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The beginning of of wisdom is the definition of terms
[Socrates]



Abstrakt

Die vorliegende Arbeit widmet sich der konkurrenten Anforderungsanalyse für große
Softwaresysteme am Beispiel der Flugsicherung. Eine Zerlegung der Gesamtaufgabe
in kleinere Teile und die Darstellung von Teillösungen, sogenannten Komponenten-
schemata, die von jeweils einer Gruppe von Analytikern bearbeitet werden, erlaubt
eine Durchführung des Projekts in einem vertretbarem Zeitrahmen. Das Vorgehen
wirft jedoch die Frage auf, wie eine kohärente Beschreibung der Gesamtaufgabe auf
Basis der unabhängig von einander entstandenen Komponentenschemata erzielbar
ist, ohne Modellelemente bei der abschließenden Integration zu überschreiben.
Die in Komponentenschemata festgehaltenen Anforderungen werden auf Basis der
objektorientierten Modellierungstechnik UML dargestellt. Eine Untersuchung des
UML Metamodells identifiziert geeignete UML Sichten und Konstrukte für eine
lösungsneutrale Aufgabenbeschreibung. Die in Komponentenschema modellierten
Dinge der realen Welt heißen Artefakte und bestehen aus einem Terminus sowie
einem Konstrukt.
Termini sind Wörter mit einer speziellen Bedeutung in einem gegebenen Fachgebiet.
Eine konsistente Benutzung eines Terminus innerhalb eines Komponentenschemas,
führt aber nicht automatisch zu der konsistenten Benutzung des Terminus in allen die
Gesamtaufgabe beschreibenden Komponentenschemata. Eine Korrespondenzvermu-
tung gilt daher für zwei Artefakte deren Termini das gleiche Konzept ausdrücken und
das gleiche Konstrukt benutzen. Lexikalische Datenbanken und Ontologien verwal-
ten die von Termini ausgedrückten Konzepte in einem Konzeptgraphen und tragen
somit zur Aufstellung von Korrespondenzvermutungen bei.
Ausgehend von den Begriffen der Schemaintegration, detailliert die Arbeit die ver-
schiedenartigen Korrespondenzvermutungen zwischen Artefakten zweier Komponen-
tenschemata unter Verwendung der Modellierungstechnik UML an ausgewählten
Beispielen der Flugsicherung. Die Arbeit zeigt Wege zur Ermittlung von Korrespon-
denzvermutungen auf, untersucht den Einfluß verschiedener Projektorganisationen
auf die zu erwartenden Korrespondenzvermutungen. Ferner untersucht die Arbeit den
nötigen Prozeß der von Korrespondenzvermutungen über Korrespondenzzusicherun-
gen zur Integration der Komponentenschemata führt.
Die Arbeit stellt ein Werkzeugkonzept vor, das die konkurrente Anforderungsanalyse
einer Untermenge der UML Konzepte auf Basis von Komponentenschemata wir-
kungsvoll unterstützt soll. Dabei wird insbesondere die Integration auf dem Markt
befindlicher Produkte, wie Modellierungswerkzeuge, lexikalische Datenbanken,
Ontologien diskutiert. Nach einer Bewertung der Modellierungstechnik UML anhand
in der Flugsicherung durchgeführter Projekte faßt die Arbeit das erzielte Ergebnis
zusammen und identifiziert den daraus erwachsenen Forschungsbedarf im Bereich
des Continuous Software Engineering.
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Introduction
1 Introduction

Requirements engineering for industry-scale software systems marks the first and
least formalized part within the entire software development cycle. The central out-
come of requirements engineering is a software requirements specifications (SRS), as
an agreed statement of software requirements for customers, end-users and software
developers. The specification of user needs is one of the most complicated activities
in industry-scale systems. The most challenging factors in this context are system
size and characteristics. System size results in the necessity of performing the analy-
sis concurrently. The entire problem statement has to be divided into smaller initial
partitions, which can be elaborated concurrently by individual analyst teams. Other-
wise requirements engineering cannot be concluded in a reasonable time frame.
System characteristics comprise properties such as concurrency of execution and the
predictability of output. Air traffic management, as the sample domain for this thesis,
is a command, control, communication and intelligence (C3I) application, where air
traffic controllers maintain an orderly flow of air traffic. The system is permanently
reacting to changes in its environment. System characteristics also incorporate its
users and their various skills as the central input for the requirements. This situation
leads to a critical problem in that the individual demand of a variety of system users
with different technical backgrounds, have to be fulfilled.

The diversity of people affected by a future system as well as the limited knowledge
concerning the structure of a future system make industry-scale requirements engi-
neering projects so hard. Knowledge concerning the problem statement at hand is
often not available in a structured form and mostly based on the individual expertise
of business experts. The design of computational systems, however, demands for a
precise and robust description of user needs that provides efficient and solution neu-
tral input for designers. Furthermore software requirements specifications should also
provide a solid basis for conformance testing.

Besides problem size and the variety of system users, modelling techniques for spec-
ification of user requirements play an important role. Applied modelling techniques
give rise to the question of expected results. Each of them has its own advantages
and, more importantly its restrictions. Consequently, the results of requirements spec-
ifications are influenced from four different directions, namely the computational
complexity of the application domain, the skill of users as well as analysts gathering
requirements and the modelling technique applied to describe the demand. Of the
available modelling techniques, object-oriented techniques are rapidly gaining popu-
larity in a variety of application domains. Of the various object-oriented analysis
techniques, the Unified Modelling Language (UML) is becoming more and more
popular in requirements engineering. From a scientific point of view the question of
1



efficiency of a given technique with respect to the expected results is extremely rele-
vant. Project experience in air traffic management motivated this thesis and also gave
rise to the studied factors in requirements engineering throughout this work. 

1.1 Motivation and Objectives

This work is based on experience gained in series of requirements engineering
projects in the air traffic management domain and therefore reflects a number of par-
ticularities with respect to organisational as well as technical aspects of this highly
sensitive domain. This section introduces the empirical background and the objec-
tives of this work.

1.1.1 Motivation: Requirements Analysis in the Air Traffic Management Domain

Implementation projects in the air traffic management domain recently suffered a
number of costly failures. The Federal Aviation Agency’s (FAA) Advanced Auto-
mated System (AAS) is one of the most spectacular failures in history of both air traf-
fic management and software development [Gla97]. Proper software requirements
specifications form the central prerequisite for the design of computational systems.
But an adequate specification of requirements in air traffic management has been and
still is a demanding challenge for a number of reasons. This subsection outlines the
air traffic management domain under special consideration of its objectives, involved
stakeholders, business activities and its operational infrastructure.

Complexity of Air 
Traffic Management 
Systems

Air traffic management (ATM), as a command, control, communication and intelli-
gence (C3I) application, provides controllers with efficient means to maintain an
orderly flow of air traffic. The ATM domain basically incorporates two linked plan-
ning cycles with differing time horizons. Air Traffic Flow Management (ATFM) aims
for a centralised regulation of air traffic before take-off. Smoothing peaks in individ-
ual air traffic service units (ATSU) and reducing holding patterns around major air-
ports are the central objectives of this system. While ATFM regulates the air traffic
before take-off, air traffic control actually realises the control of airborne traffic. 

Controller Activities In order to characterize the intricacy of air traffic management, we want to sketch the
work of air traffic controllers. A controllers’ central duty is maintaining an orderly
flow of air traffic. Radar and the provision of flight data are the controller’s basic aids
in this context. Besides automated assistance, the controller’s ability to construct a
four dimensional mental image – latitude, longitude, altitude and time – on the basis
of a two dimensional (radar) screen is the essential characteristic of this application
domain. This ability documents the problems encountered by analysts gathering
requirements for automated air traffic management systems. Besides the complicated
creation of this mental image, there is little documentation on how controllers actu-
ally do their work. External observers are often quite surprised about the particular
differences in the way each controller manages his daily routine. 
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Introduction
This lack of well-documented business processes standardised on a European level
further augments analysis complexity for analysts in the ATM domain. Although this
paragraph can only provide a rough outline of controller activities, it emphasises the
fundamental difficulty within the specification of controller demands.

Air Traffic 
Management Systems

Air traffic management systems (ATMS) comprise a number of demanding character-
istics: they are distributed, are not operated under a central authority and are safety
critical. Their availability of 99.99998% equals a maximum down time of 10 minutes
a year. The relationship between pilots along with aircraft and controllers in particu-
lar is extremely complicated. The aircraft is tracked by a radar system and its identity
is provided by a four bit octal code, the so-called SSR code. Today the SSR code
space is far too small for the amount of airborne traffic, that means two aircraft may
be assigned to the same code. At the same time the relationship between controllers
and pilots is maintained via very high frequency (VHF) radio communication. In
order to provide controllers with pilot intentions, a flight plan with a route from the
departure to the destination aerodrome has to be submitted to ATC authorities. Flight
data processing systems finally combine radar observations with route information
and therefore assist controllers in assuring an orderly flow of air traffic.

EUROCONTROL 
and EATCHIP

From a legal as well as a technical point of view, the European ATM infrastructure is
characterised by an enormous degree of heterogeneity, which led to the foundation of
the European Organisation for the Safety of Air Navigation - EUROCONTROL in the
1960 and also initiated the European Air Traffic Control Harmonisation and Integra-
tion Programme (EATCHIP) in the mid 1980. The EATCHIP programme aims for a
harmonisation and integration of the current European ATM infrastructure at three
reference levels, tailored for the varying traffic density throughout Europe. The basis
of this program is the definition of agreed requirements under the direction of EURO-
CONTROL. The resulting requirements specification should facilitate the integration of
the currently nationalised ATM infrastructure. These requirements specifications are
based on the objective of providing efficient and cost-effective means of managing
the rapidly increasing rates of air traffic. The complex nature of controller activities,
the heterogeneity and availability of operational systems, cannot be mastered without
extensive requirements analysis. Providing thorough understanding of the intricate
nature of this C3I application is the objective of problem analysis in the ATM
domain. This understanding, documented in a software requirements specification,
provides the input to designers building the system and its users for an assessment of
the conformance of the implemented system. The last point in particular makes inten-
sive requirements analysis in the air traffic management domain such a crucial activ-
ity.

Requirements 
Specifications Based 
on Textual 
Descriptions

Requirements specifications in the ATM domain currently follow functional decom-
position of the problem statement and usually comprise hundreds of thousands of
lines of plain text statements. To exemplify this situation, we give a short example,
taken from one of the EATCHIP operational requirements documents (ORD):
3



“FDPD-FDMD-23 Manual modifications of relevant SFPL data shall trigger 
trajectory prediction re-calculation” [Eur97, p. 9-5]

Even when written in a concise and comprehensive manner, i.e. excluding the inher-
ent ambiguity of natural language, the sheer amount of requirements statements in
industry-scale systems is difficult to understand and their quality is hard to assess.
Especially contradiction and completeness cannot easily be determined. Analysis
complexity has been reduced in the EATCHIP context through a division of the over-
all problem statement into seven initial partitions. These Domains – in EUROCON-
TROL jargon – have been elaborated concurrently and each of them resulted in an
operational requirements document comprising over 300 pages of written text. Due to
concurrent elaboration, these initial partitions also give rise to the question of inter-
facing among them and with respect to global requirements impacting on the entire
system. Sheer size of textual requirements does not facilitate a thorough understand-
ing of the problem particularities in air traffic management.

Modelling Techniques 
in Requirements 
Engineering

Modelling techniques were an important innovation in the 1970 with the objective of
accelerating problem understanding and improving communication between analysts,
business experts and software designers. Compared to plain-text documents, abstract
models reduce the ambiguity of natural language, regardless of the technique applied.
Their comprehensibility, however, has always been under debate, by both domain
experts as well as the scientific community. Applied modelling techniques range
from semi-formal techniques, such as UML [BJR98], to formal ones like LOTOS
[ISO8807]. Formal methods, however, suffer serious problems with respect to appli-
cation size. Usually small problem statements require extensive efforts for modelling
them precisely. Only carefully chosen critical parts of industry-scale applications can
efficiently be modelled using formal methods. Currently object-oriented modelling
techniques, like OMT [RBP+91] or UML [BJR98] are gaining acceptance in a vari-
ety of application domains and have also been used throughout our projects in the
ATM domain. 

UML in the 
ATM Domain

Today there is still little documented experience concerning the use of object models
in requirements engineering for industry-scale applications. Especially in the air traf-
fic management domain, which is traditionally related to functional decomposition
techniques, object models are a rather novel approach. Within object-oriented model-
ling techniques the Unified Modelling Language (UML) is becoming an industry
standard through its OMG certification. In our projects UML has been used to model
the textual requirements in the original operational requirements documents. 

1.1.2 Objectives of this Work

The experience gained in a series of projects in the air traffic management domain
has been extrapolated to a slightly different approach. While the reference projects
started on the basis of textual requirements specifications, this work takes complex
use cases [JCJ+94, Wor96] as its central requirements basis.
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Introduction
The entire problem statement is split into an arbitrary set of initial partitions that are
to be elaborated concurrently. A subset of the UML notation, comprising use cases,
static structure and sequence diagrams, has been used for problem analysis purposes.
The variety of UML views aims to support the entire software life-cycle. Therefore a
specialised subset has to be tailored for requirements engineering, in order to avoid
premature design and to facilitate the comprehensibility of the modelling techniques
to involved stakeholders with varying IT background. 

Component schemas are persistently stored in distributed repositories, corresponding
to the viewpoint idea of Nuseibeh [NKF94]. Based on the results of projects in the air
traffic management domain [Wor96, Eur98a], we discuss the impact of different
project organisations on the specifications, under special consideration of the integra-
tion of the partitions towards an integrated minimal problem analysis model. In this
context we define correspondence, conflicts and dependencies as relevant component
schema relationships for partitions specified in the selected UML subset. We propose
means for detecting component schema relationships and realise them in terms of the
UML metamodel. Finally we detail organisational issues to resolve potential incoher-
ence generated by component schema relationships. Within this general context we
pursue the following objectives.

Evaluation of UML in 
Industry-Scale 
Applications

To date UML has been used in a number of small to medium sized projects, so the
first objective is an evaluation of UML’s principal suitability for requirements engi-
neering in industry-scale systems. This objective also includes a brief comparison
with other object-oriented analysis styles. UML offers a number of different views
[RBJ99] defined on the basis of a common metamodel. These UML views have to be
evaluated with respect to their suitability in requirements engineering, i.e. preserving
a solution-neutral description of the problem statement at hand. Then available con-
structs within the selected UML views have to be examined under the same objec-
tive. In this context our attention is focused on constructs stemming from distinct
programming languages. Finally we propose a UML subset tailored for requirements
engineering. This objective is related to the demand for suitable modelling techniques
for industry-scale problem statements, in order to facilitate thorough understanding
of arbitrary problem statements and speed up the creation of expressive software
requirements specifications. Furthermore the selected UML subset should also suit
the diverse backgrounds of involved stakeholders from business users via analysts
and domain experts to senior management. Note that the discussion of UML views
and constructs is mostly based on the original 1997 metamodel, as submitted to the
OMG [OMG97a, OMG97b, OMG97c]. The recent revision of the metamodel
[Rat99] and the companion literature [BJR98, RJB99] only became available by the
end of this work.

Concurrent Elaboration 
of Partitions

The second objective pivots around the question of concurrent requirements elicita-
tion using the defined UML subset. Several analyst teams are assigned to given frac-
tions of the overall problem statement and concurrently elaborate these initial parti-
tions using the selected UML subset. Then the results, so-called component schemas,
have to be compared to each other, leading to a definition of component schema rela-
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tionships. Component schema relationships indicate potential threats to the consist-
ency of the overall problem analysis model and therefore have to be evaluated care-
fully. Clarifying the nature and character of component schema relationships forms a
major part within this objective. A comparison to concurrent design highlights the
special difficulty of performing requirements elicitation concurrently. While concur-
rent design aims for the elaboration of partition contents on the basis of a stable
abstract model with a defined partition boundary, the creation of model and boundary
is the central objective of concurrent requirements analysis. Contents and environ-
ment of given initial partitions are not known at project begin in concurrent require-
ments analysis and therefore mainly represent an organisational unit for the assigned
analyst team. Performing requirements analysis concurrently in a reasonable time-
frame without compromising the quality of its results is a central motivation for this
objective.

The Impact of 
Different Project 
Organisations

Clarifying the impact of project organisation on component schema relationships
marks the third objective. Project organisation in our work comprises two major
aspects: the organisation of analyst teams and project management, as well as the
assignment of partitions to repositories. Although at first glance building initial parti-
tions could be regarded as an integral project organisation activity, we leave out this
question. The nature of initial partitions varies so much over application domains that
common rationale for building them can hardly be expected. Analysing the influence
of project and repository organisation on expected component schema relationships
still gives rise to a sufficient number of questions in requirements engineering.

Managing 
Component Schema 
Relationships

On the basis of the previous objectives, strategies for the detection and management
of component schema relationships have to be analysed under special consideration
of the different project organisations. In this context, means for detecting, propagat-
ing and resolving component schema relationships have to be defined. Minimizing
conceptual redundancy and assuring proper interfacing among partitions indirectly
improves the quality of complex requirements specifications documenting industry-
scale problem statements, as encountered in the air traffic management domain.

Improving the Quality 
of SRS

Evaluating component schemas marks the final objective of this work, where we
compare them to an agreed software requirements specification standard [IEEE830].
This objective is intended to reveal potential shortcomings of component schemas
with respect to ‘good’ software requirements specifications. Component schemas
model structural as well as behavioural requirements in method-specific form. In this
context we analyse which kind of requirements fall short and also propose enhance-
ments to component schemas that allow persistent storage of previously unreflected
requirements. The overall project efficiency and the quality of the resulting software
requirements specifications should as a result be improved. This objective is highly
relevant for outsourcing design and implementation of computational systems. In this
context, software requirements specifications is to provide a basis for contractors to
build the ‘right’ system and for clients a solid foundation for assessing the conform-
ance of an implemented system with respect to the specified demand.
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Introduction
The formulated objectives stem from experience gained in a series of requirements
analysis projects in the air traffic management domain. The problem statement, air
traffic management in Europe, has been split into seven initial partitions by the
project management. Each of these seven initial partitions has been specified entirely
in terms of textual requirements, providing the initial requirements basis. Modelling
the requirements statements of each initial partition in terms of component schemas
provided a compact and robust description of the analysed fractions of the problem
statement. The component schemas revealed vagueness and omission within given
partitions, as well as improper interfacing between partitions. The amalgamation of
the component schemas towards an integrated problem analysis model covering the
entire air traffic management domain encountered a number of complications, stem-
ming from shortcomings of UML, as well as insufficient CASE tool support. Never-
theless, component schemas provided a comprehensible outline of the detailed
ORDs. Interfacing between partitions was able to be reviewed by the involved
domain experts and an integrated minimal model, covering the entire application
domain, was created. All examples used throughout this work relate to these projects,
carried out in close collaboration with domain experts from the European Organisa-
tion for the Safety of Air Navigation – EUROCONTROL.

1.2 Outline of this Thesis

This section describes the organisation of this work and outlines the contents of indi-
vidual chapter.

Chapter 2 Chapter 2 summarizes the related work. Requirements engineering techniques and
object-oriented modelling provide the foundation of this work. Linguistic and onto-
logical approaches clarify the use of language in component schemas. View integra-
tion techniques provide the basics for the definition of component schema relation-
ships. Finally this chapter identifies missing bits with respect to the objectives.

Chapter 3 Chapter 3 analyses stakeholders, processes and techniques for concurrent require-
ments engineering. The basic terminology for models, viewpoints and project partici-
pants in requirements engineering is introduced here. Then the principal character of
requirements is discussed. Different object-oriented analysis styles are briefly com-
pared to each other, in order to identify the most effective one for requirements engi-
neering purposes. 
This chapter defines our perspective with respect to requirements engineering in gen-
eral and identifies the modelling technique as well as the analysis style used through-
out this work. 

Chapter 4 Requirements engineering has to be conducted concurrently in industry-scale appli-
cation domains, since the problem cannot otherwise be mastered in a reasonable time
frame. Identifying the most important factors in industry-scale projects, involving
several man years for requirements analysis, is the subject of Chapter 4.
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Additional project participants, the process applied and modelling techniques in our
reference projects are introduced. Analysing a problem statement concurrently gives
rise to questions with respect to project and repository organisation. Especially
project organisation significantly influences the coherence of the resulting require-
ments specifications. Autonomy enables analyst teams to elaborate their initial parti-
tion in isolation, without taking the knowledge of other analysts into account. On the
one hand, coherence reflects two essential demands of project management. Budget-
ary and temporal control of the overall project progress is a must in modern manage-
ment. On the other hand, the need of a complete and consistent problem analysis
model, as a central prerequisite for the elaboration of a detailed and expressive soft-
ware requirements specification, characterizes the second management demand. This
chapter extends the perspective of requirements engineering towards concurrent
requirements engineering, calling for a number of clarifications not covered in the
requirements engineering literature.

Chapter 5 The use of UML in concurrent requirements engineering is the primary concern in
Chapter 5. The chapter opens with a discussion of the nature of UML and its nota-
tion. Then UML is evaluated with respect to its suitability in requirements engineer-
ing. Under the objective of providing a solution-neutral problem description, we
identify suitable UML views and discuss all constructs within these selected UML
views. Avoiding premature design in software requirements specifications and pro-
viding comprehensive problem descriptions that suit a broad target audience, from
system users to software designers, is the central concern of this chapter. This discus-
sion is entirely based on an examination of the UML metamodel [OMG97a] defining
the semantics of this modelling technique. Finally, selected UML views and the cho-
sen constructs within these UML views establish our requirements basis. Semantics
and notation of this UML subset applied in concurrent requirements analysis leads to
our definition of component schemas.

Chapter 6 Natural language can be considered as the most important input to requirements engi-
neering. Its inherent ambiguity is one of the major problems in this discipline. There-
fore Chapter 6 analyses the character and occurrence of natural language in compo-
nent schemas. Terms, artefacts and concepts provide the central prerequisite for the
definition of component schema relationships, elaborated in the next chapter.

Chapter 7 The use of language and the differing perspectives of stakeholders are the central fac-
tors for emerging component schema relationships, discussed in Chapter 7. Based on
the definition taken from the schema integration community, we define potential con-
flicts for our UML subset selected for component schemas. Incorporating linguistic
aspects into this merely structural definition of conflicts leads to the notion of compo-
nent schema correspondence, conflict and dependency. Examples of component
schema relationships are taken from our projects in the air traffic management
domain.
8
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Chapter 8 Possible means for detecting and managing component schema relationships are dis-
cussed in Chapter 8. On the basis of a pragmatic model for assessing component
schema relationships, we discuss the influence of the particular project organisation
on the encountered component schema relationships. Automated as well as manual
means may be used for the clarification of terms used in component schemas. The
chapter closes with organisational aspects regarding the notification, coordination
and resolution of component schema relationships among the involved analyst teams
and the introduction of a process model.

Chapter 9 Tool support for concurrent requirements engineering using component schemas is
the central topic of Chapter 9. In this context, linguistic support, communication
infrastructure and CASE tool capabilities form the major components, leading to two
potential solutions. An integrated solution combines all three components into a sin-
gle tool, supporting the stakeholders in concurrent requirements analysis for industry-
scale problem statements. The second solution is based on a combination of off-the-
shelf tools.

Chapter 10 Our proposed solution for concurrent requirements engineering is elaborated in
Chapter 10. We apply three different perspectives towards component schemas in
industry-scale problem statements. The first perspective mostly deals with the
expressive power of component schemas constructs. Here we have a closer look at
the specific way given aspects of the problem statement have been reflected in com-
ponent schemas. The specific problems encountered in our air traffic management
projects provide the second applied perspective. Here we are mostly interested in the
question of how existing tool support could improve given projects. Finally, we ana-
lyse the role of component schemas in requirements engineering projects. Overall
project efficiency can be dramatically improved by using the information comprised
in component schemas for the generation of software requirements specifications. On
the basis of the IEEE Software requirements specification standard [IEEE830], we
discuss requirements for how currently missing requirements may be represented in
component schemas and propose a suitable outline for generating software require-
ments.

Conclusion & 
Appendix

Concluding remarks and future research areas mark the end of this work. Component
schema relationships incorporating both structural and naming conflicts, are pre-
sented as suitable support for concurrent requirements engineering. On the basis of
autonomous analysts teams, the coherence of a requirements specification divided
into initial partitions can be assessed. Component schema relationships also realise
the notification of the affected analyst teams and therefore drive the collaborative res-
olution of potential conflicts. Future research identifies the impact of design deci-
sions on problem analysis models and the management of requirements for opera-
tional systems or subsystems as relevant aspects. The Appendix A presents the UML
views and notation used in component schemas. Sample statements from the EURO-
CONTROL Operational Requirements Documents are gathered in Appendix B. These
statements formed the basis for the creation of component schemas, modelling indi-
vidual problem partitions.
9



Appendix C presents examples of conflicts following the classic distinctions of the
schema integration community. Finally Appendix D incorporates the complete list of
component schema relationships. Based on a matrix of the selected UML constructs
for component schemas, samples from our air traffic management projects illustrate
the specific character of the described component schema relationship.
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2 Related Work

This chapter identifies related research topics in requirements engineering and sum-
marizes relevant approaches for this work. On the basis of identified open problems
in the related disciplines, the specific contribution of this work will be presented.

2.1 Research Directions in Requirements Engineering

Software requirements engineering is the science and discipline concerned with elic-
iting, analysing and representing demands for software systems. The scientific litera-
ture documenting the research activities in this field essentially pursues the following
five research directions:

• Software & Systems Engineering

• Software Requirements Analysis & Specifications

• Software Requirements Methodologies & Tools

• Requirements & Quality Management

• Software Systems Engineering Process Models

This work essentially explores the use of object-oriented analysis techniques in con-
current requirements engineering, where the involved analyst teams elaborate initial
partitions of an industry-scale problem statement in isolation. Building an overall
problem analysis model on the basis of a set of self-contained component schemas
gives rise to the consistency of the specification. Consequently the research direc-
tions software requirements methodologies and systems engineering form the most
important aspects in this work. Figure 1 depicts individual research directions and
references relevant for this works. 

Figure 1 Research Directions and Influential References for this Work 

Integrative Approaches
[MAC+95]

Multi Viewpoint
[NKF94]
[NJJ+96]

View Integration
[BLN86]
[LNE89]
[SPD92]
[Schm98]

Analogies
[SC96]
[SF97]
[Whi97]

Linguistic Support
[OS96]
[Gua98]
[MIB96]
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Multi-viewpoint specifications and analogies represent the most important topics
within the larger frame of requirements engineering. View integration and linguistic
support represent contributions from other communities that have been adapted to the
purposes of concurrent requirements engineering. View integration for instance pro-
vides the starting point for the discussion of conflicts between component schemas in
this work. The linguistic support reflects the specific character of expert language in
requirements specifications. 

2.2 Requirements Engineering in Practice

Requirements engineering in practice has always been controversial in the design of
industry-scale software systems. Although the need for precise specification of user
needs is a widely accepted fact, the different means for their elicitation are in debate.
Within the scientific community, requirements engineering dealt with a broad range
from social studies [GL93] to formalised mathematical descriptions [DLF93]. Com-
mon points within this range are that requirements engineering aims for a gradual
structuring of a problem statement from business objectives to a structured problem
description, allowing cost-effective design and implementation of the envisioned
software system. The first and most important question in this context deals with the
concrete nature of user requirements. What is a requirement? How can we under-
stand, describe and assess a demand? Especially taking into account that users often
struggle to describe their need, the so-called say-do problem [GL93]. Even if we are
perfectly able to elicit user demands, are we able to describe them properly, without
leaving out and – equally important – inventing things? Problem descriptions on the
other hand should never constrain design and implementation of software systems.
Especially industry-scale projects cannot be efficiently managed on the basis of tex-
tual requirements alone. Thus the applied modelling techniques should always guar-
antee a compact and solution-neutral description of the problem statement at hand.

Popular Modelling 
Techniques

Consensus exists on the value of modelling techniques in requirements engineering
and many scientists believe, that quality requirements specifications cannot be
accomplished without suitable modelling techniques. Since the 1970 modelling tech-
niques have been widely used in requirements engineering, with varying success.
Functional decomposition techniques such as SADT [Ross77] and Structured Analy-
sis [Orr81] became quite popular and are still used in industry-scale projects. These
techniques suffer a number of disadvantages, especially the separate consideration of
functionality and data is deemed quite problematic. Problem analysis models follow-
ing these techniques are usually complicated to map to software designs, the fre-
quently quoted impedance mismatch. The expressive power of given modelling tech-
niques still is and always has been an important question in requirements
engineering. In this context, we may ask which observable aspects of real-life sys-
tems can adequately be represented in a problem description using given modelling
techniques.
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The Requirements 
Engineering Process

Process models form another important research direction in this context, focusing on
the order of activities for specific techniques. Sommerville [SS97], Davis [Dav93] as
well as Thayer and Dorfmann [TD97] are the basic references in this context. Espe-
cially remarkable in this context is Sommerville’s and Sawyer’s adaptation of the
Capability Maturity Model [PWC95] to requirements engineering [SS97]. The proc-
ess model in this work is mostly inspired by Sommerville combined with model-
based problem analysis, as proposed by Davis [Dav93]. Component schemas as our
proposed modelling technique with their use case driven analysis style lead to adapta-
tions of the requirements engineering process.

Project Organisation Project organisation and its specific impact on the resulting requirements specifica-
tion is hardly documented in the literature. Moody [Moo96] for instance points out
the importance of stakeholder involvement in database design with respect to quality
and maintainability of the resulting schemas. Forsberg and Mooz describe the project
organisation within medium to industry-scale systems [FM96]. However, their find-
ings are mostly related to the larger frame of systems engineering, outside the actual
focus of this work. Stressing analyst’s autonomy is a central aspect of industry-scale
requirements engineering projects. Basing the overall problem description on a set of
self-contained object-oriented analysis models representing initial partitions is the
central idea throughout this work. A novel aspect of this work is the incorporation of
the influence of different project organisation models on consistency and complete-
ness of problem descriptions built from a set of component schemas.

2.3 Requirements Engineering Methods

Requirements engineering methods according to Kotonya and Sommerville [KoS98]
guide the process of eliciting, structuring and formulating requirements. This can be
regarded as a systematic way of producing compact and robust descriptions of the
problem statement at hand. In this section we essentially concentrate on the different
modelling techniques for the representation of requirements and their specific capa-
bilities.

Popular Methods Functional decomposition techniques developed in the late 1970 gained significant
popularity and are frequently used in industry-scale projects. Their entirely functional
perspective stresses system functionality but neglects suitable descriptions of data
handled in a software system. Therefore Structured Analysis [Orr81] or SADT
[Ross77] have often been complemented through the use of Entity-Relationship-
Models [Chen76] for data specifications. In the last decade the object paradigm pro-
posed the object metaphor as the sole principle throughout the entire software life-
cycle. A number of technologies, including programming languages, database sys-
tems, middleware platforms and user interfaces currently follow the object paradigm.
Object-oriented analysis techniques, such as OMT [RBP+91], OOram [Ree96] and
finally the Unified Modelling Language (UML) [RJB99] make use of the object par-
adigm for the purpose of analysing given problem statements and providing a stable
basis for the design of the software system later on. 
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Object-Oriented 
Analysis Styles

Within the variety of object-oriented analysis methods currently on the market, three
major analysis styles can be distinguished. Class-based analysis in OMT stresses
structural aspects of a problem statement and considers behaviour as a justification
for analysis classes. Role-based analysis in OOram [Ree96] concentrates on the
required behaviour of objects jointly solving a defined objective. In other words
interfaces and object interaction are stressed in this technique. The third style ties the
behavioural perspective of role-based analysis to the notion of business processes.
Jacobson’s Object-Oriented Software Engineering [JCJ+94] is the most prominent
example for use case driven analysis. Textual descriptions of business processes mark
the input to an object-oriented structuring of initial requirements expressed in use
cases. The Unified Software Development Process finally combines Jacobson’s use
case driven analysis with the UML notation [JBR99].

Partitioning Industry-
Scale Applications

Despite the individual differences of analysis styles, specific support for industry-
scale projects is hardly documented in the literature. In this context we concentrate on
the initial partitioning of given problem statements. Firesmith [Fir93] suggests a strict
top-down approach, partitioning the problem statement on the level of interfaces.
Although this approach is advantageous for system integration, stakeholder perspec-
tives are completely left out and a centralised analyst team is the only possible project
organisation. This approach also requires sufficient prior knowledge concerning the
application domain. Otherwise the resulting component schemas do not share a com-
parable complexity and tend to describe the analysed partitions on an unbalanced
level of detail. Multiple perspectives, as introduced by use case driven analysis, lead
to another significant problem. Although the analysis complexity has been reduced,
the importance of given real-world things for a number of business processes does
not become apparent to the analysts. The rather self-contained perspective of use
cases may lead to redundancies between component schemas and threatens the qual-
ity of the overall problem description. Redundancy and its inverse minimality also
depend on the actual project organisation and the analyst’s horizon, indicating the
visibility of model elements to analysts outside the assigned team. Stressing the influ-
ence of partitioning and analyst’s horizon on the quality of requirements specifica-
tions forms another significant contribution of this work.

2.4 Viewpoints

Viewpoint-oriented requirements engineering has been introduced from two com-
pletely different directions and technologies. The ViewPoint Framework [NKF94]
marks the first important reference, while TELOS and ConceptBase [CB97] mark the
other influential related work in this section.

2.4.1 The ViewPoint Framework

Nuseibeh regards viewpoints as encapsulated, distributed requirements specifications
with the following properties:
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“ViewPoints draw together the notion of an actor, knowledge, source, role or agent with the
notion of a view or perspective held by the former.”
[NKF94, p. 760]

Viewpoints and 
Templates

A so-called viewpoint template encapsulates the notation of the used modelling tech-
nique and a workplan defining legal transactions to a specification. Consequently a
ViewPoint – in Nuseibeh’s terms – is an instance of a viewpoint template and con-
tains an elaborated specification, i.e. a problem analysis model. Viewpoint templates
can be decomposed into the following slots. A viewpoint contains a domain, i.e. a
dedicated area of concern, a specification describing the domain and a work record
storing the transactions to the specification. The style slot incorporates the used nota-
tion and the workplan slot determines construction and consistency rules for a speci-
fication. So-called in-viewpoint check actions represent rules to control the consist-
ency of a problem description in the specification slot, while inter-viewpoint check
actions represent rules for specifications encapsulated in different ViewPoints. These
rules are usually activated by so-called viewpoint trigger actions. Figure 2 depicts a
ViewPoint template and its slots in the UML notation:

Figure 2 ViewPoint Template Specified in the UML Notation 

Industry-scale applications can be divided into initial partitions and each of them is
elaborated as a distinct ViewPoint. The consistency of the overall specification,
encapsulated in several ViewPoints, can be examined through check actions. Individ-
ual ViewPoints may encapsulate different modelling techniques in their style slots.
Therefore Nuseibeh distinguishes between intra-viewpoint check actions, testing the
consistency of ViewPoints using the same style and so-called inter-viewpoint check
actions for ViewPoints using different styles. Changes to the specification, i.e. the
invocation of assembly actions, does not automatically trigger consistency rules.
Viewpoint trigger actions therefore realise consistency checks on demand. This
approach also decouples conflict detection from conflict resolution and therefore
avoids unintentional overriding of requirements. The ViewPoint Framework provides
highly relevant distinctions for the distributed nature of concurrent requirements
engineering.

Deficiencies of
the ViewPoint 
Framework

Considering multi-viewpoint specifications as distributed encapsulated objects is the
central value of the ViewPoint framework. Decoupling detection and resolution of
conflicts stresses analyst autonomy, since overriding requirements outside their
assigned partition is prohibited. Unfortunately, the ViewPoint Framework remains

ViewPointTemplate
domain

InterViewPointCheckAction AssemblyAction InViewPointCheckAction

WorkRecord WorkPlan Specification Style

DomainOwner
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vague with respect to a number of details. Especially checking the consistency over
distributed ViewPoints on the basis of a so-called consistency-logic leaves out impor-
tant details. This first-order logic formalism does not solve the inherent ambiguity of
expert language in the domain at hand. Statements in first-order logics do not reflect
the specific meaning of expert terms in the application domain at hand. As a result,
linguistic deficiencies concerning the use of terms in different ViewPoints lead to
conflicts. Another problem is the formulation of inter-viewpoint check actions for
ViewPoints using different notations. Adequate conflict detection can only be based
on rigorous semantics of the involved modelling techniques. The majority of object-
oriented modelling techniques, however, is not based on formal semantics. In this
case these check actions can only detect the use terms in ViewPoints describing the
overall problem statement. Elaborate conflict detection cannot be realised since the
applied construct is not taken into account. This observation also holds for the
semantics of the UML, which are defined on the basis of a metamodel.

2.4.2 TELOS and ConceptBase

The research group of Prof. Jahrke at RWTH Aachen [NJJ+96] takes a different
approach to multi-viewpoint specifications. The basis of their consideration is
TELOS, realising all four layers of the ISO information resource dictionary standard
[ISO10027]. ConceptBase, as a tool environment, realises TELOS on top of a deduc-
tive database [CB97]. TELOS objects can be regarded as four tuples containing the
shaded constructs depicted in Figure 3. Specification techniques incorporating sev-
eral views such as UML [OMG97a] can easily be realised in ConceptBase with a
centralised repository. Unlike the ViewPoints framework [NKF94], TELOS specifi-
cations cannot be regarded as distributed objects: they remain projections of a cen-
tralised repository. This approach guarantees the consistency of the overall specifica-
tion at any time. Centralised repositories with a rigorous metamodel implementation
may lead to unintentional overriding of requirements and consequently do not pro-
mote the autonomy of analyst teams. Especially inter-partition and global require-
ments may lead to overriding of class specifications relevant in several partitions.

TELOS Modules Introducing modules to TELOS realises the idea of several independent partitions on
top of a centralised repository [MAC+95]. Initial partitions are mapped to TELOS
modules, corresponding to modules in programming languages. The autonomy of
analysts teams can be guaranteed while import and export interfaces realise the inte-
gration of initial partitions in a module representing the overall problem statement.
Import / export relationships between TELOS modules further avoid unintentional
overriding of requirements stemming from different partitions. Integrating two parti-
tions C1 and C2 leads to the creation of a new TELOS-Module CI, which imports the
initial partitions to be integrated. Changes and enhancements to imported models are
entirely encapsulated in CI and therefore do not alter the imported partitions at all.
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An increased traceability is the result of this approach, since the imported partitions
remain completely unchanged and the involved stakeholders do not loose track of
their models. Finally, agreed schemas representing given partitions can be exported
to other partitions, facilitating the reuse of agreed and validated specifications.

Figure 3 UML Static Structure Diagram Depicting the TELOS Module Concept

Comparing 
ViewPoints and 
ConceptBase

Compared to the ViewPoint framework, the TELOS modules have a number of
advantages. The meta-metamodel allows the definition of complex modelling tech-
niques such as UML. Modifications to the realised modelling techniques can also be
applied at run time, since the ConceptBase tool realises all four IRDS [ISO10027]
levels. TELOS assertions may realise in viewpoint check actions in the Nuseibeh ter-
minology. Intra and inter-viewpoint check actions can be regarded as in-viewpoint
check actions with an additional parameter, the name of given modules / initial parti-
tions.

The autonomy of TELOS modules is guaranteed through a hierarchic organisation of
the name space. The names of class specifications are unique, since they are always
prefixed with the module name. Another interesting detail in TELOS can be regarded
both as advantageous and disadvantageous at the same time. All elements of a speci-
fication, from instance level to metamodel level in the IRDS terminology, carry a
unique and immutable object identity. As a result, name clashes never occur and
overlapping analyst perspectives never lead to uncontrolled overriding of require-
ments. Class specifications may carry the same name and still remain distinct objects.
Homonym conflicts in complex specifications are automatically excluded via this
approach. On the other hand, means for controlling the use of synonymous in specifi-
cations are not described and therefore the minimality of the resulting problem analy-
sis model remains in question. Import and export relationships between TELOS mod-
ules cannot indicate conflicts between class specifications specified in distinct
modules and the affected analyst teams cannot be notified. Furthermore, all rationale
concerning the resolution of conflicts between imported partitions is entirely buried
in the TELOS module. At the same time, the traceability of the overall analysis

contains
0..n1

11

Stakeholder

ViewpointModel
process: processModel
domain: objectSystemModel
notation: notation

Viewpoint 
name: string
version: string
process: viewpointProcess
trace: viewpointTrace

exports

TELOS-Module

ExportedObjects

TELOS-Object

Assertion

inattributeimportsFrom
17



model cannot be guaranteed, since the background knowledge used for the resolution
of conflicts cannot be made explicit. Although TELOS overcomes strict top-down
partitioning, import and export relationships alone guarantee neither minimality nor
coherence of the resulting overall problem analysis model.

2.5 Linguistic and Ontological Approaches

Requirements specifications are heavily influenced by the inherent ambiguity of nat-
ural language, due to the involvement of stakeholders with different cultural back-
grounds. Stakeholders are usually experts in a given application domain and each
domain is characterized by its own expert language. Ortner and Schienmann regard
requirements engineering as a gradual differentiation of natural language towards a
so-called normative expert language [OS96].

Methodically-Neutral 
Conceptual Modelling

Based on this distinction, Ortner and Schienmann develop their concept of methodi-
cally-neutral conceptual modelling. In their perspective, modelling techniques
already describe a problem statement in terms of a future solution and therefore do
not suit the discussion among affected stakeholders. Given modelling techniques
might distort the original requirements statement, since the modelling technique at
hand does not offer adequate constructs. The lack of adequate data description in
functional decomposition techniques is an example of this kind of ‘distortion’. There-
fore the authors distinguish between a normative language construction where the
meaning of terms in a given application domain has to be clarified and a mapping of
these reconstructed sentences to a given modelling technique, representing a method-
specific representation of the normative language [OS96]. This mapping between a
methodically-neutral normative language towards a method-specific one has been
described for object-oriented modelling techniques [Sch97].

Although we totally leave out the reconstruction of a normative language in this work
– component schemas specified in the UML notation form our requirements basis –
the work of Ortner and Schienmann [OS96, Ort97, Sch97] provides important input
for the definition of component schema relationships.

Thesauri and 
Dictionaries

Thesauri and dictionary organisation represent the other central linguistic influence
to this work. In this context the organisation of dictionaries and thesauri for a clarifi-
cation of the meaning of terms used in a given initial partition is relevant. Alexander
Hars [Hars97, HM97] proposes natural-language methods for the integration of data
models. Based on a syntactic discrimination of valid terms in a given application
domain, the similarity of artefacts in a set of specifications can be clarified. Syntactic
aspects of terms, in the sense of Chomsky [Cho65], are combined with semantic cat-
egorizations, in order to resolve synonyms in data models.

Names, Concepts and 
Things

Figure 4 depicts a pragmatic approach for the treatment of the inherent ambiguity of
natural language in database schemas, as proposed by Weber [Web82]. Taking the
intension/extension dichotomy as a starting point for his consideration, he comes to
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the following conclusions. Names in databases express concepts and denote things.
Furthermore, a concept determines a real-world thing. When a set of terms express
the same concept and denote the same things, these terms are called synonyms. In
contrast to synonyms, terms expressing different concepts and denoting different
things are called homonymous. In his article, Weber extends these basic distinctions
include variables, functions and composite terms. However, Weber’s concepts are
atomic and consequently do not cover class specifications with behavioural and
structural properties in component schemas. 

Figure 4 The Relationship between Name, Concept and Thing

Conceptual Structures A strategy similar to that used in thesauri can be found in the artificial intelligence
community, namely in the work of John Sowa [Sowa84]. Based on three distinct con-
stituents, reasoning mechanisms for complex problems are proposed. The first con-
stituent is based on a dictionary comprising a classification of terms according to
their syntactical category, such as proper names, count nouns, adjectives and pro-
nouns. Articles and prepositions are ignored, they are stop words in terms of informa-
tion retrieval. Proper names are categorised to concepts, i.e. the terms ‘Norma’ or
‘Jack’ are categorised to the conceptual type ‘Person’. In other words these concep-
tual types provide the real-world meaning for a set of proper names.

Conceptual 
Type Lattice

The conceptual types recorded in the dictionary are organised in a type lattice, where
a generalisation/specialisation hierarchy represents the subordination of terms. The
general type T is the root of an acyclic directed graph. Due to the lattice character of
the conceptual type hierarchy, given types may be related to several generalised
types, for example the type Animal is characterised by the generalised types
MobileEntity and Animate.

Conceptual Graphs The third and final constituent in Sowa’s work is the conceptual graph, encoding
relations between terms, classified in the conceptual type lattice. Natural language
sentences like “Spike the dog is sitting in his basket” can be expressed in conceptual
graphs as depicted in Figure 5, p. 20. Formally conceptual graphs are bipartite graphs
presenting relations between concepts. Although the distinction between concepts
and conceptual relation seems arbitrary, conceptual structures provide all elements
that can be found in an ontology introduced below. Sowa regards conceptual struc-
tures as a visual representation for first-order predicate logics. 

Concept

Name

expresses

Thing

determines

denotes
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Figure 5 Textual and Graphical Representation of a Conceptual Graph

Ontological 
Approaches

Ontologies in the philosophical tradition, from Plato to Wittgenstein, deal with the
nature and the organisation of reality. In the last decade, these theories have been
adopted by computer science, mostly in the field of artificial intelligence. Their prin-
ciples may also be used for the analysis and design of information systems. Ontolog-
ical approaches can be roughly distinguished into two different directions. While the
first direction focuses on the expressive power of given modelling techniques, the
second tries to cope with the inherent ambiguity of natural language in information
systems. 

Deep Structure of 
Information Systems

Wand and Weber [WW93, WW95] base their evaluation of modelling techniques on
an adaptation of Bunge’s [Bun77] ontology, describing the nature of things in our
perceived reality. Information systems, similar to natural language in transforma-
tional grammars [Cho65], can be distinguished into surface and deep structure phe-
nomena. The surface structure comprises the visible part of information systems for
its human users, like the user interface, reports and other system output. The deep
structure, however, manifests the real-world meaning an information system intends
to model. In other words, deep structure phenomena can be regarded as the specific
way how computational systems encapsulate real-world meaning. This way is deter-
mined by the constructs offered by the modelling technique used. Consequently,
comparing Bunge’s ontology with the constructs of a given modelling technique may
be used to measure its expressive power. Despite the fact that we are not assessing the
expressive power of UML as such, we make use of the idea of a deep structure in a
traditional linguistic sense. Artefacts in partial specification may be related to each
other via a deep structure, i.e. the similar meaning expressed in terms of synonyms.

Conceptualisation and 
Ontology

Ontologies in the second research direction are mainly used to cope with the inherent
ambiguity of natural language, in order to provide flexible and adaptable access to
heterogeneous information sources on the Internet. Although there is still significant
disagreement concerning the definition of ontological approaches, we follow the def-
initions proposed by Guarino [Gua98].

“[...] an ontology refers to an engineering artefact, constituated by a specific vocabulary used to
describe a certain reality, plus a set of explicit assumptions regarding the intended meaning of
the vocabulary words. This set of assumptions has usually the form of first-order logical theory,
where vocabulary words appear as unary or binary predicate names, respectively called
concepts and relations. In the simplest case, an ontology describes a hierarchy of concepts
related by subsumption relationships; in more sophisticated cases, suitable axioms are added in
order to express other relationships between concepts and to constrain their intended
interpretation.” [Gua98, p. 2]

DOG: Spike SITSTATUS LOCATION BASKET

[DOG:: Spike] → (STATUS) → [SIT] → (LOCATION) → [BASKET] 
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Categorisation 
of Ontologies

The clarification of a domain vocabulary on the basis of a logical theory can be
regarded as a significant benefit of ontologies. With an ontology we can, for instance,
deduce, that the term ‘board’ denotes a piece of wood in the carpentry domain.
Unlike Sowa’s conceptual structures, which are built on top of less expressive first-
order predicate logics, ontologies are usually based on description logics [BBM+89,
CLN98]. Description logics are able to calculate the subordination of propositions on
the basis of constraints and therefore enable automatic concept classification for
knowledge bases at runtime. Ontologies according to Guarino can be grouped into
the following distinct groups, comprising top-level, domain, task and application
ontologies [Gua98]. Top-level ontologies describe the vocabulary of fairly general
concepts such as things, relations, space and time. Domain and task ontologies
describe the relevant expert vocabulary of given application domains, where domain
ontologies focus on structural and task ontologies on behavioural aspects. Joint struc-
tural and behavioural vocabulary implemented in a given system forms an applica-
tion ontology. 

Comparing 
Component Schemas 
with Ontologies

Comparing Guarinos ontology categories to problem analysis models in requirements
elicitation leads to interesting analogies. Component schemas incorporate the vocab-
ulary of an application ontology, where terms describing structural aspects can be
found in static structure diagrams and terms related to behaviour in sequence dia-
grams. In other words, the application ontology is an important outcome of require-
ments engineering. In concurrent requirements analysis, however, component sche-
mas only comprise a partial application ontology. Due to the unrestricted use of
language, concurrently elaborated component schemas potentially incorporate syno-
nyms and homonyms. Consequently, integrating component schemas automatically
leads to an application ontology. So the availability of a domain ontology directly
facilitates the integration of component schemas, since terminological anomalies,
such as synonymy, polysemy and homonymy can automatically be resolved.

2.6 View and Schema Integration

View and schema integration techniques form another influential research direction
for this work. With its roots in the federated database community, the integration of
distributed information sources is the main background for this problem. According
to Spaccapietra [SPD92] view integration deals with the integration of schemas,
described in a single modelling technique, that do not have associated extensions and
no coded program using them. By contrast, schema integration deals with the integra-
tion of information sources, using different data models, to describe data which is
actually stored in a database and support a number of application programs.

Methodologies for 
Database Schema 
Integration

Batini, Lenzerini and Navathe [BLN86] provide a first summary of this discipline in
their 1986 article. Important results of this work are the integration process and the
definition of a taxonomy of conflicts mostly related to the Entity-Relationship model
[Chen76]. Semantic relationships, such as composition and generalisation/specialisa-
tion, have been left out in their work.
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Attribute Equivalence 
in Schema Integration

Larson, Navathe and Elmasri [LNE89] provide a formalized conflict definition for
the observation of Batini, taking their canonical data model ERC as a starting point
of their considerations. Their definition is founded on a set-theoretic definition of
equivalence of values of compared attributes. Similarity of attributes can be
expressed in terms of so-called correspondence assertions. Although the canonical
data model incorporates generalisation/specialisation relationships, an assessment of
equivalence has not been discussed for these constructs.

Model-Independent 
Assertions

Spaccapietra, Parent and Dupont [SPD92] base their considerations on a so-called
Generic Data Model for the integration of complex and multi-valued attributes. Their
distinction of value and reference attributes solves this special deficiency of the pre-
vious approaches. But in this approach generalisation/specialisation has been left out.

Merging Inheritance 
Hierarchies

In his dissertation thesis, Ingo Schmitt concentrates on merging inheritance hierar-
chies [Schm98]. A combination of structural as well as schematic aspects can be used
to calculate upward-inheritance in his generic integration model.

Our definition of component schema relationships takes this related work as an input
and extends it to include the selected UML constructs in component schemas, not
dealt with in the literature. Due to the absence of instances and the inherent ambigu-
ity of names in this work, component schema relationships extend the classic defini-
tion of conflicts in the schema integration literature

2.7 Analogies

Analogies finally define the metrics for an assessment of the similarity of class speci-
fications. Spanoudakis [SC96] develops his theory on the basis of the TELOS meta-
metamodel and assures an integration to ConceptBase [CB97]. His principle metrics
are the identification, classification, generalisation and attribuation distance.
Whitemire [Whi97] takes a more complex approach, since his formalization is based
on category theory. Grouping the similarity of class specifications into internal,
external and similarity of purpose influenced this work. Despite its mathematical ele-
gance, the theoretic foundation of Whitmire’s approach is far too complex for this
work. Both approaches require precise problem specifications, which are usually too
detailed and strict for the participating business users. Analogies in the sense of
Spanoudakis always require the use of the modelling tool ConceptBase. Research
prototypes however, usually do not gain the necessary acceptance from senior man-
agement and therefore are hardly used in industry-scale projects.
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2.8 Contributions of this Work

Based on a number of different research results, from requirements engineering as
well as linguistics and view integration, this work concentrates on requirements in
industry-scale problem statements, where sheer size demands efficient use of multi-
ple analyst teams working in parallel. We adopt Nuseibeh’s [NKF94] perspective
towards specifications as self-contained entities. Requirements specifications docu-
menting industry-scale problem statements are built from a number of so-called com-
ponent schemas modelling initial partitions of the problem statement. This gives rise
to the question of consistency and completeness of the resulting overall problem
description. Unlike Nuseibeh, we use a concrete modelling technique, the Unified
Modelling Language (UML), standardised by the Object Management Group in 1997
[OMG97a - OMG97c]. UML can be regarded as the most popular object-oriented
analysis technique in industrial practice. Thus analysing the concrete nature of com-
ponent schema relationships is the central concern in this work. 

The Requirements 
Engineering Method

According to the current OMG standard [OMG97a - OMG97c] UML is a model-
based multi-viewpoint specification, offering a number of different views relevant in
the entire software development cycle. In order to guarantee solution-neutral charac-
ter of requirements specifications based on UML views, component schemas incor-
porated a distinct UML subset tailored for requirements engineering. This subset
incorporates UML’s static structure, interaction and use case view. Within these
UML views, all notational constructs related to distinct programming languages have
been rejected. Tailoring UML for requirements engineering intends to improve the
orthogonality of its constructs and increase the comprehensibility to business users.
Use case driven analysis, as the suggested analysis style for UML, once again gives
rise to the question of consistency and completeness of the overall specification, built
from a set of component schemas.

Consistency and View 
Integration

Regarding component schemas as self-contained requirements specifications repre-
senting initial partitions calls for a concrete adaptation of Nuseibeh’s viewpoint
check actions. Due to the inherent complexity of natural language in use cases and
the problematic notion of behavioural correspondence for sequence diagrams, com-
ponent schema relationships have been restricted to static structure diagrams. The
view integration community provided the first input for the definition of conflicts
[BLN86] and also imparted the idea of correspondence assertions [LNE89, SPD92].
Due to the entirely intensional character of requirements specifications, the set-theo-
retic definition of correspondence assertions between attribute values stemming from
different database schemas does not hold for this work. Moreover, UML constructs
such as packages do not have a direct counterpart on the instance level and therefore
induce a set of new conflicts. 

Conflicts & Linguistic 
Support

The entirely intensional character of requirements specifications emphasises the
importance of naming conflicts, which has mostly been left-out in the view integra-
tion literature. Besides the extended definition of structural conflicts, means for
detecting naming conflicts have to be introduced.
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In this context, linguistic support plays an important role, on different levels of
sophistication. Simple data dictionaries may clarify the meaning of terms used in a
given application domain. Ontologies [GG95] further incorporate a complete set of
linguistic relationships between terms characterizing distinct application domains.
Linguistic support on the basis of ontologies has the potential to improve the notion
of conflict and correspondence between component schemas.

Correspondence Structural conflicts induced by the used modelling technique and naming conflicts as
deficiencies in the use of terms lead to our definition of correspondence and conflict.
In order to avoid overriding of requirements, conflict and correspondence are
regarded both as relationships between artefacts specified in different component
schemas, so-called component schema relationships. The completeness of require-
ments specifications, as a central quality attribute, leads to the definition of compo-
nent schema dependency, essentially used for the indication of inter-partition require-
ments. Conflict, correspondence and dependency are integrated in the UML
metamodel, as the basis of our component schemas. Thus component schema rela-
tionships become first-class modelling concepts that can be realised in off-the-shelf
CASE-tools realising the entire UML metamodel.

Requirements 
Engineering

With respect to requirements engineering as a whole, this work also contributes
through the examination of organisational aspects for concurrent requirements engi-
neering. Taking Moody’s [Moo96] analysis of the impact of stakeholder perspectives
on data modelling as our starting point, project organisation and the horizon of indi-
vidual analyst teams leads to different categories of component schema relationships.
Analysing the relationship between component schemas and software requirements
specifications according to the IEEE-830 standard [IEEE830] is another significant
contribution of this work. Making direct use of component schemas for the creation
of software requirements specifications has the potential to improve overall project
efficiency and increase traceability at the same time. This approach suits stakeholder
participation in industry-scale problem statements. As a side effect, stakeholders do
not loose track of their problem analysis models, if these models are directly used in
software requirements specifications.
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3 Requirements Engineering:
Stakeholders, Processes & Techniques

Requirements engineering covers all activities involved in discovering, documenting
and maintaining a set of requirements for the definition of software systems. Soft-
ware Requirements Specifications (SRS) are an agreed statement of software require-
ments for customers, end-users and software developers. Software requirements
specifications therefore facilitate the communication between domain experts
focused on what the envisioned system shall do and software developers elaborating
how the future software system shall realise the specified functionality. Finally an
SRS supports the acceptance tests of the realised system, defining the basis for con-
formance testing [SS97]. This chapter outlines the classic principles of requirements
engineering, while the following chapters focus on requirements engineering for
industry-scale systems, such as Air Traffic Management (ATM).

The construction of industry-scale systems is always a challenge to the existing
knowledge in software engineering. Requirements engineering as the first phase
within the software life-cycle can be regarded as the most vulnerable part, since the
cost for repairing erroneous requirements will explode later on in the system life-
cycle. Fixing the impacts of poor requirements in the implementation phase can be
200 times more expensive compared to fixing them directly in the requirements
phase. The long and painful story of software systems that never meet their require-
ments is not finished yet, and as you read this sentence new chapters are being added
to this endless book. What are the reasons for cancelling projects after billions of dol-
lars have been spent? Why are requirements so complex? Why are humans so incapa-
ble of formulating their needs?

Since requirements aim to define what a system shall do rather than how the desired
functionality might be realised, we first introduce the main factors effecting industry-
scale requirements engineering projects. First different project participants – stake-
holders – are introduced and their individual responsibilities discussed. Then we
introduce a process model and describe the individual phases and activities in
requirement engineering. Afterward the individual character of requirements will be
analysed. Finally, modelling techniques for structuring and modelling requirements
are discussed. All factors discussed in this section provide an empirical basis for the
evaluation of UML in industry-scale requirements engineering projects. A detailed
analysis of the factors stakeholders, process and techniques under special considera-
tion of their particular impact on requirements engineering projects are provided in
the reminder of this chapter.
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3.1 A Classification of Involved Stakeholders in Requirements Engineering Projects

Usually a number of different people with particular skills and responsibilities partic-
ipate in requirements engineering projects, each of them with their own interests, cul-
tural background and personal habits. The term stakeholder covers all relevant people
in requirements engineering, apart from analysts and project management actually
running the project.

Definition 1 (Stakeholder)  –  The term stakeholder subsumes all people 
directly or indirectly affected by the envisioned system. ◊

In this section we want to outline the personal background and objectives of relevant
stakeholders. Since hardly any project corresponds to another, only a very rough cat-
egorisation of stakeholders can be provided. Project managers, business users and
analysts are common participants contributing to industry-scale projects.

Business Users Business users are the first category of stakeholders. Usually they are the central
source for detailed needs, that lead to a specification of demanded functionality.
Their IT knowledge is usually limited, but they are experts in the particularities of the
problem statement at hand. The envisioned system will also directly affect their daily
routine. In other words, the future system shall assist the business users in an efficient
and cost effective pursuit of their tasks. However, business users have rather personal
perspectives with respect to the future system. Usually they only focus on their own
role within an organisation and often do not have a detailed overview of the implica-
tions with respect to the overall system. Therefore requirements statements of busi-
ness users tend to be specific with respect to their individual position within the busi-
ness and tend to be vague with respect to overall implications. In air traffic
management, experienced controllers play the role of business users. 

Analysts With respect to their professional background, analysts fall into two categories: expe-
rienced business users and experienced IT personnel. The first category usually rep-
resents senior staff in air traffic management in a responsible position, who usually
have limited IT knowledge, but extensive insight into the overall business implica-
tions. This insight usually distinguishes analysts from business users. The second cat-
egory represents analysts with an IT background and limited business know-how.
Modelling experience and the capability of mapping analysis models to competitive
designs are the central contribution of this group. Especially modelling experience
dramatically facilitates analysis and negotiation of complex requirements.

Information Officer Information officers, sometimes also called system administrators, are becoming
more and more important, due to the fact that systems are hardly defined from scratch
any more. Usually new systems integrate the functionality of existing ones and there-
fore operate closely with an existing information and communication infrastructure.
Information officers have a clear IT background and have a high-level knowledge of
operational systems. Their experience is crucial for embedding new systems in an
existing infrastructure. Domain expertise of these stakeholders may contribute to
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object-oriented domain analysis, i.e. identifying key abstractions of a dedicated
domain, the so-called Corporate Domain Model [Moo96]. According to Moody
modelling is the key skill of these stakeholders. 

