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Abstract

Recovering 3-D information from several 2-D images is one of the most important topics in

computer vision. There are a lot of applications in different areas such as TV contents, games,

medical applications, robot navigation and special effects, etc. Multi-stereo and Structure-

from-Motion methods aim to recover the 3-D camera pose and scene structure for a rigid

scene from an uncalibrated sequence of 2-D images. The 3-D camera pose can be estimated

as the principle projection ray for a camera observing a rigid scene. The line of principal ray

defines the collineation of all viewpoints observing the same scene. However, the projective

camera geometry is involved in a number of distorted images for a Euclidean geometric object

since the projection is a non-metrical form of geometry. This means that the collineation of

projective ray is not always satisfied in metrically distorted pixels in the viewpoints, and

the distortion is the image form of divergent rays on the 3-D surfaces. The estimation of

dense scene geometry is a process to recover the metric geometry and to adjust the global

ray projection passing through each 2-D image point to a 3-D scene point on real object

surfaces. The generalization of 3-D video analysis depends on the density and robustness of

the scene geometry estimation. In this dissertation, the 3-D sceneflow method that analyzes

jointly stereo and motion is proposed for retrieving the camera geometry and reconstructing

dense scene geometry accurately. The stereo viewpoints provide more robust 3-D informa-

tion against noises, and the viewpoints of the camera motion increase the spatial density of

the 3-D information. This method utilizes a brightness-invariance constraint that a set of

spatio-temporal correspondences do not change for a 3-D scene point. Due to physical im-

perfections in the imaging sensors and bad locations of detected features and false matches,

image data contain a lot of outliers. A unified scheme of robust estimation is proposed to

eliminate outliers both from feature-based camera geometry estimates and dense scene ge-

ometry estimates. With a robust error weight, the error distribution of estimates can be

restricted in a smoothly invariant support region, and the anisotropic diffusion regularization

efficiently eliminates outliers in the regional structure. Finally, the structure-preserving dense

3-D sceneflow is obtained from stereo-motion sequences for a 3-D natural scene.
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Zusammenfassung

Die Gewinnung der 3D-Information aus unterschiedlichen 2D-Bildern gehört zu den wichtig-

sten Forschungsthemen der Computer Vision. Dieses Feld hat eine Vielzahl von Anwen-

dungen in den verschiedensten Bereichen, z. B. bei der Generierung von TV-Inhalten, für

Videospiele, im medizinischen Bereich, bei der Roboternavigation und für Spezialeffekte im

Kino. Dabei gibt es bereits eine Menge Forschungsarbeiten zum Thema, welche allgemein

zum Ziel haben, die 3D-Koordinaten der Kamera und die Szenenstruktur für statische Inhalte

aus unkalibrierten 2D-Bilder bestimmen, dies zum Beispiel mittels des Multi-Stereo-Ansatzes

oder durch die Structure-from-Motion-Analyse. Die 3D-Kameraposition kann mittels der

Hauptprojektionsachse einer Kameraaufnahme für eine statische Szene geschätzt werden.

Diese Achse definiert die Collineation der Blickpunkte, welche die gleiche Szene beobachten.

Allerdings verursacht die projektive Kamerageometrie bestimmte Bildverzerrungen für Eu-

klidische Objekte, da sie selbst keine metrische Abbildung darstellt. Dies hat zur Folge,

dass die Collineation von Strahlen nicht mehr für metrisch verzerrte Pixel erfüllt ist, wobei

dann die Verzerrung selber die Abbildung divergenter Strahlen darstellt. Die Schätzung der

dichten Szenengeometrie ist ein Prozess, mit dessen Hilfe einerseits die metrische Geome-

trie wiedergewonnen wird und andererseits die globale Projektion so adjustiert wird, dass

jeder Bildpunkt bei der Projektion in den 3D-Raum auf die echte Objektoberfläche abge-

bildet wird. Die Verallgemeinerung der 3D-Videoanalyse hängt dabei von der Dichte und

Robustheit der Schätzung der 3D-Szenengeometrie ab. In dieser Dissertation wird zur Er-

mittlung der Kamerageometrie und für die Rekonstruktion der dichten Szenengeometrie die

Methode des dreidimensionalen Szenenflusses vorgeschlagen, welche die Stereo- und Bewe-

gungsinformationen gemeinsam analysiert. Hinsichtlich verschiedenartiger Rauschstörungen

bieten Stereoanordnungen robustere 3D-Informationen, hingegen erhöhen die Blickpunkte

einer sich bewegenden Kamera die räumliche Kameradichte. Die vorgeschlagene Methode

geht dabei von der Helligkeitsinvarianzbedingung aus, welche besagt, dass raum-zeitliche

Korrespondenzen zwischen Abbildungen eines 3D-Szenenpunktes unveränderlich sind. Auf-

grund physikalischer Ungenauigkeiten der optischen Sensoren, schlechter Lokalisierungen von

Merkmalspunkten und sich daraus ergebender fehlerhafter Punktzuordnungen enthalten die

Bilddaten eine Menge von Ausreißern. Deshalb wird hier ein vereinheitlichter Ansatz zur ro-

busten Schätzung und Eliminierung der Ausreißer bei gleichzeitiger Bestimmung der Kamera-
xvi



geometrie sowie der dichten Szenengeometrie verfolgt. Mittels einer robusten Fehlerwichtung,

bei der die Fehlerverteilung der Schätzungen auf einen näherungsweise invarianten Bereich

begrenzt wird, und durch Verwendung einer auf anisotroper Diffusion basierender Regular-

isierung werden die Ausreißer in der regionalen Struktur effizient eliminiert. Letztendlich

kann der dichten 3D-Szenenfluss aus Stereobildsequenzen mit natürlichen Inhalten gewonnen

werden.
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Chapter 1

Introduction

1.1 Depth Cues

One of the major functions of the human visual system is to construct a 3-D representation

of the real world surrounding us. The images on our retina are patterns of lights reflected

from our environment. Since the world is 3-D, we have to perceive a 3-D sensation in order

to discover what is present. The problem is that the 3-D world space is projected onto the

retina of both eyes as 2-D images. However, the human brain can process subtle differences

between two retinal 2-D images with a slightly different perspective to perceive 3-D. The

difference between the two eyes’ images is a result of the eyes’ horizontal separation, this is

referred to as binocular disparity or retinal disparity. The process in visual perception leading

to the stereoscopic depth is referred to as stereopsis [1]. Figure 1.1(a) and 1.1(b) respectively

illustrates the binocular projective geometry in the human visual system and the binocular

disparity. Cues for depth perception can be divided in four categories [2] as

(a) Ocular information: Accommodation1 and convergence.

(b) Stereoscopic information: Binocular disparity.

(c) Dynamic information: Motion parallax.

(d) Pictorial information: Occlusion and relative scale.

Computer stereo vision : The 3-D real world can be analyzed by more than two viewpoint

images simultaneously captured at slightly different positions. Cameras taking images at dif-

ferent positions can generate a depth cue to determine the relative distances between objects,

e.g. disparity and parallax of 3-D objects, as our eyes do [3]. Figure 1.2(a) and 1.2(b) repre-

sent the left image and the right image of stereo camera. A computer compares the images to

find parts that match, and the distance between the best matches can be used to determine

the depths of 3-D objects. An image with the best matches designates as disparity map. Fig-

ure 1.2(c) and 1.2(d) show disparity maps that are respectively generated by the left-to-right

1) Accommodation is the process of focusing on an object.
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3-D point

left eye right eye

(a)

left retina

right retina

Binocular disparity

(b)

Figure 1.1. Human visual system - (a) geometry of binocular projection by the human visual
system, (b) definition of binocular disparity

and the right-to-left image matchings. The camera angles according to the relative camera

distances for the fixed 3-D positions make a geometric relation referred as epipolar geometry.

[89] The simplest case is when the camera image planes are on the common plane. Multiple

camera images may be converted to be on the same image plane by reprojection through a

linear transformation. This process is called rectification. [4] Disparity estimation is often

performed on the rectified images and used to recover the 3-D scene structure. The process

to find the depth of a 3-D point through measurements of side angles in a triangle formed by

a 3-D point and two cameras is referred as triangulation. [5]

Understanding of motion : In computer vision, the understanding of motion can be di-

vided into two categories: 2-D motion and 3-D motion. 2-D motion refers to the displacement

of 2-D components in the image plane, e.g. pixels, edges, regions and image object, etc., that

can be measured by matching or optical flow methods. 3-D motion refers to the estimation

of rotation and translation of rigidly moving objects relative to the camera. If the scene is

static, the measured 2-D motions totally derive from the camera motions that can be mod-

eled as one of translational affine or projective. Even though a single 3-D motion is present,

multiple 2-D motion models can be analyzed in the images due to the perspective effects,

depth discontinuities, occlusions and etc. [25, 26] When the scene is dynamic, i.e. a moving

object captured by a hand-held camera, it is difficult to separate the camera motions from

the object motions because the object motions are not global but local and independent. In

Figure 1.3(a), the motion trail of a dynamic scene taken by a static camera exemplifies the

local and independent motions. The motion blurring effects in the motion trail are caused by
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(a) (b)

(c) (d)

Figure 1.2. Disparity map - (a) left-viewpoint image of stereo camera, (b) right-viewpoint
image of stereo camera, (c) disparity map using left-to-right matching, (d) disparity map
using right-to-left matching [90]

a temporal motion. The camera motion may be mixed with the object motions. However, a

set of synchronized multiple cameras can capture both camera motion and object motions as

Figure 1.3(b) shows. The global motions in the image are induced by the 3-D camera loca-

tions in the world coordinate system and thus can be modeled as a 3-D motion. The relative

distances from multiple cameras can be approximated by the affine motion model. Several

2-D and 3-D motion models are shown in Table 1.1, and the introduction of the models will

be described in Chapter 3.1.

1.2 3-D Video

3-D video refers to stereoscopic motion-picture images in depth. Recording a 3-D video can

be via synchronized dual cameras whereby the left and right eye views of a scene are recorded

by the two camera views. 3-D graphic models and animations can be easily converted to a
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(a) (b)

Figure 1.3. Spatio-temporal motion effects - (a) motion trail of a dynamic scene captured by
a static camera, (b) motion trail of a scene captured by multiple cameras

Table 1.1. 2-D and 3-D motion models in computer vision

Motion model Model equations Model parameters

2-D translational m2 = m1 + ti

{
ti ∈ R

2
}n

i=1

2-D similarity m2 = αiRim1 + ti {Ri ∈ SO(2), αi ∈ R
+}n

i=1

2-D affine m2 = Ai

[
m1

1

] {
Ai ∈ R

2×3
}n

i=1

3-D translational mT
2 t̂im1 = 0

{
t̂i ∈ R

3
}n

i=1

3-D rigid-body mT
2 Fim1 = 0

{
Fi ∈ R

3×3
}n

i=1

3-D homography m2 ∼ Him1

{
Hi ∈ R

3×3
}n

i=1

stereo view or any number of views. These 3-D recordings are composited and edited for

stereoscopic 3-D playback either in video using stereo glasses2, or auto-stereoscopic displays3.

A 3-D video give more sensory information to the viewer than a conventional 2-D video. The

addition of binocular depth in a video gives people a higher sense of being there in a dis-

played scene. An increase in sensory information, through the addition of stereoscopic cues,

may enhance the presence4 of viewers. [6, 8, 9] From a different point of view, 3-D video

also defines spatial motion pictures seen on normal TV or monitors with horizontal parallax

which occupyies a 3-D volume. A study of presence [7] revealed that a moving sequence has

relatively larger effects on presence ratings than the stereoscopic effect. Thus, a key feature

of 3-D video is interactivity in the sense that a user has the possibility to choose an arbitrary

2) e.g., LCS shutter, polarized projection and anaglyph glasses, etc.
3) e.g., Lenticular lens, parallax barrier and cross-lenticular displays, etc.
4) Presence is a concept which is referred to the subjective experience of being in one place or environment

even when one is situated in another or an unremarked sense of being there and reacting to in amediated
environment. As the sense of presence increases, people become more aware of the mediated environment,
and less aware of the environment in which they are physically located.
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viewpoint within a visual real-world scene. Spatio-temporal effects such as freeze-and-rotate

have been demonstrated in several recent movies, like The Matrix [10] or Romeo Must Die

[11]. However, these effects can only be generated by using a large number of still cameras

and involving a considerable amount of manual editing. The advance of computer vision

techniques have solved the problem of the 3-D motion properties of objects in a scene and

recently making it possible to produce automatic and interactive virtual-reality5 using images

and videos. According to of scene and camera configurations, 3-D video processing methods

can be categorized as follows:

(a) Static scene analysis : Capturing multiple views of a static scene is relatively simple since

only a single camera is needed. The camera can be horizontally moved to take multiple

viewpoint images of the static scene. If the camera geometry can be established with

the use of hardware which controls the movement of camera, e.g. a robotic arm or a

similar mechanism like Crane and Jib arm, novel views can be synthesized in the camera

geometry. A camera gantry is used in [12] to capture light field, which assumes that

the camera locations form a uniform grid on a 2-D plane. In concentric mosaics [13], a

camera is mounted on the tip of a rotating arm, which captures a series of images whose

centers of projection are along a circle. A software approach that estimates the camera

geometry is camera calibration. In the study of Lumigraph [14], a hand-held camera

is used to capture a scene which contains three planar patterns to perform the camera

calibration. In [15], a CCD camera with a range scanner attached to a spherical arm is

used to capture images and the scene geometry simultaneously, and camera calibration

is performed to determine the camera positions.

(b) Dynamic scene analysis : For the acquisition of a dynamic scene, an array of static

cameras is needed in most cases. The cameras need to be synchronized if correspondence

between images will be explored. An exceptional case is automatically self-reconfigurable

camera arrays mounted on robotic servos as [16] shows. While the cameras are capturing

a calibration pattern in the scene, the cameras adjust the pose to minimize the calibration

error and to acquire more accurate images for rendering. Although a number of multi-

view video systems allow for the realistic rendering of a time-varying scene, the capturing

systems should be confined to dense cameras which are placed very close together for

producing high-quality results. A dynamic light field camera using multiple baselines of

a couple of centimeters does not need any scene geometry at all. [17] However, if the

baseline is wide, the scene geometry that is predominantly computed by stereo methods

should be calculated to compensate the sampling distortions according to the object

depths.

5) Non-interactive 3-D video is passive virtual-reality as in theater presentations, whereas user-determined
3-D video is interactive virtual-reality.
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1.3 Multi-view Approaches for 3-D Motion Analysis

Structure-from-Motion (SfM) [18, 19] and Multi-stereo [20–22] are approaches that establish

the relative distances between 3-D cameras and scene points. SfM and Multi-stereo respec-

tively use a monocular camera in motion and a set of multiple static cameras. Figure 1.4(a)

and 1.4(b) illustrate SfM and Multi-stereo approaches.

Rigid-body motion : When the scene is static, both methods can establish a model of

3-D camera motion from the trajectories of a set of 2-D feature points or fits the 3-D struc-

tures to reliable 2-D correspondences in viewpoint images. These methods can be well un-

derstood when the relative 3-D positions between scene points and cameras can be defined

by a rigid-body motion [23]. For a fixed camera position, the movement of a point

(∇m)T v + mt = 0 (1.1)

where ∇m is the spatial gradient of m, mt is the temporal derivative, and v = [du/dt dv/dt]

is the velocity vector. If we consider a fixed scene point m, two camera positions is always

relative to the scene points. Since the scene points are static and fixed in the world coordinate,

the movement of a camera is same to static multiview cameras that the translation t and

rotation R of a camera is relative to the others.

m(t+ 1) = Rm(t) + t (1.2)

SfM methods are equivalent to multi-baseline stereos for a static scene.

Epipolar constraint : It is well-known that two viewpoints for a scene are related by epipo-

lar constraint [24] and that multiple stereo views are related by the multi-linear constraints

[52]. A scene point and the optical centers of two cameras form a plane called epipolar plane.

The lines where the epipolar plane intersects the two image planes are the epipolar lines, and

the projections of a point must lie on these lines. It satisfies the relationship:

[
(m′

i)
T 1

]
F

[
mi

1

]
= 0 (1.3)

where mi and m′
i is the projected points to two views, and F is 3 × 3 matrix known as

fundamental matrix. Such constraints can be used to estimate the camera geometry, e.g.

translation and rotation parameters, and calculated by a linear method such as the 8-point

algorithm (i.e. see Appendix A.5).
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Figure 1.4. Relationship between SfM and multi-stereo methods - (a) illustration of SfM
method, (b) illustration of multi-stereo method, (c) spatio-temporal notation for SfM method,
(d) spatio-temporal notation for multi-stereo method

Spatial and temporal camera density : In general, the denser capturing of multiview

images with a large number of cameras provides the more precise 3-D representation. The

SfM (Structure-from-Motion) method is easier to obtain the spatial camera density than the

multi-stereo method as Figure 1.4(c) shows. However, a SfM cannot handle a temporally

independent moving object6 since the positions of objects is not relative to the positions of

a moving camera. Moreover, a particular motion analysis is very noise sensitive. The multi-

stereo method can provide the relative 3-D positions of moving objects through temporal

observations of static cameras as Figure 1.4(d) represents. Stereo methods provide more re-

liable 3-D information since the difference of stereo viewpoints is relatively larger than the

viewpoint difference of camera motion for a 3-D point. However, a stereo method is difficult

due to the ambiguity in the matching process of discrete pixels and the unbalanced camera

6) The handling of an independently moving object is known as the non-rigid motion problem.
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brightness. If more than two cameras are fixed, and the camera poses are known, the SfM

method can be cooperated with a multi-stereo method and provide complementary informa-

tion to obtain 3-D scene structure. When a set of 3-D points Mi at a frame t is projected

onto an image Ii(t) captured by n viewpoints, the point’s coordinates MIn

i (t) ∼ mi(u, v) in

the image coordinate system can be expressed in terms of a vector-valued nonlinear function

g:

MIn

i (t) =

[
u

v

]
= g (In,Mi(t)) (1.4)

Given a set of feature points mi taken by n viewpoints In (i.e. structure-from-stereo) or by

different time frames t (i.e. structure-from-motion), we can reconstruct the points Mi(t) from

a set of the projections MIn

i (t). In the past few years, a lot of attempts have been made to

use multi-view cameras or a monocular camera in motion for a complex 3-D scene modeling.

These attempts are made with many viewpoints from 3 to 100 camera positions to generate

overlapping point clouds.

Fundamental problems : There are five fundamental problems to extract information

from stereo and motion data. Our method addresses these problems.

(a) Image motion and disparity with an unknown camera translation allow us to infer object

range only up to a scale ambiguity since image motion and disparity depend on the ratio

of camera translation to object range. This problem can be solved by the robust camera

geometry estimation in Chapter 3 and 4. The camera geometry with minimum distortions

in collineation is estimated by a nonlinear bundle adjustment method. Chapter 4 shows

that the camera geometry is closely connected by the view geometry, i.e. the epipolar

geometry.

(b) Image motion and disparity tend towards zero near the focus of expansion (FOE)7. Since

the object range is inversely proportional to image motion and disparity, the scene struc-

ture estimation is ill-conditioned near the focus of expansion. We constrain the direction

of the parallax field to lie along the epipolar direction [93] and address this problem by

the sceneflow estimation, i.e. joint disparity and optical flow estimation, described in

Chapter 6.

(c) When more closely aligned the local image structure is with the epipolar directions,

i.e. directions pointing towards the focus of expansion, the more ill-conditioned scene

structure may be estimated in those regions. If there are some errors in the camera

7) The focus of expansion is the intersection of the translation vector of the camera with the image plane,
and a group of motion trajectories is defined to be an image point towards the camera movement. [27]
With a positive component of velocity along the optic axis, image points will appear to move away from
the FOE and expand e.g. with those closer to the FOE moving slowly and those further away moving
more rapidly.
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geometry estimation, it causes large errors in the estimation of the scaled relative depth.

This problem is solved by using the intersection of spatio-temporal epipolar lines and a

robust outlier removal. Chapter 4 introduces the spatio-temporal epipolar geometry, and

Chapter 5 describes the robust estimation method.

(d) The spatio-temporal baselines might be defined with respect to a monocular camera in

motion8, a static stereo camera9, or some other combination of static and non-static

cameras10. With a prior knowledge for the static and non-static cameras, the proposed

method first utilizes the static scene assumption to make a combination of SfM and multi-

stereo methods. Then, a multi-stereo method solves independently motion problem that

cannot be solved in temporal frames. The results are shown in Chapter 6.

(e) A large baseline gives better depth estimates for distant objects. However, the increased

problems of ambiguity and occlusion11 are the drawbacks. This paper studies the large

baseline problem by a feature-based estimation method with a robust statistic. In Chapter

5, we generalize that the all robust methods in 3-D vision can be described by error weights

and efficiently remove outliers in feature-based estimates. When the camera geometry is

accurately recovered by robustly detected feature points in a set of images, the optical-ray

method described in Chapter 3 can combine the projection rays for an arbitrary camera

viewpoint. However, the density of depth sampling is a fundamental problem in light

field rendering. The proposed method compensates ray distortions according to scene

geometry by using the dense 3-D sceneflow method. The optical-ray can be rearranged

by depth-compensated image-based rendering as Chapter 4 depicts.

1.4 Proposed Method

The generalized video-based 3-D analysis method to solve the image-based modeling and

rendering problems is proposed in this dissertation. Figure 1.5 represents the block diagram

of the proposed method.

Camera geometry from uncalibrated cameras : If camera and viewing geometry are

unknown12, but the scene structure remains rigid and piecewisely planar, it is possible to

deduce the viewing geometry from a number of spatio-temporal feature matches and to recover

the scene structure. For a static scene, 3-D distance between two points Mi(t) and Mj(t)

8) A monocular camera in motion is related to optical flow and SfM methods.
9) Stereo camera problem is related to disparity and triangulation methods.

10) This dissertation addresses this problem with the 3-D sceneflow method.
11) Visible to one camera but not to the other.
12) The unknown cameras and viewing geometry is the general condition of uncalibrated cameras.
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Video sequences

Robust camera geometry estimation Robust scene geometry estimation

Dense disparity matching (spatial)

Optical flow tracking (temporal)

dense
sceneflow

epipolar
geometry
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camera 
parameters, 

3-D features

Bundle adjustment

dense
sceneflow
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texture
map
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camera 
parameters
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Figure 1.5. Block diagram of the proposed method

derived from the spatial matches should be temporally invariant.

[Mi(t) − Mj(t)]
T [Mi(t) − Mj(t)]

=
[
Mi(t+ 1) − M′

j(t+ 1)
]T [

Mi(t+ 1) − M′
j(t+ 1)

] (1.5)

Using the projective relationship and the known image coordinates mi(t), mj(t), mi(t + 1)

and mj(t + 1), this can be expressed for 4 unknown depth values Mi(t), Mj(t), Mi(t + 1)

and Mj(t+ 1). Viewpoints looking at a rigid structure are related by a set of collineations13

and the constraints between different sets. Let T be an anti-symmetric matrix such that

Tx = T×x for all 3-D vectors, 3× 3 essential matrix E = TR is defined by the relationship

[
Mi(t+ 1)T 1

]
P′−TE

[
Mi(t)

1

]
P−1 = 0 (1.6)

Collineation in view geometry : A collinearity constraint14, well known from photogram-

13) A collineation is a one-to-one map from one projective space to another, or from a projective plane
onto itself, such that the images of collinear points are themselves collinear. All isomorphisms induce a
collineation.

14) Image points and projection centers are located on a straight line. Since an image is exactly a plane,
a transformation of the plane transforms collinear points into collinear points. A projective collineation
transforms every 1-D form projectively, and a perspective collineation is a collineation which leaves all
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metry, can be used to reduced the geometric error in the projected ray [28]. If camera locations

and 3-D points are subject to the collinearity constraints that can be expressed by a set of

homographies, rays passing through the stereo viewpoint image can be represented by the

epipolar geometry. In most cases, the view geometry includes several image distortions ac-

cording to the projective distortions for the geometric structures. However, the linear view

geometry is a basis of the nonlinear scene geometry estimation, e.g. disparity, parallax and

depth, etc.

3-D sceneflow : Using epipolar constraints, a set of dense motions of rigid structure forms

3-D sceneflow that can be estimated by the brightness-invariance of spatial correspondences

m and m′ in two images.

m (u(t), v(t), t) = m′
(
u′(t), v′(t), t

)
(1.7)

and temporally tracked by the time-invariant in two frames t and t+ 1.

m (u(t), v(t), t) = m (u(t+ 1), v(t+ 1), t+ 1) (1.8)

The 3-D sceneflow should satisfy the spatio-temporal invariance constraints since they are

linked by the collinearity.

m (u(t), v(t), t) = m′
(
u′(t+ 1), v′(t+ 1), t+ 1

)
(1.9)

Figure 1.6 illustrates the 3-D sceneflow derived by spatio-temporal correspondences m(t),

m′(t), m(t+ 1) and m′(t+ 1). The collinearity is defined by the reverse of the projection on

the homogeneous coordinates.

M = P−1

[
m(t)

1

]
, M = P′−1

[
m′(t)

1

]
, M = P′−1

[
m′(t+ 1)

1

]
(1.10)

The collinearity between observed spatio-temporal correspondences and the camera param-

eters can be nonlinearly optimized by a bundle adjustment method [19, 29]. Although a

feature-based method is suitable to obtain global image warping according to camera geome-

try, existing feature-based methods cannot produce a dense set of correspondences or depths

that is necessary to remove the image distortion according to the geometric structure.

Depth compensated image-based modeling/rendering : In most image-based mod-

eling and rendering techniques, the projective distortion problem can be solved by motion

lines through center and points of axis invariant.
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Figure 1.6. 3-D sceneflow method

segmentation or compensation methods. For example, divergent rays are occurred in a single

ray projection model for several different depths. However, dense depth estimation [31, 32]

include many difficult problems: handling of image noises, textureless regions, depth discon-

tinuities and occlusions. In multi-stereo cases, more constraints can be added than a two

camera case, because field of view depending on the placement of cameras can be separated

by the matching process [22]. We can easily obtain a dense set of spatio-temporal correspon-

dences, i.e. pixel-wise displacement field, and explicitly handle occlusions in some views with

information of other views.

Outlier removal : However, the conventional dense matching methods do not preserve

the spatio-temporal discontinuities, and object boundaries are often poorly localized. The

proposed method employs an optical flow-based regularization using the robust statistic of

error norms [33, 34] to eliminate outliers15 from camera geometry and scene geometry esti-

mates.

1.5 Background and Contributions

The presented works were carried out within the EU 3DTV project, a Network of Excellence

funded by the European Commission, the 6th Framework Information Society Technologies

(IST) Programme [91]. The primary objective is to align the interests and efforts of European

researchers within a common effective research network for achieving full scale 3-D visual

signal handling capabilities. Capturing 3-D visual information of a real scene and creating an

15) Outliers designate points with gross errors existing in the data due to physical imperfections in imaging
sensors and errors in a low-level vision computation.
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exact optical duplicate of it at a remote site instantaneously or at a later time are ultimate

goals in visual communications. All core and peripheral components related to this goal are

collectively referred as 3-D Television (3DTV). Main functional components of 3DTV are

(a) Capture and representation of 3-D scene information,

(b) Complete definition of digital 3DTV signal,

(c) Storage and transmission of the signal,

(d) Display for the reproduced 3-D scene,

and there are numerous challenges in these components. Above all, lack of 3-D video contents

is an important bottleneck to make a consumer market. Although there have been a lot of

studies [12–15, 22, 31, 32, 39, 40, 42, 45, 46] aiming at a free-viewpoint video for dynamic

scenes, they are restricted within indoor scenes or pre-segmented objects. This paper aims

to generate automatically a 3-D contents generation from outdoor video scene. A key feature

of 3-D contents is interactivity in the sense that a user should have the possibility to choose

an arbitrary viewpoint for a real-world scene. Contributions to the functional components of

the 3DTV project are summarized as follows:

(a) 3-D scene information: 3-D contents are generated by a set of natural videos. A system

which can capture large numbers of videos in real-time is too complex to use in the out-

door environment. For a static scene, a video sequence captured by a non-professional

photographer with a hand-held camera, i.e. hand-held video sequences, is very simi-

lar to multi-stereo with many baselines. The proposed method captures large multiple

viewpoints with a combination of stereo camera and a monocular camera in motion.

Multi-stereos gives us a temporal density of viewpoints and the camera movement allows

a spatial density of viewpoints with a continuous motion.

(b) Definition of 3-D signal: 3-D signal is defined by stereo motion video, dense 3-D points

and translation and rotation parameters of camera geometry. Dense depth reconstruction

from multiple viewpoints is a core task in 3-D representation but the quality is still not at a

satisfactory level. We exploit a standard feature-based calibration method to estimate the

camera geometry, and the dense sceneflow estimation is performed in the spatio-temporal

epipolar geometry. A nonlinear bundle adjustment technique is applied to optimize the

collinearity between the camera geometry and the scene geometry. With camera motions,

dense disparity maps between two cameras can be transformed into dense depths because

every dense matches can be inverse projected to the 3-D structure and reprojected again

to the reference image using the camera parameters.

(c) Data structure of 3-D signal: The data structure includes information of all rays projected

from scene to camera, and the amount of multi-view image data is usually huge. Thus,

compression and transmission of the data with less degradation and delay over limited
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bandwidth are also challenging tasks. The redundancy in multi-view videos can be elim-

inated by spatio-temporal correspondences16. Similarly, the redundancy of projection

rays can be removed by using the collineation between spatio-temporal correspondences

in the sceneflow.

(d) Display of 3-D scene: Auto-stereoscopic display devices, that do not require special glasses

to view it, need particular light control method to provide unsurpassed image quality and

3-D realism to viewers. For example, auto-stereoscopic display needs several viewpoint

images to recover accurate depth feeling. The proposed method can synthesize a partic-

ular arbitrary viewpoint or a viewpoint of the user’s eye position.

16) Disparity and motion estimation permit to increase the quality without the addition of redundant informa-
tion. This idea is often employed in multi-view video coding (MVC) to reduce the inter-view redundancy
efficiently.



Chapter 2

Related Works

We can understand the geometric relationship of viewpoints as camera geometry and scene

geometry. The camera geometry is a definition for camera motion or poses that are usually

obtained by a feature-based method. Since there are a minimum required number of points

to solve the parametric equations, a lot of detected features are eliminated to increase the

accuracy of estimated parameters, and thereby only sparse 3-D structure can be recovered in

the result. When the camera parameters are known, it is important to recover dense scene

structure for image-based rendering and modeling applications. Since the camera geometry

allows only global warping information, the dense scene geometry estimation should be ad-

ditionally performed to increase the 3-D sampling density. This chapter presents a review of

related works.

2.1 Multiview Video Analysis

The simplest case of 3-D video is the stereoscopic video that is shot using two cameras with the

parallel or toed-in camera configuration. The distance between two cameras is called baseline.

