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Abstract

Frankl’s (union-closed sets) conjecture states that for any nonempty finite union-
closed (UC) family of distinct sets there exists an element in at least half of the
sets. Poonen’s Theorem characterizes the existence of weights which determine
whether a given UC family ensures Frankl’s conjecture holds for all UC families
which contain it. The weight systems are nontrivial to identify for a given UC
family, and methods to determine such weight systems have led to several other
open questions and conjectures regarding structures in UC families.

We design a cutting-plane method that computes the explicit weights which
imply the existence conditions of Poonen’s Theorem using computational integer
programming coupled with redundant verification routines that ensure correct-
ness. We find over one hundred previously unknown families of sets which ensure
Frankl’s conjecture holds for all families that contain any of them. This improves
significantly on all previous results of the kind.

Our framework allows us to answer several open questions and conjectures
regarding structural properties of UC families, including proving the 3-sets con-
jecture of Morris from 2006 which characterizes the minimum number of 3-sets
that ensure Frankl’s conjecture holds for all families that contain them. Further-
more, our method provides a general algorithmic road-map for improving other
known results and uncovering structures in UC families.





Zusammenfassung

Die Vermutung von Frankl besagt, dass es in jeder unter Vereinigung abgeschlosse-
nen, endlichen Mengenfamilie (UC-Familie) ein Element gibt, das in mindestens
der Hälfte der Mengen liegt. Wir berechnen über hundert bisher unbekannte
Mengenfamilien, deren Existenz zeigt, dass Frankls Vermutung für alle Fami-
lien gilt, die eine dieser Familien enthalten. Poonens Theorem charakterisiert
die Existenz von Gewichten, die bestimmen, ob eine gegebene UC-Familie dafür
sorgt, dass Frankls Vermutung für alle UC-Familien gilt, die diese Familie en-
thalten. Wir entwerfen und implementieren ein Schnittebenenverfahren, dass
die Gewichte für Poonens Theorem berechnet. Mit dieser Methode können wir
mehrere offene Fragen und Vermutungen in Bezug auf strukturelle Eigenschaften
von UC-Familien beantworten, einschließlich des Beweises einer Vermutung von
Morris aus dem Jahr 2006 über die minimale Anzahl von Mengen der Grösse 3,
die sicherstellen, dass Frankls Vermutung für alle Familien gilt, die sie enthalten.
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1 Introduction
Mathematics is an old, broad subject that reaches deep into the frameworks of
many modern disciplines. The field has no shortages of unsolved questions and
problems [98]. Sometimes such questions are deceptively easy to formulate but
exceedingly hard to answer [37]. Generally, this criterion makes them interesting,
since it is hoped that an answer to a basic, but difficult question, may reveal
deeper and more fundamental structures along the way. For suitable problems
that remain unsolved in the present digital age, turning to computational tools
is a natural strategy to further shed light onto the lack of traditional pen-and-
paper progress. While the use of computers is crucial in many aspects of applied
mathematics, it is less common in “purer” areas of mathematics. In this work, we
effectively use integer and linear programming techniques to settle several open
questions and conjectures in extremal combinatorics regarding families of sets
which have the union-closed property, which ensures that all pair-wise unions of
sets in the given families are present.

Although extremal combinatorics is often concerned with asymptotic behav-
ior on some ground set of a specific problem at hand, there are many interesting
questions whose behavior is unknown even for small ground sets. Therefore, in
problems that appear to have relatively little structure, the geometry of poly-
hedral combinatorics can result in interesting mathematics which leads to new
answers, questions and conjectures. In addition, computational experiments may
reveal otherwise fleeting counterexamples. We believe that this two-fold nature
of our particular tool-set makes it suitable for investigating difficult problems in
extremal combinatorics.

In this thesis we highlight the benefits of integrating such techniques into
the pure mathematical landscape. Before delving into the main problems we
investigate in this work, we give a brief overview of machine-assisted mathematics
which outlines perceived concerns and demonstrated success stories1. In this
context, we conclude the chapter by highlighting the main results featured in
this thesis.

1We focus on personal areas of interest, thus giving a rather biased history of the sub-
ject which highlights the use of optimization methods. For a more comprehensive view of
experimental mathematics we refer the reader to the exposition of Borwein and Devlin [16].
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1.1 In Machines We Trust?
Using computers to help prove results in pure mathematics is not a new endeavor,
although it still remains controversial amongst some mathematicians [60]. Per-
haps the most basic, and not entirely naive question is the following: How are
we to trust results if they cannot be directly checked by hand? If doubt persists
after reasonable safeguards are in place for ensuring the correctness of machine
generated output, then the question quickly runs into philosophical territory that
has little to do with mathematics as known by most.

Suppose you read a proof of a statement, i.e., a series of connected logical
arguments that begin with some assumptions and end with the desired result.
Is it possible to know with absolute certainty that no mistakes have been made?
Arguably, for proofs that are quite complicated and go on for many pages, the
answer is simply no. However, the absence of absolute certainty is often re-
claimed by sufficient conviction. Thus you only need to believe that the proof is
correct. For example, the theorem which classifies finite simple groups is over ten
thousand pages long [52]. Reading the entire proof would take a long time, and
a great deal of optimism is necessary to assume that absolutely no mistake could
be made in the writing, reading and understanding of each crux in the proof.
Nearly all mathematicians accept the result as true, although rationally speaking
it is very likely that only a minority has carefully read the whole proof, while
many may have read portions of it. Indeed we may safely assume that situations
like this are normal, as progress measured in the traditional mathematical way
often consists of new results building upon previous ones.

Furthermore, traditionalists often raise aesthetic concerns regarding the use
of machines for pure mathematics. As such, a distinction is made between ver-
ification and understanding [75]. Proofs in traditional mathematics are said
to promote understanding. Verification is viewed as mechanical and lacking in
depth. Moreover, the idea of reproducible experiments sounds suspiciously close
to empirical science, the arch-nemesis of mathematical apriorism. Thus Appel [7]
notes that:

In a sense the computer has introduced into mathematics the idea
of verification of results as happens in the natural sciences–via repli-
cable experiments. To the non-mathematician this has the effect of
destroying the image of mathematics as a field in which problems are
solved and solutions communicated with absolute assurance.

Reservations against machine-assisted mathematics often coincide with the opin-
ions of the mathematical old guard, still rather unfamiliar with practical com-
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puting. Yet current trends, for example the emerging field of homotopy type
theory [108], continually blur boundaries between understanding and verifica-
tion. Furthermore an overwhelming digital aesthetic is increasingly becoming an
accepted societal norm 2. It stands to reason that coming generations of pure
mathematicians will view computers as another standard tool for furthering our
understanding of the discipline.

1.1.1 The Prototype: the Four-Color Theorem
Works with a significant computational content have a long history in math-
ematics 3 and Ludolph van Ceulen’s calculation of π to 35 digits of accuracy
remains a prominent example of this kind to have survived to modern times [78].
Van Ceulen claims to have spend close to 15 years of his life performing the
calculations necessary for the result and, amazingly, computers have verified its
correctness. In this section, we focus on a very concise and incomplete history of
machine-assisted mathematics 4, exploring the use of linear and (computational)
integer programming techniques for such proofs.

The four-color theorem is the first major result proved via a computer-assisted
method in the 1970s by Appel and Haken [6]. Its statement is deceptively simple:
any map in the plane can by colored with four colors such that the regions sharing
a common boundary (other than a single point) do not share the same color. A
“simple” proof of the statement is still missing, while numerous attempts date
back to the 1850s. Below we give an overview of the history of the problem, as
it illustrates several key-points and issues in machine-assisted mathematics 5.

Kempe published his first “proof" of the four-color conjecture in 1879 [42]. As
a result, the English lawyer and mathematician was elected a Fellow of the Royal
Society and even knighted at a later date. However in 1890 Heawood showed that
Kempe’s arguments contained a nontrivial flaw, while at the same time proving

2We recall two celebrated milestones (and their contribution to digital aesthetics): the loss
of human versus computer in the games of chess and Go. World champion Kasparov lost to
Deep Blue in 1997 and more surprisingly, the world’s best Go player Ke Jie, recently lost
to AlphaGo. The media characterized both events in aesthetic terms, albeit with nostalgic
undertones.

3Pre–Greek mathematics was less concerned with proof and had a primarily computational
nature [61].

4We do not discuss symbolic computations with regards to computer algebra systems, al-
though this is a very productive area of experimental mathematics. Doron Zielberger is a
well-known, controversial but brilliant proponent of this method [36], [115], [112].

5Firstly, it shows that nontrivial mistakes are an occurrence in traditional mathematics.
Secondly, it exemplifies the general strategy of reducing the problem of interest to a finite
number of cases that can be checked by computer [78]. Thirdly, (in particular, as we will see,
if the proof itself uses sophisticated optimization software) it illustrates the necessity of digital
reviewers where the highest level of trust is achieved via interactive theorem provers.
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that five colors are sufficient for every map. Throughout the decades many other
mathematicians worked on the four-color conjecture, showing that the problem
could be reduced to some finite, albeit large, number of cases. Finally, this
culminated in the computer assisted proof of Appel and Haken [6], which took
over 1200 hours of machine time. The proof was initially met with skepticism, but
was eventually (mostly) accepted by the mathematical community [23]. In this
sense the final verification in 2005 by Gonthier [50], via the interactive theorem
prover Coq [11], put (nearly) all mathematical fears to rest.

1.1.2 Interactive Theorem Provers
In some sense, interactive theorem provers such as Coq or Isabelle/HOL [80] 6

represent the highest levels of trusted code for computer-assisted proofs. This
is because interactive theorem provers such as Coq are partly based on type
theory [94] invented by Russell at the beginning of the 20th century in order to
deal with the logical paradoxes of naive set theory as a foundation for mathe-
matics. Thus interactive theorem provers serve as a rigorous framework for the
formalization of the discipline. Of course, in practical terms, such rigor comes
with significant costs that may alienate the average mathematician from this
approach in the first place. Formalizing results in interactive theorem provers
is incredibly time-consuming (note the nearly 30 year gap between the result
of Gonthier and that of Appel and Haken) since the implementations in func-
tional programming can be particularly daunting for those not familiar with this
paradigm.

Still, for new generations of mathematicians, Coq and Isabelle/HOL are con-
sidered (somehow) well-established but rather tedious tools. Interactive (and
automated) theorem provers have shown considerable flexibility and success rang-
ing from the formalization of Kepler’s conjecture [54], Robbin’s conjecture [110],
odd order theorem [51], discrete Jordan curve theorem [33] and plane Delaunay
triangulation algorithm [34] to results beyond the realm of traditional mathe-
matics. Indeed the formalization of the ontological proof of God’s existence [12],
which can be traced back to Leibniz, is a striking example of computational
metaphysics and the far reach of interactive theorem proving.

For those interested in the verification of computational optimization meth-
ods, interactive theorem provers offer another advantage7. In theory, a program’s

6The following are a few other interactive or automated theorem provers of note: Mizar [93],
Otter [74], EQP [73], Lean [32] and Adga [18].

7Formal verification of software is an active area of research that intersects with interactive
theorem provers [15].
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correctness can be verified in an interactive theorem prover by formalizing it ac-
cording to the internal logic of the prover. In practice however, the sheer massive
codes used in complex optimization systems (mostly written in imperative pro-
gramming languages) are nearly impossible to formally prove correct.

Suppose you are not interested in the formal correctness of sophisticated
software like CPLEX [29] or Gurobi [2]. Instead you prefer a trusted proof
of the correctness of the output, i.e., given an integer program, you want to
know whether the solver’s branch and bound tree is correctly generated. In this
case it suffices to have a trusted certificate that checks the branch and bound
tree. In general, formalizing a (typically smaller) certificate for the output of
a sophisticated program is simpler than formalizing the program itself in an
interactive theorem prover. As such, since the certificate has to communicate
with a black box algorithm, it is considered less trustworthy than the original
option of formally verifying the algorithm itself, but still a valuable form of
digital verification. As we will see later on, the Boolean satisfiability (SAT)
community has already taken full advantage of this fact and there are available
tools that certify the output of a SAT solver for a given instance. On the other
hand, such methods are still in their infancy in the integer programming (IP)
community. The efforts in this regard are spearheaded by the recent development
of VIPR [25], a certificate format for branch and bound trees that can be checked
by independent external programs. All pertinent results in this thesis that rely
on computational integer programming are further checked for correctness with
VIPR [25].

1.2 Optimization for Computer-Assisted Math-
ematics

The tremendous success of linear programming, both as a theoretical [67] and
practical tool [24] to solve problems of interest is well-established. Computa-
tional linear programming is a powerful tool whose effectiveness has been crux-
ial in many computer-assisted proofs. Perhaps the most famous problem in
computer-assisted mathematics which uses linear programing is Kepler’s conjec-
ture [54]. Analogously to the four-color theorem, the initial proof of Kepler’s
conjecture caused much controversy. Part of the proof involved the solution of
many thousands of linear programs and as computational linear programming
can produce wrong results due to floating point arithmetic, special attention fo-
cused on the verification of the linear programs. In order to dispel all doubts,
Hale launched the Flyspeck project [56], a very ambitious collaboration that
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sought out to formalize the proof of Kepler’s conjecture. As such the outcome of
the linear programs was verified in Isabelle/HOL. Furthermore, computational
linear programming methods were also used by Hales and McLaughlin to prove
the dodecahedral conjecture [55], although the result received less attention than
Kepler’s conjecture.

In general, computational discrete geometry has made significant use of lin-
ear programming and computer-assisted methods [83], [43]. The recent break-
throughs in higher dimensional sphere packing (in dimension eight [107] and
twenty-four [26]) are noteworthy as they make use of linear programming bounds
and computer algebra systems. Furthermore, computational linear programing
was used by Hartke and Stolee [57] to partially verify the Manikham-Miklos-
Singhi conjecture 8.

The algorithmic methodology of computational integer programming can be
applied to suitable problems of interest, whether practical or theoretical. In part,
this is due to the flexibility of integer programming as a modeling paradigm 9.
Consider, as a simple example, a challenging Sudoku puzzle. Given the 9-by-9
square grid with some fixed values, the key idea is to consider a corresponding
cubic 9-by-9-by-9 array of binary values. We can visualize this as 9 square grids
stacked on top of each other. The top grid will be assigned a 1 whenever the
solution has a 1 in the corresponding square. The grid right below it will be
assigned a 1 whenever the solution has a 2 in the corresponding square and so on.
Thus we arrive at 0-1 decision variables that correspond to each empty square in
each of the nine grids, and it is straightforward to encode all the rules of the game
as linear constraints in the considered decision variables. The objective function
is not important since we are only interested in a feasible solution. By identifying
conditions as constraints of an integer program that needs to be shown feasible
or infeasible with respect to a theoretical problem of interest, we may consider
similar “abstract” puzzles. Such conditions are sometimes easy to identify but
difficult to compute, as is the case with most Ramsey theoretic numbers. Yet in

8The status of this conjecture is currently disputed. Vladimir Blinkovsky claims to have
settled the problem. More relevant to this thesis is Blinkovsky’s claim of having solved the
union-closed sets conjecture, a claim which neither we nor anyone else in the mathematical
community can confirm as the available preprint [14] is highly unaccessible. Furthermore,
earlier this year Blinovsky posted a twelve page proof of the Riemann Hypothesis on the
arXiv. On a lighter note, Stolee’s dissertation [101] is an excellent resource for computational
combinatorics.

9Depending on the structure of the given problem, we note that integer programming solvers
may have several advantages over SAT solvers. Firstly computational IP is older than its
respective SAT community, and in some sense the mathematics of IP is comparatively more
developed. Secondly, IP solvers can handle rational solutions and have no comparable trouble
with cardinality constraints.
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other contexts such conditions are nontrivial to identify in the first place, as is
the case with questions related to the union-closed sets conjecture we investigate
in this thesis.

Despite its potential, successful applications of computational integer pro-
gramming for pure mathematics are generally limited, with few noted exceptions
with regards to crossing numbers [21], crosscap numbers [22] and pebbling num-
bers [63]. Furthermore, Firsching [40] used nonlinear integer programming to
realize and to inscribe matroid polytopes and simplicial spheres.

The relatively limited scope of these applications is understandable since,
under the high burden of proof in establishing theoretical results, the major-
ity of integer programming solvers are simply not good enough without further
safeguards or verification routines. This is because most solvers suffer from a
dual curse: the possibility of ill-conditioned matrices and floating point arith-
metic can lead to wrong results, in addition to the ever-present possibility of a
programming error. Moreover, all solvers that we are aware of do not have a
currently implemented functionality of providing the user with the actual leaf
nodes (linear programs) of the branch and bound tree.

This situation has led to the extensive use of SAT solvers by researchers in
pertinent areas of pure mathematics, such as Ramsey theory, Van der Waerden
numbers, covering arrays, Steiner systems, and Mendelsohn designs [13]. SAT
solvers provide an even higher level of trust by producing certificate formats that
can be checked by interactive theorem provers [81]. Furthermore, in the past
few years all major SAT competitions require participating solvers to produce a
certificate of infeasibility which can be checked with DRAT-trim [111]. Perhaps
the most spectacular and controversial use of SAT solvers is the recent proof of
boolean Pythagorean Triples [58], with a proof size of about 200 TB.

Since 2007 computational semidefinite programming has found a lot of use
in extremal combinatorics through the application of Razborov’s flag algebras
method [88]. For more details on the applications of the method to various
extremal settings we refer the reader to Razborov’s survey [89]. In what follows
we briefly review the state of the art with respect to safe computations in linear
and integer programming and correctness of branch and bound trees.

1.2.1 Exact Linear and Integer Programming
It is well-known that standard linear programming (LP) solvers may return dif-
ferent objective function values for identical problems tested on different com-
puter architectures [9]. As mentioned earlier, this is often due to the use of
floating point arithmetic in the context of common operations used by most
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solvers. However, depending on the precision of the floating point arithmetic,
many benchmark LP instances are found to be correct when the solution is
reconstructed in rational arithmetic [66]. Although for theoretical results the
possibility of numerical instability is particularly worrisome, it is certainly not
as dramatic as critical real life applications. In this regard, two tragic errors
due to floating point arithmetic which led to human causalities and considerable
financial loss are pointed out in [99, pp.4]:

During the first US gulf war patriot missiles were used to inter-
cept SCUD missiles, the software controlling missiles was based on
floating-point computations. Repeated use of the number 1/10 in the
code, which is not representable exactly as a base-2 floating point [sic]
number, led to miscalculations that accumulated to form significant
errors. On Feb 25, 1991, as a direct result of this miscalculation, a
patriot missile failed to intercept an incoming Iraqi SCUD missile; it
was off target by more than 0.6 kilometers and resulted in the death
of 28 US soldiers [...]. In a later incident, the 1996 launch of the Eu-
ropean Ariane 5 Rocket ended in failure when it went out of control
and exploded 37 seconds into its flight path. The explosion was due
to a software error caused by improper handling of a floating-point
calculation [...]. The rocket and its cargo were worth an estimated
360 million USD [...].

Sometimes, floating-point arithmetic in linear programming solvers is overcome
using interval arithmetic [100], as was the case in Kepler’s conjecture. Using a
hybrid method that safely combines floating-point arithmetic with exact ratio-
nals [9], Applegate et. al., developed a successful exact rational solver for linear
programming. An early version of the code was used by Hicks and McMurry [59]
to settle a conjecture about branchwidth of graphs and their cycle matroids.

Efforts towards increasingly safe computations in linear and integer program-
ming solvers have already become well-crafted software at the Zuse Institute
Berlin. In this context, we highlight the work of Koch [66] in developing per-
Plex, a tool which verifies the feasibility, optimality and integrality of a linear
programming basis, and the work of Gleixner in developing soPlex [48, 47, 49] a
state-of-the-art linear programming solver over rational number.

Computational integer programming typically inherits all the issues of floating-
point arithmetic related to linear programming. Neumaier and Shcherbina [79]
gave as an example a small feasible IP which multiple solvers report as infeasible.
Furthermore, cutting-plane generators implemented in IP solvers may produce
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inequalities that are not valid which cut off feasible points [68]. Efforts toward
a safer IP solver have come together in the development of exact SCIP [27], a
joint work of Cook, Koch, Steffy and Wolter. The solver combines exact ra-
tional operations with safe floating point methods to increase its performance.
In terms of verification of the output of IP solvers, with the expection of the
recently developed VIPR [25], the available literature is minimal. To the best of
our knowledge, the only previous published work is an ad hoc certification of a
very large traveling salesman instance [8]. In this respect, VIPR [25] is the only
available tool for verifying general integer programming results.

1.3 Main Results
We began the introduction by motivating mathematical interest in questions that
are simple to state but difficult to prove true or false. As such the union-closed
sets conjecture, also known as Frankl’s conjecture, is perhaps the simplest open
question in extremal set theory. We say that a given family of sets is union-closed
if and only if the union of any two sets from the given family is also in the family.
Frankl’s conjecture states that any given non-empty finite union-closed family
contains an element (in the union of its sets) that belongs to at least half the sets
in the family. Many mathematicians who are not familiar with the conjecture
think of it as a typical homework question you would assign to undergraduate
students 10. Yet a positive or a negative answer to the question appears to
be astonishingly difficult, despite the many efforts we will review in the next
chapters. The conjecture appears to lack structure 11 to the point that there is a
dearth of pictures that relate geometric intuition. As a “popular” indication of
the conjecture’s difficulty 12 we point the reader to the related ongoing polymath
project of Timothy Gowers [53], which we explore in more detail in the next
chapter.

The early work that eventually led to the central results we prove in this thesis
began with a collaboration featured in the dissertation of Annie Raymond [86],
and a resulting joint publication [85]. In these works, we explore integer pro-
gramming formulations to better understand Frankl’s conjecture. The early com-
putations, which we verify in this thesis using exact integer programming and
VIPR [25], led to new insights and conjectures related to union-closed families

10Peter Winkler considers the union-closed sets conjecture one of the most embarrassing
gaps in combinatorial knowledge [1].

11Richard Stanley thinks there may be a high dimensional “structureless” counterexam-
ple [82].

