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Abstract
Long-lived capital-stocks (LLCS) such as infrastructure and buildings have significant and
long-lasting implications for greenhouse gas emissions. They contribute to carbon lock-in and may
hinder a rapid decarbonization of energy systems. Here we provide a systematic map of the
literature on carbon lock-in induced by LLCS. Based on a structured search of the Web of Science
and Scopus, we identified 226 publications from 38 095 search results using a supervised machine
learning approach. We show biases toward power generation and toward developed countries. We
also identify 11 indicators used to quantify carbon lock-in. Quantifications of committed
emissions (cumulative emissions that would occur over the remaining operational lifetime of an
asset) or stranded assets (premature retirement/retrofitting or under-utilization of assets along a
given pathway) are the most commonly used metrics, whereas institutional indicators are scarcely
represented. The synthesis of quantifications shows that (i) global committed emissions have
slightly increased over time, (ii) coal power plants are a major source of committed emissions and
are exposed to risk of becoming stranded, (iii) delayed mitigation action increases stranded assets
and (iv) sectoral distribution and amount of stranded assets differ between countries. A thematic
analysis of policy implications highlights the need to assure stability and legitimacy of climate
policies and to enable coordination between stakeholders. Carbon pricing is one of the most cited
policy instrument, but the literature emphasizes that it should not be the only instrument used and
should instead be complemented with other policy instruments, such as technical regulations and
financial support for low carbon capital deployment. Further research is warranted on urban-scale,
in developing countries and outside the electricity generation sector, notably on buildings, where
stranded assets could be high.

1. Introduction

The objective of the Paris Agreement on climate
change to ‘hold the increase in the global average
temperature to well below 2◦C above pre-industrial
levels’ requires reaching net zero emissions globally
during the second half of the 21st century. This
implies a fast reduction of global emissions in the
next decades (Rogelj et al 2018) and one pillar of

this transition is a rapid replacement of polluting
capital by clean capital (Rozenberg et al 2020). Pol-
luting capital is that whose use directly emits CO2,
such as fossil fuel power plants and internal com-
bustion engine vehicles, but also capital that indir-
ectly induces emissions, such as building shells, roads
and urban forms because of their influence on energy
demand and mitigation possibilities (Guivarch and
Hallegatte 2011).
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Most of the capital concerned by this transition
can be qualified as ‘long-lived capital stock’ (LLCS),
which has specific characteristics that may hinder
rapid transitions (Lecocq and Shalizi 2014). First, by
definition LLCS has long life spans, from around 15
years for personal vehicles to more than 50 years for
buildings (Reyna and Chester 2015, Erickson et al
2015), and to centuries if not millennia in the case of
road networks (De Benedictis et al 2018). A second
key characteristic of LLCS is the lumpiness of capacity
installation (Lecocq and Shalizi 2014). While lock-in
builds on the long life spans of infrastructure and cap-
ital stocks, lumpiness refers to the concentration in a
short period of time of investments in specific capital
stocks or infrastructure. Examples are railroads in the
19th century, nuclear power plants between 1960 and
1990, and (Chinese) high-speed railways since 2008.
This lumpiness leaves a short window of opportun-
ity to influence the capital stock characteristics and
whether it locks in high carbon patterns or not.

Moreover, the dynamics of LLCS are driven by
path-dependent evolution induced by four inter-
twined and mutually reinforcing mechanisms: scale
economies, learning effects, network economies and
adaptive expectations (Arthur 1994, Unruh 2000).
Scale economies refer to reduced unit production
costs over time due to the spread of fixed costs over
increasing production volume (Kalkuhl et al 2012,
Klitkou et al 2015). Learning effects describe how
knowledge accumulation from a technology results
in decreasing costs over time. This has been observed
for power generation plants in the past (McDonald
and Schrattenholzer, 2001), with higher learning rates
for more granular technologies, such as photovolta-
ics (Creutzig et al 2017, Nemet 2019, Wilson et al
2020), and lower if not zero (or even negative) learn-
ing rates for large-scale technologies, such as nuclear
(Grubler 2010). Network economies result from the
advantages of using a technology with wider adop-
tion because of coordination effects between indus-
tries or through regulations and norms. For example,
a road portion increases in value as the network
expands because of new possible destinations (Unruh
2000). Adaptive expectations are due to the adop-
tion of a technology reducing uncertainty, and hence
increasing confidence in using this technology. This
mechanism shapes preferences and cultural norms
such as habits for travel behaviors (Lanzini and Khan
2017).

LLCS therefore induces inertia that prevents or
delays transitions towards low-carbon systems, a phe-
nomenon called carbon lock-in (Unruh 2000). The
capital built today will influence the paths of future
emissions for several decades. The transition to low-
carbon capital can therefore only be made by taking
into account the existing stock and its economic and
technological characteristics. LLCS is also embedded
in broader institutional context that can keep pro-
moting the high-carbon capital in place or create the

conditions for the emergence of an alternative low-
carbon technology (Seto et al 2016).

It is therefore essential to understand to what
extent this existing stock of long-lived capital and
its expected evolution is compatible, or not, with
long-term climate objectives, and to identify levers
available to make this stock ‘climate compatible’.
A certain level of lock-in associated with existing
carbon-intensive capital is inevitable but its depth can
be problematic and hinder a low carbon transition
(Bjornaavold and Van Passel, 2017). This raises the
questions of how to quantify carbon lock-in and how
its ’strength’ differs between sectors or geographical
areas. Answering these questions is a crucial condi-
tion for policies and decisions which avoid creating
or exacerbating carbon lock-in. This article contrib-
utes to this by reviewing the literature about carbon
lock-in related to long-lived capital stock. Our goal
is to describe the current state of knowledge, and to
show what evidence there is of the (in)compatibility
of the existing LLCS and its expected evolution with
the long term climate objectives. Specifically, we aim
to (i) highlight what sectors and geographic areas
have been studied, and where there are research gaps,
(ii) identify how carbon lock-in has been quantified
in the literature andwhat findings emerge from it, and
(iii) analyze the policy implications of carbon lock-in
avoidance or escape.

In a previous traditional literature review, Seto
et al (2016) synthesized the causes and types of
carbon lock-in. Authors conceptualized three major
types: ‘(a) lock-in associated with the technologies
and infrastructure that indirectly or directly emit CO2

and shape the energy supply; (b) lock-in associated
with governance, institutions, and decision making
that affect energy-related production and consump-
tion, thereby shaping energy supply and demand; and
(c) lock-in related to behaviors, habits, and norms
associated with the demand for energy-related goods
and services’. This review also identified conditions
which reinforce carbon lock-in and some strategies
for escaping it. However, to our knowledge, no study
to date has comprehensively synthesized case studies
and associated results on carbon lock-in. The rapid
expansion of the scientific literature on the topic (Cui
et al 2019) calls for scalablemethods to deal with large
numbers of articles (Tsafnat et al 2014, Minx et al
2017, Beller et al 2018, Westgate et al 2018, Nakagawa
et al 2019, Callaghan et al 2020).