Project Managers Project managers are responsible for the overall project pursuit. In time, in budget
and in quality are their central concerns. So their specific interests lies in two differ-
ent sectors: means for controlling project progress and assessing efforts for the devel-
opment of the future system. 

3.2 The Requirements Engineering Process

Kontoya and Sommerville identified the following groups of related activities in
requirements engineering, largely resembling Boehm’s spiral model [Boe87]. Their
process model incorporates the phases elicitation, analysis & negotiation, documen-
tation and validation:

1 Requirements elicitation
The system requirements are discovered through consultation with 
stakeholders, from system documents, domain knowledge and market studies;

2 Requirements analysis and negotiation
The requirements are analysed in detail. An approved negotiation process 
involving different stakeholders decides which requirements are to be 
accepted;

3 Requirements documentation
The agreed requirements are documented at an appropriate level of detail. In 
this work, the requirements are documented using UML’s static structure and 
interaction view.

4 Requirements validation
A careful check of the requirements for consistency and completeness is the 
central activity within this phase.

Each of these phases leads to defined intermediate results. The outcome of require-
ments elicitation is for instance an initial statement of requirements. This draft can be
thought of as a long list of requirements that have to be analysed in the following
phase. Groups and priorities are to be introduced to the list of requirements in the
analysis and negotiation phase. Vagueness, contradiction and omissions finally have
to be detected in the negotiation phase.

Due to the generic character of this process model, the individual techniques used in
the different phases have to be defined. In this context we have to stress that individ-
ual UML views do not necessarily fit into distinct phases of the requirements engi-
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neering cycle. Moreover, the use case driven analysis style of component schemas
combines at least elicitation and documentation of requirements in a single activity.
This discussion is detailed in Section 4.3, pp. 52.

Figure 6 A Spiral Model of Requirements Engineering Processes [KoS98, p. 35] 

3.3 Requirements: Character & Techniques

Over the years, computer science has proposed a variety of techniques for the specifi-
cation of requirements. All of these proposals have individual advantages and short-
comings with respect to the specific character of requirements. Different techniques
for eliciting and documenting requirements are introduced briefly in this section.
Finally we want to introduce the IEEE standard for requirements, providing an
agreed outline for software requirements specifications.

3.3.1 The Character of Requirements

In order to clarify the meaning of the term requirement, we first consult a dictionary.
Webster’s Collegiate Dictionary gives the following definition:

“requirement: something required: 
a: something wanted or needed: NECESSITY

〈production was not sufficient to satisfy military ~〉
b: something essential to the existence or occurrence of something else: CONDITION

〈failed to meet the school’s ~ for graduation〉”
[MW93, p. 995]
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Both meanings, i.e. necessities as well as condition, hold in requirements engineer-
ing. Requirements specify user demands and define conditions for acceptance of the
future product at the same time. While the second meaning, condition, in the sense of
conformance testing remains outside the scope of this work, we want to concentrate
on the first meaning, defining something wanted.

Definition 2 (Requirement)  –  The term requirement refers to a user need or a 
necessary feature, function, or attribute of an envisioned system, that can be 
sensed from an external position. ◊

Requirements are roughly divided into functional and non-functional requirements.
Functional requirements directly describe what a system shall do and appear as oper-
ations bound to class specifications in component schemas. Non-functional require-
ments comprise a variety of different aspects, which traditionally fall into temporal
and non-temporal system aspects. Temporal requirements give values for the system
response time and are budgeted to functions that carry out the response [OKK97].
Non-temporal requirements cover aspects such as availability and security and are
budgeted to components [OKK97]. On the other hand, design-related non-functional
requirements, or for short design requirements often comprise issues such as pro-
gramming languages, middleware platforms, database systems, operating systems or
network protocols.

Structural 
Requirements

Functional requirements, however, do not comprise information concerning the inter-
nal structure of data, relevant in a given application. In the worst case, missing data
descriptions may even hinder proper integration of the implemented system. There-
fore, we introduce so-called structural requirements as a third general requirements
category. From a purists point of view, structural requirements may seem design
related, since they need a certain level of formal rigor in order to be meaningful. Nev-
ertheless, modelling techniques such as UML [OMG97a] or the Entity-Relationship
Model [Chen76] still provide sufficient formal rigor, without actually prescribing a
specific programming language. Another important reason for incorporating struc-
tural requirements is the ubiquity of information, already present in operational sys-
tems. Today there is hardly any situation, where systems may be designed from
scratch. So specifying deltas between existing and required information demands pre-
cise specification techniques, without going into the details of an existing program-
ming language. The integrated description of data and functionality is the central
advantage of object-oriented analysis techniques and is detailed in Section 3.3.4,
pp. 33.

Tacit Requirements Besides the three categories of requirements, there is still a more fundamental ques-
tion: How far is reality accessible to structured descriptions that may be realised in
terms of computational systems. Goguen points out that domain experts are often not
able to properly describe their daily routine. He calls this problem tacit requirements
[GL93]. An important example for this category is user interfaces. Although it is
clear what kind of information has to be displayed in order to assist system users,
29



there is considerable space for interpretation, as to how required information can be
displayed efficiently and comprehensively. Since user interface requirements are not
in the scope of this work, we do not detail this aspect.

Taxonomy of 
Requirements

Classical requirements engineering often entirely relies on textual descriptions of
functionality. Statements such as “The system shall provide conformance monitor-
ing” provide examples for this approach. From a broader perspective requirements
give rise to the question as to how they might be evaluated. Oliver et al. present the
following taxonomy of requirements which we use for an evaluation of UML specifi-
cations below (see Figure 7).

Figure 7 A Taxonomy of Textual Requirements according to [OKK97, p. 106] 

Initial versus 
Developed 
Requirements

Available information in arbitrary form primarily falls into the categories initial and
developed requirements. The user need is either directly specified in terms of original
requirements or may point to a clearly defined standard, so called reference require-
ments [OKK97]. Whenever original requirements can be further decomposed, they
are called developed requirements. Implied requirements are related to original
requirements, but the stakeholders did not directly indicate this need. In other words,
the information is implied by other initial requirements [OKK97]. Omission and
vagueness in the original statement are common reasons for this kind of require-
ments. Unlike original requirements, implied requirements can only be detected
when reviewing original and derived requirements. In other words, this category of
requirements represents analysts interpretations of analysts and therefore has to be
carefully reviewed with business users and domain experts.

Attributes of 
Requirements 
Statements

Examining original requirements leads to a set of attributes, indicating the quality of
individual requirements. These quality attributes also indicate potential work to be
done, in order to improve the quality of the requirements specification. According to
Oliver et al. [OKK97] requirements can be compound, redundant, poorly written and
inconsistent. The elaboration of requirements can be deferred, so called to be done
(TBD) or to be resolved (TBR) requirements. Requirements carrying these attributes
are potential sources of trouble in later stages of the software life-cycle. Figure 7
depicts the attributes of these requirements. Compound requirements shall be split
into individual derived ones. Redundancies have to be removed and poorly written
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(i.e. incomprehensible) requirements have to be clarified. Contradictory information
is an indication for inconsistent requirements, which also have to be resolved.
Although this categorisation is directly related to textual requirements specifications,
we use this taxonomy for an evaluation of component schema contents below.

Mapping 
Requirements
to Systems

When none of the attributes in the previous paragraph is applicable to requirements
we consider them to be well written. The statement is clear and concise and does not
require additional work. Well written requirements, however, may define different
aspects of the future system. The principle distinction in this context is the distinction
of soft- and hardware components. Software related requirements, however, serve
different purposes in the future system, i.e. they can be grouped into categories like
interface, functional, temporal and design requirements [OKK97].

3.3.2 Requirements, Models and Modelling Techniques

User requirements are usually stated as plain text-statements in the form “The system
shall provide medium-term conflict detection”. Especially industry-scale systems,
comprising thousands of textual requirements statements, complicate a thorough
understanding of its particularities. This understanding is quite difficult to reach on a
plain-text basis alone. Modelling techniques with powerful abstraction mechanisms
provide efficient access to complex plain-text requirements. In theory they should be
comprehensive to all kinds of stakeholders, from users to software designers. Several
different modelling techniques have been used in scientific as well as industrial prac-
tice, like SADT [Ross77], the Entity-Relationship Model [Chen76] and various
object-oriented techniques [RBP+91, Ree96, RJB99]. Before going into detail with
respect to the notations of given modelling techniques, we start with a rather primi-
tive minimal model, providing a baseline for a discussion of various requirements
engineering techniques.

Definition 3 (Abstract Model)  –  An abstract model represents a piece of 
reality in terms of elements, relationships and a defined system boundary. 
Elements represent real-world things and relationships describe relations 
among real-world things. ◊

So the model divides the perceived reality into the system marking the primary matter
of interest and the system environment. The system environment is formed by ele-
ments related to elements within the area of discourse but not directly part of the sys-
tem. For the time being this distinction provides a sufficient model-theoretic basis.

In order to avoid lengthy discussions concerning the character of UML and its indi-
vdual views we simply call it a modelling technique. The term modelling technique
does not imply a formal definition of semantics. The term method, another frequently
used term in the requirements engineering community, also does not correctly charac-
terise the UML. A method implies a defined process, which has explicitly been
excluded from the UML standardisation.
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The UML standard is based on a ’semantics’ document including an abstract-syntax,
well-formedness rules and an extensive textual description. But there is significant
dispute concerning the adequacy of this approach for definition of semantics. We
believe that this definition can be regarded as intuitive semantics.

Definition 4 (Modelling Technique)  –  A modelling technique refers to a 
graphical notation with intuitive semantics. ◊

Intuitive semantics allow a correct use of the UML notation for stakeholders and also
assure a common understanding of the described reality in a UML model. When we
refer to individual syntactical elements of the UML we use the term construct.

Definition 5 (Construct)  –  A construct refers to a syntactical element of a 
modelling technique describing a selected aspect of a concept in the
model world. ◊

We base our discussion in the remainder of this work on an analysis of the UML met-
amodel, i.e. we directly adopt the intuitive semantics of the UML standard. Construct
always refers to a metaclass in the UML metamodel as depicted in Chapter 5.

3.3.3 A Taxonomy of Systems

While the beginning of this section discussed the particular character of require-
ments, this section is intended to characterize distinct differences of applications.
Carving out particularities of individual applications or entire application domains
outlines the applicability of relevant problem analysis techniques for the problem to
be solved. Davis proposes the following five orthogonal axes for the categorisation of
problems to be solved [Dav93]:

1 Difficulty of problem

2 Relationship between data and processing in time

3 Number of simultaneous tasks to be performed

4 Relative difficulty of data, control and algorithmic aspects of problem

5 Determinism versus non-determinism of the results

The relative difficulty of common applications incorporate only one or two of the
listed attributes. Data and control, for instance, are the main characteristics of inven-
tory control systems. Air traffic management, however, is one of the few application
domains incorporating all three attributes. But its main characteristic still remains
control and algorithms. The relative difficulty of the problem at hand has a strong
impact on problem analysis notations, since they should suit the actual attribute.
Missing out one of the attributes might cause omissions, inconsistencies or ambigui-
ties in the resulting requirements specification. 
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3.3.4 Object-Oriented Problem Analysis Styles

In this subsection we want to briefly introduce a set of popular requirements engi-
neering techniques. We distinguish between functional decomposition and object-ori-
ented techniques. SADT [Ross77] is a prominent examples of functional decomposi-
tion techniques widely used in air traffic management. However, frequent criticism
with respect to this technique stresses the problematic mapping of functional specifi-
cations to software designs later on. As a result, analysis and design specifications
have no direct relationship and consequently traceability is hindered. The seamless
transitions from requirements analysis to software design makes object-oriented tech-
niques quite attractive for industry-scale projects, although this still has to be consid-
ered as an unproven claim.

Object-Oriented 
Requirements 
Analysis

Although there is still little experience documented in the literature with respect to
industry-scale applications, this technique is rapidly gaining popularity in a variety of
application domains. According to Berard [Ber93] and Firesmith [Fir93] object-ori-
ented requirements analysis falls into the categories application and domain analysis.
Domain analysis seeks for key abstractions in entire application domains, while
application analysis concentrates on requirements engineering for a dedicated appli-
cation within a larger domain. As a result, application development can be regarded
as a life-cycle activity, which is not the case with respect to domain development. 

Character of 
Requirements 
Engineering in
the ATM Domain

Although a clear distinction between domain and application analysis cannot be
drawn in our study case, its character has to be regarded as application development.
Although an entire application domain is covered in this project, the objective is a
definition of requirements for the implementation of a concrete air traffic manage-
ment infrastructure.

Object-Oriented 
Analysis Styles

Today object-oriented analysis techniques may be divided into three different styles:
class-based, role-based and use case driven analysis. OMT [RBP+91], OOram
[Ree96] and Jacobson’s Object-Oriented Software Engineering [JCJ+94] are promi-
nent examples for these three styles. The following subsections briefly introduce the
most important characteristics of these styles, concluding with a short evaluation of
their individual advantages and trade-of. Since UML itself does not propose a defined
analysis process, it may be used as a notation for class-based as well as use case
driven analysis.

3.3.4.1 OMT: Class-Based Object-Oriented Analysis

OMT is the prototype for the class-based analysis style [RBP+91] and mainly
focuses on structural aspects of the problem at hand. An OMT model according to
Rumbaugh comprises the following three models: the object, dynamic and functional
model. The OMT object model focuses on the invariant structure and corresponds to
the static structure diagram in UML. The dynamic model comprises object interac-
tion as well as state changes, corresponding to sequence diagrams and statecharts in
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UML. Finally the functional model delimits the overall system functionality and is
based on DeMarco’s data flow diagrams [DeM79]. This subsection will primarily
introduces OMT’s process model and the main analysis outcome, the object model.

Problem Analysis
in OMT

Various information sources, like company procedures, business plans, operational
procedures, forms, screens and reports, have to be scanned for nouns. In the follow-
ing step all nouns related to the problem at hand will be grouped to tentative objects,
such as Trajectory, Aircraft or Flight Plan. Finally all spurious objects,
i.e. objects which do not have a direct relationship to the application domain, have to
be erased from the list of tentative objects. The resulting set of candidate objects are
still unrelated to each other with respect to simple, as well as semantic relationships.
Rumbaugh summarises the process as follows [RBP+91, p. 152]:

1 Identify objects and classes

2 Prepare a data dictionary

3 Identify associations (including aggregation) between objects

4 Identify attributes of objects and links

5 Organise and simplify object classes using inheritance

6 Verify that access paths exist for likely queries

7 Iterate and refine the model

8 Group classes into modules1

The creation of an OMT object model therefore heavily relies on a systematic lin-
guistic treatment of the problem statement. As a result, structural properties dominate
over behavioural ones. Rumbaugh suggests “add operations to classes later as a by-
product of constructing the dynamic model” [RBP+91, p. 152]. This approach leads
to three major conclusions:

OMT Summary 1 Behavioural properties are not reflected in the definition of the initial class 
hierarchy in the OMT object model. OMT neglects behavioural system 
properties in terms of object interaction.

2 OMT is not applicable for industry-scale projects, since classes form the initial 
partitions of the problem statement

3 OMT does not support stakeholder perspectives.

1 The equivalent UML construct is called package
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3.3.4.2 OOram: Role-Based Object-Oriented Analysis

OOram [Ree96], as the main reference for role-based analysis, draws the analyst’s
attention to the interaction between real-world things. Actors accomplish a defined
business objective, comparable to contracts in the ODP standard [ODP P2]. This
approach leads to the following fundamental differences with respect to OMT:

1 Role-model collaborations mark initial partitions of the problem statement

2 Behavioural aspects shape the resulting analysis model.

OOram’s 
Role Model 
Abstraction

A role model collaboration abstracts from the physical representation of classes in
programming language terms. The collaboration can be seen as related objects serv-
ing a defined business objective. A collaboration in the example is depicted through
an arc linking the interacting objects via so-called ports (see Fig. 8, p. 35). Ports can
be regarded as an abstraction of interfaces, comprising the set of operations used
within the collaboration. For the complete description of objects in roles, Reenskaug
proposes ten different OOram views that even include a primitive model for the
decomposition of algorithms. Within these OOram views, the Scenario View corre-
sponds to UML sequence diagrams and the State Diagram View corresponds to Har-
rels statecharts [Har87].

Figure 8 A Sample Role Model Collaboration [Ree96] 

Synthesis: 
Superimposing Roles

The fine-grained character of initial partitions in OOram reduces the analysis com-
plexity. An average role model collaboration should comprise between five and nine
objects according to author's recommendation. Therefore OOram objects may partic-
ipate in multiple roles, which might be scattered over a set of different roles models.
The interesting point behind this idea is the way Reenskaug relates objects in partici-
pating in different role model collaborations. Synthesis, in the OOram terminology,
superimposes a set of base models leading to a derived model. For the integration of
structural systems aspects, interfaces (ports) and attributes of objects in different
roles are simply superimposed. The integration of behavioural specifications is
divided into two different categories: safe and unsafe synthesis. Safe synthesis pre-
serves the integrity of the behaviour specified in the base models, while in unsafe
synthesis the course of messages of two base roles may interfere. Figure 9, p. 36
depicts the synthesis of two simple base models.

Performing Role 
Model Synthesis

In the first step, objects from different base models carrying the same name are super-
imposed in the derived model. Object1' in the example then carries the union of
attributes from the base models, i.e. attribute1 and attribute3 in this case.
The ports of base models are also superimposed in the derived model. As a result,
Object1’ also carries the union of operations defined on port1 and port3.

Object1

attribute1 
Port2

Object2

attribute2 
Port1
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Figure 9 Role Model Synthesis

Classes, Types and 
Roles

According to Reenskaug, synthesis cannot be regarded as formal integration of
behavioural specifications [Ree96, p. 85]. But even synthesis of the structural part of
base models once again gives rise to a variety of potential conflicts, as discussed in
Chapter 6. Although synthesis can be regarded as an informal process for the integra-
tion of base models, it still is a very elegant method for the specification of object
models. Decoupling roles from classes in the programming language sense leads to
the desired reduction of analysis complexity and role-model synthesis generates the
required input for design activities. 

The role model abstraction describes collaborating objects in terms of an OOram
role. Roles specify types, which can be regarded as partial class specifications in
object-oriented programming languages. The OOram type consists of all attributes
and operations specified in a given role model collaboration. Synthesis finally inte-
grates all types into a single class specification (see Figure 10).

Figure 10 Relationship Between Objects, Roles, Types and Classes in OOram [Ree96, p. 15]

OOram Summary 1 Role-models provide initial fine-grained partitions

2 Roles shape structural and behavioural properties of the resulting class 
specification

3 Role-model synthesis integrates a set of initial partitions – role model 
collaborations – towards an overall problem description modelling the entire 
problem statement
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3.3.4.3 Use Case Driven Analysis

Use case driven analysis as proposed by Jacobson et al. [JCJ+94] combines the idea
of business processes with object modelling. Plain text descriptions of business proc-
esses, the use cases, form the initial partitions of the overall problem statement and
also define a first set of requirements. These requirements describe the interaction of
stakeholders, the so-called actors [JCJ+94], with the envisioned system. Use cases
therefore primarily stress behavioural system properties.

Categorisation of 
Analysis Classes

But unlike OOram and OMT, neither static associations nor operations are specified
in the analysis model. These activities are completely deferred to later stages of the
development cycle, the so-called construction. The entire behaviour specified in a
given use case – the control flow in terms of imperative programming languages – is
encapsulated in a distinct object, the so-called control object. As a result, the analysis
objects are grouped into three different categories, entity, interface and control
objects. Entity objects are ‘model information that the system will handle over a
longer period of time’ [JCJ+94, p. 184]. In other words, entity objects are persistent
objects, ‘surviving’ the execution of a given use case. The actors in given use cases
are subsequently replaced by interface objects, representing the future user interface.
All objects derived from a given use case are related to each other through an
acquaintance relationship. Generally speaking, Jacobson treats the analysis model as
a rough outline of use cases. The computational interpretation of the model has to be
defined in the design phase. 

OOSE Summary 1 Business processes define initial partitions of the problem statement

2 Use cases provide a textual description of activities performed by actors in a 
given business process

3 Construction defines a computational interpretation of the requirements shaped 
in use cases

4 A coherent description of classes involved in several use cases is not given.

3.3.4.4 Comparing Object-Oriented Analysis Styles

Having introduced the particularities of different object-oriented analysis styles, the
following issues provide a baseline for the discussion of their individual advantages
in concurrent requirements engineering:

• Behavioural versus structural perspective

• Initial partitions

Behavioural versus 
Structural Perspective

Emphasising structure over behaviour and vice versa leads to significant differences
in the resulting analysis model. OMT suits for instance the design of information sys-
tems, where the persistent management of data is the most prominent characteristic.
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Environmental information systems or inventory systems are examples of this kind of
applications. The main responsibilities in terms of services are related to static integ-
rity and induced dynamic integrity of analysis objects. C3I applications, like air traf-
fic management, are characterised by complex behaviour, related to the system’s
internal state and a complex reactive environment. Thus, OMT is not likely to suit
these particular requirements, since behavioural aspects fall short. Although the key
abstractions of problem statements become visible, there is no adequate representa-
tion of control flow. Use cases are likely to compensate this deficiency. They focus
on business processes, the central source of requirements changes. Encapsulating
control flow in dedicated control objects further improves the maintenance of the
future system, as entity objects are not bloated with behaviour that does not necessar-
ily belongs to them. The idea of objects in roles further stresses the importance of
behaviour. OOram depicts the required behaviour as a set of interacting objects under
a defined objective. Interfaces, so-called ports, group all necessary operations.
Decoupling objects in roles from classes in the programming language sense also
suits the central objective of requirements engineering, describing what a future sys-
tem should do.

Initial Partitions Although the object metaphor has to be regarded as a powerful abstraction for real-
world things, industry-scale problem statements require additional mechanisms for a
reduction of analysis complexity. Firesmith, for instance, proposes UML packages as
initial partitions [Fir93]. A hierarchic decomposition of the problem statement can
also be achieved. But there are still severe limitations to this approach. Self-contained
initial partitions, as a central objective in concurrent requirements engineering,
demand loose couplings between the involved partitions. So background knowledge
is necessary for the division of the overall problem statement into initial partitions.
Classes and packages only realise a single analysis perspective with respect to the
overall problem statement, that does not incorporate stakeholder perspectives.

OOram and use cases provide multiple perspectives on the problem statement. Busi-
ness processes are the initial decomposition mechanism in use case driven analysis
and therefore automatically incorporate the perspectives of the involved stakeholders.
In comparison to use cases, OOram role model collaborations provide fine-grained
descriptions of objects realising a defined objective. Due to the arbitrary character of
this objective, role-models are not automatically related to individual stakeholder
perspectives. Use case driven analysis and role-based object-oriented analysis do not
provide an overall problem analysis model. Consequently, class specifications
derived from a set of use cases have to be integrated, in order to document the entire
problem statement. Although role-model synthesis in OOram claims to solve the inte-
gration of individual collaborations towards an overall problem description, its fine-
grained character does not suit industry-scale projects.
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3.3.5 Requirements Engineering Standards

Requirements engineering standards are gaining more and more acceptance in the
industrial practice and are therefore also introduced in this work. The IEEE recom-
mendations and the MIL-Std-490 are examples of such standards. In this work we
concentrate on the 1993 revision of IEEE Std-830 [IEEE830]. This standard neither
prescribes a defined process nor proposes a particular requirements technique. Its
objective is clarifying the terminology in requirements engineering and providing a
defined structure for the individual project results in terms of a software requirements
specification (SRS). Defining the characteristics of a good SRS lays out a basis for
the evaluation of software requirements. One of the central advantages of this
approach is its flexibility with respect to the applied requirements engineering tech-
niques. The standard proposes a distinct organisation for the techniques listed in
Table 1:

Table 1 Organisation of Software Requirements Specifications According to the IEEE Std.830-1993

Software requirements specification may also be organised using a combination of
these styles. Use cases [JCJ+94], for instance, can be regarded as a combination of
the organisational styles feature and object. Organising SRS’s according to functional
decomposition techniques is still quite popular. Most operational requirements in
EUROCONTROL's European Air Traffic Control Harmonisation and Integration Pro-
gramme (EATCHIP) are organised in terms of this technique.

Although the IEEE standard only focuses on the organisation of an SRS as the agreed
result of requirements engineering projects, it still provides hints for assessment of
individual techniques. Using particular requirements engineering techniques always
gives rise to the question as to which aspects of a problem statement are covered and
which aspects of the problem statement remain at least unclear. This question is
related to the efficiency of given requirements engineering techniques. Problem anal-
ysis models shall directly be used for the creation of an SRS. Directly using problem
analysis models in a SRS provides a compact outline to complex requirements. On
the other hand, the analysts have to know about the shortcomings of a given formal-
ism, i.e. which requirements are still missing.

Organisation Description

System Mode Systems may behave differently depending on their major operation modes

User Class Requirements are organised according to the perspective of involved business users

Object Requirements are organised in terms of classes, attributes and services

Feature Requirements are organised in terms of externally visible features.

Stimulus Requirements are organised in terms of external stimuli a system has to react to

Response Requirements are organised according to outputs of the future system. 

Functional 
Hierarchy

System functionality is organised into a hierarchy of functions ordered by common inputs, 
common outputs or common internal access
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Mixing plain-text with modelling techniques also offers varied access to the same
information and therefore suits the different cultural backgrounds of project partici-
pants. Chapter 10 finally evaluates aspects covered by our proposed requirements
engineering technique – component schemas – and proposes an SRS organisation for
this specific technique.

Figure 11 The Proposed IEEE Outline for Object-Oriented Software Requirements Specifications

3.4 Discussion: Stakeholders and Modelling Techniques

Requirements engineering techniques should efficiently support business users and
analysts in the following objectives.

• Gaining insight to the problem statement

• Covering all kinds of requirements, i.e. structural, functional, temporal and design 
requirements

• Defining initial partitions related to the perspective of participating stakeholders

• Provide coarse-grain abstractions for initial partitions

• Enable the participation of all relevant stakeholders

Lack of stakeholder participation and fine-grained analysis results are the central dis-
advantages of OMT [RBP+91] and OOram [Ree96]. OMT also suffers from insuffi-
cient input for modelling behavioural problem aspects. Use case driven requirements
analysis using the UML notation combined with the process introduced in
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Section 3.3.4.3 provides a solid basis for industry-scale projects. Stakeholder partici-
pation is automatically guaranteed and skills from various disciplines may effectively
be combined. Writing the initial use cases is the central contribution of domain
experts. Extensive IT knowledge and experience in modelling techniques are not
required. Analysts with an IT background complement business users in the provi-
sion of modelling skills, transforming plain-text use cases into object models. Models
and use cases have the potential to clarify vagueness and contradiction in collabora-
tion with business users. So business users do not necessarily have to create the mod-
els themselves, which presupposes extensive modelling experience, they only have to
be ‘literate’ in a given notation. Comprehension to business users can be further
improved by extensive plain-text descriptions of the individual models, leading to
complementary information documenting the problem at hand. As a result, business
user participation can be incorporated into projects on a broad range, which dramati-
cally improves the acceptance of the future system. Even the familiarization of IT
personnel without experience in a given domain may be accelerated by quality prob-
lem analysis models. However, the individual expressive power of a requirements
specification based on this technique has to be evaluated. The principal criteria for
this task are the coverage of requirements, e.g. structural, temporal, functional and
design requirements and especially how these requirements appear in a specification
based on this technique.

Chapter Summary This chapter introduced relevant project participants and their specific contribution to
concrete projects. Various kinds of requirements have been distinguished, in order to
provide a basis for the evaluation of component schemas, as our preferred require-
ments engineering technique. Of the different object-oriented analysis styles, we
favour use case driven analysis. Incorporating stakeholder perspectives and focusing
on business processes are the central advantages of this analysis style with respect to
industry-scale projects. Focusing on business processes also incorporates the most
likely source for changing requirements. Finally, the IEEE-830 standard provided
characteristics for quality software requirements specifications and proposed a stand-
ardised organisation for software requirements specifications.
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4 Concurrent Requirements Engineering

The central challenge in requirements engineering for industry-scale systems is the
size of the problem statement itself. Usually requirements engineering projects take
several man years. In order to accomplish this task in a reasonable time scale, the
overall problem statement has to be divided into smaller initial partitions, each of
them elaborated by an assigned group of analysts. This demand gives rise to a
number of interesting questions concerning the character of partitions and the overall
project organisation.

This chapter mainly discusses organisational issues emerging in requirements engi-
neering for industry-scale software systems. Several analyst teams concurrently elab-
orate specialised topics within the problem domain. But working concurrently always
gives rise to a set of severe problems with respect to organisational, technical and
procedural aspects. Industry-scale problems are simply too complex to be entirely
understood by individual experts or a single analyst team. As a result, communication
and coordination between individual teams become important factors for the overall
project success. Tools and their notations alone do not improve the project perform-
ance. Organisational issues combined with a customised process have the potential to
improve the project performance and gain higher maturity levels in requirements
engineering in the sense of the Capability Maturity Model [PWC95]. 

Organisation, process and tools form a methodology [OKK97]. This chapter provides
an outline for the methodology applied in a series of requirements engineering
projects in the air traffic management domain. Here we discuss the particularities of
concurrent requirements analysis in industry-scale projects. The first section of this
chapter discusses organisational aspects, in terms of participating stakeholders and
their specific responsibility within the overall project. Then partitions, the character
of requirements within partitions and the relationship between partitions and reposi-
tories have to be analysed. Finally, we briefly introduce the concurrent requirements
analysis process in the air traffic management domain.

4.1 Organisation

Project organisation can generally be divided into two different categories: the organ-
isation of the business domain and the organisation of the requirements engineering
project itself. Although the first category is always subject to careful considerations,
this work concentrates on the interaction of involved stakeholders conducting the
actual project. So the following subsections proposes different project organisations
for industry-scale projects. In this context we identify additional stakeholders
involved in industry-scale projects: analysts, business users and project managers.
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We want to describe their individual responsibilities and especially the interaction
among different stakeholders within a given project, paying special attention to work-
ing in parallel.

Partition Owners In concurrent requirements engineering the problem statement is divided into a set of
initial partitions and each initial partition is assigned to a distinct analyst team. An
analyst team is directed by a dedicated stakeholder, the partition leader. The term
partition owner then, stresses the organisational responsibility of the project partici-
pants.

Definition 6 (Partition Owner)  –  The analyst team assigned to a given initial 
partition is called partition owner. ◊

Analysts that are not partition owners for a given initial partition are called external
analysts. In this context we also use the term owned partition when we refer to the
partition an analyst has been assigned to. Consequently the partition leader is respon-
sible for analysing an initial partition in time and in budget, and also represents the
analyst team externally, i.e. with respect to senior management and other involved
partition leaders. The partition leader completes the list of relevant stakeholders,
described in Section 3.1.

4.1.1 Centralised Analyst Teams

In this work we primarily distinguish between the analyst team conducting the actual
requirements analysis and the business users providing the necessary input. Business
users fall into two groups: domain experts which are senior personnel with extensive
domain knowledge and the specialists using the future system. The analyst team is
composed of analysts with extensive requirements engineering experience and
domain experts providing the necessary knowledge of the actual domain.

Figure 12 Centralised Analyst Team 

In centralised organisations, one team of analysts conducts a requirements engineer-
ing project. Depending on the size of the actual project, analyst teams consist of two
to seven members. Due to this small number of participants, the communication
between them does not impose special considerations. In this kind of project organi-
sation, analysts design questionnaires and conduct interviews with business users.
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Communication between individual stakeholders in the analyst team does not require
further consideration, since direct contact among the analysts as well as the business
users is always assured.

4.1.2 Autonomous Analyst Teams

The second method of organisation consists of teams of analysts concurrently elabo-
rating their initial partitions. This form of organisation does not foresee a centralised
management.

Figure 13 Autonomous Analyst Team 

Advantages Autonomous analyst teams, as we call this form of organisation, speed up require-
ments analysis, due to the concurrent analysis of initial partitions. Analyst teams may
concentrate on their individual portion of the overall problem statement, resulting in a
reduced analysis complexity. Creativity and autonomy, especially in the beginning of
requirements elicitation, where the real particularities of a problem statement usually
remain unrevealed, guarantee smooth development of key abstractions forming the
particular problem partition and allow a thorough understanding of the initial parti-
tion. 

Disadvantages However, the absence of centralised project management, means no communication
process among the involved analyst teams is prescribed. In the extreme case, this
approach leads to creative and efficient but self-contained solutions. Due to a poten-
tial lack of communication and an undefined coordination among all participating
analyst teams, the individual results remain incompatible with each other. Partial
aspects of the problem have been solved, but the overall problem statement remains
vague, since global and inter-partition requirements have not been considered.
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Such a specification does not meet necessary quality standards, as formulated in the
IEEE-830 standard [IEEE830]. A detailed discussion concerning the impact of this
form of organisation on concurrently elaborated component schemas can be found in
Section 8.2, pp. 167.

4.1.3 Master Multiple Team

The master multiple from of organisation can be regarded as an autonomous analyst
team with an independent master team responsible for the mediation of the entire
process. The project manager of the entire requirements project also directs the mas-
ter team. In other words, master team and project management may be used synony-
mously. The responsibility of the master team incorporates two important tasks, con-
trolling the project progress from a budgetary and disciplinary point of view as well
as reviewing the individual results of the participating analyst teams. Depending on
the actual project size, the master team may also be responsible for a defined parti-
tion. In this case the master team incorporates the roles of an autonomous analyst
team and project management at the same time.

Figure 14 Master Multiple Analyst Team

Educational 
Background

In the requirements elicitation and negotiation phase, the master team provides con-
sultancy to the involved analyst teams, without actually doing the modelling. There-
fore, a master team mainly incorporates experienced IT personnel with an extensive
modelling background and senior domain experts. The combination of domain and IT
knowledge, with a strong focus on modelling, is the most important skill required by
a master team. 
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Master Team 
Integrates the 
Partitions for 
Validation Purposes

At the beginning of requirements validation, the master team has to integrate the
results of all participating autonomous analyst teams. This integrated model provides
a coherent set of requirements as an agreed baseline for the production of a software
requirements specification, organised according to the IEEE-830 standard
[IEEE830].

Advantages A master multiple organisation has several significant advantages. Individual analyst
teams may elaborate their initial partition in isolation and therefore improve espe-
cially the earlier phases of requirements elicitation. The key abstractions forming a
distinct initial partition may be developed, without external interference. Creativity
and innovation are assured and the provision of crucial modelling know-how is guar-
anteed by the master team. Issues affecting a set of partitions can be assessed and
propagated by the master team. This responsibility directly increases the awareness
for issues affecting the entire project and will decrease emerging problems in require-
ments validation. 

Freeing a master team of budgetary and disciplinary responsibility also provides an
excellent basis for incorporating external consultants, thus focusing on the core com-
petence of an organisation. On the other hand, external consultants especially those
with an extensive IT background, might run into considerable acceptance problems
with respect to domain experts and business users. As a result, a master-multiple
organisation suits outsourcing, as long as sufficient domain expertise can be incorpo-
rated to this team.

Disadvantages Especially when project management and modelling competence are not concen-
trated in the master team, its position is quite critical. Due to the lack of disciplinary
responsibility, violations of defined conventions cannot be assured. The advisory
character of the master team cannot assure that issues effecting the entire project will
really be covered in the participating analysts teams. Individual analyst teams might
insist on their results without taking other requirements into account. So the effi-
ciency of a master-multiple organisation is in question, when disciplinary and budg-
etary responsibility are not delegated to this group.

4.1.4 Master-Multiple Organisation in ATM Projects

A master-multiple organisation model was chosen in our reference project in the con-
text of the European Air Traffic Control Harmonisation and Integration Programme
(EATCHIP). In this concrete project [WCW97] the master team did not include
project management and therefore only provided modelling knowledge and reviewed
the results of participating autonomous analyst teams. Moderating the communica-
tion process for issues affecting the entire project formed the other central responsi-
bility of this team. Moreover, this group can be regarded as an internal team of con-
sultants assisting the individual analyst teams, mostly staffed with domain experts, in
their work. The master team had the following responsibilities:
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• Coaching analyst teams in the selected modelling technique 

• Mediation for issues affecting the entire project

• Maintaining a balanced level of abstraction over all partitions

• Version management of the intermediate results of individual analyst teams.

Especially decoupling disciplinary and budgetary responsibility proved a serious
drawback in this project. Missing global and inter-partition requirements were
detected by the master team. Proposals for the resolution of this incoherence were not
applied by the affected analyst teams. So the integration of the partitions proved
problematic, since no agreement could be found concerning the concrete structure or
the real-world semantics for several key abstractions in the application domain.

4.1.5 Additional Stakeholders in Concurrent Requirements Engineering

Besides the stakeholders introduced in Section 3.1, concurrent requirement engineer-
ing introduces new responsibilities, which have to be assigned to involved project
participants. Ownership and disciplinary responsibility for an analyst team elaborat-
ing an initial partition is assigned to the partition leader. This stakeholder represents
an analyst team responsible for an initial partition. The partition leader is also the
contact for the coordination of inter-partition requirements among involved parti-
tions. Table 2 lists the completed set of stakeholders in concurrent requirements engi-
neering.

Table 2 A Classification of Stakeholders in Concurrent Requirements Engineering 

Stakeholder Role and Responsibility

Business Users /
Controller

Business users provide the input to requirements elicitation and are also responsible for a 
review of the resulting problem analysis models

Analyst The analyst represents user requirements in terms of given problem analysis models and 
conducts reviews with the business users later on.

Project Manager The project manager conducts the entire project. On the basis of the Corporate Domain Model 
representing past requirements specifications, s/he assigns participating Analysts and Business 
Users to the partitions. Finally the Project Manager uses the requirements specification as one 
of the inputs for estimating development costs.

Information Officers The information officer reviews the completed requirements specification for consistency 
with the Corporate Domain Model to ensure that separately developed systems interoperate. 
New domain objects are then incorporated to the Corporate Domain Model for reuse in future 
projects.

Partition Leader The partition leader is responsible for a group of analysts, elaborating a defined partition 
within the overall problem statement.
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4.2 Partitions, the Scope of Requirements and the Analyst’s Horizon

Sheer size demands for a division of the overall problem statement of industry-scale
applications into manageable chunks, so-called initial partitions. The rationale for
dividing a problem statement into initial partitions is usually motivated by the appli-
cation domain at hand and the personal judgement of domain experts. So from a
requirements engineering perspective there are no common criteria for building ini-
tial partitions for all possible application domains.

Definition 7 (Initial Partition)  –  An initial partition is an arbitrary fraction 
of the overall problem statement, constraining the area of discourse of an 
analyst team. ◊

Initial partitions in this work are regarded as organisational units assigned to a given
analyst team. As a matter of consequence, initial partitions have to be built before the
actual requirements elicitation starts. Initial partitions as organisational units are the
central prerequisite for the concurrent use of analyst teams, as they allow require-
ments analysis to be accomplished in a reasonable time frame. The requirements elic-
ited within a given initial partition can be documented in various forms. In this work
we use the term partition for a model documenting the requirements of an initial par-
tition. For the time being we do not regard a concrete modelling technique and base
the discussion in this section on an abstract model (see Definition 3, p. 31). 

Definition 8 (Partition)  –  A model documenting requirements of an initial 
partition is called partition. ◊

Suitable UML views and constructs for concurrent requirements engineering are
identified in Chapter 5. Whenever the selected UML subset discussed in Section 5.2
has been used to document requirements, we call it a component schema.

The Character of 
Partitions

Independent of a concrete modelling technique and the applied tool set, we want to
detail the principal character of partitions in concurrent requirements engineering. In
this context we distinguish between disjunct and overlapping partitions. 

Definition 9 (Disjunct Partitions)  –  Two partitions are called disjunct, if and 
only if, they do not contain common elements. ◊

Definition10 (Overlapping Partitions)  –  Two partitions are called 
overlapping, if and only if, both of them contain common elements. ◊

Common in this context means, that the same element appears in different partitions.
Since the identity of elements depends on the applied modelling technique, we do not
further detail this consideration. Figure 15 depicts this distinction. 
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Cost efficiency demands that individual partitions are kept disjunct, i.e. a specific
partition within the problem domain should not be analysed by two teams at the same
time. However, this gives rise to the important question of, whether disjunct parti-
tions automatically lead to disjunct analysis results.

Figure 15 Disjunct versus Overlapping Partitions 

The Scope of 
Requirements

Overlapping partitions imply, that requirements may affect several partitions. Non-
temporal requirements such as performance or reliability affect entire systems and
therefore also affect several partitions, although this fact may not become apparent to
the partition owners. This observation leads to the following definition:

Definition11 (Scope of Requirements)  –  The scope of requirements refers to 
the number of partitions affected by a given requirement. Requirements are 
called local if they only affect a single partition. A requirement is called 
global, if all involved partitions are affected and is called inter-partition 
requirement, when at least two distinct partitions are affected. ◊

In concurrent requirements analysis with a set of initial partitions, elaborated in iso-
lation, the individual requirements statements may at first glance be considered as
local. But this does not exclude interference with requirements stated in other parti-
tions. The fundamental problem of global versus local consistency becomes obvious
in this example. Central project management, or top-down strategies in general,
ensure global consistency, since the decomposition process will always aim for dis-
junct divisions. In bottom-up strategies, however, this statement is much more com-
plicated, since local consistency does not automatically guarantee global consistency.
A requirements statement deemed locally consistent can be called globally consist-
ent, when it does not contradict any statement in all other partitions. As we will see in
Chapter 8, this distinction is quite problematic. For the time being, the distinction of
local, inter-partition and global requirements is sufficient for our discussion of con-
current requirements engineering.

Environment and 
Contents of a Partition 

A model documenting requirements of an initial partition also has their its own sys-
tem boundary, which we call partition boundary. Therefore we also have to distin-
guish between the partition contents and the partition environment. In order to avoid
method-specific details of a concrete modelling technique, we discuss this idea on the
basis of the abstract model introduced in Definition 3, p. 31.

Definition12 (Partition Content)  –  Partition contents refer to the set of all 
elements that for any bi-partitioning of the set, relationships exist among 
elements in the two subsets. ◊

Partition1 Partition2 Partition3
Partition4
50



Concurrent Requirements 
Engineering
Definition13 (Partition Environment)  –  Partition environment refers to all 
elements not in the partition content maintaining relationships to elements of 
the partition content. ◊

The distinction between the partition and the system boundary is crucial since the
partition environment cannot automatically be considered as interface requirements
in the sense of Section 3.3.3. Individual elements of the partition environment may
represent inter-partition requirements, although this does not become apparent from
the partition owner’s perspective. As a matter of consequence the scope of a given
requirement documented in a given partition has to be reviewed before partitions can
be integrated. Inter-partition requirements also may lead to conflicts detailed in
Section 7.3, pp. 131.

Repositories A repository provides persistent storage for partitions documented with a CASE tool.
A repository is called centralised if all partitions are persistently stored in a single
repository. A repository is called distributed when each partition is persistently
stored in an individual repository.

Analyst’s Horizon Distributed repositories, give rise to another challenge, namely the visibility of ele-
ments and relationships of a partition to external analysts. In order to avoid a detailed
discussion of access rights to repositories, we use the term visibility in its colloquial
sense. Although we always assume that external analysts are not supposed to change
a given partition, coordination among analyst teams requires at least, that they can
’see’ elements and relationships of a given partition. Here we are especially inter-
ested in the visibility of partition content and partition environment, which we call
the analyst’s horizon.

Definition14 (Analyst Horizon)   –  The analyst’s horizon defines the 
visibility of elements and relationships of a given partition to external 
analysts. ◊

Figure 16 Differing Analyst’s Horizons 

Regardless of the applied modelling technique we may distinguish four analyst hori-
zons. A partition is called hidden, if partition contents and partition environment are
invisible to external analysts.

Owned Partition Opaque Partition

Transparent PartitionHidden Partition
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A partition is called opaque, when only the partition environment is visible to exter-
nal analysts. A partition is called transparent, if partition environment and partition
content is visible to external analysts. This distinction is crucial for the management
of component schema relationships detailed in Section 8.2. 

4.3 Concurrent Requirements Engineering in the Air Traffic Management Domain

This section introduces our requirements engineering process, developed for a series
of European air traffic management projects [Wor96, WFW97, WCK97]. As argued
in Section 3.3.4.4, we prefer use case driven analysis for requirements elicitation.
The requirements are documented in terms of component schemas, our UML subset
for tailored requirements engineering. The process can be divided into the following
steps:

1 Dividing the problem domain into (arbitrary) initial partitions

2 Analysing and documenting each initial partition in isolation ...
2.a Selection of relevant business processes
2.b Requirements elicitation based on complex use cases
2.c Structuring requirements using object-oriented analysis

3 Integrating the partitions

4 Requirements validation

5 Establishing a logical architecture

6 Writing the software requirements specification

Comparing Use Case 
Driven Analysis with 
the Requirements 
Engineering Process

Apparently the sequence of activities in use-case driven analysis does not match the
requirements engineering process, as introduced in Section 3.2. Although the analy-
sis of business processes can clearly be related to requirements elicitation, writing
down the activities in terms of a complex use case already incorporates a documenta-
tion aspect. Within requirements analysis and negotiation an approved negotiation
process involving different stakeholders decides which elicited requirements are to be
accepted. Sheer size, especially in industry-scale applications, demands a great deal
of modelling, in order to understand the intricate nature of the problem statement.
Problem analysis models, independent of the modelling technique used, provide a
stable and rational basis for accepting requirements. Since individual UML views
cannot be related to distinct phases within the requirements engineering cycle, we
prefer the term problem analysis whenever we refer to the activity of structuring
requirements in terms of a given modelling technique. In this work, the entire prob-
lem statement is divided into a set of component schemas, modelling distinct initial
partitions from given perspectives. In this context, we want to assure that all involved
analyst teams build the same system. Problem analysis models generally represent an
important and valuable contribution for understanding the problem statement.
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They also provide a stable basis for the creation of quality software requirements
specifications, as detailed in Section 10.3. Having defined the applied requirements
engineering process, the following subsections detail selected aspects of this
approach.

4.3.1 Building Initial Partitions

The initial incentives for the development of new systems often have a fairly abstract
character. The decision may be driven by some kind of need, new business fields or
simply the feeling, that information technology has the potential to improve the over-
all efficiency of an organisation. Having investigated general feasibility, a more con-
crete project organisation model has to be put into place. Process orientation, as the
state-of-the-art management paradigm, can effectively support the requirements anal-
ysis process for a future system. Initial partitions are defined through the selection of
relevant business processes. Affected business processes are gathered and the
detailed analysis are assigned to a set of analysts. However, the activities of industry-
scale organisation can be divided into:

• business fields and

• individual business processes

Business fields comprise a set of business processes, so initial partitions in this con-
text are formed by business processes deemed to be crucial for the market success of
an organisation. Then, selected business processes are assigned to analysts, who have
to study them in detail. This task can already be performed in parallel. The creation of
use cases as an initial set of documented requirements can be reduced to the follow-
ing classic information sources, interviews with involved business users and docu-
ment analysis. Business processes form the first level of initial partitions and inter-
views or consulted documents provide the first set of information, the requirements
source. All requirements sources have to be identified and recorded, in order to relate
documented requirements to their requirements sources, which is called requirements
source traceability by Sommerville [SS97]. Figure 17 depicts the relationship
between business fields, use cases, analysts and available requirements sources.

Figure 17 A Metamodel for Business Fields, Use Cases and Requirements Sources
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4.3.2 Use Case-Driven Requirements Elicitation

Having selected relevant business processes in the larger frame of business fields,
individual business processes have to be documented. The involved business users
and the course of activities within a dedicated business process have to be analysed.
The description of the detailed structure of complex use cases proposed in this work
can be found in Section 5.2.4. Use cases within a given business field are then struc-
tured in terms of an object model. First of all, use case activities have to be structured
in UML sequence diagrams, representing functional requirements. Adding structural
properties to class specifications then shapes the structural requirements in terms of
UML static structure diagrams. Individual business fields are concurrently analysed,
resulting in component schemas. Each component schema then has to be reviewed by
the incorporated business users and domain experts.

Integration of 
Component Schemas

By the end of requirements analysis and negotiation, the set of elaborated component
schemas documents the overall problem statement. In order to validate the entire
specification, component schemas have to be integrated. Now the entire specification
has to be validated. Inter-partition and global requirements have to be identified and
possibly regrouped. Requirements negotiation terminates with an agreed model of
requirements, documenting the envisioned system. Since this subsection only intro-
duces the process of use-case driven requirements elicitation, we do not detail the
intricacies of individual activities here.

4.3.3 Defining a Logical Architecture

The integrated analysis model needs further groupings. Initial partitions as organisa-
tional units have to be converted into a logical architecture describing the overall
problem statement in terms of UML subsystems. Subsystems have a recursive char-
acter, i.e. they may contain other subsystems and are represented in terms of UML
packages. The definition of a software architecture in the sense of Shaw [SG96] is
clearly a design activity and follows a completely different set of concerns. 

Partitions versus 
Logical Architecture

Packages realise a significant change in how the problem statement is viewed. While
initial partitions mostly follow a well defined perspective – top-down, business proc-
esses or stakeholders – packages follow different criteria. With respect to the system
design later on, initial partitions can be regarded as arbitrary, while packages group
the problem analysis model according to a set of defined rules. As a result, arbitrary
groupings induced by the initial reduction of analysis complexity now have to be
replaced by systematic and hierarchic structure, following engineering practice.
According to Heide Balzert [Bal95] subsystems should define a logical and struc-
tured unit which 

• guides the reader through a problem analysis model

• describes a given problem aspects in isolation 
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• groups logically related elements, e.g. interacting class specifications providing 
the required functionality

• enables isolated design and implementation of the packages via well defined inter-
faces.

The classical modularisation principle high internal and loose external couplings is
the most primitive criteria for the definition of packages. As a rule of thumb, UML
packages should not separate generalisation/specialisation hierarchies, nor should
they separate compositions. The central objective of this activity is the definition of
partitions in terms of logically related elements. A logical architecture excludes all
design concerns such as middleware and the persistent storage technology.

4.4 Coherence of Component Schemas

This section details the consistency of industry-scale requirements specifications
built on the basis of concurrently elaborated component schemas. Whenever some-
thing has been split into smaller fractions, we have to clarify how the entirety can be
reassembled on the basis of these fractions. Referring to the old Roman divide and
conquer principle, Michael Jackson puts it the following way: ‘... having divided to
conquer, we have to reunite to rule’ [Jack90].

Consistency In this context we are interested in the specific relationship among component sche-
mas modelling initial partitions. The consistency of the resulting overall specifica-
tion built on this basis of component schemas is especially crucial for the quality of
the resulting software requirements specification and all other products down-stream
in the software development cycle. Consistency in this context aims for an accurate
and flawless description of the entire problem statement from an external perspective.
Consistency is also one of the central quality attributes of software requirements
specifications in the IEEE-830 standard. First of all we want to clarify the meaning of
the term consistency, in colloquial language as well as in the context of concurrent
requirements engineering. WordNet proposes the following meanings for the term
»consistency«:

“1.consistency, consistence, body -- 
(the property of holding together and retaining its shape;
 "when the dough has enough consistency it is ready to bake")
2. consistency, consistence --
(a harmonious uniformity or agreement among things or parts)
3.consistency --
(logical coherence and accordance with the facts: "a rambling argument
that lacked any consistency")

4.consistency --
((logic) an attribute of a logical system that is so constituted that none of

the propositions deducible from the axioms contradict one another)” [WN98]
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The composition of an overall problem analysis model formed by a set of component
schemas is best expressed in meaning 2, while a formal mathematical definition is
provided in meaning 4. With respect to requirements engineering, Thayer and Dorf-
mann provide the following definition:

“... a specification is consistent to the extent that its provisions do not conflict with each other, 
other specifications, or objectives.” [TD97, p. 446]

So this definition roughly corresponds to meanings three and four in the WordNet
definition. According to Thayer and Dorfmann, the absence of conflicts is the pri-
mary criteria for consistency. But what are conflicts in concurrent requirements engi-
neering using component schemas? The IEEE-830 standard states:

Conflicts in 
Requirements 
Specifications

“There are three types of likely conflicts in an SRS:
a) The specified characteristics of real-world objects may conflict. [...]
b) There may be logical or temporal conflict between two specified actions. [...]
c) Two or more requirements may describe the same real-world object but use different terms for 

that object.” [IEEE830, p. 186]

Independent of the concrete nature of conflicts, the scope of requirements and the
evolution of requirements specifications elaborated in autonomous analyst teams
automatically calls the overall consistency into question. Assuming that component
schemas are locally consistent, the term conflict refers to an antagonism or irreconcil-
ability among elements stemming from different component schemas.

Definition15 (Conflict)  –  A conflict is a relation among antagonistic or 
irreconcilable elements stemming from different component schemas. ◊

Without describing the concrete nature of conflicts among component schemas, we
want to discuss this problem from a rather general perspective. Due to the simultane-
ous elaboration of component schemas their contents constantly evolve. The evolu-
tion of component schemas may lead to conflicts, hence consistency cannot be guar-
anteed. Enforcing consistency among partitions on a permanent basis demands
constant coordination among analyst teams and therefore consumes additional effort.
Consequently, we have to tolerate conflicts, and consistency may only be assured for
given moments in time. Without strict enforcement of consistency, we are still inter-
ested in an orderly relation among component schemas. This orderly relation is influ-
enced by the following aspects:

• Detection of conflicts:
A definition of conflicts between component schemas and means for their detec-
tion.

• Notification of conflicts:
Means for the detection of conflicts have to be complemented by means for the 
notification of the affected analyst teams. Conflicts have to be reviewed and 
resolved in a cooperative manner, in order to avoid overriding of requirements.
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• Ensuring minimality:
Means for detecting redundant and possibly incompatible specifications of the 
same real-world thing in different component schemas ensures the minimality of 
the overall problem analysis model.

• Settlement of inter-partition requirements:
The settlement of inter-partition requirements plays an important role for over-
coming the self-contained perspective of individual component schemas. Inter-
partition requirements have to be announced to the partition deemed responsible 
for their settlement.

Providing means for conflict detection, conflict notification, ensuring minimality and
settlement of inter-partition requirements leads to an orderly elaboration of compo-
nent schemas. Although we cannot exclude conflicts and consequently cannot com-
ply to the strict definition of consistency in terms of Thayer and Dorfmann [TD97],
component schema relationships provide means to ensure that concurrent require-
ments analysis at least can be performed in an orderly fashion. In the described pres-
ence of conflicts, we use the term coherence to indicate, that requirements analysis is
performed in the quoted orderly fashion.

Definition16 (Coherence)  –  Component schemas are called coherent when 
conflicts have been resolved, redundancies and inter-partition requirements 
are detected and coordinated among the affected analyst teams. ◊

The notion of conflict and redundancy is detailed in Section 7.3, pp. 131 while coor-
dination is discussed in the context of the management of component schema rela-
tionships (see Section 8.3, pp. 176). Improving the coherence of component schemas
affects project organisation, project coordination and conflict management. This sub-
section will only summarize practical aspects of concurrent requirements engineer-
ing, that we detail in Section 8.3.

Project Organisation The organisation of a project is one of the central factors, with a direct impact on the
entire project life-cycle. Underestimating the complexity of a project leads to cum-
bersome and overlapping partitions and therefore threatens the project success. The
first and most important factor in this context is the assignment of staff to initial par-
titions. Master-multiple organisations in particular leave sufficient room for a dedi-
cated team to study and assess the overall impact of inter-partition and global require-
ments. Concentrating on the overall problem statement also allows project progress
to be monitored. Depending on the choice of organisation model and the degree of
autonomy of analyst teams, coherence and project progress become assessable.

Project Coordination The degree of autonomy of individual expert teams has a direct impact on the coordi-
nation among analyst teams. In this context the size of initial partitions and the
desired degree of coherence defined by the project management determine the coor-
dination efforts. Coordination in concurrent requirements analysis is related to rea-
ligning partitions boundaries, coordinating inter-partition as well as global require-
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ments, establishing responsibilities for inter-partition requirements and organising
efficient communication among analyst teams. A realignment of partition boundaries
may become necessary, due to the logical character of initial partitions. A clearly
defined justification of partitions only becomes available when the component
schema representing it has become relatively stable. The relationship among distinct
partitions is basically determined by inter-partition and global requirements. Respon-
sibilities have to be defined for certain inter-partition requirements. Often it is not
exactly clear to which partition given requirements belong to. Therefore, analyst
teams have to establish the responsibility for the elaboration of emerging inter-parti-
tion requirements. Finally, an efficient communication process has to be defined.

Conflict Management Depending on the chosen degree of autonomy a concrete policy for the management
of conflicts has to be established. This activity incorporates the cycles for the assess-
ment of conflicts in the involved partitions, as well as the propagation of inter-parti-
tion requirements. In this context suitable means for detecting, propagating and
resolving conflicts have to be defined.

4.5 Discussion

This chapter complemented our perspective of requirements engineering towards
conducting projects concurrently using several analyst teams. In this context we
introduced differing team organisations, that we call centralised, autonomous and
master multiple. Within this organisation models, partition owners complement the
list of stakeholders involved in requirements engineering projects. Then we concen-
trated on the specific character of partitions. Mapping partitions to repositories pro-
vides persistent storage for component schemas modelling distinct fractions of the
problem statement. In this context, the analyst horizon determines the visibility of
partition content and partition environment to external analysts. 

Then we introduced our methodology for use-case driven analysis in the frame of
concurrent requirements analysis. Building initial partitions, describing individual
activities within requirements elicitation, and introducing our perspective of a logical
architecture are the central contributions of this section. Finally, we concentrated on
the consistency of specifications, built on a set of component schemas describing ini-
tial partitions in a self-contained fashion. Conflict notification, ensuring minimality
and settlement of inter-partition requirements have been identified as important fac-
tors for increasing the coherence of constantly evolving component schemas. 
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5 Concurrent Object-Oriented Problem Analysis Using UML

This chapter introduces component schemas as our specific approach for concurrent
requirements engineering. We discuss the specific character of UML as a model-
based multi-viewpoint specification and then we analyse which of the UML views
defined in OMG standard [OMG97a] are relevant in requirements engineering. A
deliberate examination of the available UML constructs assures their solution-neutral
character. This finally leads to our definition of component schemas documenting the
requirements of initial partitions.

5.1 Perspectives and Viewpoints

Our concurrent requirements engineering approach divides the problem statement
into a set of initial partitions, which are represented in terms of a component schema.
Character, notation and constructs of component schemas are detailed in this section.
Since a number of different stakeholders are involved in concurrent requirements
engineering projects, all of them with different educational and possibly cultural
backgrounds, a set of definitions must be introduced to clarify the character of the
UML in general and the select subset UML viewpoints and constructs used in com-
ponent schemas.

Perspective System users form an important group within the participating stakeholders, but only
few of them ever see the complete system in all its details. They define requirements
mostly related to their assigned business processes. Information officers, who are
responsible for long-term development of an information infrastructure, are inter-
ested in fitting new systems into an existing infrastructure. A perspective in collo-
quial terms refers to the stakeholders personal standpoint, i.e. the real-world things a
given stakeholders actually sees within a given initial partition.

Definition17 (Perspective)  –  A perspective is a fraction of the problem 
statement, as perceived by a distinct stakeholder. ◊

Consequently each partition independently of the used modelling technique incorpo-
rates the perspective of its stakeholders.

Aspect The personal interest of individual stakeholders forms a second dimension and is
called aspect in this work. The aspect can be rephrased through the simple question
“What is the stakeholder looking for?”

Definition18 (Aspect)  –  An aspect is a considered characteristic of the real-
world things under analysis. ◊
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In order to avoid lengthy discussion concerning business administration problems
we, take a rather pragmatic approach, reducing this question to three aspects, that
according to DeMarco [DeM82], fully describe any software system: data, functions
and states.

Viewpoints Combining aspect and perspective of given stakeholders with a modelling technique
describing the perceived reality leads to our definition of viewpoints. Rumbaugh et
al. are using the term view in their UML reference guide for the individual modelling
techniques. In order to avoid mixing up the terms view and viewpoint we will use the
term UML view.

