Dissertation

Wiebke Hohn

Complex Single Machine Scheduling

Theoretical and Practical Aspects of Sequencing

TU Berlin

Feb 2014

vorgelegt von
Dipl. Math. Wiebke H6hn
Berlin

Von der Fakultat II — Mathematik und Naturwissenschaften
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss
Vorsitzender: Prof. Dr. Fredi Troltzsch

Berichter: Prof. Dr. Rolf H. Mohring
Prof. Dr. Marco E. Liibbecke

Tag der wissenschaftlichen Aussprache: 2. September 2013

Berlin 2014
DR&3

This thesis would have not been possible without the direct and indirect help of many
people whom I wish to thank in the following. In particular, I am indebted to my
advisor Rolf H. Mohring for his great support, his trust and for giving me the freedom
of independently choosing research topics and collaboration partners. The excellent
research conditions he created in the COGA group are exceptional and all a doctoral
student can hope for.

Moreover, I wish to thank Marco E. Liibbecke for taking the second assessment of this
thesis. Financially, this work has been supported by the German Research Foundation
(DFQG) as part of the Priority Programme Algorithm Engineering (SPP 1307).

I am deeply indebted to my coauthors Torsten Gellert, Tobias Jacobs, Felix Konig,
Marco E. Liibbecke and Rolf H. Mohring with whom I enjoyed several vibrant discussions,
experienced all ups and downs of research, and, in the end, with whom I simply had a
great time. In particular, I am grateful to Felix G. Konig and Marco E. Liibbecke whose
enthusiasm and euphoria was contagious and from whom I learned a lot about academic
research, industrial projects and the combination of the two. Moreover, I greatly enjoyed
working with Tobias Jacobs whom I appreciate as a pleasant and very humorous person.
I am thankful for two very inspiring and productive months in Tokyo, including countless
intensive discussions at NII and great after-work Isakaya evenings.

Thanks go also to Michael Bastubbe, Torsten Gellert and Olaf Maurer who, at that
time as student assistants, supported the implementation work in our coil coating project.

Not contributing to the content of this thesis, but still being part of my time in
the COGA group, is the project DFG Science TV. I am grateful to Rolf H. Mohring
for providing us with the time necessary for doing it, and I am especially indebted to
Marco E. Liibbecke for being an excellent co-perfectionist in this crazy project.

I would particularly like to thank my current and former colleagues in the COGA
group for the wonderful work atmosphere, for countless nice conversations on math and
non-math, and for memorable conferences and conference evenings. I was happy to have
Christina Biising as my longtime room mate, and I am thankful to her for being such a
good listener. 1 very much enjoyed all the short chats during the day. A special thanks
goes also to everyone who is involved in making the coffee of COGA South so much
superior to the COGA North variant. Furthermore, I wish to express my gratitude to
Ralf Hoffmann, Dorothea Kiefer and Gabriele Klink, the good souls of COGA, who keep
things running so smoothly.

Moreover, I am grateful to Yann Disser, Max Klimm and Axel Werner for carefully
proofreading different parts of this thesis and for lively discussions on thesis writing in
general. In particular, I am indebted to Jannik Matuschke whom I want to thank not
only for extensive proofreading and various critical and helpful comments, but even more
for everything else.

Finally, I wish to thank my parents for their unconditional and unlimitted support
and for the freedom they gave me throughout the years.

Berlin, June 2013 Wiebke Hohn

Contents

Introduction 1

| Generalized Min-Sum Scheduling

1 Introduction 9
1.1 Problem formulation 10
1.2 Preliminaries and related work 11
2 Analysis of Smith's rule for convex and concave cost functions 19
2.1 Combinatorial analysis of Smith’s rule 20
2.2 Tight analysis of Smith’s rule 22
2.3 Parameterized analysis 39
3 Complexity and exact algorithms for min-sum scheduling 45
3.1 Hardness for piece-wise linear cost functions 46
3.2 Global order rules 48
3.3 Exact algorithms 55
4 Experiments 59
4.1 Data set 60
4.2 Experimental results 61
5 Conclusions 69

| Integrated Sequencing and Allocation

6 Introduction 73
6.1 Abstract problem formulation 76
6.2 Related work 77
6.3 Generic algorithmic framework 78
7 Integrated sequencing and allocation in coil coating 81
7.1 Problem formulation 83

7.2 Interval model for concurrent setup allocation 89

10

11

Algorithms and complexity for the concurrent setup allocation problem

8.1 Preliminaries on ¢-interval graphs and ¢-union graphs

8.2 Maximum weight independent sets in m-composite 2-union graphs
8.3 Concurrent setup allocations

Algorithms and experiments for the coil coating problem

9.1 Algorithm

9.2 Lower bounds from a combinatorial relaxation

9.3 Computational study

Integrated sequencing and allocation for filling lines in dairy production

10.1 Problem formulation
10.2 Structural properties of the allocation problem
10.3 Algorithms and computational study

Conclusions

Bibliography

Contents

95

96
101
105
111
111
114
116
121

123
126
130

135

139

“I don’t think writers are sacred, but words are. They deserve respect. If
you get the right ones in the right order, you can nudge the world a little
or make a poem which children will speak for you when you’re dead.”

Tom Stoppard

Questions of finding good orders appear virtually everywhere in daily life. Their nature is
highly manifold, and so are the aims and side constraints. At a rather personal level, we
may seek after an order in which to add our favorite songs to a playlist, or we may need to
decide in which order to go to shops for our weekend shopping. From a more professional
point of view, doctors have to determine the order in which they serve their patients,
factories have to decide in which order to manufacture their products, and engineers
have to devise rules for the order in which to process tasks on a computer. What is
meant by a good order, though, is often not precisely clear or not even measurable.

While good playlists are obviously a matter of taste, at a first glance one might think
that criteria for good (processing) sequences in industry are objectively determined and
easy to formulate. However, precise mathematical models, providing solutions which
come close to what is named good by practitioners, are usually the result of long discus-
sions and hard work which is inevitable for the success of a project.

This thesis starts at the point where adequate models and problem definitions have
already been devised, partially in close cooperation with practitioners from steel and
dairy industry. On that note we consider two general classes of problems from the broad
field of sequencing problems, a class of classic single machine scheduling problems with
generalized min-sum objective, aiming for schedules which are fair in a certain sense,
and a class of integrated sequencing and allocation problems as they commonly arise in
practice, where the major goal is a high throughput.

Our overall aim is the design and the analysis of efficient algorithms for these two
problem classes. While the former class allows for the rigorous mathematical analysis of
algorithms in terms of provable performance guarantees, in the latter case, such general
guarantees are unlikely to be achieved. This is mainly due to complex problem formula-
tions and algorithms which make it nearly impossible to analyze the performance jointly
for all problem instances. In order to still provide meaningful performance guarantees,
we resort to the computation of instance-dependent lower bounds which we then use to
bound the optimality gap.

For the class of single machine scheduling problems, we provide a thorough math-
ematical analysis for the performance of Smith’s rule—one of the classic algorithms in

scheduling theory—including tight approximation guarantees for a broad subclass of ob-
jective functions. Moreover, we prove the existence of a certain order relation on the jobs,
observed by any optimal schedule, which was conjectured by Mondal and Sen [MS00]
more than a decade ago. Finally, we give the first strong NP-hardness result for this
problem, which already holds for a very restricted special case, while even for the most
general problem variant only weak NP-hardness was known.

Concerning integrated sequencing and allocation problems, we propose a generic op-
timization framework which aims at separating complex problem-specific side constraints
from general sequencing aspects. Applying this approach to a scheduling problem from
coil coating, we are faced with a concurrent setup allocation subproblem, for which we
observe a close relation to the maximum weight independent set problem on a special
class of multiple-interval graphs. Thorough investigations of this problem were finally
the basis for achieving a makespan reduction of over 13 % on average for the coil coating
line of our industrial partner Salzgitter Flachstahl. Moreover, we concretize the generic
approach for a problem from dairy industry, obtaining solutions on par with the man-
ual production plans in use at the production site of our project partner Sachsenmilch,
proving that both our and the experts’ solutions are within 2 % of optimality.

The thesis is divided into two parts, where the first part is dedicated to single ma-
chine scheduling with generalized min-sum objective and the second part to integrated
sequencing and allocation problems.

As pointed out, in the first part, we address a classic machine scheduling problem. The
aim in this problem is to schedule jobs of different priorities on a single machine such
that the total weighted completion time cost is minimized, where this cost is specified
by some non-decreasing cost function. Our major focus is on convex and concave cost
functions, and in particularly, on monomials.

In Section 1.1 of this introductory chapter, we first formally define the
considered single machine scheduling problem, additionally pointing out interesting re-
lations to scheduling with non-uniform speed and to a so called vehicle refueling problem.
Thereafter, in Section 1.2, we discuss related work and introduce the algorithm Smith’s
rule, which will be analyzed in Chapter 2. This simple sorting rule schedules the jobs in
non-increasing order of their density, i.e., their ratio of weight and processing time.

In the second chapter, we investigate the performance of Smith’s rule on
instances of the described single machine scheduling problem with generalized min-sum
objective. Starting with a simple combinatorial analysis for polynomial cost functions
with non-negative coefficients in Section 2.1, we show that the approximation guarantee
in this case is at least the degree of the polynomial. In Section 2.2.1 thereafter, by
explicitly constructing worst-case instances, we provide a tight analysis of the approxi-
mation guarantee of Smith’s rule under any particular convex or concave cost function.
More specifically, for this wide class of cost functions we reduce the task of determin-
ing a worst case problem instance to a continuous optimization problem, which can be

solved by standard algebraic or numerical methods. As we show in Section 2.2.2, the
analysis can be further simplified for polynomial cost functions with positive coefficients.
In this case, the tight approximation ratio can be calculated as the root of a univariate
polynomial. For quadratic and cubic cost, this yields approximation guarantees of 1.31
and 1.76, respectively.

In contrast to the above implicit description of the approximation factor, in Sec-
tion 2.2.3, we provide explicit sandwich bounds for polynomial cost functions. In par-
ticular, we show that the approximation ratio is asymptotically equal to k(*—1/(k+1)
denoting by k the degree of the polynomial. In Section 2.3, to overcome unrealistic
worst case instances containing only either huge or tiny jobs, we also give tight bounds
for the case of integral processing times that are parameterized by the maximum and
total processing time.

After having addressed approximation results as mentioned above, this chap-
ter focuses on the complexity of the problem as well as on exact algorithms and related
structural insights. In Section 3.1, we give the first strong NP-hardness result for the
considered single machine scheduling problem, while so far only weak NP-hardness in
case of convex cost was known. We show that the problem is already strongly NP-
hard for a very restricted class of piece-wise linear cost functions, which is related two
alternating processor speeds in the model with non-uniform speed.

In Section 3.2, we turn towards so called order rules which imply relative orders
of certain job pairs in an optimal schedule. Such rules help to speed up or to allow
exact computations in the first place. Throughout the past decades, a considerable
number of different kinds of order rules have been proposed for the case of quadratic
cost functions. Following this line of research, we also address the case of quadratic cost,
for which we enhance the map of known order rules by proving an extended version of
a rule that has been conjectured by Mondal and Sen [MS00] more than a decade ago.
Finally, in Section 3.3, we discuss exact algorithms that allow for embedding order rules;
different variants of a known best-first graph search algorithms and a quadratic integer
programming formulation that admits to add order rules as additional linear constraints.
Since the former approach makes use of lower bounds, we also propose a new such bound,
which is based on the tight parameterized analysis of Smith’s rule.

In the fourth chapter, we aim at empirically evaluating the results and
insights of the previous chapters. In an extensive computational study for quadratic
cost functions, we systematically analyze the influence of different global order rules on
the performance of the exact algorithms described above. The results are presented in
Section 4.2.1. In Section 4.2.2, we additionally compare the performance of different
lower bounds with the bound that is based on the parameterized analysis of Smith’s
rule. Finally, in Section 4.2.3, we also evaluate the optimality gap of Smith’s rule for
different monomial cost functions. As will be described in Section 4.1, our experiments
are based on sets of problem instances that have been randomly generated using a new
method which allows us to adjust a certain degree of difficulty of the instances.

This final chapter aims at pointing out interesting problems which remain
open after the discussions in the previous chapters.

In the second part of the thesis we address a general class of complex scheduling prob-
lems as they can be found in almost every branch of industry. We propose a general
optimization framework for this problem class, which we then apply to problems from
steel and from dairy industry.

In this first chapter of the second part, we introduce the abstract class of so
called integrated sequencing and allocation problems, covering all problems addressed in
Part I1. Very briefly explained, such problems contain a common sequencing aspect—the
order of the jobs on the considered machine—and very problem-specific decisions which
have to be taken for a fixed processing sequence, the latter being referred to as allocations.
We give a formal problem definition in Section 6.1 before afterwards discussing related
work in Section 6.2. The general optimization framework is then described in Section 6.3.
It utilizes a genetic algorithm for the sequencing while requiring an adapted subroutine
to handle the allocation decisions.

In this and the following two chapters, we consider a particular integrated
sequencing and allocation problem from steel production. A sequence of coils of sheet
metal needs to be color coated in consecutive stages. Different coil geometries and
changes of colors necessitate time-consuming setup work. In most coating stages one can
choose between two parallel color tanks. This can either reduce the number of setups
needed or enable setups concurrent with production. Overall, the aim is to compute a
minimum makespan schedule comprising the sequencing of coils and the allocation of
color tanks and setup work. A detailed description of this complex scheduling problem
is given in Section 7.1. Moreover, in Section 7.2 an interval model for concurrent setup
allocations is proposed. In this model, every feasible tank assignment and corresponding
setup schedule can be represented by a set of non-conflicting 2-dimensional intervals.

This chapter addresses the graph theoretical model for the allocation sub-
problem of the coil coating problem. Utilizing the interval model mentioned in the
previous chapter, the allocation problem reduces to the maximum weight independent
set problem in 2-union graphs, a special class of multiple-interval graphs. In fact, the
graphs, that stem from instances of the allocation problem, observe an additional prop-
erty which we call m-composite, where the parameter m corresponds to the number of
coating stages. In Section 8.1, we give a formal definition of this graph class and relate
it to other classes of multiple-interval graphs. Moreover, we report on related work for
the maximum weight independent set problem in these graph classes.

In Section 8.2, we focus on the maximum weight independent set problem in
m~composite 2-union graphs while in Section 8.3 we address the allocation problem.
Even though being closely related, neither positive nor negative results directly trans-
late from one of these problems to the other. For constant m, we show that the graph
problem allows for a polynomial-time dynamic program which also applies to the al-
location problem, however, only under certain restrictions of the setup durations. On
the other hand, when m is part of the problem input, we prove separately that both
problems are strongly NP-hard.

Aiming for an efficient algorithm for the scheduling of coil coating lines, in
Section 9.1, we adapt the generic algorithmic approach introduced in Section 6.3. This

necessitates to design efficient heuristics for the allocation problem as well as to generate
a diverse set of coil sequences that form the initial population for the genetic sequencing
algorithm, where the former is based on the graph theoretical interpretation of the
allocation problem. The quality of our solutions is evaluated via instance-dependent
lower bounds, which we introduce in Section 9.2. They stem from an integer program
which is based on a combinatorial relaxation of the problem, showing that our solutions
are within 10 % of the optimum. Our algorithm is implemented at Salzgitter Flachstahl,
a major German steel producer. This has led to an average reduction in makespan by
over 13 %, exceeding the initial expectations of the practitioners.

In the tenth chapter, we consider a second integrated sequencing and allo-
cation problem which arises at filling lines in dairy industry. The underlying allocation
problem involves certain packing and covering aspects which not only occur in dairy pro-
duction but also in other branches of industry. A detailed problem formulation is given
in Section 10.1, while in Section 10.2, we discuss structural properties of the problem,
e.g., the fact that every constraint of the allocation problem allows for being formulated
as so called generalized capacity constraint.

In Section 10.3.1, as for the coil coating problem, we adapt the generic approach
for integrated sequencing and allocation problems. Based on the above insights into
structural properties of the problem, we propose different allocation subroutines. In co-
operation with Sachsenmilch, the algorithm was implemented for their bottleneck filling
line, and evaluated in an extensive computational study. For the original data from
production, our algorithm computes almost optimal solutions. As a surprising result,
our simple greedy algorithms for the allocation problem outperform the more elaborate
ones in many aspects.

In the very last chapter, we draw conclusions concerning our overall work
on integrated sequencing and allocation problems.

Part |

Generalized Min-Sum Scheduling

We consider a classic machine scheduling problem in which we aim for schedules which
are in a certain sense fair. Speaking in terms of the time customers need to wait for their
job to be finished, a first natural objective to model fairness is the average completion
time, which corresponds to the weighted average in the presence of different priorities
among the customers. This objective, or rather the closely related (weighted) sum of
completion times, has been studied in various problem settings in the literature. For
the most simple single machine case Smith [Smi56] showed already in the 1950s that a
simple sorting rule computes optimal schedules—which is the reason for this algorithm
to be widely referred to as Smith’s rule.

In this part of the thesis, we address a generalization of the problem studied by
Smith. In this problem the cost of a job is not given by its completion time directly but
by a non-decreasing cost function on this value. The cost function allows for modeling
several problems which are of interest in their own right. For instance, by utilizing
Li-norms (or closely related monomials), one can flexibly compromise between problems
that focus on average and worst-case cost, or alternatively, one can use the cost function
to model non-uniform processor speed. As a consequence of their universality, problems
addressing generalized min-sum objectives have recently attracted much attention, see
e.g., [BP10a, BP10b, CS11, ELMS*12, IMP12, MV13, SW10].

In the following chapters, our main focus is on concave and convex cost functions.
Monomials fall into this class as well as functions which result from modeling increasing
or decreasing processor speed, or exponential functions as they are used in air traffic
scheduling to relax the common first-come first-serve rule. Working at the intersection of
theory and practice, we aim at achieving theoretical results which are as close as possible
to reality on the one hand, while on the other hand, utilizing theoretical structural
insights when designing practical algorithms. Following this philosophy, we consider
two major questions: How well does the natural and simple Smith’s rule perform for
particular non-linear cost functions in the worst-case and how does the performance
guarantee change when considering only restricted classes of instances? Can we rule out
certain structures in optimal schedules which help us to design exact algorithms?

In the remainder of this chapter, we give a formal definition of the
scheduling problem, also pointing out connections to related problems, before discussing
related work. Thereafter, in Chapter 2, we provide a tight analysis of the approximation
factor of Smith’s rule under any particular convex or concave cost function. For monomial
cost functions we show that this factor is asymptotically equal to k*~1/(*+1) " denoting
by k the rational degree of the monomial. To overcome unrealistic worst case instances,

we also give tight bounds for the case of integral processing times that are parameterized
by the maximum and total processing time.

In Chapter 3 we turn to exact algorithms and to complexity results, showing strong
NP-hardness for piece-wise linear cost functions neither being convex nor concave. Con-
cerning exact algorithms, we address so called order rules, which rule out certain relative
orders of job pairs in optimal solutions. For quadratic cost functions we prove correct-
ness of a very efficient rule which was conjectured by Mondal and Sen [MS00]. Finally,
in Chapter 4, we report on experiments that were made in order to empirically assess
the performance of the different order rules from Chapter 3 as subroutines in different
exact solution methods. Moreover, we present results on the experimental performance
guarantee of Smith’s rule for different monomial cost functions. For a more detailed
summary of the following chapters we refer to the main introduction.

Formally, we consider the following single machine scheduling problem.

Given: A set of jobs J = {1,...,n} where each job j € J has an individual
weight w; > 0 and processing time p; > 0.

Task: Schedule the jobs J on a single machine, i.e., assign them to non-overlapping
processing intervals on this machine, such that the total weighted completion
time cost) ; w; f(C};) is minimized, where C; denotes the completion time
of job j in the chosen schedule, and where f : R>o— R>g is a continuous and
monotonically non-decreasing cost function (given by a value-giving oracle).

Note that the question of allowing preemption does not play a role here, because
the jobs do not have release times and so the possibility of preemption never leads to
a cheaper optimal schedule. Hence, we can think of a schedule as a permutation of the
jobs. In the following we will point out two problems that are closely related to our
problem.

An important alternative in-
terpretation of the above problem is the scenario of linear cost and non-uniform proces-
sor speed. Assume that the processor speed at any time t is given by a non-negative
function s : R>g — R>¢, and the processing times (or workloads) p; of the jobs are
given with respect to a unit speed processor. The total workload processed until time ¢
is S(t) == fot s(x)dx. Conversely, if the total workload of job j and all jobs processed
before it is p, then the completion time of j in the schedule is S~!(p). Therefore, the
problem of minimizing the weighted sum of completion times in this setting is equivalent
to above problem with cost function f := S~!. Note that S~! is always monotone, and
it is continuous even if s is not. Moreover if s is increasing or decreasing then S~ is con-
cave or convex, respectively. The case of cost function h and processor speed function s
is equivalent to the problem with cost function f :=ho S71.

Furthermore, we point out that the above
problem allows to model a distant maximization problem whose complexity was posed
as an open question by Woeginger during a Dagstuhl Seminar [ABMP10]. Given a set
of n vehicles j = 1,...,n with non-uniform tank volumes v; and consumption rates c;,
one aims to maximize the maximum travel distance among all vehicles. The crucial point
is that during traveling, one vehicle can refuel others. W.l.o.g. one can assume that at
any point in time, all vehicles consume the petrol of only one of the vehicles’ tank, and
when this tank is empty, the corresponding vehicle stops traveling, and thus, consuming
future petrol. This allows to see the problem as a (vehicle) sequencing problem where
the travel distance of the last vehicle in the sequence is to maximize. Given a sequence 7,
this distance computes as

ZZ”

Inverting the sequence 7w, and interpreting the vehicles as jobs j with processing

times p; := c¢; and weights w; := v;, this translates into the maximization variant

of the single machine scheduling problem with objective) w; Ci To turn this into a
J

minimization problem, we can simply add the constant ;W5 /min; p; to the negative

minlj i % Since % is convex, f is concave on
the relevant interval [min; pj, >, p;|. Of course, this transformation from minimization
to maximization does not preserve approximation guarantees. However, if the scheduling
problem can be shown to be NP-hard for every fixed concave cost function then this also

implies the hardness of the vehicle refueling problem.

objective, leading to cost function f(t) =

In this section, we will first introduce notation and terminology as it is commonly used
in scheduling and in approximation theory. In the subsections thereafter, we will report
on work related to scheduling a single machine with respect to a generalized min-sum
objective. For a general introduction to the fields of combinatorial optimization and
complexity theory, we refer to the textbooks by Schrijver [Sch03] and Garey and John-
son [GJ79], respectively.

Graham et al. [GLLRKT79] introduced a
notation for machine scheduling problems in 1979 which is standard by now. The prob-
lems are represented by a triple | 8|~y where o describes the machine environment,
the job characteristics, and - the objective. All problems we consider are single machine
problems which is denoted by 1 in the a-field. For our problem as described above the
[B-field is empty. However, when discussing related work we will also consider problems
which allow preemption, indicated by pmtn, and such with non-uniform release dates,
indicated by r;. In contrast to our problem, where we assume all jobs to be available
from the beginning, in case of non-uniform release dates, a job j € J is released at
time r; > 0, and it cannot be processed before this time.

« 1 single machine

B T non-uniform release dates
pmtn preemption allowed
5 > F(C) total completion time cost with global cost function f

> w; f(C;) total weighted completion time cost with global cost function f
Y- w; f(F}) total cost on flow times F; := C; — r; with global cost function f

> fi(Ch) total completion time cost with job-specific cost functions

Used parameters of the three field notation «|f|y by Graham et
al. [GLLRKT79], where « describes the machine environment, 8 the job characteristics,
and ~ the objective.

Concerning the v-field, we consider the objective Y w; f(C}) as in our problem defini-
tion and its unweighted counterpart) | f(C};) where the jobs are assumed to have uniform
weights. In the presence of release dates, often the flow time based objectives) f(F})
and) wj f(F}) are investigated, where the flow time Fj of a job j € J is given by the
time between its release and its completion, i.e., by C; — ;. In contrast to the problems
with one global cost function applying to all jobs, also the more general problem variant
with job-specific cost functions has been considered. In this case, each job j € J has
a personal cost function f; : R>g— R>g and the objective is) f;j(C}). Note that it is
redundant to consider weights alongside with job-specific cost functions as the weights
can be modeled via the cost functions. Similarly, it is redundant to consider the flow
time counterpart. For brevity, the summation indices are omitted in all the objectives.

Finally, the introduced single machine scheduling problem with generalized min-sum
objective will be denoted as 1| > w; f(C;). In Table 1.1, we summarize the used
parameters of the three-field notation.

For the sake of completeness, we also formally de-
fine classic approximation algorithms and approximation schemes. An a-approzimation
algorithm, or a-approzimation for short, is a polynomial-time algorithm that computes
solutions whose objective function value is always within a factor of « of the optimum.
The factor « is referred to as approximation factor or approximation guarantee. An
approximation factor « is tight for an algorithm A, if for any 8 < « there is an instance
for which the solution of A has an objective function value which is more than a factor
of # away from the optimum.

A polynomial-time approzimation scheme (PTAS) is an algorithm which computes
solutions of approximation guarantee 1 + ¢ in polynomial time for any fixed ¢ > 0. A
stronger variant in terms of the runtime is a fully polynomial-time approximation scheme
(FPTAS) whose runtime is polynomial in % and the input size. A third variant are quasi-
polynomial-time approzimation schemes (QPTAS) which have a runtime of O(nmlylog(”))
in the input size n for any fixed € > 0.

As a generalization of the classic analysis of the approximation factor, Kalyanasun-
daram and Pruhs [KP00] introduced the model of resource augmentation for the analysis
of machine scheduling problems. In this model solutions of an algorithm with respect
to a higher machine speed are compared to optimal solutions on a unit-speed machine.
Formally, a polynomial-time algorithm is s-speed a-approrimative if the objective func-
tion value of solutions computed with the algorithm on an s-speed machine are always

within a factor of a of the optimum on a 1-speed machine. Note that due to non-uniform
release times, which do not underlie the machine speed, this is not equivalent to simply
providing a performance guarantee of s - a. Moreover, even for uniform release dates,
we do not necessarily obtain an (s - «)-approximation when considering non-linear cost
functions. A necessary condition on a cost function to observe a similar behavior is that
f(s-t) = @(s) f(t) for some function ¢. In this case an s-speed a-approximation trans-
lates into a (1-speed) (¢(s) - av)-approximation. As we will show in Observation 2.10,
only monomial cost functions observe this property.

Originally, the resource augmentation model was introduced to analyze the perfor-
mance of online algorithms. On contrast to the above offline model, where all information
is assumed to be a priori given, in the online model the information appears over time.
The performance of online algorithms is commonly measured by their competitive ratio.
An online algorithm is said to be c-competitive if the objective function value of its so-
lution never exceeds the value of an offline optimum by a factor of ¢. In terms of the
resource augmentation model, the online analog are s-speed c-competitive algorithms.

In this and the following sections, we will report on related work, starting with the very
few cases which allow for exact polynomial-time algorithms. Considering the general
problem 1| >~ w;f(C;) with either uniform processing times or uniform weights, opti-
mal schedules are achieved by sorting the jobs in non-decreasing order of their weights
or in non-increasing order of their processing times, respectively. This can be observed
by obvious exchange arguments.

In case of general processing times and weights, there are two classes of cost functions
for which exact polynomial-time algorithms are known, linear and exponential functions.
Their property of being memoryless—i.e., shifting a whole schedule in time does not
change optimality—forms the basis of the corresponding algorithms. In order to explain
them in a convenient way, we introduce the notions of comparability and order rules
which we will also largely use in Chapter 3.

Let i and j be two jobs in an instance of 1||w; f(C;) with
processing times p;, p; and weights w;, w;, respectively. We say that ¢ locally precedes j,
if for every point in time t > 0 it holds that

wi f(t+pi) + wi ft+pi+p;) < w; f(t+p5) + wi f(t+p;+D0i), (1.1)

which we denote by i <p j. If i ¢ j or j K¢ 1, then we call i and j locally comparable,
otherwise locally incomparable. Moreover, if i <y j and j <4 1, then we refer to i and j
as locally equal, which we denote by i =y j.

More generally, i globally precedes j if for every point in time t and every subsequence
of jobs £, ..., Ls it holds that

wi f(t+pi) + thf<t+pi+2peq> + wjf<t+pi+2per+pj>

r=1 q=1 r=1
S T S
< wj f(t+p;) + Zw[Tf(t—i—pj +Zpgq> + ’wif<t+pj +) b, +p¢> :
r=1 q=1 r=1

The notations i <4 j and i =4 j are defined analogously to the local variants, and so are
the notions of global comparability, incomparability and equality.

Note that if ¢ <, 7 and job j directly precedes job i, then swapping ¢ and j does not
increase the cost of the schedule. Hence, for any two jobs ¢ and j for which i <, j but
not j <y 4, we can assume w.l.o.g. that they are scheduled in the order ¢, 7 in an optimal
schedule if occurring consecutively. By introducing appropriate tie breaking rules for the
case j =¢ i, we can even assume that every locally comparable job pair appears in some
fixed local order in optimal schedules. The analogue assumptions can be made in the
global case. In the following definition of order rule, we assume the tie breaking decision
to be already taken.

A function Ry : R‘éo — {=¢, =0, 7} is a local order rule for
cost function f, if for any two jobs i and j with processing times Di, pj and weights w;, wj,
respectively, Rjy(pi,w;, pj, wj) =<¢ implies that the local order i,j never contradicts
optimality, and analogously j,i in case of »=p. If the function value is 7, the rule does
not imply a local ordering for the particular job pair. Global order rules are defined
analogously.

Turning back to linear and exponential cost functions, we can now observe that
any pair of jobs is locally comparable: When changing the parameter ¢ in (1.1), both
sides of the inequality change by the same additive term in case of linear functions,
while changing by the same factor in case of exponential functions. Due to the local
comparability being satisfied for every job pair, the same order relations hold true on a
global level, and thus, they define an optimal schedule.

For linear cost functions ¢ + ¢-t with ¢ > 0 and for exponential cost functions ¢ — a’
with a > 1, the local comparability inequality (1.1) translates into

Wi W w; aPi wj ali

and - ;)
Di Dj abi —1 aPi —1

respectively, which implies natural optimal algorithms for the two problems. One simply
sorts the jobs in non-increasing order of the values w;/p; and w; a?i/(aP’ — 1), respec-
tively. These results were published by Smith [Smi56] and Rothkopf [Rot66], respectively.

The two algorithms lead to the general class of index algorithms. Even though our
main problem 1|| > w;f(C;) assumes uniform release dates, we formulate this algo-
rithm class in the more general form for non-uniform release dates as this variant has
been investigated in related work.

Input: Jobs J with processing times p; > 0, weights w; > 0 and
release dates r; > 0 for every j € J;
an index function § : RQZO — R>q, (pj,wj) — 6(pj,w;) =: 6;.
Output: Preemptive single machine schedule.

Whenever the machine becomes idle or a new job is released, schedule an available,
unscheduled job j with maximum index §; w.r.t. its remaining processing time.

Note that the index of a job solely depends on its processing time and weight, and it
is completely independent of a (partially) chosen schedule. Moreover, note that, in case
of uniform release dates, index algorithms will always produce non-preemptive schedules
which are the result of sorting the jobs according to their indices.

The two algorithms mentioned above can now be formally described as index algo-
rithms with index functions §(p;, w;) = w;/p; and §(p;, w;) = w;jaPi /(a¥’ — 1), respec-
tively, where the former is—for the obvious reason of being analyzed by him—well known
as Smith’s rule. As the ratio w;/p; is commonly referred to as density, this algorithm is
also called Highest Density First in the literature.

Input: Jobs J with processing times p; > 0, weights w; > 0 and release
dates r; > 0 for every j € J; index function 6 : (pj, w;) — w;/p;.
Output: Preemptive single machine schedule computed with index
algorithm w.r.t. to index function 4.

After having seen these results for linear and exponential cost functions, a natural
question is whether also other cost functions allow for optimal index algorithms. How-
ever, Rothkopf and Smith! [RS84] showed that these two classes of functions are in fact
the only ones which observe optimal index algorithms. The basis of the proof is the
observation that such algorithms can only exist if the local order of any pair of jobs is
independent of the time they are scheduled. Otherwise, one could easily construct an
instance where the respective jobs have to scheduled in the reverse order of the index
algorithm. Finally, this observation leads to a differential equation which has exactly
two solutions, linear and exponential functions.

Knowing from the above that the linear cost case 1|| > w; Cj is in P for uniform release
dates, we will now briefly discuss results for the more general problem variant with non-
uniform release dates. This problem is well-understood in both the non-preemptive
and preemptive case. Both cases are strongly NP-hard as shown by Lenstra, Rinnooy
Kan and Brucker [LRKB77] and Labetoulle et al. [LLLRK&4], respectively. While in the
former case, the hardness is proven for uniform weights, Baker [Bak74] showed that the
latter case is in P under this assumption. Afrati et al. [ABCT99] proposed PTASs for
many NP-hard problem variants with and without preemption.

Regarding the related flow time objective > wj; Fj, NP-hardness results from the
corresponding completion time problems carry over directly since optimal solutions
with respect to these two objectives coincide. In contrast, approximability results can-
not be transferred. Kellerer, Tautenhahn and Woeginger [KTW99] gave an O(y/n)-
approximation algorithm for the non-preemptive unweighted case, and they showed
that this factor is basically best possible. Utilizing resource augmentation, Bansal et
al. [BCK"07] were able to design a 12-speed 4-approximation algorithm for non-uniform
weights. The preemptive unweighted case is well-known to be solved by the Shortest Re-
maining Processing Time rule. For non-uniform weights, Chekuri and Khanna [CK02]
proposed a QPTAS for P := max;;p;/p; and W := max;j w;/w; being polynomi-
ally bounded in n. Moreover, Becchettia et al. [BLMSP06] show that Smith’s rule is
a (1+ €)-speed (14 1)-competitive online algorithm.

!This is Stephen A. Smith in contrast to Wayne E. Smith, the author of Smith’s rule.

After the linear cost case, we now turn to the setting 1|| > w;f(C;) in which all jobs
share the same non-linear cost function. Apart from those polynomial-time algorithms
described above, the only insight on the complexity we are aware of is the weak NP-
hardness for general convex cost functions. It follows from a result of Yuan [Yua92]
who proved the problem to be weakly NP-hard for tardiness cost f : t — max{0,t — d}
with common due date d. This is shown by a reduction from the weakly NP-hard
PARTITION problem. Megow and Verschae [MV13] showed that the problem remains
NP-hard when changing the cost before the deadline from zero to a linear function of
time with a sufficiently small slope € > 0, which follows by a reduction from the problem
variant considered by Yuan. However, this leaves open several questions concerning the
complexity of the problem, see Chapter 5.

For arbitrary concave f, Stiller and Wiese [SW10] show that Smith’s rule guarantees
an approximation factor of (v/3+1)/2 ~ 1.366. The result is tight in the sense that for a
certain cost function f there is a problem instance where this factor is attained by Smith’s
rule. As the first steps of our analysis in Section 2.2.1 are analogously to those of Stiller
in Wiese, they are discussed in that section in more detail. For general monotone cost
functions, Epstein et al. [ELMS™12] provide a (4 + ¢)-approximation algorithm, which
generates one schedule that observes the respective performance guarantee for any cost
function. The analysis is based on an elaborate lower bound involving a machine capacity
function which measures the aggregated amount of processing time being available up
to a certain point in time. Both algorithms, the one by Epstein et al. and Smith’s rule,
yield schedules that are universal in the sense of being generated without knowledge of
the cost function.

Regarding non-universal algorithms, Megow and Verschae [MV13] propose a PTAS
for general cost functions, and an FPTAS for piece-wise linear cost functions with a
constant number of linear segments. The results are based on a novel approach of
applying rounding techniques to the weight dimension instead of to the time dimension,
where such techniques are commonly used.

For the more general setting with non-uniform release dates and preemption, Stiller
and Wiese [SW10] extend the PTAS of Afrati et al. [ABCT99] from linear to concave
cost. Furthermore, Fisher and Krieger [FKX84] show that the maximization variant of
the problem 1| Y w; CJ2 with quadratic cost, admits an approximation factor of 3/2.

Focusing on the flow time based problem 1|r;, pmtn|) w;f(F;) with non-uniform
release dates and preemption, Moseley et al. [MPS13] showed very recently strong NP-
hardness. They proved that even the restricted problem 1|r;, pmtn|) Ff with uniform
weights and monomial cost functions with degree k € (0,1) and k € N>g is hard which
follows by an elaborate reduction from 3-PARTITION.

Turning to the online setting of the problem 1|r;,pmtn|)’ ij, Bansal and
Pruhs [BP10b] showed that there exists no n°)-competitive online algorithm which
approximates the optimum simultaneously for all degrees k > 1. However, utilizing re-
source augmentation, they were able to prove that Smith’s rule is in fact (1 + ¢)-speed
O(E%k)—competitive even for the weighted objective) w;F Jk. In this analysis, the cost
of an online schedule produced with Smith’s rule are mapped to parts of the cost of

an offline optimum, thereby bounding the cost, and thus, the competitive ratio. Uti-
lizing a similar technique, Im, Moseley, and Pruhs [[MP12] showed Smith’s rule to be
(2 + ¢)-speed O(%)—competitive for general cost functions f. Moreover, they argued
that Smith’s rule performs basically best possible in terms of universal algorithms. They
showed that there exists no (2—¢)-speed O(1)-competitive universal online algorithm for
any fixed ¢ > 0. Furthermore, they proved that any O(1)-competitive online algorithm,
including non-universal algorithms, requires some speed augmentation larger than % —e.

Finally note that, as observed in Section 1.2.1, for monomial cost functions and
uniform release dates, an s-speed schedule of cost ¢ translates into a 1-speed schedule of
cost s¥c. In this way, the above results also imply classic approximation results for this
setting.

In contrast to the setting with one common global cost function, where the complexity
is not very well understood, it is straightforward to observe that the problem is strongly
NP-hard when considering individual cost functions of the jobs. In this case, we can
simply model the total weighted tardiness objective) w; max{C; — d;,0} with job-
specific deadlines d; for which the problem is known to be strongly NP-hard [Law77].

Considering flow times, Bansal and Pruhs [BP10a] interpreted the problem
1|rj,pmtn| > f;(C;) as geometric set cover problem. Showing that approximation algo-
rithms for this problem transfer to the scheduling problem with an increase of the approx-
imation guarantee by factor 4, they focus on the set cover problem for which they derive
approximation results via LP rounding. In the end, this leads to an O(loglog pmax)-
approximation for the scheduling problem, where pmax denotes the maximum processing
time under the assumption of general integer processing times. In case of uniform re-
lease dates, the set cover problem reduces to a generalized caching problem for which a
4-approximation is known, yielding a 16-approximation for the problem 1| > f;(Cj).
Cheung and Shmoys [CS11] claimed to achieve a (24 ¢)-approximation via a primal-dual
approach using cover inequalities. However, Mestre and Verschae [MV14] showed that
there exist instances where the algorithm constructs a dual solution whose value differs
from the optimal integral solution cost by a factor of 4. Moreover, Mestre and Verschae
showed that the local-ratio interpretation of the algorithm by Cheung and Shmoys is
in fact a pseudopolynomial time 4-approximation, yielding a (4 + ¢)-approximation in
polynomial time.

Finally, we report on work that has been done in the area of exact algorithms. Most of
the results in the literature focus on the special case of quadratic cost functions—recall
that the complexity of this special case is still open. Half a century ago, Schild and Fred-
man [SF62] proposed a complete enumeration scheme to solve this problem utilizing a
local order rule to reduce the solution space. Nearly two decades later, Townsend [Tow78]
was the first to solve problem 1|)" w; C]2 by a branch-and-bound algorithm. In order
to prune the search space, he proposed a lower bound on the optimal cost related to
a local order rule, which we discuss in more detail in Section 3.3.1. This initial article
triggered a long series of papers proposing many improvements of the branch-and-bound
algorithm.

Bagga and Kalra [BK80] add a further node elimination rule by giving a sufficient
condition for sets of jobs appearing at the first » positions in an optimal schedule. Global
order rules in this context were first used by Gupta and Sen” [(:S84], who proved the
sufficient condition p; > p; A wjp; < w;p;. Order rules that additionally depend on
the time interval within which the job pair is processed are used by Sen? Dileepan and
Ruparel [SDR90] and Della Croce et al. [DCST'95]. Finally, Mondal and Sen? [MS00]
conjectured the global order rule w; > w; A w;/p; > wj/p; and demonstrated in an ex-
perimental setup that this rule would significantly further reduce the set of potentially
optimal solutions. An overview of the order rules known so far can be found in Fig-
ure 3.2 (a) in Section 3.2.

In the original branch-and-bound method by Townsend, nodes represent prefixes
of schedules. Sen?, Bagchi and Ramaswamy [SBR96] propose to reduce the number
of generated nodes by using a graph searching procedure. There, nodes alternatively
represent unordered sets of jobs, and a schedule is then represented by a path in that
graph. Kaindl, Kainz and Radda observe in [KKRO01] that it is more efficient to build
the schedule from the end to the beginning than vice versa. As we adopt these ideas, a
more detailed description of these algorithms can be found in Section 3.3.1.

In contrast to the above order rules, which follow Definition 1.2, Szwarc [Szw98] pro-
posed a decomposition rule which involves information of the entire instance. It deduces
global order relations from local ones or from order relations that are even restricted to
specific time intervals. We will discuss the rule in more detail in Section 3.2.1.

%It was Tapan Sen who was involved in [GS84, SDR90] while Anup K. Sen is author of [SBRIG, MS00].

In this chapter, we investigate the performance of Smith’s rule in single machine
scheduling with generalized min-sum objective. By explicitly constructing worst-case
instances, we provide a tight analysis of the approximation guarantee of Smith’s rule
under any particular convex or concave cost function. More specifically, for this
wide class of cost functions we reduce the task of determining a worst case problem
instance to a continuous optimization problem, which can be solved by standard alge-
braic or numerical methods. For polynomial cost functions with positive coefficients
it turns out that the tight approximation ratio can be calculated as the root of a uni-
variate polynomial. We show that this approximation ratio is asymptotically equal
to kF=1/(E+D) " denoting by k the degree of the cost function. To overcome unrealis-
tic worst case instances, we also give tight bounds for the case of integral processing
times that are parameterized by the maximum and total processing time.

