

Technische Universität Berlin

FAKULTÄT II

MATHEMATIK UND

NATURWISSENSCHAFTEN

Institut für Mathematik

System-Optimal Routing of

Traffic Flows with User

Constraints in Networks with

Congestion

by

Olaf Jahn Rolf H. Möhring

Andreas S. Schulz Nicolás E. Stier Moses

No. 754/2002

System-Optimal Routing of Traffic Flows

with User Constraints in Networks with

Congestion

Olaf Jahn† Rolf H. Möhring‡ Andreas S. Schulz∗

Nicolás E. Stier Moses∗∗

November 2002

The design of route-guidance systems faces a well-known dilemma. The ap-
proach that theoretically yields the system-optimal traffic pattern may discrim-
inate against some users, for the sake of favoring others. Proposed alternate
models, however, do not directly address the system perspective and may re-
sult in inferior performance. We propose a novel model and corresponding
algorithms to resolve this dilemma. We present computational results on real-
world instances and compare the new approach with the well-established traffic
assignment model. The quintessence is that system-optimal routing of traffic
flow with explicit integration of user constraints leads to a better performance
than the user equilibrium while simultaneously guaranteeing a superior fairness
compared to the pure system optimum.

Keywords: Intelligent Transportation Systems, Route Guidance, Traffic
Flow, System Optimum, User Equilibrium, Multicommodity
Flow, Constrained Shortest Path

Classification (AMS): 90C35; 90B20, 90C25, 90C27, 90C90

†Infopark, Berlin, Germany; olaf.jahn@zamioculcas.net
‡Technische Universität Berlin, Fakultät II, Institut für Mathematik, MA 6-1, Straße des 17. Juni 136,

D-10623 Berlin, Germany; moehring@math.tu-berlin.de
∗Massachusetts Institute of Technology, Sloan School of Management, E53-361, 77 Massachusetts Avenue,

Cambridge, MA 02139-4307, USA; schulz@mit.edu
∗∗Massachusetts Institute of Technology, Operations Research Center, E40-130, 77 Massachusetts Avenue,

Cambridge, MA 02139-4307, USA; nstier@mit.edu

1

1. Introduction

More and more cars are equipped with so-called route guidance systems. Visual and acous-
tic indicators guide the driver to her destination, which she has entered at the beginning
of the trip. Typically, these systems compute their routes based on digital maps, possibly
up-to-date traffic data, which are broadcast by radio or cellular phone, and obtain the
current position with the help of GPS (Global Positioning System) [23].

Current route guidance systems are simple from an algorithmic point of view. They
only compute shortest paths (or approximations thereof) to the destination (with respect
to travel time or geographic distance). Computational challenges for these approaches arise
“solely” from the huge size of the underlying road networks, which is often addressed by us-
ing a hierarchical graph representation [12, 43]. One of the benefits of this approach is that
the route computation can be perfectly parallelized, i.e., each vehicle can independently
compute its own route. More advanced systems incorporate traffic forecast estimated from
theoretical models and past experience into the computation (anticipatory routing) [9]. It
is widely hoped that route guidance systems can help to alleviate the problem of congestion
caused by the still increasing amount of road traffic.

1.1. Drawbacks of current route guidance systems

A number of simulations show that route guidance systems indeed decrease the total travel
time since inefficiencies caused by human route choice are mostly eliminated [24, 29, 30].
Yet, the majority of these simulations also predict that these benefits will be lost once the
number of equipped vehicles exceeds a certain threshold (assuming that the drivers actually
follow the routes they are given).1 In some cases it could even happen that unguided drivers
obtain shorter travel times than those with guidance [30].

This phenomenon can be explained by the fact that the perceivable decrease of the
overall travel time in the case of a small fraction of equipped vehicles is merely a fortu-
nate byproduct of the system. Current algorithms try to minimize the individual journey
time of each driver separately, without taking into account the effects of their own route
recommendation. Possibly used traffic forecasts treat the influence of guided vehicles as
negligible. It is possible that such a system actually causes congestion all by itself. Con-
sider for example a number of vehicles starting at the same point in time in origin A for
destination B. Under current systems, they are given exactly the same route recommenda-
tion. Even if this route is updated over time as new traffic data become available, it is still
the same route for all these vehicles. Therefore, assuming similar mean speed, they always
stay together on their trip (platooning), which possibly leads to congestion. While Adler
and Blue [1] call this phenomenon oversaturation, Ben-Akiva, de Palma and Kaysi [10] call
it overreaction, since “too many” drivers follow the recommended route.

1Not all simulations agree with this prediction. Most notably, Hall [22] points to some deficiencies in the
models underlying these simulations. He argues that if accurate traffic information is used for routing,
the increase in road usage will not occur.

2

Thus, the need for integrated algorithms that actually pay attention to the system-
wide performance (which is typically defined as the sum of all individual travel times) has
been recognized [6, 23, 26]. Obviously, it is essential that these algorithms are capable of
splitting platoons over several paths (multiple path routing).

A number of approaches have been proposed to achieve multiple path routing. For in-
stance, Rilett and Van Aerde [36] suggest adding individual random error terms to the road
travel times broadcast by a central controller, in order to cause the in-vehicle computers
to choose different paths. Lee [29] computes k-shortest paths every 10 minutes and then
distributes drivers over them every two minutes, considering the current travel times on
these k-shortest paths. These authors report a decrease in the total travel time (compared
with single path routing) from their simulation studies, but it is obvious that this decrease
is not guaranteed. Furthermore, other solutions are likely to reduce the total travel time
even further.

Another popular approach is to route drivers along the paths of a so-called user equi-
librium, so that no driver can get a quicker path through the network by unilaterally
changing her route [41]. The resulting model is called traffic assignment. It was originally
introduced by Wardrop [42] in order to model natural driver behavior, and it has been
studied extensively in the literature. In fact, transportation engineers have used static
traffic assignment — traffic is assumed to be in steady state and flow does not change over
time — to predict traffic patterns. Sheffi [39] and Patriksson [34] provide a comprehensive
treatment of mathematical formulations and algorithms for the static user equilibrium.

While a user equilibrium should satisfy the drivers, it does not necessarily minimize
the total travel time of the system. Roughgarden and Tardos [38] investigate the relation
between the system optimum and the user equilibrium. In general, the total travel time
in equilibrium can be arbitrarily larger compared to the system optimum, although it is
never more than the travel time incurred by optimally routing twice as much traffic.

Another unfavorable property of the user equilibrium is its non-monotonicity with re-
spect to the network’s capacity. This is illustrated by the Braess paradox, where adding a
new road to a network with fixed demands actually increases the total travel time of the
updated user equilibrium [11, 21, 39].

To overcome one of the unrealistic assumptions of static traffic assignment [8, 18], there
has been significant effort towards the dynamic analysis of traffic networks. Unlike static
traffic assignment, where the modeling and the solution methods are well established, the
dynamic traffic assignment problem has been studied from several different perspectives
with no single generally accepted model or methodology. The article by Mahmassani
and Peeta [31] provides a discussion of the inherent difficulties and corresponding solution
attempts.

An intrinsic difficulty in all models is that the path computations depend on the travel
times in arcs, which in turn depend on the traffic on these paths. As this relationship is not
easy to grasp analytically in the dynamic case, some techniques proposed in the literature
for traffic assignment (sometimes even for the static case) use simple feedback loops. They
iteratively assign traffic to the network (e.g., by simulation) and compute new arc travel

3

Figure 1: Example without and with restrictions on path lengths: One commodity is routed
through the road network between the marked nodes. In the picture on the left, we
display the (unconstrained) system optimum. The flow is distributed widely over the
network in order to avoid high arc flows that would incur high arc travel times. In the
picture on the right, the same amount of flow is routed, but this time with a restriction
on the normal length of paths (constrained system optimum). In this example, the nor-
mal length has been chosen to be the geographic distance. Line thickness reflects arc
capacity (light gray) and arc usage (black).

times based on the last assignment (and perhaps previous ones) [24, 39]. Similar ideas
are commonly used in loops of other algorithms as well; for instance, Bell et al. [7] use
outdated arc travel times in each iteration of their Frank-Wolfe-type algorithm.

