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Abstract
Fakultät V - Mechanical Engineering and Transport Systems

Institute of Fluid Dynamics and Technical Acoustics

Doctor of Engineering

Simulation of the Atmospheric Pressure Interface of a Mass Spectrometry Device

by Laurent BERNIER

This thesis presents the results of the simulation of two different parts from the
typical atmospheric interface found in a mass spectrometer: the transfer capillary
and the ion funnel. These are usually found in combination with electrospray ion-
ization and allow the transition between atmospheric pressure and vacuum. The
main goal of the study is to simulate the trajectory of the ions transported through
such devices. We thus consider all significant effects involved: the underlying gas
flow, the diffusion, and the electric forces, both intrinsic because of the charge of the
ions (space charge effects) and caused by external settings, typically electrodes.

In the case of the capillary, we could qualitatively reproduce typical effects ob-
served in real devices, such as the transmission limit caused by space charge effects
and the influence of the heating. We could also simulate the influence of the ge-
ometry of the capillary and reproduce the experimental behavior induced by the
transport of a mix of ions from different species. These results are based on the as-
sumption of a laminar gas flow. Further simulations are presented regarding the
affinity of such flow towards turbulence. It results that, despite its strong pressure
gradient, this system can sustain a fully turbulent flow without significantly affect-
ing the properties of turbulence.

Further results are presented involving an existing design of the ion funnel. De-
tailed simulations of the gas flow and the electric fields created by the electrodes
are performed and used to describe the transport of the ions. We compare the influ-
ence of the amplitude of the external electric field and of the background pressure
level on the transmission of the ions with experimental results to show that this first
attempt delivers promising results. An evolution of the design of the ion funnel is
also considered. While it does not deliver the expected improvement regarding the
transmission, it offers an insight into the mechanisms involved and provides some
information about how a desirable system could look like.
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Zusammenfassung
Fakultät V - Mechanical Engineering and Transport Systems

Institute of Fluid Dynamics and Technical Acoustics

Doctor of Engineering

Simulation of the Atmospheric Pressure Interface of a Mass Spectrometry Device

von Laurent BERNIER

Diese Arbeit stellt die Ergebnisse der Simulationen von zwei verschiedenen An-
teilen eines typischen atmosphärischen Druck-Interface vor, die in einem Massen-
spektrometer zu finden sind: die Transferkapillare und den Ionentrichter. Diese wer-
den oft in Kombination mit einer Elektrosprayionenquelle verwendet und stellen die
Schnittstelle zwischen atmosphärischem Druck und Vakuum dar. Das Hauptziel der
Studie besteht darin, die Flugbahn der durch diese Anteile transportierten Ionen zu
simulieren. Dafür werden alle relevante Einflüsse berücksichtigt: die Gasströmung,
die Diffusionseffekte und die elektrischen Kräfte, die sowohl wegen der Ladung der
Ionen (Raumlagundseffekte) als auch aus externen Quellen wie Elektroden entste-
hen.

Im Fall der Kapillare konnten wir bestimmte Effekte qualitativ reproduzieren.
Dazu zählen die Transmissionsgrenze, die aus der Raumladung entsteht, und die
Auswirkung der Heizung. Wir konnten auch den Einfluss der Geometrieparame-
ter simulieren und das experimentelle Verhalten des Transports einer Mischung von
Ionen reproduzieren. Diese Ergebnisse basieren auf der Annahme einer laminaren
Strömung. Weitere Simulationen werden auch gezeigt, die die Turbulenzaffinität ei-
ner solchen Strömung untersuchen. Es ergibt sich, dass Systeme mit starken Druck-
gradienten in der Lage sind, eine volle turbulente Strömung zu erhalten, ohne signi-
fikant die Eigenschaften der Turbulenz zu beeinflussen.

Weitere Ergebnisse über einen existierenden Ionentrichter werden vorgezeigt.
Detaillierte Simulationen der Gasströmung und der von den Elektroden erzeugten
elektrischen Felder wurden durchgeführt und weiterverwendet, um den Transport
der Ionen zu beschreiben. Wir vergleichen den Einfluss der Amplitude der externen
elektrischen Felder und des Drucks auf der Transmission der Ionen mit experimen-
tellen Ergebnissen und zeigen, dass dieser erste Versuch vielversprechende Ergeb-
nisse liefert. Eine mögliche Evolution des Designs des Ionentrichters wird auch un-
tersucht. Obwohl dies keine positiven Ergebnisse bezüglich der Ionentransmission
erbringt, ermöglichen diese Simulationen einen Einblick in die involvierten Mecha-
nismen und liefern somit Informationen über die gewünschten Eigenschaften eines
verbesserten Systems.
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Chapter 1

Introduction

1.1 Mass spectrometry

1.1.1 Discovery of mass spectrometry

Mass spectrometry goes back to the first decades of the twentieth century when
Joseph John Thomson was able to separate two isotopes of neon in 1913 (Thomson
1913). After discovering the electron, he followed the work of Goldstein who dis-
covered the positive ray (Kanalstrahlen) and analyzed the deflection of positively
charged gas beams, as recalled by I. W. Griffiths (1997). This experience is considered
as the first meaningful occurrence of the underlying principle of mass spectrometry
and launched the development of this technique still used until now.

It relies on the fact that particles with different electric charge and mass have dif-
ferent behaviors when moving within an electromagnetic field. The main parameter
to consider is the ratio mass over charge, often referred to as m/z. This was a sig-
nificant step forward at a time when the atomic structure of the different elements
was not as well understood as it is now. At that time, ions of neon were produced
inside a gas-discharge tube. Electric and magnetic fields led to deviations of the path
of the different ions, materialized via photographic plates. Different isotopes hav-
ing different masses, they produce different patterns on the photographic plate and
Thomson was thus able to demonstrate the existence of two isotopes of neon in his
experiment: 20Ne and 22Ne.

1.1.2 Primary usages and their evolution

This experiment was not only significant for the understanding of the atomistic
structure but also paved the way for the development of a range of methods used to
identify species in numerous contexts. As an analytical tool, mass spectrometers are
used for various applications. Its historical one, the differentiation of different iso-
topes of an element, is still valuable and can be used to analyze isotope of the ions,
as described by Gross (2011, chapter 2). But it was also extended to the detection and
analysis of species and mix of species. When the ions present in a sample are un-
known, the mass spectrometry analysis allows to identify them according to the m/z
ratio measured. This finds application for example in forensics when investigators
try to confirm whether a probe contains a specific species.

It is also used in different domains such as biology, including proteomics, lipi-
domics, metabolomics, DNA or RNA studies, etc. which all propose to analyze
molecules or processes involved in living bodies. In such contexts, mass spectrome-
try is either used to identify complete molecules or to study the structure of a given
molecule. The idea is then to analyze the structure of a molecule considering its frag-
ments. The weakest bounds of the molecules are broken in a controlled process. The
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resulting fragments are usually known basic structures, which can then be identified
using mass spectrometry.

1.2 Ion sources

1.2.1 Historic sources

All these applications require to first produce ions out of the considered sam-
ples, whatever the subsequent usage is. The historical means consisted of applying
a strong electric potential between two electrodes placed in a glass container. The
gas object of the study was inside and started to glow under appropriate conditions.
That meant that positively and negatively charged ions were forming. However, this
technique only applied to a limited number of elements and the ionization became
the focus of different studies. Smyth and Bleakney, e.g., focused on the ionization
of mercurial in the 1920s, using streams of electrons produced by a heated filament,
a technique called electron ionization (EI) developed by Dempster in 1918, as re-
ported in Traeger (2016). This marked the start of the development of techniques
based on electron beams, which remain relevant nowadays. However, the expan-
sion of usages of mass spectrometry meant that always more complex molecules
were considered, up to very large organic ones as present in biologic samples.

1.2.2 Development of soft methods

This initiated the development, in the last four decades, of softer techniques
which can ionize large molecules such a way that they keep their entire structure
or even their initial conformation. Different options are now available. MALDI
(matrix-assisted laser desorption ionization) uses a matrix that contains the sample
to analyze. A laser beam is focused on the matrix, out of which gas-phase ions are
produced. During this process, molecules of the sample are also transferred to the
gas phase and can exchange electric charges with the matrix ions, thus creating the
ions further used in the mass spectrometer. This process can occur either in vacuum
or at atmospheric pressure.

Another widespread technique, the electrospray ionization (ESI), creates ions at
atmospheric pressure. It was first reported in 1984 by Masamichi Yashamita and
John Fenn and published in Fenn et al. (1989). John Fenn was awarded the Nobel
Prize for this work in 2002. The technique applies to samples present in a liquid
solvent and relies on the limited electric charge that a droplet can contain before
instabilities occur. The idea is to create droplets of the solvent containing ions of
the sample of interest. These droplets are produced by applying a strong potential
difference between a capillary containing the solvent and the sample molecules on
the one hand and an external element, or counter-electrode, on the other hand. In
such conditions, a so-called Taylor cone forms at the tip of the capillary. Droplets
then detach from this structure. By evaporation of the solvent, called desolvation,
the charge becomes too large with respect to the volume of the droplet. The re-
sulting instabilities trigger the production of droplet cascades eventually delivering
gas-phase ions. While the exact process is not yet fully understood, a description
proposed by Kebarle and Tang (1993) is widely accepted as reasonable. However,
further mechanisms, depending on the kind of analyte in the sprayed solution, have
been exposed in Konermann et al. (2013). This kind of ionization generally works
at atmospheric pressure and is the one used in the device further studied in this
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work. Devices involving ESI at lower pressure have also been developed as de-
scribed in Tang et al. (2012), even if such ones are much less widespread.

An evolution of this technique, the DESI (desorption electrospray ionization),
differs from ESI by the fact that the sample molecules are not contained in the sol-
vent. The potential difference is rather applied between the capillary containing the
solvent and the sample. The charged solvent droplets created are thus directed to-
wards the sample. Their interaction produces the gas-phase ions out of the sample.

It is not uncommon to further extend the techniques involved in the production
of the ions sample introduced in the mass spectrometer. In particular, a first separa-
tion of the species contained in the primary system to study can be performed. The
first kind of such techniques involved chromatography, realized either in gaseous
or liquid phases and leading to systems called gas chromatography - mass spec-
trometry (GC-MS) or liquid chromatography - mass spectrometry (LC-MS). Further
combinations have been developed, forming a large range of options, sometimes re-
ferred to as hyphenated techniques (due to their denomination), as reported in Gross
(2011, chapter 14).

1.2.3 Consequences for the applications

These soft ionization techniques, especially ESI, have made it possible to con-
sider a new range of molecule and to analyze them with mass spectrometry. Classic
methods are usually limited to relatively small molecules or the fragments of larger
ones. Also, the conformation of those molecules may be altered by the traditional
ionization process. In contrast, soft methods are often used in combination with
very large and complex molecules, in particular when they should be analyzed as
complete structures. This allowed the development of new domains, for example in
biology. A specific application is native mass spectrometry, for which an overview
can be found in Heck (2008), and Leney and Heck (2017). The goal is to understand
the fine processes at stake in such molecules, especially the topology and dynamics
of proteins, while keeping their structure intact during the investigation. Soft ion-
ization methods also enable the analysis of very large structures such as RNA, DNA,
or viruses. A difference can be reported between ESI and MALDI. The latter tends
to produce singly charged ions only. This means that one species is likely to produce
only one signal in the spectrum. On the contrary, ESI can lead to multiply charged
ions and such several signals for a single species, reflecting the different charge sta-
tus. However, a larger charge implies a smaller m/z ratio. Those large structures are
thus more likely to fall within the range of m/z the mass spectrometer can deal with.

Other applications are also expanding, making use of the appliance built around
the mass spectrometer but for different purposes. It has been used to separate iso-
topes of an element, with applications ranging from nuclear reactions to the quantifi-
cation of these isotopes for dating purposes. A review of such usages can be found
e.g. in Litherland, Zhao, and Kieser (2011). The interaction of the ions with surfaces
also opens up important applications. Especially coupled with mild ionization tech-
niques, in order to keep intact large molecules and their functional structure, and
using relatively small landing energies (so-called soft landing), it makes it possible
to create tailored surfaces. Reviews of these applications can be found in Verbeck,
Hoffmann, and Walton (2012) and Rauschenbach et al. (2016).
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1.3 Towards atmospheric pressure interface

1.3.1 Development of complex systems

Between the production of the ions and the mass spectrum produced by the de-
vices, the ions are transported and traditionally undergo different steps to produce
a signal dependent on the m/z ratio. While the first experiments used a qualitative
detection involving a photographic plate to detect the position of the ion beams in
a given plane, modern techniques use different technologies and combinations of
elementary steps to produce the expected signal.

This signal results from the behavior of the ions being specific to the m/z ratio.
This is achieved via different ions’ trajectories in a vacuum when evolving in an
electromagnetic field. Several options can be used there. Historically, a different
deflection angle of the ions when going through a specific magnetic field lead, as
on the photographic plate, to spatial localization of the different species. Modern
devices deliver quantitative results in the form of mass spectra. This is generally
done by measuring the current passing through an electrode as the result of ions
hitting it. It can be based on different physical principles yielding different results
depending on the m/z ratio. The historical method of different deviations can be
realized using magnetic sectors. Using different ions’ velocities is also an option.
This occurs either in line, in so-called time-of-flight (TOF) devices, or around an axis
and then using a Fourier transform to gain the mass spectrum (cyclotrons devices).
A principle similar to the latter is found in orbitrap devices, where an additional
oscillation of the ions is considered. Another category relies on the trapping induced
by multipoles (often, but not only, quadrupoles) submitted to a specific electric field.

In modern applications, several blocks deriving from the listed techniques can be
stacked together to improve the sensitivity of the analyses or develop specific fea-
tures. Historically, the electron ionization did not only produce the expected analyte
but also fragments thereof, due to the internal energy transferred during the ioniza-
tion process. It was thus possible to directly get information regarding the structure
of the molecule. However, the development of softer methods led to cleaner sam-
ples and cleaner spectra, where only the presence of the analyte is detected. Tandem
mass spectrometers were developed, as described in Gross (2011, chapter 9), in or-
der to adapt the usage to this new environment. Classically, two stages of mass
spectrometry are present in the device, often referred to as MS/MS. After the first
detection of the analyte, some kind of fragmentation is performed, allowing one to
get indications on the structure of the molecule.

The two stages of mass spectrometry can be performed by different elements in
the devices. A common combination is, for example, a quadrupole followed by a
time-of-flight analyzer. Several other associations are also found, though. In such
case, one refers to them as tandem-in-space, because the mass spectrometry is per-
formed by two physically different stages of the spectrometer. However, one also
finds so-called tandem-in-time devices, where the mass spectrometry analysis is de-
livered by the same stage. First the analyte is selected, e.g. in a quadrupole, the other
species being discarded. After a fragmentation performed in place, a second analy-
sis can be realized to get an insight into the structure of the molecule. This process
can even be repeated more than twice, to deliver an even more refined analysis of
the species considered. A review of these different techniques and their combination
can also be found in El-Aneed, Cohen, and Banoub (2009).

Overall, the development of the usages associated to mass spectrometry, and
the sophistication of the techniques involved, lead to always more complex devices.
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This includes stages involving fragmentation, chemical reactions, ion deposition and
increase the number of stages and environments the ions are going through. Es-
pecially, all the techniques just presented work in a vacuum or at least at very low
pressure, where the trajectory of the ions is directly defined by electromagnetic fields
and does not depend on any surrounding gas. This means that when the ion source
operates at atmospheric pressure, as this is usually the case for electrospray ioniza-
tion, a strong pressure gradient exists between the different stages. In such case, the
ion source is called atmospheric pressure ionization (API) and needs to be combined
with an interface to the rest of the mass spectrometer. The study and simulation of
one type of such interface is the purpose of this work.

1.3.2 Interface between high and low pressure elements

This interface can take several forms. Typically, the ions generated at atmo-
spheric pressure enter the mass spectrometer via a capillary, which is a long and
thin tube. However, its dimensions vary a lot depending on the device considered.
Some designs limit it to a pinhole as reported in Lin and Sunner (1994), or further
studied in Zhou et al. (2006) and Zhou and Ouyang (2016). After the capillary, the
pressure is significantly lower than the atmospheric pressure. Depending on the de-
sign, it can reach values around 1 - 10 mbar. These values remain still too high for
proper usage of the mass spectrometer, which requires pressure levels in the order
of magnitude of 10−4 - 10−6 mbar. Pumping stages are thus present between the
ion source and the mass spectrometer itself, which tend to extract the remaining gas
from the system. Each step presents a pressure some orders of magnitude lower than
the previous one. Two options are usually possible for the first stage. The historical
one is a so-called skimmer, which is a cone located shortly after the gas jet coming
out of the capillary or pinhole. It has a thin hole at its tip to allow the ions to enter the
next stage, while the major part of the gas is deflected along its sides. A static electric
field is used to guide the ions. This structure is sometimes also shifted from the sym-
metry axis of the capillary, to limit the quantity of gas entering the next chamber, as
described in Gimelshein et al. (2014). Another design was later developed: the ion
funnel. It was first presented by Shaffer et al. (1997) and consists of a succession of
electrodes to which an alternating electric field is applied. The electrodes present a
hole in their center and are placed orthogonally to the symmetry axis of the capil-
lary. This forms a cavity with a funnel shape towards the next chamber. The gas and
the ions come from the capillary inside this cavity. The gas is pumped out and flows
between the electrodes, while the electric field applied to them make sure that the
ions remain in the cavity. A static electric field and the remaining gas flow ensure
that these ions are transported towards the next chamber.

Due to the very different properties of the environment at both ends of the at-
mospheric pressure interface, the processes involved present significant differences.
Especially, the trajectory of the ions is not influenced the same way. Electromagnetic
fields are essential at very low pressure. All methods presented here to produce
mass spectra indeed rely at some level on the response of the charged particles to
a given external field. This factor is then mostly sufficient to describe the ions’ be-
havior. However, at higher pressure levels, the presence of the surrounding gas
leads to different effects. While the external fields are still relevant, other influences
need to be taken into account in order to properly describe the trajectory of the ions.
The molecular interaction between the gas particles and the ions results in a com-
plex behavior, for example when a macroscopic movement of the gas occurs. It thus
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becomes difficult to understand and predict the influence of the different elements
present in the device.

1.4 Framework of the present work

1.4.1 Understanding of the transport and loss processes

One of the main objectives following the production of the ions at atmospheric
pressure is to transport them towards the core of the mass spectrometer, where the
analysis occurs or even further when other applications are considered. However,
losses may occur throughout the transfer. Many causes are involved, but Kelly et
al. (2008) report that the majority of the losses are concentrated at the ion production
stage and within the atmospheric pressure interface. In some designs, the quan-
tity of analyte even decrease by three orders of magnitudes through the interface,
as reported by Gao, Cooks, and Ouyang (2008). The first hurdle is to let the newly
created ions enter the mass spectrometer via the capillary. This is a first and poten-
tially significant source of losses. Many parameters are to consider though, from
the desolvation process to the number of ions expected to enter the device. In some
cases, the flow of ions is orthogonal to the capillary and a counter-flow of curtain
gas can enhance the evaporation of the solvent. The ions are then sucked into the
device due to the gas flow and the electric potential difference used for the electro-
spray ionization. In other cases, the emitter is located in line with the capillary and
relatively close to it. In any case, the ions are then guided into the first pump cham-
ber via the capillary. This element is also a source of losses, due to the interaction
between the ions and the walls. In the next stage, the first pumping chamber, where
an initial separation between ions and gas is performed. Losses are again expected
in this area, e.g. depending on the operating conditions of the electrodes with an
ion funnel. The amplitude of the alternating field applied or its frequency affect the
electric forces used to counter the gas flow and influence the transmission of the ions
towards the second pumping stage.

In many applications, from the classic analysis of the species present to the depo-
sition on surfaces, the quantity of ions transferred up to the core of the device is an
important criterion to deliver proper results. In the traditional usage of a mass spec-
trometer, the quantity of ions is indeed responsible for the sensitivity of the mass
spectrum. Too small quantities can deliver noisy spectra or even alter the detection
of species. For other usages, where the goal is to transfer the ions on a target surface
via soft-landing, the quantity of ions is also of significant importance. As described
in Gunaratne et al. (2015), higher quantities of ions transported through the device
mean that higher quantities of ions can be deposited on a given surface in a reason-
able amount of time. The authors report that several hours of continuous deposition
are necessary to coat a surface smaller than 1 cm2 for them to be analyzed with in-
frared techniques. As a matter of illustration, a current of 1 nA would deliver the re-
quired amount of singly charged ions in slightly less than half an hour. Accounting
for multiply charged ions and/or losses during the deposition process, this order of
magnitude is coherent. However, this also means that treating larger surfaces or re-
quiring larger quantities (e.g. to use with nuclear magnetic resonance spectroscopy)
remains out of reach for current devices. Increasing the quantity of ions transported
further makes it possible to use detection techniques or the production of numerous
products for which the quantity of molecules is important. It is thus essential to re-
duce the losses and enhance the absolute quantity of ions transported to make the
method more competitive.
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The goal of the present work is to shed light on the processes occurring during
the transfer of the ions through this atmospheric pressure interface by simulating
the precise behavior of the ions. The chosen set up mimics an ESI emitter, followed
by a capillary using a funnel-shaped inlet and finally leading to an ion funnel. Two
designs of the ion funnel are considered: a classic one and a tentative evolution. In
the latter, the shape of the cavity formed by the electrodes and the distance between
them has been modified.

1.4.2 Usage of the numerical simulations

As already stated, mass spectrometry devices and especially atmospheric pres-
sure interfaces are very complex systems. Furthermore, direct experimental mea-
surements within the device are difficult because of the lack of accessibility or the
risk of modifying the operating condition when installing massive measurement
devices. We thus strive to develop a comprehensive numerical simulation of such
systems, in order to describe the behavior of the ions during their transport. The
environment affecting this behavior is also part of the analysis. This encompasses
the gas flow created by the differential pumping in the first chamber as well as the
electric field created by the potential imposed on the different components of the
system. The numerical model is not able to reproduce all effects present. First be-
cause including everything in the model would lead to an impractical model, unable
to deliver results in a reasonable amount of time. Second because some parameters
of the system are not well known, especially regarding the boundary conditions to
impose. The purpose of the numerical model is thus not to exactly reproduce the
experimental system, but to deliver a better description of the phenomena involved
in the transport of the ions. Using simple but sensible hypotheses, it allows to pro-
duce global results which are compared to experimental measurements. This en-
ables some degree of validation of the model. Furthermore, it offers a more detailed
description of the ions’ behavior, offering in turn micro-scale explanations for the
macroscopic results generally observed.

1.4.3 State of the art

Numerous studies have been done to improve the number of ions transmitted.
The capillary has been studied in Page et al. (2007), where the influence of different
parameters regarding the ions transmission has been studied. Its geometry was also
considered, from its length in Page et al. (2009) to the shape in S. Wu et al. (2006)
and Pauly et al. (2014). The results of the latter were the starting point of the present
work. The first pumping chamber was also thoroughly studied. A major improve-
ment was brought by the first use of the ion funnel, compared to the previous de-
signs. The first concept described in Shaffer et al. (1997) announces transmissions
up to an order of magnitude higher than a similar experience with a then traditional
skimmer design. We present here the characteristics relative to the capillary and ion
funnel, which we are interested in for this work, as well as the existing attempts to
simulate their operating condition.

Capillary

The capillary is a thin pipe connecting the atmospheric pressure region to the
subsequent apparatus. It was introduced by Whitehouse et al. (1985). This principle
remains in most of the designs and intends to transfer thermal energy to the droplets
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created by the electrospray ionization to enhance the desolvation process. Despite its
apparent simplicity, different arrangements of capillary can be found. First, length
and diameter of the pipe can vary in different devices or depending on the appli-
cation. The diameter is traditionally smaller than 1 mm, for example 0.11 mm as
reported in Wißdorf et al. (2016). The ones described in Page et al. (2009) go up to
0.49 mm or in M. Skoblin et al. (2017) up to 0.6 mm. For specific usages, especially
when large amounts of ions are required, this can even go up to 1 mm, as proposed
in Pauly et al. (2014). In all cases, the diameter directly influences the quantity of gas
which enters the devices. The pumping power in the following chambers should
then be adapted accordingly. The length of the capillary varies largely, typically be-
tween a few centimeters up to 20 cm. The geometry of the capillary itself can also be
slightly modified in order to enhance the transmission. A flared or funnel-shaped
inlet is added in front of the straight pipe to enhance the transmission, as presented
in S. Wu et al. (2006) and Pauly et al. (2014).

Several options exist for the material out of which the capillary is made of. The
first design used a glass capillary. It was argued that a non-conductive material
enables a potential difference between both ends of the capillary, thus enhancing the
transport of the ions. Furthermore, it should prevent the loss of their charge, if they
hit the walls. This option remains available nowadays. However, metal capillaries
became widespread as well. It is also common to heat the capillary, such that the
energy transfer to the droplets created by the ion source is increased. According
to Lin and Sunner (1994), this can even be used to fragment the gas-phase ions when
the temperature is high enough.

Further modifications of the setup have been studied. For example, some groups
have created clusters of capillaries, as reported in Kelly et al. (2008). The solution
used in the ESI coming from a liquid chromatography being given, it is divided into
several emitters to keep the flow small enough in each of them, when good sensi-
tivity can be expected. Following, a similar number of capillaries are used, creating
several entrances into the mass spectrometer device. Other groups have tried to
modify the relative position of the capillary from the rest of the device. In Chen,
Fillmore, et al. (2015) or in Su et al. (2019), for example, the capillaries are built at
right angle with the main axis of the following ion funnel. Further options have also
been tested, for example encompassing both the ESI-emitter and the capillary inlet
in a venturi device to improve the transfer, as exposed in Hawkridge et al. (2004).
However, the classic setup remains common in current devices.

Ion funnel

The ion funnel was developed in Shaffer et al. (1997) to improve the transmission
of ions in the first pumping chamber of the device. While several modifications have
been proposed since it was first introduced, the basic concept remains unchanged. A
series of ring electrodes creates a funnel-shaped cavity. The ions are guided through
it until the next chamber by means of radio-frequency and direct electric fields. The
surrounding gas, however, is pumped out of the chamber between the electrodes.
A first evolution concerned the basic geometry of the system. Especially the in-
ner diameter of the last electrode was identified as playing a significant role in the
transmission of ions with a low m/z ratio (Shaffer et al. 1999). Novel designs also
include more electrodes than the 28 of the initial design, with models including 100
plates being common, as presented in Kelly et al. (2010). While the inner diameter
of the electrodes continuously decreased in the original design, some of the addi-
tional electrodes present a constant inner diameter at the beginning of the cavity.
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This intends to increase the residence time of the ions in the funnel to enhance the
desolvation of remaining droplets and to allow a full expansion of the gas coming
form the capillary within the cavity.

A further modification aiming to improve the transfer of ions have been the in-
troduction of a so-called jet-disrupter (Kelly et al. 2010). This is a small electrode
placed in the center of the cavity. Like the extension of the cavity it helps to limit the
quantity of gas reaching the end of the cavity. The losses of ions on this electrode are
limited by applying an appropriate potential. The exact mechanisms induced by the
disrupter remain, however, not well explained.

Other systems integrates successive ion funnels, each at different pressure levels.
This enables higher gas loads through the capillary and can be found in Gunaratne
et al. (2015). Variations on the same principle but without capillary can be found
in Varentsov and Wada (2004). Different forms of the cavity have also been consid-
ered, especially rectangular shaped ones, as reported in Chen, Webb, et al. (2015).
This was developed to couple the new system with structures for lossless ions ma-
nipulations (SLIM) located further downstream, yielding better results than the clas-
sic ring electrodes.

Simulations

Several attempts have been made to simulate the trajectory of ions within such
systems. The first major contribution can be attributed to Lin and Sunner (1994).
They focus their work on the transport of ions within the capillary. It considers the
effects of diffusion and of the surrounding gas as well as the influence of the charge
of the ions. This is treated by elementary models dealing with the decay over time of
the charge density in an ion cloud. There are basically two different options to con-
sider the movement of the ions: either a continuous model using the charge density
to describe the distribution of the ions, as considered by Lin and Sunner (1994). Or
a discrete model, where the ions are described individually. These two approaches
have been studied in Wissdorf et al. (2012) and compared to experimental results. In
the case considered in that publication, the discrete approach delivers better results.
However, both methods present different particularities and may both be useful in
different contexts.

Further simulations have been conducted to better understand the flow within
the capillary, especially discussing its laminar or turbulent nature, as in Wißdorf et
al. (2016) and M. Skoblin et al. (2017). One of the few studies considering the effects
of space charge effects, M. G. Skoblin et al. (2017), is based on results from the latter
and uses a continuous approach.

Some simulations of the ion funnel can also be found. The tool SIMION is
widespread to simulate the trajectory of ions. This has been the case from the early
stage of the development of these systems, in Shaffer et al. (1997) and Shaffer et
al. (1998). However, these studies do not take into account the space charge effects
that can occur. Furthermore, the gas flow is not fully taken into account in these
studies. Further simulations, including the evolution of the design, have overcome
this last weakness, including numerical simulations of the gas flow expected within
the funnel, as reported in Tridas et al. (2015). However, the space charge effects
remain largely neglected.
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1.4.4 Outline

To achieve the goal of better understanding the transport of ions and their losses
within the atmospheric pressure interface, we developed a methodology that tries
to consider all relevant effects a priori affecting the trajectory of the ions. This in-
cludes the gas flow, the Brownian motion caused by the collisions between the gas
molecules and the ions, the space charge effects between the ions, and the exter-
nal electric field, mainly created by the electrodes in the ion funnel. We try to bet-
ter understand the occurring mechanisms by simulating basic experiments or cases.
These are based on a relatively standard device, consisting of a capillary with a fun-
nel shaped inlet, followed by an ion funnel. We thus create a tool that enables us to
explore new designs of the atmospheric pressure interface and offers the potential
to help to improve the current design.

The present work, however, does not cover the entire spectrum of processes
likely to influence the transmission of the ions. Especially, we do not cover the emis-
sion of the ions by the ESI source. Furthermore, all trajectories considered here are
for gas-phase ions, that is, analytes from the ESI that have already been through the
desolvation process.

The work is organized as follows. In chapter 2 we describe the systems consid-
ered: the capillary and its different geometries as well as the two different ion funnel
designs. Furthermore, the main principles of the physical models used to describe
the trajectory of the particles are exposed. This presents how the effects of the under-
lying gas flow, the external electric fields and the space charge effects are combined
in order to compute the forces applied to the ions.

In chapter 3, the computation of the gas flow is presented. It starts with the de-
scription of the equations used and their adaptation to the specific cases considered
here. The results related to the capillary are then exposed. It especially focuses on
the influence of the geometry and heating in the case of a laminar flow, as well as
some elements regarding the occurrence of turbulence in such a system. Results for
both ion funnels considered are later presented. This chapter thus encompasses all
results related to the gas flow expected in the simulated parts of the atmospheric
pressure interface.

Chapter 4 is dedicated to the computation of the electric fields relevant for the
trajectory of the ions. Especially, it presents the tools developed in order to efficiently
take into account the space charge effects in the systems considered. It also exposes
the different options available to describe the influence of harmonic electric fields
imposed in the ion funnel. The resulting external electric fields computed for both
ion funnel designs are also exposed.

In chapter 5, we combine the results of the previous chapters in order to com-
pute the trajectory of ions in the atmospheric pressure interface. The results for the
capillary and the ion funnels are presented separately and different cases are con-
sidered each time, in order to understand the influence of different parameters on
the behavior of the particles. Furthermore, experimental results are considered in
order to compare the simulations in the case of the classic ion funnel design. Even-
tually, conclusions are drawn in chapter 6. We especially focus on the assessment
of the simulation tools developed and deliver some insights on the efficiency of the
current designs.
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Chapter 2

Model description

This chapter is dedicated to the presentation of the main framework of the pre-
sent work. It starts with a description of the systems considered, which encompass
two parts of the atmospheric pressure interface. First, the transfer capillary, typi-
cally located shortly after the ESI source. And second, the first pumping chamber
that directly follows. Two different designs of the pumping chamber are presented,
both based on the concept of the ion funnel. Then we focus on the models used to
describe the trajectory of the ions within such systems, as well as some insights into
the implementation of these models.

2.1 System’s setups

2.1.1 Capillary

In the type of devices considered throughout this work, the capillary represents
the interface between the production of the ions via electrospray ionization, at atmo-
spheric pressure, and the first pumping chamber. It is thus submitted to a strong
pressure gradient between its both ends. The most simple and widespread version
of this interface is a long thin tube. It can usually be heated, so that metal versions
with good thermal conductivity are common. However, capillaries made of glass
are also found in commercial appliances. For example, both types are used in Wiß-
dorf et al. (2016). While its role is to provide some entry point for the generated
ions, it must also ensure that the quantity of gas that enters the device along with
the ions is small enough to be later pumped out without excessive efforts. This

Lcap
0.5Dcap

0.5Dcap,in

Inlet Capillary

r

z

θ

FIGURE 2.1: Sketch of the geometry of the transfer capillary consid-
ered in this work. The geometry is symmetric around the axis de-

picted with a dot-dashed line.
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limitation leads to rather poor efficiency of the transmission of ions through the cap-
illaries and attempts have been made to improve it. We base our work on one of
the proposed improvements delivered in Pauly et al. (2014). It shows that adding a
funnel-shaped inlet to the capillary can significantly improve the transmission ratio
of the ions reached by the capillary. Experiments could show that the funnel-shaped
inlet makes it possible to increase the efficiency of the transfer through the capillary
up to almost total transmission, while it only reaches up to about 20 % with a flat
inlet. High transmission is only possible under specific conditions when the trans-
fer is not limited by other phenomena such as space charge effects. These results
nevertheless show a significant improvement due to the funnel inlet.

The complete capillary further considered is divided into two parts: a straight
part represented by its length Lcap and diameter Dcap, and the preceding funnel-
shaped inlet. The general shape is represented in figure 2.1. Both ends of the straight
part are open. The surface of the pipe is considered a hard wall. During the gas flow
simulations, non-slip conditions are considered for the velocity. Two options are
available for the energetic conditions: either adiabatic, where no thermal transfer
through the wall is allowed, or isothermal, where the temperature of the gas at the
wall is directly enforced. The former represents a theoretic and reference case, not
directly related to experiments when metal capillaries are considered. On the other
hand, the latter tends to represent a heated capillary. For the ions, this wall, as all
other surfaces present in the simulations, is considered as a sink. This means that all
particles hitting the wall are considered lost and do not participate in the simulations
anymore.

The coordinate system is chosen cylindrical, with its symmetry axis coinciding
with the symmetry axis of the capillary. The coordinates are chosen, as depicted in
figure 2.1, as (r, θ, z). The symbol r classically represents the radial direction, starting
from the symmetry axis; θ is the azimuthal coordinate and z the axial one. The origin
of the system is placed at the junction between the inlet and the straight part. This
means that all points with negative values of z are located within the funnel-shaped
inlet, while points with positive values of z are located in the straight part of the
capillary.

The dimensions of the funnel-shaped inlet are directly correlated to its following
straight part. Its length is fixed to Lcap,in = 2 mm and its largest diameter at the
beginning of the capillary called Dcap,in is chosen as being eight times the diameter
of the straight part: Dcap,in = 8 Dcap. Its smallest diameter is exactly the diameter
of the straight part Dcap and the shape is fitted to avoid any discontinuity at the
transition (the derivative of the shape in the axial direction and at the junction is
zero). With Dcap,fun (z) the diameter of the capillary within the funnel-shaped inlet
(that is for −2 mm ≤ z ≤ 0 mm), the dimensions are defined by:

Dcap,fun (z) = Dcap,in

(
z

Lcap,in

)2

+ Dcap . (2.1)

The dimensions of the capillary considered in this work are listed in table 2.1.

2.1.2 Ion funnel - classic design

In the first chamber after the capillary, some mechanisms are put in place to per-
form a first separation between the ions transported and the surrounding gas. We
consider here an ion funnel system similar to the one built in the facilities of the
Nano-Bio Interfaces group in the Nanoscale Science department of the Max Plack
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Dcap,in Dcap Lcap

#1 8.00 mm 1.00 mm 6.0 cm
#2 8.00 mm 1.00 mm 16.5 cm
#3 6.00 mm 0.75 mm 6.0 cm
#4 6.00 mm 0.75 mm 3.8 cm
#5 4.00 mm 0.50 mm 6.0 cm
#6 2.00 mm 0.25 mm 6.0 cm

TABLE 2.1: Dimensions of the capillaries considered.

dimension description

Dchb 9.324 cm chamber diameter
Lchb 16.074 cm chamber length
Dcap 1.0 mm capillary diameter
DIF,in 3.0 cm to 2.5 mm inner electrode diameter
DIF,out 5.0 cm outer electrode diameter
Dout 2.5 mm outlet diameter
delec 0.7 mm spacing between electrodes
lelec 1.1 mm electrode thickness
lpump 8.037 cm length of the pumping area

TABLE 2.2: Dimensions of the ion funnel geometry - classic design.

Institute for Solid State Research in Stuttgart1 and used for the research presented,
e.g., in Rinke et al. (2015). 81 electrodes of the same thickness (lelec = 1.1 mm) are
placed in the chamber plus a thicker one located at the beginning of the structure. All
electrodes are equally spaced (distance between two electrodes delec = 0.7 mm). To-
gether, they form a cavity centered around the same symmetry axis as the capillary.
All electrodes are simplified in the present work and are represented as rings, for
which the outer diameter is constant: DIF,out = 5.0 cm, and the inner diameter DIF,in
varies along the axis. The elements necessary to hold the electrodes in place and to
set the potentials for the electric field are neglected. The first 28 electrodes have a
constant inner diameter of DIF,in = 3.0 cm. The inner diameter of the 54 following
ones decreases linearly along the axial direction. The smallest inner diameter, being
the transition into the next chamber, reaches Dout = 2.5 mm.

