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ABSTRACT:
An adjoint-based approach for synthesizing complex sound sources by discrete, grid-based monopoles in finite-

difference time-domain simulations is presented. Previously, Stein, Straube, Sesterhenn, Weinzierl, and Lemke

[(2019). J. Acoust. Soc. Am. 146(3), 1774–1785] demonstrated that the approach allows one to consider unsteady

and non-uniform ambient conditions such as wind flow and thermal gradient in contrast to standard methods of

numerical sound field simulation. In this work, it is proven that not only ideal monopoles but also realistic sound

sources with complex directivity characteristics can be synthesized. In detail, an oscillating circular piston and a real

two-way near-field monitor are modeled. The required number of monopoles in terms of the sound pressure level

deviation between the directivity of the original and the synthesized source is analyzed. Since the computational

effort is independent of the number of monopoles used for the synthesis, also more complex sources can be repro-

duced by increasing the number of monopoles utilized. In contrast to classical least-square problem solvers,

this does not increase the computational effort, which makes the method attractive for predicting the effect of sound

reinforcement systems with highly directional sources under difficult acoustic boundary conditions.
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I. INTRODUCTION

Accurate modeling of the directivity of complex sound

sources is a prerequisite for many applications in technical

acoustics, sound reinforcement, sound field synthesis, and

auralization. If a mechanical model of the source is avail-

able, the problem can be solved by finite element method

(FEM) simulations of the entire system (Karjalainen and

Savioja, 2001). More complex composite sources can be

designed by a combination of given generic elements and

filters, once an underlying speaker model is known (Feistel

et al., 2009; van Beuningen and de Vries, 1997).

Grid-based approaches, on the other hand, do not

require any a priori knowledge of the source but try to fit

the coefficients of a synthetic source such that the resulting

sound field optimally reproduces a given reference. This can

be considered as an inverse optimization approach, where,

typically, some kind of least-squares problem needs to be

solved.

Traditionally, these problems are formulated in the fre-

quency domain (Mehra et al., 2014; Ochmann, 1992). As a

least-square fitting algorithm, a pseudo-inverse can be calcu-

lated using a singular value decomposition (SVD) (Wang

and Wu, 1997). In doing so—inverting an ill-conditioned

system—special care such as a Tikhonov regularisation has

to be taken (Kim and Nelson, 2004).

Alternatively, grid-based least-squares problems of

source synthesis can be based on a finite-difference time-

domain (FDTD) method and solved in the time domain, for

example, by determining a minimum eigenvector with an

Arnoldi type algorithm (Takeuchi et al., 2019) or by obtain-

ing a least-square fit by calculating a Moore-Penrose

pseudo-inverse (Bilbao et al., 2019; Escolano et al., 2007).

Other comparable finite-differences sound source modeling

techniques are the pseudospectral time-domain method

(Georgiou and Hornikx, 2016).

In contrast to previous approaches of grid-based

source synthesis, the present method is based on the Euler

equation as a more general form of the wave equation. This

generalized form allows one to model the behavior of

acoustic sources in situations with complex background

flow and thermal stratification, relevant for applications

such as ventilation systems with thermal gradients, sound

reinforcement in open spaces such as train stations or

sports stadiums, or noise pollution in urban environments.

In a previous study (Stein et al., 2019) we have demon-

strated how to model and optimize sound sources, for

example, for open-air concerts with a non-uniform velocity

and temperature background. While in that study only ide-

alized spherical sources with uniform directivity were

used, the present study shows that the adjoint FDTDa)Electronic mail: stein@cfd.tu-berlin.de, ORCID: 0000-0002-4298-2001.
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approach is also capable of synthesizing realistic sound

sources with arbitrary directivity.

Whereas other least-square fitting algorithms such as

the SVD, the Arnoldi iteration, or the Moore-Penrose-

inverse scale quadratically or worse with the number of syn-

thetic source coefficients to be optimized, the cost of the

proposed adjoint-based optimization method depends on the

domain size only but not on the number of coefficients, i.e.,

the number of tuned grid-based monopoles inside the

domain. An adjoint-based source modeling therefore not

only has a wider range of applications concerning the acous-

tic conditions, but it can also be more efficient as the com-

plexity of the source directivity increases, i.e., when more

monopoles need to be used.

The paper is structured as follows. Section II introduces

the adjoint-based concept of source modeling. In Sec. III,

we set up the underlying FDTD simulation utilized in the

analysis. Section IV yields the source synthesis of a circular

piston, while in Sec. V, a realistic speaker is modeled based

on its measured directivity. Section VI draws conclusions

and discusses their impact.

