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The mechanism of atrazine binding and its modification by Chelex-100-induced Ca2+ deple­
tion and proteolytic degradation by trypsin, was analyzed in PS II membrane fragments from 
spinach. It was found:

1) Chelex-100 treatment leads in a comparatively slow process (/, 2 = 5 — 10 min) to Ca2+ re­
moval from a site that is characterized by a high affinity as reflected by Ku values of the order of 
10 7 M. The number of these binding sites was found to be almost one per PS II in samples 
washed twice with Ca2+-free buffer.

2) Chelex-100 treatment does not affect the affinity of atrazine binding but increases the 
susceptibility to proteolytic attack by trypsin.

3) The electron transport activity is only slightly affected by Chelex-100 treatment.
4) The atrazine binding exhibits a rather small T-dependence within the physiological range 

of 7 °C to 27 °C.
The implications of these findings for herbicide binding are discussed.

Introduction

Photosynthetic water cleavage into dioxygen 

and metabolically bound hydrogen takes place in a 

membrane-bound protein complex referred to as 

photosystem II (for a short review see ref. [1]).

All functional redox groups that participate in 

the overall reaction sequence, which comprises 

a) light-induced charge separation and stabiliza­

tion, b) water oxidation and c) plastoquinone re­

duction, are currently assumed to be incorporated 

into a membrane-spanning 'heterodimer of poly­

peptides D 1 and D 2, each of which contains about 

350 amino acids [2, 3], Of special relevance for her­

bicide research is the functional and structural or­

ganization of plastoquinol formation. This process 

occurs within a special pocket designated as the QB 

site which is also the target site for many herbi­

cides (for review, see ref. [4, 5]). The Q B site is
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formed by the stromal side of transmembrane hel­

ices IV and V and the corresponding surface ex­

posed loop of polypeptide D 1 [5], Plastoquinone, 

which is moderately bound to the QB site (i.e. QB), 

becomes reduced to plastoquinol via a two step 

univalent redox reaction sequence. A highly stabi­

lized semiquinone (QB~) is formed as an interme­

diate. The semiquinone of another tightly bound 

plastoquinone (QA~) acts as the one-electron re- 
ductant in this reaction sequence. QA” is generated 

in the fast step of stabilization of the primary 

charge separation [6 ]. The plastoquinone QA is 

tightly bound to a site mainly located in polypep­

tide D2 [2]. A high spin, non-heme Fe2+ coordinat­

ed with four histidines of transmembrane helices 

IV and V of D 1 and D 2, respectively, is located 

between QA and QB [2, 3]. The physiological role of 

this Fe2+ atom is not yet clear (for review see ref. 

[7])-
A number of powerful herbicides prevent plas­

toquinone binding to the QB site thereby blocking 

plastoquinol formation [4], The interaction of 

these compounds with photosystem II strongly de­

pends upon the structure of the binding domain as 

reflected by the existence of different single site 

mutations that can drastically change the efficien­

cy of inhibition by herbicides [8-11]. Further­

more, the herbicide binding also depends on the 

redox state of the non-heme iron [1 2 , 13],
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It was recently shown that in suspensions of 

PS II membrane fragments the proteolytic degra­

dation of the Qb site by trypsin [14, 15] is not only 

affected by the occupation state of this site [16] but 
also by the presence of Ca2+ ions [17]. The protec­

tive effect of Ca2+ was shown to depend on the 

nature of the proteolytic enzyme [13] and therefore 

seems to imply that specific conformational 

changes of the QB site could be involved.

In this study we further analyzed the effects of 

Ca2+ on herbicide binding and the modifications 

by mild trypsin treatment. In addition an attempt 

was made to determine the thermodynamics of 

herbicide binding by measurements of the temper­

ature dependence.

Materials and Methods

Triton X-100 PS II membrane fragments were 

prepared by a modified procedure of Berthold 

et al. [18] as described in ref. [19]. Bound Ca2+ was 

removed by dark incubation of PS II membrane 

fragments with Chelex-100 at 0 °C under slow stir­

ring for the times indicated in the figures.

At a sample concentration of 400 fig chloro­

phyll/ml in 50 mM  MES/NaOH (pH = 6.5), 

100 mg Chelex-100/ml were added. After Chelex 

treatment samples were spun down at 15,000 x g 

for 5 min and subsequently washed at least twice 

with buffer solution (50 mM MES/NaOH, 

pH = 6.0).

