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Zusammenfassung

Das parabolische Anderson-Modell ist die Wärmeleitungsgleichung auf dem Z
d mit zu-

fälligem Potential. Charakteristisch für die Langzeitasymptotik der Lösung ist das Auf-
treten von sich immer weiter voneinander entfernenden Inseln, in denen fast alle Masse
konzentriert ist. Dieser Effekt wird als Intermittenz bezeichnet. Es gibt im Wesentli-
chen zwei Möglichkeiten, das Verhalten der Lösung zu betrachten. Einerseits kann man
die fast sichere (quenched) Asymptotik betrachten, nachdem eine Realisierung des Po-
tentials fixiert wurde. Andererseits kann man die (annealed) Asymptotik betrachten,
nachdem der Erwartungswert über das Potential genommen wurde.

Eine mögliche Charakterisierung der Intermittenz erfolgt über den Vergleich des asym-
ptotischen Wachstums verschiedener Momente der Lösung. Wir leiten asymptotische
Formeln her für die zeitliche Korrelation von regulär variierenden Funktionen der Lösung
für den Fall einer homogenen Anfangsbedingung und eines geeigneten zeitunabhängigen
Potentials. Mit Hilfe dieser Formeln lassen sich unter anderem alle Momente der Lö-
sung bis auf asymptotische Äquivalenz genau bestimmen. Weiterhin beschreiben wir die
Geometrie der Intermittenzpeaks, die das gemittelte Verhalten der Lösung bestimmen,
insbesondere die Höhe, die Größe und die relative Häufigkeit der Peaks. Darüber hinaus
untersuchen wir die Alterungseigenschaften des Modells anhand verschiedener Defini-
tionen. Im Besonderen bestimmen wir, wie lange einzelne Intermittenzpeaks relevant
bleiben.

Eine weitere Charakterisierung der Intermittenz erfolgt über den Vergleich der Quenched-
Asymptotik mit der Annealed-Asymptotik. Betrachtet man bei homogener Anfangsbe-
dingung eine mit der Zeit wachsende Teilbox des Zd und mittelt die Lösung in dieser, so
erhält man bei langsamem Wachstum der Box dieselbe Asymptotik wie im Quenched-
Fall, wohingegen bei schnellem Wachstum dasselbe Verhalten eintritt wie im Annealed-
Fall. Wir geben für geeignete Potentialklassen stabile Grenzwertsätze für die in der Box
gemittelte Lösung in Abhängigkeit vom Potential und der Wachstumsrate der Box an,
um den Übergang zwischen dem Quenched- und dem Annealed-Regime zu beschreiben.
Desweitern leiten wir hinreichende Bedingungen an das Wachstum der Box her für ein
starkes Gesetz der großen Zahlen.

Abschließend leiten wir asymptotische Formeln her für die räumliche und die zeitliche
Korrelation im parabolischen Anderson-Modell mit (zeitabhängigem) weißem Rauschen
als Potential.





Abstract

The parabolic Anderson model is the heat equation on the lattice with a random po-
tential. A characteristic feature of the large time asymptotics of the solution is the
occurrence of small islands where almost all mass is concentrated. This effect is called
intermittency. There are basically two ways of looking at the long time behaviour of
the solution. On the one hand one can consider the almost sure asymptotics after one
realisation of the potential is fixed (the quenched setting). On the other hand one
can consider he asymptotics after taking expectation with respect to the potential (the
annealed setting).

One possible characterisation of intermittency is to compare the asymptotics of different
moments of the solution. We derive asymptotic formulas for time correlations of regu-
larly varying functions of the solution in the case of a homogeneous initial condition and
an appropriate time-independent potential. These formulas can be used, for instance,
to calculate moments of the solution of all orders up to asymptotic equivalence. Fur-
thermore, we show what the geometry of the intermittency peaks that determine the
annealed behaviour looks like. More precisely, we show what the height, the size and
the frequency of the relevant peaks are. We also investigate ageing properties of the
model under different definitions. In particular, we examine for how long intermittency
peaks remain relevant.

Another characterisation of intermittency is to compare the quenched asymptotics of
the solution with the annealed asymptotics. If one considers the averaged solution to
the parabolic Anderson model with homogeneous initial condition in a growing box
that is time-dependent, then one observes different regimes. If the growth rate of the
box is small, then one observes quenched behaviour, whereas if the box grows fast one
observes annealed behaviour. We derive stable limit theorems for the averaged solution
depending on the growth rate of the box and the potential tails for suitable potentials
to describe the transition from quenched to annealed behaviour. Furthermore, we give
sufficient conditions on the growth of the box for a strong law of large numbers to
hold.

Finally, we derive asymptotic formulas for time and spatial correlations in the parabolic
Anderson model with a (time-dependent) white-noise potential.
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1 Introduction

1.1 The parabolic Anderson model

The parabolic Anderson model (PAM) is the heat equation on the lattice with a random
potential, given by(

@
@t
u(t; x) = ��u(t; x) + �(t; x)u(t; x); (t; x) 2 (0;1)� Zd;

u(0; x) = u0(x); x 2 Zd; (1.1)

where � > 0 denotes a diffusion constant, u0 a nonnegative function, and � the discrete
Laplacian, defined by

�f(x) :=
X
y2Zd:

jx�yj1=1

[f(y)� f(x)] ; x 2 Zd; f : Zd ! R:

Furthermore, � :=
�
�(t; x); x 2 Zd; t 2 (0;1)

	
is a (possibly time-dependent) random

potential or random medium. If not stated otherwise, and in particular in Chapters 2
and 3, we will assume that � is an i.i.d. field of time-independent random variables, i.e.
� =

�
�(x); x 2 Zd	. Chapter 4 deals with a time-dependent potential field. Typical

choices for u0 are the homogeneous initial condition u0 � 1, and the localised initial
condition u0 = �0. The former makes the solution u(t; �) spatially homogeneous and
ergodic for every t.

The PAM is an example of a reaction-diffusion equation with random coefficients where
on the one hand interesting effects occur that are not observable in the deterministic
case but which, on the other hand, is still mathematically tractable. Therefore, it has
been an active field of research during the last decades.

One possible interpretation is that u describes a heat flow through a field of random
sources (sites x with �(x) > 0) and sinks (sites x with �(x) < 0). Another interpretation
is that u(t; x) describes the averaged concentration of a branching random walk in a
random potential field at time t in the lattice point x. If �(x) > 0, then the random walk
produces offspring, whereas if �(x) < 0 then it is killed with a certain rate. The case
�(x) = �1 corresponds to a hard trap where the random walk is killed immediately.
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1 Introduction

The solution u depends on two effects. On the one hand, the Laplacian tends to make it
flat, whereas the potential causes the occurrence of small regions where almost all mass
of the system is located. The latter effect is called intermittency. For time-independent
potentials it is always present unless the potential is almost surely constant, see [GM90,
Theorem 3.2]. It turns out that, the more heavy tailed the potential is, the more
dominant this effect becomes. These regions are often referred to as intermittency
islands, and the solution u(t; �) develops high peaks on these islands. As time increases
the islands become more scattered in space. Commonly the almost sure behaviour of u
is referred to as quenched, whereas the behaviour after averaging over the potential �
is called annealed. By h:i we denote expectation with respect to �. The corresponding
probability measure is denoted by P.

The PAM with i.i.d. time-independent potential was introduced in the seminal pa-
per [GM90] where existence and uniqueness of the solution were investigated as well as
first order asymptotics of the statistical moments and of the almost sure behaviour of
the solution. An overview of the rich literature and recent results on the PAM can be
found in [GK05]. Applications of the PAM are summarised, for instance, in [M94].

Further versions of the PAM, which are not considered in this thesis, are those with
correlated potential fields as considered for instance in [GM00], those with drift, see
[D08], or those with continuous space as in [GK00] and [GKM00]. Relatives of the PAM
are models concerning Brownian motion and random walks among random obstacles
that were surveyed in [S98].

The name parabolic Anderson model originates from the fact that the heat equation is
a parabolic equation and that (1.1) contains the Anderson Hamiltonian H := � + �,
named after P.W. Anderson who originally, in the late 1950s, investigated the discrete
Schrödinger equation with a random potential as a quantum mechanic model for elec-
tron transport in an alloy, see [A58]. For that model, called the Anderson model,
he showed complete localisation of the electrons. He was awarded the Nobel price in
physics in 1977 for his resarch on that model. Anderson Hamiltonians are a special case
of random Schrödinger operators. They are still a wide and active field of research.
For an overview of this topic see for instance [K07]. The PAM was introduced into the
physics literature in the early 1980s as a tractable model for intermittency with possible
applications to magneto-hydrodynamics and other fields. For more details see [M94] or
[ZMRS88].

Representations of the solution

There are basically two ways of representing the solution u. One is a more probabilistic
approach via path-integral formulae, the Feynman-Kac representation. The other one

12



1.1 The parabolic Anderson model

is a more analytic approach via a Fourier expansion of the eigenpairs of the Anderson
Hamiltonian in a large box with suitable boundary conditions, the spectral representa-
tion. Throughout this thesis we will heavily benefit from both of them.

Feynman-Kac representation

The solution to (1.1) admits the following Feynman-Kac representation (see [GM90,
Theorem 2.1]),

u(t; x) = Ex exp

( tZ
0

� (Xs) ds

)
u0 (Xt) ; (t; x) 2 [0;1)� Zd; (1.2)

where X is a simple, symmetric, continuous time random walk with generator �� and
Px (Ex) denotes the corresponding probability measure (expectation) if X0 = x a.s.
Here a new kind of randomness, the random walk X, is introduced. From this repre-
sentation one can justify the interpretation of an averaged random walk in a random
potential field.

It is in particular appropriate to characterise the asymptotic behaviour of u as t tends
to infinity by the optimal path of X through the potential field that contributes most
to the expectation. On the one hand the random walk prefers to stay at high potential
peaks but on the other hand it might have a long way through regions with low potential
values to get there and it has to pay for staying in a high peak without moving for a
long time.

Spectral representation

With high probability a random walk will not leave a large box up to time t. Therefore,
it follows from the Feyman-Kac formula that for large t we can asymptotically approx-
imate the solution to (1.1) by the solution in a large time-dependent box with suitable
boundary conditions. Usual choices are Dirichlet (or zero), periodic and free boundary
conditions. Let QR := [�dRe; dRe]d \ Zd be the d-dimensional centered lattice cube of
radius dRe � 1, uR be the solution to the PAM in this box and HR be the corresponding
Anderson Hamiltonian. Then uR admits the spectral representation

uR(t; x) =

jQRjX
k=1

e�
R
k
t
�
eRk ;1

�
eRk (x); (t; x) 2 [0;1)�QR; (1.3)

where �R1 > �R2 � � � � � �RjQRj
is an order statistics of the eigenvalues of HR, and

eR1 ; e
R
2 ; � � � ; eRjQRj

is a corresponding orthonormal basis of `2-eigenfunctions such that

13



1 Introduction

eR1 > 0. Furthermore, (�; �) denotes the standard scalar product. More details on this
construction will be given in Chapter 2.

1.2 Intermittency

Classical approaches to intermittency

The asymptotic property of the PAM that has attracted the most attention is the
phenomenon of intermittency as mentioned above. While heuristically it is quite clear
what intermittency looks like it is challenging to give it a precise mathematical meaning.
The following features are usually associated with intermittency:

i) The technique of homogenisation does not work, i.e. it is not possible to approxi-
mate the PAM by a heat equation with a deterministic potential.

ii) The eigenfunctions in (1.3) are exponentially localised and the principal eigenvalue
is dominant.

iii) The annealed solution grows asymptotically much faster than the quenched one,
i.e. there are very unlikely potential configurations that determine the moments
due to high exceedances of its extreme values.

iv) Higher moments grow asymptotically much faster than lower moments. This was
the first rigorous definition of intermittency given in [GM90]. They call an ergodic
field u intermittent if for all p; q 2 N with p > q � 1,

lim
t!1

�
log hu(t; 0)pi

p
� log hu(t; 0)qi

q

�
=1: (1.4)

An argument why the definition in iv) is consistent with the heuristic picture from
above is given in [GM90, page 616].

The disadvantage of all these characterisations is that they do not provide much infor-
mation on what the geometric picture of intermittency peaks looks like. More precisely,
one wants to know more about the height, location, frequency, size and shape of � and
u within the intermittency islands. Therefore, more sophisticated methods have been
established recently. The drawback of these approaches is that they require stronger as-
sumptions on � and that different techniques are required depending on the distribution
of �(0). We will come back to this later.

Item ii) is closely related to the topic of Anderson localisation where the exponential
localisation of eigenfunctions is proven for Anderson Hamiltonians. One expects that
the intermittency peaks in the PAM look like these eigenfunctions.

14



1.2 Intermittency

Transition from quenched to annealed behaviour

As already mentioned, those realisations of � that govern the quenched behaviour of
u differ heavily from those that govern the annealed behaviour. Therefore, there has
recently been some effort to understand the transition mechanism from the quenched
to the annealed regime.
To this end, one looks at expressions such as 1

jQj

P
x2Q u(t; x) with u0 � 1, where Q

is a large centred box. If Q has a fixed size, then 1
jQj

P
x2Q u(t; x) admits quenched

behaviour as t tends to infinity. On the other hand if we fix t and let the size of Q
tend to infinity then (due to the homogeneous initial condition) by Birkhoff’s ergodic
theorem 1

jQj

P
x2Q u(t; x) admits annealed behaviour almost surely. In [BAMR07] the

authors examine the transition mechanism between these two regimes by investigating
1
jQj

P
x2Q u(t; x) for boxes with time-dependent growth rate. More precisely, they give

necessary and sufficient conditions on the growth rate for a central limit theorem and
a weak law of large numbers. More details on their work will be given in Chapter 3
where we extend their results to stable limit theorems and give sufficient conditions for
a strong law of large numbers.

Universality classes

In [HKM06] the authors show that under some mild regularity assumptions on the tail
behaviour of �(0) there are only four universality classes of intermittency.

i) The first universality class contains potentials with tails that decay faster than
those of a double-exponential distribution. In this class the quenched as well as
the annealed intermittency peaks consist asymptotically of single lattice points.
This class corresponds to the case � =1 in [GM98].

ii) The second universality class contains potentials with tails that decay asymp-
totically as those of a double-exponential distribution, i.e. � logP(�(0) > h) �
expfh=�g; h ! 1, for some parameter � > 0. In this class the intermittency
peaks consist of islands with asymptotically fixed size. It turns out that the
shape of the potential field of the annealed intermittency islands is the same as
for the quenched ones but the islands differ in height. This class was investigated
in [GM98] where the first universality class is included as a special case.

iii) The third universality class contains the so called almost bounded potentials whose
tails decay more slowly than those of a double-exponential distribution. This class
includes both bounded and unbounded potentials and was studied in [HKM06].
In this class the growth rate of the size of the intermittency islands is of slowly
varying order.

15



1 Introduction

iv) The fourth universality class contains bounded from above potentials whose tails
decay more slowly than those of the third universality class. It was studied in
[BK01]. In this class the growth rate of the size of intermittency islands is of
regularly varying order.

In all these classes, one can derive the leading terms of the quenched and the annealed
asymptotics of u by considering large deviations for the random walk in the Feynman-
Kac formula that give its optimal way through an optimally shaped potential field.
Alternatively, one can derive these results by applying a large deviation principle for
the principal eigenvalue in the spectral representation. Heuristics for both approaches
can be found in [GK05]. In Section 2.4 we derive exact moment asymptotics for the
first universality class. We show that only the principal eigenvalue in the spectral
representation contributes and give its precise asymptotic behaviour, i.e. we identify all
other terms in the asymptotic expansion.