II. ADJOINT-BASED SOURCE MODELING

In the following, we present an adjoint-based optimiza-

tion approach as a novel method to model complex sound

sources. The aim is to synthesize acoustic monopole sour-

ces, which reproduce the sound field of the original source

in an optimal sense.

A. Governing equations

The governing equations for the analyzes are the Euler

equations (Landau and Lifshitz, 1987) in the time domain
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expanded by a source term spðxj; tÞ on the right side of the

pressure (energy) equation to model sound sources. Thus,

on each grid point of the computational domain, a monopole

source is modeled. In general, mass and momentum sources

could also be used. They are not considered here but are the

target of future investigations. The variable . denotes the

density, ui the velocity in xi-direction, p the pressure, and c
the heat capacity ratio. For the indices i and j the summation

convention applies over 1 to 3. For details on the formula-

tion of the energy equation in terms of pressure, see Lemke

et al. (2014).

The Euler equations were chosen as the most general

governing equations for acoustic problems, including non-

uniform base flows and, in perspective, reflecting bound-

aries. However, in the following only free space propagation

examples in an environment at rest are presented. To con-

sider more complex boundary conditions, such as wall

impedance, the direct and the adjoint solver need to be

extended by corresponding boundary conditions which is

beyond the scope of this work.

The source term sðxj; tÞ is used to modify the solution

of the governing Euler equations such that a given reference

sound field is reproduced in space and time. By this, an opti-

mal source distribution is synthesized.

The optimum is defined in terms of the objective

function

J ¼ 1

2

ð
p� prefð Þ2r dX ¼ 1

2

ð
p0 � p0ref

� �2
r dX; (2)

in which pðxj; tÞ denotes the pressure part of the solution of

the governing equations and prefðxj; tÞ a given or desired

(sound) field, while p0 and p0ref denote acoustic fluctuations

in the sense of p0 ¼ p� p1. The integration is processed for

the whole computational domain in space and time with

dX ¼ dx1dx2dx3dt. The weight rðxjÞ controls where the

objective is evaluated. An optimal source synthesis is found

if J reaches a minimum.

To minimize the objective function the high-

dimensional gradient

rsp
Jðxj; tÞ (3)

is required. The degrees of freedom of sp correspond to the

number of grid points multiplied by the number of consid-

ered time steps.

Different methods for computation of the gradient are

available. A computationally efficient technique to deter-

mine the gradient is an adjoint-based approach well known

from different fields, e.g., meteorology (Courtier et al.,
1994) and fluid dynamics (Giles and Pierce, 2000).

B. Adjoint approach

In the following, the adjoint approach is introduced by

a simple example in a discrete manner. The section is based

on Giles and Pierce (2000) and Lemke (2015). A matrix-

vector notation is used.

The adjoint equation arises by the scalar-valued objec-

tive function J, such as Eq. (2). In the matrix-vector nota-

tion, it is given by the scalar product between a user-defined

weight vector g and a system state vector q

J ¼ g � q ¼ gTq: (4)

The system state vector q is the solution of the governing

system

A q ¼ s; (5)

with A as governing operator and s as right-hand side forcing.

To optimize J by means of s in terms of finite differences the

governing equation has to be solved multiple times corre-

sponding to the number of entries in s.
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To reduce the computational effort, the adjoint equation

can be introduced

ATq� ¼ g (6)

with the adjoint variable q�. Thus, a formulation

J ¼ gTq ¼ ATq�
� �T

q ¼ q�TA q ¼ q�Ts ¼ q�s (7)

is found, which allows the computation of the objective J
without solving the governing system for different s.

Instead, the objective can be calculated by a scalar product

using the solution of the adjoint equation (6).

C. Adjoint Euler equations

In the following the derivation and use of the adjoint

Euler equation are shown. Therefore, the set of governing

equations (1) is abbreviated by

EðqÞ � s ¼ 0: (8)

Therein, the variable qðxj; tÞ comprises all primitive varia-

bles of Eq. (1), i.e., q ¼ ½.; u1; u2; u3; p�, and s the source

term sp by means of s ¼ ½0; 0; 0; 0; sp�.
To derive the corresponding adjoint, the equation

ElinðqÞ dq� ds ¼ 0 (9)

and the objective function has to be linearized,

dJ ¼
ð

q� qrefð Þr|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼g

dqd X: (10)

The latter is expressed in a more general form using q.

However, only the pressure part is evaluated in the following.

Combining the linearized governing equations and objective

in a Lagrangian manner leads to

dJ ¼ gTdq� q�T ElinðqÞ dq� dsð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

(11)

¼ q�T dsþ dqT g� ET
linðqÞ q�

� �
(12)

with subsequent partial integration from Eq. (11) to Eq. (12) to

factor out dq. For the sake of simplicity, the integrals

aTb :¼
Ð

abdX are not shown. Instead, the scalar products

indicated by the transpose reminds of the integration. The par-

tial integration gives rise to the adjoint boundary and initial

conditions which are discussed in Lemke (2015) in detail.

