hsb≃ts Hho.

Proof. Assume there would be a HDES Hho = (E,R) with only singletons as
modifier sets such that Hsb ≃ts Hho. Since in Hsb the sets {a, t} and {b, t} are
initially concurrently enabled, they also must be initially concurrently enabled
in Hsb. Thus, the rule set R of Hho cannot contain aÏ[c → t] or bÏ[c → t]. But
since a and b are concurrently enabled in Hsb and will add c → t, we have a
contradiction to the assumption Hsb≃ts Hho since neither a nor b can add the
dependency alone, nor can they together as in Hho only singletons are allowed as
modifiers.

Lemma 3.51. Let Hho = ({a,b, c, t}, {aÏ[bÏ[c → t]]}) be a HDES.
There is no HDES Hsb with at most first-order dynamics such that Hsb≃ts Hho.

67

http://hdes.mtv.tu-berlin.de/#thesis-hdes-set-based
http://hdes.mtv.tu-berlin.de/#thesis-hdes-second-order-2

3 Higher-Order Dynamics

c

t

a

b
(1)

c

t

a

b
(2)

Figure 12: Example HDES for Subsection 3.5.2. (1) a set-based adding. (2) a
second-order adding.

Proof. Consider the transition sequence in the HDES Hho from the initial state(︁
∅,R∅

)︁
via

(︁
{a},R{a}

)︁
to

(︁
{a,b},R{a,b}

)︁
. By Definition 3.4, we have R{a,b} = {c → t}

(but c → t ∉ R{a}). Assume there is a HDES Hsb with at most first-order dynamics
such that Hsb ≃ts Hho. By assumption, we have the transition sequence from
the initial state

(︁
∅,R∅

)︁
via

(︁
{a},R{a}

)︁
to

(︁
{a,b},R{a,b}

)︁
in Hsb where c → t ∈ R{a,b}

(but c → t ∉ R{a}). By Definition 3.4, it follows that the dependency c → t was
added by bÏ[c → t] or {a,b}Ï[c → t], which already were in R∅ since we do not
allow for higher-order dynamics in Hsb. Let us now consider the direct transition(︁
∅,R∅

)︁
to

(︁
{a,b},R{a,b}

)︁
in the HDES Hho (respectively to

(︁
{b},R{b}

)︁
). Here we

have c → t ∉ R{a,b} (respectively c → t ∉ R{b}). However, since without loss of
generality bÏ [c → t] ∈ R∅ of the HDES Hsb, the direct transition

(︁
∅,R∅

)︁
to(︁

{b},R{b}
)︁

in Hsb will result in c → t ∈ R{a,b} (since possibly interfering dropping
rules will be executed first, the causal dependency will be present). Thus, we have
different observable behaviours (since t is enabled, after the initial transition(︁
∅,R∅

)︁
to

(︁
{b},R{b}

)︁
, in Hho but not in Hsb). Therefore, we have Hsb ̸≃ts Hho.

3.5.3 From Con�guration Structures to HDESs

In this section we present an encoding of RCES into a HDES respecting transition
equivalence. This section is a reworked version of [16]. We show the result for
the even more general class of configuration structures [11]. Here, we recap their
definition:

Definition 3.52. Let E be a set.

• We call a pair (E,C) with C ⊆ 2E a configuration structure.

68

3.5 On the Expressive Power of HDESs

• For x, y in C we write x →C y if

(x ⊆ y)∧ (∀Z . (x ⊆ Z ⊆ y⇒ Z ∈C)).

• The relation →C is called the step-transition relation.

For the proof, we need further notation.

Definition 3.53. Let τ= (E,C) be a configuration structure, D ⊆ E, and F ⊆ E.
We denote with

• EnD(τ)⊆ E \ D the set of events which are enabled in D,
in a formal way e ∈EnD(τ)⇐⇒∃D′ ⊇ D . D →τ D′∧ e ∈ D′ \ D.

• Disτ(D)⊆ E \ D′ the set of disabled (or not enabled) events,
more formally Disτ(D) := D′ \ (D∪EnD(τ)).

• Conτ(D,F)⊆ E \ D the set of events which can be concurrent with F in D,
in a formal way e ∈Conτ(D,F)⇐⇒∃D′ ⊇ D . D →τ D′∧F ∪ {e}⊆ D′ \ D.

Now, we can formulate and prove our result. The HDESs are strictly more
expressive than any configuration structure. For any RCES, the transition graph
is a configuration structure. The HDESs will be strictly more expressive than the
RCESs. It was shown in [3] that there are DCESs whose behaviour cannot be
simulated by any RCES. Now, we show that for each RCES there is a transition-
equivalent HDES. Both results together (plus the above inclusion of DCESs in
HDESs in Subsection 3.5.1) yield the strict inclusion.

Definition 3.54. Let τ= (E,C) be a configuration structure.
We define the HDES encoding of τ as HDES(τ) := (E,R):

• For each e ∈Disτ(∅), we add the rule e → e to R.

• Let F ⊆En∅(τ) with ∅ 7→τ F
we add the rule FÏ[e → e] for all e ∈ (En∅(τ)\Conτ(∅,F)) to R.

• Let C ⊆ E be a non-empty configuration of τ,
we add the rule CÏ[e → e] to R if e ∈Disτ(C).

• If e ∈EnC(τ), we add the rule C◃[e → e].

• For each D (C and for each e ∈Disτ(D),
we add the rule C◃[DÏ[e → e]] to R.

69

3 Higher-Order Dynamics

• For all F ⊆EnC(τ) with C 7→τC′,F ⊆ C′ and for all e ∈ (EnC(τ)\Conτ(C,F)),
we add the rule CÏ[FÏ[e → e]] to R.

• For all D (C and for all A ⊆EnD(τ) with D 7→τ D′, A ⊆ D′
and for all e ∈ (EnD(τ)\Conτ(D, A)),
we add the rule C◃[DÏ[AÏ[e → e]]] to R.

We have unique states for each configuration in this translation from configu-
ration structures to HDES, meaning that for each reachable set of events there
exists exactly one rule set and therefore one state.

Definition 3.55. Let τ be a configuration structure

• ∆= (E,R) its HDES encoding,

• and C ̸=∅ a non-empty configuration of τ.

• We call a rule set RC the corresponding rule set to C
if it can be obtained from R in the following way:

(1) For any D (C, remove any dropping rule D◃[r].

(2) For any dropping rule C◃[r], remove the rule and its target r.

(3) For any adding rule CÏ[r], remove the rule but add the target r.

Note that by this algorithm and the construction of R in the translation, each
rule D op[r] with D ⊆ C is dropped from RC and each rule E op[r] with E ̸⊆ C is
copied to RC . There are the causality rules e → e in RC , for which e ∈Disτ(C) and
the concurrency restricting rules FÏ [e → e] if F ⊆ EnC(τ) with C 7→τ C′, F ⊆ C′,
and e ∈ (EnC(τ)\Conτ(C,F)).

We now show that in each reachable state, the rule set corresponds to the
configuration, and even for any transition starting in a state where the rule set
corresponds to the configuration, this will hold in the resulting state.

We first show that, starting with the initial rule set, we reach only states with
corresponding rule sets in one step.

Lemma 3.56. Let τ= (E,C) be a configuration structure,

• H :=HDES(τ) its HDES-encoding,

• and (∅,R) 7→C RC be a rule update.

70

3.5 On the Expressive Power of HDESs

Then, RC corresponds to C.

Proof. Since (∅,R) 7→C RC is a rule update as in Definition 3.4, all active inde-
pendent dropping rules are considered. These are all rules of the form D◃ [r]
for D ⊆ C. Note that by construction, r is no dropping rule. These dropping
rules drop all former added or initial causality rules (e.g. e → e) and concurrency-
restricting rules (e.g. FÏ[e → e]) by construction. After the dropping rules, we
consider the active adding rules. There are two types, causality-adding rules (e.g.
CÏ[e → e]) and concurrency-restricting rules (e.g. CÏ[FÏ[e → e]]). Finally, we
copy the newly added causality rules to the new rule set. This is exactly the same
as in Definition 3.55 because for each rule removed D◃[r] in step (Property (1)),
there is a rule C◃ [r] which will be executed in step (Property (2)). Thus, RC
corresponds to C.

We second show that, starting from a state with a corresponding rule set, we
can reach only states with corresponding rule sets in one step. The proof is almost
the same as above.

Lemma 3.57. Let τ= (E,C) be a configuration structure,

• H :=HDES(τ) its HDES-encoding,

• and (C,RC) 7→C’ R′
C be a rule update where RC corresponds to C.

Then, we have R′
C corresponds to C′.

Proof. Since (C,RC) 7→C’ R′
C is a rule update as in Definition 3.4, all active inde-

pendent dropping-rules are considered. These are all rules of the form D◃[r] for
C′ ⊆ D ⊆ C (no smaller modifier sets are possible because RC is a corresponding
rule set). Note that by construction, r is no dropping rule. These dropping rules
drop all former added causality rules (e.g. e → e) and concurrency-restricting rules
(e.g. FÏ [e → e]). After the dropping rules we consider the active adding-rules.
There are two types of adding rules, causality-adding rules (e.g. C′Ï[e → e]) and
concurrency-restricting rules (e.g. C′Ï[FÏ[e → e]]). Finally, we copy the newly
added causality rules to the new rule set. This is exactly the same as in Defini-
tion 3.55 because for each removed rule D◃[r] in step (Property (1)), there is a
rule C◃[r] which will be executed in step (Property (2)). Thus, R′

C corresponds
to C′.

Lemma 3.58. Let τ= (E,C) be a configuration structure,

71

3 Higher-Order Dynamics

• H :=HDES(τ) its HDES-encoding,

• and (C,RC) and (D,RD) two reachable states of H.

Then, we have the implication (C = D) =⇒ (RC = RD).

Proof. Because both states are reachable, the claim follows from the previous
two Lemmata 3.56 and 3.57 that both rule sets correspond to the configurations.
If these configurations are the same, then clearly the corresponding rule sets are
the same as well.

Since the rule sets are unique for each reachable configuration (they are the
corresponding ones), the above lemma justifies to speak about configurations
of H and transitions in between them. In order to compare H to the original
configuration-structure τ, it is therefore sufficient to show that both are transition-
equivalent.

Lemma 3.59. Let τ= (E,C) be a configuration structure and let H := HDES(τ)
be its HDES-encoding.
Then, we have the equivalence ∅ 7→τC ⇐⇒ (∅,R) 7→H (C,RC).

Proof. Let ∅ 7→τ C. By Definition 3.53, it follows that e ∈ En∅(τ) for each e ∈ C
and that C ⊆ Conτ(∅,C). Thus, by construction in Definition 3.54, there is
no rule e → e for any e ∈ C in the rule set R. Furthermore, there is no rule
D Ï [e → e] for any c ∈ C and D ⊆ C. We now show that all conditions of the
transition Definition 3.5 hold. Condition (1) is clearly satisfied because ∅ ⊆ C.
The only initial causality rules are deactivating rules like e → e which do not
occur for events in C by construction. Therefore, Condition (2) is satisfied. Next,
Condition (3) constrains only the rule update and is fulfilled by assumption.
Regarding the last Condition (4), let us first assume there is a rule MÏ[e → e]
such that M ⊆ C and e ∈ C \ M. The event e is either disabled in the configuration
M or the event e is initially not allowed to be concurrent with M (by construction
of the rule set). However, since we have ∅ 7→τ C and this implies ∅ 7→τ M ∪ {e}
and M 7→τ M ∪ {e} because τ is a configuration structure, we have that no rule
MÏ[e → e] with M ⊆ C and e ∈ C \ M is in R. Therefore, the property is fulfilled.
We have shown that all conditions of the transition Definition 3.5 hold. Thus, we
have (∅,R) 7→H (C,RC).

To show the equivalence, we assume ∅ ̸7→τC. Then, by Definitions 2.4 and 3.53,
there are D (C and e ∈ C \ D such that e ∉ Conτ(∅,D). By construction (cf.

72

3.5 On the Expressive Power of HDESs

Definition 3.54), there is a rule DÏ [e → e] in R. Thus, by Condition (4) of the
transition Definition 3.5, it follows that ∅ ̸7→H C.

Lemma 3.60. Let τ= (E,C) be a configuration structure,

• H :=HDES(τ) its HDES-encoding,

• C ∈C a configuration,

• and RC the rule set corresponding to C.

Then, we have the equivalence C 7→τC′ ⇐⇒ (C,RC) 7→H (C′,RC′).

Proof. Let C 7→τ C′. By Definition 3.53, it follows that e ∈ EnC(τ) for each e ∈ C′
and C′ ⊆Conτ

(︁
C,C′)︁. Thus, by construction of R in Definition 3.54 and because

of RC being a rule set corresponding to C by assumption, there is no rule e → e
for any e ∈ C′ in the rule set RC . Furthermore, there is no rule DÏ[e → e] for any
e ∈ C′ and D ⊆ C′. We now show that all conditions of the transition Definition 3.5
hold: Condition (1) is clearly satisfied because C ⊆ C′. The only causality rules are
by construction of R and because RC is corresponding to C deactivating rules like
e → e, which do not occur for events in C′ (because they are enabled). Therefore,
Condition (2) holds. Next, Condition (3) constrains only the rule update and is
fulfilled by assumption. Regarding the last Condition (4), let us first assume there
is a rule MÏ[e → e] such that M ⊆ C′ and e ∈ C′ \ M. Then the event e is either
disabled in the configuration M or the event e may not be concurrent with M in C
(by construction of the rule set). However, since we have C 7→τC′ and this implies
C 7→τ M ∪ {e} and M 7→τ M ∪ {e} because τ is a configuration structure, we have
that no rule MÏ[e → e] with M ⊆ C′ and e ∈ C′ \ M is in RC , and therefore, the
property holds. We have shown that all conditions of the transition Definition 3.5
are satisfied. Thus, we have (C,RC) 7→H (C′,RC′).

To show the equivalence, we assume C ̸7→τC′. Then there are, by Definitions 2.4
and 3.53, D (C′ and e ∈ C′ \ D such that e ∉ Conτ(C,D). By construction (cf.
Definition 3.54), there is a rule DÏ[e → e] in RC . Thus, by Condition (4) of the
transition Definition 3.5 it follows that (C,RC) ̸7→H (C′,RC′).

