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Abstract

This paper investigates the closure of TXL airport and its impact on the bus network of Berlin. The results of the scenario are

based on a co-evolutionary algorithm for public transit network design. The algorithm is integrated in a multi-modal multi-agent

simulation. In the simulation, competing minibus operators start exploring the public transport market offering their services.

With more successful operators expanding and less successful operators going bankrupt, a sustainable network of minibus services

evolves. In the TXL scenario, the impact of the massive change in demand is found to be locally confined. Only transit lines serving

TXL airport directly are affected. Furthermore, transit lines are found to have a higher probability of surviving if connecting two

different activity centers, e.g. transit hubs. Following a hub-and-spoke approach by letting the line end in low-demand areas renders

a line less attractive because of a reduced connectivity, e.g. to one train station only.
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1. Introduction

Major changes in travel demand such as are expected with the opening of the new international airport of Berlin

and Brandenburg (BER, Germany) are difficult to overcome with traditional expert knowledge. The state-of-practice

approach of the stepwise local optimization will not be sufficient to restructure the current transit network that is grown

over decades. Especially, the existing airport Tegel will cease operations. Thus, transport planners face a completely

new situation. Overcoming old habits, they need to recreate the bus network serving the area around the former airport

from scratch. The only information available to them is the travel demand forecast and the road infrastructure that is

already in place.

Analytic approaches to solve the transit network design problem include e.g.1,2,3,4,5, and more recently6. However,

most analytic approaches lack the ability of being applied to large-scale scenarios which is why heuristics are often

used to solve real-world planning problems e.g.7.
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The minibus model applied in this paper follows8,9, and10 in the application of bio-inspired algorithms and meta-

heuristics11. But rather than solving one system-wide instance, the approach looks at a number of competing elements,

each of them evolving according to its own optimization procedure. This is not the same as swarm behavior, where

multiple instances cooperate to solve a problem e.g.12, but rather related to co-evolution and evolutionary game theory

e.g.13,14,15,16.

In the model, transit line operators compete each other and evolve by applying the genetic operators of mutation

and selection to their lines. Mutations include changing the line’s route profile, its time of operation, and its service

frequency. Selection is represented by each individual line’s fitness. Vehicles are removed gradually from unprofitable

lines and when no vehicle is left, the line dies out. With more successful operators expanding and less successful

operators going bankrupt, a sustainable network of minibus services evolves.

At the end of each day, each operator calculates the revenue generated by each of its lines and the expenses related

to these lines. Revenue is generated by collecting fares. The fare system allows for lump sums, distance-based

fares, and combinations of both. Expenses consist of fixed costs and distance-based costs. Fixed costs cover expenses

related to the vehicle, e.g. official operating license and driver. Distance-based costs, e.g. fuel, are summed up for each

kilometer traveled by the operator’s vehicles. Each operator provides as much services as it can afford. Operators thus

transfer some of their profit to the passenger side. However, this is still far away from social cost pricing17.

The algorithm is set up as a Stackelberg game18, with the operators as the leading player and the passengers as

the followers. The operators state their quantities in form of the provided capacity. The passengers choose their best

response in form of the least cost path. Opposing the schedule by e.g. going the long way on purpose, will usually

yield a lower utility for the passenger compared to the least cost path. Thus, this is not a valid option for the passenger

side. The leading side of the operators can then proclaim the new quantities of the their schedule well knowing that

the passengers have to follow.

The minibus model has been integrated in the multi-modal multi-agent simulation of MATSim19,20. The model

has been verified through multiple illustrative scenarios that analyze the model’s sensitivity towards different demand

patterns, transfers, and the interactions of minibuses and a formal operator’s fixed train line21,22,23,20. The minibus

model’s first application to a real world scenario in24 focused on the creation and simulation of real minibus networks

in South Africa.

This paper features the application of the model to a real world planning problem of a public transport company in

Berlin, Germany. Instead of reconstructing a bus network from scratch as in the South African case, a major change

in the demand and its effects on the bus transit network are analyzed. The relocation of the airport Tegel (TXL) to the

new airport of Berlin and Brandenburg (BER) provides a background for this scenario.