Geometric description of intermittency

If the potential tails are Pareto distributed, i.e. P(�(0) > x) = x��; � > d; x � 1, then
an even stronger notion of intermittency can be proven. In [KLMS09] the authors show
that for u0 = �0 asymptotically there is only one intermittency peak in probability and
that almost surely there are only two for any large t. This result is known as the two
cities theorem. For an overview of the PAM with heavy-tailed potential see [M09].

Another more geometrical approach aims to define time-dependent sets �t 2 Qt, with
Qt a large box, such that

P
x2�t

u(t; x) � P
x2Qt

u(t; x); t ! 1. In [GKM07] the
authors show that in the first and second universality class with u0 = �0 in a box of
sidelength t log2 t the number of quenched intermittency islands increases more slowly
than any power of t and their distance increases almost like t. Furthermore, they find
that j�tj = to(1). Their rather technical approach is based on the Feynman-Kac formula
as well as on the spectral representation of u. Shape and size of the intermittency islands
are determined by the shape and the support of the eigenfunctions. In Section 2.5 we
give a precise picture of the geometry of the annealed intermittency islands in the first
universality class.

Ageing

While so far most of the literature has dealt with a static picture of intermittency there
have recently been new approaches to get a more dynamic picture of the whole process
in terms of ageing. More precisely, one wants to determine for how long intermittency
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1.3 Time dependent potentials

peaks remain relevant and whether the time for which they are relevant increases in
t.

There are different approaches to ageing in different models. For instance [MOS10]
deals with ageing in the heavy-tailed case with u0 = �0 where the two cities theorem
holds. We will come back to this issue in more detail in Section 2.6 where we compare
two approaches to ageing for the first universality class with u0 � 1 and potential tails
that are lighter than those of an exponential distribution where a two cities theorem
does not hold.

This might be regarded as a first step towards a description of the whole heat flow, i.e.
of the process

�
u(t; 0)

�
t2[0;1)

.

1.3 Time dependent potentials

While at least the rough asymptotic behaviour of the PAM with time-independent
potential is now understood quite well, there has recently been some effort to understand
various models with time-dependent potential.

In [CM94] a PAM with time-dependent potential was introduced for the first time.
One part of that monography deals with a potential that satisfies �(t; x) = dWt(x),
where dW denotes white noise. We will call this white-noise potential. There has been
extensive research on this model following the seminal work [CM94]. For instance ageing
properties and transition from quenched to annealed were investigated in [DD07] and
[CM07], respectively. We will come back to this model in Chapter 4 where we derive
formulas for time and spatial correlations therein.

More recently, potentials have been investigated that consist of finitely or infinitely many
independent random walks, exclusion- or voter dynamics. Here one often interprets the
PAM as a model for chemical reactions, where u(t; x) describes the concentration of
reactants and �(t; x) describes the concentration of catalysts at site x and time t. See
the survey article [GdHM09] and the references therein for details.

One common feature of all time-dependent potentials is that, in contrast to the time-
independent case, there is not always intermittent behaviour. Indeed, one finds that
in small dimensions the systems is always intermittent, whereas in higher dimensions
the system is only intermittent if � is small enough, i.e. if the heat flow is not too fast
compared to the speed of the potential. The exact dimension where this phase transition
occurs, as well as the appropriate definition of intermittency, are model dependent.

17



1 Introduction

The main tool for these models is the Feynman-Kac formula for time-dependent poten-
tials given by

u(t; x) = Ex exp

� tZ
0

�(t� s;Xs) ds

�
u0(Xt); (t; x) 2 [0;1)� Zd: (1.5)

An analog to the spectral representation does not exist but it is often possible to treat
the problem with the help of spectral analysis of certain deterministic Schrödinger
operators.

1.4 Results of this thesis

The scientific work done in this thesis contributes to some important aspects of the
PAM. Each chapter contains a short introduction with the main results of that chapter
and the relevant notation such that they can be read independently of each other.

Exact asymptotics for time correlations and moments, geometric picture of
annealed intermittency peaks, and ageing

In Chapter 2 we derive exact asymptotics of time correlation functions for the PAM with
homogeneous initial condition and time-independent potential tails that are in the first
universality class and have a finite cumulant generating function. We use these results
to give precise asymptotics for statistical moments of positive order. Furthermore, we
show what the potential peaks that contribute to the annealed intermittency picture
look like and how they are distributed in space. We also investigate for how long
intermittency peaks remain relevant in terms of ageing properties of the model.

Transition from quenched to annealed behaviour

Chapter 3 is devoted to the transition from quenched to annealed asymptotics. We
consider the solution to the PAM with homogeneous initial condition in large time-
dependent boxes. We derive stable limit theorems (ranging over all possible scaling
parameters) for the rescaled sum over the solution depending on the growth rate of the
boxes. Furthermore, we give sufficient conditions for a strong law of large numbers.

18



1.4 Results of this thesis

Correlations for the PAM with white noise-potential

In Chapter 4 we derive time and spatial correlations for the PAM with a time-dependent
white-noise potential.

19
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2 Time correlations for the
parabolic Anderson model

2.1 Introduction

Main results

In this chapter we will restrict to the case that we have the homogeneous initial condition
u0 � 1, and that the potential is i.i.d. and time-independent. We deal with potential
tails that decay more slowly than those of a double exponentially (Gumbel) distributed
variable X, e.g. P(X > r) = expf�erg but still have a finite cumulant generating
function. Examples that satisfy all conditions that we impose later include the Weibull
distribution, i.e., P(X > h) = expf�h
g for 
 2 (1;1). Hence, we are in the first
universality class in the classification of [HKM06]. This class was studied in [GM98],
where some little evidence was gained that the main contribution to the moments of
the solution comes from delta-like peaks in the �-landscape which are far away from
each other. Among other results, they derived the first two terms of the logarithmic
asymptotics for the moments of the total mass of the solution. One main result of the
present chapter are the exact asymptotics of these moments. Furthermore, we give a
generalisation to more complex functions of the solution evaluated at different times.

Another main result describes the height of the intermittency peaks that determine the
annealed behaviour. Furthermore, we prove that the complement of the intermittency
islands is indeed negligible with respect to the peaks. Since we consider the homogeneous
initial condition u0 � 1, we will investigate the solution in extremely large boxes in
which many of these peaks contribute.

Another aspect that we study in this chapter are ageing properties of the model. To
this end, we compare two notions of ageing, one in terms of time correlations and one
in terms of stability of intermittency peaks. In particular, we analyse mixed moments
of the solution on two time scales.

21



2 Time correlations for the parabolic Anderson model

Let us formulate more precisely our main assumptions and introduce some notation.
Recall that h:i denotes expectation with respect to � and that the corresponding prob-
ability measure is denoted by P. Let �F (h) := P (�(0) > h) denote the tail of �(0) and
' := � log �F . Furthermore, let H(t) := log



et�(0)

�
be the cumulant generating function

of �(0). We will make the following assumption on the tails of �:

Assumption (F):

i) If x 6= y, then for all c > 0,

P

�
�(x) + �(y)

2
> h� c

�
= o

�
�F (h)

�
; h!1:

ii) H(t) <1 for all t � 0.

Item ii) is equivalent to the existence of moments of the solution of all orders, see
[GM90]. Item i) means that it is much more likely to have one very high peak than to
have two quite high peaks. Under Assumption (F) we know that limt!1H(t)=t = 1,
i.e., the potential is unbounded to infinity.

To keep the proofs as simple as possible we assume that � is bounded from below
although analogous results hold true if the potential is unbounded from below. This
allows us to assume without loss of generality that essinf � = 0: If essinf � = c, we can
use the transformation u 7! ectu which shifts essinf � to the origin.

Time correlations

Theorem 1 provides us with a formula how to compute asymptotically the time corre-
lations for regularly varying functions of the solution u. It is also the main proof tool
for all further applications. Spatial correlations for potentials with double exponential
or heavier tails can be found in [GdH99], whereas time correlations have not been in-
vestigated so far. Let QR := [�dRe; dRe]d \ Zd be the d-dimensional centered lattice
cube of radius dRe � 1 and let

b�R := max
x2QRnf0g

�(x):

We impose free and zero boundary conditions on the boundary of QR, denoted by � = f
and � = 0, respectively. The corresponding Laplacians are denoted by ��

R, that is, for
f : QR ! R,

�f
Rf(x) =

X
y2QR : y�x

(f(y)� f(x)); �0
Rf(x) =

X
y2Zd : y�x

(f(y)� f(x));
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2.1 Introduction

where for�0
Rf we extend f trivially to Zd with the value zero. Zero boundary conditions

correspond to �(x) = �1 for x =2 QR. Its law and expectation will be denoted by PR;0x

and ER;0x , respectively. The random walk generated by �f
R just remains at its current

site at the boundary when the random walk generated by � would jump out of QR. Its
law and expectation will be denoted by PR;fx and ER;fx , respectively. The corresponding
Dirichlet form is given by

���f
Ru; u

�
QR

=
X

fx;yg2QR :
jx�yj1=1

�
u(x)� u(y)

�2
:

Let �R;�1 = �R;�1 (�) be the principal (i.e., largest) eigenvalue of the Anderson Hamiltonian
H �

R := ���
R + � on `2 (QR) with free and zero boundary condition, respectively.

Recall that regularly varying functions are those positive functions f that can be written
as x
L(x), where 
 2 R is called the index of variation and L is a slowly varying function
called slowly varying part of f .

Let R;R
 and R+ be the set of regularly varying functions, regularly varying func-
tions with index of variation 
, and regularly varying functions with positive index of
variation, respectively, with non-decreasing or bounded away from zero and infinity,
regularly varying part. Let

F :=
n
f 2 C1 : f 2 R+; f

0(x) > 0 8x > 0; f(0) = 0; lim
t!1

f(t) =1
o

and

T :=
n
f 2 C1 : f 0(x) > 0 8x > 0; f(0) = 0; lim

t!1
f(t) =1

o
:

Remark. The fact f 2 R+ already implies that lim
t!1

f(t) =1, see [BGT87, Proposition
1.5.1].

Theorem 1 (Time correlations). Let Assumption (F) be satisfied. Furthermore, let
f1; : : : ; fp 2 F and t1; : : : ; tp 2 T be given such that for all a � 0,

max
1�j�p

etj(t)a = o

�
min
1�i�p



fi
�
eti(t)�(0)

���
; as t!1: (2.1)
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2 Time correlations for the parabolic Anderson model

Then for every R � 1 and 0 < C < 1 < C <1 we find that for all c; t large enough,

C

1Z
c

�
d

dh

pY
i=1

fi
�
eti(t)h

� �
P
�
�R;01 (�) > h

���b�R � h� c
�
dh

�
� pY

i=1

fi
�
u (ti(t); 0)

��

� C

1Z
c

�
d

dh

pY
i=1

fi
�
eti(t)h

� �
P
�
�R;f1 (�) > h

���b�R � h� c
�
dh:

Condition (2.1) determines of what order the functions ti can be chosen. It is always
possible to choose max ti = a �min ti, a > 0.

Note that Assumption (F) is given in terms of the distribution of the potential, while
the asymptotics themselves are expressed in terms of the conditional distribution of the
eigenvalues. The asymptotics may be understood as follows. A Fourier expansion in
terms of the eigenvalues of H �

R yields that

u(t; �) � et�
R;�
1 (�)

�
eR;�1 ;1

�
eR;�1 (�); (2.2)

where eR;�1 is the positive `2-normalised principal eigenfunction. Under Assumption (F),
it turns out that the eigenfunction eR;�1 is extremely delta-like peaked. Due to the the
requirement b�R � h � c, the peak centre lies in the origin since �(0) and �R;�1 (�) differ
by at most 2d�.

Exact moment asymptotics

Our first application of Theorem 1 are exact asymptotics for all moments of positive
order. The second order asymptotics for integer moments for a large class of potentials,
including the ones that satisfy Assumption (F), can be found in [GM98]: For any
p 2 N,

hu(t; 0)pi = eH(pt)�2d�pt eo(t); t!1:

We now present much finer asymptotics which are even up to asymptotic equivalence.
To the best of our knowledge, this precision has not yet been achieved for the PAM.
We need the tails of the principal eigenvalue, conditional on having an extremely high
peak at the origin:

'�R(h) := � logP
�
�R;�1 (�) > h

��� b�R � h�
�
:
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2.1 Introduction

Here � is picked according to the following condition which is slightly stronger than
Assumption (F).

Assumption (F*):

i) 9� < 1: �F (h) � �F (h�) = o
�
�F (h+ 2d�)

�
; h!1.

ii) H(t) <1 for all t � 0.

Let ht be a solution to

sup
h2(0;1)

(th� '(h)) = tht � ' (ht) =:  (t):

If ' is ultimately convex, then ht is unique for any large t.
Now we introduce a condition on the function '(h) = � logP(�(0) > h). A function
f(t) = o(t) is called self-neglecting if

f
�
t+ af(t)

� � f(t); t!1; (2.3)

locally uniformly in a 2 (0;1). The convergence in (2.3) is already locally uniform in
a if f is continuous (see for instance [BGT87, Theorem 2.11.1]).
Let hR;�t be a solution to

sup
h2(0;1)

(th� '�R(h)) = thR;�t � '�R

�
hR;�t

�
=:  �R(t):

If ' is ultimately convex, then hR;�t is unique for any large t.

Condition (B): The map t 7!p
'00 (ht) is self-neglecting.

Again Condition (B) and Assumption (F*) concern � and not �R1 .

Theorem 2 (Moment asymptotics). Let ' 2 C2 be ultimately convex, Assumption
(F*) and Condition (B) be satisfied and p 2 (0;1). Then, for any sufficiently large R,

hu(t; 0)pi � exp

(
pthR;�pt � '�R(h

R;�
pt ) + log pt+

1

2
log

�

('�R)
00(hR;�pt )

)
; t!1:

We see from (2.2) and Theorem 1 that Theorem 2 basically follows from an application
of the Laplace method.

Note that Weibull tails with parameter 
 > 1 satisfy both Condition (F*) and Condition
(B). For 
 2 (1; 3), we give an explicit identification of all terms of the asymptotics, see
Corollary 22.
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2 Time correlations for the parabolic Anderson model

Relevant potential peaks and intermittency

While originally intermittency was studied by comparing the asymptotics of successive
moments of u, there have recently been efforts to describe intermittency in a more geo-
metric way by determining time dependent random sets in Zd in which the solution is
asymptotically concentrated. These sets are closely related to the support of the lead-
ing eigenfunctions of the Anderson Hamiltonian. Clearly, the quenched intermittency
picture differs from the annealed one. The height of the quenched intermittency peaks
is basically determined by the almost sure growth of the maximal potential peak in a
time-dependent box. Its radius depends on the distance that the random walk in the
Feynman-Kac representation can make by time t. In [GKM07] the authors describe
the geometry of the quenched intermittency peaks for the localised initial condition
u0 = �0. They find that size and shape of the islands are deterministic, whereas number
and location are random. They also give rough bounds on the number and location.
They show that under Assumption (F) the quenched intermittency peaks consist of
single lattice points.

In contrast, the annealed peaks are significantly higher and occur less frequently. Their
geometry has not been investigated so far. Theorem 3 below determines the height
of those potential peaks that contribute to the annealed intermittency peaks, and it
proves that the complement contributes a negligible amount. It turns out that the
peaks consist of single lattice points as well.