Theorem 3.61. Let τ= (E,C) be a configuration structure.
Then, we have τ and its HDES-encodind H :=HDES(τ) are transition-equivalent.

Proof. By induction with Lemmata 3.59 and 3.60.

73

3 Higher-Order Dynamics

3.5.4 Expressive Power with Respect to the Level of
Dynamics

In the previous Subsection 3.5.3 we have shown that third-order dynamics is
sufficient to model RCESs. Now, we will show that first-order dynamics is not
enough. Thus, we show that there is a gain in expressive power from first-order
dynamics to third-order dynamics. Actually we show that the gap is already
between first- and second-order dynamicity. We will present an RCES ρH (see
Definition 3.62) which cannot be modelled with first- but with second-order
dynamics. It can be described as follows: An event a disables another event d
but this disabling can be resolved (also pre-emptively) by the occurrence of the
event b or the event c.

Definition 3.62. Let ρH = ({a,b, c,d},⊢) be the RCES where

X ⊢Y ⇐⇒ (X =∅∧ {a,d} ̸⊆Y)∨ (X ∈ {{b}, {c}, {d}}∧ {a,d}⊆Y).

It is straightforward to see that ρH has the behaviour claimed above: The event
a disables the event d but this is resolved by b or c. If there is a transition in
ρH to a configuration containing a and d, then the previous configuration must
contain b, c, or d (by Definition 2.4).

Lemma 3.63. There is no HDES H1 with rules of at most rank one,
meaning causality rules and first-order adding or dropping rules,
such that H1 and ρH from the above Definition 3.62 are transition-equivalent.

Proof. Assume there is a HDES H1 = (E,R) with rules of rank at most one
such that H1 and ρH are transition-equivalent. Since in ρδ we have ∅ →rc
{a} ̸→rc {a,d} but ∅→rc d, there must be some x ∈ E \ {a} such that aÏ [x → d]
since adding a cause that did not happen is the only way to disable an event
in HDESs. Consider the trace ∅→rc {b} →rc {a,b} →rc {a,b,d} in ρH . In order
to have the same behaviour in H1, it follows that the above rule aÏ [x → d]
must be instantiated with x = b since otherwise d would be disabled in H1 after
∅ 7→H {b} 7→H {a,b}. Completely analogously, it follows that x = c if we consider the
trace ∅→rc {c}→rc {a, c}→rc {a, c,d}, so we have a contradiction. Thus, there is no
HDES with at most first-order dynamics that is transition-equivalent to ρδ.

If we combine the above Lemma 3.63 with the Theorem 3.61 of the previous
Subsection 3.5.3, we get the following Corollary:

74

3.5 On the Expressive Power of HDESs

a

b

c

d

id

Figure 13: A transition-equivalent HDES HρH for ρH (as in Definition 3.62).

Corollary 3.64. There is a gain in the expressive power of HDESs
if we consider third-order dynamics instead of first-order dynamics.

Proof. Since there is an RCES that cannot be simulated in HDESs with at most
first-order dynamics (Lemma 3.63) but for each RCES there is a transition-
equivalent HDES with third-order dynamics (Theorem 3.61). It follows that
HDES with at most third-order dynamics are strictly more expressive than HDES
with at most first-order dynamics.

For the RCES ρH defined above (as in Definition 3.62) there is a HDES with
at most second-order dynamics which is transition-equivalent (cf. Figure 13 and
THESIS Example 10).

Lemma 3.65. The HDES HρH , as in Figure 13 (THESIS Example 10),
is transition-equivalent to the RCES ρH as in Definition 3.62.

Proof. The event a disables d by adding the impossible id as a precondition for
d. However, the events b (or c) resolve this disabling by dropping the possible
dependency id → d and the adding capability of a for this dependency. Note that
d can obviously precede a but they are not allowed concurrently if they are not
preceded by b or c (as defined in transition Definition 3.5 of HDESs).

The previous Lemma 3.65 allows for a more precise version of Corollary 3.64.
There is even a gap in expressive power between HDES with at most first-order
dynamics in comparison to HDES with at most second-order dynamics.

75

http://hdes.mtv.tu-berlin.de/#thesis-disabling
http://hdes.mtv.tu-berlin.de/#thesis-disabling

3 Higher-Order Dynamics

e1

e2

e3

e4

e5

x

H5

e1 e2 e3 e4 e5

x

x1,2 x2,3 x3,4 x4,5

H′
5

Figure 14: The HDESs H5 and H′
5 (as in Definitions 3.68 and 3.69).

Lemma 3.66. There is a gain in the expressive power of HDESs
if we consider second-order dynamics instead of first-order dynamics.

Proof. The proof is immediate by the Lemmata 3.63 and 3.65.

Now, there is the general question: Does the expressive power of HDES increase
with the order of dynamicity (like in Lemma 3.66)? This is still an open problem
but we assume it holds for arbitrarily high orders.

Conjecture 3.67. For n ∈N+,

• there is a HDES Hn with n-th-order dynamics

• such that there is no transition-equivalent HDES H′
n

with at most (n−1)-th-order dynamics.

The conjecture is obviously satisfied for n = 1. By the above Lemma 3.66, it also
is satisfied for n = 2. In the following, we will present two HDESs (parametrised
by their order of dynamicity) we disproved to fulfil the conjecture.

The first one consists of n+1 events e1, . . . , en and an event x disabled initially.
Additionally, we have the rule e1Ï

[︁
. . . en1 Ï[en◃[x → x]] . . .

]︁
. In Figure 14 and

THESIS Example 11.1, you can find H5.

Definition 3.68. Let n ∈N+ and Hn = (En,Rn) be the HDES whith

76

http://hdes.mtv.tu-berlin.de/#thesis-hierarchy-candidate-1

3.5 On the Expressive Power of HDESs

• En = {e1, . . . , en, x}

• and Rn = {[x → x], e1Ï[. . . en−1Ï[en◃[x → x]] . . .]}.

For any n ∈N+ this Hn can be collapsed to a second-order structure H′
n which

uses additional impossible events where any two consecutive e i, e i+1 drop one
impossible cause xi,i+1 of the event x. In Figure 14 and THESIS Example 11.2,
you can find H′

5.

Definition 3.69. Let n ∈N+,

• Hn = (En,Rn) as in Definition 3.68

• and H′
n = (E′

n,R′
n) be the HDES with

• E′
n = En ∪ {x1,2, . . . , xn−1,n}

• and R′
n = {[xi,i+1 → xi,i+1], [xi,i+1 → xi+1] | 1≤ i ≤ n−1}∪

{e iÏ
[︁
e i+1◃

[︁
xi,i+1 → e i+1

]︁]︁ | 1≤ i ≤ n−1}.

Lemma 3.70. For any n ∈ N+ the HDESs Hn and H′
n, as defined in Defini-

tions 3.68 and 3.69, are transition-sequence-equivalent.

Proof. In both structures, x only becomes enabled if and only if e1 . . . en occur
sequentially. There are no further behavioural restrictions for e1 . . . en in either
structure. In H′

n, there are additional impossible events. However, since there
are no enablers for them, the state transition-equivalence of Hn and H′

n is
fulfilled.

The reduction of the order of dynamicity from Hn to H′
n is based on the idea

of partially enabling, meaning that more and more impossible causes xi,i+1 of x
are dropped until finally x becomes enabled. Thus, a natural idea for the next
structure Gn is to disable an event x after the sequential occurrence of e1, . . . , en
since it is not clear, what a partial disabling would look like. In Figure 15 and
THESIS Example 12.1, you can find G5.

Definition 3.71. Let n ∈N+ and Gn = (En,Rn) be the HDES with

• En = {e1, . . . , en, x}

• and Rn = {e1Ï[. . . en−1Ï[enÏ[x → x]] . . .]}.

77

http://hdes.mtv.tu-berlin.de/#thesis-hierarchy-candidate-1-reduced
http://hdes.mtv.tu-berlin.de/#thesis-hierarchy-candidate-2

3 Higher-Order Dynamics

e1

e2

e3

e4

e5

x

G5

e1

e2

e3

e4

e5

x

G′
5

Figure 15: The HDESs G5 and G′
5 (as in Definitions 3.71 and 3.72).

This Gn can be collapsed for any n ≥ 5 to a (n−1)-th-order structure G′
n. The

main idea of this reduction is that the potential end effect of e1 is clear from the
beginning: If thereafter e2, . . . , en occur sequentially, x becomes disabled. There-
fore, we can model the chain starting with e2 and add a rule such that e2 prevents
the final effect e2Ï [en◃[enÏ[x → x]]] which is dropped by e1, reinstalling the
order e1, . . . , en. In Figure 15 and THESIS Example 12.2, you can find G′

5.

Definition 3.72. Let n ∈N+,

• Gn = (En,Rn) as in Definition 3.71

• and G′
n = (En,R′

n) be the HDES with

• R′
n = {e2Ï[. . . en−1Ï[enÏ[x → x]] . . .] , e2Ï[en◃[enÏ[x → x]]]}∪

{e1◃[e2Ï[en◃[enÏ[x → x]]]]}.

Lemma 3.73. For any n ∈ N+ the HDESs Gn and G′
n – as in Definitions 3.71

and 3.72 – are transition-sequence-equivalent.

Proof. In Gn the event x becomes disabled only after the sequential occurrence
of e1, . . . , en. Otherwise, there is no restriction on the behaviour. However, exactly
the same is true for G′

n. Here, the sequence e2, . . . , en disables x but e2 creates a
delayed trigger (e2Ï[en◃[enÏ[x → x]]]) to remove this disabling. The creation of
this trigger is removed by e1. Since this is a rule of order four any Gn with n ≥ 5

78

http://hdes.mtv.tu-berlin.de/#thesis-hierarchy-candidate-2-reduced

3.5 On the Expressive Power of HDESs

can be reduced to G′
n with one order of dynamicity less. Thus, the state-transition

equivalence of Gn and G′
n is satisfied.

As mentioned above, this reduction is based on the fact that it is clear what the
potential effect of e1 might be. The structures considered above are way too static
to fulfil the conjecture. In Figure 16 and in THESIS Example 13, you can find the
HDES D2, a highly dynamic structure (as defined in Definition 3.74): There is a
potential dependency between a cause c and a target t which is initially absent
but can be added by an adder a and be dropped by a dropper d. This first-order
dynamics might also be dropped by the dropper da and dd and reinstalled by
the responding adders aa and ad. The structure could easily be generalised to
arbitrarily high orders.

Definition 3.74. We first define some list comprehension notation like in Haskell
and second a parametrised class of HDESs.

• Let {a,d}n := {x | x ∈ {a,d}∗∧1≤ |x| ≤ n} be the set of all non-empty strings
of length at most n with respect to the alphabet {a,d} and

• s ∈ {a,d}n be a non-empty string.

• We denote with s = x : xs that the first character of s is x and
the remaining part is xs.

• Of course xs might be empty (denoted as ε).

• Now, we can define a recursive function
which maps strings over {a,d}n to rules over {a,d}n ∪ {c, t}.

f : {a,d}n −→RuleSets({a,d}n ∪ {c, t})
f (ε) 7−→ c → t

f (a : as) 7−→ a : asÏ[f (as)]
f (d : ds) 7−→ d : ds◃[f (ds)]

Let n ∈N+ and

• Dn = (En,Rn) be a HDES with

• En := {a,d}n ∪ {c, t}

• and Rn := { f (e) | e ∈ En}.

79

http://hdes.mtv.tu-berlin.de/#thesis-hierarchy-candidate-3

3 Higher-Order Dynamics

You can find D2 in Figure 16 and in THESIS Example 13.

a d

ad

da

aa

dd

c

t

D2

Figure 16: The HDESs D2 (as in Definition 3.74).

We assume that the HDES Dn defined above (Definition 3.74) indeed fulfils
the hierarchy Conjecture 3.67 (i.e. there is no HDES D′

n with order of dynamicity
less than n such that Dn and D′

n are transition-equivalent).

Conjecture 3.75. For any n ∈ N+ the HDES Dn as defined in Definition 3.74
fulfils the Conjecture 3.67.

80

http://hdes.mtv.tu-berlin.de/#thesis-hierarchy-candidate-3

4 Encoding of DCR-Graphs

4.1 Concurrency Semantics

In this section we recap the basic definitions from [15] and [8] in order to compare
Dynamic Condition Response Graphs (DCR-Graphs) to HDESs. DCR-Graphs are
like HDESs a generalisation of Prime Event Structures, but allow for repeated
event execution and dynamic exclusion and inclusion of events. As in our dynamic
generalisations, a state with more information than a configuration is needed.
Here, markings are used. A marking denotes for each event if it was executed
at least once, if it is a pending response (needed for an accepting run), and if
it currently is included. First we focus on the definitions in [8] for defining a
concurrency semantics for basic DCR-Graphs (we omit the labels from the DCR-
Graph). Later we discuss certain more elaborate features of DCR-Graphs (cf.
[15]).

Definition 4.1 ([8]). A Dynamic Condition Response Graph (DCR-Graph) is a
3-tuple G = (E, M,R) where

• E is the set of events (or activities),

• M = (Ex,Re,In) ∈M (G) is the marking for M (G) = 2E ×2E ×2E where Ex
is the set of executed, Re the set of restless, and In the set of included events,

• R = (, , + , %) are the condition, response, include, and ex-
clude relation respectively, with each relation is defined on E2.

An event is enabled if and only if it is included and all its conditions were
previously executed or are currently excluded.

Definition 4.2 ([8]). For an event e of a DCR-Graph G,

• we say that e is enabled, written G ⊢ e
if and only if (e ∈ In)∧ ((In∩ e)⊆Ex).

81

4 Encoding of DCR-Graphs

We define next the effect of the execution of an event, meaning which event
is executed (∆e), which events are being included (∆I), which events are being
excluded (∆X), and which events are being made pending (∆R).

Definition 4.3 ([8]). The effect of the execution of an event e on a DCR-Graph G
is given by EFFECT (G, e)= (∆e,∆I,∆X ,∆R) where:

• ∆e = {e} the singleton set containing the event being executed,

• ∆I = e + the events being included by e,

• ∆X = e % the events being excluded by e,

• ∆R = e the events being made pending by e.

When the G is clear from the context, we write δe for EFFECT (G, e). As a next
step, we define how the effect is applied to the DCR-Graph.