Here, the initial adjoint solution is given by q�initðxjÞ ¼ 0, and

non-reflecting adjoint boundary conditions are applied.

The adjoint equation results from demanding

g� ET
linðqÞ q� (13)

in Eq. (12) to be zero. By this dJ simplifies to

dJ ¼ q�Tds; (14)

similar to Eq. (7). The required solution of the adjoint equa-

tion can be interpreted as a high-dimensional gradient of J
with respect to the source terms s

rsJ ¼ q�: (15)

Expanding Eq. (13) the full adjoint Euler equations read

@tq
� ¼ AT�1 �ðBiÞT@xi

q� � @xi
ðCiÞTq� þ ~C

i
@xi

q� g

h i
:

(16)

For a detailed derivation see Lemke et al. (2014) and Stein

et al. (2019). The linearization matrices AðqÞ; BiðqÞ; CiðqÞ;
and ~C

iðqÞ are stated in the Appendix. Please note that the

adjoint Euler equations are linearized only locally around

each point in space and time. The dynamics of the full (non-

linear) Euler solution q [Eq. (1)] is still incorporated in the

adjoint equations since all matrices depend on q. Hence, the

form of the adjoint Euler equations presented here can be

used directly in the general case of unsteady or non-uniform

background flow as demonstrated by Stein et al. (2019).

D. Iterative framework

The adjoint-based gradient [Eq. (15)] is used with an itera-

tive procedure, see Fig. 1. First, the governing equations 1 are

solved, with s½0� ¼ 0 as an initial guess. The superscript in rect-

angular brackets stands for the iteration step. Another initializa-

tion for s is also possible. Subsequently, the adjoint equations

(13) are solved. Based on the latter solution, the required gradient

rsJ is determined and used to update the source distribution s½n�

s nþ1½ � ¼ s n½ � þ arsJ h; (17)

with a denoting an appropriate step size, n the iteration num-

ber, and hðxjÞ as spatial weight defining the permitted source

volume. The procedure is repeated until a user-defined con-

vergence criterion is reached, here 15 loops.

Measurement errors included in the reference qref but con-

tradicting the physics described by the Euler equations are not

reproduced by s. By construction of the adjoint-based

approach—insertion of Eq. (8) in Eq. (11)—these artificial con-

tributions are filtered out naturally. This build-in filtering by the

governing equations is another advantage of the approach.

The presented procedure optimizes to local extrema only.

The identification of a global optimum is not ensured. The com-

putational costs scale linearly with the spatial and temporal reso-

lution of the computational domain only, as the adjoint is solved

for the whole computational domain and time. In particular, the

costs are independent of the number of sources and their

arrangement, which is beneficial if numerous grid-based

monopoles are employed for the source synthesis. No informa-

tion about the underlying loudspeaker is needed, but only the

reference sound field pref . The computational problem is fully

parallelizable. The approach works equally well if only experi-

mentally measured signals at specific locations are available

(Gray et al., 2017; Lemke, 2015; Lemke and Stein, 2020).
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III. FDTD SETUP AND AMBIENT CONDITIONS

Our adjoint-based source modeling method (Sec. II)

relies on the FDTD solution of Eqs. (1) and (13). For both

the same discretization is used. We discretize spatial deriva-

tives with a compact scheme of sixth order (Lele, 1992). For

time-wise integration, we employ the explicit Runge-Kutta-

scheme of fourth order. We consider an unbounded domain

with non-reflective boundaries, realized by characteristic

boundary conditions (Poinsot and Lele, 1992; Stein, 2018)

and a quadratic sponge layer (Mani, 2012). Throughout this

work, a cubical domain is resolved by equidistantly distrib-

uted points with seven gridpoints per 3 kHz wave. It

includes the entire space from the loudspeaker at the center

at ½0; 0; 0� m to the most distant microphone position of

interest. We are assuming an ideal gas with a heat capacity

ratio of c ¼ 1:4. The ambient density corresponds to a speed

of sound of 343 m/s and a pressure p1 of 101 325 Pa.

