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aus
Pachuca, Hidalgo, Mexiko

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Michael Lehmann
1. Gutachterin: Prof. Dr. Sabine H. L. Klapp
2. Gutachter: PD Dr. Andreas Menzel

Tag der wissenschaftlichen Aussprache: 28. Juli 2016

Berlin 2016





I

Declaration of Authorship
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III

Publications

Most of this work is based on the publications listed below. Texts are partially rewritten
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Binary mixtures of rod-like colloids under shear: microscopically-based equi-
librium theory and order-parameter dynamics, R. Lugo-Frias and S. H. L. Klapp, J.
Phys.: Condens. Matter, 28, 244022, (2016)

This paper is concerned with the dynamics of a binary mixture of rod-like, repulsive
colloidal particles driven out of equilibrium by means of a steady shear flow (Couette
geometry). To this end we first derive, starting from a microscopic density functional in
ParsonsLee approximation, a mesoscopic free energy functional whose main variables are
the orientational order parameter tensors. Based on this mesoscopic functional we then
explore the stability of isotropic and nematic equilibrium phases in terms of composition
and rod lengths. Second, by combining the equilibrium theory with the DoiHess approach
for the order parameter dynamics under shear, we investigate the orientational dynamics
of binary mixtures for a range of shear rates and coupling parameters. We find a variety
of dynamical states, including synchronized oscillatory states of the two components,
but also symmetry breaking behavior where the components display different in-plane
oscillatory states.

Shear banding in nematogenic fluids with oscillating orientational dynamics,
R. Lugo-Frias, H. Reinken and S. H. L. Klapp, submitted European Physical Journal E.
(2016)

We investigate the occurrence of shear banding in nematogenic fluids under pla-
nar Couette flow, based on mesoscopic dynamical equations for the orientational order
parameter and the shear stress. We focus on parameter values where the sheared homo-
geneous system exhibits regular oscillatory orientational dynamics, whereas the equilib-
rium system is either isotropic (albeit close to the isotropic–nematic transition) or deep
in its nematic phase. The numerical calculations are restricted to spatial variations in
shear gradient direction. We find several new types of shear banded states characterized
by regions with regular oscillatory orientational dynamics. In all cases shear banding is
accompanied by a non–monotonicity of the flow curve of the homogeneous system; how-
ever, only in the case of the initially isotropic system this curve has the typical S–like
shape. We also analyze the influence of different orientational boundary conditions and
of the spatial correlation length.
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Abstract

In this work we investigate the shear induced instabilities occurring in colloidal binary
mixtures of rigid anisotropic particles. To this end, we derive a theoretical framework
including equilibrium and non–equilibrium methods.

The equilibrium description is derived on the basis of microscopic density functionals
in the Parsons–Lee and Ramakrishnan–Youssuf approximations. The result is a meso-
scopic free energy given in terms of a set of orientational order parameter tensors (one
for each component of the mixture) and their gradients. In this regard, our theory may
be seen as an extension of the Landau–de Gennes theory to mixtures. However, our
theory incorporates microscopic information, particularly the aspect ratios and number
densities characterizing the components of the mixture. Specializing to binary mixtures
of rod–like particles, these functionals are then used to explore the stability of isotropic
and nematic equilibrium phases in terms of composition and rod lengths.

We extend the description to consider non-equilibrium phenomena by combining our
equilibrium theory with the theory of irreversible processes. Thus, extending the Doi–
Hess approach to the study of binary mixtures under shear. As a result, we obtain a set of
hydrodynamic equations which take into account the competition between flow–induced
effects on the alignment and the relaxation of the entire system towards equilibrium.

Based on these hydrodynamic equations we turn to the study of shear induced
phenomena under planar Couette flow geometry. These investigations are divided in two
parts. First, we focus on a one–component system and study the underlying relation
existing between shear and stress. We observed that disregarding the equilibrium (un–
sheared) state of the system (close to the isotropic–nematic transition or deep in its
nematic phase), we find several new types of shear banded states characterized by regions
with regular oscillatory orientational dynamics.

Finally we concentrate on binary mixtures. Here, after exploring a vast range of pa-
rameters, we observe several dynamical states appearing in the system. These dynamical
states include the synchronization of of in– and out–of–the shear plane oscillatory states
of the two components. Interestingly, for a specific set of parameters, we observe the ap-
pearance of symmetry breaking behavior where both components of the mixture display
different in–phase oscillatory states.
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Zusammenfassung

In dieser Arbeit untersuchen wir scherinduzierte Instabilitäten, welche in binären Mis-
chung von starren anisotropen Teilchen auftreten. Hierzu leiten wir eine theoretische
Beschreibung mit Gleichgewichts- und Nichtgleichgewichtsmethoden her.

Die Gleichgewichtsbeschreibung wird auf der Basis von einer mikroskopische Dichte-
funktionaltheorie mit Hilfe von den Näherungen von Parsons–Lee und Ramakrishnan–
Youssuf hergeleitet. Dieser Ansatz führt zu einem Ausdruck für die mesoskopischen
freien Energie als Funktion von tensoriellen Ordnungsparametern (einer für jede Mis-
chungskomponente) sowie deren Gradienten. Hierdurch kann unsere Arbeit als Erweiter-
ung der Landau-de GennesTheorie zur Beschreibung von Mischungen angesehen werden.
Allerdings berücksichtigt unsere Theorie die Abhängigkeit von mikroskopische Grössen,
insbesondere dem Verhältnis von Teilchenlängen und -durchmesseren, sowie die Teilchen-
dichten, welche die Mischungskomponenten charakterisieren. Für den Spezialfall von
binäre Mischungen von stäbchenförmigen Teilchen verwenden wir das resultierende freie
Energiefunktional, um die Stabilität von isotropen und nematischen Gleichgewichtsphasen
in Bezug auf ihre Zusammensetzung und Stäbchenlängen zu untersuchen.