Definition 4.4 ([8]). The application of the effect δe = (∆e,∆I,∆X ,∆R) on a
marking (Ex,Re,In) is defined as follows:

δe · (Ex,Re,In)= (Ex∪∆e, (Re\∆e)∪∆R, (In\∆X)∪∆I)

The effect δe applied on the DCR-Graph G = (E, M,R) is defined as:

δe · (E, M,R)= (E,δe ·M,R)

Note that if an event e both includes and excludes an event f , the event f
remains included. On the other hand, if an event e is a response to itself, it is a
pending response after its execution.

Now, we can define how these operations are used to execute an event on a
DCR-Graph, yielding a new one.

Definition 4.5 ([8]). For a DCR-Graph G and

• an event e, such that G ⊢ e,

• we define the result of executing e as G⊕ e = EFFECT (G, e) ·G.

In order to speak about acceptance of DCR-Graphs, we first define the obliga-
tions of a DCR-Graph to be the set of its included and pending events.

Definition 4.6 ([8]). Given a DCR-Graph G = (E, M,R) with

82

4.1 Concurrency Semantics

• marking M = (Ex,Re,In),

• we define the obligations of G to be OBL(G)=Re∩In.

Finally, we have all we need to define the notion of finite and infinite executions
and when they are accepting:

Definition 4.7 ([8]). For a DCR-Graph G an execution of G is

• a (finite or infinite) sequence of 3-tuples (G i, e i,G′
i)i≤k (for k ∈N∪ {ω})

• each comprising a DCR-Graph, an event and another DCR-Graph
such that G =G0 and, for i < k, we have G′

i =G i+1;

• moreover for, i ≤ k, we have G i ⊢ e i and G′
i =G i ⊕ e i.

• We say the execution is accepting if, for i ≤ k, and for all e ∈ OBL(G i)
there is a j ≥ i with either e j = e or e ∉ OBL(G′

j).

• With EXE(G) (resp. ACC(G)) we denote the set of all executions
(resp. all accepting executions) of G.

• Finally, we say that a DCR-Graph G′ is reachable from G
if and only if there exists a finite execution of G ending in G′.

Up to now, we have only dealt with interleaving semantics. We proceed by
introducing a notion of concurrency.

Definition 4.8 ([8]). We call two distinct events e ̸= f of a DCR-Graph G
effect orthogonal if and only if

(1) no event included by e is excluded by f and vice versa, and

(2) e requires a response from g if and only if (f does or f ̸= g).

We lift this notion to effects themselves, saying δe,δ f of G are orthogonal if and
only if e, f are.

Lemma 4.9 ([8]). Let δe,δ f be effects of a DCR-Graph G, and

• let M be a marking for G.

Then the orthogonality of e, f implies the commutativity of δ f and δe:

δe · (δ f ·M)= δ f · (δe ·M)

83

4 Encoding of DCR-Graphs

Definition 4.10 ([8]). We call two distinct events e, f of a DCR-Graph G
cause-orthogonal if and only if

(1) neither event is a condition for the other,

(2) neither event includes or excludes the other, and

(3) neither event includes or excludes a condition for the other.

Definition 4.11 ([8]). Given a DCR-Graph G, we say that

• events e, f are independent if they are both effect- and cause-orthogonal.

• We write IG for the independence relation induced by a DCR-Graph G.

Definition 4.12 ([8]). An Asynchronous Transition System (ATS) is

• a 5-tuple A = (S, s0,E,→, I)

• comprising a set of states S,

• an initial state s0 ∈ S,

• a set of events E,

• a transition relation on the events →⊆ S×E×S,

• and an irreflexive symmetric independence relation I satisfying

(1) s e−→ s′ and s e−→ s′′ implies s′ = s′′,

(2) s e−→ s′, s′ e′−→ s′′, and eIe′ implies ∃s′′′ such s e′−→ s′′′, and s′′′ e−→ s′′,

(3) s e−→ s′, s e′−→ s′′, and eIe′ implies ∃s′′′ such s′ e′−→ s′′′, and s′′ e−→ s′′′.

Theorem 4.13 ([8]). Let G be a DCR-Graph. Then A (G) is an ATS
when equipped with the independence relation IG .

Now we define a labelled version of HDESs with an acceptance criterion. For
the next definition, we assume that A is no event of the underlying HDES.
Otherwise we can apply α-conversation.

The original HDES as in Definition 3.1 get extended with the acceptance event
A, a set of event labels L, a labelling function l : E → L, and a possibly non empty
initial configuration C0.

84

4.1 Concurrency Semantics

Definition 4.14. A labelled HDES is a 5-tuple (E∪ {A},R, l,L,C0) consisting of

• a HDES (E,R),

• an additional event A ∉ E for acceptance simulation,

• a labelling function l : E → L mapping events to labels in L,

• and C0 ⊆ E is the initial configuration (if omitted assumed to be empty).

A state s of a HDES is called accepting if and only if the special event A is
enabled in s.

Definition 4.15. Let H = (E,R, l,L,C0) be a labelled HDES,
then we call a state s = (C,RC) accepting if and only if A is enabled in s.

We further extend the DCR-Graphs by adding a counter for each event to the
marking. This counter has no behavioural impact.

Definition 4.16. An extended DCR-Graph G′ = (E, M′,R) is

• a regular DCR-Graph G = (E, M,R) with a fourth set in the marking,

• that means M′ = M×Count,

• where Count consists of tuples (e,n) for each e ∈ E
the second parameter n ∈N counts how often e occurs.

Since Count should be updated upon execution of events, we have to slightly
modify Definition 4.4 by incrementing the counter of the event e:

Definition 4.17. The application of the effect δe = (∆e,∆I,∆X ,∆R) on a marking
(Ex,Re,In,Count) with (e,n) ∈Count is defined as follows:

δe · (Ex,Re,In,Count)= (Ex∪∆e, (Re\∆e)∪∆R, (In\∆X)∪∆I,Count′)

where in the upper equation the set Count′ is defined as

Count′ = (Count\{(e,n)})∪ {(e,n+1)}.

The effect δe applied on the DCR-Graph G = (E, M,R) is defined as:

δe · (E, M,R)= (E,δe ·M,R)

Note that this extensions only tracks additional information in the markings
which can be used in proofs, but does not influence the behaviour of the DCR-
Graph.

85

4 Encoding of DCR-Graphs

4.2 Encoding of DCR-Graphs into HDESs

In Subsection 4.2.1 we start by giving the general idea of the encoding. Thereafter,
we explain each rule that we might create (depending on the relations and
the marking of the DCR-Graph) step by step. And finally, we have the formal
definition for the encoding (see Definition 4.18). In Subsection 4.2.2 we show the
formal correctness of our encoding.

In our web tool, we implemented the encoding. In THESIS Example 14 a simple
DCR-Graph is defined (e f , x % f , and n + f) and can be translated (by
selecting DCR to HDES in the translate menu) into a HDES with at most three
executions for each event (this can be easily adapted with a suitable n in the
parameter @dcrDepth "n"). Of course, any other basic DCR-Graph can be entered
and translated in the same way.

4.2.1 Explanation and De�nition of the Encoding

Before starting, we want to point out that in [8] it is possible for an event to
exclude and include the very same other event with the effect that the target is
afterwards included. Therefore, we can assume without loss of generality that
there is no case like this since this behaviour can be modelled with the inclusion
only.

Let G = (E, M,R) be an extended DCR-Graph. We define a labelled HDES
H(G)= (EG ,RG , l,E,C0

G) – with the initial state is (C0
G ,RG) – such that both are

transition-equivalent.
For each event e ∈ E we have an infinite chain e i (for each i ∈N+) of events in

EG (with e i → e i+1 for each i ∈N+)) to be able to repeat e.
Additionally, there is for each e ∈ E a blocking event be ∈ E (which is disabled

by the rule be → be) for the dynamic exclusion of DCR-Graphs.
Finally, there is an event A ∈ EG which is used to encode the acceptance

criterion of DCR-Graphs into the HDES framework. The idea behind this is to
encode pending responses as precondition for A, and defining that H(G) is in an
accepting state if and only if there is is possible transition by observing A.

Thus, we have EG := {︁
e i | i ∈N+∧ e ∈ E

}︁∪{be | e ∈ E}∪̇ {A} the labelling function
l maps every event to the original one in the DCR-Graph, meaning that l :
EG \{A}→ E with ek 7→ e and be 7→ e (this second one only for technical reasons
since no be will ever occur in any state).

We first discuss the rules induced by the four DCR-Graph relations R =
(, , + , %) of G (however, for certain rules it is important to check

86

http://hdes.mtv.tu-berlin.de/#thesis-dcr-graph-pending

4.2 Encoding of DCR-Graphs into HDESs

if certain events are currently included). Second, we take the marking M of G
into account to define the proper initial configuration C0

G of H(G) (in order to
encode the executed events). Certain additional rules are needed to encode initial
excluded or restless events.

Now, we explain all rules we create in the encoding step by step. Later in
Definition 4.18 they are listed with the according preconditions.

Since the condition relation is the same as the causal dependency in HDESs,
each e f translates to e1 → f i (for all i ∈N+) (Rule (4.3)), but of course, only if e
is initially included. By the definition of cause-orthogonality (see Definition 4.10),
a condition and its target are not allowed to be concurrent. We have the rules
e iÏ

[︁
f j → f j

]︁
(for all i, j ∈N+) and e i◃

[︁
e iÏ

[︁
f j → f j

]︁]︁
(for all i, j ∈N+) (Rules (4.1)

and (4.2)).
For the exclusion and inclusion relation, we first focus on the interplay with the

condition relation. Consider an exclusion x % e with the additional condition
e f . From the above modelling of the condition relation, we have e1 → f i (for
all i ∈N+). If e gets excluded, this condition is not taken into account. Thus, we
need a disabling of e and a temporary deletion of the dependency. Therefore,
we have xi Ï [be → e] (for all i ∈ N+). This Rule (4.4) models the disabling of
e since be is permanently disabled. We have xi ◃

[︁
e1 → f j

]︁
(for all i, j ∈ N+)

(Rule (4.5)), deleting the dependency between e and f . By Definition 4.10 of cause-
orthogonality, an excluder and any condition are not allowed to be concurrent with
the target of the condition. So we have the rules xi Ï

[︁
f j → f j

]︁
(for all i, j ∈N+)

and xi◃
[︁
xiÏ

[︁
f j → f j

]︁]︁
(for all i, j ∈N+) (Rules (4.6) and (4.7)).

On the other hand, if n + e with some e f , we have e1 → f i (for all
i ∈N+) from the above modelling of the condition relation. We have to drop any
dependencies from e to certain blocking events and re-include the dependencies
modelling the condition relation where e was a condition. Thus, we have ni ◃
[be → e] (for all i ∈N+) (Rule (4.8), enabling of e) and niÏ

[︁
e1 → f j

]︁
(for all i, j ∈N+)

(Rule (4.11), restoration of the dependency between e and f). Furthermore, due to
Definition 4.10 of cause-orthogonality, the includer and its target are not allowed
to be concurrent (the same is fulfilled for the excluder but this is already enforced
as a side effect of the Rule (4.4)). We have the rules niÏ

[︁
e j → e j

]︁
(for all i, j ∈N+)

and ni ◃
[︁
niÏ

[︁
e j → e j

]︁]︁
(for all i, j ∈ N+) (Rules (4.9) and (4.10)). Also due to

the same definition if we have some f with e f like above, f and n are not
allowed to be concurrent. We model it as always with the rules niÏ

[︁
f j → f j

]︁
(for

all i, j ∈ N+) and ni ◃
[︁
niÏ

[︁
f j → f j

]︁]︁
(for all i, j ∈ N+) (Rules (4.12) and (4.13)).

If we have x % e and n + e, then by Definition 4.8, both x and n are not
effect-orthogonal, and thus, not independent, and therefore, never concurrent.

87

4 Encoding of DCR-Graphs

To model this we use rules of the form xi Ï
[︁
n j → n j

]︁
(for all i, j ∈N+) and xi ◃[︁

xiÏ
[︁
n j → n j

]︁]︁
(for all i, j ∈N+) (Rules (4.14) and (4.15)).

The basic idea to model the response relation e f , is to temporarily block the
acceptance event A by rules of the form e iÏ

[︁
b f → A

]︁
(for all i ∈N+) (Rule (4.16))

and remove this blocker with the unblocking rules f i◃
[︁
b f → A

]︁
(for all i ∈N+) if

f occurs (Rule (4.19)) and f is not requiring a response from itself (i.e. f f ∉ R).
However, this becomes more sophisticated since f might be dynamically excluded
(and re-included and so on). Note that the Rule (4.16) are obsolete if f is initially
excluded. With respect to Definition 4.8, if there is no f f , we have to omit
the concurrent occurrence of e and f . We add the usual rules e iÏ

[︁
f j → f j

]︁
(for

all i, j ∈N+) and e i◃
[︁
e iÏ

[︁
f j → f j

]︁]︁
(for all i, j ∈N+) (Rules (4.17) and (4.18)).

If there is an event x with x % f , then after any occurrence of x, the event f
is excluded, and therefore, not needed for acceptance (see Definition 4.7) (even
if e reoccurs). Thus we have the rules xi ◃

[︁
b f → A

]︁
(for all i ∈ N+) and xi ◃[︁

e jÏ
[︁
b f → A

]︁]︁
(for all i, j ∈ N+) (Rules (4.20) and (4.21)). Finally, if there is

an event n with n + f , it is clear that after the concurrent occurrence of
e and n, the event f is restless, and included, so we have the rules {ni, e j}Ï[︁
b f → A

]︁
(for all i, j ∈ N+) (Rule (4.22)). However, since we want to have this

effect only on synchronisation of ni and e j, we use the extended synchronisation
pattern eSync({ni, e j}Ï[b f → A]) (as in Definition 3.16). Therefore, we have the
Rules (4.23) to (4.30).

If ni and e j occur interleaved without the excluder x or the response f , the
second one inserts the acceptance blocking niÏ

[︁
e jÏ

[︁
b f → A

]︁]︁
(for all i, j ∈N+)

(Rule (4.31)) and respectively e jÏ
[︁
niÏ

[︁
b f → A

]︁]︁
(for all i, j ∈N+) (Rule (4.32)).

The case of first n occurring followed by x and finally e is already handled with
Rule (4.21), the dual case where first e occurs, then f , and finally n is dealt by
following rules f i◃

[︁
n jÏ

[︁
b f → A

]︁]︁
(for all i, j ∈N+) (Rule (4.33)).