The first electrode, thicker than the others, begins where the capillary ends so
that the ions transported through the capillary directly enter the cavity formed by
the electrodes. The geometry of the chamber fitting around the electrodes is sim-
plified and assumed to be axially symmetric. Besides the simplification of the elec-
trodes previously discussed, this mostly affects the openings where the pump is
connected. While the experimental designs generally provide two or four openings
for the pump distributed around the chamber, we consider only one opening encom-
passing the entire circumference of the chamber, which length is lpump = 5.0 cm. The
general design, presented for a slice in the radial direction, is presented in figure 2.2
and the dimensions are listed in table 2.2.
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2.1.3 Ion funnel - evolution of the design

An evolution of the classic ion funnel design is also considered, as presented in
figure 2.3. Several modifications were implemented in order to better understand the
implications on the transport of the ions and to provide some input for the design of
new kinds of ion funnels. The new design was proposed by Stephan Rauschenbach
and Paul Fremdling from the University of Oxford2. It consists of 32 electrodes for
which their length, that is the difference between the outer and inner diameter, is al-
ways constant: Lelec = 5.0 mm. They all have the same thickness lelec = 0.6 mm. The
shape of the cavity is parabolic (convex), compared to a linear one in the previous
model. The inner diameter of the electrodes is defined by the following equation:

DIF.in (dout) =

√
1591
400

(
dout +

900
1591

)
, (2.2)

where dout represents the distance between the right edge of the electrode and the
outlet towards the next chamber. All dimensions are in millimeters. Furthermore,
the inner diameter cannot be smaller than 4.0 mm or greater than 4.0 cm. The spacing
between the electrodes varies along the cavity: the first 14 spaces between two elec-
trodes (starting from the capillary) are defined with delec = 5.0 mm, the 14 following
with delec = 2.5 mm, and the last 3 spaces as well as between the last electrode and
the following wall are delec = 1.25 mm. The pump opening is lpump = 7.0 cm long
and slightly shifted towards the capillary, compared to the previous design. Further-
more, a funnel-shaped opening has been added after the capillary. These dimensions
are represented in figure 2.3 and listed in table 2.3.

Further details regarding the changes made compared to the classic design are
later discussed alongside the results of the simulation. However, some basic ideas
can be outlined here. First, a noticeably smaller number of electrodes alongside
greater spacing between the electrodes have been chosen, mainly with the hope that
it would help the gas flow between the electrodes and thus facilitate the separation
from the ions. The funnel-shaped outlet put at the end of the capillary is intended to
facilitate the expansion of the pipe chocked flow into the pumping chamber. Finally,
the parabolic form of the funnel cavity intends to delay the collimation of the ions, to
reduce the repulsion effects due to their electric charge. These modifications should
be seen as tries rather than fully justified developments. The resulting simulations
then intend to give some insight into what could occur in a new device if it were to
be built this way.

2.2 The trajectory of a particle

In such systems as described before, the main goal is to transport as many ions
from their production to the effective usage made of them, being for classic analytic
purposes or e.g. advanced deposition. Furthermore, this transport shall be realized
in a controlled manner to make sure that the outcome of the transport remains in
line with the ions produced from the sample of interest. The simulation of reliable
trajectories of the particles is thus an important objective to better understand the
processes at stake. The idea of the present section is to deliver an overview of the
phenomena affecting the movement of ions in a gas flow, which are later considered

1. Webpage of the group: www.fkf.mpg.de/85625/06_Nano-Bio_Interfaces
2. Webpage of the research group: rauschenbach.chem.ox.ac.uk

https://www.fkf.mpg.de/85625/06_Nano-Bio_Interfaces
http://rauschenbach.chem.ox.ac.uk/
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dimension description

Dchb 7.60 cm chamber diameter
Lchb 15.42 cm chamber length
Dcap 1.0 mm capillary diameter
Dcap,out 3.0 mm capillary outlet diameter
DIF,in 4.0 cm to 4.0 mm inner electrode diameter
Lelec 5.0 mm electrode length
Dout 2.5 mm outlet diameter
delec,1 5.0 mm spacing between electrodes (1)
delec,2 2.5 mm spacing between electrodes (2)
delec,3 1.25 mm spacing between electrodes (3)
lelec 0.6 mm electrode thickness
Lelec 5.0 mm electrode length
lpump 7.0 cm length of the pumping area

TABLE 2.3: Dimensions of the ion funnel geometry - evolution of the
design.

with further details. Two main effects are considered within the present work: the
electric forces and the influence of the surrounding gas. As will be done throughout
this work, we assume that the ions can be represented as point particles. All consid-
ered forces are thus applied to the fictive center of the particle and the net resulting
force ~Fnet can be written as follows:

~Fnet = ~Felec + ~Ffluid . (2.3)

2.2.1 Electric field

There are two different sources of electric forces influencing the movement of the
ions: the self-induced space charge effects, due to the own charge of the ions and the
resulting Coulombic forces between them on the one hand; and the external electric
fields, used for example by the electrospray ionization or by the ion funnel on the
other hand.

In theory, not only electric forces but more generally electromagnetic ones should
be considered. However, no intrinsic magnetic sources are expected within the con-
sidered parts of the system. Furthermore, the velocity of the ions remains several
orders of magnitudes lower than the light velocity, so that the magnetic term in the
Lorentz forces is neglected. This estimation is further developed in section 4.3.1.

Moreover, two different components of the electric field are typically used to
guide the ions: a field constant over time, often referred to as the DC (direct current)
field; and a field that changes over time, usually with a specific periodicity. This
second component is often referred to as the RF (radio frequency) field. In summary,
three different electric fields should be considered in the system:

• the space charge effects (SCE);

• the time-independent (DC) external fields;

• the time-dependent (RF) external fields.
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As a result, the electric part of the net resulting force is divided as follows:

~Felec = ~FSCE + ~FDC + ~FRF = q
(
~ESCE + ~EDC + ~ERF

)
, (2.4)

with q the electric charge of the ion and ~E representing the different electric fields.
This subdivision has consequences from a practical point of view. The DC field

being constant over time, it is sufficient to know the position of the considered parti-
cles to know the corresponding electric field and thus the applied force by multiply-
ing with the charge. Without using any further model, the RF term requires addi-
tionally to know the precise time or the phase for typical periodic (harmonic) fields.
Finally, the SCE term representing the interaction between all particles present, and
given that the long-range interaction cannot be neglected a priori, it is necessary to
know the position of every other particle to compute the corresponding electric field.
Computing these terms independently is an approximation though. Further details
regarding this issue are presented in section 4.3.2.

2.2.2 Flow effects

The presence of the gas flow also influences the trajectory of the particles. Be-
cause of the molecular collisions, the ions tend to follow the gas flow in the absence
of any other effects considered, especially electric effects (that is, e.g. considering a
single ion in a Faraday cage, i.e. without SCE or external electric fields). Macroscop-
ically, this can be expressed with a force depending both on the local velocity of the
gas ~uf and the own velocity of the particle ~up, which tends to reduce the difference
between both. This force is thus assumed to have the following form for an ion of
mass m:

~Ffluid =
m
τp

(
~uf − ~up

)
. (2.5)

It represents a traction force, whose magnitude is directly proportional to the differ-
ence between the gas and particle velocities. The proportionality factor depends on
the mass of the ion, to take into account its inertia and for dimensional reasons, a
specific time τp is introduced. This relaxation time is species-specific and depends
on the local parameters of the gas flow. It is further referred to as particle response
time and can be defined as:

τp =
mK

q
, (2.6)

where K is the ion mobility. The ion mobility further depends on the flow conditions
(pressure p and temperature T) as follows:

K = K0
p0

p
T
T0

, (2.7)

with K0 the so-called reduced mobility taking the value at a gas pressure of p0 and
temperature of T0 and for a given species. The references p0 and T0 are usually
chosen as the standard condition, K0 being then the standard mobility. It thus builds
a local parameter depending on the flow state.

This form of the fluid force applied on the ion can be compared to the traditional
Langevin equation, used to describe the Brownian motion of a particle in gas at rest.
This approach is detailed in Tolmachev et al. (1997). Two fundamental points differ
between both models:
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• The Langevin equation is designed to describe the Brownian motion of the
ion, using a stochastic term on the right-hand side, which is not present in
the model considered here. The diffusion effects resulting from the Brown-
ian motion are taken into account in this work but using a different approach
presented in section 2.2.4;

• We not only consider a gas at rest but having a velocity ~uf. As a consequence,
the force term does not only depends on the ion velocity as in the Langevin
equation but is proportional to the difference between the local gas velocity
and the ion velocity ~uf − ~up.

Nevertheless, both models attempt to describe the same phenomenon (excluding the
Brownian motion): because of the collisions between the gas molecules and the ion,
the latter tend to reach the macroscopic gas velocity after a given time. This justifies
the choice of the particle response time made here, which is the same as the time
constant chosen in the Langevin equation in Tolmachev et al. (1997).

2.2.3 Combination of both effects

When both effects are combined, the ion mobility gets a rather intuitive meaning
which justifies the choice made for the particle response time. Let us assume a very
simple system, where a single ion with charge q is introduced in a chamber, filled
with gas at rest in which a homogeneous electric field is imposed. The latter can
be, for example, created by a potential difference between two parallel plates, where
boundary effects are neglected. We further assume that the system reaches equilib-
rium so that no acceleration of the ion occurs and the forces applied to it sum up to
zero. Only two forces are present here: the time constant electric field ~FDC and the
fluid force, where the gas velocity is set to zero. One thus ends up with the following
equation:

m
τp
~up = ~FDC = q~EDC , (2.8)

where ~EDC is the electric field created by the potential difference between the plates.
This situation gets back to the definition of the ion mobility given in Creaser et

al. (2004) when the corresponding conditions are fulfilled. In such a situation, the
ion is accelerated by the electric field, but this effect is balanced when it suffers a
collision with a gas molecule, before being accelerated again in the direction of the
field lines. Macroscopically, both effects are balanced and the ion reaches on average
a well-defined velocity, proportional to the electric field via the ion mobility:

~up = K~EDC . (2.9)

Replacing this expression of the ion velocity into equation 2.8, one ends up with the
definition of the particle response time given in equation 2.6.

This easy case shows the importance of both aspects regarding the behavior of
the ion. In the absence of gas, the ion would have a constant acceleration~ap directly
defined by the magnitude of the electric field:

~ap =
q
m
~EDC . (2.10)

Similarly, in the absence of electric fields, the ion would not show any movement
caused by a macroscopic force. However, some Brownian motion would still be
observable, being the results of collisions between the gas molecules and the ion.
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This Brownian motion is an effect that always occurs and the ion velocity presented
in equation 2.9 should be seen as an average velocity to which this stochastic motion
should be added.

2.2.4 Diffusion effects

At a larger scale, i.e. when considering a larger amount of ions, the microscopic
effects due to the molecular collisions add up to build the diffusion effects. As a
general rule, the ions located in regions already containing many other ones tend to
drift towards regions where fewer ions are present. Those effects are modeled via
the diffusion equation, also referred to as Fick’s law. It describes the evolution of the
density of a quantity. This quantity would be, in our system, the ion concentration
in the global system consisting of the gas molecules and the ions together. This
quantity is further referred to as ρp and follows the differential equation:

∂ρp

∂t
= ∇ ·

(
D∇ρp

)
, (2.11)

where D is the so-called diffusion coefficient. It is a priori unknown but can be ex-
pressed using different properties of the ions, in a first approach. Using The Nernst-
Towsend-Einstein relation, one can write, following Mason and McDaniel (1988, p.
139):

D =
KkBT

q
, (2.12)

with kB the Boltzmann constant. The diffusion constant is thus locally defined, de-
pending on the flow conditions, but also species-specific via the ion mobility and
the charge. This relation assumes once again that the ions are in near equilibrium,
implying weak fields and small gradients.

2.2.5 Outlook on the simplification

The present work, which is intended as a first try to combine all relevant ef-
fects, only relies on the aforementioned models to simulate the motion of the ions.
However, this is a simplification of the effects really at stake and we provide here
some information regarding possible extensions. The equation 2.9 is only valid for
near equilibrium, that is weak fields and small gradients, as described in Mason and
McDaniel (1988, chapter 1-1). As explained in the same reference, the behavior is
a bit different when the electric field is stronger and the energy delivered to the ion
through it is not negligible compared to the (thermal) energy provided by the molec-
ular collisions with the surrounding gas. In such a case, part of the electric energy
is also used to divert the ion from the trajectory it would have without any collision
with gas molecules. This means that the effective Brownian motion is not only due
to the thermal energy but the electric field also participates in it. As a consequence,
the ion mobility is not easily expressed as defined in equation 2.7 but a further de-
pendency on the magnitude of the electric field should be considered. Further, the
diffusion coefficient is not a scalar value anymore but should be considered as a
tensor. It takes different values in the direction parallel to the electric field and the
directions orthogonal to it. This picture can get even more complicated if magnetic
effects are to be considered, where both ion mobility and diffusion coefficient get a
tensor form. Further references to this subject can be found in Mason and McDaniel
(1988, chapter 1-1).
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2.3 Implementation of the model

The model presented in the previous section is implemented to simulate the tra-
jectory of the ions in several systems. The computation of the trajectory of the par-
ticle in this work is performed in two steps. We first consider the net force applied
to the ions as described in 2.3. From the given distribution of ions, it computes a
new set of positions after the time step considered due to this force. It is there im-
portant to consider the different time scales involved, especially the ratio between
time step ∆t and particle response time τp. In a second step, the Brownian motion
is considered. The implementation follows the idea of a random walk method. The
ions are also introduced in a certain area in the domain, as the production process
of electrospray ionization is not modeled and only gas-phase ions are considered.
Finally, boundary conditions are also taken into account to deal with particles reach-
ing the limits of the computational or physical domain. The different aspects of this
implementation are presented in the following.

2.3.1 Random walk method

The random walk is a stochastic method that delivers a macroscopic description
of diffusion effects. In the form considered, the time step consists in shifting the
position of the ions in the three Cartesian dimensions by a given length l. The di-
rection, positive or negative, of the shift is randomly chosen. It can be seen as three
simultaneous one-dimensional diffusion processes, all using the same diffusion con-
stant. Only considering diffusion with the exclusion of other sources of motion, the
displacement of the position after a time t is called ∆x. The mean squared displace-
ment can be expressed following a normal distribution and is given e.g., in Berry,
Rice, and Ross (2000):

〈∆x2〉 = l2t
∆t

. (2.13)

Additionally, a relation between the mean square displacement and the diffusion
constant D exists, also stated in Berry, Rice, and Ross (2000):

〈∆x2〉 = 2Dt . (2.14)

A combination of equations 2.13 and 2.14 directly delivers the length of the shift
l to be performed during the time step ∆t to mimic a diffusion process of constant
D:

l =
√

2D∆t . (2.15)

Taking into account expression 2.12 relating the diffusion constant to ion-specific
parameters, it follows:

l =

√
2KkbT∆t

q
. (2.16)

This final expression is the one used in the implementation. It is worth noting here
that the superposition of three one-dimensional diffusion processes considered here
is not the only option available. It is also possible to consider the displacement of
a given length in the three-dimensional domain. This means that the next position
is located on a sphere with the direction between the old and the new position cho-
sen randomly. The relation 2.14 should however be adapted. Both options deliver,
statistically, the same results. We chose the superposition of three one-dimensional
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steps for its simplicity and the fact that the diffusion effects are expected small in
comparison to the fluid and electric effects.

The method calls for the use of random numbers at each time step and for each
ion involved in the simulation. To this end, we make use of a pseudo-random num-
ber generator based on the xoroshiro128+ algorithm3. It allows us to deliver long
sequences of uncorrelated numbers, as needed in our application. When used in a
parallel environment, each process uses a dedicated series of pseudo-random num-
bers. Furthermore, the seeding process delivers reproducible results, as long as the
parameters and initial conditions as well as the number of parallel threads remain
identical.

2.3.2 System of equations and particle response time

From the net force applied to the ions, one can derive the equation defining the
acceleration of the ion, taking into account the influence of the fluid and the electric
fields:

~ap =
1
τp

(
~uf − ~up

)
+

q
m

(
~EDC + ~ERF + ~ESCE

)
. (2.17)

It is thus possible to build the system of equations used to compute the trajectory of
the ions:

d~up

dt
=

1
τp

(
~uf − ~up

)
+

q
m

(
~EDC + ~ERF + ~ESCE

)
d~xp

dt
=~up , (2.18)

with ~xp representing the position of the ions in the system. The particle response
time represents a characteristic time for the system of equation and it is important to
consider it with respect to the time step of the integration scheme considered. The
response time τp can indeed become very small for large pressures or equivalently
for high-density values in the gas flow. This situation is encountered for instance
in the capillary, where the thermodynamic conditions remain relatively close to the
atmospheric ones. For the test species that we use in this work, rhodamine B, it deliv-
ers particle response times in the order of magnitude of 10−10 s, which is extremely
small compared to a typical convection time through the capillary of 10−4 s.

This is problematic for explicit time integration methods such as the one used
in this work. The time step shall indeed remain similar or smaller than the parti-
cle response time, leading to an unrealistic number of steps required. An adapted
model is considered to avoid this constraint. It uses the limit value of the velocity
that would occur when the fields surrounding the ion’s position are only weakly
changing. This is reached when the ion’s acceleration becomes zero. A well-defined
velocity can thus be expressed:

~up = ~uf +
τp q
m

(
~EDC + ~ERF + ~ESCE

)
. (2.19)

3. A fortran implementation found at github.com/jannisteunissen/rng_fortran combined to a tai-
lored interface is used.

https://github.com/jannisteunissen/rng_fortran
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Replacing the expression of the particle response time with its definition 2.6, the
cinematic equation follows:

d~xp

dt
= ~uf + K

(
~EDC + ~ERF + ~ESCE

)
. (2.20)

Equations 2.18 and 2.20 represent two different models to describe the trajectory of
the ions, which should be considered depending on the time step used in the simu-
lation and the local value of the particle response time. In areas such as the capillary,
it is easy to decide which model suits better. As already stated, the particle response
time for the test species is about six orders of magnitudes smaller than the convec-
tion time necessary to simulate the transfer of the ions and thus remains significantly
smaller than the typical time step chosen. As a consequence, the capillary simula-
tions only make use of the cinematic model described in equation 2.20.

In the case of the ion funnel, the situation is a bit more complex. The gas den-
sity varies strongly, from large values at the capillary outlet to significantly smaller
values close to the pumping system and towards the next chamber. The particle re-
sponse time itself thus presents a large amplitude. This calls for an adapted model
that dynamically chooses between the purely cinematic description of equation 2.20
and the inertial description of equations 2.18. To that end, a specific criterion is
considered. It relies on the analytic solution of the inertial model in the absence of
electric fields and considering a homogeneous gas velocity field ~uf. For an initial ion
velocity ~up,0 at time t = 0, it follows:

~up (t) = ~uf +
(
~up,0 − ~uf

)
e−

t
τp . (2.21)

If one considers the difference between the analytic solution 2.21 and the cinematic
description ~uf after a time step ∆t, normalized with the difference at the initial time,
one gets:

‖~uf − ~up (∆t)‖
‖~up,0 − ~uf‖

= e−
∆t
τp . (2.22)

This basically represents the normalized error made by the cinematic model. The
idea of the criterion is to define a threshold α to this normalized error: if it is lower
than the threshold, the cinematic model is considered as accurate enough. If it is
greater, the inertial model, supposedly more accurate, should be used. The error is
smaller than α when

∆t
τp
≥ − ln α . (2.23)

The particle response time can be computed at each ion’s position and the criterion
considered. If the ratio ∆t/τp is larger than− ln α, the cinematic model is considered,
otherwise the inertial description is used.

The choice of α is however not necessarily straightforward or arbitrary. The pic-
ture described here only considers the difference between the analytic solution of the
inertial model and the cinematic model and not the effective result produced by the
time integration scheme considered. Thus a meaningful bound for the ratio ∆t/τp
shall be chosen for each time integration method considered. For example, with an
explicit Euler time step, as used in this work, the inertial model results in a linear
evolution of the particle velocity with respect to the time step considered:

~up (∆t) = ~up,0 +
∆t
τp

(
~uf − ~up,0

)
. (2.24)
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FIGURE 2.4: Radial distributions of the ions introduced during the
simulation. The probability density functions have been normalized

to one at the center of the distribution (r = 0).

A reasonable choice is to limit the application of the inertial model for time steps
∆t such that the resulting evolution of the particle velocity ‖~up (∆t)− ~up,0‖ remains
smaller than ‖~uf − ~up,0‖. This corresponds to ∆t/τp ≤ 1. One thus chooses α such
that − ln α = 1 or α ≈ 0.36.

2.3.3 Introduction of the ions in the domain

The principle of the trajectory’s simulations is to describe, statistically, the behav-
ior of the ions within a given system. We don’t simulate the creation of ions in the
electrospray system. Therefore, we need to artificially introduce ions in the compu-
tational domain. The preferred trajectory of the ions within the systems considered
is the starting point to define a proper distribution. The main path for the ions is to
go through the system following the capillary and further within the cavity formed
by the ions funnel. They are expected to preferably go along the symmetry axis of
each system. We thus choose to introduce the new ions in a plane orthogonal to
this direction, that is in a polar plane at a given axial position. At each time step, a
specific number of new ions are introduced, depending on the electric current that
we intend to simulate. Those ions are randomly set in the plane according to dif-
ferent distribution functions, depending on the case considered. Three options are
available in the current implementation:

• a normal distribution, whose center and standard deviation are given as pa-
rameters;

• a homogeneous distribution, whose center and radius are given as parameters;

• a custom distribution, which intends to mimic the distribution at the end of
the capillary. Its center and radius are given as parameters.

A graphic representation of these distributions along the radius is proposed in fig-
ure 2.4. In addition to this distribution within a given plane, a further, homogeneous
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distribution in the axial direction is performed. It intends to avoid the formation of
clusters of ions that would occur if all new ones were introduced in the same plane
at each time step. The length of the distribution in the axial direction is estimated
with the velocity of ions already present in the domain and recently introduced.

The random numbers needed to deliver these distributions are produced by the
same generator as described for the random walk method in section 2.3.1.

2.3.4 Boundary conditions

Once the ions are introduced in the domain, their motion is computed according
to the models presented in section 2.3.2. During the trajectory, they may encounter
obstacles, either the limits of the computational domain or physical obstacles such
as walls or electrodes in the ion funnel. At this point, boundary conditions for the
ions need to be defined.

In the model presented here and used throughout this work, two outcomes are
possible in such cases. Either the ion is considered as lost, i.e. it is not viable any-
more for the intended usage of the device (typically, analysis via mass spectrometry
or deposition). Or it enters a new chamber, not included in the computational do-
main but still relevant for the intended usage. Here, this second case refers to ions
transferred through the capillary and entering the first pumping chamber or ions
transported within the ion funnel and entering the second pumping chamber. Ei-
ther lost or entering a new chamber, the ions are eliminated from the simulation
and counting is performed to determine how many ions are lost and transmitted
over time. The transmission area is generally well defined and is relatively small in
comparison to the computational domain. However, the losses can occur at various
locations, especially in the ion funnel. We thus additionally store the position of the
ions when they leave the system. This allows a more detailed investigation of the
causes of the losses and opens up the possibility to propose some solutions against
the processes involved.

The losses mechanisms can be more complicated than the model presented here.
As soon as an ion hits a surface, it cannot participate to the simulation anymore.
However, it has been reported in Wißdorf et al. (2016) that the mechanisms involved
at this point may be more complex. Especially some charge accumulation at the wall
as well as exchange chemistry might occur at this interface. In the cases considered
here though, all surfaces are made out of metal. This means that the charge transfers
between the ions and the surface are very easy. As a consequence, it is expected
that the probability for the ions to lose their electric charge is very high when they
hit a metallic surface. This means that they cannot be efficiently guided by electric
fields further in the device and are a priori excluded from any effective usage. The
condition for the losses taken on in this work is thus considered as well suited for
the cases simulated here. Other systems, for example with glass capillaries, should
be treated more carefully though.
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Chapter 3

Flow description

One of the particularities of the systems considered in this work is that the ions
are not evolving in vacuum but in a gaseous environment. Their behavior is thus
influenced by the surrounding gas and having a good understanding of the un-
derlying flow is necessary to properly simulate the trajectory of the ions. From a
molecular point of view, collisions between the gas molecules and the ions lead to
an alteration of the behavior of the ions. Is the gas at rest, it leads to a canceling of
the acceleration of the ion, which reaches a limit velocity defined by the electric field
otherwise applied to it. Has the gas a macroscopic motion, the ions tend, in addi-
tion, to follow this motion. It is thus important to consider the flow field to correctly
describe the trajectory of the ions.

As the first stages of the devices considered in this work operate at relatively
high-pressure levels, we consider the classic Navier-Stokes equations, and more pre-
cisely their axially symmetric form. We also consider the limits of this approach
encountered in the ion funnel, when the pressure becomes significantly lower. We
further present the method used to consider objects located within the computa-
tion domain, without specific adaptation of the grid. This is used for the ion funnel,
where, e.g., several electrodes are altering the gas flow. We finally present the results
of the two stages of the device considered, that is the transfer capillary and the ion
funnel.

3.1 Gas flow modeling and NAVIER-STOKES equation

3.1.1 Skew-symmetric form of the NAVIER-STOKES equations

The basis of all flow computations presented in this work is the skew-symme-
tric formulation of the Navier-Stokes equations presented in Reiss and Sesterhenn
(2014). This formulation offers a built-in property of energy conservation with an
adequate numerical treatment of the spatial and time discretization. This is of spe-
cial importance when considering the energetic evolution of a system, for example
during a combustion reaction or when considering thermal exchanges. Even if this
is not directly the focus of the simulations performed here, this feature remains valu-
able, as thermal conditions play a non-negligible role in the behavior of the devices
considered, especially for the capillary.

We first present the general, coordinate-independent, form of these equations.
The nabla operator is used throughout the chapter. Its signification depends on the
kind of field (scalar, vector, second-order tensor) it is applied to and the relation
between the operator and the field (direct, "dot" product, "cross" product, etc.). A
summary of the underlying mathematical operations is given in appendix A.

In the following, ρ represents the (mass) density of the flow, ~u the velocity vector,
p the pressure field, τ the stress tensor, and ~φ the heat flux. We further assume
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that the simulated gas is air, following the ideal gas law with γ the corresponding
adiabatic index. The symbol used for the velocity of the gas, ~u, corresponds to ~uf
from chapter 2. We dropped the index f to enhance the readability of the equation,
as there is no risk of confusion in this chapter. The equations considered are now
presented:

Continuity equation

2
√

ρ
∂
√

ρ

∂t
= −∇ · (ρ~u) (3.1)

Momentum equation

√
ρ

∂
√

ρ~u
∂t

= −1
2
(∇ · (ρ~u⊗ ~u) + (∇⊗ ~u) (ρ~u))−∇p +∇ · τ (3.2)

Energy equation

∂p
∂t

= −γ∇ · (p~u) + (γ− 1)
(
~u · ∇p− ~u ·

(
∇ · τ

)
+∇ ·

(
τ~u
)
−∇ · ~φ

)
(3.3)

Stress tensor

τ = µ
(
(∇⊗ ~u) + (∇⊗ ~u)Tr

)
+

(
µd −

2
3

µ

)
(∇ · ~u) I , (3.4)

where µ is the (dynamic) viscosity of the fluid, µd the bulk viscosity, and I the iden-
tity matrix. µd depends on the nature of the fluid considered and is rigorously zero
for dilute monoatomic gases. We assume that this still holds for air in the simulated
conditions, see e.g. Bird, Stewart, and Lightfoot (2001, p. 18).

Sutherland’s law

An additional relation used is Sutherland’s law. It represents the temperature de-
pendency of the viscosity and is considered in the following form, as found in Chap-
man and Cowling (1991, p. 233), e.g.:

µ (T) = µ(TR)

(
T
TR

) 3
2 TR + S

T + S
, (3.5)

with TR and µ(TR) a reference temperature and the corresponding viscosity, respec-
tively. S is a so-called effective temperature and is specific for the gas considered. In
this work, the parameters are set to:

• TR = 273.15 K

• µ(TR) = 1.71× 10−5 Pa · s

• S = 110.4 K
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This relation is semi-empiric, based on the diatomic properties of the molecules
present in the air as well as fitting parameters to recover values close to experimen-
tal ones. In our cases, a large range of temperatures are involved, which may push
the model to its limits. However, even for fairly rarefied gases, it still delivers good
results, according to Hänel (2004, p. 33). We thus consider that this model is good
enough for the present work.

Heat flux

~φ = −λ∇T , (3.6)

where λ is the thermal conductivity of the fluid. This parameter is not independent
but can be computed using the Prandtl number Pr, the viscosity µ, and the specific
heat capacity at constant pressure cP such that:

λ = µ
cP

Pr
, (3.7)

following the definition of Pr as found for example in Bird, Stewart, and Lightfoot
(2001, p. 268). Both cP and Pr are considered as constant for air and take the fol-
lowing values (see e.g. Schlichting and Gersten (2017, p. 280) or Bird, Stewart, and
Lightfoot (2001, p. 277)):

cP = 1.005 J ·K−1 · kg−1 (3.8)
Pr = 0.71 (3.9)

Ideal gas law

As previously stated, we assume that the simulated air follows the ideal gas law.
It reads: p

ρ
= RsT , (3.10)

where Rs is the specific gas constant. It is defined as Rs = R/M, with R the universal
gas constant and M the molar mass of the considered species or mix. For air, we use
Rs = 287 m2 · s−2 ·K−1. This relation is used to compute the temperature of the flow,
which is not a primary variable of the system but still participates in the equations
via the heat flux and Sutherland’s law.

3.1.2 Axially symmetric form of the equations

The systems considered in this work are all approximated as axially symmetric.
While this is a very accurate hypothesis for the capillary, this is more debatable for
the ion funnel. The pumping system, for example, is not axially symmetric but con-
centrated in one or several outlets. The electric circuits necessary to produce the field
at the electrodes also contain a certain asymmetry. However and in a first approxi-
mation, this complexity is not expected to strongly modify the gas flow in the core
of the device, which is the driving part for the trajectory of the ions. We therefore
further consider the axially symmetric form of the Navier-Stokes equations.

It consists in developing the operators of equations 3.1 to 3.6 for cylindrical coor-
dinates and simplify the equations, assuming that the fields do not have any depen-
dency along the azimuthal coordinate. For the sake of generality, we keep open the
possibility to have an azimuthal component of the velocity field. This does not break
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the axial symmetry assumption as long as this component does not depend on the
azimuthal coordinate. We denote the radial, azimuthal, and axial cylindrical coor-
dinates as (r, θ, z). The corresponding velocity components are denoted (ur, uθ , uz)
respectively.

Continuity equation

2
√

ρ
∂
√

ρ

∂t
= −

(
∂ρur

∂r
+

ρur

r
+

∂ρuz

∂z

)
(3.11)

Momentum equations

√
ρ

∂
√

ρur

∂t
=− 1

2

(
∂ρurur

∂r
+

ρ

r
(urur − uθuθ) +

∂ρuzur

∂z

)
− 1

2

(
ρur

∂ur

∂r
− ρuθ

uθ

r
+ ρuz

∂ur

∂z

)
− ∂p

∂r

+
∂

∂r

(
2µ

3

(
2

∂ur

∂r
− ur

r
− ∂uz

∂z

))
+

2µ

r

(
∂ur

∂r
− ur

r

)
+

∂

∂z

(
µ

(
∂uz

∂r
+

∂ur

∂z

))
(3.12)

√
ρ

∂
√

ρuθ

∂t
=− 1

2

(
∂ρuruθ

∂r
+

2ρuruθ

r
+

∂ρuzuθ

∂z

)
− 1

2

(
ρur

∂uθ

∂r
+ ρuθ

ur

r
+ ρuz

∂uθ

∂z

)
+

∂

∂r

(
µ

(
∂uθ

∂r
− uθ

r

))
+

2µ

r

(
∂uθ

∂r
− uθ

r

)
+

∂

∂z

(
µ

∂uθ

∂z

)
(3.13)

√
ρ

∂
√

ρuz

∂t
=− 1

2

(
∂ρuruz

∂r
+

ρuruz

r
+

∂ρuzuz

∂z

)
− 1

2

(
ρur

∂uz

∂r
+ ρuz

∂uz

∂z

)
− ∂p

∂z

+
∂

∂r

(
µ

(
∂uz

∂r
+

∂ur

∂z

))
+

µ

r

(
∂uz

∂r
− ∂ur

∂z

)
+

∂

∂z

(
2µ

3

(
−∂ur

∂r
− ur

r
+ 2

∂uz

∂z

))
(3.14)
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Energy equation

For readability reasons, the energy equation is split into terms expressed sepa-
rately.

∂p
∂t

=− γ

(
∂pur

∂r
+

pur

r
+

∂puz

∂z

)
+ (γ− 1)

(
ur

∂p
∂r

+ uz
∂p
∂z
− ~u ·

(
∇ · τ

)
+∇ ·

(
τ~u
)
−∇ · ~φ

)
(3.15)

The different terms, still written with a general operator formulation, take the fol-
lowing special forms when considering an axially symmetric case:

~u ·
(
∇ · τ

)
= ur

∂

∂r

(
2µ

3

(
2

∂ur

∂r
− ur

r
− ∂uz

∂z

))
+ ur

2µ

r

(
∂ur

∂r
− ur

r

)
+ ur

∂

∂z

(
µ

(
∂uz

∂r
+

∂ur

∂z

))
+ uθ

∂

∂r

(
µ

(
∂uθ

∂r
− uθ

r

))
+ uθ

2µ

r

(
∂uθ

∂r
− uθ

r

)
+ uθ

∂

∂z

(
µ

∂uθ

∂z

)
+ uz

∂

∂r

(
µ

(
∂uz

∂r
+

∂ur

∂z

))
+ uz

µ

r

(
∂uz

∂r
− ∂ur

∂z

)
+ uz

∂

∂z

(
2µ

3

(
−∂ur

∂r
− ur

r
+ 2

∂uz

∂z

))
(3.16)

∇ ·
(
τ~u
)
=

1
r

∂

∂r

(
rur

2µ

3

(
2

∂ur

∂r
− ur

r
− ∂uz

∂z

))
+

1
r

∂

∂r

(
µuθ

(
r

∂uθ

∂r
− uθ

))
+

1
r

∂

∂r

(
ruzµ

(
∂uz

∂r
+

∂ur

∂z

))
+

∂

∂z

(
µur

(
∂uz

∂r
+

∂ur

∂z

))
+

∂

∂z

(
µuθ

∂uθ

∂z

)
+

∂

∂z

(
uz

2µ

3

(
−∂ur

∂r
− ur

r
+ 2

∂uz

∂z

))
(3.17)

∇ · ~φ = − 1
r

∂

∂r

(
rλ

∂T
∂r

)
− ∂

∂z

(
λ

∂T
∂z

)
(3.18)

The implementation of the axially symmetric Navier-Stokes equations used for
the ion funnel further assumes that the velocity vector does not have any azimuthal
component. It consists in setting (uθ = 0) in the previous equations and thus sim-
plifies the expressions.

3.1.3 Alternative axially symmetric formulation

While the axially symmetric equations just derived can be readily used on an
equidistant, Cartesian grid, it becomes more complicated when grid transformations
are considered. In the case of the laminar capillary, this is especially complex as two
different transformations of the grid are present: grid stretching in the radial direc-
tion to better resolve the boundary layer in the vicinity of the walls and geometric
transformation to reproduce the funnel shape of the inlet.

For the standard, Cartesian right-hand side, these deformations and their con-
sequences on the mathematical operators are dealt with via metric factors, which
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consider the transformation between an orthogonal, equidistant grid, called compu-
tational grid, and the transformed physical grid. The formalism of such a method
can be found in Thompson, Warsi, and Mastin (1985), and its application to the skew-
symmetric formulation of the Navier-Stokes equation is reported in Reiss and Ses-
terhenn (2014). The idea behind this alternative formulation of axially symmetric
equations is to make use of the formalization of the metric factors used in Cartesian
coordinates. It allows to only slightly transform the existing right-hand side, rather
than applying the formalism of metric factors to the lengthy formulation of axially
symmetric Navier-Stokes equations presented in section 3.1.2.

The idea behind metric factors is to describe the transformation existing between
the computational grid and the physical one. Because of its simplicity, the deriva-
tion operators on the computational grid are easy to define. The metric factors then
provide a mathematical means to transform these derivatives into their equivalent
applied to the physical grid. The expression of these factors is based on the deriva-
tion of the physical coordinates with respect to the computational ones. A detailed
formulation is provided in appendix B.

In the following, the Cartesian coordinates are represented by (x, y, z), the cylin-
drical ones by (r, θ, z), and the computational ones by (ξ, η, ζ). The method exposed
here relies on a specific formulation of the coordinates:

x = cos (θ (η)) r (ξ, ζ) , (3.19)
y = sin (θ (η)) r (ξ, ζ) , (3.20)
z = z (ξ, ζ) . (3.21)

It is worth noting that both the radial and the longitudinal transformations (r, z)
depend exclusively on the first and third computational variables (ξ, ζ) and that the
azimuthal transformation (θ) depends exclusively on the second computational vari-
able (η). More complex transformations would make little sense for a system sup-
posedly axially symmetric.

The metric factors are represented by a matrix m. Its determinant J, called the
Jacobian determinant, is a measure of the modification of the volume of a com-
putational grid cell into the corresponding physical volume. Each operator of the
Navier-Stokes equation can be written using the metric factors and the Jacobian de-
terminant. Different formulations are possible for each operator. These are mathe-
matically equivalent but can lead to numerical differences. To ensure energy con-
servation with finite differences schemes, a specific choice is described in Reiss and
Sesterhenn (2014).

The hypothesis of an axially symmetric solution is taken into account as follows.
In a first, intermediary step, each operator of the coordinates independent Navier-
Stokes equations presented in section 3.1.1 can be replaced by its expression using
metric factors and the Cartesian components of the vector variables (~v =

(
vx, vy, vz

)
).

Each term is then expressed using the cylindrical components, both in the metric fac-
tors and in the vector components (~v = (vr, vθ , vz)). These expressions can then be
simplified, using elementary analytical properties resulting from the specific choice
of coordinates of equations 3.19 to 3.21 and from the fact that the scalar fields and
the different cylindrical components of the vector fields are independent of θ (hy-
pothesis of axial symmetry). A specific azimuthal position is finally chosen, where
the expressions are considered. We here use θ = 0 to simplify the equations. The
resulting expressions for the operators present in the equations relevant in this case,
as well as the different steps summarized here, are detailed in appendix B. The order
of the transformation is important. Choosing a specific value for θ as the last step
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brings additional terms for some operators, which would have been omitted if the
choice of a specific azimuthal position was performed earlier.

This finally leads to the adapted equations used in this work, as presented in
the following. The additional terms responsible for the axial symmetry of the so-
lution, in comparison to a two-dimensional Cartesian domain, are highlighted in
blue and red. The Einstein summation rule applies to all computational coordinates.
Furthermore, ~mξ , ~mη , and ~mζ represent vectors extracted from the metric factors, as
described in appendix B.