The results in this chapter are based on joint work with Tobias
Jacobs, partially published in the Proceedings of the 10th Latin American Symposium
on Theoretical Informatics (LATIN 2012) [HJ12b].

Originally published in 1956 for minimizing the weighted sum of completion times on a
single machine [Smi56], Smith’s rule is still one of the standard algorithms being analyzed
for new (online) problem variants in scheduling, see e.g., [BP10b, IMP12, SW10]. Its
intuitive idea of scheduling important short jobs before unimportant long jobs makes it
to a natural approach in many problem settings.

Stiller and Wiese have shown that Smith’s rule is (v/3 + 1)/2-approximative for any
concave cost function [SW10]. In contrast, when addressing general convex functions,
the approximation factor can get arbitrarily bad as we will see later on. In order to still
provide a meaningful analysis of the performance of Smith’s rule, we focus on the setting
in which the cost function is some arbitrary but fixed convex or concave function. A
tight approximation factor is then computed in dependency of this function. The worst
case problem instances that establish these factors turn out to be rather artificial in
the sense of containing one very long job and several infinitesimal small jobs. Aiming
for an additional, more realistic analysis, we provide tight approximation factors for a
problem variant which is parameterized by the maximum processing time and the total
processing time under the assumption of a discrete time domain.

The approximation factors of the general analysis can be obtained as the solution
of a continuous optimization problem with at most two degrees of freedom. In case of
cost functions that are polynomials with positive coefficients, it will turn out that the

approximation factor can be calculated simply by determining the root of a univariate
polynomial. In fact, this factor solely depends on the degree of the polynomial. For
instance, for cost functions of degree 2 and 3 this results in factors 1.31 and 1.76, re-
spectively. Regarding universal scheduling methods—that compute solutions without
knowledge of the cost function—Smith’s rule provides the best known approximation
factor for polynomials up to degree six. Moreover, our analysis implies that Smith’s
rule guarantees an approximation factor of less than 1.25 for the problem of minimizing
the Li-norm of the total weighted completion time cost () w; C]’?)l/k for any £ > 1.
Besides the implicit description as solution of a continuous optimization problem, we
also give lower and upper bounds on the approximation factor. These bounds show that
for polynomial cost functions of degree k, the tight asymptotic approximation factor
is k(k=1)/(k+1)

This chapter is organized as follows. In Section 2.1, we start with a simple com-
binatorial analysis of Smith’s rule for polynomial cost functions, upper bounding the
approximation factor by the degree of the polynomial. As we will see afterwards, this
bound is not tight. In Section 2.2 we provide the tight analysis of Smith’s rule for ar-
bitrary but fixed convex and concave cost function, where in Section 2.2.1 we discuss
the analysis in its general form while further simplifying it for polynomials with positive
coefficients in Section 2.2.2. The lower and upper bounds on the approximation factor
for polynomials are provided in Section 2.2.3. Finally, the parameterized analysis is
discussed in Section 2.3.

In the following, for brevity, we will often refer to Smith’s rule by its alternative
name Highest Density First (HDF). Recall that Smith’s rule was formally described in
Algorithm 1.2.

In this section, we provide a first combinatorial analysis of Smith’s rule. This analysis
is not tight and it is restricted to cost functions that observe a so called local B-gap
rule. However, it is much more intuitive than the tight analysis provided in Section 2.2,
and it yields additional structural insights into the problem. For cost functions that are
polynomials with non-negative coeflicients, this analysis proves an approximation factor
equal to the degree of the cost function.

In Section 1.2.2, we have already introduced the general concept of order rules, which
we will investigate in more detail in Chapter 3. In that chapter, we will also define the
local B-gap rule. A cost function observes this rule if, whenever two jobs ¢ and j with
w;/pi > B - wj/p; are scheduled consecutively in an optimal schedule, ¢ is scheduled
before j. Conversely, when they are not scheduled in this order then the cost can be
decreased by swapping ¢ and j. Recall that the term local refers to the fact that this
order relation only holds if the jobs are scheduled consecutively, but not necessarily when
there are other jobs scheduled in between.

Consider problem 1|| > w; f(C;) for a non-decreasing cost function f.
If f observes a local 5-gap rule, then Smith’s rule is a factor S-approzimation algorithm
for this problem, no matter how ties are broken.

Proof. For the sake of simplicity we assume that the jobs are labeled in the order they are
scheduled by Smith’s rule. We refer to that schedule simply by HDF and also consider
an optimal schedule OPT. The proof technique is to analyze the increase in cost that
occurs during a transformation from OPT to HDF. Slightly abusing notation, we refer
to the cost of these schedules also by OPT and HDF.

The transformation proceeds as follows: Starting from OPT, repeatedly interchange
job n with its right neighbor until it has become the very last job. Then perform a
corresponding series of local interchanges to move job n — 1 to its position in HDF,
and so on. During this transformation process, each job i first moves to the left by
being interchanged with some jobs j with j > ¢, then it moves to the right by being
interchanged with some other jobs j with j < ¢. Once ¢ is at its HDF position, it does
not move anymore.

In each single local operation some pair of jobs j,¢ with j > ¢ is interchanged, such
that afterwards it is scheduled in the order 4, j. During this operation, the completion
time of ¢ decreases by p; and the completion time of j increases by p;, therefore the cost
of i decreases by some Ai_j > 0 while the cost of j increases by some A;»; > 0. By the
ordering of Smith’s rule, we know that w;/p; > w;/p;, which implies that

B w; > 3. ‘
bi pj
In other words, if w; were by a factor of § larger, then the sufficient condition of the

B-gap rule would hold and the interchange operation would decrease the schedule’s cost.
Making w; by a factor of 8 larger would cause also Ai_j to be larger exactly by a factor

Wi

of 8. It follows that BA;j > A;rj for each pair ¢, j of jobs that are interchanged at some
point of the transformation process. Let M be the set of all pairs (i, j) of interchanged
jobs i < j in the transformation. Summing up for all elements of M, we obtain

oAl <Y AL (2.1)
(1,5)eM (i,5)eM

Furthermore, during the transformation process each job first moves a number of times
left and then a number of times right in the schedule. Each time moving left, the job
becomes responsible for some value A;J As no job can move to a position smaller than 0,

the Ai_j-values corresponding to any particular job sum up to at most the cost of that
job in OPT. Hence, for the sum of all Ai_j—values of all jobs it holds that

> A < OPT. (2.2)
(i.5)eM
From equation (2.1) and (2.2) we obtain the approximation factor as follows:

HDF — OPT = Y AL =Y Az < (8-1)-) A; < (8—1)-OPT.
(i,j)eM (i,9)EM (i,)EM O

As we will show in Lemma 3.4, the local g-gap rule is observed by polynomial cost
functions with non-negative coefficients for 5 being the cost function’s degree. This leads
directly to the following corollary.

For problems 1| > w; f(C;) with cost function f being a polynomial with
non-negative coefficients and degree k € Q, Smith’s rule is a k-approzimation algorithm.

In this section we present a tight analysis of the worst case approximation factor obtained
by Smith’s rule for any arbitrary but fixed convex or concave cost function. We start
with a simple observation that will be used throughout this chapter.

Problem 1|| >_w; f(Cj) is invariant to weight scaling, i.e., if I is a
problem instance and I' is obtained from I by multiplying all job weights with a constant c,
then the cost of any schedule for I' is ¢ times the cost of the same schedule for I.

We denote by HDF(I) the schedule computed for instance I by Smith’s rule and
by OPT(I) an optimal schedule for I. Again, slightly abusing notation, the cost of these
schedules will also be denoted by HDF(I) and OPT(I).

We start with an analysis for general convex or concave cost functions which we will
then simplify for certain polynomials in the subsequent subsection. The main result of
this section is given in the following theorem.

Considering a fized convex cost function f, the tight approximation ratio oy
of Smith’s rule for problem 1|| > w; f(Cj) is given by

ar = sw{Gppir)) = w0 |2 0,02 0) 2.3)
where
r(prq) = Jo f@)dt+p-flatp) (2.4)

P Fo) + [T (1)t

When f is concave, the tight ratio is sup{1/r¢(p,q) | p > 0,q > 0}. The approzimation
factors hold regardless of the tie breaking strategy used by Smith’s rule.

As a first consequence of this theorem, we observe that Smith’s rule can perform
arbitrarily bad for exponential cost functions f : ¢ — ef. Choosing ¢ := In p, it follows

el —1+p-e?-eP p*oeP +p—1

This implies immediately the corollary below. However, recall that an alternative index
rule solves the problem 1| Y w; f(C;) with exponential cost to optimality [Rot66].

For exponential cost functions f it holds that oy = oo.

In what follows, we prove a series of lemmas which successively narrow the space
of instances we need to consider when searching for a worst case problem instance for
Smith’s rule. Determining the worst case solution in the final instance space will then be
shown to be equivalent to the continuous optimization problem described in the above
theorem.

Very similar to the analysis of Stiller and Wiese [SW10], we show that it is sufficient

w;

to consider instances with uniform density o (Lemma 2.7), and that a most expensive
J

schedule is obtained by inverting the optimal job order (Lemma 2.8). Thereafter, again
as Stiller and Wiese, we restrict to instances with several small jobs and one large job
(Lemma 2.9). However, their proof of this property is based on a modification of the cost
function which makes it invalid for our problem setting. Our proof follows a completely
different line in this main part of argumentation.

As a first step, we show that the approximation factor of Smith’s rule is independent
of the tie breaking policy. The proof is based on continuity considerations which follow
the general principle described in [Jac12].

If considering 11| > w; f(C;) with continuous cost function f, then the
approzimation factor oy is independent of the tie breaking policy employed by Smith’s
rule.

Proof. For any n > 1, let ay, be the largest approximation factor achieved for any
instance with n jobs, i.e., ayf, = sup {HDF(I)/OPT(I)|I has n jobs}. It suffices to
show that oy, is independent of the tie breaking policy for any n.

We interpret problem instances I with n jobs as vectors (wi,p1, w2, p2, ..., Wn, Pp)
in R?". As f is continuous, the cost of a fixed schedule S for instance I is con-
tinuous in /. Again abusing notation, we also denote this cost by S(I). The cost
OPT(I) = min{R(I)| R is a schedule for I'} is continuous in I as well, and therefore
also S(I)/OPT(I) for any fixed S.

Let HDF, and HDF}, be two variants of Smith’s rule, differing in their tie breaking
rule. We will show that for any instance I there is a series of instances (Ij)gen with

i BPFa(lk) _ HDEW(I)
koo OPT(I,) OPT()

As HDF, and HDF}, have been chosen arbitrarily, this claim then also holds with HDF,
and HDF}, interchanged, which proves the lemma. The series (I})xen is chosen such that:

(i) no element I; contains two jobs with equal density,
(ii) the series converges against I, and
(iii) HDF} outputs the very same schedule for I as it does for each I.

These requirements are easy to achieve by adding some suitable multiples of € to the job
weights, and then letting € converge to zero as k goes to infinity. From the continuity
considerations above and the fact that HDF, and HDF} produce the same schedule for
each Iy, due to (i), it follows that limy_,, HDF (1) = limy_,o HDFy(I) = HDFy(I). O

As a consequence of Lemma 2.6, we can assume that Smith’s rule always breaks ties
in the worst possible way. In terms of an adversary model, we can assume that the
adversary not only chooses the problem instance, but also is allowed to choose the way
Smith’s rule breaks ties.

The next lemma shows that we can restrict our attention to problem instances where
the density is the same for all jobs. By the argument given above, the adversary can
freely choose the schedule HDF in such instances.

For the problem 1|| Y w; f(C;) with cost function f, there exists an in-
stance of unit density that achieves the worst case performance ratio oy of Smith’s rule
for this cost function. More formally,

HDF(I)

afp = sup{OPT(I)’wj:pjforeachjobjel}.

Proof. We show that any instance I of 1|| Y w;f(C;) can be transformed into an
instance I’ having density Z—j = 1 for each job j and satisfying HDF(I")/OPT(I') >
HDF(I)/OPT(I). It suffices to show the existence of a suitable instance I’ with the
density being the same for each job, because then, density 1 can be obtained by weight
scaling as argued in Observation 2.3.

We can assume w.l.o.g. that p; > 0 for all jobs j. Jobs j with p; = 0 are scheduled by
both HDF and OPT at the very beginning of the schedule. Since they neither account for
cost nor they delay other jobs, they can be simply removed from the instance. Similarly,
we can argue that jobs j with w; = 0 can be removed (or added) without changing
the total cost, because both algorithms schedule them after all other jobs at zero cost.
However, for the simplicity of the proof, we assume for now that there exists at least one
job j with w; = 0, and at the end of our transformation, we remove all zero weight jobs.

We partition the jobs of I into classes according to their density. For x > 0, the
density class d, is defined to contain all jobs j of I with] = x. By this definition,
all jobs of weight zero are contained in the the density class do, which is non-empty by
assumption. If there exists only one ratio class besides dy, then the lemma follows by
simply deleting all jobs from dj.

If there are more than two non-empty ratio classes, we show how to reduce their
number without decreasing the approximation factor. More specifically, we will show
that there is an instance I’ having one non-empty density class less than I, and
HDF(I")/OPT(I') > HDF(I)/OPT(I). After at most n applications of that argument
we arrive at the desired instance that has only a single non-empty density class in addi-
tion to dy.

Let C; be the completion time of job j in HDF(I), and let C7 be the corresponding
completion time in OPT(I). Let further X := {x | d, # 0} be the family of densities
that occur in I. For x € X we define the contribution of density class d, to the cost
of HDF(I) and OPT(I) as

HDF,(I) := > w; f(C) and OPT, (1) := > w; f(C}),
Jj€dy Jj€dz

respectively. The approximation factor of instance I can be recalculated as

HDF(I) 3 ,ex HDF.(I)
OPT(I) Y,y OPT,(I)"

We now choose one density class d, with x # 0 satisfying

HDF,(I) _ HDF(I)
OPT,(I) ~ OPT(I)

(2.5)

—which exists by the pigeonhole principle. We define y := max{z |z € X,z < z} as the
density next smaller than x. Such a y always exists as x > 0 and dj is not empty.

The instance I’ is now constructed as follows. The processing time p;- of each
job j € I' is the same as the processing time p; of the job j € I. For each j ¢ dy,
we choose the original weight w = wj. As for the jobs j € d,, we define w = pj 1, SO
that in I’ these jobs become part of the density class d,.

Aiming to bound the ratio HDF(I")/OPT(I"), we denote by HDF(I") and OPT(I")
the schedules for instance I’ which run the jobs in the same order as their counterparts

are scheduled in HDF(/) and OPT(I), respectively. Firstly, we observe that the sched-
ule HDF(I") is feasible according to HDF since o> Z—j implies Z?' > ? for any two
i ’ 37

k3

jobs i and j. Moreover, by Lemma 2.6, we can assume HDF(I’) to be the most costly
among all HDF schedules for I’, and thus,

HDF(I') > HDF;(I') = HDF(I) — (1 — %) . HDF,(I) .

Considering the schedule OPT(I"), clearly no other schedule can underprice its cost, and
thus,

OPT(I') < OPT(I') = OPT(I)— (1 —Y¥)- OPT,(I) .

Note that OPT(I") is strictly positive, as d, was not the only non-empty density class
besides dy. Hence, equation (2.5) implies that

HDF(I') - HDF(I) — (1 - %) - HDF,(I) - HDF(I)

OPT(I') ~ OPT(I)—(l—%)-OPT;p() — OPT(I) -

~

We now know that for analyzing the worst case approximation factor of Smith’s
rule we can restrict our attention to problem instances with unit density, and due to
Lemma 2.6 we can further assume that Smith’s rule schedules the jobs in the worst
possible order while OPT schedules them in the best possible order. When the cost
function is concave or convex, there is a very simple characterization of these special
orders, as shown in the following lemma.

In the remainder of this section, the proofs are given for convex cost functions only,
even though holding for concave functions as well. However, by syntactically replacing
all terms marked with * with their opposite, one obtains the proof for the concave
case. Examples of such opposite pairs are convex/concave, best/worst, non-positive/non-
negative, > / < or > / <.

Considering problem 1| Y w;f(C;) with convex cost function f, the tight

approrimation factor is
INC(I
ap = Sup{DEC<(I)) ’wj = pj for each job j GI}

where INC(I) and DEC(I) denotes the cost of the schedule where the jobs in I are pro-
cessed in order of their non-decreasing and non-increasing processing time, respectively.
If f is concave, then ay is given by sup {DEC(I)/INC(I) | wj = p; for each job j € I}.
Proof. Due to Lemma 2.7 and Lemma 2.6, it suffices to show that for convex® cost
functions and instances with w; = p; for each job j, DEC(I) is a best™ possible schedule
and INC(I) is a worst™ possible schedule.

Let S be an arbitrary schedule for an instance I with p; = w; for each j. Consider
some pair of adjacent jobs i, j, let ¢t be the point in time when S begins to process ¢,
and let S**J denote the schedule obtained by interchanging i and j. As the interchange
operation only affects the cost of ¢ and j it holds that

S(I) — S™H(I)
= (pif(t+pi)+pjf(t+pz’+]0j)) — (ij(t-l-pj)-l-pif(t—l—pj-l-pi))

= b (f(“fpﬁpj)—f(ﬂrpj)) - pi (f(t+pi+pj)—f(t+pi)).

cost cost !
f INC !
= Gk
F(C5) A
NS
FICNO) 4 i
A wi £(Cy) ARYC
J
line job _ -
pj=w; > time D time
C CINC CINC
J J i
(a) A job j’s cost is represented by a rectan- (b) Jobs ¢ and j in schedule INC(I) from
gle. Line jobs are a collection of infinitesimal Lemma 2.9. The marked areas represent the
small jobs. Their total cost is given by the change in cost when merging the jobs or when
area under the graph of f. making job j a line job.

Geometric interpretation of a schedule for jobs j with unit density %
J

Define the function
h:z e p; <f(t+pi +p;) = f(t+pj +pi— w)).
As f is convex*, function h is concave®, and we can rewrite the above as

(D) = §™9(1) = 2 n(py) —h (% pi) (2.6)

The schedule INC(I) can be obtained from S by interchanging pairs of adjacent
jobs 7, j with p; > p;. We can analyze the cost of each such interchange operation using
equation (2.6). Although h depends on the jobs i, j, its concavity™® is always guaranteed.
As p; > p; implies % < 1, the right hand side of equation (2.6) is always non-positive*
because h is concave* and h(0) = 0. Therefore, no such interchange operation will
decrease™ the schedule’s cost. As the initial schedule S has been arbitrary, it follows
that INC(T) is the worst* possible schedule. Using the same argumentation with % > 1
one can also show that DEC(I) is the best* possible schedule. '

At this point we introduce a geometric interpretation of our scheduling problem.
In this interpretation each job j is represented by a rectangle having width w; and
height f(C}j). As we can restrict our attention to unit ratio jobs, the width equals p;.
Hence, by arranging the rectangles along the x-axis in the order in which the correspond-
ing jobs appear in some schedule S, each rectangle ends at the z-axis at its completion
time in S. When drawing the graph of the cost function f into the same graphic, all
upper right corners of the rectangles lie on this graph. The total cost of S is equal to
the area of all rectangles. Note that the area below the graph of f, i.e., OZp 7 f(x)dx is
a lower bound on the cost any schedule. An example is depicted in Figure 2.1(a).

We refer to jobs j with w; = p; as regular jobs, and moreover, we introduce the notion
of so called line jobs. A line job represents an infinite set of infinitesimal small regular
jobs having finite total processing time. More formally, for some fixed p and ¢ > 0
consider the multiset consisting of p/e identical jobs, each having processing time and
weight €. Then the line job of length p represents the job multiset obtained for ¢ — 0.

Instead of being represented by a rectangle, a line job corresponds to a strip of width p
whose upper boundary is given by the graph of f; see again Figure 2.1(a). In the presence
of line jobs we calculate the cost of a schedule by summing up the area of all rectangles
and the stripes of the line jobs.

The correctness of this interpretation follows from the continuity of the cost func-
tion f. A difference between regular jobs and line jobs is that line jobs can be
preempted—because they actually consist of many small jobs. However, for problem
instances I that consist of both regular jobs and line jobs, observe that the sched-
ule INC([]) first processes the line jobs and then continues with the regular jobs while,
symmetrically, DEC(I) processes the line jobs at the very end of the schedule. As a
result of Lemma 2.8 the possibility of preemption does not play a role in our analysis.

For determining the worst case performance ratio of Smith’s rule for the
problem 1||w; f(C;) with concave or convex cost function f, we can restrict our atten-
tion to instances that consist of one regular job and one line job. More formally,

_ INC(I) | I consists of one reqular
o = =P DEC(I) | job and one line job

in the case of conver cost functions. For concave cost functions it holds

DEC(I)

o= Sup{ INC(I)

Proof. Based on the insight we have from Lemma 2.8 we start with some instance I

consisting of regular jobs and show how to transform it into an instance I’ having the

property stated in the lemma, and satisfying INC(I')/DEC(I") >*INC(I)/DEC(I) in
case of convex™® cost functions.

The transformation of I proceeds as follows. While the instance contains more than
one regular job, consider the first regular job j which is processed by schedule INC(I).
Either transform j into a line job with processing time p;, or replace j and its successor ¢
in INC(Z) by a new job k having processing time and weight p; 4+ p;. We will show below
that at least one of these two possibilities can always be realized without decreasing the
optimality gap. We finally obtain a problem instance with one regular job and multiple
line jobs. The line jobs can then be merged into a single line job without changing the
cost of INC and DEC, which holds because this final operation does not change the total
area of stripes in the geometric interpretation.

Let the jobs j and i be defined as in the preceding paragraph. Let I be the instance
before the corresponding transformation step, let I, be the instance obtained by replac-
ing j with a line job, and let Ij; be the instance obtained by merging j and i. We will
show that

I consists of one reqular
job and one line job

INC(Ir) _, INC(I) INC(Iy) _, INC(I)

DEC(I,) — DEC() DEC(Iy) — DEC()
in case of convex™ cost functions. Throughout the proof we assume the schedules INC
and DEC to be fixed in the sense that INC(I)s) and DEC(Ijy) are obtained from INC([)
and DEC([), respectively, by simply inserting the merged job k at the former position
of the jobs i and j. From Lemma 2.8 we know that the true INC(I;;) and DEC(Iyy)
will make the factor even larger. Let

ANC .= INC(I) — INC(I}), ANC .= INC(I)) — INC(T),

(2.7)

APEC .— DEC(I) - DEC(I}), APEC .= DEC(Iy) — DEC(I).

Note that the definitions are chosen in such a way that for non-decreasing cost functions
all four A-values will be non-negative—although the assumption of non-decreasingness is
not necessary for the result to hold. See also Figure 2.1(h) for a geometric interpretation
of the A-values. We are going to show that

INC INC
AL * AM

DEC — DEC -~
AL AM

(2.8)
Using (2.8) and the fact that the proposition A V B is logically equivalent to —A = B,
one can show (2.7) for convex™ cost functions via the following implication chain:

INC(Iy) INC(I) — AINC

o INC(I)
DEC(I;) =~ DEC(I) — APFC DEC(J)
AINC - INC(T) AINC INC(T)

ADEC ~ DEC(I) ADEC 7 DEC(I)’

=

where equation (2.8) is used for the last implication. This finally implies

INC(Ip;) INC(I)+ANC , INC(I)
DEC(Iy) DEC(I) + APEC DEC(I) *

For proving equation (2.8) we need explicit formulae for the four A-values. Let CJI-NC
be the completion time of job j in INC(I), and let C’]DEC, CINC and CPEC be defined

analogously. The value AILNC is the difference of the contribution of regular job j to the
cost of INC(I) and the contribution of line job j to the cost of INC(Iy), so

CJI‘NC D;
AINC _ Pj~f(CJI'NC)_/ fydt = / (£ (CIN€) = £ (CINC = pj 4))dar .

CJI-NC—p]‘ 0

The formula for A]BEC follows analogously with respect to the completion times in DEC.

The value AR}IC is the difference between the cost contribution of the merged job k
to INC(Ijs) and the contributions of the separate jobs ¢ and j to the cost of INC(I).
The completion time of k in INC(Iys) equals the former completion time of 7 in INC(I).

AN = (0 +9) 1 (CF) = b f(C]O) = pif (1)
= pj (f (CFC +pi) — f (CJI'NC)) '

For computing the value A]LDEC, observe that the merged job k& completes at time CJDEC
in DEC(Iyy), thus,

ADFC = (pi+pj) f (CPEC) — pi f (CPEC) — p; f (CPEO)
= pi <f (CPPC) ~ f(C})EC*Pi)) :

For convex® cost functions, the values A]BEC and A]]?/[EC are related in the following way

ADEC _ /Pj (f (C]DEC) _ (C;DEC —p; +x)>dm

0
. P pj AR
20 G (F(OP) - F (@ -m) = BPM @)

The inequality holds because f being convex™ implies that the expression in the integral
is concave®.

For obtaining a similar relation between A}JNC and AINC observe that for convex*
cost functions f it holds that

()] (e en) s)

< Ve e [0,p;).
Py b [0,p5)
(2.10)
As the right hand side of (2.10) is independent of z, it follows that
ame [(£(CINC) = f(CINC — pj + 2)) da
%p? Vi (pj — x) dx
CINC) — f(CINC AINC
<* Uc pi) = 1(G7) = M (2.11)
Di Pipj
Equation (2.8) now follows directly from (2.9) and (2.11). O

Finally, Theorem 2.4 is a direct consequence of Lemma 2.9. On the right hand side
of equation (2.3), the parameters p and ¢ respectively correspond to the length of the
regular job and the line job in the problem instance I. The expressions in the numerator
and denominator of r¢(p, ¢) in equation (2.4) are exactly the cost of INC(I) and DEC(I),
respectively. The correctness of the concave case can be verified analogously.

In this section we show that for an important class of cost functions, Theorem 2.4 can be
further simplified. We have already exploited the fact that problem 1| Y w; f(C;) is
invariant to weight scaling. Similarly, we say that a cost function f is invariant to time
scaling if there is a function ¢ : R — R such that when scaling every time value ¢ > 0 by
some factor ¢ > 0, then f(ct) = ¢(c) f(t). This implies that when scaling all processing
times of an instance by ¢, the cost of every schedule changes by factor ¢(c). Note that
while invariance to weight scaling holds regardless of the cost function, not every cost
function is invariant to time scaling, consider e.g., f : t — t2+t. In fact, time scalability
is a characterization of monomials.

A continuous non-negative function is time scalable if and only if it is
a monomial of the form t — ct® for some ¢,k > 0.

Proof. By definition, a cost function f is invariant to time scaling if there is a function
¢ : R — R observing f(ct) = ¢(c) f(t) for any ¢, ¢t > 0. It is straightforward to see that
monomials have this property. In the following we show that also the inverse implication
holds. We first analyze the function ¢ using multiple times that f(¢) = f(1)¢(t). For
any x and y it holds that

fWo(ey) = fle-y) = f(1)-o(z)-oy) ,

and hence, ¢(z - y) = ¢(x) - ¢(y). This implies ¢(t*¥) = $(t)* for any positive integer k.
By standard continuity arguments the latter equality also holds for any positive real
number k. We conclude

¢(t> _ ¢(2log2t) _ ¢(2)10g2t _ tlog2¢(2),
and hence,

FO) = F)e(t) = f(1)too@) O

Assuming time scalability we can normalize the total processing time to 1, and hence,
Theorem 2.4 yields the following corollary.

For monomial cost functions t — t¥, k > 1, the tight approzimation ratio
of Smith’s rule can be determined as

O 1= O = Inax, k(D)

with
(k+1)p+ (1—pr!
1+ kkarl

For 0 < k < 1 the ratio oy, is obtained analogously when mazimizing over 1/ry(p).

re(p) = ru(p,1—p) = (2.12)

As the denominator of r(p) is strictly positive on the interval p € [0, 1], the same
holds for the denominator of the first derivative r} (p) of rx(p). Therefore, for monomial
cost functions, the determination of Smith’s rule’s approximation factor reduces to the
calculation of the root of a univariate polynomial—the denominator of r}(p). Although
polynomial cost functions are not invariant to time scaling in general, an important
subclass of polynomials can be analyzed as monomials as we show in the following.

Consider a polynomial cost function f : t — cit’s + - + cpttm with
positive coefficients c;, rational exponents ¢; > 1, and max{{;} = k. Then the tight
approzimation factor ay of Smith’s Rule for problem 1| Y w; f(C;) is equal to ay.

Proof. Let f =c¢1 fi+...4 ¢ fim be the polynomial cost function, where f1,..., fi,, are
monomials, and let f; be the monomial with the highest degree k. For any schedule S
for problem instance I, let S;(I) denote the cost of S with respect to cost function f;.
Denoting by S} (I) an optimal schedule for I under cost function f;, it holds

HDF(I) 27111 C; HDFi(I) 2111 C; HDFi(I) HDFZ‘(I)
= " < " < max ———— < .
OPT(I) Yo ci- OPT;(I) Yoirqci-SHI) i=l.m S*(I)

The last inequality is a consequence of the tight approximation factor for monomial cost
function ¢ — t* being monotone in k for k > 1 which we prove in Lemma 2.15 (i) below.

In order to show that the above inequality is tight, fix I as a problem instance
where the worst case approximation factor of Smith’s rule with respect to f; is reached.
As fy is invariant to time scaling, the same approximation factor is reached for each
instance c¢- I, which is obtained from I by multiplying all processing times by constant c.
As f1 is the monomial with the largest degree, for ¢ — oo the optimal solution OPT(c - I)
with respect to f converges against the optimal solution OPT(c- I) with respect to fi.
Analogously, HDF(c - I) converges against HDF(c - I), and hence, the overall ratio
HDF(c-I)/OPT(c- I) converges against «. O

«@ «
k Qg ¥a s Dk k aj ¥ag - Pk

1/100 1.0036 1.4355 100.362 0.631 11 7.3761 1.1992 0.671 0.671
1/10 1.0313 1.3611 10.313 0.621 12 8.1875 1.1915 0.682 0.682
1/9 1.0341 1.3528 9.307 0.620 13 9.0117 1.1843 0.693 0.693
1/8 1.0375 1.3426 8.300 0.618 14 9.8472 1.1775 0.703 0.703
1/7 1.0416 1.3299 7.291 0.617 15 10.6925 1.1711 0.713 0.713
1/6 1.0465 1.3136 6.279 0.614 16 11.5467 1.1652 0.722 0.722
1/5 1.0526 1.2920 5.263 0.611 17 12.4089 1.1597 0.730 0.730
1/4 1.0598 1.2617 4.239 0.607 18 13.2782 1.1545 0.738 0.738
1/3 1.0676 1.2167 3.203 0.600 19 14.1540 1.1497 0.745 0.745
1/2 1.0689 1.1425 2.138 0.589 20 15.0357 1.1451 0.752 0.752
1 1.0000 1.0000 1.000 - 30 24.0892 1.1119 0.803 0.803
2 1.3064 1.1430 0.653 0.554 40 33.4126 1.0917 0.835 0.835
3 1.7587 1.2071 0.586 0.557 50 42.8888 1.0781 0.858 0.858
4 2.3090 1.2327 0.577 0.569 100 91.2843 1.0462 0.913 0.913
5 2.9283 1.2397 0.586 0.583 200 189.7292 1.0266 0.949 0.949
6 3.5974 1.2378 0.600 0.599 500 487.7482 1.0125 0.975 0.975
7 4.3039 1.2318 0.615 0.615 1000 986.2931 1.0069 0.986 0.986
8 5.0398 1.2241 0.630 0.630 2000 1984.8634 1.0038 0.992 0.992
9 5.7996 1.2157 0.644 0.644 5000 4982.9980 1.0017 0.997 0.997
10 6.5793 1.2073 0.658 0.658 10000 9981.5981 1.0009 0.998 0.998

Tight approximation factors ay, of Smith’s rule for monomial cost functions t*
and the related Li-norm according to Corollary 2.11; see also Figure 2.2. By pp we
denote the corresponding p-value for which the factor oy is attained.

In Table 2.1 and Figure 2.2 we show tight approximation factors of Smith’s rule for
monomials of different degrees as they compute according to Corollary 2.11. Note that
Theorem 2.12 implies that these factors also apply to polynomials with non-negative
coefficients of the respective degree.

Since the objective) w; C;»“ differs from the Lg-norm objective (ijCJk)l/k only
by the root, so does the tight approximation factor. The corresponding values are also
presented in Table 2.1 and Figure 2.2. For k > 1, one can observe from the computed
values that the approximation ratio stays below 1.25.

We conclude this section with additional characteristics of the tight approximation fac-
tor ay of Smith’s rule for monomials of degree k. While in Theorem 2.12 the factor
was described implicitly as a result of a continuous optimization problem, here, explicit
lower and upper bounds on the approximation factor are given. These bounds allow
to easily analyze the asymptotic behavior of the approximation factor with respect to
the degree of the monomial. The asymptotic results are summarized in the subsequent
theorem, and more detailed characteristics are presented in Lemma 2.14 and 2.15. The
first lemma provides properties of the extremal p-value

arg min rg(p) ,for 0 <k <1
0<p<i

arg max ri(p) ,for k> 1,
0<p<1

Pk =

including its uniqueness, while the second lemma characterizes the approximation fac-
tor ay.

1.14

1.12

1.10

1.08

1.06

1.04

1.02

1.00

1.45
1.40
1.35

1.25
1.20
1.15

1.05

1.00

0.80

0.75

0.70

0.65

0.60

0.55

(c) Values of p for which the tight approximation factor is attained; the respective
values with respect to degree k is denoted by pir. Surprisingly, pr converges against
the ratio of the approximation factor and the degree of the monomial. This ob-
servation was the initial motivation to further analyze the relation of py, o and k

1 100 1

80 1

40 1

20 1

0.00 0.25 0.50 0.75

1.00 1.25 1.50 0

k k

(a) Tight approximation factor of problem 1| 3> w; C7.

!

T T T T T T T T T T T T

8| 1.25 y
k/ak

1.20 4

1.05 8

1 1.00
L L L L L

0.00 0.25 0.50 0.75

1.00 1.25 1.50 0
k k

. S 1/k
(b) Tight approximation factor of problem 1|| (3 w; CF)™'".

T T T T T T T T T T T T

1 1.0 H

0.8 k£ 1

0.7 1

[=}

o
»
w
™~
ot
=]
o

which led to the results in Section 2.2.3.

Tight analysis of the approximation factor oy of Smith’s rule for monomial
cost functions t* with & > 0; see also Table 2.1. The computed factors and the corre-
sponding values of p are based on Corollary 2.11. Recall that by Theorem 2.12, the tight
approximation factor of t* equals the factor of polynomial cost functions of degree k > 1

with positive coefficients.

: : : : : : : : : : :
35 [B 0.60 [
LB(ag)
UB(ay)
3.0 | ASYMP(ak) . 0.59 |
2.5 | . 0.58 |
2.0 | . 0.57 |
15 F . 0.56 i
LB(p)
UB(pg)
—
10} . 0.55 |
1 2 3 4 5 6 1 2 3 4 5 6
k k

The tight approximation factor aj and the value pp with their lower and
upper bounds according to Lemma 2.15 and 2.14, respectively, and their asymptotic
bounds according to Theorem 2.13; see also Table 2.2. For the purpose of this figure, we
denote ASYMP (ay) := k(k=1/(k+1),

Consider the tight approrimation factor oy of Smith’s rule for problem
L] > w C]]? . Denoting by py € [0, 1] a value such that oy = r(px), the following holds:

1. lim (ak — k%) =0 and lim (pk — ’”\1/%) =0,
k—o0 k—o00

2. lim 2k — 1,
k—oo k- pg

3. lim (k—ap) = oo.
k—o00

Proof. The theorem is a direct consequence of the below Lemmas 2.14 and 2.15. The
statements (i) and (ii) follow from the lower and upper bounds on py and oy, as given in

these two lemmas. The values d, , 4, and df therein obviously tend to 1 for k — oo.

Statement (iii) is implied by Lemma 2.15 (iii). O

Being obvious from this proof, a major insight of the Lemmas 2.14 and 2.15 are the
bounds on oy and pi. Exemplary values are given in Figure 2.3 and Table 2.2.
The value py observes the following properties:

(i) pr is unique for k # 1, and it is the unique root of r), on]0, 1],
(it) pr > % for all k # 1,

. 2
(iii) 0, - ")z < pp <)z with 6, = "R k§7+1 where the

lower bound holds for k > 4.

Proof. The analysis of p; and the related function 7 as given in (2.12) is majorly based
on a discussion of r;’s first derivative

ok
Y 7(1 n kpk+1)2

su(p) == 1- (1=p)" = ko (kp+ (1= p)") . (2.13)

sk(p) with

k—1
k. LB(ay) KT oy UB(ay) LB(rx) m M/ = UBGx)
4 2.26971 2.29740 2.30901 2.33949 0.56743 0.56859 0.57435
5 2.90497 2.92402 2.92834 2.95310 0.58099 0.58315 0.58480
6 3.58197 3.59602 3.59745 3.61736 0.59700 0.59888 0.59934
7 4.29266 4.30352 4.30394 4.31984 0.61324 0.61467 0.61479
8 5.03101 5.03968 5.03980 5.05257 0.62888 0.62993 0.62996
9 5.79243 5.79955 5.79958 5.80998 0.64360 0.64439 0.64439
10 6.57338 6.57933 6.57934 6.58794 0.65734 0.65793 0.65793
15 10.68955 10.69251 10.69251 10.69656 0.71264 0.71283 0.71283
20 15.03387 15.03566 15.03566 15.03799 0.75169 0.75178 0.75178
25 19.51549 19.51669 19.51669 19.51821 0.78062 0.78067 0.78067
30 24.08838 24.08924 24.08924 24.09031 0.80295 0.80297 0.80297
35 28.72610 28.72675 28.72675 28.72754 0.82075 0.82076 0.82076
40 33.41213 33.41263 33.41263 33.41324 0.83530 0.83532 0.83532
45 38.13547 38.13587 38.13587 38.13636 0.84745 0.84746 0.84746
50 42.88845 42.88878 42.88878 42.88917 0.85777 0.85778 0.85778

The tight approximation factor o and the value py with their lower and upper
bounds according to Lemma 2.15 and 2.14, respectively, and their asymptotic bounds
according to Theorem 2.13; see also Figure 2.3.

As a first step, we show that

sk(3) = 1— 0 — = — = (2.14)

is strictly negative for 0 < k& < 1 and strictly positive for £k > 1, respectively. This
observation is then used to show properties (i) and (ii).
In order to prove the observation, we first address the case k € |k’, oo| where

— 1 ~
K = In (m)/ln@) (= 0.53).
On this interval, we show that sk(%) is increasing in k. Consider

4 g (%) = 2% <k(2k_1(ln(2) k—2)+2 ln(2)) +1n(2) 2% — 1> :

Due to k > k/, the last term In(2)2¥ — 1 is positive. Moreover, by considering its
derivative, we can verify that the term 2¥~!(In(2) k — 2) + 2 In(2) attains its minimum
in £ = 1/In(2), and this minimum value is also positive. Hence, d% Sk (%) is positive,
and so, si (%) is increasing in k. Observing that s1(3) is zero, it follows that si(1) is
strictly negative for k' < k < 1 and strictly positive for k£ > 1, respectively.

Finally, for 0 < k < k/, we show that sk(%) is negative by arguing that so(%) =0,
sk/(%) < 0 and that sk(%) is convex in k on the respective interval. Concerning the

latter, it is sufficient to show that j—; Sk (%) is positive. This derivative is given by

% sk(3) = 272k (a(k‘) - b(k)) where
a(k) == 41In(2) (14 k2871,
b(k) = 41n%(2)k+ (In%(2) + 1) - 2 + m?(2) k* - 2k 1.

Obviously, a and b are increasing in k. This allows the following estimates

a(k) > a(0) > for 0<k<0.3,
a(k) > a(0.3) > b(k) > b(k) for 03<k<k,

A
C&J
SN—
v
S
—~
w
~

showing that j—; Sk (%) is positive for the considered values of k. Hence, sk(%) is convex.
This concludes the proof of the observation that sk(%) is strictly negative for 0 < k < 1
and strictly positive for k& > 1.

For the proof of (i), we show that the function r; has a unique minimum and maxi-
mum for 0 < k < 1 and k > 1, respectively. We argue that its first derivative r} has a
unique root on |0, 1[. One can then easily observe that this corresponds to a maximum
and minimum, respectively. Searching for roots of 7}, by (2.13), it is sufficient to inves-
tigate s,. Therein, the term (1 — p)¥ is concave for 0 < k < 1 and convex for k > 1, and
hence, 1 — (1 — p)* is convex and concave, respectively. We will show below that also
the term

hi(p) = —kp* (kp+ (1= p)")

is convex for 0 < k < 1 and concave for k > 1, and thus, so is sg. Observing additionally
that s(0) = 0, and sg(1) > 0 > si(3)for0<k<1andsk() <0< s(3) for k> 1,
respectively, it follows immediately that sp has a unique root on]0,1[. The bounds
on sk(%) were provided by the above observation.

It remains to analyze h(p), whose second derivative with respect to p is given by

Wi(p) = —kak-Q(p(k:(kH)—2(1—p>'f—1) + (k=11 -)R- 2p>2>

for 0 < p < 1. The sign of the last term (k — 1)(1 — p)¥~2(1 — 2p)? is solely determined
by the factor & — 1. Considering k(k + 1) — 2 (1 — p)*~!, we can similarly observe that
the term is strictly negative for 0 < k < 1 and strictly positive for £ > 1. This follows
directly by trivial bounds of k(k 4 1) and (1 — p)¥~! on the respective intervals of k. In
summary, this shows that h}(p) is strictly positive for 0 < k < 1 and strictly negative
for k > 1, and so, hy(p) is convex and concave, respectively. This concludes the proof
of (i).

