
Technische Universität Berlin

Institut für Mathematik

Regularization and Numerical Simulation
of Dynamical Systems Modeled with

Modelica

Randolf Altmeyer∗ ‡ and Andreas Steinbrecher† ‡

Preprint 2013/29

Preprint-Reihe des Instituts für Mathematik
Technische Universität Berlin

Report 2013/29 September 2013

Quasi-linear differential-algebraic equations (DAEs) are essential tools for
modeling dynamical processes, e.g. for mechanical systems, electrical circuits
or chemical reactions. These models are in general of higher index and contain
so called hidden constraints which lead to instabilities and order reductions
during numerical integration of the model equations.
In this article we consider dynamical systems modeled with quasi-linear
DAEs of higher index using Modelica. We investigate a regularization of
model equations in the Modelica framework in view of an efficient and robust
numerical simulation.
We will present an approach for numerical integration of quasi-linear DAEs
which is based on overdetermined DAEs obtained from dynamical models
modeled with Modelica.

AMS(MOS) subject classification: 34A09, 65K05, 65L80

Keywords: dynamical systems, differential-algebraic equations, regular-
ization, numerical integration, Modelica, QUALIDAES, MO2FOR

Authors address:

Randolf Altmeyer
Institut für Mathematik
Humboldt Universität zu Berlin
10099 Berlin, Germany
randolf.altmeyer@gmail.com

Andreas Steinbrecher
Institut für Mathematik, MA 4–5,
Technische Universität Berlin
Str. des 17. Juni 136
10623 Berlin, Germany
steinbrecher@math.tu-berlin.de

Regularization and Numerical Simulation of

Dynamical Systems Modeled with Modelica

Randolf Altmeyer∗‡ and Andreas Steinbrecher†‡

September 30, 2013

Abstract

Quasi-linear differential-algebraic equations (DAEs) are essential tools
for modeling dynamical processes, e.g. for mechanical systems, electrical
circuits or chemical reactions. These models are in general of higher index
and contain so called hidden constraints which lead to instabilities and
order reductions during numerical integration of the model equations.
In this article we consider dynamical systems modeled with quasi-linear
DAEs of higher index using Modelica. We investigate a regularization of
model equations in the Modelica framework in view of an efficient and
robust numerical simulation.
We will present an approach for numerical integration of quasi-linear
DAEs which is based on overdetermined DAEs obtained from dynami-
cal models modeled with Modelica.

Keywords: dynamical systems, differential-algebraic equations, reg-
ularization, numerical integration, Modelica, QUALIDAES, MO2FOR

AMS(MOS) subject classification: 34A09, 65K05, 65L80

1 Introduction

The modeling of dynamical processes, like electrical circuits, multibody systems,
thermal systems or flow problems often leads to model equations of differential
equations with algebraic constraints, so called differential-algebraic equations
(DAEs). For modeling such dynamical processes the modeling language Mod-
elica [4] is a common and useful tool. Modelica is an object-oriented language
for complex systems containing several subsystems, e.g., mechanical, electrical,
or hydraulic subcomponents. There exists a large variety of modeling and sim-
ulation tools, e.g., OpenModelica1, Dymola2, MapleSim3, SimulationX4.

∗Institut für Mathematik, Humboldt Universität zu Berlin, 10099 Berlin, Germany;
randolf.altmeyer@gmail.com.
†Institut für Mathematik, TU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany;

steinbrecher@math.tu-berlin.de.
‡The author’s work was supported by the ERC Advanced Grant ”Modeling, Simulation

and Control of Multi-Physics Systems” MODSIMCONMP
1https://www.openmodelica.org
2http://www.dymola.com
3http://www.maplesoft.com/products/maplesim/
4http://www.simulationx.com

1

To investigate the dynamical behaviour the model equations have to be inte-
grated. The solution of such DAEs is restricted to satisfy algebraic constraints
contained in the DAE. But in general not all constraints are stated in an explicit
way in the DAE. In general there exist so called hidden constraints leading to
a higher index. Therefore, the numerical treatment of DAEs is nontrivial in
general and more complicated than for ordinary differential equations (ODEs),
see [2, 10, 12, 13]. Among the effects arising from hidden constraints are insta-
bilities, convergence problems or inconsistencies, for instance.
A way out of the dilemma of hidden constraints in model equations is to remodel
or regularize the dynamical system, see for instance [6, 9, 12, 13, 19, 20].

The dynamical system is often modeled as initial value problem for quasi-linear
DAEs

E(x, t)ẋ = k(x, t), (1)

on the domain I = [t0, tf] with initial values x(t0) = x0 ∈ Rn,where E ∈ C(Rn×
I,Rn,n) is called the leading matrix of the quasi-linear DAE and k ∈ C(Rn×I,Rn)
its right-hand side. Furthermore, x : I→ Rn represents the unknown variables.
The equations are assumed to be uniquely solvable for consistent initial values
and nonredundant. In this article we restrict our considerations to quasi-linear
DAEs (1) where we assume that the rank of the leading matrix E is constant
for all (x, t) ∈ Rn×I and, furthermore, the rank of the partial derivatives of the
(hidden) constraints with respect to x is constant for all (x, t) ∈ Rn×I. Note
that in general these assumptions are not necessary and can be relaxed, see [18].
As a special case of the quasi-linear DAE (1), we will investigate semi-implicit
DAEs of the form

E1(x, t)ẋ = k1(x, t), (2a)

0 = k2(x, t) (2b)

with E1 ∈ C(Rn×I,Rm1,n), k1 ∈ C(Rn×I,Rm1) and k2 ∈ C(Rn×I,Rm2). We
assume m1 +m2 ≥ n.
In the following, for a differentiable time dependent function x we denote the
total derivative with respect to t by ẋ(t) = dx(t)/dt. For a differentiable function
f depending on x the (partial) derivative of f(x) with respect to x is denoted by
f,x(x) = ∂

∂xf(x). The same notation is used for differentiable vector functions.

In this article we will discuss an approach for regularization and numerical inte-
gration of dynamical systems modeled with Modelica as illustrated in Figure 1.
The first step consists of regularizing the model equations, via overdetermined
formulations including all hidden constraints, see Section 2, while the second
step performs the subsequent robust and efficient numerical integration using
the Runge-Kutta method RADAU IIa of order 5, see Section 3. The combined
approach of regularization and subsequent numerical integration is implemented
in the software package MO2FOR/QUALIDAES which we present in Section 4. The
applicability of MO2FOR/QUALIDAES for the numerical treatment of model equa-
tions provided in Modelica language is demonstrated at the example of a simple
pendulum and of a car axis in Section 5.

2

class CarAxis

parameter Real eps=0.01,M=10,L=1,L0=0.5,r=0.1,w=10;

Real xl(start=0),yl(start=0.5),

xr(start=1),yr(start=0.5),

V1(start=-0.5),V2(start=0),V3(start=-0.5),V4(start=0),

lam1(start=0),lam2(start=0),

V1P(start=0),V2P(start=0),V3P(start=0),V4P(start=0),

yb(start=0),ybP(start=1),ybPP(start=0),

xb(start=1),xbP(start=0),xbPP(start=-1),

Ll(start=0.5),Lr(start=0.5);

equation

//abreviations//

yb = r *sin(w*time);

ybP = r*w *cos(w*time);

ybPP=-r*w*w*sin(w*time);

xb = (L*L-yb*yb)^0.5;

xbP =-yb*ybP/(L*L-yb*yb)^0.5;

xbPP=-yb*yb*ybP*ybP/(L*L-yb*yb)^1.5

-(ybP*ybP+yb*ybPP)/(L*L-yb*yb)^0.5;

Ll = (xl^2+yl^2)^0.5;

Lr = ((xr-xb)^2+(yr-yb)^2)^0.5;

V1P =(L0-Ll)*xl/Ll +lam1*xb+2*lam2*(xl-xr);

V2P =(L0-Ll)*yl/Ll +lam1*yb+2*lam2*(yl-yr)-M*eps*eps/2;

V3P =(L0-Lr)*(xr-xb)/Lr -2*lam2*(xl-xr);

V4P =(L0-Lr)*(yr-yb)/Lr -2*lam2*(yl-yr)-M*eps*eps/2;

//kinematic equations of motion//

der(xl) = V1;

der(yl) = V2;

der(xr) = V3;

der(yr) = V4;

//dynamic equations of motion//

eps*eps*M/2*der(V1) =V1P;

eps*eps*M/2*der(V2) =V2P;

eps*eps*M/2*der(V3) =V3P;

eps*eps*M/2*der(V4) =V4P;

//constraints on position level//

0 = xb*xl+yb*yl;

0 = (xl-xr)^2+(yl-yr)^2-L*L;

//constraints on velocity level//

0 = xbP*xl+xb*V1+ybP*yl+yb*V2;

0 = 2*(xl-xr)*(V1-V3)+2*(yl-yr)*(V2-V4);

//constraints on acceleration level//

0 = xbPP*xl+2*xbP*V1+xb*V1P/(eps*eps*M/2)

+ybPP*yl+2*ybP*V2+yb*V2P/(eps*eps*M/2);

0 = 2*(V1-V3)*(V1-V3)

+2*(xl-xr)*(V1P-V3P)/(eps*eps*M/2)

+2*(V2-V4)*(V2-V4)

+2*(yl-yr)*(V2P-V4P)/(eps*eps*M/2);

end CarAxis;

Model Equations
in Modelica Source Code Regularization

and
Translation

with
MO2FOR

C CarAxis

C Solver: Qualidaes

DOUBLE PRECISION qT,qTSTART,qTEND,qH,qH0,qCPT0,qCPT1,qPERT

PARAMETER (eps=0.01D0,M=10.0D0,L=1.0D0,L0=0.5D0,r=0.1D0,w=10.0D0)

...