The multi-view 3-D video is characterized by depth-dependent displacement between spatially

and temporally successive images. Disparity and motion estimations are the process of com-

puting the relative displacement of objects within a scene. Novel views can be synthesized

by image interpolation with disparity and motion compensations [36, 37]. However, most

conventional stereo algorithms have a number of significant weaknesses. In particular, the

different images need to be color calibrated for reliable results. Moreover, establishing stereo

correspondences is hard to accomplish in homogeneous regions with constant luminance or

if the scene is not Lambertian17. In addition, many stereo techniques rely on closely spaced

images, and in some cases employ significant user input for each image pair to guide the

17) The term Lambertian refers to a condition which reflects light equally in all directions on particular surfaces
of objects within a scene. The effect is that the viewer’s perspective any rotation, scaling or translation
of an object does not result in a change of the shadows and highlights of the object’s surface.
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(a) (b)

Figure 2.1. Multiview camera configurations - (a) Stanford University Light field Camera
with dense camera configuration, (b) Virtualized RealityTM of Carnegie Mellon University
with wide camera distribution

stereo process. New approaches have been developed to remedy this situation. The Middle-

bury Stereo [35] offers a web-based evaluation of recently developed stereo algorithms using

a number of objective error metrics [38]. The error metrics cover aspects of reliability as the

Percentage of Bad Matching Pixels compared to acceptable ground truth. Special attention

is given to the types of regions involved, so that textureless, occluded and depth discontinuity

regions are evaluated separately. Multiview video is an expansion of stereoscopic videos based

on multiple baselines. The viewpoints are featured as geometrically calibrated and temporally

synchronized video data. The camera setups range from dense configuration e.g. Stanford’s

Light field Camera [17] to intermediate camera spacing [69] and to wide camera distribution

e.g. Virtualized RealityTM [39] of Carnegie Mellon University. Figures 2.1(a) and 2.1(b)

respectively represent Stanford’s Light field Camera and Virtualized RealityTM . The wider

spacing between the cameras is more of a challenge in producing locally consistent geometries

and thereby photorealistic views due to significant extended occlusions. Large video camera

arrays [40, 42] and densely packed camera arrays [41, 43] easily enable users to view a distant

3-D world freely. A significantly denser camera configuration such as that of the Stanford’s

Light field Camera allows synthetic aperture tracking which projects images of a scene from

different views on to a virtual focal surface, enabling us to see through occlusions in the scene.
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2.2 Image-based Modeling and Rendering

Image- (and video-) based modeling and rendering are terms used to describe computer vision

methods which generate novel views using a set of 2-D images (or videos) of a scene. Image-

(and video-) based modeling utilizes a combination of visual-hull and multi-stereo matching

to reconstruct a 3-D model, and renders the model for an arbitrary viewpoint. This is often

called Free-Viewpoint Video. Since the density point cloud obtained by viewpoint matching

is normally low, 3-D mesh generation or surface fitting is additionally considered.

Image- (and video-)based rendering method is based on a ray-space representation using

camera calibration parameters, and virtual viewing of a scene is possible by warping the

original images into the correct perspective given a viewing direction. Although dense sam-

pling permits photorealistic rendering with just either a simple planar or rough geometric

approximation, the disadvantage is the large number of images required for rendering and

the viewing range limited near the camera path.

Other methods may utilize the concept of multi-video-plus-depth data representation [44].

Approaches in intermediate camera spacing are trying to reduce the number of required cam-

eras and needs to compensate geometric aperture and parallax in depth. In [69], Zitnick et

al. proposed a Layered Depth Image (LDI) representation using an 8 cameras configuration.

However, this method still needs a quite dense camera setup for a limited viewing range, i.e.

horizontal field of view of about 30◦. In [46], sparsely placed and scalable 3-D video bricks,

which act as low-cost Z-cameras, are generated by scalability in terms of camera configura-

tions. One single brick consists of a projector, two grayscale and one color camera to acquire

stereo images, structured light, and texture images simultaneously. Then, a multi-window

based matching algorithm with a subsequent sub-pixel disparity refinement was used to com-

pute accurate disparity maps. About ten 3-D video bricks are needed to fully cover 360◦ in

all dimensions. In [45], a dynamic point sample framework, called 3D video fragments, is

proposed for real-time free-viewpoint video. By generalizing 2-D video pixels towards 3-D

irregular point samples, this approach uses a 2-D video update scheme exploiting the spatio-

temporal coherence of the video streams of multiple cameras for more complex 3-D model

representations.

2.3 Camera Geometry Estimation

Camera geometry is the relationship between 3-D world coordinates and their corresponding

2-D image coordinates which can be established by a camera calibration. Once the geometry is

established, 3-D information can be inferred from 2-D information and vice versa. Accurate

camera calibration are a necessary prerequisite to extract precise and reliable 3-D metric

information from images. A fundamental criterion for camera geometry estimation is based

on the perspective and projective camera models:
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(a) Perspective camera model (nonlinear): A camera model based on perspective collineation,

where the implication is that the interior orientation is stable, and all departures from

collinearity, linear and nonlinear can be accommodated. The collinearity-based model

generally requires five or more point correspondences within a multiple image network.

Due to its nonlinear nature, the model requires approximations for parameter values for

the least-squares bundle adjustment in which the calibration parameters are recovered.

(b) Projective camera model (linear): A projective camera model supporting projective

rather than Euclidean scene reconstruction. Such a model, characterized by the Essential

matrix and Fundamental matrix models, can accommodate variable and unknown focal

lengths, but needs a minimum of 6 point correspondences to facilitate a linear solution,

which is invariably quite unstable18. Nonlinear image coordinate perturbations such as

lens distortion are not easily dealt with in such models.

In an application involving multiple cameras, the calibration is necessary to guarantee geo-

metric consistency across the different cameras. The parameters are categorized by intrinsic

and extrinsic parameters respectively determining the internal camera geometric and optical

characteristics, and the 3-D position and orientation of the camera frame relative to a certain

world coordinate system.

Photogrammetric calibration : Photogrammetric calibration attracts less attention today

since many respects of the method reached maturity in the mid 1980s. These are all based on

the pinhole camera model and include terms for modeling radial distortion. Tsai’s calibration

method [47] requires n > 8 features points per image and solves the calibration problem with

a set of n linear equations based on the radial alignment constraint. A second order radial

distortion model is used while no decentering distortion terms are considered. The two-step

method can cope with either a single image or multiple images of 3-D or a planar calibration

grid shown in Figure 2.2(a) but grid point coordinates must be known. The model of Heikkila

and Silven [48] first extracts initial estimates of the camera parameters using a closed form

solution known as direct linear transformation (DLT), and then a nonlinear least-squares

estimation employing a the Levenberg-Marquardt algorithm19 is applied to refine the interior

orientation and compute the distortion parameters. The model includes two coefficients for

radial and decentering distortions and works with single or multiple images and with 2-D or

3-D calibration grids. Zhang’s calibration method [49] requires a planar checkerboard grid

to be placed at more than two different orientations in front of the camera. The method

extracts corner points of the checkerboard pattern to compute a projective transformation

between the image points of the different images, up to a scale factor. Afterwards, the camera

18) The equations often need normalization
19) The Levenberg-Marquardt algorithm provides a numerical solution to the problem of minimizing a func-

tion, generally nonlinear, over a space of parameters of the function. This minimization especially arise in
least squares curve fitting and nonlinear programming.
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(a)

(b) (c)

Figure 2.2. Collineation in camera calibration pattern - (a) Photogrammetric calibration using
checkerboard pattern, (b) collineations of observed patterns, (c) 2-D view of collineations [28]

interior and exterior parameters are recovered using a closed-form solution, while the 3rd- and

5th-order radial distortion of a lens as a function of the radial distance on the lens surface are

recovered within a linear least-squares solution. A final nonlinear minimization of the repro-

jection error, solved by a Levenberg-Marquardt method, refines all the recovered parameters.

Finally, the camera parameters with minimum distortions in collineations can be obtained as

Figure 2.2(b) and 2.2(c) show. However, the collineations are not always satisfactory because

the camera parameters and image locations are known only approximately.

Self-calibration : Recent researches have focused on the problem of self-calibration. Self-

calibration methods do not use any calibration grid and checkerboard pattern. The metric

properties of the camera, i.e. determined up to an arbitrary Euclidean transformation and

a scale factor, are recovered from a set of uncalibrated images, using constraints on camera

parameters or on the imaged scene. In general, three types of constraints are applied to

self-calibration: scene constraints, camera motion constraints, or constraints on the camera

intrinsic parameters. In the case of an unknown camera motion and unknown scene, only

constraints on the interior orientation [50, 51] can be used. The majority of self-calibration al-

gorithms treat intrinsic camera parameters as constant but unknown [53–56, 56, 57]. Just by
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moving a camera in a static scene, the rigidity of the scene provides in general two constraints

on the cameras. If images are taken by the same camera with fixed internal parameters and

correspondences between three images are sufficient to recover both the internal and external

parameters, it is possible to reconstruct 3-D structure up to a similarity. The perspective pro-

jection can be applied to model collinearity in the calibration process. Geometric constraints

are applied and projective structures are stratified to Euclidean ones. The parameters of

the nonlinear distortion are computed by means of the bundle adjustment and extended by

additional parameters functions that are supposed to model the systematic image errors. The

basic mathematical model of bundle adjustment is provided by the nonlinear optimization,

usually extended by correction terms for the interior orientation and radial and decentering

lens distortion [58, 59]. The bundle adjustment method provides a simultaneous determina-

tion of all parameters along with estimates of the precision and reliability of the extracted

calibration parameters. Correlations between the interior orientation and exterior orientation

parameters, and the object point coordinates, along with their determinability also can be

quantified [19, 29].

2.4 Scene Geometry Estimation

Multiview correspondence, or multiple views matching, is the fundamental problem of de-

termining which parts of two or more views are projections of the same scene geometry.

The output is a disparity map for each pair of cameras, giving the relative displacement,

or disparity, of corresponding image elements. Disparity maps allow us to estimate the 3-D

structure of the scene and the geometry of the cameras in space. A variety of constraints

are used to obtain exact correspondences in complex image features. If camera calibration

parameters are known, epipolar constraints can be used to reduce the matching process for

finding corresponding points from 2-D searching to 1-D searching along corresponding epipo-

lar lines. Image pairs are warped so that epipolar lines coincide with the image scan lines, and

the pairwise disparity estimation establishes image correspondence between adjacent rectified

image pairs and independent depth estimates for each camera viewpoint. The performance

depends on the size of the baseline. Figure 2.3(a) represents a stereo camera setup with a

baseline, and Figures 2.3(b) and 2.3(c) compare narrow baseline and wide baseline using the

interpolated images of two views.

Characteristic of different baselines : Small baseline stereo has viewpoints where the

baseline is much smaller than the observed average scene depth. This configuration is usually

valid for hand-held image sequences or viewpoints taken by many densely located cameras.

The advantages (+) and disadvantages (−) are
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Figure 2.3. Stereo camera baselines - (a) stereo camera setup with a baseline, (b) narrow
baseline, (c) wide baseline

(+) easy correspondence estimation, since the views are similar,

(+) small regions of viewpoint related occlusions,

(−) small triangulation angle, hence large depth uncertainty.

The wide baseline stereo in contrast has the following features:

(+) large triangulation angle, thereby high depth accuracy and resolution,

(−) difficulty of correspondence estimation, since the views are not similar,

(−) large regions of viewpoint related occlusions.

Characteristic of multi-view baselines : A flexible multi-view scheme is needed to com-

bine the advantages of narrow baseline and wide baseline stereo. Small baseline stereos in

multiple viewpoints can link together and form a wide baseline stereo. The depth resolu-

tion is increased through the combination of multiple viewpoints and large global baseline

while the matching is simplified through the narrow local baselines. The VIRTUE system
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Figure 2.4. Combination of wide and narrow baselines - (a) the VIRTUE system [96], (b) a
combination of wide and narrow baselines in the VIRTUE system, (c) a warped view using
pre-calibrated camera parameters, (d) another warped view

[60] shown in Figure 2.4(a) is an example. Four cameras can only be positioned around a

large plasma screen where the width of the screen has a large baseline. A stereo pair lo-

cated at left (or right) corner of the screen has narrow baselines which is easier to generate a

dense disparity map. Figure 2.4(b) illustrates the large and narrow baselines. For the large

baseline, the system just use a warping method using pre-calibrated camera parameters as

Figures 2.4(c) and 2.4(d) show. Since the dense disparity map can be inversely warped, i.e.

back-projected, into the original cameras, this method may produce a dense depth map which

allows a viewpoint fusion. The fusion of baselines has a number of advantages as follows.

(+) very dense depth maps for each viewpoint,

(+) high depth resolution through viewpoint fusion,

(+) small viewpoint dependent occlusions,
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(+) texture enhancement or anti-aliasing.

Scene geometry estimation methods : The quality of results largely depends on the

performance of dense disparity estimation. There are three related topics to scene geometry

estimation as follows.

(a) Sparse disparity estimation: Determining a sparse set of correspondences among the

images is usually performed as the first step in order to retrieve the structure of the

scene and the motion of the camera, when nothing about the geometry of the imaging

system is known yet and no geometric constraint can be used in order to help the search.

Feature matching is frequently used to detect feature points independently in the two

images, then match them using relational structure [63], maximal clique detection [64],

or topology [66]. If it is difficult to detect features, template matching can be utilized to

select templates or patches with some texture information in an image and then look for

corresponding points in the other image using an image similarity (or dissimilarity) metric

[61, 62]. Matching image features or templates are reconstructed through triangulation

between two views. Features or templates that are also observed in the third view can

then be used to determine the pose of this view in the reference defined by the two

first views. The initial reconstruction is then refined and extended through a global

least-squares minimization of all reprojection errors.

(b) Dense stereo matching: This is a concept that establishes correspondences of the whole

pixels between two images. The matching image points must satisfy geometric constraints

imposed by the algebraic structures such as the fundamental matrix for two views. A

dense disparity map enables segmentation by depth discontinuity [68], which can be useful

for layered scene representation in a detailed reconstruction of the 3-D shape. Physical

and photometric constraints [67] for ordering of neighboring pixels20, checking smooth-

ness21 [70], uniqueness of the match22 and bidirectional uniqueness23 [69], and detecting

occlusions [71] can be added. These constraints are used to guide the correspondence to-

wards the most probable scan-line match. The absence of transparent objects allows the

use of disparity gradient limits, and the absence of occlusion can permit strong surface

smoothness constraints. The matcher searches at each pixel in an image for maximum

normalized cross-correlation in the other image by shifting a small measurement win-

dow along the corresponding scan-line. Some algorithms [72, 73] employs an adaptable

size window or pyramidal estimation scheme to reliably deal with very large disparity

ranges. Although large-baseline dense stereo can be of great importance for some virtual

environment applications, large-baseline makes the correspondence more difficult [74].

20) If two points in two images match, then matches of nearby points should maintain the same order.
21) The disparities should change smoothly around each pixel.
22) Each pixel cannot match more than one pixel in any of the other images.
23) Left-to-right disparity and right-to-left disparity should be matched for a fixed 3-D position.
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(c) Spatio-temporal stereo: This method improves the quality of spatial stereo using the

spatio-temporal consistency of correspondences [76]. Due to the limited accuracy of geo-

metric reconstruction and correspondence between views, conventional stereo algorithms

often results in loss of visual quality compared to captured video and thereby visual ar-

tifacts. In a scene with static geometry that is viewed for multiple frames across time,

correspondences between two frames can be established. Vedula et al. [75] introduced

a sceneflow method, an extension of optical flow to 3-D volumetric reconstruction, to

estimate temporal correspondence based on photo-consistency. Cheung et al. [77, 78]

introduced a new representation of visual-hull which directly incorporated color for tem-

poral matching to increase the effective number of cameras.
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Camera Geometry Estimation

To understand the 3-D camera geometry from a combination of 2-D videos captured by

static and non-static cameras, we first introduce the basic concepts of projective geometry

and the pinhole camera model. A pinhole camera is represented as a small hole through

which light travels; an intensity of an object is formed on the camera’s image plane through

perspective projection. In order to determine how 3-D objects in the world geometrically

appear in two-dimensional camera images, we need to define 3-D camera geometry in which

to represent these objects: the world, camera and image coordinate systems. We apply the

camera geometry to the plenoptic sampling using a ray projection.

3.1 Projective Geometry Estimation

The 3-D space we live in is well described as Euclidean in nature, and the definitive model

of invariant displacement is Euclidean geometry (sometimes called parabolic geometry). For

an n-D Euclidean space Rn, points are expressed using n numbers, each giving a coordinate

position in each dimension. In 3-D Euclidean geometry, the sides of objects have lengths,

intersecting lines determining angles between them. Two lines are said to be parallel if

they lie in the same plane and never meet. Moreover, these properties do not change when

transformations in Euclidean space, i.e. translation and rotation, are applied as⎡
⎢⎢⎣
x′

y′

z′

⎤
⎥⎥⎦ = α

⎡
⎢⎢⎣
r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x

y

z

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
tx

ty

tz

⎤
⎥⎥⎦ (3.1)

where rij are coefficient of an orthonormal matrix, ti is a translation. α denotes arbitrary

scaling which is not considered when dealing with a pure Euclidean transformation instead

of a metric one. The relative distance between each two points is expressed by a metric space

where the distance shortest between adjacent points is given by a metric. Equation 3.1 can
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be expressed by a matrix form:

TR =

⎡
⎢⎢⎢⎢⎢⎣
αr11 αr12 αr13 tx

αr21 αr22 αr23 ty

αr31 αr32 αr33 tz

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (3.2)

However, when we observe the 3-D world using our eyes, we do not see the world in a Eu-

clidean form due the effect of perspective projection: that parallel lines meet at infinity.

Figures 3.1(a) and 3.1(b) show the perspective effect using a 2-D picture and a 3-D sphere,

respectively. When a Euclidean space is projected, some information of the world is visually

lost. Hence, Euclidean geometry is insufficient for image processing with a camera (similarly

to the case of an eye). Every point in an image represents a possible line of sight of an

incoming light ray and any 3-D point along the ray projects to the same image point. In

the image, lengths and angles are no longer preserved, and parallel lines may intersect. In

Figure 3.1(a), parallel lines on the road converge at a point infinitely far away. The plane on

which the road lies intersects the set of infinite points at the horizon line.

Projective geometry : It is a non-Euclidean geometry that formalizes the perspective

art. It can be thought of as an extension of Euclidean geometry in which the direction of

each line is subsumed within the line as an extra point, and in which a horizon of directions

corresponding to coplanar lines is regarded as a line. Thus, two parallel lines towards the

same direction will converge to a point infinitely far way on a horizon. The convergence at

infinite distance serves as a definition of parallelism. Figure 3.1(b) illustrates the parallelism

using a 3-D sphere. A set of all lines in the space is passing through the origin (0, 0, 0). Two

points (x, y, z) and (x′, y′, z′) are equivalent if there is a nonzero real number α such that

x = αx′, y = αy′, z = αz′. Idealized directions are referred to as points at infinity, while

idealized horizons are referred to as lines at infinity. Euclidean geometry is a subset of pro-

jective geometry. Projective geometry exists in any number of dimensions, just like Euclidean

geometry. There are two geometries between them; affine and metric.

Projective ⊂ Affine ⊂ Metric ⊂ Euclidean (3.3)

Hierarchy of geometry : Starting from Euclidean geometry in the hierarchy shown in

Equation 3.3, each geometry belongs to the upper geometry. Each successive geometry has a

less rigid space and hence also more transformations which leave the space invariant. Table 3.1

shows the allowed transformations of each geometry in the hierarchy [89]. Projective geometry

allows a much larger group of transformations than just translations and rotations, a group

which includes perspective projections. Of course, the drawback is that it preserves only the
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parallel  lines

infinity

(a)

(0,0,0)

(x,y,z)
(x’,y’,z’)

(b)

Figure 3.1. Perspective projection and parallelism - (a) an example[88] of perspective projec-
tion, (b) illustration of the parallelism using a 3-D sphere
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Table 3.1. Measures that remain invariant under the transformations in the hierarchy of
geometries

Geometries Euclidean Metric Affine Projective
T
ra

n
sf

o
rm

a
ti

o
n
s rotation © © © ©

translation © © © ©
uniform scaling · © © ©

nonuniform scaling · · © ©
shear · · © ©

perspective projection · · · ©
composition of projections · · · ©

In
va

ri
a
n
ts

length © · · ·
angle © © · ·

ratio of length © © · ·
parallelism © © © ·
incidence © © © ©
cross ratio © © © ©

properties of Euclidean structure which remains invariant to projection. However, projective

transformations preserve type (i.e. points remain points and lines remain lines), incidence

(i.e. whether a point lies on a line), and a measure known as the cross ratio. The projective

line, which is denote by P1, is analogous to a 1-D Euclidean world R1. The projective plane

P2 corresponds to the Euclidean plane R2 and the projective space P3 is related to 3-D

Euclidean space R3. The visual imaging using human eyes or cameras is represented by a

projection from P3 to P2, from 3-D space to the 2-D image plane.

Affinity : An affine geometry A is a geometry in which properties are preserved by parallel

projection from one plane to another. Affine transformations are a subgroup of projective

transformations which can be represented by homogeneous notation. Geometrically, affinities

preserve collinearity. An affine transformation has the following form, which is the general

form of Equation 3.1. ⎡
⎢⎢⎣
x′

y′

z′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x

y

z

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
a14

a24

a34

⎤
⎥⎥⎦ (3.4)
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Equation 3.4 can be represented by a single matrix form.

TA =

⎡
⎢⎢⎢⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (3.5)

It transforms parallel lines into parallel lines and preserve ratios of distances along parallel

lines. In the same manner, an affine transformation must be a projective transformation

which maps the infinite plane Π∞ to the infinite plane, i.e. TAΠ∞ = Π∞. A mapping from

projective space to affine space in P3 can be determined as

P3 → A3 : (x, y, z, w) →
( x
w
,
y

w
,
z

w
, 1
)

(3.6)

where w �= 0. If the camera is at the origin (0, 0, 0), the ray represented by homogeneous

coordinates (x, y, z, w) is that passing through the 3-D point (x, y, z). (x, y, z, 0) is a 3-D

point that defines a perfectly normal optical-ray. This ray does not correspond to any finite

pixel since it is parallel to the plane w = 1 and thus has no finite intersection with it. The

homogeneous vector (x, y, z, 0) represents ideal points at infinity for each 3-D direction in 3-D

projective space.

lim
w→0

( x
w
,
y

w
,
z

w
, 1
)
∼ lim

w→0
(x, y, z, w) = (x, y, z, 0) (3.7)

The infinite plane is infinite points of the world (x, y, z, 0) and it should be always fixed for

all 3-D points (x, y, z, w) in P3. Accordingly, the plane can be defined by a coordinate of 0:

Π∞ = (0, 0, 0, 1). Points on Π∞ are ideal points of the form (x, y, z, 0)T satisfying an equation

as

(0, 0, 0, 1)T (x, y, z, 0)T = 0 (3.8)

n-D projective space : In an n-D projective space Pn, the homogeneous and projective

coordinate can be represented by a point with n+ 1 coordinate vectors x = (x1, · · · , xn+1)
T

which is satisfied with the following condition.

∀x ∈ Pn, α �= 0 ⇒ αx = x (3.9)

where α is the scale factor with non-zero scalar. The homogeneous coordinates of a vector

x = [x, y, · · · ]T are denoted by x̃, i.e., x̃ = [x, y, · · · , 1]T . For example, a point (x, y) of the
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Euclidean plane P2 in the projective plane can be represented by adding a third coordinate

of 1 at the end: (x, y, 1) since the point (x, y, 1) is the same as the point (αx, αy, α) for any

non-zero α. The equation is unaffected by scaling and hence the coordinates are called the

homogeneous coordinates of the point. A linear transformation of an n-D projective space

Pn into itself is represented by (n+1)×(n+1) matrix A where det(A) �= 0 denotes invertible

i.e. A−T = (A−1)T = (AT )−1. Similarly, a projective mapping from Pm to Pn is expressed

by (m+ 1) × (n+ 1) invertible square matrix.

3.2 Pinhole Camera Model

A lot of models of a camera, depending on the type of physical and optical property, exist.

However, in computer vision, a lens-based camera is widely described by a pinhole model

due to the simplicity24. The pinhole-camera is the simplest approximation of a perspective

and the perspective camera model corresponds to an ideal pinhole camera. The geometric

process for image formation in a pinhole camera is represented in Figure 3.2. Two labeled

planes I and F are respectively referred to as the retinal plane or image plane, and the focal

plane. Image formation involves the projection of scene points M = [x, y, z]T in P3, i.e. world

points, to image points m = [u, v]T in P2, i.e. retinal plane. The line passing through the

optical center c and orthogonal to the retinal plane I is called as the optical axis or principal

ray. The intersection of the principal axis and the image plane is the principal point. The

projection of scene points M is represented by a line passing through the optical center c at

a distance f (known as the focal length) and a point on the retinal plane I. The normalized

image plane is coplanar with the plane I and it is located at a unit distance (i.e. f = 1) from

the optical center c. It can be written as a linear mapping from 3-D to 2-D.

⎡
⎢⎢⎣
u

v

f

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎢⎣
x

y

z

1

⎤
⎥⎥⎥⎥⎥⎦ (3.10)

If a point M is at the optical center c, i.e. z = 0, this projection process is undefined. The

focal length f of the camera is not necessary to be 1 and different values of f just correspond

to different scaling of the images on optical axis (i.e. z-direction) as α ∝ f/z. The perspective

projection from M to the image plane as point m is represented as

u = f
x

z
and v = −f y

z
(3.11)

24) Chapter 7 will introduce a confocal constraint in a real lens model to recover a pin-hole camera model for
stereo analysis.
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(a)
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M(x,y,z)

m(u,v)

I

c

optical axis

f

u

v

xc

yc

zc

(b)

Figure 3.2. Pinhole camera model - (a) ray projection in a pinhole camera, (b) pinhole camera
model

The new system into which the image coordinates m are to be transformed need not to be

orthogonal. If f = 1 is assumed as different values of f corresponding to different scaling of
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αv

αuI

Figure 3.3. Camera calibration and skew factor

the image, the above equations are represented using homogeneous coordinates.

⎡
⎢⎢⎣
u

v

1

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣
x

y

z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎢⎣
x

y

z

1

⎤
⎥⎥⎥⎥⎥⎦ (3.12)

Camera calibration matrix : In real images, the origin of the image coordinates is not the

principal point and the scaling along each image axis is different, thus a transformation on the

F plane (xc, yc) depending on focal length f is applied to take the center to the origin. Image

distortion is caused when the intersection of the optical axis with the retinal plane is not at

the optical center c. The transformation (xc, yc) is applied to the ideal image coordinates

to obtain the actually observed image coordinates (u, v). 3 × 3 upper triangular matrix C,

called camera calibration matrix (or intrinsic camera parameter) provides the transformation

between an image point and a ray in Euclidean 3-space. Parameters in the matrix C do

not depend on the position and orientation of the camera in the space and they are thus

called intrinsic camera parameters [87]. Once C is known, the camera is termed calibrated.

A calibrated camera acts as a direction sensor which ables to measure the direction of rays.⎡
⎢⎢⎣
u

v

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
αu sθ u0

0 αv v0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
xc

yc

f

⎤
⎥⎥⎦ = C

⎡
⎢⎢⎣
xc

yc

f

⎤
⎥⎥⎦ (3.13)

sθ = tan(θ)fkv is the skew factor by non-orthogonality between the image axis. Since the

width and height of the camera sensor are generally different, different scales in the image

u and v directions αu = fku and αv = −fkv are used25. ku and kv denote the units of

25) The v-coordinate is opposite to the y-coordinate.
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[pixels/length].

kuxc = u− u0

kvyc = v0 − v
(3.14)

The principal point (u0, v0) is the point where the optic axis intersects the image plane. Using

the different scale units, the camera calibration matrix C is also written as

C =

⎡
⎢⎢⎣
fku sθ u0

0 −fkv v0

0 0 1

⎤
⎥⎥⎦ (3.15)

ku and kv are not individually considered and are often combined with f to calculate αu and

αv. The ratio between αu and αv i.e. αv/αu designates the aspect ratio which is used to

represent the skew factor as Figure 3.3 represents.

3.3 Complete 3-D Camera Model

The camera calibration simply assumes that the center of a pin-hole camera is located at

the center of the world coordinate system and not far away from the optical axis. However,

it is insufficient in a case with more than one camera or a specific world coordinate system

since the world coordinate system does not usually coincide with the perspective reference

frames. Since a camera can be placed at the center of the world coordinate system by a

rigid transformation as Figure 3.4 shows, the 3-D coordinates undergo a Euclidean motion

M = RMc + t described by the different orientations R and translation t of cameras. The

parameters that define the position and orientation of the camera reference frame with respect

to known world reference frame are called extrinsic camera parameters [87]. The homogeneous

notation aims to express the Euclidean motion in linear form.

M̃ = TM̃c (3.16)

where M̃ = [ MT 1]T , M̃c = [ MT
c 1]T . T is 4 × 4 matrix referred to as homogeneous

transformation matrix.

T =

[
R t

0T
3 1

]
(3.17)

This equation can be simply expressed in the camera frame with the same rotation and

translation as an inverted rotation and translation applied to the cameras due to the Gauge
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Figure 3.4. Transformation between the camera and world coordinates

freedom m ∼ McT
−1TM for any projectivity T (i.e. the structure of the 3-D points M is

jointly projective for the 3-D cameras Mc).

M̃c =

[
RT −RT t

0T
3 1

]
M̃ (3.18)

The center of projection is given by the null-space of M and conveniently defines the camera

center at the cameras’ position. A combination form of Equation 3.12, 3.13 and 3.18 makes

the complete expression of perspective projection of a pinhole camera which has calibration,

position and orientation.

⎡
⎢⎢⎣
u

v

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
αu sθ u0

0 αv v0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎦
[

RT −RT t

0T
3 1

]
⎡
⎢⎢⎢⎢⎢⎣
x

y

z

1

⎤
⎥⎥⎥⎥⎥⎦ (3.19)

The coordinates of a 3-D point in a world coordinate system M is projected to the reti-

nal image coordinates m are inherently nonlinear. Converting m and M to homogeneous

coordinates m̃ and M̃ makes them linear. Equation 3.19 can be compactly expressed as

m̃ � C[RT | − RT t]M̃ (3.20)



CHAPTER 3. CAMERA GEOMETRY ESTIMATION 35

or

m̃ � PM̃ (3.21)

where P is a 3 × 4 matrix, of rank 3, called the perspective projection matrix or camera

matrix which folds the 3 × 3 camera calibration matrix C mapping the image coordinates

to the retinal image coordinates and the 3-D camera pose (R, t) i.e. displacement from the

world coordinate system to the camera coordinate system.

P =

⎡
⎢⎢⎣
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 1

⎤
⎥⎥⎦ (3.22)

This matrix is defined up to a scale factor only, and hence has 11 independent entries which

represents the linearity between known 3-D points (xi, yi, zi) and measured feature positions

(ui, vi).

ui =
p11xi + p12yi + p13zi + p14

p31xi + p32yi + p33zi + 1

vi =
p21xi + p22yi + p23zi + p24

p31xi + p32yi + p33zi + 1

(3.23)

Homography : For two cameras with camera calibration parameters C and C′ looking

at points M̃i on a plane, we choose R = I and t = 0, i.e. see Equation 3.12, for the first

camera where I is 3× 3 identity matrix. The projections of m̃i in the first camera to a point

m̃′
i in the second camera are written as

m̃i = CHC′−1
m̃′ (3.24)

where H = R − tñT
/
d is called 3 × 3 homography matrix, and R and t is the rotation

matrix and the translation vectors from the first camera to the second camera. ñ and d are

the normal vectors of the plane and the distance to the plane respectively. With at least 4

coplanar features, a homography can be defined in 2-D space as a mapping between a point

on a plane, as seen from the first camera, to the same point on the plane as seen from the

second camera. This has many practical applications for compositing 2-D or 3-D objects into

images or a video seamlessly by fitting the virtual camera to the real camera.
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Figure 3.5. Plenoptic function - (a) plenoptic function, (b) the optical-ray in a collineation
for arbitrary camera poses

3.4 Ray-space Definition using Optical Flow

The ray-space is the space of all light rays in 3-D which is one of the intrinsic parts of all

of image-based rendering methods. The light field theories have been made towards the

complete mathematical model called plenoptic function26 [79, 80] using a ray projection. The

projection can be geometrically represented by a ray through the optical center ci and the

point in space that is being projected onto the image plane Ii as Figure 3.5(a) shows. The

optical-ray of an image point mi is the locus of points in space that projects onto a camera c

shown in Figure 3.5(b). The optical-ray can be described as a parametric line passing through

the camera projection center c and a point at infinity that projects onto m:

M̃ =

[
−P−1

3×3P4

1

]
+ α

[
−P−1

3×3m̃

0

]
(3.25)

where P is normalized and represented by the block form P = [P3×3 |P4 ] with the first three

rows and the first three columns. c̃ = P−1
3×3P4 is a three-vector containing the affine, i.e.

