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ABSTRACT

Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we intro-
duce generalized m-splay states constituting a special subclass of phase-locked states with vanishing mth order parameter. Such states
typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class
of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known
Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parame-
ter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings
to phase oscillators with inertia and adaptively coupled phase oscillator models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056664

Models of coupled phase oscillators are well-known paradig-
matic systems to understand the mechanism behind the emer-
gence of collective phenomena in complex networks. Due to the
relative simplicity of these models, powerful methods such as
the Watanabe-Strogatz theory or the Ott-Antonsen approach
have been developed to describe certain dynamic states. Nowa-
days, a plethora of generalizations of phase oscillator models are
developed to study biological, technological, or socio-economic
systems. Of particular interest are phase models with inertia
for mechanical rotors in power grids or models with an adap-
tive network structure to model synaptic plasticity mechanisms
in neuronal systems. This paper provides a systematic study of
generalized splay states as a particular class of incoherent phase-
locked solutions playing an important role in shaping the global
dynamics of coupled oscillator systems. In particular, we describe
when a continuum of splay states emerges and a part of it (also

continuum) becomes stable. These splay states are a manifesta-
tion of individual variability as one of the inherent properties of
oscillatory networks.

. INTRODUCTION

Dynamical networks of phase oscillators are a well-known
paradigm for studying the collective behavior of interacting
agents.”” The importance of such network models relies, in par-
ticular, on the fact that any system of weakly interacting nonlinear
oscillators can be generally reduced to a phase oscillator network.”~
Extensive reviews have highlighted the importance of phase oscilla-
tor models and reduction techniques.>® Recent studies also aim at
increasing the range of applicability of phase oscillators by general-
izing the conditions under which reduction techniques are valid.””
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A famous representative of the class of phase oscillator mod-
els, the Kuramoto model, in which all oscillators are coupled in the
“all-to-all” manner, has attracted much attention due to its simple
form and mathematical tractability.'”'' The Kuramoto model and
its extensions have gained additional popularity through applica-
tions to real-world problems,”'*"* including neuroscience'"*’ and
power grids.”'~*° Despite the simple structure, the Kuramoto model
can exhibit many different dynamical regimes,””~* and sophisticated
methods have been developed for their analysis. In particular, it
was shown that sinusoidally and globally coupled phase oscillators
are partially integrable. The Watanabe-Strogatz theory allows for a
reduction to only three dimensions, which can also be applied to
even more general classes of phase oscillator models.”** A remark-
able observation in the work of Watanabe and Strogatz is the role
of incoherent states™ in the foliation of the phase space. They have
shown that sheets of the foliation can be parameterized by the fam-
ily of incoherent states. In our work, we analyze these incoherent
but phase-locked and frequency-synchronized states for a large class
of phase oscillator models and shed new light on their dynamical
properties. Moreover, we generalize the notion of incoherent states
by introducing generalized splay states.

Another approach developed to understand coupled oscilla-
tors in the continuum limit is the Ott-Antonson ansatz.”” In the
case of an infinite number of oscillators, the Ott—-Antonson the-
ory allows for a reduction to a two-dimensional dynamical system
and has been successfully applied to describe the emergence of par-
tially synchronized patterns.”>*-*" Remarkably, for both reduction
techniques, the Watanabe-Strogatz and the Ott-Antonson theory,
the reduced systems possess a clear physical interpretation, and
both approaches are closely related.”>"’ In fact, this direct rela-
tionship between the two approaches makes the study of incoher-
ent states (generalized splay states) important for mean field and
other reduction techniques’'~* as well as for the search for future
generalizations.”** Moreover, splay states play a role in networks
with non-global coupling. These states have also been found in non-
locally coupled ring networks,”—' and the concept of local splay
states (or local incoherent states) has been introduced to relate them
to the incoherent states in globally coupled networks.”” Further-
more, splay and incoherent states have been discussed for more
complex coupled systems such as Stuart-Landau oscillators,”** sys-
tems with delay’*> and pulse-coupling’*” where for the latter a link
to the Watanabe-Strogatz theory has been proved.™

Various generalization have been proposed beyond the clas-
sical Kuramoto model. Starting from the generalization to com-
plex networks,” the theory of phase oscillators has been further
developed to study phenomena of phase transitions,’ =’ network
symmetries,’ the impact of inertia’>*>*~"* and other forms of
frequency adaptation,”* delayed coupling,” or the effect of time-
dependent parameters,® to name just a few.

Another generalization that has gained much attention in
recent years concerns the phenomena in networks of phase oscilla-
tors with adaptive coupling. Several models have been proposed and
studied to gain insights into the interplay between collective dynam-
ics and adaptivity.'>'%'*""=% Many of them were inspired by recent
findings in neuroscience related to synaptic plasticity.

In this work, we provide a general analytic study of the local
properties, existence and stability, of incoherent phase-locked states.
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For this, we introduce the class of phase oscillator models in Sec. 11
and define the notion of the generalized m-splay state. In Sec. I1J,
we describe manifolds of the splay states and provide explicit con-
ditions for their linear stability. In Secs. I'V and V, we generalize the
results for the stability of m-splay states to phase oscillator models
with inertia and adaptivity, respectively. In Sec. VI, we give a geo-
metrical perspective. The results are discussed in Sec. VII. To make
the main text more accessible, we have moved some proofs to the
Appendixes.

Il. COUPLED PHASE OSCILLATOR MODELS AND
GENERALIZED SPLAY STATES

We consider systems of N coupled phase oscillators,

d
a(ﬁ = wl + F(¢), 1

where ¢ = (¢1,...,¢N)T, and each oscillator is represented by
a dynamical variable ¢;(f) € [0,27), i=1,...,N. All oscilla-
tors possess the same common natural frequency w. Moreover,
F=(fi(¢),..., fN(¢))T is the coupling vector field with coupling
functions f;,and 1 = (1,..., l)T.

To measure the phase coherence, we define the mth moment of
the complex mean field, m € N, as

N
1 g, ;
Zu(@®) = 1 " = Ry@)e ),
j=1

where i is the imaginary unit, R,, denotes the mth moment of the
(Kuramoto-Daido) order parameter, and p,, is the collective phase
of the mth moment of the mean field.'**

Definition 1. A solution of the phase oscillator system (1) is
called phase-locked state if

¢i(t) =Qt+9, i=1...,N,

with collective frequency Q € R and fixed relative phases
9 € [0,2m) of the individual oscillators.

Phase-locked states for oscillator models have been studied
extensively in the past, see, e.g., Refs. 78 and 87. In this paper, we
restrict our attention to a special subclass of phase-locked states for
which little is known about their role in the case of finite ensembles
of oscillators, as follows.

Definition 2. A phase-locked state with ¢,(f) = Q¢ + ¥;isan
m-splay state if it satisfies

R,,(3) = 0. (2)

We call m € N the moment of the splay state and Eq. (2) the m-splay
condition.

This definition generalizes the “classical” notion of splay
states” that are defined by phase distributions with equidistant
phase relation ¥ = kj2mw /N with k = 0,...,N — 1 and form an m-
splay state if (mk mod N) # 0. These states are also referred to as
twisted states*”"* or rotating waves,”>*” and are often related to
certain network symmetries.”’** In Fig. 1, we illustrate one- and
two-splay states for ensembles of N=2, 3, and 4 oscillators. The
relation R,,(#) = R;(m¥) holds between the splay states with dif-
ferent moments. In particular, we observe that any two-splay state
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FIG. 1. lllustrations of (a)-(c) one- and (d)(f) two-splay states for N = 2 (left
column), N = 3 (center column), and N = 4 (right column) coupled phase oscil-
lators represented on the unit circle. The green and blue angles depict fixed and
parameterized (variable) phase relations, respectively.

in Figs. 1(d)-1(f) corresponds to a one-splay state in Figs. 1(a)-1(c)
by doubling the relative angles between the oscillators.

With definition 2 of splay states, we may consider a whole
family that fulfills the m-splay condition (2).

Definition 3. The set

SM,, = {# € [0,2m)" : R,,(#) = 0}

is called the m-splay manifold.

The fact that SM,, forms a N — 2 dimensional manifold has
been proven in Ref. 91. Note that the splay manifold has a shift sym-
metry, i.e., if # € SM,,, then & + 1 € SM,, for any € [0, 27).