Zur Beschreibung von Nichtgleichgewichtsprozessen verbinden wir die Gleichgewicht-
stheorie mit der Theorie irreversibler Prozesse. Dies entspricht einer Erweiterung der
Doi–Hess–Theorie zur Beschreibung von binären Mischungen unter Scherung. Wir er-
halten ein System aus hydrodynamischen Gleichungen, welche den Wettstreit zwischen
strömungsinduzierten Effekten und der Relaxation des gesamten Systems hin zum Gle-
ichgewicht beschreibt.

Auf Basis dieser hydrodynamischen Gleichungen widmen wir uns der Untersuchung
von scherinduzierten Phänomenen in einer ebenen Couette-Geometrie. Diese Unter-
suchungen bestehen aus zwei Teilen. Zuerst betrachten wir ein einkomponentiges System
und die zugrundeliegende Beziehung zwischen Scherrate und Spannung. Ausgehend von
unterschiedlichen Gleichgewichtszuständen (nahe des isotrop–nematischen Phasenüber-
gangs und tief in der nematischen Phase) finden wir in den gescherten Systemen räum-
lich inhomogene Strukturen, sogenannte ”shear bands”. Diese sind durch Bereiche mit
regulären oszillatorischen Ausrichtungsdynamiken charakterisiert.

Anschliessend konzentrieren wir uns auf gescherte binäre Mischungen. Hierbei iden-
tifizieren wir nach der Untersuchung eines grossen Parameterbereichs verschiedene dy-
namische Zustände, welche sowohl synchronisierte Oszillationen innerhalb als auch ausser-
halb der Scherebene beeinhalten. Bemerkenswert ist insbesondere die Beobachtung eines
symmetriebrechenden Verhaltens für bestimmte Parameterwerte. Hierbei weisen die bei-
den Mischungskomponenten verschiedene, aber phasengleiche oszillatorische Zustände
auf.
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Chapter 1

Introduction

This work contains many things which are new and
interesting. Unfortunately, everything that is new is not

interesting, and everything which is interesting, is not new.
– Lev Davidovich Landau

Fluids composed of orientable particles form the basis for a range of high–end
technologies such as drug delivery, immunodetection and the design of new func-
tional materials. In general, these devices are composed of colloidal suspensions,
where anisotropic particles (in the micrometer range) are suspended in liquids.
Typically, applications require stable suspensions which are often obtained at very
high solute concentrations. However, in practice, these systems are highly poly-
disperse (i.e., composed of various shapes and sizes) and this may have strong
effects in the stability of the system. Thus, in order to tune key properties of such
systems, external fields, like shear and electro–magnetic fields, are usually applied.

The goal of this chapter is to introduce the reader to the study of mixtures of
rigid anisotropic particles in and out of equilibrium. To this end, we address some
recent experimental and theoretical developments of the behavior of such systems.
In particular, we discuss the underlying equilibrium phenomenology and the effect
of shear on the structure and rheological signature of these fluids. Finally, at the
end of the chapter, we list the motivation, goals and an outline of this thesis.

1.1 Colloidal systems of rigid rod–like particles

A colloidal suspension is a system where microscopic particles, ranging from nano– to
micrometer dimensions, are dispersed in a solvent composed of atomic–sized molecules.
In this thesis, we focus on the study of mixtures of rigid anisotropic particles embedded
in aqueous solutions.

1
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Figure 1.1: (a) Example of single component dispersions of rod–like, disk–like and ellip-
soidal particles in aqueous solutions (see Ref. [8]). (b) Transmission electron microscopy
image of a mixture of magnetic platelets embedded in a nematic host (see Ref. [1]).
(c) Scanning electron microscopy image of a polydisperse solution of ”matchstick” rod–
like particles (see Ref. [2]).

To be more specific, we deal with particles having simple morphologies characterized
by their aspect ratio, i.e., the ratio between their length and diameter. Examples include
magnetic platelets embedded in nematic hosts [1] and polydisperse ”matchstick” rod–like
particles [2] (see Fig. 1.1). The versatility of these systems has allowed their successful
application in high–end technologies, e.g., panels and photographic devices [3, 4], smart
windows [5] and even in drug delivery and immunodetection [6, 7].

To ensure an effective performance, almost all devices depend on the optimization of
key material properties, e.g., rotational viscosity and dielectric anisotropy. Consequently
mixtures of colloidal rod–like particles are designed to be thermodynamically stable at
very high concentrations [9]. However, because of the complex orientational behavior
and high sensitivity to external perturbations, this is often a difficult task. Thus, it is
often necessary to apply external fields such as shear (see e.g. [10]) and electro–magnetic
fields (see e.g. [11]) to tune the performance of the fluid.

1.2 Equilibrium behavior of mixtures

Already in thermodynamic equilibrium, mixtures of rigid anisotropic particles display
a very rich phase behavior typically dominated by repulsive interactions arising from
the particle’s shape. In general, these fluids exhibit two kinds of long range ordering:
ordering of the centers of mass and ordering of the orientations of the particles. In
the absence of translational ordering, as the density increases, systems with little long–
range orientational order undergo a phase transition from the isotropic (orientationally
disordered) to the nematic (orientationally ordered) phase.
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Figure 1.2: Phase separation of binary mixtures of thin and thick rod–like particles.
(a) Highly fractionated isotropic–nematic coexistence of thin and thick fd–viruses [16].
Here N denotes the location of the nematic fluid (rich in thick particles) whereas I
denotes the isotropic fluid (rich in thin particles) (b) Snapshot of computer simula-
tions of binary mixtures of thick and thin hard spherocylinders [17]. Here the domain
is splitted into isotropic rich long–spherocylinders in the front and isotropic rich short–
spherocylinders in the back.

A prominent example of the complicated equilibrium behavior of true polydisperse
fluids is the experimental study of clay rods in Ref. [12]. Here they measure the collective
reorientation of the particles by looking at changes of the optical properties of the
sample, e.g. birefringence and light transmittance. However, recent studies focus on
binary mixtures as the first step towards understanding polydisperse fluids.