We will assume from now on that the box QLt is chosen so large that the following weak
law of large numbers holds true, see [BAMR07, Theorem 1]:

1

jQLt j
X
x2QLt

u(t; x) � hu(t; 0)i ; as t!1; in probability. (2.4)

To this end, it is sufficient to pick L(t) much larger than exp fH(t)g. Let

�a
t =

"
ht � ap

'00(ht)
; ht +

ap
'00(ht)

#
; a > 0:

In our result it turns out that the set of intermittency peaks may be taken as the set
of those sites in which the potential height lies in �a

t :

Theorem 3 (Intermittency). Let Assumption (F*) and Condition (B) be satisfied.
Then for every " > 0 there exists a" such that

lim
t!1

P

 
1�

P
x2QLt

u(t; x)1�(x)2�a
tP

x2QLt

u(t; x)
> "

!
=

(
1 if a < a";

0 if a > a":
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2.1 Introduction

The locations of the peaks form a Bernoulli process, see Corollary 24 for details.

Ageing

In this section, we present our results on the dynamic picture of intermittency in the
PAM. We will investigate two types of ageing behaviours, correlation ageing and in-
termittency ageing. While the first type gives only rather indirect information about
the intermittency peaks, intermittency ageing explicitly describes for how long the in-
termittency peaks remain relevant. Nevertheless, both approaches give very similar
results.

Roughly speaking, a system is ageing if the time it spends in a certain state increases
as a function of its current age. An overview of the topic of ageing can be found, for
instance, in [BA02]. For the PAM, there have been two approaches. In the case of a
(time-dependent) white noise potential � as defined in [CM94], a variant of correlation
ageing was investigated in [DD07] and [AD11]. The authors found that there is no
ageing.

In [MOS10] the authors consider a localised initial condition and a time-independent
i.i.d. potential with Pareto-distributed tails. They find that intermittency ageing holds.
Their proofs rely on the two cities theorem proved in [KLMS09, Theorem 1.1] which
states that, at any sufficiently late time, all the mass is concentrated in no more than
two lattice points, almost surely.

Let us describe our result on intermittency ageing. As we know from Theorem 3, there
are infinitely many intermittency peaks in our setting, possibly due to the homogeneous
initial condition and to the lighter tails, so we have to use a modified definition and
different techniques. To define the notion, introduce, for a scale function s : (0;1) !
(0;1),

As(t) := P

 �����
P

x2QLt+s(t)

u(t; x)1�(x)2�a
tP

x2QLt+s(t)

u(t; x)
�

P
x2QLt+s(t)

u(t+ s(t); x)1�(x)2�a
tP

x2QLt+s(t)

u(t+ s(t); x)

����� < "

!
; t > 0:

Recall that QLt+s(t) is chosen such that the weak law of large numbers from (2.4) holds.
We will consider only a > a" as in Theorem 3. Roughly speaking, As measures whether
those potential points that are intermittency peaks at time t are still relevant after time
t+ s.

We define intermittency ageing by requiring that for any small " > 0 there is a > 0 and
two scale functions s1; s2 satisfying limt!1 s1(t) = limt!1 s2(t) =1 such that

lim
t!1

jAs1(t)�As2(t)j > 0; (2.5)
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2 Time correlations for the parabolic Anderson model

i.e., the two limits of As1 and As2 both exist and are different.

By the length of intermittency ageing we understand the class of functions

A :=
n
s : R! R : lim

t!1
s(t) =1;9� 2 (0;1) : lim

t!1
jAs(t)�A�s(t)j > 0

o
:

Theorem 4 (Intermittency ageing). Let Assumption (F*) and Condition (B) be satis-
fied. Then the PAM ages in the sense of intermittency ageing if and only if limt!1H 00(t) =
0. In this case A 3 1=

p
H 00(t) = o(t).

For the study of correlation ageing we investigate the following time correlation coeffi-
cient

Af (s; t) = corr
�
f
�
u(t; 0)

�
; f
�
u(t+s(t); 0)

��
=

cov
�
f
�
u(t; 0)

�
; f
�
u(t+ s(t); 0)

��r
var
�
f
�
u(t; 0)

��
var
�
f
�
u(t+ s(t); 0)

�� :
Here f 2 C is a strictly increasing function with limt!1 f(t) =1.We define correlation
ageing by requiring that there exist two scale functions s1; s2 satisfying limt!1 s1(t) =
limt!1 s2(t) =1 such that

lim
t!1

jAf (s1; t)� Af (s2; t)j > 0: (2.6)

By the length of correlation ageing we understand the class of functions

A :=
n
s : R! R : lim

t!1
s(t) =1;9� 2 (0;1) : lim

t!1
jAf (s; t)� Af (�s; t)j > 0

o
:

Theorem 5 (Correlation ageing). Let Assumption (F*) and Condition (B) be satisfied
and ' 2 C2 be ultimately convex. Then the PAM ages for f(x) = xp; p 2 R+ in the sense
of correlation ageing if and only if lim

t!1
H 00(t) = 0. In this case A 3 1=

p
H 00(t) = o(t).

Notice that for both definitions ageing happens for lighter tails. In Theorem 27 we
show that Theorem 5 can be extended to more general potentials if we weaken the
requirement (2.6).

Overview

In Section 2.2 we prove Theorem 1 which forms the basis of this chapter. In Section 2.3
we show how the conditional probability in Theorem 1 can be evaluated. After that we
will give several applications. In Section 2.4 we apply Theorem 1 to prove Theorem 2
and to derive exact asymptotics for statistical moments and more general functionals
of the PAM. In Section 2.5 we prove Theorem 3. We conclude how the intermittency
peaks are distributed in space and give precise estimates on their frequency. In Section
2.6 we investigate the ageing behaviour of the PAM and prove Theorems 4, 5 and 27.
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2.2 Time correlations

2.2 Time correlations

In this section we prove Theorem 1. The strategy of the proof is to show that asymp-
totically only those realisations of the potential � contribute to the expectation
hQp

i=1 fi (u (ti(t); 0))i, where the highest potential peak �(1)R in the large centered box
QR is significantly higher than the second one, and where �(1)R is located in the origin.
It turns out that for those realisations we can neglect all eigenpairs but the principal
one in the spectral representation, and the first eigenfunction becomes delta like. We
will see that it is sufficient to consider a large box with time independent size. The
following universal bounds are always true (see for instance [GM90, Theorem 3.1] and
[GM98, Proof of Theorem 2.16]).

Lemma 6. Let t � 0 then for every R > 1 and p 2 N,
i) �R;�1 (�) � �

(1)
R � �R;�1 (�) + 2d�,

ii) eH(pt)�2d�pt � hu(t; 0)pi � eH(pt).

Remark. The lower bound in Lemma 6 ii) can be proven by forcing the random walk
X from the Feynman-Kac representation to stay in the origin up to time t. Hence, it
remains true if we replace the power function by an arbitrary nonnegative function f .
Then it reads



f(et�(0)�2d�t)

� � 
f�u(t; 0)��.
Now we show that we can restrict our calculations to an increasing box QR

bt
with zero

boundary conditions where Rt := t log2 t and bt := maxi=1;:::;p ti.
By �U := inf ft > 0: Xt 2 Ug we denote the first hitting time of a set U by the random
walk X. For x 2 Zd we write �x instead of �fxg. Let uR be the solution to the PAM in
QR with Dirichlet boundary conditions. Its Feynman-Kac representation is given by

uR (t; x) = Ex exp

( tZ
0

�(Xs) ds

)
1�Qc

R
�t; (t; x) 2 [0;1)� Zd:

Proposition 7. Let � be i.i.d., nonnegative and unbounded from above. If f1; : : : ; fp 2
F and t1; : : : ; tp 2 T , then*

pY
i=1

fi
�
u (ti(t); 0)

�+ �
*

pY
i=1

fi

�
uR

bt(t)
(ti(t); 0)

�+
; t!1:

Proof. Let

euR (t; x) := u (t; x)� uR (t; x) = Ex exp

( tZ
0

�(Xs) ds

)
1�Qc

R
<t; (t; x) 2 [0;1)� Zd:
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2 Time correlations for the parabolic Anderson model

Then for every � > 0 we find that*
pY
i=1

fi (u (ti; 0))

+

=

*
pY
i=1

fi
�
uR

bt
(ti; 0) + euR

bt
(ti; 0)

� h
18i : euR

bt
(ti;0)��uR

bt
(ti;0) + 19i : euR

bt
(ti;0)>�uR

bt
(ti;0)

i+

�
X

T2P(p)

*Y
i2T

fi
�
uR

bt
(ti; 0) (1 + �)

� Y
j2T c

fj

�euR
bt
(tj; 0)

�
1 +

1

�

��+
: (2.7)

Here P(p) denotes the power set of f1; : : : ; pg and T c denotes the complement of T
within f1; : : : ; pg. Since all fi are regularly varying, it follows that for every � > 1 there
exists � = �(�) with lim

�!1
�(�) = 0, and C� such that

max
i=1;:::;p

fi
�
(1 + �)u

�
fi (u)

� �; u > C�: (2.8)

Now choose � > 1 arbitrary and fix � > 0 such that (2.8) is satisfied.
Because all fi are also increasing to infinity we get for large t,*

pY
i=1

fi
�
uR

bt
(ti; 0) (1 + �)

�+ � �

*
pY
i=1

fi
�
uR

bt
(ti; 0)

�+
+

pY
i=1

fi
�
(1 + �)C�

�
: (2.9)

Since almost surely uR
bt
(ti(t); 0)

t!1�! 1 for all i, we can apply Fatou’s lemma and see
that the asymptotic behaviour of the right hand side of (2.9) is determined by

�

*
pY
i=1

fi
�
uR

bt
(ti; 0)

�+
:

By similar arguments we find that there exists Cu such that for sufficiently large t,*Y
i2T

fi
�
uR

bt
(ti; 0) (1 + �)

� Y
j2T c

fj

�euR
bt
(ti; 0)

�
1 +

1

�

��+

� Cu

*Y
i2T

fi
�
uR

bt
(ti; 0)

� Y
j2T c

fj
�euR

bt
(ti; 0)

�+
:

In a next step we show that

lim
t!1

*Q
i2T

fi
�
uR

bt
(ti; 0)

� Q
j2T c

fj
�euR

bt
(ti; 0)

�+
*Q

i2T
fi (u(ti; 0))

Q
j2T c

fj (u(tj; 0))

+ = 0: (2.10)
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For simplicity we only look at limt!1



f1
�eu(t; 0)�� = 
f1�u(t; 0)��, which may easily be

generalised. Recall that f1 is regularly varying, so it can be written as f1(x) = x�L(x),
for some � > 0 and some slowly varying function L. By forcing the random walk in the
Feynman-Kac formula to stay in the origin up to time t we find that


f1
�
u(t; 0)

��
=


u(t; 0)�L

�
u(t; 0)

�� � 
expf�t�(0)� 2d��tgL�u(t; 0)�� :
Furthermore, together with [GM98, Lemma 2.5] we find that


f1
�eu(t; 0)��

�
*�

expft�(1)QRt
gP0

�
�Qc

Rt
� t
���

L
�eu(t; 0)�+

=

*� X
x2QRt

expft�(x)g1
�(x)=�

(1)
QRt

P0

�
�Qc

Rt
� t
���

L
�eu(t; 0)�+

� max(1; jQRt
j��1)

X
x2QRt

*�
expft�(x)g2d+1 exp

�
�Rt log

Rt

�dt
+ nRt

���

L
�eu(t; 0)�+

= 2(d+1)� exp

�
��Rt log

Rt

�dt
+ o

�
Rt log

Rt

�dt

��

expf�t�(0)gL�eu(t; 0)�� :

In the third line we use that (due to Jensen’s inequality for � > 1) for any real numbers
a1; : : : ; an, and � > 0,

� nX
k=1

ak

��

�

8>><>>:
n��1

nP
k=1

jakj�; if � � 1;

nP
k=1

jakj�; if � � 1:

Altogether, this proves (2.10) since eu � u for all t by definition and L is bounded away
from zero and infinity or non-decreasing. Therefore, we can conclude that

rhs of (2.7)�
*

pY
i=1

fi
�
uR

bt
(ti; 0)

�+
= o

 *
pY
i=1

fi
�
u (ti; 0)

�+!
; t!1:

Now the claim follows because � can be chosen arbitrarily close to 1 and because*
pY
i=1

fi
�
uR

bt
(ti; 0)

�+ �
*

pY
i=1

fi (u (ti; 0))

+
; t � 0;
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2 Time correlations for the parabolic Anderson model

is true by the monotonicity and the nonnegativity of f1; : : : ; fp, and because uRt
� u

for all t.

The next lemma allows us to consider only those realisations of the potential where the
highest potential peak is significantly higher than the second one. Let �(1)R

bt
� �

(2)
R
bt
� : : :

be an order statistics of the potential.

Lemma 8. For all c > 0 and f1; : : : ; fp 2 F , t1; : : : ; tp 2 T satisfying (2.1),� pY
i=1

fi

�
ufR

bt
(ti; 0)

�
1
�
(1)
R
bt
��

(2)
R
bt
�c

�
= o

�� pY
i=1

fi

�
ufR

bt
(ti; 0)

���
; t!1:

Proof. Let x0; x1 2 QR
bt
be two arbitrarily chosen points. Then� pY

i=1

fi

�
ufR

bt
(ti; 0)

�
1
�
(1)
R
bt
��

(2)
R
bt
�c

�
�

� pY
i=1

fi

�
e
ti�

(1)
R
bt

�
1
�
(1)
R
bt
��

(2)
R
bt
�c

�

�
X
x2QR

bt

X
y2QR

bt
nfxg

� pY
i=1

fi
�
eti�(x)

�
1�(x)>�(y)��(x)�c

�

� jQR
bt
j2
� pY

i=1

fi

�
e
ti
2
(�(x0)+�(x1)+c)

��
Since all fi are regularly varying, they can be written as fi(x) = x�iLi(x), where
L1; : : : ; Lp are slowly varying functions and �1; : : : ; �i > 0. Therefore, we find that

jQR
bt
j2
� pY

i=1

fi

�
e
ti
2
(�(x0)+�(x1)+c)

��

=

� pY
i=1

e�i
ti
2
(�(x0)+�(x1)+2c)+2d log(bt log2 bt)e��i

ti
2
cL
�
e�

ti
2
ce

ti
2
(�(x0)+�(x1)+2c)

��

=

� pY
i=1

e��i
ti
2
c+2d log(bt log2 bt)

Li

�
e�

ti
2
ce

ti
2
(�(x0)+�(x1)+2c)

�
Li

�
e
ti
2
(�(x0)+�(x1)+2c)

�
| {z }

t!1
�! 0

fi

�
e
ti
2
(�(x0)+�(x1)+2c)

��
:

Assumption (F) states for c > 2d�:

For all � > 0 it exists h0 = h0(�) > 0 such that for all h > h0 :
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P

�
�(x0) + �(x1)

2
> h� c

�
� �P (�(0) > h+ 2d�) :

Furthermore, it follows with Lemma 6 ii) that� pY
i=1

fi

�
ufR

bt
(ti; 0)

��
�

1Z
0

pY
i=1

fi
�
etih
�
P (�(0) > h+ 2d�) dh;

and therefore, since all fi are nonnegative and increasing, and because of (2.1),D pQ
i=1

fi

�
e
ti
2
(�(x0)+�(x1)+2c)

�E
D pQ
i=1

fi

�
ufR

bt
(ti; 0)

�E �

h0R
0

pQ
i=1

fi
�
etih
�
P
�
�(x0)+�(x1)

2
> h� c

�
dhD pQ

i=1

fi

�
ufR

bt
(ti; 0)

�E + �

�
h0

pQ
i=1

fi
�
etih0

�
D pQ
i=1

fi

�
ufR

bt
(ti; 0)

�E + �
t!1;�!0�! 0:

Now we prove that the first eigenfunction eR;�1 decays at least exponentially fast. To
this end we give probabilistic representations for eR;�1 .