12Joseph Oesterle promises the immediate award of a PhD degree in Mathematics and a
postdoctoral position in his group for anyone who can settle the problem [3].
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of sets [85].
The central results in this thesis are the following:

– We design the first general framework using integer programming that can
exactly classify (for small ground sets) which union-closed families ensure
that Frankl’s conjecture is satisfied for all union-closed families that contain
them. As a result, we verify Frankl’s conjecture for all union-closed families
which contain any of over one hundred previously unknown subfamilies
(featured in the appendix).

– We find a counterexample to a conjecture of Morris from 2006 [76] re-
garding possible structures in union-closed families. Furthermore, we find
counterexamples to questions of Morris [76] and Vaughan [105] regard-
ing simplified methods for finding union-closed families which ensure that
Frankl’s conjecture is satisfied for all union-closed families that contain
them.

– We give a proof of the 3-sets conjecture of Morris [76] and Vaughan [106]
which characterizes the minimum number of 3-sets whose presence in a
union-closed family ensures Frankl’s conjecture is satisfied. This closes a
line of research that can be traced back to the early 1990s.

This thesis is organized as follows. In the second chapter we review Frankl’s
conjecture in more depth. Furthermore we review our early efforts to use integer
programming to tackle the problem and their potential consequences and impact
on the conjecture. In the third chapter we design an algorithmic framework that
yields a computable version of Poonen’s Theorem [84] for small ground sets,
thus removing a significant bottleneck in understanding structures for union-
closed families. This framework allows us to settle several open questions (in the
negative). Finally, in the fourth chapter, we bring everything together and prove
the 3-sets conjecture of Morris [76] and Vaughan [106].
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Notation and Preliminaries
Necessary definitions and terminology will be introduced throughout this work
as needed. Here we agree on some general conventions we use throughout this
thesis. Unless otherwise specified, all considered families of sets are finite families
of distinct sets, i.e., a family is a set of sets. For a positive integer r an r-set (or
r-subset) is a set (or subset) of cardinality r. Given two sets A and B, A ⊆ B

implies that A is a subset of B, and A ⊂ B implies that A is a proper subset of
B, i.e., A 6= B.

Given two families of sets A and B, we recall the following definitions to avoid
confusion. A ⊆ B implies that A is a subfamily of B, and A ⊂ B implies that A is
a proper subfamily of B, i.e., A 6= B. Define A∪B := {C | C ∈ A or C ∈ B} and
A \ B := {A ∈ A | A 6∈ B}. Furthermore let A ] B := {A ∪ B | A ∈ A, B ∈ B}.
Let [n] := {1, 2, . . . , n} and let P([n]) denote the power set of [n]. For a family
of sets F , let |F| denote the cardinality of F . Denote by U(F) the union of
all sets in F , and for i ∈ U(F) define Fi := {F ∈ F | i ∈ F}. Furthermore, let
d(F) := max

{
|Fi|

∣∣∣ i ∈ U(F)
}
. We denote by N1 the set of positive natural

numbers. The integers, the rationals, and the reals will be denoted by Z, Q, and
R, respectively. The nonnegative integers, rationals and reals will be denoted by:
Z≥0, Q≥0, and R≥0 respectively. All vectors, unless otherwise noted, are treated
as column vectors. The `1 norm of a vector x ∈ Rn such that x = (x1, x2, . . . , xn)
is defined as ∑i∈[n] |xi|. The greatest integer not greater than the real number x
is denoted by bxc whereas the smallest integer not less than x as dxe.

The prerequisites for reading this thesis are minimal, as nearly all results are
self-contained. We assume a basic working knowledge of discrete mathematics.
Furthermore, an understanding of linear and integer programming is helpful but
not strictly necessary. To this end we refer interested readers to the excellent
and comprehensive works of Schrijver [97] and Nemhauser and Wolsey [77]. Fi-
nally, for basic background on intractibility we refer the reader to Gary and
Johnson [46].
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2 Frankl’s Conjecture
In this chapter we give a general review of the main results on Frankl’s conjecture
and discuss IP formulations that lead to related conjectures. Most IP-related
results we feature are found in [85], [86]. Furthermore, we verify all previous
computations in [85] using exact SCIP [28] and VIPR [25].

Our main objects of interest in this work are union-closed families of sets,
which are families of sets that satisfy the following definition. Recall that in this
thesis we consider only finite families of distinct sets unless stated otherwise.

Definition 1. A family of sets A is union-closed (UC) if and only if for any
A,B ∈ A, their union A ∪ B is also contained in A.

Furthermore, we are only interested in nontrivial UC families, therefore from
now on we assume any UC family A contains a set A such that A 6= ∅. Frankl’s
conjecture is a well-known unsolved problem in extremal set theory.

Conjecture 1 (Frankl, 1979). Let F be a UC family of sets. Then d(F) ≥ |F|/2.

Poonen [84] showed that to prove Frankl’s conjecture it is sufficient to consider
families of finite sets. Therefore, in this work, we only consider finite families
of distinct finite sets. Furthermore, given a UC family F such that |U(F)| = n

for some positive integer n, we may assume w.l.o.g. that U(F) = [n]. Although
the name suggests Péter Frankl was the first to formalize it, the authors of [10]
claim that the conjecture was previously known. Still, it seems clear that Frankl
popularized it around 1979 [41]. Over the years the conjecture has gained more
notoriety as interest in it continues to grow.

In 2016, the conjecture was brought to the attention of a wider audience
as a polymath project led by Timothy Gowers [53]. Polymath projects attract
mathematicians (and anyone who has anything of interest to say) who join forces
collaboratively to tackle particularly tenacious open questions and conjectures.
One related success story is the solution of the Erdős discrepancy conjecture
by Terence Tao in 2015 [102] as a result of his involvement with polymath. So
far, the polymath project on Frankl’s conjecture roughly mimics the evolution
of known scholarship on the subject. Little headway has been made on the
central question, but the massive collaboration has spawned a number of related
conjectures, some of which have already shown to be false [87].

Conjecture 1 holds for a wide range of special cases. Some easy results were
noticed particularly early on.
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Theorem 1 (Folklore). Frankl’s conjecture holds for any UC family F such that
there exists S ∈ F and |S| = 1.

Theorem 2 (Sarvate and Renaud, 1989). Frankl’s conjecture holds for any UC
family F such that there exists S ∈ F and |S| = 2.

Theorem 3 (Folklore). Frankl’s conjecture holds for any UC family F such that
1
|F|
∑

S∈F |S| ≥ |U(F)|
2 .

The results above suggest two ways to attack Frankl’s conjecture. In partic-
ular, the first two results indicate that the presence of some fixed set ensures the
conjecture holds for all UC families which contain the set. Determining which
sets or families of sets always ensure the conjecture holds for all UC families
which contain them is a natural strategy for better understanding UC families
of sets. Indeed this is a well-established line of attack [20] on Conjecture 1, and
the next chapter of this thesis will focus entirely on this technique, featuring
known results and our contributions. The third result above suggest that some
averaging technique may help with the conjecture. A number of partial results
have been achieved using averaging techniques, as seen in [113], [31], [10], [35],
which culminate with Theorem 8 and Theorem 9.

By focusing on minimal counterexamples and other techniques to show that
Frankl’s conjecture holds for small fixed ground sets, the following results have
been achieved.

Theorem 4 (Roberts, 1992). The inequality |F| ≥ 4|U(F)| − 1 holds for any
UC family F that is a minimum counterexample to Frankl’s conjecture.

Theorem 5 (Bošnjak and Marković, 2008). Frankl’s conjecture holds for any
UC family F such that |U(F)| ≤ 11.

Theorem 6 (Roberts and Simpson, 2010). Frankl’s conjecture holds for any UC
family F such that |F| ≤ 46.

The results above follow others that have improved over the years (|F| ≤ 11
in [95], |F| ≤ 18 in [96], |F| ≤ 24 in [39], |F| ≤ 27 in [84], |F| ≤ 32 in [45],
|F| ≤ 40 in [91], |U(F)| ≤ 7 in [84], |U(F)| ≤ 9 in [39]).

Recently, Vučković and Živković published the following result, a computer-
assisted approach which took about five years to get through the refereeing pro-
cess.

Theorem 7 (Vučković and Živković, 2012). Frankl’s conjecture holds for any
UC family F such that |U(F)| ≤ 12 or |F| ≤ 50.

13



Therefore the conjecture remains open for |F| ≥ 51 or |U(F)| ≥ 13. Next,
we review a few other interesting results, which we use in [85].

Balla, Bollobás and Eccles proved that Frankl’s conjecture holds for families
F containing at least 2

3 of the sets in the power set of U(F). This shows that
the conjecture holds for “large” families in relation to the ground set.

Theorem 8 (Balla, Bollobás & Eccles, 2013). Frankl’s conjecture holds for any
UC family F such that |F| ≥ 2

32|U(F)|.

Eccles further strengthened the result above in the following way.

Theorem 9 (Eccles, 2016). There is a positive constant c such that Frankl’s
conjecture holds for all UC families F with |F| ≥ 2|U(F)|(2

3 − c).

Furthermore, the conjecture also holds for “small” families in relation to the
ground set. A family of sets F is separating if for any two distinct elements
x, y ∈ U(F) there exists a set A ∈ F that contains exactly one of the elements
x and y.

Theorem 10 (Maßberg, 2016). Frankl’s conjecture holds for any separating UC
family F such that

|F| ≤ 2
(
|U(F)|+ |U(F)|

log2 |U(F)| − log2 log2 |U(F)|

)
.

An alternative to proving the Frankl conjecture as stated, is proving instead
that any UC family contains an element present in at least some fraction of the
sets. This was Knill’s strategy as we see in the following theorem.

Theorem 11 (Knill, 1994). In any UC family F , there always exists an element
present in at least |F|−1

log2 |F|
sets, that is, d(F) ≥ |F|−1

log2 |F|
.

Despite a slight improvement in Wójcik [114], still no constant fraction is
known. Bruhn and Schaudt in [20] were able to find a constant close to 1

2 for
particular families using results in [90] and [109].

Theorem 12 (Bruhn & Schaudt, 2013). Let F be any UC family F such that
2|U(F)|−1 < |F| ≤ 2|U(F)|. Then d(F) ≥ 6

13 · |F|, i.e., there exists an element in a
least 6

13 of the sets of the family.

Many other results have been discovered throughout the years. For a more
complete history of the problem, we refer the reader to the excellent survey of
Bruhn and Schaudt [20]. Since the publication of the survey, there have been a
number of other results, including the preprints [70], [4], [62].
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2.1 IP Formulations for Frankl’s Conjecture
As part of our early collaboration with Annie Raymond, in [86] we feature a
number of formulations of optimization problems related to Frankl’s conjecture.
Furthermore, we investigate many classes of cuts which we reformulate from the
known literature on UC families of sets. Here we mostly review results in [85], and
strengthen some results from [86]. This section illustrates the importance of a
computational framework that can “generate” patterns for difficult combinatorial
problems, as such patterns then can lead to new insights on the problem at hand.

One can rewrite Frankl’s conjecture as a maximization or a minimization
problem, depending on whether we fix |F|, or d(F).

Conjecture 2 (Pulaj, Raymond & Theis, 2016). For any positive integer a,
define

F(a) := {F | F is a UC family, and d(F) ≤ a}.

Then maxF∈F(a) |F| ≤ 2a for all a ∈ N1.

Conjecture 3 (Pulaj, Raymond & Theis, 2016). For any positive integer m, let

G(m) := {F | F is a UC family, and |F| = m}.

Then minF∈G(m) d(F) ≥ m
2 for all m ∈ N1.

Thus the following is easy to see.

Observation 1. Conjecture 1, Conjecture 2 and Conjecture 3 are equivalent.

Following our computations in [85] (using the integer programs below) we
noticed that optimal values did not vary as the ground set (between 8 ≥ n ≥
log2(a)) increased incrementally, i.e.:

max
F∈F(a):
|U(F)|=n

|F| = max
F∈F(a):
|U(F)|=n+1

|F|

and

min
F∈G(m):
|U(F)|=n

d(F) = min
F∈G(m):
|U(F)|=n+1

d(F)

We formally state these observations as conjectures once we define the respective
integer programs in the next paragraphs.
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2.1.1 New Conjectures for UC Families
By parameterizing we define, for any positive integers a, n,

F(n, a) := {F ∈ F(a) | |U(F)| = n}.

Thus proving that maxF∈F(n,a) |F| ≤ 2a for all possible n, a would prove Con-
jecture 2 (and therefore Frankl’s conjecture). Fix n, a, and define f(n, a) :=
maxF∈F(n,a) |F|. We may assume that U(F) = [n]. Then we can find f(n, a) by
solving the following integer program, which we denote by F (n, a)

max
∑

S∈P([n])
xS

s.t. xS + xT ≤ 1 + xS∪T ∀S ∈ P([n]), ∀T ∈ P([n])∑
S∈P([n]):i∈S

xS ≤ a ∀i ∈ [n]

xS ∈ {0, 1} ∀S ∈ P([n]),

where (P([n]) is the power set of [n], and) the variable xS for any set S ∈ P([n])
is 1 if S is in the family, and 0 otherwise. Thus, we maximize the number of
sets while ensuring the family is UC (through the first constraint1) and that
d(F) ≤ a holds (through the second constraint), i.e., we calculate f(n, a). A
feasible solution of F (n, a) is a zero-one vector x̄ ∈ Z2n

≥0 that satisfies all the
inequalities of F (n, a).

Similarly, define

G(n,m) := {F ∈ G(m) | |U(F)| = n}

for any positive integers m and large enough n. Thus it follows that proving that
minF∈G(n,m) d(F) ≥ m

2 for all large enough n and m would prove Conjecture 3.
Fix n,m, and define g(n,m) := minF∈G(n,m) d(F) for m ≥ 2. We may assume
that U(F) = [n]. Then we can find g(n,m) by solving the following integer
program, which we denote by G(n,m).

1This constraint is redundant when S ⊂ T or T ⊂ S, and we make more precise and
generalize this observation in Section 2.2.
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min
∑

S∈P([n]):1∈S

xS

s.t xS + xT ≤ 1 + xS∪T ∀S ∈ P([n]), ∀T ∈ P([n])∑
S∈P([n]):1∈S

xS ≥
∑

S∈P([n]):j∈S

xS ∀j ∈ [n]

∑
S∈P([n])

xS = m

xS ∈ {0, 1} ∀S ∈ P([n]),

where the variables xS are as before. The second constraint says that element
1 is the element contained in the most number of sets in the family, so we are
minimizing the maximum number of sets containing the most frequent element
while enforcing that the family is UC (through the first constraint) and has m
sets (through the third constraint).

Note that there are values of a,m, n for which f(n, a) and g(n,m) have trivial
solutions that do not interest us. For example, it is clear that f(n, a) = 2n if
a ≥ 2n−1. Indeed, the power set of n, P([n]), is UC, and there are 2n sets in
P([n]) where each element is in exactly 2n−1 sets. It is thus a trivially optimal
solution for f(n, a). It is also clear that G(n,m) has trivially no solution if
m > 2n. Indeed, even if we take all of the sets in P([n]), we’d have less sets than
the number of sets required by the program.

In [85] we computed f(n, a) and g(n,m) for different values with the mixed-
integer commercial solver IBM ILOG CPLEX version 12.4. Table 2.1.1 contains
some of the results we obtained. Furthermore, in the present work these results
have been verified with exact SCIP [28] and VIPR [25].

From Table 2.1.1 the following pattern becomes noticable: For any n ≥
dlog2 ae+ 1, that is, for any non-trivial value of n when a is fixed, f(n, a) takes
the same value as n increases. Similarly, for any n ≥ dlog2 me, that is, for any
non-trivial value of n whenm is fixed, g(n,m) takes the same value as n increases.
We are ready to formalize the observations above as following (f -conjecture and
g-conjecture, respectively):

Conjecture 4 (Pulaj, Raymond & Theis, 2016). Fix a ∈ N1. Then f(n, a) =
f(n+ 1, a) for every n ∈ N1 such that n ≥ dlog2 ae+ 1.

Conjecture 5 (Pulaj, Raymond & Theis, 2016). Fix m ∈ N1. Then g(n,m) =
g(n+ 1,m) for every n ∈ N1 such that n ≥ dlog2 me.

In [85] we study a few basic properties of the functions f and g for non-trivial
values of a,m, n.
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a\n 1 2 3 4 5 6 7 8
1 2 2 2 2 2 2 2 2
2 2 4 4 4 4 4 4 4
3 2 4 5 5 5 5 5 5
4 2 4 8 8 8 8 8 8
5 2 4 8 9 9 9 9 9
6 2 4 8 10 10 10 10 10
7 2 4 8 12 12 12 12 12
8 2 4 8 16 16 16 16 16
9 2 4 8 16 17 17 17 17
10 2 4 8 16 18 18 18 18
11 2 4 8 16 19 19 19 19
12 2 4 8 16 21 21 21 21
13 2 4 8 16 23 23 23 23
14 2 4 8 16 25 25 25 25
15 2 4 8 16 27 27 27 27
16 2 4 8 16 32 32 32 32

m\n 1 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1 1
3 - 2 2 2 2 2 2 2
4 - 2 2 2 2 2 2 2
5 - - 3 3 3 3 3 3
6 - - 4 4 4 4 4 4
7 - - 4 4 4 4 4 4
8 - - 4 4 4 4 4 4
9 - - - 5 5 5 5 5
10 - - - 6 6 6 6 6
11 - - - 7 7 7 7 7
12 - - - 7 7 7 7 7
13 - - - 8 8 8 8 8
14 - - - 8 8 8 8 8
15 - - - 8 8 8 8 8
16 - - - 8 8 8 8 8

Table 2.1: Values of f(n, a) and g(n,m) (respectively left and right) verified with
exact SCIP [28] and VIPR [25]
Theorem 13 (Pulaj, Raymond & Theis, 2016). The following properties hold.

1. The function f is non-decreasing in n, that is, f(n, a) ≤ f(n + 1, a) for
every a, n ∈ N1 such that n ≥ dlog2 ae+ 1.

2. The function g is non-increasing in n, that is, g(n,m) ≥ g(n + 1,m) for
every m,n ∈ N1 such that n ≥ dlog2 me.

3. The function f is strictly increasing in a, that is, f(n, a) < f(n, a+ 1) for
every a, n ∈ N1 such that n > dlog2 ae+ 1.

4. The function g is non-decreasing in m, that is, g(n,m) ≤ g(n,m + 1) for
every m,n ∈ N1 such that n ≥ dlog2 me.

5. We have that g(n, f(n, a)) = a for all a, n ∈ N1 such that n > dlog2 ae+ 1.

6. We have that f(n, g(n,m)) ≥ m for all m,n ∈ N1 such that n ≥ dlog2 me.

In [85] we prove that the new conjectures are equivalent.

Theorem 14 (Pulaj, Raymond & Theis, 2016). We have that f(n, a) = f(n +
1, a) for every a, n ∈ N1 such that n ≥ dlog2 ae + 1 if and only if g(n′,m) =
g(n′ + 1,m) for every m,n′ ∈ N1, m ≥ 2 such that n′ ≥ dlog2 me.

Furthermore, we were able to partially prove the f -conjecture by using a
construction of Falgas-Ravry [38].
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Theorem 15 (Pulaj, Raymond & Theis, 2016). We have that f(n − 1, a) =
f(n, a) for all n > a.

If the f - or g-conjectures hold, their consequences for Frankl’s conjecture are
signficant as we see in the results below.

Theorem 16 (Pulaj, Raymond & Theis, 2016). If the f - and g-conjectures
hold, then Conjecture 3 holds for all m for which there exists i ∈ N1 such that
2
32i ≤ m ≤ 2i.

Theorem 17 (Pulaj, Raymond & Theis, 2016). If the f - and g-conjectures hold,
then any UC family on m sets contains an element in at least 6

13m sets of the
family.

2.2 Stronger Inequalities
In this section we strengthen some results from [86] by showing that some known
inequalities for the set of feasible solutions of F (n, a) are not necessary. Further-
more, we feature the first known complexity result regarding UC families of sets.
First, we recall the following basic definitions from polyhedral theory.

Definition 2. A halfspace in Rn is a set of the form
{
x ∈ Rn | aTx ≤ a0

}
for

some nonzero vector a ∈ Rn and some scalar a0 ∈ R.

Definition 3. A polyhedron P ⊂ Rn is the intersection of finitely many halfs-
paces, i.e., P can be represented as {x ∈ Rn | Ax ≤ b} for A ∈ Rm×n and some
vector b ∈ Rm.

Definition 4. Given a nonzero vector π ∈ Rn and some scalar π0 ∈ R, an
inequality πTx ≤ π0 is a valid inequality for a set X ⊆ Rn if and only if πTx ≤ π0

for all x ∈ X.

Definition 5. If πTx ≤ π0 and µTx ≤ µ0 are two valid inequalities for a poly-
hedron P ⊂ Rn

≥0, then πTx ≤ π0 dominates µTx ≤ µ0 if and only if there exists
u > 0 such that π ≥ uµ and π0 ≤ uµ0.

Definition 6. Given a set I of valid inequalities for a polyhedron P ⊂ Rn
≥0, an

inequality πTx ≤ π0 in I is redundant if it is dominated by a nonnegative linear
combination of the remaining inequalities in I.

In this thesis we are interested in valid inequalities for the set of feasible
solutions of various IPs of interest. Thus, we will investigate inequalities for
the set of integer vectors contained in the polyhedrons defined from the linear
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inequalities of the LP-relaxations of various IPs of interest. We refer those un-
familiar with these topics to Schrijver [97] and Nemhauser and Wolsey [77] for
a full exposition. In order to improve readability when convenient, we simply
refer (in shorthand) to valid inequalities for various IPs of interest. Similarly,
when we refer to redundant inequalities for an IP of interest, we mean redundant
inequalities for the polyhedron defined from the inequalities of the LP-relaxation
of the IP of interest (together with other known classes of valid inequalities for
the IP). We trust this causes no confusion, but rather facilitates the reading of
this thesis without introducing extra notation.