For showing points (ii) and (iii), we make use of (i). By (i), we know that rj attains
its unique extremum on [0, 1] for some value py €0, 1[, and moreover, py is the unique
root of the derivative r} on this interval. Now, for any value p, the sign of 7} (p) tells us
whether p lies before or after the extremal value pg, and accordingly, p yields a lower or
upper bound on pg, respectively.

Utilizing this insight, for the proof of (ii) it suffices to show that r;(%) is negative
for 0 < k < 1 and positive for k > 1. This is exactly what was shown in the observation
at the very beginning of the proof.

In the remainder of the proof, we show (iii), bounding py, for k > 4. As for (ii), we use
the observation that the derivative’s sign implies bounds on pg. In case of k > 1, a value p
with negative 7 (p) corresponds to an upper bound on p;. According to equation (2.13),
the condition k?p**! > 1 is sufficient for this to hold. Transposing this inequality yields
the stated upper bound **{/1/k? on pi. Note, that the upper bound naturally holds
for 0 < k < 1 as well, since it is larger than 1 in this case.

For showing that p = **/1/(k? 4 1) is a lower bound on pjy for k > 4, it remains
to prove that 7} (p) > 0. According to (2.13), this is equivalent to si(p) > 0. For our
specific value of p, we obtain

/1) _ k1 k(i k 1
Sk(kJrl k2+1> = (1—< \/ﬁ—l)-(k2 +1+ k+1ﬁk2+1)kl>>.k2+l.

Denoting

k k
. kil 5 _ k1 2
c(k) == (\/m 1) and d(k) := \/m T (k2 + 1)k—1 ’

it suffices to show that c(k) - d(k) does not exceed 1. We show c(k) < £ and d(k) <

5

5.

Resolving c(k) < % for k2 4+ 1, it is straightforward to see that this inequality holds
for k > 4.

Regarding d(k), it holds that d(4) < 3, so that it suffices to show that d(k) is
decreasing in k£ > 4. We compute

-

k
d _ (1.2 —kol k-1 K2 k 1 (B2 4+1)F+T 2k 2
a5 d(k) = (k"4 1) k¥ (1 — 2 en T2 myEm T BT 2k ‘In(k + 1)>

k

k=1 24)V FHT
< (k‘2+1) k1 (1—2'3‘%$+2 k+11k?2+1 _ (& l:rzl+)I;+1 ~ln(k2+1)>

s

2 = (_u 2 1
= (k2 41)" % (—% + (2= (k2 +1)) e m) <0,
where the estimates are based on k > 4. This derivative being negative implies that d(k)
is decreasing which completes the proof. O

Note that the lower bound on p, actually holds also for values of k£ down to
roughly k& = 3.658. However, in order to restrict the length of the analysis to a rea-
sonable degree, we did not make great efforts to compute the exact analytic value of k
for the bound to hold, and opted for the next larger integral value of 4. We continue
with the characteristics of the approximation factor ay.

The tight approximation factor ag observes the following:

(i) oy is increasing in k for k > 1.

k-1 k—
(i) Oq, - kF1 < ap < 5;&/{:’7& for k>4

ith 6 = F/ & i ot — SRR kR 1
we ag " B2yl an ak T LRk k4 k2

(i) lim o = oo
k—o00

(iv) k—ap > lnk—i for k> 4.
Proof. Considering point (i), we know that aj = ri(px) for k > 1. We argue that oy is
increasing in k by showing that the first derivative of r;(p) with respect to k is positive

for any p € [%, k*«l/l/lﬁ]. The latter is sufficient to assume due to Lemma 2.14. We

denote by

ve(p) == (k+1)p+ (1 —p)Ft! and wi(p) == 1+ kphtt

the nominator and denominator of r, respectively. Then,

() = B0 0e0) — i (0ar) ()

Ay
a* wi(p)
is positive if and only if
d ve(p) 4 d
d .a - .4 . 2.15
4 op(p) > wn(p) wi(p) ri(p) - 4 wi(p) (2.15)

We first address
dow) = p = () A -ptt,

and show that it is positive for the respective values of p. The term In(1/(1—p))-(1—p)¥+!
is decreasing in p which can be easily verified by its derivative with respect to p. Hence,

L oop(p) > Lop(d) > 0 for all p> 3.

In contrast,
d% wi(p) = p’~C+1 (1 —k-In (%))

can be either positive, negative or zero. Since r(p) and d% vg(p) are strictly positive, the
inequality (2.15) is naturally satisfied whenever % wk(p) is not strictly positive. Thus,
it remains to show (2.15) in case of positive d% wy(p) which is equivalent to

p > €

=

(2.16)

1
If for some k& > 1, the upper bound *%/1/k? on pj is smaller than e” %, then this
implies that % wg(p) is negative for all relevant values of p. Hence, we only need to
consider such values of k for which e~ /¥

i.e., values of k for which

is at most as large as the upper bound on pyg,

2k
kk+1 S e.

2k_
Since the term kk+1 is increasing in k, and it is already larger than e for k£ = 2.1, it

remains to consider 1 < k < 2.1 and p > max{e /¥, 1}.

Recall that r(pr) > ri(p) for any p, and moreover, Corollary 2.2 implies that r(pg)
never exceeds k. Utilizing this bound and knowing that d% wg(p) > 0 due to p > e~ Vk,
it suffices to show the following inequality instead of (2.15)

d% Uk (p)
d

> k.
%wk(p)

This can be rewritten as

p(1—kp*) > In (ﬁ) (1—p)*! — kK 1n (%) pFrL (2.17)

Due to the upper bound on py from Lemma 2.14, the left hand side of (2.17) is positive.
Regarding the right hand side, we show that it is decreasing in k, and it is negative for
the minimum k-value 1, which immediately implies the above inequality. Consider the
derivative of the right hand side with respect to k, which is given by

In<11p)2 (1—p)k+t — k;ln(> kil (2—l<:ln (%))

Since we assumed d%wk(p) to be positive, also 2 — k In(1/p) is positive, and hence,
the derivative is negative for k& > 1 which implies that the right hand side of (2.17) is
decreasing. Finally, for £ = 1 the right hand side is non-positive if and only if

z% -In (ﬁ) < ﬁ -In (%) < In ((1 — p)_<1*<1lfp>>2> < In (p_(1*1P>2) .

Since z +— 2~ /(=) can be shown to be increasing on [%, 1], and due to 1 — p < p, the
inequality is satisfied. This completes the proof of (i).

According to (ii), we continue with proving the stated lower and upper bound on «y,
for Kk > 4. By Lemma 2.14 (i), we know that r attains its unique maximum on [0, 1]
for some value py, €]0, 1], and hence, 7}, is zero at this point. By equation (2.13), this is

equivalent to

1 — k2pkt1

(1-pf ="
1+ kpk

Replacing this term in the definition of 7 in (2.12) accordingly, we obtain the function

1.2 k+1
(R p + (L) e
_ 1 + kp + k.pk+1 4 k2pk+2 B 1—|—kp (2 18)
N (1 + kpFt1) (1 + kpF) 14 kpR '

By construction, the functions ux and rj are equal for pg, and hence, the approximation
factor can now be described by uy as

1
 l+kpe 1+m.k
1+ kp 1+ kpj

Utilizing the lower and upper bound on pj from Lemma 2.14 (iii), we obtain

k

’“ﬂl/ k2+1 1)k-k+1 +k24+1 k1
k+\/; kL
L+ k"= k (k24 1)F+T + k2

and

Since the lower bound on pg holds only for k& > 4, so do these bounds on «ay.

k—
Due to limg oo 0, = 1 and limy_, k:kT} = oo, the lower bound on «y implies
directly point (iii).
We conclude the proof showing (iv). With the upper bound on «y, from (ii), it follows

that

(€95

k+1 2 k . 2 k—1
P G VAR i ST =

k—ap >
b= SR DR b+ k2
k-1 k-1
— ko kRTI _ s

1
-k
"R+)R k4 k2
By a series of equivalent transformations, we observe that

k=1 kol k-1
k—kbT > Ink < ln(k—lnk)21n<kk+l) = k=l

k+1
2 >ln/~c—ln(k—lnk)
E+1— In k£ '

(2.19)

Since the logarithm is concave and increasing for positive input, its slope at k£ —In k is
larger than the slope connecting In(k — In k) and In k. Thus,
In k£ —In(k —In k) < 1
In k& ~ k-Ink’

It can be easily checked that the last term is not larger than ki—kl for k > 4 which yields
equation (2.19). Point (iv) finally follows by observing that
k=1 1 1

< k< =
> (k+1/k2k + k)k — 2]{} |:|

1
R+ DF -k + k2

In this final section, we refine the analysis of Smith’s rule in order to make it more suitable
to realistic problem instances. To this end, we introduce the parameter pyax > 0, the
maximum processing time, and P, the total processing time of all jobs, assuming that the
processing times are integral. These parameters allow us to ban infinitesimally small and
very large jobs as they appear in the unparameterized analysis. Note that our analysis of
the approximation factor also covers the case where, instead of the restriction to integral
processing times, some lower bound D on the greatest common divisor of all processing
times is fixed. The corresponding approximation factor is then achieved by scaling pmax
and P down by D and by replacing f(t) by f(¢/D). Throughout the analysis, the two
parameters pmax and P will be assumed to be fixed integers.

Due to this discretization, the tie breaking policy of Smith’s rule is becoming a rel-
evant issue. The proof of Lemma 2.6 in the preceding section exploits the fact that
problem instances with ties can be approximated arbitrarily close by instances without
ties, but such continuity arguments are not possible in the presence of the integrality

1.25 1

1.20 | 100 1

50 4
115 8
3t ¢ 20
1.10 1 3T
t5
2 1.05 1 2
t2
1 | | | i I 1.00 7 | | | | | 1
0 100 200 300 400 500 0 100 200 300 400 500 0 250 500 750
P P Pmax
() Cost functions f(t) = t*,¢>, (b) Cost function f(t) = t*> and (c) Cost functions f(t) = t*¢°,
t'% and fixed pmax = 50. values pmax = 20, 50, 100. t'% and fixed P = 1000.

Tight approximation factor of Smith’s rule for monomial cost functions in
dependency of the maximum and total processing time py.x and P, respectively; see
also Table 2.3.

restriction on processing times. In what follows we continue to analyze the variant of
Smith’s rule having the worst possible tie breaking rule, and remark that the approxi-
mation factors for other tie breaking rules may well be smaller.

The analysis is similar to the unparameterized case above. Also here we can show
that in worst case instances all jobs have density 1, and the largest ratio is obtained
when comparing the schedules that sort the jobs in increasing and decreasing order of
the job’s weight, respectively.

Lemma 2.7 and Lemma 2.8 hold when restricting to instances with
integral processing times, maximum processing time pPmae and total processing time P.
The results carry over without any modification of the proofs.

Lemma 2.9 in the unparameterized analysis has stated that worst case instances
consist of one regular job and one line job. The refined analysis will be similar. Instead
of a regular job of length p the instances will contain |[p/pmax| jobs each having a
length of pmax, plus one length p mod ppax job, where p is an integer between 0 and P.
Instead of a line job we will have P — p jobs each having length 1. As we will prove
in the next theorem, one can determine the tight approximation factor of Smith’s rule
for given parameters pm.x and P by finding the value of p which maximizes the ratio
between INC(p, pmax, P) and DEC(p, pmax, P), the schedules which process the jobs of the
instance determined by p, pmax, P in increasing and decreasing order of their processing
times, respectively. In Figure 2.4 and Table 2.3 and we show approximation factors
computed for different cost functions and parameters.

Given the maximum processing time pmqz and the total processing time P,
the tight approzimation ratio of Smith’s rule for problem 1|| > w; f(C;) under the as-
sumption of integral processing times is given by

HDF(INC(p, pmaz, P)
Sup{OPT ‘ maxpj Pmaz; ;pj :P} = maX{DEC(p,pmaz,P) ’ p=0,...,P
J

in case of conver cost functions f, and for concave f it holds that

HDF DEC(pypmax) P)
_ =P\ = ‘ =0, Py
{OPT | ms = P 2. } max{ INC(p pa P) 17770

k Pmax k

P 2 5 10 P 20 50 100 Pmax 2 5 10
5 1.235 2.355 4.233 10 1.268 1.268 1.268 25 1.018 1.070 1.140
10 1.268 2.618 5.179 20 1.287 1.287 1.287 50 1.036 1.144 1.294
15 1.281 2.715 5.617 30 1.293 1.293 1.293 75 1.054 1.219 1.458
20 1.287 2.765 5.833 40 1.289 1.297 1.297 100 1.072 1.298 1.634
25 1.291 2795 5.974 50 1.246 1.299 1.299 125 1.089 1.378 1.820
30 1.293 2.818 6.070 60 1.205 1.300 1.300 150 1.106 1.461 2.017
35 1.295 2.834 6.137 70 1.179 1.301 1.301 175 1.121 1.542 2.221
40 1.297 2.845 6.192 80 1.164 1.302 1.302 200 1.137 1.628 2.435
45 1.298 2.854 6.232 90 1.148 1.302 1.302 225 1.154 1.723 2.661
50 1.299 2.861 6.267 100 1.133 1.296 1.303 250 1.169 1.810 2.891
55 1.299 2.867 6.294 110 1.122 1.281 1.303 275 1.179 1.881 3.118
60 1.300 2.872 6.317 120 1.113 1.262 1.303 300 1.192 1.963 3.351
65 1.300 2.877 6.337 130 1.106 1.242 1.303 325 1.207 2.060 3.599
70 1.301 2.880 6.353 140 1.098 1.225 1.304 350 1.223 2167 3.857
75 1.301 2.883 6.368 150 1.092 1.210 1.304 375 1.239 2280 4.122
80 1.302 2.886 6.300 160 1.087 1.197 1.304 400 1.255 2.395 4.391
85 1.302 2.889 6.095 170 1.082 1.187 1.304 425 1.270 2.509 4.661
90 1.302 2.873 5.841 180 1.077 1.179 1.304 450 1.282 2.615 4.930
95 1.300 2.826 5.579 190 1.073 1.172 1.303 500 1.300 2.793 5.459
100 1.296 2.760 5.327 200 1.070 1.167 1.298 550 1.306 2.902 5.951
200 1.167 1.800 2.860 250 1.057 1.136 1.254 600 1.306 2.925 6.352
300 1.116 1.512 2.139 300 1.047 1.116 1.211 650 1.306 2.925 6.558
400 1.088 1.375 1.813 400 1.036 1.088 1.168 700 1.306 2.925 6.563
500 1.071 1.296 1.630 500 1.029 1.071 1.137 750 1.306 2925 6.563

Pmax = 50 k=2 P = 1000

Numerical values corresponding to the three plots in Figure 2.4. All ta-
bles show tight approximation factors of Smith’s rule for different cost functions t* and
parameters pmax and P. The first subtable shows for three cost functions how the ap-
proximation factor changes for increasing P while ppax is fixed. In contrast, in the
second subtable, the cost function is fixed and three values of py,.x are considered. The
last subtable is analogously to the first one, but with py.x and P exchanged.

Proof. Since the parameters ppax and P are assumed to be fixed throughout the
proof, we use the simplified notations INC(p) and DEC(p) instead of INC(p, pmax, P)
and DEC(p, pmax, P), respectively. The cost of the decreasing schedule is given by

{pr:axJ P—p
DEC(p) = Z Pmax * f(Z : pmax) + (p mod pmax) ' f(p) + Z f(p =+]) 9
=1 j=1

while for the increasing schedule it holds that

P—p
INC(p) = Z f(]) + (p mod pmax) : f(P —p+p mod pmax)
j=1

|]

+ Z pmax‘f(P_p"i'medpmax"i‘i'pmax)'
=1

As in the preceding section we give an explicit proof for the case of convex cost functions
and mark all words and symbols with an asterisk that have to be replaced with their

opposite in order to obtain a proof for concave cost functions. The central argument is
provided by the following claim.

Claim: Consider a problem instance I and a corresponding schedule S. Let ¢, 5, k be
three jobs that are scheduled consecutively in S and which have the characteristics p; =
w;, pj = wj, and pp = wy, > p;. Let I;; be the modified problem instance in which jobs 7
and j have been merged into a single job with processing time and weight p; + p;, and
let S;; be the schedule for I;; obtained from S by replacing ¢ and j with the merged job.
Let I, and Sj;, be defined analogously. Moreover, let S be the reverse schedule of S.
Then

SIS

Sk~ Sij

>*—7

Wil

For the proof of the claim, let ¢ be the point in time where job i starts to be processed
in S, and let ¢ be the point in time where S begins to process job k. Moreover, denote

Az‘j = Sij — S, Ajk = Sjk — S, Aij = gz'j - S, A]’k = Sjk — S .

Exploiting the convexity™ of f we can calculate

Aji _ v Apitpi+pe) = fU+pitp) . Pipk _ Pr (2.20)
Ajj pi- (f(t+pi+pj)— f(t+pi)) T pipj i
and
Ajp i - (f(E+pe+pj) = F(E+pr)) o PEDj _ Dk (2.91)
Aij pi- (ft+pe+pj+pi) — fE+pe+p5) — i Di
Therefore A A
Ik s 20 2.22

Now again using that the proposition A V B is logically equivalent to mA = B, the
lemma is shown by the following implication chain.

* Sii S—f-AZ'j S—I-Aij * S—f—T'Aij
_—= = e = = < = =
Sij S—I—Aij S—FAij - S—I—’I"'Aij

Sij _ S+ Ay S+ Ak _ Sk

— _ = — — — s
Sii S—i—Aij - S-i—Ajk Sjk

< forr>1

nil

where the last implication follows with » = A /A;;, which is not smaller than 1 due to
equation (2.20) and pg > p;, and by additionally utilizing equation (2.22).

In the case of concave cost functions, the last implication follows from the concave
variant of (2.22) and the fact that Aj, > A;;, which is a consequence of the concave
variant of (2.21) and again py > p;. This completes the proof of the claim.

In what follows, we finally prove Theorem 2.17. From Observation 2.16 we know
that the worst case ratio is always established by problem instances where each job
has a density of 1, the worst possible Smith’s rule schedule is equal to INC* and the
optimal schedule is equal to DEC*. Thus, it suffices to show the existence of a worst case
instance that has at most one job whose processing time and weight is strictly between 1
and pmax. We denote the latter kind of jobs as medium jobs.

We use a potential function © mapping problem instances to integers in our analysis.
Defining ppeq(I) as the total processing time of all medium jobs in instance I and nyeq (1)
as their number, define

() = (P+1) pmed(I) = nmea(l) -

We will show that for any problem instance I with more than one medium job there is an-
other problem instance I’ with INC(I")/DEC(I’)>*INC(I)/DEC(I) and O(I") < ©(I).
As the potential O(7) is integral and clearly upper and lower bounded for fixed pmax
and P, it follows that there is a worst case instance with at most one medium job.
The potential function has been chosen such that changes in py.q always dominate any
change in nyeq. This is true because nyeq is upper bounded by P.

Consider a problem instance I with more than one medium job, and let z and y be
the first two jobs that are scheduled consecutively by INC with 1 < p, < p, < Pmax-
Define p, := min{pmax — Py, P — 1}, so that decreasing p, by p. and increasing p,
by p. has the effect that p, becomes 1 or p, becomes pyax. The resulting problem
instance I’ remains legal with respect to parameters ppa.x and P. Moreover, it holds
that ©(I") < ©(I) because the total processing time of all medium jobs decreases.

Let further I” be the problem instance obtained from I by splitting x into a job of
processing time and weight p, —p, and a job of processing time and weight p,. Observe
that also I” is a legal problem instance. Also here O(I”) < ©(I) because either one
of the two new jobs is a processing time 1 job and thus the total processing time of
all medium jobs decreases, or both new jobs are medium jobs and thus pyeq does not
change and n,eq increases.

It remains to show that one of these two modifications does not decrease® the ra-
tio INC/DEC. We assume here that the positions of the jobs z and y in INC(I’)
and DEC(!I”) remain the same as in INC(I) and DEC(Z). This is without loss of gener-
ality, because considering the actual schedules INC(I") and DEC(I’) instead would only
further increase™ INC(I")/DEC(I’). For the same reason it can be assumed that INC(I")
and DEC(I”) are obtained from by the original schedules for I by replacing x with the
two new jobs.

We can directly apply the claim with INC(I) = S;;, INC(I") = Sji, and INC(I") = S
to show that

! 14
INC(TI) < INC(I") or INC(I) o INC(I")

DEC(I) = DEC(I’) DEC(I) — DEC(I") " O

In this chapter, we address complexity issues as well as exact algorithms for single
machine scheduling with generalized min-sum objective. Concerning the former, we
give a first strong NP-hardness result. While so far only the weak NP-hardness for
convex cost was known, we now show that the problem is strongly NP-hard for a very
restricted class of piece-wise linear cost functions, which, in terms of the interpretation
as processor speed, translates into a setting with two alternating speed levels. Turning
toward exact algorithms, we discuss structural insights in the form of order rules which
help to speed up or to allow exact computations in the first place. Throughout the
past decades, great effort has been made to develop fast exact algorithms for the case
of quadratic cost functions, and in this context a considerable number of different
kinds of order rules have been proposed. Following this line of research, we also
address the case of quadratic cost. For this cost function, we enhance the map of
known order rules by proving an extended version of a rule that has been conjectured
by Mondal and Sen [MS00] more than a decade ago.

The results in this chapter are based on joint work with Tobias
Jacobs which was presented at the Proceedings of the 14th Meeting on Algorithm
Engineering € Experiments (ALENEX 2012) [HJ12a]. Parts of the results are also
based on [HJ12b].

The computational complexity of single machine scheduling under a generalized min-sum
objective is a long standing open problem. Prominent examples for which the complexity
is completely unknown are quadratic or concave cost functions, see e.g., [MS00, ABMP10,
SW10]. The few cases for which the complexity is (partially) understood are linear and
exponential cost functions, for which the problem is in P [Smi56, RS84], and convex
cost functions, for which the problem was shown to be weakly NP-hard [Yua92], leaving
open the question of strong NP-hardness. In fact, so far, no problem variant was known
for which the problem is strongly NP-hard. In Section 3.1, we give first results in
that direction by showing strong NP-hardness for piece-wise linear and monotone cost
functions.

In the two sections thereafter, we turn towards exact algorithms for the problem
variant with quadratic cost functions. This topic has already been studied for several
years by different groups of people, see e.g., [Ali93, BK80, DCST 95, GS84, MS00, RS84,
SF62, Tow78]. Most of these works utilize branch-and-bound approaches with pruning
rules based on order rules. We extend this set of known rules by proving an extended
version of a global order rule conjectured by Mondal and Sen [MS00] in 2000. The
resulting improvement to the map of known order rules is illustrated in Figure 3.2. After

the first publication of the results presented here, Diirr and Vasquez [DV14] succeeded to
close the remaining gap by showing that in fact the local order relations in Figure 3.2 (b)
hold on a global level as well. The influence of the different rules on the performance of
various algorithms is evaluated in an extensive experimental study in Chapter 4.

In this section we show the strong NP-hardness of the problem 1| Y~ w; f(C};) for piece-
wise linear and monotone cost functions. In particular, it suffices for the hardness that f
alternates between two different slopes that can be chosen arbitrarily. As mentioned
earlier, this correlates to a processor running at two different speeds. The result is
proven via reduction from the strongly NP-complete 3-PARTITION problem.

Given: Set A of 3m elements from N with B/4 < a < B/2 for all a € A,

1
where B := - %" _,a.

Task: Decide whether A can be partitioned into m disjoint sets Ai,..., A,
with > cqa=Bfori=1,...,m.

The problem 1|| > w;f(C;) is strongly NP-hard for piece-wise linear,
monotone cost functions f.

Proof. Given an instance A of 3-PARTITION, we construct an instance [of
|| Y w;f(C;) with piece-wise linear, monotone cost function f. For each element
aj € A, j = 1,...,3m, we add a job j in I having processing time p; = a; and
weight w; = a;. The cost function f is defined to be piece-wise linear, alternating be-
tween two different slopes r and s with arbitrary r > s > 0. For each £ € NT the slope
during time interval [({—1) B, ({—1) B+1[is r, and the slope during [({—1) B+1, ¢ B[
is s; see Figure 3.1. The cost threshold is set to

o o (r—s)Bm(m+1)
C = s Z a; a; + 5 .
1<i<5<3m

The equivalence of the problems is established by showing that any schedule where some
new job begins at time (¢ — 1) B for each ¢ = 1,...,m has cost C, and every other
schedule has larger cost. This will complete the proof.

As the processing times are integers, no job ever ends inside a slope r interval.
Therefore we can as well assume that the slope is s everywhere, and at each time ({—1) B
for some ¢ € NT there is a point of discontinuity where the constant (r — s) is added to
the cost function. So f can be expressed as

f) = s-t + (r—s)- [;W .

cost f

job j

job 4

T T T

T
1 B 2B 3B time

Geometric interpretation of instances as they occur in the reduction in the
proof of Theorem 3.1. See Section 2.2 for a general explanation of this interpretation.
Every schedule’s cost is lower bounded by the yellow area under the graph of f. Due to
the integrality of the processing times in the reduction, additionally, every schedule has
to pay for the striped area. Moreover, every job j accounts for cost to the amount of
its corresponding darkgray triangle, no matter when it is scheduled. However, if, as for
job i, some multiple of B lies in the interior of its processing interval, the lightgray area
needs to be paid for in addition. 3-PARTITION is reduced to the question whether or not
there is a schedule without any such lightgray area.

Let f = fi+ fo with fi:t+—s-tand fo:t — (r—s)[t/B]. As wj = pj, the cost of a
schedule o with respect to fi is

3m 7
Z wa(j) - S Zwa(i) = S Z a; aj .
7j=1 =1 1<i<j<3m

This expression is independent of the order in which the jobs are scheduled, and it is

equal to the first summand of C. Thus, for minimizing the cost with respect to f we

can ignore f; and determine a schedule minimizing the cost with respect to fs.
Function fy can be further split up into fo = f4 + f2 + ..., where

oo 0 ,t<(¢{—-1)B
S = {7’—3 ,t>{U—-1)B.

For ¢ = 1,...,m, let W, be the total weight of all jobs with completion time greater
than (¢ — 1) B. As the total processing time and weight of all jobs is m B, it clearly
holds that W, > (m — £ + 1) B and so the cost of every schedule with respect to f§
is (r—s) Wy > (r—s)(m—£+1) B. Furthermore, this holds with equality if and only if
a new job starts at time (¢ — 1) B. Therefore, the total cost with respect to fa is at least

i(r—s)(m—ﬁ-ﬁ-l)B = iBﬂ(r—s) = (T_S)Bm(m+1)7

2
/=1 (=1

which is exactly the second summand of C, and this cost is only reached if a new job
starts at each time (¢ — 1) B for £ =1,...,m. O

48 3 Complexity and exact algorithms for min-sum scheduling

. w;
weight w; = IT; i

<]
wj | 2pHpi
[SF62] i pit2p; P
wj
wj pj
Pi
pj processing time
(a)
weight D
— Wi 2

i = pitep; P

LW
wWj 2 pj pi

processing time

pj

(b)

Figure 3.2 The figures show the known order rules for the problem 1| Y} w;C? in
comparability maps with respect to a fixed job j which is compared to any other job i.
In such a map, each job is represented by a point in R? where the first component is
its processing time and the second its weight. For jobs in the white area, even the local
order depends on the time they are scheduled. Figure (a) shows the results known from
previous research, whereas Figure (b) integrates the new insights of this thesis.

3.2 Global order rules

This section is majorly dedicated to the proof of the global order rule conjectured by
Mondal and Sen [MS00], or rather an extended version of it as we will see in Section 3.2.2.
Before, in Section 3.2.1, we introduce various types of order rules whose benefits we will
evaluate in our experiments in Chapter 4.

3.2.1 Types of order rules

We consider five types of order rules, three of which are of the type introduced in
Definition 1.2, i.e., they only depend on the parameters of the two jobs involved. For the
fourth rule, decisions depend on preprocessing steps made for the whole instance. The
last rule will finally combine the first four rules. In the following, the rules are described
in more detail, see also Figure 3.2 and Table 3.1.

In the descriptions of the rules, we will refer to two general jobs ¢ and j with processing
times p; and p; and weights w; and wj, respectively.

rule condition validity

basic pi <pj AN wp > w; holds globally for f monotonically [SDRI0]
non-decreasing

weight w; > w; A w;/p; > w;/p; holds globally for f(t) = t* [Thm. 3.2]

holds locally for f convex [Lem. 3.3]

B-gap w;/p; > B-w;/pj 2-gap holds globally for f(t) =t*> [Thm.3.2]

holds locally for polynomials with [Lem. 3.4]
positive coefficients of degree § > 1

decomposition - holds globally for f(t) = ¢? [Szw98]
combined - holds locally/globally whenever all above rules
do so

Types of order rules. The condition is formulated in such a way that the
stated term implies that ¢ locally/globally precedes j in terms of Definition 1.2.

Intuitively speaking, the basic rule states that short and important jobs have
to be scheduled before long and less important ones. Formally, this can be formulated
as follows. Whenever p; < p; and w; > w; then i globally precedes j, i.e., i <4 j. Sen
et al. [SDR90] showed that this rule holds for every non-decreasing cost function. The
proof is straightforward by using a simple exchange argument.

The weight rule is satisfied whenever w; > w; and w;/p; > w;/p; implies
that ¢ <y j or even i <4 j. The global variant of this rule has been conjectured by
Mondal and Sen [MS00] for quadratic cost, and we prove it in Theorem 3.2 while proving
in Lemma 3.3 that the local weight rule holds for convex cost functions in general.

Note that an inverse variant of the local weight rule holds for concave functions. In
this rule the condition w;/p; > w;/p; is replaced by w;/p; < w;/p; and the proof follows
analogously to Lemma 3.3.

A [-gap rule is satisfied whenever w;/p; > 5 - w;/p; implies that i has
to be scheduled locally/globally before j in an optimal schedule. In Theorem 3.2, we
show that quadratic cost functions observe the global variant of the 2-gap rule, while in
Lemma 3.4, we argue that the local S-gap rule is satisfied by the more general class of
polynomials with positive coefficients and degree § > 1. Recall that this property has
been used in the proofs of Section 2.1.

The decomposition technique has been proposed by Szwarc [Szw98]. It
is particularly designed for quadratic cost functions, and it is majorly based on local
comparability. However, it is not a proper order rule in terms of Definition 1.2, since it
requires preprocessing steps that depend on the whole instance.

Recall that ¢ <y 7 means that in any optimal schedule where the jobs ¢ and j are
adjacent, ¢ must precede j. For quadratic cost functions, the defining inequality of local
comparability (1.1) implies that for any pair of adjacent jobs 7, j there is at most one
point in time ¢;; where the local order changes, i.e., ¢ must be processed before j when
the first of these jobs starts before time ¢;;, and vice versa when they are processed
after ¢;;. This critical point is given by a value of ¢ that satisfies (1.1) with equality,
which is unique in case of quadratic cost.

Let P be the total processing time of all jobs in a problem instance. Any schedule
takes place within the time interval [0, P]. Therefore i <, j holds if ¢;; > P — p; — pj,
and j <¢ ¢ holds whenever ¢;; < 0. In the first step, the decomposition method deter-
mines for all job pairs 4, j if one of these two relations hold. It then tries to decompose
the instance into two subinstances by deriving global order rules from the local ones.
Assume for simplicity that the jobs are indexed such that wi/p; > ... > wy,/p,. The
decomposition method tries to identify a job k such that i < j for all i < k < j. When
such a job is found, it is clear that in any optimal schedule all jobs 1,..., k are sched-
uled before the jobs £+ 1,...,n. In other words, the global order rule ¢ <4 j holds
for every ¢ < k < j. We then also know that 1,...,k are processed inside the time
interval [0, P'] with P’ := p1 4+ ...+ pg, and the jobs k + 1,...,n are scheduled in the
interval [P’, P]. Now the decomposition procedure is recursively applied to these two
job subsets and respective time intervals. Note that the more restricted time intervals
can lead to new local order relations.

This rule is simply a combination of the four rules above. If any of those
rules implies an ordering relation, then so does the combined rule.

In this section, we will prove the global weight and 2-gap rule for quadratic cost functions,
the former being conjectured by Mondal and Sen [MS00]. Along the way, we will also
show that the local weight rule is satisfied by convex cost functions and the g-gap rule
by polynomials with positive coefficients of degree .

Problem 11| Y w; C’j2 observes the global weight rule and the global 2-gap
rule, i.e., for any pair of jobs i and j, we have i <4 j if one of the following sufficient
conditions hold:

Wy Wy

a) w; > w; and — > —%, or
() = J Di = p]}
() =L > 2.5

Di bj

Furthermore, it holds that i =y j or i =4 j if and only if p; = p; and w; = w;.

Proof. Both rules are proven simultaneously by induction on the number of jobs that
are scheduled between a job pair satisfying the respective rule. More specifically, we
show for increasing values of ¢ that there is no optimal schedule where for a pair of
non-identical jobs i, j satisfying (a) or (b) the job j is processed before i and there are
at most ¢ other jobs between them. The base case £ = 0 are the local variants of both
rules. Their proofs are given in Lemma 3.3 and 3.4 for more general cost functions.

By the induction hypothesis, we assume that the theorem holds when, for some
fixed ¢, there are less than £ jobs scheduled between two jobs ¢ and j satisfying prop-
erty (a) or (b). Based on these assumptions, we first show the induction step for (a) in
Lemma 3.5. This lemma is then used in the induction step for (b) in Lemma 3.6. The
proof of these two lemmas will complete the proof of the two global rules.

Finally, note that ¢ =, j implies i =/ j and thus, inequality (1.1) to be satisfied with
equality for any ¢ > 0. In case of quadratic cost, this is equivalent to

2t(wjp; —wip;) = wipj(pj +2p;) —wjipi(pi +2p;),

which in turn implies that ¢ and j are identical. O

We proceed to prove the two local base case lemmas.

Problem 11| > w; f(C;) with convex cost function f observes the local
weight rule.

Proof. Whenever ¢ <, j holds for jobs ¢ and j, then it still holds after the processing
time of ¢ has been made shorter. In terms of the weight rule this allows us to assume
w.lo.g. that w;/p; = w;/p; instead of w;/p; > w;/p;. Thus, either the two jobs are
identical, or w; > wj, and hence, p; < p;. Using these assumptions, we can now rewrite
the defining inequality for local comparability in (1.1) as

f+pitp) = fE+p) _ fU+pitp)— fE+pi)

Di by

where t > 0 is some arbitrary point in time. We now define the function
h:x— f(t+pi+pj)— ft+pi+p;—x).

As the first term is a constant and f convex on R>q, the function h is concave on R>.
Utilizing h, the above inequality reads as h(p;)/p; < h(p;)/pj, which holds true due to

the concavity of f and p; < p;. O

Problem 1|| Y- wj f(C;) observes the local B-gap rule for polynomials f
with positive coefficients and degree B > 1.

Proof. In order to prove the lemma, we first show that it suffices to assume f to be a
monomial ¢ — t7. Consider an arbitrary monomial that is contained in f and which sat-
isfies the gap rule with respect to its degree. By the definition of local comparability, we
know that inequality (1.1) holds for this particular monomial, and this is the case for all
monomials. Hence, choosing the most restrictive gap rule, i.e., the one corresponding to
the highest degree, it follows by summation that (1.1) is also satisfied for f. Furthermore,
the leading coefficient can be omitted due to the standard scaling argument.

Now, assuming f to be a monomial ¢ — 7, we need to show that given two jobs i
and j with w;/p; > B-w;/p; it holds that i <, j. Due to the scalability Observations 2.3
and 2.10, we can assume w.l.o.g. that w; = p; = 1 and hence, w;/p; > . Furthermore,
since f is convex, the general local weight rule of the previous lemma implies the cor-
rectness of the current lemma for the case p; > 1 already, since this implies w; > w;.
Hence, it suffices to prove the lemma for p; < 1.

Analogously to the previous lemma, we consider the defining condition (1.1)
for ¢ <¢ j. Resolving it for w;, we get the necessary and sufficient condition

(t+p +1)8 —(t+1)°
(t+pi+1)F = (t+pi)P

w; > g¢(p;) for each t > 0, where g;:p; —

If we interpret job i as the point (p;,w;) € R?, the function curve of g; represents all
realizations of job i where (1.1) is satisfied with equality for that specific value of ¢, and
all values of (p;, w;) lying strictly above all these curves guarantee i <, j. It is sufficient
to show that the straight line g : p; — B p; lies completely above g; for any ¢ and p; < 1,

because any point (p;, w;) with % > 3 is located on or above g.

We rewrite g; as g and some additive term. It then remains to show that the additive
term is negative

bi
g9e(pi) = 9(pi) — (RS)y rrY: ~ hy(pi)

with
. B _ 8
hi(pi) == B ((t+p¢+1)5_(t+pi)6) _ (t+pz+1;i (t+1)
> B (+pi+1) = +p)’) = Blt+p+1)"

= Blt+p) (E+p+1)" = (t+p)") = 0,

where the first estimate uses the fact that the last term describes a slope which is
not larger than the slope of function = — 2 in point ¢t + p; + 1. Finally, this shows
that g:(p;) < g(p;) which completes the proof. O

In the remainder of this section we prove the two lemmas which cover the induction
step of Theorem 3.2.

Assume that for some fized ¢ Theorem 5.2 holds for any pair of jobs i, j
which satisfy (a) or (b) and between which less than € other jobs are scheduled. Then
rule (a) holds also for the case when there are ¢ jobs scheduled between i and j.

Proof. Assume for contradiction that there is an optimal schedule where job pair i, j
satisfies (a), job j is processed before i, there are ¢ jobs in between, and ¢ and j are
not identical. We make four simplifying assumptions. Firstly, we assume that w; = p;.
This is without loss of generality, because the optimality of a schedule is invariant to
weight and cost scaling as argued in Observation 2.10 and 2.3. Secondly, we can assume
that ¢ is the very last job, since after removing all jobs scheduled after ¢ we obtain
an optimal schedule for the remaining jobs for which we then show the contradiction.
Thirdly, we assume w.l.o.g. that p; > p;. If p; were smaller or equal to p;, then, since (a)
ensures w; > wj, the global basic rule from Section 3.2.1 would immediately lead to a
contradiction. Due to w;/p; > w;/p; = 1, it follows moreover that w; > p;. We can
even assume w; = p;, because lowering the weight of 7 preserves the optimality of the
schedule under consideration. In fact, if there was a better schedule for the instance
with w; decreased, a straightforward calculation shows that this schedule would also be
less costly for the original instance. We relabel the jobs between i and j by 1,...,¢ and
refer to the subschedule 1,...,¢ by S.

We now define a function A measuring the cost increase or decrease when the sub-
schedule S'is interchanged with a job k having identical processing time and weight z—
the job k being an abstraction of the jobs ¢ and j. The function A depends on the
jobs in S, the value of x, and the starting time ¢ of k£ or S, depending on which one is
processed first. However, we suppress the dependence on everything but = by writing

14 r 2 14 2
Az) = Zwr<t+2pm> + :U(t—i—me—i-:U)
r=1 m=1 , m:lr ,
— z(t+az)? - Zwr<t+x+2pm>
r=1 m=1

Whenever A is negative (positive), it is strictly cheaper to schedule S before (after) the
job k. The function A being zero means that both possibilities have equal cost. The
second derivative of A in x is 2 Zf:1(2 Dr — Wr).

This is the point where we require the induction hypothesis. Property (b) and the
fact that w; = p; imply that w, < 2p, for r = 1,...,£. Therefore, the second derivative
of A is strictly positive, and hence, A is strictly convex and has at most two roots. One
of those roots is at = 0, so there is some 2y > 0 such that A(z) < 0 for x € (0,),
A(zp) =0, and A(z) is strictly increasing for > xy. Note that possibly 2o = 0 and A
might be completely non-negative.

The optimal schedule under consideration contains j, 5,7 as a contiguous subsched-
ule. If A(p;) < 0, then one obtains a cheaper schedule by interchanging j and S, a
contradiction to optimality. If A(p;) > 0, then A(p;) > A(p;). In that case consider the
alternative schedule obtained by the following operations: Firstly, interchange j and S,
secondly, interchange j and ¢, and thirdly, interchange S and ¢. The second operation
decreases the cost, due to the local version of the weight rule of Lemma 3.3. The first
operation does not decrease the cost due to A(p;) > 0, but the increase is more than
compensated for by the third operation because A(p;) > A(p;). After all, we obtain a
cheaper schedule, which contradicts the optimality of the original one.]

Assume that for some fixed £, Theorem 3.2 holds for any pair of jobs i, j
which satisfy (a) or (b) and between which less than £ other jobs are scheduled. Then
rule (b) holds also for the case when there are € jobs scheduled between i and j.

Proof. Assume for contradiction that there is an optimal schedule where job pair i, j
satisfies (b), job j is processed before i, and there are ¢ jobs in between. Like in the
proof of Lemma 3.5, we assume w.l.o.g. that w; = p; = 1, and we rename the ¢ jobs
between j and 7 to 1,...,¢ and use S as an abbreviation for that sequence, assuming
no conflicts with the labels of i and j. The job i satisfies w; > 2p;. Moreover, we
can assume that p; < 1 because otherwise the job pair i, j would satisfy property (a),
which is impossible due to Lemma 3.5. Furthermore, is must hold that w; < 1, because
otherwise we would have p; < p; and w; > w;, and the basic rule from Section 3.2.1 would
immediately prove suboptimality. Summarizing, it suffices to analyze the situation w; =
p;j=1>w; > 2p;.

In the following notation we ignore all jobs scheduled before and after the jobs 7, S| 1.
Slightly abusing notation, we refer to the schedule and also to its cost by [j, S,], analo-
gously for other permutations of this job subset.

Claim: [j,Z,S]_ [],S,l] < [Z,j,S]_[Z,S,]]
If that claim is true, then the suboptimality of [4,.S,i] can be shown by calculating
[Z’Svj] < [ZaJaS]i[‘]’%‘]l€]+[]3Sa7f] < []a572})

where the second inequality is due to the local version of the weight rule from Lemma 3.3.

To prove the claim, let ¢ be the point in time when job i completes in the optimal
schedule [7, S,i] . Let further pg be the total processing time of all jobs in S. We regard
the cost caused by these £ jobs as a function F' of the completion time of the last job /.