Our article hence complements the review by Seto
et al (2016) by providing a systematic map of the lit-
erature about carbon lock-in. We collected, described
and catalogued the available literature based on a sys-
tematic review methodology (James et al 2016). The
screening process was streamlined using a machine
learning approach (O’Mara-Eves et al 2015, Lamb
et al 2019). We map out the distribution of existing
studies across sectors, geographic areas and spatial
scales and identify mature areas of research as well as
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research gaps.We further describe the differentmeth-
odologies and indicators used to quantify carbon
lock-in and provide a synthesis of those estimates.
In particular, we analyze how evaluations of global
stranded assets depend on the temperature objective
of the scenarios and on whether action in scenarios
is early or delayed. We study how global commit-
ted emissions evaluations have evolved over time, and
also provide a comparison of the results for our indic-
ators between sectors and geographical areas. Finally,
we offer a synthesis of existing qualitative statements
in the publications about policies to escape or avoid
carbon lock-in. The rest of this article is structured as
follows : section 2 details our methodology, section
3 presents and discusses our results and section 4
concludes.

2. Methodology

We apply systematic mapping and subsequent syn-
thesis to understand what the evidence is of the
(in)compatibility of the existing LLCS and its expec-
ted evolution with the long term climate objectives.
Systematic mapping (Haddaway et al 2016, James
et al 2016), and evidence gap mapping (McKin-
non et al 2015, Snilstveit et al 2016), have their
roots in the social sciences (Oakley et al 2005, Bates
et al 2007). Systematic maps provide an open-framed
inquiry related to the state-of-evidence in a partic-
ular field by systematically collating, describing and
cataloging the relevant evidence (James et al 2016).
Like other evidence synthesis methods, systematic
mapping approaches provide formal procedures that
aim to minimize different sources of bias during the
review process and promote a comprehensive, rigor-
ous, transparent and objective overview of the avail-
able evidence. We describe in detail the process of
constructing and analyzing our systematic map of the
literature on carbon lock-in across five discrete meth-
odological stages (see figure 1) and subsequent syn-
thesis below. We close this section by describing our
approach to the thematic analysis of policy implica-
tions identified in the various papers.

2.1. Steps 1 and 2 - Review design, scope and search
query
To operationalise our review question, we scope
our review in the following way: we consider long-
lived capital across three categories identified by
Seto et al (2016), namely (i) carbon-emitting infra-
structure, such as power plants and vehicles, (ii)
carbon emissions-supporting infrastructure, such as
fossil fuel distribution network, and (iii) energy-
demanding infrastructure, such as building shells,
roads and urban forms. Our focus is on studies that
analyse the capital built to extract, transport and
transform the fossil fuel resources, but not fossil fuels
themselves - even though these can contribute to
lock-in as well. We also limit the scope of our inquiry

to articles that explicitly study carbon lock-in, and not
only lock-in of a specific technology with no consid-
eration of the greenhouse gases emissions implication
of the technology use. From the three types of carbon
lock-in conceptualized by Seto et al (2016) - namely
(a) technological and infrastructural, (b) institutional
and (c) behavioral - we limited our analysis only
on the first two. Behavioural lock-in is a much less
mature scientific concept and would require a lot
more groundwork before starting any synthesis that
would mainly rest on highly disciplinary evidence
from sociology, behavioural economics or psycho-
logy (Beretti et al 2013, Stoknes 2014). This is beyond
what can be provided here. So we leave it to a ded-
icated future effort that would need to involve addi-
tional scientific expertise.

We constructed a transparent keyword-based
query and search both the Web of Science (WOS)
and Scopus. Our search string consists of synonyms
related to climate change, LLCS and lock-in. The
keywords were initially chosen on the basis of the
authors experience. We then developed and tested a
series of alternative search strings against a sample
of 30 key articles available on WOS compiled a pri-
ori by the authors (see the test list in Supplementary
Material 1 (stacks.iop.org/ERL/16/053004/mmedia)).
We selected the search string presented in table 1,
which could retrieve 29 of the 30 articles (notably the
one article was only not retrieved because the asso-
ciated abstract was not available on WOS). In this
query we included the generic keywords ‘scenario’,
‘pathway’ and ‘integrated assessment’ in the LLCS
and lock-in keywords category to also include art-
icles using integrated assessment model and/or cli-
mate changemitigation scenarios. Some articles from
this literature have addressed carbon lock-in induced
by LLCS amongother topicswithout necessarilymen-
tioning related keywords explicitly in the abstract (see
for instance Creutzig et al (2016) or Luderer et al
(2018)). To limit the number of results obtained, we
also included keywords combined with the Boolean
NOT to exclude articles about forest and agriculture
because they do not fit the definition of LLCS we
used. Overall, our query yielded an initial total of
34 002 unique publications on WOS and Scopus in
June 2019.We chose this rather extensive search string
overmore focused alternatives formatters of compre-
hensiveness and given the availability of a machine
learning pipeline for streamlined evidence screening
and selection (see below).

Although the search string is extensive, we recog-
nize several shortcomings of our search strategy. First,
we focused on English publications only, but recog-
nise the existence of relevant articles on carbon lock-
in in other languages. Second, we focused on the two
bibliographic databases WoS and Scopus, but these
do not cover the entire academic literature and miss
grey literature entirely. To partially compensate for
the second and third points, additional documents
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Stage 1

Review design & protocol

Stage 2

Searching for evidence

Stage 3

Screening the evidence

Stage 4

Coding the evidence & production of evidence database

Stage 5

Analysis including description and visualisation of results as well as reporting

Figure 1. Systematic mapping procedure (James et al 2016).

Table 1. Description of search query.

Climate keywords LLCS keywords Lock-in keywords

((carbon NEAR/3 (emission∗ OR
budget)) OR (CO2 NEAR/3 (emission∗

OR budget)) OR decarboni∗ation OR
(degree∗ NEAR/3 (”1.5” OR ”2”))
OR (climat∗ NEAR/3 (mitig∗ OR policy
OR policies OR goal)) OR (energy
NEAR/2 (consum∗ OR use)))

(infrastructure∗ OR transport∗ OR
fossil OR industry OR electricity OR
shipping OR building∗ OR gas∗ OR
coal∗ OR power OR ”built envir-
onment” OR ”building stock∗” OR
urban∗ OR cities OR city OR ”integ-
rated assessment”)

(lock∗ OR ”stranded” OR retirement
OR divest∗ OR ”inertia” OR ”path
dependen∗” OR ”pathway∗” OR
”scenario∗” OR ”earlier” OR ”early”
OR (commit∗ NEAR/3 (emission∗ OR
CO2)))

Keywords for exclusion : (∗forest∗ OR agric∗ OR agro∗)

were identified by ‘snowballing’ (Sayers 2007) -
extracting references from relevant publications on
carbon lock-in including grey literature. Overall,
whilst not being fully exhaustive, we feel that our
approach provides an extensive view of the available
literature.

2.2. Step 3 - screening and selecting the evidence
A growing challenge for rigorous evidence synthesis
methodologies is that many search strings return
tens of thousands of results - particularly in an
open-framed context like systematic mapping. Here,
the selected search string returned a total of 34,002
publications in June 2019 after deleting duplicates.
Available guidelines for systematic evidence map-
ping (Snilstveit et al 2016, Collaboration for Envir-
onmental Evidence. 2018, Saran and White 2018)
require the comprehensive screening of all search
results - ideally by two independent screeners. It is
our observation that due to the rapid expansion of

scientific literature, authors tend to artificially restrict
their search queries in order to keep the number of
articles for screening manageable, even though this
may substantially limit the analysis.