In fact, recent investigations of binary mixtures of rod–like particles show that these
systems display a very rich, entropy–driven phase behavior, including phase separation,
demixing and order–disorder phase transitions [13, 14, 15, 16, 17, 18] (see Fig. 1.2).
Noteworthy are the phase diagrams of short and long molecules obtained by Monte
Carlo simulations [14], and the experimental phase diagrams of binary mixtures of thin
and thick fd–viruses [16].

From a theoretical standpoint, such phase behavior may be studied using two differ-
ent levels of description: a phenomenological (mesoscopic) description and a particle–
based (microscopic) description.

The phenomenological approach is based on a very simple idea: In orientationally
ordered phases the particles are, on average, aligned along a common direction; in this
case the system is said to be in a nematic state, and the local direction of alignment is
given in terms of the nematic director n̂ = n̂(r, t) [19]. In the same way, it is possible
to describe the spatial distortions of the nematic director using a more general theory
which includes spatial derivatives of n̂ [20, 21]. Further, the degree of orientational
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order is then measured by defining a suitable set of order parameters. In the scope of
the Q–tensor theory, one can define a mesoscopic order parameter in terms of the one–
body orientational distribution function f(û) (where û contains the set of Euler angles
describing the particle’s orientation [19, 22]). The resulting order parameter, Q, is a
second–rank tensor which corresponds to the lowest non–vanishing moment of f(û) and
it can be measured in experiments looking at the birefringence and fluorescence of the
sample [19, 23]. In terms of Q and its spatial derivatives, the phase behavior of the system
is described using the phenomenological Landau–de Gennes (LdG) theory [19]. However,
this description lacks quantitative measurement of the microscopic characteristics of the
system.

The microscopical description studies the equilibrium behavior of the system in terms
of all degrees of freedom of each particle. In certain approximations, this has been
achieved successfully, e.g., for needle–like particles in the low density limit [24]. More
generally, one can employ the framework of classical density functional theory (DFT) [25,
26], whose main idea is to minimize a (free energy) functional of the singlet density
ρ(r, û) where r and û account for translational and rotational degrees of freedom,
respectively [27, 28].

For one component systems several studies have been devoted to construct free
energy functionals for homogeneous states of anisotropic fluids. Their common goal is to
describe the isotropic–nematic phase transition [27, 29] or the distortions of the nematic
phase [30, 31, 32]. Considering binary mixtures, the effects of shape (and in some cases
flexibility) have been accounted for in various theoretical studies (see e.g. [33, 34] and
references therein). Of special importance for the present study are the DFT description
of spatial homogeneous phases of mixtures of Malijevsky et al. [35] and the Phase–Field–
Crystal Model for liquid crystals of Wittkowski et al. [36]. These theoretical descriptions
are derived, respectively, as a generalization of the ideas of Parsons [37] and Lee [38]
for pure component systems, and an extension of a second–order perturbation theory in
the Ramakrishnan-Youssuf approximation [39, 40, 41].

1.3 Non–equilibrium behavior under shear

While the equilibrium behavior of mixtures is already challenging by itself, a further level
of complexity is reached when these systems are considered under shear [42, 43, 44].

Shear flow is a fundamental example of driving a soft–matter system out of equilib-
rium [45]. From a fundamental perspective, the combination of shear and the complex
morphologies of the particles can generate a variety of instabilities in the system. Promi-
nent examples are the shear induced shift of the isotropic–nematic transition and the
stabilization of the nematic phase [46, 47], the appearance of orientational oscillatory
states [48, 49, 50], rheochaos [51, 52] and the occurrence of spatially inhomogeneous
instabilities like shear banding [53, 54]. Thus, investigating the impact of shear is crucial
for understanding the system’s rheological behavior.
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Figure 1.3: (a) Order parameter P2 as a function of time showing the dynamics of the
system in an orientational oscillatory states (adapted form Ref. [60]). (b) The path of
the nematic director in the unit sphere in the wagging oscillatory state [55].

Here, we are interested in the study of two different types of shear induced phenomena
occurring in fluids of rigid anisotropic particles: shear induced oscillatory states and shear
banding instabilities. In general, these non–equilibrium phenomena are characterized by
a time–dependent collective behavior of the orientable particles. However, modeling
these collective shear induced phenomena on a microscopic level is still a challenge.
Thus, one typically employs particle based computer simulations [55, 56] or non–linear
mesoscopic theories for the dynamics of the orientational order parameter Q [57, 23,
58, 59]. The later assumes that the nematic director n̂(r, t) is effectively coupled with
the hydrodynamic flow field v(r, t).

Shear induced oscillatory states: Already for homogeneous systems, particles in a
shear flow can display spontaneous time–dependent oscillations. A prime example is the
wagging motion (characterized by the alternation of the nematic director around zero
along the shear direction) which has been observed in experiments [60] as well as in
particle–resolved computer simulations [55] (see Fig. 1.3).

A well–established path to explore the orientational dynamics under shear are the
mesoscopic equations describing the evolution of Q in time. Within the Doi–Hess ap-
proach [57, 23], the time dependence of Q hinges on a competition between flow–induced
perturbations, and a contribution accounting for the relaxation of the system towards
equilibrium (stemming from the functional derivative of the phenomenological LdG free
energy [19]). Depending on the initial equilibrium (un–sheared) state of the system, these
nonlinear equations uncover a huge variety of complex dynamical behavior characterized
by different (regular) oscillatory states [48, 49, 50], chaotic behavior [51] and complex
spatiotemporal patterns [61, 62, 63].
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Figure 1.4: (First row) Flow birefringence experiments showing shear banding structures
on a CTAB (cetyltrimethyammoniumbromide) solution in a Couette cell upon increasing
shear rate from (a) γ̇ � 3s−1 to (b) γ̇ � 16s−1 (taken from Ref. [70]). (Second row)
(c) Flow curve of a shear banding fluid. (d) Velocity profile in a shear banded flow (taken
from Ref. [71]).