The masking function of the monopole source region h
[Eq. (17)] and the mask of the objective area r [in Eqs. (2)

and (10)] are composed of error instead of Heaviside func-

tions, to avoid steep gradients in the excitation of the gov-

erning and the corresponding adjoint equations;

r¼
1þ erf

ffiffiffi
p
p

l
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1þ x2
2þx2

3

q
� rJ

� �

2

�
Y3

i¼1

erf

ffiffiffi
p
p

l
ðxi�xi;sÞ

� �
� erf

ffiffiffi
p
p

l
ðxi� xi;eÞ

� �

2
(18)

covers the objective area. The r region starts at a radius rJ

and is limited outwards by a cube. xi;s and xi;e mark the

effective start and end of the cube. l ¼ 20 mm is the selected

transition length of the mask edges;

h ¼ 0:5� 0:5 erf

ffiffiffi
p
p

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
� rsrc

� 	� �
 �
(19)

masks the monopole source region with a radius rsrc. Figure 2

presents the entire three-dimensional isosurfaces of the r
objective and h source masks according to Eqs. (18) and (19),

respectively.

IV. RESULTS PART 1: CIRCULAR PISTON SYNTHESIS

As the first result, we present the reproduction of an

ideal circular piston. This serves as the first proof, that the

adjoint-based source modeling concept can capture general

directivity characteristics.

FIG. 1. Adjoint-based optimization loop. In the present figure, the reference field qref is the analytic solution of a loudspeaker model (Sec. IV). However,

qref may have another origin, e.g., result from microphone measurements (see Sec. V).

FIG. 2. (Color online) Isosurfaces at r ¼ 0:5 [Eq. (18)] masking the objec-

tive region of Sec. IV A. The outer box with rounded corners and the middle

sphere are the outer and inner r borders, respectively. The innermost sphere

depicts the source region of the h ¼ 0:5 isosurface mask [Eq. (19)].
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A. Definition of the circular piston reference

A circular piston in a rigid baffle is an idealized model

of a combined woofer and midrange speaker of a two-way

system. Its resulting far-field p0ref can be calculated analyti-

cally with a standard complex directivity point source

model (Straube, 2019). Later it serves as reference field pref

¼ p1 þ p0ref of our adjoint-based optimization in Eq. (2).

The loudspeaker model consists of the following parts.

First, the Green’s function

G3D ¼
e�ikr

4p r
(20)

describes the wave propagation in free three-dimensional

space. r is the distance between the origin of the point

source and the observer position. In the present work, the

origin of the speaker is always at ½0; 0; 0�m. k ¼ 2p f=c is

the angular wavenumber for the frequency f, being c the

ambient speed of sound and i the imaginary unit.

Second, the directivity of the point source according to

Skudrzyk (2013) [Chap. 26, Eq. (42)] is

D ¼ 2
J1ðk rmem sin bÞ

k rmem sin b
: (21)

The piston surface is orientated in the x2 � x3 plane, being

x1 the main radiation axis. J1 is the Bessel function of first

kind and first order. b is the angle between the main radia-

tion axis (x1) and the line connecting the observer position

and the origin of the speaker (see Fig. 3). On the main radia-

tion axis (b¼ 0), the directivity is limx!02 J1ðxÞ=x ¼ 1. The

radius of the speaker membrane, i.e., the piston radius, is set

as rmem ¼ 82 mm.

Convolution of the total transfer function with the test

signal (audio file) a(t) provides the resulting sound field at a

given observer location and time

p0refðr; b; tÞ ¼ F�1 G3Dðr; f ÞDðb; f Þ F aðtÞ½ �½ �: (22)

F½•� � 1=
ffiffiffiffiffiffi
2p
p Ðþ1

�1 ½•�e�i2pftdt denotes the Fourier transform

from the temporal to the frequency domain. F�1½•�
� 1=

ffiffiffiffiffiffi
2p
p Ðþ1

�1 ½•�ei2pftdf denotes the corresponding inverse

transform.

B. Circular piston synthesis with linear sweep test
signal

Our first test signal is a sine-sweep, with a constant

amplitude and a frequency linearly increasing from 1 to

3 kHz. Below 1 kHz and above 3 kHz, the sweep amplitude

is smoothly faded to zero. Excluding the sponge layer zone,

the effective domain—considered in the following—is one

cubic meter. The total underlying resolution is 197� 197

�99 gridpoints in space and 1000 steps in time with a

sampling frequency of 48 kHz. As radius rsrc of the source

region Eq. (19) we select the same size as the radius rmem

¼ 82 mm of the circular piston model. Equation (18) defines

the objective area with rJ ¼ 175 mm; xi;s ¼ �0:4 m, and

xi;e ¼ 0:4 m.