2. Application

The Berliner Verkehrsbetriebe (BVG) is Berlin’s main public transport company and runs all kind of services with

the exception of the S-Bahn urban rail system. This includes bus services, the subway network, the largest tram

network of Germany as well as ferry services.

2.1. Scenario description

As depicted in Figure 1, the scenario area is situated close to the center of Berlin. The detail shows the bus network

for the scenario area and the location of TXL. Note that TXL is exclusively served by buses operated by BVG.

In this paper, the BVG-MATSim model for the year 2008 is used25. In brief, the model contains about 115,000

links, about 15,000 directed stops, 6.0 million agents, and 539 public transport lines operated by BVG and other

companies of the city of Berlin and the state of Brandenburg.

To keep the running time of the simulation in bounds, the scenario is reduced to a 25 % sample of the population. In

addition, all agents not passing through the scenario area are removed from the population. The remaining population

consists of 306,842 agents. Since each of these agents actually represents four agents of the full population (100 %

sample) the public transport supply is also altered: The capacity of each vehicle type is reduced to one quarter. The

fare, the boarding and alighting delays for each vehicle type are increased by a factor of 4 accordingly. For a more

detailed configuration of MATSim and the model itself, the interested reader is referred to20 and25.
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Fig. 1: Location and close-up of the TXL scenario area showing the public transport network — The category “other services” includes bus and

tram services not operated by BVG as well as ferry services and non-commuter rail services.

In the base scenario, TXL is still operational. For further reference, this is called the TXL case. In the altered

scenario, TXL is supposed to be closed. All activities located at TXL are relocated to BER. This assumes that

travelers as well as employees will simply move to the new airport. This furthermore ignores changes in demand that

are induced by e.g. a higher projected attractiveness of BER26. The altered scenario is referred to as the BER case.

Figure 2 depicts all activities for the BER case. A total of 7,672 activities are relocated from TXL to the new airport

of BER and are therefore not shown in the figure. In the TXL case, these activities form a singular source of demand

which would by far dominate in Figure 2. Note that large parts of the scenario area surrounding the airport feature

only a low density of activity. Thus, the high density spot at TXL is isolated from the rest of the city, e.g. the City

West around the transit hub of Zoologischer Garten (Zoo).

Setups
The same input data and configuration is used with two different setups of the scenario called Corridor and Area.

The Corridor setup removes all four lines serving TXL from the transit supply. Namely these are 109, 128, the

express bus X9, and the airport express TXL, see Figure 3a. Note that 109 and X9 both connect the transit

hub at Zoo to TXL. Minibuses can only serve passengers within a 100 m wide buffer around the removed lines.

That is, they can serve all formal transit stops within that buffer. They are not restricted otherwise. A minibus

operator can decide to ply outside the buffer. In this case, its vehicles are not allowed to pick up or drop off

any passengers as long as the vehicle is outside the buffer. In order to test for stability, the four removed bus

lines serve as seeds for the initial minibus operators. That is, for each bus line one operator is initialized with

approximately the same route, operating time, frequency, and capacity. Note that the all operators founded in

later iterations are created from scratch.

The Area setup removes all bus lines operated by BVG from the scenario area. That is, lines operating only within

the scenario area are removed completely. Lines starting or ending within the area are truncated so that they

start and end at the first stop of the scenario area. The departures of the remaining parts of the lines are modified

in such a way that the transit supply outside the scenario area isn’t altered compared to the original transit

schedule. The final transit network of the Area setup is shown in Figure 3b. Again, the four removed bus lines

function as seeds.

An ensemble run is performed for the Corridor and the Area setup. Each ensemble run consists of ten runs with

identical configuration and input data. Only the initial random seed is varied. The heuristic of the minibus model is

then able to produce different results with the same initialization. The results of the ten runs of one ensemble run are

fused to allow for a more reliable analysis and to identify stable and repeating solutions.
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Fig. 2: Distribution of activities within the scenario

area — BER case. A total of 7,672 activities are

relocated from TXL to the new airport BER.
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(a) All bus lines serving TXL are re-

moved in the Corridor setup. These

lines serve as seeds for the initial

minibus operators.
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(b) Public transport services in the

Area setup. All bus lines operated by

BVG within the scenario area are re-

moved.