CALL QUALIDAES(

qMD,qMC,qN,qNIVCOND,

qX,qT,qTEND,qH,qRTOL,qATOL,qITOL,qIOPT,qROPT,

...

END

C

SUBROUTINE RHS(qMD,qMC,qN,qT,qX,qF,qG,qIOPT,qROPT,qIPAR,qRPAR,qIDI

#D)

C

INTEGER qMD,qMC,qN,qIOPT(*),qIPAR(*),qIDID

DOUBLE PRECISION qT,qX(qN),qF(qMD),qG(qMC),qROPT(*),qRPAR(*)

...

xl = qX(1)!

yl = qX(2)!

xr = qX(3)!

C

qF(1) = V1

qF(2) = V2

...

qF(7) = V3P

qF(8) = V4P

qG(1) = -yb+r*Dsin(w*qT)

qG(2) = -ybP+r*w*Dcos(w*qT)

...

qG(17) = xbPP*xl+2.0D0*xbP*V1+xb*V1P/((eps*eps*M/(2.0D0)))+ybPP*yl

#+2.0D0*ybP*V2+yb*V2P/((eps*eps*M/(2.0D0)))

qG(18) = 2.0D0*(V1-V3)*(V1-V3)+2.0D0*(xl-xr)*(V1P-V3P)/((eps*eps*M

#/(2.0D0)))+2.0D0*(V2-V4)*(V2-V4)+2.0D0*(yl-yr)*(V2P-V4P)/((eps*eps

#*M/(2.0D0)))

END

C

SUBROUTINE MATRIX(qMD,qN,qT,qX,qMA,qIOPT,qROPT,qIPAR,qRPAR,qIDID)

C

INTEGER qMD,qN,qI,qJ,qIOPT(*),qIPAR(*),qIDID

DOUBLE PRECISION qT,qX(qN),qMA(qMD,qN),qROPT(*),qRPAR(*)

...

qMA(1,1) = 1.0D0

qMA(2,2) = 1.0D0

...

qMA(7,7) = eps*eps*M/(2.0D0)

qMA(8,8) = eps*eps*M/(2.0D0)

C

END

Overdetermined Formulation
in Fortran Source Code Numerical

Integration
with
QUALIDAES

simvar={’T’;’xl’;’yl’;’xr’;’yr’;’V1’;’V2’;’V3’;’V4’;’lam1’;’lam2’;’V1P’;...

simres(1,:)=[0.0000000000000000D+00, 0.0000000000000000D+00, 0.500...

simres(2,:)=[0.3000000000000000D-02,-0.1499768249498017D-02, 0.499...

simres(3,:)=[0.6000000000000000D-02,-0.2998146715500600D-02, 0.499...

simres(4,:)=[0.9000000000000001D-02,-0.4493747897578716D-02, 0.499...

simres(5,:)=[0.1200000000000000D-01,-0.5985190001019940D-02, 0.499...

simres(6,:)=[0.1500000000000000D-01,-0.7471097948602796D-02, 0.499...

simres(7,:)=[0.1800000000000000D-01,-0.8950107967364899D-02, 0.499...

simres(8,:)=[0.2100000000000000D-01,-0.1042086632660879D-01, 0.499...

simres(9,:)=[0.2400000000000000D-01,-0.1188203574468467D-01, 0.499...

simres(10,:)=[0.2700000000000000D-01,-0.1333229140304438D-01, 0.499...

simres(11,:)=[0.3000000000000000D-01,-0.1477032717129503D-01, 0.499...

simres(12,:)=[0.3300000000000000D-01,-0.1619485463241374D-01, 0.499...

simres(13,:)=[0.3600000000000000D-01,-0.1760459968823099D-01, 0.499...

simres(14,:)=[0.3900000000000000D-01,-0.1899831324399283D-01, 0.499...

simres(15,:)=[0.4200000000000000D-01,-0.2037476046201573D-01, 0.499...

simres(16,:)=[0.4500000000000000D-01,-0.2173272542109633D-01, 0.499...

simres(17,:)=[0.4800000000000000D-01,-0.2307101880316631D-01, 0.499...

simres(18,:)=[0.5100000000000000D-01,-0.2438846541859802D-01, 0.498...

...

simres(987,:)=[0.2958000000000000D+01, 0.4820124685925711D-01, 0.497...

simres(988,:)=[0.2961000000000000D+01, 0.4857183713944243D-01, 0.497...

simres(989,:)=[0.2964000000000000D+01, 0.4889872768180634D-01, 0.497...

simres(990,:)=[0.2967000000000000D+01, 0.4918162068660767D-01, 0.497...

simres(991,:)=[0.2970000000000000D+01, 0.4942025026404851D-01, 0.497...

simres(992,:)=[0.2973000000000000D+01, 0.4961440494976911D-01, 0.496...

simres(993,:)=[0.2976000000000000D+01, 0.4976391375329137D-01, 0.496...

simres(994,:)=[0.2979000000000000D+01, 0.4986864032525427D-01, 0.496...

simres(995,:)=[0.2982000000000000D+01, 0.4992850424407702D-01, 0.496...

simres(996,:)=[0.2985000000000000D+01, 0.4994345257951636D-01, 0.496...

simres(997,:)=[0.2988000000000000D+01, 0.4991347696390285D-01, 0.496...

simres(998,:)=[0.2991000000000000D+01, 0.4983861375609260D-01, 0.496...

simres(999,:)=[0.2994000000000000D+01, 0.4971892681580792D-01, 0.496...

simres(1000,:)=[0.2997000000000000D+01, 0.4955453100876348D-01, 0.496...

simres(1001,:)=[0.3000000000000000D+01, 0.4934557505765604D-01, 0.496...

IDID= 0;

T= 3.0000;

NACCPT = 412;

NRHS = 3518;

NPDEC = 384;

NERJCT = 43;

NJAC = 384;

NEDEC = 433;

NCRJCT = 0;

NMAT = 3516;

NBSUB = 1044;

CPUTIME= 0.076;

NSEL = 1;

Numerical Results

0 1 2 3
−0.05

0

0.05

Position x

l

0 1 2 3
0.496

0.497

0.498

0.499

0.5

Position y

l

0 1 2 3

0.95

1

1.05

Position x

r

0 1 2 3
0.3

0.4

0.5

0.6

Position y

l

0 1 2 3

−0.4

−0.2

0

0.2

0.4

0.6

Velocity for x

l

0 1 2 3
−0.04

−0.02

0

0.02

0.04

Velocity for y

l

0 1 2 3

−0.4

−0.2

0

0.2

0.4

0.6

Velocity for x

r

0 1 2 3

−2

−1

0

1

2

Velocity for y

l

0 1 2 3
−6

−4

−2

0

2

4

6
x 10

−3

Lagr. Mult. λ

1

0 1 2 3
−2

−1

0

1

2
x 10

−3

Lagr. Mult. λ

2

Figure 1: Scheme MO2FOR - QUALIDAES

2 Regularization using Overdetermined Formu-
lations

In general, the solution of higher index DAEs is not only restricted by explicit
constraints, as for instance in (2b), but also by so called hidden constraints
which are not explicitly stated as equations, see [18]. These constraints im-
pose additional consistency conditions on the initial values and on the solution,
thereby causing problems for direct numerical integration of DAEs of higher
index, see [1, 2, 6, 8, 10, 11, 12, 15, 16].

3

In the following we will investigate a regularization of quasi-linear DAEs (1) to
overcome the difficulties in numerical simulation as mentioned above. Such a
regularization should end up with a regularized DAE which

R1) has the same solution set as the original DAE (1) and where

R2) the regularized DAE contains no hidden constraints, i.e., all (hidden) con-
straints in the original DAE (1) have to be explicitly stated.

Two DAEs have the same solution set if every solution of one DAE solves also
a second DAE and vice versa.
In [18, 19, 20] procedures are proposed to determine the hidden constraints of
quasi-linear DAEs (1). Let us denote the hidden constraints by

0 = h(x, t) (3a)

with

h(x, t) =

 h0(x, t)
...

hνc(x, t)

 (3b)

where h and hi are vector functions h(x, t) : Rn × I → RnC with nC =

rank(h,x(x, t)) for all (x, t) ∈ M and hi(x, t) : Rn × I → Rni
C , i = 0, ..., νc,

respectively, with nC =
∑νc
i=0 n

i
C . The set

M = {(x, t) ∈ Rn × I : 0 = h(x, t)},

denotes the set of consistency and restricts the set of solutions. Furthermore,
νc denotes the maximal constraint level of the DAE, i.e., the highest level of
existing (hidden) constraints, see [18, 19, 20]. Here, 0 = hi(x, t) denotes the
hidden constraints of level i, and, in particular, 0 = h0(x, t) corresponds to the
explicitly stated constraints in the quasi-linear DAE (1).
Adding the hidden constraints to the quasi-linear DAE (1) leads to the overde-
termined DAE

E(x, t)ẋ = k(x, t), (4a)

0 = h(x, t). (4b)

The overdetermined formulation (4) is equivalent to the original DAE (1) in the
sense that both have the same solution set. Furthermore, the overdetermined
formulation (4) has the advantage that it satisfies the requirements R1) and
R2) of a regularization. A further advantage of the overdetermined formulation
(4) is the fact that it is not necessary to apply analytical manipulations for
the determination of a square and for consistent initial values uniquely solv-
able system of DAEs and, furthermore, that the unknowns x are unchanged,
i.e., a transformation of the state variables is not necessary and the number of
unknowns is not increased. Therefore, this is the kind of formulation we are
interested in.
However, on the other hand, in the Modelica framework it is difficult or impos-
sible to model and integrate overdetermined systems like (4) since most mod-
eling and integration tools are based on square and for consistent initial values

4

uniquely solvable systems. To overcome this problem it would be possible to
transform the overdetermined formulation (4) into a square and for consistent
initial values uniquely solvable system according to the regularization criteria
R1) and R2).
As already mentioned the overdetermined DAE (4) and the original DAE (1) are
equivalent. Therefore, there exist redundant equations in the overdetermined
formulation. The number of degrees of freedom nD = n−nC ≤ n of the dynam-
ical system is equal to the dimension of the set of consistency M. Therefore,
there exist n − nD equations in the original DAE (1), i.e., in the upper part
of (4), which are made redundant by the constraints. These redundancies can
be eliminated without changing the solution set by using a so called dynamic
selector SD(x, t) which is defined as a matrix function of size nD × n such that[

SD(x, t)E(x, t)
h,x(x, t)

]
is nonsingular for all (x, t) ∈M.