Definition19 (Viewpoint)  –  A mental position from which a problem 
statement is analysed. This position includes a defined perspective with a 
determined scope, a observed aspect and a distinct modelling technique. ◊

Multi-Viewpoint 
Specifications

Modelling a set of perspectives with the same modelling technique can be called
multi-perspective specification. A multi-viewpoint specification describes the prob-
lem at hand from an arbitrary set of perspectives using different modelling tech-
niques. Multi-viewpoint specification techniques can be distinguished according to
the way the individual viewpoints are organised:

Definition20 (Model-Based Multi-Viewpoint Specification)  –  A multi-
viewpoint specification technique based on a combination of related modelling 
techniques, each of them highlighting a specific aspect of the problem 
statement. ◊

OMT is a prominent example in this category, where a set of existing modelling tech-
niques have been combined in order to provide “best-practice” to analysts [RBP+91].

Definition21 (Aspect-Based Multi-Viewpoint Specification)  –  Aspect-based 
multi-viewpoint specifications describe the problem statement from a set of 
determined aspects. ◊

RM-ODP is an example of this kind of multi-viewpoint specification [ODP P1],
where business objectives, static structure, object interaction, distribution and tech-
nology form the individual OPD-viewpoints.

Definition22 (Stakeholder-Based Multi-Viewpoint Specification)  –  In 
stakeholder-based multi-viewpoint specifications, the individual viewpoints 
are determined by the specific role or post involved stakeholders have in an 
organisation. ◊

Viewpoint 
Relationships

Modelling techniques incorporating several viewpoints in a single specification give
rise to so-called viewpoint relationships. They relate arbitrary elements specified in
different viewpoints. The following basic types of viewpoint relationships can be dis-
tinguished.
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• Arbitrary relationships
In this category inter-viewpoint relationships are not formally specified. The rela-
tionships have an arbitrary character and may be defined in an ad-hoc manner 
according to the analyst’s needs. RM-ODP is an example of this kind of approach 
[ODP P1] 

• Additive character
Additive formalism can be compared to puzzles, where each piece has to be fitted 
in in order to finish a complete specification. Individual viewpoints concentrate on 
a given aspect but remain unrelated to other viewpoints.

• Projections
The organising principle for this kind of specification is an integrated model. Each 
viewpoint can be regarded as a projection of this common base under specific 
aspect. Like the additive formalism, there is currently no approach entirely 
defined on a common base.

• Metamodel
In a metamodel-based formalism, inter-viewpoint relationships are specified in a 
metamodel. UML is an example of this approach [OMG97a]. Unlike a common 
base, metamodels do not imply a semantic or mathematical integration of the used 
modelling techniques.

Viewpoint 
Organisation in UML 

The Unified Modelling Language (UML) provides model-based viewpoints, related
through a metamodel. The individual viewpoints focus on the aspects data, function
and state. Due to conceptual overlaps among statecharts and sequence diagrams,
UML viewpoints cannot be considered as orthogonal. UML comprises the following
modelling techniques: statecharts, use case, sequence, static structure and activity
diagrams. Unlike OMT, UML does not prescribe a defined process. Analysts can
individually select which diagrams are relevant for a given project and the order of
creating these diagrams. Although not directly relevant in this context, we assume an
order of activities as defined in the Unified Software Development Process [JBR99]. 

5.2 Component Schemas: Viewpoints, Constructs and Notations

This section selects relevant UML views and constructs in order to assure a solution-
neutral outcome of concurrent requirements engineering projects using component
schemas.

5.2.1 Relevant UML Views 

UML provides a model-based multi-viewpoint specification technique, in order to
support the entire software development cycle. In this section we want to analyse the
different UML views with respect to their relevance in requirements specification.
The central objective in this context is solution-neutral description of the problem
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statement. Component and deployment diagrams, for instance, are clearly implemen-
tation-related and therefore should not be used in problem analysis. This work will
concentrate on use case, sequence and static structure diagrams, as the most relevant
UML views for requirements analysis. Although statecharts may be of interest for
requirements analysis, we leave them out in this work. Main motivation for this omis-
sion is the conceptual overlap between statecharts and sequence diagrams. Conse-
quently, all diagrams printed in italics in Table 3 will not be considered. This UML
subset assures orthogonality of viewpoints and a minimum of ontological construct
redundancy in the sense of Wand and Weber [WW93]. Using a small number of care-
fully chosen constructs often eases comprehension for domain experts and therefore
may improve the overall quality of problem analysis in requirements engineering.

Table 3 UML Models and their Featured Aspect  

Component Schemas Component schemas, our UML subset tailored for requirements engineering, form a
multi-viewpoint specification. Using component schemas in concurrent requirements
engineering leads to the following situation. Initial partitions are assigned to given
analyst teams. The component schema documents requirements in terms of the
selected UML subset. Since UML comprises a set of defined viewpoints, the overall
problem statement is described in terms of a multi-multi-viewpoint specification. In
order to clarify the terminology, we use the term component schema for a UML
model describing a distinct initial partition within the overall problem statement.

In the current UML standard [OMG97a], use cases are only an iconic representation
of business processes, comprising their name and the involved actors. The order of
activities within a given use case is documented in a related sequence diagram. We
believe that for participative requirements elicitation, especially in industry-scale
projects, domain experts are not able to model the business process directly in terms
of a sequence diagram. Plain text descriptions are usually more comprehensive to
domain experts expressing their knowledge.

The Value of 
Use Cases in 
Requirements 
Engineering

Although frequent claims criticize a lack of scalability of plain text descriptions, our
experience in the air traffic management domain confirmed their practicability even
in industry-scale projects [Wor96, WCK97]. We believe that only plain text descrip-

UML Model Featured Aspect Considered in
Component Schemas

A
na

ly
si

s

Use case diagram Business processes, actors, activities yes

Sequence diagram objects, messages, order in time yes

Static structure diagram Classes, association yes

Statechart diagrams States, events, state changes no

Collaboration diagram objects, messages, order in time no

D
es

ig
n Component diagram Components (compile-time), dependencies no

Deployment diagram Components (run-time), nodes, dependencies no
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tions provide a stable and comprehensive requirements basis for both domain experts
and analysts with a computer science background. Sequence and static structure dia-
grams are subsequently derived from the use cases. Improving the structure and
defining a pragmatic decomposition mechanism for use cases was one the central
objectives in the research project “Data Modelling for Advanced Flight Data Man-
agement” in collaboration with the EUROCONTROL Experimental Centre Brétigny-
sur-Orge France [Wor96, WCK97]. Complex use cases, as one of the central contri-
butions of this work, are detailed in Section 5.2.4, p. 83.

In order to guarantee a solution-neutral character of component schemas we still have
to review the constructs defined in component schemas. In this context we are mainly
looking for constructs that originate from programming languages, such as C++ or
Smalltalk. So the individual constructs defined within use cases, sequence and static
structure diagram are evaluated in this section. Carefully chosen viewpoints with
selected and orthogonal constructs improve the comprehensiveness of specification
to business users without extensive modelling experience and also provide a solution-
neutral documentation of requirements gathered in a component schema.

5.2.2 Introducing the UML Metamodel

This subsection introduces the general structure of the UML metamodel and the
mechanisms applied in order to provide sound semantics. The discussion is based on
the 1997 OMG proposal [OMG97a, OMG97b, OMG97c]. Recent documentation,
such as the ‘Unified Modeling Language Reference Manual’ [RJB99] and the ‘Uni-
fied Software Development Process’ [JBR99] are based on revisions of the meta-
model, which have been summarized under the term ‘UML version 1.3’. 

5.2.2.1 Terminology and Conventions Used Throughout this Section

Analysing a given modelling technique requires a concise use of terms on different
levels of abstraction. Apart from the four layer architecture defined by the ISO IRDS
[ISO10027], additional conventions have to be introduced. On the one hand we have
the UML terminology, on the other hand we want to describe the meaning of model-
ling constructs in broader terms. In this work we distinguish between an ontological
level and the specific UML terms. This approach may also draw correspondences and
differences to other modelling languages such as the Entity-Relationship Model
[Chen76].

Bunge’s ontology provides the baseline for this discussion [Bun77]. The real-world,
as perceived by an analyst, is composed of things. The intensional description of a
thing is called artefact. Things posses properties. Properties may be observed as
static or behavioural. Things may be related to each other, i.e. they participate in a
relationship. Relationships can therefore be regarded as pairs of things. Things may
be organised in taxonomic relationships that are generalisation and specialisation.
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Things might also be constituted of other things, i.e. the things are related to each
other via an aggregation. We also assume that the whole cannot exist without its con-
stituting parts. A construct is a means of describing selected aspects of things in
terms of a modelling language. In UML the construct object is applied to describe
things.

Objects, Things in 
Sequence Diagrams

However, following the intension/extension dichotomy, we still have to detail the
term thing. UML sequence diagrams depict the interaction of objects exchanging
messages. But what is the exact character of these objects, with respect to things in
the real world? Objects in a sequence diagram are only regarded as abstractions of a
particular real-world things interacting under a distinct objective. Message passing in
this context is an interpretation of a conveyance of information among real-world
things that abstract from the encapsulated internal structure of the involved things.
Consequently, sequence diagrams describe prototypical objects as derived from use
cases. The messages depicted in sequence diagrams lead to the allocation of opera-
tions to classes in static structure diagrams. 

Table 4 Metalanguage for the Introduction of UML Constructs

To this terminological convention we add a notational one. References to UML meta-
model elements are written in the Courier font. So the term ModelElement there-
fore refers to a UML metaclass carrying this name.

5.2.2.2 The UML Metamodel Structure

The UML metamodel follows the principles of the ISO IRDS [ISO10027] four layer
architecture and has been decomposed into the set of packages depicted in Figure 18.
Since we concentrate on UML static structure diagrams as the backbone of compo-

Term Denotation

Thing Perceivable elements constituting the real-world

Artefact An intensional description of a collection of real-world things. An artefact consists of a 
name and a construct

Construct A means of describing a selected aspect of real-world things in the model world

Property Things possess properties

Relationship A relationship represents a belonging between things 

Generalisation A taxonomic relationship between a more general and a more specific element

Specialisation A taxonomic relationship between things

Aggregation Things may be constituted of other things

Semantic Relationship Summarizes generalisation, specialisation and aggregation

Prototypical Object Prototypical objects describe the interaction of real-world things

Class Specification A class specification is an element in component schemas’ static structure diagrams 
representing the structural aspect of a distinct thing.
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nents schemas, we only partly follow the original package structure, as described in
the semantics document [OMG97a]. Identifying relevant constructs for component
schemas does not require covering the entire metamodel, since design-related dia-
grams have already been excluded. Figure 18 depicts the metamodel structure as
described in the UML Semantics. 

Figure 18 UML Metamodel Organisation

The discussion in this section therefore mostly concentrates on the Foundation
and partly the Model Management packages. Relevant constructs for this work
have been integrated into the static structure diagram depicted in Figure 19:

Figure 19 Relevant Constructs of the UML Metamodel for Static Structure Diagrams
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5.2.3 Considered UML Static Structure Constructs

In this section we introduce solution-neutral constructs for component schemas in the
following way. First of all, we depict the relevant partition of the UML metamodel.
Then we discuss all presented constructs and evaluate their adequacy for require-
ments engineering. Finally we conclude this discussion with a revised metamodel
depicting our UML subset tailored for requirements engineering.

5.2.3.1 Classes

Classes are the central concept within most object-oriented modelling techniques.
Classes are an intensional description for a collection of real-world things sharing the
same properties and relationships. Figure 20 depicts the relevant part of the UML
package Core.

Figure 20 Classes in the UML Core Package

Classes and Properties UML introduces a uniform treatment of all constructs through the abstract metaclass
Element. Elements may carry a name which has been realised in the property name
in the metaclass ModelElement. Metaclass Class represents things. Properties
are described through specialisations of metaclass Feature. Structural properties
are represented in metaclass Attribute, while behavioural properties are modelled
in metaclass Operation. Classes, operations and attributes carry a name since they
are all specialisations of metaclass ModelElement. However, names are organised
in a hierarchic fashion, represented through the aggregation ElementOwnership
between the metaclasses NameSpace and ModelElement. Since the metaclasses
Feature and NameSpace reside on the same specialisation level, features cannot
span a name space of their own. Property names are therefore embedded in the name
space of their Classifier. This approach reduces name clashes between proper-
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Classifier. The property visibility of metaclass Feature may be ignored,
due to its explicit reference to access specifiers in C++ [Str93]. Properties in C++
may be specified as private, protected and public. Following the object paradigm, all
properties are encapsulated, i.e. they are not directly accessible to external clients.
Business users, according to our experience, have significant difficulties in under-
standing the concrete semantics of access specifiers on a programming language
level. Another fundamental difference between classifiers and features becomes
obvious through the metaclass GeneralizableElement. Classifiers may partic-
ipate in specialisation hierarchies, which is prohibited to features.

Classes versus Types Metaclass Classifier forms a common generalisation for classes and data types.
Both constructs share significant similarities, since they are both complex constructs,
built from a set of atomic ones. Unlike classes, data types may not comprise behav-
ioural properties.The construct data type usually denotes a name domain pair, where
the (mathematical) domain represents the set of legal values. Data types may be sca-
lar, such as numbers or characters, or complex, i.e. an arbitrary set of scalar types can
be combined under a single name. UML defines data types as follows:

“A datatype is a type whose values have no identity, i.e. they are pure values” [OMG97a, p. 22]

Therefore objects, as instances of a class, are uniquely distinguishable through their
identity, while values, the run-time counterparts of types, do not have an identity.
UML treats this distinction quite flexibly, since CASE-tools realising the language
shall enable code generation for a great number of different programming languages.
However, the distinction between types and classes in this work has to be clarified
later on.

Classes, Attributes 
and Types

Structural properties are realised as a specialisation of the metaclass Structural-
Feature in UML. Especially the small difference between the metaclasses
StructuralFeature and Attribute seems quite arbitrary. Structural proper-
ties are characterised by a data type, which is realised through a relationship between
the metaclasses Classifier and StructuralFeature. Most inherited proper-
ties of metaclass Attribute can be considered as implementation-related. The
property ownerScope in metaclass Feature, for instance, originates from the
Smalltalk [GR83] programming language, where classes are run-time entities. Via
this property, operations and attributes can be bound to classes or objects. The prop-
erty multiplicity defines the number of values stored in a given attribute. An
attribute may be turned into a constant via the property changeable. Finally the
property targetScope defines whether an attribute is directly contained in a class
or the class only maintains a reference to the attribute. In other words, the property
targetScope specifies whether an attribute is realised by value or by reference in
the respective class specification. Objects, as instances of classes, may establish their
own thread of control, expressed through the property isActive in the metaclass
Class. Concurrency is a clear design concern and therefore will be discarded in
component schemas. Although the properties multiplicity and initial-
Value of metaclass Attribute can be deemed as meaningful in problem analysis,
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they will not be considered. The other interesting aspect in the metamodel is the
recursive realisation/specification relationship on the metaclass
Classifier. Although explicitly related to the metaclass Interface in the met-
amodel, there is an interesting alternate interpretation. A class specification in one
component schema might be realised as a set of interacting class specifications – a
class lattice – in another one. We call this situation a construct-level correspondence,
detailed in Section 7.3.5. Nevertheless the realisation/specification rela-
tionship will be ignored in component schemas.

Simple versus 
Complex Types for 
Structural Properties

Properties of classes restrict the range of valid values via a data type, expressed in the
relationship type between the metaclasses StructuralFeature and Classi-
fier. Metaclass Classifier therefore allows uniform treatment of objects and
values. According to our experience, industry-scale projects hardly require such an
elaborate type system. Determining exact parameters for attributes and return values
for operations is usually accomplished in design. The uniform treatment of data types
and objects also interferes with the semantic relationship aggregation. In order to
clarify this problem, we prohibit the use of  class specifications for data types. We
further restrict data types to scalar types. Additional well-formedness rules, formu-
lated in the Object Constraint Language (OCL), may realise this point without actu-
ally changing the metamodel. Besides the possibility of defining complex data types,
UML provides a basic type system in the package Data Types, depicted in
Figure 21. 

Figure 21 UML Package Data Types

The data type package makes intensive use of the stereotype concept, which is
detailed in Section 5.2.3.4. The data types String and Integer, for instance, are
categorised as primitive types. In order to increase the comprehensiveness of compo-
nent schemas, we propose the simplified type system, as depicted in Figure 22, p. 69:
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Figure 22 The revised Metamodel for Data Types in Component Schemas‘ Behavioural Features

Behavioural properties are represented through the metaclasses Parameter,
Operation and BehaviouralFeature. As a specialisation of metaclass Mod-
elElement behavioural properties have a name, which has to be unique within its
classifier. Metaclass Parameter allows the definition of an argument list for a
given behavioural property. Property kind determines the character of an argument,
where in, out, inout and return are legal values. Each argument is also related
to a datatype via the relationship type between the metaclasses Parameter and
Classifier. As a result, arguments may be both objects as well as values. Similar
to attributes, we restrict the data types for parameters, as discussed in the previous
paragraph. Like their structural relatives, the metaclasses BehaviouralFeature
and Operation contain a number of implementation-related aspects. The property
isQuery, for instance, indicates whether the method implementing the operation
may change the internal state of an object or not. The property isPolymorphic in
the metaclass Operation restricts overriding of operations for specialisations of
the classifier. The property concurrency is related to the property isActive in
metaclass Class. When instances maintain their own thread of control, they may
respond to incoming requests quite differently. Usually an object can only respond to
one request at a time, but they also may establish their own request queues. As a clear
implementation construct, we discard the concurrency of behavioural properties.

Methods & Interfaces Methods, represented through the metaclass Method, model the body, or the imple-
mentation of an operation. The metaclass Operation specifies the signature that
will be implemented through the method. Metaclass Interface represents a con-
struct related to middleware platforms such as CORBA or Microsoft’s DCOM, where
interfaces become first class-citizens and have to be independent from individual
class specifications in a given programming language. The UML metamodel
describes interfaces as follows:

“A declaration of a collection of operations that may be used for defining a service offered by an 
instance.” [OMG97a, p. 153]

As a result, the metaclasses Interface and Method have to be discarded. The
other interesting aspect in the metamodel is the recursive realisation/speci-
fication relationship on the metaclass Classifier.
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“A set of Classifiers that implement the Operation of the Classifiers. These may not include 
Interfaces.” [OMG97a, p. 21]

This relationship describes which classes implement the operations actually offered
by an interface. An interface may also combine operations offered by a set of classes
and therefore can be regarded as an abstraction for interacting classes. Nevertheless,
methods and interfaces are irrelevant constructs in requirements engineering, since
interfaces are design entities and methods are subject to implementation.

Constraints The provision of constraints is one of the central advantages of UML. Realising them
as a distinct metaclass facilitates the formulation of business rules, which otherwise
cannot directly be expressed. 

Due to the relationship between the metaclasses Element and Constraint, busi-
ness rules may be applied to all UML constructs. Constraints may be formulated in
Object Constraint Language (OCL) [OMG97c, WK99] and are represented through
the property body in the metamodel.

Figure 23 The revised Metamodel for Classes in Component Schemas 

Section Summary Component schemas comprise the following UML constructs deemed relevant in
requirements engineering. Classes (metaclass Class) comprise structural as well as
behavioural properties, realised in the metaclasses Attribute and Operation.
Attributes have a scalar data type and may carry an initial value. Operations are char-
acterized by a name and a list of arguments, represented through the metaclass
Parameter. Like attributes, parameters have a data type, but we only distinguish
between arguments and return types through the property kind. Constraints may be
applied to all elements in component schemas. Figure 18 depicts all constructs rele-
vant in component schemas.
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UML classes allow an integrated documentation of structural and behavioural
requirements. Operations express functional requirements demanded by the business
users. Attributes define the data contents which have to be remembered by the envi-
sioned system. In other words, classes are the central means of formulating user
requirements in component schemas. 

5.2.3.2 Relationships

The semantics of relationships in object-oriented programming languages, as well as
in UML, give rise to a set of different realisations with individual advantages and
drawbacks. The semantics document gives the following description:

“An association defines a semantic relationship between Classifiers; the instances of an 
associations are a set of tuples relating instances of the Classifiers. Each tuple value may 
appear at once.” [OMG97a, p. 17]

This definition corresponds to the idea of relationships, in the ER-Model [Chen76].
However, other object models, are often based on referential semantics, i.e. relation-
ships have to be regarded as pointers to objects. Especially object-oriented program-
ming languages follow referential semantics. The individual advantages are dis-
cussed below. 

Figure 24 Relationships in the UML Package Core
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are merely things in their own right. The fact that properties cannot be bound to rela-
tionships in referential semantics is another central drawback of this representation.
So referential semantics lead to a rather counter-intuitive realisation of relationships
and exclude the representation of relationship attributes. The following subsections
introduce the different types of relationships as defined in the UML metamodel.
Figure 24, p. 71 depicts the relevant metaclass in the UML metamodel:

Associations: n-ary Relationships

The relational semantics of UML relationships bypasses the shortcomings of referen-
tial semantics through the introduction of the metaclasses Association and
AssociationClass. Relationships may have a unique name, since metaclass
Association is a specialisation of metaclass ModelElement. Separating
Associations from AssociationEnds also guarantees a flexible handling of
n-ary relationships. A relationship is therefore characterised by its name, while
instances of metaclass AssociationEnd maintain references to the linked classes
through the relationship type. Since AssociationEnd is a specialisation of met-
aclass ModelElement, all references may carry an individual name, the associa-
tion role [OMG97b, p. 50]. Association roles especially facilitate reading recursive
relationships. Cardinalities restrict the amount of participating objects in a relation-
ship at run-time, realised through the property multiplicity of metaclass
AssociationEnd. A range of integers form the upper and lower bound of partici-
pating instances.

Qualifiers & 
AssociationEnds

Qualifiers are an interesting UML construct defined as follows:

“An association attribute or tuple of attributes whose values partition the set of objects related to 
an object across an association.” [OMG97a, p. 156]

In Figure 25, the qualifier accountCode relates accounts to the bank maintaining
the account. In this sense the qualifier in UML can be compared to keys in the rela-
tional data model. Generally speaking, qualifiers may be used in the sense of com-
pound keys, i.e. they represent additional information for the traversal of relation-
ships. Although object-orientation is based on the idea of an invariant identity, real-
world situations like the bank example demand additional identification mechanisms
for related class specifications. We therefore consider qualifiers as a suitable model-
ling construct for component schemas.

Figure 25 Example of a Qualified Association [RBP+91]
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Additional Properties 
of Metaclass 
AssociationEnd

Besides qualifiers, the metaclass AssociationEnd comprises a variety of addi-
tional properties. The property isNavigable is directly related to the referential
semantics of relationships in object-oriented programming languages. When the
property is set to the value true, a traversal from the source end to target end of the
relationship is prohibited, i.e. there is no inverse pointer. This means the objects may
not mutually use their operations. Another design-related construct has been realised
in the property changeable. This property determines whether links may be added
or changed at run-time. The availability of metaclasses in a programming language is
the central idea behind the property targetScope. In Smalltalk, the association
between classes and objects has to be distinguished from links between individual
objects. Imposing an order on a set of links, may be specified through the property
isOrdered. We also consider this UML construct in component schemas. The
semantics of the property aggregation are detailed in the context of semantic relation-
ships on p. 76.

Relationship 
Attributes
in UML

Relationship attributes are realised through the metaclass AssociationClass, as
a specialisation of the metaclasses Association and Class. Its generalisation
Association guarantees maintaining references to classes, while properties may
be attached to the relationship via its generalisation Class. In other words, relation-
ships in the UML metamodel are entities in their own rights, maintaining an arbitrary
amount of links to other classes. The number of participating objects in a relationship
may be constrained via cardinalities. Finally, qualifiers allow handling of complex
identification schemas for participating objects and also realise compound keys. 

Association & 
AssociationClass 
Revisited

However, the concrete realisation of relationships in UML is quite surprising, since
metaclass Association is a specialisation of metaclass GeneralizableEle-
ment. This may imply that relationships can be specialised in UML. There is defi-
nitely no serious interpretation assuming regular set inclusion semantics for speciali-
sation. Moreover only association classes carry attributes, so specialisation does not
further restrict objects participating in a relationship. 

Association classes, on the other hand, add properties to relationships and exactly
these properties may be specialised. Sharing properties seems to be the central moti-
vation for the specialisation of relationships. So we may assume that the authors of
the metamodel had the following idea in mind.

Figure 26 Specialisation Example for AssociationClasses

Only Figure 26 provides a reasonable explanation for regarding relationships as gen-
eralisable elements. Association classes may carry behavioural as well as structural
properties. 

Class BClass A

AssociationClass C

AssociationClass C’’AssociationClass C’’
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So differing behaviour or additional attributes may distinguish specialisations of an
association class. But this possibility is already guaranteed in the metamodel through
the generalisation hierarchy of metaclass Class. Placing metaclass Association
on the same specialisation level with metaclass GeneralisableElement might
avoid this anomaly. A potential improvement of the metamodel is depicted in
Figure 27.

Figure 27 Improved Metamodel for Associations and AssociationClasses

AssociationClass 
Implementation

Rational Rose 98 [Rat98], as the reference CASE tool for UML, does not follow the
metamodel in the implementation of association classes. It creates an individual
instance of metaclass Class carrying the properties. Then this class specification
has to be linked to an instance of metaclass Association via a distinct relation-
ship. Rational Rose also maintains the individual names of the association and the
class specification carrying the properties. This representation clearly violates the
definition in the metamodel document [OMG97a]. Figure 28 depicts the complete
relationship notation used in component schemas. 

Figure 28 Selected Notation for Associations in Component Schemas

Section Summary Associations in UML have tuple semantics and allow flexible and uniform modelling
of relationships with an arbitrary arity. However modelling associations as generalis-
able elements is a rather counter-intuitive construction. Restricting navigation or
changes to connections are design elements which will not be supported in this work.
Associations at runtime never link classes and always connect objects. Association
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ends indicate the cardinality and possibly impose an ordering constraint on the rela-
tionships. The reading direction of associations may be supported by the so-called
name-direction arrow, as notational element not yet covered in the metamodel. Asso-
ciations may link more than two classes, representing so-called n-ary relationships.
Finally, associations may be qualified.

Generalization and Composition: Semantic Relationships

Semantic relationships are the most important contribution to the expressive power of
object models. From a naive perspective, semantic relationships can be regarded as
binary relationships with extended integrity constraints. N-ary and semantic relation-
ships have not been treated in a uniform way in the metamodel, i.e. they are not spe-
cialisations of metaclass Association. Unlike Generalization, the meta-
model does not contain a direct counterpart for aggregation, i.e. there is no particular
metaclass called aggregation. The semantics document defines generalisation as fol-
lows:

“A generalization is a taxonomic relationship between a more general element and a more 
specific element. The more specific element is fully consistent with the more general element 
(it has all of its properties, members, and relationships) and may contain additional 
information.” [OMG97a, p. 24]

Generalisation 
Criteria

A Generalization leads to an instance of metaclass GeneralizableEle-
ment, maintaining references to instances of metaclass Class. Generalisations in
UML are not bound to a given name space, since the metaclasses NameSpace and
GeneralizableElement share the same specialisation level. However, the well-
formedness rules require that sub- and supertype must reside in the same name space
[OMG97a, p. 31]. Another interesting aspect of metaclass Generalization can
be found in the property discriminator. According to the semantics document,
the discriminator builds partitions on the set of generalisation links. This corre-
sponds to the idea of generalisation criteria proposed by Schienmann [Sch97]. A set
of real-world entities can be categorised according to a variety of criteria, depending
on the analyst’s perspective. The discriminator captures the individual criteria
chosen by the analysts. Unlike Schienmann’s proposal, UML allows an assignment
several discriminators on a given specialisation level. 

Restricting 
Generalisation 
Hierarchies

Metaclass GeneralizableElement carries a set of properties dealing with gen-
eralisations hierarchies. When the properties isRoot and isLeaf are set, given
classes may not be further refined [OMG97a]. Furthermore, classes must not partici-
pate in generalisation hierarchies at all, when property isRoot is set. These restric-
tions do not suit requirements engineering, since problem analysis is likely to identify
structural and/or behavioural similarities between real-world things, that may be rep-
resented in terms of a generalisation. As a consequence, these properties will not be
regarded for component schemas.
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Abstract Classes The property isAbstract indicates that a given class specification cannot be
instantiated directly. This construct mainly introduces a uniform treatment of related
real-world things in problem analysis. According to our modelling experience, this
adornment is often used when similar structural as well as behavioural features of
classes are combined into a generalisation. The specialised classes directly represent
real-world things in the application domain, while the generalisation expresses the
similarity between them. It does not lead to instances of their own right, since there is
no direct counterpart in reality. However, building abstract classes can be considered
as design-related, since code sharing is the central concern for this activity. On the
other hand, introducing abstract classes is one of the important assets of problem
analysis. From an analysis perspective, concepts previously considered as independ-
ent will then be related to each other. Although this construct has a considerable sig-
nificance in design, it is equally valid in problem analysis and therefore will be incor-
porated in component schemas. According to the Notation Guide [OMG97b], class
names written in italics distinguish abstract classes from concrete ones. 

Aggregation versus 
Composition

Unlike Generalization, the metamodel does not contain a direct counterpart for
aggregation, i.e. a metaclass called aggregation. Furthermore, UML distinguishes in
between two different forms of aggregation: aggregation and composition. While
aggregation does not impose constraints on the life-time between whole and part,
composition relationships express a coinciding life-time of both whole and part. In
other words, parts in a composition have to be destroyed when the life-time of the
whole ends. Furthermore, parts in a composition must not be shared, i.e. an instance
of a part may not participate in several aggregates. Concrete life-time considerations
with respect to whole and parts have to be ignored in requirements engineering.

Composition in the 
Metamodel

As mentioned above UML does not feature compositions as individual metaclasses.
Furthermore, compositions are defined as adornments of metaclass Association-
End in terms of the property aggregation. The semantic document states:

“When placed on a target end, specifies whether the target end is an aggregation with respect to 
the source end. Only one end can be an aggregation.” [OMG97a, p. 18]

Figure 29 Different Notations for Compositions in UML

However, this essential consistency constraint has not been covered in the well-
formedness rules! This and other deficiencies have been discussed in detail in Ute
Schirmer’s diploma thesis [Schi98]. Generally speaking, n-ary relationships and
compositions are only distinguished by adornments on the AssociationEnds.
Composition, like associations, may carry a unique name. The Notation Guide
presents the following example for alternate visualisation of compositions with role

Window
Window

Slider Header Panel
scrollbar title body2 1 1

scrollbar [2] : Slider
title : Header
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names [OMG97b, p. 64]. Obviously the second notation on the right hand side of
Figure 29, p. 76 corresponds to array declarations in C++. The notation once again
points to the close similarity between class and type declarations, as discussed on
p. 67. 

Section Summary The restrictions with respect to the participation of classes in generalisation hierar-
chies will not be considered for component schemas. Composition has been selected
as the relevant construct for the representation of aggregation component schemas.
Discriminators for capturing the generalisation criteria and role names for composi-
tions will be regarded as comments. Finally, abstract classes are deemed relevant for
requirements engineering.

Figure 30 Revised Metamodel for Associations in Component Schemas

Dependencies and Traces

Besides n-ary and semantic relationships, UML offers a set of additional relation-
ships not covered in traditional semantic data models. Based on the metaclass
Dependency defined in the package Auxiliary Elements UML introduces a
set of specialisations detailing particular constructs for object-oriented analysis and
design. Figure 31 depicts the package Auxiliary Elements, including addi-
tional relationships from the package Core.
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Figure 31 Dependencies and Traces in the UML Package Auxiliary Elements [UML1, p. 43]

The starting point for this discussion is metaclass Dependency. As a specialisation
of metaclass ModelElement, dependencies have a name. Dependencies are not
bound to a specific name space, since its metaclass resides on the same specialisation
level as metaclass NameSpace. The semantics document states:

“A dependency states that the implementation or functioning of one or more elements require the 
presence of one or more other elements. All of the elements must exist at the same level of 
meaning, i.e. they do not involve a shift in the level of abstraction or realization.

In the metamodel a Dependency is a directed relationship from a client (or clients) to a supplier 
(or suppliers) stating that the client is dependent on the supplier, i.e. the client element requires 
the presence and knowledge of the supplier element.” [OMG97a, p. 22]

The property description explains the nature of the dependency in a plain-text
fashion. The relationship client depends on the presence of an arbitrary number of
ModelElement instances and the supplier relationship denotes the inverse
direction [OMG97a, p. 22]. Dependencies in UML originate from uses associations
in the Booch method. A dependency between two classes indicates that one class, the
client, relies on operations provided by a supplier [Boo94]. But dependencies may
also be used to indicate a dependency among packages. Since component schemas
exclusively model behavioural aspects in sequence diagrams, dependencies are not
applicable to classes. This restriction improves the orthogonality of the selected dia-
grams in component schemas and rigorously separates invariant from dynamic
aspects.

Categorising 
Dependencies

The recursive aggregation subDependencies allows further categorisation of
dependencies. The semantic document states:

“... a dependency can serve as a container for a group of Dependencies. This is useful, because 
often dependencies are between of groups elements (such as Packages, Models, Classifiers, 
etc.). For example, the dependency of one package on another can be expanded into a set of 
dependencies among elements within the two packages.” [OMG97a, p. 45]

The relationships templateParameter and argument combined with meta-
class Binding are related to the C++ templates and can therefore be discarded in
component schemas. Metaclass Refinement represents a dependency between
model elements on different levels of detail. Analysis classes may be distinguished
from design entities. So this construct will also be discarded in component schemas.
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Since Metaclass Usage guarantees the compatibility to the Booch Method, we also
leave out this construct. Finally, metaclass Trace introduces a rather interesting
construct. The metamodel states:

“A trace is a conceptual connection between two elements or sets of elements that represent a 
single concept at different semantic levels or from different points of view. However, there is 
no specific mapping between the elements. [...]
The construct is mainly a tool for tracing requirements.” [OMG97a, p. 47]

As a specialisation of metaclass Dependency, the trace relationship may link arbi-
trary UML ModelElements. As detailed in Section 7.4, the UML trace relation-
ship provides an ideal basis for incorporating component schema relationships into
the metamodel.

Figure 32 Revised Metamodel for Dependencies in Component Schemas

5.2.3.3 Packages & Models

Large-scale specifications in UML can be organised into packages. This mechanism
has also been applied for dividing the entire UML metamodel into comprehensive
partitions. The Semantics Document states:

“A general purpose mechanism for organizing elements into groups. Packages may be nested 
within other packages. A system may be thought of as a single high-level package, with 
everything else in the system contained in it.” [OMG97a, p. 155]

Packages, as specialisations of metaclass ModelElement, have a unique name and
logically group its contained elements. Although this grouping entirely depends on
the analyst’s perception, packages may represent a coherent portion of a given appli-
cation domain. Despite the fact that metaclass Package does not carry properties of
its own, the intended grouping is realised through inherited relationships. Metaclass
NameSpace, as a generalisation of metaclass Package, relates the contained
classes through the relationship ElementOwnership. Its property visibility
indicates whether an element contained in package may or may not be visible to other
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packages. Hiding elements of a specification restrains the detection of correspond-
ences, as a central prerequisite for requirements validation. Thus component schemas
do not restrict the visibility of package contents.

Figure 33 Packages in the UML Model Management Package [OMG97a, p. 129] 

All model elements comprised in a package have a unique name within the entire
specification. As a specialisation of NameSpace, all the names of all contents of a
given package are prefixed with the package name. Package contents may maintain
relationships to model elements in other packages, realised through the relationship
ElementReference. The property visibility will be discarded in compo-
nent schemas, in order to keep all package contents visible. The property alias
defines a local name within a given package for referenced external elements.

Metaclass Subsystem Metaclass Subsystem is another interesting specialisation of metaclass Package
and contains model elements such as classes, associations or even packages. Rum-
baugh states in the UML Reference Manual:

“A subsystem is a grouping of model elements, of which some constitute a specification of the 
behaviour offered by the contained model elements.” [OMG97a, p. 158]

But unlike packages, subsystems stress behavioural abstractions of its contents. As a
specialisation of metaclass Classifier, subsystems principally carry behavioural
as well as structural features. Well-formedness rules, however, exclude structural fea-
tures. This means subsystems can be regarded as modules in modular programming
languages such as Modula-2. This hypothesis will further be underpinned through the
property isInstantiable in metaclass Subsystem. UML classifies the subsys-
tem contents into specification and realisation elements.
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“The specification of a subsystem consists of the specification subset of the contents together 
with subsystem’s features (operations). It specifies the behavior performed jointly by instances 
of the classifiers in the realization subset, without revealing anything about the contents of this 
subset.” [OMG97a, p. 135]

Subsystems as Facade 
Classes

This definition corresponds to the idea of facade classes, in the sense of Gamma
[GHJ+95]. Facade classes provide a uniform interface to a set of related classes
jointly performing a defined functionality. They introduce layers to otherwise “flat”
object models and hide a potentially complex interaction of the underlying classes.
Subsystem clients may rely on a narrow and loosely coupled interface, facilitating
reuse and customization. The semantic document continues the definition as follows:

“The specification is made in terms of use cases and/or operations, where use cases are used to 
specify complete sequences performed by the subsystem (i.e. instances of its contents) 
interacting with its surroundings, while operations only specify fragments. Furthermore, the 
specification part of a subsystem also includes constraints, relationships between the use cases, 
etc.” [OMG97a, p. 135]

Subsystems as 
Control Objects

Relating use cases to subsystems corresponds to Jacobson’s idea of control objects
[JCJ+94], which comprise behaviour that cannot naturally be related to individual
domain classes. While facade classes stress layering of classes, control objects incor-
porate control flow of an object-oriented application, derived from use cases and rep-
resented in terms of sequence diagrams. Gamma’s definition can be regarded as
design-related, since domain classes are hierarchically structured. Opposed to this
objective, Jacobson deems control objects as analysis constructs incorporating an
abstraction of the control flow among the set of interacting objects of a use case.

Although we follow Jacobson’s argument and interpret subsystems as control objects
in this work, we still have to exclude subsystems from further consideration. The
major reason for this decision is the lack of subsystem support in off-the-shelf CASE
tools like Rational Rose.

Metaclass Model While packages logically group its contents, a complete specification in UML is
organised in the metaclass Model. The semantics document states:

“A model is an abstraction of a modeled system, specifying the modeled system from a certain 
viewpoint and a certain level of abstraction. A model in the sense that it fully describes the 
whole modeled system at the chosen level of abstraction and viewpoint.” [OMG97a, p. 130]

Packages, Models & 
Component Schemas

Unlike its generalisation Package, metaclass Model does not have a visual repre-
sentation in the notation. In other words, a model is the top-level package, describing
the entire system including its environment. This representation is quite advanta-
geous for component schemas. In concurrent requirements engineering, a component
schema corresponds to an instance of metaclass Model. For the integration of the
entire problem description, all component schemas have to be integrated into a new
instance of metaclass Model. The component schemas then have to be converted
into Package instances. As a positive side effect, the logical grouping of component
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schemas can be preserved in the complete problem description, increasing the tracea-
bility of the problem description. The name space concept in UML also avoids name
clashes for package contents originating from different component schemas.

Dependency and 
Packages

As mentioned in Section 5.2.3.2, dependencies in UML originate from uses associa-
tions in the Booch method and can be classified into two groups with slightly differ-
ing semantics [Boo94]. According to Booch, a dependency between two classes
denotes that one class – the client – relies on operations provided by a supplier. This
matches the definition in the UML semantics. Dependencies are also applied to
denote provision of services among classes in different packages. Since component
schemas exclusively model behavioural aspects in UML sequence diagrams, depend-
encies are not applicable to classes. 

There are basically two different possibilities to restrict the uniform treatment of
classes and packages for dependencies in component schemas. The first solution may
formulate a new OCL constraint. This idea corresponds to the well-formedness rules
in the semantics document. Another way is enhancing the metamodel itself, i.e mov-
ing the relationships client and supplier from metaclass ModelElement to
metaclass Packages (see Fig. 34). Both solutions have the potential to clarify com-
ponent schema semantics. Nevertheless, we prefer additional well-formedness rules.
Maintaining structural compatibility compared to the UML metamodel will in the
long term guarantee the compatibility of component schemas to CASE tool imple-
mentations. Avoiding dependencies among classes and concentrating on a few com-
prehensive and well-chosen modelling constructs was the central motivation for
deferring the discussion of the dependency association. 

Figure 34 Revised Metamodel for Classes and Associations in Component Schemas 
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5.2.3.4 Stereotypes

As introduced in Section 5.2.3.1, stereotypes allow a categorization of metamodel
elements at instance level. This approach enables a value-based categorisation of
metamodel elements, which cannot be achieved by the rather inflexible specialisa-
tion. Moreover, metamodel elements can be further classified by CASE tool users at
runtime. So analysts may introduce their individual classification scheme for compo-
nent schema contents. Metaclass Stereotype is bound to a name space and can be
applied to all metamodel elements. The classification itself, however, is realised
through the metaclass TaggedValue, carrying the classification criteria. Figure 35
depicts the relevance of the UML metamodel:

Figure 35 UML Package Extension Mechanism 

Originally stemming from Jacobson’s [JCJ+94] distinction of entity, control and
interface classes, UML extends this user-defined classification mechanism for model
elements significantly. Stereotypes also provide a suitable basis for the classification
of different component schema relationships, as detailed in Chapter 7. Therefore ster-
eotypes will be incorporated in component schemas.

5.2.4 Use Cases

Use cases are the central means for the elicitation of requirements in this work. Relat-
ing constructs of the regarded UML views to use case’s plain-text descriptions pro-
vides multiple access to complex requirements. Based on [RAB96] and [Rum94] we
proposed the following template for use cases. The fields Author, References
and Open Questions are intended to improve document source traceability and
clarify open questions, when use cases have been written by analysts instead of
domain experts.

The field Description contains the course of activities in the analysed business
process. Enumerating the individual activities in the Description field improved
clarity and readability. The enumeration also increases the traceability between a use
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case and its derived sequence diagram. A complete reference for this structure includ-
ing the results of an analysis project in the air traffic management domain can be
found in [Wor96].

Figure 36 Template for Complex Use Cases

5.2.4.1 Complex Use Cases: A Pragmatic Composition Mechanism for Business Processes

Complex business processes, especially in application domains where control
[Dav93] is the most prominent external behaviour, are often difficult to describe with
use cases in their original form [JCJ+94]. Extends and uses associations among use
cases provide a very low degree of structure for complex business processes. In our
air traffic management domain, the analysed business process contained small groups
of activities that appeared in a variety of use cases, always in different orders. Conse-
quently we created a separate use case in its own right for these recurring groups of
activities. Nevertheless, the lack of a clear composition mechanism prevented the
combination of these newly created use cases into complex use cases.

Figure 37 Notation for the Composition of Complex Use Cases Based on Path Expressions

Path expressions [CH74] provide a pragmatic formalism for the construction of com-
plex use cases and therefore solve the described deficiency. Sequences, alternatives
and iterations now form complex business processes on the basis of so-called atomic
use cases. The same mechanism can also be applied for the decomposition of com-
plex business processes, improving the scalability of plain-text descriptions dramati-
cally. Incorporating path expression to use cases leads to the new field Assembly in
the use case template (see Figure 36) and an extended notation for use case diagrams,
depicted in Figure 37. The Assembly field is only specified in complex use cases
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and defines the order of atomic use cases forming the entire business process. Due to
their plain text character, we did not foster the idea of a proper formalisation of com-
plex use cases. Further details can be found in [Wor96].

Component Schema 
Contents

Component schemas are partial UML specifications, modelling an initial partition.
They comprise a set of plain text use cases describing all relevant business processes
within the analysed partition. Use cases follow a defined structure and can be further
decomposed. Complex use cases can be constructed from a set of atomic use cases,
where a path expression specifies their order. Each atomic use case will be structured
in a particular sequence diagram, modelling the business process in terms of objects
exchanging messages. Structural aspects mentioned in a use case will be modelled in
a static structure diagram, defining classes, attributes and associations. A detailed dis-
cussion of relevant constructs for component schemas including their notation is
introduced in the next section.

5.2.4.2 A Metamodel for Complex Use Cases

The UML metamodel [OMG97a] classifies use cases as behavioural elements and for
convenience sake defines an individual package named Use Cases. Figure 38
depicts the relevant metaclasses:

Figure 38 UML Package Use Cases

According to the metamodel, use cases define system behaviour without revealing its
internal structure. They specify a sequence of activities the system has to perform in
interacting with system users. In order to clarify semantics of use cases, Figure 39
depicts the amalgamation of the UML packages Core and Use Cases.

Use Cases & Actors Use cases as well as actors are specialisations of metaclass Classifier and there-
fore carry a name and may be characterised by a set of behavioural and structural fea-
tures. This approach leads to a counterintuitive situation, since use cases as well as
actors may be characterized by properties. The metamodel document states:

“An actor defines a coherent set of roles that users of an entity1 can play when interacting with 
the entity. An actor has one role for each use case with which it communicates”
[OMG97a, p. 90]
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and their Runtime 
Counterparts

Describing system users with properties thus contradicts the analyst’s perception. The
external character of system users who are not an integral part of the system at hand
has not been considered. A similar argument holds for use cases themselves. Relating
properties to use cases leads to a conceptual overload in the sense of Wand & Weber
[WW93], since only the metaclasses Class and DataType (see Fig. 34, p. 82) may
comprise properties. From this perspective use cases can be regarded as the same
construct. Use cases in the UML metamodel are not only characterised as specifica-
tion time entities, they also have runtime counterparts, represented in the metaclasses
Instance and its specialisation UseCaseInstance.

Figure 39 UML Package Use Cases and Related Metamodel Elements from the Package Core

The motivation behind this representation can once again be found in Jacobson’s idea
of control objects [JCJ+94]. Behaviour not naturally bound to individual objects
should be bound to control objects, which can be regarded as an object-oriented rep-
resentation of control flow in the sense of imperative programming languages. Use
cases specify a sequence of activities the system has to perform during an interaction
with business users. These activities are structured in a sequence diagram and are rep-
resented in control objects in design. Unlike Jacobson, UML does not distinguish
between control and entity objects on a metamodel level. The metaclass Instance
realises both constructs at runtime, entity classes as well as control objects. In order
to assure uniform treatment of control and entity objects at runtime, the metamodel
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represents metaclass UseCase as a specialisation of metaclass Classifier. Thus
use cases like classes may be characterised by behavioural, as well as structural prop-
erties. This discussion is detailed below after the introduction of use case relation-
ships.

Use Case 
Relationships

UML foresees two dedicated use case relationships, so called uses and extends rela-
tionships. The semantics document states:

“extends
A relationship from a use case to another, specifying how the behaviour defined for the first use 
case can be inserted into the behavior defined for the second use case” [OMG97a, p. 152]

“uses
A relationship from a use case to another use case in which the behavior defined for the former 
use case employs the behavior defined for the latter.” [OMG97a, p. 160]

The uses relationship can be regarded as a specialisation of use cases, although due to
the textual character of use cases there are no precise semantics. The metamodel real-
ises both relationships as stereotyped instances of metaclass Generalization.
The property extensionPoint of metaclass UseCase marks the location within
a use case where the additional behaviour of an extended use case comes in.

Figure 40 Decoupling Classes, Use Cases and Actors in the Metamodel 

Deficiencies of the 
UML Use Case 
Representation

The UML metamodel stresses two aspects of use cases which do not suit require-
ments engineering. Use cases are basically treated as diagrams in UML, which are
detailed as a sequence diagram. In other words, use cases are only an iconic represen-
tation of the underlying sequence diagram. They carry a unique name for the mod-
elled business process, depicting the involved actors as well as related use cases. The
textual description of the modelled business processes will not be incorporated to the
repository of the CASE tool implementation. As a result, the most comprehensive
part of the specification with respect to non-IT stakeholders remains completely out-
side the scope of UML. Treating actors and use cases similar to class specifications
leads to the second problematic aspect with respect to requirements engineering.
Both constructs, actors as well as use cases, are represented as discrete elements in a
given model, i.e. they can be mapped to class specifications in the code generation of
CASE tools. This kind of design-related representation suits code generation, but also
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leads to a concept overload in the sense of Wand & Weber [WW93], which reduces
clarity of the modelling technique and hinders understanding of the semantics by sta-
keholders without extensive IT background.

Figure 41 Revised Metamodel for Complex Use Cases in Component Schemas

In order to overcome the analysed deficiencies and incorporate the pragmatic decom-
position mechanism, as described in Section 5.2.4.1, the metamodel has to be
enhanced. Decoupling use cases at specification time from control objects at runtime
can be realised through changes to the specialisation hierarchy in the UML package
Use Cases. Placing the metaclasses Actor and UseCase on the same specialisa-
tion level as metaclass GeneralizableElement prevents relating properties to
these constructs (see Figure 40, p. 87). A redefinition of the metamodel, however,
threatens the compatibility to CASE tool implementations and therefore will be dis-
carded. On the other hand, the proposed decomposition mechanism in
Section 5.2.4.1, enforces those changes. Nevertheless, changes to the metamodel
always have an impact both on the structure of models and on instances in terms of
the ISO IRDS [ISO10027].
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Use Case 
Representation 

In order to keep the impact of metamodel changes minimal we define a new meta-
class DecomposableUseCase, which specialises the existing UML metaclass
UseCase. It introduces the additional structural properties to the metamodel, with
the attributes precondition, postcondition, errorCondition, author,
references and openQuestions. The UML composition between the meta-
classes ComplexUseCase and DecomposableUseCase realises the decompo-
sition mechanism. Instances of metaclass ComplexUseCase may contain arbitrary
collections of decomposed use cases, represented through metaclass AtomicUse-
Case. The order of use cases within an instance of metaclass ComplexUseCase is
specified in its property pathExpression. A formal interpretation of this path
expression is not provided. Finally, metaclass Activity comprises the textual
descriptions of the described business process in the field description of the use case
template. 

Incorporating 
Use Case Activities to 
the Metamodel

Realising individual statements in the use case’s plain-text description as a metaclass
in its own right leads to improved traceability among component schemas and use
cases. Unstructured textual information represented through instances of the meta-
class Activity1 can now be related to derived representations in sequence and
static structure diagrams. First of all, the use case activities become part of the prob-
lem analysis model itself after which, they can be related to all derived representa-
tions in component schemas. The enhanced metamodel for component schemas is
depicted in Figure 41.

5.2.5 Sequence Diagrams

UML proposes two different notations for object interaction, documenting behav-
ioural requirements in component schemas. Both diagrams depict examples interac-
tions of the system with its users and may be used to structure the textual representa-
tion of use cases in terms of objects exchanging messages. Consequently, each use
case will be structured in terms of either a sequence or a collaboration diagram in
component schemas. Sequence diagrams depict inter-object behaviour in a time
sequence, while collaboration diagrams depict the relationship among objects with-
out incorporating time as separate dimension. In order to clarify the distinction we are
going to present an example using both notations.

Sequence Diagrams 
Suit Interpretation of 
Use Cases

We prefer sequence diagrams for the purposes of object-oriented interpretation of
activities in a use case. Textual activities in a given use case will be represented as
objects exchanging messages and the course of use case activities directly corre-
sponds to the course of messages in the sequence diagram. Especially the direct cor-
respondence between the course of activities in a use case and the course of messages
exchanged among objects enhances the comprehensibility of the documented

1 Whenever we refer to this new metamodel element, we are going to write the term activities in italics
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requirements to business users. The combination of use case and sequence diagrams
also provides a comprehensive and traceable justification for operations specified for
a given class specification in the derived static structure diagram. Although the
course of messages is indicated through a number, collaboration diagrams are
regarded as less comprehensible in practice. In the remainder of this work we concen-
trate on UML sequence diagrams, specified in the UML metamodel package Col-
laborations.

Figure 42 Examples of UML Sequence (a) and Collaboration (b) Diagrams 

Sequence Diagrams 
Semantics

The semantics for sequence and collaboration diagrams are both defined in the UML
package Collaborations, documenting once again the close relationship
between the two modelling techniques. The concrete mapping of the semantics to the
two alternate modelling techniques, however, is described in the UML Notation
Guide [OMG97b], so the discussion will incorporate both the semantics and the nota-
tions document.

Sequence Diagrams form the final building block of component schemas in this
work. They structure the textual descriptions of individual activities described in a
given use case in terms of objects exchanging messages. As a specialisation of meta-
class NameSpace collaborations have a unique name within a name space. Meta-
class ClassifierRole represents prototypical objects participating in a given
collaboration. The objects are called prototypical in order to avoid the runtime char-
acter of the term object. This runtime character is formed by the intension / extension
dichotomy, where objects are generally regarded as instances of a given class. The
semantics document states:

“object
An entity with a well-defined boundary and identity that encapsulates state and behavior. State 
is represented by attributes and relationships, behavior is represented by operations, methods, 
and state machines. An object is an instance of a class. ...” [OMG97a, p. 155]

ClassifierRoles vs. 
Prototypical Objects

As a specialisation of metaclass Classifier, metaclass ClassifierRole may
contain behavioural as well as structural features and is based on class specifications,
which is expressed through the relationship base. As a result, instances of the meta-
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class ClassifierRole may comprise properties of their own, i.e. which are cur-
rently not defined for the generalised instance of metaclass Classifier, on which
this instance is based. So each instance of metaclass ClassifierRole depicts a
restricted view of a classifier in a given sequence diagram. This restriction is
expressed through the aggregation availableFeature between the metaclasses
ClassifierRole and Feature. In principle, assigning individual features to
ClassifierRoles also allows the specification of OOram role models [Ree96],
as described in Section 3.3.4.2. 

Figure 43 UML Package Collaborations [OMG97a, p. 81]

The current version of the metamodel, however, does not promote this possibility
through the following well-formedness rules:

“ClassifierRole
[2] The Features of the ClassifierRole must be a subset of the base Classifier
self.base.allFeatures -> includesAll (self.availableFeature)

[3] A ClassifierRole does not have any Features of its own.
self.allFeatures -> isEmpty” [OMG97a, p. 84]
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Only existing Features of a Classifier can be used in a ClassifierRole,
just the opposite way round to OOram role model collaboration, where only those
properties relevant in a given collaboration are specified and lead to a definition of an
OOram type. Role model synthesis finally maps types to class specifications, i.e.
defining all properties for a class specification in terms of a given programming lan-
guage. As we will see, this approach in the UML metamodel is basically related to
structural features, which are irrelevant in sequence diagrams, where the primary
concern is modelling behavioural requirements.

The property multiplicity of metaclass ClassifierRole depicts the
number of instances playing this role in a given sequence diagram. Several prototypi-
cal objects (metaclass ClassifierRole) based on the same class specification
(metaclass Classifier) may participate in a sequence diagram. The usage of the
property multiplicity is not clearly defined in the semantics document and we
assume it is intended for accounting purposes in CASE tools. This property may pre-
vent CASE tool users from permanent recreation of ClassifierRoles sharing
the same features. As a specialisation of Classifier each instance of Classi-
fierRole carries its own name, guaranteeing the identity of the prototypical
objects. Therefore we suppress the property multiplicity in component sche-
mas. The metaclasses AssociationRole and AssociationEndRole are only
relevant in Collaboration diagrams and can therefore be ignored for the remainder of
this section.

Realisation of Inter-
Object Behaviour

The inter-object behaviour described in a given sequence diagram is represented
through the metaclass Interaction, which aggregates instances of metaclass
Message. The order of messages is represented through the metarelationships
predecessor and activator. The objects involved in a sequence diagram are
realised through the metarelationships receiver and sender between the meta-
classes Message and ClassifierRole.

Messages and Actions Relevant messages within a sequence diagram are represented through the metaclass
Message. In order to allow the definition of new behavioural properties for proto-
typical objects, they are only related to Requests via the metarelationship
request. The context of messages is defined through the metaclass Inter-
action which relates individual instances of metaclass Message to an instance of
metaclass Collaboration. Through this indirection the same messages may be
used in several sequence diagrams and decouple messages from operations defined
for a given Classifier in the static structure diagram. Metaclass Message needs
further clarification, since in the current version of the metamodel it is completely
unrelated to the metaclass ModelElement, which contains the name of the mes-
sage at hand. Therefore we introduce the specialisation between metaclass Model-
Element and metaclass message (see Fig. 45, p. 94). The order of messages
within sequence diagrams is represented through the relationships predecessor
and activator. Arguments may also be bound to Actions represented through
the aggregation actualArgument. 
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The individual character of a message is represented through the metarelationship
action among the metaclasses Message and Action. According to the seman-
tics document, Actions specify the computational statement, i.e. they distinguish
between signals or events and various other forms of operation invocation that can be
found in object-oriented programming languages. Metaclass CallAction repre-
sents the invocation of an operation on the receiving prototypical object. Metaclass
LocalInvocation is used when sending and receiving prototypical objects are
the same. This corresponds to the invocation of local operations via the pseudovaria-
ble self in Smalltalk. A SendAction is used for events or signals in the OPD
terminology [ODP P1]. Signals do not directly lead to the invocation of an operation.
Thus the reaction of an object is non-deterministic. ReturnActions return results
to the caller. The life-cycle of prototypical objects is affected by CreateAction,
TerminateAction and DestroyActions. Creation and destruction of proto-
typical objects is represented through CreateAction and DestroyActions.
This approach corresponds to the keywords new and delete in C++. Otherwise the
initialisation of potentially complex objects has to be revealed, which leads to a vio-
lation of encapsulation. Metaclass TerminateAction corresponds to the
finalize() operation in Java. This operation masks code executed when an
object has to be destroyed, for instance freeing file handles. Metaclass Uninter-
pretedAction is used when no specific character of the message has been
defined. This default action is a consequence of the abstract character of metaclass
Action, that does not lead to instances.

The properties of metaclass Action further detail the behaviour of actions. Concur-
rency is defined through the property isAsychronous and property recur-
rence defines how many times a given Action is to be performed. Property tar-
get allows the definition of several receivers for Actions corresponding to a
multicast in network protocolls. Finally, the semantics of property script remain
undefined. There are two potential interpretations for this property. On the one hand
it may be used for a detailed textual specification of the behaviour of an Action or
it may be used for code generation purposes.

Figure 44 Actions in the UML Package Common Behaviour
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Selected Actions in 
Component Schemas

From a problem analysis point of view, all properties of metaclass Action can be
neglected, since they detail design and implementation aspects and potentially lead to
premature design. A similar argument holds for metaclass SendAction, since we
do not assume an event-based architectural style in the sense of Shaw and Garlan
[SG96]. Sequence diagrams document behavioural requirements, i.e. the functional-
ity that has to be realised by distinct class specification. Therefore we prefer Call-
Actions to SendActions and TerminateActions can also be neglected,
since they refer to the Java programming language. Due to the high-level character of
problem analysis models, a detailed specification of return values in Metaclass
ReturnAction can also be disregarded. Component schema’s primitive data type
system (see p. 68) provides another important argument against a detailed specifica-
tion of return values. The properties of the metaclasses CallAction and Unin-
terpretedAction can also be disregarded, since they aim for a detailed specifi-
cation of action behaviour in design. The metamodel constructs valid in component
schema’s subset of sequence diagrams are depicted in Figure 45.

Figure 45 Revised Metamodel for Sequence Diagrams in Component Schemas 

Control Flow 
in Sequence Diagrams

A representation of control flow in sequence diagrams is described in the UML nota-
tions guide [OMG97b]. So-called guard conditions [OMG97b] can be attached to
individual arrows representing the Action, leading to branches in the thread of con-
trol (see Fig. 46, p. 95). Although this construct is principally desirable for structur-
ing use cases, its value for problem analysis is in question. Sequence diagrams in this
context provide means for determining behavioural requirements, as derived from
activities in a given use case. These behavioural requirements then will be allocated
to class specification in static structure diagrams in the form of operations. Control
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flow, however, already reveals parts of the internal realisation and can therefore be
considered as design-related. As a result we may suppress control flow in component
schemas, leading to straightforward mapping of activities in a use case and the
derived sequence diagram.

Traceability among 
Use Cases and 
Sequence Diagrams 

Integrating complex use cases to the metamodel leads to a number of advantages that
cannot be realised in any other way. As metamodel elements, UML trace relation-
ships may link use case activities to messages in sequence diagrams. In fact, all infor-
mation derived from complex use cases can now be linked back to the respective
activity. Metaclass Activity in combination with the metarelationship Trace
increases the overall traceability of component schemas compared to the current
UML metamodel edition.