For tryptic degradation sample material (50 |!g 

chlorophyll/ml, 10 mM NaCl, 0.33 m sorbitol, 

50 m M  MES (pH = 6.0) was incubated with trypsin 

(Boehringer) at a ratio of 0.25 U trypsin/50 |ig 

chlorophyll for 30 min and afterwards spun down 

at 15,000 x g and washed with suspension buffer.

Ca2+-binding experiments were performed by 

incubation with [4 5 Ca]CaCl2  of the sample in the 

dark at 0 °C. Atrazine binding was determined 

by a method similar to that outlined in ref. [2 0 ]. 

The details are described in ref. [13]. For some ex­

periments, the samples were incubated at different 

temperatures in complete darkness.

The Ca2+ content of the samples were measured 

by atomic absorption spectrometry (Perkin Elmer 

model AAS 300) at 1500 °C with a graphite 

cuvette technique. DCIP-reduction rates were 

measured spectrophotometrically as outlined in 

ref. [2 1 ].

Results

For the determination of the Ca2~-binding 

properties PS II membranes were washed twice 

with Ca2+-free buffer solution (50 mM MES/ 

NaOH, pH = 6.0) in order to remove loosely 

bound Ca2+. After this treatment these control 

samples were found to contain 4.2 ± 0.3 Ca2+ per 

400 chlorophyll molecules. Different treatments 

with EDTA, EGTA or Chelex-100 were tested for 

their chelator ability to remove Ca2+ from washed 

PS II membrane fragments. The best data were ob­

tained with Chelex-100. Incubation with Chelex- 

100 and subsequent washing with Ca2+-free buffer 

solution led to a time-dependent Ca2+ release. This 

is shown in Fig. 1 where after 20-30 min of incu­

bation with Chelex-100 the Ca2+ content drops to 

a level of about 3 Ca2+/400 Chi (2.7 ± 0.3).

Taking into account measurements of the aver­

age oxygen yield per flash the present data indicate 

that in our spinach PS II membrane fragments aft­

er Chelex-100 treatment 2-3 Ca2+ are tightly 

bound per PS II reaction center. This value is 

slightly higher than latest results of 2 Ca2+/PS II 

[22-24], Regardless of this difference, the data of 

Fig. 1 suggest that after washing twice with Ca2+- 

free buffer PS II membrane fragments contain 

about 1 bound Ca2+/PS II that can be removed by 

Chelex-100. The question arises whether this Ca2+ 

has any functional relevance.

At first, we determined the binding properties of 

the Chelex-100-extractable Ca2+. Binding studies

V)

Fig. 1. Number of bound Ca/400 chlorophylls as a func­
tion of incubation time with Chelex-100 in washed PS II 
membrane fragments from spinach. Insert: Double re­
ciprocal plot for binding of [45Ca]CaCl2 to washed PS II 
membrane fragments control (A) ,  10 min ( • )  and 
30 min (O) incubation with Chelex-100. Experimental 
details as described in Materials and Methods.
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were performed with [45C a]CaC l2. The results are 
depicted in the insert of Fig. 1. In Chelex-100- 

treated samples the number of binding sites were 

of the order of one Ca2+ per (600 ± 300) chloro­

phylls and the affinity can be described by a 

K d value of (7 ± 3) * 10~8 m. In contrast, the 

[4 5 Ca]CaCl2 binding in control samples was 

markedly smaller and the data scattering did not 

permit to calculate reliable values for the number 

of binding sites and KD.
Based on these data of Fig. 1 we conclude that 

Chelex-100 treatment leads in a comparatively 

slow process to the extraction of about 1 Ca2+/ 

PS II from binding sites that are characterized by 

rather high affinity as reflected by the K D values of 

the order of 10“ 7 m. This value resembles that of 

strong PS II herbicides [13, 20] and is markedly 

lower than KD values in the range of 50-100 [iM 

and 1-3 mM , reported in the literature for Ca2+ ef­

fects on 0 2-evolution rates and P680+-reduction 

kinetics, respectively in variously treated samples 

[22,25-27],

To check for possible functional changes due to 

high affinity Ca2+-binding sites by Chelex-100, the 

electron transport activity (DCIP reduction with 

DPC as donor) was measured as a function of in­

cubation time with the chelator. The normalized 

DCIP-reduction rate is compared in Fig. 2 with 

the depletion of Ca2+ induced by Chelex-100 (Fig. 