Shear banding instabilities: The manifestation of shear induced orientational dy-
namics must have a direct impact on the rheological properties of the system. Thus, the
emerging oscillatory states may be associated with a non–Newtonian behavior of the
viscosity. In fact, when the applied shear rate goes beyond a critical value, the homo-
geneous system becomes unstable and separates into macroscopic bands with different
local shear rates (or stresses) (see Fig. 1.4(d)). This phenomenon is often referred to as
shear banding and was observed (for the first time) in worm–like micellar solutions by
Rehage and Hoffmann [64, 65] (see e.g. Refs. [66, 67, 68] for recent reviews). More re-
cently, Chen et al and Decruppe et al have shown that this phenomenon can be observed
in rod–like colloidal dispersions [69] and liquid–crystalline polymers [70] (see Figs. 1.4(a)
and 1.4(b)). In all mentioned cases, the flow induced reorganization of the fluid’s mi-
crostructure leads to a non–monotonic relation between shear stress and shear rate, the
so–called flow curve of the fluid (see Fig. 1.4(c)).

Theoretically, shear banding (and the related vorticity banding [72]) has been studied
mainly via continuum models. A standard theory is the diffusive Johnson-Segelman (DJS)
model [73, 74] in which the viscosity decreases with the stress (shear thinning) and
the shear bands are formed along the gradient direction. In contrast, recent theoretical
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studies [52, 75] have used the Doi–Hess model, by choosing a suitable parameter range,
to study the emergence irregular dynamical shear banding corresponding to rheochaos.
The choice of the Doi–Hess model over the DJS model is because the first one depends
on Q. Thus, the study of spatiotemporal complex dynamics and spatial inhomogeneities,
at the same time, is accessible.

1.4 Motivation, goals and scope of the thesis

The purpose of this thesis is to investigate the collective behavior of binary mixtures of
rod–like colloids under shear. The focus of our investigations is to study the nature of
the shear induced oscillatory states arising in such systems with respect to the mixture’s
components, as well as the possible occurrence of shear banding instabilities and the
related rheological behavior.

Specifically, we aim to develop novel techniques based on quantities that are directly
accessible to experiments, e.g., the orientational order parameter tensor Q. The start-
ing point of our investigations is related to the complex equilibrium phase behavior of
binary mixtures. In fact, as shown for one–component fluids, a deep understanding of
the underlying equilibrium behavior of the system leads to straightforward investigations
of the non–equilibrium setup. Thus, the first goal of our approach, is to construct an
expression for the equilibrium free energy functional capable of describing the thermody-
namic phase behavior of the mixture. To this end we use techniques from classical DFT
to develop a mesoscopic functional given in terms of the orientational order parameter
tensors, Qα where α = A,B (one for each component of the mixture).

Second, we couple the Q–tensors to the hydrodynamic flow field v(r, t). For this
purpose, the free energy functional resulting from the equilibrium study is used as an
input to extend the well–known Doi–Hess theory to the study of binary mixtures. Finally,
by expanding the tensorial system of equations in terms of an appropriate tensor basis,
we analyze the resulting equations, exploring a vast range of range of parameters.

1.4.1 Outline

In order to cover the content listed above, this work is organized as follows: First, in
Chapters 2 and 3 we introduce the theoretical background necessary to understand the
phenomenological and microscopic descriptions of rod–like systems in equilibrium.

We start our own investigations in Chapter 4. There we use the multicomponent
Parsons–Lee theory [35] and a second–order perturbation theory for mixtures as a start-
ing point to construct an approximate free energy functional given in terms of the
tensorial order parameters, Qα, and its gradients, ∇Qα, where α = 1, · · · , n labels the
n components of the mixture.

Further, in Chapter 5 we concentrate on the study of binary mixtures in equilibrium.
Special attention is given to the semi–dilute regime in Section 5.2, where we investigate
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the stability of isotropic and nematic states (for fixed densities). In Section 5.3 we briefly
discuss the mesoscopic free energy density of distortion for binary mixtures.

In Chapter 6, we combine our equilibrium theory with the theory of irreversible
processes in order to extend the Doi-Hess theory to binary mixtures of rigid anisotropic
particles. In Section 6.5, upon expanding the alignment tensors and the stress in terms
of an appropriate tensor basis, we obtain a set of coupled differential equations for the
independent components of Qα and T.

In Chapter 7, we present numerical results of the shear banding in one component
systems and shear induced orientational dynamics of binary mixtures. This work then
finishes in Chapter 8 with concluding remarks and an outlook. Some technical details
are given in the Appendices A and B.



Chapter 2

Phenomenological description

Fluids consisting of anisotropic particles exhibit two kinds of long range ordering:
ordering of the centers of mass and ordering of the orientations of the particles.
In a system characterized by little to no long–range orientational order, as the
density is gradually increased, the ordering of the molecules becomes larger. This
behavior constitutes the general picture of the isotropic–nematic phase transition.

In classic liquid crystal theories, the phenomenology of this transition is de-
scribed in terms of a set of appropriate order parameters. The aim of this chapter
is to introduce the tensor order parameter Q and the ideas behind the well es-
tablished phenomenological Landau–de Gennes theory. This theory is a standard
premise used in the study of suspensions of rod–like (disc–like) particles and liquid
crystals. 1

2.1 Measure of orientational order

In the absence of long range positional ordering the particles are, on average, aligned
along a common direction. In this case the system is in a nematic state, where the
local direction of alignment is defined by the nematic director. In different regions of
the fluid, this director changes from point to point and may also depend on time, thus,
n̂ = n̂(r, t). When both, positional and orientational order vanish, the system is in an
isotropic fluid phase. A sketch of this behavior is shown in Fig. (2.1). The director n̂ is
a local measure of the average molecular orientation of the particles in the fluid.