Lemma 9. Let �(1)R � �
(2)
R = c > 2d� and �(1)R = �(0). Then

eR;�1 (x) = e�0E
R;�
x exp

� �0Z
0

�
� (Xs)� �R;�1 (�)

�
ds

�
; x 2 Zd;

where e�0 = e�0(R) is a normalising constant.

Proof. i) � = f. The eigenvalue equation for �R;f1 (�) may be rewritten as(
��eR;f1 (x) + (�(x)� �R;f1 )eR;f1 (x) = 0; x 2 QRn f0g ;
eR;f1 (0) = ef0:

Since we are working on a finite state space, we know that ER;fx �0 < 1 and because
c > 2d� it also follows that �(x) � �R;f1 (�) < 0 for all x 2 QR n f0g, and hence the
Feynman-Kac representation of this boundary problem is given by

eR;f1 (x) = ef0E
R;f
x exp

( �0Z
0

�
� (Xs)� �R;f1 (�)

�
ds

)
:
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2 Time correlations for the parabolic Anderson model

ii) � = 0. Analogously, the eigenvalue equation for �R;01 (�) may be rewritten as(
��eR;01 (x) + (�(x)� �R;01 )eR;01 (x) = 0; x 2 QRn f0g ;
eR;01 (0) = e00; e01(x) = 0; x =2 QR:

Notice that

E
R;0
x exp

� �0Z
0

�
� (Xs)� �R;01 (�)

�
ds

�
= Ex exp

� �0Z
0

�
� (Xs)� �R;01 (�)

�
ds

�
1�0<�(QR)

c :

Thus, it admits the desired probabilistic representation.

Let
�1 := inf ft > 0: Xt 6= X0g

be the time of the first jump of X. The stopping time �1 is exponentially distributed
with parameter 2d�. Now we define recursively

�n := inf
�
t > 0: Xt+�n�1 6= X�n�1

	
:

The sequence f�n; n 2 Ng is i.i.d. by the definition of X.

Lemma 10. It exists K = K(c) > 0 such that if �(0) � b�R > c > 2d� then eR;�1 (x) �
Ke�jxj log

c
2d� for all x 2 QR.

Proof. Using the probabilistic representation of eR;�1 from Lemma 9 and because of
Lemma 6 we find that

eR;�1 (x)

e�0
= E

R;�
x exp

( �0Z
0

�
�(Xs)� �R;�1 (�)

�
ds

)
� E

R;�
x exp f�0(2d�� c)g

=
1X
n=1

E
R;�
x exp

(
(2d�� c)

nX
k=1

�k

)
1
�0=

nP
k=1

�k

�
1X

n=jxj

�
2d�

c

�n

=
1

1� 2d�
c

e�jxj log
c

2d� :

Now we give two facts about regularly varying functions.
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2.2 Time correlations

Lemma 11. Let f 2 R� be an increasing function and g 2 C such that lim
t!1

g(t) =1.

i) If � > 0, then for any c > 0 there exists C(c) with lim
c!1

C(c) = 1 such that

X
x2Zd

f
�
eg(t)�cjxj

� � C(c)f(eg(t)); t!1:

ii) For every h : R! R with lim
t!1

h(t) = 1: lim
t!1

f(eg(t))

f(eg(t)h(t))
= 1.

Proof. i) It follows from the uniform convergence theorem for regularly varying func-
tions (see [BGT87, Theorem 1.5.2]) that

X
x2Zd

f
�
eg(t)�cjxj

�
= f

�
eg(t)

�X
x2Zd

f
�
eg(t)e�cjxj

�
f (eg(t))

� f
�
eg(t)

�X
x2Zd

e��cjxj = C(c)f(eg(t)); t!1:

ii) follows similarly.

Next we show that we can neglect all eigenvalues but the principal one. To this end we
cut off a time-independent centred inner box QR from the time-dependent box QRt

and
put free boundary conditions on the inner as well as on the outer side of the boundary
of QR. The principal eigenvalue of the outer box will be denoted by �

RtnR;f
1 . Under

these circumstances it holds almost surely:

max
�
�R;f1 ; �

RtnR;f
1

�
� �Rt;�

1 � �R;01 : (2.11)

The lower bound for �Rt;�
1 follows immediately from the Rayleigh-Ritz formula. For the

upper bound see for instance [K07, Chapter 5.2]. Recall that �R;�1 > �R;�2 � � � � � �R;�jQRj

are the eigenvalues of H �
R , and that the solution u�R admits the following spectral

representation

u�R(t; x) =

jQRjX
k=1

e�
R;�
k

t
�
eR;�k ;1

�
eR;�k (x); (2.12)

where eR;�1 ; eR;�2 ; � � � ; eR;�jQRj
is a corresponding orthonormal basis of `2 eigenfunctions.
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2 Time correlations for the parabolic Anderson model

Proposition 12. Let f1; � � � ; fp 2 F , t1; � � � ; tp 2 T , (2.1) be satisfied, and fix R > 0.
Then as t!1,

1 + o(1)

jQRj
� pY

i=1

fi

�
e�

R;0
1 ti(t)

� ����(1)R = �(0)

�

�
� pY

i=1

fi

�
uR

bt(t)
(ti(t); 0)

��

� 1 + o(1)

jQR
bt(t)
j
� pY

i=1

fi

�
e�

R;f
1 ti(t)

� ����(1)Rt
= �(0)

�
:

Proof. We will restrict to the case p = 1 and write �Rt

k instead of �Rt;0
k to keep the

notation simple.
Upper bound.
It follows by Lemma 8 that for every c > 0,


f1
�
uRt

(t; 0)
��

=
D
f1
�
uRt

(t; 0)
�
1
�
(1)
Rt
��

(2)
Rt

>c

E
+ o
� 

f1
�
uRt

(t; 0)
�� �

; t!1:

Using the spectral representation (2.12) of uRt
, we find that there exists C(c) 2 [1;1)

such that as t tends to infinity�
f1
�
uRt

(t; 0)
�
1
�
(1)
Rt
��

(2)
Rt

>c

�

=
X
x2QRt

�
f1

� jQRt
jX

k=1

e�
Rt
k
t(ek;1)e1(0)

�
1
�
(1)
Rt
��

(2)
Rt

>c
1
�
(1)
Rt

=�(x)

�
=

1

jQRt
j �X

x2QRt

�
f1

�
e�

Rt
1 t
�
(e1;1)e1(0) +

jQRt
jX

k=2

e(�
Rt
k
��

Rt
1 )t(ek;1)ek(0)

��
1
�
(1)
Rt
��

(2)
Rt

>c

����(1)Rt
= �(x)

�

=
1 + o(1)

jQRt
j C(c)

�
f1

�
e�

Rt
1 t
�
1
�
(1)
Rt
��

(2)
Rt

>c

����(1)Rt
= �(0)

�
� 1 + o(1)

jQRt
j C(c)

D
f1

�
e�

R;f
1 t
� ����(1)Rt

= �(0)
E
:

Here we use that f1 is increasing, regularly varying (see Lemma 11), and f1(0) = 0.
The last inequality follows from the upper bound in (2.11). The expression (ek;1)e1(0)
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2.2 Time correlations

becomes delta-like as c tends to infinity due to Lemma 10. Notice that by the Cauchy-
Schwarz inequality and Parseval’s identity,

jQRt
jX

k=2

e(�
Rt
k
��

Rt
1 )t(ek;1)ek(0) � e�ctjQRt

j2 = e�ct+4d log(t log2 t):

It follows by Lemma 11 i) that C(c) c!1�! 1.
Lower bound.
Similarly as for the upper bound we find asymptotically

hf1 (uRt
(t; 0))i �

D
f1

�
uRt

(t)1
�
(1)
R

=�(0)

�E
=

1

jQRj

*
f1

 jQRt
jX

k=1

e�
Rt
k
t(ek;1)ek(0)

!������(1)R = �(0)

+

� 1 + o(1)

jQRj
D
f1

�
e�

R;0
1 t
� ����(1)R = �(0)

E
:

The last inequality follows by the lower bound in (2.11) and arguments similar to those
of the upper bound. Notice that (e1;1)e1(0) � (e1; e1) = 1 if �(1)Rt

= �(0).

Recall that b�R = max
x2QRnf0g

�(x).

Lemma 13. Let f1; : : : ; fp 2 F , t1; : : : ; tp 2 T and (2.1) be satisfied. Then for R > 0
and c 2 (2d�;1), as t!1,� pY

i=1

fi

�
e�

R;f
1 ti
� ����(1)R

bt
= �(0)

�

�jQR
bt
j
1Z
c

�
d

dh

pY
i=1

fi
�
eti(t)h

� �
P
�
�R;f1 (�) > h

���b�R � h� c
�
dh:

Proof. Let F�R;f1
(h) = P(�R;f1 � h

���(1)Rt
= �(0)). Integration by parts yields*

pY
i=1

fi

�
e�

R;f
1 ti
� ����(1)R

bt
= �(0)

+
=

1Z
0

pY
i=1

fi
�
ehti
�
dF�R;f1

(h)

=

pY
i=1

fi (1) +

1Z
0

�
d

dh

pY
i=1

fi
�
etih
� �

P
�
�R;f1 > h

����(1)R
bt
= �(0)

�
dh:
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2 Time correlations for the parabolic Anderson model

For c > 2d�, it follows by Lemma 6 and the law of total probability

P
�
�R;f1 > h

����(1)R
bt
= �(0)

�
=jQR

bt
j
h
P
�
�R;f1 > h

���b�R � h� c
�
P
�b�R � h� c

�
+P

�
�R;f1 > h; �

(1)
R
bt
= �(0)

���b�R > h� c
�
P
�b�R > h� c

�i
:

Furthermore, elementary calculus yields

d

dh

pY
i=1

fi
�
eti(t)h

�
=

pX
i=1

ti(t)t
0
i(t)e

ti(t)hf 0i
�
eti(t)h

� pY
j=1
j 6=i

fj
�
etj(t)h

�
:

It remains to show

1Z
c

et1hf 01
�
et1h
� pY
j=2

fj
�
etjh
�
P
�
�R;f1 > h

���b�R � h� c
�
P
�b�R � h� c

�
dh

�
1Z
c

et1hf 01
�
et1h
� pY
j=2

fj
�
etjh
�
P
�
�R;f1 > h

���b�R � h� c
�
dh; t!1; (2.13)

and

1Z
0

et1hf 01
�
et1h
� pY
j=2

fj
�
etjh
�
P
�
�R;f1 > h; �

(1)
R
bt
= �(0)

���b�R > h� c
�
P
�b�R > h� c

�
dh

= o

 1Z
0

et1hf 01
�
et1h
� pY
j=2

fj
�
etjh
�
P
�
�R;f1 > h

�
dh

!
; t!1: (2.14)

First we show (2.14).
Assumption (F) implies that for c > 2d�:

For all � > 0 it exists h0 = h0(�) > 0 such that for all h > h0 :

P (�(0) > h� c)2 � �P (�(0) > h+ 2d�) :
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2.2 Time correlations

It follows with (2.1) and Lemma 6,

lhs of (2.14)
1R
0

et1hf 01 (e
t1h)

pQ
j=2

fj (etjh)P
�
�R;f1 > h

�
dh

� jQRj
 h0R

0

et1hf 01
�
et1h
� pQ
j=2

fj
�
etjh
�
P (�(0) > h� c)2 dh

1R
0

et1hf 01 (e
t1h)

pQ
j=2

fj (etjh)P (�(0) > h+ 2d�) dh

+ �

!

� jQRj
 pQ

j=1

fj
�
etjh0

�
et1h0

pQ
j=2

fj (1) hf1 (et1�)i
+ �

!
t!1;�!0�! 0:

Now we show (2.13).
Since P(b�R � h � c) = (F (h� c))jQRj�1 h!1�! 1 for fixed R we find for every # 2 (0; 1)
an a = a(R; c; #) such that

1Z
c

et1hf 01
�
et1h
� pY
j=2

fj
�
etjh
�
P
�
�R;f1 > h

���b�R � h� c
�
P
�b�R � h� c

�
dh

� #

1Z
a

et1hf 01
�
et1h
� pY
j=2

fj
�
etjh
�
P
�
�R;f1 > h

���b�R � h� c
�
dh:

Therefore, it is sufficient to show for every a � 0,

aR
c

et1hf 01
�
et1h
� pQ
j=2

fj
�
etjh
�
P
�
�R;f1 > h

���b�R � h� c
�
dh

1R
c

et1hf 01 (e
t1h)

pQ
j=2

fj (etjh)P
�
�R;f1 > h

�
dh

t!1�! 0: (2.15)

Using the bounds from Lemma 6 for ��;R1 and (2.1), we find

lhs of (2.15) � exp ft(a+ 4d�) + log t�H(t)g t!1�! 0: (2.16)

In the last line we use that limt!1H(t)=t =1.
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2 Time correlations for the parabolic Anderson model

Lemma 14. Let f1; : : : ; fp 2 F , t1; : : : ; tp 2 T and (2.1) be satisfied. Then for R > 0
and c 2 (0;1), as t!1,� pY

i=1

fi

�
e�

0;R
1 ti
� ����(1)R = �(0)

�

� jQRj�
1 + o(1)

� 1Z
c

�
d

dh

pY
i=1

fi
�
etih
� �

P
�
�0;R1 (�) > h

���b�R � h� c
�
dh:

Proof. Analog to the proof of Lemma 13 we find� pY
i=1

fi

�
e�

0;R
1 ti
� ����(1)R = �(0)

�

=

pY
i=1

fi (1) +

1Z
c

�
d

dh

pY
i=1

fi
�
etih
� �

P
�
�0;R1 > h

����(1)R = �(0)
�
dh:

Now the claim follows because

P
�
�0;R1 > h

����(1)R = �(0)
�

� P
�
�0;R1 > h

���b�R � h� c
� P

�b�R � h� c
�

P
�
�
(1)
R = �(0)

�
� jQRjP

�
�0;R1 > h

���b�R � h� c
�
; h!1:

The last asymptotics are proven in the same way as in (2.13).

Proof of Theorem 1. The upper bound is an immediate consequence of Propositions 7
and 12 and Lemma 13, and the lower bound follows from Propositions 7 and 12 and
Lemma 14.

Remark. If we only consider integer moments (i.e. fi(x) = xp; p 2 N), then the proofs
can be simplified and Assumption (F+) below suffices in Theorem 1 because we can
use periodic boundary conditions for the upper bound due to [GM98, Lemma 1.4].

Assumption (F+):

i)
�
�F (h� c)

�2
= o

�
�F (h)

�
; h!1; for all c > 0.

ii) H(t) <1 for all t � 0.
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2.3 The conditional probability

Remark. Theorem 1 also holds true if we consider the initial condition u0 = �0 which
implies that in this case for all f 2 R+,X

x2Zdnf0g

hf(u(t; x))i = o
� 

f
�
u(t; 0)

�� �
; t!1:

2.3 The conditional probability

In this section we investigate how to calculate P
�
��;R1 (�) > h

��b�R � h� c
�
. Let

E�
R(h) := �

X
jyj1=1

E
R;�
y exp

( �0Z
0

(� (Xs)� h) ds

)
:

Lemma 15. Let h � c > 2d�. Then

P
�
�R;f1 (�) > h

���b�R � h� c
�
=
D
�F
�
h+ 2d�� E�

R(h)
����b�R � h� c

E
:

Proof. Using the probabilistic representation of eR;�1 from Lemma 9, we find that

�(0) = �R;�1 (�) + 2d�� E�
R

�
�R;�1 (�)

�
;

whose right hand side is strictly increasing in �R;f1 . Hence,

�R;�1 (�) > h () �(0) > h+ 2d�� E�
R(h):

Now the statement follows immediately.