26) The plenoptic function is the 5-D function representing the intensity or chromaticity of the light observed
from every position and direction in 3-D space.
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Figure 3.6. Space-time ray-space - (a) illustration of space-time ray-space, (b) ray-space in
scanlines

non-homogeneous coordinates of the optical center c, and the fourth column of P is P4. The

scale parameter α in the equation of the optical-ray correspond to the depth of the point M̃.

However, the ray-space did not consider a geometric localization problem with structure-

from-motion, because the theory is based on the nature of the global approximation of the

projection. Here, we define new terms of the ray-space which defines a geometric localization

using a fluid in space-time. When an image sequence is taken by a hand-held camera, the

space-time ray-space can be constructed from captured by scan-lines as Figure 3.6(a) shows.

Each horizontal line in Figure 3.6(b) corresponds to a scan-line of a frame of the image

sequences, and its vertical coordinate indicates the corresponding camera position. Since the

camera motion is continuous, the ray-space forms a space-time flow.

A fluid in space-time R
4 is a bundle p : R

4 → R
3 (i.e. a projection mapping) and a 3-form α̃

on R3 with the ray particles of the fluid, with density α̃. Due to the well-known conservation

law for fluids, the flow is described by means of 3-form in R
4 or 2-form in R3. The pull-back
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p∗ of the density 3-form to R
4 is defined as α = p∗(α̃),

dα = dp∗(α̃) = p∗(dα̃) = 0 (3.26)

where α has a closed form dα = 0 since each object can be separated in the space.

Now, we consider light field created by a 3-D Lambertian surface S which reflects light equally

in all directions. Each point on the surface defines a pencil of light rays with equal brightness.

The surface can be parameterized by

(u1, u2, f(u1, u2)) ∈ R
3 (3.27)

where f(u1, u2) is a function.

Since intensity is energy density on the 2-D surface, the brightness is 2-D representation with

a 2-form L̃ of the surface S which is decomposable. The condition for decomposability is

L ∧ L = 0, and L can be integrated to get the total energy
∫
S L̃ radiated from the surface

S. This is the coordinate-free expression for the integral of a 2-form over the manifold S on

which it is defined. f is closed in the surface of an object.

dL = dp∗(L̃) = p∗(dL̃) = 0 (3.28)

The ray-space is equivalent to the tangent bundle to the sphere S2 where can be expressed by

G4
2 using the Grassmann manifold27. G4

2 can be represented by the space of skew symmetric

tensors T belonging to the hyperbolic quadric which satisfies the Plücker condition28 for the

decomposability T ∧ T. p : G4
2 → S is a bundle and any section on it is a camera.

If eμν = eμ ∧ eν are basis vectors in R
4, a skew symmetric tensor is

T = a1e01 + a2e02 + a3e03 + b1e23 + b2e31 + b3e12 = (�a,�b) (3.29)

where �a is the direction and�b is is the moment of the line which satisfies the Plücker condition

�a ·�b = 0 and �b = �m× �a for any point �m on the line. Equation 3.27 can be rewritten by

�a, (u1, u2, f(u1, u2))︸ ︷︷ ︸
=�m

×�a = �a,�b(u1, u2) (3.30)

By the field-equation theory, the boundary condition problem with dL = 0 derive the Laplace

equation [81]. A ray-space well corresponds to the optical flow with brightness conservation.

27) A Grassmann manifold is a certain collection of vector subspaces of a vector space. Grassmann coordinates
describe k-D linear subspaces, or flats, in a k-D Euclidean space. In particular, G

n
k is the Grassmann

manifold of k-D subspaces of the vector space R
n.

28) Plücker coordinates satisfy a quadratic constraint which establish a one-to-one correspondence between
the 4-D space of lines in P 3 and points on a quadric in P 5, i.e. projective 5-space.
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The boundary condition in a single image is closely related to the gradient flow and the

divergence of the gradient field29. The details of a dense 3-D optical flow considering the

boundary condition will be described in Chapter 6.

3.5 Experimental Results

Camera pose estimation with planar region detection : In this chapter, the camera

pose estimation from a natural image sequence is simulated by a scheme that relies on mul-

tiple images of a planar region in different poses. The planar calibration method is already

developed well in photogrammetric calibration studies30 and provides an estimate of the cam-

era pose with respect to each calibration object pose. Although at least 4 points are needed

to estimate the relative camera pose, it is difficult to check the reliability of the 4 points. We

estimate the camera pose from coplanar features in natural video sequences.

Starting from some seed points, regions of interest are detected in the image sequence by

an iterative region-growing scheme. The low-pass filtered image, i.e. scale-space, is used to

avoid local minima problems for the region growing. Features are automatically detected in

the growing regions and tracked in two consecutive image frames by the KLT tracker [85, 86].

The tracker minimizes the error between local changes of the image and the original image.

E =

∫ ∫
W

[I(Ax + t) − I(x)]w(x)dx (3.31)

x = (u, v) is intensity of pixel in image I, and W ×W is the window size of correlation. Affine

transform matrix A and translation t are linearly approximate to the changes of images.

The plane-induced collineation can be estimated by the homography from the 4 detected

features in the regions. We compute the homography between the features and the calibrated

points on the planar object. The planarity constraint is enforced to assure that only features

of planar region are selected as seeds in the expanded region. A perspective transformation

can be approximated with affine transformations that is only valid locally for the planar

regions. Features in non-planar regions are eliminated by the distortion of point patterns

of non-planar regions that cannot be approximated to an affine transformation. If features

are far from the initial seeds, features are checked to update the homography. When the

correlation value becomes large and the features are not selected any more, the iteration is

stopped.

A test image sequence is captured by a hand-held camera in the outdoor environment and

consists of 90 frames with the image resolution of 800×592 pixels. The camera translates fast

and rotates smoothly. The detected and tracked features on a planar object for 4 frames are

shown in Figure 3.7. The feature points can be partially occluded. The features’ positions

29) A gradient field is a conservative field.
30) see Chapter 2.4
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(a) (b)

(c) (d)

Figure 3.7. Feature tracking in a planar surface - (a) Camera 1, (b) camera 2, (c) camera 3,
(d) camera 4

corresponding to the same face are coplanar. Since the camera parameters are calculated

from the feature correspondences, the accuracy of the feature points is very important and

can be visually evaluated in Figure 3.7. Figure 3.8 represents a long trajectory of feature

tracks through the whole sequence, and this proves the endurance of the matching method.

Figure 3.9 shows the relative poses of the 4 cameras when the planar features are located at

the centralized coordinate. The border lines of the 4 frame images in Figure 3.7 are marked

by different colors for visualization purpose, and the same colors are applied to the 4 cameras

shown in Figure 3.8. Figure 3.10 represents the camera calibration result for all frames. The

relative Euclidean distances between the camera path and 3-D points are shown by using the

3-D plots with X-Z axis and X-Y axis. The X-Z and X-Y plots respectively visualize the

relative depth between cameras and 3-D points and the vertical camera movements. The re-

sults represent that the estimated 2-D motion parameters using feature points can be closely

related by a collinearity of the feature locations.
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Figure 3.8. Trajectory of moving features by camera motion

Figure 3.9. Camera calibration results for 4 frames

Optical-ray representation : For the evaluation of the estimated parameters, the optical-

ray31 for an arbitrary camera center is applied. Figure 3.11(a) represents a simple space-time

31) The details of the optical-ray method was described in described in the chapter 3.4.
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Figure 3.10. Relative 3-D position between cameras and tracked points - (a) plot with X-Z
axis, (b) plot with X-Y axis

ray-space without a calibration-based warping. The space-time ray-space is u-t or u-z sam-

pling of an video sequence (I(u, v), t) or layered depth image (I(u, v), Z) where I(u, v) is an

image frame, and t and Z respectively denote time and depth coordinate. The position u of a

scan-line is shown in Figure 3.6(a). Since the camera is moving, this causes motion blurring

artifacts, and the distortions in the t-axis, in the ray-space show the translational and rota-

tional camera movement. An interpolation of a video sequence captured by a moving camera

causes a serious motion blurring artifacts as Figure 3.12(a) represents. If we know the ac-

curate camera parameters, the optical-ray can be warped and rearranged into the projection

ray of a virtual camera, i.e. arbitrarily or user-defined camera, as Figure 3.12(b) exemplifies,

and an interpolation of the rearranged ray does not make motion blurring artifacts. Fig-
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Figure 3.11. Optical-ray - (a) scanline optical-ray (b) rearranged, i.e. warped, optical-ray
using camera calibration parameters

ure 3.12(b) is the simulation results of using the rearranged optical-ray method.

Fourier spectral analysis of ray-space : The plenoptic sampling method [82–84] in-

troduced a Fourier spectral analysis of light field signals to determine the optimal sampling.

We use the spectral analysis to compare the spatial variations in Figures 3.12(a) and 3.12(b).

We transform the u-t domain corresponding to images to the Fourier spectral domain Fu-Ft.

We remark that it is not a transform of the image I(u, v). Figures 3.12(c) and 3.12(d) show

the Fourier spectral domain images respectively corresponding to Figure 3.11(a) and 3.11(b)İn

the Fourier spectral domain images, each point represents a particular frequency in the spatial

time domain image, and thus the tilted lines in the spectrum visualize the spatial variation in

the ray-space as Figure 3.13 illustrates. u and u+Δu are the light samples on the horizontal

scan-line of image and t is the time. Since we use a pin-hole camera model that defines a
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Figure 3.12. Virtual viewpoint in ray-space - (a) simple temporal interpolation (b) temporal
interpolation with rearranged optical-ray, (c) Fourier spectral analysis of the ray-space for
Figure 3.11a, (d) Fourier spectral analysis of the ray-space for Figure 3.11b

global projection ray, all light samples are assumed to be at the same depth as a point on the

focal plane. However, the real scene consists of 3-D points with different depths Z, and some

rays diverge from the global ray projection and cause blurring artifacts. The spatial variation

of the rays is laid between the minimum depth Zmin and the maximum depth Zmax, and the

spectral representation is bound to the range between maximum and minimum tilts. Although

a global image warping with estimated camera parameters can overcome some distortions in

Figure 3.12(b), the sampling positions in depth should be approximated to compensate the

distortions caused by the different depths. The sampling position can be estimated as a dis-

parity u− (u+ Δu) = ft/z between the two image coordinates u and u+ Δu. Additionally,

an additional nonlinear parameter optimization such as the Marquardt-Levenberg method
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Figure 3.13. Fourier spectral analysis of ray-space

or bundle adjustment method may increase the accuracy since they can fit the projection

parameters to the more reliable sampling positions.



Chapter 4

Spatio-temporal Collineation of

View Geometry

The camera geometry is a model of the direction with parallel rays between 3-D points and

the pin-hole camera. The set of all projections along each line parallel to a given direction

denotes one projection of the object. However, it is not accurate in most cases since the

viewing geometry includes several imaging errors with geometric distortion. Epipolar geom-

etry defining different camera geometries and relative orientation of image bundles should be

studied for the geometric corrections of viewing geometry with divergent rays. 2-D projec-

tive pencils of epipolar lines derived from image point homologies are two formed bundles

of rays in infinite variations of perspective positions in space. When the scene is rigid, the

linearized motion in a video sequence defines temporal epipolar geometry. For a stereo video,

the spatio-temporal view geometry has intersections of spatial and temporal epipolar lines at

reliable corresponding points.

4.1 Epipolar Geometry

The epipolar geometry is the intrinsic projective geometry which exists between any two per-

spective images of a single rigid object/scene. When two cameras look at a 3-D scene, there

is a geometric relation between the 3-D points and their projections onto the 2-D images

that lead to constraints between the image points. These relations are derived based on the

assumption that the cameras can be sufficiently well approximated by the pinhole camera

model [89]. Figure 4.1(a) represents two cameras with the optical centers c and c′ of the first

and second cameras, respectively. Given a physical point M, m and m′ are its image points

on the first and second image planes I and I ′, respectively. An image point m in the first

image plane I and its corresponding point m′ in the second image plane I ′ are constrained

to lie on a line l′ called the epipolar line. If m and m′ correspond to a 3-D point M in space,
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Figure 4.1. Epipolar geometry - (a) relationship among a world point, epipoles and epipolar
lines, (b) a pencil of epipolar lines in each image centered on the epipole.

the line l′ is formed by the intersection of the epipolar plane Π which are defined by three

3-D points M, c and c′ and the camera rotation angles θ and θ′. An image point m may

correspond to an arbitrary point on the semi-line cM, and the projection of cM to I ′ is the
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line l′. Furthermore, the intersection of the line cc′ with the second image plane I ′ is called

the epipole of image plane I ′, denoted by e′. The epipole e′ is also the common point passed

through by all epipolar lines of the points in the first image plane I. Both epipoles e and e′

and both optical centers c and c′ lie on a single line since each focal point (i.e. optical centers

c and c′) is projected onto a distinct point into the other camera’s image plane.

Figure 4.1(b) shows epipolar planes which intersect each image plane where it forms the

epipolar lines. All epipolar lines form a pencil containing the epipoles e and e′ which is the

intersection of the line cc′ with the image planes I and I ′. Due to the symmetry of the

epipolar geometry, all points lying on l′1 (and l′2) must lie on the epipolar line l1 (and l2),

which is the intersection of the plane Π1 (and Π2) with the image plane I. These planes must

intersect the second image plane I ′ at a common point, which is e′ and all epipolar lines e.g.

l′1 and l′2 in the second image plane I ′ pass through the epipole e, which is the intersection

of the line cc′ with the image plane I. This is the co-planarity constraint in solving structure

from motion(SfM) problem when the intrinsic camera parameters are known.

4.2 Fundamental Matrix

The epipolar geometry can be represented by a 3 × 3 singular matrix. If intrinsic camera

parameters are known and image coordinates have been normalized in advance, this matrix

is the essential matrix E. Otherwise, the matrix is the fundamental matrix F which is an

algebraic representation of the epipolar geometry for two camera systems. If it is assumed

that the world coordinate system coincides with the first camera coordinate system, the

relation of two cameras can be defined by the pinhole camera model.

m̃ = C[ I 0 ]M̃ and m̃′ = C′[ R t ]M̃ (4.1)

Eliminating M̃ in the above two equations, the following equation is obtained:

m̃′T C′−T

[t]×RC−1m̃ = 0 (4.2)

where (R, t) is the rotation and translation which brings points expressed in the first camera

coordinate system to the second one. [t]× is the anti-symmetric matrix defined by t such

that [t]×x = t × x for all 3-D vector x. Equation 3.24 can be rewritten by the fundamental

matrix F = C′−T [t]×RC−1.

m̃′TFm̃ = 0 (4.3)
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If the second camera coordinate system is chosen as the world one, Equation 4.3 becomes

m̃TF′m̃′ = 0 with F′ = C−T [t′]×R′C′−1, where (R′, t′) transforms points from the second

camera coordinate system to the first and the relation between (R, t) and (R′, t′) is denoted

by R′ = RT, and t′ = −RT t.

Some important properties of the fundamental matrix [89] are

(i) Transpose: If F is the fundamental matrix of the pair of cameras (c, c′), FT is also the

fundamental matrix of the pair in the opposite order: (c, c′).

(ii) Epipolar lines: For any point m in the first image plane, the corresponding epipolar

line is l′ = Fm. Similarly, l = Fm′ represents the epipolar line corresponding to m′ in

the second image plane.

(iii) Epipoles: For any point m, the epipolar line l′ = Fm contains the epipole e′. Thus e′

satisfies e′T (Fm) = (e′TF)m = 0 for all m. It follows that e′TF = 0, i.e., e′ is the left

null-vector of F.

(iv) Similarly, Fe = 0, which means that e is the right null-vector of F.

(v) 7 degrees of freedom: A 3 × 3 homogeneous matrix has eight independent ratios. How-

ever, F satisfies the constraint det(F) = 0, which removes one degree of freedom. F

is of rank 2 and the common scaling is not significant. There are only 7 independent

parameters among the 9 elements of the fundamental matrix.

(vi) Correlation: Assume a point m in the first image plane defines a line l′ = Fm in the

second image plane, the epipolar line of m. If l and l′ are corresponding epipolar lines,

any point m on l is mapped to the same line l′.

(vii) Search space reduction: For each point in one image, the corresponding point in the

other image must lie on a known epipolar line and the search space for a correspondence

is reduced from 2-D image to 1-D epipolar line. This is called the epipolar constraint.

4.3 Fundamental Matrix and Camera Projections

The fundamental matrix may be algebraically derived in terms of two camera projection

matrix, P,P′. The following formulation is due to Xu and Zhang [106]. A point m̃ in the

first image is matched to a point m̃′ in the second image, and the optical-ray back-projected

from m by P and m̃′ by P′ is obtained by solving αm̃ = PM̃ and α′m̃′ = P′M̃ where α is

the scale factor. For the first camera, the optical-ray is parameterized by the scalar λ as

M̃(λ) = αP+m̃ + λc (4.4)

where P+ is the pseudo-inverse of matrix P, i.e. PP+ = I, and c is the camera center which

all optical rays converge, defined by Pc = 0, i.e. null-vector. λ = 0 and λ = ∞ respectively

denotes points on the ray and the first camera center c. Similarly, an optical-ray is easily
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defined by projecting these points onto the second camera as P′P+m̃ and P′c. The epipolar

line l′ = (P′c) × (P′P+m̃) is the line joining two projected points. The point P′c is the

epipole e′ in the second image which is the projection of the first camera center. the epipolar

line can be defined by

l′ =
[
e′
]
×

(P′P+)m̃ = Fm̃ (4.5)

where the fundamental matrix is

F =
[
e′
]
×

P′P+ (4.6)

where [.]× denotes 3 × 3 skew symmetric matrix representing the vector cross product32.

Eliminating s and s′ by multiplying m̃′T from the left, i.e. equivalent to a dot product, we

have

m̃′TFm̃ = 0 (4.7)

The use of the pseudo-inverse of the projection matrix is valid for both full perspective

projection as well as affine cameras. However, this derivation breaks down in the case where

the two cameras has the common camera center of both P and P′, and thereby P′c = 0.

4.4 Fundamental Matrix Estimation with Parallax

If two sets of image points are the projections of a plane in space, they are related by a

homography H. Shashua and Avidan [97] showed that the fundamental matrix and the

homography is related by F = [ẽ′]× H. For a point which does not belong to the plane, an

epipolar line is defined by

l′ = m̃′ × Hm̃ (4.8)

This is essentially the same formula to Equation 4.5, because the homography H having the

explicit form H = P′P+ in terms of the two camera matrix. Since a constraint on the epipole

is given as ẽ′Tl′ = 0, two such points are sufficient to estimate the epipole e′.

Given the fundamental matrix F and the epipoles e and e′ in an image pair, the entire group

32) For a vector a, [a]
×

is such that [a]
×

b = a × b, ∀b, and [a]T
×

= − [a]
×

. The skew symmetric matrix has
a form as

[a]
×

=

⎡
⎢⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎥⎦
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Figure 4.2. Parallax in projection rays

of possible homography matrices between two images lies in a 4-D subspace. The family of

homography matrices from the first view to the second view are spanned by 4 homography

matrices H1, · · · ,H4 whose planes do not all coincide with a single point.

Hi = [εi]× F, i = 1, 2, 3 and H4 = e′δT (4.9)

εi are the identity vector, ε1 = [1, 0, 0]T , ε2 = [0, 1, 0]T , ε3 = [0, 0, 1]T . δ is a vector such that

δTe �= 0. These 4 homography matrices are referred to as primitive homographies and allow

any other homography H to be expressed as a linear combination H =
4∑

i=1
αiHi , αi ∈ R.

For a 3-D plane Π inducing a homography H between two images, any 3-D point M, which is

not on Pi and projects to image points m̃ and m̃′, satisfies the equation m̃′ = Hm̃ + e′ with

arbitrary scaling, i.e. since H and e′ are homogeneous entities, defined up to an arbitrary

scale factor λ.

m̃′ = Hm̃ + λe′ (4.10)

where the first term is the homography induced by Π, and the second term involves parallax

due to the deviation of the actual 3-D location from Π. The term λ designates as relative

affine structure[98] depends on m̃ but is invariant to the choice of the second image. The

point m̃ is to establish a common relative scale between H and e′. Given m̃, m̃′, H and e′, the

term λ corresponding to M̃ can be computed by cross-multiplying both sides of Equation 4.10
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with m̃′.

λ =
(Hm̃ × m̃′)T (m̃′ × e′)

‖m̃′ × e′‖2
(4.11)

The parallax layers is selected to lie in-between 3-D points approximated by a set of matching

point pairs (m̃i, m̃
′
i) i = 1, · · · , n in two frames. Figure 4.2 illustrates parallax in projection

rays. The two boundary lines, i.e. red and blue lines on a 3-D object surface, include points

a, b, c and d with the same parallax, and the lines are projected to the silhouettes of the

object in the viewpoint images. Any planar homography defined between the image pair I

and I ′ can be expressed as the linear combination of the 4 primitive homographies. We choose

primitive homographies with 4 coefficients μj minimizing m̃′
i �

4∑
j=1

(μjHj)m̃.

4.5 Essential Matrix Estimation

The essential matrix [24] is a specialization of the fundamental matrix for the case of normal-

ized image coordinates. Both the fundamental matrix and essential matrix can be used for

establishing constraints between matching image points, but the essential matrix can only be

used in relation to calibrated cameras since the inner camera parameters must be known in

order to achieve the normalization. The cameras which are calibrated for the essential matrix

are useful for determining both the relative position t and rotation R between the cameras

and the 3-D position of corresponding image points. The essential matrix E can be defined

by the equation

E = R[t]× (4.12)

where R is the rotation matrix of the camera and [t]× denotes the skew-symmetry matrix of

the translation vector t. The skew-symmetric matrix must have two singular values which

are equal and one which is zero. The multiplication of the rotation matrix does not change

the singular values which means that also the essential matrix has two singular values which

are equal and one which is zero. The essential matrix has a relationship with point corre-

spondences, as shown in the following equation:

�
m

′T
E

�
m = 0 (4.13)

where
�
m and

�
m

′
are respectively representations of the point correspondences m and m′

using normalized image coordinates. These point correspondences are extracted from a pair of

images taken by calibrated cameras. The following equation depicts the relationship between
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the essential matrix E and the fundamental matrix F:

E = CT
2 FC1 (4.14)

where C1 and C2 represent the matrices of intrinsic camera parameters. Since the essential

matrix is closely related to the fundamental matrix, it contains most of its properties, except

that it has only five degrees of freedom. The nearest rank 2 matrix to E given by Ê minimizes

the Frobenius norm of E − Ê subject to the constraint detÊ = 0. Let

E = UDVT (4.15)

be the singular value decomposition (SVD) of matrix E, where D = diag(
√
λ,

√
λ, 0) is a three

diagonal entry which consists of two nonzero identical and one zero values33, and U and V

are respectively 3 × 3 orthogonal and diagonal matrix. The two nonzero singular values,

i.e.
√
λ, of E must be equal, known as the Huang-Faugeras constraint. The rotation and

translation information of camera motion can be retrieved by splitting the essential matrix,

i.e. see Appendix A.6.

4.6 Maximum and Minimum Bounds of Epipolar Range

When the calibration is exact, the search for corresponding points are to be restricted to

epipolar lines. However, an inexact calibration causes a need for a wide search range of

image matching. In this case, the maximum bounds of epipolar geometry may be utilized to

determine a specific range of stereo geometries. In each viewpoint image, all possible epipolar

geometric ranges can be represented as the region in the other image formed from the union

of all associated epipolar lines. The search range for correspondences can be restricted by

imposing limits on the maximum bounds. This method is also efficient for a space variant

sampling such as light field. For any point x in the stereo geometry shown in Figure 4.1(a),

the regions r and r′ of the corresponding epipolar lines across images I and I ′ are represented

as

r = r′
f sin (θ) + x cos (θ)

f sin (θ′) − x′ cos (θ′)
(4.16)

The range of camera rotation angles is approximated as θ′ ∈ [θmin, π − θmin] where the mini-

mum angle θmin is relative to the baseline. The maximum bound of translation is restricted

to a maximum horizontal disparity as |x − x′| ≤ D due to the epipolar constraint. For the

known image size, the maximum and minimum bounds rmax and rmin can be approximated

33) This is rank-2 constraint since all the epipolar lines intersecting in a unique epipole.
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as

rmax ≈ r′
√
f2 + x′2

f sin (θmin) − x′ cos (θmin)
(4.17)

and

rmax ≈ r′
√
f2 + x′2

f sin (θmin) − x′ cos (θmin)
(4.18)

4.7 Epipolar Rectification

Rectification is a fascinating process to make the epipolar geometry between two viewpoints

coincident and parallel with the scan-lines of the images. It is efficient for dense depth

estimation by reducing the search space from a 2-D image to a 1-D epipolar line. Rectification

can be classified in two categories: planar or standard rectification [99, 100] and epipolar

rectification [101, 102]. The planar or standard rectification that is mostly used for stereo

vision systems uses a planar projective mapping which consists of finding parallel planes

with the baseline, i.e. the line passing through the camera centers. This is accomplished by

applying a homography to each image that maps the epipole to a point at infinity. With this

kind of transformation, rectified images have the following properties:

(a) All epipolar lines are parallel to the horizontal coordinate axis,

(b) Corresponding points have the same vertical displacement.

However, this approach would fail if the epipoles are located within the images or would result

in very large images when the epipoles are close to the image borders. In single camera setups,

forward camera motion must also be considered. Therefore, Pollefeys et al.[101] and Oram

[102] introduced an epipolar rectification approach that reparameterizes the images around

epipole using polar coordinates. The epipolar geometry between a pair of images must be

known beforehand. The first step is to determine the extreme epipolar lines l1, l3 and l2,

l4, i.e. the epipolar lines passing the outer image corners in both images, as Figures 4.3(a)

and 4.3(b) show. The epipolar line transfers l′ ∼ H−Tl and l ∼ HTl′ are calculated as

H ≈ [e′]
×

F − e′aT (4.19)

where a is an arbitrary 3 vector such that detH �= 0. The first term is a transformation taking

the epipole to a point at infinity, and the second term represents 1-D projective transformation

of the image along all the epipolar lines.34. Figure 4.3(c) represents the epipolar line transfer

using time t. The common region can be determined by transforming these lines to the other

34) Equation 4.19 has a form of I + (1, 0, 0)T
a
T that can be written as an affine transformation
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Figure 4.3. Epipolar rectification - (a) the 1st camera image with the extreme epipolar lines,
(b) the 2nd camera image with the extreme epipolar lines, (c) the epipolar line transfer, (d)
the common region

image as Figure 4.3(d) represents. To avoid pixel loss, each row of the rectified image is

obtained by scanning the consecutively orienting epipolar lines li−1 and li of this region at a

minimum angle ϕ as Figure 4.4 illustrates.

ϕi−1 = arctan

(
1

γi−1

)
(4.20)

A =

⎡
⎢⎣ a b c

0 1 0

0 0 1

⎤
⎥⎦
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Figure 4.5. Rectified images - (a) rectified first image, (b) rectified second image, (c) dense
disparity matching in two rectified images, (d) 3-D view
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where ϕi−1 is the distance between the image border and the epipole of line li−1. Since a

row of the rectified image corresponds to a specific angle, the inverse rectification is possible

using look-up tables. Unlike planar rectification, the maximum sizes of the rectified images

are fixed and given with⎧⎨
⎩ widthrectifiedimage =

√
width2

originalimage + height2originalimage

heightrectifiedimage = 2 · (widthoriginalimage + heightoriginalimage)
(4.21)

Figures 4.5(a) and 4.5(b) represent the rectified stereo images. The size of original stereo

images is 589 × 446, and the size of rectified images is 634 × 954. A dense stereo matching

with consistency checking is applied to the rectified images, and inverse rectification of left-to-

right and right-to-left disparity maps recovers dense 3-D depths of the scene as Figure 4.5(c)

shows. The details of the dense stereo matching and consistency checking will be described

in Chapter 6. Figure 4.5(d) is a 3-D model recovered from the dense 3-D depth.

4.8 Temporal Epipolar Geometry

A temporal linearity can be defined by the geometric relationship of the tracked point be-

tween two frames. The spatio-temporal space can be represented by the brightness-invariance

concept shown in Equations 1.7, 1.8 and 1.9.

I(u, v, t) = I(u+ du, v + dv, t+ 1) (4.22)

where d is the optical flow, i.e. du = u′ − u and dv = v′ − v where (u′, v′, t + 1) is the

correspondence of (u, v, t). Expanding Equation 4.22 using Taylor’s series and retaining only

the linear term as

I(u+ du, v + dv, t+ 1) = I(u, v, t) + Iu + Iv + It (4.23)

where Iu, Iv and It denote the spatial and temporal derivatives of image: Iu = ∂I
∂xu, Iv = ∂I

∂yv

and It = ∂I
∂tu. These can be rewritten as the equation of a line:

dv(u, v, t) = −Iu(u, v, t)

Iv(u, v, t)
du(u, v, t) − It(u, v, t)

Iv(u, v, t)
(4.24)

Since du = u′ − u, and dv = v′ − v, this linear constraint can be defined as

v′ − v = −Iu(u, v, t)

Iv(u, v, t)
u′ −

(
It(u, v, t)

Iv(u, v, t)
− v − Iu(u, v, t)

Iv(u, v, t)
u

)
(4.25)
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Figure 4.6. Spatio-temporal epipolar geometry

In homogeneous coordinates, we can obtain the temporal line equation of the optical flow.

[
u′, v′, 1

]T
[Iu, Iv, It − Iuu− Ivv] =

[
u′, v′, 1

]T
l′temporal = 0 (4.26)

where l′temporal = F [u, v, 1]T denotes the temporal epipolar line. Spatial and temporal epipo-

lar lines intersect at spatio-temporal correspondences as Figure 4.6 illustrates.

m̃′ = l′spatial × l′temporal and λm̃′ =
[
u′, v′, 1

]
(4.27)

where λ is an arbitrary scale factor defined by Equation 4.10 and 4.11. Finally we can get

the spatio-temporal collineation as

u′ =
(f4u+ f5v + f6) (It − Iuu− Ivv) − (f7u+ f8v + f9) Iv

(f1u+ f2v + f3) Iv − (f4u+ f5v + f6) Iu
(4.28)

and

v′ =
(f7u+ f8v + f9) Iu − (f1u+ f2v + f3) (It − Iuu− Ivv)

(f1u+ f2v + f3) Iv − (f4u+ f5v + f6) Iu
(4.29)

4.9 Experimental Results

Epipolar geometry estimation of two views : When we know the geometry of the

camera system as a priori, the set of all linear projection rays generates viewing geometry

that includes several imaging errors with geometric distortions. These distortions are shown

as divergent rays or camera aperture in the viewpoints and solved by a compensation us-

ing image correspondences. However, every image point in a viewpoint image is a potential

match candidate for every point in the other viewpoint image, making a 2-D and large search

problematic. Epipolar geometry provides the convenience of the epipolar constraint which

reduces the search problem to 1-D.