1). Fig. 2 shows that a small activity loss of about 

20% is caused by Chelex-100 treatment but this 

effect is kinetically not related to the removal of

Fig. 2. Normalized DCIP-reduction rate ( • )  and con­
tent of extractable Ca2+ as a function of incubation time 
with trypsin in washed PS II membrane fragments (□). 
Experimental details in Materials and Methods.

Ca2+ from its high affinity binding site(s). The ac­

tivity loss is comparable with findings reported 

previously for the effect of EDTA on 0 2 evolution 

[28]. Readdition of 10 mM CaCl2 did not restore 

the activity, but further suppressed the DCIP-re- 

duction rate. This inhibitory effect of Ca2+ is also 

observed in non-treated PS II membrane frag­

ments. It seems to be specific for the action of 

DCIP because in the presence of other electron ac­

ceptors a slight stimulation is often observed, espe­

cially in the case of K 3 [Fe(CN)6] (data not shown).

Based on the above results the Chelex-100 ex- 

tractable Ca2+ is inferred to be not directly corre- 

lajted with the electron transport activity. Al­

though this Ca2+ does not seem to play a key func­

tional role it may still be important in order to 

maintain the structure of a polypeptide domain 

that indirectly affects the reaction pattern of PS II. 

The Chelex-100-extractable Ca2+ site may be lo­

cated at the acceptor side of PS II because the loop 

between transmembrane helices IV and V of poly­

peptide D 1 which in part forms the Q B site(s) con­

tains a number of amino acid residues (Glu, Gin, 

Asn) that could act as ligands for Ca2+ coordina­

tion. A structural change by Ca2+ binding may af­

fect the herbicide affinity of the Q B site. The prop­

erties of atrazine binding and its modification by 

mild trypsin treatment were used to test possible 

effects due to Ca2+ extraction by Chelex-100. The 

results are depicted in Fig. 3. After extensive 

Chelex-100 treatment leading to complete removal 

of the extractable Ca2+, there is no effect on the 

binding properties of atrazine. This finding indi­

cates that the occupation state of this Ca2 +-bind- 

ing site does not significantly modify the structure 

of the atrazine-binding site. On the other hand, the 

data of Fig. 3 show that compared with the non­

treated control, the degradation of the atrazine- 

binding domain by mild proteolytic treatment is 

stimulated after Chelex-100-induced removal of 

Ca2+. Therefore, the occupation of the Chelex- 

100-extractable high affinity Ca2+-binding site 

could be of structural significance for the suscepti­

bility to trypsin. However, if one takes into ac­

count that Ca2+ addition to non-treated PS II 

membrane fragments highly retards the suscepti­

bility to tryptic attack on the atrazine-binding site, 

a more complex pattern emerges for the Ca2+- 

induced effects on the PS II acceptor side (see 

Discussion).
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0 100 200

Fig. 3. Double reciprocal plot of [i4C]atrazine binding to 
normal (top) and washed (bottom) PS II membrane 
fragments. Top: Non-treated PS II membrane fragments 
without ( • )  and after trypsination in the absence (O) or 
presence (■) of 10 m M  CaCl2. Bottom: Control washed 
samples ( • )  and Chelex-100-pretreated samples (■). 
The binding properties of trypsinized samples are repre­
sented by open symbols: washed (O) and Chelex-100 
(A ) pretreated samples. Experimental details as outlined 
in Materials and Methods.

The atrazine binding to PS II is characterized by 

a K d value of about 5 * 10“ 8 m  which corresponds 

to a AG° value of the order of -40 kJ/mol for the 

reaction Ifree + X ^ X I ,  where Ifree reflects the free 

atrazine and X the binding site. To analyze the 

driving force of this process an attempt was made 

to determine AH  and AS° by measuring the 

T-dependence of atrazine binding. Unfortunately, 

only a rather small T-range can be covered because 

a recent study led to the conclusion that a structur­

al change of functional relevance takes place at the 

QB site at temperatures around 21 °C [29], Our 

measurements of atrazine binding did not reveal a 

significant T-dependence of the KD values in the 

range of 7 to 27 °C as shown in Fig. 4.

