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1. Introduction

More and more cars are equipped with so-called route guidance systems. Visual and acous-
tic indicators guide the driver to her destination, which she has entered at the beginning
of the trip. Typically, these systems compute their routes based on digital maps, possibly
up-to-date traffic data, which are broadcast by radio or cellular phone, and obtain the
current position with the help of GPS (Global Positioning System) [23].

Current route guidance systems are simple from an algorithmic point of view. They
only compute shortest paths (or approximations thereof) to the destination (with respect
to travel time or geographic distance). Computational challenges for these approaches arise
“solely” from the huge size of the underlying road networks, which is often addressed by us-
ing a hierarchical graph representation [12, 43]. One of the benefits of this approach is that
the route computation can be perfectly parallelized, i.e., each vehicle can independently
compute its own route. More advanced systems incorporate traffic forecast estimated from
theoretical models and past experience into the computation (anticipatory routing) [9]. It
is widely hoped that route guidance systems can help to alleviate the problem of congestion
caused by the still increasing amount of road traffic.

1.1. Drawbacks of current route guidance systems

A number of simulations show that route guidance systems indeed decrease the total travel
time since inefficiencies caused by human route choice are mostly eliminated [24, 29, 30].
Yet, the majority of these simulations also predict that these benefits will be lost once the
number of equipped vehicles exceeds a certain threshold (assuming that the drivers actually
follow the routes they are given).! In some cases it could even happen that unguided drivers
obtain shorter travel times than those with guidance [30].

This phenomenon can be explained by the fact that the perceivable decrease of the
overall travel time in the case of a small fraction of equipped vehicles is merely a fortu-
nate byproduct of the system. Current algorithms try to minimize the individual journey
time of each driver separately, without taking into account the effects of their own route
recommendation. Possibly used traffic forecasts treat the influence of guided vehicles as
negligible. It is possible that such a system actually causes congestion all by itself. Con-
sider for example a number of vehicles starting at the same point in time in origin A for
destination B. Under current systems, they are given exactly the same route recommenda-
tion. Even if this route is updated over time as new traffic data become available, it is still
the same route for all these vehicles. Therefore, assuming similar mean speed, they always
stay together on their trip (platooning), which possibly leads to congestion. While Adler
and Blue [1] call this phenomenon oversaturation, Ben-Akiva, de Palma and Kaysi [10] call
it overreaction, since “too many” drivers follow the recommended route.

!Not all simulations agree with this prediction. Most notably, Hall [22] points to some deficiencies in the
models underlying these simulations. He argues that if accurate traffic information is used for routing,
the increase in road usage will not occur.



Thus, the need for integrated algorithms that actually pay attention to the system-
wide performance (which is typically defined as the sum of all individual travel times) has
been recognized [6, 23, 26]. Obviously, it is essential that these algorithms are capable of
splitting platoons over several paths (multiple path routing).

A number of approaches have been proposed to achieve multiple path routing. For in-
stance, Rilett and Van Aerde [36] suggest adding individual random error terms to the road
travel times broadcast by a central controller, in order to cause the in-vehicle computers
to choose different paths. Lee [29] computes k-shortest paths every 10 minutes and then
distributes drivers over them every two minutes, considering the current travel times on
these k-shortest paths. These authors report a decrease in the total travel time (compared
with single path routing) from their simulation studies, but it is obvious that this decrease
is not guaranteed. Furthermore, other solutions are likely to reduce the total travel time
even further.

Another popular approach is to route drivers along the paths of a so-called user equi-
librium, so that no driver can get a quicker path through the network by unilaterally
changing her route [41]. The resulting model is called traffic assignment. It was originally
introduced by Wardrop [42] in order to model natural driver behavior, and it has been
studied extensively in the literature. In fact, transportation engineers have used static
traffic assignment — traffic is assumed to be in steady state and flow does not change over
time — to predict traffic patterns. Sheffi [39] and Patriksson [34] provide a comprehensive
treatment of mathematical formulations and algorithms for the static user equilibrium.

While a user equilibrium should satisfy the drivers, it does not necessarily minimize
the total travel time of the system. Roughgarden and Tardos [38] investigate the relation
between the system optimum and the user equilibrium. In general, the total travel time
in equilibrium can be arbitrarily larger compared to the system optimum, although it is
never more than the travel time incurred by optimally routing twice as much traffic.

Another unfavorable property of the user equilibrium is its non-monotonicity with re-
spect to the network’s capacity. This is illustrated by the Braess paradoz, where adding a
new road to a network with fixed demands actually increases the total travel time of the
updated user equilibrium [11, 21, 39].

To overcome one of the unrealistic assumptions of static traffic assignment [8, 18], there
has been significant effort towards the dynamic analysis of traffic networks. Unlike static
traffic assignment, where the modeling and the solution methods are well established, the
dynamic traffic assignment problem has been studied from several different perspectives
with no single generally accepted model or methodology. The article by Mahmassani
and Peeta [31] provides a discussion of the inherent difficulties and corresponding solution
attempts.

An intrinsic difficulty in all models is that the path computations depend on the travel
times in arcs, which in turn depend on the traffic on these paths. As this relationship is not
easy to grasp analytically in the dynamic case, some techniques proposed in the literature
for traffic assignment (sometimes even for the static case) use simple feedback loops. They
iteratively assign traffic to the network (e.g., by simulation) and compute new arc travel



Figure 1: Example without and with restrictions on path lengths: One commodity is routed
through the road network between the marked nodes. In the picture on the left, we
display the (unconstrained) system optimum. The flow is distributed widely over the
network in order to avoid high arc flows that would incur high arc travel times. In the
picture on the right, the same amount of flow is routed, but this time with a restriction
on the normal length of paths (constrained system optimum). In this example, the nor-
mal length has been chosen to be the geographic distance. Line thickness reflects arc
capacity (light gray) and arc usage (black).

times based on the last assignment (and perhaps previous ones) [24, 39]. Similar ideas
are commonly used in loops of other algorithms as well; for instance, Bell et al. [7] use
outdated arc travel times in each iteration of their Frank-Wolfe-type algorithm.