These heuristic approaches are mathematically somewhat unsatisfactory because often
it is not clear what the sequence of intermediate solutions actually converges to, or if it
even converges at all. Usually “convergence” is established only empirically. Kaufman,
Smith and Wunderlich [24] report cycling of their algorithm for certain instances. In [25],
they report that this is especially due to single path routing (all-or-nothing assignment)
used in every iteration. In order to overcome this problem and guarantee convergence, they
have to develop a complicated continuous-time model with path splitting, which does not
seem to be practical.

1.2. A different approach

From a global perspective, e.g., the traffic authority’s point of view, it is certainly desirable
to explicitly minimize the total travel time (i.e., to compute a system optimum). In par-
ticular, the existing road network could henceforth carry more traffic [16, 28]. Yet, users’
needs have to be taken into account: Directly implemented, this policy could route some
drivers on unacceptably long paths in order to use shorter paths for many other drivers. In
fact, the length of a route in the system optimum can be significantly higher than in user
equilibrium, even in the pathological case of a single origin-destination pair [37]. This is

4

critical because routes can only be recommended to drivers. It is reasonable to assume that
only very few of them would be willing to sacrifice their own short routes for the benefit of
others. On the other hand, user acceptance of a route guidance system is important if it
is supposed to help in reducing traffic congestion. Therefore, Beccaria and Bolelli [6] have
suggested to “find the route guidance strategy which minimizes some global and commu-
nity criteria with individual needs as constraints.” To the best of the authors’ knowledge,
we provide the first model that integrates these conflicting goals.

We adopt a system optimum approach but honor the individual needs by imposing
additional constraints to ensure that drivers are assigned to “acceptable” paths only. More
precisely, we introduce the concept of the normal length of a path, which can be either its
traversal time in the uncongested network or its traversal time in user equilibrium or its
geographic distance, or any other appropriate measure. The only condition imposed on the
normal length of a path is that it may not depend on the actual flow on the path. Equipped
with this definition, we look for a constrained system optimum in which no path carrying
positive flow between a certain origin-destination (OD) pair is allowed to exceed the normal
length of a shortest path between the same OD-pair by more than an “acceptable” factor.
Figure 1 demonstrates the effect of length constraints on the system optimum.

Because of the mentioned difficulties with dynamic traffic modeling, in this paper we
apply this approach to the static routing problem. After specifying the problem and the
used model in Section 2, we present an algorithm for its solution in Section 3. It combines
the Frank-Wolfe method with column generation and an algorithm for the constrained
shortest path problem. In Section 4, we give computational results obtained with our
implementation of this algorithm. The real world input data were kindly provided by the
DaimlerChrysler AG, Berlin.

2. Model and Problem Formulation

We consider a static model in which flow represents a traffic pattern at steady state. While
working with static flows precludes the direct application of our algorithm to all real-
world situations, which are generally of dynamic nature, our model is nonetheless useful
for the study of time periods when traffic exhibits a flow-like behavior, e.g., during rush
hours [39]. Moreover, results obtained from the static model can provide traffic planners
with important bounds on the total travel time, which, due to the imposed restrictions
on the normal length of paths, are more realistic than the bounds resulting from both the
system optimum and the user equilibrium.

We also assume that all drivers use the route-guidance system and that they actually
follow the recommended routes. The former assumption is relatively strong, but unguided
drivers can easily be incorporated as a fixed congestion on the network, which would imply,
however, that they do not react to the route choices of guided vehicles.

Formulations of routing problems are often arc-based with one flow variable per arc.
Since a route guidance system eventually has to propose paths to the drivers, arc flows

5

PSfrag replacements

x

t(x)

0

Figure 2: Typical link delay functions; x is the arc flow, and t(x) is the travel time.

have to be decomposed in a postprocessing step into path flows. As this decomposition
is in general not unique, it is virtually impossible to model path constraints in an arc-
based formulation. Therefore, we use a path-based problem formulation with one variable
for each feasible path. This enables us to impose restrictions on paths very easily. As
we cannot enumerate all these variables efficiently, we only generate them when they are
needed to carry flow.

Let the road network be given by a directed multigraph G = (V,A) with three attributes
on each arc a ∈ A: the capacity ua > 0 (measured in vehicles per time unit), the link delay
function ta : [0, ua] → R

+
0 denoting the arc travel time depending on the traffic flow on this

arc, and the normal length `a > 0 of this arc. We require ta to be monotonically increasing,
twice continuously differentiable, and convex. These requirements are naturally met by
common link delay functions [14, 39] (Figure 2). We use the function of the U.S. Bureau
of Public Roads,

ta(xa) := t0a

(

1 + α

(

xa

ca

)β
)

,

with the travel time t0a > 0 in the uncongested network and tuning parameters α > 0,
β > 0 and ca > 0. As suggested in [39], we set α = 0.15 and β = 4.0. The parameter ca

is called “the practical capacity” of arc a. We use a value slightly greater than the real
capacity ua of arc a ∈ A. Other functions, like Davidson’s function [39], could have been
used as well.

Vehicles with the same origin and destination are modeled as one commodity. For each
commodity k, let (sk, tk) ∈ V × V , sk 6= tk, denote the pair of origin node and destination
node, and let bk > 0 be the amount of flow to be routed for k (vehicles per time unit).
In addition, we want the normal length of all paths assigned to k not to exceed a given
value Lk > 0. We describe the proper choice of the metric underlying the normal length
together with the choice of values for the parameters Lk in Section 4. The set of all

6

commodities is called C. We define path sets

Pk := {p | p is a directed path from sk to tk},

P ′
k := {p ∈ Pk | `(p) 6 Lk},

with the normal path length

`(p) :=
∑

a∈p

`a,

and the set of all feasible paths

P ′ :=
⋃

k∈C

P ′
k.

Let Φ ∈ {0, 1}|A|×|P ′| be the arc-path incidence matrix such that the vectors xA and
xP of arc and path flows are related by xA = ΦxP . Similarly, let Ψ ∈ {0, 1}|C|×|P ′| be the
commodity-path incidence matrix, where the entry in row k and column p is 1 if p ∈ P ′

k

and 0, otherwise.
We want to minimize the total travel time, which can be stated as the sum of the

lengths of all paths, weighted with the flow on each path. With the vectors tA(xA) ∈ R
A,

b ∈ R
C and u ∈ R

A respectively composed of the arc travel times ta(xa), the demand
rates bk and the capacities ua, the problem can be written as

P: min zP (xP) := tA(ΦxP)ᵀΦxP

s. t.

ΨxP = b

ΦxP
6 u (1)

xP
> 0 .

Problem P is a minimum cost multicommodity flow problem with path constraints and
a separable convex nonlinear objective function. Of course, the set P ′ of all feasible paths
is given only implicitly (by the Lk, k ∈ C); thus, P is a generalization of the well known
constrained shortest path problem (see also Section 3.2), which renders it NP-hard. Note
that the flow variables xP are not required to be integral since they describe abstract traffic
flows.

3. Algorithms

The algorithm we propose for solving P is an adaption of the Frank-Wolfe algorithm [17],
which is applicable since the gradient of the objective function can be expressed in terms

7

PSfrag replacements

Frank-Wolfe algorithm

simplex algorithm (with column generation)

algorithm for the constrained shortest path problem

ordinary shortest path algorithm, e.g. Dijkstra’s

Figure 3: The nested structure of the algorithm.

of arcs flows, as we show in Section 3.3. The algorithm solves a linearized version of P in
every iteration. The subroutine for the linear case in turn repeatedly calls an algorithm
for solving the constrained shortest path problem. Figure 3 provides an overview of the
nested structure of the entire algorithm, which always converges to a global minimum.

3.1. The linear problem

Let us first consider P with constant link delay functions ta > 0. Then P becomes

Plin: min (tA)ᵀΦxP

s. t.

ΨxP = b

ΦxP
6 u (2)

xP
> 0

with xP ∈ R
P ′

. Again, P ′ is given only implicitly by means of the Lk. Therefore, Plin is
a linear program with additional constraints for the paths. This still renders it NP-hard
in the original input size. Since we have got one variable for each feasible path, it is easy
to ensure that all paths fulfill the normal length restriction (or other restrictions we might
think of), as we show below. It is not practical to hold all variables in memory at the
same time, as there could be exponentially many. Therefore, we use the simplex algorithm
with column generation to generate new paths when we need to route flow through them.
While column generation is a commonly used technique to solve linear multicommodity
flow problems with path constraints (see, e.g., [15] for a survey of applications in routing
and scheduling), we outline it here for the sake of completeness.