A single particle has its own orientation which is specified by the unit vector û. In
general, depending on the complexity of the particles û is a complicated vector dependent

1This chapter is based on four publications: Landau theory of nematic–isotropic phase transition by
E. F. Gramsbergen et al [76], The physics of liquid crystals by P. G. de–Gennes [19], Introduction to
Q–tensor theory by N. J. Mottram et al [77] and Tensors for physics by S. Hess [22].

9
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Figure 2.1: Rod–like particles in the (a) isotropic fluid phase and (b) nematic phase. In
the isotropic phase there is not an average orientation of the particles, whereas, in the
nematic phase the average orientation is given by the nematic director n̂.

on Euler angles and presents no symmetries. However, for uniaxial particles the head–
to–tail symmetry is conserved and û = −û. For these systems, a measure of how spread
out is the particle’s orientation with respect to the nematic director is given by the angle
θp, defined by the relation

cos θp = û · n̂ . (2.1)

In real systems it is impossible to track the amount of orientational order of each
particle with respect to the director. Hence the statistical state of the fluid is char-
acterized by a probability distribution function in terms of the molecular orientations,
f = f(û, r, t). In terms of f , the probability to find a molecule in [r, r + dr] with an
orientation [û, û+dû] at a given time t is f(û, r, t)drdû. The orientational distribution
function satisfies the normalization condition∫

S2

f(û, r, t)dû = 1 , (2.2)

where f(û, r, t) is integrated over the an arbitrary surface S2, corresponding to the solid
angle integral. As a last remark, one should note that considering all the molecules in a
volume V , the mean value of f(û, r, t) defines the direction of the nematic director n̂.

2.1.1 Scalar order parameter

The usual measure of the amount of order in fluids of anisotropic particles is the scalar
order parameter S introduced by A. Saupe and W. Maier in 1959 [78]. Like in any order
parameter theory, a common requirement is that it satisfies the following: it should
vanish in the more symmetric (less ordered) phase and it must be different from zero in
the less symmetric (more ordered) phase [76].
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According to this principle, Saupe and Meier defined a scalar order parameter S
as a weighted average in terms of the second order Legendre polynomial. This order
parameter is given by

S =

∫
S2

P2(û · n̂)f(û)dû . (2.3)

When the material has all its molecules exactly aligned with the director, 〈cos2 θp〉 = 1
and therefore S = 1. In contrast, when all molecules are randomly oriented in a plane
perpendicular to the director 〈cos2 θp〉 = 0 and thus S = −1/2. In the isotropic liquid
phase the molecules are randomly oriented, f(û) = 1/4π and as a result S = 0. When
greater accuracy is required it is usual to define an order parameter in terms of higher
order polynomials of the Legendre expansion [77].

In general the nematic state is not only defined by a single nematic director. In fact,
in some materials there are two or three axis of complete rotational symmetry. For such
materials a set of perpendicular axes {l̂, m̂, n̂} may be defined. The uniaxial or biaxial
macroscopic nature of the system should not be confused with the geometry of the
particles. In principle uniaxial particles (e.g. rods or discs) may be arranged into biaxial
phases [19, 77].

There are some theories able to describe biaxial nematic phases using scalar order
parameters. These theories generalize the ideas of Maier and Saupe and often involve
a representation of rotational invariants in terms of Euler angles. The disadvantage of
such theories is that in some specific cases they may present some multi–valuedness
problems [77]. Therefore there is a need of a further generalization of the scalar order
parameter S in Eq. (2.3).

2.1.2 Tensor order parameter

A natural extension from a scalar order parameter is a tensor one. This arbitrary function
should be a non–zero rank Cartesian tensor 2 containing all the information of the
rotational and reflective symmetries of the nematic phase. In contrast to the scalar order
parameter, the tensor order parameter is not defined in terms of a set of perpendicular
axes, but instead it is a quantity defined in terms of the moments of the orientational
distribution function.

A proper construction of the tensor order parameter involves the evaluation of the
average of a hierarchy of dyadic products û(k)3 over fiso = 1/4π and f(û). In general,

2For background information about this topic please refer to the Appendix A.
3Here we consider the k–order dyadic product of û with itself given by the relation

û(k) = û⊗ û⊗ · · · ⊗ û︸ ︷︷ ︸
k−times

and û(k) ∈ R
3 ⊗ R

3 ⊗ · · · ⊗ R
3︸ ︷︷ ︸

k−times

.
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these moments are defined by the relation

〈û(k)〉 =
∫
S2

û(k)f(û)dû . (2.4)

With respect to the isotropic orientational distribution function fiso the first two mo-
ments are

〈û〉iso = 0 and 〈ûû〉iso = 1

3
δ . (2.5)

Note that the first moment, and in fact all odd moments of the distribution vanish since
f(û) = f(−û). Therefore the hierarchy of dyadic products û(k) is restricted for values
of k = 2n where n is an integer.

In analogy to S, the new tensor order parameter Q(k) should be a function of a

deviation of the full tensor û(k) with respect to the isotropic phase, i.e.

û(k) − 〈û(k)〉iso . (2.6)

In terms of ûû using Eq. (2.5) it follows

ûû− 〈ûû〉iso = ûû− 1

3
δ = ûû , (2.7)

where x stands for the symmetric traceless part of the tensor x. The first non–vanishing
moment which distinguishes the anisotropic distribution from the isotropic one is the
second rank tensor order parameter Q(2) = Q [22]. This quantity is defined as an

ensemble average of the deviation ûû over the orientational distribution function f(û),
i.e.

Q(r, t) =

√
15

2

〈
ûû

〉
. (2.8)

The translational dependency of the second rank order parameter Q(2) = Q(2)(r, t)
is implicit since û = û(r) [19, 22]. In most phenomenological theories, all physical
quantities depending on the orientation û of the particles can be described in terms of
the order parameter Q also known as the alignment tensor [63]. In Eq. (2.8) the factor√

15/2 is a convention [23].
The construction of the second rank alignment tensor can be generalized in a very

direct manner in terms of û(k) so that

Q(k)(r, t) =

√
(2k + 1)!!

k!