Therefore, we could use the so called projected strangeness-free formulation

Ê(x, t)ẋ = k̂(x, t), (5a)

0 = h(x, t) (5b)

with Ê(x, t) = SD(x, t)E(x, t) and k̂(x, t) = SD(x, t)k(x, t) to overcome the
disadvantage of the overdetermined formulation (4) with respect to numerical
integration. The obtained projected-strangeness-free form (5) is equivalent to
the original DAE (1) in the sense that both have the same solution set. Fur-
thermore, (5) is suitable for numerical treatment using stiff ODE solvers, in
particular, also within the Modelica framework. Unfortunately, for complex
dynamical systems the analytical determination of the dynamic selector SD in
advance is very difficult. For more details, we refer to [18, 19].

Example 2.1 The Simple Pendulum: Let us consider the simple pendulum

m

L

(p(t),q(t))

Y

X

g

ϕ

Figure 2: Topology of the mathematical pendulum

of length L 6= 0 and mass m under gravity with the gravitational acceleration g,
see Figure 2. We choose absolute coordinates p and q denoting the X-Y-position

5

of the mass m in the two dimensional space R2. The equations of motion have
the form

ṗ = v, (6a)

q̇ = w, (6b)

mv̇ = −2pλ, (6c)

mẇ = −mg − 2qλ, (6d)

0 = p2 + q2 − L2, (6e)

where v and w denote the velocities of the mass point in X- and Y -direction
while λ corresponds to the Lagrange multiplier. The constraint (6e) has level
0. The hidden constraint of level 1 which is obtained by differentiating the
constraint of level 0 (6e) with respect to t and replacing ẋ and ẏ using (6a),(6b)
is given by

0 = 2pv + 2qw. (6f)

Furthermore, differentiating the constraint of level 1 (6f) with respect to t and
replacing ẋ, ẏ, v̇, and ẇ using (6a)-(6d) yields the hidden constraint of level 2

0 = 2v2 + 2w2 + 2p(−2pλ)/m+ 2q(−mg − 2qλ)/m. (6g)

Subsequent differentiations of the hidden constraint of level 2 (6g) adds no fur-
ther constraints since λ̇ cannot be replaced. As a consequence, the maximal
constraint level is νc = 2 and the regularized DAE via overdetermined formu-
lation is given by equations (6a)-(6g). This regularized DAE consists of seven

equations for the five unknowns x =
[
p q v w λ

]T
and is therefore not

solvable within the Modelica framework.
Towards determination of the projected strangeness-free formulation we have
to determine a selector SD to eliminate redundant equations, i.e., to eliminate
redundant rows in the upper part of

[
E(x, t)
h,x(x, t)

]
=

1 0 0 0 0
0 1 0 0 0
0 0 m 0 0
0 0 0 m 0
0 0 0 0 0
2p 2q 0 0 0
2v 2w 2p 2q 0

−8pλ/m −2g − 8qλ/m 4v 4w −4(p2 + q2)λ)/m

.

The dynamic selector SD can be chosen as

SD(x, t) =

[
q −p 0 0 0
0 0 q −p 0

]
such that

[
SD(x, t)E(x, t)

h,x(x, t)

]
=

q −p 0 0 0
0 0 mq −mp 0
2p 2q 0 0 0
2v 2w 2p 2q 0

−8pλ/m −2g − 8qλ/m 4v 4w −4(p2 + q2)λ)/m

6

is nonsingular for all consistent values (x, t) ∈ M = {(x, t) ∈ R5 × I :
satisfying (6e)-(6g)}, in particular, for p2 + q2 = L2 6= 0. We obtain the pro-
jected strangeness-free formulation

qṗ− pq̇ = qv − pw, (7a)

mqv̇ −mpv̇ = q(−2pλ)− p(−mg − 2qλ), (7b)

0 = p2 + q2 − L2, (7c)

0 = 2pv + 2qw, (7d)

0 = 2v2 + 2w2 + 2p(−2pλ)/m+ 2q(−mg − 2qλ)/m. (7e)

/

3 Numerical Approach

The projected-strangeness-free formulation (5) can be the starting point for
numerical integration with numerical algorithms for stiff ODEs, e.g., implicit
Runge-Kutta methods or BDF methods also within the Modelica framework.
Furthermore, we have seen in previous section that the overdetermined DAE (4)
has the same solution set as the projected strangeness-free system (5), see also
[18, 19]. In particular, the DAE (4) is solvable and does not contain contradic-
tory equations. It is therefore a good idea to use adapted numerical integration
schemes which are directly based on the overdetermined DAE system (4) in-
stead of the projected strangeness-free formulation (5).
Let us motivate this by the implicit Euler method. For more details we refer
to [19, 17]. Let τk denote the step size in the integration step k=1, ..., N+1 of
the Euler scheme, tk the discrete time point and xk the approximation of the
solution x(tk) at the point tk. Discretization of the overdetermined system (4)
leads to the overdetermined nonlinear system

0 =

[
E(xk, tk)(xk − xk−1)− τkk(xk, tk)

−τkh(xk, tk)

]
(8)

for the next iterate xk.
Unfortunately, the nonlinear system (8) is no longer solvable because of dis-
cretization and rounding errors during numerical integration. Therefore, it
is only possible to find an approximation x̃k which minimizes the residual
r 6= 0 ∈ Rn+nC with

r =

[
rD
rC

]
=

[
E(x̃k, tk)(x̃k − xk−1)− τkk(x̃k, tk)

−τkh(x̃k, tk)

]
in a certain sense. Unfortunately, in general, such an approximation yields to
rC 6= 0 which in turn leads to unfulfilled constraints, i.e., 0 6= h(xk, tk), not
even within machine precision. This would lead to the typical difficulties in
the numerical integration of higher index DAEs, i.e., instabilities, convergence
problems, inconsistencies, or the solution drifts away from the original set of
consistency.
In order to avoid these problems it is necessary to make sure that the constraints
are always satisfied during numerical integration. This can be achieved if the

7

nonlinear system (8) is treated separately such that the next iterate xk satis-
fies the lower part, i.e., the constraints, exactly or within a prescribed precision
while xk yields a minimal residual in the upper part, i.e., in the differential part.
For more details see [19, 17].
The advantage of the direct discretization of the overdetermined formulation
(4) is the fact that it is not necessary to determine the selector SD analyti-
cally in advance and that the number of unknowns in the DAE is not increased.
Another advantage with respect to the numerical integration is the possibility
to add solution invariants, e.g., mass, impulse or energy conservation. Adding
such conservation laws to the constraints 0 = h(x, t) often stabilizes numerical
integration.
The described numerical approach is implemented in the software package
QUALIDAES [17] which literally means ”QUAsi-LInear DAE Solver”. This soft-
ware package is suited for the direct numerical integration of regularized
overdetermined model equations and is based on the 3-stage implicit Runge-
Kutta method of type RADAU IIa of order 5, see [11, 12], as discretiza-
tion of the (overdetermined) quasi-linear DAE (2). Although QUALIDAES is
based on the presented regularization technique, i.e., QUALIDAES uses the
projected-strangeness-free formulation (5), the user does not have to provide
this projected-strangeness-free formulation. It is sufficient if the user provides
the hidden constraints (3) together with the original DAE (1), i.e., the overde-
termined regularization (4). In particular, it is not necessary to determine the
dynamic selector SD analytically. This is achieved automatically within the sep-
arated treatment of (8) by its numerical solution, described above. Moreover, in
QUALIDAES it is not necessary to provide all hidden constraints. For a successful
integration it is often enough to provide only the (hidden) constraints up to
level νc − 1. For more details on QUALIDAES see [17]. Note that QUALIDAES is
not restricted to the Modelica framework. QUALIDAES can be applied to model
equations provided in Fortran source code.

4 Numerical Integration using MO2FOR/QUALIDAES

In this section we describe the numerical integration of model equations
for dynamical systems defined in Modelica using the software package
MO2FOR/QUALIDAES. The model equations are already given in overdetermined
form (4), i.e., in regularized form without further hidden constraints. If it is
not possible or too difficult to provide all (hidden) constraints explicitly, then
as many constraints as possible should be added.