Fig. 3: Comparison of public transport service of the Corridor setup and the Area setup.

Scenario area (black), U-Bahn services (blue), S-Bahn services (green), BVG bus ser-

vices (purple) and other services (orange).

2.2. Results of the Corridor setup

The results of the Corridor setup are depicted in Figure 4. For the TXL case, all four transformed bus lines serving

TXL prevail. In addition, there is a non-stop connection from the corridor of the TXL Express bus to the X9, denoted

(a). This implies that from the point of view of the model, the formal service on this corridor, the bus line 245, could

be improved. While this is not done, it is vulnerable to competition by minibuses. In the BER case, this non-stop

connection is operated as well. However, the bus stop at TXL is not served anymore. The terminus of 109 and X9 is

relocated to the U-Bahn station of Jakob-Kaiser-Platz (b), compare Figure 3b. The bus line 128 is reduced to the part

between the U-Bahn station of Kurt-Schumacher-Platz (c) and its eastern terminus. The airport express is shortened

to the S-Bahn station of Beusselstrasse (d) and only about half the capacity is offered onwards to the light industrial

park (e). Apart from TXL, the rest of the network is unaffected by the closure of the airport. That is, in both cases,

the same demand is served on the same corridors.

Since the opening of BER has been postponed only a few days before the planned opening date, information on the

planned bus lines and routes is available. With the closure of TXL on 3 June 2012, BVG had scheduled the following

changes for bus lines serving TXL27:

109 The terminus is relocated from TXL to the S-Bahn and U-Bahn station of Jungfernheide, denoted (j) in Figure 4b.

128 The terminus is relocated from TXL to the U-Bahn station of Kurt-Schumacher-Platz (c).

X9 This line is canceled.

TXL The TXL Express bus is substituted by a regular bus line. The terminus is relocated from TXL to the S-Bahn

station of Beusselstrasse (d).

Overall, the scheduled changes of BVG match the outcome of the minibus model. However, the minibus model

indicates that there is enough demand for maintaining X9.

2.3. Results of the Area setup

For the Area setup, the results, depicted in Figure 5, are basically the same. Although the minibus operators are

allowed to search freely in the complete scenario area, the resulting networks look similar. Again, with the exception

of TXL itself, the same demand is served on the same corridors. Differences occur on the branches from TXL to the

nearest train station. While the TXL Express bus shows the same pattern as in the Corridor setup, the other bus lines
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Fig. 4: Comparison of the average number of passengers served per street section of all ten runs — Corridor setup
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Fig. 5: Comparison of the average number of passengers served per street section of all ten runs — Area setup

do not cease service completely. Recall that in the Corridor setup some formal bus lines are still present. These lines

provide a direct connection from Jakob-Kaiser-Platz (b) to Kurt-Schumacher-Platz (c). In the Area setup, these lines

are missing and their demand is served by the minibus.

3. Discussion and summary

The Corridor setup demonstrates that the closure of TXL does not affect the remaining bus network. Only the

branches from TXL to the nearest train station are affected. Essentially, the Area setup provides similar results. The

remaining network is unchanged showing very stable results with reoccurring solutions throughout the individual runs

of the ensemble run. The impact of TXL on the public transport network is thus locally confined. The comparison

with the projected changes of BVG reveal a close match with the minibus model’s solution. However, information on

the planning instruments and data used by BVG is not available.

Furthermore, the results of the BER case indicate that effective bus lines should connect centers of activity. A bus

line may pass through low-demand areas, but still be profitable by offering more transfers to the rest of the transit

network. Furthermore, this may provide a direct connection, e.g. between otherwise unconnected train stations as

in the example of the corridor from (b) to (c). This further increases the connectivity of the network. In contrast, a

hub-and-spoke pattern more likely looses this connectivity because of each bus serving only as a feeder. For example,

the TXL Express bus terminates in the light industrial park and functions as a one-sided feeder to the train station of

Beusselstrasse. It would attract more passengers if the terminus was relocated to a train station in the northwestern

part of the scenario area.
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4. Outlook

Current research focuses on a) the possibility of further reducing the population sample to 10 %, b) using standard

buses with an enlarged capacity instead of the minibuses, and c) the application of the minibus model to the whole

city of Berlin.
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