Note first that at most |C|+ |A| variables have nonzero value in a basic feasible solution
to Plin. The key idea is therefore to restrict Plin to a small subset of variables with index set
P̄ ′ ⊂ P ′, where |P̄ ′| > |C|+|A|, which contains the current basis and at least one additional

8

Input: An instance of Plin and a feasible basis B

Output: An optimal solution of this instance

1 P̄ ′ := B ∪ {at least one additional variable from P ′}
2 loop

3 Solve Plin restricted to P̄ ′.
4 Let σk and πa be the simplex multipliers of the found optimal solution.
5 for all k ∈ C

6 find shortest path pk in P ′
k w.r.t. the arc costs ta − πa.

7 end for

8 if t(pk) > σk for all k ∈ C then

9 return values of basic variables
10 else

11 Remove one or more non-basic variables from P̄ ′.
12 Choose at least one path pk with t(pk) < σk and add it to P̄ ′.
13 end if

14 end loop

Figure 4: The revised simplex algorithm with column generation.

variable, and swap variables in and out as needed. If one solves this so-called restricted
master problem Plin over P̄ ′ to optimality employing the revised simplex algorithm, it
returns values for the path flows xp, p ∈ P̄ ′, as well as optimal values for the dual variables
σk, k ∈ C, and πa, a ∈ A, associated with the equality and inequality constraints of Plin. It
follows from linear programming theory that the solution xP , with xp = 0 for all p ∈ P ′\P̄ ′,
is also optimal for the whole problem over P ′ if and only if the following two conditions
hold:

σ
ᵀΨ + π

ᵀΦ 6 (tA)ᵀΦ (3)

π 6 0 (4)

Here, σ and π are the vectors of the σk and πa, respectively. Since xP is optimal for the
restricted problem, all columns of (3) belonging to variables of P̄ ′ satisfy this condition.
Furthermore, π satisfies (4). It follows from the principle of the simplex algorithm that
all variables belonging to columns that violate (3) are eligible for entry into the basis (and
therefore into P̄ ′), while non-basic variables in P̄ ′ can be removed from P̄ ′.

It remains to be discussed how we can check whether any variable not in P̄ ′ violates (3)
or not, without enumerating them all. A single column of (3), belonging to p ∈ P ′

k, can be

9

written as

σk +
∑

a∈p

πa 6
∑

a∈p

ta

⇔ t(p) :=
∑

a∈p

(ta − πa) > σk. (5)

This means that for every commodity k ∈ C, all paths in p ∈ P ′
k must have length t(p) of at

least σk with respect to the modified arc lengths ta − πa > 0. This in turn means that (3)
can be checked by computing a shortest path in P ′ for every commodity. To be precise,
it is generally not necessary to compute an actual shortest path. In the case that (5) is
violated it suffices to obtain a path with t(p) < σk. The resulting algorithm is summarized
in Figure 4. We obtain an initial solution by solving a so-called first phase with additional
artificial variables and a modified objective function [13].

Since P ′ contains only the paths p ∈ Pk satisfying the constraints `(p) 6 Lk on their
normal length, we have to solve a so-called constrained shortest path problem for every
commodity. This problem is significantly harder than the ordinary shortest path problem
and will be discussed in the next section.

It is obvious that we can impose other constraints on the available paths as long as
there is an algorithm that can solve the associated constrained shortest path problem.
Notice that the |C| shortest path computations are completely independent and can be
done in parallel: A coordinator solves the restricted master problem and then deals out
the current arc costs ta − πa for all a ∈ A to a number of helpers, which compute the
constrained shortest paths and report back their results.

If we forego the capacity constraints (1) and (2) in P and Plin, respectively, Plin decom-
poses into |C| independent constrained shortest paths problems. This renders the simplex
algorithm unnecessary. In Section 4 we present computational results obtained with and
without obeying the capacity constraints.

3.2. The constrained shortest path problem

In the constrained shortest path problem, every arc a of a given directed graph (V,A)
carries two parameters, a traversal time ta and a length `a. Given an origin-destination
pair (s, t), the objective is to compute a quickest path from s to t whose length does not
exceed a given bound L. With the notation introduced above, it can we written as

min t(p)

s. t.

`(p) 6 L

p is a path s t.

This problem is known to be (weakly) NP-hard [19].

10

We have implemented and tested two algorithms for this problem. The first algorithm
follows a branch-and-bound scheme by Beasley and Christofides [5], which is quite similar
to the one in Ribeiro and Minoux [35]. It employs depth-first-search from node s. Bounds
for the remaining paths to t are computed using Lagrangian relaxation.

The second algorithm is a generalization of Dijkstra’s algorithm to the case of two
objective functions by Aneja, Aggarwal, and Nair [2]. It fans out from the start node s

and labels each reached node v ∈ V with labels of the form (dt(v), d`(v)). Such a label
consists of the traversal time dt(v) and the distance d`(v), respectively, of the paths that
have reached v so far. During the course of this algorithm several labels may have to be
stored for each node, namely the Pareto-optimal labels of all paths that have reached it.
This labeling algorithm can be interpreted as a special kind of branch-and-bound with a
search strategy similar to breadth-first-search. Starting from a certain label of v, we obtain
lower bounds for the remaining path from v to t by separately computing ordinary shortest
path distances from v to t with respect to travel times ta and lengths `a, respectively. If
one of these bounds is too large, we can dismiss the label.

Both algorithms need to compute ordinary shortest paths many times. We use Di-
jkstra’s algorithm for this task, since all arc weights are guaranteed to be nonnegative.
Computational experience indicates that at least for our kind of problems the labeling
algorithm is by far faster than the branch-and-bound method of Beasley and Christofides.
This finding is also supported by a study on computing Pareto-optimal shortest paths in
the context of finding good train connections with respect to multiple criteria [32].

3.3. The nonlinear problem

The original problem P as stated at the end of Section 2 is a nonlinear optimization
problem with linear constraints over an implicitly given variable set. We solve it by using
the convex combination algorithm by Frank and Wolfe [17] in the version described by
Klessig [27]. It is a feasible direction method for problems with convex objective function
and convex domain, especially suitable when the linearized problem to be solved in each
iteration decomposes nicely, as is the case with P. We summarize this algorithm for the
reader’s convenience.

Consider a minimization problem min{z(x) |x ∈ Ω} with z : R
n → R convex and twice

continuously differentiable, and Ω ⊂ R
n convex. The feasible direction method is outlined

in Figure 5. It can be shown that this algorithm terminates with an optimal solution, or
that at least every accumulation point of the generated sequence is optimal if the computed
step sizes guarantee a certain decrease of the objective value.

In order to compute the feasible direction in line 2 of Figure 5, we have to solve a
linearized version of the problem. The step size θi in line 6 is best computed by bisection [4]
as θi ≈ argmin{z(xi + θ(yi − xi)) | θ ∈ (0, 1]}. Our tests with the method of Armijo [3, 27]

11

Input: Convex problem min{z(x) |x ∈ Ω} and an initial feasible solution x1 ∈ Ω.
Output: An optimal solution

1 for i = 1, 2, . . .
2 Compute feasible direction yi − xi by yi := argmin{∇z(xi)

ᵀ(y − xi) | y ∈ Ω}.
3 if ∇z(xi)

ᵀ(yi − xi) = 0 then

4 return xi.
5 end if

6 Calculate step-size θi ∈ (0, 1] by line search.
7 xi+1 := xi + θi(yi − xi).
8 end for

Figure 5: The Frank-Wolfe algorithm.

generally produced worse results.2 This method trades less objective function evaluations
during a line search for worse descent of the objective value, compared with minimization
by bisection (Figure 6). But since the time spent with step size computations either way
is negligible in our algorithm, bisection should be preferred as it yields better objective
values in the same number of iterations.

PSfrag replacements

iterations

optimum value

0

Figure 6: Characteristic descent of the objective value z(xi) during a run of the convex
combinations algorithm. The lower curve is computed with line search done by
bisection, the upper curve with the method of Armijo. The rapid descent in the
first few iterations is typical.

Because of the convexity of the objective function z, z(x′) > z(x)+∇z(x)ᵀ(x′−x) holds
for all x, x′ ∈ Ω. Therefore it is easy to see that we can obtain bounds in each iteration for

2The step size is computed as θi = βki with

ki := argmin{k ∈ N ∪ {0} | z(xi + β
k(yi − xi))) 6 z(xi) + αβ

k∇z(xi)
ᵀ(yi − xi)}.