Figures 4.7(a) and 4.7(b) show the images from two frames of an image sequence captured
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7. Epipolar geometry estimation between two temporal frames - (a) epipolar lines of
the 95th frame of a sequence captured by a moving monocular camera, (b) epipolar lines of
the 115th frame, (c) the rectified 95th frame, (d) the rectified 115th frame, (e) the segmented
region by the maximum bound of divergent rays, (f) the inverse rectified dense correspon-
dences
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8. Epipolar geometry estimation between uncalibrated stereo images - (a) the left
image captured of an uncalibrated stereo image pair, (b) the right image, (c) the rectified
left image, (d) the rectified right image, (e) the segmented region by the maximum bound of
divergent rays, (f) the inverse rectified dense correspondences
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(a) (b)

Figure 4.9. Recovered 3-D model - (a) the recovered 3-D model using results in Figure 4.7,
(b) the recovered model using Figure 4.8

with a video camera from a moving helicopter. The motion of the helicopter induces visual

changes and large occlusion in a monocular sequence. The image resolution is 720× 576 and

the epipolar geometry is estimated using frames of the 95th and the 115th of the sequence.

Features are tracked by the KLT tracker that was introduced in Equation 3.31 to establish

temporal corresponding pairs. Compared to stereo matching, the motion correspondence is

much easier to solve since tracking techniques can be much more reliable than large-baseline

matching between image frames. However, the estimation using two consecutive frames alone

is very noise sensitive and inaccurate. Hence, we use a frame-by-frame tracking of long se-

quence and use remote frames to estimate viewing geometry. For a large distribution of sparse

features on the images, we eliminate unstable features using the RANSAC (random sampling

consensus) method and calculate the remaining error for the obtained fundamental matrix.

The matrix is iteratively updated to select the best with a minimum error. The yellow lines

in Figures 4.7(a) and 4.7(b) are the epipolar lines, and each line includes a feature at least.

Figures 4.7(c) and 4.7(d) represent the rectified images reformed from the epipolar lines. The

size of the rectified images is 754× 599. The object region can be segmented by thresholding

the maximum bound of divergent rays as Figure 4.7(e) shows. The linear projection ray is

generally stable in the background, and a ray from a foreground object is not the same to

the linear projection ray. Figure 4.7(f) is the result from a dense matching with a maximum

bound constraint.

Figures 4.8(a) and 4.8(b) show the left and right images captured by uncalibrated stereo

cameras with toed-in setup. It is more difficult to establish correspondences between stereo

images than motion. However, the view geometry estimation from stereo images has a smaller

influence of noise than temporal frames since the spatial correspondences allow the relatively

larger displacement than two temporal frames. The image size is 1024 × 768. Without

representing epipolar lines on the original images, the evaluation can be possible on the rec-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10. Spatio-temporal epipolar geometry using the sceneflow - (a) the epipolar lines of
the left 16th frame of a stereo video sequence, (b) the 16th frame of the right image sequence,
(c) the epipolar lines of left 51th frame, (d) the 51th frame of the right image sequence, (e)
the epipolar lines of left 94th frame, (f) the right 94th frame, (g) the epipolar line of left
137th frame, (f) the right 137th frame
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tified image. The yellow lines are the rectified epipolar lines that are parallel and satisfy

the basic epipolar constraints. This evaluation of rectified epipolar lines is also possible in

Figures 4.7(c) and 4.7(d)Ṫhe rectified image has a resolution of 1047 × 880. Figures 4.8(c)

and 4.8(d) respectively show the segmented object regions by a threshold of maximum bound

and the inversely rectified dense correspondences. The 3-D models are recovered by a image-

based modeling scheme using consistency checking of a dense depth map and a texture map.

When the image points of dense disparity and viewpoints are projected into the depth map

and texture map, a lot of points are overlapped. The samples are selectively interpolated

by the Euclidean distance between the samples. Figures 4.9(a) and 4.9(b) show 3-D models

recovered from Figures 4.7 and Figure 4.8 respectively.

Spatio-temporal epipolar geometry estimation : It is difficult to establish feature

correspondences between stereo images. The image brightness of a point in the scene does

not remain constant from one camera viewpoint to another but remains constant over time for

a single camera. Thus, we can apply optical flow to stereo image sequences, and the joint cor-

respondences in the spatio-temporal image frames make very strong multi-linear constraints.

We use two hand-held cameras to capture a scene with unknown camera geometry. Features

are tracked by the KLT tracker and spatially matched with outlier removal using RANSAC.

This method has the advantages of spatially large baseline and temporally dense correspon-

dences. Figure 4.10 shows the estimated epipolar lines of temporal frames of a stereo video

sequence. The epipolar lines with red color show the epipolar constraints of stereo camera,

and the yellow epipolar lines represent the linear constraints for camera motion. The video

has a resolution of 800 × 592 and 152 frames. Once we know the fundamental matrix and

the position of the epipoles, the distances between correspondences can be measured, based

on the epipolar constraints. 3-D points of a scene can be reconstructed as Figure 4.11 shows

since the distances can be converted to the depths by triangulation. The centralized coor-

dinate system35 derived from the depth from viewpoints allows us to know the 3-D camera

locations that are relative to the reconstructed 3-D points. Figures 4.12(a) and 4.12(b) rep-

resent the dense depth map and the 3-D model recovered from a stereo video in Figure 4.10

by using spatio-temporal dense correspondences with the multi-linear constraint. The X −Z
plot shows the relative depth between cameras and 3-D points, and the X − Y plot shows

the vertical movements of cameras.

Optical-ray-space representation using the dense 3-D sceneflow : We use the spatio-

temporal view geometry for the virtual view synthesis. For the calibrated cameras and an

arbitrarily defined virtual camera, the optical-ray in the 3-D space can be warped and ar-

35) The 3-D camera positions can be measured by the Euclidean distance between the 3-D points and camera
positions measured from the world center (0, 0, 0).
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Figure 4.11. Relative 3-D position of cameras and tracked points for all stereo frames - (a)
plot with X-Z axes, (b) plot with X-Y axes
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(a) (b)

Figure 4.12. Recovered depth and 3-D model using sceneflow - (a) recovered dense depth
map, (b) recovered 3-D model

(a) (b)

(c) (d)

Figure 4.13. Spatio-temporal interpolation in optical-ray - (a) the 1st frame of the stereo video
sequence, (b) the spatio-temporally interpolated image, (c) spatio-temporal interpolation in
optical-ray for an user-defined camera, (d) depth compensated spatio-temporal interpolation
in optical-ray
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ranged from the spatio-temporal image projections to the ray projection of the virtual cam-

era. Figure 4.13(a) shows the 1st frame of the stereo video sequence, and the simplest

temporal interpolation of 152 frames results in the blurring artifacts as the representation in

Figure 4.13(b). However, the temporal interpolation in the optical-ray generates a view of

near-infinite plane with only small distortions. Ray projections from the object surface to the

camera center do not always fit to the global ray projection because the camera parameters

define one global ray projection although the 3-D points of objects are laid on different depth

planes. The reconstructed image still has some divergent rays as Figure 4.13(c) exemplifies.

Thus, we use the dense 3-D sceneflow to approximate the sampling locations on the object

surface which compensates the projective distortions of the divergent rays. Figure 4.13(d)

shows the result that most distortions are eliminated.

In Figure 4.14, we compare the vertical sections of the optical-ray-spaces corresponding to

Figures 4.13(b) and 4.13(d). A vertical scan-line is used to reconstruct the ray-space because

the camera has large vertical movements, and Figure 4.14(a) shows the position of a verti-

cal scan-line. The ray-space shown in Figure 4.14(b) has a lot of temporal variations rays

that may cause blurring artifacts in the virtual view. The proposed method results in well

rearranged rays as Figure 4.14(c) shows. An error is located in the upper part of the image,

i.e. the roof of the castle, that is partially occluded and slowly appears due to the sampling

error in depths. Sceneflow in the sky should be near zero since the depth of the sky should

be near infinite. Since the sky in the image is a homogeneous region that is fundamentally

difficult to establish a correspondence, the depth derived from sceneflow may not correspond

to the true structure. This problem can be avoided by using pre-segmentation or a high

image sampling rate, and we use the latter36. Figures 4.14(d) and 4.14(e) are the Fourier

spectral domain images that visualize the frequency of spatial variations in the ray-spaces

shown in Figures 4.14(b) and 4.14(c). We can transform the ray-space v − t to Fourier spec-

tral domain Fv-Ft. The Fourier spectral analysis of ray-space was already introduced with

Figure 3.13 in Chapter 3.5. Figure 4.14(d) indicates larger ray variations in the ray-space

than Figure 4.14(e).

36) Object segmentation is widely used in image-based modeling and tele-immersion studies to reduce the
computation time or to restrict errors. However, it is very difficult to extract automatically an object of
interest that consists of several image regions from a natural scene without prior information.
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Figure 4.14. Spatio-temporal ray-space - (a) A vertical scan-line (b) ray-space of Figure
4.13b, (c) ray-space of Figure 4.13d, (d) Fourier spectral domain of Figure 4.14b, (e) Fourier
spectral domain of Figure 4.14c



Chapter 5

Unified Representation of Robust

Estimations

Estimation techniques in 3-D computer vision applications need to estimate accurate param-

eters despite noise and measurement errors that may be caused by specular highlights, satu-

ration of sensors, or mistakes in establishing correspondences. In the last twenty years, many

robust techniques have been applied to the standard problems in computer vision. There are

robust approaches for performing surface fitting [107], motion estimation [108, 109], epipolar

geometry [110, 111], image alignment [112], segmentation [113, 114], edge detection [115, 116],

etc. In this dissertation, the final targets are obtaining dense depth compensated video-based

modeling and rendering, and there are two important problems:

(a) Dense image-to-image correspondences are not accurate because the matching process is

unreliable, and a parameter estimation based on the data are heavily over-constrained.

Robust parameter estimation of the epipolar geometry is important since the parame-

ters can be important constraints to reconstruct the scene geometry up to a projective

transformation.

(b) Even when we can obtain accurate camera parameters using some reliable low level fea-

tures, e.g. edge, line and corner etc., it is not sufficient to reform rays diverged from the

optical axis due to the nonlinear scene geometry. Robust estimation of dense correspon-

dence is still important.

When errors are large, it is very difficult to discriminate inliers from data including a lot

of outliers. This chapter states clearly what is meant by robustness and describes how the

estimator can be robust. And, a unified representation of robust estimator will be introduced

for a robust parameter estimation and robust regularization of dense scene geometry.
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(a) (b)

Figure 5.1. The importance of the scale - (a) data with a small scale of noise, (b) data with
a large scale of noise

5.1 Robustness of the Estimator

Due to physical imperfections in imaging sensors and errors in low-level vision computations

such as detection and matching algorithms, the image data may always contain outliers.

In the estimation of the fundamental matrix as described in previous chapters, extracting

the correct matches is difficult since the bad location of detected features37 and the false

matches38 always exist in the correspondence procedure. In the estimation of the fundamental

matrix, the location error of a point of interest is assumed to exhibit Gaussian behavior. This

assumption is reasonable when the localization error for most points of interest is small, i.e.

within one or two pixels. However some points are possibly incorrectly localized with more

than three pixels, the presence of outliers severely affects the precision of the fundamental

matrix. The existence of outliers increases interests in robust estimators which can determine

inlier simultaneously with the estimation of parameters.

A robust estimator considers the relation between the data points and reasonable model

candidates as a scale and outliers can be removed by different contributions of scales for the

data of interest [33, 34]. Figures 5.1(a) and 5.1(b) exemplify the importance of scaling using

the same data only in two different scales of the noise. Data in a large scale is more difficult to

define the data of interest than a small scale. A typical example of the non-robust estimator

is the total least squares estimation whose objective function can be expressed as∫
i=1,··· .n

d2
i (5.1)

37) The bad location means the detected feature points are not correctly localized.
38) False matches are caused by the false heuristics in the establishment of correspondences.
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where di is the distance between measurement and its true value and the parameter estimates

are obtained by minimizing the sum of squared residuals. If we assume that the noise cor-

rupting the data is of zero mean, which yields an unbiased parameter estimate. If the noise

variance is known, a minimum variance parameter estimate can be obtained by choosing ap-

propriate weights on the data. A robust estimator includes an additional assumption in the

objective function [117] as

∫
i=1,···n

(
1

σ
di

)2

(5.2)

where the function is homogeneous if the scale σ of the inlier noise does not play any role in

the main estimation process. Instead of
(

1
σ

)2
in Equation 5.2, a robust estimator employs a

bounded loss function ρσ as ∫
i=1,··· ,n

ρσ

(
d2

i

)
(5.3)

ρσ(d) depends on σ and satisfies the following properties:

(a) Symmetric, ρσ(d) = ρσ(−d),
(b) Positive-definite function with a unique minimum at zero, ρσ(d) > 0 and

(c) Less increasing with |d| than square.

When ρσ(u) = u2 yields the total least squares solution and ρσ(d) = |d| yields the least

absolute values (L1) regression. However, we are more interested in the bounded loss functions

which are characterized as {
0 ≤ ρσ(d) ≤ 1

ρσ(d), |u| > 1
(5.4)

5.2 Robust Estimation with Random Sampling

The objective functions in most robust estimators often have many local extrema. The opti-

mization procedure starts from several initial positions and finds the desired solution, which

locates in the candidate space of all possible distinct elemental subsets. In numerical tech-

nique, the random sampling is often used to obtain a close to optimal solution since the

number of possibly distinct elemental subsets in the data can be very large. It reduces the

amount of computations in the outlier rejection capability of the implemented robust estima-

tor. Most robust estimators with random sampling run through the following procedure:

(1) Select p parameters, i.e. the number of point correspondences in each subsample, ran-

domly.

(2) Calculate the residual to the model for each parameter.
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Table 5.1. Several kinds of ρ, ψ and w functions.

g(d) ψ(d) = g(d)d ρ(d) =
∫
g(d)ddx

Least − squares 1 d d2/2

Huber
|d| ≤ c

|d| > c

1

c/ |d|
d

c · sign(d)

d2/2

c(|d| − c/2)

Lorentzian 1
1+(d/c)2

d
1+(d/c)2

c2

2 log
(
1 + (d

c )2
)

Tukey

{
|d| ≤ c

|d| > c

1 −
[
1 − (d

c

)2]2
0

d
[
1 − (1 − (d

c )2)2
]

0

c2

6

[
1 − (1 − (d

c )2)3
]

(c2/6)

(3) The efficiency is defined as the ratio between the lowest achievable variance for the es-

timated parameters and the actual variance provided by the given method. Sort the

squared residuals and select a scale which acts as a bounded loss function for the esti-

mated model.

(4) The scale performs a consistency check of point correspondences which are considered as

outliers.

(5) Repeat the previous steps t times, i.e. t is the number of subsamples, and calculate the

probability P that none of these subsets contains only inliers:

P = 1 − [1 − (1 − ε)p]t (5.5)

where ε is the maximal proportion of outliers. By requiring that the probability P must

be near 1, t can be determined by the measurement of the outlier rejection capability for

given values of p and ε:

t =
log(1 − P )

log |1 − (1 − ε)p| (5.6)

5.3 Unified Representation of Robust Fundamental Matrix

Estimation

The theory of robust estimators was developed in statistics and three famous methods, M-

estimators [117, 118] and least median of squares (LMedS) [119, 120] and random sample

consensus (RANSAC) [110, 120–122], were successfully applied to solve a lot of computer

vision problems. All of these robust estimators can be regarded as particular cases of M-

estimators39 with auxiliary scales.

Instead of the function in Equation 5.3, we can solve the following iterated reweighted least-

39) The M-estimator was first proposed in 1964, by Peter Huber [34] as a maximum likelihood estimator which
depends on the assumed distribution family of the data being at least approximately true.
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Table 5.2. Graphs of ρ, ψ and w functions.

w(d) ψ(d) = w(d)d ρ(d) =
∫
w(d)ddx

0
0

0

0
0

0

Least-squares(non-robust)

0
0

0

0
0

0

Huber

0
0

0

0
0

0

Lorentzian

0
0

0

0
0

0

Tukey

squares problem based on ρ(di) to estimate the parameter vector.

ρ(di) =

∫
i=1,···n

g(d
(k−1)
i )d2

i (5.7)

where g(d) = ψ(d)
d is the redescending weight function that higher weights are given to the

measurements with small residuals. The derivative ψ (d) = ∂ρ(d)
∂d is called the influence

function. The influence function measures the influence of a datum on the value of the

parameter. The objective function of the parameter vector which is minimized should have a

unique minimum. This requires that the ρ-function is convex. The superscript (k) indicates
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the iteration number. In the weight function, only those data points that are at a distance

less than from the current fit are taken into account. There are several kinds of redescending

weight functions [123, 124] as Table 5.1 shows. Table 5.2 represents the graph of the functions.

For the least-squares with ρ(d) = d2/2, the influence function ψ (d) = d is that the influence

of a datum on the estimate increases linearly with the size of its error. However, Tukey’s

biweight function considers some estimated standard deviation σ of inlier errors.

ρ(di) =

∫
g(di)didx =

⎧⎪⎪⎨
⎪⎪⎩

c2

6

(
1 −
[
1 −
(

di

cσ

)2
]3)

if |di| ≤ cσ

(c2/6) otherwise

(5.8)

where the constant c = 4.6851 is the normalization factor for a Gaussian distribution and the

weight function w is

g(di) =

⎧⎨
⎩
[
1 − (d/c)2

]2
if |di| ≤ cσ

0 otherwise
(5.9)

In the redescending M-estimators, the scale parameter σ can be estimated at every iteration

and acts as a threshold for the inlier/outlier separation.

The scale of the robust estimator can be utilized for the estimation of the epipolar geometry.

The fundamental matrix estimation proceeds the following steps:

(1) A Monte Carlo type technique is used to draw t random subsamples of correspondences.

(2) For each subsample, indexed by J , we compute the fundamental matrix FJ .

(3) For each FJ , residuals dJ are determined with respect to the whole set of point corre-

spondences.

(4) Retain the estimate FJ for which dJ is minimal among all t dJ .

(5) Assign a weight gi based on σ for each correspondence.

(6) Refine the fundamental matrix F by bringing all FJ into the bounded loss function∫
i=1,··· ,n ρi

min
n∑

i=1
gidi

where ρi = gidi

Median Absolute Deviation (MAD) estimator : Given n-point correspondences, i.e.

[(mi,m
′
i) |i = 1, · · · , n], the robust standard deviation estimate is related to the median of

the absolute values of the residuals [117]. Median Absolute Deviation (MAD) estimator

measures the scale based on the spread of the residuals around the median.

c · median
i=1,...,n

|di| (5.10)
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where di denotes the distance between the i-th points and epipolar lines.

di = d
(
m̃′

i,FJm̃i

)
+ d
(
m̃i,F

T
J m̃′

i

)
(5.11)

Least Median of Squares (LMedS) estimator : The LMedS method uses the squared

residuals d2 instead of absolute residual d.

di =
[
d2
(
m̃′

i,FJm̃i

)
+ d2

(
m̃i,F

T
J m̃′

i

)]
(5.12)

A weight is applied to each correspondence.

gi =

{
1 if r2i ≤ (2.5σ̂)2

0 otherwise
(5.13)

where σ̂ = 1.4826 [1 + 5/(n− t)]
√
dJ and the constant 1.4826 is set to achieve the same

efficiency as least-squares in the presence of only Gaussian noise40. Point correspondences

having wi = 0 are considered as outliers. Although this outlier removal is very similar to the

RANSAC method, a major difference is that the LMedS the scale is computed from a condi-

tion set on the percentage of inliers, and RANSAC requires a prefixed threshold provided by

the user.

RANdom SAmple Consensus(RANSAC) method : The redescending loss function

in RANSAC is defined by the zero-one function.

ρ(di) =

{
1 if |di| ≤ c

0 otherwise
(5.14)

This zero-one loss function often yields very poor properties since it is not continuous and

does not have a unique minimum in d = 0. For a critical arrangement of the n points, a slight

change in the value of a measurement yields an unexpected large change in the value of the

estimate. Several variants that the zero-one loss function is replaced by a smooth function

has been studied in [111, 121, 125]. For example, M-estimator sample consensus (MSAC)

method [121] replaces the zero-one loss function with the skipped mean.

ρ(di) =

{
1 if |di| ≤ cσ

0 otherwise
(5.15)

40) The median of the absolute values of random numbers sampled from the Gaussian normal distribution
N(0, 1) is equal to Φ−1

(
3
4

)
≈ 1

1.4826
.
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The MAPSAC estimator [125] uses the loss function in a maximum posterior formulation

of RANSAC. A maximum likelihood motivated variant, the MLESAC [111], is developed

to evaluate the likelihood of the hypothesis, representing the distribution of residuals as a

Gaussian mixture model.

5.4 Anisotropic Regularization using Robust Estimator

In 3-D computer vision, the discontinuity detection is important since the discontinuity in

a viewpoint image is the position which includes information separating the bundles of rays

reflecting from different surfaces. Two approaches have been separately developed: edge-

based and area-based approaches. Both approaches detect local changes in the intensity of

the image. However, these techniques are not satisfactory for localization performance due

to the sensitivity of noise.

Edges in the Gaussian scale-space : Canny [126] proposed a successful edge detec-

tor which uses the approximation by the first derivative of a Gaussian. By convolving an

image with a single Gaussian-filter, the edges are detected very precisely at the maximum of

the gradient magnitude in the Gaussian-smoothed image. Witkin [127] developed the Canny

edge detector into an iterative method for multi-resolution processes, i.e. Gaussian scale-

spaces. A coarser resolution image is iteratively generated by convolving the image with a

Gaussian-filter kernel. The scale parameter of Gaussian-filter kernel is used to control the

boundary strength and the direction to be detected. This parameter tuning results in strong

boundaries only, which have larger values than can be detected in the specified scale [128].

Iσ(u, v) = Gσ ∗ I(u, v)
= (2πσ2)−1e−(u2+v2)/(2σ2) ∗ I(u, v)

(5.16)

where Iσ(u, v) is the image intensity filtered by the local convolution kernel of the Gaussian G
at a scale-level σ. The first derivative of Gaussian along the x-axis is given in Equation 5.16,

and the other along the y-axis is obtained in a similar way. Figure 5.2(a) shows a Gaussian

scale-space using a horizontal scanline u and a different scale parameter σ. Edges in the

scale-space are obtained by a coarse-to-fine method as Figure 5.2(b) represents.

∂Iσ
∂u

=
−u√
2πσ3

e−u2/2σ2
= − u

σ2
Iσ (5.17)

Since the 2-D gradient is a first-order operator (∂/∂x, ∂/∂y) defined as a vector, the direction

of the gradient is defined by the Euclidean norm of gradient which consequently indicates the
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(b)

Figure 5.2. Gaussian scale-space - (a) Gaussian scale-space for a horizontal scanline, (b) edges
in the Gaussian scale-space

strength of the intensity change as

|∇Iσ(u, v)| =

∣∣∣∣I(u, v) ∗ ∂

∂N
Iσ(u, v)

∣∣∣∣ =
√(

∂Iσ(u, v)

∂u

)2

+

(
∂Iσ(u, v)

∂v

)2

(5.18)

where N represents a unit vector towards an arbitrary gradient direction. The gradient

direction is perpendicular to the edge orientation and localizes the boundary. Thus, the

equivalent function considering several directional derivatives can be easily expressed with

respect to a polar coordinate system where r(θ) =
√
u2 + v2 represents the radial distance

from the origin. The function is symmetrical and independent of the orientation θ. The

prediction error is defined as

E[Iσ(r), θ] = |Iσ(u+ s cos θ, v + s sin θ) − Iσ(u, v)| (5.19)

where s is the distance of the prediction that is proportional to the scale. If we consider two

possible directions for the morphology of a boundary, forward is θ and backward is given as

(θ + π). The probability P is assigned in a proportion to their prediction errors [129].

P [Iσ(r), θ] =
E[Iσ(r), θ]

E[Iσ(r), θ] +E[Iσ(r), (θ + π)]
(5.20)
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Figure 5.3. Hierarchy of edges in Gaussian scale-space - (a) an edge position i in a filtered
scanline, (b) local maxima point j of intensity changes

A large prediction error in a certain direction implies a higher possibility to identify local

maxima of intensity changes by analyzing the total certainties over half circles as

arg max
θ

θ+π/2∫
θ−π/2

P [Iσ(r), θ]dθ (5.21)

In Figure 5.3, the optimal position of a boundary i of a scale is estimated to minimize errors

by the highest possibility, thus i is located at the maxima of intensity changes j. Since the

maximum of change directly implies the position of discontinuity, i is exactly located at the

position of discontinuity on the scale.

The smoothness condition of Gaussian scale-space is efficient to detect an object region that

consists of several piecewise weak edges, e.g. a texture object [132, 133]. On a coarse resolu-

tion, the piecewise weak edges are removed, and an object can be easily determined by regions

with some strong edges. A fine resolution can be used to fit the coarsely detected edges to the

position of real edges. Gaussian scale-space is a representation of a coarse-to-fine morpho-

logical hierarchy that has a trajectory of the image discontinuity. Figure 5.4 exemplifies the

morphological course-to-fine hierarchy of a scale-space. The original image in Figure 5.4(a)

has 5 different texture regions. In a course resolution shown in Figure 5.4(b) edges of the re-

gions can be detected by local maxima. However, the position of edge is not exact. Although a

fine resolution does not allow detecting edges of texture regions, the position of edges is exact.

Area-based approach : The simplest area-based methods to find a discontinuity is thresh-

olding. However, a single threshold is not sufficient to divide the image areas with the similar

photometric characteristic, and the analysis of semantic units is additionally needed. Region

growing methods [134] employs a similarity measure between neighbored pixels to find a con-
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(a) (b)

(c) (d)

Figure 5.4. Morphological course-to-fine hierarchy in a texture image - (a)texture image with
5 regions, (b) filtered image into a coarse resolution, (c) local maxima with a coarse resolution,
i.e. note that result is without thresholding of edge strength, (d) local maxima with a fine
resolution

nected area. This approach can define edges being laid on a segment border by a form of

closed contour. However, the method cannot determine the segment size, and thus merges

some important features in one segment while other image areas are still splitted. Morphology

methods [135, 136] solve these problems by adapting a flexible region into a discontinuity by

using erosion and dilation. Histogram equalization can be efficiently applied to the method

for the manipulation of local contrasts. However, the noise sensitivity of the gradient oper-

ation is the main problem. If the segment sizes are very small, the uniform areas may be

over-splitted. A low-pass filtering the gradient image can be a solution because if the noise

is reduced, the segments can easily grow. A localization problem due to the shifted positions

of a discontinuity is occurred in the smoothing process41.

Oriented Laplacian : The oriented Laplacian [130] describes a smoothly varying oriented

structure. The unit vectors η and ξ are respectively defined by the gradient direction i.e.

streamline direction and its orthogonal direction i.e. tangent and isophote direction for scalar

41) This problem is related to the ambiguity of blurred edge.
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image.

η = θ+ =
∇Iσ
‖∇Iσ‖ and ξ = θ− =

∇Iσ
‖∇Iσ‖

⊥

(5.22)

Two variation orientation θ+ and θ− are corresponded into respectively orthogonal and tan-

gent to the vector edges. N is a variation norm to detect the edges. The second derivative

operators Iξξ and Iηη of Iσ is used to track the discontinuity of the vector field.

∂Iσ
∂t

= cξ
∂2Iσ
∂ξ2

+ cη
∂2Iσ
∂η2

= cξIσξξ
+ cηIσηη

(5.23)

This second derivative expresses an oriented Laplacian formulation that is interpreted as two

coexistent and oriented smoothing with their corresponding weights cξ and cη following their

perpendicular directions ξ⊥η. The edges are probabilistically marked as the location where

two vectors diverge from each other in opposite directions. The probability is assigned in

a proportion to their prediction errors. Figure 5.5 shows the edges detected by an oriented

Laplacian with iterative isotropic Gaussian filtering. The oriented Laplacian formulation

yields the basis of edge and region connection based on the diffusion theory. While an

image is smoothed by an iterative filtering, a region s is progressively expanded following the

direction of the flow vector �Vσ(s). The expansion is stopped by the Laplacian characteristic

�∇ · �Vσ(s) = −ΔVσ(s). Figure 5.6 exemplifies the deformation of connected regions with

some iteration. For a multi-scale representation of Gaussian scale-space, these techniques

adaptively estimate the neighborhood size and the spatial scales with a parameter which

specifies a desired homogeneity level within the regions. An edge flow scheme [129, 131] track

meaningful discontinuity edges which exist at whole multiple scales and suppress edges which

only exist at fine scales.

Anisotropic diffusion : Anisotropic diffusion methods solve this localization problem by

minimizing an energy function that penalizes a high gradient. An anisotropic diffusion method

is applied to the images of Gaussian scale-space.

min
I:Ω

E(I) =

∫
Ω
g (‖∇Iσ‖)dΩ (5.24)

where ω is the image domain, and g : R → R is a decreasing function vanishing on high

gradient edge to stop the smoothing while the low gradient region is isotropically smoothing

in Gaussian scale-space. The minimization is numerically performed by diffusive evolution

with PDE equation as

∂I

∂t
= div

[(
g(‖∇Iσ‖)
‖∇Iσ‖

)
∇I
]

(5.25)
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(a) (b)

(c) (d)

Figure 5.5. Oriented Laplacian of iterative blurred images - (a) a texture image, (b) with 10
iterations, (c) with 5 iterations, (d) with a single calculation

The diffusion characteristic of the g-function can be analyzed by the geometric development of

a weighted gradient. The g-function is a redescending weight function of the robust estimator

described in Chapter 5.3. The several kinds of weight functions were shown in Tables 5.1

and 5.2. Similarly to Equation 5.7, the weighting function g gives higher weights to the

measurements with small gradients. The form g(‖∇‖)∇ in Equation 5.25 can be described

by an influence function ψ(∇) = g(‖∇‖)∇, and Equation 5.24 defines a bounded loss function

ρ(∇).

ρ(∇) =

∫
Ω
ψ(∇)dΩ =

∫
Ω
g(∇)∇dΩ (5.26)

The decomposition of the divergence derives an oriented Laplacian operation shown in Equa-

tion 5.23. The differently weighted two oriented smoothings are applied to the perpendicular

directions ξ⊥η.

∂I

∂t
=
g(‖∇Iσ‖)
‖∇Iσ‖ Iξξ + g′(‖∇Iσ‖)Iηη (5.27)

This is equivalent to a form of Equation 5.23 with cξ = g(‖∇Iσ‖)
‖∇Iσ‖

and cη = g′(‖∇Iσ‖). cξ

and cη respectively diffuse with different weights along the isophote direction ξ, i.e. tan-

gent direction, and the gradient direction η. This method is similar to applying spatially
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(a) (b)

(c) (d)

Figure 5.6. Morphologically detected regions - (a) with 10 iterations, (b) with 7 iterations
(c) with 3 iterations, (d) with a single calculation

Figure 5.7. Adaptive variances in anisotropic diffusion

adaptive variances to the Gaussian smoothing. Figure 5.7 shows the adaptive variances of

anisotropic diffusion. The arrow represents the diffusion direction, and the brightness is the

size of variance. Directionally different weights of anisotropic diffusion prevents the impor-

tant edges from over-smoothing [137, 138]. While pixels within a homogeneous region are

smoothed by a Gaussian of large variance, pixels near an edge is smoothed by a small vari-

ance. This makes homogeneous image regions more homogeneous, discontinuous image edges

more discontinuous.
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diffusion flow

weak edge edge on maximum variation

diffusion flow

consistency constraint

(a) (b)

Figure 5.8. Perceptual maximum variation - (a) localization problem of diffusion on a weak
edge, i.e. over-diffusion artifacts, (b) diffusion using perceptual maximum variation

(a) (b) (c) (d)

Figure 5.9. Difference between the color channels - (a) colorful bird image and the subtleties
of correlation between channels, (b) red channel, (c) green channel, (d) blue channel

5.5 Perceptual Maximum Variation Modeling for Over-diffusion

Problem

Regularization of errors in color images is an important task for many applications. Here it

is of vital importance to detect and reduce noise while preserving important image structures

such as strong and weak edges and fine texture details. Diffusion is an efficient localized

image regularization method based on the analysis of image structures such as direction and

magnitude. However, there are two difficult problems due to the error sensitivity and channel

mixture.