These heuristic approaches are mathematically somewhat unsatisfactory because often
it is not clear what the sequence of intermediate solutions actually converges to, or if it
even converges at all. Usually “convergence” is established only empirically. Kaufman,
Smith and Wunderlich [24] report cycling of their algorithm for certain instances. In [25],
they report that this is especially due to single path routing (all-or-nothing assignment)
used in every iteration. In order to overcome this problem and guarantee convergence, they
have to develop a complicated continuous-time model with path splitting, which does not
seem to be practical.

1.2. A different approach

From a global perspective, e.g., the traffic authority’s point of view, it is certainly desirable
to explicitly minimize the total travel time (i.e., to compute a system optimum). In par-
ticular, the existing road network could henceforth carry more traffic [16, 28]. Yet, users’
needs have to be taken into account: Directly implemented, this policy could route some
drivers on unacceptably long paths in order to use shorter paths for many other drivers. In
fact, the length of a route in the system optimum can be significantly higher than in user
equilibrium, even in the pathological case of a single origin-destination pair [37]. This is



critical because routes can only be recommended to drivers. It is reasonable to assume that
only very few of them would be willing to sacrifice their own short routes for the benefit of
others. On the other hand, user acceptance of a route guidance system is important if it
is supposed to help in reducing traffic congestion. Therefore, Beccaria and Bolelli [6] have
suggested to “find the route guidance strategy which minimizes some global and commu-
nity criteria with individual needs as constraints.” To the best of the authors’ knowledge,
we provide the first model that integrates these conflicting goals.

We adopt a system optimum approach but honor the individual needs by imposing
additional constraints to ensure that drivers are assigned to “acceptable” paths only. More
precisely, we introduce the concept of the normal length of a path, which can be either its
traversal time in the uncongested network or its traversal time in user equilibrium or its
geographic distance, or any other appropriate measure. The only condition imposed on the
normal length of a path is that it may not depend on the actual flow on the path. Equipped
with this definition, we look for a constrained system optimum in which no path carrying
positive flow between a certain origin-destination (OD) pair is allowed to exceed the normal
length of a shortest path between the same OD-pair by more than an “acceptable” factor.
Figure 1 demonstrates the effect of length constraints on the system optimum.

Because of the mentioned difficulties with dynamic traffic modeling, in this paper we
apply this approach to the static routing problem. After specifying the problem and the
used model in Section 2, we present an algorithm for its solution in Section 3. It combines
the Frank-Wolfe method with column generation and an algorithm for the constrained
shortest path problem. In Section 4, we give computational results obtained with our
implementation of this algorithm. The real world input data were kindly provided by the
DaimlerChrysler AG, Berlin.

2. Model and Problem Formulation

We consider a static model in which flow represents a traffic pattern at steady state. While
working with static flows precludes the direct application of our algorithm to all real-
world situations, which are generally of dynamic nature, our model is nonetheless useful
for the study of time periods when traffic exhibits a flow-like behavior, e.g., during rush
hours [39]. Moreover, results obtained from the static model can provide traffic planners
with important bounds on the total travel time, which, due to the imposed restrictions
on the normal length of paths, are more realistic than the bounds resulting from both the
system optimum and the user equilibrium.

We also assume that all drivers use the route-guidance system and that they actually
follow the recommended routes. The former assumption is relatively strong, but unguided
drivers can easily be incorporated as a fixed congestion on the network, which would imply,
however, that they do not react to the route choices of guided vehicles.

Formulations of routing problems are often arc-based with one flow variable per arc.
Since a route guidance system eventually has to propose paths to the drivers, arc flows
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Figure 2: Typical link delay functions; x is the arc flow, and ¢(x) is the travel time.

have to be decomposed in a postprocessing step into path flows. As this decomposition
is in general not unique, it is virtually impossible to model path constraints in an arc-
based formulation. Therefore, we use a path-based problem formulation with one variable
for each feasible path. This enables us to impose restrictions on paths very easily. As
we cannot enumerate all these variables efficiently, we only generate them when they are
needed to carry flow.

Let the road network be given by a directed multigraph G = (V, A) with three attributes
on each arc a € A: the capacity u, > 0 (measured in vehicles per time unit), the link delay
function t,: [0, uy] — ]RSr denoting the arc travel time depending on the traffic flow on this
arc, and the normal length £, > 0 of this arc. We require t, to be monotonically increasing,
twice continuously differentiable, and convex. These requirements are naturally met by
common link delay functions [14, 39] (Figure 2). We use the function of the U.S. Bureau

of Public Roads,
N
ta(xa) = tg I+a (c_a> >

with the travel time t0 > 0 in the uncongested network and tuning parameters a > 0,
B >0 and ¢, > 0. As suggested in [39], we set a = 0.15 and 3 = 4.0. The parameter ¢,
is called “the practical capacity” of arc a. We use a value slightly greater than the real
capacity ug of arc a € A. Other functions, like Davidson’s function [39], could have been
used as well.

Vehicles with the same origin and destination are modeled as one commodity. For each
commodity k, let (sg,tx) € V x V, s # tg, denote the pair of origin node and destination
node, and let by > 0 be the amount of flow to be routed for k (vehicles per time unit).
In addition, we want the normal length of all paths assigned to k not to exceed a given
value Ly > 0. We describe the proper choice of the metric underlying the normal length
together with the choice of values for the parameters Lj in Section 4. The set of all



commodities is called C'. We define path sets

Py :={p|p is a directed path from sy to t},
Py :={p € P |{(p) < Ly},

with the normal path length

Up) =Y L,

aep

and the set of all feasible paths

P =] P

keC

Let ® € {0,1}4XIP'l be the arc-path incidence matrix such that the vectors z4 and
z¥ of arc and path flows are related by 24 = ®z”. Similarly, let ¥ € {0, l}lcwpl‘ be the
commodity-path incidence matrix, where the entry in row k£ and column p is 1 if p € P},
and 0, otherwise.

We want to minimize the total travel time, which can be stated as the sum of the
lengths of all paths, weighted with the flow on each path. With the vectors t4(z4) € R4,
b € RC and v € R respectively composed of the arc travel times to(zq), the demand
rates b, and the capacities u,, the problem can be written as

P: min 2P (2F) = t4(®2F) @2l

s. t.
Vol =0
ozt <u (1)
zF >0.