In this paper, we derive linear stability conditions for m-splay
states for generic phase oscillator models (1) that possess phase-shift
symmetry and leave the m-splay manifold invariant, and each point
of this manifold corresponds to an m-splay solution.

More specifically, we assume that for some m, the following
hypotheses are fulfilled:

Hypothesis 1. For all # € SM,,, the system of coupled phase
oscillators possesses m-splay states ¢(f) = Qt + ¢ with collective
frequency .

Hypothesis 2. For any v € R, the nonlinearity F satisfies
F(¢ + 1) = F(¢). This implies that the corresponding system (1)
is equivariant with respect to the phase-shift transformation.

With both Hypotheses 1 and 2, we guarantee that, first, all ele-
ments of the splay manifold SM,, describe a phase-locked state and,
second, the phase-locked states may be considered as time inde-
pendent due to the phase-shift symmetry, i.e., we can consider the
co-rotating reference frame ¢ — @ + Qt. These restrictions are met
by many phase oscillator models that have been analyzed over the
last decades, including the Kuramoto-Sakaguchi model,”” models
with higher mode coupling’ and with higher order interactions,”
models of coupled phase oscillators under resource constraints,”
and generalized phase oscillator models including systems with
inertia®’! or adaptive network structure.”” Some of them are dis-
cussed in the subsequent sections. An important class of systems that
fulfill Hypothesis 1 are those that are coupled via mean field.”*"

ARTICLE scitation.org/journal/cha

In Sec. 111, we derive conditions for the linear stability of the
m-splay manifold of system (1) under Hypotheses 1 and 2.

I1l. STABILITY OF GENERALIZED SPLAY STATES IN
PHASE OSCILLATOR MODELS

This section explores the linear stability of m-splay states as
defined in Sec. II. In the first part, we provide a general result for the
generic class of phase oscillator models. This result is then discussed
for the Kuramoto-Sakaguchi model.

A. General result on the stability of splay states

We start with the variational equation around an arbitrary
m-splay state of system (1), which satisfies Hypotheses 1 and 2. This
variational equation reads

dsg (1)
dt

where L(#) = DF denotes the Jacobian of the coupling field F. We
note that due to the shift symmetry of system (1), the Jacobian is time
independent and has zero row sum for each row and thus possesses a
zero eigenvalue corresponding to the eigenvector 1, i.e., L(#)1 = 0,
for any #. This eigenvector 1 acts along the symmetry action, see
Hypothesis 2. The nondiagonal entries of the N x N matrix L are

ofs
¢,

Due to the zero row-sum condition, the diagonal elements J; are
given as

= L(#)3¢, 3)

). (4)

N

==Y Ly 5)

i 09

The linear stability of the m-splay states is determined by the
eigenvalues of the Jacobian matrix L. More precisely, we are inter-
ested in the real parts of these eigenvalues. The following lemma
provides useful insights into the spectral structure of a special class
of matrices L that are of major importance subsequently.

We denote a polynomial of degree r € Ny over the com-
plex field C with complex argument A € C as p,(A), ie., p,(A)
= Y"_, @A, The characteristic polynomial of an N x N matrix is
denoted by py(L, 1), i.e., py(L, 1) = det(L — Ally).

Lemma 4. Suppose an N x N (N > 1) matrix L possesses
a zero eigenvalue with multiplicity N — 2. Then, the characteristic
polynomial py(L, 1) is given by

det (L — Ally) = (=1)Ma V2 ()»2 + an-nA + a(N—Z)) )
with the coefficients

N
ay-n = — Y _lj=—Tr(L),

j=1

N N
1
a(N_z) = Z Z (l,’,‘lﬁ — lljljt) = E (TI'(L)2 — TI'(LZ)) .

i=i j>i
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This result is a consequence of a general theorem on the coef-
ficients of the characteristic polynomial.”” However, we provide a
direct proof of Lemma 4 in Appendix A for the interested reader.
With Lemma 4, we are able to write explicit stability conditions for
any m-splay state depending on the two explicit characteristics of the
Jacobian L: its trace Tr (L) and the trace of its square Tr (L?).

Proposition 5.  Suppose L(#}) is the Jacobian from (3), whose
entries are given in (4) and (5), with & corresponding to an m-splay
state of the coupled phase oscillator system (1). Then, we distinguish
the following two cases:

() If 2Tr(L?) < Tr(L)?, then the m-splay state is linearly stable if
and only if

Tr(L) < 0.

(i) If 2Tr(L?) > Tr(L)?, then the m-splay state is linearly stable if
and only if

Tr(L) <0 and Tr(L* < Tr(L).

Proof. Since # corresponds to an m-splay state, there are
N — 2 neutral perturbation directions along the splay manifold.
These perturbations are determined by the condition

N

Z eim0j8¢j =0,

j=1

which follows from 8Z,(¢) = 0. In particular, the perturbation
3¢ = 1 constitutes one of the dimensions of the neutral subspace.
Thus, L possesses a zero eigenvalue with multiplicity N — 2, and
we can apply Lemma 4. We obtain a quadratic equation with real-
valued coefficients depending on Tr(L) and Tr(L?) whose solution

is given by
Tr@) 1
A = rz( ) 4 ST — TrL), 6)

The two cases follow immediately by considering the real parts of
the solutions A1 ,. O

Proposition 5 provides a very general linear stability condition
that depends on two features of the Jacobian L only. In particular, it
depends on the sum of all eigenvalues A; of L, i.e, Tr(L) = Zil Ais

and on the sum of all squares of eigenvalues, i.e., Tr(L*) = Y~ | A2.

Figure 2 shows the stability region for an arbitrary m-splay
state in the [Tr(L), Tr(L?)]-plane. In particular, the solid dashed
lines indicate the transition for which the real part of at least one
eigenvalue crosses zero. An analytic expressions for theses lines is
derived as follows. Assume that one eigenvalue A possesses zero real
parts, i.e., A = iv with v € R. Substituting this assumption into the
quadratic expression of Lemma 4, we obtain

—v* —iTr(L)v + %(TI’(L)Z — Tr(L?)) = 0.

The latter equation can either be fulfilled with v =0 and Tr(L?)
= Tr(L)? or with Tr(L) = 0 and Tr(L?) = —v* for all v € R. Both
conditions agree with the solid black lines in Fig. 2.

In Sec. 111 B, we apply the results of Lemma 4 and Proposition 5
in order to describe the stability of splay states for a particular model.

scitation.org/journal/cha

FIG. 2. Diagram showing the local properties of m-splay states in dependence of
the values Tr(L) and Tr(L?). The solid black curves indicate transitions between
different stability features of the m-splay state, i.e., stable, saddle, and repelling.
The dashed lines indicate transition between nodes and foci. The shaded parts
of the diagram correspond to linear stability.

B. Kuramoto-Sakaguchi model

In this section, we study the linear stability of splay states
in a globally coupled network of Kuramoto-Sakaguchi phase
oscillators'*” given by

N
. 1 .
fi=w— 5D sin(gi— ¢+, (7)
j=1
where « is the phase-lag parameter. This system satisfies Hypothesis
2 of phase-shift invariance. We note that the coupling function of
(7) and its derivative can be written as

fi=—Im(Z,e"e%),

iﬁ — lRe (ei(¢i*¢j+0!)) .

¢ N
With this, we immediately see that any phase distribution # that
fulfills the one-splay condition Z; (¢#) = 0 corresponds to the one-
splay solution ¢;(¥) = wt + ¥, of (7). Therefore, system (7) satisfies
Hypothesis 1. To derive the stability condition with Proposition
5, we determine the entries of the Jacobian matrix L(#) of the
variational system for (7) around the one-splay states. The entries
read

+ cos(a) ifj =1,

®)

l," =
J ﬁ cos(®¥; — ¥+ ) otherwise.

With these preliminaries, we obtain the following.
Corollary 6. The one-splay state ¢ = wl + ¢ of Kuramoto-
Sakaguchi system (7) is linearly stable if and only if

cosa < 0.
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Proof. In order to prove this result, we use Lemma 4 and deter-
mine the coefficients of the quadratic polynomial. We obtain the
following:

an-1y = —Tr(L) = —cosa,
and

cos?(a) 1 &
2 4AN? Z (cos(2(B; — 9))) + cos(2a))

ij=1

aAN-2) =

R .

- - _ Rz(ﬂ)Re (el(l?j—ﬂz(l’)))
1 2

=1 (1-R@®).