(1) Error sensitivity: The scalar diffusion methods employ a fluid mechanic basis which equi-

librates spatial variations in concentration for regularization of images. However, regu-

larization often results in over-diffusion, i.e. mislocalized flow and thus in blur of small

brightness variations in images. When the important edges are formed by small bright-

ness variations, over-diffusion causes blurring problems that remove the edges. Figure 5.8

illustrates the over-diffusion problem.
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Table 5.3. Algorithm of the perceptual color modeling

Perceptual Maximum Variation Modeling

Step 1: A color image is converted into a perceptually uniform color space of

CIE-L∗a∗b∗.

Step 2: PCA is used to find a set of orthogonal vectors lying along the direction

of the maximal variation.

Step 3: A consistency constraint is considered to enhance the localization of

homogeneity between color regions by removing the diversity of global

color distribution from the image.

Step 4: The small brightness variations on a color edge are selectively modulated

in luminance axis to preserve differences of chromaticity.

Step 5: The modulated variations are projected into a perceptual dimension P
which has high dynamic range.

(2) Channel mixture problem: Although recent diffusion methods handle the problem using

tensor-valued, i.e. vector diffusivity function [139, 140], which can be adapted to local

edge orientation, the methods are just suitable for a grayscale image or a single channel

processing. An independent process of each color channel results color distortions due to

subtleties of color correlation among the color channels [141, 142]. For example, an edge

between head and body of a colorful bird shown in Figure 5.9 can be clearly distinguished

in the red channel but diffusion error may occur in the other channels.

The proposed method [148] is based on the fact that the human visual system detects the

boundary of objects by considering chromaticity and brightness simultaneously. If the bright-

ness difference of neighboring objects is very small, our eyes can detect the important edges

using the chromaticity difference. We estimate a higher dimensional perceptual P-space, i.e.

the size of this space is not always the same with the size of the common color space, by

projecting the maximum variations of both brightness and chromaticity. The algorithm of

the perceptual color modeling is shown in Table 5.3.

A RGB image is converted to CIE-L∗a∗b∗ color space [149] that is designed to approximate

human vision and aspires to perceptual uniformity42. Figure 5.10(a) depicts the CIE-L∗a∗b∗

color space. Two regions with red and green colors in an image shown in Figure 5.10(b) can

be easily distinguished by our eyes. However, the luminance values of regions are very similar

as Figure 5.10(c) depicts, and the edge may be very ambiguous to be detected. The proposed

42) Perceptually uniform means that a change of the same amount in a color value should produce a change
of about the same visual importance. The three coordinates of CIE-L∗a∗b∗ represent the lightness of the
color, i.e. L∗ = 0 yields black and L∗ = 100 indicates white, a chromaticity axis a∗ between red/magenta
and green and the other chromaticity axis b∗ between yellow and blue. The asterisks (∗) after L, a and b
are part of the full name, since they represent L∗, a∗ and b∗, to distinguish them from Hunter’s L, a and
b.
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(a) (b) (c)

(d) (e) (f)

Figure 5.10. Maximum variations in CIE-L∗a∗b∗ color space - (a) CIE-L∗a∗b∗ color space
(b) original color image, (c) L∗,(d) a∗, (e) b∗ of the color image, (f) P-space resulted by the
proposed modeling, i.e. note that the scale of P-space is 255 for visualization purpose.

method solves this problem by color modeling, and the small luminance variations on a color

edge is selectively modulated in a luminance axis to preserve differences of chromaticity as

Figure 5.10f shows. Figures 5.10(d) and 5.10(e) respectively show the a∗- and b∗-space im-

ages.

Perceptual differences between two neighboring color pixels in CIE-L∗a∗b∗ can be simply

measured by the Euclidean distance between the two vectorial values cp(x) = [L∗
p, a

∗
p, b

∗
p]

and cq(x) = [L∗
q , a

∗
q , b

∗
q ] with perceptual color metric δc∗pq in Equation 5.28. x denotes a pel

x = (x, y) on a CIE − L∗a∗b∗ color domain I(x) : R
3
+ =

{
c(L∗

p, a
∗
p, b

∗
p) ≥ 0

}
.

δc∗pq =

√(
L∗

p − L∗
q

)2
+
(
a∗p − a∗q

)2
+
(
b∗p − b∗q

)2 (5.28)

Colors with the same δc∗pq are perceptually equal. The brightness ω(x) in a luminance domain

L∗ and the chromaticity υ(x) includes a∗ and b∗ respectively. x denotes an image pixel [u, v].

It represents the length of the color vectors and the normalized color components.

ω(x) =
n∑

i=1

‖In(x)‖ and υ(x)=I(x)/ω(x) (5.29)

We estimate visually maximum variations using the perceptual difference which combines

ω(x) and υ(x) in color metric δc∗pq. A linear transform which projects original brightness in
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the luminance L∗
p and L∗

q into perceptual intensity Pp and Pq (which remains proportional to

the perceptual color difference) is obtained by minimizing the following quadratic function.

The constant K is chosen for the proportional weight e.g. when K = 1, L∗
p and L∗

q are equally

modulated with the perceptual differences.

P (c0,··· ,p,q,··· ,n(x)) =
n−2∑
p=0

n−1∑
q=p+1

(|Pp − Pq|/δc∗pq −K
)2

(5.30)

Pp and Pq generally have higher dynamic ranges than L∗
p and L∗

q , since they include a total

difference of both brightness and chromaticity. P-space has maximum variations in human

visual range. Using PCA of Equation 5.30, the entire distribution of color values can be

projected onto the primary L∗-axis of the ellipsoid using a linear transform. The principal

components are the eigenvectors of its covariance matrices. By calculating the covariance

matrix with the largest eigenvalues the perceptual maximum variation can be estimated.

PCA performs very well in aligning the colors in a region which have locally-compact or

globally-smooth color distributions. If we deal with whole images in a noisy condition, the

color whole image distribution may not be suitable to fit local properties. Equation 5.30 is

convex, but may converge to multiple global minima. We solve the problem by considering a

consistency constraint. First, the chromaticity difference between two color pixels is defined

by an equation similar to Equation 5.28 as

δυpq =
√

(a∗p − a∗q)
2 + (b∗p − b∗q)

2 (5.31)

As shown in Figures 5.10(d) and 5.10(e), the chromaticity domain can be used as a good

consistency measure because it inherently has piecewise smoothness over the image - while the

brightness in L∗ is affected by saturation, lightness, e.g. shadow, reflection and noise, etc. The

consistency measure is decreased when the spatial distance to the pixel under consideration

increases due to the coherency of objects. A consistency Λ is defined as a similarity group

based on probability, using the chromaticity difference υpq and spatial distance dpq with

proportional constant k. γυ and γd are empirically determined.

Λ (c0,··· ,p,q,··· ,n(x)) =
n∑

i=1

k · exp (−(δυpq/γυ + dpq/γd)) (5.32)

Figure 5.11 exemplifies the edges in an image using perceptual maximum variation model-

ing. Figure 5.11(a) shows the original image that has two visually different color regions, i.e.

foreground and background. The human visual system can easily distinguish the foreground

flowers with red color from the background with dark green color due to the chromaticity

differences. The chromaticity domain image, i.e. a∗b∗, is shown in Figure 5.11(b). However,

the luminance image in Figure 5.11(c) has a small contrast between foregrounds and back-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.11. Edge detection performance of perceptual maximum variation modeling - (a)
original color image, (b) chromaticity image (a∗b∗), (c) luminance image (L∗) (d) histogram
equalization of luminance image, (e) maximum variation modeling result, (f) edge image of
Figure b, (g) edge image of Figure d, (h) edge image of Figure e

grounds that are both dark. Although the local contrasts can be increased by a well-known

histogram equalization method that distribute them on the histogram, the equalization re-

sult shown in Figure 5.11(d) is not sufficient to represent perceptual differences in the image.

Since histogram equalization enhances a lower local contrast to gain a higher contrast without

affecting the global contrast, the edge contrast between color regions cannot be increased.

The proposed method solves the problem by a variation modulation method projecting all

color variation into a perceptual dimension with a high dynamic range. Figure 5.11(e) de-

picts a maximum variation modeling result. PCA is used to find a set of orthogonal vectors

lying along the direction of the maximal variation. Figures 5.11(f) and 5.11(g) respectively

represent edges of the original image and edges of the histogram equalized image. Histogram

equalization does not enhance real edges between foreground and background regions but

small edges in the regions. The edge image with the perceptual maxima variations depicts

real detection of visual image differences in Figure 5.11(h). The size of P-space is 255 for

visualization purpose although the real size is much larger than 255.
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(a) (b)

(c)

Figure 5.12. Anisotropic diffusion with perceptual color modeling - (a) Perona and Malik
color diffusion for 10% Gaussian noise image, PSNR=26.199dB (b) Proposed method for
10% Gaussian noise image, PSNR=33.518dB (c) details with over-diffusion on weak edges
i.e. left: case Figure a, right: Figure b

5.6 Robust Anisotropic Color Image Regularization with Per-

ceptual Maximum Variation Modeling

The localization at weak features which have small brightness variations is fundamental prob-

lem of diffusion regularization, and this often results in removal of weak features. We address

this problem with perceptual maximum variation modeling described in the previous chapter.

In Figure 5.12(a), we exemplify the over-diffusion problem of weak features using Perona and

Malik color diffusion [143]. The proposed method using perceptual maximum variation over-

comes the problem as Figure 5.12(b) shows. Figure 5.12(c) represents some detailed images

on weak edges.

If a noisy color image is considered as a noisy color vector space I(x) : R
2 → R

n, the space can

be separated into brightness ω(x) : R
2 → R

+ and chromaticity υ(x) : R
2 → Sn−1. x = [u, v]

denotes image pixels. We deal with the brightness and chromaticity components separately

for diffusion. First, the diffusion of brightness is calculated by tensor-valued diffusivity func-

tion

∂tω(x) − div(D · ∇ω(x)) = 0 (5.33)

D denotes a positive definite symmetric matrix called diffusion tensor and ∂t is the derivation

with respect to the time. Instead of evaluating the gradient of initial brightness, we propose
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to obtain a perceptual diffusion flow tensor using the Cartesian product of the gradient vector

(Qx, Qy)
T in the ℘-space resulting from Equation 5.30 with itself. While the small variations

∇ω(x) of brightness are well filtered, important structures in the variations are still preserved

by localized diffusion flow in the perceptual maximum.

D (∇℘) =

(
Q2

x QxQy

QxQy Q2
y

)
(5.34)

Qx = P(x) ∗ Gx,σ and Qy = P(x) ∗ Gy,σ are obtained by x- and y-directional derivatives of

2-D Gaussian kernel G(x) = (2πσ2)−1 exp
(−(x2 + y2)/2σ2

)
with a standard deviation σ. P

is a space with perceptual maximum variations which combines the small differences in both

brightness and chromaticity using a least squares optimization with PCA43. A consistency

constraint is employed to avoid influence from global color distributions and to enhance

homogeneous color regions. With a scale σ of successively smoothed concentrations, its

eigenvectors describe the direction of highest and lowest contrast. These contrasts are given

by corresponding two positive eigenvalues. Anisotropic diffusion of brightness is performed

by weighting of the eigenvalues using a redescending weight function 44 that higher weights

are given to the measurements with small values.

Let the chromaticity υi(x):R2 → R describe each of the n-components of υ(x). The gradients

of the components ∇υi = (∂υi/∂x)�x+ (∂υi/∂y)�y can be defined with unit vectors �x and �y

which have the values of the component gradients

‖∇υi‖ =
(
(∂υi/∂x)

2 + (∂υi/∂y)
2
)1/2

(5.35)

in the x- and y-directions. We solve a constrained minimization problem called harmonic

map [141] with a constraint ‖∇υ‖ = 1 as

∂tυi − div(‖∇υ‖p−2 · ∇υi) + υi ‖∇υ‖p = 0, 1 ≤ i ≤ n (5.36)

Here, ‖∇υ‖ =
∑n

i=1 ((∂υi/∂x+ ∂υi/∂y)
1/2 is the absolute value of the image gradient, i.e.

total component gradient. When p = 2, this equation equals to the isotropic diffusion

∂tυ − Δυi + υi ‖∇υ‖p = 0, which substitutes the divergence term into a component Laplacian

Δυi =
(
∂2υi/∂x

2 + ∂2υi/∂y
2
)1/2

. Anisotropic diffusion in chromaticity results in the range of

1 ≤ i ≤ 2 given in the weighting function.

43) see Chapter 5.5
44) see Table 5.1 and 5.2.
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5.7 Experimental Results

Robust fundamental matrix estimation : Feature correspondences are used to estimate

the global ray projection from the focal point to the camera center, and to establish the

collineation in the viewpoints. If the image points are corrupted by identically distributed

Gaussian noise, the accuracy of the parameter estimation may be decreased. A robust estima-

tion criterion is derived from the noise distribution of the image points, and we can estimate

the transformed fundamental matrix by minimizing the following weighted sum of squares∫
i=1,··· ,n

ρσ (fi/σi)
2 (5.37)

where ρ is a bounded loss function given in Equation 5.3 and σ2
fi

= (∂fi/∂m̃i)
T is the variance

of fi. We use Tukey’s biweight function shown in Equation 5.8 that is calculated in the ρ.

The relationship between the transformed fundamental matrix and image points are

fi : m̃′
i
T
P′TFPm̃i = 0 (5.38)

The estimated F matrix should be a rank-2 matrix in order to model the epipolar geometry

with all the epipolar lines intersecting in a unique epipole. The F is decomposed by a singular

value decomposition (SVD) as Equation 4.15 depicts.

F=UDVT (5.39)

where D = diag
(√
λ1,

√
λ2,

√
λ3

)
. The component with the smallest weight is removed to

obtain D̂ = diag
(√
λ1,

√
λ2, 0

)
, and then F is recalculated as F = UD̂V

T

.

We analyze the first and second frames of the corridor sequence provided in [103] with in-

creasing Gaussian noise level for evaluating robustness, and the following sets of parameters

are evaluated:

A: Initial estimate.

B: All 12 entries of P′.

C: 5 parameters of [t]× R.

D: 5 parameters of P′FP.

Ground-truths for 2-D and 3-D geometry are available for this sequence. It is important to

test the reprojection errors and angular errors of epipoles since the locations of the epipoles

are often not accurate in most studies. Figures 5.13(a) and 5.13(b) respectively represent the

reprojection errors and angular errors of epipoles for the standard deviations of noise σ. Our

method has less than 1 pixel reprojection error and maximum 0.27 rad. angular errors even

for a large noise level. Two frame results with noise in Figure 5.14 shows all epipolar lines
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Figure 5.13. Evaluation of robust fundamental matrix estimation - (a) reprojection errors of
epipoles, (b) angular errors.

including detected features and the epipole. Average distance errors of several robust meth-

ods for fundamental matrix estimation under different noise levels are shown in Figure 5.15.
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(a) (b)

Figure 5.14. Epipolar geometry estimation for two frames of the corridor sequence with
Gaussian noise - (a) the 1st frame (b) the 2nd frame

The least-squares (LS) methods does not have accurate result when the eigenvalues may get

a rank-3 matrix. However, robust methods with eigen analysis removes the outliers more

efficiently so that the accurate F-matrix can be obtained. RANSAC [121], MLESAC [111]

and MAPSAC [125] show similar results.

Super-sampled ray-space : The robustness of epipolar geometry against noise can be ap-

plied to a super-sampling using ray-space. Super-sampling is a technique that in some way

decrease the aliasing of an imaging system. Most camera sensors in a dark environment need

high sensitivity, and some aliasing actually happens. An average value of large amount of

pixel samples taken at several instances can eliminate the aliasing. In the view of ray-space,

the pixel samples form a unit ray from a 3-D surface to the camera center.

We add 7% Gaussian noise to the original image frames. Figures 5.16(a) and 5.16(b) re-

spectively show the original image and the error image due to the Gaussian noise. Epipolar

geometry characterizes the uncalibrated stereo using a set of fundamental matrix since there

are different views of geometry caused by the monocular camera motion. However, the noise

problem in epipolar geometry estimation is heteroscedastic45 because each measurement is

affected by noise of different parameters. Hartley [161] solved this problem by separately nor-

malizing points in two image planes. However, the normalization process does not consider

the nature of heteroscedastic noise. During triangulation, each 3-D point is localized with a

45) The data vectors are supplied by different sources, e.g. different cameras, and are inherently heteroscedas-
tic.
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M-Estimator using LS M-Estimator using eigen 

M-Estimator proposed by Torr LMedS using LS

LMedS using eigen RANSAC

MLESAC MAPSAC
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pixel

σ

Figure 5.15. Comparison of several robust fundamental matrix estimation methods

different covariance. The measurements and parameters are closely related by a constraint

equation, and a noise model characterizes the noise affecting the measurement. While the

noise is affecting the true values, the robust estimator provides a noise model measuring the

error scale with covariance matrix, and discriminate inliers from outliers. While the features

are detected and tracked as Figure 5.16(c) the most stable features shown in Figure 5.16(d)

are remained in many noisy feature tracks and used to estimate the 3-D point cloud and

relative camera positions. Figure 5.17 visualizes the 3-D point cloud and camera positions

using X-Y X-Z and Y-Z axes. The optical ray-space can be reconstructed, and noisy pixels

of viewpoints are super-sampled as Figure 5.18(b) shows. A number of parts in the noisy

images and super-sampled images are compared in Figure 5.18, and the proposed method

can prominently decrease the Gaussian noises in a simple hand-held video.

Structure preserving noise regularization : Error regularization is an important task

for many computer vision applications. Here it is of vital importance to reduce noise while

preserving important image structures such as strong and weak edges and fine texture details.

Diffusion is an efficient localized image regularization method based on the analysis of image

structures such as direction and magnitude. However, the localization at weak features which
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(a) (b)

(c) (d)

Figure 5.16. Feature tracking in noisy image sequences - (a) original first frame image, (b)
difference between original image and noisy image, (c) detected features, (d) trajectory of
tracked features

Table 5.4. Comparison using Lena image with 4, 10% color impulsive noise

Algorithms 4% 10%

None 17.983 11.702

Arithmetic mean filter 3x3(AMF) 25.971 14.802

Perona and Malik color (PM) [143] 28.146 17.508

Vector directional filter (VDF) [144] 30.466 17.716

Vector median filter (VMF) [146] 31.427 22.342

Fuzzy vector directional filter (FVDF) [145] 30.827 20.089

Modified vector median filter (MVMF) [147] 38.446 26.411

Proposed method 39.841 27.834

have small brightness variations is fundamentally difficult. The over-diffusion, i.e. a value

mixture problem, often results in the removal of weak features. We solved this problem with

perceptual maximum variation modeling in Chapters 5.5 and 5.6.
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Figure 5.17. Relative 3-D position of cameras and tracked points - (a) plot with X-Z axes,
(b) plot with X-Y axes, (c) plot with Y-Z axes

Some studies of color filtering deal with the value mixture problem using color vectorial meth-

ods. An efficient method is to extend the medians of the scalar space to the color vectorial

data. Vector median filters (VMF) are obtained by considering L1, L2 norms for ordering

image vectors according to their relative magnitude differences [146, 147]. Other methods

consider vector directional filters (VDF) [144, 145]. These works are related with a heuristic

approach which makes homogeneity directed correlation among the color channels. However,

the localization performance on ambiguous edges with weak variations is still unstable. The

human visual system perceives small brightness variations using a knowledge-based analogy

from color components. Perceptually motivated color spaces are used to evaluate mutual

coherency and geometrical continuation. Although these methods achieve good results for

preserving colors, they do not preserve small brightness variations in the color images.

We investigate the efficiency of the proposed method on zero-mean Gaussian color noise and
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.18. Super-sampling in ray-space - (a) one frame of noisy video sequence, (b) super-
sampling result of optical-ray, (c) left-bottom part of the noisy image, (d) left-bottom part of
the super-sampled result, (e) right-center part of the noisy image, (f) right-center part of the
super-sampled result, (g) center-bottom part of the noisy image, (h) center-bottom part of
the super-sampled result, (i) center part of noisy image, (j) center part of the super-sampled
result

zero-mean impulsive color noise46. Figure 5.19 shows results of our method using the Bal-

loon image with 10% Gaussian color noise for each color channel in original color image. In

Figure 5.20, the noise regularization performance using the Parrot image with 10% and 15%

Gaussian color noises is visually evaluated. Perceptual modeling estimates maximum varia-

tions in color consistency to enhance convergence. Then, the diffusion process is less sensitive

46) Impulse color noise had random amplitude and spectral content with a large perturbation of the color
values.
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(a) (b)

(c) (d)

Figure 5.19. Regularization of an image with 10% Gaussian color noise - (a) Balloons
image with 10% Gaussian noise (b) denoising result of 5a using the proposed method,
PSNR=33.518dB (c) error image of Figure a (d) error image of Figure b

to momentary variations, e.g. noise but more sensitive to discontinuous variations such as

edges between two regions. In the geometric continuation, robust denoising is achieved even

in image regions containing weak edges and small brightness variations by iterative diffusion

with a scale. PSNR[dB] is evaluated for color in three channels as

10 log

N1∑
i=1

N2∑
j=1

(255 · 3N1N2/
∥∥I(i, j) − I ′(i, j)

∥∥2
) (5.40)

Table 5.4 depicts the efficiency of the proposed method compared with heuristic correlated

color filtering approaches i.e. AMF, VMF, FVMF, VDF and MVDF for 4% and 10% per-

centages of color impulsive random noise. The comparisons verify the performance of spatio

adaptation. The proposed method with perceptual maximum variation modeling achieved

significant improvements over the other techniques, ranging from 1.5 dB to 13.9 dB in PSNR.

Figure 5.21 is provided for visual comparison of results in the table. Figure 5.21(k) shows
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(a) (b)

(c) (d)

Figure 5.20. Regularization of images with 10% and 15% Gaussian color noises - (a) Parrot
image with 10% Gaussian noise (b) denoising from Figure a, PSNR=38.146dB., (c) Parrot
image with 15% Gaussian noise, (b) denoising from Figure c,

that our method results in sharper and more detailed structures after denoising.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 5.21. Comparison of denoising effects - (a) original image, (b) distorted image with
4% impulse noise (c) denosing using AMF method (d) error image of Figure c, (e) denosing
using PM method, (f) error image of Figure e, (g) denosing using VMF method, (h) error
image of Figure g, (i) denosing using MVMF method, (j) error image of Figure i, (k) denosing
using the proposed method, (l) error image of Figure k, (m) Differences between Figure i and
k



Chapter 6

Robust 3-D Sceneflow Estimation

Video-based modeling and rendering methods needs accurate sampling position in the 3-D

space since a linear approximation of the optical axis is not enough to fully cover the 3-D

scene geometry. During the image formation process of the camera, explicit 3-D information

about the scene is lost. Thus, 3-D sampling needs to infer the scene geometry from the 2-D

images, and disparity and motion parallax are the cues to recover the scene geometry. The 3-

D sceneflow method is a multi-stereo approach which fuses both stereo and visual motion cues

for understanding structure. Motion tracking is relatively easier to establish correspondences

than stereo matching, but stereo provides better structure estimates. In this chapter, robust

estimations for disparity and optical flow is introduced separately, and a spatio-temporal

consistency constraint for correspondences is added to combine the two estimation results.

Finally we can obtain the reliable spatio-temporal correspondences.

6.1 Robust Anisotropic Disparity Estimation

A dense disparity map estimated in the epipolar lines between two viewpoints47 is an im-

portant basis for the image-based modeling and rendering. For the two images taken simul-

taneously with a pair of cameras, the goal of dense disparity estimation is to match each

pixel in one image to its corresponding pixel in the other image. A stereo image pair is

shown in Figure 6.1(a) and 6.1(b). The ground-truth disparity map which is generated by

a structured-light method [35] is represented in Figure 6.1(c). It is very difficult to obtain

a similar disparity map to the ground-truth using an image matching because the problem

of dense disparity estimation is the ambiguity48 of local image structure due to image noise,

unbalanced brightness, similar texture and occlusion, etc. In Figure 6.1(d), the white color

region are non-occluded regions, and the black color regions are occluded and border regions.

Regions marked by a white color in Figure 6.1(e) are all regions including half-occluded, and

47) When the images are rectified, the epipolar lines are image scanline.
48) If pixels in an image look alike, it is difficult to find corresponding pixels from another viewpoint image.
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(a) (b) (c)

(d) (e) (f)

Figure 6.1. Dense disparity estimation problem - (a) the left image, (b) the right image, (c)
ground-truth map generated by a structured-light method, (d) occlusion region, (e) boundary
region, (f) depth discontinuity

Figure 6.1(f) shows regions near depth discontinuities using white color.

Recent methods employ local appearance matching with a landmark of the coherency of

objects or boundary constraints between features, edges and disparity discontinuity etc. to

obtain more reliable performance [151, 152]. Regions divided by edge are used for matching,

and a fixed size window causes some poor localization of matching as Figure 6.2a shows.

Adaptive window matching methods [72–74], that adjusts the window size using gradient,

solves the edge localization problem. However, there are some regions without matches as

Figure 6.2b exemplifies. Energy-based methods incorporate a regularization function that

attempts to filter off mislocalization errors in the iteratively error minimization.

(a) Isotropic regularization [153] : Convolution carries out filtering based on variances. How-

ever, the scale of linear transformations in the convolution leads to undesired smoothing

of important discontinuities.

(b) Anisotropic regularization [154, 155] : This method prevents important structure from

blurring. The basic idea is to modify the filter scale at the discontinuities with steep

intensity gradients. When this method is applied to disparity estimation, homogeneity

enhancement and discontinuity preservation can be obtained in some images. However,

ill-posed local minima during solving the partial differential equations (PDEs) are the

serious drawback. Figure 6.2c shows the result of an anisotropic disparity estimation
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(a) (b)

(c) (d)

Figure 6.2. Examples of several dense disparity matching - (a) region-divided matching
method, (b) adaptive window matching method, (c) adaptive window matching with a pure
anisotropic diffusion regularization, (d) adaptive window matching with a combination of
isotropic and anisotropic regularizations

method without consideration of local minima. Since strong edges are not always an

object boundary, strong texture edges causes regularization artifacts, e.g. backward dif-

fusion and over-splitting.

(c) A combination of isotropic and anisotropic regularization [159, 160]. This method can

solve the local minima problem in a pure anisotropic regularization since texture edges

can be isotropic ally filtered while real object edges still remain. The proposed method

uses isotropic pre-filtered scale-space and anisotropic diffusion derived in the smoothed

space. Figure 6.2(d) shows a result of the proposed method, and several disparity maps

generated by different methods are shown in Figure 6.3.

Local appearance matching in scale-space regions : A good measure of homogeneity is

needed to restrict matching within each coherent object. A matching region can be established

by analyzing the smoothly varying orientation structure49 in the Gaussian scale-space as

η = θ+ =
∇Iσ

‖∇Iσ‖ and ξ = θ− =
∇I⊥σ
‖∇Iσ‖ (6.1)

49) see Equation 5.22.
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(a) (b)

(c) (d)

Figure 6.3. Comparison of dense disparity maps generated by several different methods - (a)
dynamic programming method, (b) graph-cut method [156], (c) layered method [157], (d)
hierarchical belief propagation [158]

where Iσ =
(
2πσ2

)−1
e−x2/2σ2 ∗ I (x) is the pre-filtered scale-space by a Gaussian kernel.

The unit vectors η and ξ respectively defines the gradient direction of filtered image and its

orthogonal direction (i.e. isophote direction). Two varying orientations θ+ and θ− correspond

to the gradient and the isophote direction. The scale parameter σ of Gaussian-filter kernel is

used to control the boundary strength. The coarse-to-fine structure of scale-space provides

the best trade-off between detection and localization performance. In the Helmholtz theory,

any vector field
−→
F can be represented as a sum of a conservative and solenoidal vector field

with vector potential
−→
A .

�F = �Fcon + �Fsol = −�∇V + �∇× �A (6.2)

Taking the divergence of both sides as

�∇ · �F = −ΔV + �∇ · (�∇× �A) (6.3)

where Δ is the oriented Laplacian shown in Chapter 5.4. Since the second term
−→∇ ·
(−→∇ ×−→

A
)

is zero, the boundary function V can be solved by the Poisson equation. Let the image be a

continuous function that is only divided by visual edges into n+1 regions {R0, . . . , Ri, Rj , . . . , Rn}.
The supporting region Wσ is calculated by combining similar pixels enclosed by boundary
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[131].

Wσ(V ) =

∫
Ri

wσ (Ip(x), Iq(x)) dx +

∫
Ri

∫
Rj

wσ (Ip(x), Iq(x)) dx (6.4)

where x = [u, v], and wσ (Ip, Iq) is a dissimilarity function with a scale between the neighboring

pixels {Ip [(θ+, θ−) , σ] , Iq [(θ+, θ−) , σ]} ∈ RN on the smoothly varying oriented structure of

Equation 5.22. The first and second terms respectively purpose the grouping of similar pixels

in a region, e.g. Ri and Rj .

Dense disparity vectors d are locally estimated in the supporting region Wσ by matching

the perceptual maximum intensity and then the vectors are refined by using a coarse-to-fine

scheme. The energy function is

EΩ(d) =

∫
Ω
ρ [Il(u, v) − Ir(u+ dl→r(u) ∈ Wσ(V ), v)]2 dx + λ

∫
Ω
eσ(d)dx (6.5)

Ω is the image domain, the subscripts denote the matching direction, e.g. l → r for left-

to-right direction and eσ is a regularization term with Lagrange multiplier λ. This method

results in an accurate local disparity estimation since matching errors are restricted in Wσ. ρ

is the determinant of a potential function that derives boundary flow to restrict the outliers

of matching, and it is a kind of bounded loss function50 for the robust estimation introduced

in Chapter 5.1.