Problem P is a minimum cost multicommodity flow problem with path constraints and
a separable convex nonlinear objective function. Of course, the set P’ of all feasible paths
is given only implicitly (by the Lg, k € C); thus, P is a generalization of the well known
constrained shortest path problem (see also Section 3.2), which renders it NP-hard. Note

P

that the flow variables * are not required to be integral since they describe abstract traffic

flows.

3. Algorithms

The algorithm we propose for solving P is an adaption of the Frank-Wolfe algorithm [17],
which is applicable since the gradient of the objective function can be expressed in terms



Frank-Wolfe algorithm

simplex algorithm (with column generation)

algorithm for the constrained shortest path problem

ordinary shortest path algorithm, e.g. Dijkstra’s

Figure 3: The nested structure of the algorithm.

of arcs flows, as we show in Section 3.3. The algorithm solves a linearized version of P in
every iteration. The subroutine for the linear case in turn repeatedly calls an algorithm
for solving the constrained shortest path problem. Figure 3 provides an overview of the
nested structure of the entire algorithm, which always converges to a global minimum.

3.1. The linear problem
Let us first consider P with constant link delay functions ¢, > 0. Then P becomes
Plin:  min (tA)TCIMUP
S. t.
Uy
bz

X

v v v

b
u (2)
0

A\VARV/AN

with ¥ € R”'. Again, P’ is given only implicitly by means of the Lj. Therefore, Py, is
a linear program with additional constraints for the paths. This still renders it NP-hard
in the original input size. Since we have got one variable for each feasible path, it is easy
to ensure that all paths fulfill the normal length restriction (or other restrictions we might
think of), as we show below. It is not practical to hold all variables in memory at the
same time, as there could be exponentially many. Therefore, we use the simplex algorithm
with column generation to generate new paths when we need to route flow through them.
While column generation is a commonly used technique to solve linear multicommodity
flow problems with path constraints (see, e.g., [15] for a survey of applications in routing
and scheduling), we outline it here for the sake of completeness.

Note first that at most |C|+|A| variables have nonzero value in a basic feasible solution
to Pin- The key idea is therefore to restrict Py to a small subset of variables with index set
P" C P, where |P'| > |C|+|A|, which contains the current basis and at least one additional



Input: An instance of Pj;, and a feasible basis B
Output: An optimal solution of this instance

1 P’ := B U {at least one additional variable from P’}

2 loop

s | Solve Py, restricted to P'.

4 | Let o, and 7, be the simplex multipliers of the found optimal solution.
5 | forallkeC

6 ‘ find shortest path py in P} w.r.t. the arc costs t, — 4.

7 | end for

s | if t(pg) = oy for all k € C then

9 ‘ return values of basic variables
10 | else
11 Remove one or more non-basic variables from P’.

12 Choose at least one path py with ¢(p;) < o} and add it to P'.
13 | end if
14 end loop

Figure 4: The revised simplex algorithm with column generation.

variable, and swap variables in and out as needed. If one solves this so-called restricted
master problem Py, over P’ to optimality employing the revised simplex algorithm, it
returns values for the path flows z,,, p € P, as well as optimal values for the dual variables
ok, k € C,and m,, a € A, associated with the equality and inequality constraints of Py,. It
follows from linear programming theory that the solution 2, with z, = 0 for all p € P"\ P,
is also optimal for the whole problem over P’ if and only if the following two conditions

hold:

(T (3)

o+ 7Td
<0 (4)

<
<

Here, o and 7 are the vectors of the o), and 7, respectively. Since z¥ is optimal for the

restricted problem, all columns of (3) belonging to variables of P’ satisfy this condition.
Furthermore, 7 satisfies (4). It follows from the principle of the simplex algorithm that
all variables belonging to columns that violate (3) are eligible for entry into the basis (and
therefore into P'), while non-basic variables in P’ can be removed from P’

It remains to be discussed how we can check whether any variable not in P’ violates (3)
or not, without enumerating them all. A single column of (3), belonging to p € P}, can be



written as

Okt Y Ta< Y ta
acp aEep

< t(p) = Z (to — mq) = 0. (5)

acp

This means that for every commodity k& € C, all paths in p € P/ must have length ¢(p) of at
least o with respect to the modified arc lengths ¢, — 7w, > 0. This in turn means that (3)
can be checked by computing a shortest path in P’ for every commodity. To be precise,
it is generally not necessary to compute an actual shortest path. In the case that (5) is
violated it suffices to obtain a path with ¢(p) < 0. The resulting algorithm is summarized
in Figure 4. We obtain an initial solution by solving a so-called first phase with additional
artificial variables and a modified objective function [13].

Since P’ contains only the paths p € Py satisfying the constraints ¢(p) < L on their
normal length, we have to solve a so-called constrained shortest path problem for every
commodity. This problem is significantly harder than the ordinary shortest path problem
and will be discussed in the next section.

It is obvious that we can impose other constraints on the available paths as long as
there is an algorithm that can solve the associated constrained shortest path problem.
Notice that the |C| shortest path computations are completely independent and can be
done in parallel: A coordinator solves the restricted master problem and then deals out
the current arc costs t, — 7, for all ¢ € A to a number of helpers, which compute the
constrained shortest paths and report back their results.

If we forego the capacity constraints (1) and (2) in P and Py, respectively, Py, decom-
poses into |C| independent constrained shortest paths problems. This renders the simplex
algorithm unnecessary. In Section 4 we present computational results obtained with and
without obeying the capacity constraints.

3.2. The constrained shortest path problem

In the constrained shortest path problem, every arc a of a given directed graph (V,A)
carries two parameters, a traversal time t, and a length ¢,. Given an origin-destination
pair (s,t), the objective is to compute a quickest path from s to ¢ whose length does not
exceed a given bound L. With the notation introduced above, it can we written as

min t(p)
s. t.
U(p) < L
p is a path s ~ .

This problem is known to be (weakly) NP-hard [19].
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We have implemented and tested two algorithms for this problem. The first algorithm
follows a branch-and-bound scheme by Beasley and Christofides [5], which is quite similar
to the one in Ribeiro and Minoux [35]. It employs depth-first-search from node s. Bounds
for the remaining paths to ¢ are computed using Lagrangian relaxation.