Figure 46 Control Flow in Sequence Diagrams

Section Summary The selected subset of UML sequence diagrams depicts interacting prototypical
objects as a computational interpretation of activities described in a complex use
case. Sequence diagrams as specialisations of metaclass ModelElement have a
unique name. Each use case is structured in a sequence diagram in a component
schema. Prototypical objects are depicted as rectangles containing the name of the
actual instance and the related class specification defining the offered behavioural
properties. Named arrows represent messages exchanged among the prototypical
objects. Messages as specialisations of metaclass ModelElement have a name but
are not related to a given name space. As a result, messages are visible within the
entire component schema. The individual character of messages is characterised
through specialisation of metaclass Action. CallActions represent the invoca-
tion of operations offered by a given class specification, while LocalInvocation
represents the invocation of an operation defined by the respective prototypical
object. The object life-cycle is specified through CreateAction and Destroy-
Actions, while UninterpretedActions are used as the default for messages.
A dashed line under each prototypical object depicts the dimension time. Time con-
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5.2.6 Component Schema Summary

The beginning of this section introduced all syntactical elements used in component
schemas. The semantics of these syntactical elements is based on the intuitive seman-
tics of UML, as stated in the UML semantics document [OMG97a]. So in this sub-
section we will further detail the definition of component schemas. Initial partitions
are documented in terms of our selected UML subset described in the previous sub-
section. A component schema is a model documenting an initial partition. Compo-
nent schemas comprise three different viewpoints, namely complex use cases,
sequence and static structure diagrams. All design-related constructs have been elim-
inated, in order to guarantee a solution-neutral character of problem analysis models. 

Definition23 (Component Schema)  –  A component schema is a model-based 
multi-viewpoint specification documenting requirements of an initial partition. 
It consists of the UML viewpoints use cases, sequence and static structure 
diagram and is populated with artefacts. ◊

Artefacts belong to the realm of the model world and denote those collections of real-
world things of an initial partition deemed relevant by the analysts. In order to
abstract from given syntactical elements in a component schema, such as class or
association, we introduce the term artefact.

Definition24 (Artefact)  –  An artefact consists of a term and a construct. ◊

The term of an artefact expresses a concept and the construct models the regarded
aspect of this concept. The relationship between artefacts, terms and constructs is
depicted in Figure 47. The main reason for introducing the new term artefact is to
provide a generic term for all elements of component schemas and to analyse the spe-
cific impact of names in concurrent requirements engineering (see Chapter 6). We
leave out a lengthy summary of the selected UML constructs valid in component
schemas (see Appendix A, p. 231). 

Figure 47 Artefacts

5.2.6.1 Relating Component Schemas to the ISO Information Resource Dictionary Standard

Unlike schema integration for federated databases, requirements engineering does
not deal with extensions, in the sense of tuples in a relational database management
system. Therefore artefacts have to be regarded as intensional elements and compo-
nent schema relationships deal with the similarity of artefacts in given partitions. 
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The ISO IRDS 
Architecture

The ISO Information Resource Dictionary Standard [ISO10027] identifies a four
layer architecture for modelling techniques. The lowest layer only contains pure
instances, i.e. records in a database. The second layer describes concepts in terms of
classes and associations. In other words, a component schema describing an initial
partition is located on layer two. The UML metamodel itself has to be regarded as an
instantiation of layer three, where valid UML constructs are defined. This holds for
the structured part of component schemas, namely complex use cases, sequence and
static structure diagrams. Plain-text requirements statements, as encountered in oper-
ational requirements documents, have to be excluded. They do not comprise a for-
malised model and their unrestricted use of natural language gives rise to ambigui-
ties. Layer four is only of the interest when the metamodel has to be adaptable.
ConceptBase [CB97] designed at the computer science department of RWTH Aachen
is an example of a CASE-tool realising all four levels.

Considered ISO-IRDS 
Levels in this Work

Relevant levels for this work are level 2 and 3, since requirements engineering does
not lead to concrete instances, persistently stored in a given database management
system. Level four can also be neglected, since we do not want to manipulate the
metamodel at run-time. Component schemas are layer two elements, i.e. instances of
the UML metamodel. Introducing component schema relationships as first-class
modelling constructs leads to possible enhancements of the current version of the
UML metamodel, located on layer 3 of the IRDS architecture (see Section 7.4).

5.2.6.2 Advantages of Component Schemas

Component schemas are based on a subset of UML constructs tailored for require-
ments engineering. All design-related constructs have been eliminated, in order to
guarantee a solution-neutral character of problem analysis models. With exception of
use cases, no changes have been applied to the metamodel, in order to ensure the
compatibility to tool implementations based on the OMG standard [OMG97a,
OMG97b]. Therefore complex use cases lead to new specialisations of the existing
metaclass UseCase in the metamodel. While UML only regards use cases as an
iconic representation for sequence diagrams, component schemas stress the value of
textual information. Incorporating plain-text information into the repository has a
number of significant advantages, especially with respect to stakeholders with limited
modelling background. Incorporating the activities into the repository increases the
traceability of source information, since structured and unstructured information
reside in a single repository. Moreover, formalised and unstructured information can
be related, increasing the comprehensibility of analysis models to business users. The
intellectual process behind modelling, i.e. interpreting a problem statement in terms
of a model, also becomes more transparent to business users and remains traceable
later on.

Component Schemas 
and Stakeholders

The varying degree of formality within component schemas suits the different skills
of project participants. Use cases can be elaborated by business users and domain
experts with little coaching from modelling experts. Structuring textual requirements
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in terms of object-oriented analysis models remains the prime intellectual activity for
modelling experts. Documenting requirements in a textual as well as in graphical
form improves the comprehensibility to all project participants. In the long term this
strategy increases the success of modelling activities in industry-scale projects.
Reviewing models by domain experts can be improved and the mutual suspicion and
rivalry among IT and non-IT stakeholders may be improved.

Component Schema 
Process

The elaboration of component schemas can be divided into the following phases.
Analysts and business users select relevant business processes in the initial partition
at hand. Then business users and domain experts elaborate the use cases, i.e. they
describe the individual activities and actors in a concise form. Analysts then review
the description in order to understand the terminology and possibly improve the
description of business activities. Use cases mark the first set of requirements, with-
out any computational interpretation, documented in a problem analysis model.
Afterwards analysts structure use case activities in terms of sequence diagrams.
Structural requirements will be modelled in a static structure diagram. Relating plain-
text to model elements increases the comprehensibility and traceability of problem
analysis models. Finally, the entire component schema has to be reviewed with the
participating business users. The reviewed component schema comprises the com-
plete understanding of the problem statement in terms of structural and behavioural
requirements. Only a prioritisation of requirements, i.e. an identification of manda-
tory and optional requirements, is still missing. This activity may be accomplished in
requirements validation and therefore remains outside the scope of this work.

5.3 Using Component Schemas in Concurrent Requirements Engineering 

This subsection discusses the mapping of logical partitions to component schema
constructs as well as the different representation of inter-partition and global require-
ments.

Partition Environment Class specifications provide the sole representation for structural and behavioural
requirements in component schemas. Packages group class specifications and possi-
bly further divide the partition into coherent logical parts, but they do not represent
any kind of requirement. Unlike Wand’s & Weber’s [WW93] ontology for informa-
tion systems, UML does not provide a distinct construct for the representation of the
system boundary. Thus there it is no clear distinction between partition contents and
partition environment. Consequently, a distinct representation for inter-partition
requirements is also missing. However, as we argue in Section 8.2, this distinction is
vital for the management of component schema relationships. Stereotypes as user-
defined classifications of UML metamodel elements bypass the missing construct
partition boundary. Jacobson [JCJ+94] for instance distinguishes between entity, con-
trol and interface objects. The latter category falls into two separate groups. The first
group of interface objects deals with the human-machine interface, while the second
one is related to interfacing with external systems. A clear distinction between these
completely different kinds of requirements seems desirable in industry-scale projects.
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Class specifications dealing with external systems are vital for system integration and
carry important requirements for the functionality of the entire system. Structural as
well as behavioural requirements have to be specified, in order to specify proper
interfacing for the future system. The requirements for user interface and external
systems also diverge. Statements like “The user interface shall be implemented using
the Microsoft Foundation Classes” are related to non-behavioural requirements,
while statements like “Messages received from system xyz shall be processed within
.5 seconds” comprise behavioural and temporal aspects. Therefore we prefer to use
individual stereotypes to separate these different kinds of class specification. Class
specifications representing the future user interface will be marked with the stereo-
type «HMI», while we reserve the stereotype «interface» for class specifications
depicting the partition environment. 

Partitions and 
Component Schemas

Having distinguished between the class specifications inside the area of discourse
and class specifications forming the partition environment, we now want to focus on
mapping partitions to component schemas. Partitions can be mapped to component
schemas in two different ways, a model-based and a package-based approach. Since
models are realised as specialisations of the UML metaclass Package, there is only
little difference between the two approaches. Nevertheless, these different representa-
tion, have a considerable impact on the management of component schema relation-
ships. Model-based partitions take a straightforward approach to mapping initial par-
titions to component schemas. An initial partition is mapped to a component schema
carrying the same name. Class specifications with the stereotype «interface»
mark the partition environment, while place holders for the user interface are marked
with the stereotype «HMI». All other class specification in a static structure diagram
form the actual problem statement. The second approach maps a partition to a UML
package. In this context the component schema and the package representing the ini-
tial partition carry the same name.

Model- versus 
Package-Based 
Partitions

Model-based partitions take an isolated perspective to the component schema repre-
senting a given initial partition. All class specification marked with the stereotype
«interface» are outside the area of discourse. Within industry-scale projects
however, inter-partition requirements mark dependencies among partitions. Espe-
cially class specifications representing this category of requirements are subject to
coordination among affected analyst teams. Unresolved inter-partition requirements
threaten the completeness of a specification and in the worst case may obstruct sys-
tem integration. Package-based partitions allow a fine grained representation of
inter-partition requirements. As organisational units, they will be indicated using the
stereotype «partition». Packages representing initial partitions can clearly be
distinguished from those packages logically grouping model elements. The area of
discourse is represented as a set of UML packages representing the initial partitions.
Class specifications representing known inter-partition requirements can now be
assigned to the particular partition deemed responsible for the settlement of the
requirement. Class specifications representing inter-partition requirements are sub-
ject to the management of component schema relationships and have to be notified to
the affected analyst teams. In this approach only class specifications deemed external
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to the entire problem statement carry the stereotype «interface». This approach
also increases the awareness of analysts assigned to other partitions for inter-parti-
tion requirements.

Figure 48 Model- versus Package-Based Partitions

Inter-Partition 
Requirements

Having introduced possible mappings of initial partitions to component schemas, we
still have to clarify another highly relevant aspect, namely inter-partition require-
ments. Class specifications within the area of discourse of a given partition may
depend on services provided by other partitions. The inter-partition requirements are
crucial with respect to minimality and consistency of the overall problem analysis
model. Consequently we are looking for different representations of inter-partition
requirements in component schemas. Since inter-partition requirements reside out-
side the actual scope of the analyst team elaborating its assigned partition, these inter-
partition requirements usually result in less detailed artefacts with respect to the par-
tition contents. This gives rise to the question of suitable representations of inter-par-
tition requirements.

Facade-Based Inter-
Partition 
Requirements

Class specifications as the central abstractions for real-world things in object-ori-
ented problem analysis therefore provide the only valid construct for a representation
of structural as well as behavioural requirements in component schemas. Generally
speaking, class specifications provide two different representations of inter-partition
requirements on differing levels of detail. In the first possibility, initial partitions and
their resulting component schemas are regarded as objects in their own right, compa-
rable to subsystems in traditional modular design. A distinct class specification
labelled with the name of the prespective initial partition represents it in the owned
partition. Due to encapsulation, as one of the central principles of the object para-
digm, inter-partition requirements have to represented as operations. We call this
approach facade-based inter-partition requirements. Following the idea of Gamma
[GHJ+95] a single class specification provides a uniform interface to a set of collabo-
rating class specifications realising the required functionality in terms of a component
schema. Using facade-based inter-partition requirements realises given requirements
as an operation of the facade class and does not prescribe their concrete structure in
terms of fine-grained class specifications. As detailed in Section 7.3.5, facade-based
inter-partition requirements lead to so-called inter-construct level relationships.
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The other possible representation may realise structural and behavioural inter-parti-
tion requirements in terms of individual class specifications on a rather detailed level,
compared to the facade-based approach. Unlike the previous representation, this
approach explicitly represents structure and behaviour of the required class specifica-
tion, provided from another initial partition. In order to assure the completeness of a
requirements specification, inter-partition requirements are subject to careful consid-
eration. Missing inter-partition requirements automatically result in an inconsistent
overall problem analysis model. The central difference between a class- and facade-
based representation lies in varying categories of correspondence assumptions and
consequently different ways of managing the detected correspondences assumptions.
Different categories of component schema relationships are introduced in Section 7,
while their assessment and management is detailed in Chapter 8.
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Terms in Component Schemas
6 Terms in Component Schemas

The classic schema integration literature divides conflicts in structural and naming
conflicts [BLN86]. This chapter analyses the use of language in component schemas
and its individual viewpoints, in order to detail naming conflicts in the sense of
[BLN86]. Each application domain has its own use of terms and therefore the mean-
ing of these terms varies significantly. But even within a specific application domain
we cannot count with a standardised use of terms, since stakeholders have their par-
ticular use of terms. Concurrent requirements engineering therefore gives rise to the
problem, that two artefacts stemming from different component schemas model the
same concept. Analysing the relationship between names, concepts, constructs and
real-world things we discuss how linguistic support in form of lexical databases and
ontologies contribute to a detection of component schema relationships.

6.1 The Use of Language in Component Schemas

Each application domain brings in its specific use of words, which colloquially is
called an expert language. In this context we do not imply formal or mathematical
languages, since we only refer to the use of words within a given application domain.
Individual words have a specific meaning within the application domain, why we call
them expert terms or short terms. Expert vocabulary then can be regarded as a set of
terms with a specific meaning used within a given application domain. From this col-
loquial use of expert language we want to develop concrete definitions, that help us
to analyse the character of component schemas. 

Definition25 (Term)  –  A term is a word that has a specific meaning in a 
given application domain. ◊

Going into the details of component schemas, the difference between use cases on
one hand and static structure as well as sequence diagrams on the other hand is obvi-
ous. Individual activities within use cases contain plain text statements, giving rise to
the inherent ambiguity of natural language. In all other viewpoints just a single term
is used to label an artefact. However, without prior knowledge of the application
domain at hand, the meaning of individual terms cannot be regarded as clear. The
term »board« in the sentence ’The board has left the factory’ may mean a piece of
lumber or the board of management of a company. After this more general reflection
we want to take a closer look at the individual use of terms in component schemas.

Examples Component schemas reflect the understanding of the analyst team assigned to a given
initial partition. This understanding has been documented through their specific use
of terms and their specific interpretation of the application domain in a component
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schema. Although terms are consistently used within distinct component schemas,
this does not imply that the same term is consistently used throughout the entire
application domain. To illustrate this we present two simple examples from EURO-
CONTROL ORDs. The flight data processing ORD for instance states:

“State Vector. This is an elementary observation of an aircraft position ...” [Eur97, p. 3-3]

The surveillance reference model however states:

“Plots contain samples of the aircraft position at a certain moment in time ...” [Eur96b, p. 24]

Obviously the definitions of the terms »state vector« and »plot« correspond to each
other, so we may conclude that they have the same meaning and therefore denote the
same real-world things. These examples clearly demonstrate that the meaning of
terms is not only determined by the application domain, but also influenced by the
personal preferences of stakeholders assigned to an initial partition. So terms have to
be further harmonised, in order to provide consistent naming throughout all involved
component schemas. From a linguistic point of view, individual component schemas
may still contain synonyms as well as homonyms, which have to be detected for the
purpose of integrating component schemas. The individual perspective of analysts
and stakeholders incorporated in each component schema leads to another linguistic
anomaly which has not yet been mentioned, i.e. equipollence. Two artefacts denote
the same collection of real-world things, but express different concepts. This states
the observation formulated by Miller et al. [MBF+93]� that a listener or reader who
recognizes a word must cope with its polysemy, while a speaker or writer who hopes
to express meaning must decide between synonyms.

6.1.1 Linguistic Aspects of Terms

Having analysed the use of terms in component schemas, we want to take a closer
look at terms themselves, in particular syntactic categories of terms in component
schemas. Following classic naming conventions for information models, nouns are
used to name class specifications while verbs are used to name relationships. This
rather coarse-grain distinction only provides general rules and does not take any spe-
cific application domain into account. So beginning with an analysis of syntactic cat-
egories we want to formulate naming conventions, in order to facilitate the definition
of component schema relationships.

6.1.1.1 Syntactic Categories in Component Schemas

In this subsection we want to analyse the use and the character of terms in component
schemas. Figure 49, p. 105 depicts Schienmann‘s [Sch97] categorisation of terms, in
the form of a UML static structure diagram. 
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This categorisation facilitates for instance the management of terms within a lexicon,
going beyond the classification of terms according to simple syntactic categories, i.e.
noun, verb or adverb. Individual words in a sentence can be classified into particles,
predicators and nominators. Particles are syntactical elements, defining the structure
of a sentence. Nominators, also called proper names, name real-world things in a
given domain. The flight number »LH4140«, for instance, denotes a flight offered by
Deutsche Lufthansa from Berlin to Paris. While nominators name individuals, predi-
cators characterise collections of real-world things. Predicators can further be cate-
gorised into property predicators which generally relate to adjectives and adverbs in
colloquial language. Verbs are called event predicator and nouns are called thing pre-
dicator. Thing and event predicators form the generalised category carrier predica-
tor. Thing predicators may be further described by other thing predicators, leading to
the recursive relationship describes in Figure 49. Schienmann therefore distin-
guishes between primary and secondary predicators, which has been represented
through role names of the composition in Figure 49. Schienmann details how this cat-
egory of terms can be mapped to given object-oriented modelling techniques
[Sch97]. Event predicators, for instance, can be mapped to operations and thing pre-
dicators to class names and attributes in UML. 

Figure 49 Categories of Terms

Morphology Having classified terms, we now want to have a closer look on other syntactical
aspects of terms labelling artefacts. From a linguistic perspective, morphology is the
definition of the composition of words as a function of the meaning, syntactic func-
tion, and orthographic form of its parts. What we are really looking for is the stem of
terms, independent of its actual flection. WordNet [WN98] for instance incorporates
a morphological processing function in order to provide flexible access to its linguis-
tic database. Since morphology as part of natural language processing is a vast
research area, we leave the discussion on a rather superficial level, in order to identify
further requirements for linguistic support for the integration of component schemas.

Composed Terms The other severe problem within terms labelling artefacts is the use of composed
terms, frequently used in engineering disciplines such as air traffic management.
Composed terms can seldom be found in linguistic databases such as WordNet. 
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In fact due to the specialised meaning of composed terms within the application
domain at hand, standard or broad coverage dictionaries only provide definitions for
individual terms, but not for the new meaning formed by the composition of terms.

Subsection Summary: 
Predicators and 
Artefacts

The terms labelling artefacts have to be considered as predicators and therefore
denote collections of things. The use terms within component schemas therefore mir-
rors the observation made with respect to the general character of component sche-
mas introduced in Section 5.2.6.1, pp. 96. Here we stated that component schemas do
not deal with extensions, in the sense of tuples in a relational database management
system. Generally speaking a term labelling an artefact in a given component schema
always denotes a collection of real-world things and therefore expresses a concept.

6.1.1.2 Naming Conventions

Taking the classic naming conventions as our starting point, i.e. nouns labelling class
specifications and verbs labelling relationships, we still find significant ambiguity in
naming of individual artefacts in given component schemas. Nouns labelling class
specifications can be used in singular or plural. Verbs labelling relationships may
also be used in active or passive voice. In order to support the reading direction for
relationships, verbs may be combined with prepositions. So the relationships »pilot«
»flies« »aircraft« might also be named »aircraft« »flown by« »pilot«. Although UML
provides a specialised name-direction arrow for relationships, analysts might not
make use of this construct. With respect to nouns labelling class specifications, some
analysts may use the singular, while others use the plural. These slight differences
with respect to terms labelling artefacts can easily be matched by human users, but
provide serious obstacles for automatic detection of component schema relationships.

Naming conventions for component schemas involve three additional aspects, i.e.
naming of initial partitions, operations and class specifications representing inter-
partition requirements. Due to the linguistic complexity of terms labelling artefacts,
naming conventions may facilitate assessing the correspondence of terms on an auto-
mated basis. Especially the use of existing lexical databases such as WordNet
[WN98] can be improved through naming conventions. However, naming conven-
tions are always voluntary and cannot be enforced in concurrent requirements engi-
neering. Growing insight with respect to the problem statement leads to the definition
of new conventions within the analyst teams.

Naming Partitions and 
Component Schemas

Initial partitions as organisational units are the only entity in concurrent requirements
engineering which is known at the start of given projects. Consequently an agreement
among the involved analyst teams has to be found, in order to assign a distinct name
denoting the initial partition and its resulting component schema. Through the UML
name space concept, all artefacts specified in component schemas are unique, since
the terms labelling artefacts are prefixed with the partition name. This holds for
model as well as package-based partitions. In package-based partitions, however,
the term labelling the partition appears on two different levels. First it is assigned to
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the initial partition represented as a component schema and secondly for the package
encapsulating the artefacts relevant in the initial partition at hand. So a unique parti-
tion name already guarantees the autonomy of the analyst teams, but does not ensure
minimality and consistency of the overall problem analysis model.

Stereotypes versus 
Class Names

A classification of artefacts within component schemas representing various kinds of
requirements can be achieved by following two different strategies: prefixes to arte-
fact names and stereotypes. A major subject within this context is a distinction
between the partition contents and the partition environment. Artefacts in the parti-
tion environment represent two different forms of structural and behavioural require-
ments. The first category is related to interface requirements, i.e. systems outside the
actual area of discourse maintaining relationships to artefacts within the area of dis-
course. The second category represents so-called inter-partition requirements, i.e.
requirements that have to be fulfilled from related partitions and that will reside
within the authority of the future system. Especially inter-partition requirements
affect the minimality and consistency of the entire requirements specification.

Principally two different possibilities can be identified in order to distinguish the sys-
tem environment from inter-partition requirements. Prefixing artefacts names is the
first possibility and stereotypes as a UML construct is the second. Since our projects
in the air traffic management domain used the OMT notation, four different prefixes
have been developed in order to classify artefacts [WF97] (see Table 5). Basically
class specifications denoting actors, the human machine interface, class specifica-
tions encapsulating entire (sub-) systems and class specification outside the authority
of the future system have been distinguished this way.

Table 5 Naming Conventions for the Categorisation of Class Specification

Although naming conventions provide a suitable distinction for the analysts, they
hinder automatic means for detecting correspondence assumptions. Before a mor-
phologic function can identify the stem of given terms, the prefix has to be removed.
Relying entirely on prefixes for a categorisation is inflexible, since newly defined
conventions in individual partitions may not be regarded and prefixes might be mixed
up with abbreviations. As a result, prefixing artefacts is inflexible and also compli-
cates a linguistic analysis of terms. UML stereotypes provide an elegant mechanism

Prefix Type Explanation

AC_ Actors Actors represent humans interacting with the system

IO_ Interface Classes Interface object classes encapsulate the human machine interface

CO_ Control Classes Control objects encapsulate behaviour which is not naturally related to one distinct 
class

FA_ Facade Classes Facade Classes describe information related to subsystems. Unlike control objects, 
state and behaviour related to a set of class specification in different initial 
partitions can be attached to them

EX_ External Classes External Classes represent artefacts outside the domain of discourse
107



for the categorisation of artefacts in specification, since they provide a flexible cate-
gorisation on the metamodel level and therefore do not interfere with the linguistic
meaning of terms labelling artefacts. UML stereotypes also facilitate the use of lin-
guistic databases such as WordNet in order to detect synonymous in the application
domain at hand.

6.2 Terms, Constructs, Concepts and Collections of Things

As detailed in Section 5.2.6, component schemas have an intensional character and
are populated with artefacts, stressing the man-made character of elements in the
model world. Artefacts consist of a name and a construct. Having defined the ele-
ments of our model world, we still have to describe the elementary units of the real
world, the things.

Definition26 (Thing)  –  A thing is an elementary unit in the real world. ◊

In other words, the real world is made up of things and a term labelling an artefact
denotes a collection of real-world things. A term labelling an artefact also expresses
a specific perception of this collection of real-world things, which is called concept
[Web82]. The used construct indicates that the analysts have considered this collec-
tions of real-world things as a structural requirement, for example the constructs
class and association. So at first glance, concept and construct seem to be synonyms,
since both deal with perception. However, there is a significant difference between
them. The concept can be regarded as the abstract idea that analysts generalise from
the observation of real-world things in the application domain at hand, while the con-
struct can be regarded as the modelled aspect of this concept. This leads to the fol-
lowing definition of concepts:

Definition27 (Concept)  –  A concept refers to an abstract idea generalised 
from a collection of real-world things. ◊

Correspondence 
Assumptions: a 
Preliminary 
Definition

Term, construct and concept belong to the model world, while the collection of things
belongs to the real-world. In this light we can formulate a preliminary definition for
correspondence assumptions between artefacts: A correspondence assumption
between two artefacts holds, when the terms of the artefacts express the same con-
cept, label the same construct and determine the same collection of things. Putting
term, construct, concept and collection of things together leads to Figure 50, p. 109.

This preliminary definition has two central restrictions that we are going to weaken in
the remainder of this work. First of all this definition does not foresee the correspond-
ence between primary and secondary predicators. Although the terms express the
same concept and denote the same collection of things different constructs have been
used for the artefacts. But modelling collections of real-world things in one compo-
nent schema as a class specification and an attribute in the other always runs the risk
that the minimality of the model is in question, when such a correspondence assump-
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tion cannot be detected. Second of all this definition does not resolve the problem of
synonyms, as detailed in the examples of the EUROCONTROL ORDs (see p. 104).
While the influence of different constructs will be discussed in Chapter 7, we detail
the problem of synonyms in the remainder of this chapter.

Figure 50 Term, Construct, Concept and Collections of Things

6.3 Terms and Concepts in Lexical Databases as well as Ontologies

The concept lattices realised in lexical databases and ontologies code semantic and
lexical relations between terms. In this section we are going to discuss the contribu-
tion of linguistic support for the detection of component schema relationships.

6.3.1 Lexical Databases

The WordNet lexical database designed by Miller et al. [MBF+93] at Princeton Uni-
versity is the most important reference for this work. WordNet distinguishes between
an utterance of a word and its lexicalised meaning. Miller et al. call this word form
and word meaning or short form and meaning [MBF+93]. There is a n:m relationship
between form and meaning, since in the case of synonyms several forms have the
same lexicalised meaning, while in the case of polysems a single form has several
meanings. WordNet organises the meaning of words in a concept lattice, realising the
linguistic relationships hyponomy and hypernomy between terms. As a matter of
consequence the meaning of a term, as part of an expert vocabulary, corresponds to
the concept in Figure 50, p. 109. In other words WordNet can return the lexicalised
meaning of a term labelling an artefact. But there is an important restriction with
respect to WordNet. As a broad coverage lexical database for english, WordNet
presents all registered meanings of a given term to its users. In other words the user
has to choose the correct meaning of a term in a given domain. More interesting with
respect to this work is WordeNet‘s internal organisation of word meaning in a con-
cept lattice. Synonymous terms labelling two artefacts stemming from different com-
ponent schemas lead to the same set of possible concepts in WordNet‘s concept lat-
tice. As a result we may weaken our preliminary definition of correspondence
assumptions (see p. 108).
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WordNet‘s organisation of concepts has another interesting perspective, since its con-
cept lattice also includes the linguistic relationships synonymy, hypernymy and
hyponomy among terms. Terms such as »hang glider« and »airliner« have a common
hypernym in the term »aircraft«. Although in the case of »hang glider« and »aircraft«
both terms do not express the same concept, it may very well be the case that the ana-
lysts intended to model the same collection of real-world things. However, such kind
of correspondence assumption also has to be verified on the structural level, i.e.
attributes and relationships of a class specification in question have to be considered
as well. So we can further enhance our preliminary definition in the sense that a cor-
respondence assumption between two artefacts holds, when the concepts expressed
by the names of the artefact have a common hypernym or synonym in the concept
lattice. Although this assumption is correct in the mentioned example of »hang
glider« and »airliner« it needs a detailed review, since WordNet does not automati-
cally retrieve common hypernyms within a concept hierarchy for a given term. We
will detail this question in Section 8.1.1, pp. 157.

Subsection Summary Lexical databases, such as WordNet [WN98], organise the meaning of english words
in a concept lattice, that allow to detect correspondence assumptions in the case that
two terms labelling artefacts express the same concept. But WordNet simply
retrieves all registered meanings of a given term, since WordNet has not been
designed for a given application domain. Within WordNet‘s internal database 40% of
the words have one or more synonyms, while at about 17% of the words are polyse-
mous, i.e. have different meanings [Mil95]. Lexical databases such as WordNet are
not able to detect the „correct“ meaning of a given term and therefore this choice is
left to the analysts. In a master-multiple organisational model lexical databases may
support the analyst team who is driving the integration of the individual component
schemas.

6.3.2 Ontologies

Ontologies in the philosophical sense deal with the nature and the organisation of
reality. So if we were able to formalise this knowledge, we would receive a basis for
reasoning about concepts. These ideas have been adopted in computer science,
namely in artificial intelligence. Although there is still significant disagreement con-
cerning the definition of the term ontology, we follow the definitions proposed by
Guarino [GG95]. 

“A conceptualization is an intensional semantic structure which encodes the implicit rules 
constraining the structure of a piece of reality” [GG95]. 

A conceptualisation organises the vocabulary of a given piece of reality and therefore
provides the basis for the construction of an ontology.

“An ontology is a logical theory which gives an explicit, partial account of a conceptualization” 
[GG95].
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Categories of 
Ontologies

According to Guarino, ontologies can be regarded as engineering artefacts, consti-
tuted by a vocabulary used in a given domain and a set of assumptions clarifying its
intended meaning [Gua98]. Guarini categorises ontologies and their underlying con-
ceptualisation according to their coverage [Gua98]. Common-sense ontologies, such
as CYC [GL93], try to provide reasoning for a variety of everyday life situations.
Domain ontologies, on the other hand, can be regarded as the set of relevant terms in
a given application domain. Depending on the scope of an ontology, Guarino pro-
poses the following categorisation [Gua98]:

Table 6 Categories of Ontologies according to Guarino [Gua98]

A top-level ontology provides a generic description of domain-independent real-
world phenomena, such as time, space, objects and events. Based on top-level ontol-
ogy, domain ontologies specialise the existing terms and introduce the vocabulary of
a distinct application domain. In other words, the domain ontology defines the mean-
ing of given terms in the application domain at hand, i.e. the term »bank« in the
finance domain denotes a financial institution. Finally the subset of terms of a given
domain ontology realised in a software system is called application ontology. A com-
paratively small amount of well-defined terms represent key abstractions of a given
reality from a described perspective. While the former categories focus on structural
aspects, task ontologies formalise behavioural aspects such as »billing« or »account-
ing«. Behavioural and structural aspects are usually incorporated in an application
ontology.

Component Schemas 
versus Ontologies

In this light, component schemas can be regarded as partial application conceptuali-
sations. It is clearly not an ontology, because of its lack of logical theory. Semantic
relationships between terms labelling the artefacts fulfil Guarino’s definition of con-
ceptualisation. The availability of a domain ontology implies a suitable conceptuali-
sation, which is exactly the central challenge in problem analysis. What are relevant
real-world things in an application domain and which of these real-world things are
relevant for the application at hand? Obviously problem analysis and the creation of
domain ontologies share similar challenges. Furthermore, both disciplines require
extensive prior knowledge, which is usually not available beforehand. 

Elaborated component schemas, on the other hand, provide an excellent starting point
for deriving an application ontology. UML relationships, such as compositions and
generalisations, may be transformed into linguistic relationships. Due to the individ-
ual and arbitrary perspective of an analyst team elaborating a component schema, the

Category Coverage

Top-level ontology describes the vocabulary of general things such as objects, matter, time, space, etc.

Domain ontology describes the vocabulary related to a given domain

Task ontology describes the vocabulary of activities or tasks

Application ontology describes the vocabulary of things depending on particular task and domain ontologies
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derived ontology might not follow common sense concerning the application domain
at hand. Component schemas nevertheless provide an excellent starting point for the
definition of a domain conceptualisation. The terms labelling artefacts describe real-
world phenomena relevant in a given problem statement, which are to be realised in
the future system.

Terms, Concepts and 
Ontologies

Going back to the relationship between terms, concepts, constructs and collections of
real-world things, we may conclude that a well-defined domain ontology supports
the clarification of the meaning of terms in component schemas. The ontology may
provide the concept expressed by a given term. Especially encoding linguistic rela-
tionships in the ontology, such as synonymy, antonymy, homonymy, polysemy,
hypernyms, hyponym, meronym and holonymy further increases the relevance of an
ontology for the detection of correspondence assumptions among artefacts stemming
from different component schemas.

6.3.3 Section Summary

Lexical databases such as WordNet [WN98] or ontologies such as OntoLingua
[FFR96] may provide the meaning of terms and therefore help us in the detection of
correspondence assumptions. Both technologies, ontologies as well as lexical data-
bases, basically resolve synonymous terms. Their concept lattices also allow incorpo-
rating the linguistic relationship hypernym and hyponym between terms for the for-
mulation of correspondence assumptions, refining our rather strict preliminary
definition (see p. 108). The central difference between ontologies and lexical data-
bases can be seen in their coverage. While WordNet covers a broad range of words in
natural language, a domain ontology only reflects relevant terms in a given applica-
tion domain. WordNet usually presents a set of meanings stored in its concept lattice,
while a domain ontology contains a single concept relevant in the domain at hand.

Context and 
Application Domains

Especially domain ontologies suffer an import restriction, which is directly bound to
its purpose. Domain ontologies only incorporate the meaning of those terms relevant
in the domain at hand. Taking the term »sensor« as our example, its meaning may be
a surveillance sensor in the air traffic management domain, while it might be a sensor
for measuring the cabin temperature in a hypothetical aircraft spare parts ontology.
So whenever the concept expressed by a term stems from another application
domain, an erroneous correspondence assumption may be indicated. This problem
leads to the definition of concept context conflict later on in this work (see
Definition 57, p. 150). 

Equipollence Like synonyms and homonyms, equipollence is another linguistic deficiency [Ort97]
in the use of terms. Equipollence means, that two names express two different con-
cepts but these concepts determine the same collection of things. For instance flights
can be regarded from a flight data processing as well as from a air-ground communi-
cations perspective, leading to completely different concepts. A correspondence
assumption in this context does not hold for the concepts but is interesting from a
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pragmatic point of view. Central concern is in this context is the minimality of the
resulting problem analysis model. As a rule of thumb equipollent class specifications
should not share two much common attributes, since otherwise it may the same con-
cept and the terms have not been properly used. Linguistic support in the form of
ontologies and lexical databases is not able to provide indications for this relation-
ship, since the common criteria among the equipollent concepts is the collection of
things that belongs to the real-world and therefore remains outside our scope.

Summarising may be said that lexical databases as well as domain ontologies suffer
important restrictions. While lexical databases are too general and therefore fall short
in composed terms, domain ontologies only cover the application domain at hand.
Although domain ontologies compensate the lack of composed terms in WordNet,
they still may indicate erroneous correspondence assumptions. This happens when
the concepts expressed by the terms labelling two artefatcs stem from different appli-
cation domains. The CYC project [LGP+90] showed the enormous complexity of
treating common sense in ontologies. For time being lexical databases and ontologies
support the detection of corrspondence assumptions, although the users have to be
aware of the mentioned restrictions.

6.4 Terms and Artefacts in Component Schemas 

The UML metamodel describes ‘legal’ constructs in component schemas and there-
fore defines how terms may label constructs in the model world. This distinction is
crucial for the formulation of component schema relationships in the next chapter,
where we especially detail the influence of constructs on the correspondence of arte-
facts. We are using the UML metamodel to analyse how constructs are labelled by
terms. As we will see later on, not all constructs are named and therefore require
additional considertaions.

6.4.1 Terms and Artefacts in Component Schemas’ Static Structure Diagrams

In order to clarify the issue we have amalgamated the different figures from
Section 5.2 into a single diagram depicting all valid constructs of the UML static
structure diagrams. For clarity reasons, we concentrate exclusively on the metaclass
hierarchy and leave out the relationships of the relevant metaclasses. All relevant
static structure constructs can be found in Figure 51, p. 114. Following the UML met-
amodel convention, abstract metaclasses, i.e. classes that do not lead to instances, are
depicted in italics. Generally speaking, all leaf classes in the UML metamodel are
instantiable and therefore lead to artefacts in component schemas. Except for the
metaclasses Dependency, Generalization and Trace all other constructs are
labelled by a term, represented through the property name in their generalised meta-
class ModelElement. So the term labelling an artefact is realised as the property
name in the UML metaclass ModelElement.
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Figure 51 Relevant UML Metamodel Elements for Component Schemas’ Static Structure Diagrams 

UML relationships demand further consideration. Due to their relational character,
their existence is coupled to the existence of their constituent classes. In other words,
a relationship can only exist when its constituent classes exist. So we use the term
link artefacts when we refer to relationships from a linguistic perspective. Analysts
often leave out relationship names and therefore those relationships do not express a
concept. Composition and generalization are anonymous relationships, i.e. they are
not labelled at all. Hence, anonymous relationships require further consideration,
since without a distinct name they do not have a linguistic meaning of their own and
therefore do not express a concept. Table 7 lists the selected constructs relevant in
component schemas’ static structure diagrams.

Table 7 Categorisation of Constructs in Component Schemas’ Static Structure Diagrams

This distinction is necessary for an analysis of the linguistic meaning of artefacts
within a component schema. Notably the treatment of link artefacts requires further
consideration, detailed in Section 8.1.2. Semantic relationships are in particular the
central challenge with respect to component schemas. Unlike binary associations
(metaclass Association), their linguistic meaning depends on the linguistic relation-
ship between names of their constituent classes.
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6.4.2 Terms and Artefacts in Component Schemas’ Use Case Diagrams

Having categorised the use of terms in component schemas’ static structure diagrams,
we now want to apply the developed categorisation to complex use cases, depicted in
Figure 52. 

Figure 52 Relevant UML Metamodel Elements for Component Schemas’ Use Case Diagrams

For reasons of clarity, we suppress properties and relationships in this figure. Once
again only leaf classes in the specialisation hierarchy lead to instances. All leaf
classes with the exception of metaclass Generalization are artefacts. Since uses
and extends relationships have been replaced by the property pathExpression in
the metaclass ComplexUseCase metaclass Generalization will never be
instatiated in component schemas. Metaclass Activity can also be neglected due
to their unrestricted plain-text description of individual activities within the described
use case. So the only relevant artefacts within component schemas’ use case dia-
grams are complex and atomic use cases, as well as the participating actors. 

Table 8 Categorisation of Constructs in Component Schemas’ Use Case Diagrams
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6.4.3 Terms and Artefacts in Component Schemas’ Sequence Diagrams

Sequence diagrams form the last UML view within component schemas. Each
instance of a sequence diagram carries a unique name. The name should be identical
to that of the atomic use case the sequence diagram is based on. Metaclass Action
and its specialisation can be neglected, since they further specify the character of
individual messages. 

Figure 53 Relevant UML Metamodel Elements for Component Schemas’ Sequence Diagrams 

Instances of metaclass ClassifierRole represent prototypical objects exchang-
ing messages. The message exchange between the prototypical objects is realised
through the metarelationships sender and receiver. With respect to problem
analysis the receiver is more interesting, since the class specification the instance of
ClassifierRole is based on has to fulfil the request by calling an appropriate
operation. As a result, an operation carrying the same name has to be defined for the
Classifier. With respect to the use of terms in sequence diagrams, the receiving
ClassifierRole has to be regarded as the more important one, since it has to
realise the behavioural requirement stated through the interaction between the
ClassifierRoles at hand. However, the relationships between instances of the
metaclasses ClassifierRole and Class are more complicated. Whenever a
class specification realising the prototypical object has been assigned to the instance
of ClassifierRole, the name of the ClassifierRole has to be regarded as a
proper name uniquely identifying the instance. Otherwise the name of the Classi-
fierRole itself is used for this purpose in the context of a sequence diagram. This
leads to the following linguistic classification of terms in sequence diagrams in
Table 9.

Table 9 Categorisation of Constructs in Component Schemas’ Sequence Diagrams
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Terms and Artefacts: 
Subsection Summary

The property name of the UML metaclass ModelElement represents the term
labelling an artefact in the UML metamodel. The particular properties of UML rela-
tionships lead to the distinction of link artefacts, caused by they dependence of rela-
tionships on their constituent classes and the fact that analysts often leave out rela-
tionships names. Therefore the meaning of link artefacts from a linguistic perspective
depends on the meaning of its constituent classes. Anonymous artefacts are those
artefacts, that do not have an individual name, such as the UML relationships compo-
sition and generalisation.

6.5 Section Summary

Component schemas are characterised by a differing use of natural language. While
use case activities comprise whole sentences, all other UML viewpoints only use a
single term to label artefacts. Due to the concurrent analysis of initial partitions
terms are consistently used within the individual component schemas, but this does
not imply that the same term is also consistently used throughout the entire applica-
tion domain. Therefore concurrent requirements engineering especially demands for
a standardisation of terms.

Terms label artefacts and terms express a concept. The concept expressed by a term
determines the collection of real-world things that are the denotation of the term.
Combining the relationship between term, concept and a collection of things with the
construct we may propose a preliminary definition of correspondence assumptions.

Lexical databases and domain ontologies may overcome the problem of synonyms in
component schemas and therefore contribute to the detection of correspondence
assumptions. Their concept lattice presents different meanings for a set of synony-
mous terms and therefore may indicate that the terms at hand have the same meaning.
But both tools suffer important restrictions. While lexical database fall short in com-
posed terms and therefore are not able to indicate a correspondence assumption,
domain ontologies may indicate erroneous correspondence assumptions since the
terms in at hand express different concepts stemming from different application
domains.

Finally an analysis of the utterance of terms in our selected UML views of a compo-
nent schema leads to the observation that the concept of associations is also influence
by its constituent classes. Often analysts do not name associations and as a matter of
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consequence, the association at hand does not express a concept. This also applies to
the UML relationships generalisation and composition, which are anonymous in
nature and therefore never express a concept of their own.

This chapter therefore has especially analysed the influence of naming with respect to
the detection of correspondence assumptions among artefacts stemming from vari-
ous component schemas. Linguistic support via lexical databases or domain ontolo-
gies significantly contributes to the detection of correspondence assumptions. In
order to complete the analysis of correspondence assumptions we are going to detail
the influence of different constructs in the next chapter.
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7 Component Schema Relationships

In concurrent requirements analysis, the entire problem statement is divided into set
of initial partitions, which are represented in terms of component schemas. Business
processes and stakeholders, as their central analysis perspectives, are likely to intro-
duce so-called conceptual overlaps among component schemas. These conceptual
overlaps have the potential to introduce redundancy as well as conflicts to the result-
ing software requirements specification. 

This chapter clarifies the nature of conceptual overlaps among component schemas.
Taking the discussion in Section 4.4 as our starting point, conceptual overlaps are
regarded as relationships among component schemas, so-called component schema
relationships. The specific character of component schemas, as a model-based multi-
viewpoint specification technique, call for a detailed discussion of multi-viewpoint
relationships. Due to the special character of requirements specifications, we restrict
component schema relationships to static structure diagrams. Batini’s taxonomy of
conflicts provides the baseline for a discussion of potential conflicts among compo-
nent schema’s static structure diagrams. The resulting categorisation of component
schema conflicts will then be complemented by so-called component schema corre-
spondences. Our definition of component schema correspondence extends the prima-
rily structural character of conflicts in the federated database community towards lin-
guistic aspects, relevant in concurrent requirements engineering. This chapter
concludes with a realisation of component schema relationships in terms of UML
metamodel constructs. Figure 54 depicts the complicated nature of relationships
among component schemas, comprising use case, sequence and static structure dia-
grams.

Figure 54 Component Schemas and Component Schema Relationships 
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7.1 Intra- versus Inter-Viewpoint Relationships

Viewpoint relationships relate arbitrary elements specified in different viewpoints.
Since component schemas comprise three distinct viewpoints, namely complex use
cases, sequence and static structure diagrams, we further have to clarify the concrete
nature of component schema relationships as the central contribution of this work.
First of all we characterise the possible relationships among individual viewpoints.

Relevant Viewpoints The plain-text character of complex use cases does not provide the necessary degree
of formality for a detailed analysis of inter-viewpoint relationships. So we may con-
centrate on sequence and static structure diagrams. Since the remaining viewpoints
contain a method-specific representation of use cases’ plain-text descriptions, no
information will be lost. Following the distinction of Nuseibeh, viewpoint relation-
ships can be divided into inter- and intra-viewpoint relationships [NKF94]. Relation-
ships among component schemas using the same modelling technique are called
intra-viewpoint relationships, while relationships among viewpoints using different
modelling techniques are called inter-viewpoint relationships. Figure 55 depicts
intra- and inter-viewpoint relationships in component schemas.

Figure 55 Intra- and Inter-Viewpoint Relationships among Component Schemas 
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Intra-Viewpoint 
Relationships

Taking this distinction as our starting point we now can distinguish the potential rela-
tionships between the two viewpoints in component schemas. Intra-viewpoint rela-
tionships apply to relationships among sequence diagrams stemming from different
component schemas as well as to relationships among static structure diagrams stem-
ming from different component schemas. Due to the method-specific character of
modelling techniques applied in the respective viewpoints, we may concentrate our
analysis on the terms labelling artefacts. In other words, we may compare the names
attached to constructs in the individual viewpoints. Two artefacts stemming from dif-
ferent component schemas, that are labelled by the same name and express the same
concept have to be considered as representations of the same collection of real-world
things.

Inter-Viewpoint 
Relationships

Inter-viewpoint relationships describe the relationships among viewpoints using dif-
ferent modelling techniques. With respect to component schemas we have to clarify
potential relationships among static structure and sequence diagrams stemming from
different component schemas. So we have to discuss the relationship of a prototypical
object in a sequence diagram and a class specification in a static structure diagram
labelled by the same name. For a number of reasons, inter-viewpoint relationships are
quite problematic. First of all they demand for semantic integration of the respective
modelling techniques. In order to illustrate this problem, Figure 56 depicts the super-
imposition of relevant constructs stemming from the UML metamodel packages
Collaborations and Core.

Figure 56 Superimposition of the UML Metamodel for Collaborations and Static Structure

The UML metamodel claims to provide “a comprehensive and precise specification
of UML’s semantic constructs” [OMG97a, p. 1]. If so, we still may ask how this inte-
gration may be justified from a formal point of view? We may ask for the semantics
of classes, objects, and messages, just to take a few examples of component schema
constructs. UML semantics are not defined on a common semantic base, where indi-
vidual viewpoints can be regarded as projections from a unifying semantic basis.
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That means, at least from a mathematical point of view, that UML does not provide
sufficient formal rigor for the definition of precise semantics of inter-viewpoint rela-
tionships.

Behavioural 
Specifications in 
Problem Analysis

Despite the lack of formal rigor in sequence diagrams, the genuine objective of prob-
lem analysis also puts an assessment of inter-viewpoint relationships into question.
Within requirements engineering, problem analysis models should specify user
demand and facilitate a thorough understanding of the problem statement. Compo-
nent schemas cover this demand through a combination of structural and behavioural
requirements expressed through a set of class specifications captured in static struc-
ture diagrams. Analysing the equivalence of behavioural specifications, stated in
sequence diagrams, focuses on the specific way behaviour might be realised in the
implemented system and therefore tends to violate the solution-neutral character of
problem analysis models. 

But there is another significant argument against the rather intricate analysis of inter-
viewpoint relationships. According to our experience, component schemas are often
built on the basis of operational requirements documents, following functional
decomposition techniques. The resulting component schemas only provide a static
representation of functional requirements in terms of operations in representing
behavioural properties of real-world things. Concentrating on intra-viewpoint rela-
tionships of component schema’s static structure diagrams thus bypasses the intricate
clarification of inter-viewpoint semantics and also results in a dramatic reduction of
efforts. Especially in industry-scale applications with a large number of class specifi-
cations, less constructs have to be considered for an assessment of viewpoint relation-
ships.

Definition28 (Component Schema Relationship)  –  Component schema 
relationships refer to intra-viewpoint relationships between artefacts in the 
UML static structure view stemming from different component schemas. ◊

Through the restriction of our analysis to static structure diagrams, we may use the
term component schema relationships synonymously for the more exact explanation
in Definition 28. So for the remainder of this work we stick to the term component
schema relationships.

7.2 Intra-Viewpoint Relationships for Component Schemas’ Static Structure Diagrams

Over the last 20 years, the schema integration community has published various
approaches, mostly intended for the integration of federated databases. As the classic
literature mostly covers the relational datamodel, we concentrate on the semantically
richer set of constructs in component schemas’ static structure diagrams. For the time
being, we directly use the term conflict. This definition presupposes that the real-
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world meaning of elements stemming from different schemas has positively been
clarified. In other words, the terms labelling these artefacts determine the same con-
cept.

Conflicts in Schema 
Integration

Heterogeneity conflicts [SPD92] dealing with the integration of schemas using differ-
ent data models do not appear in component schemas. Our definition of component
schema relationships directly excludes this category of conflicts. Given two artefacts
stemming from different component schemas, Batini et al. define the following tax-
onomy of component schema relationships. Two elements may be identical, equiva-
lent, compatible, or incompatible [BLN86]. In the schema integration community, the
equivalence of compared elements has mostly been based on the set-theoretic consid-
eration of attribute domains.

Definition29 (Domain)  –  The set of values of an attribute for which a 
function is defined. ◊

However, when two attributes share the same domain, we cannot conclude that their
class specifications denote the same real-world thing. The class specifications Man
and Tower, for instance, might both carry a property named height. Assuming
both properties share the same domain and the same scale, they still represent differ-
ent collections of real-world things. Figure 57 depicts Batini’s taxonomy of conflicts
[BLN86].

Figure 57 Taxonomy of Schema Conflicts according to [BLN86]
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The authors basically distinguish between naming conflicts and structural conflicts.
Naming conflicts mostly deal with the meaning of terms labelling artefacts stemming
from different component schemas. A systematic treatment of homonyms and syno-
nyms is left to the database designers. In the so-called schema conformance phase
[BLN86], naming conflicts have to be resolved manually before the actual integration
starts. With respect to component schemas the essence of this kind of conflicts is dis-
cussed above in Section 6.2. 
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Structural conflicts have been classified into type, dependency, key and behavioural
conflicts. Within these four categories key and behavioural conflicts are related to
instances in the sense of ISO IRDS [ISO10027]. Therefore this kind of conflicts are
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have been applied to the same real-world thing and dependency conflicts concentrate
on differing cardinality constraints applied to relationships. Since [BLN86] base their
work on the Entity-Relationship-Model [Chen76], the classification of structural con-
flicts does not cover the semantically richer constructs of component schema’s static
structure diagrams.

Conflicts in 
Component Schemas

In order to prevent mixing up the terms »types« and »dependency«, we call them
construct and surroundings conflict. These terms further stress the origin of these
kinds of conflicts. 

Definition30 (Construct Conflict)  –  A construct conflict refers to artefacts 
with different constructs, that stem from different component schemas and 
express the same concept. ◊

A construct conflict corresponds to type conflicts in the sense of Batini [BLN86].

Definition31 (Surroundings Conflict)  –  A surroundings conflict refers to 
artefacts stemming from different component schemas are connected using 
different relationships. ◊

Surroundings conflicts are called dependency conflicts in the work of Batini
[BLN86]. The following subsection details construct and surroundings conflicts with
respect to component schema’s static structure diagrams.

7.2.1 Construct Conflicts in Component Schemas’ Static Structure Diagrams

Class specifications are the central construct within component schemas’ static struc-
ture diagrams and play the most important role within this category of conflicts. We
further assume that the real-world meaning of regarded elements has been clarified,
i.e. artefacts express the same concept. Real-world things are represented in terms of
the constructs Class, Attribute and Operation in component schema’s static
structure diagrams. Within the permutations of these three constructs, we want to
concentrate on class-class, attribute-class, attribute-operation and operation-class
conflicts. Attribute-class conflicts directly correspond to Batini’s type conflicts
[BLN86]. Attribute-class as well as operation-class conflicts refer to artefacts
expressing the same concept on different levels of abstraction. As detailed in
Section 6.1, pp. 103, class names correspond to predicators, while attribute and oper-
ation names correspond to secondary predicators [Sch97]. As a result, conflicts
among artefacts stemming from different components schemas can be categorized
along the following planes: construct-kind and construct-level. Examples of these
different categories of construct-conflicts can be found in Figure 58, p. 125. 

Construct-Kind 
Conflict

Definition32 (Construct-Kind Conflict)  –  Construct-kind conflicts refer to 
artefacts stemming from different component schemas with dissimilar 
constructs that express the same concept. ◊
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Similar to our distinction of viewpoint relationships, we may distinguish between
intra and inter-construct-kind conflicts. Class-class, attribute-attribute and opera-
tion-operation conflicts refer to intra-construct-kind conflicts. Consequently opera-
tion-attribute conflicts refer to inter-construct-kind conflicts. 

Construct-Level 
Conflict

All remaining permutations of the mentioned constructs refer to artefacts on different
levels of abstraction, i.e. a primary and a secondary predicator express the same con-
cept. Therefore we have to introduce a new category of conflicts:

Definition33 (Construct-Level Conflict)  –  Construct-level conflicts refer to 
artefacts stemming from different component schemas that express the same 
concept and have been represented on a dissimilar level of abstraction. ◊

Figure 58 Superimposition of Construct-Kind and Construct-Level Conflicts 

Once again we may distinguish between intra- and inter-construct-level conflicts. An
operation-attribute conflict is an example of an intra-construct-level conflict, since
both attribute and operation names are secondary predicators from a linguistics point
of view. Attribute-class and operation-class conflicts are examples of inter-construct-
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level conflicts and in this case primary and secondary predicators express the same
concept. Construct-kind and construct-level conflicts can also be superimposed.
Except for intra-construct-kind inter-construct-level conflicts, we have already intro-
duced examples of the three remaining categories within this superimposition of the
conflict categories. 

Intra-Construct-Kind 
Inter-Construct-Level 
Conflict

The UML name space concept provides an example of two artefacts with the same
construct on different levels of abstraction. In this context, two class specifications
have been modelled in different packages levels, as depicted in the lower left half of
Figure 58 (see p. 125). The class Airspace is depicted in the top-level package in
one component schema and is grouped into a package in the other. Unlike the differ-
ence between class and property names, UML packages introduce logical groupings
of artefacts that finally result in the different levels of abstraction. The superimposi-
tion of the two dimensions construct-kind and construct-level conflicts leads to the
examples depicted in Figure 58. Detailed examples of individual conflicts can be
found in Appendix C and Appendix D.

7.2.2 Surroundings Conflicts in Component Schemas’ Static Structure Diagrams

Class specifications in component schemas often participate in relationships forming
their environment and therefore result in surroundings conflicts. Although surround-
ings conflicts appear as construct conflicts at first glance there is additional consider-
ation required. This conflict category subsumes all kinds of UML relationships con-
necting class specifications in component schemas, i.e. associations, generalisation/
specialisation and composition. First of all, we have to go into the details of relation-
ships stemming from different component schemas, since class specifications depend
on their constituent classes:

Definition34 (Constituent Classes)  –  Class specifications that are connected 
via a relationship are called constituent classes of the relationship. ◊

On the basis of the constituent class correspondence we can detail association type
and association direction conflicts within surroundings conflicts.

Surroundings 
Conflicts: 
Association-Type 
Conflict

Before we can analyse surroundings conflicts we have to make sure, that constituent
classes of relationships stemming from different component schemas determine the
same concept. Disregarding the potential impact of relationship naming for the
moment, we find three distinct categories of surroundings conflicts in component
schemas. Relevant constructs for relationships are Association, Association
Class, Generalization and Composition. The first category within surround-
ings conflicts focuses on the association type, i.e. the constituent classes have been
connected using different constructs.
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Definition35 (Association-Type Conflict)  –  An association-type conflict is a 
surroundings conflict where different constructs have been used for the 
relationships. ◊

Figure 59 depicts examples of association-type conflicts:

Figure 59 Surroundings Conflicts - Association Type Conflicts 

Incorporating the concrete semantics of individual UML relationships has been left
out for the moment, since we are interested in outlining all possible combinations of
conflicts from a structural perspective.

Surroundings 
Conflicts: 
Association-Direction 
Conflict

Besides binary associations, composition and generalisation in UML are directional
associations, providing a second dimension of surroundings conflicts. Due to the
semantic nature of these relationships, which will not be discussed for the moment,
this kind of conflicts directly influences the correctness of component schemas. 

Definition36 (Association-Direction Conflict)  –  An association-direction 
conflict is a surroundings conflict where semantic relationships have been 
applied in a dissimilar direction. ◊

In other words, aggregate and component are mixed up in the particular component
schemas. Figure 60 depicts association-direction conflicts.

Figure 60 Surroundings Conflicts-Association Direction Conflict
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Surroundings 
Conflicts: Cardinality 
Conflict

The number of participating objects – instances – in a relationship can be restricted in
UML using cardinality constraints, which are represented in the metaclass
AssociationEnd in the UML metamodel. Cardinality conflicts hold for (binary)
associations and compositions. Association-direction conflicts also directly corre-
spond to Batini’s definition of dependency conflicts [BLN86].

Definition37 (Cardinality Conflict)  –  A cardinality conflict is a 
surroundings conflict, where different cardinality constraints have been 
applied to the relationships. ◊

Figure 61 depicts selected examples of cardinality conflicts:

Figure 61 Surroundings Conflicts - Selection of Cardinality Conflicts 

The three categories of surroundings conflicts introduced cannot completely be
superimposed, since the UML generalisation has a strict one-to-one cardinality. A
more detailed list of surrounding conflicts can be found in Appendix C.

7.2.3 Advanced Construct Relationships in Component Schemas

The definition of construct conflicts so far mostly followed the discussion in the
schema integration community. Component schemas, however, include additional
constructs which have not been covered yet. These constructs are packages, depend-
encies, stereotypes and constraints. Nevertheless, from a structural perspective we
have to incorporate these additional constructs in order to cover all possible construct
combinations.

Packages Packages are irrelevant in the federated database community. They provide logical
grouping of classes and therefore do not lead to instances. In component schemas,
however, they play an important role. Packages introduce a hierarchy to industry-
scale specifications. They group an arbitrary set of collaborating classes realising a
coherent functionality and can be compared to subsystems in traditional modular
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design. First of all, initial partitions are mapped to packages in component schemas
(see Section 5.3). They can also be used to differ the modelling of given problem fac-
ets and therefore correspond to to be resolved requirements in the sense of Oliver et
al. [OKK97]. Especially the second role is important within concurrent requirements
engineering. Figure 62 depicts an example taken form the air traffic management
domain:

Figure 62 Package-Class Relationship 

Class Aerodrome in the component schema EDPD represents the concept aero-
drome on a fairly abstract level. In the component schema ATFM a package called
ATFM:Aerodrome details this real-world thing in terms of collaborating class
specifications. These collaborating class specifications are depicted in the bottom
half of Figure 62. Thinking in terms of to be resolved requirements and also from a
cost efficiency perspective, it seems essential to track down such relationships in
order to reduce the analysis efforts. Detecting class specifications and packages
expressing the same concept also avoids the specification of redundant artefacts rep-
resenting the same collection of real-world things in different component schemas.

Dependency Dependencies in component schemas have been used to represent a dependency
among class specifications specified in different packages. In UML this idea is often
called element reference [OMG97a]. Although the UML dependency is also applica-
ble to class specifications, we restricted their use to packages in order to exclude
behavioural aspects from static structure diagrams. As an anonymous relationship,
two dependency relationships are equal when they link the same packages. But the
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similarity of the constituent packages can only be based on their contained class spec-
ifications. In order to avoid the creation of sophisticated metrics, we exclude depend-
encies from further consideration.Figure 63 depicts a simple example1:

Figure 63 Example of a Package Dependency

Stereotype Stereotypes in UML provide a categorization of metamodel elements at instance
level. Unlike the logical grouping of class specifications representing real-world
things, the groupings introduced by stereotypes are not motivated by the problem
statement. In Section 5.3, stereotypes are used to distinguish requirements related to
the use interface from those related to external systems. Therefore stereotypes will be
excluded from further consideration.

Constraints Constraints allow the specification of business rules which cannot otherwise be
expressed in terms of constructs. As a specialisation of metaclass ModelElement
constraints have a name and comprise a logical expression in their property body.
Constraints are logical formulas, specified in the object constraint language (OCL)
[WK99]. The equivalence of two constraints is influenced by a number of factors that
cannot be clarified on a linguistic level alone. We therefore exclude constraints from
further consideration.