Lemma 16. If R > 0, jyj1 = 1, n 2 N0 and h > b�R � 2d�, then

RX
k=0

n!

�
n+ 2k

n

�
Py

 
�0 =

2k+1X
l=1

�l

!
(2d�)2k+1

(h+ 2d�)n+2k+1

� dn

dhn
E
R;�
y exp

( �0Z
0

(�(Xs)� h) ds

)

�
1X
k=0

n!

�
n+ 2k

n

�
Py

 
�0 =

kX
l=1

�l

!
(2d�)2k+1

(h+ 2d�� b�R)n+2k+1
:
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2 Time correlations for the parabolic Anderson model

Proof. Let Ym := X mP
i=1

�i
be the embedded discrete time random walk. We get

dn

dhn
Ey exp

( �0Z
0

(�(Xs)� h) ds

)
= Ey exp

(
(��0)n

�0Z
0

(�(Xs)� h) ds

)

=
1X
k=0

Ey

 
�

2k+1X
l=1

�l

!n

exp

(
2k+1X
l=1

�l (�(Yl�1)� h)

)
1
�0=

2k+1P
l=1

�l

: (2.17)

Since
2k+1P
l=1

�l � Erlang (2k + 1; 2d�), we find for z 2 f0; b�Rg,
Eye

(z�h)
kP
l=1

�l

 
�

kX
l=1

�l

!n

=
(2d�)k

(k � 1)!

1Z
0

e(z�h�2d�)xxn+k�1 dx

=
(n+ k � 1)!

(k � 1)!

(2d�)k

(h+ 2d�� z)n+k
:

Now the claim follows because 0 � �(Yl�1) � b�R for all Yl�1 6= 0 and because jumptimes
and jumps are independent.

Lemma 17. Let � < 1 and fix R > 0. Then there exists 0 < c1; c2 < 1 such that for
any large h,

i) �F
�
h+ 2d�� c2

h

�
�P

�
�R;�1 (�) > h; b�R < h�

���b�R � h� c
�

� �F
�
h+ 2d�� c1

h

�
;

ii) �F 0
�
h+ 2d�� c1

h

��
1� c1

(h+ 2d�)2

�
� d

dh
P
�
�R;�1 (�) > h; b�R < h�

���b�R � h� c
�

� �F 0
�
h+ 2d�� c2

h

��
1� c2

(h+ 2d�)2

�
;

iii) �F 00
�
h+ 2d�� c2

h

��
1� c1

(h+ 2d�)2

�2

+ �F 0
�
h+ 2d�� c1

h

� c1
(h+ 2d�)3

� d2

dh2
P
�
�R;�1 (�) > h; b�R < h�

���b�R � h� c
�

� �F 00
�
h+ 2d�� c1

h

��
1� c2

(h+ 2d�)2

�2

+ �F 0
�
h+ 2d�� c2

h

� c2
(h+ 2d�)3

:
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2.3 The conditional probability

Proof. By Lemma 16 we find 0 < c1 � c2 <1 such that for jyj1 = 1, any large h, and
n 2 N,

c1
(h+ 2d�)n+1

� dn

dhn
E
R;�
y exp

( �0Z
0

(�(Xs)� h) ds

)
(2.18)

� c1

(h+ 2d�� b�R)n+1
� c2

(h+ 2d�� h�)n+1
� c2

(h+ 2d�)n+1
:

For large h, Lemma 15 yields

P
�
�R;�1 (�) > h; b�R < h�

���b�R � h� c
�
=
D
�F (h+ 2d� E�

R(h))
��b�R � h�

E
:

The differentiation lemma guarantees that we can differentiate under the integral.

i) follows by substituting the deterministic estimates (2.18) inD
�F (h+ 2d�� E�

R(h))
��b�R � h�

E
:

ii) holds because

d

dh

D
�F
�
h+ 2d�� E�

R(h)
���b�R � h�

E
=

D
�F 0 (h+ 2d�� E�

R(h)) (1� (E�
R)

0(h))
��b�R � h�

E
:

Now the claim follows by substituting the deterministic estimates (2.18).

iii) holds because

d2

dh2

D
�F
�
h+ 2d�� E�

R(h)
���b�R � h�

E
=

D
�F 0
�
h+ 2d�� E�

R(h)
� �

1� (E�
R)

0(h)2
�2

+ (E�
R)

00(h) �F 0
�
h+ 2d�� E�

R(h)
���b�R � h�

E
:

Now the claim follows by substituting the deterministic estimates (2.18).
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2 Time correlations for the parabolic Anderson model

2.4 Exact moment asymptotics

In this section we apply Theorem 1 to compute exact moment asymptotics via The-
orem 2. To do so we need to impose Assumption (F*) which is a slightly stronger
condition than Assumption (F).

Lemma 18. Let Assumption (F*) be satisfied. Then there exists � 2 (0; 1) such that
for any R > 0 and c > 2d�,D

�F
�
h+ 2d�� E�

R(h)
�
1b�R>h�

���b�R � h� c
E

D
�F
�
h+ 2d�� E�

R(h)
�
1b�R�h�

���b�R � h� c
E h!1�! 0: (2.19)

Proof. Asymptotically, we find

lhs of (2.19) �
�F (h)P

�b�R > h�
�

�F (h+ 2d�)P
�b�R � h�

� =
�F (h) �F (h�)
�F (h+ 2d�)

(jQRj � 1)

(1� e�h�
 )jQRj�1| {z }
h!1
�! 1

h!1�! 0:

In the remainder of this section we will give explicit results for the case that the tails of
�(0) have a Weibull distribution (i.e. �F (h) = exp f�h
g) with parameter 
 > 1. One
easily checks that Weibull tails satisfy Assumption (F*) for � > (
 � 1)=
.

Lemma 19. Let � � Weibull (
). Then for any R > 0 and c > 2d�,

P
�
�R;f1 (�) > h

���b�R � h� c
�

= exp
��(h+ 2d�)
 + 2d�2
(h+ 2d�)
�2 +O �(h+ 2d�)
�3

�	
; h!1:

Proof. It follows from Lemmas 15, 16 and 18 and because the lower and the upper
bound in Lemma 16 are asymptotically equivalent on a exponential scale that for � >
(
 � 1)=
,

P
�
�R;f1 (�) > h

���b�R � h� c
�

�
D
�F
�
h+ 2d�� E�

R(h)
�
1b�R�h�

���b�R � h� c
E

= exp
��(h+ 2d�)
 + 2d�2
(h+ 2d�)
�2 +O �(h+ 2d�)
�3

�	
; h!1:
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2.4 Exact moment asymptotics

In the last line we use that 
h+ 2d�� �

X
jyj1=1

E
R;f
y exp

( �0Z
0

(� (Xs)� h) ds

)!


= (h+ 2d�)
 � 
 (h+ 2d�)
�2
X
jyj1=1

h+ 2d�

h+ 2d�� �(y)
+O�(h+ 2d�)
�4

�
and

h+ 2d�

h+ 2d�� �(y)
=

1X
n=0

�
�(y)

h+ 2d�

�n

= 1 + �(y)
�
(h+ 2d�)�1 +O �h�(h+ 2d�)
�4

��
:

Lemma 20. Let Assumption (F*) be satisfied. Then there exists R0 = R0( �F ) such that
for every R > R0 and c > 2d�,

P
�
�R;f1 (�) > h

���b�R � h� c
�
� P

�
�R;01 (�) > h

���b�R � h� c
�
; h!1:

Proof. Using the representation from Lemma 15, we see that we only have to look at
those paths with �0 � �(QR)

c in the left hand side of (2.17) in the proof of Lemma 16.
In this case the random walk X must jump at least 2R + 1 times until it reaches the
origin for the first time. Therefore, we have to consider only those summands in the
right hand side of (2.17) where k � R. Together with Lemma 18 this yields

Ey exp

( �0Z
0

(� (Xs)� h) ds

)
1�0��(QR)

c1b�R�h�c = O �h�2�2R
�
:

Remark. If � �Weibull(
), 
 > 1, then we can choose R0 >

�1
2
.

Now we would like to use a variant of the Laplace method to calculate exact moment
asymptotics. This is possible due to the strong Tauberian theorem, Theorem 21, in the
spirit of [FY83]. Recall that ' = � log �F .

Theorem 21. Let ' 2 C2 be ultimately convex and Condition (B) be satisfied. Then

exp fH(t)g � exp ftht � '(ht)g
s

2�

'00(ht)
; t!1:
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2 Time correlations for the parabolic Anderson model

Remark. It follows that

H 0(t) � ht and H 00(t) � (ht)
0 = 1='00(ht); t!1:

Proof of Theorem 2. We find that all conditions of Theorem 21 are satisfied. Therefore,
the claim follows together with Theorem 1, where we can take p = 1, f1(x) = xp and
t1(t) = t.

In particular we find together with Lemma 19 and an asymptotic expansion of hR;�t for
Weibull tails:

Corollary 22. Let �(0) �Weibull (
), 
 > 1 and p 2 (0;1). Then for t!1,

hu(t; 0)pi = exp

�
(
 � 1)

�
p



t

� 


�1

� 2d�pt+ 2d�2


�
p



t

� 
�2

�1

+ log pt+
1

2
log

2�


(
 � 1)

�
p



t

�� 
�2

�1

+O
�
t

�3

�1

��
:

2.5 Relevant potential peaks and intermittency

In this section we prove Theorem 3 which tells us what the potential peaks that con-
tribute to the intermittency picture look like and how frequently they occur. Fix R > 0
and let

e�a
t :=

24hR;�t � aq
('�R)

00(hR;�t )
; hR;�t +

aq
('�R)

00(hR;�t )

35 ; a > 0;

and recall that

�a
t =

"
ht � ap

'00(ht)
; ht +

ap
'00(ht)

#
; a > 0:

Notice that 1='00(ht) = (ht)
0 and 1=('�R)

00(hR;�t ) = (hR;�t )0.

Lemma 23. Let Assumption (F) and Condition (B) be satisfied, and R be sufficiently
large. Then for every " > 0 there exists a" such that

lim
t!1

D
u(t; 0)1�R;�1 2e�a

t

E
hu(t; 0)i

(
> 1� " if a > a";

< 1� " if a < a":
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2.5 Relevant potential peaks and intermittency

Proof. Recall that  �R(t) = thR;�t � '(hR;�t ). By Theorems 1 and 21 and with the help
of a first order Taylor expansion we see that there exists �t 2 e�a

t such thatD
u(t; 0)1�R;�1 2e�a

t

E
� t

Z
e�a
t

exp fth� '�R(h)g dh

= t
exp f �R(t)gq
('�R)

00(hR;�t )

aZ
�a

exp

(
� ('�R)

00(�t)

2('�R)
00(ht)

u2

)
du

� t exp f �R(t)g
s

2�

('�R)
00(hR;�t )

�
�(a)� �(�a)�

� hu(t; 0)i ��(a)� �(�a)�; t!1:

Here, � denotes the distribution function of the standard normal distribution. The
asymptotic equivalence in the third line is due to Condition (B).

Since H 00(t) � 1=('�R)
00(hR;�t ) � 1='00(ht) as t tends to infinity, Lemma 23 implies that

for all a > 0,
je�a

t j � j�a
t j �

p
H 00(t); t!1:

Proof of Theorem 3. It follows from [GM98] that only those realisations of � contribute
to the annealed behaviour where �R;�1 = �

(1)
R � 2d� + o(1). Therefore, we find that

hR;�t = ht + o(1) and hence it follows from Lemma 23,

lim
t!1



u(t; 0)1�(0)2�a

t

�
hu(t; 0)i

(
> 1� " if a > a";

< 1� " if a < a":
:

Since we have chosen QL(t) sufficiently large, we can apply the weak LLN and findP
x2QL(t)

u(t; x)1�(x)2�a
tP

x2QL(t)

u(t; x)
P�!


u(t; 0)1�(0)2�a

t

�
hu(t; 0)i ;

which completes the proof.

Now we consider the random set

�at :=
�
x 2 QL(t) : �(x) 2 �a

t

	
:
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2 Time correlations for the parabolic Anderson model

Furthermore, let Berp be a Bernoulli process on the lattice with parameter p and let

iat = exp

(
� '

 
ht +

ap
'00 (ht)

!)
:

We find that the spatial picture of the intermittency peaks looks as follows:

Corollary 24. Asymptotically,

�at � Beriat ; t!1:

Proof. The fact that �at is a Bernoulli process follows since � is i.i.d.
The value of the parameter follows because

P (�(0) 2 �a
t ) = iat � i�at � iat ; t!1:

If �(0) � Weibull(
), 
 > 1, we find with a first order Taylor expansion around ht
that

iat = exp

(
�
�
t




�
=
�1

� at�
=2(
�1)


1=(
�1)(
 � 1)1=2
� 1

2
a2

)
:

If we are interested in those potential peaks that are relevant to the p-th intermittency
peak (p 2 (0;1)), we only have to replace iat by iapt. It becomes obvious that the p-th
intermittency peaks at time t correspond to the q-th intermittency peaks at time p=q.

2.6 Ageing

In this section we prove Theorems 4 and 5 to gain a better understanding on how stable
the intermittency peaks are.

Intermittency Ageing

We start with the first approach.
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2.6 Ageing

Proof of Theorem 4. By Theorem 3 we find

lim
t!1

As(t) = lim
t!1

P

 �����1�
P

x2QLt+s(t)

u(t+ s(t); x)1�(x)2�a
tP

x2QLt+s(t)

u(t+ s(t); x)

����� < "

!
:

Recall that 1=
p
'00(ht) =

p
(ht)0 �

p
H 00(t). Hence, �a

t =
h
ht � a

p
(ht)0; ht + a

p
(ht)0

i
and therefore �a

t \ �a
t+s(t) = ; if and only if ht + a

p
(ht)0 � ht+s + a

p
(ht+s)0 < 0. For

s = o(t) a Taylor expansion yields

ht + a
p
(ht)0 � ht+s + a

p
(ht+s)0 = �s(t)(ht)0

�
1 + o(1)

�
+ 2a

p
(ht)0

�
1 + o(1)

�
: (2.20)

If limt!1H 00(t) > 0 then limt!1(ht)
0 > 0 and hence, it follows that the right hand side

of (2.20) becomes eventually negative and therefore, �a
t \�a

t+s(t) = ; for t large and all
s(t) tending to infinity.
Furthermore, with the help of Fatou’s lemma we see that asymptotically

1

jQLt+s(t)j
X

x2QLt+s(t)

u(t+ s(t); x)1�(x)2�a
t
� 
u(t+ s(t); 0)1�(0)2�a

t

�
:

Now we can conclude that

lim
t!1

As(t) = lim
t!1

P

 �����1�


u(t+ s(t); 0)1�(0)2�a

t

�
hu(t+ s(t); 0)i

����� < "

!
= 0:

On the other hand, if limt!1H 00(t) = 0 then limt!1(ht)
0 = 0 and hence, if s(t) =

o
�
1=
p
(ht)0

�
then eventually �a

t \�a
t+s(t) = ; as above, whereas if 1=

p
(ht)0 = o (s(t))

then limt!1 j�a
t4�a

t+s(t)j = 0.
In the first case we can proceed as above, while in the second case we find that asymp-
totically

1

jQLt+s(t) j
X

x2QLt+s(t)

u(t+ s(t); x)1�(x)2�a
t

� 1

jQLt+s(t) j
X

x2QLt+s(t)

u(t+ s(t); x)1�(x)2�a
t+s(t)

=
D
u(t+ s(t); 0)1�(0)2�a

t+s(t)

E
; t!1:

and hence,

lim
t!1

As(t) = lim
t!1

P

 �����1�
D
u(t+ s(t); 0)1�(0)2�a

t+s(t)

E
hu(t+ s(t); 0)i

����� < "

!
= 1:
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2 Time correlations for the parabolic Anderson model

Remark. The result remains true if we replace u by up, p 2 (0;1).