The left hand side of the claimed inequality accounts for the cost difference of trans-
forming [j,4, 5] into [j,S,¢]. By this transformation the jobs in S become processed
earlier, their cost decreasing by g1, (gain), and job i becomes more expensive, requiring
to pay an additional amount of /1, (loss). On the right hand side of the inequality, [i, j, S]
is transformed into [i, S, j], corresponding to analogous variables gr and ¢r. Recalling
that we denote the cost function of the jobs in S by F', these variables compute as

gr = F(t)— F(t—p;), b = w; (t2—(t—p5)2),
gr == F(t)—-F(t—-1), and lp = t* = (t—ps)?.

To conclude this proof we require the estimate g;, < w; - gr, which is equivalent to
F(t)—F(t—p) < w; (F(t)—Ft—-1)).

The loss terms satisfy 7, = w; fr. We are going to show below that g; < w; - gr, which
implies the claim as follows:

0 < [],Z,S]—[],S,Z] = gL_eL
< w; - (gr — {R)
< gR_ER = [Z,j,S]—[l,S,j]

The first inequality is due to the optimality of schedule [4,.S,4], the second one follows
from £, = w; - £r and the above proposition that g;, < w; - gr, and the third inequality
follows from w; < 1.

It remains to show the proposition g < w; - gr, which is equivalent to proving

F(t)—F(t—p;) < w; (F(t)—F(t-1)).

All we need to know about F'is that it is a non-negative quadratic function that is strictly
increasing on [t — 1,00). As we are reasoning about the difference of function values, the
same argumentation will hold after the function curve of F' has been shifted vertically.
We can also shift the function horizontally if we shift the points of evaluation ¢, t — p;,
and t—1 along with it. For the sake of simpler calculations, we do transformations of that
kind, such that we obtain t—1 = F(t—1) = 0. Then F can be written as F'(t) = at (t+b)
with @ > 0. Furthermore, I’ cannot have a positive root and therefore b > 0.
Utilizing w; > 2p; and t — 1 = 0, we can write

F(t)~F(t—p) = FO)~F(1—p) < a(+b)—a (1-%) (1% +0) .
the right hand side of which can be reformulated to
) w2
a(l+b)—a (1—w,~+(1—%) b +TZ) .
This quantity is strictly smaller than
a(l4+b)—a(l—wi+(1—w)b) = wia(l+b) = w; (F(1)—0),

which is equal to w; (F(t) — F(t — 1)). O

In this section we describe the exact algorithms that we have implemented in order to
evaluate the different global order rules. The rules are treated as a black box in this
section.

We consider an exact algorithm combining the insights of the two major approaches
discussed in previous articles. On the one hand, there are standard branch-and-bound
methods whose intelligence consists of utilizing order rules, the latest work being by
Mondal and Sen [MS00]. On the other hand, Sen, Bagchi and Ramaswamy [SBRI6]
and Kaindl, Kainz and Radda [KKRO1] propose a best-first graph search (BFGS), ex-
ploring the graph in forward (BFGSf) and backward (BFGS}) manner, respectively.
See e.g., [HNRG8] for a general description of the very popular best-first search algo-
rithm A*. The BFGS approaches in [SBRI6, KIKRO1] utilize the lower bound shown
by Townsend [Tow78]. However, regarding the use of order rules for pruning the search
space, they only exploit the rather weak rule by Bagga and Kalra [BK80] which uses the
local version of the weight rule for a limited decomposition of the problem instance. To
the best of our knowledge, global order rules have not yet been integrated into BFGS
methods for the problem 1|)" w; CJZ .

Sen, Bagchi and Ramaswamy [SBR96] showed in their experiments that, com-
paring (forward) best-first graph search BFGSy, best-first tree search and depth-first
search, BFGS;¢ is by far the fastest approach on a set of randomly generated instances.
The experiments by Kaindl, Kainz and Radda [KKR01] demonstrated that BFGS}, is
even faster. Opting for the fastest variants, we will consider BFGS; and BFGSy, which we
further speed up by integrating our rules. However note that for larger instances depth-
first search might become the method of choice due to its lower memory consumption.

We consider BFGS; and BFGSy, based on the best-first
search algorithm A* [HNRG68]. We extend the methods proposed in [SBR96, KKKRO1] by
integrating global order rules to prune the search space. When describing the algorithm,
we focus on BFGSy, since it is slightly less intuitive and faster than BFGS;. At the end
of this section, we discuss on the modifications that are necessary for BFGS;.

In the graph G considered in this context, nodes represent subsets of jobs S. Slightly
abusing notation, we refer to the nodes by the corresponding job sets. Let J denote
the set of all jobs in the instance. From each node S C J there is a directed arc to
node S = S\ {j} for all j € S, i.e., each arc corresponds to a job j, and its cost ¢(S,S")
is set to the cost incurred by job j when scheduling it directly after the jobs in S’ i.e.,

c(8,8) = ¢(S,S\{j}) = wj(zpi)Q.

1€S

Now, each path from J to @) in G naturally corresponds to a schedule for 1|)" w; CJZ,
because the arcs of the path represent a permutation m(1),7(2),...,m(n) of the jobs.
As we perform backward search, the corresponding schedule is w(n), 7(n —1),...,m(1).
In other words, each partial path from J to some node S represents a partial schedule
where the jobs J \ S are processed after the jobs from S. As the cost of a path equals

the cost of the corresponding schedule, there is a one-to-one relation between minimum
cost paths from J to () and optimal schedules for 1| > w; Cj2 .

The remainder of the algorithm is basically to run A* on this graph. Three variants
of an admissible lower bound heuristic A guiding the search are described below. For
the sake of memory efficiency the graph is built dynamically, generating new nodes as
we approach them during the search. Furthermore—and that is the point where we
extend the algorithms in [SBR96, KIKRO1]—a node S is infeasible when there is a pair
of jobsi € J\ S, j € S with i 5,4 j. During the search infeasible nodes are ignored.

For the forward variant of BFGS¢, we consider the same graph as in the backward
variant but with all edges reversed, and hence, with root node (). Now, path from 0 to J
correspond to schedules for 1| > w; CJ2 , and here the permutation 7m does not need to
be inverted.

We continue with a discussion of the used lower bounds, and refer to [HNRGS] for
further details on the A* procedure itself.

In order to test the impact of the different order rules without external
influence of sophisticated lower bounds, we consider a rather basic lower bound besides
Townsend’s lower bound [Tow78] which we describe below. In the context of the above
graph search procedure, a lower bound is a function A on subsets of jobs S. For the
backward variant BFGSy, this corresponds to providing a bound on the cost of a schedule
for the jobs in S, starting at time 0. Inversely, for BFGS¢ this bound needs to be
computed with respect to J\S and time jes Pj- So in fact, h can be formulated as a
function on the start time ¢ of a schedule and on the jobs S C J to be scheduled. The
basic lower bound (B) simply is given by the total cost of all jobs in S when starting
them at time ¢.

Townsend’s lower bound (7T) is based on the local weight rule. He first computes
a schedule by sorting the jobs by non-increasing density w;/p;. Assume for simplicity
that this order is 1,...,n. The optimal schedule can be obtained from that schedule
by a series of local interchange operations where the order of two adjacent jobs i, j
with ¢ < j is changed to j,i. An upper bound on the cost reduction of such an operation
is (w; — w;)p;pj. Townsend computes this upper bound for each job pair ¢,j, and
whenever it is positive it is subtracted from the cost of schedule 1,...,n. This gives a
lower bound on the optimal cost. The relation with the local weight rule is due to the
fact that the amount subtracted for job pair 4, j is zero whenever the weight rule for this
job pair is satisfied. Also observe that Townsend’s lower bound is independent of the
time ¢ at which the schedule under consideration starts.

When referring to a combination of a graph search algorithm with a specific
lower bound, we add the lower bound’s name as superscript to the algorithm name,
e.g., BFGSfB or BFGSE.

Finally, we point out a third lower bound, which stems from our investigations in
Section 2.3. There, we have provided a tight analysis of Smith’s rule with respect to
parameters of the instance. Assuming integral processing times, the tight approximation
factor ag for a set of jobs S has been computed with respect to the maximum processing
time and the total processing time in S. Now, in order to determine a lower bound
on the optimal cost OPT(S) of a schedule for S (starting at time zero), we utilize this
approximation factor. Denoting by HDF(SS) the cost of a Smith’s rule schedule for S, by
the definition of the approximation factor, it holds that HDF(S) < ag - OPT(S). This

yields the lower bound OPT(S) > é - HDF(S) to which we refer as approzimation
factor lower bound. Note that even though our analysis in Section 2.3 was only given
for the case that the schedule starts at time zero, the analogue results hold when the
schedule starts at time ¢ > 0.

Since global order rules are evaluated extremely often during a
run of the algorithm, we transfer their evaluation to a preprocessing step by computing
an n X n comparability matrix. By this, the time for evaluating rules becomes negligible
later on, and moreover, it is independent of the rule used. For checking the feasibility of
a node S’ reached from a (feasible) node S during the main computation, one only has
to test the comparability matrix for the job pairs ¢,j with i € S, j ¢ S’ and 4,5 € S
(1,5 ¢ S for forward search). The number of such pairs is smaller than n.

There are several possibilities to express 1| Y w; Cf in terms of a mathematical pro-
gram. The reason why we have chosen the quadratic integer programming (QIP) formu-
lation below is that it admits to directly add order rules in the form of linear constraints
to the program. We used CPLEX 12.1 for its solution.

For each pair of distinct jobs ¢ < j we introduce a binary variable x;; which is defined
to be 1 if 7 is scheduled before j. In order to ensure that any feasible solution represents
a total order, we add constraints enforcing transitivity by preventing each triple of jobs
to occur in cyclic order. Furthermore, we add a variable y; for each job j representing its
completion time, and a constraint which serves as lower bound on y; depending on the
jobs scheduled before j. The order rules can be easily integrated by fixing the respective
variables x;;. The objective function results as 2?21 wjyjz, where w; denotes the weight
of job j. The full quadratic integer program is given by:

n
: 2
min. g w;Y;
j=1

5 t. 1< myy+ape+ (L—ay) < 2 1<i<j<k<n,
injpi+pj+2(1_$ji)pi < yj 1<j<n
1<j i>j . '

‘Tl] = Z#gj
Tij = J<gt

In this final chapter of the first part of the thesis, we aim at empirically evaluating the
results and insights of the previous chapters. In an extensive computational study we
systematically analyze the influence of different global order rules on the performance
of exact algorithms in case of quadratic cost functions. Concerning the algorithms, we
consider different variants of a best-first graph search algorithm as well as a quadratic
integer programming formulation that admits to add order rules as additional linear
constraints. Moreover, we compare the performance of Townsend’s lower bound and
our approximation factor bound. Finally, we also evaluate the empirical approxima-
tion guarantee of Smith’s rule for different monomial cost functions. Our experiments
are based on sets of problem instances that have been generated using a new method
which allows us to adjust a certain degree of difficulty of the instances.

As the results of the previous chapter, also the results of this
chapter are based on [HJ12a].

After having proved the global weight and 2-gap rule for quadratic cost functions in
the previous chapter, we now aim for evaluating their influence on exact algorithms.
In an extensive computational study, we systematically analyze the performance of six
global order rules in combination with different variants of a graph search procedure
and with our quadratic integer program formulation, both introduced in the previous
chapter. In addition, we gain first insights concerning the experimental performance of
Townsend’s lower bound in comparison to our approximation factor bound, showing that,
even though our bound is performing well, Townsend’s bound seems to be invincible for
quadratic cost. Finally, our worst-case analysis of the approximation factor of Smith’s
rule suggests the natural question for its empirical performance. As we will observe in
our experiments, the optimality gap is less than 1.7 % on average for monomials up to
degree 5, while, for monomials of degree 2, the gap even below 0.2 %.

To the best of our knowledge, all previous experimental work has been based on
instances that were generated by choosing both the weight and the processing time
uniformly and independently at random. From Figure 3.2, one would intuitively expect
that those instances are easier to tackle than instances with a strong correlation between
the processing time and the weight of a job. We have generated our test set using a new
method where this correlation can be set as a parameter. Our experiments reveal that
the difficulty of problem instances indeed increases with the correlation.

weight
weight
weight

processing time processing time processing time
(a) € =0.2 (b) € =0.4 (c) £=08
Three instances generated for parameters & = 0.2, 0.4 and 0.8. Each job j is

depicted as point (p;,w;) € R? with respect to its processing time p; and its weight w;.
The background line corresponds to jobs with density 1.

set n 13 Pmax # inst. per fixed n or £ total # inst.
Sg 25 0.100, 0.101, 0.102, ..., 1.000 100 3 2703
S? 20 0.100, 0.101, 0.102, ..., 1.000 100 3 2703
SEQ 10 0.100, 0.101, 0.102, ..., 1.000 100 3 2703
S, 1,2,...,35 0.5 100 10 350

Parameters of the different test sets.

Our experiments are based on random instances that have been generated using a combi-
nation of uniform and normal distribution. The random instance generator is configured
by the three parameters (n, pmax, §). Parameter n is the number of jobs in the instance,
the parameter pmax specifies the maximum processing time, and £ > 0 controls the
correlation of processing times and weights, with a small value indicating strong corre-
lation. The length p; of each job j is chosen as a uniform random integer between 1
and pmax. The weight w; is then calculated from p; as w; := p; - 2N(0’52), where N (0, £2)
indicates that the exponent is chosen according to normal distribution with mean 0 and
standard deviation £. Note that assuming the minimum processing time to be 1 is with-
out loss of generality when considering monomial cost functions f. This follows from
Observation 2.10 which implies time scalability in this case.

Representing each job j as a point (pj, w;) € R?, Figure 4.1 gives an impression of
the structure of instances generated with respect to different values of £&. The larger
the value £ the further the jobs are spread around the angle bisector. Reconsidering
the global order rules depicted in Figure 3.2 (b), one gets an intuition why £ may be an
important characteristic for the difficulty of an instance: If all jobs lie close to the angle
bisector, then, for a fixed job, most of the other jobs lie in the area where the known global
order rules are not applicable. In contrast, if the jobs are evenly spread over the plane, the
rules will fix the relative order of many more job pairs, and by this, they allow to heavily
prune the search space. In previous computational experiments, as e.g., performed by
Mondal and Sen [MS00], Sen, Bagchi and Ramaswamy [SBRI6] or Kaindl, Kainz and
Radda [KIKRO1], processing times and weights have been generated independently at
random with respect to uniform distribution. This results in computationally rather
simple instances even in the presence of many jobs.

We run our experiments on four data sets. The set S, is used to study the behavior of
best-first graph search (BFGS) and our quadratic integer programming approach (QIP)

with respect to an increasing number of jobs, both algorithms being described in Sec-
tion 3.3. The remaining three sets are generated to investigate the impact of £&. We use
the sets Sf, S€T , and SgQ to analyze BFGS with basic lower bound and Townsend lower
bound, and to analyze QIP, respectively. The parameters according to which these sets
were generated are summarized in Table 4.1. The parameter ranges have been chosen
depending on the memory efficiency of the algorithms, so that the benefits of the different
order rules become visible and still the experiments can be performed on a standard PC.
As a comparative study of the algorithms is not our main purpose, we believe that using
an individual data set for each of them leads to the most meaningful results.

The main focus of our experiments is on evaluating the influence of different order
rules on exact algorithms for quadratic cost functions. Additionally, we compare the
performance of Townsend’s lower bound with the approximation factor bound, and we
assess the quality of solutions computed with Smith’s rule in comparison to the worst-
case approximation guarantees.

In this section we analyze the influence of the different order rules summarized in Ta-
ble 3.1 on the exact algorithms introduced in Section 3.3. Concerning the exact algo-
rithms, we (partially) observed the effect that the backward variants of BFGS were
more efficient than the forward variants, as already realized by Kaindl, Kainz and
Radda [KKRO1]. And clearly, using Townsend’s lower bound, one outperforms the vari-
ants utilizing only the basic bound. For this reason, we consider BFGSE as the default
variant of BFGS in the following discussion, and we additionally investigate BFGSE
and BFGS;F differing from it by the lower bound and the search direction, respectively.
Our QIP approach was not able to handle the same instance sizes as BFGS, and more-
over, we were facing numerical problems in terms of the QIP claiming optimality of
suboptimal solutions. However, this does not suggest that integer programming ap-
proaches are less efficient or less appropriate in general. The proposed formulation was
rather chosen for its property of allowing to easily add order rules than for its efficiency.

We measure the performance of the different algorithm variants and order rules in
terms of the number of generated nodes, as—at least for the BFGS variants—this mea-
sure is independent of the concrete machine on which the experiments are run. Recall
that the global comparability matrix is computed in a preprocessing step, and the corre-
sponding overhead in terms of runtime is negligible. Due to the performance variability
of CPLEX, however, the results of the QIP approach are not machine-independent.

Our results are presented in Figure 4.2 and 4.3 and the corresponding Tables 4.2
and 4.3, demonstrating the performance in dependency of the parameter & and of the
number of jobs n, respectively. The plots read as a matrix whose columns correspond
to the different order rules and its rows to the exact algorithms. As it turned out, the
correlation ¢ is a significant parameter in this context. Overall, we make the following
observations.

The number of generated nodes always
seems to decrease with &, which can be observed on all plots of Figure 4.2. The first row

of the figure shows that the number of comparable job pairs typically increases with &,
which partly explains the influence of this parameter. However, also the performance of
algorithms using Townsend’s lower bound and the performance of QIP improve with &
even when no rules are utilized.

There is a clear correlation
of the number of comparable job pairs and the number of nodes generated by the algo-
rithms. This effect is especially strong, when considering BFGS without the advanced
lower bound. Figure 4.2(b) reads almost as a mirrored image of Figure 4.2(a). The
correlation is less pronounced for QIP due the additional elaborate techniques utilized
within the QIP solver.

The 2-gap rule performs
rather bad in general, and in particular bad for small £&. This can be explained by
comparing Figures 3.2 (b) and 4.1, where one can observe that especially for small &,
there is a high probability that for every job almost all other jobs lie within the “cone”
not covered by the 2-gap rule.

As already observed by
Mondal and Sen [MS00]—and being the reason for conjecturing the global weight rule—
comparing the basic rule with the weight rule, one clearly sees the benefit of strengthening
the basic rule to the weight rule; see columns 1& 3 in Figure 4.2. The effectiveness can
be explained by the fact that the weight rule allows to compare jobs with similar ratio
of weight and processing time; see Figure 3.2 (b). This also is the reason for the weight
rule being by far the most efficient rule for small values of £&. As one can observe from
Figure 4.2, in particular the point clouds of the graph search algorithms using this rule
are very compact, which indicates that the performance is reliable.

From the fifth column
of Figure 4.2, one can see different clusterings effects in the plots for the decomposition
rule. One observation is that the number of comparable jobs is typically either small or
large, and also the performance of the algorithms tends to be either very bad or very
good. An explanation of this effect is the recursive nature of the rule: Whenever the
problem can be successfully decomposed into two subproblems, there seems to be a high
probability that these subproblems can be further decomposed. In particular, many of
the low correlation instances could be almost completely decomposed.

One can also observe clusters along certain horizontal lines. In Figure 4.2, the points
on these lines correspond to the instances that could be decomposed only once. When
such an instance splits into a set of k jobs to be processed first and another set of
size n — k to be processed thereafter, this immediately results in k - (n — k) comparable
pairs of jobs, corresponding to a horizontal line at exactly this height.

The combined rule of course profits from
the advantages of all other rules, and hence, as one would expect, it performs best. For
small £, the good performance stems from the weight rule, and for large £ it additionally
benefits from the decomposition.

Comparing the number
of generated nodes by backward and forward search in Table 4.2 (c) and (d), one can
observe that in particular for the harder instances with small values of £ there are settings
where BFGSE generates some hundred thousands nodes less than the BFGS;F. This has
also been observed by Kaindl, Kainz and Radda [KKRO1]. However, as soon as one

utilizes the weight rule, the effect reverses and forward search is slightly better for all
settings of €. Finding a theoretical explanation for this observation remains an open
question.

In order to
investigate the asymptotic behavior of the algorithms, a series of tests has been run for
instances with fixed £ = 0.5 and varying number of jobs; see Figure 4.3. Also here it
turns out that the weight rule leads to good and stable results, which are only improved
by the decomposition on some instances.

Even though not being the main focus of our experiments, we also give a very brief
evaluation of the three lower bounds proposed in Section 3.3. We evaluate the lower
bounds, assuming schedules to start at time zero with no jobs scheduled yet, and consider
the relative cost to the optimum.

In Figure 4.4 (a), we show the behavior depending on the number of jobs n. Consider-
ing the basic lower bound, it gets worse with increasing n, which is obvious as it assumes
all jobs to start at time zero. On the other hand, the approximation factor bound gets
better with increasing n, which is exactly what one would expect from our parameterized
analysis of Smith’s rule in Section 2.3: Considering Figure 2.4 (a) and (b), one can ob-
serve that for a fixed maximum processing time, the approximation factor gets smaller
when the total processing time increases, and inversely, the lower bound gets larger.
Even though also slightly showing the effect of performing better for larger instances,
Townsend’s lower bound is much more stable. Considering the behavior of the bounds
depending on the correlation parameter &, as shown in Figure 4.4 (b), one can observe
that the performance of the bounds is almost independent of £.

Finally, comparing the three bounds, Townsend’s lower bound clearly outperforms
the approximation factor bound, achieving for almost all considered instances factors
above 0.97. In contrast, the approximation factor bound gets rarely better factors
than 0.96, and, additionally, it is also computationally more expensive. Still, it achieves
factors of 0.94 and higher for instances with 25 and more jobs in most of the cases, and
the factor seems to be further increasing with n. Moreover note that Townsend’s bound
is restricted to quadratic cost while the approximation factor bound allows for arbitrary
monomial cost. The basic lower bound cannot compete with the other bounds achieving
factors under 0.2 on almost all instances.

In Section 2.2, we have provided a method for computing tight approximation factors
of Smith’s rule for convex cost functions. For monomials t2, t3, t* and t° we obtain
worst-case factors of 1.31, 1.76, 2.31 and 2.93, respectively. Utilizing our parameterized
analysis in Section 2.3, these factors further reduce to 1.06, 1.12, 1.18 and 1.23 for the
considered test set SéT , respectively.

However, the results of our experiments shown in Figure 4.5 and Table 4.4 demon-
strate that even these very small worst-case bounds on the performance guarantee are
an overestimate of the outcome of the actual cost on non-malevolent instances. In fact,
Smith’s rule is very often close to optimal. Even though the optimality gap is very
small for all considered monomials, one can still observe the approximation ratio slightly
degrading for higher degree monomials.

300 1 F 1 F 1 F 0 F 0 F g
200 S 1+ 1+ 1+ 1t g
100 | S 1+ e 1+ 1t g
0 ‘ ‘ 1 o]] 1 o ‘] 1 o]] 1 o ‘] 1 o]] i
0.1 04 07 10 0.1 04 07 10 01 04 07 10 01 04 07 1.0 0.1 04 0.7 1.0 0.1 04 0.7 1.0
none basic 2-gap weight decomposition combined
(a) Number of comparable job pairs in dependency of £ for set SET . This parameter
is independent of the used algorithm.
106 | 4 L d L 4 L 4 b 4 b il
104 | 4 L d L 4 L 4 b 4 b 1
102 | 4 L 4 L q L d b 4 b 1
10° & I I d o I I 0 b I I 0 b I I i 1 1 i 1 1 n|
0.1 04 07 10 0.1 04 07 1.0 01 04 0.7 1.0 0.1 04 O. 1.0 0.1 0.4 o. 1.0 0.1 0.4 0.7 1.0
none basic 2-gap weight decomposition combined
. B . B
(b) Number of generated nodes with BFGS}; in dependency of £ for set S¢'.
106 b 4 = H b H b 4 b 4 b 4
104 | 4 L 4 L 4 L 4 b 4 b 1
102 | 4 L 4 L d L d b 1 b 1
100 & I I d o I I 0 o I I 0 o I I i I I i I I |
0.1 04 07 10 0.1 04 07 1.0 01 04 07 10 0.1 04 07 1.0 0.1 04 O. 1.0 0. 0.4 0.7 1.0
none basic 2-gap weight decomposition combined
(c) Number of generated nodes with BFGSY in dependency of ¢ for set Sg.
106 | 4 L d L 4 L I 4 b il
104 | {1 L 4 L 4 L 4 b 4 b 1
102 | 4 L d L d L 1 b 4 b 1
10° & L L i R L L 0 o L L 0 o L L O b I I O b I I |
0.1 04 07 10 0.1 04 07 10 0.1 04 0.7 1.0 0.1 04 O 1.0 0.1 0.4 o. 1.0 0. 0.4 0.7 1.0
none basic 2-gap weight decomposition combined
: T . T
(d) Number of generated nodes with BEGS; in dependency of & for set S¢ .
106 b 4 b H b H b 4 b 4 b 4
104 b i b | b | b 4 L 4 L 4
102 | 4 L 4 L d L 4 b 4 E 1
100 & I I d o I I R I I N I I 0 b i L 0 b | I |
0.1 04 07 10 0.1 04 07 10 01 04 07 10 0.1 04 07 1.0 0.1 0.4 O. 1.0 0.1 0.4 0.7 1.0
none basic 2-gap weight decomposition combined

(e) Number of generated nodes with QIP in dependency of & for set SgQ.

Study on the influence of £ on the performance of several variants of al-
gorithms. Each row shows the results for one particular method (except the first one,
showing the number of comparable job pairs), whereas the columns correspond to the
different rules. Note that except for the first row all plots are shown with respect to
logarithmic y-scale. The corresponding numerical values can be found in Table 4.2.

(a) Number of comparable job pairs in dependency of ¢ for set Sg . This parameter is independent of

the used algorithm.

none decomposition basic weight 2-gap combined
3 z o z o z o z o z o z o
[0.1,0.2] 0 0 32 59 17 6 166 24 0 0 171 31
[0.2,0.3] 0 0 82 94 27 9 177 22 2 4 198 40
[0.3,0.4] 0 0 143 111 35 10 183 21 12 11 225 44
[0.4,0.5] 0 0 189 103 42 11 191 21 33 18 247 39
[0.5,0.6] 0 0 210 98 49 13 197 20 57 22 258 34
[0.6,0.7] 0 0 247 74 57 15 206 18 85 22 273 24
[0.7,0.8[0 0 262 51 61 14 210 20 103 24 278 19
[0.8,0.9(0 0 269 50 68 16 214 17 122 24 282 15
[0.9,1.0] 0 0 279 27 70 15 219 18 137 22 286
(b) Number of generated nodes with BFGSE in dependency of ¢ for set S?.
none decomposition basic weight 2-gap combined
13 1) o z o %) o 1) o 1% o j%) o
[0.1,0.2] 1034765 11925 676701 420323 133124 98308 461 310 1034061 1985 441 319
[0.2,0.3] 997780 33195 441626 440484 63078 55730 387 256 869509 219662 314 267
[0.3,0.4] 938984 55633 299069 402138 35561 32958 324 201 459519 295785 207 188
[0.4,0.5] 866710 76134 157229 307812 23541 20238 313 308 187798 181561 138 151
[0.5,0.6] 785472 94806 78038 216704 15877 13549 258 173 76318 108707 93 104
[0.6,0.7] 692690 104086 35482 140864 11401 9192 218 137 27924 38837 64 81
[0.7,0.8] 645734 114820 19409 88665 9121 7253 197 122 17504 28448 54 55
[0.8,0.9(565937 102707 1510 17620 6945 5265 171 110 7203 8949 40 22
[0.9,1.0] 511263 106555 2304 24183 5745 4633 158 95 4302 4770 38 22
(c) Number of generated nodes with BFGST in dependency of ¢ for set Sg.
none decomposition basic weight 2-gap combined
13 z o %) o z o z o z o z o
[0.1,0.2] 306370 385620 270536 376950 113563 155257 906 737 306362 385626 889 746
[0.2,0.3] 88879 89949 62858 80947 29724 33245 570 362 87808 89720 506 391
[0.3,0.4] 45671 49102 22735 44584 15396 19229 425 231 40882 45805 292 250
[0.4,0.5] 27925 31294 10445 28004 8358 8858 343 181 21548 25345 187 177
[0.5,0.6] 18636 16088 4686 12170 5409 4387 288 140 12002 12066 130 128
[0.6,0.7] 13208 11866 2355 8895 3530 2789 240 119 6621 7225 84 83
[0.7,0.8] 10262 8081 771 2861 2778 1818 216 131 4186 3076 70 78
[0.8,0.9(8023 7339 618 3026 2145 1631 193 81 2954 2788 56 39
[0.9,1.0] 8021 8087 209 1039 1921 1529 178 89 2117 1662 48 23
(d) Number of generated nodes with BFGS{ in dependency of ¢ for set Sg‘
none decomposition basic weight 2-gap combined
3 z o %) o z o z o z o z o
[0.1,0.2] 737509 807688 659819 791695 207754 300922 853 776 737505 807691 839 783
[0.2,0.3] 225974 339591 168480 311072 49115 73362 489 350 220431 337973 443 368
[0.3,0.4] 112643 158024 66357 135290 22721 31912 359 210 92513 132429 263 220
[0.4,0.5] 58294 99801 24792 87010 10241 13661 271 145 35780 54953 168 148
[0.5,0.6] 33949 50120 11269 32077 6348 6802 227 127 16856 25629 126 127
[0.6,0.7] 18459 31556 3873 19710 3538 3911 183 101 7420 15061 81 78
[0.7,0.8] 14288 19799 1549 7708 2714 2731 169 128 4527 5809 70 T
[0.8,0.9] 8778 8914 1027 4552 1845 1551 143 62 2549 2483 56 35
[0.9,1.0] 7262 17281 335 2019 1418 1716 129 77 1576 1515 49 22
(e) Number of generated nodes with QIP in dependency of ¢ for set SgQ.
none decomposition basic weight 2-gap combined
13 z o %) o oz o z o z o %) o
[0.1,0.2] 41859 35145 19041 30300 10041 19764 294 473 41887 35129 255 441
[0.2,0.3] 20754 14559 5763 11933 4615 7963 131 171 20696 14530 98 170
[0.3,0.4] 15204 16337 3184 10530 3027 6128 79 115 12782 13518 49 108
[0.4,0.5] 11965 19189 1088 3928 3124 20467 47 59 8244 6951 23 45
[0.5,0.6] 9294 7454 375 2003 1558 3540 31 41 5439 6787 13 34
[0.6,0.7] 7555 7659 126 780 849 2055 24 39 2572 5292 9 20
[0.7,0.8] 6173 8914 29 176 547 1721 18 28 1379 2853 6 15
[0.8,0.9[4612 7261 15 114 557 2209 14 24 962 2866 4 8
[0.9,1.0] 3060 5596 8 30 270 1399 11 22 391 1531 3 12

Numerical values corresponding to the plots in Figure 4.2. Averages have been
taken over all results in the respectice parameter range. The average and the standard
deviation are denoted by @ and o, respectively.

600 [1 F 1 F 1 F 1F 1 F
400 | 1 1+ ' 1 '
200 | 1t 1+ ' 1t '
O s s s i e o i [o e o o i s [i e o [S S S
0 10 20 3 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
none basic 2-gap weight decomposition combined
(a) Number of comparable job pairs for in dependency of n for set S,,. The yellow
line shows the maximum possible number of comparable pairs.
106 | 1r 1r 1r 1r 1r
10 1r 1r 1r 1r 1r
102 | 1r 1r 1r 1r 1r
100 b=t B W e e e B
0 10 20 30 0 10 20 3 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
none basic 2-gap weight decomposition combined
(b) Number of generated nodes with BFGS in dependency of n for set S,.
100 | 1r 1r 1r 1r 1r
10 1r 1r 1r 1r 1r
102 | 1r 1r 1r 1r 1r
T e e e e e e e e e e s e e [e e e e e e e e e e e e e = e e e e e e e = [e e e e e
0 10 20 3 0 10 20 30 0 10 20 30 O 10 20 30 0 10 20 30 0 10 20 30
none basic 2-gap weight decomposition combined
. T .
(¢) Number of generated nodes with BFGS; in dependency of n for set S,,.
100 | 1r 1r 1r 1r 1r
10 1r 1r 1r 1r 1r
102 1r 1r 1r 1r 1r
100 b=t B W B e e B

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

none basic 2-gap weight decomposition combined

(d) Number of generated nodes with QIP in dependency of n for set S,. Due to
numerical problems and since QIP did not terminate within reasonable runtime
for n > 18 the computation was stopped at this point.

Study on the influence of n on the performance of several variants of al-
gorithms. Each row shows the results for one particular method (except the first one,
showing the number of comparable job pairs), whereas the columns correspond to the
different rules. Note that except for the first row all plots are shown with respect to
logarithmic y-scale. The corresponding numerical values can be found in Table 4.3.

(a) Number of comparable job pairs for in dependency of n for set S,. This parameter is independent
of the used algorithm.
none decomposition basic weight 2-gap combined
13 %] o %] o (%] o g o (%] o %] o
1-5 0 0 3 3 1 3 3 0 3 3
6-10 0 0 24 11 4 3 19 8 4 4 25 10
11-15 0 0 62 22 12 5 52 14 13 7 68 17
1620 0 0 116 47 23 7 99 23 25 13 134 28
21-25 0 0 172 88 39 12 167 31 41 19 213 43
26-30 0 0 253 137 56 14 246 34 55 25 319 65
31-35 0 0 352 185 81 18 340 48 85 26 447 7
(b) Number of generated nodes with BFGS! in dependency of n for set S,,.
none decomposition basic weight 2-gap combined
13 %] o %] o (%] o g o %] o (5] o
1-5 8 6 5 3 7 5 6 3 8 5 5 3
6-10 76 46 21 31 52 28 21 10 63 36 14 8
11-15 400 222 78 125 239 144 54 23 303 175 31 19
16-20 3363 3484 431 780 1268 1246 130 47 2292 2689 55 30
21-25 14150 14712 5201 12483 4513 4623 263 194 9207 8902 147 185
26-30 59986 76865 23683 72717 14199 14875 435 197 39923 57776 219 221
31-35 186898 163108 65884 145362 37033 30402 846 578 118101 100221 341 363
(c) Number of generated nodes with BFGSY in dependency of n for set S,,.
none decomposition basic weight 2-gap combined
13 %] o %] o %] o g o %] o 2] o
1-5 9 6 5 3 8 5 6 3 8 6 5 3
6-10 86 82 26 62 53 32 20 9 64 47 14 8
11-15 532 351 117 276 259 146 50 23 369 238 30 18
1620 4157 3486 739 1533 1180 912 110 41 2395 2218 54 30
21-25 25456 43240 12726 40534 4936 5520 203 134 13855 21566 130 140
26-30 119941 174395 59417 152481 17163 18471 350 198 65075 88857 206 207
31-35 544937 761127 188273 540548 49158 50195 599 405 269153 403295 267 256
(d) Number of generated nodes with QIP in dependency of n for set S,,.
none decomposition basic weight 2-gap combined
13 %] o %] o %] o g o %] o (5] o
1-5 5 8 1 3 4 6 1 2 5 8 1 2
6-10 2804 5044 364 2445 186 367 16 32 1551 3721 8 22
11-15 98024 119358 18824 101553 75204 418929 118 146 69049 96878 51 99
16-18 387835 348327 80588 249440 159864 174137 566 652 331572 325101 151 260

Numerical values corresponding to the plots in Figure 4.3. Averages have been
taken over all results in the respective parameter range. The average and the standard
deviation are denoted by @ and o, respectively.

1.0

0.8

0.6

0.4

0.2

0.0

4 1.00
1 o095t
0.90
towns
apx || 0.85 F
== basic towns
S] apx
L T I { 0.80 |, | -
10 20 30 0 10 20 30

(a) Instances of set Sp.

0.98

0.96

0.94

0.92

0.90

(b) Instances of set S .

Comparison of the basic lower bound (basic), Townsend’s lower bound (towns)
and the approximation factor lower bound (apx) relative to the optimal cost.

1.04

1.03

1.02

1.01 |

+3

+5

Experimental performance guarantee of Smith’s rule for the problem
1] S w; CF on set SF, plotted in dependency of the parameter £. The plots corre-

J

spond to the monomial degrees kK = 2,3,4 and 5. The corresponding numerical values
can be found in Table 4.4.

t? & t t°
13 & o 5] o & o & o
[0.1,0.2] 1.00182 0.00092 1.00540 0.00276 1.01044 0.00543 1.01690 0.00884
[0.2,0.3] 1.00123 0.00067 1.00346 0.00178 1.00659 0.00357 1.01063 0.00597
[0.3,0.4] 1.00096 0.00055 1.00263 0.00127 1.00488 0.00247 1.00777 0.00408
[0.4,0.5] 1.00086 0.00055 1.00224 0.00129 1.00402 0.00223 1.00627 0.00343
[0.5,0.6] 1.00083 0.00054 1.00205 0.00112 1.00363 0.00201 1.00565 0.00322
[0.6,0.7] 1.00066 0.00048 1.00170 0.00096 1.00306 0.00177 1.00478 0.00294
[0.7,0.8] 1.00064 0.00049 1.00161 0.00100 1.00285 0.00169 1.00442 0.00264
[0.8,0.9] 1.00063 0.00055 1.00145 0.00091 1.00247 0.00157 1.00376 0.00255
[0.9,1.0] 1.00064 0.00059 1.00153 0.00108 1.00260 0.00189 1.00391 0.00300

Numerical values of the performance guarantee of Smith’s rule for the plots in
Figure 4.5. Averages have been taken over all results in the respective parameter range.
The average and the standard deviation are denoted by & and o, respectively.

One major focus of this part of the thesis was a fundamental understanding of the
performance guarantee of Smith’s rule for the problem 1|| > w; f(C;) under convex
and concave cost functions f, and monomials as a prominent subclass in particular.
All our results hold for the case when the jobs are jointly released at time zero. A
natural question is whether similar techniques can be used to analyze the performance
also for non-uniform release dates (and job preemption). However, already one of our
first arguments—the assumption of uniform densities—breaks down when the jobs can
be released at different points in time.

Concerning the complexity, we have shown that the problem 1| Y w; f(C;) is
strongly NP-hard for monotone and piece-wise linear cost functions, which is the first
strong NP-hardness result for this general problem. As the cost functions in the reduc-
tion are neither concave nor convex, the computational complexity of the problem for
concave cost functions—and in particular (concave and convex) monomials CJ’?, kE>0—
remains fully open while for convex functions, for which the problem is known to be
weakly NP-hard [Yua92], it is still an open question whether the problem is strongly
NP-hard. We believe that a proof of NP-hardness for these cases must have a funda-
mentally different structure than the proof given in Section 3.1, because there, the hard
instances cannot only consist of jobs with density 1. Restricting to instances with uni-
form density, optimal schedules for convex or concave cost functions simply result from
sorting the jobs by their weights.

On the positive side, Megow and Verschae [MV13] proposed a PTAS for general cost
functions and an FPTAS for piece-wise linear functions in case of the number of linear
segments being a constant. Together with the hardness result mentioned above, this
gives a clear picture of the complexity status for this class of cost functions: For the
number of linear segments being a constant, the problem allows for an FPTAS while
being weakly NP-hard, and on the other hand, for an arbitrary number of of segments,
the problem admits a PTAS while being strongly NP-hard. Hence, in both cases the
complexity results are tight.

Note that strong NP-hardness implies the non-existence of an FPTAS only if the
objective function value is integral, and of course, if P #NP [GJ79]. In our case, by
applying scaling arguments to the weights, processing times and piece-wise linear cost
function, one can assume w.l.o.g. that the former two values and the different slopes of
the function are all integral, yielding integral objective function values as well.

Addressing index algorithms, such as Smith’s rule, Rothkopf and Smith [RS84]
showed that there are in fact only two classes of cost functions which allow for opti-
mal index algorithms: linear and exponential cost functions. Considering convex and

concave cost functions, we have given a thorough analysis of the performance guarantee
of Smith’s rule, yet, it is unclear whether there are other index algorithms which per-
form better for particular cost functions or which even perform better in general. For
monomial cost functions f(t) = t* with k > 0, a natural candidate for an index function
might be d(p;, w;) = w;/ pé? . However, similarly to our analysis of Smith’s rule, one can
observe that the corresponding index algorithm cannot achieve an approximation guar-
antee better than 2¥, and it is not clear if any other index algorithm can improve upon
Smith’s rule. So in general, given a fixed cost function, it is an open problem whether
Smith’s rule is already the best possible index algorithm or if there exist other index
algorithms that achieve smaller approximation guarantees for that particular function.
Considering order rules, we have shown that the weight rule holds for quadratic cost
functions on a global basis, and we have seen in a computational study that this simple
rule helps to drastically reduce the search space in exact algorithms. In additional
experiments on higher degree monomials, we observed that, at least on our test sets,
the use of the global weight rule never led to suboptimal solutions. This makes us
believe that it holds for general monomials of degree at least 1, or even for convex
cost functions, and inversely, that monomials of positive degree smaller than 1, or even
concave functions, observe the inverse variant of the weight rule. However, note that
one can easily construct examples of general cost functions, neither being convex not
concave, for which neither the weight rule nor its inverse variant hold, not even locally.

Part Il

Integrated Sequencing and Allocation

During the industrial revolution in the late 19th century, production processes were
widely reorganized from individual manufacturing to assembly line production. The
high efficiency of this new concept helped to drastically increase the productivity so
that nowadays, it is one of the standard manufacturing concepts in several branches
of industry. While over the years, assembly lines improved and got technically more
advanced, production planning at the same time became more and more complex. The
awareness for the central importance of elaborate schedules, though, raised only slowly.
Still, surprisingly many companies do not exploit the full potential of their production
lines due to suboptimal planning. It is not unusual that even today production plans are
designed manually without any support of planning or optimization tools. Of course, this
does not necessarily imply poor plans. In the contrary, due to the long-term experience
of the planners, these schedules are very often of impressive quality. However, if the
problem becomes too complex it is basically impossible for a human being to oversee the
problem as a whole, and hence, to manually produce good plans.