7.2.4 Subsection Summary

Traditional schema integration approaches tend to concentrate on a limited set of con-
structs that can be found in federated database systems, but do not sufficiently reflect
concurrent requirements engineering. The selected subset of constructs within com-
ponent schemas’ static structure diagrams leads to the taxonomy of conflicts,
depicted in Figure 64, p. 131. Most schema integration approaches follows the rela-
tional data model, with a further restricted set of constructs. So important constructs
for requirements specifications remain totally uncovered, such as packages, stereo-
types, constraints and dependency relationships. A comparison of OCL constraints be
can excluded from this work, due to its mathematical complexity. Since stereotypes’
classification of metamodel elements cannot be justified in terms of the expert lan-
guage, they too are excluded. Packages and dependency relationships represent

1 Note that transparent packages – indicated by dashed lines – do not follow the UML Notation Guide [OMG97b].
UML always reserves a view in its own right, in order to present package contents to CASE tool users.
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important information with respect to problem analysis. Packages represent to be
resolved requirements and provide an abstraction for a set of related real-world
things. These capabilities play an important role within problem analysis. 

Figure 64 Conflict Taxonomy for Component Schemas’ Static Structure Diagram

7.3 Conflict and Correspondence in Concurrent Requirements Engineering

The traditional definition of conflicts in the schema integration community relies on
the assumption that the regarded artefacts stemming from different component sche-
mas represent the same collection of real-world things. It is known to the database
designers that the artefacts express the same concept. So before we can introduce a
definition for correspondence and conflict, we have to reconsider the special situation
as encountered in requirements analysis.

7.3.1 Particularities of Component Schema Integration in
Comparison to Schema Integration

Although at first glance, schema integration and concurrent requirements engineering
seem to refer to the same scientific problem, there are significant dissimilarities.
While requirements engineering tries to elaborate the key abstractions forming the
problem statement, schema integration targets the integration of instantiated database
schemas. In schema integration the elements describing the area of discourse are
known, while they are unknown in requirements engineering.

Conceptualisation has 
been Finished in 
Schema Integration

The central difference between schema integration and requirements analysis lies in
the definition of the system boundary, i.e. the area of discourse. Within schema inte-
gration this task has already been finished and the available artefacts shall be put into
a technical framework, in order to present previously disparate artefacts in a uniform
manner to system users. Integrated metaschemas in the sense of Hammer and
McLeod [HM93] or mediators in the sense of Wiederhold [Wie94b] provide technical
solutions to this problem. The most important characteristic of schema integration is
that the conceptualisation has already been accomplished. The area of discourse is
known and agreed among the involved stakeholders.
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Problem Analysis: 
Stabilizing the
Area of Discourse

Compared to database integrators, requirements engineers still have to elaborate the
artefacts relevant within the problem statement. The analysts do not know before-
hand which real-world things are relevant within a partition and which are irrelevant.
They also do not know which real-world things belong to a partition and which ones
form the partition environment. Especially in concurrent requirements engineering,
where individual analyst teams elaborate partitions simultaneously, this task becomes
even more complicated. Frequent changes to the individual analysis model are likely
and therefore the integration of component schemas become too expensive for assess-
ing the project progress and validating the represented requirements.

Problem Analysis: 
Inter-Partition 
Dependencies

Initial partitions and the component schemas representing them might depend explic-
itly on services provided from other partitions. This situation might not be apparent
to the analysts in the affected partitions, leading to incompleteness with respect to the
overall problem statement. Incompleteness due to unsettled requirements among par-
titions has to be removed, since resolving it in the implementation may become
extremely expensive. Therefore inter-partition requirements have to tracked down as
early as possible, in order to guarantee project success. Besides the constant evolu-
tion of the component schemas representing the individual partitions, real-world
thing might be relevant in a number of partitions, leading to so-called conceptual
overlaps. Unlike inter-partition requirements, affecting the completeness of a
requirements specification, conceptual overlaps affect the minimality of the specifi-
cation. Conceptual overlap means, that the same collection of real-world things has
been modelled as similar concepts in both component schemas. This kind of redun-
dancy may lead to increased design and implementation costs. In the worst case,
redundancies spoil system integration and conformance testing can never be accom-
plished positively. The central differences between schema integration and compo-
nent schema integration in concurrent requirements engineering can be summarized
as follows:

• Evolving partition boundary

• Completeness: unresolved dependencies among partitions

• Minimality: redundant specification of similar real-world things in various 
partitions.

Concurrent requirements engineering calls for new means of detecting conceptual
overlaps, currently unresolved in the schema integration community. Assertions in
the sense of [LNE89, SPD92] cannot be formulated on the basis of attribute domains,
due to the entirely intensional character of problem analysis models. So the potential
relationships among elements stemming from different schemas require a signifi-
cantly different basis compared to schema integration techniques. As described in
Chapter 6, elements in a component schema can be regarded as a method-specific
representation of an expert language and the concurrent elaboration of partitions may
lead to linguistic deficiencies in the use of terms [Ort97]. Terms labelling different
artefacts may be synonymous, polysemous or equipollent. Figure 65, p. 133 shows
the linguistic deficiencies of concurrent requirements engineering:
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Figure 65 Class Specifications Stemming from different Component Schemas 

Following Batini’s conflict definition [BLN86], a synonym conflict holds for the
above example. Although the attributes and operations are the same, the classes carry
different names and therefore a naming conflict holds. Taking attributes and opera-
tions as our sole criteria, the presented class specifications even seem to be identical.
So the real question is: what are the criteria for detecting conflicts and hence stating
or rejecting assumed conflicts? Even though misspellings of class names or opera-
tions automatically lead to conflicts in the sense of Batini, from a linguistic perspec-
tive these artefacts still correspond, since they express the same concept. On the
other hand, polysemy of class names implies similarity of artefacts, although they
represent completely disparate concepts. The term »bank« for instance either denotes
a river bank or a financial institution. Leaving out the concrete assessment of concord
or conflict of artefacts for a moment, this mental process still requires prior knowl-
edge, currently not incorporated in component schemas. Furthermore, this knowledge
is currently entirely left to the analyst’s perception. This observation directly leads to
the question how can analysts be supported in identifying concord or conflict of arte-
facts, even when we accept that stating or rejecting of this situation cannot be accom-
plished on an automatic basis alone?

Criteria for an 
Assessment of 
Artefact Similarity

Considering structural conflicts alone is not sufficient for assessing the correspond-
ence of artefacts in concurrent requirements engineering. Naming gives rise to the
inherent ambiguity of natural language. Considering structural aspects alone may
lead to the situation where the artefacts Man and Tower, sharing the property
height, realise the same real-world thing. Whitmire for instance proposes similar-
ity metrics for class specifications based on a formalised algebraic object model
[Whi97]. In his dissertation thesis George Spanoudakis proposes a similar approach
based on TELOS [MBJK90]. Both approaches base their definition of correspond-
ence assumptions on value domains and do not tackle redundantly specified real-
world things.

Shortcomings of 
Structural Criteria

The other important question mostly deals with the pragmatics of problem analysis in
industrial practice. Problem analysis models based on operational requirements docu-
ments in the air traffic management domain simply do not reach a sufficient degree of
accuracy in order to precisely define the domains of attributes, as the prerequisite for
Whitmire’s metrics [Whi97]. Even if they would, sheer size hinders a precise formal-
isation of all partitions. Tool support is the other problematic aspect within this con-
text. Popular off-the-shelf tools, such as RATIONAL ROSE™ or SELECT ENTERPRISE™,
trade in formal rigor for flexibility with respect to code generation. Code-generation
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should be provided for a number of different programming languages and a rigid for-
mal model might exclude certain programming languages from this purposes and
therefore threaten the tool’s market success.

Shortcomings of 
Linguistic Criteria

Component schemas, however, can be considered as mostly linguistic entities, struc-
turing relevant terms in a given application domain. With respect to reasoning, for-
malised ontologies might be an adequate support for the conceptualisation of the
problem statement, as well as a means for assessing the similarity of artefacts. But
once again, description logics such as CLASSIC [BBM+89] require an extensive
degree of formal rigor, which once again exceeds the practicalities industrial-scale
projects. At the beginning of requirements elicitation, the relevance of terms denoting
a collection of real-world things within the application domain is not completely
clear to the analysts. Synonyms, homonyms and equipollence, as deficiencies in the
use of terms, only form one dimension within this problem. The system boundary
evolves and an adequate level of detail cannot be presupposed beforehand. So the
meaning of individual terms changes dramatically in particular application domains.
Off-the-shelf tools mostly focus on code-generation and therefore neglect linguistic
support. These tools feature neither data dictionary nor thesaurus. Especially control-
ling the use of terms is one of essential prerequisites for thorough understanding of
the intricacies the problem statement. The vocabulary of thesauri is mostly difficult to
expand by domain experts. Domain ontologies, even when properly build, are always
restricted to a given application domain and therefore still might produce incorrect
statements with respect to the similarity and dissimilarity of artefacts. 

7.3.2 Correspondence: Relaxing the Strict Conflict Definition

The traditional conflict definition from schema integration needs a more flexible
adaptation in order to suit the circumstances in concurrent requirements engineering.
In this context we first concentrate on class specifications, the central abstraction for
a collection of real-world things within component schema’s static structure dia-
grams. 

Figure 66 Example for Identical Artefacts

According to Batini [BLN86], two artefacts are identical when they are labelled with
the same name and have the same set of properties. Figure 66 depicts an example of
identical artefacts. Due to the lack of a rigid formal model, we can base this defini-
tion only on the spelling of class and property names. This definition only regards
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syntactical aspects and does not include the meaning of terms labelling artefacts.
Using the plural instead of the singular from for a class name directly leads to a con-
flict. Although we have not found any example in our projects, it may also very well
be the case that two class specifications with exactly the same properties represent
different collections of real-world things, due to homonymous class names. From a
structural perspective, we may derive other conclusions. Adding a property to a class
specification automatically changes previously identical class specifications into
equivalent ones. In order to properly handle this situation we need similarity metrics
in the sense of Whitmire [Whi97] or Spanoudakis [SC96]. Consequently, we have to
relax the strict definition of conflicts.

Correspondence Since Batini does not further detail the exact difference between equivalent and com-
patible class specifications, we combine these two categories into the term corre-
spondence. 

Definition38 (Correspondence)  –  Two artefacts stemming from different 
component schemas correspond, if they express the same concept. ◊

Their class names have to denote the same concept and therefore represent the same
collection of real-world things. In other words, either the same class names have been
used in both component schemas or the class names are synonyms of each other. We
call the first case, where two artefacts share the same name, direct correspondence.
The correspondence among names of artefacts being synonyms to each other is
called synonym correspondence. 

Homonyms and 
Correspondence

Since the meaning of individual terms varies over application domains, we also have
to take into account that the terms are homonyms. The multiplicity of perspectives in
concurrent requirements engineering in particular may lead to this situation. The con-
cept-context conflict (see Figure 76, p. 149) demonstrates the impact of different per-
spectives on the meaning of terms. The problem of the varying context of terms can-
not be solved by an ontology, as a logical theory describing the meaning of terms in a
distinct domain. Consequently we cannot positively exclude that two corresponding
terms are homonyms and therefore a review involving the affected analyst teams may
state or reject the assumed correspondence. 

Assertion vs. 
Assumption

Due to the intervention of stakeholders, we prefer the term correspondence assump-
tion, since the real character of any component schema relationship has to be evalu-
ated by the involved project participants. The term correspondence assumption also
contrasts with the term correspondence assertions, as defined by Larson [LNE89]
and Spaccapietra [SPD92]. Following the argument in the previous paragraph, a
homonymy of terms cannot positively be stated by automated means. So the term
assertion does not hold. As a side effect, the transition from an assumed to an asserted
correspondence is related to the procedural perspective of the management of compo-
nent schema relationships (see Section 8.2). 
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Definition39 (Correspondence Assumption)  –  A correspondence 
assumption is a correspondence between artefacts that needs further review 
from the affected analyst groups. ◊

Definition40 (Correspondence Assertion)  –  A correspondence assertion is a 
correspondence between artefacts that has been stated by review of the 
affected analyst groups. ◊

Although our definition of correspondence cannot be ensured by automatic means,
additional support for analysts and project managers participating in industry-scale
projects can be provided. The detection of correspondences has to be decoupled from
their resolution and therefore avoids unintentional overriding of requirements, as a
central prerequisite for analysts’ autonomy.

7.3.3 Construct-Kind and Construct-Level Correspondences for
Component Schema’s Static Structure Diagrams

Up to this point our definition of correspondence assumptions relied entirely on the
meaning of terms labelling artefacts and neglected the construct. Classifying the cor-
respondence of elements into construct-kind and construct-level provides the base-
line for an extensive discussion of various forms of component schema correspond-
ence.

Regarded UML 
Constructs for a 
Correspondence 
Definition

According to Section 5.2.3, component schema’s static structure comprises the fol-
lowing constructs: class, attribute, operation, package, association,
association class, dependency, constraint, composition, stereotype
and generalisation. Within these possibilities the constructs stereotype,
dependency and constraint have already been excluded from an assessment of
correspondence. 

Extended 
Correspondence 
Definition

UML relationships will also be included in the analysis of correspondence assump-
tions. In order to study all possibilities we take a rather straightforward approach and
simply build a matrix of all relevant constructs. This matrix of constructs incorpo-
rates the complete set of possible component schema relationships. The taxonomy of
conflicts introduced in Figure 64, provides the outline for this discussion. Then we
analyse the essence of the resulting relationship taking linguistic as well as structural
aspects into account. Table 10, p. 137 depicts the complete matrix of construct. Fur-
ther examples taken from our air traffic management projects can be found in
Appendix D.

The matrix of constructs also contains a number of illegal relationships, depicted in
grey italics. Relationships between a single class specifications and relationships can
mostly be excluded from this analysis due to the relational character of UML rela-
tionships. The only exception in this context is the correspondence assumptions
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between a named association and a class specification, which may result in the crea-
tion of an association class. Another important group of excluded elements is related
to dependencies, since they have been restricted to packages in this work.

Table 10 Intra-Viewpoint Construct Matrix for Component Schema’s Static Structure Diagrams 

7.3.4 Construct-Kind Relationships

In this section we want to analyse the relationships between class specifications,
properties and packages. All constructs are labelled by a distinct name determining
their real-world meaning. Following our taxonomy of conflicts – see Figure 64,
p. 131 – we distinguish between construct-kind and construct-level relationships. 

7.3.4.1 Intra-Construct-Kind Relationships

Although class specifications form the central real-world abstraction within object-
oriented modelling techniques, we start our discussion on the rather elementary level
of properties. Then we analyse the relationship among class specifications and finally
detail the relationships among packages. Examples for all intra-construct-kind rela-
tionships can be found Appendix D.

Attributes

Attributes as structural properties of UML class specifications define their invariant
structure. Attributes have a name and their potential values are defined by a data
types, an instance of UML metaclass DataType. Data types in component schemas
have been restricted to elementary data types such as Integer, Boolean,
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String and Enumeration. Selecting only elementary data types avoids the prob-
lematic distinction between class specifications and complex data types, so called
structs in C++, and reduces the conceptual overload of constructs in the sense of
Wand and Weber [WW93]. Although enumerations cannot be regarded as elementary
data types, they still are quite valuable in problem analysis, since they are often used
for the definition of discriminators and for capturing state-related information. Dis-
criminators provide a value-based distinction between individual instances and there-
fore may limit the depth of generalisation hierarchies. The second application of enu-
merations is related to the perceived state of collections of real-world things. At first
glance, state-related information in UML has to be modelled in statecharts. But from
a practical point of view, a simple progression of states does not justify the efforts for
creating a complex statechart. Frequently, business users do not know the concrete
transition of states and therefore prefer a simple enumeration representing a to be
resolved requirement. So the simplest definition of an attribute correspondence may
be formulated as follows:

Definition41 (Attribute-Attribute Correspondence)  –  An attribute-attribute 
correspondence holds for two attributes expressing the same concept. ◊

An attribute-attribute correspondence may incorporate direct correspondence, when
the same term is used, or a synonym correspondence, when different terms express
the same concept. The meaning of corresponding attribute names still incorporates
significant particularities, which have to be regarded in problem analysis. The prop-
erties airSpeed and groundSpeed express the same concept »speed«, but their
terms of reference differ. Due to strong headwind, air speed is usually higher com-
pared to the ground speed, as detected by a radar system. Another example of partic-
ular differences in the interpretation of concepts can be found in the following exam-
ple. The property flightLevel and altitude both denote similar concepts,
however, the term »flight level« denotes the rounded hundredth fraction of the alti-
tude. So an altitude of 33.465 ft corresponds to flight level 330. The terms express the
same concept, but on a differing scale, which we call scale divergence. To complicate
matters, the correct definition of flight level also incorporates the atmospheric pres-
sure and therefore also has a terms of reference aspect. A slightly different variant can
be found in the third example. The property altitude can be regarded as a projec-
tion of the property currentPosition. Despite the fact, that for this specific
example both terms do not express the same concept, there is still an obvious rela-
tionship between them, which we call value-projection correspondence.

Attribute- Attribute 
Conflict

The data type assigned to an attribute restricts its potential set of values and therefore
has to be incorporated into the analysis. In the most trivial case, the attributes share
the same data type and further justify the correspondence. In problem analysis how-
ever, especially in its earlier phases, data types have not been defined.

Definition42 (Attribute-Attribute Conflict)  –  An attribute-attribute conflict 
holds for two attributes expressing the same concept when their assigned data 
types differ. ◊
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Operations

Operations in object-oriented problem analysis represent behavioural requirements
bound to class specifications. Depending on the analysis style,  use case driven versus
conventional ORDs, the granularity of operations vary significantly in the resulting
component schemas. Following our conventions, we excluded so-called get and set
operations, which are used to access the encapsulated internal representation of
objects. The operation provideTopOfClimb() in the class Trajectory repre-
sents a rather high-level requirement, which in concrete implementation involves a
series of rather complex calculations and consequently needs additional considera-
tion in design. In concurrent problem analysis, however, an agreed level of detail is
unlikely, due to the isolated elaboration of component schemas. Besides the level of
detail, polymorphy results in another significant problem in component schemas. The
central idea behind this concept is that the same operation (name) may realise a com-
pletely different behaviour, depending on its class. Since the concrete semantics of
polymorphy depend on the programming language used, problem analysis using
component schemas does not provide a sufficient formal basis to discuss its exact
properties. This problem is aggravated by the fact that operation parameters often
cannot be specified on a sufficient level of detail. This problem depends once again
on the analysis approach applied, i.e.  use case driven versus class-based, and on the
individual level of detail in given component schemas. So we take a pragmatic
approach, in order to side-step this problem.

Definition43 (Operation-Operation Correspondence)  –  An operation-
operation correspondence holds for two operations expressing the same 
concept. ◊

Similar to attributes, this observation includes a direct and a synonym correspond-
ence and also incorporates differing scales and terms of reference. Due to the missing
parameters and return values, the definition of conflicts cannot be enforced in the
sense of attribute-attribute conflicts. Projections can also be neglected, since they are
related to attributes. Operations may realise this kind of projections, but always
related to attributes. Projections therefore are due to requirements validation, in order
to ensure the minimality of a specification and will be reconsidered in Section 8.2.

Classes 

Class specifications are the central representation of collections of real-world things
in object-orientation. Pointing out conceptual correspondences to the analysts pro-
vides significant support for the integration of component schemas, without defining
complex metrics. Unlike attributes and operations, where direct and synonym corre-
spondence are the central correspondence categories, we have a third category which
stems from a deficiency in the use of terms. The same collection of real-world things
might lead to different artefacts expressing different concepts, so-called
equipollence.
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The class specification SFPL_FlightPlan in the component schema FDPD and in the
component schema SFPL-AirGround-Communication in the component schema
AirGround-Communication provide an example for this situation (see Figure 123,
p. 242). Both artefacts realise a specialised artefact for the concept »System Flight
Plan« with respect to the various analysts’ perspectives while elaborating the
assigned initial partitions. Conflicts on the other hand can only be determined by the
analysts, since the context with respect to a polysemous meaning of artefact names
cannot be determined on an automated basis. So conflicts can only result from a pre-
viously detected correspondence and therefore relate to procedural aspects of corre-
spondence management and resolution (see Section 8.2).

Definition44 (Class-Class Correspondence)  –  A class-class correspondence 
holds for two class specifications stemming from different component schemas 
that express the same concept. Two classes synonymously correspond when 
their labels are synonyms of each other. Two classes share an equipollence 
correspondence when the artefacts model different aspects of the expressed 
concept. ◊

Figure 67 Specialisation Correspondence 

Class-class correspondences should also trigger an analysis of attribute-attribute as
well as operation-operation correspondence for its properties. Class specifications
may participate in generalisation hierarchies, which leads to additional concerns with
respect to this correspondence. Specialisations normally realise specialised properties
of concepts. From a linguistic perspective we find a hypernym/hyponym relationship.
Due to its specialised perspective, this situation resembles equipollence at first
glance. Unlike equipollence the hyponymy has already been expressed in the compo-
nent schema.

Packages

Packages within component schemas serve two different purposes: they represent ini-
tial partitions and they logically group model elements. All top-level packages, as
well as the ones labelled with the stereotype «partition» can be excluded from a
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detailed analysis. These elements relate to organisational aspects within concurrent
requirements engineering, such as the area of discourse of a given analyst team repre-
sented by an initial partition. Since the class specifications incorporated in a package
realise a coherent purpose, the correspondence assumption can be built on their
names. Due to the arbitrary decomposition of the package contents, realised through
their comprised classes, a correspondence assumption entirely based on their terms
has to be carefully analysed. As an additional hint, the class specifications in a given
package should be meronyms, i.e. parts, with respect to the package name. Due to the
mentioned lack of formal rigor of component schema’s static structure diagrams, we
leave out the definition of similarity metrics for package contents and entirely con-
centrate on the meaning of package names.

Definition45 (Package-Package Correspondence)  –  A package-package 
correspondence holds for two packages stemming from different component 
schemas that express the same concept. ◊

7.3.4.2 Inter-Construct-Kind Relationships

In this section we analyse the inter-construct-kind relationships for attributes and
operations, since all other inter-construct-kind relationships also incorporate a differ-
ing level of detail, which is analysed in Section 7.3.5. Although the purpose of
attributes and operations within object-oriented problem analysis clearly distin-
guishes between the two constructs, the relationship between attributes and opera-
tions stemming from different component schemas may affect the minimality of the
entire specification. We further assume that the compared class specifications do not
contain simple get and set operations.

Figure 68 Example for an Operation-Attribute Correspondence 

Due to the differing perspectives incorporated in distinct component schemas, opera-
tions in one component schema might correspond to attributes in another one (see
Figure 68). In this context the same distinctions hold with respect to attribute-
attribute conflicts, i.e. direct, synonym, terms of reference, scale and projection cor-
respondences also apply to operation-attribute correspondences.

Definition46 (Operation-Attribute Correspondence)  –  An operation-
Attribute correspondence holds for an operation and an attribute stemming 
from different component schemas that express the same concept. ◊
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Since operation names must at least contain verbs, this correspondence can only be
detected on an automated basis when the infinitive of the verb has the same spelling
as the noun. Due to this problem an operation-attribute correspondence is only
assessed, when the class specifications described by the respective attribute and the
operation have already been deemed corresponding. Due to the potential missing data
types specified for the attribute as well as the return value of the operation, conflicts
cannot be found within this correspondence.

7.3.5 Construct-Level Relationships

Packages, class specifications and properties form three different levels of abstraction
within component schemas. Packages logically group sets of classes and properties
describe the structure of class specifications. Although the terms labelling these arte-
facts differ in their constructs, we want to analyse the specific impact of detected cor-
respondences with respect to the integration of component schemas. 

7.3.5.1 Intra-Construct-Level Relationships

This correspondence category only applies to class specifications residing on differ-
ent package levels. Within this correspondence a UML construct currently disre-
garded plays an important role, the name space. Most constructs are bound to a name
space, which is basically formed by packages and classes. Name spaces separate dif-
ferent parts of component schemas from each other and ensure the identity of arte-
facts comprised in the respective package. Figure 69 depicts this situation.

Figure 69 Example for a Inter-Level Intra Construct Correspondence
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Although the example depicts a direct class-class correspondence, there is significant
information not yet covered in our analysis of conflicts and correspondences. Detect-
ing leaps in the level of abstraction, as outlined in the bottom half of Figure 69, pro-
vides interesting information for applied level of abstraction and potential imbalances
in the entire problem analysis model. Unfortunately there is no clear advice for how
to deal with this kind of correspondence in general terms. It is more like a hint for a
systematic review of the corresponding class specifications with respect to their inter-
nal structure, i.e. the properties, and their surroundings. The surroundings provide
interesting information with respect to the participating relationships and their
applied cardinality constraints. 

7.3.5.2 Inter-Construct-Level Relationships

Packages, class specifications, attributes and operations are relevant constructs, that
may share correspondences over differing levels of abstraction. This section outlines
the potential correspondences belonging to this category.

Attribute-Class Correspondence

Attributes and class specifications may express the same concept on varying levels of
detail. Although from a formal perspective this claim may be criticised, for the pur-
poses of problem analysis, especially in large-scale application domains, this situa-
tion is common. This observation also entirely relies on the meaning of terms and
completely disregards the differing formal nature of objects and values, the runtime
counterparts of class specifications and attributes. The first problem in a set-theoretic
comparison lies in the difference between values and objects at instance level.
Objects, as instances of classes, have an invariant identity, which is not the case for
values as instances of data types. So an attribute-class relationship automatically
leads to the problem of comparing values to objects. Due to the conceptual character
of component schemas, this relationship is elementary for their integration.

Figure 70 Example for an Attribute Class Correspondence 

Definition47 (Attribute-Class Correspondence)  –  An attribute-class 
correspondence holds for an attribute and a class specification stemming from 
different component schemas that express the same concept. ◊

trajectory

System Flight Plan
(from Air-Ground Communication)

provideTopOfClimb()
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provideExitFlightLevel()

Trajectory
(from FDPD: Domain Classes) «direct»
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Unlike the hybrid character of UML with its clear distinction between objects and
values we do not distinguish between predicators and secondary predicators (see
Section 6.1, pp. 103). In other words, we assume recursive relationships between
terms. Since the class specification in an attribute-class corresponding offers a more
detailed representation of the respective real-world thing, we remove the attribute and
link the two classes via a composition.

Operation-Class Correspondence

Like attributes, the terms labelling operations may also correspond to class names.
This kind of correspondence is rare in component schemas, since operations are
named with verbs and class specifications with nouns. This kind of correspondence
provides additional information concerning the use of class specifications in opera-
tions and therefore might identify dynamic relationships between component sche-
mas from a structural perspective.

Definition48 (Operation-Class Correspondence)  –  An operation-class 
correspondence holds for an operation and a class specification stemming 
from different component schemas that express the same concept. ◊

Package-Class Correspondence

Package-class correspondences between artefacts stemming from different compo-
nent schemas may indicate that real-world things have been modelled on different
abstraction levels and therefore provide important information for balancing the
overall problem analysis model.

Definition49 (Package-Class Correspondence)  –  A package-class 
correspondence holds for a package and a class specification stemming from 
different component schemas that express the same concept. ◊

Package-Attribute Correspondence

A package-attribute correspondence bridges two levels of abstraction and therefore
should only be used for assessing the correspondence of properties describing the
partition environment. The stereotype «interface» indicates the class specifica-
tion forming the partition environment of a given component schema.

Definition50 (Package-Attribute Correspondence)  –  A package-attribute 
correspondence holds for a package and an attribute stemming from different 
component schemas that express the same concept. ◊
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Package-Operation Correspondence

Similar to package-attribute correspondence, this correspondence bridges two levels
of abstraction. Therefore the operations attached to class specification representing
inter-partitions requirements should be compared to the partition deemed responsible
for its settlement.

Definition51 (Package-Operation Correspondence)  –  A package-operation 
correspondence holds for a package and an operation stemming from different 
component schemas, that express the same concept. ◊

7.3.6 Surroundings Correspondences

The central difficulty with respect to the correspondence of surroundings, is their
relational character. UML relationships are based on the correspondence of its con-
stituent classes, which has to be assessed beforehand. Although UML relationships
are based on relational semantics, the UML metamodel realises them in terms of
objects in their own right [OMG97a]. Especially the latest revision of the UML meta-
model, published March 1999, introduces a distinct metaclass Relationship
generalising the previously independent metaclasses Association,
Dependency and Generalisation [Rat99]. This representation dramatically
facilitates the discussion of constituent class correspondence.

Definition52 (Constituent Class Correspondence)  –  A constituent class 
correspondence holds for two relationships stemming from different 
component schemas, when the names of their constituent classes express the 
same concepts. ◊

We also have to distinguish between binary and semantic relationships, where espe-
cially the anonymous character of semantic relationships leads to our definition of
component schema conflict. Besides cardinalities, which are not considered, we also
neglect role names, represented in the UML metaclass AssociationEnd and the
so-called name-direction arrow, only defined in the notation guide [OMG97b]. Role
names usually facilitate reading recursive relationships, where both Association-
Ends connect the same class specification and therefore increase the comprehensibil-
ity of modelled reality for business users and domain experts.

7.3.6.1 Association-Name Correspondence

Within UML relationships, only associations and association classes are named ele-
ments. Therefore these constructs call for an individual analysis of correspondence
assumptions.
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Association-Association Correspondence

UML associations are named model elements and therefore the term labelling a dis-
tinct artefact also has to express a concept. But association names are optional and
therefore we may distinguish between four different situations. The particularities of
the first two situations are depicted in Figure 71:

Figure 71 Association-Association Correspondence: Constituent Class Correspondence 

The correspondence of two anonymous binary associations and an anonymous and a
named association can treated in a similar way, i.e. their correspondence is entirely
based on a constituent class correspondence. 

Definition53 (Anonymous-Association-Association Correspondence)   –  An 
anonymous-association-association correspondence holds for two anonymous 
associations if a constituent class correspondence holds for their constituent 
classes. ◊

In the case of two named associations we first have to analyse the correspondence of
its constituent classes and further have to incorporate the concept expressed by their
association names. Figure 72 depicts this situation:

Definition54 (Association-Association Correspondence)   –  
An association-association correspondence holds for two anonymous 
associations if a constituent class correspondence holds and their association 
names express the same concept. ◊
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Figure 72 Association-Association Correspondence: Association Name Correspondence 

The following example refers to the situation where the association names do not
express the same concept:

Figure 73 Association-Association Correspondence: Disparate Concepts 

Although the constituent classes in Figure 73 correspond, different abstract belong-
ings among the modelled real-world things have been depicted. Association names
expressing different concepts must not be confused with conflicts. As depicted in our
example, different aspects of our perceived reality have been modelled. Although the
constituent classes will be mapped to each other in an integrated problem analysis
model, two distinct associations will link them.

Additional Remarks In cases where the assumed conceptual similarity has been rejected by the involved
analysts, a unique name is assigned to the previously anonymous association, in order
to exclude the two relationships from future correspondence assumptions (see
Figure 73). Although the applied cardinalities provide the second criteria for the for-
mulation of correspondence assumptions, as depicted in the bottom half of Figure 71,
differing cardinality constraints should trigger a coordination among the involved
domain leaders, in order to provide additional criteria for stating or rejecting the cor-
respondence assumption.
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Association Class-Association Correspondence

Within the surroundings conflicts, association class-association correspondences are
quite complex. The most simple case is depicted in Figure 74:

Figure 74 Example of an Association Class-Association Correspondence 

Following the naming conventions in Section 6.1.1.2, relationship names must be
verbs. However, in the example a compound noun has been used, stressing the char-
acter of class AircraftPosition as a concept in its own right, with special con-
sistency constraints, namely that instances depend on the existence of their constitu-
ent classes, Aircraft and Sensor. Thus the assessment of the correspondence
entirely depends on the underlying linguistic support.

7.3.6.2 Relationship-Type Correspondences

Within surroundings correspondences a relationship-type correspondence holds
when their constituent classes correspond and different relationship types link these
class specifications. This situation is especially interesting with respect to the addi-
tional constraints incorporated in semantic relationships such as composition and
generalisation. Although the direction of semantic relationships formes an individual
category of correspondences, we prefer do discuss its implications in conjunction
with the relationship type.

Composition-Association Correspondence

Compared to ordinary relationships UML composition express additional constraints
affecting the life-cycle of instances connected by the composition. Figure 75 gives an
example from the air traffic management domain:
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From a linguistic point of view, a composition-association correspondence holds,
when the expressed concepts of the linked class specification are related through a
holonym/meronyms relationship.

Figure 75 Example of a Composition-Association Correspondence 

Definition55 (Composition-Association Correspondence)  –  A composition-
association correspondence holds when a constituent class correspondence 
holds and the direction of the linguistic relationship corresponds to the 
direction of the applied composition. ◊

Figure 76 Example for a Composition-Association Conflict 

Figure 76, however, models an aerodrome as part of a runway, which contradicts the
real-world perception. A domain ontology may state the correspondence of the
classes Runway, Airport and Aerodrome, but will also indicate that the direc-
tion of the UML relationship contradicts the linguistic relationship. This observation
leads to our definition of conflicts, as a new category of component schema relation-
ship.

Definition56 (Composition-Association-Conflict)  –  A composition-
association conflict holds when a constituent class correspondence holds and 
the direction of the composition contradicts the linguistic relationship. ◊
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Unlike the entirely structural definition of conflicts in the schema integration com-
munity, component schema conflicts are based on conceptual conflicts. Generally
speaking, component schema conflicts refer to contradicting directions of semantic
and linguistic relationships.

Figure 77 Example of a Composition-Association Correspondence 

The second example leads to a more complicated situation. The assumed correspond-
ence in this case is based on a constituent class correspondence and might be asserted
at first glance. The example, however, involves two completely different contexts, in
which similar terms may play an important role. The classes from the package
SDP: Domain Classes in the component schema SDP depict the observation of
aircraft in the surveillance domain. The classes from the package Aircraft, how-
ever, depict a set of sensors which can be found in an aircraft. So the assumed compo-
sition-association correspondence, cannot be stated. Surveillance sensors exist with-
out the presence of aircraft, while the on-board sensors are a crucial for an orderly
conduct of a flight. This example demonstrates another conflict category, which we
call concept context conflict. 

Definition57 (Concept Context Conflict)  –  Concept context conflicts arise 
whenever the ontological meaning of terms changes with respect to the 
application domain. ◊

A given term expresses several concepts and these concept are bound to a given
application domains. So an air traffic management ontology might not include a
detailed description of aircraft equipment and will therefore mistake the homonym
»sensor«. Concept-context conflicts are related to homonymous terms and require
analysts’ intervention. Concept-context conflicts once again stress the necessity of
analysts’ review for stating or rejecting assumed correspondences between artefacts.
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Generalisation-Composition Correspondence

At first glance Figure 78 does not require any further consideration, since specialisa-
tions can by no means be meronyms at the same time and therefore directly lead to a
conflict.

Figure 78 Generalisation-Composition Correspondence and Conflict  

Definition58 (Generalisation-Composition Conflict)  –  A generalisation-
composition conflict when a constituent class correspondence holds and the 
generalisation and the composition are applied in the same direction. ◊

Applying the relationships in the inverse direction leads to the example depicted in
Figure 79. We call this a compositor-pattern correspondence, according to Gamma’s
[GHJ+95] design pattern. Modelling class specifications in the depicted way results
in a uniform treatment of composed and simple objects. From a linguistic point of
view, this distinction is quite complicated, since in most cases the generalised class
does not have a counterpart in the domain ontology. In component schemas the gener-
alised class will be represented as an abstract class, that does not lead to instances. If
the class name has a counterpart in the ontology a linguistic hypernym / hyponym
relationship between the class specifications can be found. Alternatively, the ontol-
ogy might state a meronym / holonym relationship. 

Figure 79 Generalisation-Composition Correspondence and Conflict 
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Generally speaking a generalisation-composition correspondence calls for careful
review by the domain leaders and experts. A generalisation-composition class corre-
spondence leads to another particularity. All correspondences described so far led to
an amalgamation of corresponding artefacts in the resulting integrated model, while
this one preserves both semantic relationships.

Generalisation-Association Correspondence 

In the first example, a constituent class correspondence holds and the concept »plot«
is a hypernym of the concept »primary plot« in the domain ontology. As a result, the
representation in the component schema SDP does not regard set inclusion semantics
of the ontology and therefore proposes wrong cardinality constraints. In brief, the
first representation cannot be deemed minimal, since due to the known correspond-
ence from the ontology, a set of synonymous attribute and operation correspondences
must exist.

Figure 80 Example of a Generalisation-Association Correspondence 

Definition59 (Generalisation-Association Correspondence)  –  A 
generalisation-association correspondence holds for an anonymous 
association when a constituent class correspondence holds. ◊

Due to the erroneous direction of the generalisation in our second example, a gener-
alisation-association conflict can be assumed. Since the term »plot« is listed as a
hypernym of term »primary plot«, a conceptual conflict arises in the package
AircraftPosition. As a result, the minimality of the model is not assured and it
may also contradict the experience of domain experts.

Figure 81, p. 153 might be mistaken for a generalisation-association correspondence
at first glance. Since the generalisation contradicts the linguistic relationship in the
ontology, this situation depicts an inconsistent static structure diagram. Consequently
the domain ontologies may also ensure local consistency of component schemas and
once again stress their specific advantages in modelling activities.
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Figure 81 Example of a Generalisation-Association Conflict 

7.3.7 Subsection Summary: Conflict and Correspondence

Correspondences as introduced in this section are based on the linguistic relationship
among terms expressing the same concepts. Due to a potential homonymy of terms,
i.e. a different meaning of terms in various application domains, this correspondence
can only be assumed. Extensive review by the involved analysts has to be applied in
order to state or reject the assumed correspondence. The procedural perspective
towards this situation is detailed in Section 8.2. Conflicts in this context are related to
UML relationships. In these cases, the linguistic meaning of terms labelling artefacts
contradicts the applied constructs in the related component schemas. Neglecting an
intensive analysis of these correspondences directly affects the minimality of specifi-
cation and may lead to redundant representation of concepts in different component
schemas. In the worst case, these redundantly specified class specifications are even
incompatible and have the potential to threaten the implementation of the future sys-
tem. These various kinds of component schema relationships need further considera-
tion, with respect to procedural aspects as well as a representation of correspond-
ences in terms of a metamodel. The former aspect in particular involves a set of
questions with respect to the actual project organisation and the resulting manage-
ment processes for the detection, coordination and resolution of correspondences.

7.4 Integrating Component-Schema Relationships in the UML Metamodel

Having introduces various kinds of component schema relationships, we still have to
analyse means for representing them in terms of the UML metamodel, which does
not yet incorporate this kind of relationships. In order to avoid direct manipulations
of component schema contents, with the risk of misinterpreting and overriding
requirements, we have to identify a representation that may facilitate the coordination
among the involved analyst teams. 

7.4.1 Potential UML Constructs for the Realisation of Component Schema Relationships

Unlike UML relationships, that express mutual belongings among real-world things,
component schema relationships model mutual belongings among artefacts. 
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This observation may lead to the conclusion that component schema relationships are
metamodel elements. On the other hand, component schema relationships hardly
determine structure and semantics of model elements, as the central objective of a
metamodel in the sense of the ISO IRDS [ISO10027]. Thus changes to the UML met-
amodel can be excluded from further consideration. Within the selected constructs of
component schema’s static structure diagrams, the UML Trace relationship pro-
vides a starting point for the realisation of component schema relationships. The
UML metamodel states:

“A trace is a conceptual connection between two elements or sets of elements that represent a 
single concept at different semantic levels or from different points of view. However, there is 
no specific mapping between the elements. [...] The construct is mainly a tool for tracing 
requirements.” 
[OMG97a, p. 47]

The UML Trace relationship links arbitrary model elements and therefore meets the
previously stated requirement that component schema relationships represent mutual
belongings among model elements. In order to express the particular semantics of
described component schema relationships, the UML Trace needs further refine-
ment. Introducing specialised metaclasses to the metamodel or attaching stereotypes
to existing metaclasses are the principle solutions to this problem.

Introducing new metaclasses threatens the compatibility with off-the-shelf tool
implementations, although there is currently no CASE tool which completely realises
the UML metamodel. Additional metaclasses cannot be used in off-the-shelf tool
implementations. The other major drawback of specialised metamodel elements is
their lack of flexibility with respect to adaptations of tool users. Stereotypes in UML
directly address this issue, since they allow user-defined categorisation of metamodel
elements. Consequently predefined stereotypes can be adapted by the analysts at any
time, without putting CASE tool compatibility into question. So component schema
relationships can be best realised as stereotyped trace relationships in UML. The
complete list of stereotypes can be found in Table 11 in Appendix D.1.

7.4.2 Component Schema Relationships: Models, Partitions and Name Spaces

Having clarified the principal realisation of component schema relationships in terms
of the UML metamodel, we still have to take different repository organisations into
account. As stated in Section 4.2, repositories persistently store component schemas
and can be centralised as well as distributed.

Component Schema 
Relationships
in Centralised 
Repositories

Using a centralised repository on the basis of package-based partitions (see
Section 5.3) does not require any further consideration, since the repository imple-
ments the metamodel for component schemas and therefore arbitrary model elements
can be related to each other. Package-based partitions ensure the isolation of the
assigned analyst teams through the UML name space concept. Class specifications
with the same name in different packages are considered as independent artefacts,
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since their name is automatically prefixed with the name of the package-hierarchy.
Correspondence assumptions may link artefacts stemming from different component
schemas. So centralised repositories allow an efficient implementation of component
schema relationships in terms of the UML metamodel.

7.4.2.1 Distributed Repositories With Package-Based Partitions

Distributed repositories restrict the access to component schemas for analysts who do
not belong to the partition owners. This situation gives rise to the question of how an
integrated perspective to a set of independent but related component schemas can be
achieved.

Creating an Integrated 
Name Space

As discussed in Section 5.2.3.3, the identity of elements in a component schema is
realised through the UML name space concept. The hierarchic organisation of name
spaces automatically guarantees the identity of arbitrary model elements in compo-
nent schemas. Consequently, creating a new name space, provides a basis for an inte-
grated perspective towards a set of related component schemas and may also incorpo-
rate the UML trace relationships representing the correspondence assumptions. A
new model called ‘problem analysis model’ hosts the set of component schemas in a
package-based style. So each initial partition has to be represented as a distinct UML
package carrying the partition name. This situation is depicted in Figure 82:

Figure 82 Creation of an Integrated Name Space for the Definition of Correspondence Relationship

Providing read-access to the individual partitions stored in distributed repositories is
the minimum prerequisite for this approach. Integrating component schemas in a
newly created ‘problem analysis model’ creates a new name space incorporating all
initial partitions. But this gives rise to another problem, only the newly created
‘problem analysis model’ incorporates component schema relationships and they
cannot be replicated to the underlying component schemas. So read-access for the
newly created ‘problem analysis model’ has to be provided to all involved analyst
teams, in order to enable notification of detected component schema relationships.

Component Schema1 Component Schema2 

Component Schema Relationships

Partition2Partition1

Problem Analysis Model
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Model-Based 
Partitions

Model-based partitions with their single name space require additional preparations.
The stereotype «interface» has been tagged to all class specifications forming
the partition environment, but there is no distinction between class specifications rep-
resenting inter-partition requirements and class specifications referring to external
systems. So first of all, model-based partitions have to be converted into package-
based partitions. Then class specifications representing inter-partition requirements
have to be related to those packages deemed responsible for the settlement of the
specified inter-partition requirements. Finally a new ‘problem analysis model’ may
be created and component schema relationships will then be detected in the same
style as described for package-based partitions at the beginning of this subsection

7.4.2.2 Distributed Repositories Using the CORBA OOA & D Facility

With the standardisation of the Unified Modelling Language in the Object Manage-
ment Group (OMG) a set of specialised interface definitions have been defined for
CASE tools realising distributed repositories. As part of the common facilities of
OMG’s Common Object Request Broker Architecture (CORBA) [OMG98] the so-
called OA&D CORBA Facility [OMG97d] allows the exchange of model elements
among distributed repositories. Interfaces to the repositories themselves are specified
in the related Meta Object Facility (MOF) [OMG97e]. Without prescribing a special-
ised implementation, all OMG standards standardise the access to the specified facil-
ities through a set of interfaces descriptions. Although there are currently no off-the-
shelf CASE tools implementing the interfaces, they still provide an interesting
approach for future enhancements of tool implementations.

With respect to component schema relationships, however, the OMG standards pro-
vide the necessary infrastructure for concurrently elaborated component schemas.
UML model elements are now accessible across the network. Component schema
relationships based on stereotyped Trace relationships can now directly link model
elements in distributed repositories. So using CORBA as an infrastructure for realis-
ing component schemas closely matches the ideas of Nuseibeh [NKF94], where
ViewPoints are distributed objects, encapsulating style, workplan, domain, specifica-
tion and work record. Furthermore, the CORBA event management service
[OMG97f] also provides the necessary infrastructure for the management of compo-
nent schema relationships.

Using the CORBA infrastructure is applicable to both model- as well as package-
based partitions. Read access to all involved component schemas and write access for
component schema relationships is the minimal prerequisite for this approach. The
self-contained character of concurrently elaborated component schemas will further
be stressed. The quality of the resulting overall problem statement, however, depends
on the management of component schema relationships. Resolving asserted corre-
spondences and guaranteeing the minimality of the overall problem analysis model
depends on the cooperation among the involved analyst teams, and consequently can
only be supported by an adequate technical infrastructure.
156



Management of Component 
Schema Relationships
8 Management of Component Schema Relationships

The management of component schema relationships comprises all activities related
to the detection, propagation and resolution of component schema relationships.
While the first aspect focuses on the strategies for their detection at a technical level,
the latter aspect involves organisational aspects. As detailed in Section 8.2, the detec-
tion of correspondence assumptions is influenced by the project organisation model.
The analyst’s horizon determines the visibility of component schema contents to
other involved analyst teams. The specific representation of inter-partition require-
ments also influences the different kinds of correspondence assumptions that can be
found. Finally, we have to describe the process of detecting, propagating and resolv-
ing correspondences and dependencies among a set of concurrently elaborated com-
ponent schemas representing the overall problem statement.

8.1 Assessment of Component Schema Relationships

Correspondence between artefacts and link artefacts differs significantly, since simi-
larity for link artefacts also includes the constituent class correspondence. 

8.1.1 Assessing Correspondence for Artefacts

Assessing the correspondence of model elements stemming from different compo-
nent schemas demands an integration of linguistic as well as structural aspects of the
applied modelling technique. Based on the distinction of correspondence and conflict
in Section 7.3, pp. 131 we define artefact correspondence as follows:

Definition60 (Artefact Correspondence)  –  An artefact correspondence holds 
for two artefacts stemming from different component schemas, if their terms 
label the same construct and express the same concept. ◊

Valid constructs within component schemas’ static structure diagrams are Class,
Attribute, Operation and Package. The concept expressed by a term refers
to the linguistic correspondence, while the applied constructs determine the respec-
tive component schema relationship in the sense of Section 7.3. A class name and a
package name expressing the same concept, for instance, lead to a package class cor-
respondence. Construct-kind and construct-level correspondences therefore entirely
depend on the applied constructs of the two corresponding artefacts. Especially
intra-construct-level correspondences demand further clarification. An intra-con-
struct-level correspondence holds for two class specifications determining the same
concept that reside in different package levels. Figure 83 depicts this situation:
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Figure 83 Inter-Construct-Kind Correspondence

Origin of Artefacts The correspondence of artefacts stemming from different component schemas also
demands keeping track of their origin. Here once again the UML name space concept
provides the necessary information, since all class specifications are unique within
their name space. The name space is spanned by packages. Class specifications stem-
ming form different partitions are prefixed with the individual names of the package
hierarchy. Every component schema is modelled in a top-level package carrying the
stereotype «System». In order to distinguish the «System» packages from differ-
ent component schemas, we have to prefix the name space with the partition name.
Figure 83 depicts the two class specifications named X stemming from two different
partitons. Since UML name spaces are spanned by packages, we come to the follow-
ing situation:

Partition1::System::A::C::X
Partition2::System::X

As a result, the UML name space concept allows us to keep track of the origin of
artefacts in distributed as well as centralised repositories. Although artefacts do not
have to be unique for the detection of correspondence assumptions as such, it is nec-
essary for correct linking of the affected artefacts via stereotyped Trace relation-
ships. Such a stereotyped Trace relationship represents the correspondence
assumption in the repositories.

So our current definition of correspondence depends on a linguistic clarification of
the meaning of artefacts used in component schemas. In other words, we are looking
for concepts expressed by terms labelling artefacts. One source for this clarification
are linguistic databases such as WordNet [WN98] or ontologies such as SENSUS
[Sen95]. Besides predefined linguistic support, analysts may also clarify the meaning
of terms manually by providing a concise definition for each term and relating syno-
nyms to them. 

Hypernyms and 
Correspondence 
Assumptions

As mentioned in Section 6.3.1 (see p. 110) the concept lattice of lexical databases
and ontologies, may further contribute to the detection of correspondence assump-
tions. In this context we are especially interested in the hypernym / hyponym relation-
ships between terms labelling artefacts. These linguistic relationships gain special
importance for the detection of class-class correspondence assumptions. We take the
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terms »aircraft« and »airliner« as our example. Obviously both terms cannot be syno-
nyms, due to their conceptual difference. However, the term »aircraft« is a hypernym
of the term »airliner« in the domain ontology. So without further considering the
structural aspects, i.e. attributes and operations, we may assume that the domain own-
ers just chooses a more specific term as is in the other component schema. This situa-
tion is depicted in depicted in Figure 84:

Figure 84 A Class-Class Correspondence Assumption based on Hypernyms in the Domain Ontology

Using hypernyms/hyponyms for the detection of correspondence assumptions gives
rise to another question, an assume correspondence of two terms that have a common
hypernym, as in the case of the terms »sailplane« and »helicopter« in the domain
ontology of Figure 84. Kashyap and Sheth argue that synonyms among independ-
ently developed ontologies are infrequent [KaS98]. Therefore incorporating common
hypernyms to generation of correspondence assumptions seams quite attractive. First
of all we have to decide the levels of hypernyms to be incorporated to the generation
of this kind of correspondence assumption. Taking once again the domain ontology
of Figure 84 as our example, we also may consider the term »vehicle« as a hypernym
of the term »aircraft«. Since the term »vehicle« also subsumes trucks and vessels, we
restrict the detection of correspondence assumptions only to direct hypernyms. Oth-
erwise the related real-world things become too different in order to keep the corre-
spondence assumption meaningful for the analysts. Incorporating hypernyms to the
detection of correspondence assumptions may lead to the situation to look for a direct
common hypernym of two terms. Although the terms »sailplane« and »helicopter«
have the same hypernym in the term »aircraft« they very different from a concep-
tional point of view. So including the common hypernym of two terms to the detec-
tion of correspondence assumptions is critical with respect to difference of the real-
world things. As a matter of consequence we do not make use of this linguistic rela-
tionship for the generation of correspondence assumption.

Integration of
Concept Lattices

The correspondence assumptions between the component schemas in Figure 85,
p. 160 give rise to another interesting question, the integration of different class hier-
archies. First of all there are two distinct perspectives with respect to this problem.
The integration of the resulting class hierarchies and a possible integration of ontolo-
gies.The integration of the class hierarchies is basically determined by the application
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and hand and therefore has to be considered as a manual process conducted via a
coordination between the affected domain owners and therefore will remain outside
the scope of this work. A possible integration of the ontologies, however, requires
further considerations.

Figure 85 Class-Class Correspondence Assumptions and Generalisation Hierarchies

First of all the correspondence assumptions in Figure 85 is based on a synonym rela-
tionship between the terms »aircraft« and »aeroplane« in the domain ontology (see
p. 159). In this context we do not intend to alter the underlying domain ontology, we
leave it as-is and initiate coordination among the involved domain owners. Assuming
there is a need for integrating new terms into an existing domain ontology, descrip-
tion logics are able to classify a given term automatically in the subsumption hierar-
chy. Kashyap and Sheth [KaS98] use this capability of description logics for query
processing in federated databases and therefore prove the minimality of a given
query. However, the integration of ontologies is not the concern of this work. In order
to avoid unintentional overwriting of artefacts we are looking for suitable means for
the detection of correspondence assumptions. We are using the ontology in this con-
text and we are not detailing how an ontology may be built from component schemas.
Therefore we leave out this interesting discussion in this work.

But there are other kinds of correspondence assumptions that cannot be detected on
the basis of linguistic support alone. WordNet for instance, lists the concept »speed«
as a hypernym for the terms »groundspeed« and »airspeed«. But following our dis-
tinction in Section 7.3.4.1, these two terms have different terms of references, which
cannot automatically be derived from WordNet. Consequently terms of reference,
scale, projection correspondences have to be considered as refinements of corre-
spondence assumptions, that can only be assigned manually. Although the concept
may reveal a correspondence among terms labelling different artefacts, analysts’
background knowledge may even refine this distinction. Especially a difference in
scale stresses this particular problem. Taking the terms »altitude« and »flight level«
as our example, WordNet [WN98] lists the term »level« – »flight level« is not listed –
as a hyponym of the term »altitude«. Consequently, standard linguistic databases do
not cover all intricacies of the domain at hand. Only detailed domain ontologies with
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their encoded logical theory are able to distinguish between these subtle differences.
Automatic assessment of correspondence for artefacts may be further detailed by
analysts’ intervention. But this distinction requires extensive domain expertise, that is
usually not encoded in standard thesauri and lexical databases.

8.1.2 Assessing the Correspondence for Link Artefacts

Link artefacts depend on artefacts and are represented in component schemas’ static
structure diagrams. Only named binary relationships are covered, since we may
retrieve the concept denoted by their association names. But the correspondence of
their constituent class specifications will be neglected and often binary relationships
do not carry a name. To complicate matters, semantic relationships – generalisation
and composition – are anonymous and therefore their correspondence cannot be
assessed in the same way. The directional character of composition and generalisa-
tion in UML directly leads to our distinction of correspondence and conflict. When-
ever the direction of a linguistic relationship contradicts the applied direction of a
UML relationship in a component schema, we call this situation a conflict. According
to the UML metamodel, all relationships are represented as metaclasses and therefore
lead to artefacts in their own right. However, the first step in assessing the corre-
spondence of relationships is the assessment of correspondence of their constituent
classes. Figure 86 illustrates an example for the remainder of this subsection:

Figure 86 An Example of Artefact Correspondence

Two artefacts stemming from different component schemas correspond if they are
labelled with the same name and express the same concept. With respect to
Figure 86, the class specifications A, A’ and B, B’ correspond to each other since
their class names denote the same concepts. The class specifications C and D do not
correspond to each other, since their terms do not express the same concepts. Rela-
tionships’ constituent classes can be regarded as pairs of concepts. In other words
two anonymous binary relationships correspond, when the particular concepts of
their constituent classes correspond. Consequently constituent class correspondence
can be broken down to the concept pair of the constituent classes. So we simply have
to form a new concept, based on the concatenation of the constituent classes’ con-
cepts. 
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Definition61 (Concatenated Concept)  –  The concatenated concept for 
relationships is constructed from the ordered pair of concepts of its constituent 
classes. ◊

In this context, we only have to make sure that the newly constructed concept cannot
be mixed up with existing ones. Therefore we introduce a double dagger ‘‡’ as an
indicator for concatenated concepts denoting relationships. Depending on the spe-
cific CASE tool implementation, binary associations may lead to two different con-
cepts, with a varying order of concepts. To facilitate the correspondence assessment
for relationships, we simply build an alphabetically ordered pair of their constituent
classes concepts. 

Definition62 (Relationship Concept)  –  The concept of a relationship is the 
alphabetically ordered pair of its constituent classes’ concepts, separated by a 
double dagger (’‡’) ◊

Going back to our example in Figure 86, the resulting concept for the relationship
linking the artefacts A and B takes the form A‡B. Similar to the correspondence of
artefacts, we also have to take the construct applied into account, i.e. the kind of
UML relationship. Possible values for the construct indicator in this context are
association, associationClass, generalisation and composition.
So far, artefacts and link artefacts share the same data structure for the assessment of
their similarity, but differ in the concept generation. The concepts of artefacts can be
directly retrieved from a domain ontology, while a newly created concatenated con-
cept is used for relationships.

8.1.2.1 Assessment of Correspondence for Named Link Artefacts

Named link artefacts in this context are binary relationships in UML that take the
form of associations and association classes. We further detail the correspondence
between anonymous binary relationships and named UML associations as well as
association classes. Nevertheless, the entire discussion in this subsection is based on
the constituent class correspondence. Unlike artefacts, named link artefacts comprise
two distinct concepts. On the one hand, the concatenated concept formed by its con-
stituent classes and on the other hand the concept denoting the relationship name. In
order to provide a uniform treatment of artefacts and link artefacts we want to form a
single concept. 

Definition63 (Named Relationship Concept)  –  The concept of a relationship 
is the ordered concatenation of its constituent classes’ concepts and the 
concept expressed by the relationship name, separated by double daggers (’‡’).◊

This newly created concept incorporates the relationship concept combined with the
concept of the relationship name. So we simply concatenate the concept of the rela-
tionship name to the constituent classes concept, separated by another double dagger.
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Taking the uppermost occurrence in Figure 87 as our example, we obtain the follow-
ing concept ‘A‡B‡C’. Constituent class correspondence can therefore be realised as a
simple substring search, while the assessment of named relationships encompasses
the entire concept. Figure 87 depicts the list of assessable correspondences: 

Figure 87 Assessable Correspondences for Named Link Artefacts 

This definition holds for UML associations, as well as UML association classes,
since the central difference between the two UML concepts is formed by properties
exclusively belonging to the relationship. With respect to association classes, another
significant problem comes into play. Following the conventions in Section 6.1.1.2,
verbs name binary associations, while nouns name association classes. Consequently
domain ontologies will not be able to assess their corresponding denotation. Ontolo-
gies as well as thesauri use disparate hierarchies for the clarification of the individual
meaning of verbs and nouns. The OntoSaurus [Ont95] and its underlying SENSUS
ontology [Sen95], as well as WordNet [WN98] follow this approach. Since our
assessment of correspondence is not entirely based on automated means, analysts
may indicate this kind of correspondence manually. The previous definition also
holds for anonymous binary relationships with little modifications. In this case, the
constituent class correspondence already holds for the correspondence between an
anonymous relationship with a named association. So we only have to make sure that
a single anonymous relationship in one component schema will not be related to sev-
eral named ones in the related component schemas. In this situations we arbitrarily
select one of the named relationships in the target component schema. 

8.1.2.2 Correspondence and Conflict for Anonymous Link Artefacts

Unlike the previous subsection, where the correspondence of link artefacts is essen-
tially influenced by the relationship name, the correspondence of anonymous and
semantic relationships entirely relies on the linguistic relationship of the concepts of
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their constituent classes. From the modelling technique perspective, semantic rela-
tionships impose additional integrity constraints on the resulting instances of the
linked classes. Specialised class specifications are subsets of their generalised class
specifications. Compositions impose a coinciding lifetime of the aggregate on its
components. In brief, composition and generalisation impose constraints to instances,
which are not part of our analysis in this work. But on the linguistic level, these rela-
tionships express significant additional meaning with respect to their constituent
terms. Generalisation is mirrored in the hypernym relationship and composition in
the meronym relationship. So this time the relationship among the concepts of the
constituent classes forms the centre of our interest. But the directional character of
anonymous link artefacts demands for preservation of the original direction of the
relationship, since composition and generalisation are directional. In order to keep
the comparison of concepts as simple as possible, we keep the alphabetic order of the
concatenated concept formed by its constituent classes and add a simple direction
indicator, preserving the original direction of the original UML relationship.

Definition64 (Direction Indicator)  –  The direction indicator states whether 
or not the order of the constituent classes’ concepts corresponds to the original 
direction of the semantic relationship. ◊

Based on this observation we start with a definition of correspondence for anony-
mous link artefacts.

Definition65 (Anonymous Link Artefact Correspondence)  –  An anonymous 
link artefact correspondence holds when a constituent class correspondence 
holds the anonymous link artefacts have the same constructs and the same 
direction indicators. ◊

Figure 88 Assessable Correspondences for Anonymous Link Artefacts 

This definition holds for the correspondence between two specialisations and compo-
sitions, indicated with the stereotypes «co-co correspondence» and «ge-ge
correspondence». The central characteristic in this assessment is the availability
of suitable linguistic support, in order to verify if the applied UML construct – gener-
alisation and composition – reflects the linguistic relationship between the artefacts
participating in the relationship. Essentially we have to verify whether the two terms
are hypernyms or meronyms of each other. Figure 88 depicts examples of this situa-
tion. Where the direction of the linguistic relationship contradicts the applied direc-
tion of the UML relationship, we find a component schema conflict.