α, β ∈ (0, 1) are tuning parameters. Klessig suggests α = β = 0.5.

12

its optimal value z∗ = z(x∗) by

z(xi) > z∗ > z(xi) + ∇z(xi)
ᵀ(x∗ − xi) > z(xi) + ∇z(xi)

ᵀ(yi − xi) (6)

⇒ z(xi) − z∗ 6 |∇z(xi)
ᵀ(yi − xi)|.

Here, yi is the feasible direction computed in line 2 of the algorithm presented in Figure 5.
Since the right-hand side is (at least partially) computed anyway in line 2, this gives us
the value of the remaining gap at little additional cost. It enables us to terminate the
algorithm when the desired precision is reached.

We now apply the algorithm to our original problem P with objective function

zP (xP) := tA(ΦxP)ᵀΦxP

and feasible set
Ω = {xP ∈ R

P ′

|ΨxP = b,ΦxP
6 u, xP

> 0}.

We encounter the difficulty that the gradient ∇zP (xP
i) needed for the feasible direction has

got |P ′| entries, which are impractically many. Fortunately, if we express zP in terms of
arc flows xA = ΦxP as

zA(xA) := tA(xA)ᵀxA

we obtain
zP (xP) = zA(ΦxP).

Here, tA(xA) is by definition the vector of the travel time functions ta(xa), a ∈ A. Since
each ta(xa) is convex and twice continuously differentiable, and Φ is a linear mapping, it
is easy to prove that both zP and zA are convex and twice continuously differentiable. It
follows from basic calculus that

∇zP (xP) = (∇zA(ΦxP)Φ)ᵀ,

and with yP ∈ R
P ′

that
∇zP (xP)ᵀyP = ∇zA(ΦxP)ᵀΦyP .

Consequently, we can solve the minimization problem for the feasible direction using only
∇zA(ΦxP) ∈ R

A in line 2 of Figure 5:

yi = argmin{∇zP (xP
i)ᵀ(yP

i − xP
i) | yP ∈ Ω}

= argmin{∇zP (xP
i)ᵀyP

i | yP ∈ Ω}

= argmin{∇zA(ΦxP
i)ᵀΦyP

i | yP ∈ Ω},

which is again a problem of the linear type Plin. In Section 2, we assumed the link delay
functions ta(xa) to be monotonically increasing. This means, because of xP > 0, that
the arc costs ∇zA(ΦxP

i) of this linear problem are indeed nonnegative. Hence, we can use

13

the simplex algorithm with column generation of Section 3.1 to determine an improving
direction of the nonlinear problem.

Note that the direction yP
i is only described by its components that actually carry flow.

In the convex combinations step in line 7 we add two vectors represented in this manner.
The result is again a (relatively) sparse vector, stored accordingly. Finally, an initial
solution xP

1 needed by the algorithm can easily be found by solving a linear problem Plin

with arbitrary arc travel times ta > 0.

4. Computational Study

The computational study is divided into three parts. First, we discuss which normal length
should be used in practice. Next, we analyze efficiency vs. fairness of solutions to instances
that arise from real-world networks. Finally, we report on the performance and convergence
properties of the algorithm.

The instances used in this study represent different parts of the actual road network
of the city of Berlin, Germany. Commodities and corresponding demand rates stem from
origin-destination polls conducted in Berlin. Table 1 respectively shows the size of the
network and the number of commodities for each instance.

name |V | |A| |C|

frie 224 523 506

neuk 1890 4040 3166

3nei 975 2184 9801

berl 12100 19570 49689

Table 1: Problem instances used in the experiments. Columns represent the number of
vertices, arcs and commodities, respectively.

Recall that our model requires a maximal normal length Lk to define the allowable paths
for each OD-pair k. The value of Lk is computed by multiplying the length of a shortest
path (in terms of normal arc lengths) between OD-pair k with a constant factor f > 1.
Naturally, the bigger the factor is, the larger is the feasible region. Consequently, optimal
solutions to model P are closer to (unconstrained) system optimality when f is larger. We
denote by CSOf the optimal solution to the problem with factor f .

There are two aspects that define the quality of a solution. The total travel time in
the system is of importance to the traffic authority; it is directly measured in the objective
function of problem P. The second aspect is the users’ perception of their route assignment;
to evaluate it, we introduce three different notions of unfairness of a solution; each compares
the travel times of different users in the system with each other. Ideally, one would prefer
different users with the same OD-pair to have similar travel times.

For a given flow, we define the unfairness of a particular traveler as follows:

14

Normal unfairness: ratio of the length of her path to the length of the shortest path
between the same OD-pair, both measured with respect to normal arc lengths.

Loaded unfairness: ratio of her travel time to the travel time of the fastest traveler for
the same OD-pair in the optimal solution (measured in terms of the current flow).

User equilibrium (UE) unfairness: ratio of her travel time (w.r.t. the current flow) to the
travel time for the same OD-pair in user equilibrium (which is the same for every
user of that OD-pair).

It follows from these definitions that, for any flow, the normal unfairness and the loaded
unfairness are always greater than or equal to 1; the UE unfairness can be any nonnegative
number. Note also that the normal unfairness of CSOf cannot be bigger than f , for any
factor f . Moreover, in equilibrium the value of each unfairness measure is equal to 1, for
every user. (For the normal unfairness, this is only true, of course, if the normal length of
an arc is equal to its traversal time in user equilibrium.)

Of the three different notions, the loaded unfairness is most important because it mea-
sures the variation in the travel times of users with the same OD-pair in the solution. The
UE unfairness, which was introduced in [37] in the single-commodity context, is of interest,
too, because it indicates how the travel times of the solution relate to those in user equilib-
rium. In practice though, a user does typically not know the travel times in equilibrium; it
is arguably more important to her how her travel time compares to the actual travel time
of others. Our ultimate goal is to achieve a good total travel time while keeping unfair-
ness low. Although the algorithm proposed above can only control the normal unfairness
directly, with the “correct” choice of normal lengths we indirectly influence the other two,
as we are about to see.

4.1. Choice of normal length

Initially, we considered three possible ways to define the normal length of an arc: geographic
distances, travel times when the network is uncongested (zero flow), and travel times when
the network is in user equilibrium. Recall that normal lengths can only be static; for
instance, it is not possible to consider travel times under the current solution with the
methodology described in Section 3. The advantage of keeping the model simple is a fast
algorithm that still produces solutions with small total travel time and low unfairness, as
we will see soon.

Geographic distances and travel times in the uncongested network are highly correlated;
therefore, one cannot expect significant differences between solutions resulting from either
choice of normal length. It is shown in [40], and our runs confirm it, that user equilibria are
better than constrained system optima when the factor f used in determining the maximal
path lengths Lk is small. Consequently, to obtain an improvement in the total travel time,
bigger factors must be considered. But this gives rise to high unfairness, which is undesired.
For instance, the graph on the left in Figure 7 shows the value of the objective function

15

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

UE1 1.2 1.4 1.6 1.8 2SO

va
lu

e

factor

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.2 1.4 1.6 1.8 2

pr
ob

ab
ili

ty

loaded unfairness

Factor
UE

1.05
1.1
1.2
1.3
1.4
1.5

2
SO

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1 1.1 1.2

pr
ob

ab
ili

ty

UE unfairness

Factor
UE
1.05
1.1
1.2
1.3
1.4
1.5
2
SO

Figure 7: Objective values and unfairness distributions for instance neuk and normal
lengths equal to travel times in the uncongested network.

for different factors in the scenario in which one uses the travel time in the uncongested
network to define the normal length. Factors less than 1.4 are not useful because the
total travel time of the corresponding solutions is greater than the total travel time in
user equilibrium. The other two graphs in Figure 7 depict the distribution of unfairness
for the different factors; for instance, for factor f = 1.5, 80% of all users will experience
a loaded unfairness of less than 1.1. This value increases to 1.2 if one considers 90% of
all users. In fact, for factors greater than 1.4, the distributions are quite similar to those
of the system optimum, which especially means that these solutions are not very close to
being in equilibrium. Notice also, in the graph on the right, that for small factors most
users end up traveling longer than they would in user equilibrium. This happens because
there are not enough alternatives (i.e., paths between OD-pairs), which explains the poor
quality of the solutions under this choice of normal length.