Corollary 25. Let �(0) � Weibull (
); 
 > 1. Then the PAM ages in the sense of
intermittency ageing if and only if 
 > 2.

Proof. It follows from Theorem 2 that all conditions of Theorem 4 are satisfied. Now
the assumption follows by Theorem 4 using the asymptotics in Theorem 2.

If we want to know for how long a large peak of height t1 remains relevant, we have to
find t2 = t2(t1; a) such that

ht1 +
ap

'00(ht1)
= ht2 �

ap
'00(ht2)

:

Correlation Ageing

Now we come to the second approach.

Proof of Theorem 5. For simplicity we will only consider p = 1. Higher powers can
be treated analogously. The PAM is always intermittent for stationary potentials, i.e.
the second moments are growing much faster than the squares of the first moments.
Therefore, it holds

lim
t!1

Aid(s; t) = lim
t!1

hu(t; 0)u(t+ s(t); 0)iphu(t; 0)2i hu(t+ s(t); 0)2i :

It has been shown in [GM90, (3.13)] that hu(t; 0)pu(s; 0)pi = hu(t+ s; 0)pi for all t; s � 0
if u0 � 1 for p = 1. The claim for p 2 N follows by similar techniques. Therefore,
together with Theorem 21 we find

�p(t) := log hu(t; 0)pi =  �R (pt) +
1

2
log

2�

('�R)
00(eh�pt) + �(pt) with �(t) = o(1):

50



2.6 Ageing

Under the given assumptions we find as t tends to infinity,

hu(t; 0)u(t+ s(t); 0)iphu(t; 0)2i hu(t+ s(t); 0)2i =
hu(2t+ s(t); 0)iphu(2t; 0)i hu(2(t+ s(t)); 0)i

= exp

�
�1

�
2t+ s(t)

�� 1

2

�
�1 (2t) + �1

�
2t+ 2s(t)

���
� exp

�
 �R
�
2t+ s(t)

�� 1

2

�
 �R (2t) +  �R

�
2t+ 2s(t)

���
| {z }

=:B
�
t;s(t)

�
� exp

�
�
�
2t+ s(t)

�� 1

2

�
� (2t) + �

�
2t+ 2s(t)

���
| {z }

t!1
�! 0

� exp

(
1

2
log

2�

('�R)
00
�eh�2t+s(t)� �

1

4

"
log

2�

('�R)
00
�eh�2t� + log

2�

('�R)
00
�eh�2t+2s(t)

�#)
| {z }

=:D
�
t;s(t)

�
:

It is well known that �p 2 C1 and ( �R)
00 > 0.

Expanding B
�
t; s(t)

�
into first order Taylor polynomials around 2t + s(t) we see that

there exist �1(t) 2 [2t; 2t+ s(t)] and �2(t) 2 [2t+ s(t); 2t+ 2s(t)] such that

B
�
t; s(t)

�
= �1

2
s(t)2

�
( �R)

00
�
�1(t)

�
+ ( �R)

00
�
�2(t)

��
:

Using the estimates from Lemma 17, we find that

( �R)
00(t) �  00(t) � H 00(t); t!1:

Case 1: lim
t!1

H 00(t) > 0.

In this case it follows that limt!1B
�
t; s(t)

�
= �1 which implies

limt!1Aid(s(t); t) = 0, for all s.

Case 2: lim
t!1

H 00(t) = 0.
Remember that under Assumption F we have t = o(H(t)) and hence t�1 = o(H 00(t)).
In this case we find two constants 0 < C1 < C2 <1 such that

�C1H
00(2t)s(t)2 � B

�
t; s(t)

� � �C2H
00
�
2t+ s(t)

�
s(t)2:

Consequently, if we choose s such that limt!1H 00
�
2t+ 2s(t)

�
s(t)2 =1 it follows that

Aid(s) = 0, whereas if we choose s such that limt!1H 00(2t)s(t)2 = 0 it follows that
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2 Time correlations for the parabolic Anderson model

limt!1Aid(s; t) = 1.
We observe that 1=

p
H 00(t) 2 A which implies that both regimes can occur for functions

s of order o(t). Because of Condition (B), we find that 1=('�R)00
�eh�t� = o(t) and hence

D
�
t; s(t)

�
tends to zero as t tends to infinity if s = o(t). Theorem 1 is applicable for

s = o(t) and implies that

u(t; 0)pu

�
t+ s(t)

�p� � 
u�p�2t+ s(t)
�
; 0
�
; 0
��
; t!1;

for p 2 (0;1). Hence, we can generalise the result to positive real exponents which
completes the proof.

Notice that the PAM ages if and only if the length of the intervals �a
t tends to zero as

t tends to infinity. In this case we find that 1=j�a
t j 2 A, for all a > 0.

Corollary 26. Let �(0) �Weibull (
); 
 > 1. Then the PAM ages for f = xp; p 2 R+

in the sense of correlation ageing if and only if 
 > 2.

Proof. Analog as in Corollary 25.

We see that for Weibull tails the order of the length of ageing is increasing in 
.

The main obstacle in proving Theorem 5 is that we have to show that d2

dt2
log hu(t; 0)i

is not fluctuating too much. We have proven this under Assumptoin (F*). For more
general potentials we are still able to prove correlation ageing if we replace (2.6) by only
requiring that

lim inf
t!1

jAf (s1; t)� Af (s2; t)j > 0;

and by modifying the definition of A accordingly. We call this weak correlation ageing.
It has been proven in [HKM06] that under some mild regularity assumptions on � there
exists a non-decreasing and regularly varying scale function � : (0;1) ! (0;1) with
�(t) = o(t) and a constant � 2 R such that

log hu(t; 0)i = H

�
t

�(t)d

�
�(t)d +

t

�(t)2
(�+ o(1)) : (2.21)

Let H�(t) := H
�

t
�(t)d

�
�(t)d+ t

�(t)2
� and h(t) := log hu(t; 0)i �H�(t). Then we find:

Theorem 27. Let Assumptions (H) and (K) from [HKM06] be satisfied. If lim
t!1

�00(t)

exists and lim
t!1

H 00(t) = 0, then the PAM is weakly correlation ageing for f = id.
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2.6 Ageing

Proof. Since �(t) = o(t) and limt!1 �00(t) exists this limit must be zero. Therefore,
and because limt!1H 00(t) = 0 it follows that limt!1H 00

�(t) = 0, as well. It follows from
(2.21) that h(t) = o (H�(t)). Altogether, this and the convexity of log hu(t; 0)i imply
that for every sequence of intervals I(t) := [l(t); 2l(t)] with limt!1 l(t) =1,

�

�
s 2 I(t) : h00(s) =2 [�H 00

�(t); H
00
�(t)]

�
�

�
s 2 I(t) : h00(s) 2 [�H 00

�(t); H
00
�(t)]

� t!1�! 0;

where � denotes the Lebesgue measure. Now the claim follows with a Taylor expansion
as in the proof of Theorem 5.

For the first and the second universality class in the classification of [HKM06] we find
that � is constant, and hence, the requirement that lim

t!1
�00(t) exists is fulfilled for all

distributions in these classes. Here it holds that 1=
p
H 00(t) 2 A.
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3 The parabolic Anderson model
between quenched and annealed
behaviour

3.1 Introduction

The problem

We will stick in this chapter to the homogeneous initial condition u0 � 1 and potentials
that are i.i.d. and time-independent.

Basically, there are two ways of looking at the solution. On the one hand one can pick
one realisation of the potential field and consider the almost sure behaviour of u, i.e.
one looks at the quenched setting. On the other hand one can take expectation with
respect to the potential and consider the averaged behaviour of u, i.e. one looks at
the annealed setting. Recall that expectation with respect to � is denoted by h�i, and
the corresponding probability measure is denoted by P. Those realisations of � that
govern the quenched behaviour of u differ heavily from those that govern the annealed
behaviour, see [GM90], or Chapter 2. Therefore, it is interesting to understand the
transition mechanism from quenched to annealed behaviour.

To this end we are interested in expressions such as 1
jQj

P
x2Q u(t; x) where Q is a large

centred box. If Q has a fixed size, then 1
jQj

P
x2Q u(t; x) admits quenched behaviour as

t tends to infinity. This can be deduced from the Feynman-Kac representation (1.2) of
u, which, in this case, reads

u(t; x) = Ex exp

( tZ
0

� (Xs) ds

)
; (t; x) 2 [0;1)� Zd:

On the other hand if we fix t and let the size of Q tend to infinity then (due to the
homogeneous initial condition) by Birkhoff’s ergodic theorem 1

jQj

P
x2Q u(t; x) admits
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3 The parabolic Anderson model between quenched and annealed behaviour

annealed behaviour almost surely. Therefore, a natural question is what happens if the
box Q is time-dependent.

More precisely, we want to find for all � 2 (0; 2) a large box QL�(t), with Qr(t) =
[�r(t); r(t)]d \ Zd, for any r(t) > 0, and numbers A(t); B�(t) such that

X
x2QL�(t)

u(t; x)� A(t)

B�(t)
t!1
=) F�;

with F� a suitable stable distribution.

In the case � = 0, i.e. if the solutions at different sites are independent, the problem
has been addressed in [BABM05] under the assumption that the cumulant generating
function is normalised regularly varying. As a byproduct we generalise their results
to a wider class of cumulant generating functions. In [BABM05] the authors also give
sufficient and necessary conditions on the growth rate of Q for a weak law of large
numbers (WLLN) and for a central limit theorem (CLT) to hold. Corresponding results
for a WLLN and a CLT for the PAM were derived in [BAMR05] and in [BAMR07].
They state that, under appropriate regularity assumptions, there exist J(t) and 
1 < 
2,
all depending on the tails of �, such that:

i) 1
jQ
J(t)j

P
x2Q
J(t)

u(t; x) � hu(t; 0)i, as t!1 if 
 > 
1, in probability,

1
jQ
J(t)j

P
x2Q
J(t)

u(t; x) = o (hu(t; 0)i), as t!1 if 
 < 
1, in probability.

ii) 1
jQ
J(t)j

P
x2Q
J(t)

u(t;x)�hu(t;0)ip
hu(t;0)2i

= N (0; 1), as t!1 if 
 > 
2, in distribution,

1
jQ
J(t)j

P
x2Q
J(t)

u(t;x)�hu(t;0)ip
hu(t;0)2i

= o(1), as t!1 if 
 < 
2, in probability.

Here, N (0; 1) denotes the law of a standard normal distribution with variance 1.
However, �-stable limits for the PAM have not been investigated so far.

Furthermore, we give sufficient conditions on the growth rate of Q for a strong law of
large numbers to hold. So far this has neither be done for the PAM nor for the � = 0
case.

A WLLN and a CLT for the PAM with time-dependent white-noise potential using
rather different techniques can be found in [CM07]. Similar questions concerning a
version of the random energy model were investigated in [BKL02].
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3.1 Introduction

Main results

To state the main results we need to introduce some notation. Let, as in Chapter 2,

'(h) := � logP(�(0) > h)

and ht being a solution to

sup
h2(0;1)

(th� '(h)) = tht � ' (ht) :

If ' is ultimately convex, then ht is unique for any large t. Throughout this chapter we
will assume that �(0) is unbounded from above and has finite exponential moments of
all orders. Under these circumstances the left-continuous inverse of ',

 (s) := min fr : '(r) � sg ; s > 0;

is well-defined. Furthermore, this implies that the cumulant generating function

H(t) := log hexpft�(0)gi ; t � 0;

is well-defined and that H(t) < 1 for all t with limt!1H(t)=t = 1. If ' 2 C2

is ultimately convex and satisfies some mild regularity assumptions, then the Laplace
method yields that H(t) = tht � '(ht) + o(t), see Theorem 21. In the sequel we will
frequently need the following regularity assumptions.
Assumption (G):
There exists � 2 [0;1] such that for all c 2 (0; 1),

lim
t!1

[ (ct)�  (t)] = �c log c:

Assumption (H):
There exists � 2 [0;1] such that for all c 2 (0; 1),

lim
t!1

1

t
[H(ct)� cH(t)] = �c log c:

In [GM98, Theorems 1.2 and 2.2] the authors prove that there exists � = �(�) 2 [0; 2d�]
such that

log u(t; 0)

t
= �(1)Qt

� �+ o(1); a.s.; (3.1)

with �(1)A = supf�(x) : x 2 Ag, if Assumption (G) is satisfied, and

log hu(t; 0)pi
t

=
H(pt)

t
� p�+ o(1); p 2 N; (3.2)
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3 The parabolic Anderson model between quenched and annealed behaviour

if Assumption (H) is satisfied. Notice that Assumption (G) implies Assumption (H).
Furthermore, it turns out that � = �(�) is strictly increasing in � with �(0) = 0 and
�(1) = 2d�. For details see [GM98].

Prominent examples satisfying Assumption (G) are the double exponential distribution,
i.e. P(X > x) = expf� expfx=�gg; x > 0, for � 2 (0;1) and the Weibull distribution,
i.e. P(X > x) = expf�x
g; x > 0 with 
 > 1 for � =1.

For � 2 (0; 2) let F� be the �-stable distribution with characteristic function

��(u) =

(
exp

���(1� �)juj� exp��i��
2

signu
		

; � 6= 1;

exp
�
iu(1� 
)� �

2
juj (1 + 2�i log juj signu�)	 ; � = 1:

Moreover, let

L�(t) := expf'�h�t�g and B�(t) := expft � �h�t � �+ o(1)
�g;

where the error term of B�(t) is chosen in a suitable way. Then we find:

Theorem 28 (Stable limit laws). Let ' 2 C2 be ultimately convex and Assumption
(G) be satisfied. Then for � 2 (0; 2),X

x2QL�(t)

u(t; x)� A(t)

B�(t)
t!1
=) F�;

with

A(t) =

8><>:
0; if � 2 (0; 1);

hu(t; 0)i ; if � 2 (1; 2);

u(t; 0)1u(t;0)�B�(t)

�
; if � = 1:

and

Theorem 29 (Strong law of large numbers). Let Assumption (H) be satisfied, and
r(t) be so large that limt!1

1
t

�
log jQr(t)j �H(2t) + 2H(t)

�
> 0 then for every sequence

(tn)n2N satisfying
P

tn
expf�tng <1,

1

jQr(tn)j
X

x2Qr(tn)

�
u(tn; x)

hu(tn; 0)i � 1

�
tn!1�! 0 a.s.

Notice that the necessary growth rate of Q for a WLLN to hold is the same as in
Theorem 28 for � = 1 and that the necessary growth rate of Q for a CLT to hold
corresponds to � = 2, see [BAMR07]. The growth rate in Theorem 29 is of the same
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3.2 Stable limit laws

order as in the CLT case.
To get a feeling for the numbers involved we give them for the two examples mentioned
above in the table below.