After 15 iteration loops (refer to Fig. 1), the difference

between the reproduced sound field and the reference field

in the objective area reached convergence. Per loop, the

local 16-core workstation (AMD EPYC 7351) took 67 min

on average. Figure 3 depicts a snapshot of the corresponding

adjoint-based solution p0opt at time step 700. To compare the

pressure signals over time, three virtual microphones

(crosses in the figure) are located inside the r region at x3

¼ 0 (x1-x2 plane of the figure) with the polar coordinates

ðr; bÞ ¼ ð0:3 m; 0�Þ; ð0:4 m; 30�Þ, and ð0:3 m; 45�Þ.
Below, we spectrally analyze the time-series measured

by the virtual microphones introduced by Fig. 3: Fig. 4

depicts the narrowband gain at the three microphone posi-

tions resulting from the adjoint approach. We normalize the

gain at the loudest frequency of the first microphone (at

b ¼ 0�),

Lp;aðf Þ ¼ 20 log10

jF p0aðtÞ
� 

j

max F p0
b¼0

�
mic:
ðtÞ

h i��� ���
� � : (23)

FIG. 3. (Color online) x1-x2 slice at x3 ¼ 0 of the reproduced sound field

p0opt ¼ popt � p1. We denote the three evaluated microphone locations by

crosses, colored magenta. The two outer dashed white lines mark r ¼ 0:5 [see

discussion of Eq. (18)]; the inner dotted green line marks h ¼ 0:5 [Eq. (19)].

FIG. 4. (Color online) Relative SPL at specific microphone locations as a

result of the adjoint-based optimization after 15 iterations.
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On the main, i.e., loudest, radiation axis (b ¼ 0�), the ampli-

tude of the linear sweep is almost perfectly constant within

its entire frequency interval from 1 to 3 kHz. As expected,

with increasing b, the gain decreases among the three curves

of the circular piston model. With increasing frequency,

more side-lobes also appear at smaller b values. The gain

drop reflects this at 3.6 kHz for the b ¼ 45� microphone.

To evaluate the reproduced sound field p0opt further, we

compare it to the reference field p0ref . Figure 5 presents the

sound pressure level (SPL) differences at the microphone

positions. Throughout this work narrowband SPL differ-

ences are

SPLaðf Þ � SPLbðf Þ ¼ 20 log10

F p0aðtÞ
� 
F p0bðtÞ
� 

�����
�����: (24)

The maximum SPL deviation is less than 61 dB near 1 kHz

and 60.5 dB between 1.2 and 3 kHz for all three micro-

phones. These deviations are inside the expected range,

comparable to Stein et al. (2019). A possible explanation of

the slightly larger deviation at the low-frequency edge of

1 kHz is the corresponding wavelength of 0.343 m. This big

wavelength has the same order of magnitude as the compu-

tational domain and such might suffer from cut-off effects

and a less functional sponge layer boundary treatment.

Figure 6 depicts the phase differences of the sound pres-

sure signal at the microphones. The most significant differ-

ence corresponds to a phase shift of less than 0.8% (phase

shift in rad = 2p) within the considered frequency interval.

So, besides the magnitude also the phase between all micro-

phone signals is correctly captured by our optimization

algorithm.

C. Directivity characteristics of the circular piston

This section discusses mono-frequent test signals as the

input of the circular piston model to study frequency compo-

nents individually. The setup is the same as in Sec. IV B.

The only difference is that the test signal is resolved by 800

instead of 1000 time steps, reducing the average computa-

tion time per loop from 67 to 55 min.

First, we demonstrate that the adjoint-based source syn-

thesis reproduces similar directives like the reference. Due

to the rotational symmetry around the x1-axis and a mirror

symmetry at the x2 � x3 plane, it is sufficient to present here

x2 � x1 slices for positive x1 only. Figure 7 displays the rela-

tive SPL directivity for three different test cases calculated

with a pure harmonic 2 and 3 kHz signal, respectively. At

2 kHz we find a maximum difference of �0.3 dBrel

(b ¼ 0�); at 3 kHz the greatest deviation is þ0.3 dBrel

(b ¼ 90�).
Quantitatively these deviations of directivity fully com-

ply with practical sound reinforcement or wavefield synthe-

sis needs. The error is comparable or even smaller to other

synthesis approaches (Hamilton and Bilbao, 2017).

FIG. 5. (Color online) SPL difference between the reference and the

adjoint-approach after 15 iterations at three microphone locations.

FIG. 6. (Color online) The phase difference between the reference and the

adjoint-approach after 15 iterations.

FIG. 7. (Color online) SPL directivity of the circular piston model (Sec.

IV A) and the optimized monopole distribution (Sec. II) after 15 iterations.

(a) SPL directivity at 2 kHz. (b) SPL directivity at 3 kHz.
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D. Spectral source patterns of the circular piston

An interesting question is: How did the adjoint-based

monopole synthesis manage to reproduce p0ref?