Since 1 — R3(#) > 0 for any #, the stability condition for the one-
splay state is agy_1) > 0, which is equivalent to cos(a) < 0. O

Corollary 6 implies that a one-splay state is linearly stable
for (7) as long as cosa < 0. Thus, the stability does not depend
on the particular shape of the splay state, i.e., the particular ele-
ment ¢ of the manifold SM;. However, the bifurcation occurring at
cosa = 0 might be different depending on the distribution of
the phases. Due to Proposition 5, the eigenvalues of the Jaco-
bian (8) may have imaginary parts if 2Tr(L?) < Tr(L)?, i.e., cos’ «
< (1 — RX(#)). In this case, the imaginary parts are given by

L 2
Im)\u::l:i sin o — R5(¥).

We further note that the second moment of the order parameter
R, characterizes the whole one-splay manifold with respect to the
transverse stability.

In Secs. IV and V, we extend the previous findings to more
complex models of coupled phase oscillators. More precisely, we
consider phase oscillator models with inertia and models of adap-
tively coupled phase oscillators.

IV. PHASE OSCILLATOR MODELS WITH INERTIA

As a first extension of our results from Sec. 11, we study the
linear stability of generalized splay states in models of N coupled
phase oscillators with inertia. Similar to Sec. I1I, we first provide the
general result and then consider a more specific class of models.

A. Stability of m-splay states

We consider the following class of phase oscillator models with
inertia

d? d
Mo+ 26 = pL+F@), ©
where p € R corresponds to the nondimensionalized power gener-
ation and consumption in power grid models and is related to the
natural frequency in Eq. (1) by w = p/y, the parameter M is the
inertia, and y > 0 is the damping constant, which extends Eq. (1).
Note that, for identical oscillators, the number of parameters can be
reduced to two. Therefore, we assume M = 1 in the following.

scitation.org/journal/cha

Here, we also assume that (9) possesses a set of m-splay states
¢ = Qt + ¢ forall # € SM,,, i.e., Hypothesis 1 holds. We may write
(9) as a set of first order differential equations

d

o=V
d (10)
¥ = v¥ Pl FG),

where we introduce the new dynamical variable ¥ € RY.

In order to determine the linear stability of m-splay states,
we consider the variational equation for system (10) around an
arbitrary m-splay state, which reads

d (5¢\ (0 Iy o\ )
i ()= (o ) (9) = (y) o

where ] denotes the Jacobian, and the entries of the N x N matrix L
are given as in (4) and (5).

The linear stability of the m-splay states is determined by the
eigenvalues of the Jacobian matrix J. The following Lemma provides
a useful tool to find these eigenvalues.

Lemma 7. The 2N eigenvalues of the matrix [g Zﬁg] with

my, my € C are given by the solutions of the N quadratic equations

uz—mzu—mlkizo, i=1,...,N,

where Ay, . .., Ay are the eigenvalues of L.

The proof of Lemma 7 can be found in Ref. 22. With this lemma
and Lemma 4, the following conditions for the local stability of the
m-splay states of (9) are derived.

Proposition 8. Suppose J(#) is the Jacobian of (11) and L(¥)
possesses the entries as given in (4) and (5), where ¥ corresponds to
an m-splay state which solves (9). Then the m-splay state is linearly
stable if and only if y > 0 and Re((t1234) < 0, where

14 7\?
-1 @
H1,2,3,4 5 5 + A
Tr(L) 1
s = r; ) 4 SV2Tr?) = Tr(L)’.

It is interesting to note that A, equals the eigenvalues (6) of the phase
oscillator model without inertia.

Proof. Due to Proposition 5, the eigenvalues of L are given by
A3 =--+=Ay=0and

s = TrZ(L) + % 2Tr(L2) — Tr(L).

Using Lemma 7, the eigenvalues of the Jacobian J are given by the
solutions of

(12)

w4y —1=0.
The N — 2 zero eigenvalues A5y = 0lead to u = 0 and u = —v,

each with the multiplicity N — 2. Moreover, there are roots

14 7\? .
Mi,1,2=—5i (5) +A, i=1,2,

which yield the result. O
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Note that the characteristic polynomial of the Jacobian in (11)
can be rewritten in a form that agrees with the findings in Ref. 73 for
the case of N = 4 oscillators. In particular, the eigenvalues (12) can
be also expressed as solutions of the equation

pt 42y + (P = Tr(L)p’

2 2

—yTr(L)n + w =0. (13)
We conclude that the stability properties of m-splay states
depend only on the parameters y, Tr(L), and Tr(L?). The quantities
Tr(L) and Tr(L?) contain also information about the specific splay
states. The values Tr(L) and Tr(L?) provide a foliation of the splay
manifold so that each sheet of this foliation, with the same values
of Tr(L) and Tr(L?), possesses the same transverse local dynamics.
In order to find the boundary of the stability region, we substitute

= ivinto (13) and find that

Tr(L)? — Tr(L?)
—
—iyv(2v* + Tr(L)) = 0. (14)

V= (y? = Tr())V +

The latter equation is solved when either one of the following
conditions is fulfilled:

(i) v=0and Tr(L?) = Tr(L)*forally > 0,
(i) —2v* = Tr(L) and Tr(L)*/2+ yTr(L) — Tr(I*) =0 for all
veR.

In Fig. 3(a), we display both conditions as surfaces in
[Tr(L), Tr(L*), y]-space. In panels (b)-(e) of Fig. 3, we show two-
parameter cross sections with fixed values of y, where the stable
regions are shaded. We note that the area corresponding to stable
dynamics increases with increasing y .

B. Application to the Kuramoto-Sakaguchi model
with inertia

In the following, we study the linear stability of generalized
splay states in a globally coupled network of N coupled phase

oscillators with inertia?»**?>?%7%"173 of the form
o N
M+ y; = ——§ sin(¢; — ¢; + a), 15
¢>J/<1>Psz1 (i — ¢+ ) (15)

where ¢; € [0,27) represents the phase of the ith rotator. The
parameter M is the inertia constant, y > 0 is the damping constant,
and o is the coupling constant. The parameter « can be regarded as
a phase-lag of the interaction.”

As for the Kuramoto-Sakaguchi model (see Sec. III B), the
coupling functions and their derivatives can be written as

- _ i i
T >
fi olm (Z,e* %)

i _ 9 pe (£9i9+).

d¢; N

With this, we immediately see that any one-splay state is a solution of
(15) since Z; = 0 and hence f; = 0 forall# € SM;andi=1,...,N.

scitation.org/journal/cha

(a) 5
5
2
0 2
2 OTr(L )
0
Tr(L) ) 2

(b) (c)

v=0.1

FIG. 3. Phase diagram showing the local stability of the m-splay states for system
(9) in dependence on y, Tr(L), and Tr(L?). In panel (a), the surfaces separating
stable from unstable regimes are depicted in orange and green corresponding
to the conditions (i) and (ii) for Eq. (14), respectively. In panels (b)-(e), sec-
tions for fixed values 1=0.1, 0.5, and 1,5 are shown, respectively. Stable regions
are shaded. The line colors indicate the cross sections with the corresponding
surfaces.

Proposition 8 leads to the following criteria for the stability of
one-splay states.

Corollary 9. The one-splay state of system (15) is linearly
stable if and only if y > 0 and Re((1234) < 0, where

14 Yy
=-L4 (7> A
H1234 5 ) + 1,2

(e
Ap = 5 (cosa +/R3(#) — sin? ot) .

Note that the characteristic polynomial of the Jacobian in (11)
can be rewritten in a form that agrees with the findings in Ref. 73 for
the N = 4 case. In particular, the eigenvalues (16) can be expressed

(16)
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as solutions of the equation (a) Ry =1 (b) Ry =0 (©)R, — J]eos€/2)]
w42y’ + (v* — o cos(a)

2
— yo cos(a)p + C%(1 - R%(ﬂ)) =0. 17)

Similar to the general case above, we illustrate the stability
properties of the one-splay state depending on y, o, o, and R, that
characterizes the splay manifold with respect to the linear stability.
For this, note first that the parameters y and o can be reduced to one
parameter ' = /oy with respect to the stability of the one-splay
state. In particular, the mapping y + /oy and u > /o leaves
the stability features invariant but renders (17) independent of o.
Hence, we may consider (17) for o = 1 without loss of generality.