The integration process consists of two steps. First the translator MO2FOR trans-
lates model equations provided in Modelica language into Fortran source code
using the regularization approach via overdetermined formulations. The second
step QUALIDAES performs the subsequent numerical integration of the regular-
ized model equations in Fortran source code.

4.1 Translation of Modelica models with MO2FOR

MO2FOR which literally means ”Modelica to Fortran” is a command line tool
which accepts model definitions written in the Modelica language and outputs
those definitions in Fortran. It is based on the latest Modelica specifications 3.3

8

and written in C++ without any external libraries.
The tool translates Modelica models in three steps. Each of these steps can be
performed separately as well with appropriate command line options.

4.1.1 Parsing

The first step is to parse the model definitions into C++ data structures which
can be manipulated in later steps. For each Modelica model an equivalent
C++ object is created representing the model along with its variables, parame-
ters, nested classes and model equations. Logical and algebraic expressions are
converted into abstract syntax trees which can then easily be manipulated lat-
eron. During parsing syntax and identifiers are checked for compliance with the
Modelica specifications. The parsed model is an abstract representation of the
original definition, i.e., references to other models, equations and expressions
are not checked for semantic validity.

4.1.2 Instantiate

After a model has been parsed it has to be instantiated. This means:

1. The abstract model definition is replaced by a model tree linking all refer-
enced models together. For instance, if the model definition of a pendulum
is parsed with local variables of type ”Rod” and ”Mass” we have to look
for model definitions of ”Rod” and ”Mass”, instantiating their local vari-
ables etc. until we end up with basic types (e.g., Real, String, Boolean)
which do not depend on other model definitions anymore. In case the
model definition can not be found within the same Modelica file we check
other Modelica files on the search path. The same procedure applies to
extended and imported models.

2. The model tree is flattened into one single model, i.e., all properties of the
referenced models are transferred to the instantiated model. In particular,
all variables and equations are added. After flattening all variables and
parameters have basic types.

Moreover, modifiers are applied, e.g., initial values are set, and other prepara-
tions for simulation are made. For instance, connect equations are replaced by
regular equations analogous to Kirchhoff’s current law [4].

4.1.3 Export

The instantiated model is modified and prepared for output. This means, in
particular,

1. reordering of equations such that differential equations appear first,

2. rearranging terms within equations to comply with the form of a quasi-
linear DAE, i.e., differential expressions on the left hand side and algebraic
ones on the right hand side,

3. algebraic simplifications in all expressions to save processing time.

9

The modified model is exported by creating a Fortran file that contains all
necessary functions, variable definitions and equations to simulate the model
with QUALIDAES. We use fixed format Fortran source files. Therefore we have to
add a string in front of each source code line depending on its type (comment,
label, etc.). We do not care too much about the length of each line but try to
wrap around lines after 72 characters in one line.

4.2 Integration using QUALIDAES

The previous translation of the Modelica model into a Fortran model with
MO2FOR enables us to integrate the model equations using QUALIDAES. The trans-
lator MO2FOR creates, in addition to the Fortran model, an Makefile. Executing
this Makefile the Fortran model equations will be compiled and linked to the
solver QUALIDAES. Furthermore, the obtained executable file will be executed
and the numerical results will be written into a * res.m file which can be used
in MATLAB for further postprocessing. The numerical integration will be per-
formed with the default settings of the solver QUALIDAES, see [17]. The time
domain I can be specified using the options of the translator MO2FOR during the
translation. If no time domain is specified, the integration will be performed
within the (default) time domain I = [0, 1],

5 Numerical Results

In Figure 1 the approach for the numerical treatment of models defined in Mod-
elica using MO2FOR and QUALIDAES is illustrated. Let us discuss the procedure
by the following two examples, the simple pendulum and the car axis.

Example 5.1 Consider the mathematical pendulum (see Example 2.1) of
length L = 1 and with mass m = 1 under the influence of the gravitational
acceleration g = 13.7503716373295. We start with the model equations (6) of
the simple pendulum modeled with Modelica in the overdetermined formula-
tion. The model equations in Modelica source code are given as follows.

class SimpPend "Simple planar pendulum"

parameter Real m = 1;

parameter Real g = 13.7503716373295;

parameter Real L = 1;

Real x(start = L);

Real y(start = 0);

Real vx(start = 0);

Real vy(start = 0);

Real lambda;

equation

der(x) = vx;

der(y) = vy;

m * der(vx) = -2 * x * lambda;

m * der(vy) = -m * g - 2 * y * lambda;

0 = x ^ 2 + y ^ 2 - L ^ 2;

0 = 2 * x * vx + 2 * y * vy;

0 = 2 * vx * vx + 2 * vy * vy

+ 2 * x * (-2 * x * lambda) / m

+ 2 * y * (-m * g - 2 * y * lambda)/m;

end SimpPend;

With MO2FOR we produce Fortran source code as shown in the Appendix A. This
Fortran source code is suitable for the numerical integration using QUALIDAES.

10

Compiling this Fortran source code, linking to QUALIDAES and executing the
obtained executable file we obtain the numerical results shown in Figure 3.

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

 x−Position

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

 y−Position

0 0.5 1 1.5 2
−6

−4

−2

0

2

4

6

 x−Velocity

0 0.5 1 1.5 2
−4

−2

0

2

4

 y−Velocity

0 0.5 1 1.5 2
−5

0

5

10

15

20

25

 Lagrange multiplyer

Figure 3: Numerical Results for the Simple Pendulum

Note that the gravitational acceleration chosen as g = 13.7503716373295 yields
a periodic solution with period T = 2. Starting with initial values

x(0) =
[
p(0) q(0) v(0) w(0) λ(0)

]T
=
[

1 0 0 0 0
]T

the exact solution after TEND= 2s is known as

x(2) =
[
p(2) q(2) v(2) w(2) λ(2)

]T
=
[

1 0 0 0 0
]T
.

From the numerical integration we get at the end of the integration interval

x̄(2) =

p̄(2)
q̄(2)
v̄(2)
w̄(2)
λ̄(2)

 =

0.999999999997e− 00
2.506954991624e− 06
−1.964524883411e− 11

7.831924620040e− 06
−1.723575179268e− 05

which yields the absolute error

err(2) = ||x̄(2)− x(2)||2 = 1.9097e− 05

by a prescribed tolerance of ATOL=RTOL= 1.0e− 6.
A comparison with other numerical integrators using suitable formulations of
the model equations on the time domain I = [0s, 1000s] is shown in Figure 4.

11

10
0

10
−4

10
−2

10
0

10
2

simulation time

a
b

s
o

lu
t

e
rr

o
r

 E
R

R
=

||
n

u
m

s
o

l−
re

fs
o

l|
| 2

Efficiency (absolute error vs. simulation time)

 corresponds to prescribed tolerance 1e−07

DASSLrcd0

ODASLovd0

QULDSovd0

RADAUggl1

Figure 4: Efficiency for the Simple Pendulum - Obtained accuracy vs. Simula-
tion time

QULDSovd0 : MO2FOR/QUALIDAES with the overdetermined
regularization (6a)-(6g)

DASSLrcd0 : DASSL [2, 14] with the d-index 1 formulation
(6a)-(6d),(6g)

ODASLovd0 : ODASSL [3, 5] with the overdetermined regu-
larization (6a)-(6g)

RADAUggl1 : RADAU5 [11, 12] with the Gear-Gupta-
Leimkuhler (GGL) formulation [7]

Table 1: Efficiency: Used solvers and formulations

Here, the efficiency corresponds to the relation of obtained accuracy and the
spent computation time.
We compare the efficiency of MO2FOR/QUALIDAES with the efficiency of different
other integration methods as listed in Table 1.
Note that the model equations of the simple pendulum (6a)-(6e) have the
structure of equations of motion for multi-body systems. The Gear-Gupta-
Leimkuhler (GGL) formulation [7] is a specific regularization technique for such
equations of motion and corresponds to the model equations including the hid-
den constraints of level 1 and the insertion of an extra Lagrange multiplier
µ in the equations (6a),(6b). Therefore, the GGL formulation consists of the
equations

p = v − 2pµ

q = w − 2qµ

and (6c)-(6f). Furthermore, the integration code ODASSL based on the backward
differentiation formula (BDF) of variable order up to 5 is only suited for this
class of equations of motion exploiting its characteristic structure. The integra-
tion code DASSL is also based on the backward differentiation formula (BDF) of

12

variable order up to 5. It can be applied to nonlinear DAEs of differentiation
index (d-index) at most 1 only. The integration code RADAU5, on the other hand,
is based on the Runge-Kutta formula of type Radau IIa of fixed order 5 and can
be applied to quasi-linear DAEs with constant leading matrix of d-index up to
2 and, if the DAE offers Hessenberg structure, up to d-index 3.
For the evaluation of the precision of the obtained numerical results, we use as
reference solution the numerical solution obtained with RADAU5 with the GGL
formulation and a prescribed tolerance of 10−14.
In Figure 4 the efficiency of the used solvers is illustrated. Here one can ob-
serve, that ODASSL and RADAU5 offer a good performance while DASSL is only
able to compute a numerical solution for prescribed tolerances up to 10−11.
Furthermore, one observe that the numerical integration with QUALIDAES with
the overdetermined regularization (6a)-(6g) for the simple pendulum is very ef-
ficient, i.e., in order to obtain the same accuracy in the numerical solution the
computational effort is less then using other integration methods. Note that
here only the integration time within the numerical integrators is taken into
account and not the preprocessing with MO2FOR. /

Example 5.2 Another example of interest is the car axis which is listed as
benchmark example in the Test Set for IVP Solvers5.