Jet liner

Partition1 Partition2

AirplaneJet linerAeroplane

EngineAeroplaneEngineAirplane
164



Management of Component 
Schema Relationships
Definition66 (Generalisation Conflict)  –  Two generalisations conflict, when 
their constituent classes determine the same concepts and the direction 
indicators differ. ◊

Definition67 (Composition Conflict)  –  Two compositions conflict, when 
their constituent classes determine the same concepts and their direction 
indicators differ. ◊

However, automatic detection of this kind of component schema conflict depends on
the available linguistic support. The domain ontology used has to implement all
inverse linguistic relationships. For a hypernym relationship between given terms,
the inverse hyponym relationship should also be implemented. But this demand is
quite critical with respect to the meronym relationship. Neither the SENSUS Ontol-
ogy [Sen95] nor WordNet [WN98] implement the holonym relationship for all terms.
But meronymy can simply by verified with a second query to the ontology with a
reverted order of terms expressing the constituent concepts. Examples of these con-
flicts are depicted in Figure 89.

Figure 89 Assessable Conflicts for Anonymous Link Artefacts

Linguistic support may also reveal linguistic relationships that have not been mod-
elled in individual component schemas. While in one component schema a binary
association links the two class specifications, a composition links the class specifica-
tions in the other component schema. But linguistic support does not hold for associ-
ation classes, since properties cannot be attached to semantic relationships in compo-
nent schemas. Whenever two corresponding constituent class specifications have
been linked with a UML association class in one component schema and a composi-
tion in the other one, this leads to a «co-ac correspondence». A similar situa-
tion holds for generalisations and associations classes. So this observation leads to
the following definition of conflicts:

Definition68 (Association Class Conflict)  –  Two link artefacts conflict, 
when a constituent class correspondence holds and an association class is 
linked to semantic relationships. ◊

So finally a conflict arises automatically when a composition and a generalisation
have been applied in the same direction in different component schemas. A term can
never be a meronym and a hypernym of the same concept at the same time. With
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respect to our example, the term »aircraft« is a hyponym of »vehicle«, but »vehicle«
is never a holonym for the term »aircraft«. So this situation results in a clear composi-
tion-generalisation conflict, indicated through the stereotype «co-ge conflict».

Figure 90 Assessable Correspondences and Conflicts of Different Types of Anonymous Link Artefacts

Definition69 (Compositor-Pattern Correspondence)  –  A composition and a 
generalisation correspond, when their constituent classes determine the same 
concepts, the direction indicators differ and hypernomy holds for the 
generalised terms and meronymy holds for composed terms. ◊

Definition70 (Composition Generalisation Conflict)  –  A composition and a 
generalisation conflict, when their constituent classes express the same 
concepts and the same direction indicator. ◊

Figure 91 Assessable Conflict and Correspondence of Different Types of Anonymous Link Artefacts 

However, this situation requires a very well chosen domain ontology, since usually
the hyper-/hyponomy relationships are implemented on a broader range in different
linguistic tools. So it is more likely that the linguistic support will state the hyper-/
hyponomy relationship between terms. So we prefer to indicate compositor pattern
correspondence instead of indicating a conflict.

8.1.3 Subsection Summary

The central prerequisite for the assessment of relationship correspondence is a corre-
spondence of their constituent classes. Through the creation of a so-called concate-
nated concept formed by the concepts of its constituent classes, the similarity can be
detected with simple pattern matching. A clarification of the real nature of the corre-
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spondence assumption, however, incorporates the reflection of the individual UML
constructs and the direction indicator. Most of the automatic support is heavily influ-
enced by the level of detail in the available domain ontology. Extensive concept
hierarchies and meronym / holonym pairs guarantee broad automated detection of
relationship correspondences and conflicts. In this context, a set of queries to the
ontology may answer the detailed relationship among the terms of the constituent
classes. The concrete nature of these queries depends on the construct and the direc-
tion of the compared relationships. The assessment of correspondence for UML com-
positions involves two ontology queries, since a holonym relationship has not been
implemented for all terms. Since the UML metamodel regards all kinds of relation-
ships as model elements in their own right, the introduction of the so-called concate-
nated concept allows uniform treatment of artefacts and link artefacts for the assess-
ment of correspondence.

8.2 Component Schema Relationships and the Analyst’s Horizon

Minimality and coherence of the overall problem analysis model are affected by the
analyst’s horizon. In this context we study the influence of the analyst’s horizon on
the expected component schema relationships.

8.2.1 Component Schema Relationships among Opaque Partitions

Opaque partitions reduce the partition owner’s horizon to the partition environment
of all other partitions outside his own responsibility. Figure 92 illustrates this situa-
tion:

Figure 92 partition owner Horizon for Opaque Partitions

So analysing the environment of other involved partitions has two different objec-
tives. First of all ensuring that all inter-partition requirements of the owned partition
will be settled by related partitions. We call this objective inter-partition settlement.
The second objective deals with assessing the impact of the environment of related
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partitions with respect to the contents of an owned partition. We call this objective
inter-partition impact analysis. In this section we simply use the abbreviated terms
settlement and impact analysis.

The partition environment generally incorporates two kinds of class specifications.
The first category represents the interface to external systems and is marked with the
stereotype «interface». Requirements posed to other partitions, so-called inter-
partition requirements, form the second category of class specifications within the
partition environment. Thus class specifications within the owned partition depend
on services provided by class specifications in other partitions. Opaque partitions
only present a facade-class, expressing its offered services and its partition environ-
ment to external analysts, i.e. the domain owners cannot analyse the partition contents
for potential correspondences. This situation leads to the definition of a new kind of
component schema relationship, that we call component schema dependency.
Figure 93 clarifies this situation1.

Definition71 (Component Schema Dependency)  –  A component schema 
dependency refers to a component schema relationship that indicates an 
unsettled inter-partition requirement between the involved partitions to the 
affected partition owners. ◊

Figure 93 Component Schema Dependency in Opaque Partitions

The two depicted partitions, built in a package-based style, hide their internals and
only present their environment to the involved analyst teams. Partition1 contains
a class specification named X demanded from Partition2. The class specification
Z, on the other hand, represents an inter-partition requirement in Partition2
demanded from Partition3. Due to the hidden internals of Partition2 the cor-
respondence of artefacts cannot be assessed. Since the coherence of a specification is
directly influenced by the settlement of inter-partition requirements, we need a con-
struct in order to raise the awareness of the affected analyst team. Component schema
dependencies relate individual artefacts to entire component schemas and therefore
realise reminders for the related analyst teams with respect to coordination of the

1 Note that transparent packages – indicated by dashed lines – do not follow the UML Notation Guide [OMG97b].
UML always reserves a view in its own right, in order to present package contents to CASE tool users.
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stated inter-partition requirements. Component schema dependencies are therefore
closely related to the partition owner’s first objective, the settlement of inter-partition
requirements.

Analysing the impact of the environment of associated opaque partitions with respect
to the contents of the owned partition forms the partition owner’s second objective. In
this context, partition owners try to fulfil requirements posed with respect to their
owned partition. Due to analyst’s autonomy, partition owners proactively take into
account inter-partition requirements stated by other analyst teams and try to fulfil
them on the basis of class specifications forming the partition contents of their owned
partition. In this context, the mapping of initial partitions to component schema plays
an important role, leading to different activities for package- and model-based parti-
tions.

Dependency in 
Package-Based 
Partitions

Component schema dependencies can easily be realised in package-based partitions,
since the origin of class specifications representing inter-partition requirements has
been determined positively. Now an appropriate construct has to be found, in order to
link class specifications to the packages in different partitions. According to the met-
amodel document [OMG97a] the UML Trace relationship provides a conceptual
connection between arbitrary model elements. So class specifications representing
the inter-partition requirement can be linked to the packages representing the
affected partition via a Trace relationship marked with the new stereotype
«dependency». Although at first glance the stereotype «dependency» be con-
fused with the UML Dependency relationship, there is still a significant difference
between the two constructs. The UML Dependency can only link class specifica-
tions or packages to each other. That means the related artefacts have to share the
same construct. A component schema dependency, however, may link class specifica-
tions to entire packages.

Dependency in 
Model-Based 
Partitions

Model-based partitions do not relate class specifications representing inter-partition
requirements to related partitions. Consequently, this determination has to be realised
before the class specification can be linked to the target component schema. Since
UML metaclass Model is a specialisation of metaclass Package, component
schema dependencies may be realised in the same way as in the package-based parti-
tions. However, there is a significant difference as we will see. While package-based
partitions directly relate the inter-partition requirement to a defined partition, model-
based partitions do not provide this distinction. The partition environment formed by
class specifications marked with the stereotype «interface» does not distinguish
between external elements, outside the authority of the future systems, and inter-par-
tition requirements which are located within the authority of the future system. Link-
ing inter-partition requirements presupposes a manual review of the involved parti-
tions and depends on the analyst’s domain expertise. In other words, the analyst’s
judgement relates given class specifications to a distinct partition. This observation
leads to another distinction of class specifications representing inter-partition
requirements. So-called identified component schema dependencies describe the par-
tition responsible for its provision, while in unidentified component schemas depend-
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encies the target partition has to be detected by a review, either by the master team or
by interested autonomous analyst teams. Consequently, model-based partitions only
comprise unidentified component schemas dependencies, while package-based parti-
tions only comprise identified ones, due to the replication of all involved partitions in
the form of packages.

Component schema dependencies in opaque partitions represent reminders for the
affected analyst teams that given structural and behavioural requirements have to be
fulfilled by this partition. Due to this assumed dependency, the analyst team has to
check whether an existing class specification within their partition contents fulfils the
requirements. Partition owners therefore have to analyse the impact of inter-partition
requirements on their owned partition. In order to fulfil the requirement there are two
different strategies. In the first one, the class specification fulfilling the request has to
be made visible to external analyst’s. At the same time the original component
schema relationship has to be linked to the class specification fulfilling the inter-par-
tition requirement and then has to be changed into a correspondence assertion. The
second strategy leads to new properties added to the facade-class representing the
entire partition. In this case, the new properties are linked to the class specification in
the target partition using a correspondence assertion.

Character of 
Component Schema 
Correspondence in 
Opaque Partitions

The character of component schema relationships between opaque partitions is basi-
cally influenced by the representation of inter-partition requirements, i.e. whether a
class-based or a facade-based approach has been taken. While facade-based inter-
partition requirements lead to inter-construct level correspondences, class-based
inter-partition requirements lead to intra-construct level correspondences. Generally
speaking, the specific representation of inter-partition requirements essentially influ-
ences the kind of expected correspondence assumptions. Thus the analyst’s horizon
can be regarded as less dominant in this context.

Impact of Opaque 
Partitions on 
Coherence and 
Minimality

Due to the hidden partition internals, the coherence of the overall problem analysis
model formed by the set component schemas entirely depends on the cooperation of
the involved analyst teams. Since component schema dependencies can be regarded
as reminders for coordination among the involved analyst teams, there is no guaran-
tee that the reminder will be changed into a correspondence assertions, leaving the
overall problem analysis in an incoherent state. Inter-partition requirements simply
have not been fulfilled. At the same time, the minimality of the specification cannot
be guaranteed, since the hidden partition internals prohibit a detailed analysis of
redundant artefacts, possibly induced by equipollence. Consequently, coherence can
be assured on the basis of a cooperative coordination between the involved analyst
teams.

Component Schema 
Dependency Revisited

Unlike component schema correspondence, component schema dependency can be
characterised as an organisational relationship driving the coordination of the
involved analyst teams. In fact they can be regarded as to be done requirements, since
a clarification of the concrete nature of the specified structural and behavioural
requirements is vital with respect to the coherence of the overall specification. In
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other words, component schema dependencies are a structural representation of a
necessary coordination among the involved analyst teams on the level of component
schemas. The coordination itself however remains outside the scope of component
schemas and is entirely embedded in human communication. Consequently, the inte-
gration of component schemas requires that all component schema dependencies
have to be resolved first, i.e. have to be changed into correspondence assertions. So
the number of component schema dependencies always indicates pending coordina-
tion between the involved analyst teams, regardless of the concrete project organisa-
tion model and can therefore be regarded as a first handle for the quality of the over-
all specification with respect to minimality and consistency.

8.2.2 Component Schema Relationships among Transparent Partitions

Transparent partitions present all artefacts of a component schema to external ana-
lysts. Following the results of Section 7.3, pp. 131 all kinds of component schema
relationships might exist. This observation leads to an order of applying the analysis
for the various kinds of component schema relationships, from component schema
correspondences to component schema dependency. In order to guarantee the coher-
ence of the overall problem analysis model, inter-partition requirements have to be
analysed first. This examination is related to all class specifications carrying the ster-
eotype «interface». In the case of identified component schema dependencies,
these class specifications have to be compared to the internals of the related compo-
nent schemas. Then the minimality of the specification can be improved by an analy-
sis of the artefacts representing the key abstractions of the involved partitions.
Depending on the specific way the partition environment has been modelled, i.e.
facade-based versus class based inter-partition, intra- as well as inter-construct level
correspondences may be found.

Figure 94 Component Schema Dependency in Transparent Partitions with Class-Based Inter-Partition Requirements

Class-Based
Inter-Partition 
Requirements

As depicted in Figure 94, artefacts in component schemas with class-based inter-
partition requirements have to be compared with artefacts forming the key abstrac-
tions of the related partitions. In this context, basically inter-construct-kind relation-
ships, i.e. mostly class-class correspondences, have to be detected. If automatic as
well as manual reviews do not detect any related artefacts, at least a component
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schema dependency has to connect the artefact with the related component schema, as
a reminder for coordination of the involved analyst teams. This analysis ensures the
consistency of the overall specification and guarantees that once coordination has
taken place between the involved analyst teams, inter-partition requirements will be
fulfilled. Although class-class correspondences in this context are the most probable
correspondences, differing levels of detail in the related component schemas might
also lead to the inter-construct-kind relationships and consequently to inter-con-
struct-level relationships. In other words, besides class-class relationships we may
expect package-class relationships.

Figure 95 Component Schema Dependency in Transparent Partitions with Facade-Based Inter-Partition Requirements

Facade-Based 
Inter-Partition 
Requirements

As depicted in Figure 95, artefacts in component schemas with facade-based inter-
partition requirements have to be compared with artefacts forming the contents of
related partitions. Facade-based inter-partition requirements combine a set of struc-
tural as well as behavioural requirements in a single class specification representing
an abstraction of an entire component schema. Attribute names in this facade-class
denote real-world things on a fairly abstract level. The same observation holds for
operations, but with a significant difference. According to naming conventions, verbs
are used for operation names (see Section 6.1.1.2). The following quotation clarifies
this situation:

“Basic Functions supplies MONA with the necessary information relating to Letters of 
agreement, Standard operating procedures, Airspace data and IAS limit data.” [Eur96a, p. 2-2]

The term »basic functions« is a synonym of flight data processing and denotes a
facade class called FA_FDPD_AAF representing the inter-partition requirements
between the partitions FDPD and MONA, each realised as a facade class. Although the
terms »letter of agreement«, »Standard operating procedures«, »Airspace data« and
»IAS limit data« refer to structural requirements, they have been modelled as opera-
tions, since the ORD did not detail their structure. All three terms have been prefixed
with the term »provide« and represented as operations in a facade class. This realisa-
tion results in inter-construct-kind and -level correspondences between artefacts
stemming from different component schemas. In this context, attribute- and opera-
tions-class correspondences form the most important component schema relation-
ship. In differing levels of abstraction between the analysed component schemas,
package-operation as well as package-attribute correspondences may be found.
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Package- versus 
Model-Based 
Partitions

Correspondences among partitions mainly depend on the way inter-partition require-
ments have been built. In other words, package- as well as model-based partitions
lead to the same correspondence assumptions, but demand for different manual prep-
arations. Since package-based partitions already relate the inter-partition require-
ment to a distinct partitions, they comprise so-called identified component schema
dependencies. This connection still has to be established in model-based partitions.
This can be accomplished on a manual basis or on basis of an analysis of correspond-
ences for all involved component schemas, leading to increased efforts. In other
words, model-based partitions first have to be transformed into package-based ones
in order to relate inter-partition requirements to distinct partitions. This activity
directly reduces the correspondence analysis effort, since at least the analysis with
respect to the consistency of the overall specification can be simplified.

Improving Minimality While the discussion at the beginning of this subsection basically dealt with guaran-
teeing coherence with respect to the overall problem analysis model, an improvement
of the minimality of the specification leads to an analysis of partition contents. The
central objective for this task is the detection of synonymous and equipollent arte-
facts in the component schemas involved. The main reason for this analysis is the fact
that redundant (i.e. synonymous) artefacts may lead to subtle differences with respect
to structure and behaviour of the resulting class specifications, which may hinder
proper interfacing of the designed system. Resolving redundancies also reduces
design and implementation efforts, since a single class specification can be used
throughout the entire system. This activity also leads to an improved understanding
of the overall problem statement, since less class specifications are generally easier to
understand for software designers and the domain experts.

Improving the minimality of a specification therefore leads to an extensive analysis
of all involved component schemas. Consequently intra- as well as inter-construct-
kind correspondences have to be detected at intra- as well as inter-construct-level. In
order to keep the analysis efforts as low as possible, this analysis should only be
applied at the end of requirements elicitation and negotiation. So this analysis com-
bined with a coordination of the detected correspondences may prepare the following
integration of component schemas towards a single integrated overall problem analy-
sis model and therefore reduces the risk of misunderstanding structural as well as
behavioural requirements stated in different component schemas.

8.2.3 Component Schema Relationships among Opaque and Transparent Partitions

Component schema relationships between transparent and opaque partitions reflect
the situation encountered in our requirements engineering projects in air traffic man-
agement. Partition owners in this setting analyse component schema relationships of
their transparent partition with the partition environment of a set of opaque partitions.
This kind of analysis can be distinguished into two separate phases, where the first
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one ensures the consistency of the environment of the owned partition and the second
one discusses the impact of inter-partition requirements stated by other involved ana-
lyst teams on the partition at hand.

Consistency of
the Partition 
Environment

Depending on the specific representation of the partition environment in the involved
partitions, intra-construct-kind correspondences can be expected for class-based
inter-partition requirements, while facade-based ones mostly lead to inter-construct-
kind and inter-level correspondendences. Whenever inter-partition requirements can-
not be fulfilled by the affected partition, i.e. correspondences can be found neither
automatically nor manually, a component schema dependency has to be posted. Com-
ponent schema dependencies draw the attentiton of the affected analyst team to this
problem. The following coordination between the analyst teams should resolve the
detected inconsistency among the partitions. The organisational implications of this
activity are detailed in Section 8.3. The central objective in this activity is still ensur-
ing that the partition environment of the owned partition will be satisfied by other
involved partitions. In other words, structural as well as behavioural inter-partition
requirements stated in given component schemas have to be fulfilled by other compo-
nent schema , in order to avoid inconsistencies and to improve the coherence of the
overall specification defined in a set of concurrently elaborated component schemas.

Impact of
Inter-Partition 
Requirements Stated 
in other Partitions

While the previous paragraph dealt with ensuring the consistency of a partition with
respect to other involved partitions, here we want to analyse the inverse direction, i.e.
assessing the impact of inter-partition requirements stated in other opaque partitions
on the owned partition elaborated by the assigned analyst team. Once again the
expected correspondences depend on the specific way the inter-partition require-
ments have been represented in the other component schemas. Class-based partitions
mostly lead to intra-construct-kind correspondences, while facade-based ones auto-
matically lead to inter-construct-kind and inter-construct-level correspondences.
Assessing the correspondence of the contents of an owned partition with the environ-
ment of other involved partitions indicates which class specifications are required in
other partitions. Changes to the affected class specifications automatically threaten
the consistency of the overall problem statement. Deleting these class specifications
or dividing this class specification into a set of collaborating class specifications, i.e.
application of a design pattern, will automatically leave unresolved inter-partition
requirements in the other affected partitions. Comparing an owned partition with the
environment of other involved partition, also directly influences the autonomy of the
assigned analyst team. Class specifications with existing correspondences cannot be
changed without prior agreement of the affected analyst team. All other can be
changed at any time. So generally speaking, correspondences as well as dependencies
among component schemas provide indications for the actual degree of mutual auton-
omy of given component schemas. The organisational aspects mentioned with respect
to correspondence management are further detailed in Section 8.3.
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8.2.4 Summarizing Component Schema Relationships and Analyst’s Horizon

The discussion within this subsection clarified the relationship of the analyst’s hori-
zon on the different kind of component schema relationships in concurrent require-
ments analysis. Besides the analyst’s horizon restricting the visibility of partition con-
tents to external analysts teams, correspondences are heavily influenced by the
specific way inter-partition requirements have been represented in the involved parti-
tions. Facade-based inter-partition requirements automatically lead to inter-construct-
kind as well as inter-construct-level correspondences, since attributes as well as oper-
ations are realised in terms of UML class specifications in the related partitions. The
correspondence between operations and class specifications can only be assessed
within defined limits. Whenever the naming conventions described in Section 6.1.1.2
have been followed closely, a domain ontology facilitates automatic detection of cor-
respondences. But we have to stress that this observation is influenced by the require-
ments basis for the individual partitions and the component schemas describing them.
Operational requirements documents with their high-level description of their parti-
tion environment are more likely to produce this kind of correspondences between
facade-classes from external partitions and class specifications in the owned parti-
tion. Use cases, on the other hand, provide more detailed behavioural requirements
which lead to operation names that match to the normative language reconstruction
as described by Schienmann [Sch97] and therefore require more elaborate tools such
as ontologies or a thesauri.

Dependency among 
Hidden Partitions

Opaque partitions, where only the partition environment is visible to external project
participants, lead to a new component schema relationship, the component schema
dependency. Component schema dependencies relate class specifications to entire
component schemas. Consequently, dependencies directly represent potential incon-
sistencies between the affected component schemas and are drivers for the coordina-
tion between the involved analyst teams. This specific character of dependencies
stresses their mainly organisational character, contrasting the structural linguistic
character of correspondences. As a side effect, dependencies may also be used to post
inter-partition requirements to hidden partitions. Although hidden partitions can be
regarded as critical with respect to minimality and consistency, component schema
dependencies allow at least a participation of these partitions in the coordination
process between the involved analyst teams. Inter-partition requirements can be
posted and therefore provide a reminder to the affected analyst team. We have to
admit, at this point, that the integration of component schemas at least requires
opaque partitions in order to ensure the consistency of the overall specification. Min-
imality can only be achieved with transparent partitions where redundancies among
artefacts can really be assessed on the basis of correspondence assumptions detected
on an automatic as well as a manual level. Analyst horizon and the specific represen-
tation of the partition environment are already influenced by the project organisation
and more precisely by the coordination process between the involved analyst teams.
So at this point we have to focus on primary organisational and, in this context, pro-
cedural aspects of concurrent requirements engineering. This observation becomes
especially evident with respect to the resolution of detected correspondences and
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dependencies. Renaming a class specification after the detection of synonym class-
class correspondence leads to a direct class-class correspondence in the next assess-
ment cycle. Excluding resolved correspondences from further assessments directly
decreases the coordination effort and has the potential to improve a smooth elabora-
tion of the involved partitions and the component schemas representing them.

8.3 The Management Process

Component schema relationships indicate potential redundancies and incoherence
between the problem partitions elaborated by the involved analyst teams. Realising
component schema relationships in terms of stereotyped UML Trace relationships
enables coordination between the involved analyst teams without direct and uncon-
trolled changes to component schema contents. This approach overcomes the inher-
ent risk of misunderstanding and overriding requirements stated in related component
schemas and also increases analyst autonomy. Component schema relationships can
also be used to facilitate supervising ongoing problem analysis or preparing the inte-
gration of individual component schemas towards an integrated problem analysis
model, documenting the entire problem statement. Having discussed the nature of
component schema relationships and necessary techniques for their identification, we
now have to focus on organisational implications. Within this aspect we have to
develop a management cycle for component schema relationships and analyse the
general impact of different project organisations on their management.

8.3.1 The Management Cycle for Component Schema Relationships

Component schema relationships indicate assumed correspondences between a set of
component schemas, representing concurrently elaborated partitions. Direct manipu-
lations of individual component schemas can be avoided. Similar to the ViewPoint
framework [NKF94], we decouple the detection of correspondences from their reso-
lution. We still have to keep in mind that due to a homonymy of terms, disparate real-
world concepts may have been modelled. Consequently, the correspondence assump-
tion has to be rejected in the following review by the involved analyst teams. The
other important demand with respect to this work is to provide an infrastructure for
concurrent requirements engineering. Component schema relationships require a
detailed review among the affected analyst teams in order to assert component
schema relationships. On the basis of Batini’s schema integration process, this sub-
section defines a management process for component schema relationships and pro-
poses a realisation in terms of the UML metamodel.
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8.3.1.1 Component Schema Integration Strategies 

Before actually proposing a management cycle for component schema relationships,
we want to take a closer look at the schema integration process, as defined by Batini
[BLN86]. This stresses once again the specific differences between schema integra-
tion for federated database systems on one hand and concurrent requirements engi-
neering on the other. 

Schema Integration 
Process

Batini [BLN86] divides the schema integration process into the following phases:

1 Preintegration
The sequence and grouping of schemas for the actual integration has to be 
considered. Especially the integration processing strategy has to be chosen in 
this phase (Figure 96)

2 Comparison of schemas
Detecting all kinds of conflicts is the central activity within this phase.

3 Conformance of schemas
In this phase the schema transformation actually takes place, resolving the 
conflicts detected in the previous phase. Renaming is the most primitive 
operation for the conformance of several component schemas. Type 
transformations, algebraic operations and redundancy elimination are 
examples of advanced techniques for conformance of conflicts over a set of 
component schemas

4 Merging and restructuring of schemas
Having resolved potential conflicts between component schemas, the 
integration is accomplished by merging the component schemas.

Figure 96 Types of Integration Processing Strategies [BLN86, p. 343]

Component Schema 
Comparison

Comparison of component schemas is detailed elsewhere in this work. Section 7.3.2
introduces component schema correspondence and conflict as the central prerequi-
sites of this work. Section 8.2 analyses the impact of the analyst’s horizon and spe-
cific representations of partitions and inter-partition requirements on the expected
component schema relationships and also introduces the component schema depend-

one-shot iterativebalancedladder

n-arybinary
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ency as a new relationship in concurrent requirements analysis. Unlike correspond-
ence, component schema dependency has an organisational character, in order to pro-
mote coordination between the involved analyst teams. 

Schema Conformance The intensional character of component schemas complicates the conformance of the
involved component schemas considerably. Unlike schema integration, where
instances are the primary concern, concurrent requirements analysis focuses on the
conceptualisation of the application domain at hand. So the analysts are looking for a
suitable representation of structural and behavioural requirements for relevant real-
world things in the application domain. Since concrete instances do not have to be
taken into account, analysts have considerably more freedom to conform artefacts
specified in different component schemas. Consequently the range of solutions is far
bigger. The only concrete criteria in this context are coherence – see Definition 16,
p. 57 – and minimality of the overall specification. A specification can be called min-
imal, when a real-world thing does not lead to several artefacts in the participating
component schemas expressing the same concept.

Merging and 
Restructuring
of Schemas

Merging component schemas towards an integrated problem analysis model and
restructuring the results paves the way for the creation of software requirements spec-
ifications covering the entire problem statement. While restructuring in schema inte-
gration also aims for optimised access to federated databases, i.e. improving the sys-
tem’s performance, concurrent requirements engineering demands minimal and
coherent representation of the entire problem statement. This representation has to be
solution-neutral and has to meet the attributes of good software requirements specifi-
cations in the sense of the IEEE-830 standard. Generally speaking, merging and
restructuring of component schemas works under a considerably different set of con-
cerns compared to schema integration.

Preintegration The specific way partitions have been mapped to component schemas and the partic-
ular representation of inter-partition requirements does not impose an order of com-
paring and integrating component schemas. Although the processing strategy is rele-
vant for both comparison and integration of component schemas, the autonomy of
analyst teams demands for a clear distinction between the two phases within the over-
all process.

Component Schema 
Comparison Processing 
Strategy

The processing strategy for a comparison of component schemas focuses on the ques-
tion of how analysts compare their assigned initial partitions to other involved com-
ponent schemas. Due to the different project organisation models, we have to recon-
sider this idea. The central difference to schema integration can be found in the fact
that an integration of the component schema is not foreseen in this phase. At first
glance, a binary processing strategy may have been applied, since domain owners
only compare their owned partition with potentially related component schemas on
an individual basis. Due to the fact that this comparison has to be performed for all
other involved component schemas, we will end up with a one-shot strategy, since the
contents of the owned partition have not been changed. Instead comparison indicate
assumed correspondences, conflicts and dependencies. 
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The autonomy of analyst teams working under different project organisation models,
modifies this observation. In a master-multiple organisation model a centralised com-
parison of component schema will be performed, which leads to a true one shot strat-
egy. But in autonomous analyst teams, each team may check the partition assigned to
all other teams leading to a distributed one shot strategy with respect to the owned
partitions. This observation also holds for the situation where partition owners check
their assigned partitions against the other participating component schemas in a mas-
ter-multiple organisation.

Processing Strategy for 
Component Schema 
Integration

Binary integration strategies have to be considered as least complicated, since only
two component schemas have to be integrated at a time in a ladder or a balanced
strategy (see Figure 96). One shot strategies, on the other hand, propose the integra-
tion of all involved component schemas towards an integrated problem analysis
model in a single step. While binary strategies imply the resolution of comparison on
a one by one basis, one shot strategies can only be applied when all comparison have
been resolved for all participating component schemas. Consequently, a master-mul-
tiple organisation where comparison are maintained on a centralised basis suits one
shot strategies, while autonomous organisations suit binary strategies, since compari-
son have been clarified only among given partitions.

8.3.1.2 Activities in the Management Cycle

Individual activities within the management cycle for comparison have not been dis-
cussed yet. Regardless of the actual project organisation, the management of compar-
ison can roughly be divided into the three following activities: comparison, coordina-
tion and resolution.

Figure 97 The Management Cycle of Component Schema Relationships

Comparison The first activity within the management cycle is called component schema compari-
son. Based on the assessment techniques described at the beginning of this chapter,
various correspondences and conflicts can be detected using both automated as well
as manual means. The related contents of component schemas will be linked with a
UML Trace relationship. The actual kind of the detected component schemas rela-
tionship, is then indicated using the UML Stereotype proposed in Appendix D.1.
Finally, component schema relationships linking contents of component schema from
different component schemas represent potential incoherence with respect to the
overall problem analysis model.

Comparison

Coordination Resolution
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Coordination Component schema relationships therefore have to be resolved as soon as possible, in
order to assure a coherent overall problem analysis model. But the complex nature of
problem analysis in industry-scale applications requires extensive coordination
between the affected analyst teams, before changes to the affected component sche-
mas actually resolve these conflicts. The autonomy of analyst teams working on dis-
tributed repositories further stresses the necessity to find a solution which suits the
individual perspectives of involved analyst teams, without the inherent risk of misun-
derstanding and overriding structural as well as behavioural requirements. So coordi-
nation incorporates all activities in order to find a consensus among the involved ana-
lyst teams as to how the detected incoherence can be solved and a minimal overall
analysis model can be assured. Means for finding this kind of consensus mostly
belong to the realm of human communication and therefore remain outside the scope
of this work.

Polysemy of terms as well as missing insights to related partitions are reasons for
erroneously indicating conflicts or correspondences between artefacts stemming
from different component schemas. Thus component schema relationships can only
be regarded as assumptions requiring extensive review by the involved analyst teams.
Acknowledging an assumed component schema relationship leads to the notion of
correspondence assertions, as described by Larson [LNE89] and Spaccapietra
[SPD92] in the schema integration literature. 

Resolution Resolution finally encompasses all activities to apply a coordinated solution to the
affected component schemas. Renaming class specifications is only one of the possi-
ble solutions for resolving component schema relationships. Besides the individual
actions resolving the detected component schema relationships, resolution gives rise
to the question of how component schema relationships themselves have to be
treated. Principally there are two different solutions to this question. The first one
leads to erasing the component schema relationship, while the second one includes
changing the component schema relationship into a standard UML relationship. The
settlement of inter-partition requirements may for instance lead to replacing the com-
ponent schema relationship with a UML Dependency relationship. Nevertheless,
the actual solution entirely depends on the actual capabilities of the tool support and
therefore is not detailed here.

Metamodel 
Representation of the 
Management Cycle 

The status of the management cycle for component schemas should be reflected in
the metamodel. Assessing the remaining efforts for coordination as well as resolution
of component schema relationships representing potential incoherence in the overall
problem analysis model may be supported on this basis. Project management as well
as individual analyst teams may profit from this realisation. A closer look at meta-
model representation of stereotypes leads to the following observation. Stereotypes
are realised via the composition of the metaclasses ModelElement and
TaggedValue. This metaclass contains the property tag, carrying the name of the
stereotype and the property value. The latest revision of the metamodel states:
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“A tagged value is a value-selector pair that may be attached to any element (including model 
elements and presentation elements) to carry various kinds of information, generally secondary 
to element semantics but possibly important to the modelling enterprise.” [RJB99]

Figure 98 depicts the UML package Extension Mechanism, representing the
metaclasses Stereotype and TaggedValue:

Figure 98 UML Package Extension Mechanism 

Based on the various correspondences identified in Section  we introduce the tag
CoordinationStatus with the possible values assumed, coordinated and
resolved. A complete list of all described stereotypes representing component
schema relationships can be found in Appendix C. Attaching value pairs to UML
Trace relationships allows to keep track of the coordination status between the
involved analyst teams. Tagging the coordination state to the stereotypes provides
guidance for actions to be undertaken by individual analyst teams and also indicates
the project progress from a project management perspective.

Component Schema 
Relationship 
Notification

Based on the management cycle for component schema relationships, the notification
of affected analyst teams still has to be discussed. Independent of the applied project
organisation, which is detailed in the following subsection, we define two principle
notification possibilities. For the time being we also abstract from the infrastructure
realising these different notification styles. Due to the autonomy of analyst teams, we
also have to take deferred reactions to the notification into account. The following
two notifications styles can be distinguished: push and pull notifications.

• Push notifications:
Comparison of component schemas is started by a given analyst team and all 
detected component schema relationships are propagated immediately to the 
affected analyst teams.

• Pull notifications:
In this context detected component schema relationships are stored in a log file 
that can be accessed by all other analyst teams.

+stereotype

GeneralizableElement
(from Core)

TaggedValue
tag : Name
value :  Uninterpreted

Stereotype
icon : Geometry
baseClass : Name

+requiredTag

Constraint
(from Core)

*

0..1

+stereotypeConstraint*

+constrainedStereotype

0..1

ModelElement
(from Core)

+taggedValue
+extendedElement

*

1..*

+constraint

*

+constraintedElement

1..*

{ordered}
181



Pull notification is based entirely on the good will of the involved analyst teams and
therefore bears the risk that detected component schema relationships will never be
gathered by the affected analyst teams. In order to ensure at least the coherence of the
entire problem specification, all analyst teams have to be ‘eager’ to coordinate. On
the other hand, pull notifications represent the most autonomous organisation, since
only read access to the involved partitions is necessary. Push notifications at least
guarantee that correspondences are propagated to the affected analyst team, which
does not guarantee the following coordination and resolution of detected component
schema relationships.

8.3.2 Project Organisation and the Management of Component Schema Relationships

Analyst teams in concurrent requirements engineering may be organized according to
the following three forms: centralised, autonomous and master-multiple. Different
project organisation models also give rise to the question at which points in time
coherence can be achieved with respect to the overall problem statement. Especially
with respect to autonomous analyst teams elaborating their partitions currently,
coherence is a must, in order to meet the criteria of good requirements specifications
as proposed by the IEEE-830 standard [IEEE830].

Centralised
Analyst Teams

A centralised analyst team works under centralised project management on a single
repository. Due to the centralised repository, the partitions are represented in pack-
age-based style and review and coordination are driven by the centralised project
management. Coordination between the analyst groups is triggered and enforced by
the project management. Due to the tight management the coherence of the specifica-
tion can be guaranteed at given points in time. In other words, whenever all detected
component schema relationships have been coordinated and resolved under the
supervision of the project management, a specification may be called coherent, since
all inter-partition requirements have been fulfilled.

8.3.2.1 Autonomous Analyst Teams

Autonomous analyst teams work without centralised project management and thus
represent the most complicated form of project organisation. The absence of a cen-
tralised authority leaves coordination and resolution of correspondences entirely to
the good will of individual analyst teams. Autonomous analyst teams base their work
on an agreement concerning the responsibility for the involved problem partitions,
prior to the actual start of requirements elicitation. The management cycle for compo-
nent schema relationships in autonomous team organisation is also influenced by the
specific way in which partitions have been mapped to component schemas, i.e. pack-
age- or model-based partitions.
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Package-Based 
Partitions

The involved analyst teams elaborate their component schemas in distributed reposi-
tories. All component schemas reflect the initial and agreed problem decomposition
in terms of UML packages. Whenever a given analyst team encounters inter-partition
requirements, they are able to assign them directly to the related partition, since their
component schema already incorporates packages representing the other involved
partitions. This assignment automatically facilitates correspondence detection in the
sense that the UML class specifications representing structural as well as behavioural
requirements can be compared directly to the contents of component schemas
deemed responsible for fulfilling these inter-partition requirements. That means
ensuring the coherence of the entire problem statement leads to reduced correspond-
ence detection efforts, since the source of the requirement and consequently the rele-
vant class specifications to be compared are known beforehand. 

Model-Based 
Partitions

In component schemas realising model-based partitions, the partition environment,
marked with the stereotype «interface», is not assigned to given partitions. As a
result there is no distinction between class specifications representing external sys-
tems and inter-partition requirements. So the entire partition environment has to be
compared to all involved partitions, leading to dramatically higher detection efforts
compared to package-based partitions.

The Correspondence 
Management Cycle

Recalling the beginning of this section, the management cycle for component schema
relationships has been divided into the states assumed, coordinated and resolved, rep-
resented as tagged values to UML Stereotypes. The partition owners can check
all other component schemas for component schema relationships at any time. Inde-
pendent of a push or pull notification cycle, the coherence can only be achieved on a
partial level, i.e. when all requirements formulated by other teams have been
reflected in the component schema at hand. Local coherence can only be regarded for
the owned partition with respect to all other component schema linked to it via a com-
ponent schema relationship. In other words, a partition can be called coherent, when
all component schema relationships carry the state ‘resolved’. The autonomy of ana-
lyst teams, on the other hand, does not guarantee that formulated inter-partition
requirements will be reflected by the other analyst teams. Consequently, coherence as
well as consistency of the overall specification cannot be guaranteed at any time.
Moreover, coherence can only be reduced to the component schema of the assigned
analyst team. Ensuring coherence of the overall problem analysis model implies a
high degree of cooperation among the analyst teams and direct responses to all noti-
fied correspondences.

8.3.2.2 Master-Multiple Analyst Teams

A master-multiple organisation model combines autonomous analysis of problem
partitions with centralised project organisation. Project management defines the ini-
tial partitions and assigns them to the participating analyst teams. Although the mas-
ter team may also be responsible for one of the initial partitions, its central responsi-
bility is reviewing all component schemas representing the overall problem
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statement. So the management cycle for component schema relationships is initiated
by the master team and detected correspondence assumptions lead to notifications for
the involved analyst teams. Independent of using push or pull notification, the
remaining coordination efforts for a given cycle can be assessed centrally, without
interventions to the individual component schemas. Another advantage of this organ-
isation form can be found in relating individual inter-partition requirements found in
model-based partitions to the responsible analyst team, which further reduces corre-
spondence detection effort. The complete problem analysis model can be regarded as
coherent, when all detected component schema relationships have been changed to
the state ‘resolved’. This leads at least to coherence at given moments in time, which
cannot be guaranteed in autonomous analyst teams. The minimality of the overall
problem specification still depends on the horizon of the master-team. In the case of
transparent partitions, where the contents of a component schema are entirely visible
to the master team, the integration of component schemas can safely be accomplished
whenever all correspondences have been resolved and the elicitation and negotiation
for all involved component schemas has been finished. 

Master-multiple organisation, thus reconciles the conflicting objectives autonomy of
analyst teams and coherence of the overall problem analysis model in a suitable man-
ner. From a practitioners point of view, one of the central prerequisites of efficient
and coherent problem analysis in this context is a cooperative atmosphere among the
participating analyst teams. A single analyst team may threaten the entire project suc-
cess by ignoring notified component schema relationships. Consequently, the coher-
ence of the entire problem analysis model remains in question. This risk can only be
ruled out at the price of sacrificing analyst autonomy through centralised project
organisation. Autonomous analyst teams as well as master-multiple organisations still
require substantial cooperativity between the participating analyst teams. Transparent
partitions then can easily be integrated since all correspondences have already been
resolved. Project progress can also be monitored, which is a strong point for general
management and leads to improved the cost efficiency.

8.3.3 Subsection Summary

The management cycle for component schema relationships can be divided into the
three general states comparison, coordination and resolution. These three activities
are reflected in our proposed representation for component schema relationship in
terms of the UML metamodel. Due to the potential deficiencies of terms labelling
artefacts, all detected component schema relationships are marked with a
TaggedValue assumed. The state of a component schema relationships has to be
changed to coordinate when coordination between the affected analyst teams starts.
Finally, after an agreement between the teams, the value is changed to resolved when
a suitable representation has been found for the mutual requirements. Due to frequent
component schema changes, especially in the earlier phases of requirements analysis
projects, we do not detail strategies for excluding stated component schema relation-
ships from future assessments. We simply assume that we start a new cycle where
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uncoordinated and unresolved component schema from a prior detection, lead to the
same result in the following cycle. The central problem in this context is the evolving
character of component schemas. When no changes have been applied to given com-
ponent schemas, we receive the same component schema relationships as in the pre-
vious cycle. But due to the autonomy of analyst teams, new correspondences, which
were not detected in the previous cycle will probably be found. Depending on the
component schema notification style, i.e. push versus pull, this leads to different reac-
tions of the tool environment. Push style notification shall lead to a removal of all
component schema relationships from the previous cycle, over all participating
repositories. Pull notification style, which leads to overriding the local component
schema relationship protocol, only leads to local changes and therefore tends to be
easier to implement. 
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Tool Support
9 Tool Support

This chapter outlines tool support for concurrent requirements engineering in indus-
try-scale projects. We identify major components in this context and outline their
basic capabilities. Besides an integrated solution combining the identified compo-
nents, we also consider tool support based on a combination of off-the-shelf tools.

9.1 Components for a Concurrent Requirements Engineering Workbench

In this section we identify major requirements for a concurrent requirements engi-
neering workbench for component schema relationships. The central objective in this
context is supporting all described project organisation models, in order to suit the
particular situation for future projects.

Workbench 
Components

A concurrent requirements engineering workbench can roughly be divided into the
components CASE tool, linguistic support and communication infrastructure. The
CASE tool in this context realises the selected subset of the UML metamodel. Draw-
ing capabilities and the provision of persistent storage for UML models are the most
important features from a user perspective. Code generation is neglected due to the
solution-neutral character of requirements specifications. Another important aspect
lies in the definition of conformance criteria with respect to the metamodel. Although
Rational Rose 98 claimed to be UML compatible, there are still considerable omis-
sions with respect to the published metamodel versions [OMG97a, RJB99]. Linguis-
tic support primarily compensates the deficiencies of off-the-shelf tools, where even
a trivial support for managing the domain vocabulary is not supported. In the sense of
Schienmann, we want to add method-neutral management of terms to off-the-shelf
tools. Especially within industry-scale problem statements, the concrete meaning of
terms cannot be presupposed at project start. Therefore we want to add linguistic sup-
port to off-the-shelf tools. We also want to differentiate the individual capabilities of
potential linguistic support. Finally requirements for a communication infrastructure
supporting the analyst teams concurrently elaborating their partitions have to be iden-
tified. 

9.1.1 Linguistic Support

Dealing with the specific terms of a given application domain is one of the most
important tasks in industry-scale problem analysis. Off-the shelf CASE tools usually
neglect this aspect completely. The meaning of terms is not clear in the earlier phases
of requirements elicitation and negotiation. Suitable object models cannot directly be
derived from an insufficient understanding of intricacies of the terms in the applica-
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tion domain at hand. Relevant terms have to be collected first, then their specific
meaning has to be clarified through a concise definition. Finally artefacts may be
constructed on the basis of clarified and well defined terms. Within the linguistic sup-
port differing levels of sophistication can be identified, from simple relational data-
bases realising simple glossaries to domain ontologies providing a logical theory for
terms within an entire application domain. In this subsection we want outline the dif-
fering capabilities of each technique.

9.1.1.1 Relational Database Systems

Simple linguistic support for concurrent requirements engineering can be provided in
the form of data dictionaries realised on top of relational database management sys-
tems (RDBMS). In our air traffic management projects, we developed such a simple
tool [HFW97], based on Microsoft Access for Windows [Mic97]. This data diction-
ary followed two main objectives. Tracking the sources of terms, with references to
the ORDs and providing simple mechanism for defining arbitrary relationships
among terms. Figure 99 depicts the UML static structure diagram of this data diction-
ary [HFW97].

Figure 99 UML Static Structure View of the CNS/ATM Data Dictionary

User-defined relationships between terms have been modelled via the UML associa-
tion class relatedTo. Particular values in the property relationshipType
realise a discriminator for user-defined relationships. The simple dictionary structure
does not distinguish between linguistic relationships and relationship constructs
offered by the used modelling technique. In other words, linguistic synonymy and
UML composition only lead to distinct values of the property relationshipType. 
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The same observation holds for the terms themselves. The class specification Arte-
fact does not distinguish between terms expressing concepts and the labelled con-
struct. Consequently a clarification of the meaning of terms in the ontological sense
is not possible in this data dictionary implementation. Default discriminators for user-
defined relationships between terms are generalisation, antonym, synonym,
attribute, and aggregate. The query capabilities of the relational data model,
however, cannot deal with the intensional structure created by recursive term rela-
tionships. Existing specialisation hierarchies on a terminological as well as an arte-
fact level call for computational completeness, as provided by programming lan-
guages. On the basis of Microsoft’s Visual Basic for Applications, we implemented a
simple browsing mechanism for ascending and descending the intensional structure
defined by generalisation/specialisation relationships among terms. 

In order to realise the term, artefact, concept triangle outlined in Section 8.1, the rela-
tional structure has to be extended. Besides these three elements we have to keep
track of the applied UML construct for given artefacts, as well as their origin, i.e.
their complete access path as realised in the UML name space concept. This leads to
the following UML static structure diagram:

Figure 100 Extended Definition for Simple Management of Terms

With the exception of the concept, all information can be derived directly from com-
ponent schemas, without detailing this task here. In order to facilitate the comparison
of terms, they have to be transformed to their stems, which can either be realised with
a morphological function, as a C library function offered by WordNet [Mil95], or
manually by the analysts. The meaning of individual terms – the concept – can either
be added manually or retrieved from thesauri and domain ontologies. Simple rela-
tional queries can be used for an analysis of the used domain vocabulary. Queries
such as ‘Which class specifications are related to the concept »xyz« can now be
posed to the database. The central difference in our refined data dictionary is the clear
separation of terms, constructs and concepts, previously treated in a uniform manner.
Realising linguistic support on a relational database allows manual clarification of
the meaning of terms, as represented by the specification Concept. 
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This overcomes the restricted capabilities of CASE tools on a terminological level,
but puts the burden of clarifying the meaning of terms entirely on system users, for
which it enables external sources, such as thesauri and domain ontologies.

9.1.1.2 Thesauri and Lexical Databases

Thesauri provide a more sophisticated linguistic support compared to simple data
dictionaries, by offering a full set of linguistic relationships such as synonym, hyper-
nym, hyponym, meronym and holonym. Our example in this context is the public
domain tool WordNet developed at Princeston University’s Cognitive Science Labo-
ratory [WN98]. WordNet provides broad coverage of natural language terms and is
therefore not specialised to a specific domain. WordNet treats nouns, verbs and adjec-
tives separately, in order to facilitate retrieving terms. Separating the vocabulary into
syntactical categories also allows the definition of distinct hierarchies of terms for
nouns, verbs and adjectives, which becomes far more complicated in an integrated
database treating all syntactical categories together. Figure 101 depicts the WordNet
output for the term »plane«.

Figure 101 WordNet - A Lexical Database for English

The terms in our example are grouped according to their different senses and their
different syntactical category. Each sense is documented by set of synonyms and a
description clarifying the meaning of the word sense at hand. Definitions combined
with the set of relevant synonyms distinguish the different meaning of terms allowing
users to differentiate between a »plane« in the sense of an ‘unbounded two-dimen-
sional shape’ in mathematics and an »aircraft« in the air traffic management domain.
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WordNet’s most interesting feature, however, is the built-in concept lattice based on
the linguistic hyper-/hyponomy relationship. Figure 102 depicts the hypernym hierar-
chy for the term »plane«.

Figure 102 WordNet - Hypernyms for the Term »Airspace« 

Due to WordNet’s broad coverage of natural language, it does not provide hyponyms
and meronyms for the term »airspace«. So its implemented concept lattice may be
used as a starting point for the creation of a terminological knowledge base for the
application domain at hand. Swartout et al. [SPK+96], for instance, used WordNet in
order to extend an existing top-level ontology for military air campaign management.
The Large-Scale Distributed Information Systems Department at the University of
Georgia built a bibliographic ontology on the basis of WordNet terms [KaS98]. Con-
sequently, WordNet provides an ideal starting point for extending the existing lexical
database to cover specialised domains, such as air traffic management. 

The depicted examples of WordNet make use of the graphical user interface, the so-
called WordNet Browser, providing integrated access to all implemented functions
[Mil95]. Alternatively to the graphical user interface, WordNet provides direct access
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to its database via a set of C library functions, documented in the introduction to
WordNet [MBF+93]. In this context, the library functions findtheinfo and mor-
phword are the most interesting ones for this work. The function morphword can
be used to retrieve the word stems of individual terms, facilitating the syntactical
comparison of terms. Plural forms may be changed into singular ones and therefore
ease pattern matching. The function findtheinfo looks up a word in the database
and retrieves the different incorporated senses. These two functions provide the cen-
tral interface to WordNet for tools making use of its lexical database. So we can look
up the base form, a set of synonyms and the definitions for given terms describing
concepts in the application at hand. However, looking up terms still requires user
interaction in order to select the appropriate meaning of given terms in the applica-
tion domain at hand. The user always has to select the appropriate sense in order to
choose the correct meaning of the term (see Figure 101, p. 190).

WordNet Contribution Although WordNet does not provide a specialised domain vocabulary, its broad cov-
erage of natural language terms and the elaborated hierarchy of terms contribute to
the clarification of terms in a given domain. Its morphological function also helps to
derive word stems from given terms. Word stems in particular facilitate a comparison
of terms and ease the clarification of their meaning in arbitrary domains. This func-
tion even works when WordNet’s built-in database does not include the respective
term in question. Therefore WordNet provides a nucleus for the classification and
clarification of domain vocabulary, as found in requirements specifications. The pro-
vision of so-called lexicographers files also allows a specialisation of the database
towards the domain at hand. The term »airspace« can be refined through the provi-
sion of meronyms and hyponyms as modelled in a component schema, making use of
the conceptualisation represented in the problem analysis model. Problem analysis
models always incorporate a linguistic clarification of terms based on a method-spe-
cific reconstruction of an expert language. Customisation of the database is not fur-
ther detailed in this work.

9.1.1.3 Ontologies

Ontologies exceed the capabilities of thesauri through the provision of a complete
logical theory concerning the expert vocabulary of the domain at hand. A central dif-
ference between thesauri and ontologies is the tailoring of latter’s vocabulary for a
given domain. Unlike WordNet, where a term may be related to a set of different
meanings stemming from different domains, an ontology only contains a fixed mean-
ing of given terms for distinct domains. Based on various description logics, such as
CLASSIC [BBM+89], their semantic relationships especially enable reasoning with
the generalisations, the hypernym relationship in linguistics. The entirely intensional
character of component schemas only makes use of the so-called terminological com-
ponent neglecting the so-called assertional component [Klu98, MIB96], where termi-
nological reasoning is combined with a reasoning over properties of instances. Hence
reasoning is reduced to the terminological level. Description logics have become
quite popular in the federated database community, due to the combination of termi-
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nological and assertional reasoning [KaS98, LRO96]. Description logic’s most inter-
esting feature with respect to this work is the automatic computation of subsumption,
i.e. computing whether a terminological description is a subtype of another type, mir-
roring the UML generalisation hierarchy. The SENSUS Ontology, developed at the
Information Science Institute of the University of Southern California provides an
example of this kind of ontology [Sen95]. It comprises a hierarchy of word meanings,
meronyms and synonyms. Although this ontology has a general purpose character –
created for machine translation – it provides a good starting point for domain specific
extensions, such as air traffic management.

The primarily linguistic character of object-oriented analysis models also provides a
good starting point for enhancing existing ontologies. An application ontology com-
prises all terms relevant in a given application. These terms form a subset of the
expert vocabulary used in the application domain at hand. So incrementally extend-
ing the vocabulary stored in an ontology widens its scope towards a domain ontology.
Ontologies provide automated clarification of word meanings and detection of syno-
nyms in the domain at hand. Reasoning with hypernyms is the central advantage of
ontologies compared to thesauri, due to their encapsulated logical theory. Thesauri
contain basically the same information, but the access is different with respect to an
ontology. While users may browse thesauri, ontologies may reason about the mean-
ing of terms. The central advantage of an ontology can be found in the clarified
meaning of terms. Replacing synonyms by their concept, i.e. the meaning of synony-
mous terms, directly facilitates an automated detection of correspondences. In this
context, specialisation correspondence (see Figure 67, p. 140) and attribute-class
correspondences (see Figure 70, p. 143) can be detected automatically. But we also
have to admit, that the efficiency of this kind of automated detection directly depends
on the number of terms stored in the ontology. 

9.1.2 Communication Infrastructure

The second important building block for tools supporting concurrent requirements
engineering can be found in the communication infrastructure, realising the notifica-
tion, coordination and resolution of detected component schema relationships. Within
the communication infrastructure three different levels of sophistication may be dis-
tinguished, from simple e-mails to an integrated tool environment using CSCW tech-
niques. In other words, this section basically describes workflow support for concur-
rent requirements analysis.

9.1.2.1 E-Mail

E-mail can be regarded as the most simple and minimal support for autonomous ana-
lyst teams. In this context, detected component schema relationships can be propa-
gated either directly to the affected analyst team or to all involved teams. Component
schemas have to be exchanged between the analyst teams and each team detects
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potential component schema relationships in isolation. Afterwards the results, i.e.
detected component schema relationships, are described in textform in an e-mail and
sent to the affected analyst team. In order to clarify the detected component schema
relationship, parts of the affected component schemas can be attached to the e-mail.

E-mail as communication infrastructure has to be regarded as insufficient. Compo-
nent schema relationships do not have a physical counterpart in the affected models.
All involved analysis documents, i.e. component schemas, data dictionaries and tex-
tual information, have to be kept redundantly, giving rise to inconsistency problems.
Resolving component schema relationships belongs entirely to the discipline of the
affected analyst team. In short, e-mail has to be regarded as baseline support for con-
current requirements analysis, although the support is far too rudimentary with
respect to complex industry-scale applications such as air traffic management.

9.1.2.2 The ISST-SPE

The Software Production Environment (SPE) for Small and Medium Enterprises,
developed at Fraunhofer ISST [KASP96, KKA+97] defined a software development
environment based on off-the-shelf tools such as Rational Rose 98, SNiFF+, Micro-
soft Project for Windows and Lotus Notes. Although specified for concurrent soft-
ware development for a consortium of participating companies, the SPE provides a
suitable communication infrastructure for concurrent requirements analysis. Dirk
Kurzmann’s diploma thesis describes extensions to the SPE, in order to suit concur-
rent requirements analysis [Kur98]. In this section we would like to summarize the
central features of SPE [KASP96, KKA+97] and the proposed extensions towards
concurrent requirements engineering.

The SPE approach basically distinguishes between two development cycles in con-
current analysis, the management process and the so-called software development
process. The software development process incorporates the well-know activities of
the software development cycle, such as analysis, design, implementation and test.
The management process encompasses the organisation and budgetary control of a
concrete software development project. Figure 103, p. 195 depicts the general SPE
process. 

All involved documents within a project are subsumed under the term SPE artefact.
This comprises project plans, requirements specifications, design documentation as
well as source code. In this section we are especially interested in the management
process, organizing the pursuit of the given projects and the underlying communica-
tion infrastructure. The project plan in SPE is generated using Microsoft Project for
Windows1. Individual project activities are structured and assigned to required

1 Copyright by the Microsoft Corporation
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resources, i.e. analysts, designers and reviewers. Design and development activities
are then coordinated via a groupware solution based on Lotus Notes1. Lotus Notes
realises two important functionalities in this context. First of all it provides a central-
ised repository maintaining all SPE artefacts. Second, SPE artefacts can automati-
cally be replicated to Lotus-Notes instances of the project participants. The project
plan is the basis for triggering individual project activities, for elaboration by
assigned participants. The central basis for accomplishment of individual tasks is the
so-called »saved«, »proposed«, »published« cycle enabling distributed elaboration of
assigned tasks. We briefly want to outline how this cycle can be used in concurrent
requirements analysis with master-multiple team organisation.

Figure 103 The SPE Process

Using the ISST-SPE 
for Concurrent 
Requirements 
Analysis

Having defined the initial project plan, the initial partitions are then assigned to the
analyst teams. The assigned analyst team then elaborates the partition in isolation. In
this phase, the partition is set to the state »saved«. Whenever the resulting component
schema reaches a sufficient degree of stability it is set to »published«. Replication in
Lotus Notes automatically propagates the updated SPE artefacts to the distributed
Lotus Notes databases of all other involved teams. Component schema analysis can
afterwards be applied in order to detect correspondences, conflicts and dependencies.
Finally, the state of the partition is set to »published« when all component schema
relationships have been resolved and the next requirements elicitation cycle is
started. Lotus Notes in this context only provides a distributed repository for SPE
artefacts. Since Rational Rose, the off-the-shelf CASE tool in SPE, does not maintain
distributed repositories we need additional means for representing component
schema relationships. Dirk Kurzmann’s diploma thesis [Kur98] proposes interesting
extensions to the current ISST SPE prototype. The IBIS structure, proposed by Rittel
and Kunz [RK70], provides the central metaphor for this realisation. Figure 104,
p. 196 depicts the IBIS structure:

1 Copyright by Lotus Corporation
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Figure 104 The IBIS Structure 

Issues in this context represent component schema relationships to be discussed
among the involved analyst teams. Positions represent potential solutions, for
instance renaming a class specification in given component schemas. Arguments
express reasons to support or object to positions suggested on a given issue. Issues
themselves may regard potential problems in a generalised form or may even replace
previously stated issues. The IBIS structure can be used for clarification of compo-
nent schema relationships in the following way. Each detected correspondence leads
to an issue. An argument presents the assumed reasons for the detected component
schema relationship, while the position contains the affected artefacts. Positions may
further propose suitable solutions in order to resolve the detected component schema
relationship. The IBIS structure can therefore be used for efficient documentation of
component schema relationships, incorporating assumptions with respect to their rea-
sons and potential solutions. Issue, position and argument provide comprehensive
and traceable documentation of the entire management cycle of component schemas.
Dirk Kurzmann proposed a realisation of the IBIS structure on top of Lotus Notes,
realising centralised persistent storage of component schema relationships. Due to its
groupware functionality, Lotus Notes can automatically replicate new issues to all
affected analyst teams, so that all activities comprised in the management cycle of
component schemas can automatically be forwarded to all involved analyst teams. 

SPE and Ibis 
Contributions

Integrating the management cycle of component schemas in the ISST SPE, with
Lotus Notes as the central backbone, has a number of advantages. First of all, the
SPE provides an integration of all relevant analysis documents through its persistent
storage. The built-in replication functionality of Lotus Notes realises the notification
of all involved analyst teams. An implementation of the IBIS structure realises com-
ponent schema relationships, but without direct access to the involved model ele-
ments, since the IBIS structure itself is not integrated in the UML metamodel, as the
basis for our component schemas. In other words, realising IBIS on top of Lotus-
Notes provides a loose realisation of component schema relationships, since direct
access to artefacts in the CASE tool’s repositories is not provided. IBIS also abstracts
from the concrete assessment of component schema relationships, i.e. IBIS may sup-
port automated as well as manual detection of component schema relationships. The
central contribution of this realisation, besides its persistent storage capabilities, is
improved automated support for the management of component schema relation-
ships, which is the major reason for listing this solution in the context of communica-
tion infrastructure. Galler summarizes this functionality as a cooperation functional-
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ity [GHS96]. Another positive aspect of integrating concurrent requirements analysis
in the ISST SPE is the provision of an integrated environment supporting the entire
software life-cycle. In this context, objects become the sole paradigm throughout the
entire software life-cycle, from requirements engineering to maintenance and system
evolution.