To answer this question, we study the underlying source

distribution sp of monopoles, which was created by our opti-

mization algorithm. Also, we want to investigate how the

size of the source region (h mask) and the frequency affects

the quality of the reproduction.

The following discussion is based on 6� 9 different

cases, in which the extension of the spherical source region

and the frequency of the test signal are varied. Six different

radii rsrc ¼ ½5; 6;…; 10�Dx1 ¼ ½41; 49; 57; 65; 73; 82�mm of

the source region (h of Fig. 2) and nine different frequencies

f ¼ ½1; 1:25; 1:5;…; 3� kHz are considered. Figure 8 shows a

matrix of these 6� 9 cases. For each case, the source distri-

bution hspi of an x1-x2 region with 204� 204 mm (25� 25

gridpoints) is depicted. The radius rsrc ¼ 10 Dx1 of the least

compact source region is nearly as big as the smallest con-

sidered wavelength (3 kHz): rsrc=ðc=f Þ ¼ 0:71.

Like p0, spDt is also a small scale fluctuation around

zero in Pa [see Eq. (1) for the unit]. A simple temporal aver-

age of absolute sp values discards phase information of the

monopole distribution. Therefore, we define

hspi ¼ hsign spð40 mm; 0 mm; 0 mm; tÞ
� 

spð:; :; :; tÞit:
(25)

Normalization with the sp-sign at ½40; 0; 0� mm ensures

that at this gridpoint the argument inside the brackets of

Eq. (25) is positive for all times. The algorithm successfully

transferred the symmetry of the sound field to the source dis-

tribution of Fig. 8, as expected. At low frequencies near

1 kHz, the source distribution is Gaussian (circular) with a

uniform phase. Around 2 kHz, the radiation in the x2 direc-

tion (b ¼ 90�) is reduced, by placing some monopoles with

anti-phase along the x2 axis. Near 3 kHz, the presence of

the first side lobe is reflected by the separation of two visu-

ally distinguishable vertically aligned ellipsoids (black, in

anti-phase to the main lobe at b ¼ 0�). The adjoint-based

optimization always utilizes the entire available region pro-

vided by the hðrsrcÞ sphere to reach the optimization target.

Thus, the spatial distribution of active monopoles increases

cubically with rsrc.

To assess the overall reproduction quality with a single

scalar number, the use of the objective function J [Eq. (2)]

is evident. We use J½1� to normalize the objective function,

~J
n½ � ¼ J n½ �=J 1½ �: (26)

Strictly speaking, ~J
½n�

is only a measure of how strong

the algorithm reduces the objective function in n loops. A

real convergence criterion should be proportional to the

local minimum, which ideally can be reached. To this end,

we define

~Jconv: ¼ ~J
nconv:½ �

being nconv: the first n where

~J
nconv:�1½ � � ~J

nconv:½ �
< 0:007: (27)

Figure 9 shows the ~Jconv: values for the same 6� 9

radius-frequency matrix as before. Larger rsrc lengths guar-

antee the best results, especially important in case of high

frequencies. Near 1 kHz small source regions of rsrc ¼ 5 Dx1

are sufficient. The monopol-like directivity below 1 kHz is

simply captured. The greatest reduction to 1% is reached at

3 kHz and rsrc ¼ 10 Dx1 of Fig. 9. The least reduction to

11% is visible at 3 kHz and rsrc ¼ 5 Dx1. With a smaller

number of available monopole sources, the more detailed

side-lobe pattern at high frequencies is harder to capture.

In summary, we found that a spherical source region

with a radius of ten gridpoints is adequate to reproduce the

directivity of the circular piston reference (Sec. IV A) up to

3 kHz, using our adjoint approach. Near or below 1 kHz,

already a radius of five gridpoints is adequate to model the

circular piston. The largest appearing SPL error is 1.5 dB

(see Fig. 7), while above 1.2 kHz, the error is always below

0.5 dB (see Fig. 5).

FIG. 8. (Color online) Radius-fre-

quency matrix of the averaged mono-

pole strength [Eq. (25)] as a result of

the adjoint-based synthesis. Each

square holds a section of 25� 25 grid-

points centered at the origin of the x1-

x2 plane. The edge length of the

squares is 204 mm. The vertical purple

lines of the square bottom row indicate

the wavelength c/f corresponding to

each frequency (at the right side of

each square).
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V. RESULTS PART 2: SYNTHESIS OF REAL-LIFE
SOURCES

In the following, we demonstrate that our source syn-

thesis method can model the directivity of a Genelec 8020c

2-way near-field monitor as an example for real-life sources.

In contrast to Sec. IV, its magnitude and phase directivity is

less smooth and holds no clear symmetry.