The second algorithm is a generalization of Dijkstra’s algorithm to the case of two
objective functions by Aneja, Aggarwal, and Nair [2]. It fans out from the start node s
and labels each reached node v € V' with labels of the form (d;(v),d¢(v)). Such a label
consists of the traversal time d;(v) and the distance dy(v), respectively, of the paths that
have reached v so far. During the course of this algorithm several labels may have to be
stored for each node, namely the Pareto-optimal labels of all paths that have reached it.
This labeling algorithm can be interpreted as a special kind of branch-and-bound with a
search strategy similar to breadth-first-search. Starting from a certain label of v, we obtain
lower bounds for the remaining path from v to ¢ by separately computing ordinary shortest
path distances from v to ¢t with respect to travel times ¢, and lengths /., respectively. If
one of these bounds is too large, we can dismiss the label.

Both algorithms need to compute ordinary shortest paths many times. We use Di-
jkstra’s algorithm for this task, since all arc weights are guaranteed to be nonnegative.
Computational experience indicates that at least for our kind of problems the labeling
algorithm is by far faster than the branch-and-bound method of Beasley and Christofides.
This finding is also supported by a study on computing Pareto-optimal shortest paths in
the context of finding good train connections with respect to multiple criteria [32].

3.3. The nonlinear problem

The original problem P as stated at the end of Section 2 is a nonlinear optimization
problem with linear constraints over an implicitly given variable set. We solve it by using
the convex combination algorithm by Frank and Wolfe [17] in the version described by
Klessig [27]. It is a feasible direction method for problems with convex objective function
and convex domain, especially suitable when the linearized problem to be solved in each
iteration decomposes nicely, as is the case with P. We summarize this algorithm for the
reader’s convenience.

Consider a minimization problem min{z(x) |z € Q} with z: R” — R convex and twice
continuously differentiable, and 2 C R™ convex. The feasible direction method is outlined
in Figure 5. It can be shown that this algorithm terminates with an optimal solution, or
that at least every accumulation point of the generated sequence is optimal if the computed
step sizes guarantee a certain decrease of the objective value.

In order to compute the feasible direction in line 2 of Figure 5, we have to solve a
linearized version of the problem. The step size 6; in line 6 is best computed by bisection [4]
as 0; ~ argmin{z(z; + 60(y; — =;)) |0 € (0,1]}. Our tests with the method of Armijo [3, 27]

11



Input: Convex problem min{z(z) |z € 2} and an initial feasible solution z; € Q.
Output: An optimal solution

1 fori=1,2,...

> | Compute feasible direction y; — z; by y; := argmin{Vz(x;)"(y — x;) |y € Q}.
s | if Vz(z;)T(y; — x;) = 0 then

4 ‘ return z;.

5 | end if

¢ | Calculate step-size 6; € (0,1] by line search.

7| g1 = + 0 (Y — x).

s end for

Figure 5: The Frank-Wolfe algorithm.

generally produced worse results.? This method trades less objective function evaluations
during a line search for worse descent of the objective value, compared with minimization
by bisection (Figure 6). But since the time spent with step size computations either way
is negligible in our algorithm, bisection should be preferred as it yields better objective
values in the same number of iterations.

optimum value

OW » iterations

Figure 6: Characteristic descent of the objective value z(z;) during a run of the convex
combinations algorithm. The lower curve is computed with line search done by
bisection, the upper curve with the method of Armijo. The rapid descent in the
first few iterations is typical.

Because of the convexity of the objective function z, z(z') > z(z)+ Vz(z)T(2' — x) holds
for all z, 2’ € Q. Therefore it is easy to see that we can obtain bounds in each iteration for

2The step size is computed as 0; = 8% with
ki := argmin{k € NU {0} | z(zi + 8" (yi — 2:))) < z(2:) + af* V(@) (yi — x:)}.

a, 3 € (0,1) are tuning parameters. Klessig suggests a = 5 = 0.5.

12



its optimal value z* = z(z*) by

2(x;) = 2% 2 2(w) + Va(z) T (2* — x;) = 2(x;) + V() T (ys — x1) (6)
= z2(zy) — 2 < |Va(x)(y; — )]

Here, y; is the feasible direction computed in line 2 of the algorithm presented in Figure 5.
Since the right-hand side is (at least partially) computed anyway in line 2, this gives us
the value of the remaining gap at little additional cost. It enables us to terminate the
algorithm when the desired precision is reached.

We now apply the algorithm to our original problem P with objective function

2Py = t4 (2" 2l
and feasible set
Q= {zF e RY |zl = b, ®2F <u, 2t >0}

We encounter the difficulty that the gradient Vz¥ (x!") needed for the feasible direction has
got |P'| entries, which are impractically many. Fortunately, if we express z¥ in terms of
arc flows 24 = ®z’ as

we obtain
2 2f) = 24 (@a?).

Here, t4(24) is by definition the vector of the travel time functions t,(z,), a € A. Since
each t,(z,) is convex and twice continuously differentiable, and @ is a linear mapping, it
is easy to prove that both z¥ and z4 are convex and twice continuously differentiable. It
follows from basic calculus that

V2P (aF) = (V2 (@2F) D)7,
and with y© € R’ that
Vel (aP) Tyt = VA (@) Tdy P
Consequently, we can solve the minimization problem for the feasible direction using only
VzA4(®xF) € R4 in line 2 of Figure 5:
yi = argmin{Vz"(z]) (4 —27) |y" € Q}

= argmin{Vz" (] )Ty |y" € O}

= argmin{Vz4(®zD) oy | 4T € Q},
which is again a problem of the linear type Pj,. In Section 2, we assumed the link delay

functions t,(z,) to be monotonically increasing. This means, because of zP > 0, that
the arc costs Vz4(®zF) of this linear problem are indeed nonnegative. Hence, we can use

13



the simplex algorithm with column generation of Section 3.1 to determine an improving
direction of the nonlinear problem.

Note that the direction yZP is only described by its components that actually carry flow.
In the convex combinations step in line 7 we add two vectors represented in this manner.
The result is again a (relatively) sparse vector, stored accordingly. Finally, an initial
solution x¥ needed by the algorithm can easily be found by solving a linear problem Py,

with arbitrary arc travel times t, > 0.

4. Computational Study

The computational study is divided into three parts. First, we discuss which normal length
should be used in practice. Next, we analyze efficiency vs. fairness of solutions to instances
that arise from real-world networks. Finally, we report on the performance and convergence
properties of the algorithm.