FIG. 5. lllustrations of one-splay states (Ry = 0) for system sizes of (a)
N=2(b) N=3,(c) N=4,(d) N=5, and (e) and (f) N = 6. The phases
of each phase oscillator are represented on the unit circle by @ — exp(i;). The
green and blues angles depict fixed and parameterized (variable) phase relations,

~
~ V| respectively.

2 As in previous cases, we look for the boundary of the stability
v : region by substituting s = iv into (17),

RN

0 vt — (y? — cosa)v* + 1(1 —R2(#))
0 R2(19) 4

—iyv(2v2+cosa) =0. (18)

R2(19)

||
2
I

o
ot

= O

conditions is fulfilled:
1 (b) (c) (i) v=0and R2(#) = 1forally >0

(ii) —2v* = cosa and sin®* & — R2(#) + 2y cosa = 0 forallv € R.

The first condition corresponds to a singular point on the

0.5 splay manifold with R, = 1 and is not of general relevance. Hence,

[, R3(#), y]-space. In panels (b)-(e) of Fig. 4, we depict a two-

¥ dimensional cross section with fixed values of y,where the stable

(e) ing to stable dynamics increases for increasing y. Moreover, we

observe that for any y the stability intervals in o decrease from

The obtained equation is solved when either one of the following
in Fig. 4(a), we display the second condition as a surface in
regions are indicated by shading. We note that the area correspond-
[—m/2,7/2] for R, = 1toasmaller interval for R, = 0, respectively.

R>(9)

In Fig. 5, we illustrate different one-splay states and their
corresponding second order parameter R,.

0.5

V. ADAPTIVE PHASE OSCILLATOR MODELS

00 20 1 2 In this section, we study the linear stability of generalized splay
ol / ™ a/m states in the following general class of coupled phase oscillators with
adaptation:

FIG. 4. Phase diagram showing the local stability of the one-splay states for sys- d

tem (15) in dependence of the phase-lag parameter «, the second moment of —¢ = wl + F(¢, k), (19)
the order parameter R, (2}), and damping y. In panel (a), the surface separating

stable from unstable regimes is depicted in green. The surface corresponds to

condition (ii) for Eq. (18). In panels (b)—(e), sections for fixed values of y = 0.1, d
0.5, 1, and 3 are depicted, respectively. Stable regions are shaded. pr Kk = —ck + G(¢), (20)
t
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where ® is the common natural frequency of the phase oscil-
lators and F(¢,k) = (fi(¢, k), ... ,fN(¢,lc))T is the coupling vec-
tor field with coupling functions f.. The adaptivity variables are
given by k& = (iky,...,kx)" € RX. Their dynamics is determined
by the dissipation parameter € and the adaptation vector field
G(@) = (@ ()s..., gK((b))T and adaptation functions g,
I=1,...,K

Due to the existence of adaptivity variables «, we have to gen-
eralize the definition of a splay state. A phase-locked state with
¢i(t) = Qt+ v and k;(#) = g(#)/e (I=1,...,K) is said to form
a generalized m-splay state if R, (#) = 0. In order guarantee the
existence of m-splay states, we extend Hypothesis 1 accordingly. In
particular, we assume

Hypothesis 3. For all # € SM,,, a system of coupled phase oscil-
lators (19) and (20) possesses m-splay states ¢(t) = Qt + ¢, «;(F)
= g1(#) /e with collective frequency .

Additionally, we assume the phase-shift symmetry.

Hypothesis 4. For any ¢ € R, the nonlinearities F and G satisfy
F(¢ + ¥ 1,k) = F($, k) and G(¢ + 1) = G(¢). This implies that
the corresponding system (19) and (20) is equivariant with respect
to the phase-shift transformation.

A. Stability of m-splay states

To study the linear stability of m-splay states, we consider the
variational equations (19) and (20) around an arbitrary m-splay
state, which reads

d (s¢\ (L B AN 1)
dt <8K> - <C —e]IM> <<Slc) _]<(Slc>’ @n

where ] = J(#) denotes the Jacobian. Due to the phase-shift sym-
metry, (6¢T, k™ = (@17,0,...,0) is an eigenvector of J with zero
eigenvalue and hence L1 = 0. The entries of the N x K matrix
B = B(#), the K x K matrix C= C(#), and the N x N matrix
L = L(#) are given as follows. The nondiagonal entries of L are
given by
3f;
li' = — 'l},IC 7)). 22
i = ¢j( (@) (22)

The diagonal elements [; are given such that the row sums vanish,

ie., jN:1 li=0foralli=1,...,N. We have
N
fi
h=—§:~ﬁmum> (23)
iz 0P

The entries of B and C are given by

af;
by = 7af (@, k(D)) (24)
Ki

and

Cli 1’)> (25)

_ %8
~ g,
respectively.

In order to understand the linear stability of the phase-locked
states, we have to determine the eigenvalues of the Jacobian matrix J.
The following lemma provides a useful tool to find these eigenvalues.

scitation.org/journal/cha

In the following, we use the superscript H to indicate the Hermitian
conjugate.

Lemma 10. LetL, B, and Cbe any complex N x N, N x K, and
K x N matrices, respectively. For the N + K eigenvalues of the matrix
J= [é _fHK] , the following statements hold true.

(i) IfK < N, the eigenvalues of ] are given by the solutions of
(e + )N det (4 + €) (uly — L) — BC) = 0.

(if) If K > N, J possesses K — N eigenvalues —e. The 2N remaining
eigenvalues are given by

det ((u + €) (uly — L) — BC) = 0.

Proof. Using the Schur complement,” we write

L— [/L]IN B
det < C  —(e+ M)]IK)

= —(e + )" det (L — ply) + (¢ + ) ~'BC)
= —(e + W Ndet ((u +¢€) (uly — L) — BC).

(i) Suppose K < N, then the K x N matrix C has at least an
N — K-dimensional kernel. Hence, there exists an N — K dimen-
sional vector space V such that forallv € V,

((u+e) (uly—L)—BC)v=0
for 4 = —e. Therefore, the polynomial
det (11 + €) (uly — L) — BC) = 0

possesses at least N — K roots —e.
(ii) Suppose K > N, we find

det (J — ulyyx)
= —(e + M) Vdet ((u+€) (uly — L) — BC),

and ] possesses K— N eigenvalues —e. All other eigenval-
ues are given by the coupled set of N quadratic equations
det [ (n+e)(uiy-L)-BC| = 0. O

With this lemma and Lemma 4, the following conditions for
the local stability of the m-splay states are derived. Note that L and
BC do not necessarily commute.

Proposition 11. Suppose ] is the Jacobian of (21) and L, B,
and C possess the entries as given in (22) and (23), (24), and (25),
respectively, where [#, k (#)] corresponds to an m-splay state which
solves (19) and (20). Let us further write L = BC. Then the m-splay
state is linearly stable if and only if e > 0, and for all solutions {4134
of the quartic equation,
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2 2
Tr(L) : Tr(L?) Tr(i)) I

+ (Tr(L)Tr(L) — Tr(LL) + €(Tr(L)* — Tr(L*) — Tr(L)) — €Tr(L))

N Tr(D)’ — Tr(I?) + 2e(Tr(L)Tr(L) — Tr(LL)) + €*(Tr(L)? — Tr(L2)) _

we have Re(jt1234) < 0.

The proof of this proposition is given in Appendix B. With this
result, the stability of an m-splay state depends on the traces of L,
12, L = BC, I?, and LI explicitly. We note that, as it has been shown
in Ref. 26, the phase oscillator models with inertia are a subclass of
phase oscillator models with adaptivity. In particular, considering
L =01in (26) completely resembles the finding for phase oscillator
models with inertia in (13).

VI. GEOMETRIC PERSPECTIVE

This short section aims at giving a qualitative geometric view
on the obtained results. In fact, the m-splay states are a particular
class of incoherent states satisfying a special but important condition
Z, =0, i.e, the mth order parameter vanishes. Due to surprisingly
frequently arising symmetries or special coupling configurations
in dynamical networks (Kuramoto-Sakaguchi, for example), these
states appear and form high-dimensional manifolds SM,,, with the
dimension D = (dimension of the phase space) — 2, i.e., the number
of real-valued conditions from Z,, = 0. Due to the high dimension-
ality, such states and their stable/unstable manifolds play a crucial
role in the global dynamics.