We therefore propose to make use of the travel times in user equilibrium when defining
normal arc lengths, which indeed results in high-quality solutions. First, note that, for
any factor f , the user equilibrium itself is a feasible solution to the constrained system
optimum problem. Therefore, for all f ,

z(CSOf) 6 z(UE),

which guarantees that the optimal solution to problem P is not worse than the user equi-
librium in terms of the total travel time in the system.

In Figures 8 and 10 below, we display the graphs corresponding to the ones in Figure 7
for this choice of normal length. Most notably, total travel times are distinctively smaller
than in equilibrium, while the fraction of users traveling longer than in equilibrium is
substantially smaller.

From the previous discussion, the normal length defined as the travel time in user
equilibrium seems to be the best choice. For this reason, we limit our analysis in the sequel
to this version of normal length.

16

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.2 1.4 1.6 1.8 2

pr
ob

ab
ili

ty

loaded unfairness

Factor
UE

1.01
1.02
1.03
1.05
1.1
SO

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1 1.1 1.2

pr
ob

ab
ili

ty

UE unfairness

Factor
UE
1.01
1.02
1.03
1.05
1.1
SO

Figure 8: Distribution of unfairness for instance neuk and different factors. The graph on
the left corresponds to loaded unfairness, and the one on the right to UE unfair-
ness.

4.2. Quality of constrained system optima

Table 2 exhibits the output of the algorithm for the four instances presented in Table 1
and different factors. Every row represents one run for the factor reported in the first
column. The column value is the total travel time in the solution; paths is the number
of paths with positive flow. In the column unfairness, we report the 99th percentiles of
the corresponding distributions. For example, the second row for instance frie presents the
characteristics of the constrained system optimum with factor f = 1.01. The total travel
time is 629, and users are distributed over 1313 different paths. (Recall that frie has 506
distinctive OD-pairs.) Some users experience a 9.1% longer travel time than they would
in user equilibrium; the maximal difference between travel times for the same OD-pair
is 66.5%. Note that the latter two values respectively are 26.1% and 108.4% in system
optimum.

As we discussed before, when the factor is bigger the objective value is closer to the
total travel time in the (unconstrained) system optimum and the unfairness is higher, and
vice-versa. We will argue that the constrained system optimum with factor 1.02, denoted
by CSO1.02 , offers a good trade-off for the real-world instances available to us. Figure 8
depicts the unfairness distributions corresponding to the runs of instance neuk. As before,
we do not include the normal unfairness because we explicitly constrain it to be less than
the factor used. To facilitate a comparison across runs, Figure 9 plots the different notions
of unfairness, percentiles and factors, again for the instance neuk.

• In the four instances shown in Table 2, the gap between the total travel time in
CSO1.02 and the system optimum is approximately a third of the gap between the
user equilibrium and the system optimum. For instance neuk, we conclude from

17

factor value paths unfairness
normal loaded UE

frie

UE 683 1687 1.011 1.021 1.020
1.01 629 1313 1.008 1.665 1.091
1.02 622 1277 1.017 1.694 1.116
1.03 614 1464 1.029 1.711 1.091
1.05 612 1579 1.046 1.779 1.090
1.10 594 1664 1.097 1.925 1.114
1.20 592 2013 1.175 2.070 1.182
1.30 591 2215 1.213 2.069 1.229
SO 591 2509 1.226 2.084 1.261

neuk

UE 2915 7109 1.060 1.056 1.063
1.01 2800 4604 1.008 1.348 1.079
1.02 2738 5349 1.017 1.375 1.075
1.03 2726 5912 1.028 1.424 1.069
1.05 2694 6421 1.045 1.456 1.101
1.10 2676 8410 1.093 1.517 1.125
1.20 2657 9746 1.171 1.545 1.183
1.30 2657 10325 1.195 1.538 1.196
SO 2657 11055 1.197 1.546 1.201

3nei

UE 1849 41110 1.039 1.051 1.049
1.01 1772 32514 1.007 1.304 1.051
1.02 1764 35552 1.017 1.307 1.050
1.03 1756 36150 1.026 1.312 1.049
1.05 1735 37749 1.046 1.358 1.061
1.10 1729 48376 1.088 1.454 1.085
1.20 1729 57864 1.136 1.484 1.128
1.30 1728 61336 1.140 1.490 1.132
SO 1728 64031 1.140 1.513 1.139

berl

UE 16255 174547 1.058 1.058 1.058
1.01 16273 111853 1.009 1.156 1.913
1.02 15827 146866 1.018 1.215 1.119
1.03 15690 178858 1.028 1.242 1.071
1.05 15648 232243 1.046 1.269 1.062
1.10 15604 274019 1.087 1.330 1.086
1.20 15589 306362 1.135 1.376 1.124
1.30 15582 321901 1.151 1.413 1.138
SO 15562 334447 1.168 1.473 1.162

Table 2: Results of the runs on the four instances with different factors. The columns
represent the factor used, total travel time, number of paths with positive flow in
optimal solution and 99th percentile of the three unfairness.

18

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

UE 1 1.1 1.2 1.3SO

95
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

UE 1 1.1 1.2 1.3SO

no
rm

al
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.1

1.2

1.3

1.4

1.5

1.6

UE 1 1.1 1.2 1.3SO

97
.5

th
 p

er
ce

nt
ile

 u
nf

ai
rn

es
s

factor

unfairness
normal

loaded

UE

1

1.1

1.2

1.3

1.4

1.5

1.6

UE 1 1.1 1.2 1.3SO

lo
ad

ed
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.1

1.2

1.3

1.4

1.5

1.6

UE 1 1.1 1.2 1.3SO

99
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

UE 1 1.1 1.2 1.3SO

U
E

 u
nf

ai
rn

es
s

factor

percentile
99th

97.5th

95th

Figure 9: Unfairness over the different factors and percentiles for instance neuk.

19

Table 2 that the gap for the user equilibrium is 2915 − 2657 = 258, and the gap for
CSO1.02 is 2738 − 2657 = 81.

• The loaded unfairness of CSO1.02 is approximately 40% smaller than the loaded
unfairness of the system optimum. (This reduction is even higher if one considers
the 95th percentile of the unfairness). For example, Table 2 shows for instance neuk

that in the system optimum some people are assigned paths of 54.6% higher travel
time than others. The corresponding figure for CSO1.02 is 37.5%.

• From the “loaded unfairness” graph in Figure 8, we see that in the system optimum,
18% of the users travel 10% longer than the shortest path, whereas for CSO1.02 , only
8% of the users exceed that number.

• The “UE unfairness graph” in Figure 8 shows that most users (around 75%) travel
less than they would in equilibrium. Actually, for factor 1.02, only 0.4% of the users
travel 10% more than in equilibrium. Compare this number to the 5% that travel at
least 10% longer under the system optimum.

4.3. Convergence and performance of the algorithm

The algorithm was implemented in C++. We used CPLEX 7.1 callable library to solve the
restricted linear programs. The computing platform was a Pentium IV based computer
running at 2.4 GHz with 1 GB RAM. Besides running the standard version of the algorithm,
we also used the version that neglects arc capacities, which leads to a simpler algorithm,
as noted at the end of Section 3.1. In the latter case, CPLEX is not used at all.

Computational results for the instances described in Table 1 are presented in Tables 3
and 4. These tables contain three columns. Each row reports a different run, characterized
by the information in the first column: the factor and the desired distance to optimality
used to stop the computation. Runs that exceeded four hours were terminated and are
reported as “exceeded”. The second column corresponds to the standard algorithm de-
scribed in Section 3. Within this column, we respectively report the number of iterations,
the number of paths with positive flow in the solution and the running time in seconds
needed to achieve the desired gap. The third column corresponds to the alternative al-
gorithm that ignores arc capacities. In this case, we also report the number of capacity
violations, the maximal violation and the average violation.

The results show that instances with a few thousand nodes, arcs and commodities can be
solved on an average PC. Bigger instances like berl take longer but can be solved without
difficulty. In our experience, most of the running time is spent computing constrained
shortest paths, which implies that improved algorithms for this subproblem would yield
greatly improved overall performance. Empirically, we found it advantageous to add in
every iteration as many new columns to the restricted master problem as possible. We
observed a reduction in computation time by factors of about 50, compared to adding only
a single column to P̄ ′, and removing another one as needed.