Let us now consider the marking M = (Ex,Re,In,Count) of G. First, for all
e ∈ Ex there is (e,n) ∈ Count with n ≥ 1. We insert {e i | i ≤ n} into the initial
configuration C0. For all initially excluded events e, we have the rules [be → e i]
(for all i ∈ N+) (Rule (4.34)). If there is another event f with e f , we have
to remove the rules [e1 → f i] (for all i ∈ N+) (Rules (4.3)) since only included
conditions are needed.

It becomes a little tricky for initially restless events f . Here, there are two
cases: First, there is another event e triggering a response from f (i.e. e f),
second, f is only initially restless and no other event can make it restless. In the
first case we do not need many rules since they are already around caused by
e f . If f is initially restless and included, we have the acceptance blocking

88

4.2 Encoding of DCR-Graphs into HDESs

[b f → A] (Rule (4.40)). If there also is an includer n for f , we have the rules
ni Ï

[︁
b f → A

]︁
(for all i ∈N+) Rule (4.35)) since f might get excluded and on re-

inclusion, if still restless, the acceptance needs to be blocked. In the first cases,
we are done and the following rules coincide with the ones defined above. We
can now assume that there is no e with e f . If there is an excluder x for f ,
we have xi◃

[︁
b f → A

]︁
(for all i ∈N+) Rule (4.38)) since we assumed there is no

e with e f . Particularly, there is no f f . Therefore, the occurrence of f
does not make f restless, and thus, we have that f drops the acceptance blocking
fk+1◃

[︁
b f → A

]︁
(Rule (4.36)), where fk+1 is the next occurrence of f based on

(f ,k) ∈ Count. Since there is no event making f restless again if f occurs, it
will never become restless again, and therefore, it should drop the acceptance
blocking deletion and inclusion rules f1 ◃

[︁
xi◃

[︁
b f → A

]︁]︁
(for all i ∈ N+) and

f1◃
[︁
niÏ

[︁
b f → A

]︁]︁
(for all i ∈N+) (Rules (4.37) and (4.39)).

Definition 4.18. Let G = (E, M,R) be an extended DCR-Graph. We define

• the HDES encoding of G as
the labelled HDES HG = (EG ,RG , l,E,C0

G) with the initial state (C0
G ,RG)

• where EG := {︁
e i | i ∈N+∧ e ∈ E

}︁∪ {be | e ∈ E}∪̇ {A}

• the labelling function l mapping all events to the original ones in G,
that means l : EG \ ({be | e ∈ E}∪̇{A})→ E with e i 7→ e(∀i ∈N+).

• For each e ∈ E there is [e i → e i+1] ∈ RG (∀i ∈N+) and [be → be] ∈ RG .

• The other rules depend on the relations R of the DCR-Graph G
(or the initial marking M of G) and are defined step by step:

(1) For each pair in the condition relation e f , we have the rules

e iÏ
[︁
f j → f j

]︁
(∀i, j ∈N+), (4.1)

e i◃
[︁
e iÏ

[︁
f j → f j

]︁]︁
(∀i, j ∈N+), (4.2)

and if e is initially included, we also have

[e1 → f i] (∀i ∈N+). (4.3)

(2) For each pair in the exclusion relation x % e, we have the rules

xiÏ
[︁
be → e j

]︁
(∀i, j ∈N+). (4.4)

89

4 Encoding of DCR-Graphs

If there is an event f with e f , then for every such f
we also have the rules

xi◃
[︁
e1 → f j

]︁
(∀i, j ∈N+), (4.5)

xiÏ
[︁
f j → f j

]︁
(∀i, j ∈N+), (4.6)

xi◃
[︁
xiÏ

[︁
f j → f j

]︁]︁
(∀i, j ∈N+). (4.7)

(3) For each pair in the inclusion relation n + e, we have the rules

ni◃
[︁
be → e j

]︁
(∀i, j ∈N+), (4.8)

niÏ
[︁
e j → e j

]︁
(∀i, j ∈N+), (4.9)

ni◃
[︁
niÏ

[︁
e j → e j

]︁]︁
(∀i, j ∈N+). (4.10)

If there is an event f with e f , then for every such f
we also have the rules

niÏ
[︁
e1 → f j

]︁
(∀i, j ∈N+), (4.11)

niÏ
[︁
f j → f j

]︁
(∀i, j ∈N+), (4.12)

ni◃
[︁
niÏ

[︁
f j → f j

]︁]︁
(∀i, j ∈N+). (4.13)

If there also is an event x with x % e, then for every such x
we also add the following

xiÏ
[︁
n j → n j

]︁
(∀i, j ∈N+), (4.14)

xi◃
[︁
xiÏ

[︁
n j → n j

]︁]︁
(∀i, j ∈N+). (4.15)

(4) For each pair in the response relation e f with initially included f , we
have the rules

e iÏ
[︂
b f → A

]︂
(∀i ∈N+), (4.16)

and if there is no f f , then we also have

e iÏ
[︁
f j → f j

]︁
(∀i, j ∈N+), (4.17)

e i◃
[︁
e iÏ

[︁
f j → f j

]︁]︁
(∀i, j ∈N+), (4.18)

f i◃
[︂
b f → A

]︂
(∀i ∈N+). (4.19)

90

4.2 Encoding of DCR-Graphs into HDESs

If there is an event x with x % f , then for every such x
we also have the rules

xi◃
[︂
b f → A

]︂
(∀i ∈N+), (4.20)

xi◃
[︂
e jÏ

[︂
b f → A

]︂]︂
(∀i, j ∈N+). (4.21)

If there is an event n with n + f , then for every such n
we also have the rules of the extended synchronisation pattern

{ni, e j}Ï
[︂
b f → A

]︂
(∀i, j ∈N+), (4.22)

ni◃
[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂
(∀i, j ∈N+), (4.23)

e j◃
[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂
(∀i, j ∈N+), (4.24)

e j◃
[︂
ni◃

[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂]︂
(∀i, j ∈N+), (4.25)

ni◃
[︂
e j◃

[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂]︂
(∀i, j ∈N+), (4.26)

ni◃
[︂
e j◃

[︂
ni◃

[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂]︂]︂
(∀i, j ∈N+), (4.27)

e j◃
[︂
ni◃

[︂
e j◃

[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂]︂]︂
(∀i, j ∈N+), (4.28)

{ni, e j}◃
[︂
ni◃

[︂
e j◃

[︂
ni◃

[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂]︂]︂]︂
(∀i, j ∈N+), (4.29)

{ni, e j}◃
[︂
e j◃

[︂
ni◃

[︂
e j◃

[︂
{ni, e j}Ï

[︂
b f → A

]︂]︂]︂]︂]︂
(∀i, j ∈N+), (4.30)

niÏ
[︂
e jÏ

[︂
b f → A

]︂]︂
(∀i, j ∈N+), (4.31)

e jÏ
[︂
niÏ

[︂
b f → A

]︂]︂
(∀i, j ∈N+), (4.32)

and if there is no f f then we also have

f i◃
[︂
n jÏ

[︂
b f → A

]︂]︂
(∀i, j ∈N+). (4.33)

(5) If the marking M of G is non-trivial,

• that means if there are exclude, restless, or executed events

• this gets encoded, in the initial configuration of HG and in RG .

91

4 Encoding of DCR-Graphs

• For every initially executed event e, we add {e i | i ≤ n},
where n is the number of occurrences of e (i.e. (e,n) ∈Count),
to the initial configuration of HG

C0
G = {e i | 1≤ i ≤ k∧ (e,k) ∈Count}.

(i) For every initially excluded event e, we add the following rule

[be → e i], (∀i ∈N+). (4.34)

(ii) For every initially restless event f , if there are events n with n + f ,
for each of them we have the rules

niÏ
[︂
b f → A

]︂
(∀i ∈N+). (4.35)

If there is no e with e f , we also have

fk+1◃
[︂
b f → A

]︂
, (4.36)

and if there also are events n with n + f , for each of them we
additionally have the rules

fk+1◃
[︂
niÏ

[︂
b f → A

]︂]︂
(∀i ∈N+), (4.37)

and if there also are events x with x % f , for each of them
we additionally have the rules

xi◃
[︂
b f → A

]︂
(∀i ∈N+), (4.38)

fk+1◃
[︂
xi◃

[︂
b f → A

]︂]︂
(∀i ∈N+), (4.39)

where k is the number of occurrences of f , meaning ((f ,k) ∈Count). If
f is initially included, we additionally have the rule

[b f → A]. (4.40)

(iii) • Finally, we have to consider all (e,n) ∈Count with n ≥ 1.

• We remove all rules where e i (with i ≤ n) occurs as
a modifier, as a cause, or as a target.

92

4.2 Encoding of DCR-Graphs into HDESs

• For example, if there is an f ∈ E with e f ,
we remove every rule e iÏ

[︁
f j → f j

]︁
with i ≤ n,

which has been created by Rule (4.1).

• However, if e i (with i ≤ n) only occurs in the causality part of a
rule,
this rule is removed,
for example, if there are f , x ∈ E with e f and x % e.

• The rule xmÏ[ek → ek] which was created by Rules (4.6),
is removed from the rule sets.

4.2.2 Correctness of the Encoding

In this subsection we prove the correctness of the HDESs encoding for basic
DCR-Graphs. We first show that the initial behaviour is the same, meaning that
the same sets of events are concurrently enabled and the DCR-Graph is initially
in an accepting state if and only if the HDES encoding is in an initially accepting
state.

Lemma 4.19. Let G = (E, (Ex,Re,In,Count),R) be an extended DCR-Graph

• and HG = (EG ,RG , l,E,C0
G) its encoding as defined in Definition 4.18.

Then, if e is enabled in G (with (e,k) ∈Count), ek+1 is initially enabled in HG .

Proof. Let e ∈ E be initially enabled in G. Then by Definition 4.2, e is included
and there is no condition f for e not executed but included. Since e is initially
included, we do not have the rules [be → e i] (∀i ∈N+) (4.34). On the other hand,
if we have any condition f e, we would have f1 → e i (∀i ∈N+) by Rule (4.3)
blocking e; however by assumption, f must be initially executed or excluded.
If f is initially executed, we have f1 ∈ C0

G and thus f1 → e i (∀i ∈N+) does not
block e. However, the rules f1 → e i (∀i ∈N+) are not initially included and e is
unblocked. Thus, the event ek+1 (since (e,k) ∈ Count, i.e. e already occurred k
times) is enabled in HG in the state (C0

G ,RG).

Lemma 4.20. Let G = (E, M,R) be an extended DCR-Graph

• and HG = (EG ,RG , l,E,C0
G) its encoding as defined in Definition 4.18.

93

4 Encoding of DCR-Graphs

Then, if any event x ̸= A is initially enabled in HG , x = e i and e is enabled in G .

Proof. Since x ̸= A is enabled in HG in the state (C0
G ,RG), it follows that x = e i

for some e ∈ E and i ∈ N+ since no be can ever be enabled (caused by the rule
[be → be] never being dropped) by construction of RG in Definition 4.18. By the
same definition, we have if there are f ∈ E with f e, then f is excluded. The
conditions Rules f1 → e i (∀i ∈N+) (4.3) are not added or f is initially marked
as executed and so f1 ∈ C0

G and thus f1 → e i (∀i ∈ N+) is not constraining e i
because otherwise e i would not be enabled in HG (obviously e is included in G
initially because otherwise it would be blocked in (C0

G ,RG) by the Rules (4.34)).
Finally, we have that e is included initially in G and all its conditions are executed
or excluded. Thus e is enabled in G.

Lemma 4.21. Let G = (E, M,R) be an extended DCR-Graph

• and HG = (EG ,RG , l,E,C0
G) its encoding as defined in Definition 4.18.

Then both have the same enabled events modulo labelling and the acceptance
event A ∈ E′.

Proof. Immediate by Lemmata 4.19 and 4.20.

Lemma 4.22. Let G = (E, (Ex,Re,In,Count),R) be an extended DCR-Graph

• and HG = (EG ,RG , l,E,C0
G) its encoding as defined in the Definition 4.18.

Then,

• if X ⊆ E is concurrently enabled in G,

• X ′ := {ek+1 | (e ∈ X)∧ ((e,k) ∈Count)}⊆ EG is concurrently enabled in HG
in the state (C0

G ,RG) with l(X ′)= X .

Proof. By Lemma 4.19, we have that each x ∈ X ′ is enabled in HG . The construc-
tion in Definition 4.18 reflects exactly the case were concurrency is prevented in
DCR-Graphs (in Definitions 4.8 and 4.10): The Rule (4.14) reflects Condition (1) of
the effect orthogonality (Definition 4.8) and the Rule (4.17) reflects Condition (2).
Regarding the cause-orthogonality (Definition 4.10) the Rule (4.1) reflects Con-
dition (1), the Rules (4.4) and (4.9) reflect Condition (2), and Condition (3) is
reflected by the Rules (4.6) and (4.12). These rules are the only ones possibly

94

4.2 Encoding of DCR-Graphs into HDESs

constraining concurrency for any x ∈ X ′. As they would only forbid behaviour
which is already forbidden in the DCR-Graph, the set X ′ is concurrently enabled
in HG .

Lemma 4.23. Let G = (E, M,R) be an extended DCR-Graph

• and HG = (EG ,RG , l,E,C0
G) its encoding as defined in Definition 4.18.

Then,

• if any set event X ̸∋ A is concurrently enabled in HG in the state (C0
G ,RG),

• l(X) is concurrently enabled in G.

Proof. Analogously to the proof of Lemma 4.22.

Lemma 4.24. Let G = (E, M,R) be an extended DCR-Graph and

• HG = (EG ,RG , l,E,C0
G) its encoding with initial state (C0

G ,RG) as defined in
Definition 4.18.

Then, both have the same sets of concurrently enabled events
modulo labelling and the acceptance event A ∈ E′.

Proof. Immediate by Lemmata 4.22 and 4.23.

Lemma 4.25. Let G = (E, M,R) be an extended DCR-Graph

• and HG = (EG ,RG , l,E,C0
G) its encoding as defined in Definition 4.18.

Then, G initially is in an accepting state if and only if HG initially is in an
accepting state.