〈
û(k)

〉
, (2.9)

is the k–th order alignment tensor [22]. As mentioned before, for systems involving
particles presenting head–to–tail symmetry it is sufficient to consider tensors with even
values of k. In the following we will focus only on the second rank alignment tensor Q
in Eq. (2.8) since it is in terms of this quantity that the phenomenological Landau–de
Gennes theory is given.
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2.1.3 Some properties of the second rank alignment tensor

By definition Q is a 3×3 symmetric traceless matrix. It has five independent components
where three of them may be fixed to the molecular reference frame and the other two can
be used to describe the average orientational order. In the molecular reference frame, Q
is written as a linear combination of the principal eigenvectors (parallel to the molecule’s
principal axes) l,m and n, i.e.

Q(r, t) = μ1 ll+ μ2mm+ μ3nn . (2.10)

Here μ1, μ2 and μ3 are the eigenvalues of the matrix satisfying μ1+μ2+μ3 = 0. In terms
of these eigenvalues it is possible to characterize different states of order. The following
distinction should be made: if all eigenvalues are zero the system presents an isotropic
state; if two of these eigenvalues are equal then the system is in a uniaxial nematic state;
finally, if all eigenvalues are different the system presents a biaxial nematic state.

For the special case of uniaxial phases, the order parameter can be found contracting
Q and the principal direction n, i.e., nn : Q. Hence

Q(r, t) =
3

2
μ3 nn (2.11)

where μ3 is the largest eigenvalue in Eq. (2.10). The equilibrium value μ3 is proportional
to the Maier–Saupe order parameter via μ3 =

√
10/3S [22]. Using the definition of the

Maier–Saupe scalar order parameter we find that the bounds of μ3 are

−
√

5

6
≤ μ3 ≤

√
10

3
. (2.12)

For biaxial nematic states the description is more complicated. In this case the
full tensor Q should be contracted as well with the tensors ll and mm. However,
due to the symmetries of the tensor, the three principal values are not independent.
A proper description of the biaxial states of the system can be done in terms of the
rotational invariants of Q. By definition, a second rank symmetric traceless tensor has
three rotational invariants: the trace, the norm and the determinant. Using the Einstein
convention these are:

I1 = Qμμ ,

I2 = QμνQμν , (2.13)

I3 = QμνQνλQλμ .

Since Q is traceless I1 = 0. In terms of I2 and I3 a suitable measure of the biaxiality is
b, the biaxiality parameter, given by [79]

b2 = 1− I23
I32

. (2.14)

With this parameter one realizes that in the case of uniaxial alignment b = 0 and in the
case of biaxial alignment b = 1.
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2.2 The isotropic–nematic phase transition

Normally depending on the temperature, concentration or the applied electric or mag-
netic field these systems show a variety of phases. Therefore the total free energy F
of the material may include terms such as: elastic energy due to any distortion of the
structure of the material; lyotropic energy which dictates the preferred phase of the
material; and, surface energy terms representing the interaction between the boundaries
of the system and the particles at the surface [77]. Therefore, the total energy of the
system is:

F = Felastic + Flyotropic + Fsurface . (2.15)

In terms of the energy densities Fe, Fl and Fs, Eq. (2.15) may be written as

F =

∫
V

(Fe + Fl)dr+

∫
S2

Fsds , (2.16)

where the energy densities depend on the tensor order parameter Q.

2.2.1 Lyotropic energy

The lyotropic energy density Fl is the function which dictates the state the fluid would be,
e.g. uniaxial order, biaxial nematic or isotropic fluid phase [77]. At low concentration this
free energy density should have a minimum energy in the isotropic state Q = 0 whereas
at high concentration there should be minima at three uniaxial states, i.e. the states
where any two of the eigenvalues of Q are equal. The simplest form of such function is
a truncated Taylor expansion about Q = 0 which up to 4–th order reads [19, 77],

Fl =
1

2
AQμνQμν − 1

3
BQμνQνλQλμ +

1

4
C (QμνQμν)

2 . (2.17)

It is immediate to recognize that this expansion is given in terms of the scalar rotational
invariants In [see Eqs. (2.13)] of the tensor order parameter Q. In fact, a more general
expression of Fl is constructed in terms of a multiplication of the scalar rotational
invariants as shown in Ref. [76]. However, for this study we will focus in the classical
Landau–de Gennes expression in (2.17).

The numerical coefficients in Eq. (2.17) are introduced for future convenience, how-
ever, the most important information is given by the coefficients A,B and C. These
coefficients may or may not depend on the concentration of the system. For simplicity
here we assume that

A(c) = A0

(
1− c

c∗
)
, (2.18)

and A0, B and C are positive dimensionless coefficients that may be related to molecular
properties of the system [19, 57, 23, 80]. In Eq. (2.18) the characteristic concentration
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c∗ is a model parameter known as the pseudo–critical concentration [22]. Before going
any further, it is important that to take into account the following remarks [76]:

1. There is no linear term in Q. This allows the possibility of an isotropic phase.

2. Odd terms of order three are allowed. This causes the isotropic–nematic phase
transition to be of first order.

3. The isotropic–nematic phase transition takes place in the neighborhood of A = 0.
Therefore the density dependence of the free energy density of the system is
contained in A alone.

The minimum of the Landau–de Gennes free energy density

Considering only uniaxial nematic phases inserting the uniaxial nematic order parameter
given by Eq. (2.11) in Eq. (2.17) the lyotropic energy becomes

F uni
l =

9

8
A(c)μ2

3 −
9

8
Bμ3

3 +
81

64
Cμ4

3 . (2.19)

Equation (2.19) has stationary points when the second derivative vanishes, i.e. dF uni
l /dμ3 =

0, thus

μ0
3 = 0 , (2.20)

μ±
3 =

1

3C

(
B ±

√
B2 − 4AC

)
. (2.21)

For the system it would be energetically favorable to lie in one of the minima of F uni
l .