The addressed complex scheduling problems share major problem characteristics.
One of the most prominent points is the sequencing aspect which arises naturally from
the architecture of assembly lines. Due to complex side constraints, however, the overall
scheduling problem usually goes far beyond basic sequencing problems known from the-
oretic literature. In most of the cases, the actual processing sequence is just one of many
strongly interdependent decisions. Once a sequence is chosen, still certain allocations
have to be made—e.g., the allocation of resources or the performance of security regula-
tions. Such decisions may depend not only on pairs of adjacently scheduled jobs but also
on whole subsequences or even the entire sequence in the worst case. As a consequence,
the quest for a good processing sequence can only be answered accurately by taking into
account the ensuing allocation problem as well.

Currently, for most of those problems (sufficiently fast) exact algorithms are out
of reach. Computationally expensive heuristics are usually also not an option, since
planning tools are utilized on a daily basis, and for this reason underlie strict runtime
limits. When designing simple heuristics, on the other hand, one is often faced with
problems stemming from the tangle of side constraints. In most of the cases, it can hardly
be avoided that the sequencing is tailored to only some of the many side constraints,
leading in the end to rather poor results.

In this part of the thesis, we investigate a generic integrated approach which aims
to avoid these difficulties. Based on a black box sequence evaluation, the algorithm
elaborately examines a large number of processing sequences. In this way, the highly
problem specific allocation problem is separated from the problem unspecific sequencing

task. From a user’s perspective, this allows to solely focus on the allocation problem
which is usually far more manageable than the overall scheduling problem. This makes
the approach very user-friendly, and, as we will see in examples in the following chapters,
also very successful. As a nice side effect, the approach generates not only one but several,
hopefully good solutions such that expert planners can take the final decision according
to criteria possibly not even covered by the actual model. Since it is unlikely to be able
to provide a priori performance guarantees, we assess the performance of the algorithms
via instance-based lower bounds.

Before addressing related algorithmic challenges, we will first give an idea how dif-
ferent planning problems and the underlying allocation problems might look like.

The automotive industry is one well-known example for assembly
line production. Cars are usually manufactured while hanging or lying on assembly belts.
Due to the constant speed of the lines, and hence, the limited time for each working step,
it is not possible to install certain options like sunroofs or special navigation devices at
every car in the sequence but only at a certain fraction. Violations of the constraints are
measured by a penalty function, representing the cost for additional workers required
or the additional time needed. This is a classic problem introduced in [PK86] already
in the 1980s. It has prominently attained attention when being addressed in the 2005
ROADEF Challenge' in cooperation with Renault. The results of this competition are
summarized in [SCNAO8]. In this problem, the underlying allocation problem is trivial.
Once the processing sequence is chosen, only the penalty cost needs to computed, and
no further decisions have to be taken.

The food industry is characterized by a large and still increas-
ing variety of products which is especially noticeable at the last production stage, the
packaging or filling lines. Here, due to special company labels, different destinations
or packet sizes, one base product again splits up into several subproducts. This makes
the last stage very often the bottleneck of the whole production. As a result of the
large number of products, (sequence-dependent) setup operations play a central role in
production planning. Focusing only on this aspect, the problem of computing a min-
imum setup processing sequence can be formulated as asymmetric traveling salesman
problem (ATSP). However, there are usually additional side constraints that make the
problem much more complex than ATSP. In most of the cases, this results in non-trivial
allocation problems. Classic constraints in this area stem from the limited shelf-life of
the products or from hygiene regulations. An overview of typical constraints in food
industry and at packaging lines, respectively, can be found in e.g., [AvD09, vDGS93].
Additional problem-specific constraints from cheese, ice cream or dairy production are
discussed in [CvB93, KPG12, KPG10].

In Chapter 10, we will address a related problem from filling lines in dairy industry
which is based on a cooperation with Sachsenmilch. There, to avoid the expiry of
products on stock, the inventory should never exceed a certain threshold, leading on
the planning side to a minimum time period to keep between the processing of two lots
of the same product. On the other hand, hygiene regulations enforce regular cleaning
procedures at maximum intervals. Since the cleaning procedures can replace standard
setup work, this leads to a tradeoff between scheduling the cleaning procedures as late

"http://challenge.roadef.org/2005/en/

http://challenge.roadef.org/2005/en/

as possible while alternatively, using them to replace time-consuming setup work or to
satisfy minimum time periods between jobs of the same type. This gives the allocation
problem a packing/covering flavor with respect to different criteria.

The final branch of industry we want to point out is steel industry. It
provides complex sequencing problems at almost every stage of production. Some of
many examples where such problems occur are the strand casting process as one of the
first production stages, the hot and cold rolling mills later on, and the coil coating lines
at the very end; see e.g., [BT06, Cow03, TLRYO01]. A classic constraint that appears
in many of the related scheduling problems is the so called coffin shape. It asks for
an ordering of the items so that their width slightly increases for the first few items
and decreases afterwards. The reasons for demanding this is that the slabs or coils
are grooving the used rollers at their borders, and hence, scheduling the items in the
wrong order would lead to visible grooves on subsequent items. Consequently, if the
items are not processed in a coffin shape manner, the roller needs to be replaced which
delays the further production. There are similar ordering criteria with respect to other
characteristics, which in total lead again to an ATSP-like subproblem (if ignoring the
initial increase of the width in the coffin shape). Still, similar to the problems from food
industry, there are usually further side constraints that go far beyond ATSP. A class of
such constraints is due to the temperature of the processed items which plays a crucial
role in many production steps. To avoid the items to cool down, it is necessary to limit
the waiting times between different processing stages, and hence, it may be necessary to
take into account preceding stages when planning.

In the following chapters, we will discuss a complex coil coating problem in full detail.
As we will see, the non-ATSP part of the allocation problem stems from so-called shuttle-
coaters. This work is the main contribution of the second part of this thesis. It is based
on a cooperation with Salzgitter Flachstahl and PSI Metals.

Keeping in mind these examples, we turn towards the challenges of actually imple-
menting our generic algorithmic approach for a concrete problem. When doing so, the
most elaborate part is usually the design of algorithms for the allocation problem which—
to serve as a proper subroutine—have to be sufficiently fast. Due to the large number of
sequence evaluation calls, we cannot afford allocation algorithms with more than linear
or quadratic runtime. In many cases, this allows again only heuristics. Their quality
goes very often hand in hand with a good understanding of the problem, not only from
the experimental but also from the theoretical perspective. Structural insights gained in
the analysis can provide essential ideas for the design of algorithms.

Such insights may be, for instance, the problem’s complexity, whether or not the
problem allows exact pseudo-polynomial time algorithms, or to which extend we can
expect to approximate optimal solutions. In our particular case, it is mostly easy to
observe that the overall scheduling problem is NP-hard or even inapproximable. The
hardness can be typically shown by straightforward reductions from variants of the ATSP
if restricting to setup costs between neighboring jobs. Hence, utilizing this complexity as
hardness measure, one may conclude that all problems are just similarly hard. However,
this does not reflect the very different degrees of difficulty observed in practice. These
differences are mainly due to the underlying allocation problem which can range from
trivial to yet another NP-hard problem as we have seen above. Thus, in our context, the
complexity of the allocation problem appears to be a more meaningful measure for the
general hardness than the complexity of the overall problem itself. This demonstrates

that the allocation problem in fact plays a central role, not only for its importance in
the proposed heuristic approach, but also as an essential characteristic of the overall
problem. For this very reason, the different allocation problems will be the main target
of our investigations in the subsequent chapters.

This part of the thesis addresses the general topic of integrated
sequencing and allocation problems. In the remainder of this chapter, we discuss the
problem at an abstract level. A high-level problem formulation is given in Section 6.1,
and our generic algorithmic approach is presented in Section 6.3. In the subsequent chap-
ters, we concretize the approach for two problems from industry, a coil coating problem
from steel industry and a scheduling problem for filling lines in dairy production. They
are discussed in the Chapters 7 to 9 and in Chapter 10, respectively. Concerning the coil
coating problem, a detailed problem description and a graph theoretical model for the
underlying allocation problem is given in Chapter 7. Thereafter in Chapter 8, we analyze
an independent set problem which is closely related to our allocation problem, before
finally presenting the overall algorithmic approach and the experimental results in Chap-
ter 9. A more detailed summary of these chapters was given in the main introduction
on page 4.

Encapsulating the structure of the above examples, we consider basic (ATSP-like) se-
quencing problems with integrated abstract fixed-sequence allocation problems. The
latter can be seen as a scheduling problem for a fixed sequence of jobs. However, in
order to distinguish it from the overall problem, which we refer to as scheduling problem,
the term allocation problem is used instead. Even though our approach is not limited to
this objective, the problems discussed in this thesis address the makespan objective, i.e.,
the maximum completion time among all jobs. At an abstract level, we can formally
describe the considered scheduling problem as follows:

Given: A set of n jobs J :={1,2,...,n} with processing time p; > 0 for job j € J
and further job characteristics. Sequence-dependent setups of length s;; > 0
for any pair 4,j € J. Cost functions ¢, : A — R>¢ for any permutation of
jobs m €11, where A, denotes the set of feasible allocations for 7, respectively.

Task: Compute a schedule consisting of a sequence = € II, and an allocation
A(m) € Ay for sequence 7 which minimizes the makespan

Conax(m, A(m)) = > p;j + Zs <G+ T ex(A(T).

jeJ

The term > 771 Sz (jyr(j+1) + cr(A(T)) is referred to as cost of the schedule.

Even though the allocation problem is abstract at this point, we typically assume
that it involves decisions that incorporate not only neighboring jobs but also larger parts
of the processing sequence m. Consequently, also the additional allocation time ¢ (A(7))
will be non-local in this sense. In contrast, the term E?;ll Sr(j)m(j+1) 1S purely local
while Zje 7 Pj is even independent of the schedule.

It

It is practically impossible to give a full overview of work that falls into the general
setting of integrated sequencing and allocation problems. For this reason, we restrict
to a short very general introduction at this point. More detailed discussions of related
work are given for the considered problems from steel and dairy industry in the respective
chapters.

In general, sequencing and allocation problems with setup times and makespan min-
imization constitute a widely studied field, see [ANCKO08] for a recent survey. In most of
these problems, however, setups are purely local, i.e., depend only on two successive jobs
on the same machine and thus are closely related to variants of the ATSP, see [BSV08].
Also more general problems with setups typically involve only local setups. One such ex-
ample are scheduling problems with communication delays and precedence constraints,
see [BGTI7], where a delay only occurs between pairs of jobs with a non-transitive
precedence constraint among them when they are scheduled on different machines.

In contrast, our setup costs need to be calculated in view of several, possibly many
preceeding jobs. Such non-local setups have only sporadically been considered in schedul-
ing, e.g., by [KK08]. They are more typical in multi product assembly lines. But here
one no longer considers sequencing problems with makespan minimization, but aims
at finding batches of products that minimize the cycle time of the robotic cells, see
e.g., [RDLDO00].

Setups concurrent with production—as they will in occur in the coil coating problem
discussed in the following chapters—also occur in parallel machine scheduling problems
with a common server considered by [HPS00]: Before processing, jobs must be loaded
onto a machine by a single server which requires some time (the setup time for that job)
on that server. Good sequences of jobs on the parallel machines minimize the time jobs
have to wait to be setup due to the single server being busy on a different machine. In
this model, too, setups are purely local, and once sequences for the machines have been
determined, scheduling the server constitutes a trivial task.

Considering the computational complexity of integrated sequencing and allocation
problems, it is in most cases easy to observe that the problem is NP-hard or even inap-
proximable. Ignoring allocation aspects, the problem is equivalent to the path variant
of the ATSP. Straightforward reductions from the symmetric traveling salesman prob-
lem (TSP) allow to transfer results from this classic problem to its path variant, implying
that the problem is MAX SNP-hard even in the symmetric case when all edge length
are 1 or 2 [PY93]. Moreover, for the symmetric case with general edge lengths, it fol-
lows that there exists no constant factor approximation algorithm unless P#NP [SG76].
Excellent references on TSP include the textbook by Applegate et al.[ABCCO06] and
the collection by Gutin and Punnen [GP02]. Despite the hardness of ATSP, Helsgaun’s
efficient implementation of the Lin-Kernighan Heuristic [Hel00] (LKH) can be expected

to compute optimal solutions for instances of up to roughly 100 and 1000 cities in ap-

proximately one second and one minute, respectively. For the sake of completeness, we
formally define TSP and ATSP.

Given: A set of n cities {1,2...,n} and distances d;; > 0 between cities 7,j =
1,...,n where in the standard (symmetric) case d;; = dj; for any pair i, j
while in the asymmetric case d;; # dj; is allowed.

Task: Find a permutation o of the cities minimizing the total tour length

n—1

> doGroti+1) + domyo) -
j=1

In the path variant, there are additionally two assigned cities s and ¢ given in which
the tour has to start and end, respectively.

We conclude this chapter by introducing our general algorithmic framework for inte-
grated sequencing and allocation problems. For the sequencing part, we utilize a ge-
netic algorithm which by its nature combines solutions, or individuals, in such a way
that beneficial characteristics of solutions persist, while costly characteristics are elimi-
nated [AL97]. The set of solutions is commonly referred to as population. In a crossover,
the combination of two parents from the current population brings forth a new individ-
ual, while a mutation creates a new individual by modifying one already present. In an
iteration, or generation, the population is first enlarged through crossovers and muta-
tions, before a subset of all these individuals is selected for survival. See [MNTO03] for a
recent successful application to a different production sequencing problem.

During a run of our algorithm, we maintain a constant population size across gener-
ations. For each individual, we (heuristically) solve the allocation subproblem to assess
its cost. Individuals with better makespans survive. The algorithm stops if a given ter-
mination criterion is fulfilled. The corresponding pseudo code is given in Algorithm 6.1,
and its different components are described in more detail below.

Good parameter choices for this approach are usually the result of rigorous testing.
Apart from this tuning process, the initial population and the allocation subroutine are
the only components which are purely problem-specific, and hence, which need to be
fully adapted.

The initial population plays a central role in the success of our ap-
proach. Choosing an appropriate and diverse population usually increases the chance to
find good solutions and moreover, to do so much faster. In contrast to the final sequence
we aim to compute, for the different sequences in the initial population we rather look for
sequences that are specifically good with respect to only some of the many constraints.
One natural such sequence is the one we obtain when ignoring all side constraints and

repeat
perform mutation on my, < m randomly chosen sequences from S;
perform crossover on m. < m randomly chosen pairs of sequences from S
add sequences resulting from mutation and crossover to S;
assess sequences in S utilizing the allocation subroutine;
delete all but the m best sequences from S;

until termination criterion fulfilled;

return S;

focusing only on minimizing the total sequence-dependent setup durations s;;. In this
restricted form, the problem can be formulated as ATSP with distances s;;, and a solu-
tion can be computed utilizing LKH. If necessary, we add further randomly generated
sequences. After all, a highly diverse initial population provides a good starting point
for later recombinations in the algorithm.

An obvious termination criterion is the runtime limit, if given
by the customer. From the algorithmic perspective, a more natural criterion is to stop
after a certain number of iterations without improvement. This can avoid unnecessary
long runtimes on the one hand, and on the other hand, it appears less likely to stop the
algorithm right before the very last iterations which might still drastically improve the
result. Depending on the problem, one might also consider to restart the algorithm if
the solutions are not improving anymore.

Mutations are conducted by inverting a random consecutive subsequence of
an individual.

For crossovers, we implement a classic mechanism for sequencing problems
originally proposed by Miihlenbein et al. [MGSK88]: Upon the selection of two individ-
uals from the current population, a donor d and a receiver r, a random consecutive
subsequence of random length is taken from the donor to form the basis for the con-
struction of the new individual, or offspring s. We complete s by continuing from its last
element ¢ with the elements following ¢ in the receiver, until we encounter an element
already contained in s. Now we switch back to the donor and continue completing s
from d in the same way, going back to r again when encountering an element already
added to the offspring. If we can continue with neither r nor d, we add to s the next
element from r which is not in s yet, and try again.

We consider a complex integrated sequencing and allocation problem from steel pro-
duction. A sequence of coils of sheet metal needs to be color coated in consecutive
stages. Different coil geometries and changes of colors necessitate time-consuming
setup work. In most coating stages one can choose between two parallel color tanks.
This can either reduce the number of setups needed or enable setups concurrent with
production. Overall, the aim is to compute a minimum makespan schedule compris-
ing the sequencing of coils and the allocation of color tanks and setup work. The
current chapter provides a detailed description of this complex scheduling problem.
Moreover, a graph theoretical model for concurrent setup allocations is presented. In
Chapter 8, we further analyze this model and related optimization problems, before
in Chapter 9, we report on our implementation of the generic algorithmic approach
for integrated sequencing and allocation problems from Section 6.3 for this particular
problem from steel production.

The results in this and the two following chapters are based on
joint work with Felix G. Koénig, Marco E. Liibbecke and Rolf H. Méhring, published
in Management Science in 2011 [HKLM11].

In the following three chapters, we deal with a particular integrated sequencing and
allocation problem as described on an abstract level in Chapter 6. The considered
problem stems from the final processing step in sheet metal production, the coating of
steel coils, which may be seen as a prototype of such an integrated problem: In addition
to sequencing coils, a challenging concurrent setup allocation problem needs to be solved,
and both problems strongly interdepend.

The coil coating process plays an essential role in shaping steel producers’ extremely
diverse product portfolio: The coils used for home appliances, for instance, already
have their typical white coating when bought from the steel supplier, and the sheet
metal used for car bodies already has an anti-corrosion coating before it arrives at the
automotive plant for pressing. Already in the 1960s, associations were formed to promote
the evolution of coil coating'. Progress in the development of new and improved coating
materials and techniques fosters an ongoing diversification in pre-coated metal products,
and in recent years, coil coating has been investigated from chemical and engineering
perspective in several publications, e.g., [DBC99, DER00, DBCF05, ZSL09].

As is typical for paint jobs, the coil coating process may be subject to long setup
times, mainly for the cleaning of equipment, and thus very high setup cost. In order to

1http://www.coilcoatinq.org/, http://www.eccacoil.com/

http://www.coilcoating.org/
http://www.eccacoil.com/

roller &
color change

v
a1, [[l SN [T i e =
t S oot A
roller changes color changes

(a) Solution for a classic coater with only one tank.

wer [0 DDDEE B =

concurrent
tank 2 I:Ij [roller & @ I:‘:

color change

(b) Solution for a shuttle coater.

Coils of different widths as they are processed in the coating line (from left
to right). Setup work (such as color or roller changes to be defined later) has to be
performed whenever a coil has to be coated with a different coating or is wider than its
predecessor on that tank.

reduce this cost, modern coil coating lines are equipped with so-called shuttle coaters or
quick (color) change coaters, offered by different manufacturers as standard machinery;
see e.g., GFG Peabody, Bronx International, or SMS Siemag”. Shuttle coaters possess
two separate tanks allowing for holding two different coating materials at the same time.
The advantage is twofold: The shuttle can be used to switch between two coatings on
the same coater at almost no setup time and cost, or alternatively the unused tank can
be set up while coating continues from the other tank in the meantime. We refer to this
possibility to perform setup work during production—which is somewhat uncommon in
scheduling literature—as concurrent setup; see Figure 7.1 for an illustrative example.

Literature regarding optimization in the planning process for coil coating is scarce
at best: To the best of our knowledge, only Tang and Wang [TW09] consider planning
for a coil coating line. They apply tabu search to a rather basic model without shuttle
coaters. The present work is the first incorporating shuttles and concurrent setup work
in a thorough mathematical investigation.

Our work is concerned with a typical coil coating line as operated by many major
steel companies worldwide, consisting of a primer and a finisher coater, each comprising
two coaters to coat the top and bottom side of a coil, see [M.J05, DBC99]. Each of the
coaters may or may not be a shuttle coater, whose introduction significantly changes
the flavor and the complexity of production planning: Which tank do we use for which
coil, and how do we allocate concurrent setup work without exceeding available work
resources? We aim to find a sequence (the order of the coils) and an allocation for
that sequence (the tank assignment and allocation of setup work) that minimizes a joint
objective (the makespan).

In order to precisely capture the allocation step, we introduce the concurrent setup
allocation problem, which also fits other applications involving concurrent setup. By
relating it to the independent set problem in certain generalized interval graphs called
2-union graphs, we obtain a dynamic program running in polynomial time for any fixed
number of shuttle coaters, while proving NP-hardness when this number is part of the

thtp ://www.gfg-peabody.com/, http://www.bronxintl.com/,
http://www.sms-siemag.com/en/1577.html

http://www.gfg-peabody.com/
http://www.bronxintl.com/
http://www.sms-siemag.com/en/1577.html

input. Moreover, we show corresponding results for the independent set problem in spe-
cial 2-union graphs, which are of interest in their own right. These results are discussed
in Chapter 8.

The graph theoretical model inspires a fast and good heuristic for the concurrent
setup allocation problem, which we embed into the generic Algorithm 6.1. Altogether,
we develop a practical heuristic which solves the integrated sequencing and allocation
problem and computes detailed production schedules for the coil coating line. The
quality of our schedules is assessed with the help of an integer program which we solve
by branch-and-price. The algorithm and the results achieved are presented in Chapter 9.

Our algorithm has been added to PSI Metals’ planning software suite’, and is cur-
rently in use for a coil coating line with shuttle coaters at Salzgitter Flachstahl’, Ger-
many. There, it yields an average reduction in makespan by over 13% as compared
to the previous manual planning process. In addition, our lower bounds suggest that
the makespan of the solutions computed by our algorithm is within 10 % of the optimal
makespan for typical instances”. Since most setup cost calculations are incorporated into
our methods as a black box, our algorithm can be adapted easily to other coil coating
lines with different setup rules and a different number of shuttle coaters.

This work would not have been possible without our cooperative partners at Salzgitter
Flachstahl and GESIS®, the affiliated IT company. We very much appreciate the patience
of Frank Barcikowski, Andreas Holdinghausen and Sigurd Schwarz for answering our
countless questions concerning the even more countless details of setup cost, and for
carefully verifying our solutions. This dialog was an integral part in making this project
a textbook-like example of algorithm engineering. All technical details described in this
chapter are the result of these discussions.

Steel coils are a highly individualized product, and all non-productive time in coil coating
depends on certain characteristics of coils. They usually have a length of 1-5km, and
their central attributes are naturally the coatings they receive in the four coating stages,
chosen from a palette of several hundreds, and their width, usually 1.0-1.8 m. More
intuitively, we will henceforth refer to coating materials as colors. We refrain from
listing further coil attributes, since their list is very long; yet all relevant information is
included in our calculations.

For a concise description of the optimization task, we shall briefly familiarize the
reader with some coil coating terminology:

A coater comprises all machinery necessary for applying one of the four layers of
color to the coils, primer and finish on top and bottom.

A tank holds a color to be used at a coater, and each tank has its own rubber
roller for applying the color to the coil.

3http://www.psimetals.de/en/

‘http://www.salzgitter—flachstahl.de/en/

5This success has made this contribution a finalist of the 2009 EURO Excellence in Practice Award.
Shttp://www.gesis.de/

http://www.psimetals.de/en/
http://www.salzgitter-flachstahl.de/en/
http://www.gesis.de/

finish coater

@ primer coater
oven

1 [7

sling buffer g
t t ﬁcﬁi chen; coater
G

T

[-

Schematic view of a coil coating line with chem, primer, and finish coater.
Here, the chem and the bottom finish coaters are standard coaters, the remaining have
shuttles.

Naturally, a coater has at least one tank. A shuttle coater has two tanks, each
with its own roller, which can be used alternatingly to apply color.

A color change refers to cleaning a tank and filling it with a new color. A roller
change needs to be performed when a coil with smaller width is preceding a coil
with larger width on the same tank: Due to the wear the roller incurred at the
edges of the former coil, the coating of the latter would bear imperfections.

Before entering production, each coil is unrolled and stapled to the end of its pre-
decessor. In order to bridge non-productive time during setups, scrap coils are inserted
in between actual coils, so essentially a never-ending strip of sheet metal is continuously
running through the coil coating line. After undergoing some chemical conditioning of
their surface, the coils run through a top and bottom primer coater, an oven, a top and
bottom finish coater, and through a second oven. In the ovens, the respective coating
layers are fixed. After the coating process, the coils are rolled up again, now ready for
shipping. A schematic view of a typical coil coating line is depicted in Figure 7.2.

An instance of our optimization problem comprises a set J := {1,...,n} of coils to
be coated. Each coil j is characterized by its colors cgk) € Non coaters k=1,...,m, its
width w; > 0, and its processing time p; > 0, the time it takes for j to pass any given
point on the coating line. Note that even though a coil passes the different stages of the
coating line one after the other, it is feasible to think of a coil as being processed at all
stages at once, as the time it takes a section of a coil to get from one stage to the next
is negligible compared to coil lengths.

The optimization goal is to minimize the makespan for coating the given set of coils,
i.e., the completion time of the last coil in the sequence. Concerning optimal solutions,
this is equivalent to minimizing non-productive time, or cost, in the schedule, which
ensues for two reasons described in the following paragraphs.

In order to satisfy certain technical restrictions, transition coils of dif-
ferent lengths, widths etc. may be required in between two consecutive coils in the
sequence. The duration of transition coils necessary for each pair of coils (i,7) € J x J
if run consecutively is explicitly specified in an instance as s;j, and we refer to it as

wank 1 PP - (RN

tank 2 D B

Optimum tank assignment for a fixed sequence of coils. The setup right
before the last coil—none, in this example—depends on its predecessor on the tank, i.e.,
on the whole sequence.

local cost. According to the abstract definition of integrated sequencing and allocation
problems on page 76, these are the sequence-dependent setup times.

Setups comprise color or roller changes. Both require the same amount of time
denoted by t. If coils i, 7 € J are run consecutively on the same tank of a coater k, setups
of total length sg?) = sgf;) (i,7) + sgf) (,7) need to be performed in between, comprising

the sum of durations of a possible color and roller change, where

CINC b ifwn < w,
Wag) =0 R TG g @) =10 RS gy
0 , otherwise 0 , otherwise.

Due to the dependency of consecutive coils on a tank, it does not suffice to consider pairs
of consecutive coils in the sequence in order to quantify necessary setup work. Larger
sets of coils need to be taken into account—the entire sequence in the worst case, see
Figure 7.3. Hence, we refer to non-productive time ensuing from setup work as global
cost.

Finally, a schedule for the coil coating process consists of the following two parts:

a sequence w € I1,, i.e., a permutation stating the processing order of the coils

an allocation A(m) comprising a tank assignment T € {1,2}™™ stating for each
coil from which tank it is coated for each of the m shuttle coaters, and a feasible
setup allocation for the set of setups W = W (m, T') defined by 7 and T as described
above. We elaborate on the structure of feasible allocations in the following section.

Note that there is a strong interdependence among the different parts of a solution:
A tank assignment 7' is only meaningful in conjunction with a sequence 7, and the set W
of setups to be scheduled depends on T and 7.

We will now focus on the subproblem of computing an allocation for a given sequence 7.
Deciding on a tank assignment T settles the predecessors of coils on the tanks, yielding
the set W = W(n,T') of setups to be performed. These can either be scheduled between
coils during non-productive time, or concurrently to production on an idle tank. While
the former results in an increase in makespan, the latter does not. Consequently, there are
two possibilities to save cost by good scheduling: On the one hand, the tank assignment
can preserve used colors and/or rollers on an idle tank for later coils, thereby reducing
the number of setups to be performed. On the other hand, setups can be performed
concurrently with production on idle tanks, thereby keeping setups from increasing the
makespan.

Setup allocations have to respect certain constraints in order to be feasible: While
there may be several work teams to perform setups, at most one team can work on
the same coater concurrently to production to ensure safety. Contrarily, during non-
productive time—during which scrap coils are run, especially added for this purpose—
the teams work together to finish work as fast as possible. This allows to assume one
(fast) single setup resource which performs at speed A > 1 where the increased speed is
not only due to the joint resources but also due to the non-existing need of monitoring
when no proper coil is run. As a consequence, the makespan of a solution is insensitive
to deferring non-concurrent setups to the latest possible time. Hence, it suffices to only
schedule concurrent setups explicitly. In contrast to scrap coils, transition coils do not
allow for concurrent setup work, since transitions are critical and require very careful
monitoring. Finally, the execution of one concurrent setup may not be preempted by
another. However, it may be preempted to perform setups during non-productive time
or to run transition coils. As a result of all these restrictions, transition coils can be
ignored when scheduling concurrent setups.

A first idea of the different components of concurrent setup allocations for our coil
coating problem is given in Figure 7.4 which will also lead us through the further def-
initions of this section. In order to capture the allocation problem more formally, we
will define the concurrent setup allocation problem. Its definition is based on the setup
scheduling problem.

Given: A sequence m € II,, of jobs J with n := |J| and where p; > 0 denotes the
processing time of job j € J; the number m of (processing) cells; a tool
assignment (k) k=1,..,m

T — <T.) e {1,2}v™
I Ji=1,.n

telling for every job and every cell which of the cell’s two interchangeable
tools the job is run from; the set of global setups resulting from 7 and T’

hwi=1,...,n, k=1,...,m, w(i) < n(j),

W(”v T) = {(iaj7 k) Ti(k) — Tj(k)7 Te(k) # Ti(k) V(i) < m(l) < ﬁ(])}) (7'2)

with durations sg?) > 0 for each (i,7,k) € W(m,T); the number r of setup
resources.

Task: Determine a concurrent setup schedule Z(m,T,r) which assigns each setup
(i,5,k) € W(m,T) to a (potentially empty) concurrent setup interval

(k) i
Iiﬂl'c < [Zm(f)gw(z‘) be Zfzw(f)«r(a‘)p Z[with

where |I| denotes the length of an interval I—such that at any point in
time t € [0, 2?21 pj[at most r concurrent setups are performed, and such
that the total setup volume during non-productive time is minimized. This
volume is given by

i ij

1““)‘ < 5®

v]

> (-

(3,5,k)eW (m,T)

I?’?") .

Note that the set W (m,T') contains exactly one setup for a pair of jobs and a cell
if, according to sequence 7w and tool assignment 7', the jobs are run consecutively on
one of the cell’s tools. In a feasible (concurrent) setup schedule these global setups are
performed in the time interval the respective tool is idle between processing the two jobs.

Since we can assume one single A-speed setup resource during non-productive time,
exactly a %—fraction of the total non-concurrent setup volume impacts the makespan.
However, since this speed factor is irrelevant for the optimization problem at hand, we
only take it into account when computing the overall cost of schedule.

Finally, the concurrent setup allocation problem extends the setup scheduling prob-

lem by the decision of the tool assignment.

Given: A sequence m € II,, of jobs J with n := |J| and where p; > 0 denotes the

processing time of job j € J; the number m of cells; setup durations sgf) >0
for any pair of jobs i, j € J and any cell k¥ which ensues if processing ¢ and j

consecutively on the same tool of coater k; the number r of setup resources.

Task: Determine an allocation A(7) comprising a tool assignment 7' € {1,2}™™

and a concurrent setup schedule Z (7, T, r) = {Ii(]k) | (4,4, k) € W(m,T)} being
a feasible solution to the setup scheduling problem, such that the total cost
is minimized. The cost is given by
(k)
).

(%)
> (Sij -
where W (m, T') denotes the set of global setups that result from 7 and T'.

(4,5,k)eW (7, T)

In our application, coaters correspond to the cells, and tanks are the tools. The
number of setup resources is r = 1, i.e., there is one team of workers performing setups.
Also, setup times have a special structure, see (7.1). Nevertheless, all of our results hold
for the CSAP in general, i.e., arbitrary setup times and any r.

Moreover, our model and our algorithms for the CSAP remain valid even in a more
general setting where each setup task can only be performed by a subset of the resources.
However, for the sake of a clear presentation and cleaner notation, we omit further
comments on this case.

A natural generalization of the CSAP would be to consider ¢ tools for some gen-
eral ¢ € N. However, our results are strongly based on the number of tools being two.

The cost of a coil coating schedule decomposes into time for transition coils and setups
during non-productive time. As cost computation is complex, reconsider Figure 7.4 for
an illustrative example. Again, concurrent setups incur no cost as they do not impact
the makespan, and no setup may be performed during transition coils.

More formally, consider a sequence 7 € II,,, a corresponding allocation A(m) compris-
ing a tank assignment 7" and a concurrent setup schedule Z (7, T', r) for r(= 1) work teams,

scrap coil o transition coil

lll|§ Y |

(a) Sequence of stapled coils including scrap coils and transition coils as run through the
coating line. The actual coils are shown without colors since their colors on the different
coaters is usually different. The necessary lengths of the scraps coils depends on the schedule
while transition coils are predefined by the sequence.

S[j
>

tank 1 .l ‘
setup during

concurrent| non-productive

setup time
oo [[o | sl
(k")

sg)fd %5 %s]

cost

(b) Tank assignment and setup schedule at coater k, focusing on the non-productive time
(cost) between coil £ and j. Between processing coil j and its tank predecessor i on coater k
the color and roller need to be changed which requires time sl(.?. This setup work is partially
performed concurrently to production at no cost (interrupted by non-concurrent setup work),
and its remaining setup volume 9§ is completed during non-productive time at higher speed A.
Additionally to sgf), setup work for some other coater k' (not shown in the graphic) has to
be performed right before j, stemming from the tank predecessor g of j on coater k’. Finally,
a transition coil of length s;, needs to be run between coils ¢ and j, and no setup can be
performed during this time.

tool interval I = [h, (] \ ,— (concurrent) setup interval Iff)
= e | | ' —
pred(I) last(I) succ([)

(¢) Corresponding tool and (concurrent) setup intervals at coater k as introduced in Sec-
tion 7.2. Since transition coils and setup work during non-productive time do not allow
(other) concurrent setups, it is sufficient to include only the length of proper coils in our
interval model.

Exemplary schedule containing all setup and cost components.

and the set of global setups W (7, T') stemming from 7 and T as defined in (7.2). Denot-
ing by IZ.(;?) the concurrent setup interval of (i,j,k) € W (m, T) according to Z(m, T,r),
the cost of schedule (7, A()) is given by

sonae + 2 5 (W= 1)),

n
Jj=2 (ivjvk)eW(W7T)

the sum of the duration of all (local) transition coils and (global) setups performed
non-concurrently. Recall that A > 1 is the speed of the joint setup teams during non-
productive time. Note that in order to compute the makespan, we have to add the total
processing time of all coils) jes Pj-

In our solution approach, which we describe in Section 9.1, we repeatedly solve instances
of CSAP resulting from different sequences of coils. Hence, an efficient algorithm for
CSAP is of key importance. Since the processing sequence is a fixed input for every call
of such an algorithm, we assume throughout this section that the jobs are numbered as
they appear in this fixed sequence, i.e., 7 = id € II,,.

We develop a representation of solutions as a family of weighted 2-dimensional in-
tervals, where the first dimension is related to a tool assignment and the second to
performing concurrent setup work. We call two such intervals, or axis-parallel rectan-
gles, independent, if their projections onto neither of the axes intersect. As we will see,
the rectangles are aligned in such a way that rectangles which correspond to tool as-
signments of different cells are always independent with respect to their first dimension.
Similarly, every setup resource will have their own set of rectangles such that concurrent
setup work performed by different resources is independent in the second dimension.
However, different cells may compete for the same setup resource, and hence, the re-
spective rectangles may conflict even though they belong to different cells. Figure 7.5
gives a first idea of this interval model which we will specify in this section in full detail.

In the end, there will be a one-to-one correspondence between solutions to CSAP on
the one hand, and maximal independent sets of rectangles on the other, and a maxi-
mum weight independent set corresponds to an optimum solution of CSAP. The latter is
based on rectangles’ weights representing the cost savings which are achieved by the cor-
responding partial tool assignment and the concurrent setup work performed, compared
to processing all jobs on the same tool without performing concurrent setup work.

A tool interval—always associated with a particular cell—represents a maximal consec-
utive subsequence of jobs that are processed on the same tool. Thus, for each cell k,
any two jobs i,j € J, i < j, define a tool interval I¥) = [i, 7] containing all jobs i,..., .
Selecting such an interval will correspond to running all jobs in it on the same tool, and
switching the tool directly before ¢ and directly after j; see again Figure 7.4. Hence, a set
of non-intersecting tool intervals, covering every job, defines a unique tool assignment
for cell k, and the total processing time in interval 1) ig

p(I(k)) = ipg.

=i

We call the last job before and the first job after I(*) its predecessor pred (I (’“)) and
successor succ(I®)), respectively. Also, let last(I*)) denote the last job in I®). The
weight wéfgl(l (k)Y of a tool interval I*) comprises the reduction in cost resulting from
processing all jobs in I®) with one tool and pred(I®)) and succ(I*)) with the other, as
compared to running all jobs in 1) from the same tool as pred(I*)) and succ(I¥)), and
performing all necessary setup work before succ(I*)) during non-productive time. Thus,

taking into account the higher speed A\ during non-productive time, we have

k) () — 1w (k)
Wiool <I()) - X (Slast(l(k)),succ(l(k)) o Spred(I(k)),succ(I(k))) ’

Note that certain tool intervals may have negative weight, i.e., selecting them actu-
ally increases cost. Due to the requirement that all of m be covered by tool intervals to
obtain a well-defined tool assignment, such intervals cannot be ignored. For computa-
tional purposes however, negative weights can easily be eliminated, as we demonstrate
in Section 7.2.4.

A (concurrent) setup interval ng) is always associated with a tool interval I®) = [i, j],
hence also with a particular cell k. Furthermore, it is tied to one of the r setup resources.
It represents concurrent setup work performed from pred(1*)) to succ(I*)) on k’s idle
tool during jobs i, ..., j by a certain setup resource. A setup interval’s weight wsetup (1 §k))
equals its length and describes the amount of concurrent setup work performed. So, we

always have
k . k (k)
Wsetup (Ié)> < min {p(I())7 Spred(ﬂ’“)),succ(l(k))} :

Note that non-productive time is not included in setup intervals. Due to the as-
sumption of one fast single resource during non-productive time, non-concurrent setup
work does not need to be scheduled explicitly. Allowing only a single consecutive setup
interval per tool interval ensures that concurrent setup work is never preempted by other
concurrent setup work. However, it can be preempted by non-concurrent setups.

We now define a saving rectangle R = (I(k), Is(k)) as a combination of a tool interval I(*)

and a (possibly empty) setup interval I, ék). The total weight of a saving rectangle R is

w(B) = wioat (IP) + + weup (10).

As for tool intervals, this weight may be negative.

Recall that a feasible solution to CSAP shall correspond to a maximal independent
subset of all possible saving rectangles. Quite naturally, both dimensions of a saving
rectangle, i.e., tool and setup intervals, are associated with a sense of time according
to their position in [0, Z}Ll pjl. We will make use of this fact by considering different
disjoint sections in the plane which are all associated with this sense of time, indicated
in Figure 7.5 by the small time axis. These sections will allow us to position rectangles
in the plane such that their projections onto one of the axes intersect if and only if the
savings in makespan represented by their weight conflict, i.e., cannot be realized jointly.

Two saving rectangles conflict if and only if one of the following holds:

They belong to the same cell and their tool intervals intersect: Tool intervals of
one cell, whose intersection contains a job j, lead to conflicting tool usage, since
both intervals assign j to a different tool.

They belong to the same setup resource and their setup intervals intersect: Each
resource can perform only one setup at a time.

\
setup
intervals cell 1 cell 2 cell m
] B
: m
=
— E
[\
- conflicts [
with R
] /.
setup : conflicts l:' g
mterfval R with R 1 3
of R —
] [

tool
intervals

0 0 0
tool interval
of R

Some saving rectangles, appropriately positioned in the plane. Selecting
rectangle R, i.e., running all jobs belonging to its tool interval on the same tool of cell 1
and performing concurrent setup during its setup interval, prohibits the selection of any
rectangle whose projection onto one of the axes intersects that of R. The selection of
non-disjoint tool intervals prevents a proper tool assignment, while intersecting setup
intervals violate resource constraints. For simplicity, only two resources are visualized.

Consequently, when positioning rectangles in the plane, all rectangles associated with
the same cell receive their own section of the z-axis, while all rectangles sharing the same
setup resource are placed in a distinct section of the y-axis. Within sections, all rectangles
are positioned in z and y direction according to their natural sense of time, see Figure 7.5
for an illustration. Note that by removing certain rectangles corresponding to one of the
setup resources, one can easily model the setting where particular types of setup work
can only be performed by/on appointed resources.

Now, any subset of pairwise independent saving rectangles, whose tool intervals cover
all jobs on all cells, naturally corresponds to a feasible concurrent setup allocation with
corresponding tool assignment. Moreover, if such a subset has maximum weight, the
corresponding schedule is optimal: It realizes the greatest savings possible as compared
to running all jobs on the same tool.

By the construction above, saving rectangles also have a very specific structure. We
build upon these properties when analyzing the independent set problem ensuing from
CSAP in Chapter 8:

The projection of each rectangle onto the x-axis is contained completely in one of
the distinct sections corresponding to the cells.

If the projections onto the y-axis of two rectangles intersect, their projections onto
the x-axis contain common jobs.

The latter is due to the fact that time-wise, a rectangle’s setup interval is always con-
tained in its tool interval. Note that projections of rectangles onto the z-axis containing
common jobs need not necessarily intersect when positioned as in Figure 7.5—they may
well belong to different cells and thus lie in different sections of the z-axis.

P1 P2 t pj

Pj

- start points

at most

Bounding the number of potential start points of setup work. Note that in
case of the processing time p; being a multiple of 7, the indicated interval contains in
fact % + 1 start points. However, since the last such point appears as the first potential
start point corresponding to the next job, we can ignore it.

Finally, note that for general instances of CSAP, it may not be tractable to explic-
itly model all possibilities to perform concurrent setup work in an application, as the
number of setup intervals could become super-polynomially large. In the case where
all setup durations have a sufficiently large common divisor, however, we can prove a
polynomial bound on the number of setup intervals that need to be considered for an
optimal solution.