The instances used in this study represent different parts of the actual road network
of the city of Berlin, Germany. Commodities and corresponding demand rates stem from
origin-destination polls conducted in Berlin. Table 1 respectively shows the size of the
network and the number of commodities for each instance.

‘name‘ |V]‘ | A ‘ |C| ‘

frie 224 523 506
neuk 1890 | 4040 | 3166
3nei 975 | 2184 | 9801
berl 12100 | 19570 | 49689

Table 1: Problem instances used in the experiments. Columns represent the number of
vertices, arcs and commodities, respectively.

Recall that our model requires a maximal normal length Ly, to define the allowable paths
for each OD-pair k. The value of L is computed by multiplying the length of a shortest
path (in terms of normal arc lengths) between OD-pair k with a constant factor f > 1.
Naturally, the bigger the factor is, the larger is the feasible region. Consequently, optimal
solutions to model P are closer to (unconstrained) system optimality when f is larger. We
denote by CSO; the optimal solution to the problem with factor f.

There are two aspects that define the quality of a solution. The total travel time in
the system is of importance to the traffic authority; it is directly measured in the objective
function of problem P. The second aspect is the users’ perception of their route assignment;
to evaluate it, we introduce three different notions of unfairness of a solution; each compares
the travel times of different users in the system with each other. Ideally, one would prefer
different users with the same OD-pair to have similar travel times.

For a given flow, we define the unfairness of a particular traveler as follows:
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Normal unfairness: ratio of the length of her path to the length of the shortest path
between the same OD-pair, both measured with respect to normal arc lengths.

Loaded unfairness: ratio of her travel time to the travel time of the fastest traveler for
the same OD-pair in the optimal solution (measured in terms of the current flow).

User equilibrium (UE) unfairness: ratio of her travel time (w.r.t. the current flow) to the
travel time for the same OD-pair in user equilibrium (which is the same for every
user of that OD-pair).

It follows from these definitions that, for any flow, the normal unfairness and the loaded
unfairness are always greater than or equal to 1; the UE unfairness can be any nonnegative
number. Note also that the normal unfairness of CSOy cannot be bigger than f, for any
factor f. Moreover, in equilibrium the value of each unfairness measure is equal to 1, for
every user. (For the normal unfairness, this is only true, of course, if the normal length of
an arc is equal to its traversal time in user equilibrium.)

Of the three different notions, the loaded unfairness is most important because it mea-
sures the variation in the travel times of users with the same OD-pair in the solution. The
UE unfairness, which was introduced in [37] in the single-commodity context, is of interest,
too, because it indicates how the travel times of the solution relate to those in user equilib-
rium. In practice though, a user does typically not know the travel times in equilibrium; it
is arguably more important to her how her travel time compares to the actual travel time
of others. Our ultimate goal is to achieve a good total travel time while keeping unfair-
ness low. Although the algorithm proposed above can only control the normal unfairness
directly, with the “correct” choice of normal lengths we indirectly influence the other two,
as we are about to see.

4.1. Choice of normal length

Initially, we considered three possible ways to define the normal length of an arc: geographic
distances, travel times when the network is uncongested (zero flow), and travel times when
the network is in user equilibrium. Recall that normal lengths can only be static; for
instance, it is not possible to consider travel times under the current solution with the
methodology described in Section 3. The advantage of keeping the model simple is a fast
algorithm that still produces solutions with small total travel time and low unfairness, as
we will see soon.

Geographic distances and travel times in the uncongested network are highly correlated;
therefore, one cannot expect significant differences between solutions resulting from either
choice of normal length. It is shown in [40], and our runs confirm it, that user equilibria are
better than constrained system optima when the factor f used in determining the maximal
path lengths Ly is small. Consequently, to obtain an improvement in the total travel time,
bigger factors must be considered. But this gives rise to high unfairness, which is undesired.
For instance, the graph on the left in Figure 7 shows the value of the objective function
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Figure 7: Objective values and unfairness distributions for instance neuk and normal
lengths equal to travel times in the uncongested network.

for different factors in the scenario in which one uses the travel time in the uncongested
network to define the normal length. Factors less than 1.4 are not useful because the
total travel time of the corresponding solutions is greater than the total travel time in
user equilibrium. The other two graphs in Figure 7 depict the distribution of unfairness
for the different factors; for instance, for factor f = 1.5, 80% of all users will experience
a loaded unfairness of less than 1.1. This value increases to 1.2 if one considers 90% of
all users. In fact, for factors greater than 1.4, the distributions are quite similar to those
of the system optimum, which especially means that these solutions are not very close to
being in equilibrium. Notice also, in the graph on the right, that for small factors most
users end up traveling longer than they would in user equilibrium. This happens because
there are not enough alternatives (i.e., paths between OD-pairs), which explains the poor
quality of the solutions under this choice of normal length.

We therefore propose to make use of the travel times in user equilibrium when defining
normal arc lengths, which indeed results in high-quality solutions. First, note that, for
any factor f, the user equilibrium itself is a feasible solution to the constrained system
optimum problem. Therefore, for all f,

2(CS0y) < z2(UE),

which guarantees that the optimal solution to problem P is not worse than the user equi-
librium in terms of the total travel time in the system.

In Figures 8 and 10 below, we display the graphs corresponding to the ones in Figure 7
for this choice of normal length. Most notably, total travel times are distinctively smaller
than in equilibrium, while the fraction of users traveling longer than in equilibrium is
substantially smaller.

From the previous discussion, the normal length defined as the travel time in user
equilibrium seems to be the best choice. For this reason, we limit our analysis in the sequel
to this version of normal length.
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Figure 8: Distribution of unfairness for instance neuk and different factors. The graph on
the left corresponds to loaded unfairness, and the one on the right to UE unfair-
ness.

4.2. Quality of constrained system optima

Table 2 exhibits the output of the algorithm for the four instances presented in Table 1
and different factors. Every row represents one run for the factor reported in the first
column. The column wvalue is the total travel time in the solution; paths is the number
of paths with positive flow. In the column unfairness, we report the 99th percentiles of
the corresponding distributions. For example, the second row for instance frie presents the
characteristics of the constrained system optimum with factor f = 1.01. The total travel
time is 629, and users are distributed over 1313 different paths. (Recall that frie has 506
distinctive OD-pairs.) Some users experience a 9.1% longer travel time than they would
in user equilibrium; the maximal difference between travel times for the same OD-pair
is 66.5%. Note that the latter two values respectively are 26.1% and 108.4% in system
optimum.