Within the limits of experimental uncertainties 

the AH  values are comparatively small (<10 kJ/ 

mol). This finding indicates that entropic effects 

essentially contribute to atrazine binding. At high-

InK ______________________________

-17 -

-1 8 -  . -------------v------------- , ------------- •------------------

-19 -

-2 ol---- 1---- 1---- *---- 1---- 1---- 1---
3,3 3,35 3,4 3 / 5  3,5 3,55 3,6 

reciprocal te m p e ra tu re /K '1 10'3

Fig. 4. Semilogarithmic plot of KD values as a function 
of reciprocal temperature. The KD values were deter­
mined from a Scatchard analog plot for [l4C]atrazine 
binding to PS II membrane fragments. Experimental 
details as described in Materials and Methods.

er temperature enthalpy contributions to AG° 
seem to dominate but in this case significant un- 

physiological structural changes are expected to 

take place (data not shown).

Discussion

In the present study the binding of Ca2+ and ex­

traction by Chelex-100 treatment were analyzed in 

relation to effects on the atrazine-binding site and 

its degradation by trypsin. The existence of one 

high affinity Ca2+-binding site per PS II was ob­

served after Chelex-100 treatment of PS II mem­

brane fragments washed twice with Ca2+ free buf­

fer. This site is formed in a comparatively slow 

process with tXj2 of 5-10 min. The most simple in­

terpretation of this finding is the assumption that 

this Ca2+-binding site is occupied, under normal 

conditions. The removal of Ca2+ from this site 

does not affect atrazine binding but markedly in­

creases the susceptibility to tryptic degradation. 

Therefore, the conclusion can be drawn that Ca2+ 

is not a structural determinant for the functional 

integrity of the QB site itself. On the other hand, 

the significant increase of the proteolytic attack on 

the atrazine-binding site in Chelex-100-treated 

samples indicates that the binding of Ca2+ to its 

high affinity site affects the structure of the PS II 

acceptor side.

Other Ca2+-induced effects on the acceptor side 

were reported in this (Fig. 3 top) and previous 

studies [13, 17, 26]. Recently, further evidence was 

obtained that Ca2+ modifies the acceptor side reac­

tions of different exogenous redox substances [30].

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 12.11.18 17:30



R. Fromme and G. Renger • Atrazine Binding 377

The nature of these different Ca2+ effects have to 

be clarified especially their specificity for Ca2+ re­

mains to be checked. However, regardless of the 

underlying molecular mechanism, the effect(s) of 

Ca2+ on the PS II acceptor side should be taken 

into consideration if, based on measurements of 

oxygen evolution rates, conclusion are drawn 

about the role of Ca2+ as cofactor in the process of 

water cleavage. In this respect a very important 

fact has to be emphasized. Latest studies reveal 

that different treatments leaving the Ca2+ content 

unaffected cause a strong inhibition of 0 2 evolu­

tion that can be reversed by Ca2+ addition [31, 32].

These findings clearly show that artificial struc­

tural changes of functional significance can be in­

duced without Ca2+ loss but subsequent regenera­

tion by Ca2+ addition. Similar effects were shown 

to exist in the case of Cl- [33],
Another interesting structural effect should be 

briefly mentioned. It was shown that the occupa­

tion of the Q b site either by plastoquinone or by a 

herbicide leads to structural changes that retard 

the proteolytic attack by trypsin [16]. This raises 

the question about the possibility of an allosteric 

effect of the QB site on donor side reactions of 

PS II because all functional redox groups partici­

pating in water cleavage are currently assumed to

be located in a heterodimer of polypeptides D 1 

and D2 [2, 3]. Our latest data indicate that at least 

in the case of DCMU the electron transfer rate 
from Tyr-161 of polypeptide D1 to P680+ re­

mains invariant to herbicide binding in the QB site 

[34],

The observation of a rather weak 7”-dependence 

of atrazine binding in the physiological range of 

7 °C to 27 °C suggests that the process is dominat­

ed by an entropy increase. Different parameters 

(solvent effects, structural changes of the QB site, 

hydrogen-bond formation, etc.) can contribute to 

this effect. For a more detailed analysis experi­

ments are desirable with different mutants modi­

fied at specific sites of the loops between trans­

membrane helices IV and V.
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