Distribution '(x) logL�(t) logB�(t)

Weibull x
; 
 > 1
�
�t



�
=(
�1)

t
�
�t



�1=(
�1)

� 2d��t+ o(t)

Double-exponential expfx=�g ��t t� log ��t� �(�)�t+ o(t)

Notice that in the Weibull case we have

logB�(t) =
1

�

�
log hu(t; 0)�i+ log jQL�(t)j

�
+ o(t);

see Chapter 2. Because of (3.2) and our considerations in Section 3.2 this relationship
seems to be true in the double exponential case, as well.

3.2 Stable limit laws

Let us explain our strategy of the proof of Theorem 28. We decompose the large box
QL�(t) into boxes Q(i)

l(t); i = 1; � � � ; bjQL�(t)j=jQl(t)jc of much smaller size. In each subbox
we approximate u by u(i), the solution with Dirichlet boundary conditions in Q(i)

l(t). In
this way, we reduce the problem to the case of i.i.d. random variables. A spectral
representation shows that

P
x2Q

(i)

l(t)

u(i)(t; x) can be approached by et�
(i)
1 , where �(i)

1 is

the principal Dirichlet eigenvalue of � + � in Q(i)

l(t). Then a classical result on stable
limits for sums of t-dependent i.i.d. random variables yields the result.

Note that we cannot apply the results of [BABM05] since they require the function ' to
be normalised regularly varying, which is, for instance, not true in the important case
of double-exponential tails.

Let us turn to the details. We first work on the u(i) and show in the end how to
approach u by u(i). We assume that Q(i)

l(t) are translated copies of Ql(t). We consider the
solution u(i) to the PAM in Q(i)

l(t) with Dirichlet boundary conditions, i.e. �(x) = �1
for all x =2 Q(i)

l(t), where l(t) = maxft2 log2 t;H(4t)g. The corresponding Laplacian will
be denoted �0

Q
(i)

l(t)

. The Feynman-Kac representation of u(i) reads

u(i)(t; x) = Ex exp

( 1Z
0

�(Xs) ds

)
1�

(Q
(i)
l(t)

)c
>t; (t; x) 2 [0;1)�Q(i)

l(t):
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3 The parabolic Anderson model between quenched and annealed behaviour

By �U := inf ft > 0: Xt 2 Ug we denote the first hitting time of a set U by a random
walk X. Let �(i)

1 ; � � � ; �(i)

jQl(t)j
be an order statistics of the eigenvalues of the Anderson

Hamiltonian �0

Q
(i)

l(t)

+ � and e(i)1 ; � � � ; e(i)jQl(t)j
be a corresponding orthonormal basis. Then

we have the following spectral representation

X
x2Q

(i)

l(t)

u(i)(t; x) =
X

x;y2Q
(i)

l(t)

jQl(t)jX
k=1

e�
(i)
k
te(i)k (x)e(i)k (y); t 2 [0;1): (3.3)

From Parseval’s inequality, the fact that l(t) is of subexponential order, and the proof of
Theorem 2.2 in [GM98] it follows that there exists e"(i)(t) = e"(i)(�; t) = o(1) such thatX

x2Q
(i)

l(t)

u(i)(t; x) = e�
(i)
t ; where �(i)

t = �(i)

t (�) = �(i)

1 + e"(i)(t):
Sometimes we will write �t instead of �1

t , �1 for �(i)

1 and e"(t) for e"(i)(t).
Remark. The above already implies that for log r(t) = o

�
H(t)

�
the quenched setting is

prominent in the following sense,

lim
t!1

log u(t; 0)

log
P

x2Qr(t)

u(t; x)
= 1; a.s.

In the next lemma we show how the distributions of �t and �(0) are linked.

Lemma 30. Let Assumption (G) be satisfied. Then asymptotically for all h(t) with
limt!1 h(t) =1 there exists "(t) = "(�; t) = o(1) such that for all s > 0,

P
�
�t > sh(t)

�
� jQl(t)jP

�
�(0) > sh(t) + �� "(t)

�
; t!1:

Proof. In [GM98, Proof of Theorem 2.16] the authors show that the first eigenvalue of
�0

Ql(t)
+ � satisfies

�1 = �(1)Ql(t)
� �+ �"(t);

with �"(t) = �"(�; t) = o(1). Let

"(t) := e"(t) + �"(t):
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3.2 Stable limit laws

Then

P
�
�t > sh(t)

�
= P

�
�(1)Ql(t)

> sh(t) + �� "(t)
�

= 1�
�
1�P

�
�(0) > sh(t) + �� "(t)

��jQl(t)j

� 1� exp
n
� jQl(t)jP

�
�(0) > sh(t) + �� "(t)

�o
� jQl(t)jP

�
�(0) > sh(t) + �� "(t)

�
; t!1:

In the third line we use L’Hopital’s rule.

Let e't(x) = � logP (�t > x) ;

and eht = ht + �+ o(1), where the error term is chosen in a suitable way. In particular,
it is chosen such that if e't is ultimately convex then eht is the unique solution to

sup
h2(0;1)

(th� e't(h)) = teht � e't �eht� :
Then, an application of the Laplace method yields

hu(t; 0)i � hu(1)(t; 0)i � t

1Z
0

expfth� e'(h)g dh = expf�teht � e'�eht���1 + o(1)
�g:

The first asymptotics follow from Proposition 7. Hence, we obtain together with
Lemma 30 that

logB�(t) = teh�t = 1

�

�
log hu(t; 0)�i+ log jQL�(t)j

�
(1 + o(1)) :

To prove convergence of
P

i : Q
(i)

l(t)
�QL�(t)

�
et�

(i)
t � eA(t)�=B�(t), as t!1, to an infinitely

divisible distribution with characteristic function equal to

�(u) = exp

�
iau� �2u2

2
+

Z
jxj>0

�
eiux � 1� iux

1 + x2

�
deL(x)�; (3.4)

we have to verify the following condition (see [P75, Chapter IV]).

Condition (P):
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3 The parabolic Anderson model between quenched and annealed behaviour

i) Condition of infinity smallness:

lim
t!1

max
i : Q

(i)

l(t)
�QL�(t)

P

�
et�

(i)
t

B�(t)
� "

�
= 0; " > 0:

ii) In all points x of continuity, the function eL satisfies:

eL(x) = � lim
t!1

jQl(t)j
jQL�(t)j

P

�
et�t

B�(t)
> x

�
:

iii) The constant �2 satisfies:

�2 = lim
�!0

lim sup
t!1

jQl(t)j
jQL�(t)j

Var
�

et�t

B�(t)
1 et�t
B�(t)

��

�
= lim

�!0
lim inf
t!1

jQl(t)j
jQL�(t)j

Var
�

et�t

B�(t)
1 et�t
B�(t)

��

�
:

iv) For every � > 0 the constant a satisfies:

lim
t!1

� jQl(t)j
jQL�(t)j

�
et�t

B�(t)
1 et�t
B�(t)

��

�
�
eA(t)
B�(t)

�

=a+

�Z
0

x3

1 + x2
dL(x)�

1Z
�

x

1 + x2
dL(x):

Items i) and ii) will follow from the next lemma, and iii) and iv) from the next propo-
sition.

Lemma 31. Let Assumption (G) be satisfied and ' 2 C2 be ultimately convex. Then,
for any x > 0,

lim
t!1

P

�
�t >

logB�(t)

t
+

log x

t

�
= x��:

Proof. Lemma 30 and a first order Taylor expansion yield

P

�
�t >

logB�(t)

t
+

log x

t

�
� jQl(t)jP

�
�(0) >

logB�(t)

t
+

log x

t
+ �+ "(t)

�
=exp

�
log jQl(t)j � '

�
logB�(t)

t
+ �+ o(1)

�
� '0

�
logB�(t)

t
+ �+ o(1)

�
log x

t
+ o(1)

�
:
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3.2 Stable limit laws

Since ' is ultimately convex and � is unbounded from above we find that '00(h�t) =
1=h0�t = o(t2): From this we can conclude that the error term in the Taylor expansion
above vanishes asymptotically. Moreover, by our choice of l(t) and B�(t) it follows that

log jQl(t)j = '

�
logB�(t)

t
+ �+ o(1)

�
and lim

t!1

'0
�

logB�(t)
t

+ �+ o(1)

�
t

= �:

Proposition 32. Let Assumption (G) be satisfied and ' 2 C2 be ultimately convex.
Then, for any � > 0,

i) if p > � then

lim
t!1

jQl(t)j
jQL�(t)j

�
ept�t

B�(t)p
1 et�t
B�(t)

��

�
=

�

p� �
� p��:

ii) if p < � then

lim
t!1

jQl(t)j
jQL�(t)j

�
ept�t

B�(t)p
1 et�t
B�(t)

>�

�
=

�

�� p
� p��:

iii) if p = � then

lim
t!1

jQl(t)j
jQL�(t)j

�
ept�t

B�(t)p

�
1 et�t
B�(t)

��
� 1 et�t

B�(t)
�1

��
= � log �:

Proof. i) Integration by parts yields

�
ept�t1 et�t

B�(t)
��

�
=

eh�t+ log �
tZ

0

etpx d
�
1� �F�t(x)

�

=� �etpx�e'(x)�x=eh�t+ log �
t

x=0
+ pt

eh�t+ log �
tZ

0

etpx�e'(x) dx:

Here �F�t denotes the tail distribution function of �t. Similarly as in the proof
of Lemma 31 we find with the help of a first order Taylor expansion of ' that
uniformly in � ,

e'�eh�t + log �

t

� � e'(eh�t)� � log �; t!1:
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3 The parabolic Anderson model between quenched and annealed behaviour

Substituting x = eh�t + log �
t
u for � 6= 1 we find that

pt

eh�t+ log �
tZ

0

etpx�e'(x) dx � ept
eh�t�e'(eh�t)p log �

1Z
�1�sign log �

eu(p��) log � du

� p

p� �
ept

eh�t�e'(eh�t)+(p��) log � ; t!1:

Altogether this proves the claim.

ii) and iii) follow similarly.

Overall we find:

Theorem 33. Let Assumption (G) be satisfied and ' 2 C2 be ultimately convex. Then
for � 2 (0; 2), X

i : Q
(i)

l(t)
�QL�(t)

et�
(i)
t � eA(t)
B�(t)

t!1
=) F�;

with

eA(t) =
8><>:
0; if � 2 (0; 1);

het�ti ; if � 2 (1; 2)

het�t1�t�1i ; if � = 1:

Proof. Since the u(i) are i.i.d., the �(i)

t are as well. Hence, we have to check the four points
of Condition (P). Items i) and ii) follow from Lemma 31. We find that eL(x) = x��.
It follows from Proposition 32 that �2 = 0. Furthermore, Proposition 32 together
with [BABM05, Proposition 6.4] yields the constant a from which we can deduce �.
The stability of the limit law follows from [P75, Theorem IV.12] since �2 = 0 andeL(x) = x��.

Remark. An infinitely divisible law with characteristic function as in (3.4) is stable if
and only if either eL � 0 or �2 = 0 and eL(x) = cx��, c > 0, � 2 (0; 2), see [P75,
Theorem IV.12].

We extend the functions u(i) to a function eu : QL�(t) ! [0;1) by putting eu(t; x) =
u(i)(t; x) for x 2 Q(i)

l(t). Now it remains to show that
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3.2 Stable limit laws

X
x2QL�(t)

u(t; x)� A(t)

B�(t)
and

X
x2QL�(t)

eu(t; x)� eA(t)=jQl(t)j
B�(t)

=
X

i : Q
(i)

l(t)
�QL�(t)

expft�(i)

t g � eA(t)
B�(t)

have the same �-stable limit distribution.
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���
���
���
���
���
���
�� 6

?

L�(t)6

?

l(t)

6

?

l(t)=t

I
c
t

To this end let Ict =
S

i : Q
(i)

l(t)
�QL�(t)

Q(i)

l(t) nQ(i)

l(t)=t and It = QL�(t) n Ict . Notice that

u(t; x)� eu(t; x) = Ex exp

( 1Z
0

�(Xs) ds

)
1�

(Q
(i)
l(t)

)c
�t; (t; x) 2 [0;1)�Q(i)

l(t):

Lemma 34. For all " > 0,

i) if � 2 (0; 1] then

lim
t!1

P

 
1

B�(t)

X
x2QL�(t)

�
u(t; x)� eu(t; x)� > "

!
= 0:

ii) if � 2 [1; 2) then

lim
t!1

P

 
1

B�(t)

X
x2QL�(t)

�
u(t; x)� hu(t; x)i � eu(t; x) + heu(t; x)i � > "

!
= 0:

iii) if � = 1 then

lim
t!1

P

 X
x2QL�(t)

u(t; x)� 
u(t; x)1u(t;x)�B�(t)

�� eu(t; x) + 
eu(t; x)1eu(t;x)�B�(t)

�
B�(t)

> "

!
= 0:
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3 The parabolic Anderson model between quenched and annealed behaviour

Proof. i) If x 2 It, then limt!1 u(t; x)�eu(t; x) = 0 a.s. (see [GM98]). Furthermore,
jItj=B�(t)

t!1�! 0. Hence, we find for large t,

P

 
1

B�(t)

X
x2QL�(t)

u(t; x)� eu(t; x) > "

!
� P

 
1

B�(t)

X
x2Ict

u(t; x)� eu(t; x) > "

!
:

By the definition of B�(t) and by Markov’s inequality it follows that

P

 
1

B�(t)

X
x2Ict

u(t; x)� eu(t; x) > "

!
�P
 X

x2Ict

u(t; x)

jQL�(t)j1=� hu(t; 0)�i1=�
> "

!

� 1

"�

*� P
x2Ict

u(t; x)

��
+

jQL�(t)j hu(t; 0)�i
� 1

"�
jQL�(t)j
jItj

hu(t; 0)�i
jQL�(t)j hu(t; 0)�i

t!1�! 0:

ii) Similarly as in case i) we find that asymptotically

P

 
1

B�(t)

X
x2QL�(t)

�
u(t; x)� hu(t; x)i � eu(t; x) + heu(t; x)i � > "

!

� 1

"�

*� P
x2Ict

u(t; x)

��
+

jQL�(t)j hu(t; 0)�i
+ o(1):

Furthermore, we have*�X
x2Ict

u(t; x)

��
+

�
*�X

x2Ict

�
u(t; x)2 +

X
y2Ict :

jx�yj�l(t)=t

u(t; x)u(t; y) +
X
y2Ict :

jx�yj>l(t)=t

u(t; x)u(t; y)
���=2

+

�
X
x2Ict

jl(t)=tj hu(t; x)�i+
X

x;y2Ict :
jx�yj>l(t)=t

D
(u(t; x)u(t; y))�=2

E
:

The first summand can be treated as in case i), whereas the second summand can
be treated similarly as in the proof of Lemma 35.
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3.3 Strong law of large numbers

iii) follows analogously.

Now we are able to prove Theorem 28.

Proof of Theorem 28. We only consider the case � 2 (0; 1). The other cases follow
similarly. It follows from Lemma 34 that for every " > 0,

lim
t!1

P

 X
i : Q

(i)

l(t)
�QL�(t)

�����
P

x2Q
(i)

l(t)

u(t; x)� expft�(i)

t g

B�(t)

����� > "

!
= 0;

while Theorem 33 states that under the same conditions as in Theorem 28,

X
i : Q

(i)

l(t)
�QL�(t)

et�
(i)
t

B�(t)
t!1
=) F�:

Therefore, the claim follows from Slutzky’s theorem.

Remark. We expect that a similar result as Theorem 28 with the same stable limit
distribution also holds for potential tails that are bounded from above as considered
in [BK01] and [HKM06]. However, since in that case we do not have such a close link
between between �t and �(1)Ql(t)

we cannot determine the distribution of �t and therefore

L�(t) = � logP(�t > eht) cannot be made as explicit as under Assumption (G).