Here, we show that the manifold SM,, of the splay states is
foliated by the two parameters Tr (L) and Tr (L?), such that each
(D — 2)-dimensional sheet of this foliation has the same local stabil-
ity properties. One part of this foliation can be stable, another part
is unstable, and the corresponding eigenvalues are given explicitly.
Moving along the manifold [changing Tr (L) and Tr (L?)], one can
observe classical local bifurcations.

Our generalizations on phase oscillators with inertia or with
adaptation show that the above general geometric picture is pre-
served, but with different dimensions and some more parameters
of the foliation. For adaptive networks, for example, the foliation
parameters are the traces of L, L%, L = BC, L%, and LL.

VII. CONCLUSIONS

In this article, we have introduced generalized m-splay states
as a concept for incoherent phase-locked states in ensembles of a
finite number of phase oscillators. We have provided a description
of their shape and illustrated these states for a small number of oscil-
lators in Sec. II. Additionally, we have considered each splay state as
part of an N — 2 dimensional manifold called the splay manifold. In
Sec. 111, we have described the local dynamical properties of gener-
alized m-splay states and have given explicit stability conditions for
their stability. Here, we have identified two specific properties of the
Jacobian matrix L to be of relevance for the stability. In particular,

2

0, (26)

we have shown that the traces of L and L? describe the stability for
any splay state.

In order to illustrate these abstract results from Sec. [1I A, we
have applied our findings in Sec. III B to the Kuramoto-Sakaguchi
model that possesses one-splay states. We have found that the sta-
bility for all splay states is determined by the phase-lag parameter
« alone. However, it is notable that the local dynamics around each
one-splay state is determined by the second moment of the order
parameter R,. Depending on R,, a one-splay state is either a node or
a focus.

In Sec. IV, the results have been transferred to phase oscil-
lator models with inertia. In Sec. IV A, we have generalized the
findings for the stability of generalized splay states and have demon-
strated the stability in dependence on the damping constant y and
the traces of L and L?. We have further described analytically the
two-dimensional surfaces that separate stable regions from unsta-
ble regions in [Tr(L), Tr(L?), y]-space. As before, we have applied
the general results to a specific model. Here, we have considered
the Kuramoto-Sakaguchi model with inertia which possesses one-
splay states. Due to our previous findings, we have derived the
shape of the two-dimensional surface explicitly that separates sta-
ble from unstable regions in («, R,, y)-space. In contrast to the pure
Kuramoto-Sakaguchi model, the stability of the one-splay states
depends explicitly on R, for the model with inertia. Thus, the splay
manifold consists of stable and unstable regions. The phase oscilla-
tor model with inertia that has been considered in this article can
also be interpreted as a phase oscillator model with adaptivity.”®

As the last part of this article, we have shown the generic stabil-
ity condition of any m-splay state for a very generic class of adaptive
phase oscillator models. Here, we have observed that the stability is
not determined by the traces of L and L? alone. It turns out that yet
another Laplacian matrix L describing the interaction of the phases
with the adaptive variables is needed to understand the stability
properties. Hence, the bifurcation scenarios can be more complex.

In summary, in this article, we have developed a general frame-
work to study the local dynamical features of generalized splay
states. These states generalize certain concepts of incoherent states
as they have been studied previously.” In contrast to Ref. 34, the
findings in this article are valid for ensembles of finite size as
well. For the particular class of Kuramoto-Sakaguchi models, we
have also pinpointed the important characteristics that describe
the local dynamics transverse to the splay manifold even beyond
pure phase oscillator models. Due to the intimate relation between
partial integrability and the splay manifold as proposed by the
Watanabe-Strogatz approach,’ we believe that the present findings
provide important insights for future development of generalized
dimension reduction techniques.
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In the field of chimera states, splay states play an important role
for both transient and asymptotic dynamics. Multiple coexistence
of splay states with chimera states gives typically rise to riddled and
intermingled basins of attraction causing the extreme sensitivity and
unpredictability of the global network dynamics.”

Another field for application of our results lies in the research
on epileptic seizures. It was shown that a drop of the degree of syn-
chronization may occur just before the onset of a seizure.””'"" In
particular, this drop of synchronization, where the order parame-
ter tends to zero, hints at the dynamical importance of splay states
(incoherence) for the emergence of seizures. Moreover, modern
approaches to treat tinnitus'>'”” and Parkinson’s disease'’" make
active use of incoherent states. In this regard, our findings may offer
new insights since these methods essentially rely on the stability of
incoherent states.
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APPENDIX A: PROOF OF LEMMA 4

Let us prove the result by complete induction. Consider the case
N = 2. By direct calculation, we find that the statement of the lemma
holds true. Now, assume the result holds for any N. Consider the
characteristic polynomial of the following (N + 1) x (N + 1) matrix
and assume that it possesses N — 1 roots at zero:

Iviyoveny v Ivinn
ll(N+1)
Lovinaveny = . Ly ,
lN(N+1)
where
Ly - Ly
LN =
i o I

We use the Laplace expansion of det(Lni1yw+1) — Alave1y) with
respect to the first column. We get

det(Livrnavsny — Mavtny)

N
= (l(N+1)(N+1) - )v) det (Ly — Ally) + Z (_l)ili(N+1) det ]:N,i

i=1

scitation.org/journal/cha

with Ly, given by

Ivinn v e Ivinn
Ly—x Ly - U A
Li—n Li—iyi-1 — A Li—yn
Livin Livnaey — A Livyn
It U N Y

Remember, by assumption, while evaluating the characteristic poly-
nomial pint1)(X) of Lavy1yav+1)> we only have to consider contribu-
tions to the coefficients ay,; and ay. Note that det iN,i is already a
polynomial of degree Nj thus, it can contribute to ay only. Consider
an additional Laplacian expansion of det Ly with respect to the first
row. Let (I:N,,-)i be the matrix where we cut off the first row and the
ith column of iN,,-. We find that the term —(—l)il(Nﬂ),- det I:N,i,,- of
the Laplacian expansion of det Ly; contributes to a polynomial of
degree N. Any other term results in a polynomial in A with degree
lower than N. Apply the induction ansatz that the statement in the
lemma holds for any K < N, we find

det(Lovgnyven) — Mngry)
= —(=D"ANY (W + an_h + a-2)

+ DMy ANV (A4 ane )

N
— (=N! Z lioven lovenid ™"
i=1

where g, are the coefficients of p(Ly,A). Reorganizing the last
equation yields the proof.

APPENDIX B: PROOF OF PROPOSITION 11

Due to Lemma 10, the eigenvalues of the Jacobian J are deter-
mined by the solutions of

det ((1u +€) (uly — L) — BC) = 0.

By assumption, the m-splay states form an (N — 2)-dimensional
manifold SM,,. Consider the N — 2 perturbation directions along
this family 8(;5 = (8¢7,0,...,0) T, where the components are given
by Z]Iil e™is¢; = 0. From ]_64) =0, we get Lé¢ = 0 and BCS¢
= B0 = 0. Hence, the matrix L(u) = (i 4 €)L 4+ BC needs to have
at least N — 2 zero eigenvalues for any 1 and thus Lemma 4 applies.
The eigenvalues of L are 0 with algebraic multiplicity N — 2 and the
solutions of A2 + a_1)A + an—2 = 0 where the coefficients read

an-1n = —(n + €)Tr(L) — Tr(BO),
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and
2an-2 = (4 €)*(Tr(L)* — Tr(L*))
+ 2(u + €)(Tr(L)Tr(BC) — Tr(LBC))
+ Tr(BC)* — Tr((BC)*),

where we have used well-known relations for the trace. Knowing the
eigenvalues of L, we can introduce a Hermitian transformation Q
such that QLQ is upper triangular, see Schur form of a matrix in
Ref. 105 for a proof of the existence of Q. With this, the polynomial
equation

det (11 + €)ply — QUL(1)Q) = 0

possesses N — 2 solutions p =0 and correspondingly N — 2
solutions p = —e. The four other solutions are given by the
two quadratic equations u* + €t — A,() = 0, where A, solve
2+ aw-nh + an—2 = 0with ay_;) and ag_y) as above. The quar-
tic form in (26) follows directly by elementary algebraic transforma-
tions.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES

7. A. Acebrén, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, “The
Kuramoto model: A simple paradigm for synchronization phenomena,” Rev.
Mod. Phys. 77, 137 (2005).