As we discussed before, when the factor is bigger the objective value is closer to the
total travel time in the (unconstrained) system optimum and the unfairness is higher, and
vice-versa. We will argue that the constrained system optimum with factor 1.02, denoted
by CSOq g2, offers a good trade-off for the real-world instances available to us. Figure 8
depicts the unfairness distributions corresponding to the runs of instance neuk. As before,
we do not include the normal unfairness because we explicitly constrain it to be less than
the factor used. To facilitate a comparison across runs, Figure 9 plots the different notions
of unfairness, percentiles and factors, again for the instance neuk.

e In the four instances shown in Table 2, the gap between the total travel time in

CSO102 and the system optimum is approximately a third of the gap between the
user equilibrium and the system optimum. For instance neuk, we conclude from
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factor | value paths unfairness
normal | loaded | UE
frie
UE 683 1687 | 1.011 1.021 | 1.020
1.01 629 1313 | 1.008 1.665 | 1.091
1.02 622 1277 | 1.017 1.694 | 1.116
1.03 614 1464 1.029 1.711 | 1.091
1.05 612 1579 | 1.046 1.779 | 1.090
1.10 594 1664 | 1.097 1.925 | 1.114
1.20 592 2013 | 1.175 2.070 | 1.182
1.30 591 2215 | 1.213 2.069 | 1.229
SO 591 2509 1.226 2.084 | 1.261
neuk
UE 2915 7109 | 1.060 1.056 | 1.063
1.01 2800 4604 | 1.008 1.348 | 1.079
1.02 2738 5349 | 1.017 1.375 | 1.075
1.03 2726 5912 | 1.028 1.424 | 1.069
1.05 2694 6421 | 1.045 1.456 | 1.101
1.10 2676 8410 1.093 1.517 | 1.125
1.20 2657 9746 1.171 1.545 | 1.183
1.30 2657 | 10325 | 1.195 1.538 | 1.196
SO 2657 | 11055 | 1.197 1.546 | 1.201
3nei
UE 1849 | 41110 | 1.039 1.051 | 1.049
1.01 1772 | 32514 | 1.007 1.304 | 1.051
1.02 1764 | 35552 | 1.017 1.307 | 1.050
1.03 1756 | 36150 | 1.026 1.312 | 1.049
1.05 1735 | 37749 | 1.046 1.358 | 1.061
1.10 1729 | 48376 | 1.088 1.454 | 1.085
1.20 1729 | 57864 | 1.136 1.484 | 1.128
1.30 1728 | 61336 | 1.140 1.490 | 1.132
SO 1728 64031 1.140 1.513 | 1.139
berl
UE | 16255 | 174547 | 1.058 1.058 | 1.058
1.01 16273 | 111853 1.009 1.156 | 1.913
1.02 | 15827 | 146866 | 1.018 1.215 | 1.119
1.03 | 15690 | 178858 | 1.028 1.242 | 1.071
1.05 | 15648 | 232243 | 1.046 1.269 | 1.062
1.10 | 15604 | 274019 | 1.087 1.330 | 1.086
1.20 | 15589 | 306362 | 1.135 1.376 | 1.124
1.30 | 15582 | 321901 | 1.151 1.413 | 1.138
SO 15562 | 334447 | 1.168 1.473 | 1.162

Table 2: Results of the runs on the four instances with different factors.

The columns

represent the factor used, total travel time, number of paths with positive flow in

optimal solution and 99th percentile of the three unfairness.
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Table 2 that the gap for the user equilibrium is 2915 — 2657 = 258, and the gap for
CSO1 2 is 2738 — 2657 = 81.

e The loaded unfairness of CSO;o is approximately 40% smaller than the loaded
unfairness of the system optimum. (This reduction is even higher if one considers
the 95th percentile of the unfairness). For example, Table 2 shows for instance neuk
that in the system optimum some people are assigned paths of 54.6% higher travel
time than others. The corresponding figure for CSO1 gy is 37.5%.

e From the “loaded unfairness” graph in Figure 8, we see that in the system optimum,
18% of the users travel 10% longer than the shortest path, whereas for CSO1 g2 , only
8% of the users exceed that number.

e The “UE unfairness graph” in Figure 8 shows that most users (around 75%) travel
less than they would in equilibrium. Actually, for factor 1.02, only 0.4% of the users
travel 10% more than in equilibrium. Compare this number to the 5% that travel at
least 10% longer under the system optimum.

4.3. Convergence and performance of the algorithm

The algorithm was implemented in C+4. We used CPLEX 7.1 callable library to solve the
restricted linear programs. The computing platform was a Pentium IV based computer
running at 2.4 GHz with 1 GB RAM. Besides running the standard version of the algorithm,
we also used the version that neglects arc capacities, which leads to a simpler algorithm,
as noted at the end of Section 3.1. In the latter case, CPLEX is not used at all.

Computational results for the instances described in Table 1 are presented in Tables 3
and 4. These tables contain three columns. Each row reports a different run, characterized
by the information in the first column: the factor and the desired distance to optimality
used to stop the computation. Runs that exceeded four hours were terminated and are
reported as “exceeded”. The second column corresponds to the standard algorithm de-
scribed in Section 3. Within this column, we respectively report the number of iterations,
the number of paths with positive flow in the solution and the running time in seconds
needed to achieve the desired gap. The third column corresponds to the alternative al-
gorithm that ignores arc capacities. In this case, we also report the number of capacity
violations, the maximal violation and the average violation.