Lemma 1 (Raymond 2014). Let n, a ∈ N1. The following is a valid inequality
for F (n, a) for all S ⊆ P([n]):

∑
S∈S

xS ≤ 1 + 1
2
∑

S,T∈S:
S 6=T

xS∪T . (2.1)

As we will see, we can“improve" on the above valid inequality by excluding
sets that are subsets of other sets in the given family S. Furthermore, if we
ignore the variables on the right hand side of Inequality (2.1), the structure of
a clique inequality clearly emerges. Still, the notion of a clique does not quite
capture our present problem, hence a more appropriate idea is necessary. We
recall the following well-studied object in combinatorics, namely an antichain.

Definition 7. A family of sets A is an antichain if and only if A,B ∈ A implies
A 6⊆ B.

Proposition 1. Let n, a ∈ N1 and let S ⊆ P([n]) such that S is not an antichain.
Then valid Inequality (2.1) on S is redundant.

Proof. Suppose S ⊆ P([n]) such that S is not an antichain. Then there ex-
ist sets A,B ∈ S such that A ⊂ B. This implies that xB appears on both
sides of Inequality (2.1) and we may cancel it. Similarly, we may cancel all
other variables that appear on both sides of Inequality (2.1). Define B :=
{B ∈ S | ∃ S ⊂ B, S ∈ S} and let S ′ := S \ B. Then S ′ ⊂ S is by defini-
tion an antichain. To arrive at the original Inequality (2.1) on S we add xB to
both sides of Inequality (2.1) on S ′ for all B ∈ B. Furthermore, we add any
necessary 0 ≤ xS to recover the correct coefficients on the right hand side of
Inequality (2.1). Hence, Inequality (2.1) defined on families of sets that are not
antichains is redundant.

Definition 8. Let n ∈ N1 and let S ⊆ P([n]) and |U(S)| = m ≤ n. The closure
of S is the smallest UC family F ⊆ P([n]) such that |U(F)| = m and S ⊆ F .
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Definition 9. Let n, a ∈ N1 and let S ⊆ P([n]). F is a cover for a (or covers
a) if and only if F is the closure of S and U(F) contains an element in more
than a sets of F .

Lemma 2 (Raymond 2014). Let n, a ∈ N1. The inequality

∑
S∈S

xs ≤ |S| − 1 (2.2)

is valid for F (n, a) for all S ⊆ P([n]) whose closure F covers a.

Next we show that inequalities (2.2) on some families of sets S are redundant.

Proposition 2. Let n, a ∈ N1 and let S ⊆ P([n]) have closure F that covers a
and there exist distinct S, T, U ∈ S such that S = T ∪ U . Then Inequality (2.2)
on S is redundant.

Proof. Suppose S ⊆ P([n]) has closure F that covers a and there exist distinct
S, T, U ∈ S such that S = T ∪ U . Let S ′ := S \ {S}. It is clear that S ′ has
closure F , therefore ∑

S∈S′
xS ≤ |S ′| − 1,

is a valid inequality for F (n, a). Adding xS ≤ 1 to the inequality above yields
the original one. Hence Inequality (2.2) on S is redundant.

For a given UC family F , S ∈ F is independent if and only if S is not the
union of any other two sets in F . Then, for any UC family F define I(F) :=
{S ∈ F | S is independent}.

Corollary 1. Let n, a ∈ N1 and let S ⊆ P([n]) have closure F that covers a. If
I(F) 6= S, then Inequality (2.2) on S is redundant.

Proof. Suppose S ⊆ P([n]) has closure F that covers a. It is clear that I(F) ⊆ S
and the closure of I(F) is F . Suppose I(F) 6= S. The following inequality

∑
S∈I(F)

xS ≤ |I(F)| − 1,

is valid for F (n, a). By adding xA ≤ 1 for all A ∈ S \ I(F) to the inequality
above, we arrive at Inequality (2.2) on S.

We now turn our attention to a new class of valid inequalities for F (n, a).
Let n, a ∈ N1 and let S ⊂ P([n]), |S| ≥ k and A ∈ P([n]). Suppose the closure
of S does not cover a and, for each K ⊆ S such that |K| = k, K ∪ {A} has
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a closure that covers a. Given S and A as above, we say the pair (S, A) is a
(1− k)-system. We proceed to show that (1− k)-systems yield valid inequalities
for F (n, a).

Proposition 3. Let n, a ∈ N1 and let (S, A) be a (1 − k)-system. Let T ⊆ S
such that k ≤ |T | = r ≤ |S|. Then the following

(r − k + 1)xA +
∑
S∈T

xS ≤ r,

is a valid inequality for F (n, a).

Proof. We show this by contradiction. Let n, a ∈ N1 and let (S, A) be a (1− k)-
system. Suppose there exists a feasible solution x′ of F (n, a) such that

(r − k + 1)x′A +
∑
S∈T

x′S > r.

If x′A = 0 then it follows that ∑S∈T x
′
S ≤ r since |T | = r. Therefore x′A = 1.

This implies that the zero-one vector x′ has at most k − 1 ones in the entries
that correspond to sets in T , otherwise x′ would not be feasible since, for each
K ⊆ S such that |K| = k, the closure of K ∪ {A} covers a. Therefore, we arrive
at ∑S∈T x

′
S ≤ k − 1. This implies the inequalities

(r − k + 1)x′A +
∑
S∈T

x′S ≤ (r − k + 1) + (k − 1) ≤ r,

hold, which is a contradiction. Hence, (1 − k)-system inequalities are valid for
F (n, a).

2.2.1 A Complexity Result for UC Families
There are no known complexity results regarding Frankl’s conjecture or UC fam-
ilies of sets. In some sense, looking at F (n, a), the difficulty stems from having
an integer program on power sets. Thus many of the known NP-hard problems
are trivialized on power sets and the reductions are not polynomial in the ground
sets. Yet, in the rest of this section, we will prove a complexity result for an IP
related to F (n, a).

As we saw in Theorem 1 and Theorem 2 any UC family F that contains
a 1-set or a 2-set satisfies Frankl’s conjecture. Thus, it is sufficient to consider
F (n, a) where all variables indexing 1-sets or 2-sets are set to zero. In terms of our
computational framework, we can generalize these observations in the following
way. Let n, a ∈ N1 and H ⊂ P([n]). Denote by F (n, a,H) the following integer
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program where f(n, a,H) denotes the value of its objective function.

max
∑

S∈P([n])
xS

s.t. xS + xT ≤ 1 + xS∪T ∀S ∈ P([n]), ∀T ∈ P([n])∑
S∈P([n]):i∈S

xS ≤ a ∀i ∈ [n]

xS = 0 ∀S ∈ H

xS ∈ {0, 1} ∀S ∈ P([n]),

Given a graph G = (V,E), two vertices i, j ∈ V are adjacent if and only if there
exists e ∈ E such that e = {i, j}.

Definition 10 (Independent Set). Given a graph G = (V,E), an independent
set is a subset of the vertices U ⊆ V such that no two vertices in U are adjacent
in G.

The independence number of a graph G, denoted by α(G), is the largest
cardinality among all independent sets of G. Finding α(G) is known to be NP-
hard [46].

Theorem 18. Given n, a ∈ N1 and H ⊂ P([n]), finding f(n, a,H) is NP-hard.

Proof. We reduce determining α(G) to finding f(n, a,H) for some n, a and H.
Given a graph G = (V,E) with |V | = n, we establish a bijection between

V and all Ai ∈ P([n]) such that |Ai| = 1. We build the family of prohibited
sets in the following way: For each e ∈ E with e = {i, j}, define Ue := Ai ∪ Aj.
Therefore let H = {Ue | e ∈ E}, and choose a = 2n−1. We claim that finding
f(n, a,H) with parameters fixed as above, yields α(G). Recall from Section 2.1.1
that for any F (n, a,H) instance such that a ≥ 2n−1 and H = ∅, we arrive at
f(n, a,H) = 2n. Hence the inequalities

2n − |H| ≥ f(n, a,H) ≥ 2n − |V | − |H|, (2.3)

hold. The upper bound in (2.3) is implied since no set in H is chosen. The
lower bound is implied since at least one Ai is always chosen. Therefore, it is
sufficient to consider the (singleton) sets Ai ∈ P([n]) with |Ai| = 1. Let’s look
at xS + xT ≤ 1 + xS∪T such that S = Ai and T = Aj for all {i, j} ∈ E. Since
Ai ∪ Aj = Ue ∈ H for all e ∈ E, this implies that xS∪T = 0. Hence it suffices to
consider the inequalities

xAi
+ xAj

≤ 1,
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for all {i, j} ∈ E, which yield an independent set over G. Adding f(n, a,H)
together with n − α(G), we arrive at exactly 2n − |H|. Hence, the following
holds:

2n − |H| = f(n, a,H) + n− α(G).

Because the complexity of the transformation is clearly polynomial in n, this
implies that determining f(n, a,H) is NP-hard.
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3 Cutting Planes for FC-families
In this chapter we focus on a well-established method employed to attack the
problem referred to as local configurations in Bruhn and Schaudt [20], namely UC
families that ensure Frankl’s conjecture holds for all UC families which contain
them. In other words, these particular UC families always have an element in
their sets that is frequent enough (in relation to all UC families that contain
them) to ensure Frankl’s conjecture holds.

Poonen [84] characterized all such families, but the conditions which ensure
the characterizations are nontrivial to identify in the first place, thus making it
difficult to find these special families. Nevertheless significant research efforts
have focused on this topic, with several proof techniques (including computer-
assisted approaches) to bypass the difficulties in Poonen’s exact characterization.

In this chapter, we develop a cutting-plane method that can compute Poo-
nen’s exact characterization for small ground sets, thus improving on nearly all
related results.

3.1 Previous Work on FC-families
Following Vaughan [104], we say that a UC family of sets A is Frankl-Complete
(FC), if and only if for every UC family F ⊇ A there exists i ∈ U(A) frequent
enough to satisfy Frankl’s conjecture. A UC family A is Non–Frankl-Complete
(Non–FC), if and only if there exists a UC family F ⊇ A such that each i ∈ A
is in less than half the sets of F .

Non–FC-families are particularly useful in characterizingminimal FC-families,
i.e., FC-families that do not contain smaller FC-families, and also other objects of
interests defined in Morris [76], which help shed light into structural properties
of Frankl’s conjecture. In addition, Non–FC-families yield natural candidates
for possible counterexamples. However, on a more positive note, the pressing
relevance of FC and Non–FC-families is evident in existing literature: These ob-
jects are at the heart of arguments that yield improved bounds for the problem,
as seen in Poonen [84], Gao and Yu [45], Morris [76], Marković [71], Bošnjak
and Marković [17], and finally Theorem 7. Furthermore, FC-families are used in
Bruhn et al. [19] to prove that Frankl’s conjecture holds for subcubic bipartite
graphs. Therefore characterizing a considerable number of previously unknown
FC and Non–FC-families—the fundamental contribution of this chapter which
consequently helps settle several open questions of interest—is a clear step toward
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a better understanding of Frankl’s conjecture.
Characterizing exactly which UC families are FC and Non–FC is surprisingly

difficult, as evinced by the relative dearth of known FC-families despite the past
twenty-five years of research on the matter. Indeed, as is typical of objects
in mathematics that are not well-understood, efforts on the topic yield more
questions than answers. Previous researchers use special structures and stronger
than necessary conditions to determine a number of FC-families.

In particular, Poonen [84] proved that any UC family which contains three
3-subsets of a 4-set satisfies the conjecture. Vaughan [104], [105], [106] proved
that the conjecture holds for any UC family which contains a 5-set and all of its
4-subsets, or ten of the 4-subsets of a 6-set, or three 3-subsets of a 7-set with
a common element. Furthermore, using a heuristic procedure implemented in a
computer algebra system, Vaughan identified potential weight systems for can-
didate FC-families and then proved through tedious and technical case analysis
that a few more UC families are FC. Still, several FC-families Vaughan discovered
are not minimal, in the sense that they contain smaller FC-families as shown by
subsequent research or results in this thesis. Morris [76] was able to characterize
new FC-families on six elements and with the help of a computer program which
exactly characterized all minimal FC-families on 5 elements.

Given a family of sets S, we say that S generates (or is a generator of) F ,
denoted by 〈S〉 := F , if and only if F is a UC family that contains S, and there
exists no UC family F̃ ⊂ F such that S ⊆ F̃ . In other words, F is the closure of
S. A generator of a UC family F is minimal if and only if it does not contain a
smaller generator of F . Johnson and Vaughan [64] proved that each UC family
has a unique minimal generator.

In this thesis, we are mainly interested in minimal generators of minimal
FC-families. Hence from now on, to improve readability, we simply refer to
minimal generators of FC-families. In order to facilitate the combinatorial anal-
ysis of FC-families, Morris [76] introduced the following notion. Let FC(k, n)
denote the smallest m such that any m of the k-sets in [n] generate an FC-
family. As proven in Gao and Yu [45], FC(k, n) is always defined for sufficiently
large n in relation to k. Consequently, Morris [76] showed that FC(3, 5) = 3,
FC(4, 5) = 5, FC(3, 6) = 4, 7 ≤ FC(4, 6) ≤ 8, FC(3, 7) ≤ 6 and FC(4, 7) ≤ 18.
Such characterizations further facilitate the search for better bounds (or possible
counterexamples).

Finally, Marić, Živković, and Vučković [69] formalized a combinatorial search
in the interactive theorem prover Isabelle/HOL and show that all families con-
taining four 3-subsets of a 7-set are FC-families. Although not explicitly men-
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tioned in their paper, their result implies that FC(3, 7) = 4 by the lower bound
on the number of 3-sets of Morris [76]. In summary, previous research has yielded
less than two dozen exact characterizations of minimal generators of FC-families,
with roughly a dozen more characterizations of general FC-families.

3.1.1 Summary of New Results for FC-Families
Given a UC family A, Poonen’s Theorem [84] yields a constructive proof (in
the form of a fractional polytope with a potentially exponential number of con-
straints) to determine if A is FC or Non–FC. In general, this makes it difficult to
explicitly state the conditions which determine whether a given UC family is FC.
To overcome this, we design a cutting-plane method that computes the explicit
weights which imply Poonen’s existence conditions. In particular, this paves the
way toward automated discovery of FC-families by computational integer pro-
gramming, especially when coupled with an exact rational solver [28] and other
verification routines such as the recent work of Cheung, Gleixner and Steffy [25].
Our current implementation1 in SCIP 3.2.1 [44] allows us to characterize any
FC-family up to 10 elements tested so far in this thesis. In light of the above,
our main contributions in this chapter are the following:

• Using the framework developed in this chapter, in the appendix we feature
over one hundred (with many more underway at the time of this writ-
ing) previously unknown minimal nonisomorphic (under permutations of
the ground set) generators of FC-families. We find the first known exact
characterizations of minimal generators of FC-families on 8 ≤ n ≤ 10.

• In Section 3.4 we construct an explicit counterexample to a conjecture of
Morris [76] about the structure of generators for Non–FC-families. Fur-
thermore in Section 3.5 we answer in the negative two related questions of
Vaughan [105] and Morris [76] regarding a simplified method for proving
the existence of weights from Theorem 19 that yield FC-families.

3.2 Poonen’s Theorem
As mentioned already, Poonen’s seminal article [84] precisely characterizes exis-
tence conditions for FC-families. Poonen’s theorem is the basis of all subsequent
approaches for classifying FC-families, which in turn play a central role in the
current best “lower” bounds of Theorem 7. Poonen [84] showed that to prove

1Final computations are rechecked with CPLEX 12.6.3 [29], Gurobi 6.5.2 [2], and exact
SCIP [28]. For n ≥ 8, we use CPLEX 12.6.3 [29], then recheck the results with the rest of the
solvers. In addition, the branch and bound tree of exact SCIP [28] is verified with VIPR [25].
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Frankl’s conjecture it is sufficient to consider UC families that contain the empty
set. Next, we recall and formalize the definitions of FC and Non–FC-families.

Definition 11 (FC-family). A UC family A is an FC-family if and only if for
any UC family F such that F ⊇ A, there exists i ∈ U(A) such that |Fi| ≥ |F|/2.

Definition 12 (Non–FC-family). A UC family A is a Non–FC-family if and
only if there exist a UC family F ⊇ A, such that |Fi| < |F|/2 for each i ∈ U(A).

Given a UC family F , we may assume w.l.o.g. that U(F) = {1, 2, . . . ,m}
for some positive integer m. Thus in the following theorem and its corollaries,
for all UC families F and A such that F ⊇ A, we assume U(F) = [m], where
m ≥ |U(A)| = n. Furthermore, to simplify notation, we assume w.l.o.g. that
U(A) = [n]. Poonen’s theorem is surprising, in the sense that it gives local
conditions on some ground set [n] that have implications for UC families on a
possibly larger ground set [m].

Theorem 19 (Poonen 1992). Let A be a UC family such that |U(A)| = n and
∅ ∈ A. The following statements are equivalent:

1. For every UC family F ⊇ A, there exists i ∈ [n] such that |Fi| ≥ |F|/2.

2. There exist nonnegative real numbers c1, . . . , cn with ∑i∈[n] ci = 1 such that
for every UC family B ⊆ P([n]) with B ] A = B, the following inequality
holds

∑
i∈[n]

ci|Bi| ≥ |B|/2. (3.1)

It is important to note that Poonen’s Theorem still holds if ∅ 6∈ A. In this
case the condition B]A = B becomes B]A ⊆ B. This is an equivalent condition
we find in Vaughan [104], [105], [106]. The proof of Theorem 19 is nontrivial and
includes an application of the separating hyperplane theorem that points, at
least algorithmically, in the right way. Indeed, for a fixed UC family A such that
∅ ∈ A, the second statement in Theorem 19 can be seen as a polyhedron defined
as the following:

PA :=


y ∈ Rn

∑
i∈[n] yi = 1;

∑
i∈[n] yi|Bi| ≥ |B|/2 ∀ UC B ⊆ P([n]) : B ] A = B;

yi ≥ 0 ∀i ∈ [n];


28



Furthermore since the coefficients (and the right-hand side vector) are all ratio-
nal, if PA is nonempty, we can safely assume (via Fourier-Motzkin elimination)
that it contains a rational vector. This is a very well-known result (for more
details see the excellent exposition of Aigner and Ziegler [5, pp.66]) which we
formally state as follows for completeness.

Proposition 4. Let P be a nonempty rational polyhedron. Then P contains a
rational vector.

We can use the simplex or interior point methods to find a feasible point
of PA, or show that one does not exist via Farkas’ Lemma. Suppose PA is
nonempty. Then we can scale any rational vector contained in PA and arrive at
an integer vector. In particular, for reasons that we outline in Section 3.5, we
want to choose a rational vector such that the `1 norm of the resulting integer
vector is as small as possible. This explains the objective function of the following
integer program. Let IA denote the following integer program:

min
∑
i∈[n]

zi

s.t.
∑
i∈[n]

zi|Bi| ≥ (|B|/2)
∑
i∈[n]

zi ∀B ⊆ P([n]) : B ] A = B

∑
i∈[n]

zi ≥ 1

zi ∈ Z≥0 ∀i ∈ [n]

A feasible solution of IA is a vector z̄ ∈ Zn
≥0 such that z̄ satisfies all the given

inequalities of IA.

Proposition 5. Let A be a UC family such that ∅ ∈ A. Then PA is nonempty
if and only if there exists a feasible solution of IA.

Proof. Suppose PA is nonempty and let ȳ ∈ PA. From Proposition 4 we can
safely assume that ȳ ∈ Qn

≥0, i.e., ȳ = (ȳ1 = a1
b1
, ȳ2 = a2

b2
, . . . , ȳn = an

bn
) such that

bi ≥ 1 for all i ∈ [n]. Let g ∈ Z≥0 such that g = lcm(b1, b2, . . . , bn), and let
z̄i ∈ Z≥0 such that z̄i = gȳi for all i ∈ [n]. Define z̄ := (z̄1, z̄2, . . . , z̄n). It follows
that z̄ ∈ Zn

≥0 is a feasible solution of IA.
For the other direction, suppose the vector z̄ ∈ Zn

≥0 is a feasible solution of
IA. Let z̄ = (z̄1, z̄2, . . . , z̄n). Define ȳi := z̄i/(

∑
i∈[n] z̄i) for all i ∈ [n] and

ȳ := (ȳ1, ȳ2, . . . , ȳn). It follows that ȳ ∈ PA.

We need the following corollary of Poonen’s Theorem, a version of which is
already noted in Morris [76]. We formalize it again here for clarity and reference.
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Corollary 2. Let A be a UC family such that |U(A)| = n and ∅ ∈ A. The
following statements are equivalent:

1. For every UC family F ⊇ A, there exists i ∈ [n] such that |Fi| ≥ |F|/2.

2. There exist ci ∈ Q≥0 for all i ∈ [n] with ∑i∈[n] ci = 1, such that for every
UC family B ⊆ P([n]) with B]A = B, ∑S∈B (∑i∈S ci −

∑
i/∈S ci) ≥ 0 holds.

Proof. Fix a UC family B ⊆ P([n]) with B ] A = B. Then the following holds,

∑
S∈B

∑
i∈S

ci −
∑
i/∈S

ci

 = 2
∑
S∈B

∑
i∈S

ci −
∑
S∈B

∑
i/∈S

ci +
∑
i∈S

ci


= 2

∑
S∈B

∑
i∈S

ci −
∑
S∈B

∑
i∈[n]

ci

= 2
∑
i∈[n]

ci|Bi| − |B|
∑
i∈[n]

ci ≥ 0

⇐⇒
∑
i∈[n]

ci|Bi| ≥ |B|/2.

Since the above holds for every UC family B ⊆ P([n]) with B ] A = B, the
desired result follows from Poonen’s Theorem.

Proposition 5 shows that if PA is nonempty we can simply scale a rational
vector contained in it and arrive at an integer vector. Then the proof of the
previous corollary implies the following.

Corollary 3. Let A be a UC family such that |U(A)| = n and ∅ ∈ A. The
following statements are equivalent:

1. For every UC family F ⊇ A, there exists i ∈ [n] such that |Fi| ≥ |F|/2.

2. There exist ci ∈ Z≥0 for all i ∈ [n] with ∑i∈[n] ci ≥ 1, such that for every
UC family B ⊆ P([n]) with B]A = B, ∑S∈B (∑i∈S ci −

∑
i/∈S ci) ≥ 0 holds.