Continuity equation
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√
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∂
√
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= − ∂

∂ξ

(
ρ
(
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3uz
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− ∂
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ρ
(
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(3.22)

Momentum equations
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)
(3.23)
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(3.24)
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(3.25)

Energy equation
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Stress tensor
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The velocity divergence in the stress tensor is computed as following:
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Heat flux
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In the simplified case of this work, where no azimuthal component of the velocity is
considered, only the additional terms highlighted in red, involving τθθ in the radial
momentum equation 3.23 and in the energy equation 3.26, make a difference com-
pared to a two-dimensional Cartesian case. The other additional terms, highlighted
in blue, effectively modify the equations only when an azimuthal component of the
velocity is present.

3.1.4 Volume penalization and artificial source terms

The computation of the gas flow in this work relies on finite differences methods.
This makes the consideration of complex geometries challenging because obstacles
are present within the system and hinder the flow. It becomes indeed difficult to
adapt the computational grid to these obstacles so that the solution is only consid-
ered where the gas is present and proper boundary conditions are applied. To over-
come this difficulty, the entire domain is discretized, including the obstacles. The
principle then relies on the modification of the Navier-Stokes equations in the re-
gions where the obstacles are located. In our cases, this represents mainly parts of
the walls and the electrodes of the ion funnel, as presented in sections 2.1.2 and 2.1.3.
The additional terms considered in the equations ensure that non-slip boundary con-
ditions of the velocity field are enforced at the boundaries of the fluid domain. It
also assumes a given temperature inside the non-fluid parts of the computational
domain.

The additional terms are generally referred to as Brinkman terms because it can
be shown that they are equivalent to solving a so-called Brinkman equation, as pre-
sented in Brinkman (1949). In this calculation, one considers a fluid passing through
a "dense swarm of particles" usually modeled as a porous media, the ratio between
particles and fluid being associated to a factor called permeability. A typical exam-
ple of this kind of system is water flowing through a bed of sand. This principle can
be pushed to its limits. When the permeability factor tends to zero, the porous me-
dia represents a solid located in the domain. The same method can then be used to
represent a complex geometry embedded in an elementary domain, where the non-
fluidic parts are represented via a porous media in the limit of zero permeability.

The general theory for incompressible flows is presented in Angot, Bruneau, and
Fabrie (1999). The theory was further extended to compressible flows. A first ap-
proach is presented in Liu and Vasilyev (2007). It keeps the principle of a porous
media, that is the continuity equation is adapted to correctly reproduce the behav-
ior of the fluid where the porous media is located. The modifications of the other
Navier-Stokes equations remain similar to the incompressible case. Especially, it
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directly uses the velocity for the correction term in the momentum equations. An-
other extension, dedicated to solid obstacles, was presented in Boiron, Chiavassa,
and Donat (2009). As only real obstacles (that is no porous media) are considered,
the continuity equation is not modified. Furthermore, the correction term in the mo-
mentum equations uses momentum values instead of velocities, which supposedly
allows efficient computation of flow with high Mach numbers and shocked flows.
This corresponds to the characteristics of the flow expected in the ion funnels. We
thus proceed with the penalization method described in Boiron, Chiavassa, and Do-
nat (2009).

Application to the skew symmetric formulation of the NAVIER-STOKES equations

This methodology has been applied to the skew-symmetric form of the Navier-
Stokes equation from Reiss and Sesterhenn (2014). Different parameters are consid-
ered to apply the method:

• the form of the object: it is represented by a mask function χVPM that takes 0 in
the fluid regions and 1 in the obstacle regions;

• the velocity of the obstacle ~vVPM: in this work, we only consider fixed objects,
the velocity is thus zero;

• the temperature of the object TVPM;

• the permeability ηVPM.

Using these parameters, terms are added at the right-hand side of equations 3.2
and 3.3, or their corresponding transformation in axially symmetric systems. The
momentum equation becomes:

√
ρ

∂
√

ρ~u
∂t

=− 1
2
(∇ · (ρ~u⊗ ~u) + (∇⊗ ~u) (ρ~u))−∇p

+∇ · τ − χVPM

ηVPM
ρ (~u−~vVPM) , (3.37)

and the energy equation becomes:

∂p
∂t

=− γ∇ · (p~u) + (γ− 1)
(
~u · ∇p− ~u ·

(
∇ · τ

)
+∇ ·

(
τ~u
)
−∇ · ~φ

)
− χVPM

ηVPM
(p− ρRsTVPM) , (3.38)

with Rs the specific molar mass of air, following the ideal gas law as described in
equation 3.10.

Extension to sponge terms to set boundary conditions

A similar method can be used to set boundary conditions in the domain using so-
called absorbing layers or sponge terms. An interesting presentation of this method,
in the broader context of artificial boundary conditions for incompressible flows,
can be found in Colonius (2004), where different kinds of such modifications of the
equations are presented.



3.2. Results of the gas flow in the capillary - Laminar case 37

The additional terms introduced in this context allow to enforce the solution at
specific locations in the domain, e.g. to define the values in the inlet or outlet ar-
eas. Any component of the state field can be set via these terms. In our case, the
parameters considered are:

• the form of the affected region: it is represented by a mask function χsp that
takes 0 in the fluid regions and 1 in the affected region, using a transition area
from one zone to the other;

• the density of the fluid in this region ρsp;

• the velocity of the fluid in this region ~usp;

• the pressure of the fluid in this region psp;

• a sponge factor ηsp.

In the considered regions, all components of the state fluid are not necessarily known
and, unless a solution of the Navier-Stokes equation is known, only some of the
components should be enforced, the others being set to the current state. The mass
equation thus becomes:

2
√

ρ
∂
√

ρ

∂t
= −∇ · (ρ~u)−

χsp

ηsp

(
ρ− ρsp

)
, (3.39)

the momentum equation:

√
ρ

∂
√

ρ~u
∂t

=− 1
2
(∇ · (ρ~u⊗ ~u) + (∇⊗ ~u) (ρ~u))−∇p

+∇ · τ −
χsp

ηsp
ρ
(
~u− ~usp

)
, (3.40)

and the energy equation:

∂p
∂t

=− γ∇ · (p~u) + (γ− 1)
(
~u · ∇p− ~u ·

(
∇ · τ

)
+∇ ·

(
τ~u
)
−∇ · ~φ

)
−

χsp

ηsp

(
p− psp

)
. (3.41)

This concludes the presentation of the methodology used to describe the gas flow
present in the different systems considered. In the following, the results of such
computations are exposed.

3.2 Results of the gas flow in the capillary - Laminar case

The first part of the device considered is the capillary, which plays the role of
the interface between the atmospheric pressure ionization and the next chambers
at lower pressure, being it an ion funnel, as further considered, or a skimmer, for
instance. The geometry of this part is usually quite simple and is often, as its name
indicates, a long thin pipe. Some improvements of the geometry, to increase the
transmission ratio of the ions flowing through it, have been studied. A promising
one is presented in Pauly et al. (2014), where a funnel-shaped inlet is added to the
pipe. The results presented in this work are based on this geometry, as described in
section 2.1.1.
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Lcap

0.5Dcap,sp

0.5Dcap

0.5Dcap,in

Inlet Capillary Sponge

r

z

FIGURE 3.1: Sketch of the geometry of the transfer capillary consid-
ered for the laminar computation, including a sponge area at its out-

let.

In this section, we focus on laminar flows, that is excluding the onset of turbulent
effects in the flow. The reason for this is twofold: first, the exact nature of the flow
taking place in the capillary remains a question. Recent works have brought differ-
ent answers to this question. While the study presented in M. Skoblin et al. (2017)
presents measurements compatible with the assumption that the flow is laminar
within the capillary, another work published by Wißdorf et al. (2016) shows that ex-
perimental results tend to prove the presence of transitional or turbulent flow. This
aspect is further exposed in section 3.3. Furthermore, a preliminary study published
in Bernier et al. (2018) made the hypothesis that the appearance of a turbulent flow
could be related to lower transmission ratios through the capillary. Thus, we first
focus on the laminar flow that can be expected in the capillary.

3.2.1 Settings and considered cases

The geometry of the different considered cases here is always similar and is
sketched in figure 3.1. Two geometric parameters vary: the length of the straight
part of the capillary and its diameter. The length of the funnel-shaped inlet is kept
constant, while its diameter is proportional to the one of the pipe.

To ensure the proper stability of the computation, a second funnel-shaped part
is added after the outlet. This is a sponge area, as presented in section 3.1.4, where
only the pressure is enforced. The maximal diameter of this part Dcap,sp is directly
proportional to the diameter of the capillary: Dcap,sp = 6 Dcap . This intends to re-
produce the expected chocking of the flow due to friction and heat exchange effects
when the pressure difference between both ends of a pipe is high enough such that
sonic conditions are reached and the fluid quantity transmitted limited. This phe-
nomenon, called choking, is well described in Shapiro (1953, pp. 234-236). The other
boundary conditions are the following:

• non-reflecting boundary conditions at the inlet set to normal conditions (atmo-
spheric pressure, temperature of 298.15 K, no velocity);

• non-reflecting boundary conditions at the outlet of the sponge area, with the
reference set to the closest inner grid points, to let waves leave the computa-
tional domain;

• isothermal non-slip boundary conditions at the wall. The temperature in the
straight part is set to a defined temperature Twall. A linear transition between
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6.0 0.25 2.0 0.4 64 512 - 5066.25 3.61× 10−6

6.0 0.25 2.0 0.4 64 512 350 10132.50 2.92× 10−6

6.0 0.25 2.0 0.4 64 512 500 10132.50 1.79× 10−6

6.0 0.50 4.0 0.8 96 512 - 5066.25 2.59× 10−5

6.0 0.50 4.0 0.8 96 512 350 10132.50 2.30× 10−5

6.0 0.50 4.0 0.8 96 512 500 10132.50 1.71× 10−5

3.8 0.75 6.0 1.2 128 384 - 5066.25 7.54× 10−5

3.8 0.75 6.0 1.2 128 384 375 5066.25 6.88× 10−5

6.0 0.75 6.0 1.2 128 512 - 10132.50 7.00× 10−5

6.0 0.75 6.0 1.2 128 512 350 10132.50 6.47× 10−5

6.0 0.75 6.0 1.2 128 512 375 10132.50 6.25× 10−5

6.0 0.75 6.0 1.2 128 512 400 10132.50 6.05× 10−5

6.0 0.75 6.0 1.2 128 512 425 10132.50 5.86× 10−5

6.0 0.75 6.0 1.2 128 512 450 10132.50 5.67× 10−5

6.0 0.75 6.0 1.2 128 512 475 10132.50 5.49× 10−5

6.0 0.75 6.0 1.2 128 512 500 10132.50 5.32× 10−5

6.0 0.75 6.0 1.2 128 512 525 10132.50 5.16× 10−5

6.0 0.75 8.0 1.6 128 512 550 10132.50 5.00× 10−5

6.0 1.00 8.0 1.6 128 512 - 10132.50 1.37× 10−4

6.0 1.00 8.0 1.6 128 512 350 10132.50 1.29× 10−4

6.0 1.00 8.0 1.6 128 512 500 10132.50 1.11× 10−4

16.5 1.00 8.0 1.6 128 1024 - 5066.25 1.14× 10−4

16.5 1.00 8.0 1.6 128 1024 350 5066.25 1.04× 10−4

16.5 1.00 8.0 1.6 128 1024 500 5066.25 8.15× 10−5

TABLE 3.1: List of the capillary gas flow simulations and their corre-
sponding parameters. When no wall temperature is given, adiabatic
boundary conditions have been used for the entire set of wall bound-
aries. The mass flow is computed from the results of the simulation

and thus not an input parameter.
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the normal conditions and the straight part temperature is imposed within the
funnel-shaped inlet.1.

The non-reflecting boundary conditions considered here are based on the character-
istics method and make use of the Reynolds invariants that can be derived from the
Euler equations. The latter are the equivalent of the Navier-Stokes equations pre-
sented in previous sections when the friction and diffusion features are neglected.
They are thus an approximation for the present case but effectively let the struc-
ture present in the flow leave the computational domain without being reflected on
the artificial boundaries. A detailed description of the implementation is provided
in Stein (2019).

Three parameters have been varied during this study: the length of the straight
part of the capillary, its diameter, and the temperature of the wall. The first two pa-
rameters allow us to describe the influence of the geometry on the expected flow.
The latter reproduces common settings of commercial devices, where the tempera-
ture of the capillary can be easily varied. The list of cases is presented in table 3.1. In
all cases, fourth-order spatial derivatives and a fourth-order Runge-Kutta time inte-
gration scheme are used. A Padé filter (as described in Gaitonde and Visbal (2000)) is
applied in axial and radial direction every 550th time step. The presented results are
considered as converged simulation, that is when total pressure, mass, and energy
in the domain remain constant over time.

3.2.2 General results

Most of the results presented here and in the next sections referring to the laminar
capillary flow have been published in Bernier et al. (2020).

Choking and sonic conditions

When submitted to a strong pressure difference between its both ends, it has
been observed that the choking of the flow occurs. It means that once this ratio be-
comes larger than a specific value, the quantity of gas that goes through the pipe is
limited. This phenomenon can be observed in our simulations, where the pressure
reached at the outlet of the pipe is much larger than the one set in the sponge area
further downstream. This can be observed in figure 3.2 and is consistently repeated
in all cases presented here. The pressure profile inside the straight part of the cap-
illary, corresponding to classic pipe flows, is very similar to the ones measured in
similar conditions and reported in Frössel (1936). The experiments were performed
with thermal isolation of the pipe, and thus correspond to the adiabatic case and not
directly to the isothermal cases depicted in figure 3.2. Once the sponge term comes
into action, that is on the right of the vertical solid line in the picture, the pressure
drops abruptly and reaches values closer to the reference or even lower. The pres-
sure level in the physical domain is independent of this reference, as long as this is
low enough compared to the expected level at the end of the physical capillary. More
detailed results focused on the aspects just mentioned are available in appendix C.
This behavior is attributed to viscous effects that limit the velocity of the gas within
the pipe. The classic theory to explain this phenomenon is called the Fanno flow the-
ory. It is based on a one-dimensional description of the flow and assumes a constant
wall friction coefficient. The corresponding theory can be found in Shapiro (1953).

1. Several cases have been simulated using adiabatic non-slip boundary conditions as comparison
point and are presented in appendix C
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straight part of the capillary is considered here.
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FIGURE 3.4: Two-dimensional profile of the axial velocity in the
straight part of the capillary. Diameter of 0.75 mm length of 6.0 cm
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This leads to the condition that sonic conditions (Mach number Ma = 1) are reached
at the end of the pipe, causing acceleration when the flow is initially subsonic, as is
the case here, or deceleration when the flow is supersonic. In the case of isothermal
conditions at the wall, further losses should be considered due to the transfer of ther-
mal energy. The equations taking into account such effects, and assuming that the
friction terms are neglected, can be found in Bartlmä (1975) and also predict sonic
conditions at the end of the pipe flow. This was the assumption made to mimic the
flow profile in a previous publication (Bernier et al. 2018).

The present simulations do not consider the assumptions previously mentioned
and directly apply the Navier-Stokes equations to a two-dimensional, axially sym-
metric case. They show a more complex picture close to the outlet. When looking at
the Mach number computed along the centerline of the flow in figure 3.3, a super-
sonic area appears with values of the local Mach number reaching not less than 1.4.
That value contradicts the prevision of the Fanno theory. This unexpected feature
could however be found in some publications. A study of the behavior of the flow
has been performed in Murphy and Miller (1984), where different outlet geometries
are compared. Measurements show that the Mach number at the outlet of a straight
pipe, similar to the capillaries considered here, is indeed well larger than 1.

This behavior can be explained by the fact that the effective pipe is not one-di-
mensional. The Fanno theory does not take into account the radial variations of the
flow, which can explain the difference. In figure 3.4 the streamlines along the capil-
lary for an exemplary case are represented and show that they are not parallel to the
walls but present a small bending. This is a sign that the boundary layer gets thinner
when approaching the outlet. This phenomenon can also be seen in the same figure,
considering the values of the axial velocity depicted in the background. This can be
interpreted as an effective variation of the cross-section that should be considered in
a one-dimensional approach. This would still be an approximation though, as the
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bending of the streamlines is due to a non-zero, even if very small, radial component
of the velocity vector. The field is thus two-dimensional. This situation can further
be considered as a convergent-divergent nozzle, building up an effective Laval noz-
zle. The sonic condition is reached in the minimal cross-section of this effective noz-
zle and not at the end of the capillary. However, other considerations for the Mach
number are possible, for example the bulk Mach number. This is defined as the ratio
between the mean velocity in each cross-section, called bulk velocity, and the speed
of sound at the wall. The resulting value is significantly lower than the local value in
the middle of the pipe because the effects of the boundary layer are integrated into
the final value. For the cases presented in figure 3.3, it only reaches between 0.89 for
a wall temperature of 350 K and 0.79 for 550 K at the end of the capillary.

A detailed numerical study of this phenomenon has been delivered by Lijo, Kim,
and Setoguchi (2010), where the local supersonic flow is specifically addressed. The
main differences between the computation performed in that publication and the
present work are that the former does not limit the computational domain to the
capillary but computes the following chamber alongside. In the present work, this
chamber is mimicked using the sponge area. Furthermore, a turbulent flow is con-
sidered, using the Reynolds-averaged formulation of the Navier-Stokes equations
and the k− ω model for closure. This second difference is justified by the fact that
the diameter of 15 mm is 15 times larger than the largest diameter considered here,
delivering significantly larger Reynolds numbers for the system, while the rest of
the conditions are similar. Furthermore, the boundary conditions at the wall are adi-
abatic. However, this choice in the present work does not lead to significant modifi-
cations of the choking properties of the flow. It is thus remarkable that the shape of
the supersonic area at the end of the pipe found in Lijo, Kim, and Setoguchi (2010)
is very similar to the one represented with the solid line in figure 3.8.

Velocity field

It is further interesting to consider the local velocity of the gas, as it has a direct
influence on the trajectory of the particles, in which we are interested (see equa-
tions 2.18 and 2.20). Different parameters influence the velocity profiles, the geo-
metrical ones as well as the wall temperature. Nevertheless, a general picture can
be drawn. At the beginning of the straight part of the pipe (that is at the junction
between the funnel-shaped inlet and the capillary itself), the profile is close to a typ-
ical top-hat form. Further downstream, the boundary layer gets thicker and evolves
toward a profile closer to the parabolic form expected for a fully developed laminar
pipe flow. This is represented in an exemplary case in figure 3.5. Two main pa-
rameters affect this picture though. First, the specific behavior observed close to the
outlet and discussed in the previous section is related to a thinner boundary layer.
This means that the approaching parabolic form of the profile in this area is altered.
The second parameter is the length of the straight section or rather the ratio between
the length of the straight section and the diameter of the pipe L/D . The building
of the parabolic profile is progressive along the axis and thus can only be truly ob-
served for geometries where the ratio L/D exceeds values of 200 to 300, according
to an empirical formula given in Prandtl, Oswatitsch, and Wieghardt (1993, p. 244).
The example considered only reaches a ratio of 120.

Further, an unexpected effect can be observed when the heating of the capillary
walls is significant. In such cases, the maximum of the axial velocity is reached at
a position off the centerline. This phenomenon has been represented in figure 3.6.



44 Chapter 3. Flow description

0 0.2 0.4 0.6 0.8 1

w/wmax

0

0.05

0.1

0.15

0.2

0.25
r

(m
m

)

z/D = 0.01
z/D = 23.96
z/D = 47.91
z/D = 71.87
z/D = 95.82
z/D = 119.77
parabolic profile
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of 0.75 mm and length of the straight part of the capillary of 6.0 cm.

Only the central part of the domain is represented.
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FIGURE 3.7: Axial specific momentum in a cross-section of the cap-
illary with different wall temperatures at an axial position of z ≈
4.8 cm. Diameter of 0.75 mm and length of the straight part of the
capillary of 6.0 cm. Only the central part of the domain is represented.

It thus builds a ring of high velocities centered around the central axis. This behav-
ior has not been, to the knowledge of the author, reported in other cases and can
appear as counter-intuitive at a first glance. One could indeed expect the fluid ele-
ments located in the central area surrounded by the faster elements to be accelerated
and catch up with the ring. However, this deduction is only based on the veloc-
ity component. The conservative value described by the Navier-Stokes equations
is the momentum (velocity multiplied by mass density, when considering a specific
value). This quantity shows the classic shape with a maximum at the centerline and
a monotonous decrease up to the wall, as shown in figure 3.7. This is a sign of the
stability of the solution presented.

This behavior can further be qualitatively explained considering elementary con-
cepts. The main engine of the gas flow within the capillary is the pressure gradient
in the axial direction. The pressure can be considered as constant in each cross-
section with a good approximation. As a consequence, the force applied to the fluid
elements is approximately similar within the cross-section. The heat transfer that
occurs at the walls implies that the gas within the temperature boundary layer is
lighter and the acceleration caused by the pressure gradient is larger. This effect
is compensated by the friction within the velocity boundary layer. However, ve-
locity and temperature boundary layers do not present the same thickness. Thus,
an area remains where the temperature boundary layer is observed but not the ve-
locity boundary layer. The stronger acceleration is not compensated by friction ef-
fects in this area, which leads to the ring of higher velocities surrounding an area of
comparatively lower velocities, as previously described. The difference in thickness
between the velocity and temperature boundary layers is expected. It depends on
the value of the Prandtl number previously presented in section 3.1.1. This number
represents the ratio of the viscous transports compared to the diffusive ones. Thus
a Prandtl number of 1 indicates that both effects occur with the same intensity so
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FIGURE 3.8: Two-dimensional profile of the fluid temperature in the
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that the (viscous) velocity boundary layer and the (diffusive) temperature bound-
ary layer have the same thickness. In the case of air, where the Prandtl number is
smaller than one (0.71), the viscous transports are weaker than the diffusive ones.
As a consequence, the boundary effects caused by viscous effects are thinner than
the ones caused by diffusion, consistent with the results presented here. A detailed
explanation of such effects can be found in Schlichting and Gersten (2017, p. 215).

Temperature field

To conclude the study of the gas flow within the capillary, we focus on the tem-
perature field. Temperature is indeed involved in different aspects and is thus sig-
nificant not only for the transport of ions presented here. Especially, the heating of
the capillary is classically justified by the necessity to enhance the desolvation of the
droplets created during the ionization process. Furthermore, high temperatures and
the related molecular collisions can trigger transformations of the species involved,
for example unfolding, declustering, or fragmentation of the transported ions. The
present work does not specifically consider these aspects. The results regarding the
temperature field could be used to study some of them in more detail though.2 Fi-
nally, one aspect that has direct consequences on the transport of the ions considered
here is the influence of the temperature on the ion mobility.

In a similar fashion to the velocity field, a strong stratification of the temperature
field towards the axis can be observed in figure 3.8. This builds the temperature
boundary layer already mentioned. An interesting feature of this boundary layer is

2. The present results might not be sufficient to study all the effects listed here. Especially no heat
radiation has been considered, which could play a non negligible role when the capillary is strongly
heated.
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of the diameter at an axial position of z ≈ 2.4 cm according to the
distance to the wall. Length of the straight part of 6.0 cm and wall

temperature of 500 K.

that its thickness seems to be roughly independent of the diameter of the capillary.
Figure 3.9 shows for a similar wall temperature the radial profile of the gas temper-
ature when the diameter varies. Especially, the two cases with the largest diameters
(0.75 mm and 1.0 mm) present very similar shapes. This is important for the design
of such elements because it means that the effects of heating are limited to a specific
layer close to the walls and cannot reach the middle of the pipe when the diameter
exceeds a certain value, not far from the usual diameters encountered in common
devices.

This phenomenon can also be observed when considering the temperature of
the gas along the axis, again for different diameters and represented in figure 3.10.
For thin pipes, the temperature of the gas in the center of the flow is very close
to the temperature enforced at the walls, as long as the cross-section considered is
far enough from the inlet or outlet areas. However, wider pipes present a constant
decrease in the temperature caused by the acceleration and expansion of the gas.

For large enough diameters, one can also observe that the heating does not have
a significant influence on the temperature observed in the center of the pipe. Fig-
ure 3.11 presents the radial profile of the temperature for a capillary of 0.75 mm in
diameter and varying wall temperatures. Here again, the boundary layer roughly
presents the same thickness in all cases, and the temperature in the center is only
weakly affected (between 260 K and 275 K), while the wall temperature varies over
a large range (350 K to 550 K).

These results have consequences regarding the purpose of heating the capillaries.
If it is intended to enhance the desolvation process of remaining droplets from the
ionization, it is likely that this is significantly less efficient for capillaries with a large
diameter than for thinner ones, as droplets transported through the center of the pipe
are barely affected by the heating. On the other hand, such large capillaries might be
able to transport, within their cold core region, sensitive ions that could be otherwise
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affected by the heating in thinner capillaries. This means that the geometry of the
capillary can significantly affect the conditions of transmission of the ions. Its choice
is therefore as important as the design of further parts of the device and should be
carefully considered, depending on the operating conditions.

3.3 Results of the gas flow in the capillary - turbulent case

In a preliminary work published in Bernier et al. (2018), some estimations hinted
that the onset of turbulence within the capillary could have a strong impact on
the efficiency of ion transmission. Considering the Reynolds number in the lam-
inar simulations, both kind of flow, laminar or turbulent, can occur a priori. The
Reynolds number computed for the different wall temperatures with a 6.0 cm long
capillary and a diameter of 0.75 mm range between 1,800 and 3,700. These values
are computed using the bulk velocity at the outlet of the capillary and the viscosity
at the wall in the corresponding cross-section. The resulting number is called bulk
Reynolds number. For a diameter of 1.0 mm, it reaches 7,900 with adiabatic walls.
These values thus range from close to well above the transition threshold for a stan-
dard pipe Poiseuille flow, estimated to 2,300, as reported in Hinze (1975, p. 707)
even if laminar flows with Reynolds numbers up to 100,000 have been observed
experimentally.

We tried to conduct some investigations to determine whether the kind of flow
typically found within a capillary has an affinity to turbulence. The system presents
particularities, including a strong pressure gradient and a relatively short length
compared to the one typically needed to establish a fully developed state. Such
systems are not very well studied in the existing literature.

3.3.1 Attempt to perturb the laminar flow

As an introduction to the following results, we first present some work about the
transition of the laminar flow into turbulence. In a first tentative, we indeed tried
to set a perturbation in the laminar capillary flow with a diameter of 0.75 mm. The
idea is to set this perturbation at the inlet of the straight part of the pipe and to let
it evolve along the capillary. We especially wanted to detect possible breakdowns of
the perturbation which could point to a transition towards a turbulent flow.

The form of the perturbation was inspired from the one reported in Zikanov
(1996) to present a large transient growth for infinitesimal perturbation, even if the
amplitudes considered here are not infinitesimal. It takes the form of two vortexes
located in the polar plane, centered on each side of the symmetry line, as depicted
in figure 3.12. This perturbation can be expressed as the following:

ux (r, θ) = ux,0 + A0
((

1− 3r2 + 2r3) cos2 θ +
(
1− 9r2 + 8r3) sin2 θ

)
, (3.42)

uy (r, θ) = uy,0 + 6A0
(
r3 − r3) cos θ sin θ , (3.43)

where r and θ are the polar coordinates, ux and uy the Cartesian components of
the flow in the polar plane, and ux,0 and uy,0 the corresponding components of the
unperturbed, laminar flow. The amplitude A0 was chosen equal to 20 m · s−1.

Some results of this simulation are presented in figure 3.13 for the velocity com-
ponents in the cross-section and figure 3.14 for the axial component of the velocity.
The results are considered in the cross-section located about 5 cm after the beginning
of the straight part of the capillary. One can observe that the perturbation evolves
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FIGURE 3.12: Form of the perturbation set at the beginning of the
straight part of the capillary. The axial component of the velocity
is the same as the profile computed in the axially symmetric lami-
nar computation. The magnitude of the velocity components in the
cross-section of the capillary alongside the direction of the resulting
velocity vector are represented. The length of the vectors is propor-

tional to the velocity magnitude.
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FIGURE 3.13: Magnitude and direction of the velocity components in
the cross-section of the capillary at z/D ≈ 50 (the length of the vector

indicating the direction is proportional to their magnitude).
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FIGURE 3.14: Axial component of the velocity at z/D ≈ 50.

along the pipe. The profile of the axial velocity is shifted towards the walls and is
thus strongly different from the initial laminar flow, as well as from the parabolic
shape of a classic Poiseuille flow. Furthermore, the two distinct vortexes created at
the inlet degenerate into four: two stronger ones on the left-hand side of the fig-
ure, and two weaker ones on the right-hand side. No further significant evolution
of these vortexes is observed along the pipe, but the mean amplitude of the corre-
sponding velocity components tends to decrease, from about 8.7 m · s−1 at the inlet
to 1.3 m · s−1 close to the outlet, before an increase due to the adaptation to the ref-
erence values. It also presents the characteristic of two distinct local maxima of the
axial velocity (see figure 3.14). This feature is presented in Zikanov (1996) as impor-
tant to initiate instabilities. However, the simulation never displayed the occurrence
of any transition towards turbulence and the profile presented here could be sus-
tained for a significant time, corresponding to about 1.6 times the time needed for
flow particles located close to the symmetry axis to travel through the pipe.

These tests are no definitive proof of the ability of the system to transition from
laminar flow to turbulent one. Especially the settings would not offer the resolution
needed to fully capture the occurrence of turbulent onsets. However, we expect that
in such a case, effects could have been observed in the fields. Furthermore, a de-
tailed study of turbulent transition in pipe flows is a complex subject. Long-lasting
results of a similar system, though without strong acceleration along the pipe and
for incompressible equations, are reported in X. Wu et al. (2015). This investigation
tends to show that the Reynolds numbers expected in the system studied in this
work are above the new limits reported (between 5,700 and 6,000) for which turbu-
lence is expected. However, the length of the system computed to obtain such results
was significantly longer than the present case (125 times the diameter vs. 80 times,
respectively). This difference might also play a role in the absence of a conclusion
for the results presented. We thus decided to consider the study of an already devel-
oped turbulent inlet flow and its evolution along the pipe in the presence of a strong
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FIGURE 3.15: Sketch presenting the structure of the simulation in two
stages: auxiliary simulation at the top and primary one at the bottom.

Axial and radial directions are not to scale.

Auxiliary sim. Primary sim.

Capillary length Lcap (cm) 1.1 6.0
Capillary diameter Dcap (mm) 1.0 1.0
Number of points - axial 960 5760
Number of points - radial 120 120
Number of points - azimuthal 240 240
Time step (s) 4.8× 10−9 4.8× 10−9

TABLE 3.2: Parameters of the primary and auxiliary simulations per-
formed for the turbulent flow in the capillary.

pressure gradient.

3.3.2 Settings of the fully turbulent simulation

The principle of the simulation presented here is to introduce a fully turbu-
lent flow at the inlet and to observe its evolution through the capillary. It is per-
formed using the program called NSF developed in the department for numerical
fluid dynamics at the Technische Universität Berlin. It has been extensively used for
several DNS, in particular in Peña Fernández and Sesterhenn (2017), with a wave-
formulation of the Navier-Stokes equations or in Stein (2019) with the same skew-
symmetric formulation as considered in the present work. We use two stages for
the simulation, as described below, to create data for a turbulent inlet, which is then
applied at the beginning of the straight part of the capillary. In both stages, we make
use of cylindrical grids. The equations considered are the skew-symmetric Carte-
sian ones and the grid transformation is performed using the metric factors. This
formulation is detailed in Reiss and Sesterhenn (2014).

We avoid the intrinsic singularity of such grids on their symmetry axis by using
the solution described in Mohseni and Colonius (2000). With this approach, the
radial direction is not considered along a radius of the domain but a full diameter.
Using an even number of points in this direction, one thus avoids any grid point
on the axis and following the issues arising with the singularity of such points. A
sketch of the two simulation stages is presented in figure 3.15 and the corresponding
parameters are listed in table 3.2.

The spatial derivatives are computed using fourth-order central schemes and
the time integration is performed with a fourth-order Runge-Kutta method. In both
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FIGURE 3.16: Sketch presenting the principle of the sharp filter used.
The outer part is the regular grid, where no modification is applied.
The inner, colored section, outlines the region where the effective res-

olution of the grid is reduced by the filter.

stages, a specific treatment is performed in the azimuthal direction for the points
close to the pipe axis. The principle is to cancel the high-frequency components
present in the central area where the density of grid points is much higher than in
the areas located further away from the axis. Translated into the formalism of dis-
crete Fourier transforms, the reduced number of components allowed in the spectral
domain effectively corresponds to fewer discretization points than actually present
in the grid, or equivalently to an effective grid spacing larger than the real one.

The target grid spacing is chosen as the best option, that is the smaller equivalent
grid spacing, between the grid precision at the wall and the effective grid precision
delivered by a minimal number of components for the points located close to the
symmetry axis. For each radial position, we can then define the number of compo-
nents in the spectral domain required to reach the target grid spacing.

In our case, the innermost points with a minimal number of spectral components
fixed to three define the target. This means that the precision close to the symme-
try axis remains better than close to the wall despite the very limited number of
components retained in the spectral domain. Further away from the center of the
domain, the number of components increases, until the grid spacing offered by the
grid gets larger than the target. It means that even when keeping all components
in the spectral domain, which is the best precision reachable with the grid, the tar-
get grid spacing cannot be enforced anymore. From this location and until the wall,
there is no need to filter and one keeps the results without transformation. This is
outlined in figure 3.16. The outer region keeps the feature of a traditional cylindri-
cal grid, while the (colored) inner one presents an effective resolution (lower than
offered by the grid) once the filter is applied. In the considered cases, the filter is
applied for the 9 innermost layers of grid points out of 120. The 111 remaining ones
are not modified by the described treatment.
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Furthermore, a sixth-order Padé filter as presented in Gaitonde and Visbal (2000)
is applied every 220th time steps in the radial and axial directions and every 660th

time steps in the azimuthal one to remove numerical instabilities.

Settings of the auxiliary simulation

The auxiliary simulation consists of a capillary of 1.0 mm diameter and 11 mm
length. The initial field reuses turbulent data from a periodic pipe flow of the same
diameter. It is fitted with the inlet conditions of the laminar flow to obtain the same
mass flow through both pipes. The pressure and temperature of the gas close to the
axis are also fitted according to the results of the laminar fields, considered after the
funnel-shaped inlet, at the transition with the straight part of the capillary. We thus
consider the following values:

• pressure p0 = 8.24× 105 Pa;

• temperature T0 = 281 K;

• mass flow ṁ0 = 1.35× 10−4 kg · s−1.

The simulation further consists of recycling the perturbation of the flow within a
cross-section located around 10 mm after the inlet. These perturbations are reintro-
duced, after a proper scaling, at the inlet as superposition to the mean flow. This
method has been developed by Pirozzoli, Bernardini, and Grasso (2010).

Both inlet and outlet sections use non-reflecting boundary conditions with the
characteristics method. The same implementation as for the simulations of the lam-
inar capillary flow is used and a detailed description can be found in Stein (2019).
Non-slip adiabatic boundary conditions are considered for the walls. The described
settings allow to compute a turbulent flow that is not decaying over time, as would
do an artificially periodic pipe. The flow state is stored in the recycling cross-section.
This data is then used as the reference state for the inlet conditions in the primary
simulation.

Settings of the primary simulation

The primary simulation consists of a pipe simulation of a capillary of 1.0 mm in
diameter and a length of 6.0 cm. This geometry is equivalent to the one considered
in Bernier et al. (2018). The boundary conditions at the inlet and outlet are non-
reflecting, as for the auxiliary simulation. The reference value at the outlet is fixed
and chosen as the corresponding laminar solution. It ensures that the expected pres-
sure gradient is sustained. At the inlet, the reference is set for each time step to the
values stored from the auxiliary simulation. It thus mimics a physical turbulent in-
let. Non-slip adiabatic boundary conditions are considered for the walls. Both the
auxiliary and the primary simulations use the same fixed time step. This results in
a CFL number of about 0.79, considering the equivalent grid spacing close to the
symmetry axis in the azimuthal direction and not the real grid spacing.

3.3.3 Results of the simulation

In the following, the results of the simulation are presented. It focuses on the
propagation of the turbulence through the domain as well as the consequences we
can learn from it, regarding the nature of the flow expected within the transfer capil-
lary. The definition of the different variables used throughout this section to describe
and analyze the turbulent flow are presented in the appendix section D.
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FIGURE 3.17: Snapshot of the gas temperature in the central part of
the capillary. Radial and axial dimensions are represented to scale.
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FIGURE 3.18: Snapshot of the axial velocity close to the outlet of the
capillary. Radial and axial dimensions are represented to scale.

General results

For the sake of illustration, we present in figures 3.17 and 3.18 a snapshot of the
results. They depict the temperature field in the central area of the capillary and the
axial velocity close to its outlet. The turbulence is present throughout the domain.
It tends to show that the flow can sustain a turbulent onset. This is not unexpected,
as the bulk Reynolds number in the flow reaches values close to 8,300 at the inlet,
that is well above the generally admitted threshold of 2,300 for pipe flows. Even if
this value drop along the capillary, it remains relatively large at the outlet (≈ 7,200)
However and as already mentioned, this threshold does not necessarily predict the
onset of turbulence and specific conditions, especially the strong pressure gradient
and their possible consequence on the turbulence behavior of the flow, have not been
precisely described to our knowledge. In the following, we thus focus on a closer
description of this flow.

An interesting parameter to evaluate the reliability of the results is the energy
spectrum. In standard configurations, it has been thoroughly studied and specific
relations could be computed to link the scale of the structures found in the flow and
the associated kinetic energy. This is described in the most cited work of Kolmogo-
roff (1941). Several hypotheses made for the precise description of the spectrum are
not compatible with the computation presented here. Especially it assumes isotropic
turbulence, which is a priori not ensured in a pipe flow, where the axial dimension
of the domain strongly differs from the others. Moreover, we consider compressible
equations, while the theory is derived for incompressible flows. It means that even if
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FIGURE 3.19: Average energy spectrum of the turbulent pipe com-
puted along the azimuthal direction.
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FIGURE 3.20: Average energy spectrum of the turbulent pipe com-
puted along the axial direction.
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FIGURE 3.21: Mean axial velocity component in the capillary domain.
The dashed line represents the form of the profile along the radial
direction, at the axial position where it touches the wall. Radial and

axial dimensions are not to scale.

this theory represents a good working basis, a total agreement of the present results
is not expected.

In the simulation, the kinetic energy is computed using the auto-correlation of
the cylindrical components of the velocity fluctuations, in the spectral domain. The
results are presented in figures 3.19 and 3.20, computed for the azimuthal and axial
directions, respectively. The spectra are averaged in the other directions of the do-
main, i.e. in axial and radial directions for the azimuthal spectra and the radial and
azimuthal directions for the axial spectra. While the axial direction of the system is
not periodic, the spectra are nevertheless considered to show a comparison. There-
fore, the data are padded with zeros to build a pseudo periodic signal. Furthermore,
the spectra are computed with the Cartesian components of the velocity vector, as
these components are considered in the formulation of the Navier-Stokes equations.