Figure 5: Topology of the Car Axis

The car axis problem is a rather simple multibody system in which the behaviour
of a car axis on a bumpy road is modeled. The simplified problem is illustrated
in Figure 5. The situation is modeled such that the left wheel at the origin
(0, 0) rolls on a flat surface and the right wheel at coordinates (xb, yb) rolls over
a hill of height h every τ seconds. This means that the motion of yb is known.
The length of the axis denoted by l with l2 = x2b(t) + y2b (t) remains constant
in time. Two springs carry the movement of the axis between the wheels over
to the chassis of the car which is represented by the bar (xl, yl) − (xr, yr) of
mass m. The two springs are assumed to be massless and have Hooke constant
1/ε2 and length l0 at rest. Therefore, there are two position constraints. First,
the distance between (xl, yl) and (xr, yr) must remain constant l. Second, for
simplicity of the model we assume that the left spring remains orthogonal to
the axis.

5http://www.dm.uniba.it/~testset

13

Then the model equations are like equations of motion for multibody systems

ṗ = v,

Mv̇ = f(p, v, t)−GT (p, t)λ,

0 = g(p, t).

The state x =
[
pT vT λT

]T
with position pT =

[
xl yl xr yr

]
, ve-

locity v = ṗ and Lagrange multipliers λT =
[
λ1 λ2

]
is restricted by the

holonomic constraints

g(p, t) =

[
xlxb + ylyb

(xl − xr)2 + (yl − yr)2 − l2
]
.

The mass matrix is given as M = ε2m2 I4, where I4 is the identity matrix of size
4 × 4. The function f of the applied forces and the constraint matrix G are
given by

f(p, v, t) =

(l0 − ll)xl

ll
(l0 − ll)ylll − ε

2m
2

(l0 − lr)xr−xb

lr

(l0 − lr)yr−yblr
− ε2m2

 , GT (p, t) =
d

dt
g(p(t), t) =

xb 2(xl − xr)
yb 2(yl − yr)
0 −2(xl − xr)
0 −2(yl − yr)

where ll =

√
x2l + y2l and lr =

√
(xr − xb)2 + (yr − yb)2.

The excitation follows from the known functions

xb(t) =
√
l2 − y2b (t)

yb(t) = r sin(ωt)

with the following constants

l = 1 ε = 10−2 h = 1/5 ω = 10
l0 = 1/2 m = 10 τ = π/5 r = 0.1

Consistent initial values are given by

p(0) =

0

1/2
1

1/2

 , v(0) =

−1/2

0
−1/2

0

 , λ0 =

[
0
0

]
.

For more details see the description in the Test Set for IVP Solvers6.
The model equations in Modelica source code are given as follows.

class CarAxis

parameter Real eps=0.01,M=10,L=1,L0=0.5,r=0.1,w=10;

Real xl(start=0),yl(start=0.5),

xr(start=1),yr(start=0.5),

V1(start=-0.5),V2(start=0),V3(start=-0.5),V4(start=0),

lam1(start=0),lam2(start=0),

V1P(start=0),V2P(start=0),V3P(start=0),V4P(start=0),

yb(start=0),ybP(start=1),ybPP(start=0),

xb(start=1),xbP(start=0),xbPP(start=-1),

Ll(start=0.5),Lr(start=0.5);

equation

//abreviations//

yb = r *sin(w*time);

6http://www.dm.uniba.it/~testset

14

ybP = r*w *cos(w*time);

ybPP=-r*w*w*sin(w*time);

xb = (L*L-yb*yb)^0.5;

xbP =-yb*ybP/(L*L-yb*yb)^0.5;

xbPP=-yb*yb*ybP*ybP/(L*L-yb*yb)^1.5

-(ybP*ybP+yb*ybPP)/(L*L-yb*yb)^0.5;

Ll = (xl^2+yl^2)^0.5;

Lr = ((xr-xb)^2+(yr-yb)^2)^0.5;

V1P =(L0-Ll)*xl/Ll +lam1*xb+2*lam2*(xl-xr);

V2P =(L0-Ll)*yl/Ll +lam1*yb+2*lam2*(yl-yr)-M*eps*eps/2;

V3P =(L0-Lr)*(xr-xb)/Lr -2*lam2*(xl-xr);

V4P =(L0-Lr)*(yr-yb)/Lr -2*lam2*(yl-yr)-M*eps*eps/2;

//kinematic equations of motion//

der(xl) = V1;

der(yl) = V2;

der(xr) = V3;

der(yr) = V4;

//dynamic equations of motion//

eps*eps*M/2*der(V1) =V1P;

eps*eps*M/2*der(V2) =V2P;

eps*eps*M/2*der(V3) =V3P;

eps*eps*M/2*der(V4) =V4P;

//constraints on position level//

0 = xb*xl+yb*yl;

0 = (xl-xr)^2+(yl-yr)^2-L*L;

//constraints on velocity level//

0 = xbP*xl+xb*V1+ybP*yl+yb*V2;

0 = 2*(xl-xr)*(V1-V3)+2*(yl-yr)*(V2-V4);

//constraints on acceleration level//

0 = xbPP*xl+2*xbP*V1+xb*V1P/(eps*eps*M/2)

+ybPP*yl+2*ybP*V2+yb*V2P/(eps*eps*M/2);

0 = 2*(V1-V3)*(V1-V3)

+2*(xl-xr)*(V1P-V3P)/(eps*eps*M/2)

+2*(V2-V4)*(V2-V4)

+2*(yl-yr)*(V2P-V4P)/(eps*eps*M/2);

end CarAxis;

The obtained Fortran source code which is ready for simulation with QUALIDAES

is shown in the Appendix B.
Compiling this Fortran source code, linking to QUALIDAES and executing the
obtained executable file we obtain the numerical results shown in Figure 6.
From the Test Set for IVP Solvers7 a reference solution at t = 3s is known as

p(3) =

0.4934557842755629e− 1
0.4969894602303324e+ 0
0.1041742524885400e+ 1
0.3739110272652214e+ 0

 , v(3) =

−0.7705836840321485e− 1

0.7446866596327776e− 2
0.1755681574942899e− 1
0.7703410437794031e+ 0

 ,
λ(3) =

[
−0.4736886750784630e− 2
−0.1104680411345730e− 2

]
From the numerical integration we get at the end of the integration interval

p̄(3) =

0.4934557505765604e− 1
0.4969894262895335e+ 0
0.1041742738582200e+ 1
0.3739127436599655e+ 0

 , v̄(3) =

−0.7705859110049050e− 1

0.7444570127077410e− 2
0.1754833790605591e− 1
0.7702832036542340e+ 0

 ,
λ̄(3) =

[
−0.4736932227685571e− 2
−0.1104703372042073e− 2

]
which yields an absolute error

err(3) = ||x̄(3)− x(3)||2 = 5.8529e− 05

7http://www.dm.uniba.it/~testset

15

0 1 2 3
−0.05

0

0.05

Position x

l

0 1 2 3
0.496

0.497

0.498

0.499

0.5

Position y

l

0 1 2 3

0.95

1

1.05

Position x

r

0 1 2 3
0.3

0.4

0.5

0.6

Position y

l

0 1 2 3

−0.4

−0.2

0

0.2

0.4

0.6

Velocity for x

l

0 1 2 3
−0.04

−0.02

0

0.02

0.04

Velocity for y

l

0 1 2 3

−0.4

−0.2

0

0.2

0.4

0.6

Velocity for x

r

0 1 2 3

−2

−1

0

1

2

Velocity for y

l

0 1 2 3
−6

−4

−2

0

2

4

6
x 10

−3

Lagr. Mult. λ

1

0 1 2 3
−2

−1

0

1

2
x 10

−3

Lagr. Mult. λ

2

Figure 6: Numerical Results for the Car Axis

by a prescribed tolerance of ATOL=RTOL= 1.0e− 6.
A comparison with other numerical integrators using suitable formulations of
the model equations on the time domain I = [0s, 500s] is shown in Figure 7.

10
0

10
1

10
−6

10
−4

10
−2

10
0

simulation time

a
b

s
o

lu
t

e
rr

o
r

 E
R

R
=

||
n

u
m

s
o

l−
re

fs
o

l|
| 2

Efficiency (absolute error vs. simulation time)

 corresponds to prescribed tolerance 1e−07

DASSLrcd0

ODASLovd0

QULDSovd0

RADAUggl1

Figure 7: Efficiency for the Car Axis - Obtained accuracy vs. Simulation time

We compared the same integrators as in the previous example, see Table 1.
In Figure 7 we observe that the numerical integration with DASSL offers an

16

excellent efficiency up to a prescribed tolerance of 10−10. A further improvement
is not possible. The numerical integration with ODASSL behaves similar with a
little more need of computational time. Higher accuracy is possible with use of
RADAU5 and QUALIDAES where QUALIDAES is a little more efficient. /

6 Summary

In this article we discussed the efficient and robust numerical simulation of dy-
namical systems modeled with Modelica. We presented a regularization method
for quasi-linear DAEs which yields an overdetermined DAE without hidden con-
straints. This DAE can usually not be solved numerically with existing codes.
Therefore, with MO2FOR we translate the overdetermined model equation pro-
vided in Modelica into Fortran source code which can be integrated using the
software package QUALIDAES. The applicability of QUALIDAES in combination
with MO2FOR for the numerical treatment of model equations provided in Mod-
elica language is demonstrated at the example of a simple pendulum and of a
car axis.