2 A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept
in Nonlinear Sciences, 1st ed. (Cambridge University Press, Cambridge, 2001).
3A.T. Winfree, The Geometry of Biological Time (Springer, New York, 1980).

“F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks
(Springer, New York, 1997).

SB. Pietras and A. Daffertshofer, “Network dynamics of coupled oscillators and
phase reduction techniques,” Phys. Rep. 819, 1 (2019).

P. Ashwin, S. Coombes, and R. Nicks, “Mathematical frameworks for oscillatory
network dynamics in neuroscience, J. Math. Neurosci. 6:2, 2 (2016).

7V. Klinshov, S. Yanchuk, A. Stephan, and V. I. Nekorkin, “Phase response func-
tion for oscillators with strong forcing or coupling,” Europhys. Lett. 118, 50006
(2017).

8M. Rosenblum and A. Pikovsky, “Numerical phase reduction beyond the first
order approximation,” Chaos 29, 011105 (2019).

9G. B. Ermentrout, Y. Park, and D. Wilson, “Recent advances in coupled oscillator
theory,” Philos. Trans. R. Soc. A 377,20190092 (2019).

10y, Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag,
Berlin, 1984).

118. H. Strogatz, “From Kuramoto to Crawford: Exploring the onset of synchro-
nization in populations of coupled oscillators,” Physica D 143, 1 (2000).

128, H. Strogatz and I. Stewart, “Coupled oscillators and biological synchroniza-
tion,” Sci. Am. 269, 102 (1993).

138, H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature,
and Daily Life (Hyperion, New York, 2003).

T4F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths, “The Kuramoto model
in complex networks,” Phys. Rep. 610, 1 (2016).

T5M. Breakspear, S. Heitmann, and A. Daffertshofer, “Generative models of cor-
tical oscillations: Neurobiological implications of the Kuramoto model,” Front.
Hum. Neurosci. 4, 190 (2010).

161, Liicken, O. V. Popovych, P. A. Tass, and S. Yanchuk, “Noise-enhanced cou-
pling between two oscillators with long-term plasticity,” Phys. Rev. E 93, 032210
(2016).

ARTICLE scitation.org/journal/cha

17M. Madadi Asl, A. Valizadeh, and P. A. Tass, “Dendritic and axonal propagation
delays may shape neuronal networks with plastic synapses,” Front. Physiol. 9, 1849
(2018).

18y, Rohr, R. Berner, E. L. Lameu, O. V. Popovych, and S. Yanchuk, “Frequency
cluster formation and slow oscillations in neural populations with plasticity,”
PLoS ONE 14, €0225094 (2019).

T9R. Berner, S. Vock, E. Schéll, and S. Yanchuk, “Desynchronization transitions
in adaptive networks,” Phys. Rev. Lett. 126, 028301 (2021).

20C. Bick, M. Goodfellow, C. R. Laing, and E. A. Martens, “Understanding the
dynamics of biological and neural oscillator networks through exact mean-field
reductions: A review,” ]. Math. Neurosci. 10, 9 (2020).

21G. Filatrella, A. H. Nielsen, and N. F. Pedersen, “Analysis of a power grid using
a Kuramoto-like model,” Eur. Phys. J. B 61, 485 (2008).

221, Tumash, S. Olmi, and E. Schéll, “Stability and control of power grids with
diluted network topology,” Chaos 29, 123105 (2019).

23H. Taher, S. Olmi, and E. Schéll, “Enhancing power grid synchronization
and stability through time delayed feedback control,” Phys. Rev. E 100, 062306
(2019).

24, Hellmann, P. Schultz, P. Jaros, R. Levchenko, T. Kapitaniak, J. Kurths,
and Y. Maistrenko, “Network-induced multistability through lossy coupling and
exotic solitary states,” Nat. Commun. 11, 592 (2020).

25C. H. Totz, S. Olmi, and E. Schéll, “Control of synchronization in two-layer
power grids,” Phys. Rev. E 102, 022311 (2020).

26R. Berner, S. Yanchuk, and E. Scholl, “What adaptive neuronal networks teach
us about power grids,” Phys. Rev. £ 103, 042315 (2021).

27Y. Maistrenko, B. Penkovsky, and M. Rosenblum, “Solitary state at the edge of
synchrony in ensembles with attractive and repulsive interactions,” Phys. Rev. E
89, 060901 (2014).

280. E. Omel’chenko and E. Knobloch, “Chimerapedia: Coherence-incoherence
patterns in one, two and three dimensions,” New J. Phys. 21, 093034 (2019).

29E. Teichmann and M. Rosenblum, “Solitary states and partial synchrony
in oscillatory ensembles with attractive and repulsive interactions,” Chaos 29,
093124 (2019).

305, Watanabe and S. H. Strogatz, “Integrability of a globally coupled oscillator
array,” Phys. Rev. Lett. 70, 2391 (1993).

31S. Watanabe and S. H. Strogatz, “Constants of motion for superconducting
Josephson arrays,” Physica D 74, 197 (1994).

323, A. Marvel, R. E. Mirollo, and S. H. Strogatz, “Identical phase oscillators with
global sinusoidal coupling evolve by mobius group action,” Chaos 19, 043104
(2009).

331. Stewart, “Phase oscillators with sinusoidal coupling interpreted in terms of
projective geometry,” Int. J. Bifurc. Chaos 21, 1795 (2011).

34S. H. Strogatz and R. E. Mirollo, “Stability of incoherence in a population of
coupled oscillators,” J. Stat. Phys. 63, 613 (1991).

35E. Ott and T. M. Antonsen, “Low dimensional behavior of large systems of
globally coupled oscillators,” Chaos 18, 037113 (2008).

360. E. Omel’chenko, Y. Maistrenko, and P. A. Tass, “Chimera states: The nat-
ural link between coherence and incoherence,” Phys. Rev. Lett. 100, 044105
(2008).

37D. M. Abrams, R. E. Mirollo, S. H. Strogatz, and D. A. Wiley, “Solvable model
for chimera states of coupled oscillators,” Phys. Rev. Lett. 101, 084103 (2008).
381 Omelchenko, O. E. Omel’chenko, P. Hével, and E. Scholl, “When nonlocal
coupling between oscillators becomes stronger: Patched synchrony or multi-
chimera states,” Phys. Rev. Lett. 110, 224101 (2013).

390. E. Omel’chenko, “The mathematics behind chimera states,” Nonlinearity 31,
R121 (2018).

“0A. Pikovsky and M. Rosenblum, “Dynamics of globally coupled oscillators:
Progress and perspectives,” Chaos 25, 097616 (2015).

“1G. A. Gottwald, “Model reduction for networks of coupled oscillators,” Chaos
25,053111 (2015).

42C. C. Gong and A. Pikovsky, “Low-dimensional dynamics for higher-order har-
monic, globally coupled phase-oscillator ensembles,” Phys. Rev. E 100, 062210
(2019).

43D. L. Smith and G. A. Gottwald, “Model reduction for the collective dynamics
of globally coupled oscillators: From finite networks to the thermodynamic limit,”
Chaos 30, 093107 (2020).

Chaos 31, 073128 (2021); doi: 10.1063/5.0056664
Published under an exclusive license by AIP Publishing.

31,073128-11


https://aip.scitation.org/journal/cha
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/j.physrep.2019.06.001
https://doi.org/10.1186/s13408-015-0033-6
https://doi.org/10.1209/0295-5075/118/50006
https://doi.org/10.1063/1.5079617
https://doi.org/10.1098/rsta.2019.0092
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1038/scientificamerican1293-102
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.3389/fnhum.2010.00190
https://doi.org/10.1103/PhysRevE.93.032210
https://doi.org/10.3389/fphys.2018.01849
https://doi.org/10.1371/journal.pone.0225094
https://doi.org/10.1103/PhysRevLett.126.028301
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1063/1.5111686
https://doi.org/10.1103/PhysRevE.100.062306
https://doi.org/10.1038/s41467-020-14417-7
https://doi.org/10.1103/PhysRevE.102.022311
https://doi.org/10.1103/PhysRevE.103.042315
https://doi.org/10.1103/PhysRevE.89.060901
https://doi.org/10.1088/1367-2630/ab3f6b
https://doi.org/10.1063/1.5118843
https://doi.org/10.1103/PhysRevLett.70.2391
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1063/1.3247089
https://doi.org/10.1142/S0218127411029446
https://doi.org/10.1007/BF01029202
https://doi.org/10.1063/1.2930766
https://doi.org/10.1103/PhysRevLett.100.044105
https://doi.org/10.1103/PhysRevLett.101.084103
https://doi.org/10.1103/PhysRevLett.110.224101
https://doi.org/10.1088/1361-6544/aaaa07
https://doi.org/10.1063/1.4922971
https://doi.org/10.1063/1.4921295
https://doi.org/10.1103/PhysRevE.100.062210
https://doi.org/10.1063/5.0009790

Chaos

44 A. Pikovsky and M. Rosenblum, “Partially integrable dynamics of hierarchical
populations of coupled oscillators,” Phys. Rev. Lett. 101, 264103 (2008).