In both cases, the standard decrease anticipated by Kolmogorov has been rep-
resented as a comparison. In both directions considered, the energy spectra show
a transition corresponding to this prediction, followed by a steeper decrease for
greater wave numbers, i.e. for smaller structures.

Figures 3.21 and 3.22 represent the mean fields for the axial velocity component
and the temperature, respectively. These are analogous to figures 3.4 and 3.8 for the
laminar capillary, however with adiabatic wall boundary conditions for the turbu-
lent case and isothermal ones for the laminar case. One can especially see that the
evolution of the boundary layer within the turbulent pipe flow is less pronounced
than in the laminar case. This is likely linked to the different kind of inlet conditions.
The laminar case takes into account the development of the flow form a reservoir lo-
cated before the funnel-shaped inlet. In contrast, pseudo fully developed turbulent
data are directly set as a reference at the beginning of the straight part in the turbu-
lent case. It is thus not surprising that no significant evolution of the boundary layer
is observed. As expected, it also confirms that the boundary layer in the turbulent
case is significantly thinner than in the laminar one.

Another aspect of turbulent flows that has been precisely described is the be-
havior of the main velocity component in a boundary layer. The theory describes
different parts, or sublayers. A model describes the mean velocity in each of these
parts. This relies on a specific normalization, both for the distance from the wall and
the velocity, sometimes called wall units. The normalization of the velocity relies on
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FIGURE 3.22: Mean temperature in the capillary domain. The dashed
line represent the form of the profile along the radial direction, at the
axial position where it touches the wall. Radial and axial dimensions

are not to scale.
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a so-called friction velocity uτ, defined at each axial position by:

uτ =

√
τ̄zr,w

ρ̄w
, (3.44)

with τ̄zr,w the mean shear stress at the wall in the axial and radial direction and ρ̄w
the mean density at the wall. The component of the mean shear stress representing
the axial and azimuthal direction is not considered, as it is negligible compared to
the axial-radial component due to the axial symmetry of the system and the lack
of mean velocity in the azimuthal direction. The normalization of the distance to
the wall ỹ is based on this friction velocity by defining a viscous length scale ỹ∗ as
follows:

ỹ∗ =
ν̄w

uτ
, (3.45)

with ν̄w the mean kinematic viscosity at the wall. We can thus normalize both the
axial velocity and the distance to the wall, denoted with a + superscript, at dif-
ferent positions along the axis. These profiles are represented in figure 3.23. This
figure also represents the standard models typically found for conventional turbu-
lent boundary layers. Close to a wall, up to about ỹ+ ≈ 10 holds u+ = ỹ+. This part
is called the viscous sublayer. For greater values of ỹ+, the so-called law of the wall
applies, which defines a logarithmic dependency of the normalized axial velocity
with respect to the wall distance:

u+ =
1

0.41
ln ỹ+ + 5.2 , (3.46)

where the numerical parameters have been experimentally determined.
One can see that both profiles considered close to the inlet and outlet of the cap-

illary significantly differ from the other ones and the models. Close to the inlet, the
normalized velocity delivers values larger than expected by the model, while close
to the outlet, it is smaller than expected. In both cases, this is not surprising, as
boundary effects are expected. The hypothesis of a fully developed flow is debat-
able at the inlet. Further, the strong acceleration of the flow very close to the outlet
is a cause of divergence with the models. We showed in the laminar case that it in-
fluences the thickness of the boundary layer and this phenomenon is also expected
in the turbulent case.

Nevertheless, the other profiles along the capillary are remarkably close to each
other. This means that even if the typical conditions of a fully developed flow are
not met, due to the strong pressure gradient, this does not hinder the building of
similar profiles. However, a slight divergence between these profiles and the theory
can still be reported. This is however no specificity of the present simulation. For ex-
ample, results for sub and supersonic compressible flow without pressure gradient,
published by Modesti and Pirozzoli (2019), show a similar trend. In that publication,
no case presents the same parameters as the present ones, but one can still compare
it with the case P13 of that publication, where the Reynolds number of 6,362 is close
to the present one (from 7,200 to 8,300 along the pipe) and the bulk Mach number
of 1.3 greater (in the present simulation it varies between about 0.45 and 1.0). These
results show that the presence of a strong pressure gradient in the pipe flow does
not alter, a priori, the global behavior. However, we still have not considered the
intensity of the turbulence, which is now studied.
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FIGURE 3.24: Maximal root mean squared fluctuations along the axial
direction.

Turbulence evolution

We have seen that the general results produced by the computation are close to
the ones predicted by the theory of turbulent flows. This leads us to analyze more
closely the evolution of the turbulence along the pipe, as this is a feature of interest
to evaluate the turbulence affinity of the gas flow present in the considered trans-
fer capillary. Two different values are presented: the fluctuations themselves, and
normalized ones. We refer to the latter as turbulence intensities. Different reference
velocities can be used for the normalization: the friction velocity as defined in equa-
tion 3.44, the local mean axial velocity, or the maximal mean axial velocity, adapted
to each cross-section, respectively. The normalization allows us to take into account
the strong acceleration of the flow.

We first consider the axial evolution of the two quantities for each velocity com-
ponent. In figure 3.24, the absolute value of the root-mean-squared fluctuation is
represented. The maximal value is considered in each cross-section. Here again, the
areas close to the inlet and outlet present a different behavior. Excluding these, the
axial fluctuations present an almost steady increase along the pipe. The radial and
azimuthal fluctuations both present a very similar behavior, the radial fluctuations
only being slightly smaller. Close after the inlet, but for a longer period than the
axial component, these fluctuations slightly decrease. Then, they soon start to in-
crease, following the trend of the axial fluctuations until the outlet. This evolution is
the first indication that the simulated flow can sustain the turbulence set at its inlet.
However, a definitive answer can only be given by the turbulence intensity, because
of the strong acceleration.

This quantity is represented in figure 3.25, where the fluctuations are normalized
using the friction velocity according to equation 3.44. The axial intensity presents a
remarkable behavior. It is nearly constant throughout the capillary. Only the very
last sections before the outlet present a strong decrease of the intensity. A slight in-
crease is even observable at the beginning of the pipe, up to about z/Dcap ≈ 20.
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FIGURE 3.25: Turbulence intensity along the axial direction. The fluc-
tuations are normalized using the friction velocity according to equa-

tion 3.44.

Here again, both the radial and azimuthal intensities present a very similar pattern.
They steadily decrease along the capillary, but in a small proportion (about 15 %
between z/Dcap = 10 and z/Dcap = 50) compared to the increase of the mean ax-
ial velocity of 41 % between the same sections. The fact that the area close to the
outlet, where the pressure gradient and the acceleration become very large, shows
strongly decreasing intensities is a sign that turbulence cannot be sustained in all
conditions. However, the pressure gradient in the main part of the domain, even if
not negligible, remains compatible with the development of a turbulent flow.

We further analyze the turbulence intensities within a cross-section located in
the middle of the capillary, for z/Dcap = 30. This location is expected to avoid the
inlet and outlet effects. Furthermore, one can reasonably suppose, according to the
results presented in figure 3.23 and the axial evolution of the intensities, that this
is representative of the majority of the cross-sections in the capillary. The overall
behavior computed in the simulation does not strongly differ from experimental
results presented in Hinze (1975, p. 629), referring to classic pipe flows and first
published in Laufer (1954). However, the Reynolds number of these experimental
results (500,000) is significantly greater than the present one.

We first focus on the turbulence intensities normalized with the maximal mean
axial velocity, presented in figure 3.26 and compared to data presented in Hinze
(1975, pp. 724-728). One can see that all velocity components present a relatively
steep increase close to the wall, reach a maximum relatively close for the axial com-
ponent (at about 0.06 in the distance to the wall normalized with the diameter), a bit
farther for the azimuthal direction (about 0.12). The radial component is the last to
reach this maximum (about 0.22). All components then decrease and reach a local
minimum at the center of the pipe. Both azimuthal and radial components converge
towards the same value of about 2.6 %, while the axial component converges to-
wards 3.3 %. It shows that the assumption of isotropic turbulent is not respected in
this case, even in the vicinity of the pipe axis, in contrast to the experimental values.
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FIGURE 3.26: Turbulence intensity along the radial direction in the
central cross-section of the capillary. The fluctuations are normalized
using the maximal mean axial velocity in the cross-section and the
distance to the wall is normalized using the diameter (it thus varies

from 0 at the wall up to 1 at the centerline.)

It is a first sign that the strong pressure gradient might affect the distribution of the
turbulent intensity in a cross-section of the system.

Another difference shall be pointed out in the comparison with the experimental
results. In the later, no decrease in the turbulence intensity of the axial and azimuthal
components is visible close to the wall. This is likely since the boundary layer in
the experiment is significantly thinner than in the simulation. This hypothesis is
confirmed by the results of the original publication (Laufer 1954). It presents results
of another experiment with a Reynolds number of 50,000 along with 500,000. It is
then clear that the maxima of the turbulence intensities shift towards the center of
the pipe when the wall distance is simply normalized with the diameter. While these
distances remain significantly smaller for both experimental Reynolds numbers (≈
0.002 for Re = 500, 000 and ≈ 0.02 for Re = 50, 000), the results of the simulations
appear to be reasonable. This difference can however be overcome by considering
the normalization of the wall distance in wall units, as described in equation 3.45 and
presented in the following. Overall, however, the results of the simulation remain
very similar to the experimental ones and besides the slight divergences reported
here, the pressure gradient does not seem to strongly affect the properties of the
flow.

We further consider the turbulent intensity, depicted in figure 3.27, normalized
using the friction velocity, along the radial direction in the cross-section located in
the middle of the pipe. Only the area relatively close to the wall is depicted. In
wall units, the thickness of the boundary layer is then similar both in experiments
and in the simulation. For instance, the maximal turbulence intensity in the axial
direction is reached at y+ ≈ 15 in both cases. These maximal values are also similar
in both cases, reaching about 2.6. While the intensity of the other components is
smaller in both cases, with the radial intensity even smaller than the azimuthal ones,
the absolute values are slightly greater in the experiments than in the simulation,
with respectively 1.3 and 1.1 for the azimuthal component, and 1.0, resp. 0.85 for
the radial component. A definitive reason for this difference is not obvious, but two
parameters are likely to influence the results: the lower Reynolds number of the
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FIGURE 3.27: Turbulence intensity along the radial direction in the
central cross-section of the capillary. The fluctuations are normalized
using the friction velocity and the distance to the wall is normalized

using equation 3.45.

simulation, and again the fact that a strong pressure gradient is present.
A third normalization of the fluctuations is available to compute the intensity:

the local mean axial velocity. This is depicted in figure 3.28. Focusing on the ax-
ial component, the simulation delivers an intensity of about 35 % close to the wall,
in comparison to 30 % for the experiments. This maximum is reached close to the
wall, but a small decrease between the wall and the maximum is observed. This is
compatible with experiments, also presented in Hinze (1975), which show a similar
pattern. Besides these similarities, a major difference can be observed in the behavior
of the azimuthal intensity in the vicinity of the wall. While the experiments tend to
show convergence towards zero intensity in this region, the results of the simulation
present a divergence. It does not mean that the fluctuations diverge in this area. This
occurs because both azimuthal fluctuations and local mean axial velocity decrease
towards zero, but the former slower than the latter. The difference in the Reynolds
numbers between the experiments and the simulation is likely to be the cause of
this difference. This supposes that the thickness of the boundary layer, considered
in the mean axial velocity, is more affected than the thickness of the effects visible
in the azimuthal fluctuations. Furthermore, similar profiles of the fluctuations are
reported in direct numerical simulations presented in Friedrich (2007). In these sim-
ulations, no pressure gradient is considered and the Mach number of 1.5 is larger
than the system considered here. However, the Reynolds number of 6830 is closer
to the present simulation than the experimental results. In Friedrich’s simulation,
the fluctuations of the azimuthal component close to the wall, normalized with the
mean local axial velocity, also increase and reach values close to 0.15, very similar to
the results reported here. This means that here again, the strong pressure gradient
does not seem to significantly affect the properties of the turbulent flow.

Another variable worth considering is the turbulent stress tensor, also called Rey-

nolds stress tensor. It is defined as τ̃ij = ρ̄ũ′′i u′′j and describes the contribution of
the velocity fluctuations to the forces applied to flow particles. Four components,
normalized with the mean wall shear stress, are represented in figure 3.29. All de-
picted components converge towards zero close to the wall. Further away, the dou-
ble correlation of the axial component is dominant, reaching values slightly larger
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FIGURE 3.28: Turbulence intensity along the radial direction in the
central cross-section of the capillary. The fluctuations are normalized
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than seven times the mean wall shear stress for a wall distance of about 15. The
other correlations reach maxima close to the wall shear stress, and the maximum is
reached further away from the wall, around y+ ≈ 40 for the correlation of the radial
and axial components and the double correlation of the azimuthal component. The
double correlation of the radial component, which presents the smallest amplitude,
reaches its maximum for y+ ≈ 65. It is also worth noting that only the correlation
of the radial and axial components is negative, while the others are positive. Again,
in this case, the profiles are very similar to others presented in Modesti and Piroz-
zoli (2019). No direct quantitative comparison is possible, as the parameters of the
different cases presented in the publication do not correspond to the present case.
However, the qualitative comparison clearly shows that the strong pressure gradi-
ent does not significantly affect the Reynolds stresses.

Consequences for the nature of the flow expected in the capillary

It comes out of these results that turbulence can be sustained within capillary
flows. That means that one cannot exclude the occurrence of a turbulent regime.
The simulation shows that a turbulent flow set at the inlet of the capillary expand
throughout the domain. However, the question remains to know what conditions
are applied at the inlet of a capillary in a real device. It cannot be answered on a
global basis, though, as many parameters are potentially involved. No device can
create a perfect turbulent pipe flow as used in the computation and it represents a
limit case. At the other end of the spectrum, the laminar case previously reported
represents another limit case of stable flow. However, an obstacle located in front
of the capillary can well act as a source of perturbation. The present results tend to
show that this perturbation could evolve in a turbulent flow.

We should add at this stage that the Reynolds numbers considered in the simula-
tion are relatively large compared to typical capillaries, which tend to have smaller
diameters and thus proportionally smaller Reynolds numbers. Thus, the Reynolds
numbers presented here represent an upper limit of what is typically found in com-
mercial devices, where capillary of 0.5 mm can be considered as large. Nevertheless,
transitory phenomena are not unlikely due to the perturbations necessarily pro-
duced upstream of the capillary. The origin of these perturbations is very diverse
but some elements can be cited in the case of a typical mass spectrometer. First, the
ESI source can be involved. Depending on the device, this source may be located
on the same axis as the capillary and then necessarily creating perturbations into the
flow. Furthermore, some devices use a buffer gas, intended to support the desol-
vation of the droplets created at the source. This additional gas flow may as well
produce perturbations of the main flow entering the capillary. Also, the capillary
itself, and more precisely its inner shape, can create perturbations, e.g. if the shape
is not exactly cylindrical, or the surface rough. The edge located at the entrance of
the capillary is an additional element likely to create perturbations.

3.4 Results of the gas flow in the ion funnel

We now focus on the next stage of a classic mass spectrometry device: the ion
funnel. The gas flow in this chamber undergoes the first pumping, lowering the
pressure to values around 2 to 3 orders of magnitudes lower than the atmospheric
pressure present at the other side of the capillary. The ultimate goal is to extract the
ions from the underlying gas phase to perform the intended analysis in the best con-
ditions possible. The ion funnel acts as a first, rough separation between air and ions.
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While the gas is pumped out, the ions are focused towards the axis of the system to
be transferred into the next chamber, where further similar operations at lower pres-
sure levels can occur. In this section we describe the gas flow found in such a device
using the Navier-Stokes equations, first focusing on traditional design and then ex-
ploring a possible evolution. It has been performed using an open-source program
developed in the department of numerical fluid dynamics at Technische Universität
Berlin and called WABBIT3. It can be used for adaptive multi-resolution simulations.
This feature has not been used in this work, as it makes use of axisymmetric equa-
tions and boundary conditions for which the multi-resolution has not been fully
tested yet.

In both cases, the geometry is fixed and enforced by the volume penalization
method described in section 3.1.4. The temperature of the objects present in the
domain is set to the room temperature T0 = 298.15 K. Three boundary conditions are
not represented by a wall and need a specific setting: the inlet, which corresponds to
the end of the capillary, the outlet, located at the end of the funnel, which allows the
ions to enter the next chamber, and the pump. These conditions are enforced using
sponge terms as described in section 3.1.4. This technique has been developed and
validated in Krah (2018).

3.4.1 Setting of the pressure level

The pressure level in the chamber is determined by the quantity of gas pumped
out of the system. In the simulations, this is ruled by the velocity of the gas leaving
the system and enforced via a sponge area. This velocity is estimated considering
the quantity of gas introduced in the system through the capillary, the pressure, and
temperature estimated at the pump and assuming that the quantity of gas transmit-
ted in the next chamber is negligible compared to the other quantities.

The quantity of gas coming from the capillary is associated with the mass flow
ṁin. It can be estimated using the cross-section area of the capillary Ain and mean
values of the density ρin and velocity vin:

ṁin = Ainρinvin . (3.47)

These values are known from the capillary simulations.
The mass flow at the pump can be estimated the same way:

ṁpump = Apumpρpumpvpump . (3.48)

Apump is the area through which the gas is pumped out and is known from the
geometry; vpump is the velocity we are looking for to set up the boundary conditions;
ρpump is an estimation of the density of the pumped gas. This is a priori unknown.
We use the ideal gas law to transform it, as pressure and temperature can be easier
estimated. The pressure ppump is a parameter of the simulation and is chosen as the
surrounding pressure in the chamber. The temperature Tpump is chosen as 298.15 K,
i.e. the room temperature. It follows:

ṁpump = Apumpvpump
ppump

RsTpump
, (3.49)

with Rs the specific ideal gas constant for air.

3. The source code of WABBIT can be found there: https://github.com/adaptive-cfd/WABBIT

https://github.com/adaptive-cfd/WABBIT
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Supposing that both mass flows are equal, one gets an expression for the gas
velocity at the pump outlet:

vpump = ρin
RsTpump

ppump

Ain

Apump
vin . (3.50)

The system is considered axially symmetric. As a consequence, the area of the pump
outlet is not the real area in the physical device but the equivalent one, considered on
the entire perimeter of the chamber. With rpump the distance between the symmetry
axis and the pump outlet (which is equivalent to Dchb/2) and lpump the length of this
outlet in the axial direction, it follows Apump = 2π rpump lpump. The area of the inlet
is simply expressed with the capillary diameter Dcap. The final expression of the gas
velocity at the pump outlet is:

vpump = ρin
RsTpump

ppump

D2
cap

8 rpump lpump
vin . (3.51)

Because the pumping area used in this estimation does no match the pumping area
of a real device, this also affects the value derived here. Thus, it does not represent
the physical velocity that can be found in reality. It should however ensure that the
global state within the chamber is equivalent to the one found in the device.

Furthermore, this estimation presents some uncertainties, including the temper-
ature of the gas at the pump outlet and the quantity transferred to the next cham-
ber which is not taken into account. This means that the estimation given in equa-
tion 3.51 may have to be adapted to effectively reach the expected pressure in the
chamber.

The velocity is not the usual setting used to define the pressure level in typical
conditions. The volume flow of the pump V̇pump is the classic value given. It can be
gained by multiplying the velocity by the fictive pumping area considered:

V̇pump = vpump Apump = 2π vpumprpump lpump . (3.52)

This value would however not directly fit the specification of the pump connected
to the chamber. Non negligible losses may indeed occur between the chamber and
the pump itself.

3.4.2 General settings

In this section, we describe general parameters used for all flow simulations of
the ion funnel.

Capillary outlet

A 1.0 mm diameter capillary is considered. As references for the inlet, we use
values of a 6.0 cm long capillary with adiabatic, non-slip wall boundary wall condi-
tions. The values from the capillary simulation are not directly enforced. An average
over the section is performed and the resulting density ρIF,in and pressure pIF,in are
directly set as references for the sponge terms. The velocity profile is considered only
in the axial direction (i.e. the radial component is neglected and set to zero, which is
close to the solution previously computed). An artificial profile is used for the axial
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velocity, following the settings described in Krah (2018):

uz (r) =
uIF,in

2

(
1− tanh

(
π

2r− Dcap + δ

δ

))
. (3.53)

The form factor δ is defined as δ = 0.025 Dcap. The inlet conditions are thus not
exactly the same as found in the capillary simulation but expected close enough to
deliver results similar to the ones of a real device.

Transition towards next chamber

At the other end of the funnel, another sponge area is defined to mimic the strong
pressure decrease expected in the following chamber. This is realized by setting a
specific pressure, low enough to reproduce the expected acceleration. This value is
given in the parameters of the simulation. The density is also penalized. The en-
forced value is ruled by a condition on the temperature: the gas should have the
same temperature as the surrounding walls, that is 298.15 K. The velocity compo-
nents, however, are not penalized.

Pumping area

The pumping occurs in the area located at the upper right corner of the domain.
As described in section 3.4.1, this is used to define the pressure level in the funnel.
The corresponding implementation occurs in two stages:

• in a first sponge area, located in the direct vicinity of the physical domain, the
velocity defined in section 3.4.1 to set the pressure is enforced. Density and
pressure are not penalized;

• in a second sponge area, located between the first sponge area and the wall,
an energy and mass sink is implemented to cancel the flow accumulation that
would otherwise result from the first stage. The velocity components are not
penalized.

The parameters of the first stage are directly defined by the pump velocity and the
local values of the field. For the second stage, references for the density and pressure
are defined. Their values are actualized each time step to correspond to the mean
density and pressure present in the entire domain. This allows an efficient cancel-
lation of the accumulated flow without creating an area with values that strongly
differ from the rest of the computation.

Numerical treatments

Fourth-order central schemes are used for the spatial derivatives. Converged re-
sults are expected and one lets the simulation run until the mean pressure and den-
sity in the domain reach constant values. The time integration is performed using
a Runger-Kutta-Chebyshev scheme with four steps (see Sommeijer, Shampine, and
Verwer (1998)). It allows us to choose a time step larger than the limit theoretically
set by the penalization constant.

The results are treated after each time step using the methodology described
in Bogey, de Cacqueray, and Bailly (2009). The goal of this filter is to capture the
shock structures expected in supersonic flows. It solves the issue often occurring that
the traditional thickness of the shocks is not well resolved on the computational grid.
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Background pressure 1 mbar 3 mbar

Points - axial direction 2048 2048
Points - radial direction 2048 2048
Length - axial direction (m) 1.786× 10−1 1.786× 10−1

Length - radial direction (m) 5.555× 10−2 5.555× 10−2

Time step (s) 9.0× 10−9 9.0× 10−9

Penalization constant 5.0× 10−10 5.0× 10−10

Sponge constant 5.0× 10−8 5.0× 10−8

Pump velocity (m · s−1) 8.5 2.2
Inlet axial velocity (m · s−1) 395 395
Inlet radial velocity (m · s−1) 0 0
Inlet pressure (Pa) 3.4542× 104 3.4542× 104

Inlet density (kg ·m−3) 5.087× 10−1 5.087× 10−1

Outlet pressure (Pa) 50 50
Objects temperature (K) 298.15 298.15

TABLE 3.3: Parameters used to compute the gas flow of the ion funnel
- classic design.

Adapting the resolution to these structures would however lead to a prohibitive
number of points in the grid. It selectively treats the solution of the Navier-Stokes
equations only in the areas where the gradients are too steep to keep the global struc-
ture, even if the intrinsic grid cells are too coarse. Furthermore, the implementation
is conservative, such that the energy of the system remains unchanged by this treat-
ment.

3.4.3 Traditional conception

The traditional conception considered here is the design described in section 2.1.2.
The simulation regarding this design have been first developed in Krah (2018), and
further extended in Kyriakidis (2019), with slight modifications regarding the com-
putation of the dynamic viscosity. The simulations from which the results are pre-
sented have been conducted in collaboration with Loukas Kyriakidis.

Two different pressure levels in the chamber have been considered: 1 mbar and
3 mbar. The corresponding parameters are listed in table 3.3.

General results

We first show a general overview of the results produced for both pressure levels.
Figures 3.30 and 3.31 present the velocity magnitude with arrows describing the di-
rection of the flow. The length of the arrows is the same for all positions considered.
The areas where immersed objects are present are not represented.

It shows that in both cases, a Mach disk is present after the capillary, where a
shock-wave is observed in the flow variables. Along the symmetry axis, pressure,
density, and velocity (in the axial direction) present a jump in this area. This pattern
is well described in Franquet et al. (2015) and corresponds to a so-called very highly
underexpanded jet. Its size is affected by the pressure level though. The lower pres-
sure induces a larger disk, located further away from the capillary outlet within the
ion funnel. This is coherent with the estimations done for the position and size of
the Mach disk from experimental data, as reported in Franquet et al. (2015). The
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LMD DMD

Simulation - 100 Pa 14.6 mm 15.0 mm
Prediction - 100 Pa 15.0 mm 7.43 mm

Simulation - 300 Pa 11.0 mm 7.87 mm
Prediction - 300 Pa 10.6 mm 5.08 mm

TABLE 3.4: Comparison of the position and size of the Mach disk
in the simulation and prediction based on experimental data and re-

ported in Franquet et al. (2015).

quantitative results are provided in table 3.4, where LMD is the distance between the
outlet of the capillary and the Mach disk and DMD corresponds to the diameter of
the Mach disk. The predictions are computed using the following formula:

LMD = 0.69DcapMe
√

γηe , (3.54)
DMD = 0.612Dcap (

√
ηe − 1.0) , (3.55)

with Dcap the diameter of the capillary, Me the Mach number at the capillary exit, γ
the adiabatic index for air, and ηe the pressure ratio between the capillary exit and
the chamber. The pressure ratio considered does not directly use the pressure levels
of 100 Pa and 300 Pa, as this corresponds to the pressure outside of the electrodes.
We rather use 200 Pa and 400 Pa, respectively, which correspond to mean pressure
levels inside the funnel cavity after the Mach disk. The results for the position of
the disk are very close to the estimations. However, the simulated diameters seem
significantly greater than the prediction. This is certainly caused by the fact that the
domain in which the gas flows is rather complicated. The first aspect is the shape
of the capillary. The pattern of the shock structure interacts with the external edge
of the capillary. Further, the structure coming out of the Mach disk interacts with
the electrodes of the ion funnel. It is thus not surprising that the simulated diameter
does not correspond to the prediction.

The Reynolds number has been represented in figures 3.32 and 3.33 for both
background pressure levels. It appears that the values remain in a significant part of
the domain well below 1000 (the highest represented), strongly hinting to laminar
conditions in the first pumping chamber. The only higher values are located close to
the capillary exit and reflect the conditions described in the previous sections. The
present results show however that the Reynolds values strongly decrease once in
the pumping chamber. It means that the flow there is expected to be laminar, even
if the capillary flow is turbulent. This also justifies the use of a two-dimensional
computation model, in the limits explained in the following.

Limits of the model

Because of the very low pressure and densities found in the domain, the con-
tinuity approximation necessary to apply the Navier-Stokes equations may not be
fulfilled in the entire domain. This is an intrinsic issue of the model used, which
cannot be completely fixed within the frame of the tools used. The only solution
would be to consider another method to simulate rarefied gas flows. In some other
work (Zhou and Ouyang 2016), especially because of a very large span of pressure
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levels considered, a hybrid method combining the Navier-Stokes equation for high-
pressure regions and a direct simulation Monte-Carlo (DSMC) for low-pressure re-
gions was developed. In the present work, the expected pressure levels are not so
low and such methodology was not considered. We show, however, to which extent
the results respect the hypotheses bound to the model used.

The criterion to consider the limit of the continuum assumption is the Knudsen
number Kn. It is defined as the ratio between the mean free path of the gas molecules
λ and a characteristic length of the system L. This criterion ensures that each gas
molecule encounters enough collisions during it trajectory so that the behavior of the
gas is well approximated by macroscopic considerations and the individual molecu-
les do not influence the global results.

One considers that the assumption is valid when the Knudsen number is smaller
than 0.1, as described in Shen (2006, p. 2). This means that the Navier-Stokes equa-
tions may not be valid for values of Kn larger than 0.1. For values between 0.1 and
0.01, the Navier-Stokes may be used but with adapted parameters, especially for the
boundary conditions. Below the threshold of 0.01, the ordinary Navier-Stokes equa-
tions can be used. The choice of the characteristic length L is however critical and
not obvious in a complex system such as the ion funnel. Here we use a local criterion
defining a comparison length based on the density gradient, following Shen (2006):

L =
ρ

‖∇ρ‖ , (3.56)

where ‖∇ρ‖ represents the magnitude of the gradient of the density.
The mean free path λ can be relatively easily computed for ideal gases. In Bird,

Stewart, and Lightfoot (2001, section 1.4) e.g., it reads:

λ = 3
µ

ρ

√
π

8RsT
. (3.57)

The Knudsen number thus follows:

Kn = 3
µ

ρ2

√
π

8RsT
‖∇ρ‖ . (3.58)

This is presented for the two levels of pressure considered in figures 3.34 and 3.35.
It shows that there are areas where the continuum assumption is not valid anymore.
This is especially the case close to the shock-wave fronts after the expansion of the
flow resulting from the capillary, as well as close to the outlet leading to the follow-
ing chamber at the end of the funnel. The latter is however not as critical, as it is
already included in the sponge area used to enforce the conditions representing the
lower pressure level of the next chamber. It means that by definition this area does
not represents a physical state.

The lower pressure level in figure 3.34 is also visible by the fact that the Knudsen
number between the electrodes and the pump outlet is visibly higher than in the case
of a pressure level of 300 Pa as represented in figure 3.35. In both cases, however,
it remains below the threshold of 0.01 between the electrodes, which means that no
specific adaptation of the Navier-Stokes equation is necessary a priori. Nevertheless,
this criterion clearly shows that the gas flow simulations in the ion funnel bring the
model to its limits.

Furthermore, the geometry considered here remains a simplification compared
to the real device. Especially the assumption of an axially symmetric system is only
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Background pressure 1.4 mbar

Points - axial direction (-) 2048
Points - radial direction (-) 2048
Length - axial direction (m) 1.662× 10−1

Length - radial direction (m) 4.40× 10−2

Time step (s) 1.0× 10−9

Penalization constant (1) 7.5× 10−9

Sponge constant (1) 1.0× 10−7

Pump velocity (m · s−1) 8.08
Inlet axial velocity (m · s−1) 395
Inlet radial velocity (m · s−1) 0
Inlet pressure (Pa) 3.4542× 104

Inlet density (kg ·m−3) 5.087× 10−1

Outlet pressure (Pa) 30
Objects temperature (K) 298.15

TABLE 3.5: Parameters used to compute the gas flow of the ion funnel
- evolution of the design.

partially correct. This condition is well fulfilled in the cavity, where the ions are
supposed to travel through. However, the pumping does not occur all around the
domain, as modeled here, but is limited to a few specific areas. Only a fully three-
dimensional simulation could take this into account. Even then, the electric con-
nections present in the chamber to set the potential of the electrodes as well as the
fixings to put them in place would not be properly considered, making such a sim-
ulation prohibitively time expensive. Thus, the present results should be carefully
considered, when compared to experimental data, as they only deliver an insight
into the gas flow occurring in the first pumping chamber.

3.4.4 Possible evolution of the geometry

A possible evolution of the design, described in section 2.1.3 is also considered.
The pressure level in the chamber is about 1.4 mbar, and the corresponding param-
eters are listed in table 3.5. It does not reach the same level as the simulation using
the classic design but still represents a typical value that could be found in usual op-
erating conditions. Furthermore, the results presented here are not fully converged.
The simulation requires lots of computing time on the in-house cluster used for this
purpose. However, the general features are not significantly evolving anymore and
the description presented here is expected to fairly represent a fully converged case.

General results

The general pattern of the flow is presented in figure 3.36. It displays a different
structure than the traditional design. First, no Mach disk is visible but a diamond
shock structure. This is typical for moderately expanded jets, as described in Fran-
quet et al. (2015). This difference can be explained by the presence of the diverging
outlet after the capillary. It allows the gas flow to adapt before effectively entering
the chamber, reaching about 580 Pa at the end of the structure. This leads to a sig-
nificantly smaller pressure ratio between the outlet and the ambient conditions in
the funnel area and thus a different kind of expansion. The pressure ratio further
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FIGURE 3.38: Velocity magnitude and flow direction in the vicinity of
the recirculation zone.

impacts the size of the shock cells, a higher ratio bringing larger cells. Different
operating conditions may thus lead to different numbers of cells.

The analysis of the Reynolds number within the system also shows that this is
larger than for the classic design. The results are presented in figure 3.37. Still using
the diameter of the capillary, 1.0 mm, as reference length, some parts of the shock cell
structure cross the threshold of 1,000. Also, the choice of this characteristic length
may be questionable in this case, as the diameter of the capillary outlet is also a le-
gitimate candidate and would further increase the values. It is thus not completely
excluded that turbulent conditions occur. Nevertheless, the laminar conditions de-
picted here still present an accurate picture of the conditions one might expect in
such systems, as significant areas of the domain do have rather low values of the
Reynolds number.

A main difference with the traditional design is that a large part of the mass flow
pumped out goes between the last few electrodes. We understand this behavior by
two different factors. First, the structure of the shock cell keeps the main stream
relatively close to the axis, compared to the structure observed with the previous
design. The interaction with the electrodes thus only occurs for a smaller diameter
of the cavity. Second, the parabolic shape of the cavity implies that the electrodes
reach small inner diameters further down the axial dimension. The combination
of these factors implies that the interaction between the jet flow and the electrodes
occurs very close to the outlet.

Thus, it appears that these conditions are not necessarily optimal for the trans-
mission of the ions. It indeed means that the area where the ions should be colli-
mated by the electric fields is also the area where one would expect the strongest
radial driving forces due to the gas flow. Furthermore, and again in contrast with
the classic design, no significant vortex structure appears in the core of the cavity. It
can be understood as a consequence of the absence of a Mach disk. This structure
is followed by a recirculation zone in the considered cases involving the classic de-
sign but it cannot occur in the present case. Nevertheless, another pattern can be
observed with this evolution of the design. Indeed, a backward flow occurs in the
final section of the funnel in the vicinity of the tips of the electrodes. We interpret
this structure as a reflection of part of the flow against some of the last electrodes.
The parabolic form of the cavity and thus the steep decrease of the inner radius of
the electrodes further induces the recirculation. First, it implies that the cross-section
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of the electrodes directly exposed to the incoming flow is relatively large, compared
to the linear decrease of the inner radius in the traditional design. Second, it cre-
ates a hollow space between the core of the flow and the electrodes in which such
recirculation can occur. A close-up illustration of this phenomenon is presented in
figure 3.38. The distribution of the axial velocity along the cavity is also problematic.
Large values are indeed found in a very large part of the domain and only strongly
decreases close to the transition into the next chamber. That means a priori that the
ions transported through this flow would keep a significant velocity throughout the
chamber before being transmitted.

This behavior remains to be tested with simulations involving such ions. If con-
firmed, it would however go against a common practice that consists in thermalizing
the ions previously created. This procedure attempts to homogenize the different
kinetic and thermal energies of the analyte ions, to create favorable conditions for
the following steps of the analysis. In the traditional design, the Mach disk plays
this role. Between it and the next chamber, it allows for relatively calm conditions,
where the velocity of the ions is reduced and leveled. Some designs also integrate a
so-called jet disrupter. This is a small electrode, fixed in the center of the domain and
for which a specific electric potential (DC) can also be set. The description of such a
design can be found e.g. in Kelly et al. (2010). It proved to be helpful to improve the
operative conditions of the ion funnel, even if the detailed mechanisms involved are
not well explained so far. It is likely though to help the formation of the buffer zone
that is present in the traditional design.

Continuity approximation

Here again, we check whether the continuity approximation necessary to apply
the Navier-Stokes equation is still valid. Figure 3.39 presents the Knudsen number
computed with the same method as used for the traditional design in section 3.4.3.

Only few regions do not respect the condition of a Knudsen number lower than
10−1: only the area close to the tip of the capillary outlet shows values larger than
this threshold. Further, the regions where specific slip boundary conditions should
be applied are the ones around the last electrodes before the funnel outlet, around
their edges. That means that the gas flow here may be slightly underestimated,
given that the enforced non-slip conditions are not perfect. We still consider that the
results represent reasonably well the real gas flow and that this should not have a
significant influence on the results of the trajectory of the ions.
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Chapter 4

Electric fields

Alongside the gas flow, electric fields play a significant role in the trajectory of
the ions. Given the intrinsic charge of the particles considered, different effects are at
stake. First, this leads to interaction among them. This is referred to as space charge
effects (SCE) and is a significant part of the electric effects considered. Further, ex-
ternal electric fields can be applied in the system. It is the case at almost all stages,
from the production of charges droplets in the electrospray ionization to the analy-
sis of the species present (sometimes combined with magnetic fields) and of course
the ion funnel specifically studied here. Both aspects, SCE and external fields, and
their integration in the simulation of the trajectory of the ions are presented in this
chapter.

4.1 Interaction between the particles

4.1.1 Electric field and potential theory

Since the particles considered in the present work are charged, electric forces be-
tween them should be taken into account. First assuming that these particles are
fixed in the domain, an attraction force between ions of opposite charge and a repul-
sion force between ions of the same charge are given by Coulomb’s law. To simplify
the system, we consider only two distinct particles as point charges. The force of
particle 1 applied on particle 2, ~F1→2, is expressed as follows:

~F1→2 = k
q1 q2

r2
1→2

~e1→2 , (4.1)

where k is the Coulomb constant, q1 and q2 the respective charges of particles 1
and 2, ~e2→1 the unit vector pointing from particle 2 towards particle 1 and r2→1 the
distance between both particles. This formula, as well as all other ones presented in
this section, can be found e.g. in Purcell (1965, chapters 1 and 2).