Anisotropic regularization : Although the bounded loss function can eliminate outliers

due to mislocalization in the stereo matching, it does not always guarantee the homogeneous

proposition. Traditional morphological operations frequently consider an isotropic smoothing

to enhance the local homogeneity in an image. However, isotropic smoothing over disparity

boundaries often causes conspicuous blurring errors. We regularize a disparity vector field in

Equation 6.5 by an edge-preserving anisotropic diffusion term eσ as

eσ = ψ[∇Il,σ(u, v),∇dl→r(u, v)]dudv

= g(‖∇Il,σ‖)∇dl→r

(6.6)

ψ(∇) is a modified version for disparity of the discrete Perona and Malik diffusion model [137,

143], which has a form as ψ(∇) = g(∇)∇′ in the influence function. g(∇) is a redescending

weight function that acts as a edge-stopping function of diffusion. This function modifies the

diffusion coefficient at edges and to derive discontinuity. It is possible to choose a error weight

g of robust estimator shown in Table 5.1, and our choice of g is the weighting function of the

Perona and Malik model as

g(∇) = e−(∇2/K2) (6.7)

50) see Equation 5.7
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Figure 6.4. Anisotropic weighting and influence functions in the Perona and Malik model

where a positive constant K that controls the level of contrast of edges to affect the diffusion

process. Figure 6.4 depicts the anisotropic edge-stopping function g(∇) and influence func-

tion ψ(∇). The influence function starts reducing the diffusion when the gradient magnitude

increases beyond a fixed point that is determined by a scale parameter. Thus, errors in the

range (K ∼ ∞) can be removed as outliers. Since the stereo images are pre-filtered using

different Gaussian scales for local appearance matching, the scale-space is isotropic. The

influence function modifies the isotropic diffusion in the scale-space into anisotropic diffusion

near discontinuities by decreasing on the range (0 ∼ K). The anisotropic diffusion enhances a

smooth disparity of a homogeneous region and simultaneously preserves important disparity

discontinuities.

Numerical solution : Diffusion is a process that equilibrates spatial variations with con-

centration. Thus, we iteratively solve the energy minimization problem of Equation 6.5 using

the Euler-Lagrange equation and the asymptotic analysis of parabolic PDEs as

∂tdl→r(u, v, t) = λdiv [g (‖∇Il,σ(u, v)‖)∇dl→r(u, v)]

+
∂Ir(u+ dl→r(u), v)

∂u

[
Il(u, v) − Ir(u+ dl→r(u), v) ∈ Wl,σ(V ) · �N

] (6.8)

A matching region W can be considered as the regional boundary51 that has the range of

global disparity vectors. The range gives us a regional constraint to restrict matching errors

within the region W. Windows for every pixel can be established by a level-set function.

51) The morphological characteristic of regional diffusion can be simply written as at = La for a(u, v, t) where
L is an elliptic operator.
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The dense matches in the regions of a stereo image pair are performed locally, and the

regularization is globally performed by the iterative solution of PDEs shown in 6.8. The PDEs

minimize the total energy of Equations 6.5 and 6.6. A solution of the parabolic problem can be

discretized using finite differences and coincides with the image filtering. An inhomogeneous

time diffusion process with discrete sampling solves the problem as follows:

dt+1
l→r

− dt
l→r

τu
= λdiv

[
g (‖∇Il,σ(u, v)‖)∇dt

l→r
(u, v)

]
+

∂Ir(u+ dt
l→r

(u), v)

∂u

[[
Il(u, v) − Ir(u+ dl→r(u), v) ∈ Wl,σ(V ) · �N

]
+
∂Ir(u+ dt

l→r
(u), v)

∂u
(dt+1

l→r
− dt

l→r
)
]

(6.9)

The inhomogeneous time process, each pixel is diffused with a different time scale related

to the pixel confidence. High confidence pixels are diffused much slower than low confidence

pixels. By increasing the time step τσ relatively to the filter scale, outliers e.g. mismatches,

mislocalization error and occlusion hole etc., in a partially homogeneous disparity field can

be removed, and the boundaries are simultaneously preserved by the edge-stopping function

g that suppresses diffusion in an area of high gradient. One of the most steepest weighting

function g(∇) = e−(∇2/K2) is considered for the strong boundary preservation.

The numerical solution includes two steps: the gradient and the divergence. We do not use

central difference approximation for the gradient and the divergence because it may result in

an unconditionally unstable scheme. Instead, we can use forward differences for gradient and

backward differences for the divergence as

∂I(u, v)

∂u
≈ δ(+)

u I(u, v) and
∂I(u, v)

∂v
≈ δ(+)

v I(u, v) (6.10)

and

div
[
g (∇)∇′

] ≈ δ(−)
u

[
g (∇)∇′

]
+ δ(−)

v

[
g (∇)∇′

]
(6.11)

where (+) and (−) respectively denote the forward direction and the backward direction

of a gradient operator. In a 2-D image, a gradient operator yields a 2×2 matrix, and the

divergence operator collapses this into a 2×1 vector. The edge stopping function g(∇) and

the influence function ψ(∇) = g(∇)∇′ are calculated for the u and v axis. The columns

of the matrix are independently computed, and the backward differences of the matrix are

used to compute the divergence operation. Finally we can obtain the final numerical form of
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Equation 6.9 as

dt+1
l→r

− dt
l→r

τu
= λ

[
δ(−)
u

(
e−[δ

(+)
u (Il,σ(u,v))

2
/K2]δ(+)

u dt
l→r

(u, v)
)

+δ(−)
v

(
e−[δ

(+)
v (Il,σ(u,v))

2
/K2]δ(+)

y dt
l→r

(u, v)
)]

+δ(+)
u dl→r(x)

[(
Il(u, v) − Ir(u+ dt

l→r
(u), v) ∈ Wl,σ(V ) · �N

)
+δ(+)

u Ir(u, v)(d
t+1
l→r

− dt
l→r

)
]

(6.12)

6.2 Anisotropic Disparity Estimation with Perceptual Maxi-

mum Variation

In the previous chapter, multiple resolutions of a scale-space provided the best trade-off be-

tween the feature detection and the localization performances. Global disparity could be

estimated with the constraint of strong and meaningful boundaries in coarse resolution, and

then it is iteratively refined into finer resolutions by using PDEs. While the disparity field

is diffusively smoothed by isotropic propagation following streamlines in the Gaussian scale-

space, anisotropic diffusion suppresses the length of propagation only for the orthogonal di-

rection of edges. However, the anisotropic regularization often causes over-diffusion artifacts

during evaluating small brightness variations in the images. If important object boundaries

are formed by small brightness variations, mislocalized flow causes over-diffusion problems,

smoothing the disparity discontinuities of objects. We solve this small variation problem by

the perceptual maximum variation modeling.

A P-space with perceptual maximum variations in a high dynamic range is obtained by the

method described in Chapter 5.5. Figure 6.5(a) shows P-space obtained from a well-known

stereo test image. The stereo image pair has a low dynamic range and contains complex

objects at different depths generating several occlusions, as well as poorly-textured regions in

the backgrounds. Most luminance matching methods, even high complex algorithms cannot

generate an accurate dense disparity map as Figure 6.6 exemplifies, although our eyes can

distinguish a lamp with red color and a white statue from the backgrounds due to the chro-

maticity difference as Figure 6.5(b) represents. The lamp cannot be found in the luminance

image shown in Figure 6.5(c), and the histogram equalization of a luminance image cannot

enhance the region as much as visual differences as Figure 6.5(d) depicts. Figure 6.5(e) shows

the P-space using maximum modulation of perceptual variations projecting all color vari-

ation into the P-space with a high dynamic range. Comparison of detected edges among

Figures 6.5(f), 6.5(g) and 6.5(h) exemplify that the visual difference can be well enhanced

in the P-space.

Outliers of disparity estimation are removed by a modified anisotropic diffusion function that
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is derived in the P-space:

eσ = g(‖∇Pl,σ‖)∇dl→r (6.13)

where ∇Pσ is the perceptual maximum variation with a scale in Equation 5.30, and g (∇)

is an anisotropic diffusion function in Equation 6.7 and 6.6. This modifies the diffusion

coefficient at the edges in the P-space and derives discontinuities in the robust influence

function ψ (∇) = g (∇)∇′. The energy function is very similar to Equation 6.5 where the

image I is modified to space P.

E =
∫
Ω ρ[Pl(u, v) − Pr(u+ dl→r(u) ∈ Wl,σ(V ), v)]2dx

+λ
∫
Ω eσ(dl→r)dx

(6.14)

where x = [u, v] is the 2-D image pixel, and Wσ is the window shown in Equation 6.4. We

solve the energy-minimization problem by discretizing the following numerical equation using

finite differences.

dt+1
l→r

− dt
l→r

τσ
= λdiv

[(
g (‖∇Pl,σ‖)
‖∇Pl,σ‖

)
∇dt

l→r

]
+

∂Pr,σ(u+ dt
l→r

, v)

∂x

[(
Pl,σ(u, v) − Pr,σ(u+ dl→r, v) ∈ Wσ(V ) · �N

)
+
∂Pσ,r(u+ dt

l→r
(u), v)

∂x
(dt+1

l→r
− dt

l→r
)
]

(6.15)

To remove outliers of matching, a local matching region with the ranges is fitted using normal

vector �N of the edge following streamlines of scale-space. The divergence term div performs

a global diffusion of the local disparity map to remove outliers in each scale. The other parts

of the equation are very similar to Equation 6.9. Figure and respectively represent a result

of the proposed method and the error image for a given ground-truth in [35].

6.3 Robust Hybrid Recursive Optical Flow Estimation

The motion estimation from a sequence of dynamic images is one of the most important tasks

in computer vision. Two different approaches, i.e. discrete motion estimation and optical flow

estimation, have been separately developed. The discrete motion estimation establishes the

correspondences by measuring similarity using blocks or masks. The advantages are simplic-

ity and reliability for discrete large motion. However, detailed motion of a deformable-body

cannot be recovered because block and mask are inherently rigid with translational motion.

Blocking artifacts and poor motion prediction along the moving boundaries are serious draw-

backs. The hybrid recursive method was first proposed in [163] to solve the problems. The

method recursively refines block motion vectors to arrive at a dense motion vector field using

a gradient technique. It can be hierarchically applied using multi-resolution representation
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5. Discontinuities in perceptual maximum variations - (a) original color image, (b)
the chromaticity image (a∗b∗), (c) the luminance image (L∗), (d) histogram equalization on
the luminance space, (e) the maximum variation modeling result, (f) edge image of Figure c,
(g) edge image of Figure d, (h) edge image of Figure e
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6. Evaluation using ground-truth - (a) dynamic programming method, (b) error
image of dynamic programming method, (c) graph-cut method, (d) error image of graph-
cut method, (e) hierarchical belief propagation method, (f) error image of hierarchical belief
propagation method, (g) proposed method, (h) error image of proposed method
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for the accuracy. On the other hand, optical flow estimation [164–171] aims to obtain a del-

icate velocity field using the computation of spatial and temporal image derivatives. Most

methods define the displacement of pixels based on brightness-conserving assumptions and

gradient constancy assumptions or both.

(a) Brightness-conserving assumption : the brightness of objects in subsequent frames does

not change by small movements.

(b) Gradient consistency assumption : It determines the displacement with a criterion that

is invariant against the change of brightness.

Using the partial derivatives, the optical flow efficiently handles the piecewise and detailed

variation of displacement. However, the discontinuity from a large motion causes inappro-

priate matching and ill-posed local minima. In order to overcome these defects, hierarchical

algorithms have been proposed based on a multi-resolution representation [164, 165]. A coarse

but robust estimation of the motion field is obtained at a low level. Then, it is iteratively

refined at higher levels. A motion trajectory can be also considered instead of using low

levels [170]. From a motion trajectory, a dense flow field is estimated as a process of inter-

polation. Some researches [167–170] have exploited robust parameter estimation to remove

outliers. The robust estimation is less sensitive to the outliers using the localization of the

motion field. The localization methods are classified into two approaches. The first approach

concentrates on removing outliers of a local energy model to determine the best flow within a

region. For example, the robust quadratic estimation which uses least squares is solved by a

regression [168, 169]. The second approach corresponds to the design of a global energy model

with a regularization function which preserves the discontinuity [164–167]. The outliers are

removed by smoothing each homogeneous motion area. For example, one model considering

a robust M-estimator instead of the quadratic estimator is proposed in BlackAnandan1996.

The most recent approach is the combination of the local energy model and global energy

model [167].

In this Chapter, we combine the advantage of the discrete motion estimation and the optical

flow estimation in an efficient common scheme, leading to a hybrid recursive energy-based

method. The proposed method [162] is described with two frameworks: incremental updating

framework and robust energy minimization framework.

Incremental updating framework : It unites the discrete motion estimation and the op-

tical flow estimation in the concept of displaced frame difference (DFD). When the discrete

motion estimation recursively calculates the displaced block difference (DBD) from a new

frame, the optical flow iteratively refines using the DBDs as the initial value. Incremental

detailed motion values from the new frame with the previous optical flow are recursively

updated using the displaced pixel difference (DPD). Incrementally integrated motion has a

lot of advantages, i.e. the motion can be accessed at any time. Thus, motion is temporally
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Figure 6.7. Incremental updating framework

refined. Only pairs of frames need to be analyzed, therefore the amount of computation is

reduced. Moreover, it is adaptive to the changes of motion and luminance over long time. If

we assume large motion (du, dv), integration of incremental motion is defined as translational

displacement mapping.

I(u, v, t) = I(u+ du, v + dv, t+ dt) (6.16)

The best correspondence of intensity I(u, v) is found by matching over the horizontal, vertical

and temporal increments (du, dv, dt). The matching algorithm usually searches a candidate

set of motion vector (du, dv) which minimizes some functions of displaced frame difference

(DFD) as

DFD(x,d) = It(x) − It+1(x + d) (6.17)

where d is the total displacement on the image domain x = [u,v]. By taking a Taylor series,

Equation 6.17 is linearized as

It(x) = It+1(x) − dT∇It+1(x) − et+1(x) (6.18)

∇ is the multidimensional gradient operator and et+1(x) represents the higher order terms of

the expansion to be set up at each pixel in a block. Using 6.17 and 6.18, the expression can

be rearranged involving the (DFD) with zero displacement as

DFD(x, 0)=It(x) − It+1(x)=dT∇It+1(x) + et+1(x) (6.19)
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d is estimated by calculating the sum of displaced block difference (DFD) and displaced

pixel difference (DPD) for a pair of frames.

d = DBD (UB, VB) +DPD (uP , vP ) (6.20)

The subscripts B and P denotes a calculation respectively using blocks and pixel.

Robust energy minimization framework : The optical flow should be robustly esti-

mated inside the homogeneous region of a moving object. It should be recovered without

smoothing across the motion discontinuity. Robust error norm of anisotropic diffusion and

adaptive spatial-temporal anisotropic regularization are integratively applied in this frame-

work to preserve the motion boundary. The local energy model and the global energy model

are used to remove outliers. DBD and DPD are defined by a large increment (UB, VB) and a

small increment (uP , vP ) between any pair of frames. First, the images are pre-filtered, then

down-sampled to remove noise and to reduce the system cost. The final DBD is hierarchically

refined from the minimization of the correspondence energy EB with the multi-dimensional

blocks sizes M and N .

EB(U, V ) =
M∑

u=0

N∑
v=0

|It(u, v) − It+1(u+ UB, v + VB)|2 (6.21)

When DBDs are calculated in the block recursive stage, DPDs are estimated by iteratively

refining the DBDs as the initial value of the pixel recursive stage in the gradient solution

in 6.18. The final output vector flow is obtained by recursively updating the increments

between the DBDs and DPDs. The method achieves highly reliable and per-pixel total

displacements to prevent local minima for large motion. Figure 6.7 illustrates the method.

Robust statistics that was described in Chapter 5.3 have been applied to remove outliers in

many computer vision problems. It yields robust results for smoothing homogeneous areas

and preserving the discontinuity boundaries. A diffusion function g(s) =
[
1 + (s/ε)2

]−1
which

is called the edge-stopping function suppresses diffusion in areas of high gradients. A constant

ε controls the level of contrast of edges to affect the smoothing process. The discrete Perona

and Malik diffusion is obtained by integrating (s) · s into a non-convex potential energy as

ρg =

∫
[g(s) · s]ds =

∫
[ψ(s)]ds = σ2 log

[
1 + 1/2

(
s2/σ2

)]
= σ2ρL (6.22)

where the influence function ψ(s) encloses g(s) · s. The derivative div[g(s) · s] modifies the

diffusion coefficient at the boundary. Equation 6.22 shows that ρg for ε2 = 2σ2 can be

equivalently treated with Lorentzian error norm ρL. Fig. 2 illustrates the relationship of

g(s), ψ(s) and ρg. In this chapter, we integrate the robust error norm into the energy



CHAPTER 6. ROBUST 3-D SCENEFLOW ESTIMATION 113

0- 5 - 4 -3 -2 - 1 2 3 4 5

-1

1
( ) ( )s g s sψ = ⋅

( )g sρ

( ) ( )s g s sψ = ⋅

( , )g sρ σ

σ

Figure 6.8. Robust anisotropic function

minimization to estimate the optical flow. The edge-preserving robust statistic considers

the motion boundaries as those points to be outliers between piecewise smooth flow regions.

Considering the brightness-conserving assumption and the gradient constancy assumption

for 6.16, we derive a robust energy function that penalizes deviations in Equation 6.23

ED(d) =

∫
Ω
ρg

(
|I(x) − I (x+d)|2 + κ |∇I(x) −∇I (x + d))|2

)
dx (6.23)

κ is a proportional weight coefficient between the two terms. Now, the goal of robust estima-

tion of ρG is to find the threshold σ to remove outliers. Black [137] achieved the appropriate

σ considering Tukey’s biweight norm52 as

ρg(s, σ) =

{
1/2
[
1 − (s/σ)2

]2
if |s| ≤ σ

0 (i.e.outlier) otherwise
(6.24)

The robust local flow can be achieved by removing the outliers. Now, we consider a global

approach using a regularization function preserving the motion discontinuity. An anisotropic

diffusive regularization in 6.25 is applied to a global energy.

ER(d) =

∫
Ω
ψ (∇I(x),d(x))dx (6.25)

ψ (∇I(x),∇d(x)) = g (‖∇3d‖)∇d is a modified version of discrete Perona and Marik diffusion

equation g(s) · s and ∇3 = (∂u, ∂v, ∂t) denotes the spatial-temporal gradient [171]. The

diffusion direction is sensitivity-adaptively controlled by using different step-sizes for the

52) see Equation 5.9 and 5.8.
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spatial gradient ∇I(x) and the temporal gradient ∇d(x) in a discrete sense. Finally, the

total energy term which combines ED(d) of Equation 6.23 with ER(d) in Equation 6.25

using the Lagrange multiplier λ is obtained in Equation 6.26.

E(d) = ED(d) + λER(d) (6.26)

Numerical Solution : We iteratively solve the minimization problem of 6.26 by the asso-

ciated Euler-Lagrange equations as

ρg

(
I2
t + κ(I2

ut + I2
vt) · (IuIt + κ(IuuIut + IuvIvt)

)
−λdiv (g (‖∇3d‖) · ∇u) = 0

(6.27)

and

ρg

[
I2
t + κ(I2

ut + I2
vt) · (IvIt + κ(IvvIvt + IuvIut)

]
−λdiv (g (‖∇3d‖) · ∇v) = 0

(6.28)

where we define the abbreviations of spatial-temporal derivations as

Iu = ∂uI(x + d), Iv = ∂vI(x + d), It = I(x) − I(x + d),

Iuu = ∂uuI(x + d), Iuv = ∂uvI(x + d), Ivv = ∂vvI(x + d),

Iut = ∂uI(x + d) − ∂uI(x), Ivt = ∂vI(x + d) − ∂vI(x)

(6.29)

The asymptotic analysis of a parabolic PDE with natural boundary conditions approximates

xk+1 using an iteration variable xk in Equations 6.30 and 6.31. High confidence values are

calculated much slower than low confidence values.

ρg

(
(Ik+1

t )2 + κ
(
(Ik+1

ut )2 + (Ik+1
vt )2

)
· (Ik

uI
k+1
t + κ(Ik

uuI
k+1
ut + Ik

uvI
k+1
vt )

)
−λdiv (g (∥∥∇3d

k+1
∥∥) · ∇uk+1

)
= 0

(6.30)

and

ρg

(
(Ik+1

t )2 + κ
(
(Ik+1

ut )2 + (Ik+1
vt )2

)
· (Ik

v I
k+1
t + κ(Ik

vvI
k+1
vt + Ik

uvI
k+1
ut )

)
−λdiv (g (∥∥∇3d

k+1
∥∥) · ∇vk+1

)
= 0

(6.31)
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The computational complexity of the nonlinear system is removed retaining the first-order

terms of the Taylor approximation in implicit discretization,

Ik+1
t ≈ Ik

t + (Ik
udu

k + Ik
v dv

k),

Ik+1
ut ≈ Ik

ut + (Ik
uudu

k + Ik
uvdv

k),

Ik+1
vt ≈ Ik

vt + (Ik
uvdu

k + Ik
vvdv

k)

(6.32)

where uk+1 = uk + duk and vk+1 = vk + dvk. uk+1 and vk+1 are easily calculated using the

previous iteration steps uk, vk and the incremental updates duk, dvk. Equation 6.30 can be

rewritten into Equation 6.33. The case of Equation 6.31 can be solved in a similar way.

ρg

[(
Ik
t + (Ik

udu
k + Ik

v dv
k)
)2

+ κ
{(
Ik
ut + (Ik

uudu
k + Ik

uvdv
k)
)2

+(
Ik
vt + (Ik

uvdu
k + Ik

vvdv
k)
)2}]τ · Ik

u

(
Ik
t + (Ik

udu
k,τ+1 + Ik

v dv
k,τ+1)

)
+κρg

[(
Ik
t + (Ik

udu
k + Ik

v dv
k)
)2

+ κ
{(
Ik
ut + (Ik

uudu
k + Ik

uvdv
k)
)2

+(
Ik
vt + (Ik

uvdu
k + Ik

vvdv
k)
)2}]τ · [Ik

uu

(
Ik
ut + (Ik

uudu
k,τ+1 + Ik

uvdv
k,τ+1)

)
+

Ik
uv

(
Ik
vt + (Ik

uvdu
k,τ+1 + Ik

vvdv
k,τ+1)

)]
−λdiv (g (∥∥∇3(u

k + duk)
∥∥)τ · ∇(uk + duk,τ+1)

)
= 0

(6.33)

The non-convex robust estimation problem converges into a local minimum. A solution is to

utilize the previous step as a good initial estimate of the flow and to obtain the incremental

value. The motion uk and vk are recursively estimated as (UB + uP )k and (VB + vP )k.

Whenever the updated values UB and VB from the block recursion are initialized, the new

increments duk and dvk are recursively updated in the same way. Consequently, an additional

iterative minimization strategy with a few steps τ converges quickly into a global minimum.

Figure 6.9 exemplifies the initial estimate and refined optical flow result. The 1st frame

image and difference image between the 1st and 2nd frames are shown in Figures 6.9(a)

and 6.9(b). The image size is 640 × 360, and the block initial motions are obtained by a

discrete motion estimation with anisotropic block regularization as Figure 6.9(c) represents.

The incremental optical flow motions for image pixels are recursively updated in the block

motion-compensated images. The final optical flow estimates shown in Figure 6.9(d) have the

sum of discrete block motions, i.e. UB and VB, and incremental pixel motions, i.e. UP and

VP . The recursive block-to-pixel estimation supports the good localization performance. The

color code map shown in Figure 6.10 is efficient to visualize the orientation and the magnitude

of a dense flow vector. The color represents the orientation of the vector and brightness stands

for its magnitude. In Figure 6.11, the convergence of the proposed method is compared to the

well-known Lukas-Kanade optical flow method. The Lukas-Kanade method cannot estimate

motions in homogeneous regions, e.g. sky, ground and shadow, and some texture regions, e.g.

the walls of a castle and trees, and results in the low density motion field. Figures 6.11(a)
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(a) (b)

(c) (d)

Figure 6.9. Optical flow estimation result - (a) the 6th frame image, (b) difference image
between the 6th and 12th frames, (c) discrete motion estimation result, (d) refined optical
flow result

0

Figure 6.10. Color encoding of flow vectors

and 6.11(b) respectively show the 1st frame image and the difference image to the 2nd frame

image. In comparing Figures 6.11(c) and 6.11(d), the proposed method has higher density

motion field with correct flows than the Lukas-Kanade method.
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(a) (b)

(c) (d)

Figure 6.11. Optical flow estimation result - (a) the 1st frame image, (b) difference image
between the 1st and 2nd frames, (c) estimated motion field using the proposed method (d)
motion field using Lukas-Kanade method

6.4 3-D Sceneflow Estimation

In both multi-stereo and structure-from-motion techniques, image correspondences estab-

lished between a single pair of stereo or temporal images and the structural information

derived from any combination of spatio-temporal images should be consistent. Chebaro et.

al. [104] first use traditional matching methods to find spatio-temporal four frame sets of the

feature correspondences: two stereo and two temporal, based on line segments and planar re-

gions. Using the spatio-temporal 4-frame model, the consistency of matches can be checked.

For any inconsistency, temporal matches are remained and the conflicting stereo matches

are rejected. Another method [105] explicitly uses motion information to reject false stereo

matches from a number of candidates or simply to confirm the validity of a stereo match, or

vice versa.

Assuming a parallel stereo camera configuration, a point, M̃(X,Y, Z) in 3-D space projects to

IL(uL, vL, f) in the first camera and IR(uR, vR, f) in the second one. Simple stereo geometry
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allows us to recover the coordinates of M̃ as

X =
ub

d
, Y =

vb

d
and Z =

bf

d
(6.34)

where f is focal length, and b is baseline. The projection in each image plane IL(uL, vL, f)

and IR(uR, vR, f), and the optical centers OL and OR define two similar triangles, so that we

can write the relationship as

Z

b
=

Z − f

b− (uR − uL)
(6.35)

The image velocities of corresponding points in the two cameras are denoted by υL(uL, vL)

and υR(uR + d, vR) where d is the disparity vector and the difference is relative flow as

ΔυL(uL, vL,d) = υR(uR + d, vR) − υL(uL, vL) (6.36)

The temporal derivative of Equation 6.34 is

VZ = − bf

(uR − uL)2
× (vR

u − vL
u ) = −Z

2

bf
Δυu (6.37)

The 3-D velocity is given by V = ϕ×P + t, and the third component of the 3-D velocity of

a point along the Z-direction is VZ = tZ +ϕXY −ϕYX. The 3-D velocity in the Z-direction

i.e. VZ can be expressed as a linear equation on three of the six parameters that can be

substituted in the equation of binocular flow.

tZ + φXY − φYX = −Z
2

bf
Δυu (6.38)

and

Δυu

bf
=
[

−1
Z2

−v
fZ

u
fZ

]⎡⎢⎢⎣
tZ

φX

φY

⎤
⎥⎥⎦ (6.39)

where t =
[
tX tY tZ

]
and ϕ =

[
ϕX ϕY ϕZ

]
are the translational and rotational

components of rigid-body motion, and the 3-D point coordinates X and Y are replaced by

its inverse perspective projection equations.

Non-uniformly distributed 3-D samples : For non-uniformly distributed 3-D samples

M̃ on an object surface S(M̃), sampling positions are calculated by the bundle adjustment
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method53 minimizing the distances D between the sample X and the reprojected pixel m̃k

on the k-th camera’s image plane as

S(X) = min
X

n∑
k=1

(
D(m̃k,P

−1
k M̃)2

)
(6.40)

where Pk denotes a projection from the k-th camera and P = (R|t) is the projection matrix

with rotational and translational components. Projecting samples in 3-D space to 2-D image

plane leads to depth discontinuities in a staircase-like structure. Preserving the discontinuities

is very important to avoid sampling artifacts. 3-D scene geometry is calculated by a joint

method of global projection and local sceneflow correspondences. Pixels of image planes that

are projected from multiple cameras can be connected in a chain by a disparity-link of each

pair of planes. For an image triplet Ik−1, Ik, Ik+1, two image pairs (Ik−1, Ik) and (Ik, Ik+1)

form two stereo image pairs. Two links of correspondence are calculated as

m̃k+1 =
(
Rk

k+1

)−1
d(k,k+1)

[(
Rk+1

k

)
m̃k

]
(6.41)

and

m̃k−1 =
(
Rk

k−1

)−1
d(k,k−1)

[(
Rk−1

k

)
m̃k

]
(6.42)

Ik+1
k and Ik−1

k respectively denote upward and downward rectified images by the projection

matrices Pk+1
k and Pk−1

k transformed by rotational matrices Rk+1
k and Rk−1

k . Two dense

correspondence maps d(k, k − 1) and d(k, k + 1), respectively hold the downward correspon-

dences from Ik−1
k to Ik

k−1 and from Ik+1
k to Ik

k+1. This linking process is repeated along the

whole n-input images to create long correspondence-chain connections. This method is very

efficient to initialize dense and reliably 3-D samples in the scene geometry since the geomet-

ric density can be increased by overlapping distributed samples within small depth ranges.

Higher depth ranges are obtained in long correspondence chains, and most occlusions caused

by large baselines can be eliminated.

6.5 Experimental Results

Anisotropic dense disparity estimation : Image and video-based applications should

be robust for indoor and outdoor environments to analyze natural images and videos. The

robustness of dense disparity estimation can be tested for some difficult lighting conditions

and camera setups such as mutual reflection, shadow, unbalanced brightness and unknown

epipolar geometry. The first evaluation is performed using outdoor and indoor stereo image

53) see Appendix A.7.
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(a) (b)

(c) (d)

Figure 6.12. Test images with unbalanced lighting condition and homogeneous regions - (a)
the left Balloon image, (b) the right Balloon image, (c) the left Car Toy image, (d) the right
Car Toy image

pairs shown in Figure 6.12. A color stereo image pair with balloons, i.e. Balloon image,

shown in Figures 6.12(a) and 6.12(b) have a size of 720 × 480 pixels and 24bits/pixel and

contains difficult lighting conditions with imbalance between left and right images, i.e. left

image is darker than the right image. Additionally, the image has a complex image structure,

i.e. several objects with different disparities. Another stereo image pair, Car Toy captured

in a studio has more stable lighting conditions and accurately rectified as Figures 6.12(c)

and 6.12(d) represent. The image size and color resolution are the same to the Balloon

images. However, the disparity estimation using toy images is difficult because the images

have a lot of untextured regions with similar color and intensity values in foregrounds and

backgrounds, and such homogeneous regions easily cause ambiguous matching problems.

The proposed algorithm yields excellent dense disparity maps as Figure 6.13 shows. Fig-

ures 6.13(a) and 6.13(c) are the left-to-right disparity maps for the Balloon and Car Toy

images where brighter values represent large disparity vectors. Darker values in the right-to-

left disparity maps shown in Figure 6.13(b) and 6.13(d) represent small disparities. While

the energy function is iteratively solved by PDEs, the dense disparity vectors are locally es-
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(a) (b)

(c) (d)

Figure 6.13. Results of anisotropic disparity estimation - (a) the left-to-right disparity map
of Balloon images, (b) the right-to-left disparity map of Balloon images, (c) the left-to-right
disparity map of Car Toy images, (d) the right-to-left disparity map of Car Toy images

timated and globally regularized with anisotropic diffusion. An edge-stopping function that

strongly weights for a large gradient provides an excellent localization matching and structure

preserving regularization. Detected occlusions can be diffusively filled in the regularization

process.

We compare the proposed method to some well-known disparity estimation methods by using

large-baseline matching tests. A large baseline disparity estimation is a challenging task in

computer vision, since it is usually difficult to establish correspondences across images. If the

baseline is large, epipolar geometry must be calculated before disparity matching. Two large-

baseline stereo sequence data sets shown in Figure 6.14 are used for the evaluation. The first

test image set with a green doll, i.e. Teddy image, shown in Figures 6.14(a) and 6.14(b) has

450 × 375 resolution, and the maximum horizontal difference54 is 80 pixels. The 2nd image

set with a woman, i.e. Kate image, shown in Figures 6.14(c) and 6.14(d) has 320×240 pixels.

The Kate images are captured by a stereo camera with a toed-in setup and not rectified.