The results show that instances with a few thousand nodes, arcs and commodities can be
solved on an average PC. Bigger instances like berl take longer but can be solved without
difficulty. In our experience, most of the running time is spent computing constrained
shortest paths, which implies that improved algorithms for this subproblem would yield
greatly improved overall performance. Empirically, we found it advantageous to add in
every iteration as many new columns to the restricted master problem as possible. We
observed a reduction in computation time by factors of about 50, compared to adding only
a single column to P’, and removing another one as needed.
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With Capacities Capacities Relaxed

factor | gap || iter. | paths | sec. || iter. | paths | sec. cap.viol.
f/max/avg
frie
UE | 0.50 85 | 1278 2 52 | 1687 1| 5,87.52,40.74
UE 1.00 49 | 1190 1 29 | 1668 0 | 5,82.92,37.76
UE | 2.00 36 | 1121 1 19 | 1627 0 | 5,66.68,33.61
UE | 4.00 24 962 0 11 1531 0| 5,99.51,38.73
1.01 | 0.50 infeasible 118 1313 2 | 7,95.44,42.55
1.01 | 1.00 infeasible 55 | 1265 11 7,100.3,46.67
1.01 | 2.00 infeasible 27 | 1195 0 | 7,102.8,50.95
1.01 | 4.00 infeasible 10 | 1119 0| 7,135.5,67.14
1.03 | 0.50 infeasible 101 | 1464 2 | 3,5.747,5.747
1.03 | 1.00 infeasible 49 | 1425 11 3,9.089,9.089
1.03 | 2.00 infeasible 24 1331 0| 4,16.91,14.3
1.03 | 4.00 infeasible 9 | 1197 0 | 5,89.52,31.66
1.10 | 0.50 || 229 | 1610 6 || 100 | 1664 1 0,0,0
1.10 | 1.00 || 116 | 1512 3 31 1527 0 | 1,4.838,4.838
1.10 | 2.00 51 1375 1 13 1366 0| 1,12.51,12.51
1.10 | 4.00 36 1215 1 8 1259 0| 1,11.58,11.58
SO 0.50 || 461 | 2131 12 || 180 | 2509 3 0,0,0
SO 1.00 || 254 | 1994 7 94 | 2423 2 0,0,0
SO 2.00 || 124 | 1841 3 54 | 2348 1 0,0,0
SO 4.00 66 | 1614 2 27 | 2209 0 0,0,0
neuk

UE 0.50 72 | 6621 7 44 | 7109 | 44 | 1,29.12,29.12
UE 1.00 54 | 6573 62 24 | 7059 29 | 1,31.52,31.52
UE 2.00 40 | 6496 | 49 15 | 6994 23 | 1,40.12,40.12

UE | 4.00 31| 6335 | 41 8 | 6822 17 | 1,61.37,61.37
1.01 | 0.50 || 101 | 4600 | 61 69 | 4604 | 36 0,0,0
1.01 | 1.00 65 | 4553 | 39 34 | 4539 | 22 0,0,0
1.01 | 2.00 39 | 4439 | 25 15 | 4445 14 | 1,3.379,3.379
1.01 | 4.00 27 | 4384 | 19 7| 4334 11 | 1,7.218,7.218
1.03 | 0.50 || 107 | 5904 | 72 44 |1 5912 | 28 0,0,0

1.03 | 1.00 65 | 5746 | 44 24 | 5785 | 20 | 1,2.968,2.968
1.03 | 2.00 39 | 5564 | 29 12 | 5515 14 | 1,13.89,13.89
1.03 | 4.00 24| 5328 | 21 6 | 5283 12 | 1,21.37,21.37
1.10 | 0.50 || 175 | 8266 | 102 72 | 8410 | 35| 1,5.675,5.675
1.10 | 1.00 || 110 | 7962 | 67 38 | 8141 25 | 1,10.46,10.46
1.10 | 2.00 82 | T655 | 54 20 | 7800 18| 1,17.6,17.6

1.10 | 4.00 51 | 7015 | 39 8 | 7049 14 | 1,34.64,34.64

SO 0.50 || 214 | 10533 | 225 || 100 | 11055 | 92 0,0,0
SO 1.00 || 153 | 10418 | 167 62 | 10874 | 63 0,0,0
SO 2.00 || 115 | 10146 | 133 39 | 10708 | 45 0,0,0
SO 4.00 78 | 9786 | 97 22 110233 | 31 0,0,0

Table 3: Results of the runs for instances frie and neuk with varying gaps.
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With Capacities Capacities Relaxed
factor | gap || iter. paths sec. || iter. paths sec. cap.viol.
f/max/avg
3nei

UE | 0.50 808 | 33305 599 30 | 41110 157 | 4,164.1,83.17
UE 1.00 719 | 29550 428 17 | 39148 119 4,141.2,87.3
UE | 2.00 676 | 25384 341 10 | 35820 103 | 4,124.8,79.46
UE | 4.00 655 | 20852 292 6 | 32463 89 | 4,159.3,90.09
1.01 | 0.50 245 | 30934 685 29 | 32514 145 | 1,9.1159.115
1.01 | 1.00 100 | 26006 314 12 | 29499 111 | 1,36.73,36.73
1.01 | 2.00 66 | 22817 211 6 | 26082 87 | 1,56.78,56.78
1.01 | 4.00 52 | 20593 172 41 23234 67 1,66.7,56.7
1.03 | 0.50 315 | 34263 854 38 | 36150 168 | 1,0.7908,0.7908
1.03 | 1.00 133 | 29898 405 16 | 32462 126 | 1,41.76,41.76
1.03 | 2.00 83 | 26723 273 8 | 28866 100 | 1,73.27,73.27
1.03 | 4.00 60 | 23698 204 4 | 25393 73| 1,118.2,118.2
1.10 | 0.50 394 | 46131 891 44 | 48376 190 0,0,0
1.10 | 1.00 206 | 39823 493 20 | 42992 154 0,0,0
1.10 | 2.00 124 | 34137 342 9 | 35787 119 | 1,50.05,50.05
1.10 | 4.00 80 | 27564 238 6 | 32011 90 1,69.4,69.4
SO 0.50 || 1117 | 55104 | 1312 71| 64031 228 0,0,0