Proof. Let G be initially accepting. Then, by the Definition 4.7, all initially
restless events must be excluded. Therefore, by the construction in Definition 4.18,
no rule of the form [be → A] is in RG , and therefore by Definition 4.15, HG is
initially accepting. On the other hand, if HG is initially accepting, then there is
no rule of the form [be → A] in RG , and thus by construction of the encoding, all
initially restless events of G are excluded. Thus, G is accepting.

95

4 Encoding of DCR-Graphs

G = (E, M = (Ex,Re,In,Count),R)

G′ = (E, M′ = (Ex′,Re′,In′,Count′),R)

HG = (EG ,RC0
G

,C0
G)

(EG ,RC1
G

,C1
G)

(EG , R̃C1
G

,C1
G)

HG′ = (EG′ ,RC0
G′

,C0
G′)

X

X ′

cu(·)

Figure 17: Sketch for the proof of Lemma 4.26

Lemma 4.26. Let G = (E, (Ex,Re,In,Count),R) be an extended DCR-Graph

• and HG = (EG ,RC0
G

, l,E,C0
G) as defined in Definition 4.18.

• Let X ⊆ E be concurrently enabled in G.

Then

• the encoding HG′ = (EG′ ,RC0
G′

, l,E,C0
G′) of G′ :=G⊕ X

• is exactly the same as we would obtain after a clean-up,

• if X ′ (as defined in Lemma 4.22) would initially occur in HG .

Proof. Figure 17 sketches the proof with all involved structures. In the following
we show that the diagram commutates. In Figure 18, a more detailed view on the
rule sets R̃C1

G
and RC0

G′
can be found.

96

4.2 Encoding of DCR-Graphs into HDESs

Rcore: rules based on R

rules deleted by Count′

rules modified by
In′ and Re′

RC0
G′

Rcore: rules based on R

rules deleted by Count

rules modified by
In and Re

rules modified by
update and clean-up

R̃C1
G

Figure 18: The rule sets RC0
G′

and R̃C1
G

for the proof of Lemma 4.26.

By Lemma 4.22, the set X ′ = {ek+1 | (e ∈ X)∧ ((e,k) ∈ Count)} is concurrently
enabled in (C0

G ,RG). There is a transition to a state (C1
G ,RC1

G
), where C1

G =
C0

G ∪ X ′ and (C0
G ,RG)−→C1

G
RC1

G
(i.e. R1

CG
is the rule update with respect to C1

G).

We first show that C1
G = C0

G′ and second that the clean-up R̃C1
G

(as defined in
Definition 3.8) of RC1

G
with respect to X ′ equals RC0

G′
. By definition, we have

C0
G′ = {e i | 1≤ i ≤ k∧ (e,k) ∈Count′}. Note that we can obtain Count′ from Count

and X as

Count′ = {(e,k) | (e ̸∈ X)∧ ((e,k) ∈Count)}

∪ {(e,k+1) | (e ∈ X)∧ ((e,k) ∈Count)},

97

4 Encoding of DCR-Graphs

since we increase the counter of each event x ∈ X by one (according to Defini-
tion 4.17). Therefore, we can split C0

G′ into the two parts:

C0
G′ = {e i | 1≤ i ≤ k∧ (e ̸∈ X)∧ ((e,k) ∈Count)}

∪ {e i | 1≤ i ≤ k+1∧ (e ∈ X)∧ ((e,k) ∈Count)}

Since X ′ = {ek+1 | (e ∈ X)∧ ((e,k) ∈Count)}, we can split the second set of C0
G′ once

more and obtain:

C0
G′ = {e i | 1≤ i ≤ k∧ (e ̸∈ X)∧ ((e,k) ∈Count)}

∪ {e i | 1≤ i ≤ k∧ (e ∈ X)∧ ((e,k) ∈Count)}

∪ X ′

By merging the first two sets, we obtain the definition of C0
G . Therefore, we have

C0
G′ = C0

G ∪ X ′.

On the other hand, we obviously have

Count= {(e,k) | (e ̸∈ X)∧ ((e,k) ∈Count)}}

∪ {(e,k) | (e ∈ X)∧ ((e,k) ∈Count)}

Now we show that the rule sets RC0
G′

and R̃C1
G

(cf. Figure 18), where R̃C1
G

is the

clean-up of RC1
G

with respect to X ′, coincide. Both rule sets have a common core,
namely Rcore, from which certain rules already are initially deleted, to be precise
those rules, whose modifiers are contained in Count and Count′ respectively. On
the other hand the core set gets modified depending on the respective marking,
meaning based on initial excluded or restless events of M (resp. M′).

We have to show that all modifications of Rcore in R̃C1
G

are present in RC0
G′

and
vice versa.

In the case of R̃C1
G

, three modifications took place:

(1) Every rule with a modifier, cause, or target in e i, where (e, i) ∈ Count got
deleted.

(2) Marking dependent Rules (4.3), (4.16) and (4.34) to (4.40).

(3) A rule update with respect to X ′ took place followed by the clean-up.

98

4.2 Encoding of DCR-Graphs into HDESs

In the case of RC0
G′

, only two modifications took place:

(a) Every rule with a modifier, cause, or target in e i, where (e, i) ∈Count′ got
deleted.

(b) Marking dependent Rules (4.3), (4.16) and (4.34) to (4.40).

We start with R̃C1
G

and show that each insertion or deletion can be found in
RC0

G′
: Point (1) is handled by (a) of RC0

G′
since any rule delete in (1), also gets

deleted by (a). As, for all e ∈ E with (e, i) ∈Count and (e, j) ∈Count′, it is satisfied
that i ≤ j (with equality if e ∉ X , otherwise we have i+1= j).

Point (2) is only relevant for the events where the marking changes from M to
M′ and is addressed below.

Therefore we focus on (3). Let us consider the state (C0
G ,RG) of HG . The active

rules with respect to X ′ can be partitioned into three types: First concurrency-
constraining rules (like Rules (4.1) and (4.2)), second the rules of the extended
synchronisation-pattern (Rules (4.22) to (4.30)), and third possibly marking-
changing rules (like Rules (4.4)) which do have an effect on the rule set RC1

G
other

than being removed. We first consider all rules of the second type and show how
their effect can be found in RC0

G′
.

If any rule of eSync({ni, e j}Ï[b f → A]) becomes active, then ni or e j belong to X ′.
If both ni and e j are in X ′, then by Lemma 3.18, we know that [b f → A] is in R̃C1

G
but no Rules (4.22) to (4.30). However, then f is included and restless in G′, and
therefore, we have [b f → A] is in RC0

G′
by Rule (4.40). If, without lost of generality,

only ni is in X ′, we again have that all rules in eSync({ni, e j}Ï[b f → A]) are
removed in the clean-up from R̃C1

G
, but we do have no further influence on this

rule set (by Lemma 3.18).
Now we take the rules of the third type into account (first those created by the

relations of the graph and second those caused by the initial marking).

• xiÏ
[︁
be → e j

]︁
(∀i, j ∈N+) (Rule (4.4)): This reflect the blocking of e after

the exclusion of e by x. There are the Rules [be → e i] for all i ∈ N+ in
R̃C1

G
. On the other hand, we have [be → e i] for all i ∈N+ in RC0

G′
(by the

Rule (4.34)) since e is excluded in G′ because x ∈ X and x % f .

• xi◃
[︁
e1 → f j

]︁
(∀i, j ∈N+) (Rule (4.5)): These rules encode that excluded

conditions are not considered. We do not have [e1 → f j] in R̃C1
G

. However,

99

4 Encoding of DCR-Graphs

as e is excluded in G′ because x ∈ X and x % f , no such rules appears in
RC0

G′
(Rule (4.3) only creates them if e is included).

• ni ◃
[︁
be → e j

]︁
(∀i, j ∈ N+) (Rule (4.8)): This reflects the unblocking of e

after the inclusion of e by n. Therefore, [be → e j] for all j ∈ N+ are not
in R̃C1

G
since no concurrent excluder that would reinstall theses rules is

allowed (cf. Definition 4.8 Condition (1)). These rules do not appear in RC0
G′

since e is included in G′ because n ∈ X and n + e (Rule (4.34) only only
creates them if if e is excluded).

• ni Ï
[︁
e1 → f j

]︁
(∀i, j ∈N+) (Rule (4.11)): The inclusion of e reinstalls the

condition for f (again e cannot concurrently get excluded cf. Definition 4.8
Condition (1)). We have [e1 → f j] for all j ∈N+ in R̃C1

G
. As e is included in

G′ (because n ∈ X and n + e) we have [e1 → f j] for all j ∈N+ in RC0
G′

(by
Rule (4.3)) since e is an included condition for f .

• e i Ï
[︁
b f → A

]︁
(∀i ∈ N+) (Rule (4.16)): As e makes f restless, and since

f is only allowed to be concurrent with e if it makes itself restless, f is
restless in G′. On the other hand, f is included in G′ since it was included
in G. Otherwise, the rule e i Ï

[︁
b f → A

]︁
for all i ∈ N+ would not be in

RC0
G

, and there is no x ∈ X with x % f since this would imply that the

x j◃
[︁
e iÏ

[︁
b f → A

]︁]︁
for all i, j ∈N+ (Rule (4.21)) are in RC0

G
. Where for some

x j one of the rules deletes the rule e iÏ
[︁
b f → A

]︁
for all i ∈N+ which is not

the case since it became active. As an effect, we have [b f → A] in R̃C1
G

.
However, since f is included because it was included in G and was not
excluded by some x ∈ X , and restless because e ∈ X and e f , this rule is
in RC0

G′
(by Rule (4.40)).

• f i◃
[︁
b f → A

]︁
(∀i ∈N+) (Rule (4.19)): The occurrence of f removes it from

the set of restless events (if not f f , but then these rules would not
exist). There is no rule [b f → A] in R̃C1

G
. However, since f is not restless in

G′ (because f ∈ X and not f f), these rules are not in RC0
G′

(Rule (4.40)
only creates them if f is included and restless).

• xi◃
[︁
b f → A

]︁
(∀i ∈N+) (Rule (4.20)): As x excludes f , there is no f needed

for an acceptance blocker and thus the blocking rule [b f → A] is not in R̃C1
G

.

100

4.2 Encoding of DCR-Graphs into HDESs

It is not in RC0
G′

(by Rule (4.40)) since x ∈ X and x % f , where f is

excluded in G′.

• xi◃
[︁
e jÏ

[︁
b f → A

]︁]︁
(∀i, j ∈N+) (Rule (4.21)): Since x excludes f , and as

long f stays excluded, e making f restless does not mean that f is accep-
tance blocking. Hence, e jÏ

[︁
b f → A

]︁
is not in R̃C1

G
(because by Definition 4.8

Condition (1) there can be no concurrent inclusion of f). However, as f is
excluded in G′ because x ∈ X and x % f , the rules e jÏ

[︁
b f → A

]︁
are not

in RC0
G′

(Rule (4.16) only creates them if f is included).

• ni Ï
[︁
e jÏ

[︁
b f → A

]︁]︁
(∀i, j ∈ N+) (Rule (4.31)): The includer n allows the

trigger e to install the acceptance blocker [b f → A]. If only ni ∈ X ′ but
e j ∉ X ′, we have e j Ï

[︁
b f → A

]︁
for all j ∈N+ in R̃C1

G
. Otherwise, this rule

gets removed by the clean-up and the effect is already applied by Rule
(4.22). If only n ∈ X , then f is included in G′ because n + f . We have
e jÏ

[︁
b f → A

]︁
for all j ∈N+ (Rule (4.16)) in RC0

G′
.

• e j Ï
[︁
niÏ

[︁
b f → A

]︁]︁
(∀i, j ∈ N+) (Rule (4.32)). The trigger e allows the

includer n to install the acceptance blocker [b f → A]. If only e j ∈ X ′, but
ni ∉ X ′, we have ni Ï

[︁
b f → A

]︁
for all i ∈ N+ in R̃C1

G
. Otherwise this rule

gets removed by the clean-up and the effect is already applied by Rule
(4.22). If only e ∈ X , f is restless in G′ because e f . Therefore, we have
niÏ

[︁
b f → A

]︁
for all i ∈N+ (Rule (4.35)) in RC0

G′
.

• f i ◃
[︁
n jÏ

[︁
b f → A

]︁]︁
(∀i, j ∈ N+) (Rule (4.33)): After an event e making

f restless, Rule (4.22) creates rules of the form n j Ï
[︁
b f → A

]︁
for all j ∈

N+. Those rules recreate the acceptance blocker if f got excluded and re-
included again. However, if f occurs before an includer, this effect must
be negated (since we only create this rule if not f f). There are no
rules n j Ï

[︁
b f → A

]︁
for all j ∈ N+ in R̃C1

G
. Since f is not restless in G′

because f ∈ X and not f f , there is no such rules in RC0
G′

(Rule (4.35)
only creates them if f is restless).

Now we look at the rules caused by an initially restless event f .

• ni Ï
[︁
b f → A

]︁
(∀i ∈ N+) (Rule (4.35)): These rules add the acceptance

blocker [b f → A] to the rule set R̃C1
G

. Since they are in the current rule set,

we have f ∉ X or f f . Otherwise niÏ
[︁
b f → A

]︁
for all i ∈N+ would have

101

4 Encoding of DCR-Graphs

been deleted by some fk, either by Rules (4.33) or (4.37). However, since f
is restless in G′, the graph G′ is not accepting after the includer n and we
have the acceptance blocker b f → A (Rule (4.40)) in RC0

G′
.

• xi◃
[︁
b f → A

]︁
(∀i ∈N+) (Rule (4.38)): These rules delete the acceptance

blocker [b f → A] from the rule set R̃C1
G

. However, since f got excluded
by x because x ∈ X and x % f , we have no acceptance blocker in RC0

G′
(Rule (4.40) only creates it if f is included).

• fk+1◃
[︁
xi◃

[︁
b f → A

]︁]︁
(∀i ∈N+) (Rule (4.39)): These rules drop the dele-

tion of the acceptance blocker xi◃
[︁
b f → A

]︁
for all i ∈N+ (Rule (4.38)) from

R̃C1
G

. However, as f is not putting a response on itself (because there is no

e ∈ E with e f , and in particular not f f), there are no xi◃
[︁
b f → A

]︁
for all i ∈N+ (Rule (4.38)) in RC0

G′
since f is not restless anymore.