By calculating the second derivative (d2F uni
l /dμ2

3) and comparing the energies of each
solution one finds that:

• At μ0
3 the isotropic state is globally stable for A > 2B2

9C , metastable for 0 < A <
2B2

9C and unstable for A < 0.

• At μ+
3 the nematic state is globally stable for A < 2B2

9C , metastable for 2B2

9C <

A < B2

4C and not defined for A > B2

4C .

• At μ−
3 the nematic state has negative (non–physical) values and is usually dis-

carded.

There are three important values of A: B2

4C the low concentration c† where the nematic

state disappears; 2B2

9C the concentration cIN at which the energy of the isotropic and
nematic are exactly equal; A = 0 the high concentration c∗ where the isotropic state
loses stability. Using the ansatz in Eq. (2.19) these critical concentrations are:

c† =
(
1− B2

4C

)
c∗ and cIN =

(
1− 2B2

9C

)
c∗ . (2.22)
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Figure 2.2: Free energy density F unit as a function of the scalar order parameter µ3 for
the concentrations c†, cIN and c∗, for µIN3 = 0.4.

In Fig. (2.2) the Landau–de Gennes free energy density in Eq. (2.19) is shown as a
function of the scalar order parameter µ3 for the special concentrations c†, cIN and c∗

with µIN3 = 0.4.

It is important to say that by construction the Landau–de Gennes free energy density
does not restrict the order parameter to be within its bounds [see Eq. (2.12)]. Thus it
is common to introduce an ansatz such that the magnitude of the alignment tensor is
bounded. In Ref. [63] an amended free energy density is given in terms of a maximum
value for the magnitude of Q. However, the differences between these ansatz and the
Landau–de Gennes free energy are small and it is convenient to maintain the original
one [63].

2.2.2 Elastic energy

The most general theory of curvature-elasticity of uniaxial fluids is due to F. C. Frank
extending the seminal work of C. W. Oseen from 1933 [20]. In his work of 1958 On
the theory of liquid crystals Frank derives a phenomenological elastic energy density in
terms of the nematic director n̂ [21] . For non–chiral particles the Frank–Oseen elastic
free energy density is:

Fe =
K11

2
(∇ · n̂)2 +

K22

2
(n̂ · ∇ × n̂)2 +

K33

2
(n̂×∇× n̂) . (2.23)
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Figure 2.3: Splay, twist and bend deformations of the nematic director n̂.

This elastic energy takes into account 3 different types of distortion that can occur in the
system: splay, twist and bend [see Fig. (2.3)]. The Frank constants are dependent on the
particular fluid being described and can be determined by experimental measurements
of the structure factor of the material [19].

The Landau–de Gennes free energy density can also be extended to a description
of spatially inhomogeneous alignment only by including combinations of gradients, di-
vergence and curl of the order parameter Q [19]. The contribution due to distortion in
space of the alignment tensor is such that any gradients in Q would lead to an increase
of the elastic energy density Fe [77].

However, in order to write a phenomenological description of these phenomena in
terms of Q we have to take into account that given a fixed distortion in space of
Q the elastic energy must remain unchanged under translations and rotations of the
material. Such restrictions imply that not all combinations of derivatives of Q in space
are allowed [77]. A common expression of the phenomenological elastic energy density
is:

Fe =
L1

2
(∇λQµν)

2 +
L2

2
(∇λQµλ)(∇γQµγ) , (2.24)

where the elastic coefficient L1 and L2 are phenomenologic elastic constants. A more
general elastic free energy density contains terms proportional to ∇λQµγ∇γQµλ and
cubic in the alignment tensor [19], but in the following they will not be considered.

The elastic parameters L1 and L2 are related to the Frank elastic constants Kij
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in (2.23) by [81]

L1 =
1

6S2
eq

(K33 −K11 + 3K22) , (2.25)

L2 =
1

S2
eq

(K11 −K22) , (2.26)

where Seq is the equilibrium uniaxial order parameter of the fluid [81]. In terms of elastic
constant L1 order parameter fluctuations are correlated over a distance of order

ξ =

√
L1

A(c)
, (2.27)

where A(c) is given in Eq. (2.19). In normal lyotropic fluids this correlation length is at
most a few tens of nanometers even close the isotropic–nematic transition [82].

2.2.3 Surface energy

In experiments surfaces can be treated in different ways. Usually the surface undergoes a
special type of chemical or physical modification such that there is a preferred direction
of alignment near the boundaries [83, 84, 85, 86]. Associated with this preferred direction
of alignment directly at the border is the amount of order in a vicinity close to it. These
restrictions imply that the surface energy density Fs has minimum at the preferred state.
If S is the surface in contact with the fluid

Fs = Fs(Q|S) . (2.28)

Sometimes the variables near the boundaries are forced to move out of the minima of Fs

because the bulk of the fluid is in some alternate state. Finally the competition between
the surface energy and the bulk energy reaches a balance such that the total energy of
the system in Eq. (2.15) is minimized.

The most commonly obtained types of anchoring are characterized by a particular
anchoring direction. One these is the so called weak anchoring condition. In this type
of anchoring Fs has a single minimum at the point where the magnitude of Q|S is
reached. Another common type of anchoring is the strong (infinite) anchoring, which
corresponds to the usual Dirichlet boundary condition at the surface. Finally, another
common anchoring condition is the planar anchoring condition. In this situation the
physical boundaries are prepared such that the directors of the fluid lie parallel to the
substrate [84].
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Microscopical description

In this chapter we revisit the basic concepts of standard statistical physics start-
ing with the Hamiltonian of a one component system and the pair interaction po-
tential between uniaxial rigid molecules. We continue introducing the main ideas
behind the variational principle known as classical density functional theory (DFT)
and familiarize with the theories developed (within this formalism) for systems of
one–component non–spherical bodies. Further, we briefly introduce the density
functional theories for mixtures of non–spherical particles. We focus mainly on
two theories: the Many–fluid Parsons–Lee theory [35] which is focused on spatially
homogeneous one–body densities; and an extension of the Ramakrishnan–Youssuf
approximation [39] (Second–order perturbation theory) for mixtures which focus
on spatially inhomogeneous one–body densities.