45E. Montbrié, D. Pazé, and A. Roxin, “Macroscopic description for networks of
spiking neurons,” Phys. Rev. X 5, 021028 (2015).

461. V. Tyulkina, D. S. Goldobin, L. S. Klimenko, and A. Pikovsky, “Dynamics
of noisy oscillator populations beyond the Ott-Antonsen ansatz,” Phys. Rev. Lett.
120, 264101 (2018).

“TD. S. Goldobin, M. di Volo, and A. Torcini, “A reduction methodology for
fluctuation driven population dynamics,” e-print arXiv:2101.11679 (2021).

“8R. Ronge and M. A. Zaks, “Emergence and stability of periodic two-cluster states
for ensembles of excitable units,” Phys. Rev. E 103, 012206 (2021).

49D. A. Wiley, S. H. Strogatz, and M. Girvan, “The size of the sync basin,” Chaos
16, 015103 (2006).

50T, Girnyk, M. Hasler, and Y. Maistrenko, “Multistability of twisted states in
non-locally coupled Kuramoto-type models,” Chaos 22, 013114 (2012).

510. Burylko, A. Mielke, M. Wolfrum, and S. Yanchuk, “Coexistence of
hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators
with skew-symmetric coupling,” SIAM J. Appl. Dyn. Syst. 17, 2076 (2018).

52R. Berner, A. Polanska, E. Schéll, and S. Yanchuk, “Solitary states in adaptive
nonlocal oscillator networks,” Eur. Phys. ]. Spec. Top. 229, 2183 (2020).

53C. U. Choe, T. Dahms, P. Hovel, and E. Scholl, “Controlling synchrony by delay
coupling in networks: From in-phase to splay and cluster states,” Phys. Rev. E 81,
025205(R) (2010).

54W. Zou and M. Zhan, “Splay states in a ring of coupled oscillators: From local
to global coupling,” SIAM J. Appl. Dyn. Syst. 8, 1324 (2009).

55p. Perlikowski, S. Yanchuk, O. V. Popovych, and P. A. Tass, “Periodic patterns
in a ring of delay-coupled oscillators,” Phys. Rev. I 82, 036208 (2010).

56M. Calamai, A. Politi, and A. Torcini, “Stability of splay states in globally
coupled rotators,” Phys. Rev. E 80, 036209 (2009).

57S. Olmi, A. Torcini, and A. Politi, “Linear stability in networks of pulse-coupled
neurons,” Front. Comput. Neurosci. 8, 8 (2014).

58M. Dipoppa, M. Krupa, A. Torcini, and B. S. Gutkin, “Splay states in finite
pulse-coupled networks of excitable neurons,” SIAM J. Appl. Dyn. Syst. 11, 864
(2012).

59]. Gémez-Gardefies, Y. Moreno, and A. Arenas, “Paths to synchronization on
complex networks,” Phys. Rev. Lett. 98, 034101 (2007).

SOF. Dérfler and F. Bullo, “Synchronization in complex networks of phase oscilla-
tors: A survey,” Automatica 50, 1539 (2014).

81D. Pazé, “Thermodynamic limit of the first-order phase transition in the
Kuramoto model,” Phys. Rev. E 72, 046211 (2005).

52]. Gémez-Gardefies, S. Gémez, A. Arenas, and Y. Moreno, “Explosive syn-
chronization transitions in scale-free networks,” Phys. Rev. Lett. 106, 128701
(2011).

635, Boccaletti, J. A. Almendral, S. Guan, 1. Leyva, Z. Liu, I. Sendifa-Nadal,
Z. Wang, and Y. Zou, “Explosive transitions in complex networks’ structure and
dynamics: Percolation and synchronization,” Phys. Rep. 660, 1 (2016).

64V, Nicosia, M. Valencia, M. Chavez, A. Diaz-Guilera, and V. Latora, “Remote
synchronization reveals network symmetries and functional modules,” Phys. Rev.
Lett. 110, 174102 (2013).

65G. B. Ermentrout, “An adaptive model for synchrony in the firefly pteroptyx
malaccae,” |. Math. Biol. 29, 571 (1991).

66S. Olmi, A. Navas, S. Boccaletti, and A. Torcini, “Hysteretic transitions in the
Kuramoto model with inertia,” Phys. Rev. E 90, 042905 (2014).

7P, Jaros, Y. Maistrenko, and T. Kapitaniak, “Chimera states on the route from
coherence to rotating waves,” Phys. Rev. E 91, 022907 (2015).

683, Olmi, “Chimera states in coupled Kuramoto oscillators with inertia,” Chaos
25, 123125 (2015).

691. V. Belykh, B. N. Brister, and V. N. Belykh, “Bistability of patterns of synchrony
in Kuramoto oscillators with inertia,” Chaos 26, 094822 (2016).

70Y. Maistrenko, S. Brezetsky, P. Jaros, R. Levchenko, and T. Kapitaniak, “Smallest
chimera states,” Phys. Rev. E 95, 010203R (2017).

71P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, and
Y. Maistrenko, “Solitary states for coupled oscillators with inertia,” Chaos 28,
011103 (2018).

72N. Kruk, Y. Maistrenko, and H. Koeppl, “Solitary states in the mean-field limit,”
Chaos 30, 111104 (2020).

ARTICLE scitation.org/journal/cha

73S. Brezetsky, P. Jaros, R. Levchenko, T. Kapitaniak, and Y. Maistrenko,
“Chimera complexity,” Phys. Rev. E 103, L050204 (2021).

74D. Taylor, E. Ott, and J. G. Restrepo, “Spontaneous synchronization of cou-
pled oscillator systems with frequency adaptation,” Phys. Rev. E 81, 046214
(2010).

75M. K. S. Yeung and S. H. Strogatz, “Time delay in the Kuramoto model of
coupled oscillators,” Phys. Rev. Lett. 82, 648 (1999).

763. Petkoski and A. Stefanovska, “Kuramoto model with time-varying parame-
ters,” Phys. Rev. E 86, 046212 (2012).

77p, Seliger, S. C. Young, and L. S. Tsimring, “Plasticity and learning in a network
of coupled phase oscillators,” Phys. Rev. E 65, 041906 (2002).

78Y. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko, and P. A. Tass, “Mul-
tistability in the Kuramoto model with synaptic plasticity,” Phys. Rev. E 75, 066207
(2007).

79T. Aoki and T. Aoyagi, “Scale-free structures emerging from co-evolution of a
network and the distribution of a diffusive resource on it,” Phys. Rev. Lett. 109,
208702 (2012).

80D, V. Kasatkin, S. Yanchuk, E. Schéll, and V. I. Nekorkin, “Self-organized emer-
gence of multi-layer structure and chimera states in dynamical networks with
adaptive couplings,” Phys. Rev. E 96, 062211 (2017).

811, Bacic, S. Yanchuk, M. Wolfrum, and I. Franovi¢, “Noise-induced switching
in two adaptively coupled excitable systems,” Eur. Phys. . Spec. Top. 227, 1077
(2018).

8ZR. Berner, E. Schéll, and S. Yanchuk, “Multiclusters in networks of adaptively
coupled phase oscillators,” SIAM J. Appl. Dyn. Syst. 18, 2227 (2019).

83]. Franovi¢, S. Yanchuk, S. Eydam, 1. Bacic, and M. Wolfrum, “Dynamics of
a stochastic excitable system with slowly adapting feedback, Chaos 30, 083109
(2020). e-print arXiv:2001.07650.