• fk+1◃
[︁
niÏ

[︁
b f → A

]︁]︁
(∀i ∈N+ (Rule (4.37)): These rules drop the inser-

tion of the acceptance blocker niÏ
[︁
b f → A

]︁
for all i ∈N+ (Rule (4.35)) from

R̃C1
G

. However, as f is not putting a response on itself (because there is no

e ∈ E with e f , and in particular not f f), there are no niÏ
[︁
b f → A

]︁
for all i ∈N+ (Rule (4.35)) in RC0

G′
since f is not restless in G′ anymore.

• fk+1◃
[︁
b f → A

]︁
(Rule (4.36)): These rules delete all the acceptance blocker

[b f → A] (Rule (4.40)) from R̃C1
G

. However, since f is not putting a response
on itself (because there is no e ∈ E with e f , and in particular, not
f f), there is no [b f → A] (Rule (4.40)) in RC0

G′
since f is not restless in

G′ anymore.

If we now consider the step from G to G′ in the extended DCR-Graph, we have
certain changes in the marking which modify the core rule set. We now show that
these modifications also take place if we consider the rule update and clean-up in
the translation.

(i) e getting included, meaning e ∉ In but e ∈ In′. There is an n ∈ X with
n + e. Now, there are up to three rule patterns which might get included
or excluded:

• [be → e i] (∀i ∈ N+) (Rule (4.34)) are in RC0
G

but not in RC0
G′

(since

they only get created if e is excluded). However, the blocker [be → e i]

102

4.2 Encoding of DCR-Graphs into HDESs

for all i ∈N+ gets removed with ni◃
[︁
be → e j

]︁
for all i, j ∈N+ (Rules

(4.8)) which are in RC0
G

since there is n ∈ E with n + e. And since

n ∈ X , there is an l such that nl ∈ X ′. Therefore, nl ◃
[︁
be → e j

]︁
is in

RC0
G

and active, and thus the blocker is removed in R̃C1
G

.

• If there is an event f with e f , then by Rule (4.3) [e1 → f i] for
all i ∈N+ are in RC0

G′
but not in RC0

G
(as they only get created if e is

included). However, the condition constraints [e1 → f i] for all i ∈N+
get inserted with niÏ

[︁
e1 → f j

]︁
for all i, j ∈N+ (Rule (4.11)) which are

in RC0
G

since there is n ∈ E with n + e and e is excluded in G. And,

since n ∈ X , there is an l such that nl ∈ X ′. Therefore, nlÏ
[︁
e1 → f j

]︁
is

in RC0
G

and active, and thus the condition constraint is inserted into

R̃C1
G

.

• If there is an event d with d e, then by Rule (4.16) di Ï [be → A]
for all i ∈N+ are in RC0

G′
but not in RC0

G
(as they only get created if

e is included). However, the blocker of the acceptance di Ï [be → A]
for all i ∈ N+ gets inserted with ni Ï

[︁
d jÏ[be → A]

]︁
for all i, j ∈ N+

(Rule (4.31)) which are in RC0
G

since there is n ∈ E with n + e and
e is excluded in G. And since n ∈ X , there is an l such that nl ∈ X ′.
Therefore, nl Ï

[︁
d jÏ[be → A]

]︁
is in RC0

G
and active, and thus, the

condition constraint is inserted into R̃C1
G

.

(ii) e getting excluded, meaning e ∈ In but e ∉ In′. There is an x ∈ X with
x % e. Now, there are up to three rule patterns which might get included
or excluded:

• [be → e i] (∀i ∈N+) (Rule (4.34)) are in RC0
G′

but not in RC0
G

(as they

only get created if e is excluded). However, the blocker [be → e i] for all
i ∈N+ gets added with xiÏ

[︁
be → e j

]︁
for all i, j ∈N+ (Rule (4.4)) which

are in RC0
G

as there is x ∈ E with x % e. And, since x ∈ X , there is

an l such that xl ∈ X ′. Therefore, xl Ï
[︁
be → e j

]︁
is in RC0

G
and active,

and thus, the blocker is added to R̃C1
G

.

103

4 Encoding of DCR-Graphs

• If there is an event f with e f , then by Rule (4.3) [e1 → f i] for
all i ∈N+ are in RC0

G
but not in RC0

G′
(as they only get created if e is

included). However, the condition constraints [e1 → f i] for all i ∈N+
get removed with xi◃

[︁
e1 → f j

]︁
for all i, j ∈N+ (Rule (4.5)) which are

in RC0
G

as there is x ∈ E with x % e. And, since x ∈ X , there is an l

such that xl ∈ X ′. Therefore, xl◃
[︁
e1 → f j

]︁
is in RC0

G
and active, and

thus the condition constraint is removed from R̃C1
G

.

(iii) e getting restless, meaning e ∈ Re′ but e ∉ Re (there is some d ∈ X with
d e):

• and e stays included, meaning e ∈ In and e ∈ In′:

– [be → A] (Rule (4.40)) is in RC0
G′

but not in RC0
G

(as it only gets

created if e is restless). However, the acceptance blocker [be → A]
gets inserted with diÏ[be → A] for all i ∈N+ (Rule (4.16)) which
are in RC0

G
as there is a d ∈ E with d e and e is initially in-

cluded. And, since d ∈ X , there is an l such that dl ∈ X ′. Therefore,
dlÏ[be → A] is in RC0

G
and active, and the acceptance blocker is

added to R̃C1
G

.

– If there is an event n with n + e, then by Rule (4.35) ni Ï
[be → A] for all i ∈N+ are in RC0

G′
but not in RC0

G
(as they only get

created if e is restless). However, the acceptance blocking capabil-
ity niÏ[be → A] for all i ∈N+ gets added with d jÏ[niÏ[be → A]]
for all i, j ∈N+ (Rule (4.32)) which are in RC0

G
as there are d,n ∈ E

with d e and n + e. And, since e ∈ X , there is an l such
that dl ∈ X ′. Therefore, dl Ï [niÏ[be → A]] is in RC0

G
and active,

and thus, acceptance blocking capability is added to R̃C1
G

.

• and e gets included, meaning e ∉ In and e ∈ In′, and there are n,d ∈ X
with n + e and d e:

104

4.2 Encoding of DCR-Graphs into HDESs

– [be → A] (Rule (4.40)) is in RC0
G′

but not in RC0
G

(as it only gets

created if e is restless). However, the acceptance blocker [be → A]
gets inserted with {n j,di}Ï[be → A] for all i, j ∈N+ (Rule (4.22))
which are in RC0

G
as there are d,n ∈ E with d e and n +

e. And, since d,n ∈ X , there are ld , ln such that dld ,nln ∈ X ′.
Therefore {nln ,dld } Ï [be → A] are in RC0

G
and active, and the

acceptance blocker is added to R̃C1
G

.

– Since there is an event n with n + e, then by Rule (4.35) niÏ
[be → A] for all i ∈N+ are in RC0

G′
but not in RC0

G
(as they only get

created if e is restless). However, the acceptance blocking capabil-
ity niÏ[be → A] for all i ∈N+ gets added with d jÏ[niÏ[be → A]]
for all i, j ∈N+ (Rule (4.32)) which are in RC0

G
as there are d,n ∈ E

with d e and n + e. And, since e ∈ X , there is an l such
that dl ∈ X ′. Therefore, dl Ï [niÏ[be → A]] is in RC0

G
and active,

and thus, acceptance blocking capability is added to R̃C1
G

.

• and e gets excluded, meaning e ∈ In and e ∉ In′, and so there are
x,d ∈ X with x % e and d e:

– If there is an event n with n + e, then by Rule (4.35) ni Ï
[be → A] for all i ∈N+ are in RC0

G′
but not in RC0

G
(as they only get

created if e is restless). However, the acceptance blocking capabil-
ity niÏ[be → A] for all i ∈N+ gets added with d jÏ[niÏ[be → A]]
for all i, j ∈N+ (Rule (4.32)) which are in RC0

G
as there are d,n ∈ E

with d e and n + e. And, since e ∈ X , there is an l such
that dl ∈ X ′. Therefore, dl Ï [niÏ[be → A]] is in RC0

G
and active,

and thus, acceptance blocking capability is added to R̃C1
G

.

(iv) e getting removed from pending responses, meaning e ∉Re′ but e ∈Re, and
there is e ∈ X . Note that by cause orthogonality (cf. Definition 4.10) no
parallel includer or excluder of e is permitted:

105

4 Encoding of DCR-Graphs

• [be → A] (Rule (4.40)) is in RC0
G

but not in RC0
G′

(as it only gets created

if e is restless). However, the acceptance blocker [be → A] gets removed
with e i◃[be → A] for all i ∈N+ (Rule (4.19), respectively Rule (4.36)
if there is no d ∈ E with d e) which are in RC0

G
as e is initially

restless. And since e ∈ X , there is an l such that e l ∈ X ′. Therefore,
e l◃[be → A] is in RC0

G
and active, and thus, the acceptance blocker is

removed from R̃C1
G

.

• If there is an event n with n + e, then by Rule (4.35) niÏ[be → A]
for all i ∈N+ are in RC0

G
but not in RC0

G′
(as they only get created if e is

restless). However, the acceptance blocking capability niÏ[be → A] for
all i ∈N+ gets removed with e j◃[niÏ[be → A]] for all i, j ∈N+ (Rule
(4.33), respectively Rule (4.37) if there is no d ∈ E with d e) which
are in RC0

G
as e is initially restless. And, since e ∈ X , there is an l such

that e l ∈ X ′. Therefore, e l ◃[niÏ[be → A]] is in RC0
G

and active, and

thus, acceptance-blocking capability is removed from R̃C1
G

.

(v) e getting executed for the first time, that means e ∉Ex but e ∈Ex′. This is
covered by the next point.

(vi) e getting executed for the (k + 1)-th time, meaning (e,k) ∈ Count and
(e,k+1) ∈ Count′: As mentioned above we add ek+1 to the new initial
configuration C0

G′ , but we remove all rules containing ek+1 as a modifier,
cause, or target (cf. Definition 4.18 Case (5).(iii)) from RC0

G′
. This is also

done in the rule update and clean-up step for R̃C1
G

. Note since we use the

extended synchronisation pattern for {ni, ek+1}Ï[︁
b f → A

]︁
, the occurrence

of ek+1 (in combination we the clean-up) removes all rules of this pattern.
However, this pattern is the only place where ek+1 occurs in a modifier set
which is not a singleton and therefore easily removed by the clean-up.

Thus, we have RC0
G′

= R̃C1
G

, and therefore, HG′ = (EG , R̃C1
G

,C1
G).

Now we can formulate our result that DCR-Graphs without a labelling on the
events (or just the identity) can be encoded into a slightly enhanced HDESs such
that on finite executions they behave the same. However, for DCR-Graphs an
acceptance criterion for infinite runs exists, but for HDESs we do not even have
the notion of infinite runs.

106

4.2 Encoding of DCR-Graphs into HDESs

Theorem 4.27. For each DCR-Graph G (without labelled events) there is a la-
belled HDES HG
such that for finite execution both yield the same transition system.

Proof. By interpreting G as an extended DCR-Graph with (e,1) ∈Count if e ∈Ex
and (e,0) otherwise, we can apply Lemma 4.26 inductively on the transition
sequence.

There are certain points in the encoding (cf. Definition 4.18) to be commented.
Remark 4.28. There are a few things we would like to point out:

• In the encoding we used a synchronisation pattern, but the DCR-Graphs
semantics does not have any dependencies on synchronous executions.
However, since DCR-Graphs have an additional memory, the marking, it is
easy to see if an event is restless. On the other hand in the HDES encoding,
we have to treat the cases of concurrent and interleaved occurrence of n, e
differently (for e f and n + f), in order to simulate the restlessness
correctly.

• The usage of the extended synchronisation pattern, instead of the basic one,
allows for a shorter proof, but adds more complex rules.

• The usage of non-empty initial configurations in the encoding is for simplify-
ing the proof. However, this could be translated to an equivalent structure
with an empty initial configuration.

• There are more advanced variants of DCR-Graph. In [15] there is a mile-
stone relation e f (as long e is restless, f is blocked), nesting (there is a
tree-like structure for the events and the relations are inherited top down),
and sub-graph spawning (including fresh events). However, only for the
variant we considered, there is a defined concurrency semantics.

• In [1] Arbach introduced an evolutionary version of DCESs. There, not
only the dependencies between the events might get changed, but also
new events can get inserted into the structure. If this approach is lifted to
HDESs, this could make the above presented encoding extremely smaller:

Instead of the event chains
{︁
e i | i ∈N+∧ e ∈ E

}︁
we would initially only need

{e0 | e ∈ E}. For the rules we would initially only need those where all the
indices which now range over all naturals, equal zero. On the occurrence of
an event e i, this structure would evolve to a new ES which includes e i+1
and all rules which contain e i+1.

107

4 Encoding of DCR-Graphs

In this way, it is possible to get a finite evolution scheme: A finite initial ES
and a finite set of rules which get inserted when an event occurs. Such a
model would have the huge benefit to only model and visualise the current
state, in contrast to now, where every possible future behaviour must be
taken into account.

108

5 Application

In this chapter we first present a medical case study from a bachelor thesis [22]
modelling the patient treatment. Therefore we introduce the case study, explain
the surgery part in more detail, show an example situation in which we need
second-order set-based dynamics. Second, based on this case study, we discuss
the requirements on HDESs for further applicability.

5.1 Case Study

In his bachelor thesis Trénous [22] analysed the utility and usability of DCESs
to model dynamic processes in a clinical case study. The case of a patient at the
German Heart Institute Berlin (DHZB) suffering from a coronary heart disease
and a mitral valve insufficiency is modelled. Since many complications occurred,
the treatment was dynamically adapted many times. Thus, it is considered a
good indicator for how well DCESs are suited to model dynamic processes. Later
on, Gräfje used DCR-Graphs in his bachelor thesis [13] to model the same case
study.

5.1.1 The Surgery

The following summary is based on the description of the case study in Section
2.2 and the surgery in Section 4.2.1 of [22]:

A chain of complications lead to dynamic adjustments of the treatment process.
Before the start of the surgery the patient is connected to a heart-lung-machine
(HML) which replaces the functionality of the heart and the lung for the duration
of the surgery. In order to prevent blood clotting the anticoagulant heparin must
be administered during an HML treatment. After a normal surgery, the patient
would be disconnected from the HML, the heart would be reanimated with the
help of an intravenous adrenaline injection, and heparin would be discontinued.