54) This images are captured by a stereo camera with parallel camera configuration that aligns the epipolar
lines parallel to the horizontal scanlines.
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(a) (b)

(c) (d)

Figure 6.14. Large baseline test images - (a) the left Teddy image, (b) the right Teddy image,
(c) the left Kate image, (d) the right Kate image

Figure 6.15 represents the results of well-known SSD, graph-cut methods and the proposed

algorithm. SSD is a pixel-based matching algorithm using a sliding window to calculate

as error criteria the sum of squared differences. Figures 6.15(a) and 6.15(b) depicts that

SSD produces a very large matching error since a fixed window increases the likelihood of a

mismatch per pixel. A large baseline matching with an unknown epipolar geometry causes

serious errors even for an optimization method as Figure 6.15(d) exemplifies. The graph-cut

method is one of the most reliable optimization algorithms that can obtain links-and-cuts of

multiple possible values by repeatedly minimizing an energy function involving only binary

variables. Although the graph-cut method requires high computational power, the ambiguity

of unparallel wide baseline matching causes a lot of wrong links. When the epipolar geometry

is known, the graph-cut method generates a good result for very large-baseline images shown

in Figure 6.15(c). However, the method needs post-processing to occlusion holes filling. On

the contrary, the proposed method represents the most reliable and detailed disparity maps

as Figures 6.15(e) and 6.15(f) represent. The performance comparison proves the robustness

of the proposed algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15. Comparison of large baseline dense disparity estimations - (a) SSD result for
Teddy images, (b) SSD result for Kate images, (c) graph-cut result for Teddy images, (d)
graph-cut result for Kate images, (e) anisotropic disparity estimation result for Teddy images,
(f) anisotropic disparity estimation for Kate images

Anisotropic disparity estimation with perceptual maximum variation modeling :

in an image region with strong texture gradients, anisotropic disparity estimation may fall

into local minima and cause an over-splitting problem. The isotropic property of the Gaussian

scale-space is employed in the proposed method to smooth local edges in a texture region,

and a robust weighting modifies the scale-space to anisotropic diffusion. This method is more

efficient than the pure anisotropic diffusion method since exact gradients are very sensitive

to noises. However, if some visually important edges are weak in the luminance channel,
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(a) (b)

(c) (d)

Figure 6.16. Anisotropic disparity estimation with perceptual maximum variations for Bal-
loon image - (a) The left Balloon image, (b) difference between left and right Balloon images,
(c) anisotropic disparity estimation of the Balloon images, i.e. the method of Chapter 6.1,
(d) anisotropic disparity estimation with perceptual maximum variations of Balloon images,
i.e. the method of Chapter 6.2

isotropic over-diffusion and back-diffusion make the edges ambiguous since the weighting

process is based on the brightness variations. The proposed method in Chapter 6.2 solves

the over-diffusion and back-diffusion problem by modeling perceptual maximum variations

using a least squares optimization applying PCA. Thus, anisotropic disparity estimation can

be accurately performed in perceptual continuation coherency of a scene.

In Figure 6.16, the improvement of the previous method is exemplified for the Balloon im-

ages, i.e. shown in Figures 6.12(a) and 6.12(b). Edge-preserving disparity estimation can

be robustly achieved in image regions containing important structures with strong and weak

brightness variations because the maximum variation modeling improves the convergences

into the global minima. Figure 6.17 shows another result for wagon stereo images obtained

by a similar way. The resolution of wagon images is 720 × 576.

Figure 6.18 shows the absolute disparity error compared to the ground-truth of Tsukuba and

Cones images of [35] using the percentage of error pixels. We ignore 18 pixels of the bor-

der for the Tsukuba image when computing the statistics due to the absence of data in the
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(a) (b)

(c) (d)

Figure 6.17. Anisotropic disparity estimation with perceptual maximum variations for the
Wagon images - (a) the left Wagon image, (b) difference between left and right Wagon images,
(c) anisotropic disparity estimation of wagon images, (d) anisotropic disparity estimation with
perceptual maximum variations of Wagon images

ground-truth. Figures 6.18(b) and 6.18(f) represent the ground-truth of Tsukuba and Cones

images. Figures 6.18(c) and 6.18(g) show the robust performance of the proposed method

for discontinuities and homogeneous regions. Figures 6.18(d) and 6.18(h) are the error im-

ages with absolute difference over 1.0 between the ground-truth and estimates. Table 6.1

depicts the performance comparison between well-known reliable optimization methods, e.g.

layered stereo [157] and graph-cut [156], requiring much heavier computation costs than the

proposed method. The errors are calculated using alpha maps which decide the evaluating

regions. Only the white regions of the alpha maps are used for calculating the absolute

difference. The proposed method achieves a high accuracy performance in texture and dis-

continuity over other techniques.

Robust optical flow on large motion fields : Optical flow estimation on large motion

fields is fundamentally difficult since pixels between two discrete pixels increase the possibility

converging into local minima. A new reliable hybrid recursive method for optical flow estima-

tion was proposed in Chapter 6.3. The method efficiently combines the advantage of discrete
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Figure 6.18. Ground-truth evaluation of anisotropic disparity estimation with perceptual
maximum variations - (a) the left Tsukuba image, (b) ground-truth for Tsukuba images, (c)
simulation result for Tsukuba images, (d) error pixels (i.e., darker pixels have larger error)
that have absolute difference over 1.0 for Tsukuba result, (e) the left Cones image, (f) ground-
truth for Corns images, (g) simulation result for Corns images, (h) error pixels over 1.0 for
Corns result
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Table 6.1. in the white regions of alpha maps; noocc.: non-occluded regions; all : all regions;
disc.: areas of depth discontinuities

Method Tsukuba Cones

noocc. all disc. noocc. all disc.

SSD+min-filter 5.23 7.07 24.1 10.6 19.8 26.3

layered stereo 1.3 1.57 6.92 6.59 14.7 14.4

graph-cut 1.94 4.12 9.39 7.7 18.2 15.3

proposed method 1.06 1.21 4.47 3.41 8.55 5.02

noocc. all disc.

motion estimation and optical flow estimation in a recursive block-to-pixel estimation scheme.

Integrated local and global approaches using the robust statistic of anisotropic diffusion re-

moves outliers from the estimated motion field. We separately describe the process with

two frameworks i.e. an incremental updating framework and a robust energy minimization

framework. With robust error norms of anisotropic diffusion, the formulation usually leads

to non-convex optimization problems. Thus, the solution has many local minima, and con-

vergence to the global minima is not guaranteed. Our hybrid recursive energy-based method

employs a hierarchical block-to-pixel estimation concept to prevent this problem.

First, the performance is evaluated for a very large motion of a dynamic scene. The Flower

Garden sequence of size 320×240 pixels and 150 frames is shown in Figure 6.19. It consists of

a tree in the foreground, with a background increasingly vanishing away by the panning of the

camera from left to right. The sequence has a very large motion in excess of 6 pixels/frame

and also has an abundance of fine moving textures. Discrete motion is estimated using 8

blocks as Figure 6.19(c), and optical flow is incrementally updated based on the block motion

compensated image. The results in Figure 6.19(d) show the dense motion field between the

1st frame and 6th frame using the magnitude. It proves the robustness and efficiency of our

method for a very large motion. Comparative results per frame for the whole sequence are

shown with some traditional methods in Table 6.2 using the result in [170]. Our method by far

outperforms the above methods. The performance of the proposed method is next evaluated
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(a) (b)

(c) (d)

Figure 6.19. Optical flow estimation for discrete frames of Flower Garden image sequence -
(a) the 3rd frame image, (b) the 7th frame image, (c) difference image between the 3rd and
7th frames, (d) block initial vector (8 × 8)) of the proposed method, (e) final motion field of
the proposed method, (f) Lukas-Kanade method

Table 6.2. Performance comparison for discrete motion

Algorithms Mean error Standard deviation Density (%)

Horn and Schunck (modified) 16.09 13.64 100

Lucas and Kanade 15.75 13.3 100

Nagel 17.11 14.55 100

Anandan 12.25 10.03 100

Odobez and Bouthemy 13.21 11.12 97.77

Proposed method 4.41 3.13 100

with two natural image sequences captured from static cameras, i.e. the Ettlinger Tor traffic

sequence and the Hamburg taxi sequence [172]. Figure 6.20 shows the 3rd frame and the

difference with the 7th frame of Ettlinger Tor traffic sequence which has the size of 512× 512

pixels. Figures 6.20(d) and 6.20(e) respectively represent the results of block recursion and

pixel recursion using color encoding of flow vectors shown in Figure 6.10. Both the block

initial vector and final dense motion field are adjusted to be more visible with the same scale.

The result shows the robustness of the estimated vectors and their good localization into the

discontinuity. The discrete motion estimation problem is exemplified in Figure 6.20(f). The
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Lukas-Kanade optical flow method cannot estimate fast object motions and results in low

density estimates. Figure 6.21 represents the Hamburg taxi sequence which has the size of

256 × 190 pixels. The result also represents the excellent performance of our method. The

sharp motion boundaries are well preserved.

Spatio-temporal sceneflow estimation : Stereo matching and tracking estimates the 3-D

displacement field for points in the 3-D world using multi-camera video data. Such methods

can be cooperated with motion estimation. Chapter 6 has described to a novel formulation to

combine dense disparity estimation and dense optical flow that provides reliable results using

only two cameras by fusing binocular sequences into coherent 3-D points. The cameras are

self-calibrated by a reliable feature tracking method and the view geometry is also known.

The method chooses the minimum error sampling between optical flow and disparity with

a robust estimation framework. Outliers in estimates are globally restricted by a local ap-

pearance region method shown in Chapter 6.1 and robustly regularized by spatio-temporally

anisotropic diffusion introduced in Chapter 6.3. To avoid the local minima problem inherent in

solving the PDEs, the scale-space method is used within the solution. The spatio-temporally

sceneflow is fitted to the bundle of rays through a global minimization of the reprojection

error as Chapter 6.4 described. Two videos, Pillars and Under Sea shown in Figure 6.22

are captured using a monocular camera motion, and the camera parameters and the sparse

scene structure is relatively recovered by a state-of-art SfM method. The relations between

the views, i.e. known as epipolar geometry, can be used to warp all original viewpoints in

the scene into a slightly different viewpoint near the real camera path. When the dense 3-D

sceneflow is estimated in the synthesized viewpoints using a warping, the 3-D information is

3-D cloud points, i.e. a large set of 3-D sampling positions, which can be efficiently used for

image-based modeling and rendering.

Figures 6.22(a) and 6.22(b) are the 1st and 2nd frames of the Pillars image. Dense optical

flow between two frames is estimated as Figure 6.22(c) shows. The color denotes the rotation

of flow vectors and the brightness is the velocity as Figure 6.10 represents. Figure 6.22(d) is

the dense depth map of Pillars images.

For the Under Sea images, the 6th and 12th frames shown in Figures 6.22(e) and 6.22(f) are

used to estimate the sceneflow. Figures 6.22(g) and 6.22(h) respectively represent the spatial

and temporal component of the sceneflow.
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(c) (d)

(e) (f)

Figure 6.20. Optical flow estimation for discrete frames of Ettingertor image sequence - (a)
the 3rd frame image, (b) the 7th frame image, (c) difference image between the 3rd and 7th
frames, (d) block initial vector (8 × 8)) of the proposed method, (e) final motion field of the
proposed method, (f) Lukas-Kanade method
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(a) (b)

(c) (d)

(e) (f)

Figure 6.21. Optical flow estimation for discrete frames of Taxi image sequence - (a) the 3rd
frame image, (b) the 7th frame image, (c) difference image between the 3rd and 7th frames,
(d) block initial vector (8×8)) of the proposed method, (e) final motion field of the proposed
method, (f) Lukas-Kanade method
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.22. Spatio-temporal scene flow estimation result - (a) the 1st left frame of Pillars
image, (b) the 2th left frame of Pillars image, (c) optical flow motion between the 1st and
2nd left frames of Pillars image, (d) disparity between the left and right Pillars images for
the 1st frame, (e) the 6th left frame Under Sea image (f) the 12th left frame of Under Sea
image, (g) optical flow motion between the 6th and 12th left frames of Under Sea image, (h)
disparity between the left and right Pillars images for the 6th frame



Chapter 7

Confocal Stereo with Pinhole Image

Recovery

7.1 Problem of Pinhole Camera Assumption

Recent years have seen a lot of advances in the problem to reconstruct a complex 3-D scene

from a series of multiple images. Most algorithms choose a human visual feature perceiving

depth e.g. disparity and depth of field (DoF). By establishing the correspondences in a series,

objects are distinguished by depth information related to the respective position. However,

the ill-posed correspondence problem cannot be perfectly solved by only one series.

For example, disparity estimation is difficult to solve the ambiguity problem in local image

structures due to image noise, unbalanced brightness, similar texture and occlusion, etc.

To achieve a more reliable estimation performance, local appearance matching [72–74] with

boundary constraints between features, edges and disparity discontinuity etc. is employed.

However, the performance is not satisfactory due to the error localization problem. The

latest researches incorporate isotropic and anisotropic regularization terms which attempt

to filter off the mislocalized error. Although these methods are efficient to preserve local

structure, semantic information is additionally needed to combine divided regions in a real

object. Practical camera systems use a real aperture camera model which yields focus-related

blurring (i.e. DoF). Depth from focus (or defocus) methods [173, 174] exploits the variation

of the blurring in a number of images captured at different focus settings. When the camera

is focused on an object at a depth, the other objects in a different depth are blurred. The

relative blurring between the defocused images can be utilized as a stereo cue. In this chapter,

a novel anisotropic disparity estimation embedding the defocus cue, i.e. confocal constraint,

is proposed for a real-aperture 3-D camera system shown in Figure 7.1.
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Figure 7.1. Real-aperture 3-D camera system

7.2 Real-Aperture Stereo Camera Analysis

Blurring of the defocus by optic can be approximated by linear convolution between the

focused image and the blurring function i.e. known as point spread function (PSF). Blurring

between near- and far-focus images can be estimated by the second central moments of the

blur circle because the PSF is a circularly symmetrical function. Subbarao and Surya [173]

proposed the S-transform of Laplacian as a focus operator. A defocus function acts as a

low-pass filtering, e.g. 2-D Gaussian and a focus operator which performs the inverse. The

difference of the standard deviations, i.e. the spread parameter between near- and far-focused

images can be mapped to the respective depths. However, the operator is suitable only for

equifocal surfaces since the operator is isotropic. In [174], Favaro et al. employs an anisotropic

diffusion to solve the problem. If a scene is highly textured, the method is sufficient to estimate

a reliable depth. However, regions with weak textures are still ambiguous to distinguish from

blurred regions.

For the solution, fusions with stereo [175–177] were proposed. In [175], a probabilistic model

of focus and stereo merges the depths by weighted averaging the local variances that are

estimated by Cramer-Rao inequality in the unbiased estimator. However, this method cannot
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guarantee the accuracy of the estimated variances. A Markov random field method [176]

integrates the depths by smoothness prior in an energy functional which is minimized by

simulated annealing. Another method [177] employs graph-cut for a focus measure. However,

these methods do not consider the local features to avoid the convergence to local minima.

In Chapters 5.4 and 6.1, the multiple-resolutions of the scale-space provide the best trade-

off between the detection and the localization performance of the features. The range of

disparity matching is propagated by isotropic gradient weights following the streamline of

the scale-space and localized in the spatially invariant sparse Laplacian kernel by the Poisson

solver. The dense disparity estimation is locally performed by a scheme of local appearance

matching. Anisotropic diffusion globally regularizes the disparity map by suppressing the

length of the isotropic propagations to the orthogonal direction of edges. The method gave

us good dense disparity maps preserving the important local structures. However, it cannot

combine divided regions in the main object.

In this chapter, we try to combine the regional structure in a focal object in defocused images.

A focus image offers semantic information such as the sharp boundary of a focusing object

which is easily distinguished by the defocus blur. The defocus cue serves a constraint to

localize the disparity estimation in a confocal boundary. However, the variances in PSF are

isotropic and the propagation near the edges of unequifocal surfaces may not be accurate.

We regularize the propagation in the dense disparity map by anisotropic filtering.

7.3 Confocal Disparity Estimation

If a focused point belongs to an object surface, the diameter σ of blurring in a series of defocus

images is given by a lens law [176]

σn = κrnVn (1/Fn − 1/Zn − 1/Vn) (7.1)

n is the number of focus images, r is the lens aperture, F is the focal length, V is the sensor

plane-to-lens distance and Z is the distance between the object surface and the lens, i.e. the

object distance. We use a parameter κ from a pre-calibration to fit the focal depth plane into

the depth from disparity.

Since conventional stereo systems use a pin-hole camera model, we assume that an ideal focus

(i.e. Fn = f) enables the infinite depth of field. The ideal focuses Ffar and Fnear on the

surfaces which are located at respective depths Za and Zb accompany defocus blurring as

Figure 7.1 illustrates. The confocal disparity can be defined by an epipolar constraint.

d = bf/z (7.2)
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z is the associated depth to the disparity d and b is the baseline. In the pin-hole model, the

f in Equation 7.3 should be the same with the Vn in Equation 7.3. The relationship between

the disparity and the focus of a stereo image pair is achieved by the confocal condition which

should estimate a same depth (i.e. z ≈ Z).

dn = b (Vn/Fn − σn/κrn − 1) (7.3)

Since all parameters except σn are given by camera setting, if the focal length of the stereo

camera is just changed, the stereo matching can be localized by the confocal constraint within

the range of dn which is estimated by defocus blurring.

7.4 Confocal Constraint of Defocus

For an object surface S with a function s : R
2 → [0,∞] which assigns a depth value to each

pixel coordinate, the irradiance I : Ω ⊂ R
2 → [0,∞] with another function R : R

2 → [0,∞]

on the surface is observed as the radius σ of the defocus blur. The defocus image J (x) which

is dependent upon the camera optics is defined as

J(x) =

∫
h (I(x), σ(s, Fn))R(x)dx (7.4)

where h : Ω × R
2 → [0,∞] is the PSF which is defined as the impulse response by Green’s

function [174]. The radius σ is related on the surface s and the focus parameter F. Let a

focus image be the irradiance map I0 of the focal surface s (F0) of a initial focus F0. The

depth Zn = s (F0) ∼ s′ (Fn) is estimated by observing the variances of a defocus image In is

taken with a different focus Fn at a time t. The energy function is

E(σ) =

∫
Ω

(h (I0(x+σ(F0), 0) − h (In(x+σ(Fn), t))2 dx (7.5)

If we approximate the PSF by a generalized 2-D Gaussian as

GVn(x) =

(√
2π |Vn|1/2

)−1

e−(xT
n V−1

n xn/2) (7.6)

where V is the symmetric 2 × 2 variance matrix with the determinant |V|, the eigenvectors

determine the principal axes η and ξ from the partial derivatives of a Gaussian and the

eigenvalues (μ+, μ−) determine the scalar variance along these axes.

V(r) = μ+ηη
T + μ−ξξ

T and η⊥ξ (7.7)
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(a)                              (b)
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Figure 7.2. Confocal disparity estimation - (a) definition of the parameters in the system,
(b) the left viewpoint-image in a near-focusing setup (f = Fnear), (c) the right viewpoint-
image at Fnear , (d) the left viewpoint-image in a far-focusing setup (f = Ffar), (e) the right
viewpoint-image at Ffar

where r is the displacement in a polar coordinate r (θ) =
√
x2 + y2. This derives an ellipsoid

which has a combination of value-weighted orthogonal orientations μ+θ+θ
T
+ + μ−θ−θ

T
− with

θ+⊥θ− centered at a point. This is more general to represent a partial homogeneous region

in defocus images by convolution In (x) = I0 (x) ⊗ GVn (x). In the n defocus images, the

smoothly varying structure is defined by a positive definite tensor D that denotes a gradient

flux.

x(r|t,D) =
(√

2πn |2tD|
)−1

e−rT D−1r/4t (7.8)

The variances in the PSF is observed by the displacement of tensors at each image point x. It

represents a difference in propagations to the direction (θ+θ−). If the space of the functions

is continuous with the partial derivatives in R
2, Equation 7.4 can be minimized in the PDEs

by a harmonic solution I (x) → J : R
2 × [0,∞] → R

{
J(I(x), 0) = σ ∀x ∈ Ω

J(I(x), t) = div (D(x)∇(In(x), t)) t > 0
(7.9)
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where J (x) = I (x) + ε where ε denotes a correction gradient symbol related to the amount

of blurring and the divergence term div is implemented by a sparse Laplacian kernel in the

Poisson solution D (x)∇ (In (x) , t) · n = 4πρ with ρ = 0.The unit vector n is orthogonal to

∂Ω.

7.5 Anisotropic Disparity Estimation with Confocal Constraint

and Recovery of Pinhole Image

With the confocal constraint the dn from Equation 7.3 for a focusing stereo object, we obtain

the maximum window size W for the disparity matching. Figure 7.2 illustrates the confocal

constraint for disparity matching.

max
D

Wl,n(x) ≤
∑dn

i=0
Ir,n (x + i) (7.10)

where the subscripts l and r respectively denote the left and right image. The sampling of

pixels in the focal plane in defocus stereo images recovers a non-blurring image for all objects

i.e. pinhole image. The confocal disparity is achieved by iteratively updating the estimated

disparities in the window W as

EΩ(d) =

∫
Ω

(Il(x) − Ir(x + dl→r(x + σ) ∈ W)2dx + λ

∫
Ω
eσ(d)dx (7.11)

The subscripts denote the matching direction, e.g.l → r is left-to-right direction, and eσ is

a global regularization term which minimizes the matching error with Lagrange multiplier

λ. The range of matching is restricted within the confocal depth range. The window using

isotropic PSFs is suitable to avoid the splitting problem in a homogeneous equifocal surface.

However, the edges of unequifocal surfaces may not be exactly localized. Hence, we globally

regularize the dense disparity map by an anisotropic diffusion.

eσ = g (‖Dl(x)‖)∇dl→r(x, t) (7.12)

g (∇) is an anisotropic diffusion weight which suppresses the propagation of only the edge

direction θ−.

g(μ+, μ−) = (e−(μ2
+/γ2), μ−) (7.13)

where a positive constant γ controls the level of contrast of edges affecting the regularization

process that was described in Equation 6.7. The graph of the g-function was shown in

Figure 6.4. It enhances the discontinuities in θ− by the flux function ψ (∇) = g (μ+, μ−)∇.

The detail numerical solution of energy functional in Equation 7.5 is described in Chapter
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(a) (b)

(c) (d)

Figure 7.3. Multi-focusing stereo images - (a) the near-focusing left image, (b) the near-
focusing right image, (c) the far-focusing left image, (d) the far-focusing right image

6.1.

7.6 Experimental Results

A single dense depth estimation using stereo or defocus cannot produce a reliable result due to

the ambiguity problem. In this chapter, a novel anisotropic disparity estimation embedding

a stereo confocal constraint is proposed for real-aperture stereo camera systems. If the focal

length of a real-aperture stereo camera is just changed, the depth range is localized in a

focused object which can be discriminated from defocused blurring. The focal depth plane is

estimated by the displacement of tensors which are derived from generalized 2-D Gaussian,

since the point spread functions (PSF) in defocused blurring can be approximated by a shift-

invariant Gaussian function. The isotropic propagation in blurring over invariance is localized

by a sparse Laplacian kernel in the Poisson solution. The matching of real-aperture stereo

images is performed by observing the focal consistency. However, the isotropic propagation

cannot exactly hold a non-parallel surface to the lens plane i.e. a unequifocal surface. An

anisotropic regularization term is employed to suppress the isotropic propagation near the

non-parallel surface boundary. Our method achieves an accurate dense disparity map by

sampling the disparities in focal points from multiple defocus stereo images. The pixels in
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(a) (b)

(c) (d)

Figure 7.4. Confocal disparity estimation and pin-hole image recovery - (a) focal consistency
window from 10 defocus images for the left view, (b) dense disparity map by the proposed
method, (c) recovered pinhole image, (d) 3-D modeling result using the estimated disparity
and the recovered pinhole image

(a) (b)

Figure 7.5. Comparison of anisotropic disparity estimations with and without confocal con-
straint - (a) anisotropic disparity estimation result without confocal constraint, i.e. method
in Chapter 6.1, (b) confocal anisotropic disparity estimation

focal points are utilized to recover the pinhole image, i.e. an ideally focused image for all

different depths.

Figure 7.3 shows a pair of stereo images which are respectively focusing on the most far and

nearest object surfaces in 10 defocus stereo images. The image resolution is 720× 480. First,
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(a) (b)

(c) (d)

Figure 7.6. Disparity estimation for stereo images with out-focusing objects - (a) the left
image, (b) disparity map by Markov Random Fields method, (c) disparity map by graph-cut
method, (d) disparity map by the proposed method

a focal consistency window from defocus images is estimated to localize the range of disparity

matching. Figure 7.4(a) represents the window which is estimated from 10 defocus images.

The disparity map is iteratively estimated by updating the fine (i.e. focusing) structure in the

window. The sampling of the fine structure derives a pinhole image with minimum aperture.

The dense disparity map and its recovered pinhole image respectively shown in Figures 7.4(b)

and 7.4(c) show the excellent performance. For the subjective evaluation of the results, an

image-based modeling is given in Figure 7.4(d). The image-based modeling is efficient to

evaluate the localization performance by mapping the texture image to the depth.

We compare the performance of confocal anisotropic disparity estimation to the anisotropic

disparity estimation method described in Chapter 6. Since the previous method needs a

single well-focused image pair55, disparity of defocusing regions in the background cannot be

estimated as Figure 7.5(a) represents. The novel method produces a dense disparity map

preserving structure of the focusing foreground and defocusing background as Figure 7.5(b)

shows.

In a far-focusing stereo camera setup, we exemplify the fact which the disparity estimation of

near-defocusing object is difficult in Figure 7.6. The reliable Markov Random Fields method

[176] and graph-cut optimization [177] cannot estimate the disparity in the blurred regions

55) The pinhole camera model uses focal plane assumption that means well-focused images.
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due to the ambiguity as Figures 7.6(b) and 7.6(c) shows. However, the proposed method

overcomes the problem as Figure 7.6(d) represents since the ambiguity in the blurred regions

can be avoided by the consistency in other focus images.



Chapter 8

Applications

In computer graphics and computer vision, image- (or video- )based modeling and rendering

methods rely on a set of 2-D images of a scene to generate a 3-D model or some novel views of

the scene. The traditional approach of the contents generation has been to create a geometric

model in 3-D and try to render a scene by reprojecting the model onto a 2-D image. Video

composition arranges the 2-D segments from computer graphics and real image objects in

the frame. Computer vision is focused on detecting, grouping, and extracting image features

in given images, and then tries to interpret them as 3-D clues. Image-based modeling and

rendering allows the use of multiple 2-D images in order to generate directly novel 2-D images

or a 3-D model, skipping the manual modeling stage. However, there are a lot of fundamental

key problems related to robustness and accuracy of segmentation, tracking, self-calibration,

pose estimation and depth estimation, etc., and the quality is still not sufficient to apply to

general purpose. In this dissertation, most related topics of the problem have been surveyed,

tested and evaluated to obtain an error-robust and generalized video analysis. In this chapter,

the practical applications of the all proposed methods are discussed in detail. The issues that

need to be addressed are the choice of the representation, a scheme to combine algorithms

required to make video-based rendering and modeling applications.

8.1 Image- and Video-based Rendering

Novel view synthesis : We have devised a method for creating novel views of a scene from

any multiple camera viewpoints of the same scene. There are two methods for a novel view

synthesis: camera geometric warping and scene geometry compensation. The camera geo-

metric warping method is an approach that rays of all viewpoint images of the same scene are

warped into an arbitrary viewpoint, and the warped images are interpolated. Figures 8.1(e)

and 8.1(f) exemplify viewpoint warping for a virtual camera viewpoint. A ray projection and

its inverse projection are known as camera parameters. Chapter 3 presented a self-calibration

from camera motion to obtain the ray projection and the inverse projection. However, this
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method is efficient only when the virtual camera position is near to the original camera po-

sitions, and applications of global viewpoint warping, e.g. light field rendering [12–15] and

2D-3D conversion methods, usually require many camera viewpoints from a dense camera

array or a long camera path. When the scene has a lot of near objects, the linear projection

model cannot handle the nonlinear divergent ray components. In this case, 3-D sampling

position on the object surface should be approximated to avoid the blurring and ghosting

artifacts that is a linear sampling problem for divergent rays. Figure 8.1(a) shows a blur-

ring and ghosting artifacts. Thus, a 3-D scene geometry compensation method, i.e. depth

weighted shifting, cooperated with the camera geometric warping was proposed in Chapter

4 to eliminate the artifacts as Figure 8.1(b) represents. While a camera geometric warping

forms global ray projections for a focal plane as Figure 8.1(c) shows, the sampling difference

between focal plane and object surface estimates can be compensated to reform the diverging

ray components as Figure 8.1(d) depicts.

Light field and plenoptic function : When the scene is static, the structure from motion

technique can be utilized to calculate the global ray projections related to the camera pose.

This method provides an automatic post-processing scheme to generate 3-D video from 2-D

video frames, although the method is limited to videos that have only global camera motion

such as landscape scenes. However, dynamic motion contents consist of a lot of independent

foreground object motions, and light field rendering with a large camera array is a better

choice for especially 3-D contents makers. Light field is the general term that defines the

amount of light traveling in every direction through every point in space, and thereby the

ray sampling for a moving camera is also a kind of light field. An arbitrary viewpoint can

be reconstructed by light samples at several points in a given direction by camera calibration

parameters. Such a bundle of samples was described by the plenoptic function that has a

5-D quantity describing a continuous light flow at every 3-D spatial position for every 2-D

direction. In Chapter 3, a novel ray-space definition is presented using optical flow scheme.

Bundles of rays form a cylinder style segments because an image can be segmented to several

regions. The optical flow light field is very efficient to define a plenoptic function using a

monocular camera motion. Moreover, the new definition can describe the boundary condi-

tion problem of bundles of rays using the field-equation theory deriving the Laplace equation.

For a static scene, the technical basis of dense camera array and a monocular camera motion

is very similar because the methods commonly utilize the principal ray on the optical axis for

rendering. However, virtual camera position should be near to the original camera position

since a projection ray56 does not correspond to all 3-D sampling positions. A lot of cameras

are needed to increase the sampling rate and avoid excessive blurriness in a synthesized view-

point.

56) It represents a line between the center of a pinhole camera and a point of the focal surface.
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Figure 8.1. Light field rendering with 3-D scene geometry - (a) warped image for a camera,
(b) another warped image, (c) blurring and ghosting artifacts, (d) warped camera image with
scene geometry, (e) light field rendering with surface blurring, (f) light field rendering with
scene geometry compensation

3-D sampling position : The scene geometry estimation can support to select accurate

sampling positions. The distance between the two projected locations is compensated by scene

geometry since the relationship among two cameras and a scene point can be obtained by

triangulation. The depth estimation is difficult due to the geometrical discontinuity and hid-
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den information, and a flat region without texture is troublesome for corresponding samples.

Several combinations of multiple cameras, structured light, range finders, and mechanical

sensing devices are used to acquire dense scene geometry since the passive stereo method is

difficult to obtain 3-D geometry of natural scene. The optical flow method has been utilized

to smoothly interpolate the motion of pixels moving from one camera position to another.

However, large displacements between remote cameras cause local minima problems during

the displacement tracking. In this dissertation, a novel sceneflow method that combines the

dense stereo method and optical flow tracking is proposed to spatio-temporally estimating

the 3-D geometry. For the spatio-temporal correspondences, multi-stereo allows a large depth

range, while motion is being tracked to raise the sampling density. When the epipolar ge-

ometry of the stereo camera is known, an image point should be matched to an image point

on the epipolar line of the other camera. The linearizations of two temporal frames form the

temporal epipolar geometry. The spatio-temporal epipolar geometries can be used to approx-

imate the 3-D scene geometry since the intersection of spatial and temporal epipolar lines

approximates a reliable 3-D points. A Fourier spectral analysis of spatio-temporal ray-space

efficiently shows the amount of divergent rays.