Proof. It is sufficient to follow the proof of Corollary 2 with ci ∈ Z≥0 for all
i ∈ [n] such that ∑i∈[n] ci ≥ 1. Then we arrive at the following

2
∑
i∈[n]

ci|Bi| − |B|
∑
i∈[n]

ci ≥ 0.

The desired result is implied from Proposition 5 and Poonen’s Theorem.
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From now on, we can base relevant arguments (when convenient) on real,
rational or integer vectors.

Corollary 4. Let A be a UC family such that |U(A)| = n and ∅ ∈ A. The
following statements are equivalent:

1. A is an FC-family.

2. There exist ci ∈ R≥0 for all i ∈ [n] with ∑i∈[n] ci = 1, such that for every
UC family B ⊆ P([n]) with B ] A = B, ∑i∈[n] ci|Bi| ≥ |B|/2 holds.

3. There exist ci ∈ Q≥0 for all i ∈ [n] with ∑i∈[n] ci = 1, such that for every
UC family B ⊆ P([n]) with B]A = B, ∑S∈B (∑i∈S ci −

∑
i/∈S ci) ≥ 0 holds.

4. There exist ci ∈ Z≥0 for all i ∈ [n] with ∑i∈[n] ci ≥ 1, such that for every
UC family B ⊆ P([n]) with B]A = B, ∑S∈B (∑i∈S ci −

∑
i/∈S ci) ≥ 0 holds.

5. There exist ci ∈ Z≥0 for all i ∈ [n] with ∑i∈[n] ci ≥ 1, such that for every
UC family B ⊆ P([n]) with B ] A = B, ∑i∈[n] ci|Bi| ≥ (|B|/2)∑i∈[n] ci

holds.

Proof. (1) ⇐⇒ (2) from Poonen’s Theorem. (1) ⇐⇒ (3) from Corollary 2.
(1) ⇐⇒ (4) from Corollary 3. (2) ⇐⇒ (5) from Proposition 5.

In the next proposition, we show that for FC or Non–FC-families we can
always assume (when convenient) that the empty set is present.

Proposition 6. Let A be a UC family such that ∅ ∈ A. Then A is an FC-family
if and only if A \ {∅} is an FC-family.

Proof. Let A be a UC family such that ∅ ∈ A. Define Ã := A \ {∅}.
Suppose A is an FC-family. Then for each UC family F ⊇ A there exists
i ∈ U(A) such that |Fi| ≥ |F|/2. Hence F \{∅} also satisfies Frankl’s conjecture.
It follows that Ã is an FC-family.
For the other direction, suppose Ã is an FC-family and let F be a UC family
such that F ⊇ A. Then F ⊇ Ã. Therefore there exists i ∈ U(Ã) such that
|Fi| ≥ |F|/2. Since U(Ã) = U(A), it follows that A is an FC-family.

3.2.1 A Cutting-Plane Method for Poonen’s Theorem
As mentioned in the introduction, the main obstacle in using Poonen’s Theorem
to characterize FC-families is the potentially exponential number of constraints
in PA or (equivalently) IA. Therefore, our main goal in the rest of this section
is to precisely define a method for starting with a small subset of the constraints
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that define PA or IA and then generate more constraints as needed. First we
define a set of integer vectors contained in a polyhedron that determines, when
the set is empty, that a given rational vector satisfies the second condition of
Poonen’s Theorem (this is Proposition 7). Then we show that the set above
is nonempty if and only if a given rational vector does not satisfy the second
condition of Poonen’s Theorem (this is Theorem 20). Finally, this gives rise to
an algorithm that determines whether a given A is FC or Non–FC.

Corollary 4 combined with the integer programming approach to UC families
in Section 2.1, provides the background of our method. Fix a UC family A such
that |U(A)| = n and ∅ ∈ A. As previously, we may assume U(A) = [n]. Let
c ∈ Zn

≥0 such that ∑i∈[n] ci ≥ 1. With every set S ∈ P([n]), we associate a
variable xS, i.e, a component of a vector x ∈ R2n indexed by S. Given a family
of sets F ⊆ P([n]), let XF ∈ R2n denote the incidence vector of F defined
(component-wise) as

XFS :=

 1 if S ∈ F ,
0 if S 6∈ F .

Hence every family of sets F ⊆ P([n]) corresponds to a unique zero-one vector
in R2n and vice versa. Let X(A, c) denote the set of integer vectors contained in
the polyhedron defined by the following inequalities:

xS + xT ≤ 1 + xS∪T ∀S ∈ P([n]), ∀T ∈ P([n]) (3.2)
∑

S∈P([n])

∑
i∈S

ci −
∑
i/∈S

ci

xS + 1 ≤ 0 (3.3)

xS ≤ xA∪S ∀S ∈ P([n]), ∀A ∈ A (3.4)

0 ≤ xS ≤ 1 ∀S ∈ P([n]) (3.5)

Suppose X(A, c) is nonempty and let x̄ ∈ X(A, c). Then x̄ = X B for some family
of sets B such that B ⊆ P([n]). Inequalities (3.2) ensure that the chosen family
B is UC, and we denote them as UC inequalities. Inequalities (3.4) ensure that
B ] A = B, and we denote them as Fixed-Set (FS) inequalities. We denote
Inequality (3.3) as the Weight Vector (WV) inequality and we explain it in the
next proposition.

Proposition 7. Let A be a UC family such that ∅ ∈ A, and let c ∈ Zn
≥0 such

that ∑i∈[n] ci ≥ 1. If X(A, c) = ∅, then A is an FC-family.

Proof. Suppose that X(A, c) = ∅. Let Y (A, c) be defined as the set of integer
vectors contained in the polyhedron defined by Inequalities (3.2), (3.4) and (3.5).
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For any UC family B ⊆ P([n]) such that B ]A = B, we arrive at X B ∈ Y (A, c).
Therefore if X(A, c) = ∅ this implies there exists no UC family B ⊆ P([n]) with
B ] A = B such that: ∑

S∈B

∑
i∈S

ci −
∑
i/∈S

ci

 ≤ −1.

Since ci ∈ Z≥0 for all i ∈ [n], this implies that for each UC family B ⊆ P([n])
with B ] A = B, the following inequality holds:

∑
S∈B

∑
i∈S

ci −
∑
i/∈S

ci

 ≥ 0.

Corollary 4 implies that each UC family F such that F ⊇ A, satisfies Frankl’s
conjecture.

A natural candidate for checking whether X(A, c) is empty (or not), for
some A and c, is a standard branch and bound algorithm. Hence we define an
appropriate integer program related to X(A, c) and solve it in a general purpose
integer programming solver as specified in Section 3.1.1. However in order to
prove that a “candidate" UC family is an FC-family, we need a vector c which
yields an empty X(A, c), if such a vector exists. Thus we turn our attention to
the relation between X(A, c) and PA, for a given A and c. First we need the
following basic definition.

Definition 13. A valid inequality πTx ≥ π0 for a set X ⊆ Rn is violated by a
vector x̄ ∈ Rn if and only if πT x̄ < π0.

Given c ∈ Zn
≥0 such that ∑i∈[n] ci ≥ 1, we define ȳ as c normalized by its

`1 norm. Thus ȳ = c/
∑

i∈[n] ci. By definition we arrive at ȳ ∈ Qn
≥0 such that∑

i∈[n] ȳi = 1.

Theorem 20. Let A be a UC family such that ∅ ∈ A and let c ∈ Zn
≥0 such

that ∑i∈[n] ci ≥ 1. Then X(A, c) is nonempty if and only if there exists a valid
inequality of PA that is violated by ȳ.

Proof. Suppose X(A, c) is nonempty. Hence there exists x̄ ∈ X(A, c) such that
x̄ = X B for some B ⊆ P([n]). B is a UC family since the corresponding UC
inequalities are satisfied. Furthermore, for each B ∈ B and for each A ∈ A, it
follows that A ∪ B ∈ B since all the corresponding FS inequalities are satisfied.
Hence we see that B ] A = B. Therefore B yields the coefficients (and the
right-hand side scalar) of the following valid inequality for PA,

∑
i∈[n]

yi|Bi| ≥ |B|/2.
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Since X B ∈ X(A, c) implies the WV inequality is satisfied, we arrive at the
following, ∑

S∈B

∑
i∈S

ci −
∑
i/∈S

ci

 ≤ −1.

Combining the above with the proof of Corollary 3 we arrive at the following
inequality,

2
∑
i∈[n]

ci|Bi| − |B|
∑
i∈[n]

ci ≤ −1.

Adding |B|∑i∈[n] ci to both sides of the above and dividing by 2∑i∈[n] ci, we
arrive at ∑

i∈[n]

ci∑
i∈[n] ci

|Bi| ≤
−1

2∑i∈[n] ci

+ |B|2

and because −1
2
∑

i∈[n] ci
< 0, and ci∑

i∈[n] ci
= ȳi for each i ∈ [n], it follows that

∑
i∈[n]

ȳi|Bi| < |B|/2.

For the other direction, suppose X(A, c) = ∅. Following the proof of Propo-
sition 7 we see that for each B ⊆ P([n]) such that B ] A = B, the following
inequality holds: ∑

S∈B

∑
i∈S

ci −
∑
i/∈S

ci

 ≥ 0.

Hence, Corollary 4 implies that ȳ ∈ PA.

We determined that a nonempty X(A, c) implies a violated inequality for PA.
However for a given A and c, there may be many such violated inequalities. This
leads to the notion of a maximally violated inequality, which we define below.
This notion is based on the intuition that a maximally violated inequality is
“farthest" away from PA, and hence adding it to a subset of the constraints of
PA should get us “closest" to PA.2

Definition 14. Let A,B ⊆ P([n]), be UC families such B ] A = B and ∅ ∈ A.
A valid inequality ∑i∈[n] yi|Bi| ≥ |B|/2 for PA is maximally violated by a vector
ȳ ∈ Qn

≥0 such that ∑i∈[n] ȳi = 1 if and only if for each violated valid inequality∑
i∈[n] yi|Di| ≥ |D|/2 such that D ⊆ P([n]) is a UC family and D ] A = D, the

following inequalities (|B|/2−∑i∈[n] ȳi|Bi|) ≥ (|D|/2−∑i∈[n] ȳi|Di|) > 0 hold.

Let A be a UC family such that ∅ ∈ A. Furthermore, let c ∈ Zn
≥0 such that

2Indeed, from a computational perspective, for all the tested UC families in this thesis,
using this notion for the objective function of IP (A, c) leads to the fewest number of iterations
of Algorithm 1, where we use IP (A, c) instead of X(A, c).
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∑
i∈[n] ci ≥ 1. Denote by IP (A, c) the following integer program:

max
∑
i∈[n]

ci

 ∑
S∈P([n])

xS − 2
∑

S∈P([n]):i∈S

xS


s.t. x ∈ X(A, c)

An integer vector x̄ ∈ R2n is a feasible solution of IP (A, c) if and only if x̄ = X B

for some UC family B ⊆ P([n]) such that B ] A = B and X B satisfies the WV
inequality. IP (A, c) is infeasible if and only if there exists no feasible solution of
IP (A, c). X B is an optimal solution of IP (A, c) if and only if X B is a feasible
solution of IP (A, c), and for any other feasible solution XD of IP (A, c), we arrive
at ∑

S∈B

∑
i∈[n]

ci − 2
∑
S∈B

∑
i∈S

ci ≥
∑
S∈D

∑
i∈[n]

ci − 2
∑
S∈D

∑
i∈S

ci.

Theorem 21. Let A be a UC family such that ∅ ∈ A, and let c ∈ Zn
≥0 such that∑

i∈[n] ci ≥ 1. Suppose X B is an optimal solution of IP (A, c). Then the valid
inequality ∑i∈[n] yi|Bi| ≥ |B|/2 for PA is maximally violated by ȳ.

Proof. Suppose X B is an optimal solution of IP (A, c). Then the following in-
equality holds: ∑

S∈B

∑
i∈S

ci −
∑
i/∈S

ci

 ≤ −1.

Following the proof of Corollary 3 we arrive the following:

∑
S∈B

∑
i∈[n]

ci − 2
∑
S∈B

∑
i∈S

ci ≥ 1.

Suppose XD is a feasible solution of IP (A, c). Then the following holds:

∑
S∈B

∑
i∈[n]

ci − 2
∑
S∈B

∑
i∈S

ci ≥
∑
S∈D

∑
i∈[n]

ci − 2
∑
S∈D

∑
i∈S

ci ≥ 1.

Rewriting the inequalities above as in the proof of Corollary 3 combined with
the proof of Theorem 20 we arrive at

|B|
2 −

∑
i∈[n]

ci∑
i∈[n] ci

|Bi| ≥
|D|
2 −

∑
i∈[n]

ci∑
i∈[n] ci

|Di| ≥
1

2∑i∈[n] ci

.
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Finally, this implies that the following holds:

(|B|/2−
∑
i∈[n]

ȳi|Bi|) ≥ (|D|/2−
∑
i∈[n]

ȳi|Di|) > 0.

If we drop the assumption that ∅ ∈ A, all of the results above still hold, using
the equivalent condition B]A ⊆ B, for each UC family B ⊆ P([n]). Given a UC
family A, the following algorithm finds a rational vector that satisfies the second
condition of Poonen’s Theorem, or an infeasible subset of the constraints that
define PA. The former proves that A is FC, whereas the latter proves that A
is Non–FC. Using Proposition 5 with appropriate adjustments in the algorithm
below we may search for an infeasible subset of the constraints that define IA

instead of PA. Furthermore, we may use IP (A, c) instead of X(A, c). For a
given vector ȳ ∈ Qn

≥0 such that ȳ = (a1
b1
, a2

b2
, . . . , an

bn
), we safely assume that bi ≥ 1

for all i ∈ [n].

Algorithm 1: Cutting planes for FC-families
Input : A UC family A such that U(A) = [n] and ∅ ∈ A
Output: A is an FC-family, or A is a Non–FC-family

1 H ←
(∑

i∈[n] yi = 1, yi ≥ 0 ∀i ∈ [n]
)

2 while ∃ ȳ ∈ H such that ȳ = (a1
b1
, a2

b2
, . . . , an

bn
) ∈ Qn

≥0 do
3 g ← lcm(b1, b2, . . . , bn)
4 c← gȳ

5 if ∃ X B ∈ X(A, c) then
6 H ← H ∩

(∑
i∈[n] yi|Bi| ≥ |B|/2

)
7 else
8 return A is an FC-family

9 return A is a Non–FC-family

Theorem 22. Let A be a UC family such that U(A) = [n] and ∅ ∈ A. Then
Algorithm 1 correctly determines if A is an FC-family or Non–FC-family.

Proof. It is clear Algorithm 1 finitely terminates. Furthermore, if H is nonempty,
then by Proposition 4 it contains a rational vector. Let A be a UC family such
that U(A) = [n] and ∅ ∈ A. Suppose A is an FC-family. By the definition
of an FC-family and by Poonen’s Theorem there exist ci ≥ 0 for all i ∈ [n],
such that ∑i∈[n] ci = 1, which satisfy all Inequalities (3.1). Therefore PA is
nonempty and consequently H is nonempty. This implies that at some iteration

36



of Algorithm 1, by Theorem 20 we arrive at ȳ ∈ PA, otherwise Algorithm 1
determines an infeasible system of constraints that defines H and we arrive at a
contradiction. Suppose A is a Non–FC-family. By the definition of a Non–FC-
family and Poonen’s Theorem, this implies there exist no ci ≥ 0 for all i ∈ [n]
with ∑i∈[n] ci = 1 that satisfy all Inequalities (3.1). By Theorem 20 during all
the iterations of Algorithm 1 we have that ȳ 6∈ PA, otherwise we arrive at a
contradiction. Therefore Algorithm 1 terminates when it determines a system of
constraints that define H such that H = ∅, which implies that PA = ∅.

Algorithm 1 becomes our main tool for determining whether certain UC fam-
ilies are FC or Non–FC. This in turn allows us to answer other questions of in-
terest. In the next section we narrow our focus on valid inequalities for IP (A, c).
Our interest in these is mainly practical, since solving IP (A, c) in a general pur-
pose integer programming solver is how we determine if X(A, c) is empty or
not.

3.3 Valid Inequalities for X(A, c)
From the perspective of computational integer programming, valid inequalities
may be considered effective if—among other things—they lead to a smaller
branch and bound tree. For all the results that we feature in this thesis, adding
a subset of the following inequalities to the root node of a given instance of
IP (A, c) significantly reduces the size of the resulting branch and bound tree.
This is particularly important in the implementation of Algorithm 1 which fea-
tures IP (A, c). Since the algorithm may iterate many times, speeding up the
solution process of IP (A, c) becomes crucial. Once Algorithm 1 determines
whether a given A is an FC or Non–FC-family, separate rounds of verifications
take place in a number of different solvers as mentioned in Section 3.1.1. If the
given family A is FC, then automated verifications are carried out in an exact
rational solver [28] and VIPR [25] which do not make use of the following in-
equalities, thus allowing for, if necessary, a straightforward check of the input
files.3

In the next definition, we may assume that U(S) = U(F) = U(A) = [n], for
some positive integer n.

3This is important because it means that the interested reader does not need to rely on the
implementation of Algorithm 1, and in particular the generation of FC-chain inequalities, in
order to computationally reproduce the results featured in this thesis. To check that a given A
is FC, a reader simply needs the correct weight vector and a solver of choice. For a Non–FC-
family, the reader needs the UC families which yield the infeasible system of inequalities and
the Farkas duals.
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Definition 15. A family of sets S generates F with a UC family A, denoted by
〈S〉A := F , if and only if F is a UC family that contains S such that F]A = F ,
and there exists no UC family F̃ ⊂ F such that F̃ contains S and F̃ ] A = F̃ .

As in the previous Section, for all UC families A that are “candidate" FC-
families in the following propositions and definition, we assume that U(A) = [n],
for some integer n ≥ 1.

Proposition 8 (FC inequalities). Let A be a UC family such that ∅ ∈ A, and
let c ∈ Zn

≥0 such that ∑i∈[n] ci ≥ 1. Let S ∈ A, and let U, T ∈ P([n]) such that
S ∪ U = F and S ∪ T = F . Then the following inequality

xT + xU − xT∪U − xF ≤ 0,

is valid for X(A, c).

Proof. Suppose there exists an integer vector in X(A, c) which yields a UC family
F such that the following inequality holds (for some S ∈ A and U, T ∈ P([n])
as above)

xT + xU − xT∪U − xF ≥ 1.

This implies that the number of variables which equal one with positive coeffi-
cients is greater than the number of variables with negative coefficients which
equal one. But if either xT or xU are one then xF is one (if both are one then
xT∪U is one) and we arrive at a contradiction.

In the following definition the role of a considered UC family A is taken into
account in the listed conditions. In the first condition the role of A is implicit in
the existence of a FS inequality, whereas in the second condition the role of A
is implicit in generating the desired family, as discussed at the beginning of this
section. When convenient we treat the power set of [n] as an arbitrarily indexed
family of sets, i.e., P([n]) = {B1, B2, . . . , B2n}.

Definition 16 (FC-chain). Let A be a UC family such that ∅ ∈ A, and let
c ∈ Zn

≥0 such that ∑i∈[n] ci ≥ 1. Let S,S ′ ⊂ P([n]), S ∩ S ′ = ∅. Given Bi ∈
S, Bj ∈ S ′, we say Bi, Bj form an FC-chain which we denote by Bi −→ Bj,
if and only if there exist tuples (Bi, Bk), (Bk, Bl), (Bl, Bm), . . . , (Bp, Bj), where
{Bk, Bl, . . . , Bp} ⊂ P([n]), such that for any tuple (Bq, Br) in the FC-chain, at
least one of the following conditions holds:

1. There exists A ∈ A such that A ∪ Bq = Br, and therefore xBq ≤ xBr is a
valid FS inequality for X(A, c).
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2. There exists S ∈ 〈S〉A such that xBq +xS ≤ 1+xBr is a valid UC inequality
for X(A, c).

The following proposition follows directly from the definition above.

Proposition 9 (FC-chain inequalities). Let A be a UC family such that ∅ ∈ A,
and let c ∈ Zn

≥0 such that ∑i∈[n] ci ≥ 1. Let S,S ′ ⊂ P([n]), S ∩ S ′ = ∅.
For any T ⊆ S define U(T ) := {S ′ ∈ S ′ | ∃ S ∈ T : S −→ S ′}. Suppose that
|T | ≤ |U(T )| for all T ⊆ S. Then the inequality

∑
S∈S

xS −
∑

S∈S′
xS ≤ 0,

is valid for X(A, c).

Proof. Suppose there exists an integer vector in X(A, c) which yields a UC family
F such that the following inequality holds (for some S,S ′ ⊂ P([n]), as above)

∑
S∈S∩F

xS −
∑

S∈S′∩F
xS ≥ 1.

It is clear that S ∩ F 6= ∅, otherwise we arrive at a contradiction. Therefore
the inequality implies that the number of variables xS which equal one, for all
S ∈ S ∩ F is greater than the number of variables xS which equal one, for all
S ∈ S ′∩F . Let T ⊆ S∩F , and for all S ∈ T , let xS = 1. |T | ≤ |U(T )| holds by
hypothesis. Furthermore by the definition of an FC-chain for each T ,S ′ ⊂ P([n])
such that T ∩S ′ = ∅, for all S ′ ∈ U(T ) we conclude that xS′ = 1. Thus we arrive
at a contradiction.

Observe that FC-chain inequalities generalize FC-inequalities. We will use
them in the appendix to explicitly exhibit the branch and bound tree of the
counterexample in the next section. In particular, this implies that our coun-
terexample requires no trust from the reader, in the sense that its verification
can be separated from the complex optimization process that produced it.

3.4 Generators for Non–FC-families
In this section we exhibit a counterexample to a conjecture of Morris [76] about
generators for Non-FC-families.