A. Origin of the experimental reference

The impulse response of the Genelec 8020c monitor was

measured in the semi-anechoic chamber at RWTH Aachen on

a 2� � 2� equi-angular sampling grid using an exponential

sweep of order 14 and a G.R.A.S. 40AF half-inch free-field

microphone placed at a distance of 2 m from the speaker. In

post-processing, the common propagation delay was removed

and a subsonic high-pass filter was applied (fourth order

Butterworth �3 dB with 30 Hz). The impulse responses—

measured with 44 100 Hz—were truncated to 9.5 ms to discard

reflections by applying a 2 ms Hann window fade in/out. A

discrete spherical Fourier transform according to Rafaely

(2015) [Eq. (3.34)] with a spherical harmonics order of 20 was

applied to the magnitude and unwrapped phase spectra. The

data are publicly available in Asp€ock et al. (2019).

To obtain the impulse response Hðx1; x2; x3; f Þ at all

necessary locations we did a range extrapolation

(Brinkmann and Weinzierl, 2017) of the spherical harmonic

coefficients soft-limited by 40 dB following Bernsch€utz

et al. (2011). Thus, for a given test signal a(t), the sound

field of the Genelec speaker is

p0refðx1; x2; x3; tÞ ¼ F�1 Hðx1; x2; x3; f Þ F aðtÞ½ �½ �: (28)

Here, G3D and D of Eq. (22) became the impulse response H.

B. Genelec monitor synthesis with linear sweep test
signal

As a test signal, we use the same 1–3 kHz sine-sweep as

in Sec. IV B. To avoid errors caused by a huge range extrapola-

tion, we increased the utilized computational domain to 2.6 m

in all room directions. Subsequently, we can place the objec-

tive mask Eq. (18)—the area where the difference between the

reference and the reproduced field is minimized—at a

minimum radial distance of rJ ¼ 0:9 m with respect to the

source center at ½0; 0; 0� m. xi;s; xi;e are set 61.2 m, respec-

tively. To enclose the Genelec 8020c dimensions of

½143; 242; 151�mm we confine the region utilized for the

monopole synthesis with rsrc ¼ 0:17 m [Eq. (19)]. In total the

spatial domain is resolved with 197� 197� 197 points and

the temporal domain with 974 steps at 44 100 Hz. With this

resolution, the 16-core workstation (AMD EPYC 7351) pro-

vided one loop every 190 min.

To compare our results with the reference, we pick three

microphone positions inside the objective mask r [Eq. (18)].

The position r, b in the x1-x2 plane with x3 ¼ 0 (r, b are

defined as in Fig. 3) are given in the legend of the following

graphs. Figures 10 and 11 show the SPL and the phase differ-

ences between our model and the measurement (Sec. V A).

The maximum SPL deviation for the microphones is

1.6 dB. At low frequencies, e.g., at 1 kHz, the deviation

decreases to 0.9 dB. The phase deviation displays shifts of

less than eight percent in the whole frequency interval

[phase shift in radian=ð2pÞ]. Below 2.5 kHz the phase shift is

just 1%. At low frequencies, the reproduction is more accu-

rate since the sound field is less complex. Please note, 3 kHz

is the bass/treble crossover frequency of the monitor.

C. Directivity characteristics of the Genelec monitor

Next, we repeat the setup of Sec. V B but replace the sweep

with mono-frequent test signals. This allows us to reduce the

number of timesteps to 674, corresponding to 113 min of

FIG. 10. (Color online) The SPL difference between the Genelec reference

and the adjoint-approach after 15 loops with ~J
½15� ¼ 0:025.

FIG. 11. (Color online) The phase difference corresponding to the same

case as Fig. 10.

FIG. 9. Objective function according to the convergence criterion of Eq. (27).
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computation time per loop. We analyze the spectral components

of the directivity over all b angles, instead of selecting three

microphone positions only. The following polar plots are all

located in the x1-x2 plane at a radial distance of r ¼ 1 m. We

normalized both the SPL and the phase by the maximum value.

Figure 12 depicts the SPL directivity. At 2 and 3 kHz, the

maximal difference between the experimental reference and

our reconstruction is 1.8 and 10.4 dB, respectively. These maxi-

mal differences, however, appear only on the rear side of the

monitor where absolute SPL levels are 15 dB below the maxi-

mum SPL value. The adjoint approach gives less prominence

to regions, where relatively small dB values contribute only

minimally to the overall objective function Eq. (2). As men-

tioned before, 3 kHz is especially critical due to the interference

of the bass/treble drivers at the crossover frequency. In the

main radiation direction of b 2 ½�45�; 45�� the maximal SPL

deviations are 1.6 and 2.4 dB for 2 and 3 kHz, respectively.