Applying the superposition principle and in the presence of n particles, the re-
sulting force on particle i is

~F→i = ∑
16j6n

j 6=i

k
qi qj

r2
i→j

~ei→j . (4.2)

From this expression, one can derive the concept of the electric field. One considers
another set of n charged particles. The electric field is defined at any position in
space expect where the particles are located and it describes the effect caused by the
set of particles. From this field, and for a given position, the force applied to a test
particle is gained by multiplying with the test charge. The charge and position of
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the set are denoted by qj and~rj, respectively and the test particle has a charge q and
its position is represented by~r. The electric field ~E at position~r is given by

~E (~r) =
n

∑
j=1

k qj
~rj −~r∣∣~rj −~r

∣∣3 . (4.3)

The resulting force ~F applied on the test particle is then:

~F (~r) = q ~E (~r) . (4.4)

It can be shown that the resulting force, e.g. for only one set of fixed particles and by
extension for an arbitrary set, is conservative and can be expressed as the gradient
of a scalar field V, called electric potential. The potential is expressed as follows:

V (~r) =
n

∑
j=1

k qj∣∣~rj −~r
∣∣ . (4.5)

The electric field is then given by:

~E (~r) = −∇V (~r) . (4.6)

4.1.2 Computation of the interaction

Equations 4.3 and 4.5 imply that the computation of the electric field and/or po-
tential of a set of n particles at a given position requires a number of operations grow-
ing with n. Thus, computing the resulting force on each particle of this set induced
by the presence of the other grows with n2.1 For a large number of particles con-
sidered, the simple computation of this interaction can become very expensive. Our
goal is to compute the interaction between ions, which are present in large amounts,
even if the electric currents considered overall remain small. For example, a current
of 10 nA represents more than 60,000 singly charged particles entering the domain
during the period of an ion funnel operating with a frequency of 1 MHz. It means
that the computational costs could become prohibitive to simulate the systems we
want to consider. Thus, two strategies have been used to overcome this issue.

Fast Multipole Method (FMM)

The first strategy consists in using a specific algorithm that delivers an approxi-
mation of both the electric field and potential. This method has been first described
in Cheng, Greengard, and Rokhlin (1999) and we only give a summary of the method
in the following section. The basic idea is that the domain is divided into different
sub-domains. In each sub-domain, a multipole expansion can be done. The field
generated by the charges present in the sub-domain is approximated with a cho-
sen precision outside of this domain. Using the same principle, the field created
by charges outside a given sub-domain can be approximated inside the domain.
This is called a local expansion. Translations of the different transformations can be
defined, and this leads to an algorithm that expresses the field at any point in the
domain, while the complexity of the computation only grows with the number on

1. This is n · (n− 1) as there are n− 1 other particles to consider for each of the n particles. When
n is large enough, n gets negligible compared to n2 and only the latter remains relevant for this rough
estimation.
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charges considered n (to be compared with n2 for a direction computation). While
the overhead induced by this algorithm, which also increases with the precision re-
quired, is high, the better scaling means that this method is well suited to compute
the interaction between the charged particles when their number is large, as this is
the case in the systems that we consider.

The algorithm being relatively complex to implement efficiently, we use an im-
plementation developed by a cooperation of German research groups and called
ScaFaCoS (Scalable Fast Coulomb Solver) further described in Arnold et al. (2013).
The library is written in C with interfaces in Fortran and offers different methods to
compute electrostatic and gravitational fields, including the aforementioned FMM.2

Artificial charge factor

Besides the usage of an efficient algorithm to compute the interaction between
the ions, one can further reduce the computational effort by using an artificial charge
factor. The goal is to compute the Coulombic electric field by using a lower number
of ions than required to reproduce the expected electric currents. This is achieved
by multiplying the electric charge of the ions, when computing the field, with an
arbitrary factor. It means that each particle considered for the computation of the
field stands for several ones of the simulated species. The results of the simplifica-
tion can be tested against this parameter. When the field is considered far from the
charge holders, this modification should not have any significant influence. How-
ever, it could have some effects on the interaction of particles that are located close
to each other. One can then expect higher side effects due to this simplification when
considering higher concentrations of particles.

The artificial charge factor is only used to define the electric currents that we
set, e.g. in the setting of the incoming ions, and the computation of the Coulom-
bic electric field. However, the motion of a particular ion is performed using the
real charge prescribed by the considered species, independently of the cause of the
movement considered (interaction, external field, etc.). A validation of this behavior
is presented in appendix G.

4.2 External electric fields

In many aspects of the mass spectrometry devices considered throughout this
work, external electric fields play a significant role. While the production of the ions
using electrospray ionization (ESI) has not been modeled, the electric fields used to
guide the ions in the following chambers are essential to simulate their trajectory.
Therefore, we focus in this section on the model considered and its implementation.

4.2.1 Properties of the electric fields considered

The capillary part of the system is not directly concerned by the external fields.
It is an enclosed domain where all surrounding surfaces but inlet and outlet are
set at the same potential. If one excludes the space charge effects, taken into account
separately, and neglecting the effects at both ends of the capillary, no strong influence
of external fields is expected.

2. The library is further described at this address: http://www.scafacos.de/ and the latest imple-
mentation is available here: https://github.com/scafacos/scafacos.

http://www.scafacos.de/
https://github.com/scafacos/scafacos
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real trajectory

mean trajectory

FIGURE 4.1: Real trajectory (red) and approximated trajectory (blue)
as seen in the model of the effective electric field.

In the first pumping chamber, where the ion funnel is located, external electric
fields are extensively used to focus the ions towards the central axis of the system
and to transport them towards the next chamber. Two kinds of fields are typically
used: a DC (for direct current), time-independent field resulting from a potential
gradient which participates in pushing the ions towards the next chamber and thus
basically creating a force in the axial direction of the domain. These effects add up
to the driving by the gas flow.

The other kind of field is an RF (for radio-frequency) field, which uses a harmonic
time dependency and the specific geometry of the electrodes present in the chamber
to create a force in the radial direction, towards the central axis of the system. This
second force counters the driving force of the gas flow caused by the pump.

4.2.2 Assumptions regarding the RF-field

The classic model

The principle of the RF-field typically found in ion funnels is to use a harmonic
field. Because of its non-homogeneity, it induces, alongside the expected oscillations,
an effective force towards the central axis. A model can be derived for such fields.
A clear review of this derivation is found in Gerlich (1992, pp. 10-26). It delivers an
effective field, that is a field constant in time but able to reproduce the effective force
of the harmonic field. It thus describes the effective trajectory of the particles, leaving
the oscillations out. This relies on several assumptions. Especially, the amplitude of
the oscillations should be small enough. Also, the instantaneous electric field should
vary smoothly enough in the domain, such that it can be correctly approximated by
a first-order expansion.

One considers an oscillating electric field, that can be described as follows:

~ERF (~x, t) = ~E0 (~x) · cos (ωt) . (4.7)

~E0 describes the form of the field over the domain that drives the effective force and
f = ω

2π is the frequency of the considered field. Considering a charged particle of
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mass m and charge q in a vacuum moving within this field, one can show that its
time-averaged trajectory can be described by an effective force:

~Feff = −
q2

4mω2∇
(
~E0 · ~E0

)
. (4.8)

We invite the reader to refer to Gerlich (1992, pp. 12-17) for further details regarding
the steps leading to this formula and the assumptions met. It basically assumes
that the oscillations in the trajectory of the particle can be neglected and derives the
effective force that describes the average trajectory of the particle, as schematically
represented in figure 4.1. It appears that this force is expressed as the gradient of
a scalar field. It is thus conservative and a corresponding potential can be defined.
To keep the similarity with an electric field ~Eeff, one keeps the form ~Feff = q ~Eeff. It
follows

~Eeff = −∇Veff (4.9)

with the effective electric potential

Veff =
q

4mω2
~E0 · ~E0 . (4.10)

The effective field does not only depend on the position via the field ~E0 but also
on the species considered via charge and mass. This model has been widely used
in connection with the ion funnel and was discussed in further publications, e.g.
in Kelly et al. (2010). To ensure the validity of this approximation, a dedicated crite-
rion, the adiabaticity, has been defined. It takes into account the assumptions men-
tioned before. First tests using an elementary gas flow and specific conditions for
the ion funnel operation parameters, described in Kyriakidis (2019) show however
that these assumptions might be broken. This launched the reflection to develop
new strategies to simulate systems involving the different effects encountered. The
straightforward path is to avoid modeling the effects of the RF-field and to use a
time discretization fine enough to resolve a period of such fields. A second option
consists in integrating, in the model, the fact that the ions are not in a vacuum but in
gas. This is presented in the next section.

Considering the underlying gas flow

Besides the validity of the assumptions made to derive the classic model of the
effective electric field, the very presence of the underlying gas flow has been ne-
glected. Everything is derived as if the ions were moving in a vacuum. While fully
understandable in a first approach of the problem, given the low gas density reached
in comparison with normal conditions, this assumption might hide some effects or
at least alter the form of the effective field derived. In section 2.2, the equation of
motion considered for the ions integrates adapted terms to take into account the un-
derlying gas as well as its local velocity. This model can be used to derive a modified
form of effective RF-field.

Following the very same steps as presented in Gerlich (1992), and an equivalent
notation, we define ~r as the position vector, and ~̇r and ~̈r its first and second total
time derivatives, respectively. The gas velocity field is described with ~uf and the
RF electric field with ~E(~r, t) = ~E0(~r) cos (ωt), where ω is the angular frequency of
the electric field applied and ~E0 the spatial distribution of the field amplitude. We
consider a single particle of mass m and denote the particle response time τP.
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The considered differential equation reads:

~̈r +
1
τP
~̇r =

q
m
~E0 cos (ωt) +

1
τP
~uf . (4.11)

It corresponds to equation 2.18, where no DC-field is applied and no SCE effects are
considered because only one particle is present. In the limit of a vacuum, the particle
response time τP tends to very large values and the additional terms in the equation
vanish in this limit (the gas velocity field becoming undefined). The trajectory is
then again described with the classic equation used in Gerlich (1992).

In the first step of the derivation, the different fields involved are considered as
homogeneous, that is ~E0, ~uf, and τP are considered independent from~r. This does not
represent the reality but should only be seen as a preliminary step to gain the form
of the solution, before introducing the spatial variations using expansion terms. The
general solution of this homogeneous system reads:

~r(t) =~r(0)− τP~̇r(0) e−
t

τP +
q~E0

m
(

1
τ2

P
+ ω2

) ( 1
τPω

sin (ωt)− cos (ωt)
)

. (4.12)

We further set a specific form for the position vector, following the general solution
of the homogeneous equation:

~r(t) = ~R0(t)−~b cos (ωt) +~c sin (ωt) , (4.13)

where ~R0 describes the effective displacement of the particles. The vectors~b and ~c
are defined as follows:

~b =
q

m
(

1
τ2

P
+ ω2

)~E0 , (4.14)

~c =
q

m (ωτP)
(

1
τ2

P
+ ω2

)~E0 . (4.15)

The effects of the gas flow, which are supposedly not oscillating, are included in ~R0.
One further derives a differential equation for ~R0. This is done by replacing~r by its
specific form 4.13 in equation 4.11. One also assumes that the harmonic correction
terms are small and their amplitude slowly evolving. This means that the spatial
evolution of the considered fields is small in the range of the harmonic oscillations
caused by the RF electric field. Using limited expansions of the electric and gas
velocity fields as well as of the particle response time, the different terms can be
rewritten as follows:

~E0(~r) = ~E0

(
~R0 −~b cos (ωt) +~c sin (ωt)

)
(4.16)

≈ ~E0(~R0)− (~b · ∇)~E0(~R0) cos (ωt) + (~c · ∇)~E0(~R0) sin (ωt) . (4.17)

The gas velocity field can be similarly expanded:

~uf(~r) =~uf

(
~R0 −~b cos (ωt) +~c sin (ωt)

)
(4.18)

≈~uf(~R0)− (~b · ∇)~uf(~R0) cos (ωt) + (~c · ∇)~uf(~R0) sin (ωt) (4.19)
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Finally, the same treatment is applied to the particle response time τP:

τP (~r) = τP

(
~R0 −~b cos (ωt) +~c sin (ωt)

)
(4.20)

≈ τP

(
~R0

)
−
(
~b · ∇τP

)
cos (ωt) + (~c · ∇τP) sin (ωt) , (4.21)

where~b · ∇τP and ~c · ∇τP are evaluated at ~R0. This notation holds throughout this
section.

As τP appears as its inverse in equation 4.11, one expresses it explicitly, using
again a limited expansion. We also denote τP

(
~R0

)
with τP,0:

1
τ
≈ 1

τP,0 −
(
~b · ∇τP

)
cos (ωt) + (~c · ∇τP) sin (ωt)

(4.22)

≈ 1
τP,0

(
1 +

~b · ∇τP

τP,0
cos (ωt)− ~c · ∇τP

τP,0
sin (ωt)

)
(4.23)

To write the differential equation related to the effective trajectory, it is necessary
to consider the first and second derivatives in time of the position vector using the
form described in equation 4.13:

~̇r = ~̇R0 −�����
cos (ωt)~̇b + ω sin (ωt)~b +�����sin (ωt)~̇c + ω cos (ωt)~c (4.24)

~̈r = ~̈R0 +������
ω sin (ωt)~̇b + ω2 cos (ωt)~b +������

ω cos (ωt)~̇c−ω2 sin (ωt)~c (4.25)

The terms including time derivatives of ~b or ~c and ultimately of ~E0 and τP are ne-
glected with respect to the other terms. This again relies on the assumption that the
spatial variation of the fields (and thus their time derivative following the oscilla-
tions of the position~r) is small, so that only terms similar to homogeneous fields are
relevant.

The next step to build the new model is to replace the derived approximations
in the different terms of equation 4.11 and to average over time. We further denote
the time averaging with the notation 〈. . . 〉t. The first term on the left-hand side to
consider is the second time derivative of the position, from which the time average
delivers: 〈

~̈r
〉

t ≈ ~̈R0 . (4.26)
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The second term on the left-hand side first requires to consider the product of the
expansions 4.23 and 4.24:

1
τP
~̇r ≈ 1

τP,0

(
1 +

~b · ∇τP

τP,0
cos (ωt)− ~c · ∇τP

τP,0
sin (ωt)

)
·(

~̇R0 + ω sin (ωt)~b + ω cos (ωt)~c
)

(4.27)

≈ 1
τP,0

~̇R0 +
~b · ∇τP

τ2
P,0

cos (ωt)~̇R0 −
~c · ∇τP

τ2
P,0

sin (ωt)~̇R0

+
ω

τP,0
sin (ωt)~b +

ω

τ2
P,0

(
~b · ∇τP

)
cos (ωt) sin (ωt)~b

− ω

τ2
P,0

(~c · ∇τP) sin2 (ωt)~b +
ω

τP,0
cos (ωt)~c

+
ω

τ2
P,0

(
~b · ∇τP

)
cos2 (ωt)~c− ω

τ2
P,0

(~c · ∇τP) sin (ωt) cos (ωt)~c (4.28)

The time average follows, further replacing the vectors ~b and ~c with their values,
taken at the average position and thus neglecting the terms of higher order:〈

1
τP
~̇r
〉

t
≈ 1

τP,0
~̇R0 −

ω~c · ∇τP

2τ2
P,0

~b +
ω~b · ∇τP

2τ2
P,0

~c (4.29)

≈ 1
τP,0

~̇R0 +
ω

2τ2
P,0

q

m (ωτP,0)

(
1

τ2
P,0
+ ω2

) q
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m (ωτP,0)

(
1

τ2
P,0
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) (~E0 · ∇τP

)
~E0 (4.30)

≈ 1
τP,0

~̇R0 . (4.31)

The first term on the right-hand side of equation 4.11 delivers, after averaging the
terms of equation 4.17:〈 q

m
~E0 cos (ωt)

〉
t
≈ − q

2m

(
~b · ∇

)
~E0

(
~R0

)
(4.32)

Given the fact that ~E0 is an electric field, it can be written as the gradient of a scalar
field. As a consequence, it is rotation-free (∇× ~E0 =~0) and it follows:

(~E0 · ∇)~E0 =
1
2
∇(~E0 · ~E0)− ~E0 × (∇× ~E0) =

1
2
∇(~E0 · ~E0) (4.33)

Replacing~b in equation 4.32 and using the property just derived one obtains:〈 q
m
~E0 cos (ωt)

〉
t
≈ − q2

4m2

(
1

τ2
P,0
+ ω2

)∇(~E0 · ~E0) . (4.34)

Finally, the second term on the right-hand side of equation 4.11 is again the product
of expansions 4.23 and 4.19. This first step delivers, where ~uf(~R0) is shortened as
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~uf,0:

1
τP
~vf (~r) ≈

1
τP,0

(
1 +

~b · ∇τP

τP,0
cos (ωt)− ~c · ∇τP

τP,0
sin (ωt)

)
(
~uf,0 − (~b · ∇)~uf,0 cos (ωt) + (~c · ∇)~uf,0 sin (ωt)

)
(4.35)

≈ 1
τP,0

~uf,0 −
(~b · ∇)~uf,0
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− ~c · ∇τP

τ2
P,0

sin2 (ωt) (~c · ∇)~uf,0 . (4.36)

Averaging this expression over time, one ends up with:〈
1
τP
~vf (~r)

〉
t
≈ 1

τP,0
~uf,0 −

~b · ∇τP

2τ2
P,0

(~b · ∇)~uf,0 −
~c · ∇τP

2τ2
P,0

(~c · ∇)~uf,0 . (4.37)

This expression still contains terms involving the gradients of the approximated
fields (particle response time and gas velocity). They are both multiplications of
terms of first-order in the expansion of the fields considered here. Thus, they are of
second order. To remain coherent with the approximations made so far, only the first
term in equation 4.37 should be further considered and it follows:〈

1
τP
~vf (~r)

〉
t
≈ 1

τP,0
~uf,0 . (4.38)

Assembling the results of equations 4.26, 4.31, 4.34, and 4.38, one finally gets the new
equation of motion for the effective trajectory:

~̈R0 +
1

τP,0
~̇R0 = −

( q
m

)2 1

4
(

1
τ2

P,0
+ ω2

)∇ (~E0 · ~E0

)
+

1
τP,0

~uf,0 . (4.39)

While the terms due to the presence of the gas flow are simply approximated using
the value of the fields at the average position along the trajectory of the particle, the
term describing the effects of the RF electric field takes a similar form as described
in Gerlich (1992). Here again, in the limit of very large values for τP,0, that is for
systems close to vacuum conditions, one gets back to the classic model. However,
for smaller values, one can show that the magnitude of the effective electric field is
dampened by the surrounding gas flow, compared to the model in a vacuum. It can
be interpreted as the consequence of the interaction between ions and gas molecules
that perturb the motion caused by the electric field.
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One can further identify this expression in terms of effective electric force ~Feff, by
simply multiplying with the mass of the particle:

~Feff = −
q2

4m
1

1
τ2

P
+ ω2

∇
(
~E0 · ~E0

)
, (4.40)

and similarly, an effective electric field ~Eeff can be easily defined:

~Eeff = −
q

4m
1

1
τ2

P
+ ω2

∇
(
~E0 · ~E0

)
. (4.41)

The new equation of motion thus reads:

~̈R0 +
1

τP,0
~̇R0 = − q

m
~Eeff,0 +

1
τP,0

~uf,0 , (4.42)

where ~Eeff,0 is the electric field at the position ~R0. However, the factor in front of the
gradient depends on the position via the particle response time. Thus one cannot
define any effective electric potential, as this is the case for the classic formulation in
vacuum.

This form of effective field has already been presented in Tolmachev et al. (1997),
using a different demonstration. It is derived from the Langevin equation describing
the Brownian motion of a particle. Here we considered the specific form of the equa-
tion of motion 4.11, which does not include the Brownian effects on the trajectory
of the particle. Nevertheless, one finds in both cases an equivalent correction factor
applied to the effective RF-field in vacuum ~Eeff,vac to take into account the presence
of the gas in ~Eeff:

~Eeff =
τ2

Pω2

1 + τ2
Pω2

~Eeff,vac . (4.43)

4.2.3 Computation of the external fields

The external fields considered throughout this work are computed, similarly to
the fields resulting from the space charge effects, using the electrostatic framework.
This means that knowing the electric potential at the boundaries of the domain con-
sidered, basically in our case the electrodes of the ion funnel, we solve Gauss’ law
that reads:

∇ · ~Eext =
ρC

ε0
, (4.44)

where ρC is the electric charge density in the domain and ε0 the vacuum permit-
tivity. While the charge density represents, in theory, the ions present in the field,
we choose for practical reasons to disconnect both effects, a simplification explained
in 4.3.2. This implies that the charge density considered here is zero and Gauss’ law
simplifies as follows:

∇ · ~Eext = 0 . (4.45)

The electric field, in the hypothesis of electrostatics, is considered as a conservative
field and can be expressed using a scalar potential Vext:

~Eext = ∇Vext . (4.46)
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Replacing the electric field in equation 4.45 by its expression from 4.46 and one ends
up solving the Laplace equation:

∇ · ∇Vext = ∆ Vext = 0 , (4.47)

where ∆ is the so-called Laplace operator.
This last equation is the one solved to compute the electric potential and follow-

ing the electric field in the free space domain of the ion funnel. The code used was
developed in the department of Numerical Fluid Dynamics at Technische Univer-
sität Berlin. It was first used and validated within Kyriakidis (2019) master’s thesis,
and allows to compute electric fields on 2D grids, either representing a (Cartesian)
2D domain or an axially symmetric one when specific conditions are enforced. The
axially symmetric implementation, which has been used in this work, is further de-
tailed in section 4.4.1.

4.3 Estimations used to develop the model

4.3.1 Neglected magnetic field

The systems studied in this work include the movement of charged elements in
an electric field. Without further assumptions, one should not only consider the elec-
tric field itself but also the magnetic field created by the movement of the elements.
This would require solving the Maxwell equations in some way or the other. It rep-
resents a significant increase in complexity compared to the simple assumption of an
electrostatic field though. We would like to show here, that in a first approximation,
the magnetic field created by the ions can be neglected.

Following the same argumentation as presented in Bernier (2014), the force ~Felec
that is applied to an ion is the Lorentz force, expressed as the following (see D. J.
Griffiths (2013, chapter 5) e.g. for references of all following relations):

~Felec = q
(
~E + ~uP × ~B

)
, (4.48)

with ~E the electric field at the position of the ion seen as a point particle, ~B the
magnetic field, q the charge of the ion and ~uP its velocity. In the work presented
here, we neglect the second term of this expression. In order to justify this choice,
we estimate the magnetic field, without solving the underlying Maxwell equations.
A means to proceed is to express the magnetic field using the Biot-Savart law. It
considers a steady-state where an electric current density~j is defined in a volume V.
The resulting magnetic field ~B reads:

~B (~r) =
µ0

4π

∫
V

~j (~r)× ~r−~r′∣∣∣~r−~r′
∣∣∣3
dr′3 , (4.49)

with µ0 the permeability of free space. In the case of the ion funnel, the assumption
of a steady-state remains questionable. However, and in a similar view as adopted
when deriving the effective RF-field, we assume that the oscillations of the ions do
not significantly impact their global behavior. Especially, this means that the electric
current density ~j can be considered as constant over time. Thus the magnetostatic
approximation required to use the Biot-Savart law is fulfilled. The equation 4.49 is
expressed for a continuum but can be transformed into a discrete formulation to be
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directly compared with the electric field 4.3 representing the space charge effects.
The electric current density ~j can be expressed as ρ~up, with ρ the electric charge
density and ~uP the velocity field of the charge holders. In a discrete notation, it
becomes qi~uP,i and it follows

~B (~r) =
µ0

4π

n

∑
j=1

qj~uP,j ×
~rj −~r∣∣~rj −~r

∣∣3 . (4.50)

Both electric (expressed as equation 4.3) and magnetic components in the Lorentz
force 4.48 present similar forms. A rough comparison can then be done using equiv-
alent terms in the sum, especially the charge denoted as qeq and the particle velocity
~up,eq. It follows ∣∣∣~uP × ~B

∣∣∣∣∣∣~E∣∣∣ ∼
µ0qeqv2

p,eq

4π

1
kqeq

. (4.51)

The constant k of the electric field can further be expressed as 1
4πε0

(see D. J. Griffiths
(2013, p. 60)), where ε0 is the permittivity of free space. Furthermore, the differ-
ent constants are related to the speed of light c with c2ε0µ0 = 1. The comparison
between the electric and magnetic fields can thus be approximated as:∣∣∣~uP × ~B

∣∣∣∣∣∣~E∣∣∣ ∼ µ0ε0v2
p,eq =

v2
p,eq

c2 . (4.52)

One can conclude that the contribution of the magnetic field to the forces exerted
onto the ions can be neglected when their velocity is small compared to the speed of
light. This condition is always fulfilled in our simulations and we thus only consider
the contribution of the electric field.

However, this estimation does not include the external fields created by elec-
trodes for example, as only the fields created by the ions themselves are included in
the comparison. Thus, it is not more than a first approach. Here again, only a con-
sideration of the Maxwell equations with proper boundary conditions would allow
us to deliver the exact result.

4.3.2 Decoupling of the electric fields

The global electric field can be expressed using the Poisson equation. This is
an extension of the Laplace equation 4.47 used for the external electric field when
charges are present within the free domain considered. It can be derived from Gauss’
law, equation 4.44, exactly as the Laplace equation. The Poisson equation reads,
following D. J. Griffiths (2013, p. 84):

∆Velec =
ρC

ε0
, (4.53)

where ρC is again the charge density in the domain and Velec the total electric poten-
tial. This potential is influenced by two effects: the presence of the ions which create
a charge density different from zero and the boundary conditions imposed by the
elements present in the domain, such as the electrodes in the ion funnel. The po-
tential can then be divided into two components, the first one describing the electric
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potential in the absence of charges, Vext, and the second one describing the modifi-
cation due to the presence of the ions, VSCE. The Poisson equation is linear and one
can write:

∆Velec = ∆Vext + ∆VSCE . (4.54)

Vext is exactly the potential described in section 4.2. The Laplace equation 4.47 still
holds and it follows:

∆VSCE =
ρC

ε0
, (4.55)

This equation is very similar to the one for the total electric potential 4.53. It differs
by the boundary conditions that must be enforced at the end of the free space, i.e. at
the walls. It is not anymore ruled by the potential imposed on the elements present
in the domain (this being described by Vext) but must get a unique value, typically
zero.

This condition defines the error made in this work by computing that part of the
total potential using the Coulombic forces as described in 4.1.2. Using formula 4.5,
the boundary condition is set to zero very far away from the charges and not at the
walls. This error can be assumed to remain limited for two reasons. First, the ions
are considered as lost as soon as they hit a wall. This means that no accumulation
of charges can occur in the vicinity of a boundary, limiting the magnitude of the
electric field possibly created by the free charges. Second, the electrodes present
in the domain where high concentrations of ions are expected, typically at the end
of the ion funnel, intend to further focus the ions and thus increasing the distance
between the regions of high charge density and the boundaries. This further limits
the error caused by the approximation of the potential created by the presence of the
ions.

In the core regions of the domain, far away from the walls, we thus expect a very
good approximation of the electric field used to compute the trajectory of the ions.
In the areas close to the walls, the approximation is expected a priori not as good,
but still correct enough to accurately describe the loss mechanisms we are interested
in.

4.4 Results of the external electric fields

In this section, we present the methodology used to compute the external electric
fields created by the electrodes present in the domain and the corresponding results.

4.4.1 Principle of the LAPLACE solver used

In both designs of ion funnels considered in this work, two different kinds of ex-
ternal electric fields are considered, as has already been mentioned: a time constant
one, further referred to as direct current or DC-field, and a harmonic one, further re-
ferred to as radio-frequency or RF-field. While an effective field can be computed for
the RF-field, the computation of the potential via the Laplace equation 4.47 is the
first step. To this end, a code developed in the CFD department at TU Berlin and
fitted for this case has been used. It allows us to consider a domain where objects
are immersed, for which the potential is known and to compute the resulting elec-
tric potential in the free space. In our case, these objects are typically the electrodes
forming the funnel, the capillary, and the housing of the chamber.

The principle of the computation is to discretize the entire domain, including
the objects, and to build a linear system of equations that has to be solved to get
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the value of the potential at every point of the grid. There are two kinds of points.
Either it is located in an immersed object, and the value of the potential is known. Or
it is in the free space, and one knows that the Laplacian of the potential is zero. For
the second category, the Laplacian is expressed using the neighbor points via finite
differences schemes. The domain considered is axially symmetric and we make use
of cylindrical coordinates. The Laplace equation then reads:

∆ Vext =
1
r

∂

∂r

(
r

∂Vext

∂r

)
+

∂2Vext

∂z2 = 0 . (4.56)

A slice of the domain in the azimuthal direction is discretized, using an orthogonal
grid. The grid points are equidistant for each direction, but the grid spacing can
differ between the radial and axial directions. The coordinates of the grid points are
denoted by

(
ri, zj

)
, where i and j are the indices defining the considered point in the

radial and axial directions, respectively. The grid spacing can be defined as hr =
ri+1 − ri in the radial direction and hz = zj+1 − zj in the axial direction. The indices i
and j can be chosen arbitrarily. We use the following notation: Vext

(
ri, zj

)
= Vext; i,j.

The second derivative in the axial (z) direction is computed using a classic se-
cond-order central derivative :

∂2Vext

∂z2

(
ri, zj

)
=

Vext; i,j−1 − 2Vext; i,j + Vext; i,j+1

h2
z

+O
(
h2

z
)

. (4.57)

The radial term cannot be treated as easily, because it is a combination of coordinates
and derivative terms. To keep the second order used in the axial direction, a com-
bination of forward and backward derivatives with first order of accuracy are used.
One can obtain the global second-order accuracy by averaging the two possible op-
tions: backward inner derivative with forward outer derivative on the one hand and
forward inner derivative with backward outer derivative on the other hand. This re-
sults in the following discretization:

1
r

∂

∂r

(
r

∂Vext

∂r

) (
ri, zj

)
=
(ri−1 + ri)Vext; i−1,j + (ri + ri+1)Vext; i+1,j

2rih2
r

−
(ri−1 + 2ri + ri+1)Vext; i,j

2rih2
r

+O
(
h2

r
)

. (4.58)

The form and order of accuracy of this finite differences scheme are derived in ap-
pendix E.

The housing of the chamber encompasses the outer boundaries of the domain.
Thus, there is no need for specific treatment of the boundaries for the axial direction
and the upper radial direction. The lower radial boundary coincides with the sym-
metry axis of the domain and has to be treated separately. The radial term present
in the Laplace equation 4.56 is not well defined for r approaching zero. Using the
product rule, this term can be rewritten:

1
r

∂

∂r

(
r

∂Vext

∂r

)
=

∂2Vext

∂r2 +
1
r

∂Vext

∂r
. (4.59)

Because of the symmetry of the system and thus of the solution, the potential is an
even function in the radial direction, assuming that one extends the radial coordi-
nates in the negative values. The potential being a solution of the Laplace equation,
its regularity further imposes that its first derivative is zero at the symmetry axis.
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FIGURE 4.2: DC potential set in the capillary. Both dimensions are
not to scale.

While the first term in 4.59 is not problematic, the second one is undefined for r
approaching zero. One can, however, apply L’Hôpital’s rule:

lim
r→0

1
r

∂Vext

∂r
=

∂2Vext

∂r2 . (4.60)

It follows:

lim
r→0

1
r

∂

∂r

(
r

∂Vext

∂r

)
= 2

∂2Vext

∂r2 . (4.61)

We can thus apply directly the second-order central derivative already used in the
axial direction. Using the symmetry once again, stating that the potential holds the
same value on both sides of the axis, it follows:

lim
r→0

1
r

∂

∂r

(
r

∂Vext

∂r

)
= 4

Vext; i+1,j −Vext; i,j

h2
r

∣∣∣∣
r=0

+O
(
h2

r
)

. (4.62)

Using equations 4.57, 4.58, and 4.62, one builds a linear system of equation corre-
sponding to the Laplace equation. Its inversion, using standard, built-in algorithms,
delivers the value of the potential at the grid points. The electric field, necessary to
perform the simulations of the trajectory of the ions, is then gained by computing
the gradient of the potential.

4.4.2 Results for the capillary

Even if the external electric fields within the capillary are expected to be very
small, we show here some results supporting this assumption. In figure 4.2, the
setup for the computation is presented. The capillary is considered with its funnel-
shaped inlet. Its potential is set to 250 V. The diameter of the capillary is 1.0 mm and
it has a length of 6 cm. In the lower-left corner of the domain, a needle is inserted
to represent the emitter of the electrospray ionization. Its potential is set to 4000 V.
It ends 7.5 mm before the straight part of the capillary and thus lies well within the
inlet of the capillary. These parameters are chosen to describe a typical setup for the
devices considered throughout this work.

The results for the magnitude of the electric field are presented in figure 4.3.
Different radial positions within the capillary, covering the entire cross-section, are
considered. The only area where significant values of the electric field are found lie
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FIGURE 4.3: Electric field expected within the capillary. The different
lines represent different radial positions within the capillary.

Location Potential (V)

Capillary 250
First electrode 150
Last electrode 50
Ground 0

TABLE 4.1: Potential set for the DC-field in the ion funnel - classic
design.

in the inlet area, that is where the electrospray ionization occurs. However, within
the capillary, the values of the field are much lower, reaching a priori zero, consider-
ing machine precision, for the major part of the domain. Regions with higher field
magnitudes are found inside the capillary at both ends, representing the boundary
effects. But even these remain small, with maximal values of about 10−4V ·m−1. In
comparison, the electric field of two singly charged ions separated by 0.1 mm cre-
ates a field in the order of magnitude of 10−1V ·m−1. This justifies that no external
electric fields are considered for the capillary.

4.4.3 Results for the ion funnel - classic design

In the classic design, 82 electrodes are placed within the domain and are set to dif-
ferent potentials. Alongside the potential set to the capillary, the outlet, and the cas-
ing of the chamber, this creates the electric field expected to guide the ions through
the tunnel. The electrodes have a time-dependent potential to create the RF-field
previously described, while the potential remains constant for the other parts of the
system. We thus split the computation and the results presented here in the time
constant potential (DC-field) and the alternating potential (RF-field).

DC-field

The DC-field helps the ions to progress in the axial direction, towards the next
chamber. This is achieved with a progressive increase or decrease in the potential of
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FIGURE 4.4: Electric DC potential set in the ion funnel - classic design.

the electrodes in this direction. For positively charged ions, the potential decreases
and vice versa for negatively charged ions. We consider here a decreasing potential.

Each electrode has a fixed potential, ruled by the linear decrease between the
first and the last electrode. The potential difference between them is thus sufficient
to describe the setup. From the electric point of view, the last electrode is enclosed
within the casing and is thus part of the wall. The capillary area, encompassing a
part of the wall is set to a specific potential. The rest of the casing is set to the ground,
chosen as zero. This set up is depicted in figure 4.4. and the corresponding values
are listed in table 4.1

The potential within the free area is then computed using the Laplace solver
and the results are presented in figure 4.5. One can see that inside the funnel, that
is within the cavity formed by the electrodes, the field created is close to uniform
along the axial direction. This is a direct result of the linear distribution of the poten-
tial and the constant spacing between the electrodes. Deviations can be observed,
especially close to the objects present in the field. The main deviation is close to the
capillary, because of the strong potential difference between the capillary and the
first electrode and their respective shapes. It thus follows an expansion path from
the capillary towards the electrodes. Some small deviations can also be observed
close to the electrodes, which are linked to the presence of the edges of the objects.
The potential being constant within an object and linear between the objects, the
resulting field is not mathematically smooth at this transition, which creates these
irregularities, potentially amplified by the numerical computation.

RF-Field

The primary RF-field intends to prevent the ions to fly between the electrodes by
creating an electric force towards the symmetry axis of the domain. This is achieved
by using a time-dependent potential applied to the electrodes. For this computation,
a specific potential is only set for the electrodes located within the chamber with all
other objects considered at the ground. The potential of the electrodes varies in time,
following a harmonic profile, with a phase delay of π between two consecutive elec-
trodes (equivalent to a flip of the sign of the potential). Following, two parameters
define this field: its angle frequency ω and the amplitude VRF,0. The variation of the
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FIGURE 4.6: Electric RF potential set in the ion funnel with an ampli-
tude of 100 V - classic design.

amplitude tunes the strength of the field in our work, while the frequency is kept
constant.

The electric field ~E0 described in section 4.2.2 is thus computed considering that
the potential of the electrodes is the amplitude VRF,0 multiplied alternatively with
1 or −1. The settings of the potential of the different objects are represented in fig-
ure 4.6. The resulting electric field ~E0 in the free space is represented in figure 4.7 and
the basis for the effective fields, ∇

(
~E0 · ~E0

)
, in figure 4.8. The latter clearly shows

that the RF-fields concentrate their effect close to the tip of the electrodes, while no
significant effects are expected further away from the electrodes, in the center of
the cavity of the ion funnel. One can then either compute in real-time the RF-field
as described in equation 4.7 or derive the corresponding effective fields from equa-
tions 4.10 and 4.41.

The field can be further analyzed to show how such a field can limit the number
of ions that reach the electrodes. We can gain a first insight into the forces that the
ions experience by looking at the potential in the vicinity of several electrodes. In
figure 4.9, the potential is represented along the radial direction for different axial
positions. It can be observed that the potential varies between −100 V and 100 V
between two successive electrodes. It shows also that, for a positively charged ion,
the electrodes with positive potential exert a repulsive force onto the ion, while the
electrodes with negative potential exert an attractive force.

For larger radial positions, an area of constant potential can be found either be-
cause it represents the potential of an electrode and is thus a boundary condition of
the field, or because the Laplace equation between two straight electrodes roughly
delivers a linear profile depending only from the distance to these electrodes. Be-
cause of boundary effects close to the tips of the electrodes, the behavior can be more
complex there. The electric potential shows for some positions local maxima or min-
ima before reaching this almost constant value between the electrodes. This means
that a positive force, shortly followed by a negative one, can be encountered, and
vice versa. However, the global trend between the symmetry axis and the area of
constant potential would deliver only one kind of force, either positive or negative,
depending on the axial position considered.

Furthermore, this is only an instantaneous picture, as the potential varies with
high frequencies in time, leading to attractive areas becoming repulsive and repul-
sive areas becoming attractive. According to Gerlich (1992), these oscillations lead
to a shift of the trajectory, in the case of vacuum, towards regions of weaker fields,
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FIGURE 4.9: Electric potential ~V0 with an amplitude of 100 V - classic
design. One dimensional representation along the radial direction,
for several axial positions and in the vicinity of two consecutive elec-

trodes.
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considered.

that are in our case in the center of the cavity. As shown in section 4.2.2, taking into
account the underlying gas flow does not modify the form of the effective field, but
only its amplitude. Thus the same effects of a shift towards the symmetry axis are
expected. One exception shall be mentioned here. At the end of the cavity, where
the inner diameter of the electrodes becomes close to the distance between two suc-
cessive electrodes, the assumption that the resulting electric field presents a lower
value in the center of the cavity gets broken. This leads to so-called trapping effects.
It can be easily understood when considering the instantaneous potential, as well
as the form of the effective potential along the symmetry axis of the domain, as de-
picted in figure 4.10. Local minima of the potential are present, thus attracting the
positively charged ions (local maxima playing this role for negatively charged ions).
This is especially remarkable in the effective potential. Indeed, this shows that, on
average, such trapping zones are expected in the domain. They are thus not only
temporarily present because of the harmonic nature of the instantaneous field. This
effect is further described with the results of the trajectory of the ions in section 5.2.2.