Definition 17 (regular). Let S be a family of sets such that U(S) = [n]. Suppose
S is a minimal generator for a UC family F , such that F is a Non–FC-family.
Then S is regular if and only if for any A ∈ S, A 6= ∅, and any i ∈ [n], the UC
family 〈(S \ {A}) ∪ {A ∪ {i}}〉 is Non–FC.
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Conjecture 6 (Morris 2006). Let S be a family of sets such that U(S) = [n],
for n ≥ 3. Suppose S is a minimal generator for a UC family F , such that F is
a Non–FC-family. Then S is regular.

Morris [76] checked the conjecture for all known families at the time, and
therefore considered it plausible. In some sense, Conjecture 6 perfectly illus-
trates our general lack of knowledge about UC families since—as a number of
other related questions—it has eluded an answer for a relatively long time. The
obstacle—in this case and others to follow—is the lack of a method for exactly
characterizing FC-families, a gap in knowledge which we correct with our frame-
work.

3.4.1 A Counterexample for Structures in Non–FC-families
Our counterexample on six elements is minimal, in the sense that Morris [76]
completely characterizes FC-families on 5 elements.
Let S := {∅, {4, 5, 6} , {1, 3, 4} , {1, 2, 5, 6} , {1, 2, 3, 4}} ⊂ P([6]). Furthermore,
let T := {{1, 2, 4, 5, 6} , {1, 3, 4, 5, 6} , {1, 2, 3, 4, 5, 6}} ⊂ P([6]). Hence it follows
that 〈S〉 = S∪T . It is straightforward to check that S is a minimal generator for
S∪T . We will show that 〈S〉 is a Non–FC-family. There is a stronger connection
between the structure of inequalities featured in the proof below and questions
of Vaughan [105] and Morris [76] we answer later in this work. In Section 3.5
we explicitly describe the structure of UC families from which the inequalities
below are derived in relation to the questions of interest.

Proposition 10. 〈S〉 is a Non–FC-family.

Proof. Algorithm 1 determines an infeasible system of constraints which yields
the result. We display an irreducible infeasible subset of the given system. We
identify columns with zero one entries for each S ∈ P([6]). The six matrices fea-
tured below represent UC families. The top row keeps track of the number of sets
in each family. In addition to rechecking with an exact rational solver [28] and
other solvers, we check that each matrix is UC via simple external subroutines
and finally by hand. Furthermore, let F ⊂ P([6]) be a family represented by one
of the matrices below. By inspection we see that F ] 〈S〉 = F . In each matrix,
we color columns which correspond to sets in S, T , red and blue, respectively.
Each matrix yields an Inequality (3.1) from Poonen’s Theorem (multiplied by
two) featured below it. The following system of constraints is infeasible in non-
negative yi for all 1 ≤ i ≤ 6. For each row we display the Farkas dual values
in square brackets. This yields a certificate of infeasibility via a straightforward
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application of Farkas’ Lemma. For convenience we state the lemma in the ap-
pendix.
[−7190] : y1 + y2 + y3 + y4 + y5 + y6 = 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
c3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
c4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
c5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1
c6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1

[30] : 22y1 + 46y2 + 50y3 + 50y4 + 46y5 + 46y6 ≥ 43.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
c3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
c4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1
c5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1
c6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1

[9] : 46y1 + 14y2 + 42y3 + 42y4 + 42y5 + 42y6 ≥ 39.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
c3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1
c4 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1
c5 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1
c6 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1

[44] : 52y1 + 46y2 + 52y3 + 28y4 + 52y5 + 52y6 ≥ 46.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
c3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
c4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
c5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
c6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

[21] : 48y1 + 40y2 + 16y3 + 48y4 + 40y5 + 40y6 ≥ 40.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
c3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
c4 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
c5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
c6 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
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[32] : 44y1 + 44y2 + 42y3 + 48y4 + 20y5 + 52y6 ≥ 42.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
c3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
c4 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
c5 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
c6 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

[32] : 44y1 + 44y2 + 42y3 + 48y4 + 52y5 + 20y6 ≥ 42.

We are now ready to show that S is not regular, and thus give a counterex-
ample to Conjecture 6.

Proposition 11. Let S ′ := {∅, {4, 5, 6} , {1, 3, 4} , {1, 2, 5, 6} , {1, 2, 3, 4, 5}}.
Then 〈S ′〉 is an FC-family.

Proof. Let c ∈ Z6
≥0 such that c = (16, 8, 12, 20, 17, 15). Then IP (〈S ′〉, c) is

infeasible 4.

Corollary 5. S is a counterexample to Conjecture 6.

Proof. We show that S is not regular. We observe that U(S) = [6] and S is
a minimal generator for 〈S〉. Furthermore from Proposition 10 it follows that
〈S〉 is a Non–FC-family. However S ′ = (S \ {1, 2, 3, 4})∪{{1, 2, 3, 4} ∪ {5}} and
Proposition 11 implies that 〈S ′〉 is an FC-family.

3.5 Relaxation Questions
In this section, we briefly address the practical behavior of Algorithm 1, as it
sheds light on open questions of interests in Vaughan [105] and Morris [76]. As
a result, we exhibit a counterexample to the questions of Morris and Vaughan.

As mentioned earlier, our current implementation features IA and IP (A, c).
This avoids possible numerical trouble by minimizing the sum of the zi, in ad-
dition to selecting the “sharpest cut" whenever we solve IP (A, c). Yet, without
witnessing first-hand computations for fixed UC families A such that |U(A)| = n

and 6 ≤ n ≤ 10, Algorithm 1 may appear fraught with theoretical dangers.5

4In the appendix we explicitly show the infeasibility of IP (〈S ′〉, c) by making use of FC-
chain inequalities and displaying irreducible infeasible subsets of constraints for the two leaf
nodes of the resulting branch and bound tree.

5 IP (A, c) is a binary program with an exponential number of variables and constraints in
n. Furthermore the number of iterations of Algorithm 1 could be exponential in n.
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However, in practice our method is well-behaved in the described range, and is
consequently the currently best available technique for the exact determination
of FC-families.

Furthermore, our implementation mostly confirms the heuristic intuition of
Vaughan and Morris as will be made explicit in the next paragraphs. Thus in
the tested range, Algorithm 1 mostly iterates n times. However, in some cases
it iterates more than n (but less than 2n) times6. Among the latter we find
counterexamples to open questions of interest which we feature below.

As mentioned in Section 3.1, Vaughan [105] implements a heuristic that guides
the search for a potential weight system. Given a UC family A, ∅ ∈ A, the
heuristic focuses only on UC families B with B ] A = B, where B = P([n] \
{j})]A for all j ∈ [n]. If there exists a solution to the system of linear equations∑

i∈[n] yi|Bi| = |B|/2 in nonnegative yi, with
∑

i∈[n] yi ≤ 1, then the considered
UC family A becomes a candidate FC-family. All of Vaughan’s candidate FC-
families in [105] are identified as above, followed by tedious case analysis that
spans several pages for the proof that the given family is FC. We precisely state
Vaughan’s question as follows:

Question 1 (Vaughan 2003). Let A be a UC family such that U(A) = [n] and
∅ ∈ A. Consider UC families B ⊆ P([n]) such that B = P([n] \ {j}) ] A for all
j ∈ [n]. Suppose the linear system of equations ∑i∈[n] yi|Bi| = |B|/2 for all B as
above has a solution in nonnegative reals yi for all i ∈ [n], such that ∑i∈[n] yi ≤ 1.
Does this imply that PA is nonempty?

Given a UC family A, ∅ ∈ A, Morris [76] also focuses on B as above, searching
instead for integer vectors contained in the polyhedron defined by the inequalities
derived from the n given B and zi ≥ 0 for all i ∈ [n] with ∑i∈[n] zi ≥ 1. The
idea is that the n given inequalities could capture information of interest without
needing the rest of the possible inequalities. Morris shows that this holds in a
number of cases, but is it true in general? More precisely, we state it as the
following question:

Question 2 (Morris 2006). Let A be a UC family such that U(A) = [n] and
∅ ∈ A. Consider UC families B ⊆ P([n]) such that B = P([n] \ {j}) ] A for all
j ∈ [n]. Denote by Z(A) the set of integer vectors contained in the polyhedron
defined by ∑i∈[n] zi ≥ 1, ∑S∈B (∑i∈S zi −

∑
i/∈S zi) ≥ 0 for all B as above, and

6The runtimes vary roughly from a few seconds for 6 ≤ n ≤ 7 and a few minutes for
8 ≤ n ≤ 9, to a few hours for n = 10. Furthermore verification with exact SCIP [28] takes
longer, as does testing a non-minimal FC-family. Computations were carried out on machines
with 2.40 GHz quad-core processors and 16 GB of RAM.
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0 ≤ zi for all i ∈ [n]. Suppose Z(A) is nonempty. Does this imply that there
exists a feasible solution of IA?

Given a set A that yields a positive answer to Question 1, we can scale
the resulting vector y and (after arbitrarily increasing some entries if necessary)
arrive, following the proof of Corollary 3, at a vector z that gives a positive
answer to Question 2.

Observation 2. A positive answer to Question 1 for a given A implies a positive
answer to Question 2 for the same A.

Thus, considering the above, we can explicitly describe the structure associ-
ated with the Non–FC-family that leads to the counterexample in Corollary 5.
As above, it suffices to consider B ⊆ P([n]) such that B = P([n]\{j})]A for all
j ∈ [n], where A is our given UC family. This greatly simplifies the tedious task
of checking that the algorithm’s output is correct. Once the family is constructed
according the given B, it becomes straightforward to check that the necessary
conditions for correctness are met.

Given that the empty set does not make a difference in determining whether
a UC family A is FC or Non–FC, as we saw in Proposition 6, we may think the
condition ∅ ∈ A in the questions of Vaughan and Morris can be relaxed. If this
were the case, the structure of the considered B with ∅ 6∈ A is again simplified,
since the cardinality of the new family is at most the cardinality of the original
one. Unfortunately, as we shall see, this is not the case. Still, in the next
proposition, we show that a nonempty Z(A) implies that a set of integer vectors
contained in a polyhedron arising from “smaller" structures is also nonempty.

Proposition 12. Let A be a UC family such that U(A) = [n] and ∅ ∈ A.
Suppose Z(A) is nonempty. Consider G ⊆ P([n]) such that G = (P([n] \ {j}) ]
A) \ P([n] \ {j}) for all j ∈ [n]. Then the set of integer vectors contained in
the polyhedron defined by ∑i∈[n] zi ≥ 1, ∑S∈G (∑i∈S zi −

∑
i/∈S zi) ≥ 0 for all G as

above, and 0 ≤ zi for all i ∈ [n], is nonempty.

Proof. Let A be a UC family such that U(A) = [n] and ∅ ∈ A. Furthermore,
let B ⊆ P([n]) such that B = P([n] \ {1}) ] A. Since ∅ ∈ A, it follows that
P([n] \ {1}) ⊂ B. Define D := P([n] \ {1}), G := B \ D. Suppose that Z(A)
is nonempty and z ∈ Z(A). Define z̄ as z normalized by its `1 norm. Thus
we arrive at z̄i ∈ Q≥0 for all i ∈ [n] and ∑i∈[n] z̄i = 1. Following the proof of
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Corollary 2 we arrive at

∑
i∈[n]

2z̄i|Bi| ≥ |B| ⇐⇒
∑
i∈[n]

2z̄i|Gi|+
∑

i∈[n]\{1}
2z̄i|Di| ≥ |G|+ |D|

=⇒
∑
i∈[n]

2z̄i|Gi| ≥ |G|.

In the last implication we use ∑i∈[n]\{1} z̄i ≤ 1, with z̄i ≥ 0 for all i ∈ [n] \ {1}.
Furthermore, D = P([n] \ {1}) implies that |Di| = 2n−2 for all i ∈ [n] \ {1} and
therefore

∑
i∈[n]\{1}

2z̄i|Di| = |D|
∑

i∈[n]\{1}
z̄i ≤ |D|.

Since the same argument applies to B = P([n] \ {j}) ] A for all j ∈ [n], the
desired result follows.

As we shall see next, a nonempty Z(A \ {∅}) does not necessarily imply a
nonempty Z(A).

Proposition 13. Let A be a UC family such that U(A) = [n] and ∅ ∈ A. A
nonempty Z(A \ {∅}) does not necessarily imply a nonempty Z(A).

Proof. Let S := {∅, {1, 2, 3} , {1, 4, 5} , {1, 2, 3, 4} , {1, 2, 3, 5} , {1, 2, 4, 5}} ⊂ P([5])
and let S̃ := S \ {∅}. Let A := 〈S〉 and Ã := 〈S̃〉. Morris [76] proved that Z(A)
is empty. We show that Z(Ã) is nonempty. Observe that if we write each set in
Ã as a column of an n×m binary matrixM , we have more entries with ones than
zeros. We conclude similarly for B ⊆ P([n]) such that B = P([n] \ {j}) ] Ã for
all j ∈ [n]. Hence, the (component-wise) all one vector is contained in Z(Ã).

Corollary 6. The reverse implication in Proposition 12 does not necessarily
hold.

Proof. Follows directly from the proof of Proposition 13 where we exhibit an A
such that ∅ ∈ A and Z(A) is empty. Then for each j ∈ [n] we see that the binary
matrix that represents G = (P([n]\{j})]A)\P([n]\{j}) has more entries with
ones than zeros.
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Finally, we give a negative answer to Morris’ question, and also Vaughan’s
question.

Let S := {∅, {2, 3, 4, 6, 7} , {1, 2, 3, 4} , {1, 3, 4, 6} , {5, 6, 7} , {3, 4, 7}} ⊂ P([7]).
Furthermore, define D := 〈S〉.

Proposition 14. Z(D) is nonempty.

Proof. We simply write down the relevant inequalities and exhibit a vector in
Z(D). The order of display matches j in B = P([7] \ {j}) ] D for each j ∈ [7].

−52z1 + 4z2 + 12z3 + 12z4 + 4z6 ≥ 0
+6z1 − 54z2 + 10z3 + 10z4 + 2z6 + 2z7 ≥ 0
+6z1 + 2z2 − 42z3 + 22z4 + 2z6 + 10z7 ≥ 0
+6z1 + 2z2 + 22z3 − 42z4 + 2z6 + 10z7 ≥ 0
−48z5 + 16z6 + 16z7 ≥ 0
+5z1 + 1z2 + 7z3 + 7z4 + 13z5 − 41z6 + 15z7 ≥ 0
+12z3 + 12z4 + 12z5 + 12z6 − 36z7 ≥ 0

The vector (7, 5, 12, 12, 10, 14, 16) ∈ Z7
≥0 is contained in Z(D).

Proposition 15. D is a Non–FC-family.

Proof. Using Algorithm 1 we exhibit a system of linear inequalities that is in-
feasible and the result follows from Corollary 4. As a certificate of infeasibility
we display Farkas dual values in square brackets before each inequality. Struc-
turally, we see that the only difference between the UC families that generated
this system of linear inequalities and the previous one are the red inequalities. In
contrast to the other inequalities, the red one here is derived from the following
UC family: (P([7] \ {3} \ {4}) ] D) ∪ {{1, 3, 4} , {1, 3, 4, 5}}.

[1] : z1 + z2 + z3 + z4 + z5 + z6 + z7 ≥ 1
[19] : −52z1 + 4z2 + 12z3 + 12z4 + 4z6 ≥ 0
[2] : +6z1 − 54z2 + 10z3 + 10z4 + 2z6 + 2z7 ≥ 0
[109] : +8z1 − 8z3 − 8z4 + 8z7 ≥ 0
[16] : −48z5 + 16z6 + 16z7 ≥ 0
[20] : +5z1 + 1z2 + 7z3 + 7z4 + 13z5 − 41z6 + 15z7 ≥ 0
[40] : +12z3 + 12z4 + 12z5 + 12z6 − 36z7 ≥ 0

Corollary 7. Let A be a UC family such that U(A) = [n] and ∅ ∈ A. A
nonempty Z(A) does not necessarily imply that there exists a feasible solution of
IA.
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Proof. From Proposition 14 combined with Proposition 15, followed by Corol-
lary 4.

Corollary 8. Let A be a UC family such that U(A) = [n] and ∅ ∈ A. A solution
to the system of equations from Question 1 in y ∈ Rn

≥0 such that ∑i∈[n] yi ≤ 1
does not necessarily imply that PA is nonempty.

Proof. Considering D as above with Observation 2 and the proof of Corollary 7
yields the desired result. Furthermore in the appendix we show that, given D,
there exists a solution to the system of equations from Question 1 in y ∈ Rn

≥0

such that ∑i∈[n] yi ≤ 1. This coupled with Proposition 15 and Corollary 4, yields
the result again.
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4 3-sets in Union-Closed Families
As we have seen so far in this thesis, the most straightforward application of
Algorithm 1 is to simply classify FC or Non–FC-families for small ground sets.
We witness a slightly more sophisticated use of Algorithm 1 in Section 3.4 and
Section 3.5, as we construct counterexamples to open questions about structures
in FC and Non–FC-families. In this chapter we use Algorithm 1 to prove a con-
jecture of Morris [76] from 2006 regarding the characterization of the minimum
number of 3-sets such that any UC family that contains them satisfies Frankl’s
conjecture.

4.1 The 3-sets Conjecture
In this section we use Algorithm 1 to answer fundamental questions regarding 3-
sets in UC families. In particular, we settle the problem of 3-sets in UC families
of Vaughan [106] and consequently prove the 3-sets conjecture of Morris [76].
Since we exhibit many families of 3-sets, in order to improve readability, we
will not use inner brackets to denote 3-sets in a given family. For example, we
denote {{1, 2, 3} , {2, 3, 4} , {3, 4, 5}} as {123, 234, 345}. When displaying 3-sets
themselves we always use the usual set notation.

As we saw in Section 3.1, FC-families generated by 3-sets are well-studied,
but a central question remains unanswered. In Theorem 1 and Theorem 2 we
see that Frankl’s conjecture holds for all families which contain a 1-set or a 2-set.
What about 3-sets? Unfortunately, Savate and Renaud [95] and Poonen [84]
showed that a single 3-set is not sufficient to ensure that all UC families that
contain it satisfy Frankl’s conjecture. How many distinct 3-sets are sufficient to
ensure that all UC families which contain them satisfy Frankl’s conjecture? We
first recall the following definition of Morris [76].

Definition 18. Let FC(k, n) denote the smallest positive integer m such that
any m of the k-sets in [n] generate an FC-family.

It is not immediately clear that FC(k, n) is always defined, but the following
result of Gao and Yu [45] proves this is always the case for sufficiently large n in
relation to k.

Theorem 23 (Gao and Yu 1998). For all k ≥ 1 and n ≥ 2k− 2, the UC family
B ⊆ P([n]) generated by all the k-sets in [n] is an FC-family, and therefore
FC(k, n) ≤

(
n
k

)
.
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Thus, with the above in mind, we rephrase our question about 3-sets as the
following: What is the minimum number of distinct 3-sets such that any UC
family that contains them satisfies Frankl’s conjecture? Vaughan [106] proved
the following result.

Theorem 24 (Vaughan 2004). Let T be a family of 3-sets such that |U(T )| =
n ≥ 4. Suppose that |T | ≥ 2n

3 + 1. Then any UC family F ⊃ T satisfies Frankl’s
conjecture.

Furthermore Vaughan [106] gave an interesting but incomplete proof attempt
(in the positive) of the following, which we state as a question.

Question 3 (Vaughan 2004). Let T be a family of 3-sets such that |U(T )| =
n ≥ 4. Suppose |T | ≥ bn

2 c+ 1. Does this imply that any UC family F such that
F ⊃ T satisfies Frankl’s conjecture?

Vaughan [103] announced in a conference meeting that an answer in the
positive was near completion but unfortunately the finished result never mate-
rialized in print and the author passed away four years after the announcement.
Vaughan’s original proof attempt in [106] is based on the heuristic intuition
which leads to Question 1, which we gave a counterexample for in Section 3.5.
It is conceivable that her announcement was based on a near completed answer
in the positive to Question 1 (for general UC families A), which does not hold.
Interestingly, as we will see, Question 1 holds for all UC families A generated by
families S of 3-sets (which we feature in this section) such that 4 ≤ |U(S)| ≤ 9.
Morris [76] explicitly stated the 3-sets conjecture as the following.

3-sets conjecture (Morris 2006). FC(3, n) = bn
2 c+ 1 for all n ≥ 4.

Morris [76] proved the lower bound for the conjecture, hence a positive answer
to Question 3 implies that the 3-sets conjecture holds.

Theorem 25 (Morris 2006). bn
2 c+ 1 ≤ FC(3, n) for all n ≥ 4.

In what follows, we bring together nearly all known results on 3-sets in UC
families. We also derive new results of interest, relying on Algorithm 1 when
necessary. Although we limit the use of Algorithm 1 in order to build on previous
results, we note that all previous work on 3-sets in UC families can be directly
derived and verified using Algorithm 1. Our goal is to complete the proof attempt
of Vaughan [106] with appropriate modifications for Algorithm 1 and other results
we derive here.
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Definition 19. Two families of sets contained in P([n]) are isomorphic, if and
only if there exists a permutation of [n] that transforms one into the other.

Using our definition of isomorphic families of sets, since UC families have a
unique minimal generator, we seek to classify UC families generated by 3-sets
according to (a representative of) the isomorphism class of their generators.

Definition 20. For each n ≥ 4, denote by NFC(3, n) the largest integer k such
that there exists a family A ⊂ P([n]) of k 3-sets such that U(A) = [n] and 〈A〉
is a Non–FC-family, and for any family B ⊂ P([n]) of k + 1 3-sets such that
U(B) = [n], 〈B〉 is an FC-family. Denote the collection of all such Non–FC-
families 〈A〉 of cardinality k by T (3, n).

Theorem 25 implies that NFC(3, n) is defined and FC(3, n)−1 = NFC(3, n)
for each n ≥ 4. Thus it suffices to characterize FC(3, n) to arrive at NFC(3, n).
Our goal is the classification of T (3, n) for all n ≤ 9. Such a classification ensures
w.l.o.g. that certain “patterns” are unavoidable for larger n. This enables the
induction argument in Theorem 32, which leads to an upper bound on NFC(3, n)
and therefore an upper bound for FC(3, n) for general n. First, we state the
following results.