Given an instance of CSAP, let T denote the greatest common divisor of all
setup durations sg?). Then there is a set D of at most
maxjesp; n(n—1)
T 2
points in time such that there exists an optimal selection of saving rectangles R, whose
setup intervals all have start and end points in D. The set D is given by

{Zpﬁ—h"j:l,...,n—l,KGNO, Zpi+€7'<2pz}. (7.3)

1<j 1<J i<n—1

N =

Proof. Let Sj =5, ;i denote the start time of job j in the processing sequence ignoring
non-productive time. We will show that there is an optimal solution that schedules all
concurrent setups at times of the form S; 4 ¢ 7 for some ¢ € Ny. Consider an optimal
solution with a minimum number of setups not starting at times of this form. Let (i, j, k)
be the first such setup. Let (7,5, k') be the setup which is performed before (i, j, k) by
the same resource. W.l.o.g. we can assume there is no idle time between the two setups.
If (i',4', k") is finished in non-productive time before job j’, then (i, j, k) starts at time
Sjr41. Otherwise, (7, j', k') starts at time S;» + ¢ 7 for some job j” and some ¢’ € Ny
and finishes sl(,kj/,) /7 € Ng multiples of 7 later. Again, this is of the required form. Hence,
we can assume that all setups start at times of the form S; + ¢ 7.

It remains to bound the number start and end points of the described form. Moving
through the sequence in the processing order of the jobs, the number of new potential
start points during the processing of job j is bounded by jp;/7, see Figure 7.6. Thus,
the total number of potential start points for setup intervals necessary in an optimal
solution is

n—1))) . 1)
Zj& < maxjesp; n(n _ N
T T 2 0

j=1

Thereby, the number of saving rectangles which need to be considered for an optimal
solution is bounded by m -7 -n?(N 4 1), the number of possibilities to pair each of the n?
possible tool intervals of each cell with no or one setup interval of every setup resource.
Note that N is polynomial in n, as long as the ratio max;e s p;/7 is bounded polynomially
in n. This bound is also very coarse, since it takes into account all possibilities to pair
any setup interval with a tool interval, while only setup intervals completely contained
in it are relevant.

In our application the duration of all setups is a multiple of ¢, hence, Lemma 7.2
applies with 7 = ¢. In realistic instances, the maximum length of a coil is roughly
twice ¢, so the number of start points for concurrent setup work is no more than n?.
Since setups comprise either a roller or a color change or a roller and a color change,
possible setup durations are only ¢ and 2t. This leads to at most 2n? potential setup
intervals for each cell.

Given an independent set of saving rectangles R such that every job is covered by a tool
interval on every cell, the construction of a feasible concurrent setup allocation with cor-
responding tool assignment is straightforward: The allocation for concurrent setup work
is given explicitly by setup intervals, interrupted by non-concurrent setups and transi-
tion coils, and at the end of each tool interval, tools are switched on the corresponding
cell. By construction, there is a one-to-one correspondence between the cost ¢(R) of this
schedule and the reduced cost according to the chosen saving rectangles R, i.e.,

n—1 m
k
c(R) = > <si,i+1 + Zis;gl) - w(R),
=1 k=1 ReR

where the first part is the cost for running all jobs from the same tool, depending only
on m = id.

Moreover, note that negative rectangle weights can be eliminated by adding a suf-
ficiently large constant to the weight of each rectangle, weighted by its length in the
tool dimension. This does not change the structure of the problem, and we force any
maximum weight independent set to be maximal such that the selected rectangles have
tool intervals covering all jobs.

In this chapter, we study the maximum weight independent set problem in a special
class of 2-union graphs which we call m-composite. This problem is closely related
to the concurrent setup allocation problem on m cells. For constant m, we show that
the graph problem allows for a polynomial-time dynamic program which also applies
to the allocation problem. On the other hand, when m is part of the problem input,
we prove separately that both problems are strongly NP-hard.

As remarked in Chapter 7, the results in this chapter are based
on [HKLM11].

In this chapter, we aim at gaining structural insights into the concurrent setup alloca-
tion problem (CSAP) introduced in Section 7.2. As observed there, feasible solutions
to CSAP correspond to maximal subsets of non-conflicting saving rectangles. This leads
to the maximum weight independent set problem in a special class of multiple-interval
graphs, so called m-composite 2-union graphs. These graphs can be represented by a
set of axis-parallel rectangles whose projections onto the axis intersect if and only if the
corresponding vertices in the graph are adjacent. Hence, from the perspective of CSAP,
two vertices share an edge if the associated saving rectangles conflict. As we will see,
the graph parameter m corresponds to the number of cells in CSAP.

The complexity of both problems—the maximum weight independent set problem in
m~composite 2-union graphs and CSAP—depends crucially on the parameter m being
constant or part of the problem input. For constant m, we can design an exact dynamic
program which solves the maximum weight independent set problem in polynomial time.
Utilizing that the number of necessary start points for concurrent setup work is poly-
nomial (if the greatest common divisor of all setup durations is sufficiently large), this
dynamic program can be transferred to CSAP directly. If the parameter m is part of
the problem input, we show by a reduction from 3-SAT that the maximum weight in-
dependent set problem in m-composite 2-union graphs is strongly NP-hard even in the
unweighted case. For CSAP, we reduce from One-in-3-SAT, showing strong NP-hardness
as well. The results on the maximum weight independent set problem in m-composite
2-union graphs and on the CSAP are presented in Section 8.2 and 8.3, respectively.
Preceding the actual results, we will introduce the necessary notions of multiple interval
graphs and discuss related work in Section 8.1.

All graph classes considered in this chapter belong to the class of intersection graphs. A
graph G = (V, E) with vertex set V' and edge set E belongs to this class if the vertices
can be represented by a family of sets such that two vertices from V share an edge in
if and only if the associated sets intersect.

Historically, before considering different variants of multiple-interval intersection
graphs, research focused on the underlying families of intervals. According to Gyarfas
and West [GWO95], Tibor Gallai investigated combinatorial properties of interval sys-
tems already in the 1930s. In 1968, he suggested to consider what he called at that time
families of separated t-intervals. They are a special case of the more general t-intervals.

A t-interval v is a union of t
intervals v, ... v® inR. Two t-intervals v and w intersect if they contain intervals v(¥)
and w0, 1 <i,j <t, such that v Nwl) £ .

If, for a family F of t-intervals, it is possible to identify pairwise disjoint sections
T, ...,y C R such that any v € F contains exactly one interval from each section
then F forms a family of t-separated intervals. W.l.o.g. it can be assumed that v € T;
for i =1,...,t. If interpreting a t-separated interval v as t-dimensional axis-parallel
rectangle defined by interval v in dimension i € {1,...,t}, then this rectangle is called
t-rectangle, and v is referred to as projection in the ith dimension. Two t-rectangles
intersect if the projections in any dimension do. Non-intersecting t-rectangles are called
independent.

Based on families of ¢-intervals, in 1979 Trotter and Harary [TJH79] introduced the
class of so called t-interval graphs. Fifteen years later, the analogon for families of
separated t-intervals was considered by Deo and Kumar [KD94]. Following the naming
of Bar-Yehuda et al. [BYHNT06], we refer to these graphs as t-union graphs.

An undirected graph G is called t-interval
graph if it can be represented as an intersection graph on a family F of t-intervals. If F
can be chosen as a family of separated t-intervals, then G is called t-union graph.

As is common in literature, we assume that a suitable interval representation for G
is given and use the notion of a vertex in G and its interval in the given representation
interchangeably. The name t-union graphs stems from the alternative definition of this
graph class as the edge-wise union of ¢ standard interval graphs with a common node
set. However, we will mainly think of {-union graphs as being represented by a family of
t-rectangles. Finally note that 1-interval graphs as well as 1-union graphs coincide with
standard interval graphs.

Butman et al. [BHLR10] study different classic optimization problems in general
t-interval graphs. They propose approximation algorithms for the minimum vertex cover
problem, the minimum dominating set problem and the maximum clique problem ob-
serving approximation guarantees of (2 — %), t? and (12 —t+1)/2, respectively. Moreover,
they show that the maximum clique problem is NP-hard for ¢ > 3. Due to the relation
to CSAP we are mainly concerned with the maximum weight independent set problem
defined below. Related work on this problem is discussed separately in Section 8.1.2.

Given: A graph G = (V, E) containing vertices V and edges E, and weight w, for
each vertex v € V.

Task: Compute an independent set of maximum total weight, i.e., a subset V/ C V/
such that for any v,w € V' the edge (v, w) is not in E.
In case of general vertex weights the problem is referred to as mazimum
weight independent set problem (MWISP) while for uniform weights it is
referred to as mazimum independent set problem (MISP).

The interval model for CSAP from Section 7.2 allows to formulate CSAP as MWISP in a
2-union graph in a very straightforward way. The set of potential saving rectangles forms
a family of 2-rectangles defining a 2-union graph. According to Section 7.2.4, a maximal
independent set in this graph corresponds to a feasible tool assignment and concur-
rent setup schedule, and a maximum weight independent set with respect to the saving
rectangles’ weights is associated with a solution with maximum savings in makespan
compared to a solution which never switches the tools and never performs setup work
concurrently.

As summarized in Observation 7.1, saving rectangles observe a very special structure,
and hence, so do the 2-union graphs which are associated with CSAP. In order to better
capture CSAP, we constrain the class of 2-union graphs accordingly. This requires a
certain notion of affinity among different disjoint sections of the x- and y-axes. Recall
Figure 7.5 where the axes were divided into such sections in order to position the saving
rectangles appropriately. In the tool assignment dimension, there was a separate section
for each of the m cells while in the setup dimension, all r setup resources had their own
section. Each section spanned the full time horizon of the considered instance, i.e., the
total processing time of all jobs.

Let Fr, be a family of intervals contained in a section
L = [sp,er] of the real line. For an interval v = [s,, e,] € Fr, we denote by

vr =[Sy — SL, €y — SL]

the L-relative interval of v. When referring to some canonical section of the real line,
we call these intervals section-relative.

For the definition of m-composite 2-union graphs we will utilize the notion of relative
intervals only for the z-axis, i.e., in terms of saving rectangles for tool intervals. We
will discuss afterwards why we do not take into account separate sections in the second
dimension, i.e., for setup intervals, even though our positioning of the saving rectangles
would suggest to do so.

A 2-union graph G is m-composite if it can
be represented by a family V of 2-rectangles such that

1. For any rectangle v € V its projection v(Y) in the first dimension lies in one of m
equal length disjoint intervals L1, ..., Ly,.

2. For any u,v € V with u™ € L; and v e L; their projections @ and v? in the
second dimension satisfy the following:

uPno@£p = u(Lli) N v(Llj) #10. (8.1)

Loosely speaking, when two rectangles intersect in their projections in the second
dimension, then so would their projections in the first dimension, if they belonged to the
same section. Note that 1-composite 2-union graphs are standard interval graphs since
any intersection in the second dimension implies an intersection in the first dimension.
Hence, the second dimension is redundant, and the first dimension fully defines the graph.
Similarly, n-composite 2-union graphs which contain exactly one rectangle in each section
of the first dimension are also standard interval graphs. Here, the rectangles are pairwise
independent in the first dimension, and so, the graph is defined by the second dimension
only.

Considering the rectangles in CSAP, the two properties of the definition are always
satisfied due to the characteristics described in Observation 7.1 when choosing m to be
number of cells in CSAP. Considering our positioning of saving rectangles, it might seem
natural to demand that the rectangles lie not only in disjoint intervals with respect to
the first dimension but also with respect to second dimension, representing the different
setup resources. However, since our positive results hold for the more general graph class
which does not ask for such distinct sections in the second dimension, and on the other
hand, the negative results can be easily transferred to this setting, we investigate the
graph class as defined in Definition 8.4.

Finally, we point out that the class of m-composite 2-union graphs is a generalization
of the class of so called strip graphs.

A 2-union graph is a strip graph if it can be represented
by a set of rectangles whose projections in the first dimension are of the form [i,i + 1]
for i € N. The intervals [i,i + 1] are referred to as strips, and a strip graph utilizing at
most m different strips is also referred to as m-strip graph.

Hence, a strip graph is an m-composite 2-union graph whose corresponding rectangles
all fully cover a whole section in the first dimension. Figure 8.1 summarizes the relation
of all introduced classes of multiple-interval graphs.

After illustrating how to model CSAP as MWISP in m-composite 2-union graphs, we will
now discuss related work on MWISP in the different classes of multiple-interval graphs;
see Figure 8.1 for a summary. Considering strip graphs, the unweighted problem variant
is often also referred to as job interval selection problem, see e.g., [Spi99, vBMNW12].

In classic interval graphs, MWISP can be solved in polynomial time.
The algorithm proposed by Frank [Fra75] is based on a perfect elimination scheme of
the vertices in the graph, i.e., an ordering ¢ of the vertices such that all neighbors of a
vertex v that appear in ¢ after v form a clique. It is known that interval graphs always
allow for such a scheme, and it can be constructed in polynomial time; see e.g., the
survey article by Mohring [Moh&5].

8.1 Preliminaries on t-interval graphs and t-union graphs 99

PROPER 2-UNION GRAPHS

APX-hard (uniform weights, (2,2)-rectangles) [BYHN*06]
2-approximation [BDMO02]

m-STRIP GRAPHS

dynamic program of runtime O(n?2™) [Jan91]
dynamic program of runtime O(n 22) [HK06]
strongly NP-hard (uniform weights, m input)® [Cor. 8.7]/[Jan91]

APX-hard (uniform weights, m input) [Spi99]
2-approximation (uniform weights) [Spi99]
1.582-approximation (uniform weights) [CORO06]

2-UNION GRAPHS
dynamic program of runtime O(n? 2#mCmin) [V BMNW12]

t-INTERVAL GRAPHS
2¢-approximation [BYHN (6]

Figure 8.1: Relation of the different classes of multiple-interval graphs and the corre-
sponding results for MWISP. The parameters @ and #mCyin denote the maximum
number of live strips and the minimum of the number of maximal cliques in the two
interval graphs that define the 2-union graph, respectively.

Besides the above result for classic interval graphs, there are different fixed-parameter
tractable dynamic programs for more general graph classes with respect to different pa-
rameters. For m-strip graphs, Jansen [Jan91] proposes one such dynamic program which
runs in time O(n?2™). Also for strip graphs, Halldérsson and Karlsson [HIK06] show
that the problem is fixed-parameter tractable with respect to the maximum number Q
of parallel so called live strips. A strip is live from the start of its first interval to the end
of its last interval. The corresponding algorithm has a runtime of O(n2%). Moreover,
van Bevern et al. [vBMNW12] showed recently that MWISP in 2-union graphs allows
for a dynamic program with runtime O(n3 2#mcmin), where #mChyin is the minimum of
the number of maximal cliques in the two interval graphs that define the 2-union graph.

Complexity. All hardness results we are aware of hold in the unweighted case, suggesting
that the difficulty of the problem rather stems from the general structure of the graphs
than from non-uniform weights. Accordingly, Jansen' [Jan91] showed by a reduction
from 3-SAT that the unweighted MISP is strongly NP-hard on general strip graphs.
This reduction is essentially identical to our proof in Theorem 8.6. Also for strip graphs,
Spieksma [Spi99] showed later that MISP is also APX-hard. The proof is based on an
L-reduction from the MAX SNP-hard maximum bounded 3-SAT problem.

!The results in this thesis were achieved independently of the work of Jansen, who sent us his paper
after publication of our work. The results are available as a technical report of the Universidt Trier but
they are not published elsewhere.

oo
i}

- = variable 1

[IN]
]

= =, variable xo
L = = variable x3
= .
= = = variable x4
= = (fl VZ3V 5134)
= (Il V o V fg)

= = (T1 VT2V Ta)

- (Tg V a3 \/54)

Rectangle representation of the graph G constructed from an instance of
maximum bounded 3-SAT in the APX-hardness proof of Spieksma [Spi99] for MISP on
strip graphs. The yellow bars indicate intersections and non-intersections.

Even though the APX-hardness is stronger than the standard NP-hardness, the
graphs that are used in the reduction in [Spi99] are much more complicated, and more im-
portantly for our purposes, their structure differs greatly from the m-composite 2-union
graphs we consider. The main difference is that the graphs in the reduction of Spieksma
contain several induced cycles while this is usually not the case in our setting. In Fig-
ures 8.2 and 8.3, without describing the constructions in detail, we demonstrate at an
example how the graphs resulting from Spieksma’s and from Jansen’s/our! reduction
look like. However, note that the rectangle representation is not very appropriate for
the particular graphs of Spieksma, and hence, in his paper, he considers the actual
graphs instead of this representation. Technically, the graphs of both reductions are
m-~composite 2-union graphs since they are strip graphs. By construction, our graphs
have m = 2n sections in the z-dimension, additionally observing the property of an
(n + r)-strip graph with respect to the y-dimension, where n denotes the number of
variables of the satisfiabilty instance, and r is the number of clauses. The graphs of
Spieksma, on the other hand, allow only for being interpreted as m-composite 2-union
graphs, if considering each strip in the y-dimension as a separate section. This leads to
(3n + 97)-composite 2-union graphs.

For the more general class of 2-union graphs, Bar-Yehuda et al. [BYHN06] show
that the unweighted problem is APX-hard when all representing rectangles are squares
of side length 2 whose endpoints are integral. It is argued that every graphs whose
vertices have degree 3 or less can be represented as this special type of 2-union graph,
and for degree 3 graphs MISP is known to be APX-hard. Note that the described 2-union
graphs are in fact proper, i.e., no projection of a rectangles on one of the axis is strictly
contained in the projection of any other rectangle on that axis. However, m-composite
2-union graphs do not necessarily observe this property.

Addressing approximation algorithms, we are only aware of re-
sults for either very special or very general classes of multiple-interval graphs, such as
strip graphs and proper 2-union graphs on the one hand, and ¢-interval graphs on the

other hand. However, there seems to be no results especially focusing on intermediate
graph classes.

Addressing proper 2-union graphs, which are not our major concern, Berman [Ber(0]
provides a %—approximation at runtime Q(n?) for MWISP in d-claw-free graphs which
implies an approximation factor of 2.5 + ¢ for proper 2-union graphs; this holds because
proper 2-union graphs are 5-claw free, where a d-claw is a star with d leaves [BNR96].
Berman, DasGupta and Muthukrishnan [BDMO02] propose a fast O(nlogn) time approx-
imation algorithm, however, only achieving an approximation factor of 3.

For unweighted strip graphs, Spieksma [Spi99] showed that a simple greedy algo-
rithm observes an approximation factor of 2. The factor was later improved to 1.582 by
Chuzhoy, Ostrovsky and Rabani [COR06]. Their essential idea is to divide the z-axis into
certain blocks and to show that one obtains near optimal solutions which contain only
rectangles that lie completely in one of these blocks and where the number of rectangles
per block is bounded.

In contrast to the above results for very restricted graph classes, Bar-Yehuda et
al. [BYHNT06] proposed a 2t-approximation for MWISP on the general class of t-interval
graphs. A standard integer linear programming formulation for MWISP in general
graphs uses a constraint for each maximal clique in the graph, requiring that at most one
vertex in that clique is chosen. However, the number of cliques may be super-polynomial.
Bar-Yehuda et al. use a linear programming relaxation of this formulation, in which they
only consider certain interval cliqgues. Fractional solutions of this relaxation are trans-
ferred to integer solutions via a rounding algorithm which is based on a factional variant
of the local ratio technique.

First, we show that for m being part of the problem input, MWISP is NP-hard in
m~composite 2-union graphs, even in the unweighted case. The graphs that are used
in the reduction are in fact strip graphs or, if you wish, m-composite strip graphs. Af-
terwards, we proceed to describe an exact dynamic programming approach running in
polynomial time for any constant m. Finally in Section 8.3, we describe how both
negative and positive results carry over to CSAP in modified form.

In this section, we show that the unweighted variant of the MWISP, i.e., the MISP, is
strongly NP-hard in m-composite 2-union graphs. The hardness is shown by a reduction
from:

Given: Set of n variables x1,...,x, and r clauses ci,...,c, on three literals in
conjunctive normal form.

Task: Decide whether there exists a truth assignment to the variables such that in
each clause at least one literal is true.

For m being part of the problem input, the MISP in m-composite 2-union
graphs is strongly NP-hard.

Proof. We give a reduction from strongly NP-hard 3-SAT [Coo71]. Let I denote an
arbitrary 3-SAT instance with n variables x1,...,z, and r clauses ci,...,c.. W.lo.g.
we may assume no clause to contain two literals of the same variable. With m := 2n,
we now construct an m-composite 2-union graph G, such that G' admits an independent
set of cardinality n 4 r, if and only if there is a truth assignment for the variables of I
such that all clauses are satisfied.

For each of I's 2n literals, we introduce a vertex in the graph G, which is represented
by rectangles, in such a way that rectangles belonging to literals of different variables
will always be independent, while the rectangles representing two literals of one variable
will intersect in the second dimension. This can be achieved by the following definition
of rectangles which is also illustrated in Figure 8.3.

literal first dimension of rectangle second dimension of rectangle
z; [2r(i—1), 2r(i—3)[[i —1; 4
T [2r(i—1), 2ri] [i —1; 4

Furthermore, we introduce a vertex for each occurrence of a literal in a clause. The
corresponding rectangles are positioned in a separate section in the second dimension
which is reserved only for that clause. Regarding the first dimension, a rectangle asso-
ciate with a literal y is positioned in such a way that it intersects the literal rectangle
representing y’s negation. Moreover, no two clause rectangles intersect in the first di-
mension. The formal definition of a rectangle in case of the occurrence of a literal in a
clause is provided in the following table, see again also Figure 8.3.

literal clause first dimension of rectangle second dimension of rectangle
z; i [Rri-3H+i-1,2r3Gi-3)+4] [n4j—1; n+j
T; ¢j Rrii—1)4+j-1,2r(—-1)+7[n+j—1; n+j]

Now all occurrences of literals in the same clause intersect in the second dimension,
while occurrences of literals in different clauses are always independent.

Now suppose the graph G admits an independent set .S of cardinality at least n + r.
Since the two literals of each variable are adjacent, S may contain at most n vertices
corresponding to literals. On the other hand, vertices representing the three occurrences
of literals in each clause are also pairwise adjacent, so similarly, S may contain at most
one vertex per clause, and hence, in total at most . Thus, S contains exactly one literal
of each variable and one occurrence of a literal for each clause. Let us interpret the
choice of literals in S as a truth assignment X for the variables of I. Each occurrence
of a literal in a clause is adjacent to its negation in G, so such occurrence being in S
implies it is true in X, for S is an independent set. Hence, X fulfills at least one literal
in each clause of I, which is consequently a yes-instance.

Conversely, suppose [is a yes-instance and X is a truth assignment fulfilling all
clauses. Then an independent set in G can be constructed in the same way, picking n

(T1 VT3V a4)

‘ ‘ : : (z1V 22V T3)
0 0 ; ; 0 ; (T VTV Ty)
(T2 V &3 V T4)

Ty variable x1

variable 2
To variable x3
Z1 variable x4

Rectangle representation of the graph G constructed from the 3-SAT instance
with four variables and clauses. Every clause has its own set of potential positions of
rectangles representing it (dotted rectangles). For the second clause, these positions lie
in the intersections of the yellow horizontal and vertical bars.

rectangles corresponding to the literals in X and an occurrence of a literal true in X for
each clause.

Finally, for m = 2n, the graph G is also m-composite: Firstly, no rectangle crosses
an integral multiple of r in the first dimension, i.e., the end points of the rectangles
corresponding to literals. So the intervals {[(: — 1)r,ir[|¢ = 1,...,2n} define m
disjoint sections of the first dimension which contain all rectangles. Secondly, rectangles
which intersect in the second dimension either belong to the literals of one variable or
represent literals of the same clause. In both cases, the rectangles have identical section-
relative intervals in the first dimension by our construction. Hence G also satisfies
property (8.1). O

Note that this reduction actually demonstrates that MISP is even NP-hard in 2-union
graphs of a very specific structure: The graph constructed is the edgewise union of a
collection of pairwise disjoint 2- and 3-cliques on the one hand, and a collection of disjoint
stars on the other. In particular, the graph is a strip graph.

The MISP on strip graphs is strongly NP-hard.

It is not immediately clear, however, that hardness of this problem entails hardness
of CSAP. In Section 8.3, we show that the reduction can be transformed such that the
resulting interval representation is the interval model of a CSAP instance.

Let us now turn to positive results. We propose the following dynamic programming al-
gorithm to compute a maximum weight independent set in m-composite 2-union graphs,
which runs efficiently when m is a constant.

For any constant m, a mazximum weight independent set in m-composite
2-union graphs can be computed in polynomial time by dynamic programming.

Proof. Let G be an m-composite 2-union graph on n vertices which is represented by a
set of rectangles. We define a state to be an m-tuple

Sv = (’Ul,...,vm),

where v; is either a vertex whose rectangle lies in interval L; in the first dimension
according to Definition 8.4, or v; is empty. Note that the vertices of one state are
thereby independent in the first dimension, and (n+ 1)™ is a rough upper bound on the
number of states. We call a state feasible, if its vertices also form an independent set in
the second dimension (and hence in G).

We now define a directed acyclic graph S on the set of feasible states, and prove
that a longest path from the empty state, whose components are all empty, to some
other state corresponds to a maximum weight independent set in G. Since the number
of states is polynomially bounded for constant m, this will yield the result.

We call two states S,, and S, compatible, if S,, U S, forms an independent set in G.
For the ith component v; of Sy, let sr,(vi) := sy, — s, and er,(v;) := e,; — sz, denote
the start and end point of the L;-relative interval of vgl), the projection of v; in the
first dimension. Here, s,, and e,, are the absolute start and end points of v; in the first
dimension, and analogously, sy, denotes the start point of L;. Recall that the intervals L;
are assumed to have equal length. When v; is empty, we set sz, (v;) and e, (v;) to zero.
We define the arc set of graph S as

E(S) = {(Su,Sy)|Su, Sy compatible and e, (u;) < er,(v;) Vi, j=1,...,m}.

So intuitively, when following a path in §, the corresponding rectangles of each section
in the first dimension are traversed in a certain monotone fashion.

Now S is clearly acyclic, and we argue that any path P = (Ss,...,S) in S defines an
independent set SsU...US; in G: First, the union of two subsequent states in P is inde-
pendent by definition of F(S). Furthermore, the union of all states in P is independent
in the first dimension due to the demanded ey, (u;) < er;(v;) in E(S). It remains to
show that the union of any two non-subsequent states in P is independent in the second
dimension as well.

For the sake of contradiction, assume there is a state S, € P and a rectangle u; €
Sy which, in the second dimension, intersects with a rectangle v; contained in a state
succeeding S, on P. Let S, denote the first such state. Since adjacent states form
independent sets by definition of E(S), there must be a state S, in between S, and S,
on P which contains neither u; nor v;. In particular it holds a; # v; because otherwise S,
would not be the first state conflicting with S,,.

Since u; and v; intersect in the second dimension, property (8.1) implies that the
section relatives projections in the first dimension intersect as well, i.e.,

sp,;(vj) < er,(ui) < er;(vj). (8:2)
On the other hand, from the definition of F(S), and from the fact that a; # v; we know
er,(ui) < er;(aj) < sr;(vj).
This is a contradiction to (8.2). Consequently any path in S defines an independent set
in G.

We define the length of an arc (S,,S,) as the weight gained by a path, i.e., an
independent set, through its traversal:

0((Su, S0)) == D> we — > w

r€SL,USy TESy

Since for any independent set in G, its nodes can be ordered by the end points of their
section-relative intervals in the first dimension, any maximum weight independent set
also has a representation as a path in S, concluding our argument. O

In the previous section we drew a clear picture of the complexity of MWISP in
m~composite 2-union graphs. When m is part of the input, the problem is strongly
NP-hard, even in the unweighted case, while the problem is in P for constant m. In
this section we will investigate the complexity of the closely related CSAP. Even though
being closely related, neither the hardness result nor the dynamic program for MWISP
allow for a direct translation to CSAP. The hardness result on the one hand, does not
carry over since CSAP—as a special case of MWISP in m-composite 2-union graphs—
does not match the special structure of the graphs which occur in the reduction of the
proof of Theorem 8.6. On the other hand, the dynamic program from Theorem 8.8 may
have a super-polynomial runtime due to a potentially super-polynomial number of saving
rectangles. However, utilizing Lemma 7.2, we know at least that the dynamic program
achieves a polynomial runtime for to a certain class of CSAP instances.

For an instance I of CSAP, let T denote the greatest common divisor of all
setup durations sgf). When the number of cells m is constant, and the ratio maxjcj p;j/T
is polynomial in the size of the input I, then CSAP can be solved in polynomial time,

even if the number of setup resources r is part of the input.

Transferring the hardness result from Theorem 8.6 to CSAP is not as straightforward
as in the case of the dynamic program. In order to capture CSAP, we require additional
transformation steps. Since these transformations involve certain floating rectangles
which may correspond to a super-polynomial number of normal rectangles, the reduction
does not replace Theorem 8.6. Moreover, Theorem 8.6 holds for uniform weights while
the reduction in this section requires non-uniform weights. As we will see, the problem
is only hard when the number of setup resources is strictly smaller than the number of
cells. Otherwise, when there are sufficiently many setup resources to perform setup work
simultaneously on all cells, it is not hard to see that the problem is in P.

In the special case of r > m, CSAP can be solved in polynomial time.

Proof. By assigning a different resource to each cell, we can assume that two saving
rectangles conflict if and only if they belong to the same cell and their tool intervals
intersect. Thus, an optimal solution can be computed independently for each cell, and
the problem reduces to finding maximum weight subsets of pairwise disjoint intervals,
i.e., maximum weight independent sets in standard interval graphs, which can be done
very efficiently [GLL82]. O

The main result of this section is the following theorem.

For the number of cells m being part of the problem input, CSAP is
strongly NP-hard for any fixred number r < m of setup resources.

In this hardness proof, we follow the main ideas from the proof of Theorem 8.6. Recall
that in this proof, the reduction from 3-SAT was leading to an instance of the MISP in
m-composite 2-union graphs with very few rectangles which does not correspond to an
instance of CSAP. Hence, further investigations are necessary to show the hardness of the
latter problem. Our proof is divided into four major steps: In Section 8.3.1, we consider
the special structure of m-composite 2-union graphs resulting from CSAP instances.
In general, these graphs contain a very high number of rectangles. In Section 8.3.2,
we investige a special CSAP instance with only one cell, for which we show that it is
sufficient to concentrate on a very limited set of rectangles in the corresponding 2-union
graph. This graph will be of similar structure as the one in the proof of Theorem 8.6.
In the main part of the proof in Section 8.3.3, we reduce One-in-3-SAT to CSAP with
one resource. Finally in Section 8.3.4, we generalize our result to an arbitrary number
of resources.

Throughout the proof, we speak of an interval being contained in another according
to the natural sense of time, i.e., we consider the section-relative intervals in the tool
dimension as well as the setup dimension.

The m-composite 2-union graphs corresponding to instances of CSAP exhibit a special
structure: All possible tool intervals for the given sequence m need to be considered for
each of the m cells. Moreover, for each tool interval I, we have to take into account
multiple setup intervals. According to Lemma 7.2 it suffices to consider setup intervals
starting at points from (7.3), and the length of a setup interval is either the full duration
of the associated setup or the remaining time until the end of the underlying tool interval.
Additionally to those standard setup intervals, we also need to consider the case of an
empty setup interval.

Even though all our argumentation holds for the discretized setup start times de-
scribed above, we assume for simplicity that setup work may start at any point in time
in the related tool interval. This way, we can think of all setup intervals belonging to
a tool interval I as only one rectangle which can float along the setup axis within the
interval I. According to the number of setup resources r, we copy this rectangle repre-
sentation of the m-composite 2-union graph to r different sections along the setup axis
to obtain the final graph for the CSAP instance.

As described in Section 7.2.4, by adding a sufficiently large constant to each tool
interval, weighted by its length, we can assume that every maximum weight independent
set covers every job on every cell. For simplicity, we do not consider these additional
weights in the following. Still, we assume that in every maximum weight independent
set, all jobs are covered by a tool interval on every cell.

We consider a zero-cost decision variant of CSAP for a special instance with odd number
of jobs n and m = r = 1. Later, we will use our investigations on this simple instance to
construct a more elaborate one in our hardness proof. We assume 7 = id. For any even

job j, we have processing time p; = 1, and for odd j arbitrary p; > 1. Setup costs for
the single cell are specified by

0 ,ifj=i4+landi#1,n—1

M Jiftj=i+landi=1,n-1
@)0 ifj=i+2andiiseven
" T Y1 ifj=i+2andiisodd

C ,ifi=landj=n

M, otherwise

with ¢ > 0 and M > Zje 7 pj- The variable M is chosen sufficiently large, such that
in any zero-cost schedule no setup of length M occurs; the length of any tool interval is
simply not long enough to perform this setup work concurrently.

In the following, we will determine those rectangles which are sufficient to take into
account when searching for a zero—cost schedule. Consider Figure 8.4 alongside the
discussion.

Due to the size of M, we cannot chose any tool interval containing the jobs 1
and 2 or n — 1 and n. Hence, every zero-cost solution chooses the tool intervals [1]
and [n]. The setup intervals are empty, since no setup has to be performed at the
beginning and at the end.

The tool interval [2,n — 1] can only be chosen if all resulting setup is performed
concurrently, i.e., if its setup interval has length C.

Consider tool intervals [j] for j =2,3,...,n — 1. For odd j, no setup is necessary,
and hence, the setup interval is empty. If j is even, a setup interval of length 1
is required. Since in this case p; = 1, there is no flexibility in starting the setup
interval.

All other tool intervals require setup work of length M, and thus, they do not
occur in zero-cost solutions.

Summarizing, it suffices to consider the tool interval [2,n — 1] and all intervals con-
taining exactly one job, where only [2,7n — 1] provides some flexibility for concurrent
setup work; see again Figure 8.4. This leaves exactly two possible tool assignments:
Either, we switch the tool after every job, or we only switch after the first job and before
the last job.

Finally note that we can replace an even job j by p; unit-size jobs ji,Jj2,..., jp;
without changing the set of rectangles necessary to consider. We define the setup cost
between consecutive replacement jobs to be 0, and transfer the setup cost to and from j
to j1 and jjp;, respectively. All remaining setup cost is set to M. With the same
arguments as above, it is sufficient to assume that the jobs ji, j2, . .., jp, form one interval
instead of previously the longer job j. The resulting number of jobs is polynomial as
long as ;Dj is polynomial. We can thus define a 1-cell instance by specifying a set of
pairwise non-adjacent jobs to take the role of the even jobs in the above construction.
We call these jobs unit rectangle jobs (of a certain cell).

) semlp
intervals

empty
= = = == == setup
n i] i :” intervals

O
n—3 D

-

> w

ANA

[

T T T T T T T

—r— >
1 2 3 4 5 .. n3n2n1 p %

intervals

Instance of CSAP as discussed in Section 8.3.2. The graphics contains only
those saving rectangles which are relevant in the zero-cost decision variant of CSAP. For
simplicity, p; = 1 for all j.

We will now show the strong NP-hardness of CSAP when he number of cells m is part
of the problem input and when there is only one resource. We reduce from one-in-three
3-satisfiability.

Given: Set of n variables x1,...,x, and r clauses ci,...,¢. on three literals in
conjunctive normal form.

Task: Decide whether there exists a truth assignment to the variables such that in
each clause exactly one literal is true.

This problem variant is known to be strongly NP-hard [Sch78]. The main ideas of the
reduction are taken from the proof of Theorem 8.6.

Consider an instance I’ of One-in-3-SAT with n’ variables z1,...,z,, and m’
clauses c1,...,¢y. We reduce it to an instance I of CSAP with n := 2(n’ +m/) +
n’ (3m’ + 2n’) unit-size jobs and m := 2n’ cells, one for each literal. We refer to the ¢th
unit-size job simply by ¢. Literals z; and T;, i € {1,...,n'}, correspond to cell 27 — 1
and 2, respectively. For each cell, we define the setup cost so as to construct an instance
as described in Section 8.3.2. The unit rectangle jobs are chosen as follows: For z; and 7;,
we choose job 27 on the cells 2¢ — 1 and 21, respectively; see the lower left corners of
the sections in Figure 8.5. If literal y is contained in the clause c;, then we choose job

2n' +n' (3m +2n)+25 -1

on the cell corresponding to the negation of y; see the upper right corners of the sections
in Figure 8.5. We refer to the described rectangles as wvariable rectangles and clause
rectangles, respectively, and set the setup cost C to 3m’ +2n'. We will show that there
is a zero-cost schedule for I if and only if I’ is a yes-instance of One-in-3-SAT.

A N o . N < T
ety literal x; literal Z; empty
mtervals
E , e — , =5 | setup
intervals
clause c; @
: clause ¢4 @
clause ¢y @ T
T | | } 3m' +2n/
| } 3m' +2n’' i
Brectangle for variable x; Brectangle for variable x;
TT T T T T T T 11T T : :VVVVVVVVV VVVVVVVVVVVVVVVVVVV !4001‘1
2n' jobs 2m’ jobs 2n' jobs 2m/ jobs ~ mtervals
n/(3m’+2n’) jobs n/(3m’+2n’) jobs

Instance of CSAP as descibed in Section 8.3.3. Cells 2 — 1 and 2i represent
literals z; and T; from an instance of One-in-3-SAT. The dotted rectangles mark potential
positions of variable and clause rectangles on other cells. In this example, the clauses ¢;
and cs contain literal Z;, and ¢4 contains x;.

Assume we are given a truth assignment for I’. For any true literal we choose
the floating rectangle based on the tool interval [2,n — 1] in the corresponding
cell, and arrange these n’ rectangles without setup conflict in the middle section of
the setup dimension which neither contains literal rectangles nor clause rectangles.
Technically, for the floating rectangle of variable x;, we choose the setup interval
2n +14(i—1)C,2n" +1+iC — 1], covering in total the interval ranging from 2 n'+1
to2n' +1+n'(3m' +2n’) — 1. On all remaining cells, i.e., on those corresponding to
false literals, we choose the variable rectangle and all clause rectangles. This does not
lead to a conflict, since all of these variable rectangles belong to different variables, and
in every clause exactly one literal is true. For the latter, recall that a clause rectangle
representing some contained literal y lies in the cell section corresponding to the negation
of y. According to Section 8.3.2, the chosen rectangles represent a zero-cost schedule
for 1.

Consider the rectangle representation R of a zero-cost concurrent setup allocation
of I. By the size of setup cost C, the representation R cannot contain more than n’
floating rectangles based on the tool interval [2,n — 1]. Otherwise, not all setup work
can be performed concurrently. Assume, that there is a variable for which both such
rectangles are chosen. Then, by the above, there is another variable for which no such
rectangle is chosen. Since at most one of the corresponding variable rectangles can be
contained in R, this leads to schedule with positive cost. Hence, for each variable exactly
one rectangle based on [2,n — 1] is selected. We set the corresponding literals to true.
On the remaining n’ cells, all variable and clause rectangles must be chosen to allow a
zero-cost schedule. This is possible if and only if for each clause exactly one literal is not
covered by a [2,n — 1]-rectangle.

We generalize the result of Section 8.3.3 for r > 1 resources by adding » — 1 cells to
the above construction. For these cells, we define the setup costs as follows: Between

consecutive jobs, we have cost 0, except after the first and before the last job, where the
cost is defined to be M. Between job 1 and n, we set the cost to n — 2. In all remaining
cases, the cost is set to M. The only option to schedule the jobs on such a cell at zero
cost is to switch the tank after the first and before the last job and to perform concurrent
setup in the meantime, blocking one full resource.

Note that with a similar construction, we can argue that the hardness result of
Theorem 8.6 holds even when there is an arbitrary constant number of independent
sections in the first dimension.

In this chapter, we adapt the generic algorithmic approach from Section 6.3 for the
scheduling of coil coating lines. This necessitates to design efficient heuristics for the
concurrent setup allocation problem as well as to generate a diverse initial popula-
tion for the genetic sequencing algorithm. The quality of our solutions is evaluated
via instance-dependent lower bounds. They stem from an integer program which is
based on a combinatorial relaxation of the problem, showing that our solutions are
within 10 % of the optimum. Our algorithm is implemented at Salzgitter Flachstahl,
a major German steel producer. This has led to an average reduction in makespan
by over 13 % and has greatly exceeded the expectations of the practitioners.

As remarked in Chapter 7, the results in this chapter are based
on [HKLMI1].

In this final chapter on the coil coating problem, we present and evaluate the algorithm
we developed for the everyday planning at Salzgitter Flachstahl. It follows the general
concept described in Section 6.3. The algorithmic details are described in Section 9.1
in full detail. Thereafter in Section 9.2, we discuss the method we use to compute
lower bounds for evaluating our solutions, before finally reporting on our computational
experiments in Section 9.3.

As already discussed in Chapter 6, there are several challenges one is typically faced with
when designing algorithms for integrated sequencing and allocation problems. Like for
most of these enormously complex problems, also for the coil coating problem optimal so-
lutions are currently out of reach. Moreover, quick computation times are indispensable
for the practical usability of our algorithms: Planners at Salzgitter Flachstahl require a
plan covering 24-72 hours to be computed within 180 seconds.

In order to satisfy these runtime requirements, we utilize the generic algorithmic
framework described in Section 6.3 which was based on a genetic algorithm for the se-
quencing and a black box cost function to evaluate the generated sequences. In our
case, answering the question for the cost of a sequence necessitates the computation of a
concurrent setup allocation. Hence, efficient algorithms for this subproblem play a cen-
tral role in the performance of the overall algorithm. Besides the allocation subroutine,

the initial population was the second component in the approach which needed to be
fully adapted to the considered problem. A key to the success of our algorithm lies in
constructing this population highly diverse w.r.t. different beneficial aspects as we will
see in the following section. Two different heuristics for the concurrent setup allocation
problem (CSAP) are proposed in Section 9.1.2.

Recalling the problem formulation in Section 7.1, the cost of a solution is essentially given
by the sum of local and global cost, where the former only depends on the sequence,
while the latter is greatly affected by the concurrent setup allocation. In a sense, we
would like to eventually avoid global cost by switching tanks smartly, so we focus on
transition coils for the initial population.

Transition coils need to be inserted into the sequence in order to bridge differences in
a certain criterion r of subsequent coils, such as their weight per meter, thickness, etc.
For simplicity, we have omitted these criteria in our problem formulation. This local
cost incurred between two coils ¢ and j has the following structure:

sij = max{d,(i,5)},

where §, denotes the length of the transition coil necessary to bridge the difference
between ¢ and j in criterion 7. The exact definitions of the 6,(7,j) is very technical.
However, it suffices to think of them as functions being non-decreasing in |r; — r;].