The numerical computation leads to the formation of peaks of the electric field
at the edges of the electrodes. This is not surprising, as the Laplace equation is
known to create irregularities at edges, resulting in infinite fields in some conditions.
This has been reported for cases similar to the present ones in Smedt and Bladel
(1987) and Lui et al. (1999), for example. This phenomenon can be observed for the
ion funnel in figure 4.11. It was validated in Kyriakidis (2019) that these peaks are
physical and no numerical artifacts by modifying the resolution of such computation
and considering the evolution of the solution. These structures remain even with a
very fine grid. As a consequence, one can expect very large electric forces applied to
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Location Potential (V)

Capillary 250
First electrode 150
Last electrode 50
Ground 0

TABLE 4.2: Potential set for the DC-field in the ion funnel - evolution
of the design.
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FIGURE 4.12: Electric DC potential set in the ion funnel - evolution of
the design.

the ions when they arrive in the vicinity of the edges of the electrodes.

4.4.4 Results for the ion funnel - evolution of the design

DC-field

The computation of the electric fields for the tentative evolution of the design is
very similar to the one performed for the traditional design. The main difference is
a smaller number of electrodes and a non-uniform spacing between the electrodes,
which plays a role in the DC-field. The values set for the potential are listed in
table 4.2 and the distribution of the potential of the different objects is presented
in figure 4.12. In this case, again, the last electrode, from an electric point of view,
remains enclosed within the casing at the outlet of the funnel. Similarly, the potential
of the capillary encompasses a part of the wall to represent the holder of the capillary.
All other walls are set to the ground, chosen as 0 V.

The results in the free space are presented in figure 4.13. The potential differ-
ence between two consecutive electrodes for the DC-field remains constant but the
different spacing means that the field in the axial direction is not as uniform as the
one created in the traditional design. This builds different levels of forces driving
the ions towards the outlet of the funnel, while these forces are mostly uniform in
the traditional design. Especially, in the vicinity of the outlet, the spacing between
the electrodes is smaller. This means that the force towards the end of the cavity is
greater there than earlier in the trajectory of the ions. This effect is expected. This
area is indeed the one where the competition between the axial and radial driving
forces is critical to limit the losses of ions. A larger axial displacement may help to
avoid that the ions move too fast towards the electrodes by following the gas flow. It
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FIGURE 4.14: Electric RF potential set in the ion funnel with an am-
plitude of 100 V - evolution of the design.

remains difficult though to isolate the effects of the DC field compared to the much
stronger ones induced by the RF-field, which are presented now.

RF-Field

The RF-fields (instantaneous and effective) are computed in a similar way as for
the traditional design. The electric potential set in the different objects present in
the computational domain is displayed in figure 4.14. The resulting field amplitude
~E0 used for the time-dependent computation and the gradient of its scalar product
∇
(
~E0 · ~E0

)
are considered and presented in figures 4.15 and 4.16. Here again, the

different spacing at different stages in the funnel implies that the effects are stronger
at its end. This can be well observed in the magnitude of the instantaneous field
(figure 4.15). It is significantly higher between the last four electrodes than between
the previous ones, which indicates that the effects of such a field are expected to
be stronger in this area. The effective field confirms this tendency. Between the
first electrodes, where the spacing is maximal, high magnitudes are observed only
around the tips of the electrodes and not in between. We could thus expect that the
trajectory of ions passing between such electrodes would be only slightly affected by
the RF electric effects. It creates a more effective barrier in the entire space between
the less distant electrodes at the end of the cavity.

Given the shape of the gas flow presented in section 3.4.4, one can expect, how-
ever, that the trajectories of the ions remain relatively close to the symmetry axis. It
is thus not necessarily negative to favor higher electrical forces in the area where the
ions should effectively be concentrated. It remains to show, however, under which
conditions the usual amplitudes of the RF-field are sufficient to counter the drive by
the gas flow and whether such values are realistic.

Furthermore, the trapping effect described in the traditional design is present
again, especially around the last few electrodes. The steeper slope of the cavity, at
the end of the funnel, helps to reduce the area potentially concerned by the trap-
ping effects but does not fully eliminate it. A direct comparison of both designs is
presented in figure 4.17. It shows that the basis of the effective potential∇

(
~E0 · ~E0

)
forms deeper wells in the axial direction with the classic design than the studied evo-
lution. This unwanted feature is thus limited, as fewer ions can be trapped in such
areas during their trajectory. Here again, this does not state, however, whether the
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correlated radial effects are strong enough to guide the ions towards the following
chamber.
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Chapter 5

Trajectory of the ions

In the previous chapters, we have described the tools and data necessary to per-
form the simulation. Three configurations have been presented in section 2.1: the
capillary, a conventional ion funnel, and a tentative evolution of the ion funnel de-
sign. The motion of the ions is simulated according to the model described in sec-
tion 2.2. The gas flow has been simulated using the Navier-Stokes equation listed
in chapter 3. Different programs have been used to produce data for the capillary
(see 3.2 and 3.3) and the ion funnels (see 3.4). In all cases, the space charge effects
described in section 4.1.2 are considered, taking into account the interaction between
the ions due to their electric charge. For the ion funnels, one additionally considers
the external electric fields created by the electrodes placed in the domain, as exposed
in section 4.2. Using these results, the trajectory of a representative set of particles
can be computed and the results are presented in the following section.

5.1 Laminar capillary

We first present the results of particle simulations within the capillary. These
results have been published in Bernier et al. (2020). Several parameters were consid-
ered. Following the results of the gas flow, the geometry (length and diameter) of
the capillary varies. We also took into account the thermal conditions at the wall. In
addition, we studied the influence of the species involved as well as their quantity.

In all cases, we only consider the straight part of the capillary, thus excluding the
funnel-shaped inlet. The simulated ions are introduced at the beginning of this do-
main and distributed over the cross-section of the pipe. The ions are not all created
in the same cross-section, to avoid the formation of sliced clusters, but scattered in
the axial direction over a span roughly representing their transport during one time
step. The desolvation process of the droplets created during the ionization process
is neither simulated nor considered. This can be seen as the assumption that all
droplets were vaporized before the end of the capillary inlet, only letting gaseous
ions enter the pipe. This is an approximation as it is commonly assumed that some
droplets make their way through parts of the capillary, heating being assumed to
help to increase the vaporization rate. The goal of the simulations presented in this
section is however to show the influence of different parameters regarding the trans-
mission of the ions. Adding a complex phenomenon such as desolvation would not
strongly change the results presented, in our understanding, while adding new pa-
rameters in the system which are not easily defined, such as the proper mechanism
to produce the gas phase ions.

Two different ions distribution over the cross-section of the capillary are consid-
ered. First, a normal distribution centered on the axis of the capillary. Its standard
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deviation σ can vary and has been chosen as dependent on the radius of the capil-
lary: σ = 5 · 10−2Rcap. This choice was made to approximate experimental values
presented in Bernier et al. (2018). Second, a homogeneous distribution where the
newly created ions are evenly distributed over the entire cross-section. The former
tries to mimic the effects of the funnel-shaped inlet collimating the ions towards the
axis of the capillary. The latter is however a limit case. While in traditional setups,
the charge is assumed to be spread over the entire cross-section of the straight cap-
illary, a homogeneous distribution remains unrealistic. We thus consider the second
distribution as an extreme comparison, the conventional case being likely to lie be-
tween the two presented here. Unless for section 5.1.3, we use rhodamine B (mass
m = 479.02 Da, number of electric charges z = 1) as test species to refer to experi-
ments presented in Bernier et al. (2018).

5.1.1 General behavior and thermal conditions

In a nutshell, two different displacements of the ions can be considered, related
to two different causes. The axial displacement is the main one, permitting the trans-
mission of the ions into the following chamber. It is mainly caused by the gas, the
ions following the flow. The radial displacement is also important, as it is directly
related to the losses when the ions hit the walls, in the model considered here. In
this direction, no significant gas flow occurs, as can be seen from the streamlines in
figure 3.4 for an exemplary flow. The space-charge driven velocity is mainly respon-
sible for this radial displacement. This can be qualitatively observed in figure 5.1,
where the expansion of the initial ion distribution visible at the beginning of the
straight part of the capillary is mainly caused by the electric forces.

Estimations and simple model

One can develop a simple estimation based on this model. We consider a cloud
of ions set at the beginning of the pipe, located within a radius r0, which expands
while being transported downstream, reaching exactly the capillary radius Rcap at
its outlet. The length of the capillary is denoted by Lcap. This set of ions at the inlet
thus represents the transmitted ions. In the cases where losses occur, we assume
the lost ions are initially located at radial positions larger than r0 and hit the wall
before reaching the outlet. They surround the inner ions and do not influence their
expansion. We thus first assume that all ions are transmitted to simplify the demon-
stration.

At any position along the pipe, we call r̃ the radius delimiting the transmitted
and lost ions sets. At any position, the inequality r0 < r̃ < Rcap holds. We further
assume that the axial displacement of the ions can be averaged over the cross-section
of the pipe and along the pipe. We call the velocity of the ions in this direction uav.
The transmitted current Itrans represents the charge transported by the ions located
in the cross-section of radius r̃ at any axial position and one can write

Itrans = Quav , (5.1)

where Q is the charge density per unit length, or the electric charge contained in an
infinitesimally thin slice of the domain and within the radius r̃. Given the assump-
tion made that all ions considered here are transmitted, Itrans and thus Q remain
constant along the capillary. This quantity can also be used to estimate the electric
field ~E created by the charges contained within this slice. We assume that the electric
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field has the following form:
~E = Er (r, z)~er , (5.2)

This means that the electric field has only a component in the radial direction. This
is a rough approximation as the expansion should induce components in the axial
direction which we neglect here. According to Gauss’s law (see equation 4.44), the
divergence of the electric field can be related to the charge density:

∇ · ~E =
ρC

ε0
, (5.3)

where ε0 is the permittivity of vacuum and ρC the electric charge density. The latter
can be expressed using charge density per unit length Q and the radius of the slice r̃
for positions within r̃:

ρC =
Q

πr̃2 . (5.4)

It equals zero otherwise. The divergence of the electric field can be expressed in
cylindrical coordinates. Given the form 5.2, only the radial derivative is to be con-
sidered and it follows:

∇ · ~E =
1
r

∂rEr (z)
∂r

=

{
Q

πr̃2ε0
, for 0 ≤ r ≤ r̃

0, for r̃ < r
(5.5)

We consider the solution of this differential equation, assuming that the electric field
is finite for r = 0 and converges to zero far away from the capillary. It reads:

Er = E =

{
Qr

2πr̃2ε0
, for 0 ≤ r ≤ r̃

Q
2πrε0

, for r̃ < r
(5.6)

The velocity of the ions in the radial direction udrift can be estimated by multiplying
the mobility K with the local electric field: udrift = KE. For r = r̃, this velocity can be
identified as the expansion rate of the ion cloud, which is the time derivative of the
radius r̃:

dr̃
dt

=
KQ

2πr̃ε0
=

KItrans

2πr̃ε0uav
. (5.7)

The resulting differential equation can be integrated between the inlet (t = 0 and
r̃ = r0) and the outlet (t = T =

Lcap
uav

and r̃ = Rcap):

1
2

(
R2

cap − r2
0

)
=

KItransLcap

2πε0u2
av

. (5.8)

From this expression, one can see that the transmitted current varies depending on
the radius of the initial ion cloud r2

0. A maximum can be reached for the hypothetical
case r0 = 0, which corresponds to an infinite charge density in the inlet. While
simplified in comparison to the simulations presented hereafter, this model allows
some predictions:

• the transmitted current is linearly dependent (up to a constant offset) on R2
cap,

i.e. on the cross-section area of the capillary;

• the transmitted current is inversely proportional (up to a constant offset) to
the length of the capillary, assuming that the average velocity uav remains con-
stant;
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FIGURE 5.1: Exemplary distribution of ions in a capillary with a nor-
mal distribution. The current there is 60 nA and the color of the po-
sition represents the local temperature of the surrounding gas. The
temperature of the wall is 500 K. Radial and axial dimensions of the

figure are not to scale.

• a slower flow induces a lower transmitted current.

This model can be extended to a flat distribution. In such a case, a homogeneous
distribution of ions fills the entire cross-section of the inlet. We denote δ the trans-
mission ratio, defined as the transmitted part of the incoming current Iin. For a flat
distribution, this is simply represented as the ratio of the area of the transmitted
ions cloud considered at the inlet (that is within r0) to the entire cross-section of the
capillary. It follows:

δ =
Itrans

Iin
=

r2
0

R2
cap

. (5.9)

Replacing this last expression using equation 5.8, one can express the transmission
ratio as follows:

δ = 1−
KItransLcap

πε0u2
avR2

cap
, (5.10)

or with Iin as a variable instead of Itrans:

δ =

(
1−

KIinLcap

πε0u2
avR2

cap

)−1

. (5.11)

The last two expressions can appear counter-intuitive at first. They indeed predict
that the maximal transmission ratio is reached for zero incoming (or transmitted)
current. This is however coherent with the picture of the losses developed here. The
higher the incoming current, the higher the space charge effects. As a consequence,
high losses follow, leading to a smaller transmission ratio. On the other hand, when
the incoming current is very small, the space charge effects are almost negligible
and unitary transmission can occur. The predictions developed here can now be
confronted with the results of the simulations performed with the capillary.

Thermal conditions

Figures 5.1 and 5.2 present snapshots of the positions of the particles during their
transfer, for a normal and a flat initial distribution, respectively. Both initial currents
are different, 60 nA for the normal distribution and 2.5 µA for the flat distribution,
to reach a similar transmitted current of about 12.5 nA. The position of the ions is
represented with the local gas temperature, reproducing the picture presented for



5.1. Laminar capillary 113

0 10 20 30 40 50 60

z (mm)

-0.2

0

0.2

r
(m

m
)

250

300

350

400

450

Te
m

pe
ra

tu
re

(K
)

FIGURE 5.2: Exemplary distribution of ions in a capillary with a flat
distribution in the inlet. The current there is 2.5 µA and the color of
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FIGURE 5.3: Distribution of the transmitted ions at the outlet of a
capillary, for a normal and flat distribution of ions inserted at the inlet
(same cases as for figures 5.1 and 5.2, respectively). The distribution
is given in arbitrary units, normalized to 1 at the center of the pipe.
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FIGURE 5.4: Maximal temperature of the surrounding gas encoun-
tered by the ions during their flight through the capillary, from their
introduction in the inlet until transmission at the end of the capillary.

It represents the same case as in figure 5.1.

the gas flow in section 3.2. From this global picture, a distribution of the transmitted
ions at the outlet of the capillary can be inferred, see figure 5.3. No significant differ-
ence appears between both initial conditions. The transmitted ions are distributed
over the entire section of the outlet, with higher concentrations close to the axis.
For larger diameters, one can observe a wider plateau shaped in the central area.
Closer to the walls, where the losses occur, a steep decrease of the concentration is
observed and it reaches almost zero. This is amplified by the fact that not only the
interaction between the ions but also the Brownian motion participates in the losses
at this point. In the central area, the stochastic movements only shift the position,
without altering the global distribution.

From this picture, one can further infer the thermal conditions the ions undergo
during their transfer through the capillary. We have already stated that this is an im-
portant factor as thermal energy can induce molecular transformations of the ions,
such as fragmentation, unfolding, or declustering. While not modeled in this work,
one can gain a first insight into this phenomenon by looking at the highest tempera-
ture the ions experience. The geometry of the pipe and especially its diameter is here
of great importance. As we showed in the study of the gas flow, heating is only effec-
tive within a layer close to the walls, roughly independent from the diameter of the
pipe. This means that for the thinner capillary, where the diameter is small enough
for the high temperatures to reach the core of the gas flow, all ions experience similar
thermal conditions throughout the transfer. However, for larger diameters, as con-
sidered here, a strong stratification of the gas temperature is observed. This leads to
a strong difference in the thermal conditions the ions undergo during their transfer.

This phenomenon is represented in figure 5.4. It represents the highest temper-
ature the ions experienced over their trajectory. It is clear that the ions getting out
of the capillary close to the wall experience the highest temperature. But it also
shows that a priori only very few ions, if any, experience high temperatures and
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FIGURE 5.5: Evolution of the transmitted current for capillaries of
different diameters (0.25 mm, 0.50 mm, 0.75 mm and 1.00 mm) and
the corresponding mass flow. Both quantities are normalized to ones
computed for the largest capillary diameter. In all cases, the tempera-
ture of the capillary wall is 500 K with a length of 6.0 cm. The current
is the maximum transmitted through the capillaries for the given con-

ditions.

return to the central part of the flow. This builds up a strong stratification within
the transferred ions. The highest temperature encountered by the ions transmitted
in the central area is the temperature at the inlet of the capillary. Along their path,
the gas temperature monotonously decreases. The ions transmitted in the periph-
eral area experience, in contrast, a temperature close to the wall temperature. As
a consequence, if transformations of the ions occur, a spatial localization can likely
be observed at the outlet. The ions transmitted in the central area might have been
preserved, while the ones transmitted close to the walls are likelier to have trans-
formed. In cases where ions of large dimensions should be transferred intact in the
next chambers, e.g. in native mass spectrometry, this could be used to select the
transmitted ions, using for instance a skimmer to exclude the outermost ions.

This also confirms the conclusion drawn from the gas flow. The heating of the
capillary, when intended to accelerate the desolvation process of the droplets created
during the ionization, is less efficient for wider capillaries, where the inner flow
remains cold. In such a case, it is of great importance to only let droplets with a
short lifetime enter the capillary, i.e. droplets of smaller size.

5.1.2 Influence of the geometry and heating

Geometry

The influence of the geometry of the capillary is considered with two parame-
ters: the length of the capillary and its diameter. First considering the diameter, its
influence varies mostly with the quantity of gas that is transmitted through it. The
maximal transmitted current for different diameters is presented in figure 5.5, along
with the transmitted mass flow, where the results are normalized with the values
from the widest capillary. It appears that both quantity are strongly correlated. Fur-
thermore, both are roughly scaling with the cross-section of the capillary, which is
related to the chocked state of the flow. In a traditional Hagen-Poiseuille flow, the
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FIGURE 5.6: Evolution of the transmitted current for capillaries of dif-
ferent lengths. Two different sets of simulations are presented, rep-
resenting two diameters (0.75 mm and 1.00 mm), and two different
lengths for each diameter. The results are presented with respect to

the air mass flow through the capillary.

mass flow ṁ is related to the square of the cross-section A (see e.g. Schlichting and
Gersten (2017, p. 117)):

ṁ =
A2∆p
8πµL

, (5.12)

with ∆p the pressure difference between both ends of the pipe, µ the viscosity, and
L the length of the pipe. However, this equation only holds for small pressure dif-
ferences. This is not the case for the flows presented here, where chocking occurs.
The dependency of the transmitted current with the area is however coherent with
the simplified model presented in 5.1.1 as can be seen in equation 5.8.

The variation of the length of the capillary is also essential in the transmission
of the ions. Looking at the results in figure 5.6, one can see that for a longer capil-
lary, the decrease in the transmitted current is much higher than the decrease in the
flow rate. The latter can again be explained by the chocked state of the flow. It is
ruled by two factors: the cross-section the gas is flowing through and the maximal
velocity reached at the end of the pipe. Both elements remain constant when the
length varies, leading to relatively similar gas flows. However, small changes still
occur. This is due to friction’s effects taking greater importance when the length of
the capillary increases. The boundary layer gets thicker with increasing length, theo-
retically up to a parabolic profile, meaning that the effective cross-section discussed
in section 3.2 reduces with the length, causing a slight diminution of the quantity of
gas transmitted.

The stronger decrease of the transmitted current is related to the longer travel
time of the ions within the capillary. As a consequence, the expansion due to space
charge effects occurs during a longer period. To schematize the behavior, the initial
distribution of ions keeps expanding towards the walls, while being transported
towards the outlet by the underlying gas flow. This means that the longer the pipe
is and thus the journey through the capillary, the farther the ions drift towards the
wall until they get lost.

These results show that the transmitted current is strongly affected by the ge-
ometry of the capillary. Maximization of the transmission requires the widest and
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FIGURE 5.7: Evolution of the maximal transmitted current for capil-
laries with different wall temperatures. All cases are simulated for a
0.75 mm wide and 6.0 cm long capillary. Results are presented for a

normal and flat distribution of the ions in the inlet area.

shortest possible geometry. This has already been predicted by the simple model
previously developed and summarized in equation 5.8. A trade-off is necessary
though, as a wide capillary let enter more gas in the next chamber, and should be
compensated by a powerful pump. Long and thin pipes also reduce the transmis-
sion but might enhance the desolvation process, allowing the production of a larger
quantity of gas-phase ions. This is however also related to the heating of the flow,
which has an intrinsic influence on the transmission as well.

Heating and effects of the initial distribution

Heating marginally modifies the gas flow through the pipe. One can observe
in figure 3.3 that lower wall temperatures lead to higher axial velocity. This means
that the ions transported by the gas spend more time within the capillary and thus
drift closer to the walls, yielding higher losses. The higher temperature also in-
duces higher mobility values, enhancing the motion causing losses. This explains
the results presented in figure 5.7 where the maximal transmitted current through
the same capillary slightly decreases when the wall temperature increases. This
result is also coherent with experimental results presented in Bernier et al. (2018).
Furthermore, the maximal transmission is similar for both tested initial distribution
over the inlet cross-section, normal or flat. This implies that the mechanism behind
this maximum is independent of the distribution of the ions. This phenomenon,
called space-charge limit, illustrates the saturation of the capillary due to high elec-
tric charge densities contained within the relatively small domain of the capillary.

As we have already argued, the losses are mainly due to repulsive electric forces
pushing the ions towards the walls. For relatively small charge densities and a nor-
mal distribution centered on the capillary axis, theses forces are not strong enough to
cause any loss, as can be seen in figure 5.8 for the lowest incoming currents. Unitary
transmission can be reached in such conditions. Slightly increasing the current and
thus the initial charge density induces a stronger drift towards the walls and losses
appear. This phenomenon explains why the transmission ratio decreases while the
transmitted current still increases. At a certain point though, the stronger space
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FIGURE 5.8: Evolution of the transmitted current for capillaries with
different wall temperatures. All cases are simulated for a 0.75 mm
wide and 6.0 cm long capillary. Results are presented for a normal
distribution of the ions in the inlet area. Results are compared with a

unitary transmission represented by a dashed line.

charge effects due to a higher charge density at the inlet increase the lost current in
the same proportion than the increase in the incoming current, leading to the ob-
served saturation.

In the case of a flat distribution at the inlet, the evolution is slightly different.
Losses are observed even for very low incoming currents. This can be explained by
the fact that ions are introduced very close to the wall. As a consequence, the proba-
bility of losses, even close to the inlet, is intrinsically higher than for the normal dis-
tribution. Furthermore, the ions introduced close to the wall are barely transported
by the flow, as the velocity magnitude is close to zero. This creates an accumulation
of ions and thus leads to stronger space charge effects in this area, facilitating the
losses. This phenomenon is not very realistic and shows that the flat distribution
should be considered as a limit case to be compared with the normal distribution
but not as describing physical operating conditions. It also explains why the satu-
ration due to space charge effects is reached for much higher currents with the flat
distribution (≈ 2 µA) than with the normal one(≈ 50 nA).

The rationale behind the transmission in the case of a flat distribution can further
be explained using the estimation of the transmission ratio derived in equation 5.10
and 5.11. Setting r0 to zero in equation 5.8, one can also express the maximal trans-
mitted current as:

Imax =
πε0u2

avR2
cap

2KLcap
. (5.13)

The transmission ratio thus becomes:

δ = 1− Itrans

Imax
. (5.14)

This dependency is represented for the simulations performed in figure 5.9. It shows
that the predicted linear dependency is well reproduced. However, the resulting
slope falls short of crossing one for incoming current approaching zero. This is un-
derstood as the consequence of the simplification of a constant axial velocity over
the cross-section. It thus neglects the previously described accumulation in the inlet
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FIGURE 5.9: Transmission ratio represented with respect to the trans-
mitted current for a normal and flat initial distribution of the ions. All
simulations are computed for a capillary with 0.75 mm diameter and

6.0 cm length. In all cases, the wall temperature is set to 350 K.

and caused by the non-slip boundary conditions enforced at the walls. Nevertheless,
the difference is significant when compared with the results of the normal distribu-
tion. Such measurements, relatively easy to realize in a device, could deliver some
information regarding the distribution of ions at the inlet of the capillary. This also
shows that a concentration of the ion distribution around the axis of the capillary
is important to improve efficiency of the transmission compared to more diffused
distributions, even if the maximal transmitted current remains the same in all cases.

5.1.3 Mix of species

So far, we concentrated our investigation on a single species, rhodamine B. How-
ever, in a realistic scenario, several species are produced during the ionization pro-
cess and we thus further focus on results involving different kinds of ions, having
different masses, charge state, and reduced mobility. This aspect is interesting be-
cause some experimental results tend to show that the transmission ratio might de-
pend on the involved species. This was reported by Page et al. (2009), where the
study of inlet capillaries of different lengths shows a transmission bias correlated
with the mobility of the species involved.

This effect is quantified using the enhancement factor Fe defined in the paper
mentioned before. It compares the transmitted signal of a species in the mix for
different capillary length, considering the same incoming current. It is specifically
computed as the ratio between the transmitted intensity of a short capillary and
the transmitted intensity of a long capillary as measured by a mass spectrometer.
This is here interpreted as the ratio of the transmitted currents: Fe =

Itrans,short cap
Itrans,long cap

. We
have already mentioned that a shorter capillary leads to higher transmission ratios.
Therefore, this enhancement factor is larger than one. It varies depending on the
species though and it is higher for species most affected by the increase of the length.
The experimental study showed that the species with the highest reduced mobility
present the highest enhancement factor.
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Species Fe for normal Fe for flat Reduced mobility m/z
distribution distribution (cm2 V−1 s−1)

bradykinin 3+ 2.018 1.908 1.352 354.3
neurotensin 3+ 1.840 1.810 1.207 558.5
fibrinopeptide A 2+ 1.602 1.776 1.033 769.0

TABLE 5.1: Enhancement factors computed as the ratio of the trans-
mitted current in the short capillary (length of 3.8 cm) towards the
long capillary (6.0 cm). The diameter is 0.75 mm in all cases. The in-
coming current is 60 nA for the normal distribution and 2.5 µA for
the flat one. The reduced mobility is for a N2 buffer gas as reported

in Page et al. (2009) but used here in the air for qualitative results.
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FIGURE 5.10: Comparison of the transmission ratio of different
species considered, either within a mix or alone. All simulations are
performed for a 0.75 mm wide and 6.0 cm long capillary with a wall
temperature of 500 K. The ions are inserted in the domain with a nor-

mal distribution.

The relative importance of the different effects involved is complex to define and
we use simulations to get a better understanding of this phenomenon. The mix con-
sists of three different species already considered in Page et al. (2009): bradykinin
3+, neurotensin 3+, and fibrinopeptide A 2+. Their respective parameters, along
with the enhancement factors are presented in table 5.1. It appears that the correla-
tion found between reduced mobility and enhancement factor experimentally found
is correctly reproduced in the simulations. No quantitative comparison can be per-
formed though for two different reasons. First, the exact composition of the mix
entering the capillary in the experiment depends on many factors that are hard to
measure. It is thus not known and cannot be reproduced in the simulations. Second,
the enhancement factor computed in the experiment uses the signal of the mass spec-
trometer, that is further downstream in the device. The experimental values might
thus be affected by other biases caused in other stages located between the capil-
lary outlet and the chamber where the mass spectrum is measured which are hard
to quantify. In spite of these quantitative uncertainties, the results of the simulation
further show that once again, the distribution at the inlet does not affect the ten-
dency. The ions with larger mobility present higher enhancement factors in both
cases tested.

While this picture confirms the measurements, we need further simulations to
understand some of the processes involved in the bias in transmission. We especially
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FIGURE 5.11: Comparison of the transmission ratio of different
species considered, either within a mix or alone. All simulations are
performed for a 0.75 mm wide and 6.0 cm long capillary with a wall
temperature of 500 K. The ions are inserted in the domain with a flat
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compare the transmission ratio of a species in a mix and the corresponding ratio for
the species considered alone. The results are presented in figures 5.10 and 5.11, again
for the two initial distributions considered. In both cases, the transmission ratio of
the species with the highest mobility (bradykinin) is lower in the mix compared to
the species alone, while the inverse is true for the species with the smallest mobility
(fibrinopeptide). This difference can be explained when considering the mean radius
of the ions discriminated by species along the capillary, as depicted for the normal
distribution in figure 5.12. One can see that the mean radius of the species with
large mobility increases more rapidly, leading to higher losses, while the species
with the smaller mobility remains closer to the axis, enhancing its transmission. The
same considerations for the flat distribution do not deliver clear cut results when
considering the entire set of ions. The transmission ratio being much smaller, the
large majority of particles considered is indeed lost. However, the same picture
arises by limiting the scope to the ions located close to the axis at the inlet, which are
likely to be transmitted.

This phenomenon can be interpreted as follows. From the initial distribution,
the ion of the species with the highest mobility, while submitted to the same electric
field, are drifted farther away towards the walls. This leads to the difference in the
mean radius already observed. The fact that the difference in the mean radius is
more pronounced close to the inlet is also coherent with this explanation. Indeed,
the charge density and following the space charge effects are larger in the first parts
of the capillary. They progressively decrease along the pipe because of the expan-
sion that occurs. The difference in the radial velocity is thus more pronounced at
the beginning of the travel of the ions. For symmetry reasons, the ions located far-
ther from the axis of the capillary experience larger electric forces. This difference
in the radial distribution of the species leads the ions with the largest mobility to
experience larger radial forces and thus are likelier to get lost. As a consequence,
the relative concentrations of the different species found at the outlet of the capillary
and in the subsequent stages of the device do not represent the concentrations of the
initial sample anymore. This transmission bias is further increased for longer capil-
laries, as shown by the values of the enhancement factor because the selective losses
occur during a longer period.

Quantitative comparisons of intensities measured by a mass spectrometer should
thus be considered carefully. They indeed may not represent the proportions of the
different species present in the sample analyzed. To minimize this error, one should
tend to keep the capillary as short as possible. Here again, a trade-off between the
importance of this bias and other effects such as desolvation is necessary.

5.2 Ion funnel - classic design

Following the results of the transmission of ions through the capillary, we sim-
ulated the trajectory in the ion funnel. We used a classic design as presented in
section 2.1.2. The results presented here were computed independently from the
previous simulations. The final part of the capillary is part of the domain consid-
ered, but we do not simulate the transport of ions within it. The ion beam is created
by introducing ions at the end of the capillary. The distribution of the new ions uses
the third distribution described in section 2.3.3. It intends to reproduce a typical
distribution that can be found in this section and presented in figure 5.3.



5.2. Ion funnel - classic design 123

0 50 100 150 200

RF amplitude (V)

0

1

2

3

4

Tr
an

sm
it

te
d

cu
rr

en
t(

nA
)

1 mbar
1 mbar HC
3 mbar

FIGURE 5.13: Transmitted current measured in the chamber follow-
ing the ion funnel. Three measurements are given for each set of pa-
rameters. The results are provided for the two concentrations of the
analyte and a background pressure of 1 mbar (the case with a higher
concentration is denoted with HC) as well as for a background pres-

sure of 3 mbar.

The two different flow fields presented in section 3.4.3, representing different
pressure levels, are considered for the fluid part. The space charge effects and the
external electric field presented in section 4.4.3 are also taken into account.

Experimental results have been measured by Paul Fremdling, from the Univer-
sity of Oxford, at the facility of the Max Planck Institute in Stuttgart. The geometry
used in the simulations tends to reproduce this device and the pressure levels in the
gas flow simulations have been chosen in accordance. These experiments will guide
the interpretation of the simulation’s results to determine how good the model pre-
sented in this work can reproduce the behavior of a typical ion funnel.

5.2.1 Experimental reference

In order to define a clear framework for the simulation, we first analyze the re-
sults of the experimental measurements performed on the existing device. Rho-
damine B is considered as test species throughout the experiments. Different series
of results are presented, where the following parameters vary:

• the amplitude of the RF-fields;

• the background pressure in the funnel;

• the concentration of the test ions in the sample.

In each case, the following parameters can be measured:

• the electric current issued from the ESI emitter, characterizing the sprayed
charges;

• the electric current measured at the capillary, representing the losses through
the capillary;

• the electric current coming in the chamber located after the ion funnel, repre-
senting the ion beam that would be further transported in the mass spectrom-
eter.
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FIGURE 5.14: Transmission ratio measured between the capillary and
the chamber following the ion funnel. Three measurements are given
for each set of parameter. The results are provided for the two con-
centrations of analyte and a background pressure of 1 mbar (the case
with a higher concentration is denoted with HC) as well as for a back-

ground pressure of 3 mbar.

The latter is the transmitted current, directly measured shortly after the ion funnel.
The difference between the other currents delivers values for the current entering the
ion funnel from the capillary. It is thus possible to directly compute the transmission
ratio from these three measurements.

Three different cases are considered: a concentration of 1× 10−5 mol · L−1 of
rhodamine B in the sprayed solution at two different pressure levels: 1 mbar and
3 mbar; and a higher concentration of 1× 10−4 mol · L−1 in combination with the
lower presser level of 1 mbar. In all cases, the amplitude of the RF field varies be-
tween 0 V and at least 120 V. The results of the transmitted currents and transmission
ratios are presented in figures 5.13 and 5.14. Each point represented is an average of
300 measurements.

Different behaviors are remarkable. First, the transmission strongly depends on
the amplitude of the RF-field. With zero amplitude, that is when the DC-Feld is
considered as the only external electric field, a very small amount of ions reach the
next chamber. With increasing amplitudes of the RF-field, a steep increase of the
transmitted current can be observed. This clearly shows the effect of the ion fun-
nel and the force created by the alternating electric field that retains the ions inside
the cavity. In all cases, the transmitted current reaches a maximum when the am-
plitude is further increased. For higher amplitudes of the RF-field, the transmitted
current presents a decrease but remains significant in the range of amplitudes con-
sidered. The other parameters, pressure level and concentration of the analyte in the
sprayed solution, do not strongly modify this behavior. Only the number of charges
measured and the amplitudes for which the different trends are observed differ. Es-
pecially, higher pressure in the chamber leads to a slight shift of high transmission
towards higher amplitudes of the RF-field: at about 60 V for a background pressure
of 1 mbar and about 80 V for 3 mbar. Furthermore, in the case of a higher concen-
tration of the species, the transmitted current is slightly higher than with the lower
concentration. Most remarkable, though, is that the transmission ratio also strongly
increases.

In the experimental data set presented here, the measured values can strongly
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FIGURE 5.15: Transmission ratio computed from the simulation with
rhodamine B and a current of about 5 nA issued form the capillary,

comparing the different implementations of the RF electric field.

vary between different experiments. Especially, the behavior of the emitter seems
to be very sensitive to parameters not fully controlled. In some cases, this leads
to noticeable changes during a single series of measurements. We thus try in the
following to focus on global trends rather than quantitatively reproduce the profiles
presented here.

5.2.2 Influence of the RF electric field and its implementation

To compare the results of the simulation with the experimental ones, we first
consider the lower pressure level of 1 mbar and consider the influence of the radio-
frequency electric field. We have presented several implementations of these effects
in section 4.2.2:

• the direct computation of the alternating electric field, time-resolved;

• the effective electric field as developed in the classic model, assuming that the
ions are transported in a vacuum;

• the effective electric field taking into account the presence of the underlying
gas flow.

All three options are presented to compare the results and the influence of the im-
plementation chosen.

General results

The transmission ratio for the different implementations over a reasonable span
of amplitudes of the alternating electric field is presented in figure 5.15. The first
element to consider here is that in the three cases, the RF electric field shows its
ability to limit the losses. While almost no transmission is observed when only the
DC-field is present, the transmission ratio rapidly increases with the amplitude of
the RF-field and reaches values very close to 1, that is total transmission, for ampli-
tude values starting with 20 V, both for the time-resolved field and for the adapted
effective field. In the case of the traditional effective field, as derived in the classic
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FIGURE 5.16: Location of the losses at the tips of electrodes, without
RF-field and with a weak one (amplitude of 10 V), time-resolved. The

shape of the electrodes is depicted in the background.

model, the transmission is very high with an amplitude of only 10 V. This illustrates
well the expected effects of the alternating electric field. It creates an effective force
towards the center of the cavity and thus reduces the number of ions lost due to
the gas flow between the electrodes. This can be seen comparing the location of the
losses between simulations without RF-field and with an RF-field at moderate am-
plitude, to still allow some losses. In the first case, the losses are located at the tip
of the electrodes and at their sides, whereas in the second case the losses are much
more concentrated at the tip, as can be seen in figure 5.16. The losses at the sides of
the electrodes are a clear sign that ions follow the gas flow between the electrodes.
However, the DC-field pushes the ions towards the surfaces of the electrodes until
they are lost. Such losses are far less abundant when the RF-filed is switched on.
This indicates that the ions do not enter the space between two electrodes, illustrat-
ing the force created by the alternating field to keep them within the cavity formed
by the funnel.

Furthermore, differences between the implementations can be observed. The im-
plementation resolving over time the alternation of the polarity of the electrodes, as
well as the adapted effective field, show a later increase of the transmission ratio
with increasing values of the RF-field amplitude when compared to the classic im-
plementation of the effective field. This can be interpreted as the fact that the gas
present in the chamber weakens the effects of the electric force created by the RF-
field. Indeed, the main difference between the two implementations of the effective
field is the consideration of the underlying gas. This tends to show that this single
modification allows for a better description, taking as reference the time-resolved
implementation, which does not make any assumption a priori on the effects of such
field.