Theorem 26 (Vaughan 2003). Any UC family that contains a family of sets
isomorphic to {135, 236, 456} satisfies Frankl’s conjecture.

Theorem 27 (Vaughan 2004). Any UC family that contains three 3-sets with a
common element satisfies Frankl’s conjecture.

Theorem 28 (Poonen 1992). FC(3, 4) = 3.

Corollary 9. NFC(3, 4) = 2.

Proof. By Definition 20 and Theorem 28.

Listing representatives of isomorphism classes for “small” families of sets is
possible with the use of any computer algebra system. Furthermore, the output
may be verified by hand as we outline in the appendix. In the following tables, in
the left column, we will list representatives from all possible isomorphism classes
for generators S with NFC(3, n) 3-sets such that U(S) = [n], for all 4 ≤ n ≤ 9.
The classification of the closures of the enumerated generators is achieved via
Algorithm1.

For generators which yield Non–FC-families we exhibit the UC families which
yield the coefficients and the right hand side scalar for an infeasible system of con-
straints from the second condition of Poonen’s Theorem. Otherwise, in the right
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column, we give a reason why the generators yield an FC-family. If IP (〈S〉, c) is
infeasible for some vector c ∈ Zn

≥0 such that ∑i∈[n] ci ≥ 1, then by Proposition 7
the UC family 〈S〉 is an FC-family. In this case we display the entries of vector
c in the following way. The notation i 7→ k denotes ci = k for each i ∈ [n],
and some integer k ≥ 0. This rather cumbersome notation safeguards against
possible errors when reading the entries. We note that our isomorphism classes
agree with those generated by Vaughan [106].

Nonisomorphic generators S with two 3-sets such that U(S) = [4]
123, 124 Only possible family (under permutations of [4]) of two 3-sets

Table 4.1: Classification of 3-sets based on Corollary 9.

Theorem 29 (Morris 2006). FC(3, 5) = 3.

Corollary 10. NFC(3, 5) = 2.

Proof. By Definition 20 and Theorem 29.

Nonisomorphic generators S with two 3-sets such that U(S) = [5]
123, 145 Only possible family (under permutations of [5]) of two 3-sets

Table 4.2: Classification of 3-sets based on Corollary 10.

Theorem 30 (Morris 2006). FC(3, 6) = 4.

Corollary 11. NFC(3, 6) = 3.

Proof. By Definition 20 and Theorem 30.

Nonisomorphic generators S with three 3-sets such that U(S) = [6]
126, 356, 456 FC-family by Theorem 27
123, 124, 356 infeasible system P([n] \ {j}) ] {∅, 123, 124, 356} , ∀j ∈ [n]
135, 236, 456 FC-family by Theorem 26

Table 4.3: Classification of 3-sets based on Corollary 11.

Theorem 31 (Marić et. al. 2012). Any UC family which contains a family S
of four 3-sets such that |U(S)| = 7 satisfies Frankl’s conjecture.

Corollary 12. FC(3, 7) = 4.
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Proof. We arrive at FC(3, 7) = 4 by combining Theorem 31 with Theorem
25.

Corollary 13. NFC(3, 7) = 3.

Proof. By Definition 20 and Theorem 12.

Nonisomorphic generators S with three 3-sets such that U(S) = [7]
123, 124, 567 infeasible system P([n] \ {j}) ] {∅, 123, 124, 567} , ∀j ∈ [n]
127, 347, 567 FC-family by Theorem 27
126, 347, 567 infeasible system P([n] \ {j}) ] {∅, 126, 347, 567} , ∀j ∈ [n]

Table 4.4: Classification of 3-sets based on Corollary 13.

Using Corollary 12 we can also characterize FC(3, 8) as in the following
proposition.

Proposition 16. FC(3, 8) = 5.

Proof. Given a family S of five 3-sets such that U(S) = [8], there is always an
element i∗ ∈ U(S) that i∗ is in exactly one of the five 3-sets. Let A ∈ S such
that i∗ ∈ A. Consider S \ {A}. Then 5 ≤ |U(S \ {A})| ≤ 7. Assume w.l.o.g
that U(S \ {A}) = [n], for each 5 ≤ n ≤ 7. Corollary 12 with Theorem 30 and
Theorem 29 yield the result.

Corollary 14. NFC(3, 8) = 4.

Proof. By Definition 20 and Proposition 16.

Nonisomorphic generators S with four 3-sets such that U(S) = [8]
123, 478, 578, 678 generates FC-family by Theorem 27
123, 468, 578, 678 generates FC-family by Theorem 27
128, 348, 578, 678 generates FC-family by Theorem 27
127, 348, 578, 678 generates FC-family by Theorem 27
126, 348, 578, 678 generates FC-family by Theorem 27
124, 348, 578, 678 generates FC-family by Theorem 27
126, 346, 578, 678 generates FC-family by Theorem 27
125, 346, 578, 678 1 7→ 1, 2 7→ 1, 3 7→ 1, 4 7→ 1, 5 7→ 2, 6 7→ 2, 7 7→ 2, 8 7→ 2

135, 237, 458, 678 1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 1, 5 7→ 2, 6 7→ 1, 7 7→ 2, 8 7→ 2

123, 124, 356, 678 infeasible system P([n] \ {j}) ] {∅, 123, 124, 356, 678} , ∀j ∈ [n]
123, 124, 567, 568 infeasible system P([n] \ {j}) ] {∅, 123, 124, 567, 568} , ∀j ∈ [n]
123, 456, 578, 678 since |U({456, 578, 678})| = 5 then FC-family by Theorem 29
126, 357, 458, 678 {357, 458, 678} generates FC family by Theorem 26

Table 4.5: Classification of 3-sets based on Corollary 14.
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Proposition 17. Let D be the collection of all families of 3-sets S such that
|S| = 4, U(S) = [8] and 〈S〉 is a Non–FC-family. Suppose that, for each S ∈ D
and each 2-set A ∈ P([8]), it follows that 〈S ∪{A ∪ {9}}〉 is an FC-family. Then
FC(3, 9) = 5.

Proof. Let S ′ be a family of five 3-sets such that U(S ′) = [9]. Then there is always
an element i∗ ∈ U(S ′) such that i∗ is in exactly one 3-set. Let A ∈ S ′ such that
i∗ ∈ A. Then 6 ≤ |U(S ′ \ {A})| ≤ 8. Suppose 6 ≤ |U(S ′ \ {A})| ≤ 7. Assume,
w.l.o.g. that U(S ′ \ {A}) = [n] for each 6 ≤ n ≤ 7. Since |S ′ \ {A} | = 4,
Theorem 30 and Corollary 12 imply that 〈S ′ \ {A}〉 is an FC-family. Hence,
consider |U(S ′ \ {A})| = 8 and assume, w.l.o.g. that U(S ′ \ {A}) = [8]. It
suffices to consider S ′ such that 〈S ′ \ {A}〉 is a Non–FC-family. Let D be the
collection of all families of 3-sets S such that |S| = 4, U(S) = [8] and 〈S〉 is
a Non–FC-family. Suppose that, for each S ∈ D and each 2-set A ∈ P([8]), it
follows that 〈S ∪ {A ∪ {9}}〉 is an FC-family. Then FC(3, 9) = 5.

Consider all nonisomorphic generators S with four 3-sets such that U(S) = [8]
and 〈S〉 is a Non–FC-family. They are the following families of 3-sets (red entries
in Table 4.5): G := {123, 124, 356, 678} ⊂ P([8]), andH := {123, 124, 567, 568} ⊂
P([8]).

Corollary 15. FC(3, 9) = 5.

Proof. Let D := {G,H}. In the appendix, for each S ∈ D and each A ⊂ P([8])
such that |A| = 2, we show that 〈S ∪ {A ∪ {9}}〉 is an FC-family by considering
all nonisomorphic S ∪ {A ∪ {9}}. The result follows from Proposition 17.

Corollary 16. NFC(3, 9) = 4.

Proof. By Definition 20 and Corollary 15.

Nonisomorphic generators S with four 3-sets such that U(S) = [9]
123, 459, 689, 789 generates FC family by Theorem 27
129, 349, 569, 789 generates FC family by Theorem 27
128, 349, 569, 789 generates FC family by Theorem 27
123, 457, 689, 789 infeasible system P([n] \ {j}) ] {∅, 123, 457, 689, 789} , ∀j ∈ [n]
123, 124, 356, 789 infeasible system P([n] \ {j}) ] {∅, 123, 124, 356, 789} , ∀j ∈ [n]
125, 345, 689, 789 infeasible system P([n] \ {j}) ] {∅, 125, 345, 689, 789} , ∀j ∈ [n]
123, 468, 569, 789 {468, 569, 789} generates FC family by Theorem 26
127, 348, 569, 789 1 7→ 1, 2 7→ 1, 3 7→ 1, 4 7→ 1, 5 7→ 1, 6 7→ 1, 7 7→ 2, 8 7→ 2, 9 7→ 2

Table 4.6: Classification of 3-sets based on Corollary 16.

In the rest of this section we closely follow and complete the proof attempt of
Vaughan [106] by recasting it in the proposed framework of this chapter. Thus,
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we are able to close the “gaps” with our classification of T (3, n) for all 4 ≤ n ≤ 9
and Algorithm 1 where necessary.

Proposition 18. Let S := G ∪ {{a, b, c}}, such that {a, b, c} is any 3-set for
distinct a, b, c ∈ N1. Suppose {a, b, c} ∩ [8] 6= ∅. Then 〈S〉 is an FC-family.

Proof. Suppose {a, b, c}∩[8] 6= ∅ and recall Theorem 27. Since a family with more
than two 3-sets which share an element is FC, we note that |S1|, |S2|, |S3|, |S6| ≥
2. Therefore if {a, b, c} ∩ {1, 2, 3, 6} 6= ∅, it follows that 〈S〉 is an FC-family.
Hence it suffices to consider the cases when {a, b, c} ∩ {4, 5, 7, 8} 6= ∅ in order to
determine whether {a, b, c} ∩ [8] 6= ∅ implies that 〈S〉 is an FC-family.

Suppose w.l.o.g. that a = 4 and consider D := {123, 124, 356, 4bc}. Suppose
6 ≤ |U(D)| ≤ 7 and assume w.l.o.g. that U(D) = [n] for each 6 ≤ n ≤ 7. From
Theorem 30 and Corollary 12 we see that FC(3, n) = 4 for each 6 ≤ n ≤ 7. Hence
it follows that 〈D〉 is an FC-family, and therefore S ⊃ D generates an FC-family.
Suppose that |U(D)| is maximal. Therefore, assume w.l.o.g U(D) = [8], b = 7
and c = 8. Then D is isomorphic to {125, 346, 578, 678}1, and from Table 14 we
see that 〈D〉 is an FC-family. Therefore S ⊃ D generates an FC-family.

Suppose 8 ≤ |U(S)| ≤ 9 and assume w.l.o.g. that U(S) = [n] for each
8 ≤ n ≤ 9. From Proposition 16 and Corollary 15 we arrive at FC(3, n) = 5 for
each 8 ≤ n ≤ 9. Therefore, it suffices to check whether the following values of
a, b, c lead to FC-families: 5,9,10 and 7,9,10 and 8,9,10. We note that for a, b, c
equal to 7,9,10 and 8,9,10, we arrive at isomorphic families of sets. Therefore we
consider the following two cases:

• Suppose S = {123, 124, 356, 678, 59(10)}. Let S ′ := {123, 356, 678, 59(10)}.
Then since |U(S ′)| = 9, we assume w.l.o.g. that U(S ′) = [9] and arrive
at {123, 345, 567, 489} which is isomorphic to {127, 348, 569, 789}2. From
Table 16 we see that 〈S ′〉 is an FC-family, and therefore S ⊃ S ′ generates
an FC-family.

• Suppose S = {123, 124, 356, 678, 79(10)}. Let c ∈ Z10
≥0 such that

c = (6, 6, 8, 4, 5, 7, 5, 4, 2, 2). Then IP (〈S〉, c) is infeasible, hence by Propo-
sition 7 the UC family 〈S〉 is an FC-family.

1In cycle notation, we permute the ground set of D in the following way, (18)(27)(36)(45),
to arrive at (not in the same order) {125, 346, 578, 678}.

2To arrive from {127, 348, 569, 789} to (not in the same order) {123, 345, 567, 489} we per-
mute the ground set in cycle notation: (1)(2)(3957)(48)(6).
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Proposition 18 says that if we add any 3-set {a, b, c} to G such that {a, b, c}∩
[8] 6= ∅, we arrive at an FC-family. Hence the next corollary follows immediately.

Corollary 17. Let S be a family of 3-sets. Suppose 〈S ∪G〉 is a Non–FC-family.
Then, for each S ∈ S it follows that S ∩ [8] = ∅.

Consider all nonisomorphic generators S with three 3-sets such that U(S) =
[6] and 〈S〉 is a Non–FC-family. Let I := {123, 124, 356} ⊂ P([6]). From the
red entry in Table 4.3, we see that I is the only such family.

Corollary 18. Let S be a family of 3-sets. Define T := S ∪ I. Suppose 〈T 〉 is
a Non–FC-family. Then |T4| = 1, and either |T5| = 1 or |T6| = 1.

Proof. Suppose 〈T 〉 is a Non–FC-family and |T4| = 2. Observe from the second
paragraph of the proof of Proposition 18 that I ⊂ D. Then it follows that T
generates an FC-family and we arrive at a contradiction. Therefore |T4| = 1.

Suppose 〈T 〉 is a Non–FC-family and |T6| = 2. Let {6, b, c} be a 3-set for
distinct b, c ∈ N1. Suppose T = I ∪ {{6, b, c}}. Suppose that |T5| = 2. Then
6 ≤ |U(T )| ≤ 7. Assume w.l.o.g. that U(T ) = [n] for each 6 ≤ n ≤ 7. From
Theorem 30 and Corollary 12 we see that FC(3, n) = 4 for each 6 ≤ n ≤ 7.
Hence it follows that 〈T 〉 is an FC-family, which is a contradiction.

Therefore, either |T5| = 1 or |T6| = 1.

Consider all nonisomorphic generators S with four 3-sets such that U(S) = [9]
and 〈S〉 is a Non–FC-family. They are the following families of 3-sets (red entries
from Table 4.6): J := {123, 457, 689, 789} ⊂ P([9]), K := {123, 124, 356, 789} ⊂
P([9]), and L := {125, 345, 689, 789} ⊂ P([9]).

Lemma 3. Let S be a family of 3-sets. Suppose 〈S〉 is a Non–FC-family such
that {1, 2, 3} ∈ S, |S1| = |S2| = |S3| = 2. Then S contains a permutation of I.

Proof. Suppose {1, 2, 3} ∈ S and 〈S〉 is a Non–FC-family such that |S1| = |S2| =
|S3| = 2. Let {1, 2, a} be a 3-set such that a ∈ N1. Suppose {1, 2, a} ∈ S. Since
|S3| = 2, we may assume S contains D := {123, 12a, bc3}, for distinct b, c ∈ N1.
Suppose 4 ≤ |U(D)| ≤ 5, and assume w.l.o.g. U(D) = [n] for each 4 ≤ n ≤ 5.
Then, Theorem 28 and Theorem 29 imply that 〈D〉 is an FC-family. Therefore
S ⊃ D generates an FC-family, which is a contradiction. Hence |U(D)| = 6, and
assume w.l.o.g. that U(D) = [6]. Under permutations of the ground set, this
implies that D is isomorphic to I. Therefore if S contains any other set besides
{1, 2, 3} which contains any two of the elements 1, 2 and 3, then S contains some
permutation of I.
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Suppose S does not contain another set besides {1, 2, 3} with any two of the
elements 1, 2 and 3. Then, we may assume S contains D := {123, 145, 2ab, 3cd}
for distinct a, b ∈ N1 and distinct c, d ∈ N1.

Suppose that {a, b, c, d} ∩ [5] 6= ∅, and suppose 5 ≤ |U(D)| ≤ 7. Assume
w.l.o.g. that U(D) = [n] for each 5 ≤ n ≤ 7. Then Theorem 29, Theorem 30
and Corollary 12 imply that 〈D〉 is an FC-family. Therefore S ⊃ D generates an
FC-family, which is a contradiction.

Suppose that {a, b, c, d} ∩ [5] 6= ∅ and |U(D)| = 8. Assume w.l.o.g that
U(D) = [8]. Then D is not isomorphic3 to either H or G, and hence 〈D〉 is an
FC-family. Therefore S ⊃ D generates an FC-family, which is a contradiction.

It follows that {a, b, c, d} ∩ [5] = ∅ and hence |D| = 9. Assume w.l.o.g. that
U(D) = [9]. Examining J , K, and L we see that the only family which contains
a 3-set {a, b, c} for distinct a, b, c ∈ N1 such that a, b and c are in exactly 2 sets
is K, and I is contained in K.

Theorem 32. NFC(3,n) ≤ n/2 for all n ≥ 4.

Proof. We proceed by induction. We have shown the statement to be true for
4 ≤ n ≤ 9. We assume it’s true for all positive integers up to and including
n−1, and show that it holds for n. Suppose S is a family of 3-sets such that 〈S〉
is a Non–FC-family and U(S) = [n]. Suppose |S| = k. Let a be the number of
distinct positive integers i ∈ [n] such that |Si| = 2, and b the number of distinct
positive integers i ∈ [n] such that |Si| = 1. Theorem 27 implies that |Si| can
only equal one or two, and we arrive at a + b = n and 2a + b = 3k. It follows
that a = 3k − n and b = 2n− 3k. If b ≥ k, we arrive at b = 2n− 3k ≥ k, which
implies that k ≤ n/2. Suppose b < k. This implies there are more 3-sets than
distinct positive integers i such that |Si| = 1. Therefore, if we removed all the
3-sets such that |Si| = 1, we would be left with at least one 3-set such that all
its elements appear exactly twice. We can safely assume this is the set {1, 2, 3},
and |S1| = |S2| = |S3| = 2. By Lemma 3, we may safely assume that S contains
I and by Corollary 18 we assume w.l.o.g. that |S4| = |S5| = 1. We now consider
the parity of n.

1. Suppose n is even. Let T := (S \ {{1, 2, 3}}) \ {{1, 2, 4}}. Since |S4| = 1
and |S1| = |S2| = |S3| = 2, it follows that |U(T )| = n− 3. Assume w.l.o.g.
that U(T ) = [n−3]. Since |T | = k−2, we arrive at k−2 ≤ NFC(3, n−3).

3This is easiest to see if we identify with each family a binary matrix where each column
represents a set. It suffices to consider the square block structure in the upper left hand corner
of the matrices corresponding to H and G. The block structure cannot be recovered in D by
an appropriate choice of a, b, c, d without clearly implying that D is nonisomorphic to H and
G.
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Using our induction hypothesis we arrive at k−2 ≤ (n−3)/2, which implies
that k ≤ (n+ 1)/2 and it follows that k ≤ n/2, since k is an integer and n
is even.

2. Suppose n is odd. We consider the following two cases:

• |S6| = 1. Let T := S \ {{3, 5, 6}}. As previously |U(T )| = n − 2,
|T | = k− 1. Assume w.l.o.g that U(T ) = [n− 2] and by applying the
induction hypothesis we arrive at k − 1 ≤ (n − 2)/2, which implies
that k ≤ n/2.

• |S6| = 2. Since S contains I and |S1| = |S2| = |S3| = 2, |S4| = |S5| =
1, then we may safely assume S contains G, up to isomorphism. By
corrollary 17, we see that |S7| = |S8| = 1. Let T := S \ {{6, 7, 8}},
and as in the previous case we arrive at k ≤ n/2.

Corollary 19. Let T be a family of 3-sets such that |U(T )| = n ≥ 4. Suppose
|T | ≥ bn

2 c + 1. Then any UC family F such that F ⊃ T satisfies Frankl’s
conjecture.

Proof. Follows directly from Theorem 32 and Definition 20.

Corollary 20. FC(3, n) = bn
2 c+ 1 for all n ≥ 4.

Proof. Follows directly from Corollary 19 and Theorem 25.

4.2 Conclusion and Outlook
In this thesis we have used a natural connection between (computational) lin-
ear and integer programming and the characterization of families of sets whose
presence in (possibly larger) UC families ensures Frankl’s conjecture holds (Theo-
rem 19). By developing a cutting-plane method (Algorithm 1) that can compute
exact characterization of FC-families for small ground sets and coupling our
method with highly redundant verification routines we find more previously un-
known nonisomorphic FC-families than all previous research results in the past
two decades. Furthermore, Algorithm 1 trivializes some previously open ques-
tions regarding structures in FC or Non–FC-families, as we are easily able to
give counterexamples for such questions. With some more work, we prove the
3-sets conjecture of Morris [76]. Our computational framework may be used to
improve several other results, as follows:
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• Since Algorithm 1 determines exactly whether a given UC family A such
that U(A) = [n] is FC or Non–FC for 6 ≤ n ≤ 10, lower bounds for previ-
ously unknown FC(k, n) in this range become trivial to obtain. Coupled
with a computer algebra system or graph isomorphism software to obtain
the isomorphism types of generators, upper or exact bounds for previously
unknown FC(k, n) can be easily obtained in the aforementioned range.

• The approach of Morris [76] for the classification of FC-families on five ele-
ments lends itself well to being generalized within our framework. The
number of minimal nonisomorphic generators for FC-families seems to
quickly grow for n ≥ 6, but we believe a complete classification for n = 6
is possible with routine work.

• Each FC-family represents an “optimality" cut for F (n, a). Improved bounds
may be achieved, if an efficient separation routine is implemented for UC
inequalities on n = 13. Alternatively, a counterexample may be found.

Finally, we believe that by separating UC and FS inequalities, our framework can
possibly classify FC-families for 11 ≤ n ≤ 14. For larger n other advanced tech-
niques such as column generation may be necessary. More generally, we believe
our work underscores the importance of bringing together computational tools
and problems from different fields that rarely cross paths – despite being well–
suited for each other – as is often the case with advanced integer programming
techniques and fitting problems in extremal combinatorics.

58



Appendix
To check the claims of infeasibility for the linear systems in this thesis it is
sufficient to ensure that the vector of values exhibited in square brackets before
each row corresponds to the vector y in the theorem below.