An alternative way to approach this is to relax
the stringency of screening in exchange for build-
ing a comprehensive search query that yields a num-
ber of search results greater than that which can be
screened by hand. Machine learning can be used to
assist the screening and selecting articles by training
an algorithm with the screening decisions made by
humans (O’Mara-Eves et al 2015, Westgate et al 2018,
Lamb et al 2019, Nakagawa et al 2019). Only the sub-
set of remaining articles predicted to be most likely
to be relevant are then screened manually. We set out
the screening process we followed in detail below, and
summarise in figure 2.

First, to ensure screening consistency between
reviewers and a common understanding of inclu-
sion/exclusion criteria, four authors screened the
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same set of 100 articles independently at the
beginning of the process. The screening results were
compared and reviewers jointly discussed consistency
in the light of inclusion/exclusion criteria (table 2).

After the consistency check, the reviewers
screened a further 508 records independently, res-
ulting in an initial random sample of 608 documents.
We added 41 articles identified a priori as pertinent
for our topic in order to providemore ‘relevant’ labels
in our training dataset. These articles were extracted
from the test list we built and from the references
list of Erickson (2015) and Seto et al (2016). We jus-
tify the choice of these two articles by the fact they
are highly cited and fit our topic perfectly through
their analysis of different types of carbon lock-in in
different sectors.

We then started an iterative process where at each
iteration, we 1) trained a machine learning model to
predict the relevance of a document given its title and
abstract; 2) predicted the relevance of the unseen doc-
uments; and 3) assigned the next set of documents to
be screened by the authors by selecting the documents
predicted to be most relevant. We went through three
iterations of machine learning prioritized screening
and each had decreasing proportions of relevant doc-
uments in the set of screened articles. In the first itera-
tion of 494 documents, 35% of records were relevant.
In the last iteration of 300 documents, only 5% doc-
uments were relevant, suggesting that the returns to
additional screening would be small.

We then added 4,093 further documents by
repeating the queries in February 2020, and by search-
ing for documents citing the article on lock-in by
Unruh (2000). We screened the 97 documents pre-
dictedmost likely to be relevant from these additional
documents, finding a further 28 relevant documents.

We performed full text screening on the 335 doc-
uments included during the screening process. Only
articles with full text available and in English were
kept. 184 of these articles were kept, to which we
added 6 further documents identified manually and
36 documents identified through the aforementioned
snowballing procedure. A total of 226 documents
were finally included for our map and review.

2.3. Step 4: coding the evidence and production of
evidence database
We developed a codebook (included as Supplement-
ary material 3 to this article) for systematic extrac-
tion of information. In our codebookwe reported res-
ults for each study in rows. We define a study as an
instance where geographical and/or sectoral carbon
lock-in is reported (either qualitatively or quantitat-
ively). Overall, we found a total of 431 studies across
the 226 included publications. For each study we
extracted the meta-data (Authors, Title, Date, DOI)
of the corresponding publication. We further recor-
ded qualitative data on the study context such as the

scale of analysis, the geographic areas and the sectors
studied. For each quantification of carbon lock-in, we
also extracted the numerical indicators related to car-
bon lock-in and their corresponding values. Overall,
we found 286 quantifications of carbon lock-in from
92 publications. A common table with limited choices
was constructed in order to ensure consistent inform-
ation extraction between the authors.

2.4. Thematic analysis of qualitative statements
We used thematic synthesis to systematically ana-
lyse policy implications and options for avoiding car-
bon lock-in mentioned in our final sample of stud-
ies. Widely used in psychology, thematic synthesis is
a method for identifying, analysing and highlighting
themes within qualitative studies (Braun and Clarke
2006). It also enables a tractable and easily updat-
able synthesis of extracted statements (Thomas and
Harden 2008, Hilaire et al 2019). Thematic synthesis
allows us to identify a list of possible policy interven-
tions for avoiding carbon lock-in and characterize the
appropriateness of these interventions and the factors
influencing their implementation.

Overall, we manually extracted 136 qualitative
statements (QS) on policy implications from abstract,
conclusion or discussion sections of our final set of
articles, assuming that most of the statements on
policy implications would be in these sections. To be
included, QS had to explicitly refer to policy action
or instruments to escape or avoid carbon lock-in.
We classified QS into broad groups of policy instru-
ments, following Goulder and Parry (2008), namely:
incentive-based instruments, regulatory instruments,
technology policies and others. QS from the ’oth-
ers’ category were then reassessed to highlight the
most frequently mentioned specific features associ-
ated with these policies to avoid or escape carbon
lock-in.

3. Results

3.1. Literature mapping
We first analyzed the literature distribution across
sectors, geographic areas studied, and scales of ana-
lysis. We find that carbon lock-in has been mainly
analyzed in the electricity generation sector (figure
3(a)) with 98 related publications representing 43%
of our sample. Publications remaining at an aggreg-
ated sectoral level or analyzing carbon lock-in in a
generic way also account for a significant portion of
our sample with 66 publications representing 29 %
of our sample. Conversely, the industry and fossil
fuel production & distribution sectors have been little
studied with, respectively, 13 and 14 related articles
representing a combined 11% of our sample. This
focus on the power sector can be explained by its
large contribution to annual global CO2 emissions,
representing between 30 and 40% of total emissions
from 2005 to 2018 (Crippa et al 2019). However,
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Table 2. Inclusion/Exclusion criteria.

Include/Exclude Reason

Include Publication using scenarios in the energy demand or supply sectors must include keywords related
to carbon lock-in, investments dynamic or stock renewal in the abstract

Exclude Publications only focusing on lock-in but not related to climate change mitigation or GHG emis-
sions induced by long-lived capital

Exclude Publications only about carbon lock-in induced by fossil fuels themselves or natural resources
Exclude Publications only analysing behavioural carbon lock-in

Figure 2. Screening process.

while in the electricity sector the observed opera-
tional lifetimes of capital vary between 30 and 60
years (Rode et al 2017), capital in other sectors such
as buildings, fossil fuels extraction facilities, or urban
form can remain in place longer and could present
a larger potential source of long-term carbon lock-
in (Reyna and Chester 2015, Bos and Gupta 2018).
Moreover, the shares of global emissions in sectors
other than power generation will tend to increase in
the coming decades due to the faster decarbonisa-
tion of the power sector (Méjean et al 2019) and the
harder-to-mitigate emissions in sectors such as avi-
ation or industry (Davis et al 2018).

Carbon lock-in has been studied at different
scales, from subnational to global, but unevenly in the
literature (figure 3(b)). Global/Generic and national
scales represent the majority of existing publications

with, respectively, 46% and 33% of our sample.
There are on the other hand only 16 publications
in our sample analyzing carbon lock-in on a multi-
country scale, 8 of which are related to the European
Union. These low numbers are partially compensated
by the fact that several quantitative studies at the
global level also include results for different world
regions, such as Johnson et al (2015). 32 publica-
tions, or 14% of our sample, specifically analyzed
the subnational scale. As for the multi-country scale,
some analyses at the national scale also include spe-
cific results at lower scale, such as Jiang et al (2017)
at the Chinese provinces level. Urban settlements
account for nearly 70% of today’s global carbon emis-
sions (Acuto and Parnell 2016) and subnational mit-
igation policies are specific and differ from larger
scale policies (Creutzig et al 2015). Carbon lock-in
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is also a ’fractal trap’ in the sense that its occur-
rences at different scales tend to reinforce each other
(Bernstein and Hoffmann, 2019). This calls for a
greater emphasis on the regional and city scales for
future research.