9.1.2.3 CSCW-Support for Integrated Tools: Information Subscription and Monitoring

The described extension of the ISST SPE in the previous subsection introduces a
solution based on the IBIS structure and basically provides a cooperation functional-
ity in terms of the groupware community [GHS96]. In this subsection we want to dis-
cuss a solution based on the UML metamodel and distributed repositories realising
coordination functionality. According to Galler, coordination functionality in this
context involves the following aspects [GHS96]:

• Access to meta-data (i.e. information about who changed data and why),

• Information supply:
– shared project documents
– information subscription

• Monitoring:
– product monitoring user
– activity monitoring.

Tool implementations based on the OA&D CORBAfacility Interface Definition as
specified in the OMG standard [OMG97d] satisfy the first aspect. Within information
supply we want to highlight information subscription. In the context of this work,
information subscription applies to two distinct aspects: the notification of compo-
nent schema relationships and change propagation for individual elements of compo-
nent schemas. Inter-partition requirements provide an interesting example of the lat-
ter case of information subscription. Component schema dependencies announce
inter-partition requirements to be settled by another analyst team. A new UML class
specification representing the requirements has to be added in the component schema
deemed responsible for the settlement of these requirements. Whenever project
progress leads to additional structural and/or behavioural requirements, notifications
can automatically be generated and forwarded to the affected analyst groups.

While in the previous subsection the IBIS structure provided the integration of
related project documents via a meta-structure, information subscription also requires
integration into the UML metamodel. IBIS issues only contain textual references to
elements of component schema and the component schema relationships linking
them in the involved partitions. Information subscription can only be realised on the
basis of a distributed repository using the OA&D CORBAfacility Interface
[OMG97d]. This demands two important prerequisites: precisely defined component
schema relationships, and a notion of event, condition, actions rules in the sense of
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active databases [ElN94]. With respect to Nuseibeh’s ViewPoint framework [NKF94]
intra-viewpoint check actions and assembly actions as part of the workplan slot pro-
vide a basis for implementing information subscription. The other important aspect
described by Galler is a monitoring functionality, allowing on-line monitoring of
group activities. This functionality may inform the project management concerning
the individual status of component schema relationships and which management
cycle of component schemas have successfully been accomplished. CSCW support
for component schema relationships therefore has three important prerequisites,
access to distributed repositories, a precise definition of component schema relation-
ships in terms of the UML metamodel, and a communication infrastructure for the
notification of affected analysts teams. Galler et al. demonstrate this kind of function-
ality in a prototypical tool called ContAct [GHS96], supporting business process
reengineering activities. In their prototype the ARIS toolset [Sche94] has been linked
to IBM’s FlowMark workflow management system [IBM95]. 

Component Schema 
Relationships and 
CSCW Support

Integrating CSCW support to component schema relationships enables coordination
among the involved analyst teams. Unlike the SPE solution, where the component
schema relationships are represented in terms of IBIS structure realised on top of a
Lotus Notes database, all changes lead to a replication of the affected SPE artefact to
all involved analyst teams. Notification between distinct analyst teams in terms of
information subscription is not possible in the ISST SPE. On the other hand, this kind
of solution is far more demanding with respect to the SPE environment. First of all,
distributed access to repositories storing component schemas has to be provided.
Then changes to the repository of component schemas have to be structured in terms
of the ViewPoint framework [NKF94]. Finally, CSCW support in terms of the Con-
tAct prototype has to realise the actual information subscription.

9.1.3 CASE Tool Support

This subsection details CASE tool support for component schemas. The most impor-
tant requirement in this context is a realisation of the entire UML metamodel. But
before going into the details of CASE-Tools we also have to generalise the concern
how the definitions in this work can be mapped and realised in CASE-Tools.

Current off-the-shelf tools such as Rational Rose98 [Rat98] or SELECT Enterprise
[Sel97] do not realise the entire UML metamodel. Both mentioned tools for instance
neglect UML Trace relationships, as the central representation of component
schema relationships in this work. Without going into the details of the mentioned
CASE tool implementations, we classify the CASE tool support according to the fol-
lowing three aspects:

• Provision of a UML subset tailored for requirements engineering 

• Repository implementation 

• Scripting Language Support
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9.1.3.1 Provision of the UML Subset Tailored for Requirements Engineering

Most off-the-shelf CASE tools implement all UML views, i.e. static structure, collab-
oration, interaction, state machine, use case, physical and activity view. Within this
work, we selected the static structure, the interaction and the use case view, for
requirements engineering. We further restricted these selected UML views, in order
to provide a solution-neutral representation of requirements. All constructs related to
a specific object-oriented programming language have been rejected within compo-
nent schemas, such as the C++ friend relationship. Thus model management of the
respective CASE tool shall support the restricted UML views as described in
Section 5.2. In this context we suggest a realisation providing different modes, i.e. a
requirements engineering mode only supporting the described UML subset for com-
ponent schemas and a design and implementation mode realising the entire UML
specification, i.e. including programming language specific aspects, necessary for
design and implementation of the future system. Whenever tools do not implement
the UML Trace relationship, the UML Dependency relationship may be used for
a realisation of component schema relationships. However, this leads to restricted
expressive power of component schema relationships, since the UML only allows
connecting Classes and Packages with Dependencies. Consequently, inter-
construct kind and inter-construct level relationships among component schemas
cannot be adequately represented.

9.1.3.2 Repository Implementation

The repository realises the persistent storage of UML component schemas. As out-
lined in Chapter 6, problem analysis models have a primarily linguistic character, i.e.
they mostly structure the terms in a method-specific form. Automated detection of
component schema relationships requires repository access as the central prerequisite
for tool support. Since off-the-shelf tools do not offer linguistic support, repository
entries provide access to linguistic information. In this context we may identify dif-
ferences in the format and the access of repositories. The repository format is related
to the way the repository is stored on the hard disk, e.g. the file format. In this context
we may identify binary and ascii-text formats as well as database systems as possible
repository formats. So-called single-source repositories provide another interesting
realisation of persistency, since component schema information is directly repre-
sented in code frames of the target programming language. Besides the format, the
access to repository contents is the other central distinction in this context. Reposi-
tory access can be divided into a stand-alone, centralised and shared form.

Stand-Alone 
Repositories

Stand-alone repositories are the most primitive implementation for storing compo-
nent schemas. Regardless of the actual format, component schemas are stored on the
local hard disk of the host computer and can only be accessed by a single user via the
used CASE tool. Off-the-shelf tools such as Rational Rose 98 [Rat98], SELECT
Enterprise [Sel97] or Together/C++ [Tog99] take this approach.
199



Shared Repositories Shared repositories allow model access from remote clients. In this context there are
two possible implementations for shared repositories. The first relies on a relational
database as a persistent storage engine, which has been used for Software through
Pictures (StP) [StP99]. The UNIX version uses Sybase relational DBMS and there-
fore enables remote client access to the repository. The other potential realisation of
shared repositories relies on OMG’s CORBA [OMG98] and the OA&D CORBAfaci-
lity Interface Definition [OMG97d]. Combined with a proprietary repository, this
kind of implementation allows access to all model elements stored in a repository.
Using the OA&D CORBAfacility provides the best implementation, since it allows
remote access to all UML metamodel elements and also allows a direct realisation of
component schema relationships as stereotyped UML Trace relationships.

Binary Repository 
Format

The repository format defines the way given repository managers realise the persist-
ent storage of component schemas on the hard disk. The repository format is espe-
cially relevant for the extraction of terms labelling artefacts in component schemas.
This linguistic information is the prerequisite for provision of linguistic support. Ana-
lysing the repository implementation is the prerequisite for the extraction of terms
labelling artefacts. In this context, binary repository formats usually allow fast access
to elements of component schemas. On the other hand, the binary format needs a
detailed format specification in order to access component schemas from external
programs and is highly dependent on changes of the actual format chosen by the tool
vendor. This problem also becomes apparent in the context of text processing, where
import filters always have to be updated when a new version arrives on the market.
Therefore, the efforts for maintaining filters in order to provide access to component
schemas can be regarded as fairly high. Currently there is no off-the-shelf CASE tool
using a binary repository format.

Ascii-Text Repository 
Format

Unlike binary repository formats, ascii-text formats are easier to comprehend and
consequently easier to access. As depicted in Figure 105, p. 201, where the extract of
a Rational Rose 98 repository represents the CNS/ATM Data Dictionary, ascii for-
mats can easily be parsed in order to provide access to external tools. Parser genera-
tors, such as lex and yacc in the UNIX environment, can be used for writing filters
that allow the extraction of linguistic information stored in a repository. Usually asii-
text formats are far more robust with respect to format changes and therefore favour
access for external tools. As mentioned above, Rational Rose 98 [Rat98] and
SELECT Enterprise [Sel97] realise their repositories in an ascii-text format.

Single-Source 
Repository

An interesting variant to the ascii format repository representation has been chosen in
the CASE tool Together/C++ from Object International Software [Tog99]. While
Rational Rose and SELECT Enterprise separate the repository from the generated
code, Together/C++ proposes a so-called single-source repository, where model
information and the generated code are stored in a single repository. UML static
structure elements are directly represented in terms of C++ header files and UML
model management information. For instance, the positions of individual class speci-
fications on the screen are stored in comments of the respective code frames.
Although this representation is not solution-neutral with respect to the used program-
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ming language, it represents an interesting alternative to all other discussed reposi-
tory formats. The specific value of this representation lies in the stability of its essen-
tial information, since programming languages such as C++ are vendor independent
and therefore the repository format can be regarded as the most stable one, compared
to all other representations.

Figure 105 Extract of a Rational Rose 98 Repository

9.1.3.3 Towards a Formalised Representation of Component Schemas 

Although it is not the intention of this section to offer a formal mathematical model
for component schemas and component schema relationships, we at least want to
describe starting points for improved and rigorous CASE tool support. UML in its
current version has been defined on a metamodel, which we consider as „intuitive“
semantics and therefore cannot be regarded as sufficiently formally rigid. A formali-
sation of our UML subset used for requirements engineering therefore has to be con-
sidered as a first and important step in this direction. Temporal object logics in the
sense of Lamsweerde [LDL98] or graph grammars in the sense of Whitmire provide
formalism for proper mathematical foundations of the UML. But formalising UML is
a rather ambitious endeavour, since the amount of UML constructs probably exceeds
a single PhD thesis.
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Towards a Formalised 
Representation of 
Correspondence 
Assumptions

Besides the formal model for the UML there is another important topic of this work
that has to be refined. Our definition of equivalence of class specifications stemming
from different component schemas, a so called correspondence assumption, requires
further investigation. Currently our definition of correspondence assumptions
entirely relies on the meaning of a given term, i.e. the concept, that may be retrieved
in a domain ontology [Gua98]. Due to the recursive relationship of primary and sec-
ondary predicators (see Figure 49, p. 105) new metrics have to be defined that reflect
the linguistic meaning of class and attribute names. In other word structural equiva-
lence for class specifications, expressed through the equivalence of domains (see
Definition 29, p. 123) of attributes and operations [Spa94, Whi97] has to be com-
bined with a new metric that takes the linguistic meaning of class and attribute names
into account. Another important aspect is the possibly to integrate different domain
ontologies in sense of Wiederholt’s algebra for ontology composition [Wie94a]. This
means the integration of component schemas may directly lead to an integration of
the used expert terms in the domain ontology.

Towards a Formalised 
Representation of 
Conflict and 
Coherence

Our definition of coherence and conflict also needs careful revision. Both definitions
are inherently vague and this vagueness is the central problem in this context. The
coherence of two component schemas can only be proved indirectly in this work, by
checking the state of component schema relationships, which has been realised in the
UML Tagged Value coordinationStatus. This check does not incorporate the
„real“ relationship between given class specifications stemming from different com-
ponent schemas. This check neglects structural in the sense of [BLN86] as well as
linguistic aspects that indicate the equivalence of given class specifications. In brief
the definitions of conflict, coherence and correspondence assumptions can be
improved and equally important automated through sophisticated metrics taking
structural as well as linguistic aspects of class specifications in to account.

Finally there are still elements left that are not yet defined in the UML, since system
and partition boundaries have not been defined as constructs in their own right
[OMG97a]. Year Wand and Ron Weber [WW93], however, consider them as a vital
construct for all modelling techniques. Instead of a system or partition boundary con-
struct UML proposes stereotypes as means for distinguishing class specifications
inside the system boundary from those ones outside. Class specifications marked
with the stereotype «interface» refer in a component schema to class specifica-
tions outside the system boundary, while UML packages marked with the stereotype
«partition» refer to entire problem partitions. Summarizing can be said, that the
definition of new metrics that combine linguistic with structural aspects will lead to
an improved definition of coherence and conflict and therefore offers new possibili-
ties for an automated tool support.
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9.1.3.4 Configuration Management

Concurrent requirements engineering also involves aspects of configuration manage-
ment, as detailed in this subsection. Configuration management, as part of software
engineering, deals with maintaining the set of all involved documents forming a com-
plex product in a mutually consistent manner. With respect to concurrent require-
ments engineering, the entire problem specification has been decomposed into a set
of partitions, represented as component schemas. So the overall product in require-
ments engineering is formed by a set of component schemas. Due to their concurrent
elaboration, component schemas forming the entire problem analysis model are
updated at different times and not necessarily with the same frequency. Thus compo-
nent schema relationships represent references among elements of component
schema that need to be maintained consistently. Susan Dart outlines the following
operational aspects of configuration management [Dar90, p. 1]:

1 Identification:
an identification scheme is needed to reflect the structure of the product. This 
involves identifying the structure and kinds of component, making them 
unique and accessible in some form by giving each component a name, a 
version identification, and a configuration identification.

2 Control:
controlling the release of a product and changes to it through the life-cycle by 
having controls in place that ensure consistent software via the creation of a 
baseline product.

3 Status accounting:
recording and reporting the status of components and change requests, and 
gathering vital statistics about components in the product.

4 Audit and Review:
validating the completeness of a product and maintaining consistency among 
the components by ensuring that components are in a appropriate state 
throughout the entire project life-cycle and that the product is a well-defined 
collection of components.

All four aspects apply to concurrent requirements engineering, although the number
of involved products is significantly smaller compared to system implementation and
operation. In this context identification of involved documents and version identifica-
tions are the central prerequisites for concurrent requirements engineering using com-
ponent schemas. With respect to component schemas, we have entirely left out ver-
sion identification so far.

The most important CASE tool feature in this context, independent of the concrete
repository access and format, is version management. Autonomy of analyst teams
and the ongoing requirements elicitation and negotiation process demand a stable
basis for assessing the coherence of the overall problem analysis model, split into a
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set component schemas, at given moments in time. Milestones in the project plan or
just routine checks initiated by the project management may be the reason to detect
component schema relationships before the actual end of requirements elicitation and
negotiation. Essentially, the incremental development of component schemas in
object-oriented requirements analysis tends to neglect the traceability of defined
stages in the analysis of component schemas. Defining the change sets between mile-
stones is an additional reason to provide version management. Rational Rose offers
version management through an interface to standard tools such as RCS [Tic85] or
SNiFF+ [SNi96]. This feature is especially important for the detection of component
schema relationships. A version provides a defined context for set a of component
schema relationships. Otherwise, the autonomy of analyst teams leads to a constant
evolution of component schemas that in the worst case may constantly override com-
ponent schema relationships. Thus versions can be regarded as synchronisation
points among the involved analyst teams in order to fulfil a complete management
cycle for component schema relationships.

9.1.3.5 Scripting Language Support

Unlike repository access, where component schema access is discussed independ-
ently of the tool creating it, scripting languages such as Microsoft’s ActiveX or Java
Script, provide access to elements of component schemas on the level of tools.
Although access to component schema in this context is restricted to the capabilities
and especially the openness of the used CASE tool, scripting languages are more
robust with respect to changes of the repository and therefore provide more stable
access to elements of component schemas. The other positive aspect of scripting lan-
guages lies in the computational completeness of the language, i.e. they offer data
types, variables and flow control to the users. All in all scripting languages offer a
flexible mechanism for accessing tool repositories and also provide user-defined
extensions that cannot be realised otherwise. Rational Rose 98 [Rat98], for instance,
supports Microsoft’s VisualBasic for Applications, which has been renamed
ActiveX.

9.2 Realisation 

Tool support for concurrent requirements engineering can be divided into different
alternatives. Integrated tools offer the described functionality in a single tool, incor-
porating linguistic support and a communication infrastructure. Alternatively tool
support can be built using off-the-shelf tools and realising the concrete integration in
terms of small programs realising the required ‘glue code’ for the integration of inde-
pendent and distinct components.
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9.2.1 An Integrated Concurrent Requirements Engineering Workbench

In this subsection we outline the basic components of an integrated concurrent
requirements engineering workbench. Following the distinction of Section 9.1, the
basic components comprise a realisation of the entire UML metamodel, linguistic
support and groupware functionality realising the information subscription between
the involved analyst teams. We believe that the outlined components, linguistic sup-
port is the most important one, especially for supporting industry-scale applications.
Current off-the-shelf components do not provide minimal linguistic support in terms
of glossaries and data dictionaries. Although it is a matter of debate whether a tool
should offer integrated data dictionary support or only provide external interfaces, the
management of expert terms is one of the crucial success factors in complex applica-
tion domains such as air traffic management. In this work we propose integrated sup-
port, leading to enhancements of the current version of the UML metamodel.

Enhanced UML 
Metamodel for 
Dictionary Support

In order to enable clarification of the terms, a set of synonymous terms and their
meaning – the concept – has to be provided for each artefact in the component
schema. With respect to the UML metamodel, the term labelling an artefact can be
found in the property name in metaclass ModelElement, as part of the UML pack-
age Core. The construct applied to an artefact can be distinguished through its
actual metaclass, i.e. the actual metaclass a model element belongs to. So we have to
provide the additional metaclasses Concept and Term. Removing the abstract
character of metaclass ModelElement leads to a simplification of the resulting
metamodel. Allowing instances of metaclass ModelElement that are not further
specialised, i.e. they do not lead to concrete UML constructs allows us to remove the
metaclass Term. Consequently the relationship labels has to be changed into a
recursive one for the metaclass ModelElement. In order to keep the distinction
between artefacts and their real-world meaning, we propose to keep their real-world
meaning in the separate metaclass Concept.

Figure 106 Integrating Concept and Term to the UML Metamodel

In order to increase flexibility, the linguistic relationships hypernomy and meronymy
also have to be realised on a metamodel level. This leads to the recursive relation-
ships hasPart and specialises linked to metaclass Concept. Although at
first glance, these relationships seem to replicate the entire dictionary structure, they
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enable the clarification of terms independently of the availability of a domain ontol-
ogy. Instead of querying an ontology, the relationships among terms have to be
defined by the tool users. Analysts can only browse through hierarchies of terms,
without an automatic classification of given input terms. Metaclass Concept
already incorporates operations for interaction with a domain ontology. In other
words, this metaclass can be regarded as a proxy for an ontology server. Figure 106,
p. 205 depicts the revised UML metamodel.

The proposed enhancements to the metamodel integrate linguistic support on a meta-
model level. The choice of an adequate domain ontology now allows a clarification
of terms. In order to guarantee the domain-independent character of CASE tools we
outline a primitive interface to external ontology servers. Whenever an ontology is
used, we assume that the linguistic relationships specialises and hasPart are
not instantiated, in order to be flexible with respect to changes in the underlying
ontology. On the other hand, this representation also allows manual classification of
expert terms without using a concrete domain ontology and therefore increases the
flexibility of linguistic support.

Repository 
Implementation

After the integration of linguistic support on the metamodel level, we have to focus
on suitable repository implementations. In this context we propose a repository
implementation based on OMG’s OA&D CORBAfacility [OMG97d]. This implemen-
tation guarantees repository access to remote clients via CORBA’s object request bro-
ker. Consequently, stereotyped trace relationships as our implementation for compo-
nent schema relationships may link artefacts in distributed repositories. Versioning,
as discussed in Section 9.1.3.4, is another important tool requirement, not yet
addressed in the OA&D CORBAfacility [OMG97d]. While the CORBA interface
guarantees repository access for remote clients, elements of component schema also
need a distinct version identification. Due the evolution of concurrently elaborated
component schemas, detected component schema relationships require defined terms
of reference, which can only be applied through version management. Consequently,
the repository manager has to implement version management and therefore keeps
track of the actual versions of model elements related via a component schema rela-
tionship.

Communication 
Infrastructure

Similar to the repository implementation, CORBA also facilitates the implementation
of the communication infrastructure. Information subscription can now be realised on
a distributed implementation of Gamma’s observer pattern [GHJ+95, pp. 293], based
on CORBA’s event service [OMG97f]. Without detailing the concrete realisation,
there are principally two variants for this implementation. In the first, the state of the
component schema relationship is observed, allowing project management to moni-
tor the coordination among affected analyst teams. The second variant also includes
the elements of component schema. In this context, changes to the artefacts can also
be monitored by interested analysts. This approach is very promising with respect to
inter-partition requirements, which demand increased attention, especially in indus-
try-scale projects. As described in Chapter 8, the actual independence of individual
analyst teams is especially restricted by inter-partition requirements.
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Whenever individual inter-partition requirements remain unsettled, the consistency
of the overall problem specification cannot be assured. Therefore information sub-
scription based on a CORBA implementation of a distributed observer pattern is the
most promising solution for an integrated CASE tool for concurrent requirements
engineering.

9.2.2 A Concurrent Requirements Engineering Workbench
Based on Off-the-Shelf Tools

The used CASE tool can be regarded as the backbone for a requirements engineering
workbench based on off-the-shelf components. We assume that these tools realise a
stand-alone repository in an ascii-format. From this point on, we discuss how linguis-
tic support, component schema relationships and coordination support may be real-
ised in order to support analyst teams in concurrent engineering projects. 

Linguistic Support:
Accessing Repository 
Information

The lack of linguistic support in off-the-shelf CASE tools requires external solutions,
to realise data dictionary functionality. Consequently, terms labelling artefacts have
to be extracted from given component schemas and stored in an external data diction-
ary. An extraction of terms labelling artefacts can now be realised following two dif-
ferent strategies depending on the actual tool capabilities. For CASE tools supporting
scripting languages, simple programs may retrieve all terms labelling artefacts from
component schemas at hand. With the term labelling the artefact at hand, we also
have to extract the UML construct labelled by this term. This information can either
be stored in an ascii format file or fed directly into a data dictionary. Figure 107
depicts a sample script written in VisualBasic for Applications retrieving the class
names in Rational Rose98. CASE tools without scripting language support using
ascii-text format repositories require different extraction techniques. In this context
the repository has to be parsed using an external tool. The terms labelling artefacts
have to be extracted and stored either in an intermediate file format or directly in the
data dictionary. UNIX tools such as lex and yacc provide a suitable basis for the
implementation of this kind of parsers for ascii-text repository formats.

Figure 107 Sample Program Retrieving all Class Names in a Component Schema for Rational Rose 98

Linguistic Support:
Data Dictionaries and 
Ontologies

Scripting languages or parsers realise the extraction of terms labelling artefacts.
These terms are then fed into a database system realising the linguistic support. For a
clarification of the concrete meaning of terms labelling artefacts, we now have to

Sub Main
’ Set up the array used to initialize the list box control
For i% = 1 to RoseApp.CurrentModel.GetAllClasses.Count

AllClassNames$(i% - 1) =
RoseApp.CurrentModel.GetAllClasses.GetAt (i%).Name

Next i%
End Sub
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integrate lexical databases or available domain ontologies. In this context we propose
external tools for retrieving the concept. Interfaces to WordNet [WN98] as a thesau-
rus implementation or an ontology server such as OntoSaurus [Sen95] therefore have
to be provided.

Component Schema 
Relationships in 
Distributed Stand-alone 
Repositories

The stand-alone character of tool repositories prevents direct linkage of elements of
component schema with the detected component schema relationship. Principally
there are two different possibilities for realising them. In the first option the tool
repositories containing related component schemas have to be updated. In this con-
text, an artefact in the owned partition is related to an artefact in a target partition. So
the related artefact from our owned partition has to be replicated to the repository
containing the component schema of the target partition. On this basis we can also
realise component schema relationships on top of distributed stand-alone repositor-
ies. However, depending on the mapping of partitions to component schemas differ-
ent activities have be accomplished. Component schemas realising package-based
partitions already comprise all initial partitions, represented as UML packages. So a
related artefact from an owned partition can be replicated to the package representing
the owned partition in the target component schema. Model-based partitions have to
be changed into package-based ones before the replication of the affected artefact
from the owned partition can be realised. Although there is no risk of directly over-
riding class specifications in the target component schema, this solution still requires
direct access to the involved repositories of the used off-the-shelf CASE tool.

The IBIS structure, as described in Section 9.1.2.2, provides realisation of component
schema relationships without accessing the repositories of distributed stand-alone
repositories. Independent of the CASE tool’s repository realisation the IBIS structure
on top of Lotus-Notes realises component schema relationships and integrates the
coordination functionality at the same time. The ISST-SPE provides a particularly
suitable environment for the management of all involved documents in a concrete
requirements engineering project, since version management can be done automati-
cally. On the other hand, this solution requires a set of small tools for the extraction of
terms labelling artefacts and import filters to the Lotus Notes databases.

9.2.3 Section Summary

Tool support for concurrent requirements engineering contains three distinct compo-
nents: a CASE tool, linguistic support and a coordination infrastructure realising the
notification of the involved analyst teams. These three components may be realised in
a single integrated tool or as an environment built from off-the-shelf components.
The integrated tool realises component schemas in terms of distributed objects and
therefore closely follows Nuseibeh’s [NKF94] characterisation of ViewPoints as dis-
tributed encapsulated objects. Component schema relationships become references to
distributed objects maintained by an object request broker. In this context, we have to
refer to the diploma thesis of Ute Schirmer, where she describes all necessary slots of
the ViewPoint Framework for our selected UML subset [Schi98]. Combining the
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results of this diploma thesis with our definition of component schema relationships
and the described linguistic support may bring the ViewPoint Framework to life. The
second possible tool concept involves a set of off-the-shelf components and a set of
filters realising the necessary data exchange between previously unrelated tools. The
central drawback of this solution is the dependency on the vendors repository format
and their stand-alone character. In this context, the management of data dictionaries
becomes an important question, not dealt with in this work. In a master-multiple
organisation, the master-team maintains the data dictionary and therefore provides
centralised control of the expert vocabulary. However, there is a central problem with
respect to versioning of the vocabulary. Each assessment cycle may lead to new
meanings of particular terms. Therefore, feeding terms labelling artefacts directly
into the data dictionary may lead to another uncontrolled overriding, similar to ele-
ments of component schemas. This problem can be smoothed out by using the ISST-
SPE with IBIS structure. Here the detection and maintenance of component schema
relationships has to be accomplished by members of the master-team and therefore
remains under analyst’s control.
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Validation of UML in the Air 
Traffic Management Domain
10 Validation of UML in the Air Traffic Management Domain

In this chapter we validate our concurrent requirements engineering approach under
three distinct perspectives. Our experience gained in a number of projects in the air
traffic management domain [Wor96, WCK97,WF97,WFW97] provides the main cri-
teria for this validation. First of all we discuss the specific value of component sche-
mas for the air traffic management domain. In this context we are especially inter-
ested in the expressive power of UML for problem analysis. We summarize
deficiencies of UML with respect to requirements engineering, as encountered in our
projects. Then we discuss the influence of the outlined tool environment for running
industry-scale projects. Based on the first two subsections, we outline advantages as
well as deficiencies of our proposal. Finally, we discuss the generation of software
requirements specifications on the basis of component schemas.

10.1 Requirements Analysis in the Air Traffic Management Domain Using 
Component Schemas

Object-oriented analysis techniques have been used in a number of different require-
ments projects in different domains. Although almost every text book in requirements
engineering presents small and simplified examples related to the application of
object-oriented analysis techniques in air traffic management [Dav93, SS97], there is
little documented experience with respect to real projects and so far there is no
entirely object-oriented project on its way. Even though Ball and Kim [BK91] pub-
lished the first study presenting an object-oriented analysis model for the air traffic
management domain in 1991, there is still a considerable difference with respect to
our own studies [Wor96, WCK97,WFW97]. Ball and King mostly concentrate on the
structural aspects of air traffic management, while behavioural aspects fall short. The
structural part of their model resembles a taxonomy of expert terms, i.e. a precursor
to a domain ontology, represented in the Coad Yourdon notation [CY91]. The fre-
quent use of multiple inheritance in their model provides suitable indication that this
model was never meant for design. Introducing use cases to requirements elicitation
was a novel approach in this field. This subsection basically reflects our experience
concerning the use of UML in the air traffic management domain.

Use Case Analysis in 
ATM

Although the value of use cases in requirements elicitation has been widely stated in
a series of references [JCJ+94, RAB96, AEQ98], there are still considerable deficien-
cies with respect to requirements engineering. Especially the C3I character of air traf-
fic management systems led to a number of challenges in these projects. A major
drawback with respect to use cases soon became apparent. Use cases documenting
the interaction of controllers and pilots during sector hand-over contained a number
of related activities that appeared in nearly the same order in a number of use cases.
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This observation gave the impetus to the development of our complex use cases.
Regnell’s use case episodes [RAB96] propose a decomposition mechanism for
related activities within a single use case. Activities in air traffic management, how-
ever, demanded construction mechanisms for complex activities built on top of
atomic ones. Jacobson’s original use cases with their extends and uses relationships
do not offer suitable means for the construction of complex use cases. Therefore we
defined atomic use cases as self-contained entities, with preconditions determining
the conditions to be met before their invocation and a defined state after their termi-
nation through postconditions. Path expressions [CH74] finally provided a suitable
construction mechanism for complex interaction built on top of self-contained atomic
use cases. With respect to the decomposition of user interaction, John Arlow
[AEQ98] refers to the risk of mimicking functional decomposition techniques in
terms of use cases. This may result in too fine-grained descriptions of system behav-
iour and may therefore threaten the solution-neutral character of requirements speci-
fications. Although this risk tends to be a question of experience, in object-oriented
analysis as well as the domain at hand we believe that our composition mechanism
provides adequate means for a composition of complex user activities on the basis of
atomic units. Nevertheless, finding the right level of abstraction will remain a matter
of analyst experience and therefore remains outside the scope of this work.

The other drawback of use case driven object-oriented analysis is related to the miss-
ing prioritisation of requirements represented in component schemas. John Arlow
calls this problem the trivialisation of requirements [AEQ98]. Although from a com-
ponent schema perspective this observation is generally true, this statement needs
further consideration. At first glance all model elements represented in component
schemas have the same relevance. Arlow’s statement on the other hand, only holds if
the analysis model already comprises the entire requirements basis and no informa-
tion remains outside the model. The kind of requirements already represented in com-
ponent schemas are detailed in Section 10.3.1. With respect to use cases alone, we
tackled this problem using two different strategies. First of all, use case activities
became part of the metamodel and therefore may be implemented in the repository of
a CASE tool. Our approach overcomes the entirely illustrative character of original
use case diagrams in the UML semantics document [OMG97a]. As metamodel ele-
ments, individual use case activities may be linked to their derived elements, depicted
in sequence as well as static structure diagrams. Consequently, making individual
activities unique in the larger context also allows a prioritization of requirements,
although we have to admit that this cannot be done in a component schema alone. We
have the feeling that prioritization seems to be an issue of the accompanying docu-
mentation set, such as software requirements specifications (see Section 10.3). But
the integration of textual use case descriptions into the metamodel overcomes the
criticised “clumps of functional requirements” as John Arlow puts it in a discussion
on the SRE listserver from Feb 24. 1999. Individual activities can be uniquely identi-
fied through the UML name space concept and also become traceable within compo-
nent schemas, which is supported neither in the original OMG specification
[OMG97a] nor in the revised metamodel [Rat99].
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Traffic Management Domain
Operations, 
Behavioural 
Requirements and 
Control Objects

The two quoted EUROCONTROL operational requirements documents [Eur96a, Eur97]
followed functional decompositions techniques and represent behavioural require-
ments only from a structural perspective. They describe how functions may be
decomposed, but their interaction remains undocumented. Compared to ORDs, the
representation of behavioural requirements in component schemas stresses system
interaction through use case activities and further structures these activities in terms
of sequence diagrams. But independently of the applied level of detail, operations in
the resulting component schemas still have a fairly high-level character and even
most complex calculations end up as a simple operations in given class specifica-
tions. Figure 108 illustrates this claim:

Figure 108 Granularity of Operations in Component Schemas

All three operations in the class specification Trajectory can be directly related
to statements in the Flight Data Processing ORD [Eur97]. The operation provide-
TraversedSectorList calculates all traversed sectors for a given flight, based
on the information derived from its filed flight plan. However, all three operations
have to take the current airspace configuration into account. The airspace configura-
tion is one of the most complex geographic objects in this context and the calculation
of entry and exit points involves complex calculations. Planning ahead also involves
taking a potentially different airspace configuration into account. Thus the actual air-
space configuration always has to be retrieved from the database for given flights,
further increasing the effort. Erronenous calculations in this context may lead to criti-
cal situations, especially when sector controllers are not informed by the system that
given flights will cross their assigned control sector. So operations in component
schemas do not immediately reflect their enormous importance with respect to the
overall system. In this context, operations provide an excellent example of the
claimed trivialisation of requirements [AEQ98].

In order to stress the importance of complex operations, we may represent them as a
class specification in its own right, similar to Jacobson’s control objects [JCJ+94].
Referring to the calculation of traversed control sectors, which incorporates the cur-
rent airspace configuration, it is neither part of the trajectory nor part of the air space
configuration. A control object therefore seems to be a logical consequence. The
same observation holds for the entire ATM Advanced Function domain, where moni-
toring aids, safety nets and arrival manager mostly represent complex calculations. In
this case we represent these functionalities as control objects, since all three functions
incorporate different algorithms, which are mostly working on the same set of class
specifications. Nevertheless, component schemas‘ representation of behavioural
requirements still has to be considered as superior, compared to the entirely structural

Trajectory

provideTraversedSectorList
provideNotifiedSectorList
provideCoordinatedSectorList

SystemFlightPlan
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perspective of behaviour applied in functional decompositions. This observation
leads to another encountered problem, the representation of global and inter-partition
requirements. 

Global and 
Inter-Partition 
Requirements

The concurrent elaboration of component schemas, based on ORDs, brought up this
important issue. ORDs usually reserve a distinct chapter for the documentation of
dependencies between partitions and external systems. We also had to find an ade-
quate way to represent these dependencies in component schemas. Our solution led to
a facade-based representation of inter-partition requirements, which represents the
owned partition as well as related partitions as class specifications in their own right.
Essentially behavioural inter-partition requirements are represented as operations
attached to these facade classes. Most partitions maintained dependencies to a
number of related partitions, leading to different class specifications representing the
demands from the perspective of various partitions. In order to provide uniform
access to services offered for dependent partitions, all facade-classes representing the
various demands become subclasses of an abstract class representing the domain.
Upward inheritance then leads to a unified facade-class representing all services
offered by a given domain. The representation of global requirements in this context
depends on the mapping of partitions to component schemas. Model-based partitions,
due to their self-contained character, automatically restrict the validity of require-
ments to the partition at hand and therefore fail to represent global requirements.
Package-based partitions do not suffer this problem, since all initial partitions are
mapped to individual packages grouped in the top-level UML package «system».
So the UML package «system» comprising the entire problem analysis model pro-
vides a suitable place for representing global requirements. 

10.2 The Project CNS/ATM Overall Analysis Model

While the previous subsection validated the use of component schemas in require-
ments engineering, this subsection is dedicated to organisational aspects of concur-
rent requirements engineering projects and our specific experience gained in the air
traffic management domain.

EUROCONTROL – 
Coordinating 
Multi-National Expert 
Teams

One of the driving forces behind the applied project organisation in our reference
projects is the supranational character of the European Organisation for the Safety of
Air Navigation – EUROCONTROL – with its current total of 28 member states. This
specific character also significantly influences EUROCONTROL’s project organisation.
Usually a distinct member state is responsible for the elaboration of given partitions
within the overall project frame. The distinct responsibility for given partitions gave
rise to the conflicting objectives ‘coherence of the overall problem specification’ ver-
sus ‘autonomy of analyst teams’ studied in this work. The concrete project organisa-
tion therefore led to self-contained partitions elaborated by autonomous analyst
teams, following functional decomposition techniques. The autonomous project
organisation, in a multinational project, lead to a number of subtle differences in the
individual ORDs. Often, the perspective on specific requirements was influenced by
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national standards and procedures. So on an organisational level, concurrent require-
ments engineering in autonomous analyst teams with a master-multiple organisa-
tional model was the only possible project organisation in this context. The master-
team provided consultancy in the application of UML and was not directly assigned
to a given partition.

ORDs versus 
Component Schemas

The central problem in this context was assessing the quality of the individual ORDs
with respect to the coherence of the overall specification. Entirely textual require-
ments specifications complicate this assessment, due to their lack of problem analysis
models. We believe that adequate problem analysis models with CASE tool support
provide compact and concise road maps to complex requirements documents, regard-
less of the applied modelling technique. Object-oriented techniques, however, have
important advantages, especially with respect to systems integration. The current
European ATM infrastructure has been built entirely under the authority of the
national administrations. Within the administration, two basic strategies have been
followed. The first one, applied in France, incorporates analysis, design and imple-
mentation under the authority of the national administration. The second one, applied
at Deutsche Flugsicherung, comprises analysis under the authority of the national
ATM service provider and customisation of off-the-shelf products according to the
stated requirements. Besides these different national procedures, most systems only
provide interfacing in terms of voice communication via telephone lines to external
systems. The increasing traffic rates in central Europe and the scarce resources air-
space and airport capacity require an exchange of on-line information between the
involved systems. This ubiquity of information cannot be supported by functional
decomposition techniques focusing on functionality instead of data. Moreover, the
variety of national standards and procedures further hinders the harmonisation of the
functionality on a European level. 

Ubiquity of Information Taking two modern ATM systems, the functionality is roughly the same, but the indi-
vidual grouping of functional blocks varies significantly. Instead of harmonising the
functional decomposition in lengthy discussions, it proved to be more efficient to rep-
resent the information stated in the ORDs directly in terms of an object-oriented anal-
ysis model using component schemas. Compared to the elaboration efforts spent for
each ORD, representing all seven ORDs in terms of component schemas required
only 18 man months [Eur98a, p. 2], while each ORD incorporated approximately the
efforts of 7 man years! Besides the little effort spent for their creation, component
schemas also incorporated complementary information to the existing ORDs. Suffi-
cient requirements source traceability may overcome the criticized trivialisation of
system behaviour as modelled in operations. The primarily linguistic character of
component schemas does not really reflect the complexity of involved algorithms
behind a simple operations name such as provideTraversedSectorList.
ORDs, on the other hand, are too detailed with respect to the demanded functionality
and therefore tend to fall into premature design. So in this context, ORDs and compo-
nent schemas can be regarded as complementary information. The specification of
structural requirements is clearly superior in component schemas when compared to
215



ORDs following functional decomposition techniques. Object-oriented analysis mod-
els are therefore more likely to tackle the ubiquity of information, one of the central
demands of future integrated ATM systems.

Coherence in 
Partitioned 
Requirements 
Documents

The quality of individual ORDs describing distinct problem partitions and the coher-
ence of the overall problem statement are too complicated to assess entirely on the
basis of textual requirements statements. Especially on the structural level, compo-
nent schemas improved coherence among the involved partitions dramatically.
Severe differences between the individual expert groups’ perspectives were able to be
detected and solved during review sessions organised by the master-team. Hidden as
well as explicit dependencies between the involved partitions were revealed. The
explicit ones became apparent in facade-classes representing inter-partition require-
ments, while hidden ones mostly emerged in terms of conceptual overlaps. Conse-
quently, coherence as well as minimality of the specifications could be improved
through the application of component schemas as concise and compact road maps
through complex textual requirements.

Lacking Tool Support Adequate tool support for concurrent requirements engineering in industry-scale
application domains proved to be complicated with respect to two different aspects.
Firstly, the repository implementation and secondly, of all the support for component
schema relationships provided the central motivation. Industry-strength tools, such
StP UML [StP99], could not be used on notebook computers due to the repository
implementation, which is realised on top of the Sybase RDBMS. This concept results
in horrendous resource consumption, which requires workstations on a LAN as ade-
quate working environment1. Rational Rose98 [Rat98] with its ascii-text repository,
on other hand, worked pretty well on notebook computers, but did not offer the
repository extensibility provided by StP. Supporting concurrent requirements engi-
neering and component schema relationships provided the other important aspect.
This work contributed to this problem in several ways. First of all, proposing linguis-
tic support to the analysts facilitates detection of component schema relationships
both manually, and on an automated basis. Independently of the chosen support (i.e.
data dictionary, thesaurus or ontology) the inherent complexity of expert language in
a given domain has to be mastered in order to guarantee project success. On the basis
of linguistic support, the definition of component schema relationships further
improves concurrent requirements engineering. Means for assessing the similarity of
artefacts and notification of involved analyst teams without actually overriding
requirements is an innovation. Component schema relationships combined with the
UML TaggedValue concept allow assessment of the remaining coordination
efforts and therefore improve the management of autonomous analyst teams. Inte-

1 Tool evaluation took place in 1996, right at the beginning of the project! The new StP version for Microsoft
Windows NT 4.0 works on a repository based on Microsoft’s Jet Engine, better known from Microsoft Access for
Windows
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grated CSCW support in terms of information supply (see Section 9.1.2.3) further
improves the coherence of autonomous project organisation, which cannot be
reached otherwise.

Coordination among 
Multi-National Expert 
Teams

This improvement has also been extended to a management level through the identi-
fication of analyst horizon’s and the resulting impact on minimality and coherence of
the specification. Improving coherence without actually restricting the autonomy of
analyst teams especially suits the complicated situation encountered in projects on a
European level. Most text books concerning requirements engineering do not cover
management aspects or only propose centralised organisations with clear responsibil-
ities. Explicitly incorporating these aspects into the detailed analysis of concurrent
requirements engineering further improves handling of complex project environ-
ments. This idea also takes national habits and the idiosyncrasy of individual analysts
into account. We would like to stress the important influence of human relationships
on overall project success. Component schema relationships as organisational entities
suit the complex nature of industry-scale projects, in domains characterised by
national diversity and heterogeneity on the level of existing ATM infrastructure.

Coherence versus 
Autonomy

Increasing coherence in autonomous project organisations significantly improves the
maturity of the requirements process in the sense of Kotonya and Sommerville
[KoS98]. The management of component schema relationships, as defined in Chapter
8, describes a defined process model for concurrent requirements engineering using
component schemas. These processes are the central prerequisite for gaining higher
levels of requirements engineering process maturity in terms of Paulk’s Capability
Maturity Model (CMM) [PWC95]. Sommerville and Sawyer propose an adoption of
the CMM tailored for requirements engineering [SS97, KoS98]. The defined process,
taking various project organisations into account and use cases as the central basis for
requirements elicitation, automatically ranks our concurrent requirements engineer-
ing approach on the repeatable level. The only missing aspect in this thesis is process
improvement, which has been excluded in this work. So the defined process under
special consideration of project organisation has the potential to improve the quality
of the outcome of given projects and achieving a higher maturity level at the same
time.

10.3 Generating Software Requirements Specifications from Component Schemas

Problem analysis models generally aim to facilitate thorough understanding of com-
plex problem statements for the involved stakeholders. Component schemas’ detailed
description of structural and behavioural requirements provide a compact and com-
prehensible description of the problem statement. The sheer size of industry-scale
applications demands this kind of representation. This observation gives rise to
important questions in the context of requirements engineering. The first one deals
with the relationship between requirements in the broadest sense and their representa-
tion in component schemas. In this context we want to consider what kind of require-
ments have been captured already in component schemas and what kind of informa-
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tion is possibly missing. We also focus on the question of how problem analysis
models using component schemas may be converted into software requirements spec-
ifications. In this context we take the IEEE-830 standard [IEEE830] as our guideline.
This question is mostly related to project efficiency, i.e. making optimal use of avail-
able information and minimizing rewriting the same information several times.
According to our experience, problem analysis models already incorporate an extra
value. They not only facilitate understanding of the intricacies of given problem
statements, they also contain most necessary information for the generation of a soft-
ware requirements specification. Especially the seamless transition from analysis to
design, as the major claim in object-orientation, is one of the essential values of prob-
lem analysis models. Making optimal use of existing information, i.e. object-oriented
problem analysis models using UML, does not automatically imply that no further
work is necessary in order to receive a complete software requirements specification.
So in the second subsection we basically evaluate the value of component schemas
with respect to software requirements specifications.

10.3.1 Reflected Requirements in Component Schemas

A slight shift in our perspective towards components schemas will widen our scope
from problem analysis towards software requirements specifications, as the central
outcome of requirements engineering projects. While the major part of this work has
focused on gaining coherent problem analysis models in the presence of autonomous
analysts teams concurrently elaborating initial partitions, we come back to the ques-
tion of the value of problem analysis models with respect to the generation of soft-
ware requirements specifications. So we have to analyse what kind of requirements
have already been modelled in our component schemas and which kind of informa-
tion is still missing.

Following our definition of requirements in Chapter 4, we distinguish between struc-
tural, functional and non-functional requirements. Behavioural requirements are
basically elicited in our complex use cases and may be transformed into UML Mes-
sages exchanged between objects in UML sequence diagrams. These objects,
which are called ClassifierRoles in the UML metamodel, finally lead to class
specifications in static structure diagrams. Although use cases model the interaction
between stakeholders and the future system very well, we want to have a closer look
at the way requirements are elicited in use cases and at their specific representation in
component schemas. In this context we would like to refer to the diploma thesis of
Dörte Godulla, which evaluates the deficiencies of software requirements specifica-
tions built from use case driven analysis models [God97]. 

Functional 
Requirements

Complex use cases, as described in this work, represent clusters of behavioural
requirements. Preconditions define necessary conditions for their invocation, while
postconditions describe conditions to be met after the having completed the last
activity. Reactions to potential error conditions have also been described. All this
information has been specified in textual form. Individual activities to be accom-
218



Validation of UML in the Air 
Traffic Management Domain
plished in the course of the analysed business process are the most interesting infor-
mation. As a rule of thumb, nouns within these activities denote objects, while verbs
correspond to event predicatorsor in the sense of Schienmann [Sch97]. So the verbs
are represented as Messages in the derived sequence diagram. Messages, how-
ever, directly represent behavioural requirements, defining the functionality of the
future system. Assigning an Operation to a ClassifierRole determines the
behaviour to be implemented by a given Class in the static structure diagram. The
construct Class in UML integrates the notion of behaviour and structure into a sin-
gle construct. This gives rise to the question: where does the structure come from? 

Structural 
Requirements

Pure use cases only describe the behaviour between a stakeholder and the future sys-
tem in given business processes. Consequently, they do not contain any information
for determining the static structure of an object referenced in the use case. This gen-
eral deficiency of use cases can be mastered by annotations of individual use case
activities. Whenever real-world things are significant in given use cases, a descrip-
tion of their structure has to be added. So extra information has to be added to indi-
vidual use case activities, e.g. describing the internal structure of data elements refer-
enced in it. The lack of structural requirements can only be compensated with this
workaround.

Temporal 
Requirements

Non-functional requirements as described in Section 3.3.1 fall into temporal and non-
temporal requirements [OKK97]. Since temporal requirements describe response
times, we first have to clarify which model elements within our component schemas
they actually apply to. Response times may be attached to entire business processes
or to individual activities within these business processes. Both interpretations lead to
different representations within the component schema’s metamodel. Whenever the
temporal requirement is attached to the entire business process, the use case model-
ling this process is the relevant model element in order to keep this kind of informa-
tion. If individual activities are the relevant unit, then the metaclasses Activity
and Message in sequence diagrams have to be adorned with this temporal informa-
tion. Since non-functional requirements are clearly outside the scope of the UML
specification, we propose a new tagged value that has to be attached to the identified
metamodel elements. Tagged values may capture requirements in component sche-
mas that have not been covered so far. So the tag responceTime may be attached
to the metamodel elements Activity, Message, Operation and Decompos-
ableUseCase. Besides having identified relevant metaclasses for capturing tempo-
ral requirements, we also have to stress that this kind of non-functional requirements
have not been elicited in use cases so far. Consequently, temporal information may be
gathered either within the initial creation of the use cases, or in a review session with
stakeholders. The templates for complex use cases should also support this kind of
information.

Non-Temporal 
Requirements

Non-temporal requirements describe aspects such as system availability and security
[OKK97], two aspects of tremendous importance, especially in life-critical applica-
tions such as air traffic management. Kotonya and Sommerville extend this aspect
with the properties performance, reliability, size, robustness and portability [KoS98].
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Performance in this context describes the number of transactions per time unit,
robustness quantifies the time to restart the system after failure and portability
describes the number of target systems. Component schemas do not cover this infor-
mation so far. Once again, we have to identify metamodel elements that are related to
non-temporal requirements and also provide means to represent this kind of require-
ments in the problem analysis model. According to Oliver [OKK97], non-temporal
requirements are bound to structural components. Consequently, this kind of infor-
mation has to be bound to model elements in the static structure view and the UML
metaclasses Package, Class and Attribute are the principal candidates. Since
attributes only describe the structure of class specifications, they can be neglected. As
a result, the tagged values availability, performance, size, reliabil-
ity, robustness and portability have to be attached to the UML meta-
classes Package and Class. 

Design Requirements Design requirements constrain design options without directly prescribing the entire
solution. Such requirements may be stated by RDBMS or middleware products used.
This category of requirements mostly applies to the entire specification. However,
quite often, individual components of a system are based on different enabling tech-
nologies, leading to differing scope of this kind of requirements. Since component
schemas can be regarded as an object-oriented representation of initial partitions, this
kind of information can only be related to entire partitions. But how can design con-
straints applying to the entire specification be modelled, like to non-temporal require-
ments, design requirements apply to structural elements within component schemas
and the UML metaclasses Package and Class are primary candidates. Unlike the
tag availabilty incorporating a single value, design requirements may incorpo-
rate sets of values denoting various design constraints. Thus the corresponding
TaggedValue ’designRequirement’ may only contain a comma-separated
list of values, represented as a string. Although this is a cumbersome solution, a
defined place for capturing this kind of information has been proposed.

Design Requirements & 
Partition Mapping

The UML name space concept always restricts the validity of design requirements to
the enclosed model elements in a package. So the distinction between inter-partition
requirements and global requirements depends on the mapping of initial partitions to
component schemas. Model-based partitions therefore only allow the specification of
partition requirements. The validity of individual design requirements for the entire
problem analysis model has to be coordinated among all involved analyst teams.
Package-based partitions already incorporate the notion of the overall problem spec-
ification. Analysts may attach TaggedValues to the top-level package, indicated
by the stereotype «system». But we have to stress that inter-partition as well as
global design requirements are subject to extensive discussions among the involved
analyst teams. Describing a representation in terms of the UML metamodel does not
automatically imply their correctness. The complexity of design requirements gener-
ally cannot be discussed in terms of their representation. Furthermore, this is entirely
subject to the experience and the judgement of the involved analyst teams. We also
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have to stress that defining adequate locations for representing non-functional
requirements improves the quality of the problem analysis model and also facilitates
deriving software requirements specifications from component schemas.

Prioritization or 
Requirements

A major problem within object-oriented problem analysis is the so-called trivilisation
[AEQ98] of requirements. The component schemas model functional as well as struc-
tural requirements of given problem statements and therefore provide a road map
through complex requirements stated in various forms. But at first glance all elements
of component schemas have the same priority. On a model level alone, the individual
importance of class specifications and operations with respect to the overall problem
statement does not become apparent. But this information is essential to risk manage-
ment, for instance assessing impact of the failure of a system component with respect
to the overall system. Another important deficiency from a software requirements
specification point of view is the lack requirements traceability matrices. Although
non-functional requirements can be attached to individual UML constructs, as dis-
cussed in the beginning of this section, mutual dependencies between functional and
non-functional requirements cannot be expressed on a model level. Essential, manda-
tory and optional components within component schemas may be indicated using
stereotypes. This approach works efficiently for class specifications and packages,
but cannot be visualised adequately for operations. Regardless of whether stereotypes
or tagged values are preferred by the project management, UML extension mecha-
nisms allow non-functional requirements to be maintained in the component schema
repository.

Subsection Summary The deficiencies of component schemas discussed in this section give rise to the more
general question of what has to be expressed in given problem analysis techniques.
Modelling in most general terms aims for the reduction of analysis complexity in
abstracting from irrelevant aspects and concentrating on important ones. So there is
always a trade-off between regarded and disregarded aspects of the problem at hand.
Requirements engineering aims to describe what a required product shall do, instead
of detailing how it can be accomplished. Going back to component schemas, they
provide a suitable description of problem structure and behaviour. Therefore gaining
insight into complex applications is the main objective, while capturing all possible
requirements falls short. But we believe that problem analysis using component sche-
mas is effective and that identifying suitable concepts to gather requirements not cov-
ered in UML is a suitable approach to improve the quality of the resulting SRS. The
suggestions made in this section enable persistent storage of non-functional require-
ments in the component schema repository. Besides the improved coherence of com-
ponent schemas elaborated by autonomous analyst teams, this work also contributes
to improved management of non-functional requirements which facilitates the crea-
tion of meaningful and consistent software requirements specifications.
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10.3.2 Generating Software Requirements Specifications from Component Schemas

While the previous subsection identified deficiencies of component schemas from a
software requirements specification (SRS) perspective, we now want to describe how
component schemas can be used for the generation of SRS. Increasing the overall
project efficiency is the main motivation in this context, since rewriting requirements
always demands additional effort and provides another source of errors as well as
misunderstandings. The guideline for the following discussion is the IEEE 830 stand-
ard for recommended practice for software requirements [IEEE830] in its 1993 revi-
sion. In the remainder of this section, software requirements specifications built
according to the IEEE standard are called IEEE-SRS. The organisation of an SRS and
in particular its Chapter 3, called Specific Requirements in the IEEE jargon has to be
discussed. Generally the standard proposes seven different SRS organisations models
for this chapter. Since objects provide the sole paradigm in component schemas,
organising the SRS by objects is the only logical conclusion. So the union of all
classes representing interfaces to other systems has to be gathered in Section 3.1.3
called ‘Software interfaces’, while all other classes forming the problem statement at
hand will be listed in section ‘3.2 Classes’. Figure 109 depicts the relevant outline
following IEEE-830 standard.

Figure 109 The Proposed IEEE Outline for Object-Oriented Software Requirements Specifications

Non-functional requirements have been grouped in the sections 3.3 to section 3.6 in
the IEEE-830 recommendation. Referring to our project, we would end up with 391
classes with an average of ten operations and five attributes per class [Eur98a, p. 4].
Use cases and UML sequence diagrams are not included in this standard. But even in
the static structure, two important groupings within the original problem analysis
model get lost in the IEEE SRS organisation, namely packages and initial partitions.
Especially packages, as logical groupings for model elements, may provide meaning-
ful groupings for its encapsulated model elements. The outline in section 3 does not
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match the diagram hierarchy in the used CASE tool, reducing the comprehensibility
of the specification. The other drawback is related to non-functional requirements,
which have been grouped at the end of the section. Our extensions to the metamodel
always attach the tagged values to the metaclass the requirement actually applies to.
Consequently, non-functional requirements appear directly where they have been
specified, i.e. in packages, attributes, operations and class speci-
fications. 

Alternative 
IEEE-830 
Outlines

The ‘flat’ character of the IEEE-830 outline for objects, represents neither packages
nor partitions. Going back to the standard, there is no direct equivalent to partitions
mentioned. The only more or less corresponding outline groups the demanded func-
tionality according to the perspective of given stakeholders, which are called user
class in the standard. Although partitions in this work may incorporate several user
classes, i.e. actors in use cases, this grouping still roughly corresponds to user classes
in the sense of the IEEE-830 standard. For these cases, the standard also proposes so-
called multiple organisations. So in order to increase the comprehensibility of an
SRS with respect to the problem analysis models, we propose the use of partitions as
the top-level grouping for an SRS derived from component schemas. The original
grouping encountered in the CASE tool’s diagrams may also be preserved through
adding packages as a second-level grouping mechanism. Putting everything together
we end up with the structural part of the specification, which roughly corresponds to
Firesmith’s proposed grouping for object-oriented requirements engineering [Fir93,
p. 371].

So far we have completely left out the diagrammatic representation of our problem
analysis models, which provides extremely useful information due to its concise and
compact form. The IEEE specification only supports textual representation, leaving
all diagrammatic information to the appendix. According to our experience, diagrams
largely facilitate familiarization with complex application domains. Therefore we
added all diagrammatic information to our reports [Wor96, Eur98a]. The potential
trivialisation [AEQ98] has been avoided by means of textual descriptions for each
diagram. A similar strategy has been applied by John Arlow and his colleagues in a
large-scale project for British Airways [AEQ98]. The entirely structural perspective
of the IEEE-830 standard leaves us with use cases and sequence diagrams. In this
work we propose to integrate them in the SRS, in order to provide various representa-
tions of the same information. Especially the broad spectrum of readers, from top
management to system designers, demands a representation of requirements that suits
the different capabilities and interests of the involved stakeholders. Mixing diagram-
matic with textual information always guarantees that the important requirements and
business issues can be understood without literacy in given modelling techniques.
Thus managers do not have to study the modelling guidelines [WF97] in order to
understand the requirements stated in the specification. The central grouping for SRS
derived from component schemas are the involved partitions. Then the internal
organisation of each partition – its package structure – provides outline for the SRS to
be generated. Finally there is an option on whether all involved class specifications
stemming from given partitions are grouped together at the end of the subsection or
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are ordered with the diagrams the class specification appears in. Although the second
alternative seems to be the most comprehensible one, this is still a matter of the exist-
ing tool support. Rational’s report writing software SoDa [SoDa98] is not able to
present only those attributes and operations in the textual description depicted in the
actual UML static structure diagram. In order to preserve redundant class specifica-
tions, all classes are gathered by the end of each document. Therefore the EUROCON-
TROL reports [Eur98a - Eur98d] start each subsection by documenting a partition with
the diagrams and finishes the chapter with all involved classes. 

Figure 110 The Proposed Outline for Software Requirements Specifications based on Component Schemas

10.4 Summary

This chapter primarily evaluates component schemas from a software requirements
specification (SRS) perspective. Analysing the kind of requirements already repre-
sented in component schemas and identifying possibilities to incorporate those not
yet covered is the primary concern of this chapter. These contributions of this work
further increase improvements with respect to the coordination among involved ana-
lyst teams concurrently specifying their partitions. First of all, component schema
relationships and their automated detection overcome the inherent risk of misunder-
standing and overriding requirements stated in related partitons. Second, the defini-
tion of component schemas also has the potential to increase coherence and minimal-
ity of the overall problem analysis model. Minimality and coherence essentially
influence the quality of all derived products downstream in the software engineering
process. So improving the coordination between concurrently working analyst teams
provides an important improvement in quality of the problem analysis models and
consequently strengthens the thorough understanding of industry-scale applications.
This major achievement of this work has been contrasted to the wider frame of soft-
ware requirements specifications. Directly incorporating component schemas into an
SRS guarantees efficient and cost-effective use of information already gathered in
problem analysis. The discussed adornments with respect to non-functional require-
ments further narrow the gap of missing information. The use of the component
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schema repositories further reduces redundant information sources. As a result, mak-
ing direct use of the entire information stored in a component schema reduces
involved information sources and increases the input for writing quality software
requirements specifications.

Application Domain 
Achievements

With respect to the air traffic management domain, extensive data driven analysis, as
described in this work, improves the planned system integration efforts in the near
future. While today’s flight data processing systems have to be updated via manual
controller input, communicating via telephone lines, future systems should exchange
data on an automated basis. In this specific sense, component schemas provide suita-
ble means to tackle the desired ubiquity of information for future air traffic manage-
ment systems. Especially the existing heterogeneity in the European air traffic man-
agement infrastructure calls for reference models, in order to allow the definition of
unified component interfaces, instead of doing the actual integration on a one-by-one
basis.

What has been left out 
so far?