A Fortran Source Code for the Model of the
Simple Pendulum

C SimpPend

C Solver: Qualidaes

IMPLICIT NONE

INTEGER qI,qIT,qJ,qK,qLIWORK,qLRWORK,qMD,qMC,qN,

qNIVCOND,qSTARTN,qPRED,qNWTMAT,qNWTUPD,

qDECOMPC,qDECOMPD,qSELCOMP

PARAMETER (qMD=4,qMC=3,qN=5,qNIVCOND=0)

PARAMETER (qLIWORK=1000,qLRWORK=10000)

INTEGER qIWORK(qLIWORK),qITOL,qIOPT(40),qIPAR(1),qIDID,qIJAC,

#qIOUT,qIERR,qTOLMIN,qTOLMAX

DOUBLE PRECISION qT,qTSTART,qTEND,qH,qH0,qCPT0,qCPT1,qPERT

DOUBLE PRECISION qRWORK(qLRWORK),qX(qN),qROPT(40),qRPAR(5),qRTOL,q

#ATOL,qNAN

DOUBLE PRECISION m,g,L

EXTERNAL QUALIDAES,IVCOND,RHS,MATRIX,SOLOUT,JAC

INTRINSIC DSIN,DCOS,DEXP,DABS,DTAN

PARAMETER (m=1.0D0,g=13.7503716373295D0,L=1.0D0)

C

C .. SETTINGS ..

C wrt the Problem

qTSTART=0.0D0

qTEND=2.0D0

qH0=0.01D0

C

C wrt Integration

qIOPT(1)=0

qIOPT(2)=0 ! LUN

qIOPT(3)=0 ! NIT

qIOPT(4)=0 ! STARTN

qIOPT(5)=0 ! SINDN

qIOPT(6)=1000000 ! NMAX

qIOPT(8)=0 ! PRED

qIOPT(9)=0 ! NWTMAT

qIOPT(10)=0 ! NWTUPD

qIOPT(11)=1 ! DECOMPC

qIOPT(12)=0 ! DECOMPD

qIOPT(13)=0 ! SELCOMP

qIOPT(14)=0 ! AUTONOM

qIOPT(15)=1 ! MASSTRKT

qIOPT(17)=1 ! IVCNSST

qROPT(1)=0.0D0 ! UROUND

qROPT(2)=0.0D0 ! SAFE

qROPT(3)=0.0D0 ! THET

qROPT(4)=0.0D0 ! FNEWT

qROPT(5)=0.0D0 ! QUOT1

qROPT(6)=0.0D0 ! QUOT2

qROPT(7)=0.0D0 ! HMAX

qROPT(8)=0.0D0 ! FACL

qROPT(9)=0.0D0 ! FACR

C

C .. output ..

OPEN(UNIT=12,FILE=’SimpPend_res.m’)

C

C .. rpar/lpar ..

qIPAR(1)=1

qRPAR(1)=qTSTART

qRPAR(2)=(qTEND-qTSTART)/1000

C

C .. Initialization ..

qT=qTSTART

qH=qH0

qRTOL=1.0D-6

qATOL=qRTOL

qITOL=0

qIJAC=0

qIOUT=1

qIDID=0

qIERR=0

C

C .. Initial values ..

qX(1) = L! x

qX(2) = 0.0D0! y

qX(3) = 0.0D0! vx

qX(4) = 0.0D0! vy

qX(5) = 0.0D0! lambda

C

C .. Solver Call ..

qIDID=0

CALL CPU_TIME(qCPT0)

CALL QUALIDAES(

qMD,qMC,qN,qNIVCOND,

qX,qT,qTEND,qH,qRTOL,qATOL,qITOL,qIOPT,qROPT,

IVCOND,RHS,MATRIX,JAC,qIJAC,SOLOUT,

qIOUT,qLIWORK,qIWORK,qLRWORK,qRWORK,

qRPAR,qIPAR,qIERR,qIDID)

C .. OUTPUT STATISTICS ..

CALL CPU_TIME(qCPT1)

qCPT1=qCPT1-qCPT0

WRITE(12,80021)qIDID,qT,

qIWORK(1),qIWORK(2),qIWORK(6),

qIWORK(10),qIWORK(4),qIWORK(7),

qIWORK(11),qIWORK(3),qIWORK(8),

qCPT1 , qIWORK(5)

80021 FORMAT(’IDID=’,I5,’;’,/,

’T=’,F9.4,’;’,/,

’NACCPT =’,I8 ,’;’,/,

’NRHS =’,I8 ,’;’,/,

’NPDEC =’,I8 ,’;’,/,

’NERJCT =’,I8 ,’;’,/,

’NJAC =’,I8 ,’;’,/,

’NEDEC =’,I8 ,’;’,/,

’NCRJCT =’,I8 ,’;’,/,

’NMAT =’,I8 ,’;’,/,

’NBSUB =’,I8 ,’;’,/,

’CPUTIME=’,F8.3,’;’,/,

’NSEL =’,I8 ,’;’ ,/,’’)

17

CLOSE(12)

END

C --- --- --- --- --- --- ---

C END OF MAIN

C --- --- --- --- --- --- ---

C

SUBROUTINE IVCOND(N,T,X,NCOND,COND,IPAR,RPAR,IERR)

IMPLICIT NONE

INTEGER N,NCOND,IPAR(*),IERR

DOUBLE PRECISION T,X(N),COND(NCOND),RPAR(*)

C .. Initial Conditions for P ..

C COND(1)=

C .. Initial Conditions for V ..

C COND(2)=

RETURN

END

C --- --- --- --- --- --- ---

C END OF IVCOND

C --- --- --- --- --- --- ---

C

SUBROUTINE RHS(qMD,qMC,qN,qT,qX,qF,qG,qIOPT,qROPT,qIPAR,qRPAR,qIDI

#D)

C

IMPLICIT NONE

INTEGER qMD,qMC,qN,qIOPT(*),qIPAR(*),qIDID

DOUBLE PRECISION qT,qX(qN),qF(qMD),qG(qMC),qROPT(*),qRPAR(*)

DOUBLE PRECISION m,g,L

DOUBLE PRECISION x,y,vx,vy,lambda

PARAMETER (m=1.0D0,g=13.7503716373295D0,L=1.0D0)

C

x = qX(1)!

y = qX(2)!

vx = qX(3)!

vy = qX(4)!

lambda = qX(5)!

C

qF(1) = vx

qF(2) = vy

qF(3) = -2.0D0*x*lambda

qF(4) = -m*g-2.0D0*y*lambda

qG(1) = x**2.0D0+y**2.0D0-L**2.0D0

qG(2) = 2.0D0*x*vx+2.0D0*y*vy

qG(3) = 2.0D0*vx*vx+2.0D0*vy*vy+2.0D0*x*(-2.0D0*x*lambda)/(m)+2.0D

#0*y*(-m*g-2.0D0*y*lambda)/(m)

RETURN

END

C --- --- --- --- --- --- ---

C END OF RHS

C --- --- --- --- --- --- ---

C

SUBROUTINE MATRIX(qMD,qN,qT,qX,qMA,qIOPT,qROPT,qIPAR,qRPAR,qIDID)

C

IMPLICIT NONE

INTEGER qMD,qN,qI,qJ,qIOPT(*),qIPAR(*),qIDID

DOUBLE PRECISION qT,qX(qN),qMA(qMD,qN),qROPT(*),qRPAR(*)

DOUBLE PRECISION m,g,L

DOUBLE PRECISION x,y,vx,vy,lambda

PARAMETER (m=1.0D0,g=13.7503716373295D0,L=1.0D0)

C

x = qX(1)!

y = qX(2)!

vx = qX(3)!

vy = qX(4)!

lambda = qX(5)!

C

DO qI=1,qMD

DO qJ=1,qN

qMA(qI,qJ)=0.0D0

END DO

END DO

C

qMA(1,1) = 1.0D0

qMA(2,2) = 1.0D0

qMA(3,3) = m

qMA(4,4) = m

C

RETURN

END

C --- --- --- --- --- --- ---

C END OF MAT

C --- --- --- --- --- --- ---

C

SUBROUTINE JAC()

END

C --- --- --- --- --- ---

C END OF JAC

C --- --- --- --- --- ---

C

SUBROUTINE SOLOUT(NACCPT,TOLD,T,X,N,NN2,NN3,NN4,CONTX,H,C1M1,C2M1,

#

IOPT,ROPT,IPAR,RPAR,IERR)

IMPLICIT NONE

C .. Arguments ..

INTEGER NACCPT,N,NN2,NN3,NN4,IOPT(*),IPAR(*),IERR,I

DOUBLE PRECISION TOLD,T,H,X(N),CONTX(NN4),C1M1,C2M1,

ROPT(*),RPAR(*)

C .. Locals ..

DOUBLE PRECISION TOUT,XOUT(N)

INTRINSIC DSIN,DCOS,DSQRT

EXTERNAL QLDENSOUTV

100 CONTINUE

TOUT=RPAR(1)

IF(TOUT.LE.T)THEN

IF(IPAR(1).EQ.1) WRITE(12,80003)

80003 FORMAT(’simvar={’’T’’;’,

’’’x’’;’,

’’’y’’;’,

’’’vx’’;’,

’’’vy’’;’,

’’’lambda’’;’

#’};’)

C .. Numerical solution ..

CALL QLDENSOUTV(TOUT,XOUT,N,NN2,NN3,NN4,T,H,CONTX,C1M1,C2M1)

C .. Output ..