20

With Capacities Capacities Relaxed
factor gap iter. paths sec. iter. paths sec. cap.viol.

]/max/avg
frie

UE 0.50 85 1278 2 52 1687 1 5,87.52,40.74
UE 1.00 49 1190 1 29 1668 0 5,82.92,37.76
UE 2.00 36 1121 1 19 1627 0 5,66.68,33.61
UE 4.00 24 962 0 11 1531 0 5,99.51,38.73
1.01 0.50 infeasible 118 1313 2 7,95.44,42.55
1.01 1.00 infeasible 55 1265 1 7,100.3,46.67
1.01 2.00 infeasible 27 1195 0 7,102.8,50.95
1.01 4.00 infeasible 10 1119 0 7,135.5,67.14
1.03 0.50 infeasible 101 1464 2 3,5.747,5.747
1.03 1.00 infeasible 49 1425 1 3,9.089,9.089
1.03 2.00 infeasible 24 1331 0 4,16.91,14.3
1.03 4.00 infeasible 9 1197 0 5,89.52,31.66
1.10 0.50 229 1610 6 100 1664 1 0,0,0
1.10 1.00 116 1512 3 31 1527 0 1,4.838,4.838
1.10 2.00 51 1375 1 13 1366 0 1,12.51,12.51
1.10 4.00 36 1215 1 8 1259 0 1,11.58,11.58
SO 0.50 461 2131 12 180 2509 3 0,0,0
SO 1.00 254 1994 7 94 2423 2 0,0,0
SO 2.00 124 1841 3 54 2348 1 0,0,0
SO 4.00 66 1614 2 27 2209 0 0,0,0

neuk

UE 0.50 72 6621 77 44 7109 44 1,29.12,29.12
UE 1.00 54 6573 62 24 7059 29 1,31.52,31.52
UE 2.00 40 6496 49 15 6994 23 1,40.12,40.12
UE 4.00 31 6335 41 8 6822 17 1,61.37,61.37
1.01 0.50 101 4600 61 69 4604 36 0,0,0
1.01 1.00 65 4553 39 34 4539 22 0,0,0
1.01 2.00 39 4439 25 15 4445 14 1,3.379,3.379
1.01 4.00 27 4384 19 7 4334 11 1,7.218,7.218
1.03 0.50 107 5904 72 44 5912 28 0,0,0
1.03 1.00 65 5746 44 24 5785 20 1,2.968,2.968
1.03 2.00 39 5564 29 12 5515 14 1,13.89,13.89
1.03 4.00 24 5328 21 6 5283 12 1,21.37,21.37
1.10 0.50 175 8266 102 72 8410 35 1,5.675,5.675
1.10 1.00 110 7962 67 38 8141 25 1,10.46,10.46
1.10 2.00 82 7655 54 20 7800 18 1,17.6,17.6
1.10 4.00 51 7015 39 8 7049 14 1,34.64,34.64
SO 0.50 214 10533 225 100 11055 92 0,0,0
SO 1.00 153 10418 167 62 10874 63 0,0,0
SO 2.00 115 10146 133 39 10708 45 0,0,0
SO 4.00 78 9786 97 22 10233 31 0,0,0

Table 3: Results of the runs for instances frie and neuk with varying gaps.

21

With Capacities Capacities Relaxed
factor gap iter. paths sec. iter. paths sec. cap.viol.

]/max/avg
3nei

UE 0.50 808 33305 599 30 41110 157 4,164.1,83.17
UE 1.00 719 29550 428 17 39148 119 4,141.2,87.3
UE 2.00 676 25384 341 10 35820 103 4,124.8,79.46
UE 4.00 655 20852 292 6 32463 89 4,159.3,90.09
1.01 0.50 245 30934 685 29 32514 145 1,9.115,9.115
1.01 1.00 100 26006 314 12 29499 111 1,36.73,36.73
1.01 2.00 66 22817 211 6 26082 87 1,56.78,56.78
1.01 4.00 52 20593 172 4 23234 67 1,56.7,56.7
1.03 0.50 315 34263 854 38 36150 168 1,0.7908,0.7908
1.03 1.00 133 29898 405 16 32462 126 1,41.76,41.76
1.03 2.00 83 26723 273 8 28866 100 1,73.27,73.27
1.03 4.00 60 23698 204 4 25393 73 1,118.2,118.2
1.10 0.50 394 46131 891 44 48376 190 0,0,0
1.10 1.00 206 39823 493 20 42992 154 0,0,0
1.10 2.00 124 34137 342 9 35787 119 1,50.05,50.05
1.10 4.00 80 27564 238 6 32011 90 1,69.4,69.4
SO 0.50 1117 55104 1312 71 64031 228 0,0,0
SO 1.00 905 50917 947 40 59901 226 0,0,0
SO 2.00 786 45683 697 22 54250 190 1,10.2,10.2
SO 4.00 728 39369 541 12 48326 159 1,14.82,14.82

berl

UE 0.50 exceeded 26 174547 5487 5,703.8,199.5
UE 1.00 94 144259 13621 16 162011 4306 8,645.3,122.9
UE 2.00 65 130630 10137 10 148770 3456 6,750.8,180.3
UE 4.00 39 108829 6589 5 129652 2613 8,536.6,99.1
1.01 0.50 infeasible 14 111853 3456 2,329.8,235.2
1.01 1.00 infeasible 8 104594 2867 2,338.2,240.4
1.01 2.00 infeasible 4 92776 2155 3,365,170.3
1.01 4.00 infeasible 3 88399 1919 2,365.6,255.9
1.03 0.50 infeasible 29 178858 6263 3,262.6,120.9
1.03 1.00 infeasible 14 151885 4121 3,266.5,123
1.03 2.00 infeasible 7 128420 2973 3,254.3,122
1.03 4.00 infeasible 4 110821 2312 3,310.4,145
1.10 0.50 exceeded 54 274019 9106 2,259.7,164.7
1.10 1.00 exceeded 27 227212 6641 3,259.9,111.3
1.10 2.00 exceeded 12 181369 4610 3,272.7,114.9
1.10 4.00 exceeded 7 154032 3135 3,331.6,137.1
SO 0.50 exceeded 76 334447 13391 3,257.2,106.9
SO 1.00 exceeded 45 297940 9543 2,253.2,158.2
SO 2.00 exceeded 27 262212 7010 3,255.9,106.2
SO 4.00 exceeded 14 220726 4888 3,272.9,112.8

Table 4: Results of the runs for instances 3nei and berl with varying gaps.

22

Figure 10 shows a detailed study of the effects of varying the gap and the constraint
factor for the instance neuk and the algorithm that ignores arc capacities. (The corre-
sponding analysis for the other instances can be found in the Appendix). As expected,
a smaller desired gap leads to a decrease of the objective value, while tighter length con-
straints (factor f close to one) yield a sharp increase of the objective value. There is an
exponential increase in the running time when the gap is made smaller.

The problem becomes more difficult when the factor grows because additional paths
become allowable. However, the constrained shortest path problem becomes easier because
the normal lengths are less binding. In this trade-off, both the total work and the number
of iterations increase, but the work per iteration decreases.

4.3.1. Comparison of the cases with and without arc capacities

As described in Section 3.1, when arc capacities are ignored, the linear subproblem to be
solved in each iteration of the convex combinations algorithm (Figure 5) decomposes into
|C| constrained shortest paths problems. Naturally, this makes each iteration much faster,
compared to the case with arc capacities, in which each linear subproblem is solved by the
simplex algorithm, which in turn consists of several iterations of constrained shortest path
computations. Consequently, there is a huge speed-up when capacities are relaxed. For
example, for the instance berl, which is the largest, we could find an optimal solution in
under four hours with this alternative only. For the remaining instances, the running time
of the algorithm with capacities relaxed was on average a third of the running time of the
standard algorithm.

5. Summary and Conclusion

When designing a route guidance system, it is desirable to explicitly aim at reducing the
total (and therefore the average) travel time by putting it into the objective function of
the underlying optimization problem. Yet, without further constraints, this would include
the possibility that some vehicles are assigned to fairly long paths in order to make the
shorter paths available to other drivers. Obviously, this phenomenon would render such a
system unacceptable for several drivers, jeopardizing the desired effect of improved system
performance.