While component schemas facilitate thorough understanding of complex application
domains, there are still significant activities left that remain completely outside the
scope of problem analysis models. The solution-neutral subset of UML increased the
orthogonality of constructs of component schemas and facilitated the familiarization
of complex application domains for larger audiences, from top management to pro-
grammers. On this basis an effective participation of all stakeholders can be
achieved. But two important aspects remain unreflected, since they belong entirely to
they realm of business decisions. First of all, the validation of requirements, which
has been only partially tackled so far. Improved coherence and minimality of
involved component schemas largely reduces the risk of obvious contradictions on a
model level. However, there still remain hidden issues, subject entirely to the exper-
tise of involved domain experts and the senior analysts. Inaccurate specifications of
requirements may only cover 80% of the routine business cases. The remaining 20%
still might lead to erroneous calculations and therefore may threaten system security.
Although component schemas provide a tool for understanding complex require-
ments, they do not provide the frequently quoted ‘silver bullet’ for concurrent
requirements engineering. Missing risk management aspects and requirements that
have not been specified by the analysts cannot be provided by component schemas.
According to Robert Glass, the dreadful history of large-scale software failures has
been provoked by insufficient risk assessment in 38% of the cases [Gla97]. Further
55% of the failed projects did no risk management at all [Gla97]! Risk management
can be facilitated on the basis of quality requirements specifications. The other point
left out in this work is the business aspect of requirements specifications. Software
requirements specification tend to present the ideal world to its readers, but often the
specified system is far too expensive for the ordering company. So essential, manda-
tory and optional requirements have to be indicated. Component schemas are able to
maintain this kind of information in the repositories, but finally this kind of decision
is entirely the responsibility of senior management.
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Conclusion and Future Work
11 Conclusion and Future Work

11.1 Conclusion

This work described the ingredients for concurrent requirements engineering in
industry-scale applications using the Unified Modelling Language [OMG97a].
Reflecting our practical experience gained in the air traffic management domain
[Wor96, WCK97, WCW97] we introduced a methodology including organisational
as well as technical aspects for running concurrent requirements engineering projects.
In this context, we mainly concentrated on improving the demanding conceptualisa-
tion of industry-scale problem statements within the larger frame of requirements
engineering. On the technical level, the definition of component schemas proposes a
solution-neutral subset of the popular Unified Modelling Language through focusing
on relevant views for requirements documentation. All constructs within the selected
UML views have further been clarified, in order to increase their orthogonality and
comprehensibility of component schemas to experts in the application domain. Leav-
ing the metamodel unchanged ensures CASE tool compatibility on the one hand and
preserves valuable design and implementation constructs that may come into play at
later stages within the software design cycle.

Component Schema 
Relationships

Component schemas may be used for concurrent elaboration of initial partitions
forming a larger problem statement. The introduction of component schema relation-
ships tackles the inherent problem of consistency and redundancy in concurrently
elaborated component schemas. Unlike correspondence assertions, known from the
schema integration community, both linguistic as well as structural aspects of the
modelling technique have been incorporated in our definition of component schema
relationships. The essentially linguistic character of component schemas demands an
enhanced definition of correspondence compared to the schema integration literature.
Correspondence assumptions indicate potential conceptual correspondences between
class specifications stemming from different component schemas. Using the object-
oriented modelling technique UML for requirements documentation also leads to a
number of different relationships currently not covered in the schema integration
community. In this context we stress the significance of inter-construct-kind and
inter-construct-level relationships, indicating a potential correspondence assump-
tions between artefacts on different levels of abstraction. A potential relationship
between a package and a class specification stemming from different component
schemas indicates a potential mismatch in the initial balancing of the applied level of
abstraction in individual component schemas.

Coherence of 
Component Schemas

From a broader perspective component schema relationships have the potential to
improve the coherence of concurrently elaborated component schemas. Analyst
teams may develop their initial partitions in isolation and unintentional overriding of
requirements from analyst working on other initial partitions is excluded due to the
use of distributed repositories. Component schema relationships indicate correspond-
ence and conflicts between artefacts stemming from different component schemas.
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These conflicts potentially threaten the consistency of the overall problem analysis
model and have to be indicated to the affected analyst teams. Indicating potential
conflicts to the affected analyst teams and resolving them in a cooperative manner
overcomes the risk of misunderstanding complex requirements stated in other parti-
tions. Unintentional overriding of requirements can also be avoided. Component
schema relationships provide project management with means to assess the coher-
ence and minimality of the overall problem statement. At the same time the project
progress can be controlled.

Improving Project 
Management

Component schema relationships are entirely realised in terms of the current UML
metamodel version and can therefore be realised on top of off-the-shelf CASE-tools.
Defining component schema relationships in terms of the metamodel and incorporat-
ing status information also provides a driver for the necessary coordination of partic-
ipating analyst teams working on distributed repositories. Going through the corre-
spondence management cycle in a master-multiple organisation at least guarantees
coherence of the overall problem analysis model at given moments in time and there-
fore dramatically reduces the risk of overriding requirements for the integration of
component schemas by the end of requirements documentation. Potential conflicts
can be indicated to the affected analyst teams at any time. At the same time, integra-
tion effort can be avoided in earlier phases of problem analysis, where the conceptu-
alisation of the problem statement tends to evolve rapidly. Component schema rela-
tionships help to clarify the conceptual relationship between artefacts stemming from
different component schemas and therefore help to overcome the rather self-con-
tained perspective of concurrently elaborated component schemas. Therefore compo-
nent schema relationships have the potential to improve the coherence of the overall
problem analysis model without restricting the autonomy of individual analyst teams.

From Component 
Schemas to Software 
Requirements 
Specifications

The improved coherence of component schemas directly affects the product quality
downstream in the requirements engineering cycle. A validation of contents of the
component schemas finally clarifies which information is still required for quality
software requirements specifications (SRS). Here we are especially interesting in
overcoming deficiencies of component schemas with respect to the representation of
non-functional requirements, that cannot directly be modelled in UML. Using com-
ponent schemas for the creation of software requirements specifications improves
project efficiency and also improves the participation of business users and domain
experts. The initial partitions form the outline for the SRS and contents of component
schemas represent elicited structural and behavioural requirements. The involved sta-
keholders do not loose track of their contributions. Providing multiple access to the
same information improves communication among all stakeholders. Analysts with an
IT background may use the models to gain a quick overview of complex require-
ments. Complementary plain-text descriptions explain the depicted problem partition
to business users and managers. So the diverse representations of complex require-
ments have the potential to suit a broad audience.

Improving 
Requirements 
Engineering 

The management cycle for component schema relationships increases the maturity of
the requirements engineering processes and therefore avoids flaws and omissions in
the derived software requirements specification. Discussing a suitable representation
for non-functional requirements immediately increases overall project efficiency,
since component schemas may be used directly for the generation of software
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Conclusion and Future Work
requirements specifications. Proposing a suitable outline based on the IEEE-830 rec-
ommendations for software requirements specifications also increases the traceability
between the problem analysis model and textual adornments necessary in a complete
SRS. So the coherence of component schemas has been increased in order to improve
thorough understanding of industry-scale problem statement, and make optimal use
of the gathered information for the derived products, such as software requirements
specifications. Using component schemas for the communication between involved
stakeholders also improves the maturity of requirements processes and therefore has
the potential to improve the quality of all products downstream in the software devel-
opment cycle.

11.2 Future Research

Generation of 
Linguistic Support

This work identified a number of interesting research problems that have not been
tackled so far. First of all an improved definition of metrics incorporating linguistic
as well as structural aspects of class definitions may lead to an automated detection of
correspondence assumptions. A rigorous formal model, combined with these men-
tioned metrics also leads to an enhanced definition of conflict and coherence. Cur-
rently the coherence of component schemas can only be assed on the basis of
attributes of component schema relationships proposed by analysts, while advanced
metrics combining structural aspects such as attribute domains with linguistic aspects
as retrieved from domain ontologies, may directly assess this characteristic on the
level of elements stemming fromvarious component schemas.

The essentially linguistic character of component schemas leads to a method-specific
language reconstruction in the sense of Ortner and Schienmann [OS96]. This leads to
the follow-up question of how problem analysis models can be used efficiently for
the generation of thesauri and ontologies. Linguistic support for novel problem
domains is quite unlikely. That means structuring the domain vocabulary actually
takes place in problem analysis models. Directly making use of the expert language
found in component schemas will especially improve system evolution in the pres-
ence of constantly emerging new demands that are to be implemented in operational
systems.

Impact of Design 
Considerations on 
Problem Analysis 
Models

Another interesting question is related to the impact of design considerations on ini-
tial problem analysis models, as stated in software requirements specifications. While
analysis models in requirements engineering represent key concepts relevant in the
business at hand, design issues significantly modify these models. This leads to dif-
ferent problems. First of all, domain experts loose track of ‘their’ initial problem
analysis model and therefore are not able to assess the impact of emerging require-
ments on operational systems. They simply do not recognize their models any more
and therefore the necessary cooperation between domain experts, analysts and
designers is threatened. The other important point is the relationship between prob-
lem analysis models describing key concepts of an idealised reality and design mod-
els reflecting the necessities of the enabling technologies from a technical point of
view. Enabling technologies lead to dramatic alterations of the problem analysis
models and therefore create a new reality that does not necessarily correspond to the
perspective of involved stakeholders. The other important aspect of design issues is
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traceability, i.e. alterations of the problem analysis model are originated by given
design decisions. This question leads to the broader question of architectural abstrac-
tions in software design. Stefan Tai [Tai99], for instance, discusses architectural
abstractions for systems based on object request brokers, such as OMG’s CORBA
[OMG98].

Requirements in 
Continuous Software 
Engineering

Stable and manageable requirements are the central basis for the successful develop-
ment of industry-scale systems. But an existing infrastructure like the current air traf-
fic management systems in Europe constantly faces new demands. In this context,
systems have to be enhanced, they must be easily amalgamated with peer systems,
and entire subsystems have to be replaced. Requirements engineering and problem
analysis models describing demand play an important role in this context. However,
especially the integration of legacy systems through reverse as well as reengineering
processes marks an important challenge to requirements engineering. How can we
map conceptual entities as derived from problem analysis models to components that
already incorporate design decisions and represent the implemented architecture of
operational systems? Both aspects, i.e. design decisions and the implemented archi-
tecture usually remain completely undocumented. The nature of the specific relation-
ship between business concepts incorporated in a legacy system and future demand
as expressed in a newly created problem analysis model marks another interesting
research topic. Continuous enhancement of the existing infrastructure demands clear
separation of business concepts on the one hand and applied design decisions in the
implementation on the other. These questions mark starting points for future research
in the context of continuous software engineering, as proposed by the research group
‘Computation and Information Structures’ directed by Prof. Dr. Herbert Weber at
Technische Universität Berlin.
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Appendix A

A.1 Notation for Static Structure in Component Schemas

Figure 111 Notation for Component Schema’s Static Structure Diagrams

attribute : type

operation()

ClassName
(from NameSpace)

attribute : type

operation()

AsscoiationClassName
<<Stereotype>>

PackageName1

PackageName 2

GeneralisedClassName

SpezialisedClassName

ComposedClassName

ComponentClassName

Class1

Class2
AsscoiationName

RoleName1 RoleName2

1.. *1.. *Class1

Class2

Class1

Class3Class2

ClassName
<<Stereotype>>
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A.2 Notation for Use Cases in Component Schemas

Figure 112 Notation for Component Schema’s Use Cases

A.3 Notation for Sequence Diagrams in Component Schemas

Figure 113 Notation for Component Schema’s Sequence Diagrams

A.4 Predefined Stereotypes for Concurrent Requirements Engineering

The following list of stereotypes identifies model elements with a specific purpose
within components schemas:

«partition» This stereotype indicates packages representing initial partitions

«HMI» This stereotype indicates class specifications encapsulating the 
future humane machine interface

«interface» This stereotype indicates class specifications representing the 
interface to external systems

Complex Use Case

AtomicUC1 

AtomicUC2

Atomic UC4

Sequence 

Alternative 

A
ctor

Iteration 
n 

n 

AtomicUC3 

Ob6: C6Ob2: C3

Ob5: C5
op3

op4

Ob1: C1
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Appendix B

B.1 Sample Requirements Statements from
EUROCONTROL Operational Requirements Documents

ATM Added Function “Basic Functions provides MONA with current position data and actual performance 
characteristics of a flight in the form of a State vector. Basic Functions also provides a 4-D 
representation of the planned flight trajectory as the System trajectory. Additionally, Basic 
Functions also allows MONA access to more general Flight data information. 

MONA can exercise control over trajectory recalculation via the Recalculation request. 

Basic Functions supplies MONA with the necessary information relating to Letters of 
agreement, Standard operating procedures, Airspace data and IAS limit data. 

MONA receives Monitoring controls from the controller through HMI. MONA provides the 
HMI with Reminders and Non-conformance warnings as appropriate for presentation to the 
controller. 

Configuration data received from Basic Functions serves to inform MONA about the status of 
the overall system.
Arrival Management specifies the Arrival management conformance monitoring criteria that 
MONA is to take into account for flights subject to control by an automated Arrival Manager 
function.

Data for recording is sent to Basic Functions as MONA recording data.” [Eur96a, p. 2-2]

FDPD “State Vector. This is an elementary observation of an aircraft position ...”
[Euro97, p. 3-3]

“FDPD-FDMD-23 Manual modifications of relevant SFPL data shall trigger 
trajectory prediction re-calculation” [Eur97, p. 9-5]

“FDPD-FDMD-31 The SFPL shall be updated upon receipt of ATFM mes-
sages” [Eur97, p. 9-6]

“FDPD-MESS-2 Semantic and syntactic checks shall be performed on all 
messages and inputs”

“flight level - A surface of constant atmospheric pressure which is related to a specific pressure 
datum, 1013.2 millibars, and is separated from other such surfaces by specific pressure 
intervals”

SDP “Plots contain samples of the aircraft position at a certain moment in time ...”
[Eur96b, p. 24]
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B.2 Sample Requirements Statements from Use Cases

Advanced FDM OOA “... the RECO proposes an alternate flight level using the “CDN” message ...” [Wor96, p. 41]

“ ... the TRACO rejects the proposal using an “RJC” message ...”
[Wor96, p. 53

“ For departing aircraft the TRACO sends a Preliminary Activate Message (“PAC”) to RECO, in 
order to allocate a new SSR Code for the departing aircraft” [Wor96, p. 62]

“In order to synchronise the participating systems TRACO sends a REVision Message (“REV“) 
...” [Wor96, p. 69]
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Appendix C

C.1 Conflict Examples

Figure 114 Conflict Examples - Naming 

a1 : int
a2 : float
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

a1 : int
a2 : float
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class B

a1 : int
a2 : float
a4 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

a1 : int
a2 : float
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

a1 : int
a2 : float
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f4 (a : string, b : string) : string

Class A

a1 : float
a2 : float
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

Component Schema1 Component Schema2
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Figure 115 Construct Conflict Examples- Data Types

C.2 Surroundings Conflict Examples

Figure 116 Surroundings Conflicts - Cardinality 

a1 : int
a2 : int
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

a1 : int
a2 : string
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

a1 : int
a2 : float
a4 : string

f1 (a : int , b : string) : string
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

a1 : int
a2 : float
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

a1 : int
a2 : float
a3 : string

f1 (a : int , b : int ) : int
f2 (a : int , b : string) : float
f4 (a : string, b : string) : string

Class A

a1 : float
a2 : float
a3 : string

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float
f3 (a : string, b : string) : string

Class A

Component Schema1 Component Schema2

Class B
1 1

Component Schema1 Component Schema2

r B
Class BClass A

a
Class BClass A

a
r A r Br A

1 1 1 *
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Class BClass A

a
Class BClass A

a
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Class AClass A Class B
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Class B
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236



Figure 117 Surroundings Conflicts - Binary Associations 

Figure 118 Surroundings Conflicts - Association-Type Conflict

Figure 119 Surroundings Conflicts - Association-Direction Conflict
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C.3 Examples of Semantic Conflicts

Figure 120 Examples of Internal Structural Similarity - Naming 

C.4 Catalogue of Abstraction Conflicts

Figure 121 Examples of Abstraction Conflicts

a1 : float
a2 : float

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float

Class A

Component Schema1 Component Schema2

a3 : float
a4 : float
a5 : string

f3 (a : int , b : string) : int
f4 (a : int , b : string) : float
f5 (a : string, b : string) : string

Class A

a1 : float
a2 : float

f1 (a : int , b : string) : int
f2 (a : int , b : string) : float

Class A

a3 : float
a4 : float
a5 : string

f3 (a : int , b : string) : int
f4 (a : int , b : string) : float
f5 (a : string, b : string) : string

Class A’

BB

Component Schema1 Component Schema2

A
A

BB
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Appendix D

D.1 List of Component Schema Correspondences and Conflicts

Table 11 List of Component Schema Correspondences and Conflicts with their corresponding Stereotypes

Name Correspondence Conflict Stereotype Comment

in
tr

a-
co

ns
tr

uc
t, 

in
tr

a-
le

ve
l

at-at direct «at-at correspondence»

synonym «at-at correspondence»

terms of reference «at-at correspondence»

scale «at-at correspondence»

projection «at-at correspondence»

attribute-domain «at-at conflict»

op-op direct «op-op correspondence»

synonym «op-op correspondence»

terms of reference «op-op correspondence»

scale «op-op correspondence»

cl-cl direct «cl-cl correspondence»

synonym «cl-cl correspondence»

equipollence «cl-cl correspondence»

specialisation «cl-cl correspondence»

pc-pc direct «pc-pc correspondence»

synonym «pc-pc correspondence»

equipollence «pc-pc correspondence»

in
te

r-
co

ns
tr

uc
t, 

in
tr

a-
le

ve
l

op-at direct «op-at correspondence»

synonym «op-at correspondence»

terms of reference «op-at correspondence»

scale «op-at correspondence»

projection «op-at correspondence»

in
tr

a-
co

ns
tr

uc
t,

in
te

r-
le

ve
l

cl-cl direct «cl-cl correspondence»

synonym «cl-cl correspondence»

equipollence «cl-cl correspondence»

specialisation «cl-cl correspondence»
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in
te

r-
co

ns
tr

uc
t,

in
te

r-
le

ve
l

at-cl direct «at-cl correspondence»

synonym «at-cl correspondence»

op-cl direct «op-cl correspondence» Incorporates 
name spacesynonym «op-cl correspondence»

pc-cl direct «pc-cl correspondence» Incorporates 
name spacesynonym «pc-cl correspondence»

na
m

ed
 

su
rr

ou
nd

in
gs

as-as direct «as-as correspondence»

synonym «as-as correspondence»

ac-as direct «as-ac correspondence»

synonym «as-ac correspondence»

su
rr

ou
nd

in
gs

 ty
pe

 c
or

re
sp

on
de

nc
e

co-as composition-asscociation
correspondence

«co-as correspondence»

concept-context «co-as conflict»

holonym /
meronym

«co-as conflict»

co-ac «co-ac conflict» composition 
properties are for-
bidden in compo-
nent schemas

co-ge compositor-pattern
correspondence

«co-ge correspondence»

composition-
generalisation

«co-ge conflict»

ge-ac generalisation-
association class

«ge-ac conflict»

Name Correspondence Conflict Stereotype Comment
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D.2 Construct Matrix for Component Schemas’ Static Structure Diagrams

Table 12 Intra-Viewpoint Construct Matrix for Component Schema’s Static Structure Diagrams 

D.2.1 Class Correspondence

Class-Class Correspondence

cl-cl Correspondence Classification:intra-construct-kind correspondence
intra-construct-level correspondence

Categories: «direct», «synonym», «equipollence» & «upwardInheritance»

Within class-class correspondence a number of different forms can be distinguished.
As artefacts, we first have to assess the similarity of the class names on the basis of a
domain ontology, leading to a synonym class-class correspondence. In our first
example, the terms »Mono Radar Track« and »State Vector« are synonyms of each
other, according to the domain ontology. Still the assumed correspondence has to be
reviewed by the involved domain leaders, since due to differing contexts and conse-
quently distinct domain ontologies, the terms at hand may be at least polysems. This
situation is detailed under association-composition correspondence (see Figure 153). 

C
la

ss

A
ttr

ib
ut

e

O
pe

ra
ti

on

A
ss

oc
ia

ti
on

A
ss

oc
ia

ti
on

 C
la

ss

C
om

po
si

ti
on

G
en

er
al

iz
at

io
n

Pa
ck

ag
e

D
ep

en
de

nc
y

Class cl-cl
p. 241

Attribute at-cl
p. 243

at-at
p. 250

Operation op-cl
p. 245

op-at
p. 251

op-op
p. 255

Association as-cl
p. 246

as-at
p. 252

as-op
p. 256

as-as
p. 259

Association Class ac-cl
p. 247

ac-at
p. 252

ac-op
p. 256

ac-as
p. 261

ac-ac
p. 266

Composition co-cl
p. 248

co-at
p. 253

co-op
p. 257

co-as
p. 262

co-ac
p. 266

co-co
p. 269

Generalization ge-cl
p. 248

ge-at
p. 253

ge-op
p. 257

ge-as
p. 263

ge-ac
p. 267

ge-co
p. 270

ge-ge
p. 272

Package pc-cl
p. 249

pc-at
p. 254

pc-op
p. 257

pc-as 
p. 264

pc-ac
p. 267

pc-co 
p. 271

pc-ge 
p. 273

pc-pc
p. 273

Dependency de-cl 
p. 249

de-at 
p. 255

de-op 
p. 258

de-as 
p. 265

de-ac 
p. 268

de-co 
p. 271

de-ge 
p. 273

de-pc 
p. 274

de-de
p. 275
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Figure 122 Class-Class Correspondence: Synonyms 

The next example introduces the equipollence class-class correspondence, which is
directly related to the different perspectives incorporated in component schemas.
Within this context, the same real-world concept leads to different artefacts, incorpo-
rating properties relevant in a given domain. Unlike the previous example, only few
properties overlap, i.e. they are defined in the equipollent artefacts. Figure 124
depicts an example of equipollence. 

Figure 123 Class-Class Correspondence: Equipollence 

In this example, the two artefacts express the same concept, the »System Flight
Plan«, but focusing on different aspects. While on the left hand side call sign, depar-
ture, destination aerodrome and the route in-between are represented, the right hand
side concentrates on establishing and maintaining a digital datalink between control-
lers on the ground and the pilots. Only the property callSign is represented in both
artefacts. This correspondence must not be confused with the concept-context con-
flict detailed in Figure 153, p. 262.

Mono Radar Track

groundSpeed
heading
polarCoordinates
cartesianCoordinates

providePlot()
provideTrack()

(from SDP: Domain Classes)

Multi Sensor Track

attachUserAttributes()

(f rom SDP: Domai n Classes)

State Vector

groundSpeed
heading
altitude
flightLevel
currentPosition
observationTime

findPlot()
findTrack()

(f rom FDPD: Domain Cl asses)

<<cl-cl synonym>>

SFPL-AirGround-Communications

dataLinkIdentifier
dataLinkLoginSequence
dataLinkServices
frequencyNextSector
downStreamATSU
currentATSU
nextATSU
callSign

establishDataLink()
receiveFromDataLink()
sentToDataLink()

(from Air-Gro und-Communication: Domain Classes)

SFPL-FlightPlan

aircraftType
aircraftEquipment
numberOfAircraft
ADEP
ADEST
diversionADEST
callsign
ssrFacilities
flightTypeAndRules
EOBT
route
cruisingSpeed
requestedFlightLevel
cruiseFlightLevel
departureMass
callSign

changeEOBT()
changeRequestedFlightLevel()
changeAircraftSpeed()
changeAircraftType()
changeRoute()

(f rom FDPD: Domain Cl asses)

«cl-cl equipolence»
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Figure 124 Class-Class Correspondence: Upward Inheritance 

Unlike equipollence in the previous example, this one concentrates on the participa-
tion in generalisations hierarchies of corresponding classes. The domain ontology can
automatically be extended whenever a term has been specialised in a component
schema. So we can scan the other component schema for potential corresponding
class names. However, this is exclusively related to direct correspondence and
demands further minimisation of specialised class specification, i.e. the property
timeOfDay for instance has to be removed.

Attribute-Class Correspondence

at-cl Correspondence Classification:inter-construct-kind correspondence
inter-construct-level correspondence

Categories: «direct» & «synonyms»

The recursive relationship between primary predicators denoting real-world things
and secondary ones, which characterise the things expressed with a primary predica-
tors lead to the following corresondence depicted in Figure 125:

Figure 125 Attribute-Class Correspondence 

Basic Plot

plotNumber
theta
rho

providePlot()

(from SDP: Domain Classes)

Aircraft Position

timeOfDay
sensorIdentity
areaIdentity

(from SDP: Domain Classes)

Mono Radar Track

groundSpeed
heading
polarCoordinates
cartesianCoordinates

groundSpeed()

(from SDP: Domain Classes)

Basic Plot’

plotNumber
theta
rho
timeOfDay
sensorIdentity
areaIdentity

providePlot()

(f rom SDP’)
Mono Radar Track’

groundSpeed
heading
polarCoordinates
artesianCoordinates
timeOfDay
sensorIdentity
areaIdentity

provideTrack()

(from SDP’)

Aircraft Position’

timeOfDay
sensorIdentity
areaIdentity

(from AircraftPositi on)

«cl-cl direct»

SystemFlightPlan’

trajectory

(from FDPD: Domain Classes)
Trajectory

provideTopOfClimb()
provideTopOfDescent()
provideExitFlightLevel()

(from FDPD: Domain Classes)

SystemFlightPlan’
(from FDPD: Domain Classes)

Trajectory

provideTopOfClimb()
provideTopOfDescent()
provideExitFlightLevel()

(from FDPD: Domain Classes)

«direct»

Proposed Mapping
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Whenever two artefacts express the same concept, either through the use of the same
or a synonymous terms, there is evidence for a attribute-class correspondence. Due to
the restriction of attributes to simple data types in component schemas, complex
properties always have to be modelled using two classes and a composition relation-
ship. So when an assumed correspondence can be stated by the involved analysts, the
property has to be removed and the artefacts have to be connected using a composi-
tion. 

Our second example provides a slightly different situation. The component schema
AAF contains a class called AirspaceData_aaf with a property Aerodrome. The term
»data« in colloquial english is often used for an unspecified collection of information.
In object-oriented problem analysis data is required from other partitions, without
detailing the exact nature of this kind of information. In this light, this class specifica-
tion can be regarded as a place holder for inter-partition requirements, that have to be
settled. In this case the same actions may be applied, replacing the property by a com-
position. Consequently classes comprising the term data can be regarded as potential
to be resolved requirements in the taxonomy of Oliver et al. [OKK97]. The bottom
half of Figure 126 depicts a potential resolution of the assumed attribute-class corre-
spondences:

Figure 126 Resolving Attribute-Class Correspondence  

Whenever the last property of class AirspaceData_aaf has been replaced by a com-
position, the entire class becomes obsolete, since the individual structural require-
ments modelled in this class have been detailed. Apart from classes that provide a

AirspaceData_aaf

aerodrome
atsu
controlSector
mtcdAirspaceRegion
specialUseAirspace
snetAirspace
slopingSurfaces

(f rom AAF: Domai n Cla sses)
Aerodrome

(from EDPD: Airspace Structure Classes)

MTCDAirspaceRegion
(from EDPD: Airspace Structure Classes)

Aerodrome
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handle for complex structural problem aspects changing over time, such as the rather
complex concept airspace configuration in air traffic management, the entire class
AirspaceData_aaf can be replaced by a class category, in order to remove spurious
class specifications. This situation is depicted in Figure 127.

Figure 127 Resolving Attribute-Class Correspondence Unspecified Data  

Operation-Class Correspondence

op-cl Correspondence Classification:inter-construct-kind correspondence
inter-construct-level correspondence

Categories: «direct» & «synonyms»

Similar to our second example of attribute-class correspondence, course-grain inter-
partition requirements may be collected in an individual class specification, repre-
senting a high-level interface to adjacent partitions. Unlike the previous example, the
requirement is represented in terms of an operation. When component schemas have
to be integrated an operation-class correspondence can be used to resolve coarse-
grain inter-partition requirements. Unlike the attribute-class example, the operation
must not be removed: instead the class name has to be inserted to the parameter sec-
tion of the given operation. In order to improve traceability, a trace association may
be inserted in order to connect the class with the operation. In our example the trace
has to connect the classes AirspaceStructure and FA_EDPD_AAF.
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Figure 128 Example of an Operation-Class Correspondence 

Association-Class Correspondence

as-cl Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

Categories: «direct» & «synonyms»

Association-class correspondences link relationships to properties, represented
through association classes in component schemas. Such a correspondence only
holds for named associations and entirely relies on the relationship name, as depicted
in the upper half of Figure 129.

Figure 129 Example of an Association-Class Correspondence 

However this correspondence gives rise to a number of questions, which lead to the
bottom half of Figure 129. In the depicted models the class Aircraft Position has
been modelled as a class in its own right, maintaining two independent relationships
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to the classes Aircraft and Sensor. This situation basically illustrates modelling
alternatives, with respect to the existence of instances, which can only be verified by
domain experts. Choosing an association class makes the properties of class Air-
craft Position to an inherent part of the relationship between a »sensor« and an
»aircraft«. In the second representation instances of Aircraft Position may exist
independently of a sensor and an aircraft. As a result an assumed correspondence
among an association and a class specification involves an induced analysis of the
class environment, namely the classes Sensor and Aircraft. The classes X’ and Y
from component schema2 do not influence the result, since there is no counterpart in
component schema2. 

Association Class-Class Correspondence

ac-cl Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

Categories: «direct» & «synonyms»

Association class-class correspondences involve the same problems, as association-
class correspondences, although in this case from the construct perspective the char-
acter of the association class has been stated. The assumed correspondence can then
only be clarified through a comparison of the corresponding class’ environment,
namely the classes Sensor, Aircraft, X’ and Y.

Figure 130 Example of an Association Class-Class Correspondence 

In the example of association class-class correspondence a concept similarity holds
for the first two classes and no there is no further evidence for a correspondence of
the latter ones. So although from a concept perspective we can state a correspond-
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ence, from a modelling perspective we find a conflict, since the applied constructs
differ and consequently apply a different set of integrity constraints. In the upper part,
Aircraft Position’ depends on the relationships, i.e. on the constituent classes,
while in the bottom half the analysts have chosen a class in its own right.

Composition-Class Correspondence

co-cl Correspondence Due to the anonymous character of compositions in component schemas, correspond-
ences between classes and compositions can be excluded. This correspondence must
not be confused with an attribute-class correspondence, as introduced in Figure 125.

Figure 131 Example of a Composition-Class Correspondence 

Generalisation-Class Correspondence

ge-cl Correspondence Anonymous link artefacts cannot be correspond to artefacts, due to the relational
character of UML relationships. However, this situation must not be confused with
upward inheritance, as depicted in Figure 132 and has to be considered as a special-
ised form of class-class correspondence, which can be found in Figure 124.

Figure 132 Example of a Generalisation-Class for Correspondence 
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Package-Class Correspondence

pc-cl Correspondence Classification:inter-construct-kind correspondence
inter-construct-level correspondence

Package-class correspondences hold, whenever their names are identical or are syno-
nyms. A package then shall contain meronyms to the term or shall contain a class
specification carrying the same name – Aerodrome in our example – and a set of
meronyms detailing the concept referenced in the package name.

Figure 133 Example of a Package-Class Correspondence 

Dependency-Class Correspondence

de-cl Correspondence Since dependencies in component schemas are restricted to packages, a detailed anal-
ysis of this correspondence can be discarded and in order to avoid potential confu-
sion, we do not provide an example. Moreover, anonymous link artefacts cannot be
related to artefacts. 
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D.2.2 Attribute Correspondence

Attribute-Attribute Correspondence

at-at Correspondence Classification:intra-construct-kind correspondence
intra-construct-level correspondence

Categories: «direct», «synonym», «terms of reference», 
«scale» & «projection»

Figure 134 depicts four different forms of attribute correspondences, each marked
with a different stereotype. Attributes from the linguistic perspective are secondary
predicatores characterising primary ones. Attribute correspondence presupposes that
the artefacts use the same UML construct, namely instances of metaclass Attribute. 

Figure 134 Different Forms of Attribute-Attribute Correspondence 

In the uppermost example we find a direct correspondence, i.e. the same terms have
been used to detail the concepts »State Vector« and »Mono Radar Track«. In the sec-
ond example we find synonymous terms, since the term »currentPosition« incorpo-
rates the same scale and terms of reference with respect to »cartesianCoordinates«. 
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The third example introduces different terms of reference within synonymous terms,
since »airSpeed« may vary from »groundSpeed« due to strong head winds. The terms
of reference in this example denote where the speed has been measured. Finally, the
»cartesianCoordinates«, »altitude« and »flight level« introduce a new notion. The
»altitude« is a projection of the term cartesian coordinates. The term »flight level«,
however, is a superimposition of scale and terms of reference, since flight levels are
measured relative to the atmospheric pressure, depending on the local weather condi-
tions. With respect to cartesian coordinates, »flight level« is a projected and scaled
term, since the altitude is scaled to the local atmospheric pressure.

Operation-Attribute Correspondence

op-at Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

Categories: «direct», «synonym», «terms of reference», «scale»,
«projection» & «conflict»

Figure 135 Different Forms of Operation-Attribute Correspondence 

Unlike operation-operation correspondence, the relationship between attributes and
operations is more complicated. Following the naming conventions in Section 6.1.1.2
we assume that individual artefacts do not comprise so called get and set operations.
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These operations enable access to the encapsulated internal structure of class specifi-
cations and usually carry the same name as the respective attribute. Therefore all
operations, that exceed simply returning the values of the encapsulated attribute, are
deemed to provide services. In concurrent problem analysis, due to equipollence,
attributes in a class specification may be synonymous with an operation in another
component schema. Therefore operation-attribute correspondence is comparable to
attribute-attribute correspondence. Two constructs correspond when they have a sim-
ilar linguistic meaning. Within the linguistic meaning we may find synonyms in the
simplest case or variations such as projections, differing scale or differing terms of
reference. In summary, operation-attribute correspondence stress the mathematical
character of attributes as one-place predicates.

Association-Attribute Correspondence

as-at Correspondence Due to the tuple semantics of UML relationships, association-attribute correspond-
ence can be discarded. However, this correspondence must not be confused with the
relationship concepts in languages with referential semantics such as CLASSIC

[BBM+89] or programming languages such as C++.

Figure 136 Example of an Association-Attribute Correspondence 

Association Class-Attribute Correspondence

ac-at Correspondence Association class-attribute correspondence can be discarded due to the tuple seman-
tics in UML. However this situation must not be mixed up with attribute-class corre-
spondence

Figure 137 Example of an Association Class-Attribute Correspondence 
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Composition-Attribute Correspondence

co-at Correspondence Anonymous link artefacts cannot be compared to artefacts. As a result, there is no
reasonable interpretation for a composition-attribute correspondence. However this
correspondence is not to be confused with the attribute-class correspondence in
Figure 127.

Figure 138 Illegal Composition-Attribute Correspondence 

Generalisation-Attribute Correspondence

ge-at Correspondence Like all anonymous link artefacts, generalisation relationships cannot be related to
artefacts and are therefore discarded in this work. Moreover, this situation is not to be
confused with upward inheritance.

Figure 139 Illegal Generalization-Attribute Correspondence 
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Package-Attribute Correspondence

pc-at Correspondence Classification:inter-construct-kind correspondence
inter-construct-level correspondence

Figure 140 Example of Package-Attribute Correspondence 

Package-attribute correspondences are part of the advanced correspondence relation-
ships in component schemas. Following the naming conventions, the class specifica-
tion AirspaceData_AAF comprises the property aerodrome. This term can also be
found in the package name in the component schema ATFM. WordNet [WN98] pro-
vides the following definition for this term:

“airport, airdrome, aerodrome -- (an airfield equipped with control tower and hangers as well as 
accommodations for passengers and cargo)”

The bottom half of Figure 140 depicts the contents of the package ATFM: Aerodrome,
i.e. the classes describing the decomposition of the abstract concept airspace. A cor-
respondence between an attribute and a package holds, when the terms within the dif-
ferent artefacts are synonymous with each other and the class specifications con-
tained in the package are meronyms of the package name. 
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In this case, the assertion holds, since the package even contains a class carrying the
same name (class Aerodrome) and depicts a set of classes further detailing the struc-
ture of an aerodrome. The class Runway is listed as an inherited meronym of class
Aerodrome in WordNet [WN98]:

“airport, airdrome, aerordrome [...]
HAS PART: control tower [...]
HAS PART: apron [...]
HAS PART: runway [...]
HAS PART: taxiway, taxi strip [...]

Dependency-Attribute Correspondence

de-at Correspondence Besides their behavioural character, dependencies in component schemas have been
restricted to packages. Therefore a dependency-attribute correspondence can be dis-
carded.

D.2.3 Operation Correspondence

Operation-Operation Correspondences

op-op 
Correspondence

Classification:intra-construct-kind correspondence
intra-construct-level correspondence

Categories: «direct», «synonym», «terms of reference», 
«scale», «projection» & «conflict»

From a linguistic point of view, operation correspondences follow the same distinc-
tion as attributes. The central difference, however, is the behavioural character of
these properties describing required system functionality.

Figure 141 Different Forms of Operation-Operation Correspondence 
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Figure 142 Different Forms of Operation-Operation Correspondence 

Association-Operation Correspondence

as-op Correspondence A correspondence between an association and an operation does not have a reasona-
ble interpretation in component schemas. On the one hand, the mixing of behavioural
and structural properties is responsible for this observation. On the other hand, this
situation is not to be confused with the operation-attribute correspondence, where get
and set operations are compared to attributes. 

Figure 143 Illegal Association-Operation Correspondence 

Association Class-Operation Correspondence

ac-op Correspondence In practical terms, the same argument against an association-operation correspond-
ence holds for this correspondence. We therefore discard this correspondence.

Figure 144 Example of Association Class-Operation Correspondence 

State Vector

groundSpeed()
heading()

(f ro m FDPD: Domain Classes)

Mono Radar Track

groundSpeed()
heading()

(f rom SDP: Dom ai n Classes)

Mono Radar Track

cartesianCoordinates()

(f rom SDP: Dom ai n Classes)

State Vector

currentPosition()

(f ro m FDPD: Domain Classes)

State Vector

groundSpeed()

(f ro m FDPD: Domain Classes)
SFPL-AirGround-Communications

airSpeed()

(from Air-Gro und-Commun ication: Domain Cla sses)

<<direct>>
<<direct>>

<<terms of reference>>

<<direct synonym>>

X

f1()

Y

X’

f1✗

X

f1()

Y

X’

F1✗
256



Composition-Operation Correspondence

co-op Correspondence Besides the behavioural character of operations, anonymous link artefacts cannot cor-
respond to artefacts. Therefore we discard this correspondence.

Figure 145 Example of a Composition-Operation Correspondence 

Generalisation-Operation Correspondence

ge-op Correspondence Although similar properties, of both behavioural and structural nature, are the basis
for the correspondence between generalizable classes where a common generalised
class has to be built for a set of classes sharing the same properties, a correspondence
between an anonymous link artefact and a artefact does not find a reasonable inter-
pretation. However, this situation is not to be confused with the situation Figure 146,
p. 257

Figure 146 Illegal Generalization-Operation Correspondence 

Package-Operation Correspondence
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inter-construct-level correspondence

Package-operation correspondences are part of the advanced correspondence rela-
tionships in component schemas, that remain uncovered in the schema inetgration
community based on the relational data model.
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Figure 147 Example of Package-Operation Correspondence 

Following the naming conventions, the class specification FA_EDPD_AAF offers a
rather complex service to its client, the provision of an airspace structure. WordNet
[WN98] provides the following definition for this term:

“Airspace: -- (the atmosphere above a nation and deemed to be under its
jurisdiction)”

The bottom half of Figure 147 depicts the contents of the package
ATFM: AirspaceStructure, i.e. the classes describing the decomposition of the
abstract concept airspace. A correspondence among an operation and package holds,
when the terms within the different artefacts are synonymous to each other and the
class specifications contained in the package are meronyms of the package name. In
this case the assertion holds, since the package even contains a class carrying the
same name (class Airspace Structure). Class AirspaceStructure encapsulates the
airspace configuration at a given moment in time and therefore justifies the asserted
package-operation correspondence.

Dependency-Operation Correspondence

de-op Correspondence A dependency-operation correspondence can be excluded for component schemas,
since dependencies in static structure diagrams have been restricted to packages in
order to avoid behavioural elements in structural specification. Moreover, anony-
mous link artefacts cannot correspond to artefacts.
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D.2.4 Association Correspondence

Association-Association Correspondence

as-as Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

Categories: «constituentClass», «direct» & «synonym»

According to Whitmire’s [Whi97] categorisation of external correspondences, associ-
ation-association correspondences form the most important part. Actually there are
three distinct forms of correspondences with respect to relationships in component
schemas, originated by the fact that relationships may or may not carry a name.

Figure 148 Association-Association Correspondence: Constituent Class Correspondence 

A constituent class correspondence can be assumed, whenever the relationships are
anonymous and their constituent classes correspond on the basis of a class-class cor-
respondence (see p. 241). Thus the names of the constituent classes either shall
directly correspond or shall be synonyms to each other. The same assumption holds,
when only one of the two relationships carries a name. 

Figure 149 Association-Association Correspondence: Constituent Class Correspondence 
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The applied cardinalities provide the second criteria for the formulation of corre-
spondence assertion, which holds in the bottom half of Figure 149, since the same
cardinality constraint has been applied. Differing cardinality constraints trigger a
negotiation among the involved domain leaders, in order to state or reject the
assumed correspondence. In cases of conceptual dissimilarity, a unique name is
assigned to the previously anonymous instance of metaclass Association, in order to
exclude the two relationships from future correspondence assumptions (see
Figure 151). 

Figure 150 Association-Association Correspondence: Association Name Correspondence  

An association name correspondence can be assumed, whenever two relationship
names correspond, directly as well as synonymously, and their constituent classes
also correspond, i.e. a constituent class correspondence holds. Similar to the previous
correspondence differing cardinality constraints trigger a negotiation between the
involved domain leaders. Relationship names consequently distinguish between cor-
respondences, as we will show in Figure 151.

Figure 151 Association-Association Correspondence: Class Name Conflict  

Although the constituent classes correspond, the relationships may be dissimilar, as
expressed in the previous figure. While in the upper part models the detection of an
aircraft by a radar sensor, the lower part represents different forms of aircraft equip-
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ment, such as collision avoidance systems and weather radar. This dissimilarity can
be concluded from the conceptual difference of the involved terms »locates« and
»equipped«, where the second one denotes a property of an aircraft.

Association Class-Association Correspondence

ac-as Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

Categories: «constituentClass», «direct» & «synonym»

Within the external conflicts, association class-association correspondences are quite
complex. Figure 152 depicts in the most simple case:

Figure 152 Example of an Association Class-Association Correspondence 

However, from a linguistic point of view this correspondence is more complex. Fol-
lowing the naming conventions in Section 6.1.1.2, relationship names should be
verbs. However, in the example, a compound noun has been used, stressing the char-
acter of class AircraftPosition as a concept in its own right, with special consist-
ency constraints, namely that instances depend on the existence of their consistuent
classes, in this case Aircraft and Sensor. Thus the assessment of the correspondence
entirely depends on the structure of the underlying ontology. In the worst case, i.e.
when a distinct task and domain ontologies have been used, there is no possible way
of detecting this correspondence on an automated basis, since no relationship
between the involved concepts can be found in the ontology. As a matter of conse-
quence, association-class association corresondences call for additional attention in
the correspondence detection cycle.
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Composition-Association Correspondence

co-as Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

Compared to ordinary relationships, UML compositions express additional con-
straints affecting the life-cycle of the involved class specifications connected by the
composition. This correspondence is therefore based on the association-association
correspondence (see p. 259) and depends on corresponding constituent classes. 

Figure 153 Example of a Composition-Association Correspondence 

From a linguistic point of view, the one concept shall be meronym to the other. With
respect to the depicted example, for each aerodrome there must exist at least one run-
way. Otherwise, we would not consider it as an aerodrome. In the bottom half of
Figure 153, however, an aerodrome is part of a runway, contradicting the real-world
situation. So our domain ontology states the similarity of the classes Runway and Aer-
odrome, but also indicates, that the composition’s direction has been mistaken. This
observation leads to a new category of conflicts, which we call conceptual conflicts.
This category of conflicts arises whenever the applied construct contradicts concepts
in the domain ontology. In this case the direction of the composition has been mis-
placed.

Figure 154 Example of a Composition-Association Conflict 
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The second example leads to a more complicated situation. The assumed correspond-
ence in this case is based on a constituent class-class correspondence and may be
asserted at first glance. The example, however, involves two completely different
contexts, in which similar terms may play an important role. The classes from the
package Domain Classes in the component schema SDP depict the observation of air-
craft in the surveillance domain. The classes from the package Aircraft, however,
depict a set of sensors which can be found in aircraft. So the assumed composition-
association correspondence cannot be stated. Surveillance sensors exist without the
presence of aircraft, while the on-board sensors are crucial for proper conduct of a
flight. This example demonstrates another conflict category, which we call concept
context conflict. Concept context conflicts arise whenever the meaning of terms var-
ies over given domains. So an air traffic management domain ontology may not
incorporate a detailed description of aircraft equipment and therefore will mistake the
polysem »sensor«.

Generalisation-Association Correspondence

ge-as Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

Categories: «constituentClass», «direct» & «synonym»

Being an association correspondence, generalisation-association correspondences are
again based on a constituent class correspondence, as described in Figure 149. Unlike
simple association-association correspondence, a semantic relationship is implied in
this correspondence which leads to two different forms. In the first example, a con-
stituent class correspondence holds and the concept »plot« is listed as a generalisa-
tion of concept »primary plot« in the domain ontology. As a result, the representation
in the component schema SDP does not regard set inclusion semantics of the ontology
and therefore proposes wrong cardinality constraints. In brief, the first representation
cannot be deemed minimal, since due to the known correspondence from the ontol-
ogy, a set of synonymous attributes and operation correspondences must exist.

Figure 155 Example of a Generalisation-Association Correspondence 

«constituentClass»

PrimaryPlot
(from SDP: Domain Classes)

Plot
(from SDP: Domain Classes)

PrimaryPlot
(from AircraftPosition)

Plot
(from AircraftPosition)

«constituentClass» «ge-as»

1..*1..*
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Due to the erroneous direction of the generalisation in our second example, a general-
isation-association conflict can be assumed. Since the term »plot« is listed as a hyper-
nym of term »primary plot«, a conceptual conflict arises in the package AircraftPo-
sition. As a result, the minimality of the model is not assured and it may also
contradict domain experts’ experience.

Figure 156 Example of a Generalisation-Association Conflict 

Finally, the conceptual generalisation/specialisation relationship between terms
which might be mistaken as ge-as correspondence is discussed in the class-class cor-
respondence at the beginning of this section.

Package-Association Correspondence

pc-as Correspondence Classification:inter-construct-kind correspondence
inter-construct-level correspondence

A package-association correspondence only holds within a number of restrictions.
First and most important, the association must be named, otherwise there is no rele-
vant evidence for a correspondence assertion at all. 

Figure 157 Example of a Package-Association Correspondence 

«constituentClass»

PrimaryPlot
(from SDP: Domain Classes)

Plot
(from SDP: Domain Classes)

PrimaryPlot
(from AircraftPosition)

Plot
(from AircraftPosition)

«constituentClass» «ge-as conflict»

1..*1..*

AircraftPosition

Aircraft
(from SDP: Domain Classes)

Sensor
(f rom SDP: Domai n Classes) aircraftPosit ion

<<synonym>>
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Packages in UML provide a grouping mechanism for classes and associations. Con-
sequently the asserted correspondence between a package and an association is
related to a refinement of the association, i.e. properties have to be added to the asso-
ciation within the package leading to an association class. The specialised classes
Basic Plot’’ and Mono Radar Track’’ in the package Aircraft Position in
Figure 158 present an example of this kind of refinement. On the basis of the associa-
tion correspondence constituated by the classes Sensor and Aircraft, the package
association correspondence holds. But the concept similarity established by the term
»Aircraft Position« alone only holds when the domain ontology states the relational
character of the term. So a package-association class correspondence has a higher rel-
evance then a simple package-association correspondence.

Figure 158 Example of a Package-Association Correspondence 

Dependency-Association Correspondence

de-as Correspondence Although dependencies between class specifications are not part of component sche-
mas, there is still an interesting aspect behind this correspondence. First of all, behav-
ioural aspects have been mixed with structural ones, since dependencies are reserved
for service provision of classes, i.e. method invocations. The other argument against
this relationship is the anonymous character of a dependency. Therefore this situation
must not be confused with the model in Figure 159 and can therefore be discarded.

Figure 159 Example of a Dependency-Association Correspondence 

Aircraft Position’’
(from AircraftPosi tion)

Aircraft
(from SDP: Domain Classes)

Sensor
(f rom SDP: Do main  Classes)

aircraftPosition’’

Basic Plot’’

plotNumber
theta
rho

providePlot()

(from A ircraftPosi tion)

Mono Radar Track""

groundSpeed
heading
polarCoordinates
cartesianCoordinates

groundSpeed()

(from AircraftPosition)

2..n2..n

AircraftPosition

X’

f1()

Y’

X’

Y’

f1()

X

Y

f1 ✗✗
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D.2.5 Association Class Correspondence

Association Class-Association Class Correspondence

ac-ac Correspondence Classification:intra-construct-kind correspondence
intra-construct-level correspondence

An association class - association class correpondence holds in the case that the arte-
facts in question express the same concept.

Figure 160 Example of an Association Class-Association Class Correspondence 

Composition-Association Class Correspondence

co-ac Correspondence Correspondences between association classes and compositions cannot exist in com-
ponent schemas, due to the anonymous connecting character of compositions. How-
ever, this situation is not to be confused with Figure 161, which depicts a class-asso-
ciation class correspondence.

Figure 161 Example of a Composition-Association Class Correspondence 

Aircraft Position
(from SDP: Domain Classes)

Aircraft
(from SDP: Domain Classes)

Sensor
(from SDP: Domai n Classes)

Aircraft Position’
(from AircraftPosition)

Aircraft’
(f rom Ai rcra ft Posit ion)

Sensor’
(from Aircraft Posit ion)

Aircraft
(from SDP: Domain Classes)

Sensor
(f rom SDP: Dom ai n Classes)

Aircraft Position
(from SDP: Domain Classes)

Aircraft Position’
(from AircraftPosi tion)

Sensor’
(from Ai rcraftPositio n)

Aircraft Position’
(from Ai rcraftPosi tion)

Sensor’
(from AircraftPosition)

✗ ✗
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Generalisation-Association Class Correspondence

ge-ac Correspondence In component schemas, association classes do not have any correspondences to gen-
eralisations, due to the anonymous character of generalisations. This situation is not
to be confused with an association class-class correspondence depicted in Figure 162.
Therefore this correspondence can be discarded.

Figure 162 Illegal Generalization-Association Class Correspondence 

Package-Association Class Correspondence

pc-ac Correspondence Classification:inter-construct-kind correspondence
inter-construct-level correspondence

Unlike the package association correspondence, relationships in this case always
carry a name, through the attached association class. As a result, synonymous con-
cept names in the artefacts provide strong evidence for a correspondence assertion.
The evidence is further increased when the package directly references the same or
corresponding classes within the package. In our example, the classes Sensor and
Aircraft are defined within the package SDP: Domain Classes and have been
imported to the package AircraftPosition’. Similar to the package-class corre-
spondence, the package shall contain a class with a synonymous name (AircraftPo-
sition’’). Within the package this class has to be refined, depicting meronyms or
specialised as depicted in our example (see Figure 163, p. 268).

Aircraft Position

t imeOfDay
sensorIdent ity
areaIdentity

(from SDP: Domain Classes)

Aircraft
(from SDP: Domain Classes)

Sensor
(from SDP: Domain Classes)

Aircraft Position’
(from Ai rcraftPosi tion)

Sensor’
✗
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Figure 163 Example of a Package-Association Class Correspondence 

Dependency-Association Class Correspondence

de-ac Correspondence Dependency-association class correspondences in component schemas are invalid,
since dependencies are uniquely reserved for representing dependencies among pack-
ages. Besides this restriction, behavioural and structural aspects are confused in
Figure 164, where the only valid correspondence might be asserted among associa-
tion classes and classes.

Figure 164 Example of a Dependency-Association Class Correspondence 

AircraftPosition’’
(from AircraftPosition’)

Aircraft
(from SDP: Domain Classes)

Sensor
(from SDP: Domain Classes)

Mono Radar Track""

groundSpeed
heading
polarCoordinates
cartesianCoordinates

providePlot()
provideTrack()

(from AircraftPosition)
Basic Plot’’

plotNumber
theta
rho

providePlot()

(f ro m Ai rcraftPosit ion)

2..n2..n

Aircraft Position

timeOfDay
sensorIdenti ty
areaIdentity

(from SDP: Domain Classes)

Aircraft
(from SDP: Dom ain Classes)

Sensor
(f rom SDP: Dom ai n Classes)

AircraftPosition’

AircraftPosition

<<synonym>>

Aircraft Position’
(from AircraftPosition)

Sensor’
(from AircraftPosition)

Aircraft’
(from AircraftPosition)

Sensor’ Aircraft Position’ Sensor’Aircraft Position’

✗ ✗
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D.2.6 Composition-Correspondences

Composition-Composition Correspondence

co-co Correspondence Classification:intra-construct-kind correspondence
intra-construct-level correspondence

The composition-composition correspondence is once again based on a constituent
class correspondence, where the classes participating in the relationship correspond
on a conceptual level. Unlike the constituent class correspondence, additional integ-
rity constraints apply to compositions.

Figure 165 Example of Composition-Composition Correspondence and Conflict

Aggregates can only exist with their components, i.e. their life-times coincide. How-
ever, this is only the structural perspective, i.e. with respect to notation and semantics
of component schema’s static structure diagrams. On a conceptual level with respect
to the domain ontology, aggregates are holonyms, while the components are mero-
nyms. This distinction leads to the bottom half of Figure 165. The concept Aerodrome
is represented as a component of Runway contradicting human perception. Conse-
quently, we may detect a composition-composition conflict on the basis of the
domain ontology.

«constituentClass»

Runway

(from ATFM: Aerodrome)

Aerodrome

(from ATFM: Aerodrome)

Runway

(from EDPD: Airspace Structure)

Aerodrome

(from EDPD: Airspace Structure)

«constituentClass» «co-co»

«constituentClass»

Runway
(from ATFM: Aerodrome)

Aerodrome
(from ATFM: Aerodrome)

Runway
(from EDPD: Airspace Structure)

Aerodrome
(from EDPD: Airspace Structure)

«constituentClass» ✗
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Figure 166 Composition-Composition Correspondence 

Generalisation-Composition Correspondence

ge-co Correspondence Classification:inter-construct-kind correspondence
intra-construct-level correspondence

The following correspondence demonstrates another interesting extension of the con-
stituent-class correspondence. In this case however, the classes are connected via a
composition and a generalisation relationship at the same time. Due to the directional
character of the two associations, we have to take their actual orientation into
account. In the first case, their direction points in the inverse direction leading to a
compositor-pattern correspondence. This correspondence is related to the application
of the compositor pattern according to Gamma et al. [GHJ+95]. According to
Gamma, this pattern can be used for uniform treatment of composed and simple
objects and has also been used in the metamodel for complex use cases in this work
(see Figure 41, p. 88). From a linguistic point of view, this distinction is quite compli-
cated, since in most cases an abstract concept is introduced for the generalised class
specification. A hypernym/hyponym relationship between the classes provides a min-
imal criteria for this correspondence. Alternatively, the ontology might state a mero-
nym / holonym relationship. Generally speaking this kind of correspondence calls for
careful review by the domain leaders and experts.

Figure 167 Generalisation-Composition Correspondence  

Z
(from X)

«constituentClass»

«co-co»

X 
(from X)

Z’
(from Y)

X’

(from X’)

Y’
(from Y)

X’
(from Y)

«constituentClass»

BasicPlot
(from SDP: Domain Classes)

Mono Radar Track
(from SDP: Domain Classes)

System Track
(from FDPD: Domain Classes)

State Vector
(from FDPD: Domain Classes)

«constituentClass» «ge-co» «constituentClass»

BasicPlot
(from SDP: Domain Classes)

Mono Radar Track
(from SDP: Domain Classes)
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Although the example in Figure 168 depicts a clear generalisation-composition con-
flict, two class specifications can never be parts and generalisations of each other at
the same time.

Figure 168 Generalisation-Composition Conflict  

Package-Composition Correspondence

pc-co Correspondence Correspondence between anonymous link artefacts and artefacts such as packages
can generally be discarded for the evaluation. However, it is not to be confused with
package-class and an attribute class correspondence as depicted in Figure 169.

Figure 169 Example of a Package-Composition Correspondence 

Dependency-Composition Correspondence

de-co Correspondence A dependency-composition correspondence can be discarded from our analysis, since
behavioural and structural aspects have to be mixed in this relationship. Furthermore,
both constructs are anonymous, i.e. their correspondence can only be clarified via
their constituent classes, and will consequently be discarded in this work. This situa-
tion in particular must not be confused with an association-composition correspond-
ence, depicted in Figure 170, p. 272.

«constituentClass» ✗ «constituentClass»

BasicPlot
(from SDP: Domain Classes)

Mono Radar Track
(from SDP: Domain Classes)

System Track
(from FDPD: Domain Classes)

State Vector
(from FDPD: Domain Classes)

Runway’
(from Aerodrome’’)

Aerodrome’
(from Aerodrome’’)

ATFM: Aerodrome
(from ATFM: Environment)

✗
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Figure 170 Illegal Dependency-Composition Correspondence 

D.2.7 Generalisation Correspondence

Generalisations -Generalisations Correspondence

ge-ge Correspondence Classification:intra-construct-kind correspondence
intra-construct-level correspondence

Like all link artefact correspondences, the generalisation-generalisation correspond-
ence is based on a constituent class correspondence. Similar to compositions, gener-
alisation/specialisation is a directional relationship. Whenever the corresponding
class specifications have connected with generalisation, but with different direction,
we have a generalisation-generalisation conflict. More complicated is the second sit-
uation, which aims for the transitivity property of generalisation.

Figure 171 Example of a Generalisation-Generalisation Correspondence and Conflict

Y’Y’

X’X’X

Y

X

Y Y’

X

Y’

X’

Y

X’

Y

X

✗ ✗

Z
(from X)

«constituentClass»

X 
(from X)

X’
(from Y)

Z
(from X)

«ge-ge»

X 

(from X)

Z’
(from Y)

Y’
(from Y)

X’
(from Y)

Z’
(from Y)

«constituentClass» «ge-ge»

Z
(from X)

«constituentClass»

X 

(from X)

X’
(from Y)

Z’
(from Y)

«constituentClass» ✗

«constituentClass»«constituentClass»
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Package-Generalisation Correspondence

pc-ge Correspondence Correspondences between anonymous link artefacts and grouping artefacts can gen-
erally be discarded. However, they must not be confused with a package class corre-
spondence as depicted in Figure 172.

Figure 172 Example of a Package-Generalization Correspondence 

Dependency-Generalization Correspondence

de-ge Correspondence Mixing structural and behavioural aspects automatically prohibits this kind of corre-
spondence. Restricting dependencies to packages further stresses this claim. How-
ever, this situation is not to be confused with a generalisation-association correspond-
ence. 

Figure 173 Illegal Dependency-Generalization Correspondence 

D.2.8 Package Correspondence

Package-Package Correspondence

pc-pc Correspondence Classification:intra-construct-kind correspondence
intra-construct-level correspondence

Package correspondence are expressed by synonymous or identical names. The indi-
vidual package contents shall contain meronyms of the package name. Similarity
assessment, a class-class correspondence, has to be performed for the package con-
tents in order to identify similar concepts, such as the synonymous classes Aerodrome
depicted in Figure 174, p. 274.

P’
P

Q’ P

Q

✗

✗

Y

X

Y’

X’ X

Y

X’’

Y’’

✗ ✗
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Figure 174 Example of a Package-Package Correspondence 

Dependency-Package Correspondence

de-pc Correspondence Packages cannot correspond to dependencies, due to the anonymous connecting char-
acter of dependencies. However, this situation is not to be confused with a depend-
ency-dependency correspondence based on the constituent packages.

Figure 175 Example of a Dependency-Package Correspondence 

Aerodrome’’ ATFM: Aerodrome
(from ATFM: Environment)

Aerodrome
(from EDPD: Airspace Structure Classes)

SID
(from EDPD: Airspace Structure Classes)

STAR
(from EDPD: Airspace Structure Classes)

ATS Route
(from ATFM: Aerodrome)

Runway
(from EDPD: A irspace Structure Classes)

1..*1..*

Apron
(from Aerodrome’’)

Taxi Way
(from Aerodrome’’)

Control Tower
(from Aerodrome’’)

Aerodrome’
(from Aerodrome’’)

Runway’
(from Aerodrome’’)

<<synonym>>

Aerodrome’’ ATFM: Aerodrome

E

F

E’

F’

E’

F’

✗ ✗
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D.2.9 Dependency Correspondence

Dependency-Dependency Correspondence

de-de Correspondence Classification:intra-construct-kind correspondence
intra-construct-level correspondence

Similar to association-association correspondences UML package dependences
depend on a constituent element correspondence, classes in this case. As we pointed
out in all correspondences related to packages, the similarity of packages can only be
expressed through the meaning of their names. Otherwise complex similarity metrics
for package contents have to be designed, which is not the scope of this work.

Figure 176 Example of a Dependency-Dependency Correspondence 

E

F

E’

F’

E

F

E’

F’

✗ ✗
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