To analyse the geographical distribution of the lit-
erature, we used two different indicators: 1) the num-
ber of publications related to a country or a world
region (independent of the scale of analysis; e.g. an
article focusing on a particular city in a country was
counted as related to that country); and 2) the num-
ber of different sectors analysed per country/world
region. The chosen sectors are the same as those
presented on figure 3.

The literature has investigated 45 countries, but
with uneven focus (figure 4(a)). China and theUnited
States are the most studied countries, with 29 and 27
publications, respectively, covering 5 sectors (figure
4(b)). The UK has been widely studied as well with
19 publications covering 4 different sectors. In con-
trast, 13 countries have been analyzed by only 1 pub-
lication each. More than 9 publications are related
to Australia, Germany and India, but for only 3 sec-
tors each. Even if publications are more numerous for
those countries compared to others, future studies on
themissing sectors would be relevant. 26 publications
provide carbon lock-in analysis for world regions. A
large part of this sub sample (17 articles) is about the
European Union, which makes sense because it is the
only world region studied that forms a political union
with climate policies formulated at this level.

Our results reveal a literature bias towards
developed countries. That can be seen in the aggreg-
ated number of publications associated with five
world-regions (IPCC categories): Developed Coun-
tries, Asia &Developing Pacific, Africa &Middle East,
Latin America & Caribbean and Eastern Europe &
West-Central Asia (regional definitions are presented
in the SupplementaryMaterial 2). 92 publications are
associated with Developed Countries, 38 with Asia
& developing Pacific, 10 with Africa & Middle East,
10 in Latin America & Caribbean and 8 in Eastern
Europe and West-Central Asia. Even though devel-
oping countries (excluding China and India) are not
major contributors to global CO2 emissions at the
moment, they may contribute to a high proportion
of future emissions growth, which calls for more
research in these countries. Among the Developed
Countries publications, some countries are over-
represented compared to their contribution to global
emissions, particularly the United Kingdom of Great
Britain and Northern Ireland, but also to a lesser
extent Germany, Sweden and Australia (figure 5).
Russian Federation contributes significantly to global
CO2 emissions but has been proportionally less stud-
ied, with only 5 publications. Although China has
been themost studied country, the share of associated
publications is still lower than its share of emissions
in 2018 (figure 5).

Table 3. Indicators used in the literature by time frame of analysis.
The number of publications is indicated in each cell.

Time frame

Indicator Backward Static Forward

Installed capacity 2 4
Age of existing stock 4
Committed emissions 5 13 8
Capital costs intensity 1 1
Stranded assets 5 31
Mitigation costs 1 10
Emissions/Energy gap 12
Residual emissions 2
Elasticity related to LLCS
variables

3 1

Technology scale 1 2 2
Employment 2

3.2. Review of carbon lock-in quantifications
3.2.1. Carbon lock-in indicators
In our analysis of the literature, we find 92 pub-
lications that contain 286 quantitative estimations
of carbon lock-in. We sort them according to geo-
graphical scope (subnational, national, multicountry,
and global), and sector (electricity, building, spatial
planning, transport vehicles, fossil fuel production,
industry).

The electricity sector has received the most quan-
tifications, with 170 estimations in 60 publications,
which represents 65 % of the subsample of quantit-
ative studies. This result is valid as well for all geo-
graphic levels, except for cities (figure 6 and Sup-
plementary Material 1 figure 1). On the other hand,
publications containing quantifications for transport
vehicles and spatial planning represent each less than
10% of the quantitative studies. Few quantifications
(3) for cities have been done compared to other
geographical units. More city case studies would be
needed to quantify the impact of different policies on
CO2 emissions in the long term and give insights for
local planning choices.

We identified 11 indicators used in the literat-
ure (table 3). These have been applied for differ-
ent time frames of analysis that can be classified as
backward-looking, static for a given year, or forward-
looking using scenarios. Backward-looking analyses
study periods in the past over a certain time frame.
Static analyses provide a snapshot at a given year,
often just a few years before the date of publica-
tion of the study, corresponding to the latest year
for which data is available. Forward-looking analyses
construct scenarios of future evolutions and analyze
those trajectories. Few articles (7) have carried out
quantitative retrospective analyses on carbon lock-
in compared to static (30) or prospective (63) ana-
lyses. In the next paragraph, we describe each of the
different indicators used and summarize the com-
mon trends in results where publications numbers are
sufficient.
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Figure 3. Literature distribution between sectors (a) and scales (b) of the analysis. A publication with multiple studies about
several sectors is counted in each corresponding category. The scale corresponds to the territorial level concerned by the analysis,
which may differ from the geographical unit which is the disaggregation level used for quantification. For instance an estimation
of carbon lock-in at the global scale with results disaggregated by countries is considered here in the global scale category.

Studies have focused on the evolution of installed
capacity, corresponding for example to the electri-
city output for a power plant or the traffic volume
for a road. Installed capacity, as projected over time,
is used as a measure of carbon lock-in in the elec-
tricity generation and fossil fuel production & dis-
tribution sectors. Articles have highlighted the risk
of a rapid increase in high-carbon installed capacity
by 2030 if climate policies are further delayed (Ber-
tram et al 2015, Turhan et al 2016, Kefford et al 2018,
McGlade et al 2018). However, these studies could
potentially overestimate the carbon lock-in induced
by LLCS evolution by not considering low carbon ret-
rofitting such as carbon capture and storage integra-
tion for power plants. This is shown by Li et al (2011)
which quantified in a staticmanner the share of power
generation capacity existing at a given year in China
that could be retrofitted with carbon capture and
storage.

Other studies have quantified carbon lock-in in
relation to the lifetime of the capital considered. Some
authors have referred to the age of the existing infra-
structure stock, analyzing either its distribution or its
average value. The younger the stock, the lower the
probability to replace this capital in the short term.
This indicator has been used mainly in the electri-
city generation sector (figure 6). The global age distri-
bution tends to be bimodal between OECD and non
OECD countries. For instance, in China a large part
of industrial and electricity sector capital is younger
than 10 years (Lane et al 2016, Zheng et al 2018)
whereas in the EU and the US an important part of
electricity generation capital is more than 30 years
old. (Lane et al 2016, Rode et al 2017).

The concept of committed emissions has also been
used to quantify the cumulative emissions that would
occur over the remaining entire operation lifetime
of an asset (Davis et al 2010). This indicator has
been mainly applied in static and forward-looking
frameworks (table 3). Past committed emissions over
a given a period have also been analysed, but to a
lesser extent (Davis and Socolow 2014, Jiang et al
2017, Pfeiffer et al 2018, Tong et al 2019). In a
static framework, the committed emissions calculated
can be compared with carbon-budgets associated
with a temperature target to quantify the potential
(in)consistency of the existing stock with the temper-
ature goal. Whereas most of the indicators have been
used for one or two time frames, committed emis-
sions have been used for backward-looking, static and
forward-looking analyses.