SO 1.00 905 | 50917 947 40 | 59901 226 0,0,0

SO 2.00 786 | 45683 697 22 | 54250 190 1,10.2,10.2
SO 4.00 728 | 39369 541 12 | 48326 159 | 1,14.82,14.82

berl

UE | 0.50 exceeded 26 | 174547 | 5487 | 5,703.8,199.5
UE 1.00 94 | 144259 | 13621 16 | 162011 4306 8,645.3,122.9
UE | 2.00 65 | 130630 | 10137 10 | 148770 | 3456 | 6,750.8,180.3
UE | 4.00 39 | 108829 | 6589 5 | 129652 | 2613 8,536.6,99.1
1.01 | 0.50 infeasible 14 | 111853 | 3456 | 2,329.8,235.2
1.01 1.00 infeasible 8 | 104594 2867 2,338.2,240.4
1.01 | 2.00 infeasible 4 1 92776 | 2155 3,365,170.3
1.01 | 4.00 infeasible 3] 88399 | 1919 | 2,365.6,255.9
1.03 | 0.50 infeasible 29 | 178858 | 6263 | 3,262.6,120.9
1.03 | 1.00 infeasible 14 | 151885 | 4121 3,266.5,123
1.03 | 2.00 infeasible 7 | 128420 | 2973 3,254.3,122
1.03 | 4.00 infeasible 4 | 110821 2312 3,310.4,145
1.10 | 0.50 exceeded 54 | 274019 | 9106 | 2,259.7,164.7
1.10 | 1.00 exceeded 27 | 227212 | 6641 | 3,259.9,111.3
1.10 | 2.00 exceeded 12 | 181369 | 4610 | 3,272.7,114.9
1.10 | 4.00 exceeded 7 | 154032 | 3135 | 3,331.6,137.1
SO 0.50 exceeded 76 | 334447 | 13391 | 3,257.2,106.9
SO 1.00 exceeded 45 | 297940 | 9543 | 2,253.2,158.2
SO 2.00 exceeded 27 | 262212 | 7010 | 3,255.9,106.2
SO 4.00 exceeded 14 | 220726 | 4888 | 3,272.9,112.8

Table 4: Results of the runs for instances 3nei and berl with varying gaps.
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Figure 10 shows a detailed study of the effects of varying the gap and the constraint
factor for the instance neuk and the algorithm that ignores arc capacities. (The corre-
sponding analysis for the other instances can be found in the Appendix). As expected,
a smaller desired gap leads to a decrease of the objective value, while tighter length con-
straints (factor f close to one) yield a sharp increase of the objective value. There is an
exponential increase in the running time when the gap is made smaller.

The problem becomes more difficult when the factor grows because additional paths
become allowable. However, the constrained shortest path problem becomes easier because
the normal lengths are less binding. In this trade-off, both the total work and the number
of iterations increase, but the work per iteration decreases.

4.3.1. Comparison of the cases with and without arc capacities

As described in Section 3.1, when arc capacities are ignored, the linear subproblem to be
solved in each iteration of the convex combinations algorithm (Figure 5) decomposes into
|C'| constrained shortest paths problems. Naturally, this makes each iteration much faster,
compared to the case with arc capacities, in which each linear subproblem is solved by the
simplex algorithm, which in turn consists of several iterations of constrained shortest path
computations. Consequently, there is a huge speed-up when capacities are relaxed. For
example, for the instance berl, which is the largest, we could find an optimal solution in
under four hours with this alternative only. For the remaining instances, the running time
of the algorithm with capacities relaxed was on average a third of the running time of the
standard algorithm.

5. Summary and Conclusion

When designing a route guidance system, it is desirable to explicitly aim at reducing the
total (and therefore the average) travel time by putting it into the objective function of
the underlying optimization problem. Yet, without further constraints, this would include
the possibility that some vehicles are assigned to fairly long paths in order to make the
shorter paths available to other drivers. Obviously, this phenomenon would render such a
system unacceptable for several drivers, jeopardizing the desired effect of improved system
performance.

We propose to capture this aspect of human behavior by imposing constraints on ex-
ercised paths to eliminate lengthy detours. While it may be ideal to explicitly enforce
that travel times of recommended routes between the same origin-destination pair do not
deviate drastically from each other, our computational results justify the use of a compu-
tationally simpler model, in which the deviation is not measured with respect to the actual
flow but with respect to a “normal length”. Another plus of the latter tactic is that drivers
with different origin-destination pairs can be treated equally. Our computational study
suggests that the travel time in user equilibrium is an excellent choice to define the normal
length.

23



value

seconds

iterations

3000

2950

%0

2900 |

2850 |

2800 |

2750

2700

2650

y Eﬁ{t‘"% o]

factor

100 —

90

70

50

40 |

20F e

10 4

30 F *Exk/ﬂ"////*>iiii N

100 [—
90
80 |-
70 T‘

50 | ‘
40 -

30

*
10

factor

gap
0.5

1.0

2.0 ---

4.0

gap

1.0

2.0 --

4.0

gap
0.5

1.0

2.0 ---

4.0

value

seconds

iterations

3000 ——
2050 |-
2900 |
2850 |-

2800

2750

2700

P N—

2650

ox

0.5

100 T

90 |
70 |

50
40
0%

20

10

100 .
90
80 [
70 —l

factor

UE ——
1.01 -
1.02 -
1.03

1.2 -

1.3 &

SO 4
factor

UE ——
1.01 —--%--
1.02 ---*--
1.03 -8

1.2 -

1.3 & -

SO ----a--
factor

UE —+—
1.01 ——-»--
1.02 -
1.03

1.2 e~

1.3 &

SO 4

Figure 10: Output of the algorithm over different gaps and factors for instance neuk.
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In fact, it turns out that this approach offers significant advantages over both the
traditionally considered user equilibrium (“traffic assignment”) and the system optimum.
On the one hand, it guarantees a superior fairness for the individual user compared to the
system optimum, in which individual travel times between the same origin-destination pair
may deviate substantially from each other. On the other hand, the total travel time of a
constrained system optimum is still close to that in the (unconstrained) system optimum
and thus much better than in user equilibrium. This shows that optimal route guidance
with fairness guarantees is in principle feasible.

Apart from the proof of concept, we consider our algorithm practical for problems with
some thousand nodes, arcs, and commodities. Yet, future work should incorporate the
dynamic aspect of traffic and the behavior of unguided users in a more sophisticated way.
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A. Charts corresponding to other instances

The unfairness distributions for the other instances are depicted in Figure 11. Figures 12,
13 and 14 display the output of the algorithm for these instances. Moreover, Figures 15, 16
and 17 analyze the unfairness of the resulting route assignments under varying paramters.
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Figure 15: Unfairness over different factors and percentiles for instance frie.
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Figure 17: Unfairness over different factors and percentiles for instance berl.
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