Theorem 33 (Farkas’ Lemma). Let A1 ∈ Rm1×n, A2 ∈ Rm2×n and A3 ∈ Rm3×n.
Also let b1 ∈ Rm1, b2 ∈ Rm2 and b3 ∈ Rm3. Then the following system of linear
equalities and inequalities in x ∈ Rn :

A1x = b1

A2x ≤ b2

A3x ≥ b3

x ≥ 0

is infeasible if and only if there exist y1 ∈ Rm1 , y2 ∈ Rm2 , y3 ∈ Rm3 such that:

b>1 y1 + b>2 y2 + b>3 y3 > 0

A>1 y1 + A>2 y2 + A>3 y3 ≤ 0

y2 ≤ 0

y3 ≥ 0

Proof of Proposition 11. We identify sets in P([6]) with the columns in the ma-
trix below. For each column, the number on the top row represents its corre-
sponding variable index in IP (〈S ′〉, c). Column c corresponds to a weight vector
for the elements in [n]. The columns representing families of sets S ′ and T are
colored red and blue, respectively. As previously, 〈S ′〉 = S ′ ∪ T .

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
20 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
17 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
15 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
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32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

We prove that IP (〈S ′〉, c) with some added valid FC and FC-chain inequalities
is infeasible by branching on x0 and showing that the linear relaxations of the
two subproblems are infeasible. We denote an explicit FC-chain by Bi

S−→ Bk
U−→

. . . Bp
T−→ Bj, where S, U, T satisfy either condition listed in Definition 16. When

needed we specify which type of inequalities form an FC-chain by SUC , UUC , TUC

for UC inequalities, and SF S, UF S, T F S for FS inequalites. We show infeasibility
by explicitly exhibiting Farkas dual values (shown in square brackets) for each
row of some irreducible infeasible subset of constraints. It suffices to show the
infeasibilty of the following system (trivial inequalities not shown):

1. [44] : x0 = 1.

2. UC inequalites:

[−2] : x11 + x45 − x9 ≤ 1, [−3] : x13 + x59 − x9 ≤ 1,

[−2] : x14 + x43 − x10 ≤ 1, [−1] : x22 + x61 − x20 ≤ 1,

[−3] : x23 + x60 − x20 ≤ 1, [−1] : x35 + x45 − x33 ≤ 1,

[−3] : x35 + x62 − x34 ≤ 1, [−6] : x37 + x59 − x33 ≤ 1,

[−1] : x38 + x43 − x34 ≤ 1, [−3] : x38 + x45 − x36 ≤ 1,

[−1] : x38 + x61 − x36 ≤ 1, [−1] : x39 + x44 − x36 ≤ 1,

[−2] : x42 + x55 − x34 ≤ 1, [−2] : x53 + x43 − x33 ≤ 1,

[−5] : x54 + x43 − x34 ≤ 1, [−3] : x44 + x55 − x36 ≤ 1,

[−4] : x47 + x49 − x33 ≤ 1.

3. FS inequalities:

[0] : x47 − x1 ≤ 0, [−6] : x63 − x1 ≤ 0, [−14] : x63 − x8 ≤ 0,

[−1] : x7 − x4 ≤ 0, [−16] : x55 − x4 ≤ 0, [−12] : x63 − x12 ≤ 0,

[−3] : x14 − x2 ≤ 0, [−24] : x46 − x2 ≤ 0, [−12] : x47 − x3 ≤ 0,

[−21] : x61 − x17 ≤ 0, [−19] : x62 − x18 ≤ 0, [−4] : x63 − x19 ≤ 0,

[−24] : x31 − x24 ≤ 0, [−1] : x37 − x32 ≤ 0, [−4] : x38 − x32 ≤ 0,

[−23] : x39 − x32 ≤ 0, [−16] : x47 − x40 ≤ 0, [−11] : x55 − x48 ≤ 0,

[−8] : x63 − x56 ≤ 0.
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4. FC inequalities:

[−2] : x15 + x53 − x1 − x5 ≤ 0, [−7] : x15 + x57 − x1 − x9 ≤ 0,

[−9] : x58 + x15 − x8 − x10 ≤ 0, [−2] : x15 + x59 − x1 − x11 ≤ 0,

[−7] : x45 + x23 − x1 − x5 ≤ 0, [−5] : x60 + x23 − x20 − x16 ≤ 0,

[−1] : x61 + x23 − x21 − x16 ≤ 0, [−5] : x45 + x27 − x1 − x9 ≤ 0,

[−3] : x27 + x61 − x25 − x16 ≤ 0, [0] : x43 + x29 − x1 − x9 ≤ 0,

[−5] : x54 + x29 − x20 − x16 ≤ 0, [−6] : x29 + x59 − x16 − x25 ≤ 0,

[−4] : x43 + x30 − x10 − x8 ≤ 0, [−2] : x53 + x30 − x16 − x20 ≤ 0,

[−7] : x59 + x30 − x16 − x26 ≤ 0, [−4] : x31 + x60 − x16 − x28 ≤ 0,

[−1] : x43 + x45 − x8 − x41 ≤ 0, [−1] : x43 + x62 − x8 − x42 ≤ 0,

[−3] : x47 + x62 − x8 − x46 ≤ 0, [−3] : x51 + x62 − x16 − x50 ≤ 0,

[−7] : x7 + x54 − x4 − x6 ≤ 0, [−9] : x51 + x53 − x48 − x49 ≤ 0.

5. WV inequality:

[−0.5] : 88x0 + 58x1 + 54x2 + 24x3 + 48x4 + 18x5 + 14x6 − 16x7 + 64x8

+34x9 + 30x10 + 24x12 − 6x13 − 10x14 − 40x15 + 72x16 + 42x17

+38x18 + 8x19 + 32x20 + 2x21 − 2x22 − 32x23 + 48x24 + 18x25

+14x26 − 16x27 + 8x28 − 22x29 − 26x30 − 56x31 + 56x32 + 26x33

+22x34 − 8x35 + 16x36 − 14x37 − 18x38 − 48x39 + 32x40 + 2x41

−2x42 − 32x43 − 8x44 − 38x45 − 42x46 − 72x47 + 40x48

+10x49 + 6x50 − 24x51 − 30x53 − 34x54 − 64x55 + 16x56 − 14x57

−18x58 − 48x59 − 24x60 − 54x61 − 58x62 − 88x63 ≤ −1.

Furthermore we show that the following system of constraints is infeasible (trivial
ones not shown):

1. [−186.5] : x0 = 0

2. FS inequalities:

[−7.5] : x1 − x0 ≤ 0, [−10] : x6 − x0 ≤ 0, [−8.5] : x11 − x0 ≤ 0,

[0] : x19 − x0 ≤ 0, [−8.5] : x23 − x0 ≤ 0, [−4] : x35 − x0 ≤ 0,

[−7] : x37 − x0 ≤ 0, [−9] : x38 − x0 ≤ 0, [−24] : x39 − x0 ≤ 0,

[−2.5] : x41 − x0 ≤ 0, [−16] : x44 − x0 ≤ 0, [−21] : x46 − x0 ≤ 0,

[−15] : x47 − x0 ≤ 0, [−6] : x50 − x0 ≤ 0, [−19] : x55 − x0 ≤ 0,
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[−5.5] : x56 − x0 ≤ 0, [−17] : x59 − x0 ≤ 0, [−16] : x61 − x0 ≤ 0,

[−11] : x62 − x0 ≤ 0, [−23] : x63 − x0 ≤ 0, [−12] : x13 − x12 ≤ 0,

[−12.5] : x14 − x2 ≤ 0, [−12.5] : x22 − x18 ≤ 0, [−6.5] : x62 − x18 ≤ 0,

[−1] : x42 − x40 ≤ 0, [−7] : x51 − x48 ≤ 0, [−7.5] : x43 − x8 ≤ 0,

[−5.5] : x29 − x17 ≤ 0, [−5.5] : x61 − x9 ≤ 0, [0] : x63 − x56 ≤ 0.

3. FC inequalities:

[−7.5] : x15 + x45 − x1 − x13 ≤ 0, [−9] : x15 + x53 − x1 − x5 ≤ 0,

[−3.5] : x15 + x57 − x1 − x9 ≤ 0, [−7.5] : x23 + x62 − x16 − x22 ≤ 0,

[−8] : x27 + x45 − x1 − x9 ≤ 0, [−8.5] : x31 + x43 − x1 − x11 ≤ 0,

[−1] : x31 + x53 − x16 − x21 ≤ 0, [−3.5] : x45 + x57 − x8 − x41 ≤ 0,

[−9] : x55 + x58 − x16 − x50 ≤ 0, [−17] : x7 + x54 − x4 − x6 ≤ 0,

[−5] : x51 + x53 − x48 − x49 ≤ 0.

4. FC-chain inequalities (it is straightforward to check that the explicit chains,
where we identify sets with their respective column numbers, work as re-
quired by Proposition 9):

[−1.5] : x29 + x47 + x61 + x63 − x8 − x13 − x17 − x56 ≤ 0,

(29 19F S

−−−→ 17), (63 8F S

−−→ 8), (47 8F S

−−→ 8), (61 56F S

−−−→ 56), (63 56F S

−−−→ 56),

(47 29UC

−−−→ 13), (61 19F S

−−−→ 17).

[−4] : x29 + x61 + x62 − x16 − x17 − x28 ≤ 0,

(29 16F S

−−−→ 16), (61 19F S

−−−→ 17), (62 19F S

−−−→ 18 16F S

−−−→ 16),

(29 62UC

−−−→ 28).

[−7.5] : x30 + x31 + x47 + x63 − x8 − x14 − x16 − x24 ≤ 0,

(63 8F S

−−→ 8), (47 8F S

−−→ 8), (63 16F S

−−−→ 16), (47 30UC

−−−→ 14), (30 16F S

−−−→ 16),

(30 56F S

−−−→ 24), (31 16F S

−−−→ 16), (31 56F S

−−−→ 24).

[−4] : x30 + x31 + x55 − x19 − x22 − x24 ≤ 0,

(30 56F S

−−−→ 24), (31 56F S

−−−→ 24), (31 19F S

−−−→ 19), (55 30UC

−−−→ 22), (55 19F S

−−−→ 19).

[−7] : x30 + x31 + x59 − x16 − x24 − x26 ≤ 0,

(30 56F S

−−−→ 24), (31 56F S

−−−→ 24), (31 16F S

−−−→ 16), (30 16F S

−−−→ 16),

(59 16F S

−−−→ 16), (59 30UC

−−−→ 26).

[0] : x47 + x54 + x63 − x8 − x16 − x38 ≤ 0,
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(63 8F S

−−→ 8), (63 16F S

−−−→ 16), (47 8F S

−−→ 8), (54 16F S

−−−→ 16), (54 47UC

−−−→ 38).

[−12] : x47 + x60 + x63 − x8 − x44 − x56 ≤ 0.

(47 8F S

−−→ 8), (63 8F S

−−→ 8), (63 56F S

−−−→ 56), (60 56F S

−−−→ 56), (60 47UC

−−−→ 44).

5. WV inequality:

[−0.5] : 58x1 + 54x2 + 24x3 + 48x4 + 18x5 + 14x6 − 16x7 + 64x8

+34x9 + 30x10 + 24x12 − 6x13 − 10x14 − 40x15 + 72x16 + 42x17

+38x18 + 8x19 + 32x20 + 2x21 − 2x22 − 32x23 + 48x24 + 18x25

+14x26 − 16x27 + 8x28 − 22x29 − 26x30 − 56x31 + 56x32 + 26x33

+22x34 − 8x35 + 16x36 − 14x37 − 18x38 − 48x39 + 32x40 + 2x41

−2x42 − 32x43 − 8x44 − 38x45 − 42x46 − 72x47 + 40x48

+10x49 + 6x50 − 24x51 − 30x53 − 34x54 − 64x55 + 16x56 − 14x57

−18x58 − 48x59 − 24x60 − 54x61 − 58x62 − 88x63 ≤ −1.

Another proof of Corollary 8. Next, we explicitly answer Vaughan’s question in
the negative. Given 〈S〉, we show that there exists a nonnegative solution to the
system of equations in Question 1 such that ∑i∈[n] yi ≤ 1, where S is defined as
in the counterexample to Morris’s question. Furthermore the order of display of
equations is the same as previously.

24y1 + 80y2 + 88y3 + 88y4 + 76y5 + 80y6 + 76y7 = 76
80y1 + 20y2 + 84y3 + 84y4 + 74y5 + 76y6 + 76y7 = 74
92y1 + 88y2 + 44y3 + 108y4 + 86y5 + 88y6 + 96y7 = 86
92y1 + 88y2 + 108y3 + 44y4 + 86y5 + 88y6 + 96y7 = 86
80y1 + 80y2 + 80y3 + 80y4 + 32y5 + 96y6 + 96y7 = 80
92y1 + 88y2 + 94y3 + 94y4 + 100y5 + 46y6 + 102y7 = 87
92y1 + 92y2 + 104y3 + 104y4 + 104y5 + 104y6 + 56y7 = 92

Let ȳ1 = 28304
309701 ,ȳ2 = 60251

738922 , ȳ3 = 94175
606582 , ȳ4 = 94175

606582 , ȳ5 = 63417
493048 , ȳ6 = 158373

872233 ,
ȳ7 = 95228

462227 . Then ȳ ∈ Q7
≥0 such that ȳ = (ȳ1, ȳ2, . . . , ȳ7) is a solution to the

system of linear equations above such that the following holds,

∑
i∈[7]

ȳi = 6896010572642828356716603827169373
6898390222382701705240892810504568 < 1.
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Next, we briefly outline how to verify the output of a computer algebra system
for isomorphism classes of generators for FC-families. We note, that this is
possible to do by hand only when the number of classes and the ground set is
small. For nontrivial fixed n,m, k we want to partition all families S of k-sets such
that |S| = m, U(S) = [n] according to their isomorphism class, and then display
a representative from each. Thus in order to ensure that the output of a computer
algebra system is correct, it suffices to ensure that the representative families of
generators are pairwise nonisomorphic and that by adding the cardinalities of
each of the isomorphism classes we recover the cardinality of the collection of all
families S as above. This can be done by standard counting techniques and is
easy but rather lengthy. We have done this for all pertinent results in Section 4.1.

In the next two tables, we show that all nonisomorphic families of 3-sets
constructed from families of sets isomorphic to G andH (as defined in Section 4.1)
by adding an appropriate 3-set yield generators for FC-families. The rest of
the tables give nonisomorphic minimal generators of previously unknown FC-
families.

Nonisomorphic generators {124, 346, 578, 678} ∪ {A ∪ {9}} for each A ∈ P([8]) with |A| = 2
124, 346, 578, 678, 789 generates FC-family by Theorem 27
124, 346, 578, 678, 589 generates FC-family by Theorem 27
124, 346, 578, 678, 459 generates FC-family by Theorem 27
124, 346, 578, 678, 489 generates FC-family by Theorem 27
124, 346, 578, 678, 369 generates FC-family by Theorem 27
124, 346, 578, 678, 349 generates FC-family by Theorem 27
124, 346, 578, 678, 269 generates FC-family by Theorem 27
124, 346, 578, 678, 249 generates FC-family by Theorem 27
124, 346, 578, 678, 689 generates FC-family by Theorem 27
124, 346, 578, 678, 569 generates FC-family by Theorem 27
124, 346, 578, 678, 469 generates FC-family by Theorem 27
124, 346, 578, 678, 389 generates FC-family by Theorem 27
124, 346, 578, 678, 289 generates FC-family by Theorem 27
124, 346, 578, 678, 239 124, 346, 239 generates FC-family by Theorem 26
124, 346, 578, 678, 359 since |U({346, 578, 678, 359})| = 7 then FC-family by Corollary 12
124, 346, 578, 678, 259 346, 578, 678, 259 is isomorphic to 125, 346, 578, 678 in Table 14
124, 346, 578, 678, 129 1 7→ 2, 2 7→ 2, 3 7→ 2, 4 7→ 3, 5 7→ 1, 6 7→ 3, 7 7→ 2, 8 7→ 2, 9 7→ 1

Table 4.7: Proof of Proposition 15 where {124, 346, 578, 678} is isomorphic to G
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Nonisomorphic generators {134, 234, 578, 678} ∪ {A ∪ {9}} for each A ∈ P([8]) with |A| = 2
134, 234, 578, 678, 789 generates FC family by Theorem 27
134, 234, 578, 678, 689 generates FC family by Theorem 27
134, 234, 578, 678, 489 generates FC family by Theorem 27
134, 234, 578, 678, 469 generates FC-family by Theorem 27
134, 234, 578, 678, 569 since |U({578, 678, 569})| = 5 then FC-family by Theorem 29
134, 234, 578, 678, 269 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 2, 5 7→ 1, 6 7→ 3, 7 7→ 2, 8 7→ 2, 9 7→ 2

Table 4.8: Proof of Proposition 15 where {134, 234, 578, 678} is isomorphic to H

Previously unknown minimal nonisomorphic generators for FC-families on [6]
1256, 3456, 456, 236 1 7→ 7, 2 7→ 15, 3 7→ 15, 4 7→ 11, 5 7→ 14, 6 7→ 20
12456, 2346, 456, 356 1 7→ 1, 2 7→ 3, 3 7→ 5, 4 7→ 5, 5 7→ 6, 6 7→ 7
12345, 1356, 456, 356 1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 4, 5 7→ 5, 6 7→ 5
12345, 2346, 456, 236 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 3, 5 7→ 4, 6 7→ 5
12345, 2346, 456, 236 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 3, 5 7→ 4, 6 7→ 5
12346, 1256, 456, 356 1 7→ 4, 2 7→ 4, 3 7→ 7, 4 7→ 7, 5 7→ 9, 6 7→ 10
12356, 1345, 456, 236 1 7→ 8, 2 7→ 12, 3 7→ 16, 4 7→ 15, 5 7→ 17, 6 7→ 20
12356, 1234, 456, 356 1 7→ 8, 2 7→ 8, 3 7→ 24, 4 7→ 24, 5 7→ 27, 6 7→ 29
12456, 1356, 456, 326 1 7→ 45, 2 7→ 71, 3 7→ 77, 4 7→ 59, 5 7→ 74, 6 7→ 103
136, 2456, 3456, 456, 123 1 7→ 6, 2 7→ 5, 3 7→ 7, 4 7→ 3, 5 7→ 3, 6 7→ 6
136, 1256, 3456, 456, 123 1 7→ 2, 2 7→ 1, 3 7→ 2, 4 7→ 1, 5 7→ 1, 6 7→ 2
2346, 3456, 2456, 2356, 1234 1 7→ 2, 2 7→ 5, 3 7→ 5, 4 7→ 5, 5 7→ 4, 6 7→ 5
3456, 2456, 2356, 1346, 1246, 1234 1 7→ 3, 2 7→ 4, 3 7→ 4, 4 7→ 4, 5 7→ 3, 6 7→ 4
3456, 2456, 2356, 1346, 1245, 1234 1 7→ 1, 2 7→ 2, 3 7→ 2, 4 7→ 2, 5 7→ 2, 6 7→ 2
3456, 2456, 1456, 1236, 1235, 1234 1 7→ 1, 2 7→ 1, 3 7→ 1, 4 7→ 1, 5 7→ 1, 6 7→ 1
3456, 2456, 1356, 1246, 1235, 1234 1 7→ 1, 2 7→ 1, 3 7→ 1, 4 7→ 1, 5 7→ 1, 6 7→ 1
3456, 2456, 2356, 2346, 1456, 1356 1 7→ 8, 2 7→ 14, 3 7→ 15, 4 7→ 15, 5 7→ 16, 6 7→ 19
3456, 2456, 2356, 2346, 1456, 1236 1 7→ 3, 2 7→ 4, 3 7→ 4, 4 7→ 4, 5 7→ 4, 6 7→ 5
3456, 2456, 2356, 1456, 1356, 1234 1 7→ 1, 2 7→ 1, 3 7→ 1, 4 7→ 1, 5 7→ 1, 6 7→ 1
3456, 2456, 2356, 1456, 1346, 1245 1 7→ 2, 2 7→ 2, 3 7→ 2, 4 7→ 3, 5 7→ 3, 6 7→ 3
3456, 2456, 2356, 1456, 1346, 1235 1 7→ 5, 2 7→ 4, 3 7→ 5, 4 7→ 5, 5 7→ 6, 6 7→ 6
3456, 2456, 2356, 1456, 1236, 1235 1 7→ 2, 2 7→ 3, 3 7→ 3, 4 7→ 2, 5 7→ 3, 6 7→ 3
3456, 2456, 2356, 1456, 1236, 1234 1 7→ 4, 2 7→ 5, 3 7→ 5, 4 7→ 5, 5 7→ 4, 6 7→ 5
3456, 2456, 2356, 1346, 1345, 1246 1 7→ 2, 2 7→ 2, 3 7→ 3, 4 7→ 3, 5 7→ 3, 6 7→ 3
3456, 2456, 2356, 1346, 1246, 1235 1 7→ 3, 2 7→ 4, 3 7→ 4, 4 7→ 3, 5 7→ 4, 6 7→ 4
12346, 3456, 2456, 2356, 1456, 1356, 1256 1 7→ 5, 2 7→ 5, 3 7→ 5, 4 7→ 5, 5 7→ 6, 6 7→ 7
1236, 3456, 2456, 2356, 1456, 1356, 1246 2 7→ 2, 2 7→ 3, 3 7→ 3, 4 7→ 3, 5 7→ 3, 6 7→ 4
1456, 3456, 2456, 2356, 1346, 1246, 1236 2 7→ 3, 2 7→ 2, 3 7→ 3, 4 7→ 3, 5 7→ 3, 6 7→ 4
1256, 3456, 2456, 2356, 1456, 1346, 1236 2 7→ 2, 2 7→ 3, 3 7→ 3, 4 7→ 3, 5 7→ 3, 6 7→ 4
2356, 2456, 345, 13456, 12346 2 7→ 3, 2 7→ 8, 3 7→ 12, 4 7→ 12, 5 7→ 13, 6 7→ 9
1234, 1256, 246, 23456, 13456 2 7→ 9, 2 7→ 12, 3 7→ 7, 4 7→ 11, 5 7→ 7, 6 7→ 11
1236, 2456, 125, 23456, 13456 2 7→ 32, 2 7→ 34, 3 7→ 19, 4 7→ 16, 5 7→ 32, 6 7→ 25
1246, 1256, 123, 23456, 13456 2 7→ 7, 2 7→ 7, 3 7→ 6, 4 7→ 3, 5 7→ 4, 6 7→ 5