However, some limitations apply to all models and especially to the time-resol-
ved one. The influence of the gas flow, as described in equation 2.5, relies on the
hypothesis that the interactions between the gas molecules and the ions occur often
enough. The effect described is thus a statistical behavior. One can estimate the
number of collisions of the air molecules on a surface equivalent to the collision
cross-section ACCS of rhodamine B in nitrogen, to fix the idea. This surface can be
estimated to 3.97× 10−18 m2. Following Bird, Stewart, and Lightfoot (2001, p. 23)
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the average collision rate per unit area, Z, can also be estimated to:

Z =
ρACCS

2

√
2kBN 3

AT
πM3

air
, (5.15)

with ρ and T the local density and temperature, respectively, kB the Boltzmann con-
stant, NA the Avogadro constant, and Mair the equivalent molar mass of air. For a
density of 1× 10−3 kg ·m−3 and a temperature of 300 K, which are values close to the
ones found at the end of the ion funnel, it delivers a collision rate of 9.66× 106 s−1.
This means that during a period of the RF-field, one can expect roughly 10 collisions
between rhodamine B ions and air molecules. This is rather low but shows one of
the limits of the approach chosen here. However, the effects of the gas flow also
depend on the particle response time, which is in such conditions rather large. Un-
der the same conditions, it is estimated at 5.6× 10−7 s, which is slightly more than
half of the period. Thus, the model does not strongly enforce the velocity of the gas
flow and in the regions where the electric fields are strong, it is likely to be domi-
nant. Nevertheless, these estimations show that the model used is again pushed at
its limits and should not be extended to regions where the underlying gas is even
more rarefied, as both the fluid dynamics and the trajectory of the ions would not be
properly simulated. In such cases, a Direct Simulation Monte Carlo method encom-
passing both the air molecules and the ions would be more suited.

As previously mentioned, the effective fields are only valid for specific domains
for which the assumptions made to derive the new form are valid. For the classic
form of the effective field, a semi-empirical criterion can be defined. It is called the
adiabaticity parameter and shall remain below the threshold of 0.3 to ensure that the
results remain satisfactory. In all cases considered here, for the largest amplitude
(120 V) and for rhodamine B, the maximum value reached in the domain is below
0.02. We can thus assume that the results provided with the effective field are still
within the domain of validity. The adapted form of the effective field relies on the
same assumptions as the classic form. Thus, a similar condition is expected. How-
ever, this does not take into account the influence of the gas flow, which has also been
approximated with the assumption of a smooth transition within the oscillations of
the ions. The threshold of 0.3 may thus be over estimated in this case. Nevertheless,
the flow fields are not less smooth than the electric fields, especially in vicinity of the
electrode edges, such that we do not expect the condition for the adapted effective
field to strongly differ. The time-resolved field does not present such restrictions, as
no specific assumption is made regarding its influence on the trajectory of the ions.
As such, all formulations of the electric forces may deliver acceptable results over
the range of amplitudes of the RF-field considered here.

In the cases where almost total transmission is reported, that is for high ampli-
tudes of the RF-field, the distribution of the particles within the cavity of the funnel
highlights the presence of specific structures. This is related to the so-called trapping
effect. A closer look at this phenomenon is proposed in the next section.

Study of the trapping behavior of the alternating field

The trapping effect of the RF-field is a well-known phenomenon of the ion fun-
nel. It has already been presented in a publication by Shaffer et al. (1999), a couple
of years after the first presentation of the ion funnel. We mentioned it when describ-
ing the effective potential, represented along the symmetry axis of the chamber in
figure 4.10. It appears where the inner radius of the electrodes becomes relatively
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small, in the order of magnitude of the distance between the electrodes. This is be-
cause the average radio-frequency effects span in the radial direction in the vicinity
of the electrodes’ tip. For sufficiently large inner radii, the effects are almost absent
of the center of the cavity, where the gas flow and the DC-field, as well as the space
charge effects, are largely responsible for the motion of the ions. However, when the
inner diameter of the electrodes becomes too small, the RF effects reach the center
of the cavity. This creates a potential well, where the ions accumulate as long as the
other effects are not strong enough to counter it.

This happens when the number of ions becomes high enough so that space
charge effects allow the ions to leave the potential well. This situation can be ob-
served in figure 5.17, where the results are computed with both versions of the effec-
tive RF-field. Here again, the time-resolved implementation (not represented) and
the adapted effective field deliver very similar results. In the center of the cavity,
shortly before the transmission into the next chamber, accumulations of ions occur.
Both versions of the effective RF-field show similar behaviors. However, the adapted
version, where the gas flow is taken into account, shows smaller accumulations ar-
eas. This can be well understood by the fact that the correction brought to the classic
model weakens the magnitude of the force applied to the ions, as already observed
in the transmission ratio. This can also be seen in the profiles of the effective field in
the axial direction in figure 5.18. Lower space charge effects are thus able to counter
the effects of the adapted RF-field. Nevertheless, the radial effects of the RF-field re-
main strong enough to further guide the ions toward the end of the cavity and into
the next chamber, so that total transmission is simulated.

This subject has been extensively described in Kelly et al. (2010). It especially
shows that the dimensions of the last electrode of the funnel play a significant role.
Reasoning in terms of an estimation of the effective potential, they could derive a
relation for the depth of the potential well close to the axis compared to the maximal
potential, reached close to the tip of the electrodes. This relation could show that
doubling the inner diameter of the last electrode in the original design could reduce
the depth of the potential well by a factor larger than 10. Another major factor is
the spacing between two successive electrodes. The smaller this distance, the less
critical the formation of the potential wells. It indeed increases the force magnitude
close to the tip of the electrodes for a given amplitude and thus enhances the overall
effects of the RF-field while avoiding the critical case of the spacing being similar to
the inner diameter of the electrodes.

Comparison with the experimental results

Several differences can be pointed out in comparison with the experimental data.
First, the transmission ratio of the simulations, which reaches unity, lies significantly
higher than the experimental one, reaching a maximum of about 60 % with the high
concentration of the analyte. A hypothesis can be drawn regarding this difference.
The currents measured in the experiment register all charges. The emitter produces
charged droplets and not directly gas-phase ions. However, the simulations only
consider gas-phase ions. This means that if the desolvation process is not completed
for some droplets, they may still be counted in the current entering the ion funnel
while presenting a different behavior than the ions computed here. This could affect
the transmission ratio considered in the experiments and lead to an underestimation,
compared to the one reported in the simulations. The available data set does not
allow us to conclude about these points though and further detailed experiments
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would be necessary to establish precisely which current enters the ion funnel and
whether this can lead to unitary transmission.

Second, it can be observed that the increase of the transmission with the ampli-
tude of the RF-field occurs in the simulation for smaller amplitudes than in the ex-
periments. With an amplitude of 20 V, the unitary transmission is reached in the sim-
ulation, while the maximum transmission is observed in the experiment for about
60 V. An explanation can be proposed for this difference. In the simulation, the
transmission is counted directly at the end of the cavity formed by the ion funnel.
In contrast, the transmitted current is measured in the experiments well within the
next chamber. Between both chambers lies a pinhole which presents similarities to
the capillary considered before. Its length is shorter (about 1 mm), but it still presents
an enclosed cylindrical form through which the ions need to travel.

As already mentioned, the effect of the RF-field is to guide the ions towards the
symmetry axis of the domain. The higher the amplitude of the field is, the stronger
this collimation. In the transition between the chambers, the external electric fields
are supposedly reduced and an expansion similar to the one described in the sim-
ulations of the capillary can occur. As a consequence, when the amplitude of the
RF-field is too small, some ions enter the transition area very close to the walls and
can lead to significant losses.

This phenomenon was reproduced with an amplitude of 20 V. When consid-
ering the ions as transmitted 2 mm further in the transition area, the transmission
ratio significantly decreases from 99 % to 68 %. A similar issue was dealt with in
a work by Mayer and Borsdorf (2016), where the shape of the transition zone be-
tween the ion funnel and the following vacuum chamber varied. Three configura-
tions are considered: a capillary (straight pipe), a pinhole (diverging shape), and a
nozzle (converging/diverging shape). A significant effect on the transmission was
simulated, the latter option showing significantly higher transmission than the other
ones. While not all parameters are comparable to the present ones (the ion funnel
operates at atmospheric pressure, which is not the case in the present work), it em-
phasizes the importance of the transition between the ion funnel and the following
chamber to reach high efficiency in the transmission of ions.

Third, no significant decrease in the transmission can be observed in the simula-
tion for higher values of the amplitude of the RF-field. While the simulations seem
to indicate a slight reduction of the transmission ratio for an amplitude of 160 V,
especially for the time-resolved field, this is not to the same extent as experimen-
tally measured. This indicates that the simulations may omit to consider a param-
eter that plays a significant role in the experiment. Here again, a hypothesis can be
formulated regarding this difference. The analyte, rhodamine B, is sprayed from a
solution of water and ethanol. It is thus possible that solvent molecules are ionized
alongside the analyte, thus being potentially transferred through the ion funnel. As
these ions are significantly lighter than the analyte, their behavior within the funnel
is different. Furthermore, their ratio mass to charge is too low to be detected by mass
spectrometry in the device used for the experiments. While further experiments are
programmed to determine whether these ion species, or further ones, are effectively
present after the ion funnel alongside rhodamine B, simulations where conducted to
determine the influence on the global transmission ratio.
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FIGURE 5.19: Transmission ratio computed from the simulation con-
sidering a stoechiometric mix of rhodamine B, hydronium and ethy-
loxonium ions. The current issued from the capillary is about 5 nA

and the RF field is resolved in time.

5.2.3 Consideration of ionized solvent molecules

To estimate whether the involvement of ionized solvent molecules can reproduce
a decrease of the transmission for relatively high amplitudes of the RF-field, simu-
lations involving a mix of three species are considered. It contains in stoichiometric
quantities rhodamine B, hydronium (H3O+), and ethyloxonium (C2H7O+) ions. The
relative quantity does not intend to reproduce a realistic mix but rather to introduce
the three species and observe their behavior with similar statistical properties. The
results are presented in figure 5.19.

It shows that these lighter ions lead to a lower transmission ratio when the am-
plitude of the RF-field reaches values larger than about 50 V. This hypothesis is thus
compatible with the experimental results and would mean that at least part of the de-
crease in the measured transmission ratio could be attributed to unexpected species.
The explanation for the losses of lighter ions with comparably lower amplitudes can
be attributed to larger mobility values. This means that when the variations of the
electric field occur, the oscillations induced in the trajectory of the ions are larger
when the mobility is larger. Furthermore, considering larger amplitudes of the RF-
field implies that the force experienced by the ions also gets larger. These oscillations
can be a source of losses, as they can lead the ions to hit the electrodes present in the
domain. As a consequence, the lighter ions, which for the same RF-field show larger
oscillations, are lost for smaller amplitudes than rhodamine B in this case.

Nevertheless, these simulations cannot properly show to what extent this hy-
pothesis is responsible for the transmission profile measured in the experiments.
Especially, it is not confirmed whether the solvent molecules are present in the ion
beam, let alone in quantities significant enough to explain the drop in transmission.
Also, the lighter ions seem to be more easily transmitted for lower amplitudes of the
RF-field and thus also affecting this part of the characteristic. Further measurements
are programmed, which could qualitatively show whether hydronium and ethylox-
onium ions are present after the ion funnel and thus whether this hypothesis can be
confirmed.
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FIGURE 5.20: Transmission ratio of rhodamine B depending on the
amplitude of the RF-field for two different pressure levels. The cur-
rent issued from the capillary is about 5 nA and the RF field is re-

solved in time.

5.2.4 Influence of the pressure level

Similar simulations have been conducted with the other gas flow results com-
puted for a background pressure of 3 mbar, however only with the time-resolved
RF-field A comparison of the transmission ratio with the two different pressure lev-
els, the other parameters being the same, is presented in figure 5.20. In both cases,
the behavior is very similar. The transmission ratio starts to rise for a high enough
amplitude of the RF-field and reaches then soon afterward almost total transmis-
sion. This happens for the lower pressure level with an amplitude of 20 V and for
the higher pressure level with 30 V. This slight difference shows that proper func-
tioning of the ion funnel shifts toward higher amplitudes of the RF-field when the
pressure of the underlying gas flow increases.

This difference is not only due to the modification of the flow fields. Indeed,
the higher pressure level induces a modification of the local mobility of the ions
and thus a different response to the RF electric field. Especially, the temperature
between both cases can be roughly considered as similar, independently from the
pressure level. This means that mobility values, according to equation 2.7, become
smaller for higher pressure levels. In such conditions, the effects of the RF-field are
attenuated and a larger amplitude is needed to counter the effects of the gas flow.

The experiments performed in Stuttgart confirm this tendency, as reported in fig-
ure 5.13. A significant increase of the transmitted current with a pressure of 1 mbar
is measured in the experiment for an amplitude of 20 V. For a pressure of 3 mbar,
an amplitude of 40 V is necessary to reach this threshold. Nevertheless, and for both
cases, this does not mean that the maximal transmission is reached for such small
amplitudes. This effect, as already mentioned, can be attributed, at least partly, to
the losses occurring in the transition zone between the chamber where the ion funnel
is located and the chamber where the current is measured. This dependency is not
unexpected and has already been reported during the initial characterization of the
concept of ion funnel. Especially, characteristics, based either on the current mea-
sured at the final electrode of the device or in the following octopole, were reported
in Shaffer et al. (1998) and Shaffer et al. (1999). Both publications show that higher
amplitudes of the RF-field are required to reach maximal transmission.
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5.2.5 Summary

Following the presented results, several aspects of the simulations can be an-
alyzed in further detail. Globally, the typical behavior of an ion funnel could be
reproduced. In the absence of RF-field, only a very small transmission of the ion
beam is simulated. Increasing the amplitude of this field, however, strongly limits
the losses that occur within the ion funnel and a significantly higher transmission
can be observed. The impact of the pressure level within the ion funnel can also be
relatively well reproduced. However, some aspects of the transmission remain to be
improved in the simulations.

First, the transmission in the absence of RF-field is significantly lower in the sim-
ulations than the experimental measurements. No obvious reason appears for this
difference, though. Especially, the simulated current, considered at the end of the ion
funnel, does not take into account the transition into the next chamber, where the ex-
perimental values are taken. This difference should even lead to a lower transmitted
current predicted by the simulation than reported here. Several potential explana-
tions can be put forward. Given the limitations of the flow simulations that we have
already exposed in section 3.4.3, some differences between the fields considered for
the simulation and the reality may explain a difference in the behavior of the ions.
This hypothesis could also be supported by the fact that several simplifications were
made to compute the gas flow, besides the limitations of the model used. For ex-
ample, the device is not strictly axially symmetric. Furthermore, the pressure level
measured in the experiments is also a local value, that may not exactly match the
pressure level considered in the simulation. Moreover, it cannot be excluded that
some differences may exist between the electric fields considered in the simulation
and the one experienced by the ions. The geometry considered in the simulation re-
produces relatively accurately the ion funnel of the experiment. Nevertheless, some
boundary conditions or potentials could remain approximations. This especially ap-
plies to the DC-field, which plays a significant role when no RF-field is considered.
However, it is expected that the electric fields are more accurate than the flow fields,
as fewer assumptions are needed. In both cases, it is yet difficult to foresee which
influence these differences would have on the behavior of the ions and whether this
can explain the lower transmission that is recorded.

The decrease of the transmission for high amplitudes of the RF-field could not be
reproduced to the same extent as in the experiments. While no definitive explanation
for this can be proposed so far, this could be related to the presence of other species
than the expected one. Indeed, lighter ions with larger reduced mobility values may
experience losses for lower amplitudes than rhodamine B and thus be responsible
for the lower measured transmission in such operating conditions. Their presence
could also explain a slightly higher current measured in the absence of Rf-field, as
the force induced by the DC-field would be stronger for these lighter species. This
hypothesis remains to be tested with further experiments.

Regarding the implementation of the RF-field, the present results seem to indi-
cate that the adaptation of the effective RF-field to take into account the presence of
the gas is an improvement compared to the classic form. The former indeed delivers
results consistently similar to the ones obtained when considering the time-resolved
field. The only difference observed is for very high amplitudes, where the losses
seem slightly higher with the time-resolved field than with the effective one. This
adapted effective field could thus allow us to perform simulations with larger time
steps and potentially reduce the computing time. However, both effective fields can
only deliver physical results when the hypotheses made to derive them are fulfilled.
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FIGURE 5.21: Transmission ratio of rhodamine B depending on the
amplitude of the RF-field with the evolution of the design. The cur-
rent issued from the capillary is about 5 nA and the adapted effective

RF-field is used.

This means that the oscillations of the fields around the effective trajectory should
be small enough, such that the surrounding parameters vary smoothly. In the case
of very large amplitudes of the RF-field, this is certainly not the case anymore, even
if a specific threshold remains difficult to define.

5.3 Ion funnel - evolution of the design

We also conducted simulations involving ions in the ion funnel with the evolu-
tion of the design presented in section 2.1.3. This design does not exist so that no
comparison with experimental data can be shown. Nevertheless, these simulations
show what can happen and whether an improvement of the transmission can be
expected.

5.3.1 General results

Similarly to the classic design, we explore the influence of the amplitude of the
RF electric field on the transmission. The amplitude ranges from 0 V (corresponding
to a DC-only electric field) to 120 V. All simulations are performed using the adapted
formulation of the effective RF-field. However, the artificial charge factor is of 250
for the amplitudes lower than 50 V and 1500 for the larger amplitudes. Figure 5.21
presents the transmission ratio over the range of amplitudes considered. In contrast
to the classic design, no strong influence of the amplitude can be observed. In all
cases, the transmission ratio remains roughly around 55 %. This shows that the new
design is not suitable for the effective transmission of ions through the funnel. We
can imagine a similar chamber without electrodes. While the detailed gas flow may
differ, we expect a similar transmission, so that this ion funnel structure appears to
not be really adapted to its purpose. This is further analyzed in the next section.
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FIGURE 5.22: Accumulation of ion in the recirculation zone of the
evolution of the ion funnel design depending on the amplitude of the

RF-field applied to the electrodes.

5.3.2 Details regarding the failings of the design

The first element to mention is the significant transmission even in the absence
of any RF-field. This indicates that the gas flow, combined with the DC-field, is suf-
ficient to transport a large number of ions through the chamber. While this may ap-
pear like a good feature, this also means that the ions are basically traveling through
the chamber without strong disturbances and thus acquire a relatively large velocity
all along the transfer through the chamber, compared to the traditional design. At
the very end of the funnel, between the last electrodes of the system, this behavior
flips. The new design induces a reduction of the velocity of the gas flow, while the
classic design present an acceleration of the flow. However, this may not reverse
the tendency, especially for heavy ions. They indeed acquire large kinetic energy,
while the low density in the region means that the response time is large. It follows
that such ions are likely to keep a large velocity. On the other hand, in the classic
design, their acceleration may be delayed for the same reasons. In the cases simu-
lated, one can locally observe larger velocities at the outlet in the classic design than
in the evolution. However, the considered species, rhodamine B, remains relatively
light in comparison to the ions usually considered, especially in native applications.
From these results, one can conclude that adding a funnel-shaped outlet to capillary
does not help to bring better conditions for the transfer of ions through the pump-
ing chamber. While it helps to adapt the pressure levels, it completely modifies the
structure of the flow and especially the form of the shock structures expected: no
Mach disk is present but diamond shock cells.

Furthermore, the recirculation zone, described in the results of the gas flow in
section 3.4.4, explains the lack of higher transmission when the amplitude of the
RF-field increases. Indeed, when the electric effects become strong enough to pre-
vent the ions to get lost while flying through the electrodes located at the end of the
funnel, the backward flow means that these ions are not transported in the direc-
tion of the outlet but backward in the direction of the capillary, along the tip of the
electrodes. This behavior can be highlighted by comparing the distribution of the
ions in the domain for different levels of amplitudes of the RF-field, as presented in
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figure 5.22 For low levels, with the example of 20 V, we can see that the ions that
do not directly focus into the outlet hit the electrodes and get lost. No significant
influence of the RF-field can be observed. For higher amplitudes, with the example
of 120 V, the effects of the RF-field are strong enough to prevent most of the ions
to get lost by directly traveling between the electrodes. Some still get lost, though,
as the RF-field remains too low. However, they reach the end of the recirculation
zone and build a strong accumulation. From there, the space charge effects become
significant and the ions either are reintroduced in the main flow, where they can be
transported again towards the end of the funnel, or they are pushed further towards
the electrodes and get lost. In all cases, it does not help to enhance the transmission,
as the effects of the RF-field creates a recirculation triggered by the structure of the
gas flow. As a consequence, it does not push the ions farther enough into the area
where they could be directly transmitted, as happens in the traditional design, and
only shifts the location of the losses up-stream. Worth noting is also the absence of
a notable trapping effect in the central area of the cavity, in contrast with the classic
design.

This shows that the two main modifications brought into the design of the funnel
negatively impact the transmission of the ions. First, the adapted outlet of the cap-
illary, by modifying the pattern of the supersonic flow, creates unwanted conditions
for the transmission into the second pumping chamber. Furthermore, the parabolic
shape of the cavity allows for the formation of a recirculation zone in the flow field.
This means that the effect of the RF-field does not enhance the transmission but
rather shifts the location of the losses.

5.3.3 Conclusions for the design of the ion funnel

The previous results let us draw some conclusions regarding the possible evo-
lution of the design of the ion funnel. First, a straight outlet of the capillary seems
to be profitable for the qualitative aspect of the transmission. It indeed allows the
supersonic flow to create a pattern involving a Mach disk, as long as the pressure
in the pumping chamber is low enough. In the area located after the disk, the gas
flow is subsonic and the ions can slow down, independently of their mass. This also
means that the chamber should be long enough so that this area of low gas velocity
is large enough. Further, the shape of the cavity formed by the electrodes should
avoid being too steep in the vicinity of the chamber’s outlet. Straight or even convex
shapes of the cavity should help prevent the formation of recirculation zones of the
gas flow, and thus ensure that the effects of the RF-field applied to the electrodes
effectively enhances the transmission towards the next chamber.
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Chapter 6

Conclusions

The results of the different simulations performed throughout this work are now
summarized to draw some conclusions about the findings.

6.1 Capillary

The first focus of the present work was to better understand the processes in-
volved in the transport of ions through an inlet capillary. This part of the device
is located at the entry of the atmospheric pressure interface typically used in com-
bination with electrospray ionization. The simulations performed first describe the
gas flow that can be expected in the capillary. These results are then used to show
which parameters can affect the transmission of the ions through the capillary, which
is an important factor to improve the sensibility of classic usages involving mass
spectrometry or to allow the development of new applications, such as soft-landing.
We also considered the eventuality of a turbulent flow in such capillary, to identify
whether the strong pressure ratio affects the otherwise expected properties.

6.1.1 Expected nature of the capillary flow

Despite several works (especially Wißdorf et al. 2016 and M. Skoblin et al. 2017),
it is still not well known whether the gas flow within the capillary is laminar or tur-
bulent. We proposed here to study several properties of capillary flows. No defini-
tive answer regarding their expected turbulent or laminar nature is proposed, but a
closer insight into both is offered.

Following some preliminary work (Bernier et al. 2018), we first investigated the
possibility of a laminar flow. It results in chocked flows, due to the strong pressure
gradient between both ends of the capillary. As a consequence, the different param-
eters tested, either changing the geometry of the domain (length and diameter) or
the temperature at the walls, all produce similar pressure and axial velocity profiles
along the pipe length. This especially leads to strong accelerations and steep pres-
sure drop towards the end of the capillary. Nevertheless, interesting properties can
be observed, depending on the parameters considered.

The strong acceleration leads to the occurrence of a supersonic area close to the
inlet. This is caused by the evolution of the boundary layer thickness along the
capillary. It tends to get thinner close to the outlet. As a consequence, it creates an
effective convergent-divergent nozzle, which allows sonic conditions well inside the
pipe. While having already been reported, both experimentally (Murphy and Miller
1984) and numerically (Lijo, Kim, and Setoguchi 2010), this aspect is rarely evoked in
the description of pipe flow, where the assumption of sonic conditions at the outlet
is very common.
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The heating of the capillary, which is often used in traditional devices, has also
been investigated for such flows. This parameter is important as it plays a role in
different processes involved in the transport of ions. Even if these are not directly
addressed in this work, it includes the supposed effect of heating on the desolvation
of the charged droplets created by the electrospray ionization as well as the trans-
formation of the gas-phase ions (unfolding, declustering, fragmentation, etc.). The
laminar simulations thus show that the heating effects are strongly located close to
the walls, in a layer whose thickness only weakly depends on the diameter of the
pipe. This means that while the high temperature set in thin pipes can reach the cen-
ter of the domain, and thus potentially influence the transport of the electric charges,
this is not the case for wider capillaries. With diameters of 0.75 mm or greater, the
temperature of the gas close to the symmetry axis is barely affected by the heating.
In such cases, the heating is limited to a boundary layer and only effective close to
the wall.

Furthermore, this influences the velocity field encountered within the capillary.
First, a higher wall temperature leads to slightly smaller axial velocities. As a con-
sequence, the mass flow, which indicates the quantity of gas transported during a
given period, is reduced. Second, when the heating is strong enough, a specific pro-
file of the axial velocity is encountered in the cross-section of the capillary. A local
maximum, located off the axis, is simulated. Such a profile is rather unexpected,
as usually the maximum is located at the axis. However, the conservative variable
in the Navier-Stokes equations, the momentum, keeps the usual profile. This phe-
nomenon can be explained by the balance between the trigger of the flow, the pres-
sure gradient, and the inertia of the fluid particles, whose mass is strongly affected
by the heating.

While all these results apply to laminar flows, no clear criterion could be defined
to predict the occurrence of turbulence within the system. Elementary tests tend to
show that within the lengths of the capillary considered here, typical for real devices,
even a rather strong perturbation of the flow at the inlet was not able to deliver signs
of the appearance of turbulence. The relatively high Reynolds numbers in the con-
sidered systems would however speak for the possibility of transitional or turbulent
flows. We thus analyzed the properties of a fully turbulent flow set in the inlet of
the capillary, while maintaining the strong pressure gradient and thus the acceler-
ation of the flow. Especially, it was of interest whether these specific parameters
influence the otherwise well-described properties of a turbulent pipe flow. The re-
sults tend to show that the resulting turbulent flow can be sustained throughout the
capillary and that no significant difference in the traditional properties of the flow
is to be reported, compared to experimental or numerical characterizations of pipe
flows without pressure gradient. This means that it cannot be excluded a priori that
a turbulent flow occurs in the capillary. As such, the inlet conditions at the entry of
the capillary are susceptible to play a significant role in the consecutive nature of the
gas flow.

6.1.2 Transport of ions through laminar flows

The results of the laminar flow in the capillary were also used to perform simula-
tions of the transport of ions. Different parameters could be considered, such as the
geometry of the capillary, the operating conditions, as well as the species involved.
The simulations include the effects of the transport by the gas flow, diffusion, and
the space charge effects due to the electric charge of the ions.
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The variation of the geometric parameters clearly shows that the gas mass flow
influences the transmission. The latter increases roughly linearly with the area of
the cross-section, as does the maximal transmitted current. However, another strong
influence results from the length of the capillary. While the quantity of gas transmit-
ted is only weakly affected by a difference in the length of the capillary, tremendous
variations are computed for the transmitted current. Both parameters could be in-
tegrated into a simplified model. It describes the transmission as the expansion of
ions initially located close to the axis of the capillary. With an estimation of the space
charge effects and the transport of the ions, it could relatively well reproduce the
results of the simulation: the transmitted current is proportional to the area of the
cross-section of the capillary and inverse proportional to its length. Assuming that
the ions are homogeneously distributed at the inlet of the capillary, the characteristic
built by reporting the transmission ratio with respect to the transmitted current de-
livers a straight line, also predicted in the model. Different distribution of ions at the
inlet, e.g. a normal distribution in the simulations, delivers another characteristic.
This could help, experimentally, to identify the kind of distribution present in a real
device.

The results presented here could also reproduce the space charge limit of the cap-
illary, which represents the maximal quantity of electric charges transmitted during
a given time. This reflects the fact that a higher current at the inlet induces larger
space charge effects during the transmission of the ions and as a consequence larger
losses. This limit is however dependent on different factors, among them heating.
As have already been recalled, the temperature set at the walls of the capillary in-
fluences the properties of the flow. This can be observed by a space charge limit (or
maximal current transmitted through the capillary) which decreases with increas-
ing temperature. This effect could previously be reported experimentally (Bernier
et al. 2018) and thus confirms that the implementation used here can reproduce key
aspects of the transmission.

While the previous results were conducted with the test species rhodamine B, we
also considered a mix of species. Especially, we could qualitatively reproduce the
transmission bias experimentally exposed in Page et al. (2009). This phenomenon
describes the differences in the behavior of the different species, based on their re-
duced mobility. The transmission is over-proportionally affected for species with
larger reduced mobility when the length of the capillary increases. This phenomenon
can also be observed when comparing the transmission ratio of each species within
a mix and the transmission ratio of an equivalent current of each species alone. The
species with high values of reduced mobility are negatively affected when mixed
with other species (and vice versa). This could be related to a faster motion of the
ions with larger mobility towards the walls of the capillary. They are thus more likely
to get lost during the transfer than species with smaller reduced mobility, which tend
to remain closer to the center of the capillary. This effect can have consequences
when not only the detection of species is considered but also the relative intensities
of their signal registered in the mass spectrometer. These are likely not reproducing
the relative concentrations in the analyzed sample.

6.2 Ion funnel

We also dedicated the work to the study of the transmission of ions through the
chamber following the capillary, with the example of the ion funnel. This cham-
ber intends to achieve a first separation between the gas entering the device via the
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capillary and the ions. Several effects are involved in the transmission of the ions.
Similarly to the capillary, gas flow, diffusion, and space charge effects are consid-
ered. In addition, external electric fields play a role. A periodic field is applied on
the electrodes present in the domain. It aims to confine the ions in the cavity created
by these electrodes and guides them towards the next chamber of the device.

In the traditional design, several simulations were performed and compared to
experimental results. Different implementations of the RF-field have been tested and
their results compared, principally with the test species rhodamine B. Considering
a variation of the amplitude of the RF-field, from 0 to values up to 160 V, one could
build a characteristic of the transmission. It clearly shows that the RF-field is nec-
essary to allow a significant transmission. When only the DC-field is considered,
that is with zero RF-amplitude, almost no transmission is reported. Increasing this
amplitude leads to an increase in the transmission ratio. Above a specific threshold
the simulations predict total transmission. This threshold seems to depend on the
implementation of the RF-field considered. Especially, the classic formulation of the
effective field, reported in Gerlich (1992) and which assumes that the ions are mov-
ing in a vacuum, delivers a smaller threshold than the adapted effective field or than
the time-resolved field. The latter both deliver very similar results. This seems to
indicate that the modification of the effective field, to take into account the presence
of the gas flow, brings a significant improvement to the description of the system.
The methodology exposed in this work was also able to reproduce the trapping ef-
fect, which is known to create a dependency on the species parameters, especially
the mass to charge m/z ratio.

However, only a small decrease in the transmission could be observed for high
amplitudes within the range considered. Regarding this aspect, the time-resolved
field seems to show larger losses. But they remain in all implementations much more
limited than the experiments, which clearly show a maximal transmission for am-
plitudes of about 80 V to 100 V. While no confirmation can be given yet, a potential
explanation for this difference is that some solvent molecules or other unexpected
species could be ionized in the ESI process. These present a much smaller m/z ratio
than rhodamine B and could thus suffer losses within the considered range of ampli-
tude. Simulations integrating such ions show that the transmission ratio decreases
for amplitudes starting from 70 V. Their presence should however be experimen-
tally confirmed to validate such hypothesis and the relative concentration adapted
compared to the analyte ions. Furthermore, another difference between the simu-
lation and the experiments is the threshold from which significant transmission is
observed. It is delayed towards larger amplitudes in the experiments, compared
to the simulations. According to the present results, this can be related to the fact
that the ions must go through a transition area between the first pumping chamber
where the ion funnel is located and the following chamber. This leads to the possi-
bility of losses in a similar manner as what has been described within the capillary.
This however mostly affects the lower amplitudes. In such cases, the effects of the
RF-field are strong enough to avoid losses within the ion funnel but too weak to
collimate the ions close to the symmetry axis of the system. The expansion in the
transition area thus leads to losses. For higher amplitudes, the transmitted ions are
very close to the axis. They can thus further expand and enter the next chamber
before hitting the walls. No significant losses are then expected at this stage.

Finally, the influence of the pressure level within the chamber has also been
considered. In the simulation, as well as in the experiments, high transmission is
delayed towards higher amplitudes of the RF-field when the pressure level is in-
creased. This is related to the stronger effects of the gas flow when the pressure
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increases. It is then necessary to increase the force applied by the electric fields to
counter the influence of the flow. Here again, the program used here is able to re-
produce, qualitatively, such effects.

Considering an evolution of the design of the ion funnel, we performed several
simulations involving the new formulation of the effective field. Intending to an-
ticipate the possible efficiency of such a design, it turns out that the changes made
from the classic design did not bring the expected change. Two main effects are to
blame. First, the additional outlet at the end of the capillary strongly affects the pat-
tern of the flow and thus eliminates the relatively quiet zone that appeared after the
Mach disk in the classic design. The ions involved in the transport cannot thermal-
ize and keep a relatively large velocity throughout the transport within the cavity
formed by the electrodes. The ions involved in the simulations are relatively light,
compared to large and heavy ions that can be found in native mass spectrometry. As
a consequence, no significant difference in the velocity of the ions could be shown
at the outlet of the funnel between both designs. It is however to expect, due to in-
ertia reasons, that such a flow would not create the expected conditions for a proper
transmission into the lower pressure chambers of the device for an acceptable range
of m/z ratios.

Furthermore, the steep decrease in the inner diameter of the electrodes towards
the end of the cavity allows the gas flow to create a recirculation zone. Thus, while
the transmission in the absence of any electric RF-field is significantly higher than
with the classic design, no meaningful improvement of the transmission could be
observed for the range of amplitudes tested. Indeed, it prevents the ions to pass
through the spacing between the electrodes, but because of the recirculation, these
are not redirected towards the outlet of the funnel but rather backward, where they
accumulate.

These two issues raised by the simulations show us that the evolution of the de-
sign tested here does not improve the transmission of the ions. It even shows that a
straight end of the capillary into the first pumping chamber helps to create favorable
conditions for the thermalization of the ions before transmission into further cham-
bers. It also proved that a too steep decrease in the inner radius of the electrodes
prevents an overall improvement of the transmission by the action of the RF-field.
While the trapping effects are reduced, the possibility of the apparition of a recircu-
lation zone means that the ions prevented from getting lost at the electrodes are not
effectively reintroduced into the transmitted stream. Further designs should thus
concentrate on straight or convex forms of the cavity, rather than the tested concave
one.

6.3 Outlook

We have developed in this work a set of tools able to reproduce the behavior of
ions moving in a gas flow with a certain accuracy. This has been applied to two dif-
ferent sections of a typical device used in mass spectrometry: the transfer capillary
between the production of ions and the first pumping chamber, as well as this first
pumping chamber fitted with an ion funnel. These tools could allow simulations
aiming at improving the devices currently used. It could especially be helpful to in-
crease the number of ions that can be transferred through the system. This evolution
may indeed open up new applications e.g. in the domain of soft landing.
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Nevertheless, some aspects of the methodology need to be further enhanced. In
the case of the first pumping chamber, the gas flow computed here lies at the bound-
aries of the applicability of the equations considered. While such systems are very
difficult to study experimentally, it would be necessary to define specific parameters
to validate the computational results. This could be, for example, gaining access to
shock waves’ pattern created by the jet entering the chamber. Other aspects of the
implementation could be done differently. The unification of the different compu-
tations within a single framework would reduce the complexity of the simulations
currently performed and would allow us to avoid some approximations done so
far. For example, all electric effects could be unified in a single computation, us-
ing the Poisson equation rather than the Laplace equation. All effects would thus
be taken into account within a single electric field, rather than splitting the space
charge effects on the one hand and the external fields on the other hand. Also, the
diffusion effects could be integrated into the equation of motion, using a stochastic
force. Thus, the random shift of the positions would not be needed anymore and
tailored numerical treatment could be applied to improve the numerical accuracy of
the implementation.

Besides these possible improvements and even if some validations remain to be
performed, the current methodology offers reliable insights into the processes be-
hind the transport of ions in the atmospheric pressure interface of mass spectrometer
devices and as such presents good potential to develop new designs.
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Appendix A

Mathematical operators

The general form of the Navier-Stokes equations presented in section 3.1.1 uses
coordinate independent operators. It involves different notation, especially the nabla
operator, which take different meaning depending on the variables it is applied to.
Theses notations are properly defined here.

An interpretation in Cartesian coordinates, which provides simple forms, as well
as in cylindrical coordinates, mostly used in this work, is also presented. (x, y, z)
are the Cartesian coordinates and ~ex, ~ey, ~ez their respective unit vectors. (r, θ, z) are
the cylindrical coordinates and ~er, ~eθ , ~ez their respective unit vectors. The indices,
written after the vectors or matrices, denote the set of coordinates considered for the
corresponding representation. Furthermore, the sign • represents the variable on
which the different operators are applied.

Outer product

The outer product is denoted with the operator •⊗ • and is applied between two
vectors ~u and ~v. The results is a second order tensor (or matrix).

Interpretation in Cartesian coordinates

~u⊗~v =

 uxvx uxvy uxvz
uyvx uyvy uyvz
uzvx uzvy uzvz


x,y,z

(A.1)

Interpretation in cylindrical coordinates

~u⊗~v =

 urvr urvθ urvz
uθvr uθvθ uθvz
uzvr uzvθ uzvz


r,θ,z

(A.2)

Divergence (vector)

The divergence, applied to a vector field~v, delivers a scalar field. It is represented
by ∇ · •.
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Interpretation in Cartesian coordinates

∇ ·~v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
(A.3)

Interpretation in cylindrical coordinates

∇ ·~v =
1
r

∂rvr

∂r
+

1
r

∂vθ

∂θ
+

∂vz

∂z
(A.4)

Divergence (tensor)

The divergence, applied to a second order tensor field τ, delivers a vector field. It
is also represented by ∇ · •. In Cartesian coordinates, it corresponds to the vectorial
divergence of each column of the tensor.

Interpretation in Cartesian coordinates

∇ · τ =


∂τxx
∂x +

∂τyx
∂y + ∂τzx

∂z
∂τxy
∂x +

∂τyy
∂y +

∂τzy
∂z

∂τxz
∂x +

∂τyz
∂y + ∂τzz

∂z


x,y,z

(A.5)

Interpretation in cylindrical coordinates

∇ · τ =

 ∂τrr
∂r + 1

r
∂τθr
∂θ + ∂τzr

∂z + τrr−τθθ
r

∂τrθ
∂r + 1

r
∂τθθ
∂θ + ∂τzθ

∂z + τrθ−τθr
r

∂τrz
∂r + 1

r
∂τθz
∂θ + ∂τzz

∂z + τrz
r


r,θ,z

(A.6)

Gradient

The gradient is applied to a scalar field ϕ and delivers a vector field. It is repre-
sented by ∇•.