WRITE (12,80004)

IPAR(1),TOUT,

(XOUT(I),I=1,N)

80004 FORMAT(’simres(’,I6,’,:)=[’,6(D23.16,’,’),’];’)

RPAR(1)=IPAR(1)*RPAR(2)

IPAR(1)=IPAR(1)+1

GOTO 100

END IF

END

C --- --- --- --- --- ---

C END OF SOLOUT

C --- --- --- --- --- ---

B Fortran Source Code for the Model of the Car
Axis

C CarAxis

C Solver: Qualidaes

IMPLICIT NONE

INTEGER qI,qIT,qJ,qK,qLIWORK,qLRWORK,qMD,qMC,qN,

qNIVCOND,qSTARTN,qPRED,qNWTMAT,qNWTUPD,

qDECOMPC,qDECOMPD,qSELCOMP

PARAMETER (qMD=8,qMC=18,qN=22,qNIVCOND=0)

PARAMETER (qLIWORK=1000,qLRWORK=10000)

INTEGER qIWORK(qLIWORK),qITOL,qIOPT(40),qIPAR(1),qIDID,qIJAC,

#qIOUT,qIERR,qTOLMIN,qTOLMAX

DOUBLE PRECISION qT,qTSTART,qTEND,qH,qH0,qCPT0,qCPT1,qPERT

DOUBLE PRECISION qRWORK(qLRWORK),qX(qN),qROPT(40),qRPAR(8),qRTOL,q

#ATOL,qNAN

DOUBLE PRECISION eps,M,L,L0,r,w

EXTERNAL QUALIDAES,IVCOND,RHS,MATRIX,SOLOUT,JAC

INTRINSIC DSIN,DCOS,DEXP,DABS,DTAN

PARAMETER (eps=0.01D0,M=10.0D0,L=1.0D0,L0=0.5D0,r=0.1D0,w=10.0D0)

C

C .. SETTINGS ..

C wrt the Problem

qTSTART=0.0D0

qTEND=3.0D0

qH0=0.01D0

C

qIOPT(2)=0 ! LUN

qIOPT(3)=0 ! NIT

qIOPT(4)=0 ! STARTN

qIOPT(5)=0 ! SINDN

qIOPT(6)=1000000 ! NMAX

qIOPT(8)=0 ! PRED

qIOPT(9)=0 ! NWTMAT

qIOPT(10)=0 ! NWTUPD

qIOPT(11)=1 ! DECOMPC

qIOPT(12)=0 ! DECOMPD

qIOPT(13)=0 ! SELCOMP

qIOPT(14)=0 ! AUTONOM

qIOPT(15)=1 ! MASSTRKT

qIOPT(17)=1 ! IVCNSST

qROPT(1)=0.0D0 ! UROUND

qROPT(2)=0.0D0 ! SAFE

qROPT(3)=0.0D0 ! THET

qROPT(4)=0.0D0 ! FNEWT

qROPT(5)=0.0D0 ! QUOT1

qROPT(6)=0.0D0 ! QUOT2

qROPT(7)=0.0D0 ! HMAX

qROPT(8)=0.0D0 ! FACL

qROPT(9)=0.0D0 ! FACR

C

18

C .. output ..

OPEN(UNIT=12,FILE=’CarAxis_res.m’)

C

C .. rpar/lpar ..

qIPAR(1)=1

qRPAR(1)=qTSTART

qRPAR(2)=(qTEND-qTSTART)/1000

C

C .. Initialization ..

qT=qTSTART

qH=qH0

qRTOL=1.0D-6

qATOL=qRTOL

qITOL=0

qIJAC=0

qIOUT=1

qIDID=0

qIERR=0

C

C .. Initial values ..

qX(1) = 0.0D0! xl

qX(2) = 0.5D0! yl

qX(3) = 1.0D0! xr

qX(4) = 0.5D0! yr

qX(5) = -0.5D0! V1

qX(6) = 0.0D0! V2

qX(7) = -0.5D0! V3

qX(8) = 0.0D0! V4

qX(9) = 0.0D0! lam1

qX(10) = 0.0D0! lam2

qX(11) = 0.0D0! V1P

qX(12) = 0.0D0! V2P

qX(13) = 0.0D0! V3P

qX(14) = 0.0D0! V4P

qX(15) = 0.0D0! yb

qX(16) = 1.0D0! ybP

qX(17) = 0.0D0! ybPP

qX(18) = 1.0D0! xb

qX(19) = 0.0D0! xbP

qX(20) = -1.0D0! xbPP

qX(21) = 0.5D0! Ll

qX(22) = 0.5D0! Lr

C

C .. Solver Call ..

qIDID=0

CALL CPU_TIME(qCPT0)

CALL QUALIDAES(

qMD,qMC,qN,qNIVCOND,

qX,qT,qTEND,qH,qRTOL,qATOL,qITOL,qIOPT,qROPT,

IVCOND,RHS,MATRIX,JAC,qIJAC,SOLOUT,

qIOUT,qLIWORK,qIWORK,qLRWORK,qRWORK,

qRPAR,qIPAR,qIERR,qIDID)

C .. OUTPUT STATISTICS ..

CALL CPU_TIME(qCPT1)

qCPT1=qCPT1-qCPT0

WRITE(12,80021)qIDID,qT,

qIWORK(1),qIWORK(2),qIWORK(6),

qIWORK(10),qIWORK(4),qIWORK(7),

qIWORK(11),qIWORK(3),qIWORK(8),

qCPT1 , qIWORK(5)

80021 FORMAT(’IDID=’,I5,’;’,/,

’T=’,F9.4,’;’,/,

’NACCPT =’,I8 ,’;’,/,

’NRHS =’,I8 ,’;’,/,

’NPDEC =’,I8 ,’;’,/,

’NERJCT =’,I8 ,’;’,/,

’NJAC =’,I8 ,’;’,/,

’NEDEC =’,I8 ,’;’,/,

’NCRJCT =’,I8 ,’;’,/,

’NMAT =’,I8 ,’;’,/,

’NBSUB =’,I8 ,’;’,/,

’CPUTIME=’,F8.3,’;’,/,

’NSEL =’,I8 ,’;’ ,/,’’)

CLOSE(12)

END

C --- --- --- --- --- --- ---

C END OF MAIN

C --- --- --- --- --- --- ---

C

SUBROUTINE IVCOND(N,T,X,NCOND,COND,IPAR,RPAR,IERR)

IMPLICIT NONE

INTEGER N,NCOND,IPAR(*),IERR

DOUBLE PRECISION T,X(N),COND(NCOND),RPAR(*)

C .. Initial Conditions for P ..

C COND(1)=

C .. Initial Conditions for V ..

C COND(2)=

RETURN

END

C --- --- --- --- --- --- ---

C END OF IVCOND

C --- --- --- --- --- --- ---

C

SUBROUTINE RHS(qMD,qMC,qN,qT,qX,qF,qG,qIOPT,qROPT,qIPAR,qRPAR,qIDI

#D)

C

IMPLICIT NONE

INTEGER qMD,qMC,qN,qIOPT(*),qIPAR(*),qIDID

DOUBLE PRECISION qT,qX(qN),qF(qMD),qG(qMC),qROPT(*),qRPAR(*)

DOUBLE PRECISION eps,M,L,L0,r,w

DOUBLE PRECISION xl,yl,xr,yr,V1,V2,V3,V4,lam1,lam2,V1P,V2P,V3P

DOUBLE PRECISION V4P,yb,ybP,ybPP,xb,xbP,xbPP,Ll,Lr

PARAMETER (eps=0.01D0,M=10.0D0,L=1.0D0,L0=0.5D0,r=0.1D0,w=10.0D0)

C

xl = qX(1)!

yl = qX(2)!

xr = qX(3)!

yr = qX(4)!

V1 = qX(5)!

V2 = qX(6)!

V3 = qX(7)!

V4 = qX(8)!

lam1 = qX(9)!

lam2 = qX(10)!

V1P = qX(11)!

V2P = qX(12)!

V3P = qX(13)!

V4P = qX(14)!

yb = qX(15)!

ybP = qX(16)!

ybPP = qX(17)!

xb = qX(18)!

xbP = qX(19)!

xbPP = qX(20)!

Ll = qX(21)!

Lr = qX(22)!