We propose to capture this aspect of human behavior by imposing constraints on ex-
ercised paths to eliminate lengthy detours. While it may be ideal to explicitly enforce
that travel times of recommended routes between the same origin-destination pair do not
deviate drastically from each other, our computational results justify the use of a compu-
tationally simpler model, in which the deviation is not measured with respect to the actual
flow but with respect to a “normal length”. Another plus of the latter tactic is that drivers
with different origin-destination pairs can be treated equally. Our computational study
suggests that the travel time in user equilibrium is an excellent choice to define the normal
length.

23

2650

2700

2750

2800

2850

2900

2950

3000

UE 1 1.1 1.2 1.3 SO

va
lu

e

factor

gap
0.5

1.0

2.0

4.0

2650

2700

2750

2800

2850

2900

2950

3000

0.5 1 1.5 2 2.5 3 3.5 4

va
lu

e

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

10

20

30

40

50

60

70

80

90

100

UE 1 1.1 1.2 1.3 SO

se
co

nd
s

factor

gap
0.5

1.0

2.0

4.0

10

20

30

40

50

60

70

80

90

100

0.5 1 1.5 2 2.5 3 3.5 4

se
co

nd
s

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

0

10

20

30

40

50

60

70

80

90

100

UE 1 1.1 1.2 1.3 SO

ite
ra

tio
ns

factor

gap
0.5

1.0

2.0

4.0

0

10

20

30

40

50

60

70

80

90

100

0.5 1 1.5 2 2.5 3 3.5 4

ite
ra

tio
ns

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

Figure 10: Output of the algorithm over different gaps and factors for instance neuk.

24

In fact, it turns out that this approach offers significant advantages over both the
traditionally considered user equilibrium (“traffic assignment”) and the system optimum.
On the one hand, it guarantees a superior fairness for the individual user compared to the
system optimum, in which individual travel times between the same origin-destination pair
may deviate substantially from each other. On the other hand, the total travel time of a
constrained system optimum is still close to that in the (unconstrained) system optimum
and thus much better than in user equilibrium. This shows that optimal route guidance
with fairness guarantees is in principle feasible.

Apart from the proof of concept, we consider our algorithm practical for problems with
some thousand nodes, arcs, and commodities. Yet, future work should incorporate the
dynamic aspect of traffic and the behavior of unguided users in a more sophisticated way.

Acknowledgments

The authors are grateful to Dr. Stefan Gnutzmann (DaimlerChrysler AG, Berlin), who
excited our work on route guidance, and to Dr. Stefan Gnutzmann and Valeska Naumann
(DaimlerChrysler AG, Berlin) for several stimulating discussions and support.

The second author acknowledges support by grant 03-MOM4B1 “Models and Algo-
rithms for Dynamic Route Guidance in Traffic Networks” of the German Ministry for
Science and Education (BMBF).

The third author gratefully acknowledges support by a General Motors Innovation
Grant.

References

[1] J.L. Adler and V.J. Blue. Toward the design of intelligent traveler information systems.
Transportation Research C, 6:157–172, 1998.

[2] Y.P. Aneja, V. Aggarwal, and K.P.K. Nair. Shortest chain subject to side constraints.
Networks, 13:295–302, 1983.

[3] L. Armijo. Minimization of functions having Lipschitz continous first partial deriva-
tives. Pacific Journal of Mathematics, 16:1–3, 1966.

[4] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming. Theory and
Algorithms. John Wiley & Sons, New York, 2nd edition, 1993.

[5] J.E. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989.

[6] G. Beccaria and A. Bolelli. Modelling and assessment of dynamic route guidance:
the MARGOT project. In Proceedings of the IEEE Vehicle Navigation & Information
Systems Conference, 1992, Oslo, pages 117–126.

25

[7] M.G.H. Bell, C.M. Shield, J.M. Anderson, and F. Busch. Assignment in the integration
of urban traffic control and dynamic route guidance. In [20], pages 39–57.

[8] M.E. Ben Akiva. Dynamic network equilibrium research. Transportation Research A,
19:429–431, 1985.

[9] M.E. Ben-Akiva, E. Cascetta, and H. Gunn. An on-line dynamic traffic prediction
model for an inter-urban motorway network. In [20], pages 83–122.

[10] M.E. Ben-Akiva, A. de Palma, and I. Kaysi. Dynamic network models and driver
information systems. Transportation Research A, 25:251–266, 1991.

[11] D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung,
12:258–268, 1968.

[12] Y.-L. Chou, H.E. Romeijn, and R.L. Smith. Approximating shortest paths in large-
scale networks with an application to intelligent transportation systems. INFORMS
Journal on Computing, 10:163–179, 1998.

[13] V. Chvátal. Linear Programming. W.H. Freeman and Company, New York, 1983.

[14] S. Cohen. Flow variables. In [33], pages 139–143.

[15] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and
scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors,
Network Routing, volume 8 of Handbooks in Operations Research and Management
Science, pages 35–139. Elsevier Science, Amsterdam, 1995.

[16] M.C. Ferris and A. Ruszczyński. Robust path choice and vehicle guidance in networks
with failures. Technical Report 97–04, Computer Sciences Department, University of
Wisconsin, April 1997. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-04.
ps.Z.

[17] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3:95–110, 1956.

[18] T.L. Friesz. Transportation network equilibrium, design and aggregation: Key devel-
opment and research opportunities. Transportation Research A, 19:413–427, 1985.

[19] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman and Company, New York, 1979.

[20] N.H. Gartner and G. Improta, editors. Urban Traffic Networks. Dynamic Flow Mod-
elling and Control. Springer, Berlin, 1995.

[21] J.N. Hagstrom and R.A. Abrams. Characterizing Braess’s paradox for traffic networks.
In Proceedings of IEEE Conference on Intelligent Transportation Systems, pages 837–
842, 2001.

26

[22] R.W. Hall. Route choice and advanced traveller information systems on a capacitated
and dynamic network. Transportation Research C, 4:289–306, 1996.

[23] J.J. Henry, C. Charbonnier, and J.L. Farges. Route guidance, individual. In [33],
pages 417–422.

[24] D.E. Kaufman, R.L. Smith, and K.E. Wunderlich. An iterative routing/assignment
method for anticipatory real-time route guidance. In Proceedings of the IEEE Vehicle
Navigation & Information Systems Conference, 1991, Dearborn, pages 693–700.

[25] D.E. Kaufman, R.L. Smith, and K.E. Wunderlich. User-equilibrium properties of fixed
points in dynamic traffic assignment. Transportation Research C, 6:1–16, 1998.

[26] I. Kaysi, M.E. Ben-Akiva, and A. de Palma. Design aspects of advanced traveler
information systems. In [20], pages 59–81.

[27] R.W. Klessig. An algorithm for nonlinear multicommodity flow problems. Networks,
4:343–355, 1974.

[28] S. Lafortune, R. Sengupta, D.E. Kaufman, and R.L. Smith. A dynamical system model
for traffic assignment in networks. In Proceedings of the IEEE Vehicle Navigation &
Information Systems Conference, 1991, Dearborn, pages 701–708.

[29] C.-K. Lee. A multiple-path routing strategy for vehicle route guidance systems. Trans-
portation Research C, 2:185–195, 1994.

[30] H.S. Mahmassani and R. Jayakrishnan. System performance and user response un-
der real-time information in a congested traffic corridor. Transportation Research A,
25:293–307, 1991.

[31] H.S. Mahmassani and S. Peeta. System optimal dynamic assignment for electronic
route guidance in a congested traffic network. In [20], pages 3–37.

[32] M. Müller-Hannemann and K. Weihe. Pareto shortest paths is often feasible in prac-
tice. In G. Brodal, D. Frigioni, and A. Marchetti-Spaccamela, editors, Proceedings of
the 5th International Workshop on Algorithm Engineering, Lecture Notes in Computer
Science 2141, pages 185–197. Springer, 2001.

[33] M. Papageorgiou, editor. Concise Encyclopedia of Traffic & Transportation Systems.
Pergamon Press, Oxford, 1991.

[34] M. Patriksson. The Traffic Assignment Problem: Models and Methods. VSP, Utrecht,
The Netherlands, 1994.

[35] C. Ribeiro and M. Minoux. Solving hard constrained shortest path problems by
Lagrangean relaxation and branch-and-bound algorithms. Methods of Operations Re-
search, 53:303–316, 1986.