Table 4.9: Frankl’s conjecture holds for all UC families which contain the follow-
ing subfamilies
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Previously unknown minimal nonisomorphic generators for FC-families on [7]
3457, 567, 467, 123 1 7→ 1, 2 7→ 1, 3 7→ 3, 4 7→ 5, 5 7→ 5, 6 7→ 6, 7 7→ 7
2467, 567, 347, 126 1 7→ 1, 2 7→ 2, 3 7→ 1, 4 7→ 2, 5 7→ 2, 6 7→ 3, 7 7→ 3
357, 367, 4567, 1237 1 7→ 1, 2 7→ 1, 3 7→ 6, 4 7→ 2, 5 7→ 5, 6 7→ 5, 7 7→ 7
356, 367, 4567, 1237 1 7→ 1, 2 7→ 1, 3 7→ 4, 4 7→ 1, 5 7→ 3, 6 7→ 4, 7 7→ 3
257, 367, 4567, 1237 1 7→ 1, 2 7→ 2, 3 7→ 2, 4 7→ 1, 5 7→ 2, 6 7→ 2, 7 7→ 3
256, 367, 4567, 1237 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 1, 5 7→ 3, 6 7→ 4, 7 7→ 3
346, 367, 4567, 1237 1 7→ 1, 2 7→ 1, 3 7→ 4, 4 7→ 3, 5 7→ 3, 6 7→ 4, 7 7→ 2
245, 367, 4567, 1237 1 7→ 2, 2 7→ 6, 3 7→ 6, 4 7→ 2, 5 7→ 7, 6 7→ 7, 7 7→ 4
246, 367, 4567, 1237 1 7→ 1, 2 7→ 3, 3 7→ 3, 4 7→ 3, 5 7→ 3, 6 7→ 4, 7 7→ 1
235, 367, 4567, 1237 1 7→ 1, 2 7→ 3, 3 7→ 4, 4 7→ 1, 5 7→ 3, 6 7→ 4, 7 7→ 1
234, 367, 4567, 1237 1 7→ 2, 2 7→ 4, 3 7→ 7, 4 7→ 5, 5 7→ 5, 6 7→ 5, 7 7→ 4
12456, 34567, 267, 127 1 7→ 78, 2 7→ 105, 3 7→ 16, 4 7→ 27, 5 7→ 27, 6 7→ 84, 7 7→ 103

12456, 34567, 267, 257 1 7→ 1, 2 7→ 9, 3 7→ 1, 4 7→ 2, 5 7→ 7, 6 7→ 7, 7 7→ 9
3467, 4567, 2367, 2345, 1357 1 7→ 20, 2 7→ 36, 3 7→ 52, 4 7→ 45, 5 7→ 46, 6 7→ 39, 7 7→ 49

3456, 4567, 2367, 1357, 1247 1 7→ 15, 2 7→ 15, 3 7→ 20, 4 7→ 18, 5 7→ 19, 6 7→ 19, 7 7→ 23

3456, 4567, 2367, 1357, 1246 1 7→ 17, 2 7→ 16, 3 7→ 22, 4 7→ 19, 5 7→ 21, 6 7→ 24, 7 7→ 22

2347, 4567, 3567, 1267, 1245 1 7→ 69, 2 7→ 91, 3 7→ 71, 4 7→ 93, 5 7→ 87, 6 7→ 81, 7 7→ 103

2346, 4567, 3567, 2347, 1267 1 7→ 6, 2 7→ 13, 3 7→ 14, 4 7→ 14, 5 7→ 9, 6 7→ 16, 7 7→ 16

2345, 4567, 3567, 1247, 1236 1 7→ 24, 2 7→ 32, 3 7→ 33, 4 7→ 33, 5 7→ 32, 6 7→ 31, 7 7→ 31

2345, 4567, 2367, 1357, 1247 1 7→ 3, 2 7→ 4, 3 7→ 4, 4 7→ 4, 5 7→ 4, 6 7→ 3, 7 7→ 4
2345, 4567, 2367, 1357, 1246 1 7→ 1, 2 7→ 2, 3 7→ 2, 4 7→ 2, 5 7→ 2, 6 7→ 2, 7 7→ 2
1356, 4567, 2367, 2345, 1357 1 7→ 5, 2 7→ 6, 3 7→ 9, 4 7→ 6, 5 7→ 9, 6 7→ 8, 7 7→ 8
12456, 13457, 23457, 12367, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 11, 2 7→ 12, 3 7→ 11, 4 7→ 13, 5 7→ 13, 6 7→ 14, 7 7→ 15

12345, 13457, 23457, 12367, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 12, 2 7→ 12, 3 7→ 13, 4 7→ 13, 5 7→ 13, 6 7→ 12, 7 7→ 15

12345, 23456, 23457, 12367, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 7, 3 7→ 7, 4 7→ 7, 5 7→ 7, 6 7→ 8, 7 7→ 8

12345, 13456, 23457, 12367, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 6, 3 7→ 6, 4 7→ 6, 5 7→ 6, 6 7→ 7, 7 7→ 7

23456, 12457, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 7, 3 7→ 7, 4 7→ 8, 5 7→ 8, 6 7→ 8, 7 7→ 8

12356, 12457, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 8, 2 7→ 8, 3 7→ 8, 4 7→ 8, 5 7→ 9, 6 7→ 9, 7 7→ 10

23456, 14567, 13567, 13467, 13457,
13456, 12567, 12467, 12457, 12456,
12367, 12357, 12356, 12347

1 7→ 14, 2 7→ 12, 3 7→ 12, 4 7→ 11, 5 7→ 12, 6 7→ 12, 7 7→ 11

23456, 14567, 13567, 13467, 13457,
13456, 12567, 12467, 12457, 12456,
12367, 12357, 12346, 12345

1 7→ 7, 2 7→ 6, 3 7→ 6, 4 7→ 6, 5 7→ 6, 6 7→ 6, 7 7→ 5

Table 4.10: Frankl’s conjecture holds for all UC families which contain the fol-
lowing subfamilies
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Previously unknown minimal nonisomorphic generators for FC-families on [7]
23456, 12357, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 7, 2 7→ 10, 3 7→ 10, 4 7→ 10, 5 7→ 11, 6 7→ 11, 7 7→ 12

12456, 12357, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 9, 2 7→ 9, 3 7→ 8, 4 7→ 9, 5 7→ 10, 6 7→ 10, 7 7→ 11

12346, 12357, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 12, 2 7→ 12, 3 7→ 13, 4 7→ 13, 5 7→ 12, 6 7→ 13, 7 7→ 15

13456, 23456, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 6, 3 7→ 6, 4 7→ 7, 5 7→ 7, 6 7→ 7, 7 7→ 7

12456, 23456, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 6, 3 7→ 6, 4 7→ 7, 5 7→ 7, 6 7→ 7, 7 7→ 7

12356, 23456, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 7, 2 7→ 7, 3 7→ 8, 4 7→ 8, 5 7→ 8, 6 7→ 9, 7 7→ 9

12345, 23456, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 7, 2 7→ 8, 3 7→ 8, 4 7→ 9, 5 7→ 9, 6 7→ 9, 7 7→ 9

12356, 12456, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 6, 3 7→ 6, 4 7→ 6, 5 7→ 6, 6 7→ 7, 7 7→ 7

12345, 12456, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 6, 3 7→ 6, 4 7→ 7, 5 7→ 7, 6 7→ 7, 7 7→ 7

12346, 12356, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 6, 3 7→ 6, 4 7→ 6, 5 7→ 6, 6 7→ 7, 7 7→ 7

12345, 12356, 13457, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 9, 2 7→ 9, 3 7→ 9, 4 7→ 9, 5 7→ 10, 6 7→ 10, 7 7→ 10

23456, 12347, 12357, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 5, 2 7→ 7, 3 7→ 7, 4 7→ 7, 5 7→ 7, 6 7→ 7, 7 7→ 8

13456, 12347, 12357, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 6, 3 7→ 7, 4 7→ 7, 5 7→ 7, 6 7→ 7, 7 7→ 8

12356, 12347, 12357, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 6, 2 7→ 7, 3 7→ 7, 4 7→ 6, 5 7→ 7, 6 7→ 7, 7 7→ 8

12345, 12347, 12357, 23457, 12467,
13467, 23467, 12567, 13567, 23567,
14567, 24567, 34567

1 7→ 11, 2 7→ 12, 3 7→ 12, 4 7→ 12, 5 7→ 12, 6 7→ 11, 7 7→ 14

Table 4.11: Frankl’s conjecture holds for all UC families which contain the fol-
lowing subfamilies
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Previously unknown minimal nonisomorphic generators for FC-families on [7]
34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12367, 12347

1 7→ 7, 2 7→ 8, 3 7→ 9, 4 7→ 9, 5 7→ 8, 6 7→ 9, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12367, 12346

1 7→ 7, 2 7→ 8, 3 7→ 9, 4 7→ 9, 5 7→ 8, 6 7→ 9, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12367, 12345

1 7→ 3, 2 7→ 3, 3 7→ 4, 4 7→ 4, 5 7→ 4, 6 7→ 4, 7 7→ 4

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12357, 12347

1 7→ 7, 2 7→ 8, 3 7→ 9, 4 7→ 9, 5 7→ 9, 6 7→ 8, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12357, 12346

1 7→ 3, 2 7→ 3, 3 7→ 4, 4 7→ 4, 5 7→ 4, 6 7→ 4, 7 7→ 4

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12357, 12345

1 7→ 7, 2 7→ 8, 3 7→ 9, 4 7→ 9, 5 7→ 9, 6 7→ 8, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12347, 12346

1 7→ 7, 2 7→ 8, 3 7→ 9, 4 7→ 9, 5 7→ 8, 6 7→ 9, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12347, 12345

1 7→ 7, 2 7→ 8, 3 7→ 9, 4 7→ 9, 5 7→ 9, 6 7→ 8, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12457, 12346, 12345

1 7→ 7, 2 7→ 8, 3 7→ 9, 4 7→ 9, 5 7→ 9, 6 7→ 9, 7 7→ 8

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 13456,
12347, 12346, 12345

1 7→ 7, 2 7→ 7, 3 7→ 9, 4 7→ 9, 5 7→ 8, 6 7→ 8, 7 7→ 8

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 12457,
12456, 12347, 12346

1 7→ 8, 2 7→ 9, 3 7→ 9, 4 7→ 10, 5 7→ 9, 6 7→ 9, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13467, 12457,
12456, 12347, 12345

1 7→ 8, 2 7→ 9, 3 7→ 9, 4 7→ 10, 5 7→ 9, 6 7→ 9, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13456, 12567,
12456, 12367, 12357

1 7→ 7, 2 7→ 8, 3 7→ 8, 4 7→ 7, 5 7→ 9, 6 7→ 9, 7 7→ 8

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13456, 12567,
12456, 12367, 12356

1 7→ 7, 2 7→ 9, 3 7→ 9, 4 7→ 8, 5 7→ 10, 6 7→ 10, 7 7→ 9

34567, 24567, 23567, 23467, 23457,
23456, 14567, 13567, 13456, 12567,
12456, 12356, 12347

1 7→ 6, 2 7→ 7, 3 7→ 7, 4 7→ 7, 5 7→ 8, 6 7→ 8, 7 7→ 7

Table 4.12: Frankl’s conjecture holds for all UC families which contain the fol-
lowing subfamilies
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Previously-unknown minimal nonisomorphic generators for FC-families on [8]
678, 578, 346, 125 1 7→ 1, 2 7→ 1, 3 7→ 1, 4 7→ 1, 5 7→ 2, 6 7→ 2, 7 7→ 2, 8 7→ 2
678, 458, 237, 135 1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 1, 5 7→ 2, 6 7→ 1, 7 7→ 2, 8 7→ 2
1578, 678, 458, 237 1 7→ 1, 2 7→ 3, 3 7→ 3, 4 7→ 3, 5 7→ 4, 6 7→ 4, 7 7→ 6, 8 7→ 6
1567, 678, 458, 237 1 7→ 1, 2 7→ 2, 3 7→ 2, 4 7→ 2, 5 7→ 3, 6 7→ 3, 7 7→ 4, 8 7→ 4
1457, 678, 458, 237 1 7→ 1, 2 7→ 1, 3 7→ 1, 4 7→ 2, 5 7→ 2, 6 7→ 2, 7 7→ 3, 8 7→ 3
45678, 1246, 678, 578, 346 1 7→ 2, 2 7→ 2, 3 7→ 4, 4 7→ 5, 5 7→ 3, 6 7→ 7, 7 7→ 5, 8 7→ 5
35678, 2357, 678, 458, 123 1 7→ 18, 2 7→ 25, 3 7→ 30, 4 7→ 28, 5 7→ 40, 6 7→ 27, 7 7→ 37, 8 7→ 44

35678, 1345, 678, 458, 237 1 7→ 2, 2 7→ 3, 3 7→ 5, 4 7→ 4, 5 7→ 5, 6 7→ 4, 7 7→ 6, 8 7→ 6
35678, 1246, 678, 578, 346 1 7→ 2, 2 7→ 2, 3 7→ 5, 4 7→ 5, 5 7→ 4, 6 7→ 8, 7 7→ 6, 8 7→ 6
34678, 2357, 678, 458, 123 1 7→ 8, 2 7→ 12, 3 7→ 15, 4 7→ 16, 5 7→ 19, 6 7→ 13, 7 7→ 18, 8 7→ 22

34578, 1345, 678, 458, 237 1 7→ 2, 2 7→ 5, 3 7→ 7, 4 7→ 5, 5 7→ 5, 6 7→ 5, 7 7→ 9, 8 7→ 8
34578, 1246, 678, 578, 346 1 7→ 2, 2 7→ 2, 3 7→ 4, 4 7→ 5, 5 7→ 3, 6 7→ 7, 7 7→ 5, 8 7→ 5
34568, 1345, 678, 458, 237 1 7→ 2, 2 7→ 4, 3 7→ 6, 4 7→ 5, 5 7→ 5, 6 7→ 6, 7 7→ 8, 8 7→ 8
25678, 1345, 678, 458, 237 1 7→ 2, 2 7→ 5, 3 7→ 6, 4 7→ 5, 5 7→ 6, 6 7→ 5, 7 7→ 8, 8 7→ 8
25678, 1246, 678, 578, 346 1 7→ 4, 2 7→ 8, 3 7→ 11, 4 7→ 13, 5 7→ 10, 6 7→ 20, 7 7→ 15, 8 7→ 15

24678, 1246, 678, 578, 346 1 7→ 2, 2 7→ 2, 3 7→ 4, 4 7→ 5, 5 7→ 3, 6 7→ 7, 7 7→ 5, 8 7→ 5
24578, 1345, 678, 458, 237 1 7→ 2, 2 7→ 7, 3 7→ 7, 4 7→ 6, 5 7→ 6, 6 7→ 7, 7 7→ 11, 8 7→ 10
24578, 1246, 678, 578, 346 1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 3, 5 7→ 2, 6 7→ 4, 7 7→ 3, 8 7→ 3
24568, 1345, 678, 458, 237 1 7→ 2, 2 7→ 6, 3 7→ 6, 4 7→ 4, 5 7→ 4, 6 7→ 5, 7 7→ 8, 8 7→ 7
23678, 1246, 678, 578, 346 1 7→ 2, 2 7→ 2, 3 7→ 5, 4 7→ 5, 5 7→ 4, 6 7→ 8, 7 7→ 6, 8 7→ 6
23567, 1345, 678, 458, 237 1 7→ 2, 2 7→ 4, 3 7→ 5, 4 7→ 4, 5 7→ 5, 6 7→ 5, 7 7→ 7, 8 7→ 7
3456, 1458, 2378, 4678,
2347, 2458 1 7→ 2, 2 7→ 5, 3 7→ 5, 4 7→ 6, 5 7→ 4, 6 7→ 4, 7 7→ 5, 8 7→ 6
2356, 1568, 3468, 2478,
1268, 1248 1 7→ 7, 2 7→ 9, 3 7→ 6, 4 7→ 7, 5 7→ 5, 6 7→ 9, 7 7→ 3, 8 7→ 10
1357, 1356, 1348, 1346,
1345, 1278, 1268 1 7→ 54, 2 7→ 26, 3 7→ 42, 4 7→ 31, 5 7→ 30, 6 7→ 38, 7 7→ 31, 8 7→ 36

1346, 1345, 1278, 1268,
1267, 1258, 1257, 1256 1 7→ 7, 2 7→ 6, 3 7→ 2, 4 7→ 2, 5 7→ 5, 6 7→ 5, 7 7→ 4, 8 7→ 4
345678, 245678, 235678, 234678,
234578, 234568, 234567, 145678,
135678, 134678, 134578, 134568,
134567, 125678, 124678, 124578,
124568, 124567, 123678, 123578,
123568, 123567, 123478, 123468,
123467, 123456

1 7→ 28, 2 7→ 28, 3 7→ 28, 4 7→ 28, 5 7→ 28, 6 7→ 30, 7 7→ 29, 8 7→ 29

345678, 245678, 235678, 234678,
234578, 234568, 234567, 145678,
135678, 134678, 134578, 134568,
134567, 125678, 124678, 124578,
124568, 124567, 123678, 123578,
123568, 123567, 123478, 123468,
123457, 123456

1 7→ 27, 2 7→ 27, 3 7→ 27, 4 7→ 27, 5 7→ 28, 6 7→ 28, 7 7→ 28, 8 7→ 28

Table 4.13: Frankl’s conjecture holds for all UC families which contain the fol-
lowing subfamilies

69



Previously-unknown minimal nonisomorphic generators for FC-families on [9]
369, 789, 456, 123 1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 1, 5 7→ 1, 6 7→ 2, 7 7→ 1, 8 7→ 1, 9 7→ 2
348, 569, 789, 1268 1 7→ 4, 2 7→ 4, 3 7→ 8, 4 7→ 8, 5 7→ 9, 6 7→ 11, 7 7→ 11, 8 7→ 17, 9 7→ 16

148, 159, 6789, 2345 1 7→ 4, 2 7→ 1, 3 7→ 1, 4 7→ 3, 5 7→ 3, 6 7→ 1, 7 7→ 1, 8 7→ 3, 9 7→ 3
589, 129, 6789, 3459 1 7→ 18, 2 7→ 18, 3 7→ 10, 4 7→ 10, 5 7→ 25, 6 7→ 10, 7 7→ 10, 8 7→ 25, 9 7→ 36

489, 159, 2345, 5679 1 7→ 20, 2 7→ 8, 3 7→ 8, 4 7→ 23, 5 7→ 28, 6 7→ 10, 7 7→ 10, 8 7→ 19, 9 7→ 34

5689, 578, 129, 6789, 3459 1 7→ 3, 2 7→ 3, 3 7→ 2, 4 7→ 2, 5 7→ 6, 6 7→ 3, 7 7→ 5, 8 7→ 6, 9 7→ 6
5679, 128, 129, 6789, 3459 1 7→ 16, 2 7→ 16, 3 7→ 3, 4 7→ 3, 5 7→ 6, 6 7→ 7, 7 7→ 7, 8 7→ 15, 9 7→ 17

5678, 278, 129, 6789, 3459 1 7→ 52, 2 7→ 81, 3 7→ 16, 4 7→ 16, 5 7→ 32, 6 7→ 35, 7 7→ 58, 8 7→ 58, 9 7→ 75

4789, 578, 129, 6789, 3459 1 7→ 49, 2 7→ 49, 3 7→ 34, 4 7→ 60, 5 7→ 80, 6 7→ 36, 7 7→ 79, 8 7→ 79, 9 7→ 98

4789, 489, 159, 6789, 2345 1 7→ 20, 2 7→ 8, 3 7→ 8, 4 7→ 26, 5 7→ 24, 6 7→ 11, 7 7→ 17, 8 7→ 26, 9 7→ 36

4689, 578, 129, 6789, 3459 1 7→ 17, 2 7→ 17, 3 7→ 12, 4 7→ 21, 5 7→ 30, 6 7→ 19, 7 7→ 28, 8 7→ 33, 9 7→ 35

4689, 478, 159, 6789, 2345 1 7→ 12, 2 7→ 6, 3 7→ 6, 4 7→ 24, 5 7→ 15, 6 7→ 14, 7 7→ 21, 8 7→ 25, 9 7→ 21

4679, 158, 159, 6789, 2345 1 7→ 18, 2 7→ 3, 3 7→ 3, 4 7→ 6, 5 7→ 19, 6 7→ 7, 7 7→ 7, 8 7→ 16, 9 7→ 17

4678, 578, 159, 6789, 2345 1 7→ 9, 2 7→ 3, 3 7→ 3, 4 7→ 6, 5 7→ 16, 6 7→ 6, 7 7→ 11, 8 7→ 11, 9 7→ 12

4589, 589, 159, 6789, 2345 1 7→ 5, 2 7→ 2, 3 7→ 2, 4 7→ 4, 5 7→ 8, 6 7→ 2, 7 7→ 2, 8 7→ 6, 9 7→ 8

Table 4.14: Frankl’s conjecture holds for all UC families which contain the fol-
lowing subfamilies

Previously-unknown minimal nonisomorphic generators for FC-families on [10]
123, 124, 356, 678, 79(10) 1 7→ 6, 2 7→ 6, 3 7→ 8, 4 7→ 4, 5 7→ 5, 6 7→ 7, 7 7→ 5, 8 7→ 4, 9 7→ 2, 10 7→ 2

123, 124, 356, 678, 3489(10) 1 7→ 7, 2 7→ 7, 3 7→ 5, 4 7→ 5, 5 7→ 5, 6 7→ 6, 7 7→ 3, 8 7→ 3, 9 7→ 1, 10 7→ 1

Table 4.15: Frankl’s conjecture holds for all UC families which contain the fol-
lowing subfamilies
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