In this particular case, the aorta of the patient was accidentally pierced during
the surgery leading to severe pulmonary bleeding and acute pulmonary failure.

109

5 Application

As a life saving measure the patient was connected to a veno-arterial extra-
corporeal membrane oxygenation (VA-ECMO), a machine that does the work of
heart and lung of the patient. This VA-ECMO replaces the HML since it is better
suited for a prolonged treatment. In order to mimic the functionality of the heart,
the blood is pumped through an external machine that enriches it with oxygen.
To prevent blood clotting the anticoagulant heparin must be administered during
a VA-ECMO (as before with the HML) treatment but in this case it cannot be
stopped after the surgery.

When the heart function of the patient was reasonably well, the VA-ECMO was
replaced by a veno-venous extra-corporeal membrane oxygenation (VV-ECMO).
A VV-ECMO only oxygenates the blood. The heart is again responsible for the
pumping. In order to handle the increased workload the heart was supported
with an increased doze of adrenaline.

Thereafter, an even further deterioration of the lung functions was detected
and an x-ray examination indicated an accumulation of blood in the thorax
(hemothorax). After further treatment and examination it was assumed that the
hemothorax was a complication caused by heparin. Since the patient was relying
on VV-ECMO, the heparin could not be stopped.

At this point we stop the summary of the case study. In [22] it continues with
some further complications but eventually the patient was transferred from the
DHZB to a regular hospital.

5.1.2 Some Modelling

We focus on the modelling of the contraindication of hemothorax and heparin and
the interplay with the VV-ECMO treatment:

Let us first consider the interaction of heparin and a hemothorax. The hemoth-
orax is an accumulation of blood in the thorax and heparin prevents the blood
clotting. Thus, if a patient is prescribed heparin and suffers from a hemothorax
normally the heparin treatment should be stopped before further steps are taken.
In DCES this contraindication cannot be modelled nicely (i.e. without duplicating
some events) since we only have single events as modifiers for dependencies.
In Figure 19 which was created with our web tool (cf. Section 3.2) there is a
model with set-based dynamics: The event startHeparin is a precondition for
stopHeparin. We modelled that startHeparine and hemothorax together insert the
dependency from stopHeparin to the remainder (of course this still is a HDES).

The situation becomes even more sophisticated if an acute respiratory distress
syndrome enforces a treatment with an ECMO which requires the patient to

110

5.1 Case Study

remainder

startHeparin

hemothorax

stopHeparin

Figure 19: Example with set-based dynamics. A dynamic ES with set-based dy-
namics from the case study modelling the contraindication of hemoth-
orax and heparin.

get heparin in order to prevent the blood clotting. Thus, the acute respiratory
distress syndrome should disable the dynamics modelled above until a respiratory
stabilisation is achieved. In this situation an ECMO treatment is no longer needed
and the heparin treatment can be stopped.

In Figure 20 we have modelled the extended situation. We had to use not only
the set-based dynamics, but also second-order dynamics while both of them are
not part of the DCES formalism (of course they are HDES features). An example
for the second-order dynamics is the following rule:

◃ � →
Where is an abbreviation for acute respiratory distress syndrome (For en-
hanced readability of the rules we use the notation of the web tool, as in Sec-
tion 3.2). In the said figure it can be found as the line from the set-based
adding to (the empty arrow tip at the start of the line denotes that the
rule is absorbed, that means deleted, by). We have to consider the case
where and both precede the , then the dependency

→ is already inserted, and thus it must be deleted by
. The reinserts the set-based adding, and if

both and preceded it, it also inserts the dependency
→ . Example 5.1 lists all dependencies and dynamic rules

from Figure 20 since the figure is rather complicated.

111

5 Application

remainder

startHeparin

hemothorax

stopHeparin

resStab aRDS

Figure 20: Example with set-based and second-order dynamics. A dynamic ES
with set-based and second-order dynamics derived from the case
study. This can be found in the web tool (cf. Section 3.2) at THESIS
Example 1.

In the above model we have seen that we need HDESs since DCESs are not
expressive enough for this dynamic process. We needed some notion of higher-
order adding and dropping and set-based dynamics. Please note that the event

in the above modelling is a place holder for many other events. We
implicitly used grouping of events which is up to now neither part of DCES nor
the generalised HDES formalism. In the next section, we illustrate, not only
based on this case study, which features are still missing in the HDES formalism
for being applicable to real-world processes. As mentioned above, the same case

112

http://hdes.mtv.tu-berlin.de/#thesis-hdes-second-order
http://hdes.mtv.tu-berlin.de/#thesis-hdes-second-order

5.2 Requirements for Further Applicability

1 heparin+ → heparin -

2 aRDS → resStab

3 {heparin+, hemothorax} Ï [heparin - → rem]

4 {hemothorax , heparin +} Ï [resStab Ï [heparin - → rem]]

5 aRDS ◃ [{ heparin+, hemothorax} Ï [heparin - → rem]]

6 aRDS ◃ [heparin - → rem]

7 aRDS Ï [heparin - → heparin -]

8 resStab ◃ [heparin - → heparin -]

9 resStab Ï [{ heparin+, hemothorax} Ï [heparin - → rem]]

Example 5.1: A list of all dependencies and rules of the ES in Figure 20. In
order to keep this readable we use abbreviations: aRDS for
acute respiratory distress syndrome, heparin+ and heparin- for
startHeparin and stopHeparin, rem for remainder, and resStab
for respiratory stabilisation.

study was also modelled with DCR-Graphs in [13] with some other minor issues:
“Despite their limitations, I still found DCR graphs to be suitable to model the
case study if the level of abstraction is kept reasonable.” (page 37) Since both
formalisms were more or less capable of modelling the case study, we compared
these formalisms in general. In Chapter 4 we showed that any basic DCR-Graph
can be encoded into a HDES.

5.2 Requirements for Further Applicability

In order to model bigger case studies certain features are strongly needed for
the HDES formalism. We assume that the first three features can be added as
syntactic sugar while for the later ones new theory is needed.

5.2.1 Syntactic Sugar

We assume that the following three features – grouping, bundling of dynamics,
and urgent events – can be added to the HDES formalism without creating new
semantical concepts but as syntactic sugar.

113

5 Application

Grouping In many cases it would be really useful to have some grouping of
events that can be used in the rules. For example, the group S defined as the
set of all events during the surgery together with some rules like aÏ [p → S]
containing this group S. The meaning of this rule is that a precondition p is
added to any event in the surgery. Another example for a group is the event
remainder in Figure 21.

In this approach grouping is a kind of compressing the rules in a still intuitive
way. Since we already can use modifier sets, we only need to adapt the definitions
for the causality rules and to add a group list to the HDESs.

Bundling of Dynamics In the modelling of the case study we encountered the
situation where we wanted to turn a rule with all of its effects off and possibly
later on again. We had the rule {startHeparin, hemothorax} Ï[stopHeparin →
remainder] indicating to stop the heparin treatment in case of a hemothorax (see

Figure 19). This was overruled in a case of an acute respiratory distress syndrome
(aRDS) until a respiratory stabilisation (see Figure 20) could be achieved. Since
the events startHeparin and hemothorax could both happen before aRDS, it is not
sufficient to just have the single rule aRDS ◃[{startHeparin, hemothorax} Ï
[stopHeparin → remainder]]. We also need the rule aRDS ◃[stopHeparin →
remainder] and, on the re-insertion of the rule, we should also be careful if
we should re-insert the dependency or not. In Figure 21 the dash-dotted ar-
rows denote the deletion and insertion of the rule {startHeparin, hemothorax} Ï
[stopHeparin → remainder] and if needed of the dependency stopHeparin →
remainder. Since they bundle certain dynamic rules, this is called bundling of
dynamics. Achieving this the models will become clearer and easier to under-
stand.

Urgent events (resp. Priorities) The notion of urgent events is needed in
various scenarios. For example, in Figure 21 the event stopHeparin becomes
urgent after startHeparin and hemothorax. That means it should precede any
event in the group remainder. The general scenario derived from the example
above: We have a trigger that makes an event urgent with respect to a group (i.e.
it should precede any event in this group). We have t Ï[u → G]. That can be
translated to the set of rules parametrised by the group {t Ï[u → G] | g ∈ G}.
In such a way the use of the remainder event in the modelling would not effect
the compositionality as it did in [22].

114

5.2 Requirements for Further Applicability

remainder

startHeparin

hemothorax

stopHeparin

resStab aRDS

Figure 21: Example for bundling of dynamics. Here the dash-dotted arrows
denote the bundling of dynamics explained above.

Urgency can be seen as a special case of priority. In the above formulation the
urgent event u would get a higher priority than all those events not in the group
G. With a similar approach as for the urgency even the more general notion of
priority can be encoded in the base formalism which means that both urgency
and priority are only syntactic sugar and no new features.

There is a work in which priority, as a binary relation, was added to various
event structures [5]. Whenever there is a pair (e,d) in this priority relation d
must precede e if both are concurrently enabled.

For the here mentioned two extensions we do not see any possibility to add them
as syntactic sugar. We strongly expect that new semantic concepts are needed to
implement them to the HDES formalism.

115

5 Application

Repeatable events As in the construction of the HDES encoding of a DCR-
Graph (cf. Definition 4.18), often repeatable events would make life easier and
the model more concise. As mentioned in the last point of Remark 4.28, a similar
approach to the evolutionary DCESs as in [1] sounds promising. It is also of
interest to us whether it can be achieved with a smaller extension than that since
we do not consider arbitrary evolutions but very regular ones. This means up
on execution of an event insert a new copy of this event, remove all rules that
contain the old event, but re-include them with the new version of this event.

Abstraction/Re�nement In order to view a process on a suitable level of ab-
straction, zooming mechanisms are needed. This means to have some way of
zooming out (abstraction) and zooming in (refinement) as an ingredient of HDESs.
In the case study, for example we could look at the surgery as an atomic event
(very high level), or at a low level model where all actions performed during the
surgery by any participant are modelled.

The idea of refinement in traditional ESs is well known. An action can be
replaced by a more complicated processes, for example in [10]. This approach
is quite intuitive and elegant, yet it is rather complicated to adapt this in our
dynamic ESs. Even for the DCESs it is not clear how a modifier could or should
be refined. For example, if we have aÏ[c → t] and want to refine the adder a of
the dependency c to t with the very simple process a1 → a2, it is unclear which
of these events a1 and a2 (or both together) should be the adder in a refined
structure. It is also unclear which event should be targeted by the dynamics if we
refine t instead of a. It becomes a serious problem if we consider a binary conflict
a#b modelled as mutual disabling aÏ[b → b] and bÏ[a → a]. Now, a and b are
not allowed to happen in parallel, or after each other. If we refine a and b, we
must take care of not allowing for both refinements to start and deadlock as they
would block each other at some point since in the original model such a behaviour
was impossible.

There was some effort on solving these (and even more complex issues) problems
in order to define refinements for DCESs. But up to now we are not aware of
sufficient results. Thus, we relaxed the requirements a little bit and discussed
the notion of grouping in a previous paragraph.

5.2.3 Closing Remarks

There are obviously other dimensions in which the base formalism HDESs can be
enhanced such as data or timing. Such extension were also developed for other

116

5.2 Requirements for Further Applicability

formalisms but only after they got a solid base formalism (e.g. timed automata,
or timed Petri nets). Since HDESs are a new approach we do not think they are
finalised in their current state. Thus, timing and data are not mentioned in the
list above.

For DCR-Graphs some of the previously mentioned features are already devel-
oped (as in [15] the milestone relation which can be seen as urgency with respect
to a group of events, or quite recently in [7] refinement, timing, and data).

117

6 Conclusion

In this thesis we presented Higher-Order Dynamic-Causality ESs (HDESs) as a
declarative causality-based modelling formalism for highly dynamic processes. In
order to obtain the HDESs we generalised the Dynamic-Causality ESs (DCESs)
[2]. We based this generalisation on theoretical needs caused by an incompa-
rability result (as in [2]) to the ESs for resolvable conflicts (RCESs) of [12] and
the practical needs of a case study [22]. After a revised definition of the HDESs
(in comparison to the original definition in [16]), we presented all results with
respect to the expressive power of HDESs (many previously unpublished) and a
useful web tool for simulating and exploring HDES.

Now we summarise the main contributions (in Section 6.1) and we state re-
search questions, which we want to address in the future (in Section 6.2).

6.1 Main Contributions

In this thesis we revisited the HDESs introduced in [16]. We presented an
improved version of the HDES definition (in Section 3.1) and the result (in
Subsection 3.5.3) that HDESs are strictly more expressive than a specific class of
configuration structures (this implies that HDESs are strictly more expressive
than the RCESs mentioned above).

There is a web tool in Section 3.2 in which HDESs (and also DCESs) can be
defined and simulated. This web tool can be reached at http://hdes.mtv.tu-berlin.
de/.

Further, in Subsection 3.4.2, we introduced the event transition systems (ETSs)
a specific kind of labelled transition systems (LTSs). We proved that the ETSs
are exactly as expressive as HDESs, which means for any ETS exists a HDESs
with the same behaviour, and also for any HDES exists a ETS with the same
behaviour. With this result we have simplified future comparison with HDESs
since they do not need to be based on the special HDES semantics but on the very
general ETSs semantics.

119

http://hdes.mtv.tu-berlin.de/
http://hdes.mtv.tu-berlin.de/

6 Conclusion

We also used this approach to justify the use of our rule update strategy. We
introduced an alternative rule update strategy (in Subsection 3.4.1) and proved
that HDESs equipped with this strategy are exactly as expressive as ETSs.
With this method we have shown that the expressive power of HDESs does not
dependent on the choice between the original and the alternative rule update
strategy. Other rule update strategies exist which yield different results (e.g. a
rule update strategy that simply deletes all rules).

In Section 3.5 we showed various results with respect to the expressive power
of HDESs: First, we showed that HDESs are indeed generalising DCESs (in
Subsection 3.5.1). Second, we proved that set-based dynamics and higher-order
dynamics are orthogonal extensions, which means neither can be expressed by
the other (in Subsection 3.5.2). Third, we compared HDESs to transition systems
as mentioned above. And fourth, we discussed some results if we fix the level of
dynamicity.