27

[36] L.R. Rilett and M.W. Van Aerde. Modelling distributed real-time route guidance
strategies in a traffic network that exhibits the Braess paradox. In Proceedings of the
IEEE Vehicle Navigation & Information Systems Conference, 1991, Dearborn, pages
577–587.

[37] T. Roughgarden. How unfair is optimal routing? In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2002, San Francisco, CA, pages 203–
204.

[38] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM ,
49:236–259, 2002.

[39] Y. Sheffi. Urban Transportation Networks. Prentice-Hall, New Jersey, 1985.

[40] A.S. Schulz and N. Stier Moses. On the performance of user equilibria in traffic
networks. Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2003. Baltimore, MD, January 12–14.

[41] T. van Vuren and D. Watling. Multiple user class assignment model for route guid-
ance. In In-Vehicle Information Systems: Modeling Traffic Networks and Behavioral
Considerations 1991, volume 1306 of Transportation Research Record, pages 22–32.
Washington, D.C., 1991.

[42] J.G. Wardrop. Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers, 1:325–362, 1952.

[43] T.A. Yang, S. Shekhar, B. Hamidzadeh, and P.A. Hancock. Path planning and evalua-
tion in IVHS databases. In Proceedings of the IEEE Vehicle Navigation & Information
Systems Conference, Dearborn, pages 283–290.

28

A. Charts corresponding to other instances

The unfairness distributions for the other instances are depicted in Figure 11. Figures 12,
13 and 14 display the output of the algorithm for these instances. Moreover, Figures 15, 16
and 17 analyze the unfairness of the resulting route assignments under varying paramters.

29

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.2 1.4 1.6 1.8 2

pr
ob

ab
ili

ty

loaded unfairness

Factor
UE

1.01
1.02
1.03
1.05
1.1
SO

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1 1.1 1.2

pr
ob

ab
ili

ty

UE unfairness

Factor
UE
1.01
1.02
1.03
1.05
1.1
SO

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.2 1.4 1.6 1.8 2

pr
ob

ab
ili

ty

loaded unfairness

Factor
UE

1.01
1.02
1.03
1.05
1.1
SO

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1 1.1 1.2

pr
ob

ab
ili

ty

UE unfairness

Factor
UE
1.01
1.02
1.03
1.05
1.1
SO

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.2 1.4 1.6 1.8 2

pr
ob

ab
ili

ty

loaded unfairness

Factor
UE

1.01
1.02
1.03
1.05
1.1
SO

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1 1.1 1.2

pr
ob

ab
ili

ty

UE unfairness

Factor
UE
1.01
1.02
1.03
1.05
1.1
SO

Figure 11: Distribution of unfairness for instances frie, 3nei and berl from top to bottom.
The graphs on the left correspond to loaded unfairness and the ones on the right
to UE unfairness.

30

590

600

610

620

630

640

650

660

670

680

690

UE 1 1.1 1.2 1.3 SO

va
lu

e

factor

gap
0.5

1.0

2.0

4.0

590

600

610

620

630

640

650

660

670

680

690

0.5 1 1.5 2 2.5 3 3.5 4

va
lu

e

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

0

0.5

1

1.5

2

2.5

3

UE 1 1.1 1.2 1.3 SO

se
co

nd
s

factor

gap
0.5

1.0

2.0

4.0

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5 4

se
co

nd
s

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

0

20

40

60

80

100

120

140

160

180

UE 1 1.1 1.2 1.3 SO

ite
ra

tio
ns

factor

gap
0.5

1.0

2.0

4.0

0

20

40

60

80

100

120

140

160

180

0.5 1 1.5 2 2.5 3 3.5 4

ite
ra

tio
ns

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

Figure 12: Parameter analysis for instance frie.

31

1720

1740

1760

1780

1800

1820

1840

1860

1880

UE 1 1.1 1.2 1.3 SO

va
lu

e

factor

gap
0.5

1.0

2.0

4.0

1720

1740

1760

1780

1800

1820

1840

1860

1880

0.5 1 1.5 2 2.5 3 3.5 4

va
lu

e

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

60

80

100

120

140

160

180

200

220

240

260

UE 1 1.1 1.2 1.3 SO

se
co

nd
s

factor

gap
0.5

1.0

2.0

4.0

60

80

100

120

140

160

180

200

220

240

260

0.5 1 1.5 2 2.5 3 3.5 4

se
co

nd
s

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

0

10

20

30

40

50

60

70

80

UE 1 1.1 1.2 1.3 SO

ite
ra

tio
ns

factor

gap
0.5

1.0

2.0

4.0

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3 3.5 4

ite
ra

tio
ns

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

Figure 13: Parameter analysis for instance 3nei.

32

15400

15600

15800

16000

16200

16400

16600

16800

UE 1 1.1 1.2 1.3 SO

va
lu

e

factor

gap
0.5

1.0

2.0

4.0

15400

15600

15800

16000

16200

16400

16600

16800

0.5 1 1.5 2 2.5 3 3.5 4

va
lu

e

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

0

2000

4000

6000

8000

10000

12000

14000

UE 1 1.1 1.2 1.3 SO

se
co

nd
s

factor

gap
0.5

1.0

2.0

4.0

0

2000

4000

6000

8000

10000

12000

14000

0.5 1 1.5 2 2.5 3 3.5 4

se
co

nd
s

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

0

10

20

30

40

50

60

70

80

UE 1 1.1 1.2 1.3 SO

ite
ra

tio
ns

factor

gap
0.5

1.0

2.0

4.0

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3 3.5 4

ite
ra

tio
ns

gap

factor
UE

1.01

1.02

1.03

1.05

1.1

1.2

1.3

SO

Figure 14: Parameter analysis for instance berl.

33

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

UE 1 1.1 1.2 1.3SO

95
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.05

1.1

1.15

1.2

1.25

UE 1 1.1 1.2 1.3SO

no
rm

al
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

UE 1 1.1 1.2 1.3SO

97
.5

th
 p

er
ce

nt
ile

 u
nf

ai
rn

es
s

factor

unfairness
normal

loaded

UE

1

1.2

1.4

1.6

1.8

2

2.2

UE 1 1.1 1.2 1.3SO

lo
ad

ed
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.2

1.4

1.6

1.8

2

2.2

UE 1 1.1 1.2 1.3SO

99
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.05

1.1

1.15

1.2

1.25

1.3

UE 1 1.1 1.2 1.3SO

U
E

 u
nf

ai
rn

es
s

factor

percentile
99th

97.5th

95th

Figure 15: Unfairness over different factors and percentiles for instance frie.

34

1

1.05

1.1

1.15

1.2

1.25

1.3

UE 1 1.1 1.2 1.3SO

95
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

UE 1 1.1 1.2 1.3SO

no
rm

al
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

UE 1 1.1 1.2 1.3SO

97
.5

th
 p

er
ce

nt
ile

 u
nf

ai
rn

es
s

factor

unfairness
normal

loaded

UE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

UE 1 1.1 1.2 1.3SO

lo
ad

ed
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.1

1.2

1.3

1.4

1.5

1.6

UE 1 1.1 1.2 1.3SO

99
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

UE 1 1.1 1.2 1.3SO

U
E

 u
nf

ai
rn

es
s

factor

percentile
99th

97.5th

95th

Figure 16: Unfairness over different factors and percentiles for instance 3nei.

35

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

UE 1 1.1 1.2 1.3SO

95
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

UE 1 1.1 1.2 1.3SO

no
rm

al
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.05

1.1

1.15

1.2

1.25

1.3

UE 1 1.1 1.2 1.3SO

97
.5

th
 p

er
ce

nt
ile

 u
nf

ai
rn

es
s

factor

unfairness
normal

loaded

UE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

UE 1 1.1 1.2 1.3SO

lo
ad

ed
 u

nf
ai

rn
es

s

factor

percentile
99th

97.5th

95th

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

UE 1 1.1 1.2 1.3SO

99
th

 p
er

ce
nt

ile
 u

nf
ai

rn
es

s

factor

unfairness
normal

loaded

UE

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

UE 1 1.1 1.2 1.3SO

U
E

 u
nf

ai
rn

es
s

factor

percentile
99th

97.5th

95th

Figure 17: Unfairness over different factors and percentiles for instance berl.

36