Super-sampling Light field : Exact sampling positions on the dense depth plane are

useful to eliminate the spectral components of divergent rays. A depth compensated ren-

dering using sceneflow estimates allows high density of sampling. If the sampling density is

sufficiently high, the image can be enhanced by a super-sampling scheme. However, camera

geometry and scene geometry estimations can be influenced by the noise and measurement

errors. A unified robust estimation method that can be used for both camera parameter

estimation and scene geometry regularization was proposed in Chapter 5. A super-sampling

noise removal is exemplified in Figure 5.18. The camera parameters is estimated using feature

points in multiple viewpoint images, the epipolar geometry is obtained by camera projections

using the method described in Chapter 4.3. The scene geometry between viewpoints can be

estimated by dense disparity matching in epipolar lines, and the disparity vectors between

viewpoints are used for a depth compensated warping of all viewpoint images. Figures 8.2(a)

and 8.2(b) respectively show multiple viewpoint images and the sampling relationship be-

tween viewpoint images. The d-chains are combined to approximate the 3-D sceneflow by a

chain correspondence method described in Chapter 6.4. Figure 8.2(c) shows a robust dense

disparity map between two views that is estimated by the anisotropic disparity estimation,

and the robust error statistic efficiently removes outliers shown in Figure 8.2(d) from the

disparity map. The super-sampling using all viewpoints can increase the image resolution

with deblurring effects as Figure 8.2(e) depicts. The difference between original and enhanced

images is shown in Figure 8.2(f).
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Figure 8.2. Super-sampling view rendering - (a) multi-viewpoint images, (b) super-sampling
with camera geometry and scene geometry, (c) dense scene geometry, (d) robust error statistic,
i.e. white color region is outliers, (e) image enhancement with deblurring, i.e. left: original
image, right: enhanced image, (f) difference between original and enhanced images
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8.2 Depth Segmentation and Image Composition

Object segmentation plays a significant role for the image and video composition. The recent

image and video compositing systems need an accurate segmentation without visual seams

to make compositing with virtual studio, blue screen, multi-color compositing, dynamic blue

screen, advertisement insertion and synthetic transfiguration etc. However, object segmen-

tation from a natural scene, which aims to extract exactly meaningful objects from a back-

ground, is still one of the most difficult problems, even though it has been researched for more

than thirty years. A lot of semi-automatic methods have been proposed using user-defined

rules, e.g. feature-based, contour-based or region-based which directly point out initial object

[178]. The general process is to collect only meaningful groups of pixels which can be ex-

tracted and tracked. The tracking mechanisms evolve and propagate the initial object using

boundary errors. However, semi-automatic methods have a serious disadvantage, the neces-

sity of user initialization. Thus, they are not suitable for TV applications. Fully automatic

methods [179] apply the extraction rules based on specific characteristics of the scene or on

the known priori information. For example, the face segmentation uses spectral characteris-

tics of the skin-color region in the CIE chromaticity diagram. Chroma-keying, i.e. the blue

screen method, accurately eliminates the uniformly colored background. However it requires

a specific set-up of the background and special care for lighting conditions to avoid shadows

and reflecting blue light and to maintain uniform intensity. To overcome some limitation

of the chroma-keying, Z-keying [180], i.e. a depth keying method which uses distance-based

measures, was proposed. A depth map can be accurately computed by cameras with depth

sensors that supplement every video frame with an additional frame, the Z-buffer. However,

the method is restricted to indoor applications since the depth range of the sensor is limited.

For both, indoor and outdoor conditions, depth estimation recovered from multiple cameras

substitutes the use of depth sensors. However, the depth estimation provides low spatial

accuracy in the segmentation results when the objects are sparsely textured. If a segmented

object is laid over a new background, old background areas which are extracted with the ob-

ject can be distinctly recognized as a seam in the object boundary. Thus, partial replacement

of the visible seam is required for pixel-wise accuracy. The precise definitions of the object

boundary and coherence can be used to maintain the spatial accuracy.

Sceneflow-based segmentation : The robust anisotropic disparity estimation method pro-

posed in Chapter 6 can efficiently segment the foreground object. A dense depth map allows

separating objects at some specific depths. If cameras are calibrated and the epipolar geom-

etry is spatio-temporally estimated, the 3-D depth can be recovered from the dense disparity

estimates. A conventional depth estimation has several difficulties, e.g. the ambiguity of the

local image structure due to image noise, unbalanced brightness, similar texture and occlu-

sion, etc. If two pixels in the same image look alike, it may be impossible to find corresponding
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Figure 8.3. Image composition with depth segmentation - (a) a stereo images, (b) edge flow
field, (c) estimated depth map, (d) trimap, (e) new background image, (f) composited image

pixels in the other image only based on the similarity. A robust region segmentation method

that is performed by analyzing the local image structure was proposed in Chapters 5.4 and

5.5. We track a region by the edge flow scheme employing a smoothly varying oriented struc-
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Figure 8.4. Blending with depth segmentation - (a) the left Teddy image, (b) the left Dog
image, (c) difference between left and right Teddy images, (d) difference between left and
right Dog images, (e) depth map of Teddy images, (f) depth map of Dog image, (g) trimap
of Teddy images, (h) trimap of Dog images
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(a) (b)

(c) (d)

Figure 8.5. Seamless composition - (a) the left Teddy image, (b) the left Dog image, (c)
difference between left and right Teddy images, (d) difference between left and right Dog
images, (e) depth map of Teddy images, (f) depth map of Dog image, (g) tri-map of Teddy
images, (h) trimap of Dog images

ture. The local maxima in the structure separates invariance image regions. The proposed

depth estimation is performed by using the invariance constraint of tracked regions.

Figure 8.3(b) exemplifies the edge flow estimation that is derived from the diffusion field in an

image shown in Figure 8.3(a). The full resolution depth map is estimated by the anisotropic

disparity estimation as Figure 8.3(c) shows. The anisotropic diffusion coefficient decreases at

the edges with steep intensity gradients as Chapter 6.1 shows, an over-smoothing of depth

discontinuities can be avoided. Since the anisotropic diffusion smooths homogeneous regions,

the object depth is more homogeneous. The tri-map shown in Figure 8.3(d) is set up from
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the discontinuities of homogeneous regions, and used as a segmentation mask. After locat-

ing the segmented object on the new background image, the edge flow method is applied

to directional blending of pixels in the segmented object region and the new background

corresponding to the tri-map. Figure 8.3(e) shows a new background image. By suitably in-

corporating the edge-preserved diffusion, blending power is near zero at the object boundary.

Finally a naturally blended object can be obtained as Figure 8.3(f) shows.

Depth-based image composition for Teddy and Dog stereo images are demonstrated in Fig-

ure 8.4. Figures 8.4(a) and 8.4(b) are the left images of the Teddy and Dong stereo image

pairs, and Figures 8.4(c) and 8.4(d) are the difference between the left and right images. The

depth map is automatically estimated between the left and right images as Figures 8.4(e)

and 8.4(f) represents. Finally, the foreground objects are segmented in the trimaps shown in

Figures 8.4(g) and 8.4(h). When we apply the directional blending to the Teddy image, the

composition result is a natural looking fusion with a brightness adaptation as Figure 8.5(b)

depicts. The composition without a blending in Figure 8.5(a) shows some visual seams, i.e.

the darker pixels on the object boundary of a green doll. In Figure 8.5(c), the membrane

regions with furs of a dog are blended for the texture directions, and a natural looking com-

position of the particular structure is obtained as Figure 8.5(d) depicts.

8.3 Image and Video-based Modeling

The need for real-world 3-D models is increasing constantly due to the extensive use of

computer graphics in the game industry, electronic commerce, the special effects and film

industry. Production of photorealistic models of real scenes is still very time consuming and

feasible only with expensive 3-D scanners in conjunction with manual interaction. The image-

(or video-) based modeling method differs from traditional computer graphics in that both

the geometry and appearance of the scene are derived from real photographs. The techniques

often allow for shorter modeling times, faster rendering speeds, and unprecedented levels of

photorealism.

For a rigid scene, the difference in the viewpoints is caused by a single camera undergoing

motion or two cameras at different positions. Camera parameters describe the rotational

and translational differences between image frames, and correspondences in the images are

closely related by the collineation and the constraint. A topic in this dissertation is self-

camera calibration from stereo image sequences. In Chapter 3, camera calibration parameters

are estimated by a feature tracking method in an image sequences acquired by uncalibrated

video cameras. First, we specify the epipolar geometry by estimating the fundamental matrix

and computing the essential matrix from the fundamental matrix. The fundamental matrix

estimation using parallax method was introduced in Chapter 4.4, and the computation of

the essential matrix is described in Chapter 4.5. The rotation and translation of cameras
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(a) (b)

Figure 8.6. Images for 3-D sceneflow Modeling - (a) Castle stereo image sequence with 15
frames, (b) Palace stereo image sequence with 10 frames

are obtained from the result by splitting the essential matrix. Next, the dense 3-D scene

geometry is estimated by the sceneflow method in Chapter 6. The epipolar constraint is used

to restrict the 2-D matching problem to a 1-D epipolar line. Temporal epipolar geometry was

introduced in Chapter 4.8. The intersections of spatial and temporal epipolar lines form a set

of stable 3-D points. The errors between the sceneflow and the camera parameters are fitted

by a nonlinear bundle adjustment method. Figure 8.6 represents a test image sequence. 15

frames of the Castle stereo sequence (i.e. total 30 images), and 10 frames of the Palace stereo

sequence (i.e. total 20 images) are used to reconstruct 3-D models. However, the bundle

adjustment optimization needs a high computational power to minimize the back-projection

errors in full sets of spatio-temporal correspondences. Although we expect that more frames

can increase the quality, it was difficult to increase the number of frames in our simulation

environments due to the complexity. Figure 8.7 shows video-based modeling results for the

Castle and Palace image sequences.
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Figure 8.7. Results of 3-D sceneflow modeling - (a) recovered model from Castle stereo image
sequence, (b) recovered model from Palace stereo image sequence
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Discussion

In this dissertation, we proposed a set of methods to recover the 3-D camera geometry and

the dense scene structure from stereo camera motions. Our work is just a small progress of

robust 3-D video analysis for automatic 3-D content generation. Much remains to be done,

both in improving and extending the current framework. We hope that others will build on

our ideas and other related works to provide more precise interpretations and applications.

In this final chapter, we discuss the proposed sceneflow method for robust 3-D video analysis

and further steps towards understanding stereo motions.

9.1 Sceneflow Method for Robust 3-D Video Analysis

Camera Geometry and Scene Geometry : Image- (or Video-) based modeling and ren-

dering are active research topics in the computer vision and graphics community. In the

last decade, many systems were proposed free-viewpoint generation based on collections of

viewpoint images of a scene. The image- (or video-) based modeling approach is focused on

the reconstruction of scene geometry, and the image- (or video-) based rendering approach

is based on the projective warping of rays. In fact, the technical basis in the two approaches

is closely related since the projective geometry is a non-metrical form of geometry that for-

malizes a ray between an infinity point and the camera center, and the scene geometry is

related to the metric components in a ray. Since feature-based methods are more efficient

to solve the parametric equation accurately, the camera geometry is often estimated from

feature correspondence. However, feature-based methods can reconstruct only a restricted

number of scene points, i.e. sparse metric reconstruction. Obtaining a dense reconstruction

could be achieved by interpolation, but the result is not at a satisfactory level. These prob-

lems can be avoided by establishing dense correspondences. When the projective geometry

is estimated by the feature-based calibration method between image pairs, we exploit the

epipolar constraint that restricts the 2-D correspondence search to a 1-D line.
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Sceneflow analysis : Stereo vision is a good modality for dense 3-D analysis of the real

world surrounding us, but it suffers from some significant shortcomings. Cases posing diffi-

culties in stereo vision are the insufficient amount of texture in the images, an unbalanced

lighting condition, perspective effects, depth discontinuities, occlusions and etc. The conven-

tional dense matching methods do not preserve the spatio-temporal discontinuities, object

boundaries are often poorly localized, and occlusion holes and mismatches are located in

some regions. The proposed method employs a robust image statistic in the regularization

function to eliminate outliers, e.g. mismatches, mislocalization errors and occlusion holes etc.

However, if there are not sufficient dense estimates as much as image pixel, the diffusion falls

to local minima during solving partial differential equations, and large-baseline matching of-

ten causes this problem. In this dissertation, the 3-D sceneflow method that combines stereo

matching and optical flow motion was proposed. For a rigid scene, a multi-stereo method

can be temporally expended to a structure-from-motion approach. In general, the denser

capturing of multiview images with a large number of cameras provides the more precise 3-D

representation. A Structure-from-Motion (SfM) method is easier to obtain the spatial cam-

era density than a multi-stereo method. The proposed method combines the two methods

in the 3-D sceneflow framework. The images may come either from a set of closely spaced

cameras, hand-held video camcorders, or a multi-camera rig, etc. We can obtain a lot of

overlapped 3-D points from spatio-temporal correspondences. Together with the camera ge-

ometry estimation, a set of 3-D scene points is recovered based on the static scene hypothesis.

Robust estimation : Due to physical imperfections in imaging sensors and bad locations of

detected features and false matches, the image data contains outliers. We consider a Gaus-

sian distribution behavior of the location error of a point of interest. A robust estimator

considers the relation between the data points and reasonable model candidates as a scale,

and thereby the outliers can be removed by different contributions of scales for the data of

interest. We proposed a unified scheme to eliminate outliers for fundamental matrix estima-

tion and dense scene geometry estimation. A robust estimation criterion that is derived from

the error distribution transforms the fundamental matrix by minimizing the scale-weighted

error. The robust error statistic is applied to the error function of a 3-D sceneflow. The

error distribution of estimates is restricted in a smoothly invariant support region, and an

anisotropic regularization method efficiently eliminates outliers in the regional structure.

Spatio-temporal baseline : The spatio-temporal 3-D space can be represented by a

brightness-invariance concept. The image brightness of a point in the scene not only remains

constant from one camera viewpoint to another but also remains constant over the time

frames. Stereo motions form the spatial epipolar geometry between two stereo viewpoints

and the temporal epipolar geometry between two time frames. The sceneflow method uses
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joint correspondences in the spatio-temporal image frames, and results in very strong multi-

linear constraints. The intersection of spatio-temporal epipolar lines generates the sparse 3-D

scene geometry with spatio-temporally stable 3-D points. The points at the line intersections

is a set of reliable 3-D points. Since the camera translation and rotation parameters can be

recovered from the essential matrix, the stable corresponding points yield an accurate update

of the projective geometry. We use the projective geometry for optimizing the 3-D sceneflow

by a nonlinear bundle adjustment method.

Application of the 3-D sceneflow : The 3-D sceneflow estimates can be used in many

ways. One way would be to reconstruct a 3-D scene from all overlapping spatio-temporal

views. A standard SfM method is based on feature tracking and results in a sparse 3-D

reconstruction. However, the sparse 3-D method is difficult to distinguish between connected

and disconnected surfaces, and thus the topology problem is a drawback. A dense matching

method may directly solve the problem by triangulating57 3-D points from all depth maps.

The wireframe model can then be textured with the real images. Another way is a virtual

view synthesis directly from real views using depth-compensated warping. However, the cam-

era geometry allows only one ray projection model for one camera, and rays diverging on a

3-D surface do not enter in the camera center and causes blurring and ghosting artifacts.

Light field rendering always depends on exact and dense 3-D plenoptic sampling. Dense 3-D

sampling positions on the 3-D object surface should be approximated to avoid the diver-

gent ray problems. The 3-D sceneflow method allows high density 3-D sampling using all

spatio-temporal correspondences.

9.2 Future directions

In recent years, 3-D computer vision researchers have made tremendous progress in 3-D video

analysis such as multi-stereo, structure from motion, light field rendering and camera pose

estimation, etc. However, they still are not sufficient for a general understanding of the 3-D

scene. Most methods start with feature correspondences that are invariant against viewpoint

and illumination changes and they estimate the camera geometry and the scene geometry.

However, a computer that may be able to detect the image features and to find matches

cannot truly understand the scene layout and its contents. For example, 3-D computer vision

methods cannot utilize arbitrarily chosen images from a digital photo sharing database (e.g.

Flicker, Google image search, etc.) for camera pose estimation or 3-D structure reconstruc-

tion, even when the images are parts of the same scene. Here, we propose several ideas for

future works that extend our current framework.

57) The triangulation of surface points means meshing.
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Affine invariant region detection : The detection of invariant regions is a crucial step in

image indexing tasks. Since the perspective transform in a wide baseline setup can be locally

approximated by an affine transform, commonly used detection is the affine invariant one. A

feature detector can provide locations at which a local affine invariant descriptor is computed.

The most challenging problem in these approaches is to find the correct scale, i.e. the spatial

extension of the support region around the point. The anisotropic diffusion tensor being in-

cluded in our framework can be utilized to expand a detected region or to find a stable border.

Statistical learning : Rather than trying to explicitly compute all of the required geo-

metric parameters from images, the statistical learning, e.g. classification, recognition and

training etc., can support to establish the real surface topology between all information of im-

age features, regions and occlusion boundary, etc. In contrast to most recognition approaches

that model semantic classes, we can use the 3-D geometry of sceneflow for the 3-D object

description.

Usage of fast optimization : A lot of reliable correspondences can be established by

the proposed 3-D sceneflow method, but there are a lot of metric differences between the 2-D

visual structure and the real 3-D structure. We perform a metric bundle adjustment method

to refine the 3-D sceneflow. However, the bundle adjustment optimization is mathematically

simple but practically very complex. Although the method has been well applied to a lot

of SfM studies, we have realized that the method is too complex to optimize a dense scene

structure. A region-based adjustment method may solve the complexity problem, because

image regions divided by stable features have similar depths58. Instead of minimizing the

reprojection error for every point, the method will try to minimize the global error in each

divided region.

Real object boundary recovery : In this thesis, we found the depth discontinuities by us-

ing the homogeneity of regions. However, real object boundaries are typically not defined by

homogeneity, but by physical connectedness. For example, image segmentation methods rely

on 2-D perceptual grouping cues, e.g. brightness, color or texture similarity, edge strength,

continuity, and closure etc. However, the boundaries of such segmentations often correspond

to texture, illumination, or material discontinuities, rather than true object boundaries. Al-

though the 3-D sceneflow method provides some 3-D cues such as stereo and motion, the

stereo motion cues sensitively depends on the 2-D image conditions. In future works, we

will try to order all 2-D perceptual grouping cues, color cues, disparity and motion cues of

prominent objects in sufficient detail to estimate the real depth boundaries.

58) This is the smoothness constraint of dense depth estimation.
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Conclusion

In this dissertation, we have taken a first step towards recovering the camera geometry and

the scene geometry of a static scene from stereo camera motion. A lot of possible modeling

and rendering experiments and implementations have been shown over this dissertation. We

hope that our work will inspire others to develop more advanced algorithms and 3-D appli-

cations. We conclude with a statement of the philosophy that has driven our research:

Since camera viewpoints are relative to the fixed 3-D object, the stereo and motion can

be integrally analyzed for a static scene. A multi-stereo method can cooperate with the SfM

method in recovering the camera pose and the scene structure. Since rays projected from

scene points can be modeled by one projective camera geometry that defines a line between

the camera center and the focal point. However, the projective geometry causes image distor-

tions according to the metric component of scene structures. The dense 3-D scene geometry

estimation is a process to recover the metric geometry according to the scene structure. The

quality of image-based modeling and rendering depends on the robustness and density of 3-D

scene sampling. The 3-D scene geometry estimation using robust error statistics is efficient

both to enhance reliable estimates and to remove the outliers without affecting the geometric

discontinuities. The key to obtain higher density of reliable correspondences is a combination

of stereo and motion.
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Appendix A

Appendix

A.1 Relationship between Collineations and Epipolar Geom-

etry

When observing a plane, an interesting specialization of the epipolar geometry of two views

can be obtained within a collineation of P2 between a world plane and its perspective image.

If we choose the world coordinate system so that the plane has an equation of z = 0, the

projection equation can be expanded as
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where α is an arbitrary scale. Points are mapped from the world plane to the image plane with

a 3 × 3 non-singular matrix, which represents a collineation of P2. If we have a collineation

from Π to the left image plane, and another collineation from Π to the right image plane, a

collineation from the image plane of the left camera to the image plane of the right camera

can be defined by composing the inverse of the first with the second. The plane Pi induces

a homography HΠ between the views, which transfers points from one view to the other.

m̃ � HΠm̃l if M̃ ∈ Π (A.2)

where HΠ is a 3 × 3 non-singular matrix. Even though a collineation of P2 depends upon

eight parameters, there is no contradiction with the fact that a plane depends upon three

parameters. Indeed, the collineation induced by a plane must be compatible with the epipolar
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geometry, i.e.:

(HΠm̃l)
T Fm̃l = 0 (A.3)

for all points m̃l. F is the fundamental matrix. This implies that the matrix HT
ΠF is

antisymmetric:

HT
ΠF + FTHΠ = 0 (A.4)

and this imposes six homogeneous constraints on HΠ. A collineation H that satisfies Equation

(A.4) is said to be compatible with F. A collineation H is compatible with F only if

F � [er]× H (A.5)

Π does not contain cr:

HΠel � er (A.6)

A.2 Triangulation

Given the camera matrices Pl and Pr, two corresponding points m̃l and m̃r satisfying the

epipolar constraint m̃lFm̃r = 0, m̃r lies on the epipolar line F̃ml and thereby the two rays

back-projected from image points m̃l and m̃r lie in a common epipolar plane. Since they lie

in the same plane, they will intersect at the some point. This point is the reconstructed 3-D

scene point M̃. Analytically, the 3-D point M̃ can be found by solving the known parameter

αl or αl.

er = αrm̃r − αlm̃l (A.7)

where αl and αr respectively corresponds to the depth of M̃ in the left and right cameras.

The three points m̃r, er and m̃l are collinear, so we can solve αl using the following closed

form expressions:

αr =
(er × m̃l) · (m̃r × m̃l)

‖m̃r × m̃l‖2 (A.8)

where αl (er × m̃l) = αlF
T m̃r and the reconstructed point M can be calculated by inserting

the value α into Equation (3.4). Since the camera parameters and image locations are known

only approximately, the back-projected rays do not actually intersect in space. Therefore

Equation (A.8) solves Equation (A.7) in a least squares sense.
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A.3 Homography and Canonical Basis

The method of mapping a projective representation of a plane to another is described here.

Consider the 3×3 linear transformation H, i.e. homography, and the four projective canonical

points: ε1 = [1, 0, 0]T ,ε2 = [0, 1, 0]T ,ε3 = [0, 0, 1]T ,ε4 = [1, 1, 1]T . The following equation

shows that the four canonical points can be mapped to four arbitrary points p1, p2, p3 and

p4, with a suitable substitution for H. A point p and any scaled version of it, i.e. λp,

represent the same point.

H

⎡
⎢⎢⎣

1 0 0 1

0 1 0 1

0 0 1 1

⎤
⎥⎥⎦ =

[
λ1p1 λ2p2 λ3p3

]⎡⎢⎢⎣
1 0 0 1

0 1 0 1

0 0 1 1

⎤
⎥⎥⎦

=
[

λ1p1 λ2p2 λ3p3 (λ1p1 + λ2p2 + λ3p3)
]

=
[

λ1p1 λ2p2 λ3p3 p4

]
(A.9)

where H =
[
λ1p1 λ2p2 λ3p3

]
and p4 = λ1p1 + λ2p2 + λ3p3. Each point p has only

two degrees of freedom. Similarly the matrix H has eight degrees of freedom, as it can be

scaled by an arbitrary parameter λ. Thus, 4 points are needed to define the transformation

H, i.e. 2 degrees of freedom × 4 points = 8 degrees of freedom. In projective coordinates,

any quadrilateral may be mapped to any other quadrilateral using the 3× 3 homography H.

A.4 Projective Transformations of a Plane

The homography p′ = Hp is a transformation which belongs to the projective group. This

group has a number of subgroups which explain the connection between projective and Eu-

clidean coordinates. The affine group consists of transformations p′ = Ap, that have the

form: ⎡
⎢⎢⎣
λu′

λv′

λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a11 a12 a13

a21 a22 a23

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
λu

λv

λ

⎤
⎥⎥⎦ (A.10)

These transformations can also be written as: m̃′ =
2×2
A m̃ + ã, or

[
u′

v′

]
=

[
a11 a12

a21 a22

][
u

v

]
+

[
a13

a23

]
(A.11)

The affine group corresponds to a 2×2 linear transformation and a 2×1 translation, and can

be applied using standard Cartesian coordinates. The six components of this transformation
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can be decomposed as two translations, two scale components, a shear and a rotation. If the

transformation is restricted further, by removing the two scale components and the shear,

then the Euclidean transformations of the plane is obtained as⎡
⎢⎢⎣
λu′

λv′

λ

⎤
⎥⎥⎦ =

⎡
⎣ 2×2

R
2×1
a

0T 1

⎤
⎦
⎡
⎢⎢⎣
λu

λv

λ

⎤
⎥⎥⎦ (A.12)

which may also be written in Cartesian form as: m̃′ =
2×2
R m̃+ã. Alternatively, the projective

transformation may be restricted by removing the rotations, and then the similarity group is

obtained. This group contains only scale, shear and translation. This group is useful because

it is used to represent the camera calibration matrix. This can be written as m̃′ =
2×2
C m̃+ ã,

or ⎡
⎢⎢⎣
λu′

λv′

λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a11 a12 a13

0 a22 a23

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
λu

λv

λ

⎤
⎥⎥⎦ (A.13)

The Euclidean and similarity groups, are subgroups of the affine group which is a subgroup

of the projective group.

A.5 8-Point Algorithm

The 8-point algorithm was developed by Longuet-Higgins [24]. It is a frequently used method

for computing the fundamental matrix from a set of eight or more correspondences. This

algorithm has the advantage of simplicity in implementation. To make it less sensitive to

noise and thus greatly improving the result, Hartley normalized (translated and scaled) the

coordinates of the correspondences before calculation. This modification brings much better

stability to the 8-Point Algorithm.

If the corresponding n-points have homogeneous coordinates, i.e. mn = [un, vn, 1]T and

m′
n = [u′n, v

′
n, 1]T , the epipolar constraint can be expressed as the following equation:

[
u′n v′n 1

]⎡⎢⎢⎣
f11 f12 f13

f21 f22 f23

f31 f32 f33

⎤
⎥⎥⎦
⎡
⎢⎢⎣
un

vn

1

⎤
⎥⎥⎦ = 0 (A.14)
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This is equivalent to the following equation and can be solved with the rank constraint of

matrix F with the 9 unknown coefficients:

⎡
⎢⎢⎢⎢⎢⎣
u1u1 v1u1 u1 u1v1 v1v1 v1 u1 v1 1

u2u2 v2u2 u2 u2v2 v2v2 v2 u2 v2 1
...

...
...

...
...

...
...

...
...

unun vnun un unvn vnvn vn un vn 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11

f12

f13

f21

f22

f23

f31

f32

f33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (A.15)

However, the high instability of the linear method is the problem since it is quite sensitive

to noise, even with a large set of data points. To reduce the impact of noise on the 8-Point

algorithm, the coordinates of point correspondences are normalized before running the 8-point

algorithm. The normalizing transformation is applied to each of the two images independently

as follows:

(1) Translate the point correspondences, so that their collective centroid is at the origin.

(2) Scale the point correspondences, so that the average distance from the origin is equal to√
2

It is necessary to denormalize the results after obtaining a solution for the fundamental

matrix. Denormalization is an inverse operation of the normalizing transformation.

A.6 Computation of Rotation and Translation

The rotation and translation of the camera can be obtained by splitting the essential matrix.

The translation vector can only be determined up to a scale factor. The essential matrix is

defined as

E = [t]× R (A.16)

where R is the rotation matrix and [t]× is the skew-symmetric matrix of the translation

vector T . The essential matrix can be splitted by the singular value decomposition (SVD) as

Equation 4.15 shows. The [t]× component is defined as

[t]× = λUSUT (A.17)
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where λ is scale factor, U is 3 × 3 orthogonal matrix and S = diag (1, 1, 0)ST is a skew-

symmetric matrix.

S =

⎡
⎢⎢⎣

0 1 0

−1 0 0

0 0 0

⎤
⎥⎥⎦ (A.18)

and ST = −S. Equation A.6 can be rewritten up to a scale as

[t]× = Udiag(1, 1, 0)STUT (A.19)

Then, we consider rotation matrix R.

[t]× R = Udiag(1, 1, 0)
(
STUTR

)
(A.20)

where

VT = SUTR = STUTR = −SUTR (A.21)

S and U are orthogonal matrices, therefore SST = I and UUT = I. This is a SVD of

E, in which two singular values are equal and the third one is zero. Since VT = −SUTR,

Equation A.6 is the same to Equation 4.15. By ignoring the scale factor λ in Equation A.6,

we obtain

[t]× = USUT (A.22)

Equation A.6 is equivalent to the following equation for rotation:

R = USTVT or R′ = USVT (A.23)

For the translation vector we have

T = U

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦ = U3 (A.24)

where U3 is the third column of U. However, the sign of E cannot be determined as

T = U3 or T′ = −U3 (A.25)
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A.7 Bundle Adjustment

Bundle adjustment [29] is the problem of refining a visual reconstruction to produce a jointly

optimal 3-D structure and the bundles of light rays leaving each 3-D feature and converging

on each camera center. The bundle of rays are parameterized by the camera calibration pro-

cess. Once the camera geometry and the scene geometry have been obtained for the whole

sequence, the error between them should be minimized by adjusting the camera parameters

or structures. When the image error is zero-mean Gaussian, bundle adjustment is the maxi-

mum likelihood estimator.

Projective bundle adjustment : The 3-D point M̃i and camera projection Pk includ-

ing some errors can be refined through a global minimization of the reprojection error for the

image features m̃i:

min
P′k,m̃i

m∑
k=1

n∑
i=1

D(m̃ki,P
−1
k M̃′

i)
2 (A.26)

This minimizes the mean squared distances between the observed image points m̃ki and the

reprojected image points m̃′
ki where D (m̃, m̃′) is the Euclidean distance. When the projec-

tive bundle adjustment refines camera parameters, then the ambiguity will be restricted to

metric components [30].

Metric bundle adjustment: For high accuracy the recovered metric structure should be

refined using the bundle adjustment. If one assumes that the error is only due to mislocal-

ization of the image correspondences and that this error is uniform and normally distributed,

the bundle adjustment corresponds to a maximum likelihood estimator. The camera model

should be general enough so that no systematic errors remain in the data. The relative dis-

tances or angles in the scene can be used to obtain the metric information. Assume that

points M̃′
i are the metric coordinates of the projectively reconstructed points M̃i, then the

transformation T that updates the reconstruction from projective to metric can be obtained

as

λM̃′
i ∼ TM̃i (A.27)

where λ is an arbitrary scale. By eliminating λ the equation can be rewritten as linear

equations. For the image Ik including the position of the known control point M̃i, bundle

adjustment globally minimizes the reprojection error as

n∑
i=1

∑
Ik(u,v)

D(uk,
Pk1M̃i

Pk3M̃i

)2 +D(vk,
Pk2M̃i

Pk3M̃i

)2 (A.28)
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where Pk =
[
P T

k1P
T
k2P

T
k3

]T
= Ck

[
RT

k | − RT
k tk

]
.
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