In Chapter 4 we showed that any basic DCR-Graph [8] can be encoded into a
slightly extended HDESs (i.e. HDESs with an acceptance criterion and a labelling
of the events). The other direction is assumed to hold but this hypothesis is not
jet proven and subject to future work. One main difference between HDES and
DCR-Graphs is the different level of abstraction. In HDES everything is based
on dynamic exclusion and inclusion of dependencies, where in DCR-Graphs a lot
more basic relations are around and the dynamics are based on exclusion and
inclusion of events.

6.2 Open Problems and Future Work

There are quite a few open problems that we would like to address in the future:
In Subsection 3.5.4 we presented Conjecture 3.67 stating that the expressive

power of HDESs is increasing monotonously with the order of dynamicity. It stills
needs to be determined if this conjecture is true. A related question is if there is
any bound on the order of dynamicity of a HDES encoding with the other rule
update strategy. Currently there is only a bound in the length of the longest path
of the corresponding transition system.

In the previous chapter we presented a list of features that are required for
HDES to become more applicable. All of them are subject to future research.
Another feature we would like to investigate is the naming of rules. Right now
rules could be considered to be labelled by themselves and it is only possible to
have at most one copy of any rule. With unique names we could have multiple

120

6.2 Open Problems and Future Work

copies of the same rule with different names where other rules interact with this
rule based on the names. It would become possible to do local transformations
on a HDES. Until now this is more or less impossible because we do not know
how the other rules of the HDES might interact with our modification. If we
create new names for the modified rules, we are sure only to have the intended
interactions.

In Chapter 4 we presented an encoding of basic DCR-Graphs into slightly
extended HDESs. We assume that also an encoding of the extended HDESs into
DCR-Graphs exists.

The synchronisation pattern (as in Subsection 3.3.2), the bundling of dynamics,
the notions of grouping, urgent events, and repeatable events are design patterns
that are useful for modelling with HDES. We would like to further investigate
if there are even more patterns. We also are interested if similar patters can be
found and are of potential use for other declarative causality-based modelling
formalisms (e.g. DCR-Graphs).

121

Bibliography

[1] Youssef Arbach. “On the Foundations of Dynamic Coalitions: Modeling
Changes and Evolution of Workflows in Healthcare Scenarios”. PhD thesis.
Technische Universität Berlin, 2016. ISBN: 978-3-7983-2857-0.

[2] Youssef Arbach, David Stefan Karcher, Kirstin Peters, and Uwe Nestmann.
“Dynamic Causality in Event Structures”. In: Logical Methods in Computer
Science Volume 14, Issue 1 (Feb. 2018). DOI: 10.23638/LMCS-14(1:17)2018.

[3] Youssef Arbach, David Karcher, Kirstin Peters, and Uwe Nestmann. “Dy-
namic Causality in Event Structures”. In: Formal Techniques for Dis-
tributed Objects, Components, and Systems: 35th IFIP WG 6.1 International
Conference, FORTE 2015, Held as Part of the 10th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2015, Greno-
ble, France, June 2-4, 2015, Proceedings. Vol. 9039. LNCS. Springer, 2015,
pp. 83–97.

[4] Youssef Arbach, David Karcher, Kirstin Peters, and Uwe Nestmann. “Dy-
namic Causality in Event Structures (Tech. Report)”. In: (2015). URL: http:
//arxiv.org/abs/1504.00512.

[5] Youssef Arbach, Kirstin Peters, and Uwe Nestmann. “Adding Priority to
Event Structures”. In: Proceedings of EXPRESS/SOS. Ed. by Johannes
Borgström and Bas Luttik. Vol. 120. EPTCS. 2013, pp. 17–31. DOI: 10.4204/
EPTCS.120.

[6] Ilaria Castellani and Guo Qiang Zhang. “Parallel product of event struc-
tures”. In: DAIMI Report Series 18.285 (1989).

[7] Søren Debois and Thomas T. Hildebrandt. “The DCR Workbench: Declara-
tive Choreographies for Collaborative Processes”. English. In: Behavioural
Types: from Theory to Tools. Ed. by Simon Gay and António Ravara. River
Publishers, June 2017, pp. 99–124. ISBN: 978-87-93519-82-4.

123

https://doi.org/10.23638/LMCS-14(1:17)2018
http://arxiv.org/abs/1504.00512
http://arxiv.org/abs/1504.00512
https://doi.org/10.4204/EPTCS.120
https://doi.org/10.4204/EPTCS.120

Bibliography

[8] Søren Debois, Thomas T. Hildebrandt, and Tijs Slaats. “Concurrency and
Asynchrony in Declarative Workflows”. In: Business Process Management:
13th International Conference, BPM 2015, Innsbruck, Austria, August 31 –
September 3, 2015, Proceedings. Springer. 2015, pp. 72–89.

[9] R.J. van Glabbeek. “On the expressiveness of higher dimensional automata”.
In: Theoretical Computer Science 356.3 (2006). Expressiveness in Concur-
rency, pp. 265–290. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2006.
02.012.

[10] Rob van Glabbeek and Ursula Goltz. “Refinement of actions in causality
based models”. In: Stepwise Refinement of Distributed Systems Models,
Formalisms, Correctness: REX Workshop, Mook, The Netherlands May 29 –
June 2, 1989 Proceedings. Springer, 1990, pp. 267–300.

[11] Rob van Glabbeek and Gordon Plotkin. “Configuration Structures, Event
Structures and Petri Nets”. In: Theoretical Computer Science 410.41 (2009).
Festschrift for Mogens Nielsen’s 60th Birthday, pp. 4111–4159.

[12] Rob van Glabbeek and Gordon Plotkin. “Event Structures for Resolvable
Conflict”. In: Mathematical Foundations of Computer Science 2004: 29th
International Symposium, MFCS 2004, Prague, Czech Republic, August
22-27, 2004. Proceedings. Vol. 3153. LNCS. Springer, 2004, pp. 550–561.

[13] Tim Malte Gräfje. “On the Utility and Usability of DCR Graphs to Model
Dynamic Processes in a Clinical Case Study”. Bachelor Thesis in Computer
Science. Technische Universität Berlin, 2016.

[14] Thomas T. Hildebrandt and Raghava Rao Mukkamala. “Declarative Event-
Based Workflow as Distributed Dynamic Condition Response Graphs”. In:
PLACES. 2010.

[15] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. “Nested
Dynamic Condition Response Graphs”. In: Fundamentals of Software Engi-
neering: 4th IPM International Conference, FSEN 2011, Tehran, Iran, April
20-22, 2011, Revised Selected Papers. Vol. 7141. LNCS. Springer, 2011,
pp. 343–350.

[16] David S. Karcher and Uwe Nestmann. “Higher-Order Dynamics in Event
Structures”. In: Theoretical Aspects of Computing - ICTAC 2015: 12th In-
ternational Colloquium, Cali, Colombia, October 29-31, 2015, Proceedings.
Vol. 9399. LNCS. Springer, 2015, pp. 258–271.

124

https://doi.org/https://doi.org/10.1016/j.tcs.2006.02.012
https://doi.org/https://doi.org/10.1016/j.tcs.2006.02.012

[17] Rom Langerak. “Transformations and Semantics for LOTOS”. PhD thesis.
Universiteit Twente, 1992.

[18] Morten Nielsen, Gordon Plotkin, and Glynn Winskel. “Petri nets, event
structures and domains”. In: Semantics of Concurrent Computation: Pro-
ceedings of the International Symposium, Evian, France, July 2–4, 1979.
Springer, 1979.

[19] Carl Adam Petri. “Kommunikation mit Automaten”. PhD thesis. Univer-
sität Hamburg, 1962.

[20] Vaughn Pratt. “Modeling Concurrency with Geometry”. In: Proceedings of
the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’91. Orlando, Florida, USA: ACM, 1991, pp. 311–
322. ISBN: 0-89791-419-8. DOI: 10.1145/99583.99625.

[21] Tijs Slaats, Raghava Rao Mukkamala, Thomas T. Hildebrandt, and Morten
Marquard. “Exformatics Declarative Case Management Workflows as DCR
Graphs”. In: Business Process Management. Ed. by Florian Daniel, Jianmin
Wang, and Barbara Weber. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 339–354. ISBN: 978-3-642-40176-3.

[22] Jonay Trénous. “On the Utility and Usability of Event Structures to Model
Dynamic Processes in a Clinical Case Study”. Bachelor Thesis in Computer
Science. Technische Universität Berlin, 2015.

[23] Mathias Weske. Business Process Management: Concepts, Languages, Ar-
chitectures. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007. ISBN:
3540735216.

[24] Glynn Winskel. “An introduction to event structures”. In: Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency.
Vol. 354. LNCS. Springer, 1989, pp. 364–397.

[25] Glynn Winskel. “Events in computation”. PhD thesis. University of Edin-
burgh, 1980.

125

https://doi.org/10.1145/99583.99625

Schriftenreihe Foundations of Computing
Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter
Linear-Time Algorithms for NP-hard
Graph and Hypergraph Problems Aris-
ing in Industrial Applications. - 2014. -
225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André: Degree-
Constrained Editing of Small-Degree
Graphs. - 2015. - xiv, 225 S.
ISBN 978-3-7983-2761-0 (print) EUR 12,00
ISBN 978-3-7983-2761-7 (online)

03: Bredereck, Robert: Multivariate Com-
plexity Analysis of Team Management
Problems. - 2015. - xix, 228 S.
ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod: Algorithmic Aspects
of Manipulation and Anonymization in
Social Choice and Social Networks. -
2016. - xiv, 275 S.
ISBN 978-3-7983-2804-4 (print) EUR 13,00
ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian: Nowhere Dense
Classes of Graphs. Characterisations and
Algorithmic Meta-Theorems. - 2016. - xxii,
149 S.
ISBN 978-3-7983-2818-1 (print) EUR 11,00
ISBN 978-3-7983-2819-8 (online)

06: Chen, Jiehua: Exploiting Structure
in Computationally Hard Voting Prob-
lems. - 2016. - xxi, 255 S.
ISBN 978-3-7983-2825-9 (print) EUR 13,00
ISBN 978-3-7983-2826-6 (online)

07: Arbach, Youssef: On the Foundations of
dynamic coalitions. Modeling changes and
evolution of workflows in healthcare scenar-
ios - 2016. - xv, 171 S.
ISBN 978-3-7983-2856-3 (print) EUR 12,00
ISBN 978-3-7983-2857-0 (online)

08: Sorge, Manuel: Be sparse! Be dense! Be
robust! Elements of parameterized algorith-
mics - 2017. - xvi, 251 S.
ISBN 978-3-7983-2885-3 (print) EUR 13,00
ISBN 978-3-7983-2886-0 (online)

09: Dittmann, Christoph: Parity games,
separations, and the modal µ-calculus -
2017. - x, 274 S.
ISBN 978-3-7983-2887-7 (print) EUR 13,00
ISBN 978-3-7983-2888-4 (online)

Ev
en

t S
tr

uc
tu

re
s w

ith
 H

ig
he

r-
O

rd
er

 D
yn

am
ic

s

Universitätsverlag der TU Berlin

Universitätsverlag der TU Berlin

Foundati ons of computi ng Volume 10

Event Structure were introduced in 1979 as a formal model to connect the theory of Petri nets
and domain theory. Originally they consisted of atomic non-repeatable events, a binary causal
dependency relati on, and a binary confl ict relati on between those events. For a long ti me various
extensions of the original formalism were used to defi ne semanti cs for other structures such as
classes of Petri nets and process calculi.
In this thesis the Event Structures (ESs) are considered solely as a declarati ve modelling tool than
as a formalism to defi ne semanti cs for other structures. In order to model highly dynamic real-
world processes (i.e. processes in which occurrences of events may change the dependencies
of other events) with a concise model the dynamics must be an inherent part of the modelling
formalism.
Therefore, the Higher-Order Dynamic-Causality ESs (HDESs) were introduced. They consist of a
fi nite set of atomic non-repeatable events, a causal dependency relati on between these events,
and a rule-based formalism for events to change the dependencies and the existi ng rules.
This formalism is studied with the respect to its expressive power in comparison to transiti on
systems, some subclasses of HDESs, and to Dynamic Conditi on Response Graphs (DCR-Graphs).

Da

vi
d

S.
 K

ar
ch

er

10

Event Structures with Higher-Order Dynamics

htt p://verlag.tu-berlin.de

ISBN 978-3-7983-2995-9 (print)
ISBN 978-3-7983-2996-6 (online)

9 783798 329959I S B N 9 7 8 - 3 - 7 9 8 3 - 2 9 9 5 - 9

David S. Karcher

Event Structures with Higher-Order Dynamics

	Frontcover
	Title page
	Imprint
	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	1 Introduction and Motivation
	1.1 Introduction
	1.1.1 Declarative Modelling
	1.1.2 Dynamic Causality-Based Formalisms
	1.1.3 Research Question

	1.2 Overview
	1.3 Own Publications

	2 Technical Preliminaries
	2.1 Prime Event Structures
	2.2 Event Structures for Resolvable Conflicts
	2.3 Dynamic-Causality Event Structures
	2.4 Dynamic Condition Response Graphs

	3 Higher-Order Dynamics
	3.1 Higher-Order Dynamic-Causality ESs
	3.2 The Web Tool
	3.2.1 The Syntax of the Web Tool
	3.2.2 The GUI of the Web Tool

	3.3 Concepts for Working with HDESs
	3.3.1 Clean-Up
	3.3.2 Synchronisation Pattern

	3.4 Alternative Approaches
	3.4.1 Alternative Rule Update Strategy
	3.4.2 Event Transition Systems
	3.4.3 Rule Set Reduction

	3.5 On the Expressive Power of HDESs
	3.5.1 Encoding DCESs in HDESs
	3.5.2 Orthogonal Extensions
	3.5.3 From Configuration Structures to HDESs
	3.5.4 Expressive Power with Respect to the Level of Dynamics

	4 Encoding of DCR-Graphs
	4.1 Concurrency Semantics
	4.2 Encoding of DCR-Graphs into HDESs
	4.2.1 Explanation and Definition of the Encoding
	4.2.2 Correctness of the Encoding

	5 Application
	5.1 Case Study
	5.1.1 The Surgery
	5.1.2 Some Modelling
	5.1.3 Conclusion

	5.2 Requirements for Further Applicability
	5.2.1 Syntactic Sugar
	5.2.2 Proper Extensions
	5.2.3 Closing Remarks

	6 Conclusion
	6.1 Main Contributions
	6.2 Open Problems and Future Work

	Bibliography
	Backcover