When considering only one single criterion r, we can minimize the total local cost
by sorting the coils according to . On the other hand, by the definition of the s;;,
one transition coil can be used to bridge differences in several criteria at the same time,
making the most of some unavoidable transition coil, in a sense. These two ideas are the
essence of the algorithm generating our initial population.

To create an individual 7w € II,,, we first pick a criterion r1 by which we sort the set
of coils to be coated. To break ties, which occur frequently for some criteria, we pick
a second criterion 2. If in the ensuing sequence, call it 7 2, transition coils become
necessary due to some other criterion r3, we know we could have used them to bridge
differences in any other criterion at the same time, in particular differences in ry and rs.

This suggests the following algorithm to build a smarter sequence 7 from 7y 2: We
choose a fixed criterion rg different from r; and r5. Then, we add coils to 7 in the order
of 71 2, skipping those which would cause local cost in 7 due to differences in r3. After
reaching the end of 71 2, we add the first unused coil from 71 2 to the end of 7 and repeat
the process regarding only the coils in 71 2 which have not been added to 7 yet.

We can now create different individuals for the initial population by different choices
of r1, 72, and r3, and each individual is likely to avoid local cost due to these criteria
within certain parts of the sequence, while utilizing unavoidable transition coils to bridge
differences in multiple criteria at once. Thereby, we obtain a broad variety of completely
different individuals, each composed of sections which are attractive regarding their own
part of the objective.

Finally, as proposed in Section 6.3, we utilize Helsgaun’s efficient implementation
of the Lin-Kernighan Heuristic [Hel00] to compute a sequence which is good (in most
cases even optimal) w.r.t. to local cost. This sequence is added to the initial population
together with a sufficient number of random sequences.

Given an individual from our genetic algorithm, i.e., a fixed processing order 7 of coils,
we now solve the resulting instance of CSAP in order to obtain a complete solution to
the coil coating problem. Indeed, Corollary 8.9 yields a polynomial-time dynamic pro-
gram for this subproblem in our application. However, this approach is with a runtime
of O(n®) obviously not sufficiently fast. Nevertheless, already the change of the per-
spective from CSAP to the maximum weight independent set problem in m-composite
2-union graphs—as it is done in the dynamic program—helps crucially to design fast
heuristic algorithms for the allocation problem.

The complexity of our exact algorithm stems from the need to
consider interval selections for all coaters simultaneously in order to ensure that savings
from all selected setup intervals can be realized by the scarce work resource. Intuitively,
the probability that concurrent setup work on different cells can be scheduled feasibly,
i.e., one setup at a time, increases with the length of the associated tool interval. This
is our heuristic’s core idea for computing good tank assignments.

Instead of considering all coaters at once, we consider them separately. Recall that
savings from tool intervals for different coaters can be realized independently in any case.
Now, instead of explicitly considering all possible saving rectangles belonging to some
tool interval I, we assume that during a certain fraction « of I’s length setup work can
be performed, and for the moment, we do not care when exactly it is performed and
even, if it can be performed that way at all. Intuitively, the parameter « is an estimate
of the expected fraction of time one of the m coaters will use the work resource for its
own concurrent setup work. More precisely, we define the new weight wj (1) of a tool
interval I as

Whoot(I) := wrool(I) + min{a-|T], L[},

where o € [0,1] is a parameter of the heuristic. When choosing o = 0, concurrent
setup work is assumed impossible. For a = 1, all potential concurrent setup work is
assumed to be scheduled for each tool interval. However note that since the coil coating
line at Salzgitter Flachstahl has only one team to perform concurrent setup work, the
actual amount of performed setup work may well be smaller than it was assumed in
the modified weight of the tool interval. With these new modified weights, it suffices
to consider tool intervals alone. As a consequence, similar to the case of sufficient work
resources mentioned in Lemma 8.10, computing a tank assignment T' reduces to finding
a maximum weight independent set in an interval graph, which can be dealt with very
efficiently; see e.g., [Moh85]. In order to compute a feasible concurrent setup allocation
for this tank assignment, we use an earliest-deadline-first strategy as a simple scheduling
rule. As defined in (7.2), each setup w := (4, j, k) € W(mw,T) can only be performed after
completing coil i and before starting j on coater k. Based on this modeling, we define
a release time r,, and a deadline d,, for w to be the completion time of ¢ and the start
time of j, respectively. Since only one concurrent setup may be performed at a time, we
are trying to schedule all tasks on a single work resource. Whenever the work resource
becomes available, say at time ¢, we schedule the setup w with the earliest deadline for
which t € [ry, dy[.

Finally, we consider the tank assignment rule
which was previously in use at Salzgitter Flachstahl: Whenever subsequent coils have
different colors, switch the tank. If the new tank does not contain the required color,

a color change on that tank becomes necessary. So whenever a third color besides the
two in the shuttle tanks is required, the color which was in use earlier is discarded,
i.e., we follow a FIFO rule. For scheduling the tasks in the resulting set W (x,T), the
same earliest-deadline-first rule as above is used. The advantage of this rule is its online
character (and thus simplicity): the choice of tank depends only on the current and the
previous coil.

Assessing the quality of heuristic solutions is not only a theoretical contribution, but
it is an important question in practice to know how much optimization potential is
left. In this section we consider three different ways of computing instance-dependent
lower bounds on the optimal makespan. Two of them are rather straightforward bounds
which hold regardless of the used tank assignment rule, while our more elaborate bound
is limited to the use of the online FIFO tank assignment rule described in Section 9.1.2.

Ignoring the need for setups altogether we obtain the trivial lower bound as the sum
of processing times of all coils, LBy, = Z;‘:l pj. An enhanced idea is to relax the
complicating global cost only. This reduces the coil coating problem to determining
an optimal sequence with respect to local cost—which can be formulated as a (small)
instance of the asymmetric traveling salesman problem (ATSP), thus we denote the
obtained bound by LBrgp.

Our third bound takes into account global cost as well. In the extreme case, global
cost necessary to be performed before a coil j depends on the entire solution, in particular
on the entire tank assignment, prior to running coil j. Our relaxation now limits this
dependency in limiting the number of coils which are considered when computing global
cost, i.e., we “don’t look back too far.” More precisely, we concatenate subsequences
containing a constant number of coils, say 3, for which we exactly compute the global
cost. In between subsequences we only consider local cost. By means of an integer linear
program we find a cheapest such concatenation. A solution is a sequence of all coils, and
the tank assignment is given implicitly by the FIFO rule. As we will discuss at the end
of Section 9.2.1, one can also formulate the integer linear program in a most general way,
taking into account all possible tank assignments. However, this formulation is currently
computational intractable.

The logic of the model is to assign subsequences of 3 coils each to [n/g] time slots,
each consisting of 5 consecutive positions, except for the last slot which may possibly be
shorter. Thereby we assume a subsequence to be described not only by the contained
jobs and their order, but also by the time slot the sequence is scheduled in. Hence, for
each subsequence of 3 jobs, we introduce |n/f3]| separate copies, one for each time slot.
Moreover, we introduce a single copy of each sequence of length n— [n/3] - g for the final
time slot [n/8]. For a subsequence o, we denote by t(o) € {1,...,[n/B]} its time slot,
and by ¢(o,j) € {1,...,n} the absolute position of coil j in the overall sequence according
to subsequence o. We subsume all possible subsequences of 3 coils in the set §. We
slightly abuse the set notation j € o to express that coil j is contained in subsequence o.

Naturally, the cardinality of S is exponential in n, and listing S explicitly in an integer
program is out of the question. The general idea is to solve the linear relaxation of our
model by dynamically adding sequences, a.k.a. column generation, and embedding this
into a branch-and-price framework [BJN'98, DL05].

We have binary variables x,; for deciding whether coil j is assigned to position ¢
or not. Variable z, € {0,1} indicates whether subsequence o € S is selected or not.
Each o € § is charged for its local and global cost which is computed as if all coaters were
entirely clean and empty at the beginning of . The sum of these two cost components
is denoted by s,. In between two subsequences we consider only local cost s;;. In
order to model this, we have binary variables y;; which correspond to coil ¢ and j being
scheduled last and first in two consecutive subsequences, respectively. Note that due to
our restriction to the FIFO rule, global cost within a subsequence can be easily computed.

In total, we formulate the following integer program whose constraints are described
below in more detail.

n
min ngzo + Z Sij Yij (9.1)
g

1,j=1

n
d g =1 j=1,....n (9.2)
q=1

> g =1 ¢g=1,...,n (9.3)

j€el
Y oz = ay ¢.i=1,....n (9.4)
o3j:
q(0.5)=q
Tlast(t),i + Lirst(t41),j <1+ Yij ,j=1,...,n, (95)
t=1,...,[%] -1
)) ﬂ
zq; € {0,1} ¢,j=1,...,n (9.6)
yi; € {0,1} ,j=1,...,n (9.7)
2z, € {0,1} oceS (9.8)

The constraints are interpreted as follows. Each coil gets coated exactly once (9.2), each
position is filled exactly once (9.3), and a subsequence o needs to have coil j in position ¢
if and only if the corresponding z,; indicates so (9.4). The precedence constraints (9.5)
enforce that in between two consecutive subsequences in time slots ¢t and ¢ + 1 we incur
local cost between coil ¢ in the last position last(¢) in ¢ and coil j in the first position
first(t + 1) in ¢ + 1. The binary variable y;; precisely takes care of that, as its use is
penalized in the objective function (9.1) accordingly. The optimal objective value of the
integer program is denoted LBip.

In order to generalize this lower bound for arbitrary tank assignment rules, one
might introduce variables z4;. € {0, 1} which additionally decide which tank to use on
each coater c¢ in each position ¢ of the sequence. Unfortunately, the resulting model is
computationally intractable with today’s hardware and optimization techniques.

Initially, the integer program (9.1)—(9.8) contains all z4; and y;; variables, but only
some z, variables. We start with subsequences ¢ which are derived from a solution
produced by our sequencing algorithm, restricted to use the FIFO tank assignment rule.
All other z, variables are generated only as needed. The coupling constraints (9.4) are
the only ones which contain these variables; as a consequence the corresponding dual
variables p,; € R are the only relevant ones for calculating their reduced cost, which
must be negative in order to profitably add the variable to the problem. The reduced
cost of z, is
S0 = S0) la(ei)i-
j€o

and the pricing problem is to find a subsequence of minimum, or at least negative,
reduced cost. To the best of our understanding, there is no principal alternative to
a brute force method since we are able to evaluate the total cost of a subsequence
only when we see it in its entirety, thus we have to construct it. This also rules out
most of the traditionally used dominance criteria in dynamic programming. Therefore,
a straight forward depth first search enumerates the O(n®) subsequences to solve the
pricing problem. A pruning criterion based on the dual variable values of coils not yet
added to a subsequence helps in mildly reducing the search space without compromising
optimality.

When we determine an integer solution for the z,; variables, all other variables ;;
automatically assume integer values as well. That is, a natural candidate for taking
branching decisions in the branch-and-bound tree is to branch on

> m¢{o1}

03j:q(0,5)=q

for a given coil j at position ¢. In fact, speaking in terms of branch-and-price method-
ology, this is branching on the so-called original variables x4; of the problem which are
explicitly present in this extensive column generation formulation as well. The branching
itself can be realized as a modification to the pricing problem instead of adding an explicit
branching constraint to the master problem: One simply eliminates the forbidden coil j
from position g on one branch, or enforces it by eliminating all other {1,...,n}\{j} coils
from position g on the other branch. Note that the master problem has to be updated
according to branching decisions: Variables corresponding to subsequences which do
not respect the branching constraint have to be eliminated by setting the corresponding
upper bounds to zero.

Since the project was initiated with the explicit goal to develop a tool to go live in
an existing production environment, we were provided with realistic data right from
the beginning. Planners at Salzgitter Flachstahl repeatedly validated our solutions, and

chem coater top ‘ - ‘

chem coater bottom | N |

primer top, tank 1 jj 1 i s e e
primer top, tank 2 D]]] D]]] (N I A
primer bottom, tank 2 I:l:\:‘j I:l - [— - I:lD:D D_
finish top, tank 1 ﬁ - - I
finish top, tank 2 | | T 1] R s s

finish bottom

600 10115h 12:30n 14:45h 17:00n 191150 21:30n 23:450 2000 4150 630 8:45h 11:00n 131150 15:30n 17:450 20000 22:150

Visualization of our solutions as provided for the planners at Salzgitter Flach-
stahl. Each tank is represented by two lines, the top line shows the actual coils in their
color and width together with transition coils while the bottom line is reserved for setup
work. When transition coils are run or concurrent setup work is performed on one of
the tanks, setup work on the other tanks is blocked. Scrap coils are shown as vertical
bars through the whole schedule. For the chem coaters only the setup line is presented
since all coils receive the same initial chemical treatment. Note that not all coils require
a finish coating. In this case the coils do not appear in the schedule of that coater. In
particular, no coil needs to be coated on the finish bottom coater in this example.

addressed various issues regarding the accuracy of cost calculations and the practicability
of work schedules, which were eventually solved. This procedure was greatly facilitated
by our visualization of the schedules as shown in Figure 9.1.

The test instances fall in two categories. The first comprises sets of up to 120 coils
for a planning horizon of up to 72 hours. These instances are solved well ahead of time
for long-term planning. The second category is made up of 2040 coils for a shorter time
horizon of at most 24 hours. These instances usually occur when unplanned changes in
demand or availability of coils necessitate short-term replanning.

For many test instances, Salzgitter Flachstahl provided a plan devised by their ex-
pert planners for comparison with our solutions. In most cases we were able to obtain
unexpected improvements over these plans. We cannot report on the precise numerical
characteristics of our data and results due to non-disclosure agreements, hence normal-
ized numbers are presented.

Parameters for the genetic sequencing algorithm were determined by rigorous testing,
with the goal to have one fixed parameter set yielding good performance across all
data sets. For most short-term instances, our algorithm finds its best solutions after
less than 30 seconds, while solutions keep improving towards the runtime limit of 180
seconds for long-term planning.

In the construction heuristic for the initial population described in Section 9.1.1, we
use some coil properties which were omitted in the problem formulation in Section 7.1 for
simplicity. All possible three-tuples of width, height, processing speed, and temperature
in primer and finish oven are taken as criteria 71, ro, and 73, accounting for about one
third of our initial population of 200 individuals. In each generation we create 100

new individuals each from both mutations of random individuals and crossovers of two
randomly chosen parents. This results in a total population of 400, of which we keep
the 200 with the best makespan for the next generation.

Especially on small instances, the population quickly evolves to a set of individuals
with almost identical cost. When the makespan of all individuals is within 5% of the
best individual, we discard the worst 90 % of the population and replace it with a new
initial population. This usually leads to further improvement of the best individuals in
subsequent generations.

Regarding allocations, we performed extensive testing using the heuristics described
in Section 9.1.2. We report on results for the Independent Set Heuristic for different
values of the parameter o € [0, 1] in comparison to the simpler FIFO rule.

For lower bound computations, we implemented a branch-and-price algorithm to solve
the integer program (9.1)—(9.8) within the publicly available SCIP framework [Ach07].
Its implementation is not tuned to performance as we used it as a proof-of-concept only,
so we do not report computation times for lower bounds, which were huge.

Our algorithm produces plans with makespan reductions over 13 % on average, and in
the best cases of up to 25 %, compared to reference solutions that had been used in
production in both long-term and short-term planning, see Figures 9.2 and 9.4 and the
corresponding data in Table 9.1 and 9.2. Expert planners also assert that our solutions
“look very different” from theirs while retaining operability. Together with the fact
that significant savings are also realized over manual plans which “looked optimal”, we
take this as evidence that our rigorous mathematical analysis of the savings potential
of shuttle coaters fully paid off. It should also be noted again that indeed every detail
of production is controlled by our plan, and that these plans were verified on-site at
Salzgitter Flachstahl’s coil coating line. Hence, cost savings are now realized to their full
extent in day-to-day production.

As expected, our Independent Set Heuristic for setup allocation
proves superior to the simpler FIFO online rule. We were unable, however, to find a
uniform choice of the parameter « suitable for all instances alike. When determining the
best setting for a by trying all values in {0.1,0.2,...,0.8}, the Independent Set Heuristic
outperformed FIFO on 12 of the 16 instances, reducing cost by up to 30 % (over FIFO).
This translates to makespan savings of up to 6 %, see Figure 9.2. When fixing o to 0.5,
the Independent Set Heuristic remains similarly superior to FIFO on 8 instances, while
incurring an increase in makespan of at most 1% in four cases, see Figure 9.3.

For all short term instances, we succeeded in computing lower
bounds by our branch-and-price approach, proving our solutions to be within at
most 10 % of makespan optimality, see Figure 9.4. Yet, we did not solve all instances to
integer optimality and also used short subsequences only (8 < 6), so the lower bound is
certainly improvable.

If we concentrate on cost—in contrast to makespan—it can be seen from Figure 9.5
that the integer programming lower bound is able to close much more of the gap to the
upper bound than the TSP bound which is optimal w.r.t. local cost only.

Finally, the superiority of the Independent Set Heuristic to FIFO is less significant
in short-term planning. While both heuristics were on par for most instances, small
improvements over FIFO were observed in three cases.

9.3 Computational study 119

1.4

| I

1.0

| | E best a
B rF1ro
| | O expert

0.8

0.6

0.4

0.2

00 (1 02 (3 ¢4 (5 (6 (7 €8 (9 (10 (11 (12 (13 (14 (15 (16

Figure 9.2: Comparison of normalized makespans for representative long-term instances.
From left to right, we show the results of our algorithm using the Independent Set
Heuristic with best choice of parameter «, of our algorithm using the FIFO online rule,
and of the reference solutions devised by expert human planners if available.

"TNd TaNnein W
"HNa e e
PR

0.0

(1 ¢2 (3 ¢4 05 (6 ¢7 (8 ¢9 (10 (11 (12 (13 (14 (15 (16
Figure 9.3: Comparison of normalized non-productive time (cost) included in our long-
term solutions. From left to right, we show the results of our algorithm using the
Independent Set Heuristic with best choice of parameter «, using the same heuristic
with fixed choice of a = 0.5, and using the FIFO online rule.

makespan cost
instance LBtriv LBrpsp best « FIFO expert best « a=0.5 FIFO
/1 0.71 0.79 1.00 1.00 1.22 1.00 1.00 1.00
£2 0.69 0.78 1.00 1.00 1.11 1.00 1.00 1.00
23 0.71 0.76 0.98 1.00 - 0.93 0.97 1.00
L4 0.84 0.89 0.96 1.00 1.00 0.74 0.78 1.00
25 0.73 0.78 0.99 1.00 - 0.97 1.00 1.00
L6 0.82 0.88 1.00 1.00 1.33 1.00 1.00 1.00
L7 0.58 0.79 0.99 1.00 - 0.98 0.98 1.00
L8 0.71 0.77 0.99 1.00 - 0.97 0.98 1.00
£9 0.82 0.86 1.00 1.00 - 1.00 1.04 1.00
210 0.73 0.78 0.99 1.00 - 0.97 0.97 1.00
211 0.71 0.76 0.99 1.00 1.29 0.98 1.00 1.00
212 0.75 0.81 0.99 1.00 1.28 0.96 0.96 1.00
213 0.78 0.81 1.00 1.00 1.31 0.99 1.03 1.00
214 0.78 0.82 1.00 1.00 1.23 0.99 1.06 1.00
215 0.83 0.85 0.96 1.00 1.00 0.76 0.80 1.00
216 0.82 0.85 0.94 1.00 1.00 0.67 0.69 1.00

Table 9.1: Normalized results for long-term instances as shown in Figures 9.2 and 9.3.

120 9 Algorithms and experiments for the coil coating problem

1.4
|
1.0
I:l LBtriv
0.8 - - | - - - . LBrsp
H LB
FIF
0.6 S IS PR fESE AL e 8 riro
[expert

0.4

0.2

sl s2 s3 s4 s5 s6 s7 s8 s9 510
Figure 9.4: Comparison of normalized bounds and makespans for representative short-
term instances when restricted to FIFO tank assignment. Bounds displayed from left to
right are LBy, the sum of coil processing times, LBrgp, the sum of processing times
plus local cost in an optimal, local cost based ATSP solution, and our IP bound LBjp.
Makespans are given for our solutions obtained using the FIFO online rule for scheduling,
as well as for a reference solution devised by expert human planners if available.

0.0

0.8
0.7

0.6

0.5
B LBrsp

0.4 H LB

0.3
0.2
0.1

0.0 s1 52 s3 s4 s5 s6 s7 s8 s9 s10

Figure 9.5: Percentage of the closed relative gap between the respective trivial lower
bound and the non-productive time included in our short-term FIFO solutions: Our
bound LBjp from the branch-and-price approach respects global cost and closes consid-
erably more of the gap than the ATSP based bound LBrsp which only considers local
cost.

makespan closed gap
instance LBtriv LBTSP LBIP FIFO expert LBTSP LBIP
sl 0.73 0.85 0.92 1.00 - 0.44 0.72
s2 0.86 0.87 0.95 1.00 1.19 0.09 0.66
s3 0.68 0.76 0.91 1.00 1.27 0.25 0.73
s4 0.81 0.84 0.90 1.00 1.35 0.15 0.49
s5 0.84 0.90 0.94 1.00 1.11 0.39 0.62
s6 0.89 0.91 0.93 1.00 1.10 0.23 0.38
s7 0.88 0.92 0.94 1.00 1.09 0.33 0.47
s8 0.89 0.91 0.93 1.00 1.06 0.23 0.38
s9 0.92 0.96 0.96 1.00 - 0.42 0.46
s10 0.86 0.87 0.91 1.00 - 0.09 0.35

Table 9.2: Normalized results for short-term instances as shown in Figure 9.4 and 9.5.

In this chapter, we consider an integrated sequencing and allocation problem which
arises at filling lines in dairy industry. The underlying allocation problem involves
certain packing and covering aspects which not only occur in dairy production but
also in other branches of industry. As for the coil coating problem, we concretize
our generic approach for integrated sequencing and allocation problems. Based on
insights into structural properties of the problem, we propose different allocation sub-
routines. In cooperation with Sachsenmilch, the algorithm was implemented for their
bottleneck filling line, and evaluated in an extensive computational study. For the
original data from production, our algorithm computes almost optimal solutions. As
a surprising result, our simple greedy algorithms outperform the more elaborate ones
in many aspects.

The results in this chapter are based on joint work with Torsten
Gellert and Rolf H. Mohring which was presented at the 10th International Sympo-
sium on Experimental Algorithms (SEA 2011) and which is published in Optimization
Letters in 2011 [GHM11].

In this last chapter, we address a planning problem of filling lines in dairy industry. After
the coil coating problem, this is the second integrated sequencing and allocation problem
for which we will implement the abstract algorithmic approach described in Section 6.3.
The results are not only of interest for providing a practicable planning tool for practice
but also as a proof of concept for our generic approach for integrated sequencing and
allocation problems.

Dairy production involves various complex optimization problems. Several produc-
tion planning problems arise from the different processing stages like homogenization or
fermentation, and logistical problems need to be solved when delivering the finished prod-
ucts to the customers. However, the bottleneck of the entire process are the filling lines,
having a low packaging rate compared to the flow rates of the previous stages [KPG10].
In recent years, this bottleneck role has become more and more crucial due to growing
product portfolios, decreasing lot sizes and the resulting increase in the overall setup
time. As a consequence, the scheduling of filling lines is one of the most prioritized tasks
in the whole planning of dairy factories.

The corresponding optimization problem incorporates sequencing as well as alloca-
tion components: For a given set of dairy products—e.g., cream or yogurt—one aims
for a filling order with minimum makespan. However, the makespan is not only deter-
mined by this order but also by setup tasks and waiting periods which may become

necessary for the chosen sequence. Several options of performing setup work and insert-
ing waiting periods lead to an allocation problem for the fixed filling sequence. Most
basic, sequence-dependent setups are necessary in between consecutive products in the
sequence. Additionally, to meet hygiene regulations, the filling machinery has to be
cleaned and sterilized at certain intervals to which we refer to as cleanings. Even though
some of the sequence-dependent setups may already involve cleanings, further cleanings
are usually required to satisfy the regulation. There are two ways of allocating additional
cleanings: By job preemption, they can be inserted at any point in the schedule, or, al-
ternatively, they can replace less exhaustive sequence-dependent setups. This yields a
tradeoff between keeping the total number of cleanings small by postponing them as long
as possible, and saving additional setup time by replacing sequence-dependent setups,
but possibly requiring more additional cleanings in total; see Figure 10.1. Thus, setups
are not only determined by their neighboring jobs, but also by scheduling decisions taken
in view of the entire sequence.

In addition, there are waiting periods that result from filling constraints of certain
products, or from different technical constraints. A typical example for the latter is
the production of cream. The pretreated milk is processed in a special tank before the
finished cream can be filled into cups. Due to the limited tank size, cream jobs have to
be partitioned into different tank fillings. Resulting from the preparation time in the
tank and the later cleaning time, the filling machine may be idle, awaiting the first cream
job of a new tank filling.

Similar aspects do not only occur in dairy industry but also at packaging lines or in
car sequencing. Such constraints often require to partition certain tasks into groups of
limited size, while observing minimum time lags between others. E.g., in car sequenc-
ing, after a certain number of cars with the same color, the color needs to be changed.
In addition, special options like sun roofs can only be installed at every other car, see
e.g., [EGNO08]. To capture those different application areas, we formulate the side con-
straints as abstract generalized capacity constraints which we will consider alongside the
described sequence-dependent setups.

For solving the overall problem, we implement the general algorithmic framework for
integrated sequencing and allocation problems which we discussed in Section 6.3. Our
work is based on a cooperation with Sachsenmilch, one of Europe’s largest and most
modern dairy factories. The implemented algorithm is particularly adapted to their
bottleneck filling line, and it is evaluated in an extensive computational study utilizing
different allocation subroutines. Based on production data from Sachsenmilch, 180 re-
alistic instances were generated, and each of them was tested in 16 different problem
scenarios. In our study, we compare the different algorithms, and evaluate their per-
formance with an ATSP lower bound, proving for the data of Sachsenmilch’s current
production an optimality gap of only 2 %, and of roughly 15 % on average for the gener-
ated instances. Due to the presumed weakness of the lower bound, the gap of 2 % makes
us believe that the former solution is in fact optimal. In addition to the above frame-
work, we consider a heuristic which may be a natural starting point in (semi-)manual
planning.

Outlining this chapter, we give a formal problem definition in Section 10.1 before
investigating structural properties of the problem and complexity issues in Section 10.2.
Based on these insights, we formulate different algorithm variants in Section 10.3. Finally
in Section 10.3.1 we report on the corresponding computational study.

(a) ‘cleaning job 1 | | job 2 | | job 3 | cleaning

> Aclean

> Aclcan ..

(b) ‘cleaningl job 1 |cleaning| job 2 |cleaning| job 3 |cleaning‘

(c) ‘cleaningl job 1 | |j0b 2 |cleaning| job 2 | | job 3 |cleaning‘

The schedule (a) contains only jobs and sequence-dependent setups, two
of them being cleanings. The time between the cleanings exceeds the maximum time
lag Aclean between cleanings. The schedules (b) and (c) below are feasible with respect
to cleaning time lags. The former replaces two existing sequence-dependent setups while
the latter preempts the middle job to require only one additional cleaning.

In Section 6.2 general aspects of integrated sequencing and allocation
problems have been discussed. Here, we focus on results which address side constraints of
similar structure as those in our problem from dairy industry. Even though incorporating
batching aspects—e.g., resulting from the tank in cream production—our problem differs
from classic batch scheduling. There, for single machines, most literature focuses on the
sum of weighted completion times or the maximum lateness objective; see [PK00] for a
review. In fact, the makespan variant of the single machine case reduces again to the
asymmetric traveling salesman problem (ATSP).

In car manufacturing, one can observe batching aspects that are similar to ours. E.g.,
the paint needs to be changed after a certain number of cars with the same color [EGNO0S].
Still, in contrast to our problem, only consecutive subsequences can form groups in this
setting.

Previous work on the planning of filling lines in dairy industry mainly focuses on
mixed-integer linear programming (MILP) models to minimize weighted cost functions
comprising setup cost, storage cost and others. Most recently, Kopanos et al. [KPG10]
proposed a MILP model for parallel filling machines, taking into account machine- and
sequence-dependent setups, due dates, and certain tank capacities. Further MILP models
were proposed for different problem settings, e.g., by [DS08, LEGvBT05, MNS07]. For
the common planning horizon of one week, the models in [KPG10, DS08] could compute
optimal solutions at very low computational cost. Based on different relaxations of their
model, Marinelli et al. [MNS07] also proposed an algorithm which is heuristically almost
optimal, but at a high computational expense.

Different to our problem, regular cleanings and sterilizations of the filling line are
performed at the end of the day in all these papers. In combination with their very
restricting sequencing constraints, this turns these problems to packing problems rather
than to sequencing problems as in our case. The results are not adaptable to our problem.
To the best of our knowledge, flexible cleaning scheduling has not been considered in the
literature yet.

We consider an integrated sequencing and allocation problem as introduced in Sec-
tion 6.1. The aim is to schedule a set of jobs J := {1,2,...,n} where a job j € J

is specified by the following parameters:

processing time p; >0,
volume v; >0,
base (e.g., yogurt or cream) b;, (10.1)
(possibly non-existing) flavor f;,

article number a; .

The base, the flavor, and the article number are correlated in the following way: If two
jobs differ in their base then they also differ in their flavor and article number. And
analogously, if the flavors are different then so are the article numbers. We refer to a job
with the parameters (10.1) as dairy job if the parameters observe also the just described
correlation. This correlation plays a major role in the structure of sequence-dependent
setups which we will define below.

The overall goal of our planning problem is to compute a schedule S = (7, A(w)),
subsuming a processing sequence 7 of the jobs J and a feasible (not yet defined) alloca-
tion A(m), which minimizes the makespan, i.e., the completion time of the last job. An
allocation A(m) for 7 is a sequence which contains in addition to the actual jobs certain
setups and waiting periods, and the jobs appear in the same relative order as in 7. We
refer to jobs, setups and waiting periods jointly as tasks, and denote the duration of a
tasks s by ps. Moreover, we denote by T the set of all possible tasks

T :=JU {s | s setup with ps € Rzo} U {s ‘ s waiting period with ps € Rzo} .

Setups and waiting periods result from the following constraints:

When scheduling jobs i,7 € J consecutively, then this re-
quires sequence-dependent setup work between ¢ and j of duration

Cy ,ifb; #0; (product change)
Cy ,if by =bj and f; # f; (sort change)
Cp, ,itb; =0, fi=fjand a; # a; (packaging change)
0 yif by = bj, fi = f; and a; = q;

(10.2)

for some values Cj, > Cy > Cp, > 0. Intuitively, the setup duration Cj corresponds
to a so called product change which includes a change of the base, the flavor, and the
packaging material where the latter can be associated with the article number. A sort
change requires only to change the flavor and the packaging material, and hence, its
duration Cy is shorter than (. And finally, the duration C), of a basic packaging change
is even shorter.

Cleanings have to be performed on a regular basis, i.e., there is a
mazimum cleaning time lag Acean NOt to exceed between the completion and start of
consecutive cleanings. Waiting periods directly preceding a cleaning do not account for
this time lag. Cleanings can be inserted into a schedule by replacing sequence-dependent
setups or by preempting jobs.

Considering a set of identical jobs J' C J—i.e., for any i,j € J’
it holds a; = a;, f; = f; and b; = b;—a maximum filling frequency has to be observed.
This means that if job i € J' is processed before some other job j € J', a time lag of at
least Ay > 0 has to be observed between the completion of i and the start of j. This
may require job j to wait.

There are k € N constraints R, ..., R, that require to partition
the jobs into (processing) subgroups with respect to different properties. A subgroup is
a contiguous subsequence of tasks in a task sequence o, i.e., it may contain jobs as well
as setups and waiting periods.

Each constraint Ry, £ = 1,...,k, is defined by a set of job characteristics Cy (e.g.,
certain base types), a non-negative weight function wy : T — R>¢ (e.g., reporting the
duration or volume of a task), a mazimum subgroup weight Wy > maxser we(s), and a
minimum time lag function Ay, stating for each subgroup which minimum time lag to
respect to the next subgroup. This time lag is independent of the choice of the subgroup
processed thereafter.

A subgroup U is an Ry-subgroup if it starts and ends with jobs of characteristic Cp
and its total weight) . w¢(s) does not exceed Wy. A task sequence o and a set of
Ry-subgroups U satisfy constraint Ry if every job of characteristic Cy is contained in
exactly one subgroup from U € U, and after every such subgroup the minimum time
lag A¢(U) is respected.

Based on the above constraints, we can now formulate the allocation problem for the
scheduling of filling lines'.

Given: Sequence 7 of n dairy jobs J; durations Cy, Cy and C), of a product change,
sort change and packaging change according to (10.2), respectively; the clean-
ing time lag Acjean; set of job sets J := {J'|J' C J} with time lags A
for any J' € J representing the frequency constraints; and capacity con-
straints Ry,..., Ry.

Task: ~ Compute an allocation A(m) comprising a set of setups S, a set of waiting
tasks W and a sequence o of JUSUW such that for any ¢, 7 € J it holds that
m(i) < m(j) if and only if o(7) < o(j), and such that all sequence-dependent
setups are performed, and the cleaning constraint, the frequency constraints
and the capacity constraints are satisfied, while thereby minimizing

>, P
s€JUSUW

The jobs may be preempted for cleanings but not for other jobs. In the task
sequence o preempted jobs appear as different subjobs.

Note that the start time of a task s in sequence o, and hence, in the schedule S, can
be computed by summing up the processing times of all tasks which occur before s in o.

'For clarity, some details are omitted; yet they are included in our calculations.

(a) ‘cleaningl J1 | | | |j2 | |j3| | | | ja |cleaning‘

~ < Aclean - < < Aclean -
“—Ay—> “—Ayj—>
(b) [cleaning| 7y] [P[[] [ds]][["js Jcleaning]
+~—> Adlean > Aclean
e AVE e > Ap—>
(c) ‘cleaningl J1 | | |c1eaning| 72 | | 73 | | |cleaning| J4 |cleaning‘
(d) ‘cleaningl J1 | | | | j2 | ‘cleaningl 73 | | | | Ja |cleaning‘

Fig (a) shows a schedule containing only jobs (darkgray and yellow) and
sequence-dependent setup tasks (lightgray), violating the cleaning constraint and re-
quiring the jobs Jy := {j1, ..., ja} to be grouped into subgroups with respect to capacity
constraint Ry. By the maximum subgroup size Wy, any R,-subgroup can contain at
most two jobs from J;, and a constant minimum time lag A, has to be observed af-
ter it. If choosing the subgroups (yellow bows) in order to minimize the total waiting
time without consideration of the cleaning constraint, we result in (b). However, due to
the two waiting periods in (b), the time lag between the cleanings increases such that
two additional cleanings become necessary; see (c). Alternatively, (d) requires only one
additional cleaning, and more importantly, it has a smaller makespan than (c). Note
that (d) respects the minimum cleaning time lag since waiting periods directly preceding
cleanings do not account for the cleaning lag.

Considering the sequencing aspect as part of the problem, we refer to the problem of
computing an overall schedule S = (7, A(7)) of minimum makespan as dairy problem.

The side constraints described above may have global effects on the whole sequence.
For instance, if separately satisfying the cleaning constraint before inserting waiting
periods, the cleaning constraint may again be violated afterwards. Or contrarily, the
choice of subgroups may be suboptimal when not considering the cleaning constraint;
see Figure 10.2. Thus, aiming for optimal solutions, the constraints need to be considered
jointly.

Finally, note that every sequence possesses a feasible schedule. A very simple schedule
considers every characteristic job as a subgroup on its own, and satisfies minimum time
lags in some arbitrary (suboptimal) way. When inserting additional cleanings as the last
step, all time lags remain unchanged or get even larger.

In this section, we will investigate structural properties of our problem in order to gain
insights for designing algorithms.

The side constraints introduced in Section 10.1 exhibit a very similar structure. In fact,
we can formulate all of them as generalized capacity constraints. Such a constraint is
defined by the same parameters as normal capacity constraints. The only difference

Ry Cy Wy We Clo (U)

frequency identical jobs J’ 1 1 max {0, Ay — pU}
capacity characteristic Cy we(t) We max {0, Ay(U) - I_)U}
Cleaning all jObS — - ’VAPlU - 1-‘ * Pelean + Max {07 Pclean — i)U}

Parameters for the generalized capacity constraint, denoting by py the total
duration of all tasks in the subgroup U of task sequence o and by p;; the total duration
of all tasks that occur after U and before the beginning of the next subgroup. Note
that p;; depends only on U and o, i.e., it is independent of the subsequent subgroup.

is that instead of assigning time lags to the subgroups and aiming for a selection of
subgroups resulting in a minimum total waiting time, we now assign abstract cost to
subgroups and aim to minimize the total cost.

A generalized capacity constraint Ry is defined by a set of
task characteristics Cy (e.g., certain base types, waiting tasks or setups), a non-negative
weight function wy : T — R>o, a mazimum subgroup weight W, > maxse7 we(s), and
non-negative cost functions cy, on all possible subgroups of a given task sequence o.
An Ry-subgroup is defined analogously as for normal capacity constraints, and a set of
Ry-subgroups U satisfies constraint Ry if every task of characteristic Cy is contained in
exactly one subgroup from U € Y. In this case U is called feasible.

In Table 10.1, we formally define the parameters for modeling our constraints as
generalized capacity constraint. The intuition behind these definitions is described in
the following. For normal capacity constraints, we can simply interpret the waiting
time resulting from a subgroup’s time lag as cost. Also for frequency constraints, the
modeling is rather trivial (and an overkill, actually). We define the task characteristic to
cover exactly the identical jobs J’, and we choose the weight function and the maximum
subgroup weight such that every subgroup contains exactly one job from J’. A subgroup’s
cost is the waiting time necessary to observe the minimum time lag A .

For the cleaning constraint, we define all task types to be contained in the task
characteristic, and we interpret a chosen subgroup as follows: Within the subgroup,
we insert additional cleanings every Agean time units by preempting the job currently
run. After the subgroup, we replace the setup and/or reduce the waiting time to insert
another cleaning. By this modeling, any subgroup size is feasible, and every combination
of replacing and not replacing sequence-dependent cleanings is represented by a choice of
subgroups. The subgroup’s cost result from the added cleanings, and additional increase
in makespan after the subgroup.

Note that a subgroup’s cost with respect to a certain constraint strongly depends
on the subgroups corresponding to other constraints, since the abstract costs may rep-
resent setup or waiting tasks that have to be added to the sequence. E.g., if inserting
cleanings into the schedule for the cleaning constraint, necessary waiting times of other
constraints may decrease, and so would the cost of the associated subgroups. Thus,
by optimally satisfying one constraint after the other, in general, we do not obtain an
optimum schedule, see again Figure 10.2.

0=—0=——=50 O=F0=+%0———F0—=0
OO0 D DO @ O O @ O m

A sequence of characteristic (yellow) and non-characteristic (darkgray) tasks
(with some intermediate spacing for clarity). Vertices and arcs are chosen as described
below. The marked path corresponds to the choice of subgroups as shown in the three
boxes.

In the following, we assume an (infeasible) allocation with the corresponding task
sequence o to be given, containing the actual jobs, sequence-dependent setups, and
possibly already additional cleanings or waiting periods.

Considering a fived task sequence and a generalized capacity constraint Ry,
one can compute a minimum cost feasible set of Ry-subgroups in time O(n?).

Proof. We reduce the problem to the shortest path problem. For a given sequence of
tasks, we define a graph whose vertices lie on the natural time axis of the sequence. For
each characteristic task, we place a vertex at its start time. Additionally, a vertex is
placed at the completion time of the last characteristic task. We insert an arc pointing
from one vertex to another if and only if it is a forward arc in the natural sense of time,
and the tasks below that arc, i.e., the tasks that lie in the time interval covered by the
arc, form a feasible subgroup with respect to the constraint under consideration. More
precisely, the subgroup is formed by the subsequence of tasks, starting with the first
characteristic job below that arc, and ending with the last such job, respectively.

Since any feasible subgroup is represented by an arc in the graph, this yields a one-
to-one correspondence between feasible sets of subgroups and paths in the graph. By
using the subgroup’s costs as arc weights, a shortest path in this graph corresponds to
a minimum cost choice of subgroups; see Figure 10.3. Note that the number of arcs is
quadratic in the number of characteristic tasks Cy. Thus, the lemma follows by Dijkstra’s
shortest path algorithm [Dij59]. O

To deal with minimum time lags resulting from frequency and capacity constraints, we
introduce flexible waiting tasks instead of assigning fixed waiting periods right away.
Such a task s is defined by two, not necessarily adjacent jobs pred(s) and succ(s) € J,
the predecessor and successor, respectively, and a minimum time lag As > 0 to keep
between the completion of pred(s) and the start of succ(s). Its duration pg, the waiting
time, results as additional time (currently) necessary to respect the time lag. As we will
see below, we can always schedule this waiting time right before the start of succ(s).
However, any changes in the task sequence, e.g., adding setup or waiting tasks, require
to recompute the actual waiting times of the waiting tasks.

Given a sequence of tasks o, one can compute the waiting times of all waiting tasks
in o by a simple greedy method. We sort the waiting tasks according to the order in
which their successors appear in o, breaking ties arbitrarily. Then, we satisfy the waiting
tasks in this order by adding the necessary waiting time right before the start of their

successors or rather before the setup task preceding it if there is such. This procedure
produces a minimum total waiting time as we will argue in the following.

The greedy method satisfies the waiting tasks in a given task sequence
at minimum total waiting time.

Proof. Consider some task sequence o. Firstly, note that we can assume w.l.o.g. that
among the setup and waiting tasks scheduled between two consecutive jobs, the waiting
tasks are scheduled before the setup tasks. This is preferable since waiting periods
account for the maximum cleaning time lag if being scheduled after a cleaning, but not
if being scheduled right before it. In the following, we only speak of scheduling a waiting
task before a job, even though meaning scheduling it before the corresponding setup, if
existing.