84R. Berner, J. Sawicki, and E. Scholl, “Birth and stabilization of phase clusters by
multiplexing of adaptive networks,” Phys. Rev. Lett. 124, 088301 (2020).

855 Vock, R. Berner, S. Yanchuk, and E. Scholl, “Effect of diluted connectivities
on cluster synchronization of adaptively coupled oscillator networks,” Sci. Iran. D
28(3), 1669 (2021).

86H. Daido, “Generic scaling at the onset of macroscopic mutual entrainment in
limit-cycle oscillators with uniform all-to-all coupling,” Phys. Rev. Lett. 73, 760
(1994).

87R. Berner, J. Fialkowski, D. V. Kasatkin, V. I. Nekorkin, S. Yanchuk, and
E. Scholl, “Hierarchical frequency clusters in adaptive networks of phase oscil-
lators,” Chaos 29, 103134 (2019).

880. E. Omel’chenko, M. Wolfrum, and C. R. Laing, “Partially coherent twisted
states in arrays of coupled phase oscillators,” Chaos 24, 023102 (2014).

891, Stewart, M. Golubitsky, and M. Pivato, “Symmetry groupoids and pat-
terns of synchrony in coupled cell networks,” SIAM J. Appl. Dyn. Syst. 2, 609
(2003).

%0p. Ashwin and J. W. Swift, “The dynamics of n weakly coupled identical
oscillators,” J. Nonlinear Sci. 2, 69 (1992).

91p. Ashwin, O. Burylko, and Y. Maistrenko, “Bifurcation to heteroclinic cycles
and sensitivity in three and four coupled phase oscillators,” Physica D 237, 454
(2008).

92p. Ashwin, C. Bick, and O. Burylko, “Identical phase oscillator networks: Bifur-
cations, symmetry and reversibility for generalized coupling,” Front. Appl. Math.
Stat. 2,7 (2016).

93H. Sakaguchi and Y. Kuramoto, “A soluble active rotater model showing phase
transitions via mutual entertainment,” Prog. Theor. Phys 76, 576 (1986).

94R. Delabays, “Dynamical equivalence between Kuramoto models with first- and
higher-order coupling,” Chaos 29, 113129 (2019).

95p. S. Skardal and A. Arenas, “Higher order interactions in complex networks of
phase oscillators promote abrupt synchronization switching,” Commun. Phys. 3,
218 (2020).

%K. A. Kroma-Wiley, P. J. Mucha, and D. S. Bassett, “Synchronization of coupled
Kuramoto Oscillators under Resource Constraints,” e-print arXiv:2002.04092v2
(2020).

97S. H. Hou, “Classroom note: A simple proof of the Leverrier-Faddeev charac-
teristic polynomial algorithm,” STAM Rev. 40, 706 (1998).

98S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University
Press, 2004).

Chaos 31, 073128 (2021); doi: 10.1063/5.0056664
Published under an exclusive license by AIP Publishing.

31,073128-12


https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevLett.101.264103
https://doi.org/10.1103/physrevx.5.021028
https://doi.org/10.1103/PhysRevLett.120.264101
http://arxiv.org/abs/arXiv:2101.11679
https://doi.org/10.1103/PhysRevE.103.012206
https://doi.org/10.1063/1.2165594
https://doi.org/10.1063/1.3677365
https://doi.org/10.1137/17M1155685
https://doi.org/10.1140/epjst/e2020-900253-0
https://doi.org/10.1103/PhysRevE.81.025205
https://doi.org/10.1137/09075398X
https://doi.org/10.1103/PhysRevE.82.036208
https://doi.org/10.1103/PhysRevE.80.036209
https://doi.org/10.3389/fncom.2014.00008
https://doi.org/10.1137/110859683
https://doi.org/10.1103/PhysRevLett.98.034101
https://doi.org/10.1016/j.automatica.2014.04.012
https://doi.org/10.1103/PhysRevE.72.046211
https://doi.org/10.1103/PhysRevLett.106.128701
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1103/PhysRevLett.110.174102
https://doi.org/10.1007/BF00164052
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1103/PhysRevE.91.022907
https://doi.org/10.1063/1.4938734
https://doi.org/10.1063/1.4961435
https://doi.org/10.1103/PhysRevE.95.010203
https://doi.org/10.1063/1.5019792
https://doi.org/10.1063/5.0029585
https://doi.org/10.1103/PhysRevE.103.L050204
https://doi.org/10.1103/PhysRevE.81.046214
https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1103/PhysRevE.86.046212
https://doi.org/10.1103/PhysRevE.65.041906
https://doi.org/10.1103/PhysRevE.75.066207
https://doi.org/10.1103/PhysRevLett.109.208702
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1140/epjst/e2018-800084-6
https://doi.org/10.1137/18M1210150
https://doi.org/10.1063/1.5145176
http://arxiv.org/abs/arXiv:2001.07650
https://doi.org/10.1103/PhysRevLett.124.088301
https://doi.org/10.24200/sci.2021.57526.5284
https://doi.org/10.1103/PhysRevLett.73.760
https://doi.org/10.1063/1.5097835
https://doi.org/10.1063/1.4870259
https://doi.org/10.1137/S1111111103419896
https://doi.org/10.1007/BF02429852
https://doi.org/10.1016/j.physd.2007.09.015
https://doi.org/10.3389/fams.2016.00007
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1063/1.5118941
https://doi.org/10.1038/s42005-020-00485-0
http://arxiv.org/abs/arXiv:2002.04092v2
https://doi.org/10.1137/S003614459732076X

Chaos

99F. Mormann, T. Kreuz, R. G. Andrzejak, P. David, K. Lehnertz, and C. E. Elger,
“Epileptic seizures are preceded by a decrease in synchronization,” Epilepsy Res.
53, 173 (2003).

100R. G. Andrzejak, C. Rummel, F. Mormann, and K. Schindler, “All together
now: Analogies between chimera state collapses and epileptic seizures,” Sci. Rep.
6, 23000 (2016).

TOTM. Gerster, R. Berner, J. Sawicki, A. Zakharova, A. Skoch, J. Hlinka,
K. Lehnertz, and E. Schéll, “FitzHugh-Nagumo oscillators on complex networks
mimic epileptic-seizure-related synchronization phenomena,” Chaos 30, 123130
(2020).

ARTICLE scitation.org/journal/cha

102p_ A Tass, I. Adamchic, H. J. Freund, T. von Stackelberg, and C. Hauptmann,
“Counteracting tinnitus by acoustic coordinated reset neuromodulation,” Restor.
Neurol. Neurosci. 30, 137 (2012).

1035p_ A. Tass and O. V. Popovych, “Unlearning tinnitus-related cerebral syn-
chrony with acoustic coordinated reset stimulation: Theoretical concept and
modelling,” Biol. Cybern. 106, 27 (2012).

104p A, Tass, “A model of desynchronizing deep brain stimulation with a
demand-controlled coordinated reset of neural subpopulations,” Biol. Cybern. 89,
81 (2003).

1055 Liesen and V. Mehrmann, Linear Algebra (Springer, Cham, 2015).

Chaos 31, 073128 (2021); doi: 10.1063/5.0056664
Published under an exclusive license by AIP Publishing.

31,073128-13


https://aip.scitation.org/journal/cha
https://doi.org/10.1016/S0920-1211(03)00002-0
https://doi.org/10.1038/srep23000
https://doi.org/10.1063/5.0021420
https://doi.org/10.3233/RNN-2012-110218
https://doi.org/10.1007/s00422-012-0479-5
https://doi.org/10.1007/s00422-003-0425-7

	I. INTRODUCTION
	II. COUPLED PHASE OSCILLATOR MODELS AND GENERALIZED SPLAY STATES
	III. STABILITY OF GENERALIZED SPLAY STATES IN PHASE OSCILLATOR MODELS
	A. General result on the stability of splay states

	B. Kuramoto–Sakaguchi model
	IV. PHASE OSCILLATOR MODELS WITH INERTIA
	A. Stability of m-splay states

	B. Application to the Kuramoto–Sakaguchi model with inertia
	V. ADAPTIVE PHASE OSCILLATOR MODELS
	A. Stability of m-splay states
	VI. GEOMETRIC PERSPECTIVE
	VII. CONCLUSIONS
	ACKNOWLEDGMENTS
	A. APPENDIX A: PROOF OF LEMMA 4
	B. APPENDIX B: PROOF OF PROPOSITION 11