The operational life of infrastructure does not
only depend on its age. Indeed, any infrastructure
project is based on an investment plan with an expec-
ted long-term profitability. A change in the regulatory
and economic context (for example the implementa-
tion of a carbon tax) can thus modify the operational
costs, rendering the continued use of an infrastruc-
ture uneconomical. This is why other indicators also
include economic aspects to quantify carbon lock-
in. Two publications have quantified the capital costs
intensity as the level of capital investment required
for extraction or production of given unit (Shackley
and Thompson 2012, Erickson 2015). The assump-
tion behind this is that the more capital-intensive an
investment, the more it may be isolated from price
fluctuations and hence the more operators will be
likely to keep using this capital.
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Figure 4. Geographical distribution of the literature by numbers of publications (a) and numbers of sectors analyzed (b). The
maps present the results for countries analyzed, with all scales of analysis combined. For instance publications focusing on a
particular city in a country are counted as related to that country. The bar plots show the geographical distribution among world
regions of publications with global or multi-country scales of analysis. The codes for world regions are given in the
Supplementary Material 1 table 1.

Figure 5. Shares of publications against shares of 2018 CO2 emissions for each country. The black line corresponds to the points
where the share of publications equals the share of CO2 emissions. Data used for CO2 emissions come from Crippa et al (2019).
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Figure 6. Distribution of carbon lock-in quantifications by geographical unit, sector studied and indicator used. The numbers in
each color bar give the number of publications for the corresponding geographical unit, sector and indicator combination. Note
that a publication can contain multiple quantifications.

In the same manner, carbon lock-in literature has
made extensive use of the stranded assets indicator.
It is defined as the premature retirement/retrofitting
or under-utilization of existing assets in relation to
a potential reference capital (Saygin et al 2019). This
indicator measures the implications - the assets lost-
if the carbon lock-in is to be escaped from. Stranded
assets can be either the stranded investments or the
stranded profits depending on the reference lifetime
chosen. Indeed, the reference lifetime considered can
be the ‘physical’ one over which the capital can be
used or the ‘economic’ one over which capital invest-
ment costs are recovered. Making this distinction is
important because it can have significant impact on
the results obtained as the difference between these
two lifetimes can be of several decades (Kefford et al
2018). The majority of existing estimations are about
the electricity generation and fossil fuel production
& distribution sectors (figure 6). Two distinct meth-
odologies have been used. For the first one, some
authors have used the age distribution of the exist-
ing stock for a given year based on unit-level assess-
ments to project its evolution, assuming all capital
stock is used until the end of its potential lifetime.
This evolution is then compared (i) either in a static
manner to the capital stock targeted for a future year
(Pfeiffer et al 2016, Farfan and Breyer 2017a,b) (ii)
or with a forward looking approach to the capital
stock evolution extracted from a low-carbon scenario
(CTI 2014a,b, Lane et al 2016, Kefford et al 2018, Cui
et al 2019, Saygin et al 2019). The second approach
is to quantify the stranded assets using models with
an endogenous evolution of capital stock (Mercure
et al 2014, Iyer et al 2015, Johnson et al 2015, Luderer
et al 2016, van Soest et al 2017, Coulomb et al 2019).

In this case, capital can be retired early because new
economic conditions make its use unprofitable. Res-
ults obtained are expressed either in terms of electri-
city capacity/production retired or inmonetary terms
to quantify the loss of expected revenue. Given the
numerous quantifications for these two indicators -
committed emissions and stranded assets - the syn-
thesis of the results is presented in the section 3.2.2
below.

Mitigation costs is also an indicatorwhich has been
used to quantify the transition costs induced by the
inertia of long-lived capital. It represents the poten-
tial macroeconomic costs associated with the trans-
ition to a low-carbon system for different levels of
short-term climate policy ambition. Mitigation costs
have been quantified as the variation of an economic
indicator between a ‘reference‘ scenario (either with
no mitigation policies or with current policies only)
and a mitigation scenario or a scenario considered as
‘optimal’ to reach a long term temperature target. It is
an indicator widely used in the integrated assessment
literature to compare themacroeconomic costs of dif-
ferent scenarios. We extracted only the studies using
specifically this indicator to quantify carbon lock-in.
The economic variables chosen to represent the mit-
igation costs have been GDP losses (Ha-Duong et al
1997, Richels et al 2009, Waisman et al 2012, Lucas
et al 2013, Riahi et al 2015, Luderer et al 2016) or
consumption losses (Lecocq et al 1998, Kalkuhl et al
2012, Bertram et al 2015). The literature has mainly
used mitigation costs to quantify carbon lock-in at
the global scale. A common result with this indicator
is that when mitigation policies are non-existent or
when their stringency is low in the short term, overall
mitigation costs increase, reflecting short-term inertia
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and path-dependency. We considered as mitigation
costs as well the unlocked costs calculated by Erick-
son et al (2015) as the carbon price needed to retire an
existing investment in 2015 at half its economic life-
time and replace it with a corresponding low-carbon
alternative.

Other studies have evaluated the contribution of
infrastructure stock evolution to CO2 emissions by
dynamically taking into account both technical and
economic factors. To do so, some authors have calcu-
lated the emissions/energy gap at a given future year
between different scenarios of infrastructure stock
evolution. Another approach has been to compare
residual emissions – the amount of CO2 emissions
whose abatement remains uneconomical or technic-
ally infeasible in the long term (Kriegler et al 2015,
Luderer et al 2018) – between scenarios. Models used
in these publications have projected an increase of
global residual emissions when the strengthening of
mitigation efforts is delayed. While former indicat-
ors have been applied only for forward-looking stud-
ies, elasticities related to capital stock variables allows
authors to retrospectively isolate the contribution of
capital stock evolution to increases in CO2 emissions.
Correlations have been estimated between CO2 emis-
sions from coal capital & economic growth, CO2

emissions&material stock orCO2 emissions& indus-
trial agglomeration index (Steckel et al 2015, Lin et al
2017, Zhang et al 2018). Avner et al (2014) also used
this type of approach in a forward looking framework,
looking at fossil fuel price elasticity of CO2 emissions
for different scenarios of public transport supply.

A last group of indicators, used more margin-
ally, relates to institutional and political factors that
influence the transition rate of LLCS. This concerns
first of all employment, with analyses of the distribu-
tion of jobs between low and high carbon sectors or
the regional concentration of jobs in carbon-intensive
sectors (Bjornaavold and Van Passel, 2017, Spencer
et al 2018). The issue of employment is not just a
question of social acceptability in case of rapid trans-
ition. One of the conditions for the emergence of a
capital-intensive low-carbon technology in the face
of a dominant technology is the rapid reduction of
cost through learning effects. These learning effects
depend on the production process of the techno-
logy and therefore on the skills of the workers (Bjor-
naavold and Van Passel, 2017). The second institu-
tional indicator is the technology scale expressed as
the market share of given technologies (Erickson et al
2015, Spencer et al 2018, Skoczkowski et al 2018). The
hypothesis here is that widespread adoption of a tech-
nology induces significant carbon lock-in through
confidence in the technology (adaptive expecta-
tions) and coordination between sectors (network
effects).

The indicator statistics reveal that the majority of
existing estimations have used committed emissions
or stranded assets as metrics (figure 6 and table 3).

These indicators have been used at a diversity of
geographical levels compared to other indicators and
inmultiple sectors. However, more retrospective ana-
lysis could be carried out for stranded assets, in par-
ticular in order to analyse which policy instruments
triggered these premature closures and what the asso-
ciated economic impacts were. The majority of indic-
ators used refers to technical and economic dimen-
sions of carbon lock-in. Conversely, few analyses
have been carried out to quantify institutional carbon
lock-in.