Now, consider an optimal schedule of waiting times for o which satisfies all waiting
tasks. We will transform this schedule into a schedule as produced by our greedy method
without increasing the total waiting time. Let s1,s9,...,5, be the waiting tasks in o,
labeled in the order in which they are considered by the greedy method. Clearly, s; can
be moved before its successor without changing its waiting time, and without impact
on other waiting tasks. We show that we can also schedule all other waiting times right
before their successors without increasing the makespan. After these transformations,
whenever possible, we transfer waiting time from s;,_1 to sy, 1 < £ < w, which leads to
the same schedule as produced by our greedy method.

For showing the above claim, assume that for some 1 < ¢ < w all tasks s1,...,8¢_1
are already scheduled before their successors and for s, this is not the case. If there
is no successor of another waiting task lying in between pred(s;) and succ(sy), then
we can simply move sy before succ(sg) without further impact. Otherwise, if there
is a successor pred(sy) lying in between pred(s;) and succ(s) it holds ¢ < ¢, and
thus, sp’s waiting time is scheduled right before pred(sy,), and in particular, it lies in
between pred(s,) and succ(sy). By transferring waiting time from sy to sy, if necessary,
all minimum distances are kept when moving s,’s waiting time before succ(sy). O

As mentioned in the related work section, even greatly simplified variants of our problem
are MAX SNP-hard. Also if only focusing on sequence-dependent setups and the cleaning
constraint the problem remains hard.

The dairy problem remains strongly NP-hard in the absence of frequency
and capacity constraints and for setup parameters C, = Cy = Cp =: p and cleaning
durations pejean for arbitrary constants pejean > p > 0.

Proof. The hardness of this restricted problem variant of the dairy problem follows from
a reduction from the strongly NP-complete 3-PARTITION problem [GJ79], which was
defined in Section 3.1. Consider a 3-PARTITION instance with a given set A of 3m
elements from N for some m € Nt with B/4 < a < B/2 for all a € A, where B :=
% Y aca . The instance A is a yes-instance if it can be partitioned into m disjoint
sets Ay, ..., Ay, with ZaeAi a=Bfori=1,...,m. We will construct an instance I of
the considered restricted variant of the dairy problem with p > 0 arbitrary, whose jobs
can be scheduled with makespan D := (m — 1) pcjean + m(B + 2p) if and only if A is a
yes-instance.

We define the instance I as follows. For each a € A, we choose a job with duration a,
and we define the maximum cleaning time lag Agean to be B + 2p. If A is a yes-
instance, then we schedule jobs that correspond to the same subset A; of a feasible
solution consecutively for each ¢ = 1,...,m and concatenate the triples in an arbitrary
order. The total duration of such a job triple, including the two intermediate setup tasks,
equals exactly Agean. Hence, by replacing every third of the unit setups by a cleaning,
we obtain a feasible schedule of makespan D.

Conversely, assume that I exhibits a schedule of makespan at most D. Due to the
unit setup duration, this directly implies that there are at most m — 1 cleanings in the
schedule, and every cleaning replaces one setup. Considering the jobs scheduled between
two consecutive cleanings, we obtain at most m subsets of jobs. Assume that in one
of these subsets the job durations sum up to strictly less than B. Then, by the total
duration of jobs, there is another subset whose job durations sum up to more than B
which violates the cleaning constraint. Thus, in every such subset, the job durations
sum up to exactly B, and hence, A is a yes-instance.]

We utilize our generic framework for integrated sequencing and allocation problems from
Section 6.3 which is based on a genetic algorithm for the overall sequencing task. This
approach requires to implement two subroutines: A fast algorithm for the fixed-sequence
allocation problem, which serves as an evaluation function for the generated sequences,
and an algorithm for generating an initial population of sequences. Since the dairy
problem is not as complex as the earlier discussed coil coating problem, good results
could already be achieved utilizing the standard randomly generated initial population
described in Section 6.3. Hence, it remains open to specify algorithms for the allocation
problem.

Due to our computation time limit of a few minutes, we can only
use allocation subroutines whose runtime does not exceed O(n?). Thus, it is unlikely
to solve the scheduling problem to optimality. We consider two variants of a generic
heuristic, summarized as Algorithm 10.1. In order to investigate effects as shown in
Figure 10.2, the two variants differ in the order in which they satisfy the cleaning and the
capacity constraints—FIRST indicates that the cleaning constraint is satisfied first. Note
that in the first two steps of the algorithm, where we add the sequence-dependent setups
and the flexible waiting tasks for the frequency constraints, no optimization potential is
lost, since setups can be replaced for cleanings later on, and the durations of the waiting
tasks can be flexibly changed.

Both variants of the algorithm are considered with greedy and shortest path sub-
routines. The latter solve the subproblems to optimality, utilizing Lemma 10.1, while
the former proceed greedily as follows: For the capacity constraints, we add consecutive
characteristic jobs to a current subgroup until the maximum capacity is exceeded. In
case of the cleaning constraint, cleanings are added before the latest possible job by re-
placing a setup and/or reducing waiting time; i.e., never by preempting jobs. We denote
the four resulting algorithms by GREEDYLAST, GREEDYFIRST, SPLAST, and SPFIRST,
respectively, where FIRST and LAST refer to the point when the cleaning constraint is
satisfied.

1 insert sequence-dependent setups;
2 insert waiting tasks for frequency constraints as described in Section 10.2.2 ;
3 if algorithm of type FIRST then
satisfy cleaning constraint;
satisfy capacity constraints, and, if necessary, satisfy cleaning constraint again;
else
satisfy capacity constraints;
L satisfy cleaning constraint;

Alternatively to the above framework, we consider a heuristic algorithm
which comes close to (semi-)manual planning as typically performed in practice. It
computes a solution taking into account only the sequence-dependent setup durations s;;
and partially also the time lags from the frequency constraint. Since we aim for a
formulation as ATSP, the latter is only regarded when jobs are scheduled consecutively.
Technically, this means to consider the following modified sequence-dependent setup
durations

max‘AJ/ , if HJISi,j
si; = max {s;;, Ay} where Ajj = QB0 (10.3)
0 , otherwise

where J’ denote job sets that represent a frequency constraint. Based on the values s;j,

we define an ATSP instance on the jobs and compute a solution—our sequence—with
Helsgaun’s efficient implementation of the Lin-Kernighan Heuristic [Hel00], which can
be assumed to be optimal for our instance sizes. The allocation is then determined
by GREEDYFIRST. We refer to the overall heuristic as ATSPH.

To assess the performance of the different algorithms we compute
instance-based lower bounds. As for the heuristic ATSPH, we solve the correspond-
ing instance of ATSP with distances s;j as specified in (10.3). The computed tour length
yields a lower bound on the minimum cost of a solution of the dairy instance.

Our cooperation with Sachsenmilch was initiated with the goal to examine the optimiza-
tion potential of the manual planning of their bottleneck filling machine. To this end, we
were provided with data from the current production, for which our algorithm computed
solutions of equal quality as the current manual plans. Our ATSP lower bound proved
an optimality gap of 2% which shows both side’s good performance. Since the lower
bound ignores several costly aspects, it is most likely that this solution is in fact optimal.

In the following, our algorithm is examined for various additional realistic instances
in several problem scenarios.

Based on the data from Sachsenmilch,
180 realistic instances were randomly generated. As in the original data, we consider
a planning horizon of one week. This results in instances of 15-35 jobs, depending on

the job durations. When generating the instances, we consider different classes of job
durations, compositions of base types, and jobs with frequency constraint. The job
durations are randomly chosen according to the durations in the original instance, or
focusing especially on small or large durations. Concerning the base types, we either
consider all base types of the original data, only yogurt products, or only cream products
(e.g., creme fraiche or classic cream). Moreover the percentage of jobs with multiple
fillings, i.e., with frequency constraint, varies between 20 % and 40 %.

With respect to general problem parameters, we consider different values for Agean,
for the cream tank size, and the minimum time lags of the frequency constraints. For
all these values, we consider the original value and a smaller value, which usually results
in a more complicated planning. In addition, we consider different sequence-dependent
setup durations, and two capacity constraints: the cream constraint, described in the
very beginning of this chapter, and a duration constraint. The latter requires to group
certain jobs into subgroups of limited total duration. We consider the settings cream
only and cream & duration.

We test the four algorithms originating from Algorithm 10.1 on all our instances
for all parameter scenarios, resulting in 2880 test cases for each algorithm. Due to a
non-disclosure agreement with Sachsenmilch, we can only report on relative data and
results.

As for the coil coating problem, the parameters for the genetic
sequencing algorithm were determined by rigorous testing. We consider a constant pop-
ulation size of 250, and stop the algorithm, if the makespan has not been improving
for 150 iterations, or when the run time limit of 150 seconds is exceeded. The runtime
limit is necessary to guarantee practicability in practice, which means to allow a fast
replanning. The algorithm is run eight times in parallel in order to compensate fluctua-
tion. For solving the shortest path problem in our algorithm, we use Dijkstra’s algorithm
from the Boost Graph Library~.

As a surprising result of our computational study, the greedy
algorithm variants outperformed the shortest path variants in almost all cases as we
will see below and in Table 10.2 and the corresponding Figure 10.4. For our tests,
we considered the following parameter settings: The setting original comprises all of
the 2880 instances in which all parameters were set according to the original instance of
Sachsenmilch. The additional settings we considered filter all instances for one particular
parameter, i.e., an instance belongs to such a setting if this parameter is set as stated in
the table, no matter how the remaining parameters are set.

We compared the better result of the two greedy algorithms GREEDYLAST and
GREEDYFIRST (BESTGREEDY) with the better result of the two shortest path vari-
ants SPLAST and SPFIRST (BESTSP). BESTGREEDY performed always better than
BESTSP, up to 4 % in makespan average, except when considering the cream and dura-
tion constraint in combination; see Table 10.2. However, in this case the gap is negligible.
In fact, for the orginial test setting, BESTSP is never better than BESTGREEDY. If uti-
lizing BESTSP, the worst case gap compared to BESTGREEDY is 6 %, whereas conversely
this gap may grow up to 210%. Also the runtimes differ greatly, even though this is
not very surprising; see again Table 10.2. While BESTSP produces better solutions for

2http://www.boost .org/

http://www.boost.org/

BESTSP /BESTGR. [%)] GREEDYLAST/ LB [%] average runtime [s]

parameter (%) o min max (%) o min max GL GF SPL SPF
original 1.007 0.015 1.000 1.050 1.105 0.057 1.007 1.203 5 6 39 55

all prod. 1.014 0.079 0.985 1.876 1.117 0.085 1.000 1.894 6 6 49 71
yogurt prod. 1.017 0.025 0.948 1.120 1.109 0.065 1.010 1.390 5 6 44 67
cream prod. 1.003 0.058 0.946 2.120 1.201 0.278 1.031 3.943 7 8 53 75
original dur. 1.010 0.020 0.974 1.093 1.146 0.152 1.007 2.769 7 7 53 77
small dur. 1.009 0.018 0.956 1.120 1.148 0.151 1.007 2.862 10 11 81 118
large dur. 1.014 0.098 0.946 2.120 1.133 0.220 1.000 3.943 2 2 13 18
original tank 1.007 0.017 0.946 1.120 1.117 0.081 1.000 1.716 6 7 49 72
small tank 1.043 0.155 0.949 2.120 1.321 0.411 1.000 3.943 6 7 49 65
cream con. 1.015 0.073 0.946 2.120 1.160 0.213 1.000 3.943 6 6 47 67
cream & dur. 0.999 0.003 0.960 1.016 1.097 0.078 1.000 1.716 5 6 41 63
original Acjean 1.011 0.045 0.956 1.596 1.121 0.108 1.000 2.671 6 7 49 69
small Aclean 1.012 0.069 0.946 2.120 1.164 0.224 1.000 3.943 6 7 49 71

Results of the computational study. Figure 10.4 shows related plots.
By @ and o, we denote the average and the standard deviation, respectively.
The values min and max refer to the smallest and largest value attained. To the
algorithms in Algorithm 10.1, we refer by their initials GL,GF, SPL and SPF.

the allocation subproblem, the faster running time of BESTGREEDY allows for more it-
erations of the genetic algorithm and hence better overall solutions. Moreover, BESTSP
inserts cleanings by preemption, which makes it harder to incorporate these cleanings
into later waiting times.

If comparing the two greedy and the two shortest path approaches with each other,
the difference of the performance is not that striking. The average performance is al-
most identical. However, considering the worst case behavior, in both cases the LAST-
algorithm is only about 6 % worse than the FIRsT-algorithm, where conversely, the gap
can attain 15 %. This may be due to the advantage of scheduling the inflexible cleanings
as late as possible.

The optimality gap computed with the ATSP lower bound is roughly 15 %, and
it is slightly better for the greedy algorithms than for the shortest path algorithms.
Exemplary for our best algorithm GREEDYLAST, the results are given in Table 10.2. For
all algorithms, the optimality gap is much worse for a small tank size. However, in this
case the lower bound performs very poorly, so that one may assume this gap to be far
away from being tight.

The heuristic ATSPH computes schedules with on average twice the makespan of
the solutions of the other algorithms. While expert planners can still improve these
solutions, our genetic algorithmic framework provides a considerably improved base for
semi-manual planning and also enables automatic planning.

134 10 Integrated sequencing and allocation for filling lines in dairy production

T T T T T 4.0 = = — = =
2.0
_ 3.5
1.8
3.0 —
1.6 T -
2.5
14 2.0
12 sl TRT
1.0 | 1.0 I
\6056&&&\&&0&\'&“»0 \656&&&\&&0&\&9«»
@(} Q& N A b\& > &S » Q\e“’ o\erz» @Q Q& &o A b\& &S P O\ézv c}éb
0&\\\Q¢» & \& Ny \\Q&&%\D\\V 0&\\\Qx& & \\& A é‘éj@ b le
%"% & 0\ %6‘ & @ Q@\@Q‘Z&@ «306%*@% 0@ %é‘ & @ Q)@ & &
N &
(a) Ratio BESTSP/BESTGREEDY. (b) Ratio GREEDYLAST/ LB.
120
100
O GL
80
O GF
60 O spPL
0| O SPF
20
0
> > S S $ N ¥ & 8 > >
% o o o & & & > o N S P 5
ob@ \\Q& &“Q& & ‘Q‘z}b &\b &%b .&}@ (o\\@: & &Qs}} &vae \\Dc,\e
v %oéo &° o5 3 N\ ob@ & & 0@"’ O&s'ox“ %&0@

(c) Average runtime.

Figure 10.4: Results of the computational study as shown in Table 10.4. To the algo-
rithms in Algorithm 10.1, we refer by their initials GL,GF, SPL and SPF. The boxes
in (a) and (b) show an interval of —/+ the standard deviation around the average value.

In contrast to the first part of the thesis, where the focus was mainly on theoretical
insights, in the second part, the major goal was to develop efficient algorithm to be
used in every-day planning in industry—which of course also necessitated theoretical
investigations on the way. We considered two problems that stemmed from projects
with industry, a scheduling problem for coil coating lines and a planning problem for
filling lines in dairy industry. Both problems are typical examples of a class of complex
sequencing problems as they can be found in virtually all branches of industry.

Capturing the essential characteristics of such problems, we defined the class of so
called integrated sequencing and allocation problems. It accentuates two components of
the problem, the choice of the actual processing sequence and the additional decisions to
be taken for this sequence, both of which largely impact the makespan of the solution.
These components are mirrored in our generic algorithmic framework for such kind of
problems. The general concept of this approach is based on a standard and and easy-
to-implement genetic algorithm while its strength lies in the idea of algorithmically
separating the generic sequencing aspect from the very problem-specific decisions for a
chosen sequence. In the end, the success of the approach crucially depends on the quality
of the algorithms for this latter allocation subproblem.

For the coil coating problem, the allocation problem led us to the maximum weight
independent set problem in m-composite 2-union graphs. Considering exact algorithms,
we almost closed the complexity gap in terms of the variable m, with the only remaining
question being whether the problem allows for a fixed-parameter algorithm—which re-
quires the algorithm to guarantee a runtime of O(2™ - poly(n)) in contrast to the O(n?™)
runtime of our dynamic program. However, for a parameter based on the number of
maximal cliques, van Bevern et al. [vBMNW 12| showed fixed-parameter tractability.

Turning to a different topic, even though not being the major focus of our work, there
are interesting open questions concerning the approximability of the maximum weight
independent set problem. On the one hand, there is a 2t-approximation algorithm for
the very general class of t-interval graphs [BYHN'06], while on the other hand, for the
very restricted class of strip graphs, we know that the unweighted problem variant allows
for a 1.582-approximation algorithm [CORO6]. Surprisingly, it is not clear whether any
of the graph classes in between, i.e., t-union graphs or (m-composite) 2-union graphs,
allow for better approximation guarantees than 2t.

Concerning our general model for the concurrent setup allocation problem, we point
out that the interpretation of allocations as independent sets in 2-union graphs is strongly
based on the number of tanks at each coater being two. Whenever a chosen tool interval

ends, we switch the tank on that particular coater. Since there are only two tanks,
it is clear to which tank to switch to. Assuming more than two tanks, a selection of
tool intervals does not properly define a tank assignment anymore. Hence, addressing a
setting with three or more tanks would require a fundamentally new approach.

Turning towards the dairy problem, already the complexity of the underlying allo-
cation problem is a first open question. From a practical point of view, however, it will
be most likely inevitable to use heuristic allocation algorithms. Even if the problem was
allowing for polynomial-time algorithms, we expect them to be rather of dynamic pro-
gramming nature with too large runtimes than to be suitable subroutines for the overall
sequencing approach.

The heuristics we considered for the filling line allocation problem satisfy the different
generalized capacity constraints one by one, differing in the order of constraints and the
way in which feasibility is ensured. Our computational study showed that, at least
when satisfying the constraints separately, it does not pay off to solve the allocation
subproblem in each step to optimality, since this requires rather extreme scheduling
decisions—such as preempting jobs for cleanings—which may incur conflicts in later
steps, leading to costly overall solutions. From the practical perspective, this is a very
interesting observation since solutions produced with greedy subroutines involve less
actions for the workers, and are preferred by practitioners for this reason. Still, from
the example in Figure 10.1 we know that, at least for the general problem formulation,
optimal solutions may necessitate preemption. This leads to the interesting question
of identifying classes of instances which allow for optimal non-preemptive solutions, or
alternatively, to determine the price of non-preemption.

Stepping back from the allocation subproblems, and focusing on the actual goal
of developing efficient algorithms for day-to-day planning in practice, we could achieve
very satisfying results for both problems, the coil coating problem and the dairy problem.
After all, the careful investigations on the structure of the problems paid off. For the coil
coating problem, the 2-union graph model led to a tank assignment rule which turned out
to be significantly superior to the simpler greedy FIFO rule. Compared to previous plans,
the optimized solutions yield double digit percentage reductions in makespan, greatly
exceeding what was deemed possible before. Our optimization module has been in use
for the planning of the coil coating line at Salzgitter Flachstahl since December 2009.

For the dairy problem the success of the implemented algorithm was more of analytic
nature, approving the high quality of our partner Sachsenmilch’s production plans. Their
manually planned schedules and the solutions produced by our algorithm were equally
good, both achieving an optimality gap of only 2 %—which we believe implies optimality
due to the weak lower bounds. Moreover, our extensive computational study suggested,
that the planners at Sachsenmilch do not give away optimization potential by strictly
avoiding preemption of jobs for cleaning operations. Overall, our analysis reassured
them in their way of planning. One remaining open point is the development of better
lower bounds in order to assess the results also for more complicated instances more
realistically.

Eventually, the algorithmic success of our approach brought back into our mind
a discussion we had with PSI Metals some years ago. They asked us for a general
framework which allowed for modeling general global setup cost as easily as this was
the case for sequence-dependent setup durations in an asymmetric traveling salesman
framework, since the latter was mastered very well by their software engineers. At that
time, we believed that it was impossible to provide such a tool, and we still believe

that it is not possible to design one ready-to-use algorithm that produces acceptable
solutions to all general sequencing problems. However, from our current point of view,
our general framework might be as close as we can get to answering their question —an
adequate compromise between a ready-to-use tool and an algorithm developed newly
from scratch.

[ABCt99]

[ABCCOG]

[ABMP10]

[Ach07]

[AL97]

[ALi93]

[ANCKOS]

[AvDO09]

[Bak74]

[BCK+07]

F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna,
I. Milis, M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko, Approz-
imation schemes for minimizing average weighted completion time with

release dates, Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 1999, pp. 32-44. 15, 16

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The travel-
ing salesman problem: A computational study, Princeton University Press,
2006. 77

S. Albers, S. K. Baruah, R. H. Mohring, and K. Pruhs (eds.), Open prob-
lems — Scheduling, vol. 10071, Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, Germany, 2010. 11, 45

T. Achterberg, Constraint integer programmsing, Ph.D. thesis, Technische
Universitat Berlin, 2007. 118

E. Aarts and J. K. Lenstra (eds.), Local search in combinatorial optimiza-
tion, John Wiley & Sons, 1997. 78

B. Alidaee, Numerical methods for single machine scheduling with non-
linear cost functions to minimize total cost, Journal of the Operational
Research Society 44 (1993), 125-132. 45

A. Allahverdi, C. T. Ng, T. C. E. Cheng, and Mikhail Y. Kovalyov, A
survey of scheduling problems with setup times or costs, European Journal
of Operational Research 187 (2008), 985-1032. 77

R. Akkerman and D. P. van Donk, Analyzing scheduling in the food-
processing industry: Structure and tasks, Cognition, Technology & Work
11 (2009), 215-226. 74

J. K. Baker, Introduction to sequencing and scheduling, John Wiley & Sons,
1974. 15

N. Bansal, H.-L. Chan, R. Khandekar, K. Pruhs, C. Stein, and B. Schieber,
Non-preemptive min-sum scheduling with resource augmentation, Proceed-
ings of the 48th Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2007, pp. 614-624. 15

[BDMO2]

[Ber00)]

[BGTO7]

[BHLR10]

[BINT98]

[BKS80]

[BLMSP06]

[BNRY6]

[BP10a)

[BP10D]

[BSV0S]

[BT06]

P. Berman, B. DasGupta, and S. Muthukrishnan, Simple approzimation
algorithm for nonoverlapping local alignments, Proceedings of the 13th
Annual Symposium on Discrete Algorithms (SODA), STAM, 2002, pp. 677—
678. 99, 101

P. Berman, A d/2 approzimation for mazimum weight independent set
in d-claw free graphs, Proceedings of the Tth Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT), LNCS, vol. 1851, Springer,
2000, pp. 214-219. 101

E. Bampis, F. Guinand, and D. Trystram, Some models for scheduling par-
allel programs with communication delays, Discrete Applied Mathematics
72 (1997), 5-24. 77

A. Butman, D. Hermelin, M. Lewenstein, and D. Rawitz, Optimization
problems in multiple-interval graphs, ACM Transactions on Algorithms 6
(2010), Article 40. 96

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance, Branch-and-price: Column generation for solving huge integer
programs, Operations Research 46 (1998), 316-329. 115

P. C. Bagga and K. R. Kalra, A node elimination procedure for Townsend’s
algorithm for solving the single machine quadratic penalty function schedul-
ing problem, Management Science 26 (1980), 633-636. 18, 45, 55

L. Becchetti, S. Leonardia, A. Marchetti-Spaccamelaa, and K. Pruhs, On-
line weighted flow time and deadline scheduling, Journal of Discrete Algo-
rithms 4 (2006), 339-352. 15

V. Bafna, B. Narayanan, and R. Ravi, Nonoverlapping local alignments
(weighted independent sets of axis-parallel rectangles), Discrete Applied
Mathematics 71 (1996), 41-53. 101

N. Bansal and K. Pruhs, The geometry of scheduling, Proceedings
of the 51st Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2010, pp. 407-414. See also http://www.win.tue.nl/
~nikhil/pubs/wflow-journ3.pdf. 9, 17

, Server scheduling to balance priorities, fairness, and average qual-
ity of service, STAM Journal on Computing 39 (2010), 3311-3335. 9, 16,
19

E. Balas, N. Simonetti, and A. Vazacopoulos, Job shop scheduling with
setup times, deadlines and precedence constraints, Journal of Scheduling
11 (2008), 253-262. 77

A. Bellabdaoui and J. Teghem, A mixed-integer linear programming model
for the continuous casting planning, International Journal of Production
Economics, Theoretical Issues in Production Scheduling and Control &
Planning and Control of Supply Chains and Production 104 (2006), 260—
270. 75

http://www.win.tue.nl/~nikhil/pubs/wflow-journ3.pdf
http://www.win.tue.nl/~nikhil/pubs/wflow-journ3.pdf

[BYHN'06] R. Bar-Yehuda, M. M. Halldérsson, J. Naor, H. Shachnai, and I. Shapira,

[CKO02]

[CooT1]

[CORO6]

[Cow03]

[CS11]

[CvB93]

[DBCY9]

[DBCFO5]

[DCST*95)

[DFRO0]

[Dij59]

[DLO5]

[DSO08]

Scheduling split intervals, STAM Journal on Computing 36 (2006), 1-15.
96, 99, 100, 101, 135

C. Chekuri and S. Khanna, Approximation schemes for preemptive
weighted flow time, Proceedings of the 34th Annual Symposium on Theory
of Computing (STOC), ACM, 2002, pp. 297-305. 15

S. A. Cook, The complexity of theorem-proving procedures, Proceedings of
the 3rd Annual Symposium on Theory of Computing (STOC), ACM, 1971,
pp. 151-158. 102

J. Chuzhoy, R. Ostrovsky, and Y. Rabani, Approximation algorithms for
the job interval selection problem and related scheduling problems, Mathe-
matics of Operations Research 31 (2006), 730-738. 99, 101, 135

P. Cowling, A flexible decision support system for steel hot rolling mill
scheduling, Computers & Industrial Engineering 45 (2003), 307-321. 75

M. Cheung and D. B. Shmoys, A primal-dual approrimation algorithm
for min-sum single-machine scheduling problems, Proceedings of the 14th
International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems and the 15th International Workshop on Ran-
domization and Computation (APPROX-RANDOM), LNCS, vol. 6845,
Springer, 2011, pp. 135-146. 9, 17

G. D. H. Claassen and P. van Beek, Planning and scheduling, European
Journal of Operational Research 70 (1993), 150-158. 74

M. Delucchi, A. Barbucci, and G. Cerisola, Optimization of coil coating
systems by means of electrochemical impedance spectroscopy, Electrochim-
ica Acta 44 (1999), 4297-4305. 81, 82

R. G. Duarte, A. C. Bastos, A. S. Castela, and M. G. S. Ferreira, A com-
parative study between Cr(VI)-containing and Cr-free films for coil coating
systems, Progress in Organic Coatings 52 (2005), 320-327. 81

F. Della Croce, W. Szwarc, R. Tadei, P. Baracco, and R. di Tullio, Mini-
mizing the weighted sum of quadratic completion times on a single machine,
Naval Research Logistics 42 (1995), 1263-1270. 18, 45

F. Deflorian, L. Fedrizzi, and S. Rossi, Effects of mechanical deformation
on the protection properties of coil coating products, Corrosion Science 42
(2000), 1283-1301. 81

E. W. Dijkstra, A note on two problems in connexion with graphs, Nu-
merische Mathematik 1 (1959), 269-271. 128

J. Desrosiers and M. E. Liibbecke, Selected topics in column generation,
Operations Research 53 (2005), 1007-1023. 115

P. Doganis and H. Sarimveis, Optimal production scheduling for the dairy
industry, Annals of Operations Research 159 (2008), 315-331. 123

[DV14]

[EGNOS]

[ELMS*12]

[FK84]

[Fra75]

[GHM11]

[GJT79]

[GLLS2]

[GLLRK79]

[GP02]

[GS84]

[GW95]

[Hel0O]

[HJ12a]

C. Diirr and O. C. Vasquez, Order constraints for single machine schedul-
ing with non-linear cost, Proceedings of the 16th Meeting on Algorithm
Engineering & Experiments (ALENEX), STAM, 2014, pp. 98-111. 46

B. Estellon, F. Gardi, and K. Nouioua, Two local search approaches for
solving real-life car sequencing problems, European Journal of Operational
Research 191 (2008), 928-944. 122, 123

L. Epstein, A. Levin, A. Marchetti-Spaccamela, N. Megow, J. Mestre,
M. Skutella, and L. Stougie, Universal sequencing on an unreliable ma-
chine, STAM Journal on Computing 41 (2012), 565-586. 9, 16

M. L. Fisher and A. M. Krieger, Analysis of a linearization heuristic for
single-machine scheduling to maximize profit, Mathematical Programming
28 (1984), 218-225. 16

A. Frank, Some polynomial algorithms for certain graphs and hypergraphs,
Proceedings of the 5th British Combinatorial Conference, 1975, pp. 211—
226. 98, 99

T. Gellert, W. Hohn, and R. H. Mohring, Sequencing and scheduling for
filling lines in dairy production, Optimization Letters 5 (2011), 491-504,
Special issue of SEA 2011. 121

M. R. Garey and D. S. Johnson, Computer and intractability: A guide to
the theory of NP-completeness, Freeman, 1979. 11, 69, 129

U. I Gupta, D. T. Lee, and J. Y.-T. Leung, Efficient algorithms for interval
graphs and circular arc graphs, Networks 12 (1982), 459-467. 105

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,
Optimization and approzimation in deterministic sequencing and schedul-
ing: A survey, Annals of Discrete Mathematics 5 (1979), 287-326. 11,
12

G. Gutin and A. P. Punnen, The traveling salesman problem and its vari-
ations, Springer, 2002. 77

S. K. Gupta and T. Sen, On the single machine scheduling problem with
quadratic penalty function of completion times: An improved branching
procedure, Management Science 30 (1984), 644-647. 18, 45, 48

A. Gyarfas and D. B. West, Multitrack interval graphs, Congressus Nu-
merantium 109 (1995), 109-116. 96

K. Helsgaun, An effective implementation of the Lin-Kernighan traveling
salesman heuristic, European Journal of Operational Research 126 (2000),
106-130. 77, 112, 131

W. Hohn and T. Jacobs, An experimental and analytical study of order
constraints for single machine scheduling with quadratic cost, Proceedings
of the 14th Meeting on Algorithm Engineering & Experiments (ALENEX),
SIAM, 2012, pp. 103-117. 45, 59

[HJ12D)]

[HKO6]

[HKLM11]

[HNR63]

[HPS00]

[IMP12]

[Jacl2]

[Jan91]

[KD94]

[KKO08]

[KKRO1]

[KP00]

[KPG10]

, On the performance of Smith’s rule in single-machine scheduling
with nonlinear cost, Proceedings of the 10th Latin American Symposium
on Theoretical Informatics (LATIN), LNCS, vol. 7256, Springer, 2012,
pp- 482-493. 19, 45

M. M. Halldérsson and R. K. Karlsson, Strip graphs: Recognition and
scheduling, Proceedings of the 32th International Workshop on Graph The-
oretic Concepts in Computer Science (WG), LNCS, vol. 4271, Springer,
2006, pp. 137-146. 99

W. Hohn, F. G. Koénig, M. E. Liibbecke, and R. H. Mohring, Integrated
sequencing and scheduling in coil coating, Management Science 57 (2011),
647-666. 81, 95, 111

P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuris-
tic determination of minimum cost paths, IEEE Transactions on Systems
Science and Cybernetics 4 (1968), 100-107. 55, 56

N. G. Hall, C. N. Potts, and C. Sriskandarajah, Parallel machine scheduling
with a common server, Discrete Applied Mathematics 102 (2000), 223-243.
7

S. Im, B. Moseley, and K. Pruhs, Online scheduling with general cost func-
tion, Proceedings of the 23rd Annual Symposium on Discrete Algorithms
(SODA), STAM, 2012, pp. 1254-1265. 9, 17, 19

T. Jacobs, Analytical aspects of tie breaking, Theoretical Computer Science
465 (2012), 1-9. 23

K. Jansen, Generalizations of assignments of tasks with interval times,
Tech. report, Universitédt Trier, 1991. 99

N. Kumar and N. Deo, Multidimensional interval graphs, Congressus Nu-
merantium 102 (1994), 45-46. 96

C. Koulamas and G. J. Kyparisis, Single-machine scheduling problems with
past-sequence-dependent setup times, Furopean Journal of Operational Re-
search 187 (2008), 1045-1049. 77

H. Kaindl, G. Kainz, and K. Radda, Asymmetry in search, IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics 31 (2001),
791-796. 18, 55, 56, 60, 61, 62

B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance,
Journal of the ACM 47 (2000), 617-643. 12

G. M. Kopanos, L. Puigjaner, and M. C. Georgiadis, Optimal production
scheduling and lot-sizing in dairy plants: The yogurt production line, In-
dustrial & Engineering Chemical Research 49 (2010), 701-718. 74, 121,
123

[KPG12]

[KTW99]

[Law77]

[LEGvBT05]

[LLLRKS84]

[LRKB77]

[MGSK88]

[MJO5]
[MNS07]

[MNTO3]

[M&h85]

[MPS13]

[MS00]

, Efficient mathematical frameworks for detailed production schedul-
ing in food processing industries, Computers & Chemical Engineering 42
(2012), 206-216. 74

H. Kellerer, T. Tautenhahn, and G. Woeginger, Approzimability and non-
approzimability results for minimizing total flow time on a single machine,
STAM Journal on Computing 28 (1999), 1155-1166. 15

E. L. Lawler, A “pseudopolynomial” algorithm for sequencing jobs to min-
imize total tardiness, Annals of Discrete Mathematics 1 (1977), 331-342.
17

M. Liitke Entrup, H.-O. Giinther, P. van Beek, M. Grunow, and T. Seiler,
Mized-integer linear programming approaches to shelf-life-integrated plan-
ning and scheduling in yoghurt production, International Journal of Pro-
duction Research 43 (2005), 5071-5100. 123

J. Labetoulle, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Pre-
emptive scheduling of uniform machines subject to release dates, Progress
in combinatorial optimization, Academic Press, Toronto, 1984, pp. 245—
261. 15

J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, Complezity of
machine scheduling problems, Annals of Discrete Mathematics 1 (1977),
343-362. 15

H. Miihlenbein, M. Gorges-Schleuter, and O. Kriamer, Evolution algorithms
in combinatorial optimization, Parallel Computing 7 (1988), 65-85. 79

B. Meuthen and A.-S. Jandel, Coil coating, Vieweg, 2005. 82

F. Marinelli, M. Nenni, and A. Sforza, Capacitated lot sizing and scheduling
with parallel machines and shared buffers: A case study in a packaging
company, Annals of Operations Research 150 (2007), 177-192. 123

C. Meloni, D. Naso, and B. Turchiano, Multi-objective evolutionary algo-
rithms for a class of sequencing problems in manufacturing environments,
Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, 2003, pp. 8-13. 78

R. H. Mohring, Algorithmic aspects of comparability graphs and interval
graphs, Graphs and Order, NATO ASI Series, vol. 147, Springer, 1985,
pp- 41-101. 98, 113

B. Moseley, K. Pruhs, and C. Stein, The complexity of scheduling for p-
norms of flow and stretch, Proceedings of the 16th Conference on Integer
Programming and Combinatorial Optimization (IPCO), LNCS, vol. 7801,
Springer, 2013, pp. 278-289. 16

S. A. Mondal and A. K. Sen, An improved precedence rule for single ma-
chine sequencing problems with quadratic penalty, European Journal of
Operational Research 125 (2000), 425-428. 2, 3, 10, 18, 45, 48, 49, 50, 55,
60, 62

[MV13]

IMV14]

[PKS6]

[PK00]

[PY93]

[RDLDO0]

[Rot66]

[RS84]

[SBRI6]

[Sch78]

[Sch03]
[SCNAOS]

[SDROO)

N. Megow and J. Verschae, Dual techniques for scheduling on a machine
with varying speed, Proceedings of the 40th International Colloquium on
Automata, Languages and Programming (ICALP), 2013, to appear. 9, 16,
69

J. Mestre and J. Verschae, A J-approximation for scheduling
on a single machine with general cost function, 2014, http:
//www.sydney.edu.au/engineering/it/~mestre/papers/
gen—-scheduling-4-approx.pdf. 17

B. D. Perrello and W. C. Kabat, Job-shop scheduling using automated rea-
soning: A case study of the car-sequencing problem, Journal of Automated
Reasoning 2 (1986), 1-42. 74

C. N. Potts and M. Y. Kovalyov, Scheduling with batching: A review,
European Journal of Operational Research 120 (2000), 228-249. 123

C. H. Papadimitriou and M. Yannakakis, The traveling salesman prob-
lem with distances one and two, Mathematics of Operations Research 18
(1993), 1-11. 77

B. Rekieck, P. De Lit, and A. Delchambre, Designing mixed-product as-
sembly lines, IEEE Transactions On Robotics And Automation 16 (2000),
268-280. 77

M. H. Rothkopf, Scheduling independent tasks on parallel processors, Man-
agement Science 12 (1966), 437-447. 14, 22

M. H. Rothkopf and S. A. Smith, There are no undiscovered priority index
sequencing rules for minimizing total delay costs, Operations Research 32
(1984), 451-456. 15, 45, 69

A. K. Sen, A. Bagchi, and R. Ramaswamy, Searching graphs with A*:
Applications to job sequencing, IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans 26 (1996), 168-173. 18, 55, 56,
60

T. J. Schaefer, The complezity of satisfiability problems, Proceedings of the
10th Annual Symposium on Theory of Computing (STOC), ACM, 1978,
pp. 216-226. 108

A. Schrijver, Combinatorial optimization, Springer, 2003. 11

C. Solnon, V. D. Cung, A. Nguyen, and C. Artigues, The car sequencing
problem: Ouverview of state-of-the-art methods and industrial case-study of
the ROADEF’2005 challenge problem, European Journal of Operational
Research 191 (2008), 912-927. 74

T. Sen, P. Dileepan, and B. Ruparel, Minimizing a generalized quadratic
penalty function of job completion times: An improved branch-and-bound
approach, Engineering Costs and Production Economics 18 (1990), 197
202. 18, 48, 49

http://www.sydney.edu.au/engineering/it/~mestre/papers/gen-scheduling-4-approx.pdf
http://www.sydney.edu.au/engineering/it/~mestre/papers/gen-scheduling-4-approx.pdf
http://www.sydney.edu.au/engineering/it/~mestre/papers/gen-scheduling-4-approx.pdf

[SF62]

[SG76]

[Smi56]

[Spi99)]

[SW10]

[Szw98]

[TJH79]

[TLRY01]

[TowT78]

[TWO9]

[VBMNW12]

[vDGS93]

[Yua92]

[ZSLOY]

A. Schild and I. J. Fredman, Scheduling tasks with deadlines and non-linear
loss functions, Management Science 9 (1962), 73-81. 17, 45, 48

S. Sahni and T. F. Gonzalez, P-complete approximation problems, Journal

of the ACM 23 (1976), 555-565. 77

W. E. Smith, Various optimizers for single-stage production, Naval Re-
search Logistics Quarterly 3 (1956), 59-66. 9, 14, 19, 45

F. C. R. Spieksma, On the approximabilty of an interval scheduling prob-
lem, Journal of Scheduling 2 (1999), 215-227. 98, 99, 100, 101

S. Stiller and A. Wiese, Increasing speed scheduling and flow scheduling,
Proceedings of the 21st International Symposium on Algorithms and Com-
putation (ISAAC), LNCS, vol. 6507, Springer, 2010, pp. 279-290. 9, 16,
19, 22, 45

W. Szwarc, Decomposition in single-machine scheduling, Annals of Oper-
ations Research 86 (1998), 271-287. 18, 49

W. T. Trotter Jr. and F. Harary, On double and multiple interval graphs,
Journal of Graph Theory 3 (1979), 205-211. 96

L. Tang, J. Liu, A. Rong, and Z. Yang, A review of planning and scheduling
systems and methods for integrated steel production, Furopean Journal of
Operational Research 133 (2001), 1-20. 75

W. Townsend, The single machine problem with quadratic penalty function
of completion times: A branch-and-bound solution, Management Science
24 (1978), 530-534. 17, 45, 55, 56

L. Tang and X. Wang, Simultaneously scheduling multiple turns for steel
color-coating production, European Journal of Operational Research 198
(2009), 715-725. 82

R. van Bevern, M. Mnich, R. Niedermeier, and M. Weller, Interval schedul-
ing and colorful independent sets, Proceedings of the 23rd International
Symposium on Algorithms and Computation (ISAAC), LNCS, vol. 7676,
Springer, 2012, pp. 247-256. 98, 99, 135

P. van Dam, G. Gaalman, and G. Sierksma, Scheduling of packaging lines
in the process industry: An empirical investigation, International Journal
of Production Economics 30-31 (1993), 579-589. 74

J. Yuan, The NP-hardness of the single machine common due date weighted
tardiness problem, System Science and Mathematical Sciences 5 (1992),
328-333. 16, 45, 69

W. Zhang, R. Smith, and C. Lowe, Confocal raman microscopy study of
the melamine distribution in polyester-melamine coil coating, Journal of
Coatings Technology and Research 6 (2009), 315-328. 81

	Introduction
	I Generalized Min-Sum Scheduling
	Introduction
	Problem formulation
	Preliminaries and related work

	Analysis of Smith's rule for convex and concave cost functions
	Combinatorial analysis of Smith's rule
	Tight analysis of Smith's rule
	Parameterized analysis

	Complexity and exact algorithms for min-sum scheduling
	Hardness for piece-wise linear cost functions
	Global order rules
	Exact algorithms

	Experiments
	Data set
	Experimental results

	Conclusions

	II Integrated Sequencing and Allocation
	Introduction
	Abstract problem formulation
	Related work
	Generic algorithmic framework

	Integrated sequencing and allocation in coil coating
	Problem formulation
	Interval model for concurrent setup allocation

	Algorithms and complexity for the concurrent setup allocation problem
	Preliminaries on t-interval graphs and t-union graphs
	Maximum weight independent sets in m-composite 2-union graphs
	Concurrent setup allocations

	Algorithms and experiments for the coil coating problem
	Algorithm
	Lower bounds from a combinatorial relaxation
	Computational study

	Integrated sequencing and allocation for filling lines in dairy production
	Problem formulation
	Structural properties of the allocation problem
	Algorithms and computational study

	Conclusions
	Bibliography