3.3 Strong law of large numbers

Recall that l(t) = maxft2 log2 t;H(4t)g and that x+Ql(t) is the lattice box with centre
x and sidelength l(t).

Lemma 35. Let Assumption (H) be satisfied and r(t) be chosen as in Theorem 29,
then

lim
t!1

1

jQr(t)j2
X

x;y2Qr(t):

jx�yj>2l(t)

�hu(t; x)u(t; y)i
hu(t; 0)i2 � 1

�
= 0:
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3 The parabolic Anderson model between quenched and annealed behaviour

Proof. For t > 0 and x 2 Qr(t) let

u(1)(t; x) = Ex exp

( 1Z
0

�(Xs) ds

)
1�(x+Ql(t))

c�t;

and

u(t; x; y) = Ex;y exp

( 1Z
0

�(Xs) ds

)
exp

( 1Z
0

�(Ys) ds

)
1�X

(x+Ql(t))
c<t or �Y

(y+Ql(t))
c<t
;

where X and Y are two independent random walks starting in x, y, respectively, Ex;y is
their joint expectation, and �XA , �YA are their exit times from a set A � Z

d, respectively.
If jx� yj > 2l(t), then u(1)(t; x) and u(1)(t; y) are independent, and hence

X
x;y2Qr(t):

jx�yj>2l(t)

�hu(t; x)u(t; y)i
hu(t; 0)i2 � 1

�
=

X
x;y2Qr(t):

jx�yj>2l(t)

hu(t; x; y)i
hu(t; 0)i2 :

Hölder’s inequality and [GM90, Lemma 2.4 and Theorem 3.1] yield for all x; y 2 Qr(t) n
Ql(t),

hu(t; x; y)i �
r
hu(t; 0)4i 2Px

�
�(x+Ql(t))c < t

�
� exp

�
1

2
(l(t)� l(t) log l(t) + o(t)

�
t!1�! 0:

Proof of Theorem 29. By Chebyshev’s inequality we find that for every s > 0,

P

�
sup
tn>s

1

jQr(tn)j
X

x2Qr(tn)

� u(tn; x)

hu(tn; 0)i � 1
�
> "

�

�
X
tn>s

1

"2
Var
�

1

jQr(tn)j
X

x2Qr(tn)

� u(tn; x)

hu(tn; 0)i � 1
��

:
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3.3 Strong law of large numbers

As t tends to infinity it follows with Lemma 35 that

Var
�

1

jQr(t)j
X

x2Qr(t)

� u(t; x)

hu(t; 0)i � 1
��

� 1

jQr(t)j2
X

x;y2Qr(t):

jx�yj<2l(t)

�hu(t; x)u(t; y)i
hu(t; 0)i2 � 1

�

� 1

jQr(t)j
X

x2Ql(t)

�hu(t; 0)u(t; x)i
hu(t; 0)i2 � 1

�

� jQl(t)j
jQr(t)j

hu(t; 0)2i
hu(t; 0)i2

= expf� log jQr(t)j+H(2t)� 2H(t) + o(t)g:

The last asymptotics are due to (3.2). Now the claim follows because for our choice of
r(t),

lim
s!1

X
tn>s

expf� log jQr(tn)j+H(2tn)� 2H(tn) + o(tn)g = 0:
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4 Correlations for the parabolic
Anderson model with white-noise
potential

4.1 Introduction

In this chapter we investigate time and spatial correlations for the parabolic Anderson
model (PAM) with a white-noise potential, i.e. the following initial value problem for
the heat equation with discrete space variable and homogeneous initial value(

@
@t
u(t; x) = ��u(t; x) + 
dWt(x)u(t; x); (t; x) 2 (0;1)� Zd;

u(0; x) = 1; x 2 Zd:
Here,

�
W (x); x 2 Zd	 denotes a family of independent one-dimensional Brownian mo-

tions, and �; 
 are positive constants. This problem can be reformulated as an infinite-
dimensional system of stochastic differential equations which reads

u(t; x) = 1 + �

tZ
0

�u(s; x) ds+ 


tZ
0

u(t; x) dWs(x); (t; x) 2 [0;1)� Zd:

Existence and uniqueness in the space of nonnegative functions were shown in [CM94].
We want to understand the above problem in the sense of Itô. Thus, it follows by the
martingale property and the Feynman-Kac formula (1.5) that for all t � 0; x 2 Zd:

hu(t; x)i =
�
E
X
x exp

n



tZ
0

dWs(Xt�s)� 
2

2
t
o�

= 1;

where X denotes a simple symmetric continuous time random walk with generator ��
that starts in x under EXx and h�i denotes expectation with respect to the medium. We
are going to investigate the following correlation coefficient

corr(u(t; 0); u(s; x)) :=
hu(t; 0)u(s; x)i � 1p

(hu(t; 0)2i � 1) (hu(s; x)2i � 1)
:
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4 Correlations for the parabolic Anderson model with white-noise potential

Let X (1) and X (2) be two independent random walks with generator �� and Z :=
X (2) �X (1). Then Z is a random walk with generator 2�� that starts in x under EZx .
Let H := 2��+
2�0. Then the semigroup representation of H acting on `2(Zd) is given
by

(eHtf)(z) = E
Z
z exp

�

2

tZ
0

du �0 (Zu)

�
f(Zt):

It is well known (see for instance [GdH06, Lemma 1.3]) that the spectrum of H has the
following shape

�(H) =

(
[�8d�; 0] [ f�g ; if 2� < 
2G(0);

[�8d�; 0] ; if 2� � 
2G(0):

Here,

G(x) := E
Y
x

1Z
0

�0(Ys) ds =

1Z
0

ps(x) ds; x 2 Zd;

denotes the Green’s function of a random walk Y with generator�, ps(x) = P
Y
0 (Ys = x),

and � > 0 is the principal eigenvalue of H corresponding to a positive eigenfunction v.
Notice that the Green’s function is finite if and only if the random walk is transient,
i.e. if and only if d � 3. Now we can formulate our main theorem.

Theorem 36. i) There exists c(�) > 0 such that as s!1,

lim
t!1

corr(u(t; 0); u(t+ s; 0)) =

8<:e��

2s=2�O(log s); if 2� < 
2G(0);

1
G(0)

1R
�s

p2�u(0) du � c(�)s1�d=2; if 2� � 
2G(0):

ii) For any z 2 Zd,

lim
t!1

corr(u(t; 0); u(t; z)) =

(
v(z)
v(0)

; t!1 if 2� < 
2G(0);
G(z)
G(0)

; t!1 if 2� � 
2G(0):

This is to the best of our knowledge the first time that spatial correlations for this model
have been derived. For time correlations only upper bounds have been computed, so
far, see [DD07] and [AD11].
Remark. If 2� � 
2G(0), then we find that for x 2 Zd, s � 0,

lim
t!1

corr(u(t; 0); u(t+ s; x)) =

G(x) +
1R
�s

p2�u(x) du�G(x)�0(x)

G(0)
:

72



4.2 Time and spatial correlations

Remark. Transforming the corresponding eigenvalue-equation yields for z 2 Zd,
v(z)

v(0)
= 
(R��0)(z);

where R� := (���)�1 denotes the resolvent of the discrete Laplacian, see [GdH06].

Recall the definition of correlation ageing from Section 2.1.

Corollary 37. There is no correlation ageing for f = id in the PAM with white-noise
potential.

Remark. The ageing result from Corollary 37 has already been found in [DD07] where
the authors use different techniques.

In [CM94, Chapter III] the authors show that the PAM with white-noise potential is
intermittent (in the sense of exponential growth of moments as defined in (1.4)) if and
and only if 2� < 
2G(0). Theorem 36 makes plausible why for 2� < 
2G(0) we have
intermittency but no ageing. It seems as if the islands are moving around but do not
increase their size.

4.2 Time and spatial correlations

We need the following representation of corr.

Proposition 38. For all t; s � 0 and x 2 Zd,

corr(u(t; 0); u(t+ s; x))

=

E
X(2)

x E
Z

X
(2)
s

exp

�

2

tR
0

du �0 (Zu)

�
� 1s�

EZ0 exp

�

2

tR
0

du �0 (Zu)

�
� 1

��
EZ0 exp

�

2

s+tR
0

du �0 (Zu)

�
� 1

� :

Proof. By the Feynman-Kac formula (1.5) and Fubini’s theorem it follows that

hu(t; 0)u(t+ s; x)i

= e
�
2

2
(2t+s)

E
X(1)

0 E
X(2)

x

*
exp

(



tZ
0

dWu(X
(1)

t�u) + 


t+sZ
0

dWv(X
(2)

t+s�v)| {z }
�N (0;�2)

)+
:
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4 Correlations for the parabolic Anderson model with white-noise potential

Here, N (0; �2) denotes the law of the standard normal distribution with variance �2.
The exponent is normally distributed because X (1) and X (2) are piecewise constant and
W has independent increments.

Now we compute its variance �2. This can be done in the following way

�2 =

*�



tZ
0

dWu(X
(1)

t�u) + 


t+sZ
0

dWv(X
(2)

t+s�v)
�2+

= 
2

24(2t+ s) + 2

* tZ
0

dWu(X
(1)

t�u)

tZ
0

dWv(X
(2)

t+s�v)

+35 :
Here, we use the fact that

tR
0

dWu(X
(1)

t�u) and
t+sR
t

dWv(X
(2)

t+s�v) are independent. Fur-

thermore, we have* tZ
0

dWu(X
(1)

t�u)

tZ
0

dWv(X
(2)

t+s�v)

+
=

tZ
0

tZ
0



dWu(X

(1)

t�u)dWv(X
(2)

t+s�v)
�

=

tZ
0

tZ
0

�0(u� v)�0(X
(1)

t�u �X (2)

t+s�v) du dv =

tZ
0

du �0(X
(1)

u �X (2)

s+u):

Hence, using the strong Markov property of X (2) and Fubini’s theorem it follows that

hu(t; 0)u(t+ s; x)i = E
X(1)

0 E
X(2)

x exp

�

2

tZ
0

du �0(X
(1)

u �X (2)

s+u)

�

= E
X(1)

0 E
X(2)

x E
X(2)

X
(2)
s

exp

�

2

tZ
0

du �0(X
(1)

u �X (2)

u )

�

= E
X(2)

x E
Z

X
(2)
s

exp

�

2

tZ
0

du �0(Zu)

�
:

By similar arguments we find that



u(t; 0)2

�
= E

Z
0 exp

�

2

tZ
0

du �0 (Zu)

�
and



u(t+ s; x)2

�
= E

Z
0 exp

�

2

s+tZ
0

du �0 (Zu)

�
;

which proves the claim.
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4.2 Time and spatial correlations

Lemma 39. a) The function u(z) := E
Z
z exp

�

2

1R
0

�0 (Zs) ds

�
solves the following

boundary value problem if 4d� > 
2:(
2��u(z) + 
2�0(z)u(z) = 0; z 2 Zd;
limjzj!1 u(z) = 1:

(4.1)

b) u(z) = 1+ 
2

2��
2G(0)
G(z) is the unique solution to the boundary value problem (4.1).

Proof. a) Let
� := inf ft � 0: Zt 6= Z0g

be the stopping time of the first jump of Z.

First we look at the case z 6= 0. It follows by the strong Markov property at time �
that

u(z) = E
Z
z exp

�

2

1Z
�

�0 (Zs) ds

�

= E
Z
z E

Z
Z� exp

�

2

1Z
0

�0 (Zs) ds

�
= E

Z
z u(Z�) =

1

2d

X
y2Zd:
jz�yj=1

u(y):

The last equality holds since Z arrives at one of the 2d neighbours of z with equal
probability after the first jump. Therefore, it follows that 2du(z) = �u(z)+2du(z) and
consequently �u(z) = 0.

Now we look at the case z = 0. There, we have

u(0) = E
Z
0 e


2� exp

�

2

1Z
�

�0 (Zs) ds

�

= E
Z
0 e


2�
E
Z
Z� exp

�

2

1Z
0

�0 (Zs) ds

�
= E

Z
0 e


2�u(Z�):
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4 Correlations for the parabolic Anderson model with white-noise potential

Note that � is exponentially distributed with parameter 4d�, which implies that
E
Z
0 e


2� = 4d�=(�
2 + 4d�). Since � and Z� are independent we therefore obtain

u(0) = E
Z
0 e


2�
E
Z
0 u(Z�) =

4d�

4d�� 
2
1

2d

X
y2Zd

jyj=1

u(y) =
2�

4d�� 
2
�
�u(0) + 2du(0)

�
;

which is equivalent to
2��u(0) + 
2u(0) = 0:

Sumarising we get
2��u(z) + 
2�0(z)u(z) = 0:

The boundary condition follows because lim
jzj!1

G(z) = 0.

b) Substituting the above expression shows existence. Uniqueness follows by the maxi-
mum principle.

Now we are able to prove Theorem 36. Recall that v denotes the `2-normalized positive
eigenfunction of H corresponding to �.

Proof of Theorem 36. i) Assume that 2� < 
2G(0). In [SW10, Theorem 5] the authors
show that in this case for every z 2 Zd,

E
Z
z exp

� tZ
0

du �0 (Zu)

�
� v(z)kvk1et�; t!1;

where k � k1 denotes the `1-norm in Zd. Hence, we find on the one hand as t tends to
infinity

E
X(2)

0 E
Z

X
(2)
s

exp

�

2

tZ
0

du �0 (Zu)

�
� E

Z
0 exp

�

2

tZ
0

du �0 (Zu)

�
� v(0)kvk1e
2�t:

On the other hand we find asymptotically as t!1,

E
X(2)

0 E
Z

X
(2)
s

exp

�

2

tZ
0

du �0 (Zu)

�

�EZ0 exp

�

2

tZ
0

du �0 (Zu)

�
P
X(2)

0 (X (2)

s = 0) � v(0)kvk1e
2�t�O(log s);
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4.2 Time and spatial correlations

where O(log s) does not depend on t. Now we see that asymptotically as s!1,

lim
t!1

corr(u(t; 0); u(t+ s; 0)) = lim
t!1

e

2�t

p
e
2�te�
2(t+s)

e�O(log s) = e��

2s=2�O(log s):

Assume now that 2� � 
2G(0). This case only occurs in dimensions d � 3 where
the random walk Z is transient and we know that almost surely

R1
0

du �0 (Zu) < 1:
Therefore, it follows that

lim
t!1

corr
�
u(t; 0); u(t+ s; 0)

�

=

E
X(2)

0 E
Z

X
(2)
s

exp

�

2

1R
0

du �0 (Zu)

�
� 1s�

EZ0 exp

�

2

1R
0

du �0 (Zu)

�
� 1

��
EZ0 exp

�

2

1R
0

du �0 (Zu)

�
� 1

� :

Since G(0) � 1=2d we can apply Lemma 39, which yields that for every z 2 Zd,

E
Z
z exp

�

2

1Z
0

du �0 (Zu)

�
= 1 +


2

2�� 
2G(0)
G(z):

Consequently, it follows from Fubini’s theorem and the Chapman-Kolmogorov equation
that

lim
t!1

corr
�
u(t; 0); u(t+ s; 0)

�
=
E
X(2)

0 G(X (2)
s )

G(0)
=

1

G(0)

1Z
0

E
X(2)

0 pu(X
(2)

s ) du

=
1

G(0)

1Z
�s

p2�u(0) du � c(�)s1�d=2; s!1:

ii) follows similarly.
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