C

qF(1) = V1

qF(2) = V2

qF(3) = V3

qF(4) = V4

qF(5) = V1P

qF(6) = V2P

qF(7) = V3P

qF(8) = V4P

qG(1) = -yb+r*Dsin(w*qT)

qG(2) = -ybP+r*w*Dcos(w*qT)

qG(3) = -ybPP-r*w*w*Dsin(w*qT)

qG(4) = -xb+(L*L-yb*yb)**0.5D0

qG(5) = -xbP-yb*ybP/((L*L-yb*yb)**0.5D0)

qG(6) = -xbPP-yb*yb*ybP*ybP/((L*L-yb*yb)**1.5D0)-(ybP*ybP+yb*ybPP)

#/((L*L-yb*yb)**0.5D0)

qG(7) = -Ll+(xl**2.0D0+yl**2.0D0)**0.5D0

qG(8) = -Lr+((xr-xb)**2.0D0+(yr-yb)**2.0D0)**0.5D0

qG(9) = -V1P+(L0-Ll)*xl/(Ll)+lam1*xb+2.0D0*lam2*(xl-xr)

qG(10) = -V2P+(L0-Ll)*yl/(Ll)+lam1*yb+2.0D0*lam2*(yl-yr)-M*eps*eps

#/(2.0D0)

qG(11) = -V3P+(L0-Lr)*(xr-xb)/(Lr)-2.0D0*lam2*(xl-xr)

qG(12) = -V4P+(L0-Lr)*(yr-yb)/(Lr)-2.0D0*lam2*(yl-yr)-M*eps*eps/(2

#.0D0)

qG(13) = xb*xl+yb*yl

qG(14) = (xl-xr)**2.0D0+(yl-yr)**2.0D0-L*L

qG(15) = xbP*xl+xb*V1+ybP*yl+yb*V2

qG(16) = 2.0D0*(xl-xr)*(V1-V3)+2.0D0*(yl-yr)*(V2-V4)

qG(17) = xbPP*xl+2.0D0*xbP*V1+xb*V1P/((eps*eps*M/(2.0D0)))+ybPP*yl

#+2.0D0*ybP*V2+yb*V2P/((eps*eps*M/(2.0D0)))

qG(18) = 2.0D0*(V1-V3)*(V1-V3)+2.0D0*(xl-xr)*(V1P-V3P)/((eps*eps*M

#/(2.0D0)))+2.0D0*(V2-V4)*(V2-V4)+2.0D0*(yl-yr)*(V2P-V4P)/((eps*eps

#*M/(2.0D0)))

RETURN

END

C --- --- --- --- --- --- ---

C END OF RHS

C --- --- --- --- --- --- ---

C

SUBROUTINE MATRIX(qMD,qN,qT,qX,qMA,qIOPT,qROPT,qIPAR,qRPAR,qIDID)

C

IMPLICIT NONE

INTEGER qMD,qN,qI,qJ,qIOPT(*),qIPAR(*),qIDID

DOUBLE PRECISION qT,qX(qN),qMA(qMD,qN),qROPT(*),qRPAR(*)

DOUBLE PRECISION eps,M,L,L0,r,w

DOUBLE PRECISION xl,yl,xr,yr,V1,V2,V3,V4,lam1,lam2,V1P,V2P,V3P

DOUBLE PRECISION V4P,yb,ybP,ybPP,xb,xbP,xbPP,Ll,Lr

PARAMETER (eps=0.01D0,M=10.0D0,L=1.0D0,L0=0.5D0,r=0.1D0,w=10.0D0)

C

xl = qX(1)!

yl = qX(2)!

xr = qX(3)!

yr = qX(4)!

V1 = qX(5)!

V2 = qX(6)!

V3 = qX(7)!

V4 = qX(8)!

lam1 = qX(9)!

lam2 = qX(10)!

V1P = qX(11)!

V2P = qX(12)!

V3P = qX(13)!

V4P = qX(14)!

yb = qX(15)!

ybP = qX(16)!

ybPP = qX(17)!

xb = qX(18)!

xbP = qX(19)!

xbPP = qX(20)!

Ll = qX(21)!

19

Lr = qX(22)!

C

DO qI=1,qMD

DO qJ=1,qN

qMA(qI,qJ)=0.0D0

END DO

END DO

C

qMA(1,1) = 1.0D0

qMA(2,2) = 1.0D0

qMA(3,3) = 1.0D0

qMA(4,4) = 1.0D0

qMA(5,5) = eps*eps*M/(2.0D0)

qMA(6,6) = eps*eps*M/(2.0D0)

qMA(7,7) = eps*eps*M/(2.0D0)

qMA(8,8) = eps*eps*M/(2.0D0)

C

RETURN

END

C --- --- --- --- --- --- ---

C END OF MAT

C --- --- --- --- --- --- ---

C

SUBROUTINE JAC()

END

C --- --- --- --- --- ---

C END OF JAC

C --- --- --- --- --- ---

C

SUBROUTINE SOLOUT(NACCPT,TOLD,T,X,N,NN2,NN3,NN4,CONTX,H,C1M1,C2M1,

#

IOPT,ROPT,IPAR,RPAR,IERR)

IMPLICIT NONE

C .. Arguments ..

INTEGER NACCPT,N,NN2,NN3,NN4,IOPT(*),IPAR(*),IERR,I

DOUBLE PRECISION TOLD,T,H,X(N),CONTX(NN4),C1M1,C2M1,

ROPT(*),RPAR(*)

C .. Locals ..

DOUBLE PRECISION TOUT,XOUT(N)

INTRINSIC DSIN,DCOS,DSQRT

EXTERNAL QLDENSOUTV

100 CONTINUE

TOUT=RPAR(1)

IF(TOUT.LE.T)THEN

IF(IPAR(1).EQ.1) WRITE(12,80003)

80003 FORMAT(’simvar={’’T’’;’,

’’’xl’’;’,

’’’yl’’;’,

’’’xr’’;’,

’’’yr’’;’,

’’’V1’’;’,

’’’V2’’;’,

’’’V3’’;’,

’’’V4’’;’,

’’’lam1’’;’,

’’’lam2’’;’,

’’’V1P’’;’,

’’’V2P’’;’,

’’’V3P’’;’,

’’’V4P’’;’,

’’’yb’’;’,

’’’ybP’’;’,

’’’ybPP’’;’,

’’’xb’’;’,

’’’xbP’’;’,

’’’xbPP’’;’,

’’’Ll’’;’,

’’’Lr’’;’

#’};’)

C .. Numerical solution ..

CALL QLDENSOUTV(TOUT,XOUT,N,NN2,NN3,NN4,T,H,CONTX,C1M1,C2M1)

C .. Output ..

WRITE (12,80004)

IPAR(1),TOUT,

(XOUT(I),I=1,N)

80004 FORMAT(’simres(’,I6,’,:)=[’,23(D23.16,’,’),’];’)

RPAR(1)=IPAR(1)*RPAR(2)

IPAR(1)=IPAR(1)+1

GOTO 100

END IF

END

C --- --- --- --- --- ---

C END OF SOLOUT

C --- --- --- --- --- ---

References

[1] M. Arnold. Zur Theorie und zur numerischen Lösung von An-
fangswertproblemen für differentiell-algebraische Systeme von höherem In-
dex. Fortschritt-Berichte VDI Reihe 20, Nr. 264. VDI–Verlag, Düsseldorf,
1998.

[2] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of
Initial-Value Problems in Differential Algebraic Equations, volume 14 of
Classics in Applied Mathematics. SIAM, Philadelphia, PA, 1996.

[3] E. Eich-Soellner and C. Führer. Numerical Methods in Multibody Dynamics.
B.G.Teubner, Stuttgart, 1998.

[4] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Computer Society Pr, Linköping, 2004.

[5] C. Führer. Differential-algebraische Gleichungssysteme in mechanischen
Mehrkörpersystemen - Theorie, numerische Ansätze und Anwendungen.
PhD thesis, Technische Universität München, 1988.

[6] C.W. Gear. Differential-algebraic equation index transformations. SIAM
Journal on Scientific and Statistic Computing, 9:39–47, 1988.

[7] C.W. Gear, B. Leimkuhler, and G.K. Gupta. Automatic integration of
Euler-Lagrange equations with constraints. Journal of Computional and
Applied Mathematics, 12/13:77–90, 1985.

20

[8] C.W. Gear and L.R. Petzold. ODE methods for the solution of differen-
tial/algebraic systems. SIAM Journal on Numerical Analysis, 21:716–728,
1984.

[9] E. Griepentrog. Index reduction methods for differential-algebraic equa-
tions. In E. Griepentrog, M. Hanke, and R. März, editors, Seminar Notes -
Berliner Seminar on Differential-Algebraic Equations (Seminarbericht 92-
1), Humboldt Universität zu Berlin, 1992.

[10] E. Griepentrog and R. März. Differential-Algebraic Equations and Their
Numerical Treatment, volume 88 of Teubner-Texte zur Mathematik. BSB
B.G.Teubner Verlagsgesellschaft, Leipzig, 1986.

[11] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of
Differential-Algebraic Systems by Runge-Kutta Methods. Springer-Verlag,
Berlin, Germany, 1989.

[12] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II - Stiff
and Differential-Algebraic Problems. Springer-Verlag, Berlin, Germany, 2nd
edition, 1996.

[13] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis
and Numerical Solution. EMS Publishing House, Zürich, Switzerland, 2006.

[14] L.R. Petzold. A description of DASSL: A differential/algebraic system
solver. In R.S. Stepleman and et al., editors, Scientific Computing, pages
65–68. North Holland, Amsterdam, 1983.

[15] L.R. Petzold. Order results for implicit Runge-Kutta methods applied to
differential/algebraic systems. SIAM Journal on Numerical Analysis, pages
837–852, 1986.

[16] B. Simeon, C. Führer, and P. Rentrop. Diffrential-algebraic equations in
vehicle system dynamics. Surveys on Mathematics for Industry, 1:1–37,
1991.

[17] A. Steinbrecher. QUALIDAES: A software package for the numerical in-
tegration of quasi-linear differential-algebraic equations. Technical report,
Institut für Mathematik, Technische Universität Berlin, Berlin, Germany.
in preparation.

[18] A. Steinbrecher. Analysis of quasi-linear differential-algebraic equations.
Technical Report 11-2006, Institut für Mathematik, Technische Universität
Berlin, Berlin, Germany, 2006.

[19] A. Steinbrecher. Numerical Solution of Quasi-Linear Differential-Algebraic
Equations and Industrial Simulation of Multibody Systems. PhD thesis,
Technische Universität Berlin, 2006.

[20] A. Steinbrecher. Remodeling of dynamical systems to benefit numerical
simulations. In Proceedings of the MATHMOD 2012 - 7th Vienna Inter-
national Conference on Mathematical Modelling (MATHMOD 2012, Wien,
Austria, February 15-17, 2012), 2012.

21