3.2.2. Synthesis of results concerning committed
emissions and stranded assets
10 studies in the literature have estimated cumulat-
ive committed emissions for a given year and at the
global scale (figure 7). These articles differ by the sec-
tors included in the analysis. From the four studies
that include all sectors, a slight increase over time of
committed emissions seems to emerge. However, this
result is to be taken with care since it comes from a
very small number of studies, and part of the result
may come fromdifferentmethodologies, data sources
or assumptions, in particular on capital lifetimes and
utilization rates. No clear trend over time emerges
for the electricity sector, but again this may be due
to different methodologies and assumptions across
studies. One study (Tong et al 2019) recently ana-
lyzed, with the same methodology, data sources and
assumptions, the evolution in committed emissions
over time and found an increase in total committed
emissions from just above 400 GtCO2 in 1998 to 658
in 2018, with themajority of the increase in the power
generation sector and in China.

The existing infrastructure contributing the most
to global committed emissions are power plants,
accounting for between 48% and 54% of the total
(Smith et al 2019, Tong et al 2019). This high con-
tribution of the electricity sector is also found at the
national level for the 5 countries with the highest CO2

emissions. For all 5 countries, the share of the elec-
tricity sector in total committed emissions is above
45% (figure 9). Industry is the second largest source of
committed emissions, particularly in emerging coun-
tries such as China and Indiawith shares close to 30%.

Existing evaluations of stranded assets have also
highlighted the carbon lock-in induced by the power
generation sector. Coal-power plants constitute the
electricity generation capital with the highest risk
of stranded assets. For scenarios consistent with a
2◦C target, cumulative global early retired capacit-
ies by 2060 would represent less than 50 GW for
oil, a maximum of around 600 GW for gas and
up to 1700 GW for coal (Iyer et al 2015, Kefford
et al 2018). This large difference justifies the greater
emphasis of the stranded assets literature on coal
power plants. Estimations are sensitive to modelling
hypothesis (figure 8). The later the climate policy
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Figure 7. Global committed emissions (central values) for existing stock of energy infrastructure. The black bar represents the
committed emissions related to coal power plants when available. The year used to calculate committed emissions is indicated at
the bottom of each bar.

Figure 8. Global cumulative stranded capacities of coal power plants by 2060. Each marker corresponds to one quantification,
either one scenario or one static analysis. The marker’s shape codes the assumption on plants lifetimes, and the colors code the
temperature target of the scenario. Temperature target refers to the maximum temperature increase expected in 2100 (50%
chances minimum) extracted from the scenarios. The X-axis corresponds to the year when emissions reduction starts. It is the year
in the mitigation scenario when emissions start to be different from emissions in the baseline scenario (i.e. the scenario with no
climate policy). For static analyses based on retirement schedules of the existing stock, we considered the year of the dataset as the
starting year of emissions reduction. The NDC scenario refers to a trajectory of emissions reductions consistent with the national
determined contributions until 2030 and accelerated emissions reductions after 2030 to meet the long term temperature target.

is implemented, the higher the expected stranded
assets are. Even if the climate policy is implemen-
ted before 2020, the short-term level of stringency
is a determining parameter. Compared to the scen-
arios assuming a strong emissions reduction as early
as 2015 and consistent with a 2◦C target, global
cumulative stranded coal power assets are expected

to be higher by a factor 2-3 for National Determ-
ined Contributions (NDC) pathways (these NDC
pathways correspond to scenarios where mitigation
policies until 2030 correspond to the NDCs from
Paris Agreement on Climate Change and where emis-
sions reductions accelerate after 2030 to meet the
long term temperature target). This estimation of the
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Figure 9. Quantifications of committed emissions and stranded assets for the five most 2-emitting countries in 2018. Panel (a)
shows committed emissions in 2018 from existing infrastructure and panel (b) stranded assets (stranded investments) by 2050 for
a 2◦C consistent pathway. Dots correspond to a single quantification, bars give the range when there are multiple quantifications.
The order of magnitude for stranded assets in the buildings sector have been estimated by graphical reading from IRENA (2017).
Values are not referenced in the codebook we used in this review. Sources : CTI (2015), IRENA (2017), Kefford et al (2018), Saygin
et al (2019), Tong et al (2019).

additional stranded assets induced by NDCs comes
from a single publication (Iyer et al 2015) and there-
fore could be refined by further research. Results are
very sensitive to the assumed operational lifetime
for stranded assets calculation especially for lifetimes
higher than 50 years. Only one study (Cui et al 2019)
quantified stranded assets for 1.5◦C scenario obtain-
ing results significantly higher than other studies with
similar coal power plants lifetime and year of climate
policy implementation.

However, some publications have suggested that
stranded long-lived assets may be even more import-
ant outside of the power sector.While stranded power
sector assets by 2050 could reach up to $1.8 trillion
in scenarios consistent with a 2◦C target, Saygin et al
(2019) found a range of $5-11 trillion in the build-
ings sectors. Muldoon-Smith and Greenhalgh (2019)

even estimated a potential value at risk for global real
estate assets up to $21 trillion. CTI (2015) also quan-
tified $2.2 trillion of unnecessary capex in fossil fuel
production and distribution from 2015 to 2025.

The sectoral distribution and amount of stran-
ded assets differ across countries (figure 9). Capital
for fossil fuel production and distribution represents
a larger share of potentially stranded assets in fossil
fuel producing countries such as theUnited States and
Russian Federation. Electricity generation would be a
larger share of total stranded assets in emerging coun-
tries because this capital is relatively new compared to
its operational lifetime. Conversely, buildings could
represent a larger part of stranded capital in more
developed countries such as the United States, EU or
even Russian Federation because of highmarket value
and low turnover rate.
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Table 4. Findings from the thematic analysis on qualitative statements about policy implications to escape carbon lock-in. The 136
qualitative statements extracted from our sample are available in the Supplementary Material 3.

Topic Counts Sources

Supporting low-carbon
technology deployment

#22 Greene and Plotkin (2001), Sandén and Azar (2005), Delrio and Unruh (2007),
Ahman and Nilsson (2008), Bento (2010), Lehmann et al (2012), Kalkuhl et al
(2012), Avner et al (2014), Mercure et al (2014), Lecocq and Shalizi (2014),
Aglietta et al (2015), Bertram et al (2015), Steckel et al (2015), Fouquet (2016),
Wesseling et al (2016), Hansen et al (2017), Schmidt et al (2017), Bos and Gupta
(2018), Leibowicz (2018), Tvinnereim and Mehling (2018), Edenhofer et al
(2018), Szabo et al (2019)

Carbon pricing should
be introduced

#21 Greaker and Heggedal (2010), Lehmann et al (2012), Hood (2014), Lecocq and
Shalizi (2014), Mercure et al (2014), Shahnazari et al (2014), Bertram et al (2015),
Erickson (2015), Fay et al (2015), Hermwille et al (2015), Mattauch et al (2015),
Steckel et al (2015), Aghion et al (2016), Pfeiffer et al (2016), IRENA (2017), Jiang
et al (2017), Edenhofer et al (2018), Zheng et al (2018), Wilson and Staffell (2018),
Rosenbloom et al (2019), Wang et al (2020)