Figure 13 shows the normalized phase in radian over

2p. Similarly to the SPL directivity, the maximum phase

deviations arise at the rear side, too, with 8% at 2 kHz up to

114% at 3 kHz. In the most relevant listening region

(b 2 ½�45�; 45��) the maximal deviation is less than 8% for

both frequencies.

To illustrate the accuracy of the reconstruction of the

directivity as a weighted average over all radiation direc-

tions, we have calculated the directivity index for six mono-

frequent signals in octaves from 250 Hz to 4 kHz,

DI¼ 10log10

jp̂0ðr;b¼ 0;u¼ 0; f Þj2

1

4p

ð2p

u¼0

ðp

b¼0

jp̂0ðr;b;u; f Þj2 sinðbÞdbdu

; (29)

where p̂0ðf Þ ¼ F½p0ðtÞ� and r ¼ 1 m. u is the azimuthal

angle of the x1 � x3 plane. The simulation reproduces (see

Fig. 14) the increase of the directivity with the frequency

very well, with a maximum deviation of 1.5 dB at 2 kHz.

FIG. 12. (Color online) The SPL directivity of the measured Genelec moni-

tor (Sec. V A) and the synthesized monopole distribution after 15 optimiza-

tion loops with ~J
½15� ¼ 0:019; 0:078 at 2 and 3 kHz, respectively. (a) SPL/

dBrel at 2 kHz. (b) SPL/dBrel at 3 kHz.

FIG. 13. (Color online) The phase directivity corresponding to the same

case as Fig. 12. (a) Radian/2p at 2 kHz. (b) Radian/2p at 3 kHz.

FIG. 14. (Color online) The directivity index [Eq. (29)].
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So, in addition to the polar radiation patterns in the

x1-x2 plane (Sec. V C) also the directivity index—as a three-

dimensional integral measure—is accurately modeled by

our optimization algorithm.

Overall the occurring deviations are comparable to other

grid-based source synthesis approaches without Euler equa-

tions (Bilbao et al., 2019; Feistel et al., 2009; Karjalainen and

Savioja, 2001; van Beuningen and de Vries, 1997). To further

improve the reproduction quality of the presented approach a

finer numerical resolution, yielding more grid-based monop-

oles within the same volume, could be used.

VI. CONCLUSION

A grid-based monopole synthesis method based on the

Euler equation as a more general form of the wave equation is

introduced and validated on the examples of an analytic piston

model (Sec. IV) and a measured two-way monitor (Sec. V).

We demonstrated that our source synthesis method can model

the directivity of practically relevant sound sources in ampli-

tude and phase. The reproduction quality is best for the radia-

tion angles that contribute most to the overall SPL.

As discussed in Sec. II D, the synthesized source is cor-

rected for measurement errors contradicting the Euler equa-

tions. Therefore, some deviations to the measured reference

are not numerical errors but a “physically filtered” version

of the measurements.

The computational effort of the utilized adjoint-based

optimization algorithm depends solely on the FDTD solu-

tion of the equation system. They do not increase with the

number of monopole sources within the same finite differ-

ences domain. This is particularly advantageous when very

complex sources need to be reproduced with high accuracy

using numerous synthetic sources. The method autono-

mously seeks an optimal representation in terms of a local

minimum of the objective function without the need for

prior knowledge about the synthesized source itself.
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APPENDIX

The matrices in Eq. (16) are given by

A ¼

1 0 0 0 0

u1 q 0 0 0

u2 0 q 0 0

u3 0 0 q 0

0 0 0 0
1

c� 1

2
6666666664

3
7777777775
; B1 ¼

u1 q 0 0 0

u2
1 2qu1 0 0 1

u1u2 qu2 qu1 0 0

u1u3 qu3 0 qu1 0

0
cp

c� 1
0 0

cu1

c� 1

2
666666664

3
777777775
;

B2 ¼

u2 0 q 0 0

u1u2 qu2 qu1 0 0

u2
2 0 2qu2 0 1

u2u3 0 qu3 qu2 0

0 0
cp

c� 1
0

cu2

c� 1

2
666666664

3
777777775
; Ci ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �ui

2
66666664

3
77777775
;

B3 ¼

u3 0 0 q 0

u1u3 qu3 0 qu1 0

u2u3 0 qu3 qu2 0

u2
3 0 0 2qu3 1

0 0 0
cp

c� 1

cu3

c� 1

2
6666666664

3
7777777775
; dCi ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �dui

2
66666664

3
77777775
;

~C
i ¼

0 0 0 0 0

0 0 0 0 �p�di;1

0 0 0 0 �p�di;2

0 0 0 0 �p�di;3

0 0 0 0 0

2
66666664

3
77777775
:
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