Interpretation in Cartesian coordinates

∇ϕ =


∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z


x,y,z

(A.7)

Interpretation in cylindrical coordinates

∇ϕ =


∂ϕ
∂r

1
r

∂ϕ
∂θ

∂ϕ
∂z


r,θ,z

(A.8)
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Covariant derivative

The covariant derivative is applied to a vector field ~u and delivers a second or-
der matrix. It is represented by ∇⊗ •. This is not a standard notation but is used
consistently throughout this work.

Interpretation in Cartesian coordinates

∇⊗~v =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z


x,y,z

(A.9)

Interpretation in cylindrical coordinates

∇⊗~v =

 ∂vr
∂x

1
r

∂vr
∂θ −

vθ
r

∂vr
∂z

∂vθ
∂r

1
r

∂vθ
∂θ + vr

r
∂vθ
∂z

∂vz
∂r

1
r

∂vz
∂θ

∂vz
∂z


r,θ,z

(A.10)
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Appendix B

Axial symmetric derivative
operators using metric factors

The formulation of the axial symmetric Navier-Stokes equations using metric fac-
tors has been presented in section 3.1.3. In this appendix, we provide some details
about the transformation performed, starting from coordinates independent opera-
tors into their expression in cylindrical coordinates, with the assumption of an axial
symmetric solution.

The first step goes over describing the relation between Cartesian and cylindrical
coordinates.

x = cos (θ (η)) r (ξ, ζ) , (B.1)
y = sin (θ (η)) r (ξ, ζ) , (B.2)
z = z (ξ, ζ) , (B.3)

where x, y, z represent the classic Cartesian coordinates, ξ, η, ζ the computational
coordinates, and r, θ, z the transformations between computational and cylindrical
coordinates. (z represents here both the transformation to and the third cylindrical
coordinates itself for the sake of simplicity).

In the following, the computational variables written in subscripts indicate a par-
tial derivative with respect to this variable. Thus it holds uξ = ∂u

∂ξ for any field u.
The dependency of θ with respect to η does not matter, as long as θη is a con-

stant. This term always appears with the metric factors, either directly (for ξ and ζ
directions) or by multiplication (for the θ direction). Those are however divided by
the Jacobian determinant, which includes this term as well, leading to no influence
of this parameter on the results.

In this case, one can write the metric factors as follows:

mξ =

 yηzζ − zηyζ

zηxζ − xηzζ

xηyζ − yηxζ

 =

 θη cos (θ) rzζ

θη sin (θ) rzζ

−θηrrζ

 , (B.4)

mη =

 yζzξ − zζyξ

zζ xξ − xζzξ

xζyξ − yζ xξ

 =

 − sin (θ)
(
zζrξ − rζzξ

)
cos (θ)

(
zζrξ − rζzξ

)
0

 , (B.5)

mζ =

 yξzη − zξyη

zξ xη − xξzη

xξyη − yξ xη

 =

 −θη cos (θ) rzξ

−θη sin (θ) rzξ

θηrrξ

 . (B.6)
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The Jacobian determinant is as well:

J = rθη

(
zζrξ − rζzξ

)
. (B.7)

The implementation then follows further steps. The starting point of the transforma-
tion is the Cartesian right-hand side, corresponding to the skew-symmetric equation
described in section 3.1.1 and directly implemented as described in Reiss and Sester-
henn (2014).

The different steps of the transformation are:

1. to write the needed operators (divergence, gradient) using the metric factors;

2. to replace the Cartesian variables, considering the transformation in cylindrical
coordinates and the simplifications through the axial symmetry;

3. to define a specific angle for the considered two-dimensional domain - this is
θ = 0 [2π] throughout this appendix.

The choice of θ = 0 [2π] does not only allow to strongly simplify the expressions
of the metric factors. It also represents a plane in which the unit vectors of Carte-
sian and cylindrical coordinates are equal. This means that the vector and matrix
notations presented it, derived in Cartesian coordinates, also represents the cylindri-
cal vectors and matrices in cylindrical coordinates. This choice is arbitrary, though,
given the axial symmetry of the solutions. One could well choose any other angle,
to gain back similar expressions. However, this would require to take into account
the transformations between the unit vectors.

Considered Variables

This given, one needs transformation rules between the Cartesian (vx, vy, vz) and
cylindrical (vr, vθ , vz) vector components:

vx = cos (θ) vr − sin (θ) vθ

vy = sin (θ) vr + cos (θ) vθ

vz = vz

vr = cos (θ) vx + sin (θ) vy
vθ = − sin (θ) vx + cos (θ) vy
vz = vz

(B.8)

The scalar parameters are identical in all coordinates systems and no specific nota-
tion is used.

Divergence Operator

The divergence operator exists in two different forms: conservative and non-
conservative. Those are defined with the metric factors as follows, where α is an
index between 1 and 3 and ξα stands for the corresponding computational coordi-
nate.

Conservative form:

J (∇ · v) = ∑
α

∂ (mα · v)
∂ξα

. (B.9)

Non-conservative form:
J (∇ · v) = ∑

α

mα · ∂ v
∂ξα

. (B.10)
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In both cases, one should make sure to first replace the vector components with the
Cartesian ones, before substituting with the cylindrical ones, which are eventually
used in the axial symmetric formulation.

Conservative Divergence Formulation

J (∇ · v) = ∂

∂ξ

(
θη cos (θ) rzζvx + θη sin (θ) rzζvy − θηrrζvz

)
+

∂

∂η

(
− sin (θ)

(
zζrξ − rζzξ

)
vx + cos (θ)

(
zζrξ − rζzξ

)
vy
)

+
∂

∂ζ

(
−θη cos (θ) rzξvx − θη sin (θ) rzξvy + θηrrξvz

)
(B.11)

=
∂

∂ξ

(
θη cos2 (θ) rzζvr − θη cos (θ) sin (θ) rzζvθ

)
+

∂

∂ξ

(
θη sin2 (θ) rzζvr + θη cos (θ) sin (θ) rzζvθ − θηrrζvz

)
+

∂

∂η

((
zζrξ − rζzξ

) (
− cos (θ) sin (θ) vr + sin2 (θ) vθ

))
+

∂

∂η

((
zζrξ − rζzξ

) (
+ cos (θ) sin (θ) vr + cos2 (θ) vθ

))
+

∂

∂ζ

(
−θη cos2 (θ) rzξvr + θη cos (θ) sin (θ) rzξvθ

)
+

∂

∂ζ

(
−θη sin2 (θ) rzξvr − θη cos (θ) sin (θ) rzξvθ + θηrrξvz

)
(B.12)

=
∂

∂ξ

(
θηr
(
zζvr − rζvz

))
+

∂

∂η

((
zζrξ − rζzξ

)
vθ

)
+

∂

∂ζ

(
−θηr

(
zξvr − rξvz

))
(B.13)

J (∇ · v) = ∂

∂ξ

(
θηr
(
zζvr − rζvz

))
+

∂

∂ζ

(
−θηr

(
zξvr − rξvz

))
(B.14)

It appears that the result does not depend on the chosen angle θ, which is consis-
tent with the fact that the divergence delivers a scalar value, which by definition is
independent of the chosen coordinate system.

To keep some similarity with the general formulation of the Navier-Stokes equa-
tions, one chooses a specific angle (θ = 0) and one directly applies the metric factors.
In this case, this delivers:

J (∇ · v) = ∂

∂ξ

(
mξ

1vr + mξ
3vz

)
+

∂

∂ζ

(
mζ

1vr + mζ
3vz

)
. (B.15)
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Non-Conservative Divergence Formulation

J (∇ · v) = θη cos (θ) rzζ(vx)ξ + θη sin (θ) rzζ(vy)ξ − θηrrζ(vz)ξ

− sin (θ)
(
zζrξ − rζzξ

)
(vx)η + cos (θ)

(
zζrξ − rζzξ

)
(vy)η

−θη cos (θ) rzξ(vx)ζ − θη sin (θ) rzξ(vy)ζ + θηrrξ(vz)ζ (B.16)
= θη cos (θ) rzζ

(
cos (θ) (vr)ξ − sin (θ) (vθ)ξ

)
+θη sin (θ) rzζ

(
sin (θ) (vr)ξ + cos (θ) (vθ)ξ

)
− θηrrζ(vz)ξ

+
(
zζrξ − rζzξ

)
θη

(
sin2 (θ) vr + cos (θ) sin (θ) vθ

)
+
(
zζrξ − rζzξ

)
θη

(
cos2 (θ) vr − cos (θ) sin (θ) vθ

)
−θη cos (θ) rzξ

(
cos (θ) (vr)ζ − sin (θ) (vθ)ζ

)
−θη sin (θ) rzξ

(
sin (θ) (vr)ζ + cos (θ) (vθ)ζ

)
+ θηrrξ(vz)ζ (B.17)

J (∇ · v) = θηr
(
zζ(vr)ξ − rζ(vz)ξ

)
+
(
zζrξ − rζzξ

)
θηvr

−θηr
(
zξ(vr)ζ + rξ(vz)ζ

)
(B.18)

Once again, one can transform it back using the metric factors for θ = 0 in order to
get a notation that is closer to the general one:

J (∇ · v) = mξ
1(vr)ξ + mξ

3(vz)ξ + θηmη
2 vr + mζ

1(vr)ζ + mζ
3(vz)ζ . (B.19)

Gradient Operator

The gradient operator exists as well in two different forms. The general notation
using metric factors is similar to the divergence and is given for any scalar field ϕ.

Conservative form:

J (∇ϕ) = ∑
α

∂ (ϕ mα)

∂ξα
. (B.20)

Non-conservative form:
J (∇ϕ) = ∑

α

∂ϕ

∂ξα
mα . (B.21)

The specific notation is similarly obtained by replacing the metric factors with their
values for the arbitrary coordinates. However one single step is needed, as the scalar
field ϕ does not depend on the coordinate system considered.

Conservative Gradient Formulation

J (∇ϕ) =


∂

∂ξ

(
θη cos (θ) rzζ ϕ

)
+ ∂

∂η

(
− sin (θ)

(
zζrξ − rζzξ

)
ϕ
)
+ ∂

∂ζ

(
−θη cos (θ) rzξ ϕ

)
∂

∂ξ

(
θη sin (θ) rzζ ϕ

)
+ ∂

∂η

(
cos (θ)

(
zζrξ − rζzξ

)
ϕ
)
+ ∂

∂ζ

(
−θη sin (θ) rzξ ϕ

)
∂

∂ξ

(
−θηrzζ ϕ

)
+ ∂

∂ζ

(
θηrzξ ϕ

)


(B.22)

=


cos (θ)

(
θη

∂
∂ξ

(
rzζ ϕ

)
− θη

(
zζrξ − rζzξ

)
ϕ− θη

∂
∂ζ

(
rzξ ϕ

))
sin (θ)

(
θη

∂
∂ξ

(
rzζ ϕ

)
− θη

(
zζrξ − rζzξ

)
ϕ− θη

∂
∂ζ

(
rzξ ϕ

))
−
(

θη
∂

∂ξ

(
rzζ ϕ

)
− θη

∂
∂ζ

(
rzξ ϕ

))
 (B.23)
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Choosing θ = 0 and replacing with the general form of the metric factors, one ob-
tains

J (∇ϕ) =


∂

∂ξ

(
mξ

1 ϕ
)
− θηmη

2 ϕ + ∂
∂ζ

(
mζ

1 ϕ
)

0
∂

∂ξ

(
mξ

3 ϕ
)
+ ∂

∂ζ

(
mζ

3 ϕ
)

 . (B.24)

Non-Conservative Gradient Formulation

J (∇ϕ) =


θη cos (θ) rzζ

∂ϕ
∂ξ − sin (θ)

(
zζrξ − rζzξ

) ∂ϕ
∂η − θη cos (θ) rzξ

∂ϕ
∂ζ

θη sin (θ) rzζ
∂ϕ
∂ξ + cos (θ)

(
zζrξ − rζzξ

) ∂ϕ
∂η − θη sin (θ) rzξ

∂ϕ
∂ζ

−θηrzζ
∂ϕ
∂ξ + θηrzξ

∂ϕ
∂ζ

 (B.25)

Choosing θ = 0 and replacing with the general form of the metric factors, one ob-
tains

J (∇ϕ) =

 mξ
1

∂ϕ
∂ξ + mζ

1
∂ϕ
∂ζ

0
mξ

3
∂ϕ
∂ξ + mζ

3
∂ϕ
∂ζ

 . (B.26)

Perspectives

One can see that the conservative form of the divergence and the non-conser-
vative form of the gradient remains the same as in the general case, so no spe-
cific treatment should be provided for the terms using those expressions. The non-
conservative form of the divergence as well as the conservative form of the gradient
present on the other hand additional terms, that should be explicitly given in the
new right-hand side.

However, the Navier-Stokes equations do not only contain those basics operators
but also more complex ones, especially the tensor divergence (corresponding to the
divergence operator applied to a second-order tensor) and the covariant derivative
(corresponding to a gradient operator applied to a vector field).

Those "second-order" operators can be easily handled in the Cartesian coordi-
nate systems. The tensor divergence is the vector divergence of each column of the
considered tensor and each row of the covariant derivative represents the gradient
of the corresponding component of the vector:

• For the tensor divergence three different vectors should be considered: τ:x,
τ:y, and τ:z, representing the first, second and third columns of tensor τ, re-
spectively, from which the common divergence is computed;

• For the covariant derivative three different scalar fields should be considered:
vx, vy, and vz, from which the common gradient is computed.

In both cases, one replaces the Cartesian components vx, vy, and vz using the trans-
formation B.8 (twice in the case of the tensor) and eventually follows the same steps
as for the common divergence and gradient operators. The main difference is that
the θ dependency differs because of the additional coordinates transformation.

The implemented right-hand side uses only the conservative form of the tensor
divergence. Replacing the corresponding components in B.11, one can show that the
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η derivative delivers an additional term. Considering, once again, the solution for
θ = 0, the tensor divergence becomes:

J (∇ · τ:x) =
∂

∂ξ

(
mξ

1τrr + mξ
3τrz

)
− θηmη

2 τθθ (B.27)

+
∂

∂ζ

(
mζ

1τrr + mζ
3τrz

)
, (B.28)

J
(
∇ · τ:y

)
=

∂

∂ξ

(
mξ

1τθr + mξ
3τθz

)
+ θηmη

2 τrθ (B.29)

+
∂

∂ζ

(
mζ

1τθr + mζ
3τθz

)
, (B.30)

J (∇ · τ:z) =
∂

∂ξ

(
mξ

1τzr + mξ
3τzz

)
+

∂

∂ζ

(
mζ

1τzr + mζ
3τzz

)
, (B.31)

where the additional terms are written in red.
As well it uses only the non-conservative form of the covariant derivatives, for

which specific terms should also be considered. Replacing ϕ successively by vx, vy,
and vz in B.25 delivers for θ = 0, where the specific terms are marked in red:

J (∇vx) =

 mξ
1

∂vr
∂ξ + mζ

1
∂vr
∂ζ

−θηmη
2 vθ

mξ
3

∂vr
∂ξ + mζ

3
∂vr
∂ζ

 , (B.32)

J
(
∇vy

)
=

 mξ
1

∂vθ
∂ξ + mζ

1
∂vθ
∂ζ

θηmη
2 vr

mξ
3

∂vθ
∂ξ + mζ

3
∂vθ
∂ζ

 , (B.33)

J (∇vz) =

 mξ
1

∂vz
∂ξ + mζ

1
∂vz
∂ζ

0
mξ

3
∂vz
∂ξ + mζ

3
∂vz
∂ζ

 . (B.34)
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Appendix C

Laminar capillary with adiabatic
boundary conditions

We carried out simulations of laminar flows through the capillary with adia-
batic wall boundary conditions. While not directly representing conditions typically
found in a mass spectrometry device, it is a typical case study in fluid dynamics and
thus worth mentioning. Especially, the results of the laminar flow can be compared
to experimental data and are used as a reference for the turbulent case presented in
section 3.3.

Influence of the pressure level in the sponge area

The pressure drop is artificially enforced by setting a significantly lower pressure
in the sponge area than the atmospheric pressure at the inlet. It remains to show,
however, that the level chosen in the sponge area does not affect the behavior of
the flow within the physical areas of the pipe, that is the funnel-shaped inlet and
the straight part. To this end, we performed two simulations of a pipe with 1.0 mm
diameter and 6.0 cm length for the straight part. In both cases, non-slip, adiabatic
wall boundary conditions are enforced and the only difference relies on the pressure
level set in the sponge area: 10 132.5 Pa in one case and 2026.5 Pa in the other. This
represents respectively 10 % and 5 % of the atmospheric pressure set at the inlet.

The results computed in both cases are very similar, with no significant difference
encountered. The relative error in the pressure field is represented in figure C.1,
where only the straight part of the domain is considered. It is computed as the
absolute value of the difference between both results, normalized with the values
found for the larger pressure level. It results in a maximum error of about 0.14 %.
In the other fields, the maximal relative error is slightly larger: 0.3 % for the density
and 0.5 % for the velocity magnitude. These values remain nevertheless very small
and we consider that a pressure level of 10 % of the inlet value is low enough to
deliver correct results within the physical domain.

Comparison with experimental data

Furthermore, adiabatic simulations can be handily compared to experimental
data, as this is a typical case in fluid dynamics. We compare here the results for the
pressure drop along the capillary for different diameters and compare them to the
experimental data as reported in the work by Frössel (1936). The pressure values
along the pipe are normalized with the atmospheric pressure set in the inlet and the
axial position with the diameter. The latter uses the beginning of the funnel-shaped
inlet as the origin and not the beginning of the straight part as done in other sections
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FIGURE C.1: Relative error in the pressure field for different pressure
levels set in the sponge area. In both cases, the capillary is 6.0 cm long
and 1.0 mm wide. The reference pressure represents 10 % and 5 % of
the atmospheric pressure set at the inlet. Only half of the domain is

represented, the other being symmetric.
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from Frössel (1936).
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of this work. However, the results in the funnel-shaped inlet are not represented, as
the variation of the diameter in this part of the domain also affects the pressure drop.
All cases represented have a 6.0 cm long straight part. It appears that the simulated
data is relatively close to the experimental profiles. Especially the strong drop in
the pressure level close to the outlet is similar. Larger differences can be observed
for small values of z/Dcap, but these are interpreted as the influence of the funnel
shape chosen for the inlet. We thus conclude that the simulations performed for the
laminar flow of the capillary represent well the actual physical state occurring in
such situations.
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Appendix D

Turbulent variables

The description of turbulent flows is based on several variables, which are pre-
sented here. Most of them are used in the presentation of the turbulent capillary
flow in section 3.3.

REYNOLDS decomposition and associated variables

Typically, a turbulent flow is decomposed into a time-independent part, the base
flow, and variations around this reference, the fluctuations. This decomposition is
attributed to Reynolds (1895). The instantaneous flow is then simply expressed as
the sum of the base flow and the momentary fluctuation of the considered parame-
ter:

ρ (~x, t) = ρ (~x) + ρ′ (~x, t) (D.1)
ux (~x, t) = ux (~x) + u′x (~x, t) (D.2)
uy (~x, t) = uy (~x) + u′y (~x, t) (D.3)

uz (~x, t) = uz (~x) + u′z (~x, t) (D.4)
p (~x, t) = p (~x) + p′ (~x, t) (D.5)

where ρ is the density of the fluid, ux, uy, and uz its Cartesian velocity components
and p the local pressure. By definition, the time average of the fluctuations delivers
zero.

From this decomposition, the intensity of the turbulence can be defined, follow-
ing Dryden and Kuethe (1930) by considering the root-mean-square value of the
fluctuations for an absolute quantity: √

φ′2

for an arbitrary variable φ. This absolute value delivers a relative intensity when the
absolute value is divided by the local mean value:√

φ′2

φ
.

Specific case of compressible flows - FAVRE average

The previous decomposition allows us to strongly simplify the turbulent Navier-
Stokes equations in the case of incompressible flows. The different terms in the
classic equation can be divided between ones only depending on the mean flow
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and others including the effect of the fluctuations. This approach paved the way to
the Reynolds-Averaged-Navier-Stokes (RANS) equations and further to turbulence
models.

However, in the case of compressible flow, the Reynolds decomposition does
not deliver the same simplification. Thus an adapted decomposition was proposed
by Favre (1965). It considers a different mean value for the velocity components,
denoted by ũx, ũy and ũz, defined as follows:

ρũx = ρux (D.6)
ρũy = ρuy (D.7)
ρũz = ρuz (D.8)

where the bar represents the traditional time average as used in the Reynolds defini-
tion. Based on this specific average, called Favre average, a new decomposition can
be defined:

ux (~x, t) = ũx (~x) + u′′x (~x, t) (D.9)
uy (~x, t) = ũy (~x) + u′′y (~x, t) (D.10)

uz (~x, t) = ũz (~x) + u′′z (~x, t) (D.11)

In the RANS equations and for incompressible flows, the average of the fluctuations
can be interpreted as a tensor Rij, in index notation, called Reynolds stress tensor
and defined as:

Rij = ρu′iu
′
j , (D.12)

where ρ is the constant density of the flow. In the case of compressible flow, this
definition can be adapted to:

Rij = ρũ′′i u′′j = ρu′′i u′′j . (D.13)
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Appendix E

Finite differences scheme used in
the LAPLACE solver

The finite differences schemes used in the Laplace operators have been presented
with a specific order of accuracy in section 4.4.1. While the terms in the axial di-
rection are standard and the demonstration of the order of accuracy can be easily
performed, the terms in the radial direction, impacted by the usage of cylindrical
coordinates, are specifically treated here.

Radial term of the LAPLACE operator

We first consider the axial symmetric Laplace operator in cylindrical coordinates
(r, θ, z):

∆φ =
1
r

∂

∂r

(
r

∂φ

∂r

)
+

∂2φ

∂z2 . (E.1)

The radial term is built as a combination of first-order derivatives and involves the
radial coordinates. To reach a sufficient order of accuracy, a specific choice of fi-
nite difference schemes is considered. Each first-order derivative is computed as
a backward or forward scheme, that is with first order of accuracy, a priori. Two
combinations are considered: a backward scheme for the inner derivative followed
by a forward scheme for the outer derivative and vice versa. These combinations
are then averaged to deliver the final scheme. Denoting the forward scheme with
the exponent FW and the backward scheme with BW, this can be outlined as the
following:

1
r

∂

∂r

(
r

∂φ

∂r

)
≈ 1

2

(
1
r

∂FW

∂r

(
∂BWφ

∂r

)
+

1
r

∂BW

∂r

(
∂FWφ

∂r

))
. (E.2)

We show in the following that this builds a finite difference scheme with second or-
der of accuracy. Therefore, the Taylor series expansions of the field φ around ri are
needed. We consider an equidistant grid in the radial direction with a grid spacing
hr. The values of the different fields at a given, arbitrary point located in the radial
direction, excluding the boundaries, are denoted with the index i. The next neigh-
bors are similarly denoted with the indices i − 1 and i + 1, respectively. With the



174 Appendix E. Finite differences scheme used in the LAPLACE solver

assumption that φ is at least three times derivable, it follows:

φi+1 = φi + hr
∂φ

∂r

∣∣∣∣
i
+

h2
r

2
∂2φ

∂r2

∣∣∣∣
i
+

h3
r

6
∂3φ

∂r3

∣∣∣∣
i
+O

(
h4

r

)
, (E.3)

φi−1 = φi − hr
∂φ

∂r

∣∣∣∣
i
+

h2
r

2
∂2φ

∂r2

∣∣∣∣
i
− h3

r
6

∂3φ

∂r3

∣∣∣∣
i
+O

(
h4

r

)
. (E.4)

(E.5)

These two expansions allow us to derive the simple forward and backward schemes
(in color) and the error made, respectively:

∂φ

∂r

∣∣∣∣
i
=

φi+1 − φi
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These schemes can then be applied to the combinations in equation E.2. The first
combination delivers:
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and the second combination:

∂BW

∂r

(
r

∂FWφ

∂r

)
=

1
hr

(
ri

∂FWφ

∂r

∣∣∣∣
i
− ri−1

∂FWφ

∂r

∣∣∣∣
i−1

)
+

hr

2
∂2

∂r2

(
r

∂φ

∂r

)∣∣∣∣
i
− h2

r
6

∂3

∂r3

(
r

∂φ

∂r

)∣∣∣∣
i
+O

(
h3

r
)

= ri

(
φi+1 − φi

h2
r

− 1
2

∂2φ

∂r2

∣∣∣∣
i
− hr

6
∂3φ

∂r3

∣∣∣∣
i

)
− ri−1

(
φi − φi−1

h2
r

− 1
2

∂2φ

∂r2

∣∣∣∣
i−1
− hr

6
∂3φ

∂r3

∣∣∣∣
i−1

)
+

hr

2
∂2

∂r2

(
r

∂φ

∂r

)∣∣∣∣
i
+O

(
h2

r
)

. (E.10)



Appendix E. Finite differences scheme used in the LAPLACE solver 175

The average of both combinations further delivers:
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From this form, the term of zeroth and first order of accuracy can further be esti-
mated using Taylor series expansions of the derivatives of φ around ri. Especially,
one can write:
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Assuming an equidistant grid in the radial direction, that it ri−1 = ri − hr and ri+1 =
ri + hr, it follows for the second derivatives terms in equation E.11:

ri−1
∂2φ

∂r2

∣∣∣∣
i−1

= (ri − hr)

(
∂2φ

∂r2

∣∣∣∣
i
− hr

∂3φ

∂r3

∣∣∣∣
i
+O

(
h2

r
))

= ri
∂2φ

∂r2

∣∣∣∣
i
− hr

∂2φ

∂r2

∣∣∣∣
i
− rihr

∂3φ

∂r3

∣∣∣∣
i
+O

(
h2

r
)

, (E.16)

ri+1
∂2φ

∂r2

∣∣∣∣
i+1

= (ri + hr)

(
∂2φ

∂r2

∣∣∣∣
i
+ hr

∂3φ

∂r3

∣∣∣∣
i
+O

(
h2

r
))

= ri
∂2φ

∂r2

∣∣∣∣
i
+ hr

∂2φ

∂r2

∣∣∣∣
i
+ rihr

∂3φ

∂r3

∣∣∣∣
i
+O

(
h2

r
)

. (E.17)



176 Appendix E. Finite differences scheme used in the LAPLACE solver

Reintroducing these expansions in equation E.11, all terms of zeroth and first order
of accuracy cancel each other:
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The third derivative terms only need to be expanded up to O (hr) because they are
multiplied by hr. It follows:
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Once again, it appears that the terms of zeroth order directly cancel each others in
equation E.11. The remaining error, of first order, is further multiplied by hr and it
follows second order accuracy.

We can thus express the finite difference scheme used for the radial terms of the
Laplace operator as:
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Appendix F

Estimation of the reduced ion
mobility

The reduced ion mobility, used in equation 2.7, defines how different species
show different behavior when placed in the same electric field. The value chosen
used in the simulations is thus important to differentiate the behavior of different
species.

Definition of the mobility

The mobility is a macroscopic representation of the shocks occurring between
the ion and gas molecules at a microscopic level. Especially, it can be relatively
easily measured, considering a known species in a defined environment. However,
some relations have also be derived to estimate this value. The following relation
presented in Mason and McDaniel (1988, p. 149) is usually considered as standard
in drawing the dependence of the mobility on the characteristics of the considered
species and the surrounding gas temperature:

K0 (T) =
3q

16N

√
2π

kBT0

√
m + M

mM
1
Ω

, (F.1)

with T0 the temperature, q the charge of the ion, N the number density of the gas, kB
the Boltzmann’s constant, m the mass of the buffer gas molecules, M the mass of the
ion and Ω its cross-section. It has been used to the hydronium and ethyloxonium
ions in this work.

This reduced mobility only represents a specific value for a defined temperature.
Equation 2.7 then takes into account the variations of the mobility for values close
to the temperature used for the reduced mobility. However, in the present work, we
always consider a normal temperature as a reference for the reduced mobility and
compute the variations around this value. While the temperature may vary within
a large range for the considered cases, we estimate in first approximation that the
resulting simulations still present a proper description of the system.

Empirical estimations

In some cases, this formula can be difficult to use. Thus, some empirical estima-
tions based on average values have been developed. One is used in the program
SIMION, which is the current standard for the simulation of particles’ trajectories. It
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uses the diameter of the ion dion considered and derives an estimation of the mobil-
ity:

K0 = 10Λ−9 , (F.2)

with

Λ = 4.9137− 1.4491 log1 0 (dion)− 0.2772 log1 0 (dion)
2 + 0.0717 log1 0 (dion)

3 , (F.3)

where dion is in nm and K0 in m2 ·V−1 · s−1. Furthermore, the diameter can be esti-
mated using the mass of the ion m:

dion = 0.120 415 405
(

m
1.660 538 921× 10−27

)1/3

, (F.4)

with m in kg and delivering a result in nm. These relations are presented in the
supplementary material of Appelhans and Dahl (2005). These relations are used to
estimate the mobility of rhodamine B.
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Appendix G

Artificial charge factor - Validation

The space charge effects are computed using an artificial charge factor. This
means that the Coulomb’s forces between the ions are computed in such a way that
each particle present in the simulation stands for an arbitrary number of ions in real-
ity. It thus allows for a reduction of the computational costs, while keeping a similar
accuracy of the results.

To prove this, two simulations differing only by the artificial charge factor con-
sidered are presented in the following and the results are compared. It deals with the
transport of ions through the ion funnel, while both RF and DC fields are considered.
This case was chosen because it involves all effects present in the ions simulations
reported throughout this work. The parameters are listed in table G.1.

In both cases, nearly unitary transmission is expected, so that no significant dif-
ference can be found in the transmitted current or the transmission ratio. Both sim-
ulations deliver a transmitted current of approximately 4.80 nA. Nevertheless, a
deeper comparison of the results can be performed. First, we consider the shape
of the accumulations that build under the influence of the RF electric field. These
are presented in figure G.1. No significant difference can be observed. This means
that despite the different artificial charge factors and thus different computations for
the space charge effects, they similarly compensate with the electric field created by
the electrodes of the ion funnel. This is also confirmed by the estimation of the lo-
cal charge density in both cases. This is done by counting the number of particles in
each cell of a grid spanning over the domain, multiplying by the artificial charge fac-
tor, and dividing by the volume of the considered cell. The results for the two cases,
alongside a similar estimation for the other versions of the RF-field, are presented in
figure G.2. One can well see that both simulations with a time-resolved field deliver

Case #1 #2

Gas flow configuration IF - classic IF - classic
Pressure level (Pa) 100 100
Species rhodamine B rhodamine B
Incoming current (nA) ≈ 4.81 ≈ 4.81
Artificial charge factor 250 125
Time step (s) 5.0× 10−8 5.0× 10−8

RF amplitude (V) 100 100
RF frequency (Hz) 1× 106 1× 106

RF implementation time resolved time resolved

TABLE G.1: Parameters of the two simulations used for validating the
artificial charge factor.
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FIGURE G.1: Instantaneous position of the ions close to the outlet of
the ion funnel, comparing the two different artificial charge factors

considered.

16 16.5 17 17.5 18
z (m)

0× 100

5× 10−11

1× 10−10

1.5× 10−10
time resolved - ACF 250
time resolved - ACF 125
effective - classic
effective - adapted

FIGURE G.2: Comparison of the charge density along the axial posi-
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between 1.111 mm and 2.222 mm. The two different artificial charge
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RF-fields.
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very similar results, while the other simulations, using the effective field, differ more
significantly.

These results show that the artificial charge factor used in the simulation only
slightly affects the behavior of the system considered. As long as the number of
ions present in the domain is significant enough to reproduce the typical trajectory
of the ions and to produce the expected space charge effects, no strong sensibility is
expected.
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Appendix H

DNS of a capillary flow with
isothermal walls

In the previous publication Bernier et al. (2018), we argued that the heating of
the walls may have an incidence on the affinity of a gas flow through a capillary
to turbulence, based on empirical formulas. In order to explore this hypothesis,
we performed a simulation similar to the one presented in section 3.3, where the
wall boundary conditions are isothermal at a constant temperature of 500 K. In ac-
cordance, the inlet data are produced by an auxiliary simulation using the same
isothermal boundary conditions.

General results

Snapshots of the fields are presented in figures H.1 and H.2. Two remarks can be
done upfront. First, the size of the structures are much larger than the ones found
in the DNS performed with adiabatic boundary conditions. This is already the case
at the inlet, which means that the data produced by the auxiliary simulation does
not deliver the same turbulence intensity than the adiabatic one. Second, a clear
evolution is visible along the pipe, the structure in the middle of the capillary being
noticeably larger than at the inlet. This means that the perturbation within the flow
tend to decay.

The mean values in the domain also show that the flow tends to be very close
to the behavior observed in the case of a laminar flow, as presented in section 3.2.
The mean axial velocity is displayed in figure H.3 and the mean temperature in
figure H.4. These can be directly compared with figures 3.4 and 3.8, respectively,
representing the laminar case. Especially, the thickness of the boundary layer in the
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FIGURE H.1: Snapshot of the gas temperature close to the inlet of the
capillary. Radial and axial dimensions are represented to scale.
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FIGURE H.2: Snapshot of the gas temperature in the central part of
the capillary. Radial and axial dimensions are represented to scale.
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FIGURE H.3: Mean axial velocity component in the capillary domain.
The dashed line represents the form of the profile along the radial
direction, at the axial position where it touches the wall. Radial and

axial dimensions are not to scale.
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FIGURE H.4: Mean temperature in the capillary domain. The dashed
line represent the form of the profile along the radial direction, at the
axial position where it touches the wall. Radial and axial dimensions

are not to scale.
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ent axial positions along the pipe. The dashed lines represent the
standard law, that is u+ = ỹ+ for lower values of ỹ+ and u+ =

1/0.41 ln ỹ+ + 5.2 for larger values of ỹ+.

axial velocity is much closer to the one expected in a laminar flow than in a turbulent
one, as visible for the adiabatic case in figure 3.21, for example. This difference
can also be observed in the axial velocity profile depicted for cross sections of the
capillary in figure H.5. Especially, it does not follow the law of the wall typical for
a turbulent flow. Compared to the same wall distances, the normalized velocity
reaches larger values faster than expected by the wall function. Furthermore, while
two domains are still visible, they do not fit with the traditional limit of y+ = 10,
occurring closer to the inner part of the flow. This indicates that the boundary layer is
indeed thicker than expected for a turbulent flow. However, this thickness increases
along the capillary when considered in normalized dimensions, from 30 at the inlet
to about 100 at the outlet.

The difference in the behavior of the flow compared to traditional turbulent pipe
flows can also be observed in the profiles of the turbulence intensities in the central
cross section of the capillary, as presented in figure H.6. Here again, two different
domains can be identified along the radial direction: a first domain where the turbu-
lence intensity rises and drops again, reaching a local minimum roughly at the end
of the boundary layer identified with the mean axial velocity. And a second domain
over the central part of the system, where the turbulence intensity rises from the end
of the boundary layer, reaches a local maximum and drops again toward the middle
of the domain. This local minimum remains, however, noticeably greater than the
local maximum reached in the boundary layer. Furthermore, the other components
of the turbulence intensity (radial and azimuthal) remain significantly lower than
the axial component. They are almost zero in the boundary layer and only reaches
about 7 % of the axial intensity in the center of the domain. This is in clear con-
trast with the profiles of the adiabatic case, considering the same normalization. In
this case, the maximum in the turbulence intensity is reported within the boundary
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FIGURE H.6: Turbulence intensity along the radial direction in the
central cross-section of the capillary. The fluctuations are normalized
using the maximal mean axial velocity in the cross-section and the
distance to the wall is normalized using the diameter (it thus varies

from 0 at the wall up to 1 at the centerline.)

layer and then continuously drop toward the center of the domain. While the maxi-
mum intensity in the adiabatic case for the axial component reaches about 13 %, it is
limited to 8 % in the isothermal case. Furthermore, the radial and azimuthal compo-
nents in the adiabatic case present a maximum close to the boundary layer, while it
is reached at the centerline in the isothermal case. Furthermore, the abolute values
are significantly lower in the latter: clearly less than 1 % for the isothermal boundary
conditions versus about 6 % for the adiabatic ones.

These different behaviors can be explained by the influence of the temperature
on the viscosity of the gas. Higher temperatures lead to higher viscosity. Thus, the
influence of heating in the boundary layer, simulated via the isothermal boundary
conditions, leads to significantly larger values of the viscosity than in the adiabatic
case. In the latter, however, the maximal intensity of the turbulence can be found at
a relatively close distance to the walls. As a consequence, the inner structures of the
flow responsible for these fluctuations are undermined by the higher viscosity in the
isothermal case. This indeed leads to smaller local Reynolds numbers and thus mod-
ify the expected flow. This phenomenon also explains the inherently different inlet
data imposed in the primary simulations, as the high temperature close to the walls,
also simulated in the auxiliary simulation, limits the possibility of a fully developed
turbulent flow for the isothermal case.

Evolution of turbulence

Figures H.7 and H.8 represent the evolution of the maximal RMS velocity fluc-
tuations and turbulent intensity, respectively. In contrast to the results from the
adiabatic case, it is remarkable that the radial and azimuthal components, both as
RMS fluctuations and as turbulence intensity, are much smaller than the axial one
throughout the domain and continuously decrease along the entire capillary. The
axial component shows a more complex behavior. Indeed, the RMS fluctuations
steadily grow along the first two thirds of the pipe, before sharply declining and re-
gaining a level similar to the one found at the inlet close to the end of the domain.



Appendix H. DNS of a capillary flow with isothermal walls 187

0 10 20 30 40 50 60

axial position (z/Dcap)

0

5

10

15

20

25
R

M
S

ve
lo

ci
ty

flu
ct

. √
u′2z max√
u′2θ max√
u′2r max

FIGURE H.7: Maximal root mean squared fluctuations along the axial
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Considered as turbulent intensity, which takes into account the acceleration of the
flow, a local maximum is reached after about one third of the length, before declining
and reaching a level significantly lower than at the inlet (about 25 % of the inlet level,
excluding the adaptation from the data imposed as reference). This shows that this
kind of flow does not effectively sustain the fluctuations imposed at its inlet. This
is significantly different from the adiabatic case, where the turbulence intensity re-
mains close to constant along a very large section of the capillary. Furthermore, with
the exception of the very last part of the pipe just before the outlet, the location of
the maximum of the perturbations in the axial component tends to move towards
the centerline of the domain. This is a sign of the reduction of the area concerned by
the perturbations in the domain while moving forward along it.

As a conclusion, this simulation shows that imposing a high temperature at the
walls of the capillary significantly affects the nature of the flow expected. In compar-
ison to the adiabatic case, a perturbation set at the inlet of the domain is less likely
to develop into a turbulent flow when the capillary is heated. While the setup con-
sidered here does not allows us to provide directly comparable inlet data, this still
provides an interesting insight into the mechanisms likely to affect the nature of the
flow.
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