Climate policies orient-
ation needs to be stable
over time

#20 Delrio and Unruh (2007), Bento (2010), Greaker and Heggedal (2010), Nolden
(2012), Chignell and Gross (2013), Nam et al (2013), Hood (2014), Shahnazari
et al (2014), Wang et al (2014), Lazarus et al (2015), Pfeiffer et al (2016), Hansen
et al (2017), IRENA (2017), Bergen and Mu\ noz (2018), Spencer et al (2018), La
Vi\ na et al (2018), Skoczkowski et al (2018), Wilson and Staffell (2018), Kalkuhl
et al (2020), Rosenbloom et al (2019)

Carbon pricing if intro-
duced needs to be com-
plemented with other
instruments

#17 Sandén and Azar (2005), Delrio and Unruh (2007), Maréchal (2007), Avner et al
(2014), Lecocq and Shalizi (2014), Mercure et al (2014), Bertram et al (2015), Fay
et al (2015), Jotzo and Mazouz (2015), Steckel et al (2015), Mattauch et al (2015),
Pfeiffer et al (2016), Tvinnereim and Mehling (2018), Kalkuhl et al (2020), Meyer
and Schwarze (2019), Rosenbloom et al (2019), Lamperti et al (2020)

Implementing techno-
logy mandates

#13 Gül and Turton (2011), Shackley and Thompson (2012), Chignell and Gross
(2013), Mercure et al (2014), Bertram et al (2015), Erickson (2015), Jotzo and
Mazouz (2015), Steckel et al (2015), Shearer et al (2017), Pfeiffer et al (2018),
Rozenberg et al (2020), Tvinnereim and Mehling (2018), Li and Strachan (2019)

Coordination between
sectors and actors

#12 Frantzeskaki and Loorbach (2010), Carley (2011), Gül and Turton (2011),
Lehmann et al (2012), Malekpour et al (2015), Mäkinen et al (2015), Sachs et al
(2016), Wesseling et al (2016), Karakaya et al (2018), Gadre and Anandarajah
(2019), Gross and Hanna (2019), Tozer (2019)

Highlighting co-benefits
and avoided costs

#11 Delrio and Unruh (2007), Briggs et al (2015), Steckel et al (2015), Kriegler et al
(2015), Clausen et al (2017), Martínez Arranz, (2017), Edenhofer et al (2018),
Skoczkowski et al (2018), de Macedo and Jacobi (2019), Meyer and Schwarze
(2019), Rosenbloom et al (2019)

Creating participation
processes

#10 Praetorius (2009), Lehmann et al (2012), Briggs et al (2015), Vandevyvere and
Nevens (2015), Sachs et al (2016), Schmid et al (2016), Wesseling et al (2016),
Schmidt et al (2017), Spencer et al (2018), Skoczkowski et al (2018)

Implementing perform-
ance standards

#10 Bento (2010), Li et al (2010), Shackley and Thompson (2012), Verbruggen (2012),
Zaid et al (2014), Fay et al (2015), Pfeiffer et al (2016), Edenhofer et al (2018),
Pfeiffer et al (2018), Rozenberg et al (2020)

Setting a compensation
scheme

#5 Odenberger and Johnsson (2007), Kefford et al (2018), Edenhofer et al (2018),
Jotzo and Mazouz (2015), Rentier et al (2019)

Supporting low-carbon
R&D

#4 Gül and Turton (2011), Mattauch et al (2015), Aghion et al (2016), Tvinnereim
and Mehling (2018)

Not picking any techno-
logy as ‘winners’

#4 Marechal and Lazaric, (2010), Shackley and Thompson (2012), Bjornaavold and
Van Passel, (2017), Hansen et al (2017)

Implementing tax on
high-emitting capital

#3 Barrington-Leigh and Millard-Ball, (2017), Rozenberg et al (2020), Kalkuhl et al
(2020)

The contrasting results between the two indic-
ators for the buildings sector can be explained by
the methodology used to calculate committed emis-
sions. Estimation in global studies tend to underes-
timate carbon lock-in outside the electricity sector
as they do not take into account additional iner-
tia induced by building shells, conditions, asset loca-
tions or transport infrastructure (Guivarch and Hal-
legatte 2011).More research is needed about stranded

assets outside of the power sector given their potential
magnitude.

3.3. Synthesis of policies to break out carbon
lock-in
Here we summarize identified policy implications
suggested to escape or avoid carbon lock-in (table 4).
The qualitative statements (QS) we found emphas-
ize that three governance dimensions need to be
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integrated regardless of the instruments used: stabil-
ity, coordination and legitimacy. Long-term stability
of climate policy orientations is referred to in 20 QS.
When the policy implementation appears certain and
credible, stakeholders are confident and invest early
in low-carbon LLCS (Bento 2010, Nam et al 2013,
Shahnazari et al 2014, Wang et al 2014, Vogt-Schilb
et al 2015) to adapt to the future regulatory context
and to avoid sunk investments in high-carbon LLCS.
The predictable evolution of climate policies leads
to investments more consistent with the long term
target, limiting carbon lock-in extension or stranded
assets due to unanticipated shock in climate policy
(Lazarus et al 2015, Bergen andMu noz 2018, Kalkuhl
et al 2020).

The transition of LLCS towards low-carbon sys-
tems cannot be done without assuring its legitim-
acy. This idea appears in the qualitative statements
we extracted through different channels such as
the transparency and emphasis on co-benefits and
avoided costs (11 QS) or the creation of participat-
ory processes (11 QS). Carbon lock-in is at the inter-
section of political, economic and institutional con-
straints among a multitude of actors. There is hence
the need to ensure the largest possible consensus and
support around the rapid transition of existing capital
and the associated policy instruments.

Policy packages should also create the space
for the coordination between actors and sectors (12
QS), counterbalancing existing coordination effects
between ’dirty’ sectors. These three aspects - stability,
legitimacy and coordination - are not independent
and influence each other: creating legitimacy between
different actors of LLCS transition policies reinforce
the long term stability, and policies that appear
stable and credible to stakeholders lead to more
coordination.

A variety of different policy instruments are men-
tioned in our sample (table 4). Incentive-based instru-
ments include emissions taxes, tradable allowance
systems, subsidies to emissions abatement or taxes
on goods associated with emissions. 21 documents
refer to the implementation of carbon price instru-
ments through taxes or allowances with the object-
ive to provide incentives making high-carbon LLCS
less attractive. However, some qualitative statements
highlight limitations of carbon pricing with regard
to the constraints on the LLCS such as the difficulty
to assure commitment and stability over time (Pfeif-
fer et al 2016, Kalkuhl et al 2020), the legitimacy of
this instrument (Pfeiffer et al 2016, Rosenbloom et al
2019) or the fact that it does not prevent sunk costs
and stranded assets (Tvinnereim and Mehling 2018,
Meyer and Schwarze 2019). 17 QS highlight the need
to integrate carbon pricing in a broader policy pack-
age.Other incentives instruments arementionedwith
3 QS related to taxes on high-emitting capital.

The second category of instruments considered is
regulatory instrumentswith technologymandates and

performance standards. Technology mandates refer
to a specific requirement regarding the production
process such as making the use of a given techno-
logy or equipment mandatory. Performance stand-
ards impose conditions regarding the output but do
not impose any technology. We obtained 13 and 10
QS related to technology mandates and performance
standards, respectively. For performance standards,
the buildings and heating sector is more represented,
with 50%of the statements compared to other instru-
ments. One explanation is the very slow turnover of
building stocks. This means that some choices about
energy performance attributes such as the build-
ing orientation or its compactness for instance are
irrevocable. This calls for immediately choosing the
highest energy performance which can be assured
with performance standards (Verbruggen 2012, Fay
et al 2015). Limiting further sunk costs because of
long capital lifetimes also justify the usage of techno-
logy mandates especially in the electricy sector with
several mentions of moratoria for new coal power
plants (Mercure et al 2014, Bertram et al 2015, Steckel
et al 2015, Pfeiffer et al 2018, Rozenberg et al 2020).

Technology policies include R&D support and sup-
port to technology deployment. Few QS (4) are
related to support for R&D contrary to support for
technology deployment with 22 QS. One approach is
to decrease investment risks in new low-carbon cap-
ital (Mercure et al 2014, Aglietta et al 2015, Eden-
hofer et al 2018). Another approach is to subsid-
ize low-carbon capital to create niche emergence and
compensate for the lower costs of fossil fuel capital
induced by past cumulative learning effects (Mercure
et al 2014, Fouquet 2016, Bos and Gupta 2018, Szabo
et al 2019).

4. Conclusion

Long-lived capital-stocks, such as infrastructure and
buildings, induce path-dependent evolution and
therefore constitute a constraint for the rapid reduc-
tion of greenhouse gas emissions. Here, we systemat-
ically map the literature about carbon lock-in. To do
so, we use machine learning to identify 226 relevant
publications for a set of 38 095 articles from the Web
of Science and Scopus databases. We extracted qual-
itative and quantitative information for each public-
ation. The synthesis of this information reveals com-
mon analytical approaches, as well as geographical or
sectoral specificities.

We find that research on carbon lock-in has
mainly focused on power generation.We also identify
a bias toward developed countries, which represent
the majority of our sample. Comparing the share of
global emissions in 2018 and the share of publica-
tions for each country, we also highlight understud-
ied countries such as Russian Federation or China
(even though the latter has been the most studied
country in the literature, it represents a smaller share
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of publications than its share in global emissions)
and overstudied countries such as the United King-
domofGreat Britain andNorthern Ireland, Australia,
Sweden or Germany.

We also scrutinized publications that quantify
carbon lock-in. We identify 11 types of indicators
used : installed capacity, age of existing stock, com-
mitted emissions, stranded assets, capital costs intens-
ity, mitigation costs, emissions/energy gap, residual
emissions, elasticity related to long-lived capital stock,
technology scale and employment. The majority of
quantitative studies have evaluated carbon lock-in
with forward-looking indicators. Committed emis-
sions and stranded assets are the two most widely
used indicators. The literature indicates that global
committed emissions of existing energy infrastruc-
ture increased slightly since 2010. However, this res-
ult is to be taken with care since it comes from a
very small number of studies. Stranded assets have
mainly been quantified for the power generation sec-
tor. Coal-power plants are the most important and
most investigated stranded assets in the electricity
sector. In scenarios consistent with a 2◦C target,
coal-power plants represent on average about 70% of
cumulative early retired capacity. Studies also demon-
strate, unsurprisingly, that the later climate policies
are implemented, the higher the expected stranded
assets are. In scenarios consistent with a 2◦C target,
stranded coal power assets are evaluated to be higher
by a factor 2-3 for pathways that assume relatively
low-ambition policies following National Determ-
ined Contributions until 2030 compared to path-
ways assuming ambitious climate policies starting in
2015. However, recent literature suggests that stran-
ded long-lived assets may be even more important
outside of the power sector - notably for the buildings
sector in developed countries due to its high market
value and low turnover rate.

We finally synthesized qualitative statements
related to policies to escape carbon lock-in. They
highlight the need to assure (i) the stability of climate
policy orientations, (ii) the coordination between act-
ors and sectors and (iii) the legitimacy of targets and
instruments used. Although the carbon price is one of
the two most mentioned policy instrument, it is also
regularly pointed out that it cannot prevent carbon
lock-in if used alone. Carbon pricing therefore needs
to be complemented with other instruments, such as
fiscal support for low-carbon capital deployment and
the provision of low-carbon infrastructure.

Our work has some limitations related to the
systematic review methodology. First of all, some
abstracts may use keywords or synonyms other than
those used in our search query. Although we also ana-
lysed the references of each article to limit this omis-
sion, the terminology used for the same subject can
vary significantly between organizations and research
domains, in particular for transdisciplinary research
topic such as sustainable development (Glavic and

Lukman 2007). In addition, although the authors
defined commonly criteria for publications inclu-
sion/exclusion, the manual filtering of articles can
be subject to a certain amount of subjectivity as to
whether or not these criteria are met. One way of lim-
iting this potential bias would have been to jointly
check all the excluded articles, but this would have led
to a much greater amount of work time allocated to
the filtering stage. We also conclude from the results
of our machine-learning assisted screening that the
returns to additional screening would be low, but not
zero. It is therefore unlikely that we identified 100%
of relevant studies returned by our queries.

Despite these limitations, we identify differ-
ent knowledge gaps. First, more analyses in non-
electricity sectors are required. The two reasons are
that (i) the rates of capital renewal can be slower than
in the electricity sector but also that (ii) the con-
tribution of sectors other than electricity is likely to
increase in the coming decades, as the electricity sec-
tor is the ’easiest’ sector to decarbonise. Secondly,
studies at urban scale are lacking, although cities
are called upon to play an increasing role in the
implementation of mitigation policies in the future.
Thirdly, although developed countries are large con-
tributors to global emissions with the majority of the
physical stock already built, future development path-
ways will need to be analyzed in developing coun-
tries in order to disentangle the factors contribut-
ing to carbon lock-in (Lee and Koski 2014). In addi-
tion, although some of the countries not studied may
not contribute significantly to global emissions, they
may have specific characteristics of interest for the
analysis of carbon lock-in and mitigation policies.
This is notably the case for islands, including small
island developing states (SIDS), which are geograph-
ically confined, are limited in outward sprawl, and
display a smaller number of power plants and gas-
oline stations. These characteristics make them ideal
candidates for escaping carbon lock-in (Soomauroo
et al 2020). Finally, carbon lock-in depends not only
on techno-economic factors but also on institutional
factors, and the increasing use of indicators integrat-
ing this latter dimension seems necessary to assess
more precisely lock-in risks.

Multiple possible low-carbon transition pathways
involving rapid transitions of capital exist. However,
decisions concerning the transitions cannot avoid the
question of feasibility and the underlying political and
economic constraints. Identifying existing or future
socio-technical and institutional barriers is crucial to
informing policy makers on the realistic implement-
ation of public policies (Lamb and Minx 2020). The
measures of carbon lock-in strength induced by LLCS
delineate the ‘dynamic political feasibility space’ (Jew-
ell and Cherp 2020). Multidimensional monitoring
can allow the iterative readjustment decarboniza-
tion targets in different sectors or regions and the
implemententation of policy packages consistentwith
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the dimensions highlighted in this review. Some of
the indicators that quantify carbon lock-in could sup-
port efforts to track progress towards the Paris Agree-
ment targets and to inform the next ’global stock-
takes’ (Peters et al 2017).
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