3.1 Systems of rigid anisotropic particles

Consider a system of N identical uniaxial anisotropic rigid particles filling a simply
connected volume V ⊂ R

3. Due to their anisotropy the complete set of variables neces-
sary to describe the k–th particle in V is: {rk, ûk}. This set accounts for translational
and rotational degrees of freedom. Here rk denotes the center of mass position and
ûk = ûk({φk, θk}) is a unit vector dependent on the set of Euler angles that fix the
particle’s orientation.

In absence of external fields, the Hamiltonian of the system, H({rk, ûk}), is a sum
of kinetic energy K and interaction energy H given by

K =

N∑
i=1

p2
i

2m
+

1

2
Iω2

i and H = U({rk, ûk}) , (3.1)

19
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where pi is the linear momenta of particles of mass m, I the moment of inertia, ωi

the angular velocity of rotation and U({rk, ûk}) is the total inter molecular potential
energy [87]. Assuming that the interactions occur solely by pairs U({rk, ûk}) is given
by

U({rk, ûk}) = 1

2

N∑
i=1

N∑
j=1

U(ri − rj , ûi, ûj) (3.2)

where U(rij , ûi, ûj) is the pair interaction potential between the particle i and the
particle j at positions ri and rj having orientations ûi and ûj , respectively.

In accordance with classical statistical mechanics in the canonical ensemble, the
configurational partition function is

Q =
1

N !

N∏
k=1

∫
V

drk

∫
S2

dûk exp

⎛⎝−1

2

N∑
i=1

N∑
j=1

U(rij , ûi, ûj)

kBT

⎞⎠ , (3.3)

where S
2 is the unit sphere and kB is Boltzmann’s constant. Given the configurational

partition function, Eq. (3.3), the conformational ensemble average of an observable A
is given by

〈A〉
=

1

Q
N∏
k=1

∫
V

drk

∫
S2

dûkA exp

⎛⎝−1

2

N∑
i=1

N∑
j=1

U(rij , ûi, ûj)

kBT

⎞⎠ . (3.4)

In statistical mechanics, the properties of a system are obtained after the partition
function (3.4). However, in most cases, the configurational integral, Q, and the confor-
mational ensemble average of an observable,

〈A〉
, cannot be calculated analytically for a

given pair potential U(rij , ûi, ûj). Nevertheless, it is possible to write these functions in
the form of series expansions. In fact, there are several ways to do this and the simplest
is one is the Mayer cluster expansion [87, 88, 89]. This expansion [90] consists of a power
series of the configurational partition function (3.3) around a system of non-interacting
particles. Here, the two particle function

fij(rij , ûi, ûj) = exp

(
−U(rij , ûi, ûj)

kBT

)
− 1 , (3.5)

is introduced, and in terms of this function the cluster expansion is performed. For
homogeneous rigid anisotropic fluids the Mayer function plays a key role in the context
of Onsager’s theory [24] and Density Functional Theory [29].

3.1.1 Pair interaction potential

The structure and thermodynamic properties of a system in equilibrium are determined
by inter molecular forces. These forces, or rather their related interaction potentials, can
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Figure 3.1: (a) Interaction between two anisotropic particles. Here rij denotes the center
of mass distance between the particles and d(ûi, ûj , ûij) is the orientational dependent
distance of closest approach. (b) Schematic representation of the inter particle potential
energy U(rij) and Mayer function fij(rij) of a couple of hard anisotropic particles with
fixed orientation. Since the orientation of the molecules is fixed the distance of closest
approach between the particles is d.

be obtained, e.g., from ab initio calculations based on quantum mechanics [91]. However
even for simple fluids these calculations are complex and computationally demanding. For
this reason theorists resort to model these interactions using suitable analytic functions
determined by a number of parameters.

Restricting ourselves to apolar and uniaxial rigid molecules, the pair interaction po-
tential must have the following regularities [87]

U(rij , ûi, ûj) = U(−rij , ûi, ûj) = U(rij ,−ûi, ûj) = U(rij , ûi,−ûj) , (3.6)

where rij = ri − rj . For this reason, the average orientation of the particles present the
so called head–tail symmetry. Some examples of pair interaction potentials suitable to
describe such anisotropic fluids are generalizations of the Gay-Berne potential [92] and
excluded volume interactions [24].

The simplest model is one of hard core interactions. Hard particle systems combine
conceptual simplicity and computational tractability, qualities that make them accessible
to theoretical studies. For these systems the pair potential is given by

U(rij , ûi, ûj) =

{
∞ r < d(ûi, ûj , ûij)

0 otherwise
, (3.7)

where d(ûi, ûj , ûij) is the orientational dependent distance of closest approach between
the particles, and rij = rijûij [see Fig. 3.1(a)]1. For a system of rigid anisotropic

1The simplest hard core pair potential model is the one of a hard–sphere liquid where the particles
have isotropic shape and d represents the effective diameter of the particle.
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particles the Mayer function (3.5) is given by

fij(rij , ûi, ûj) =

{
−1 r < d(ûi, ûj , ûij)

0 otherwise
. (3.8)

In Fig. 3.1(b) we show schematically the inter particle potential energy U(rij) and Mayer
function fij(rij) for a couple of hard anisometric particles with fixed orientation.

Due to the singular nature of the hard particle potential U(rij , ûi, ûj) the tempera-
ture T does not appear on the right hand side of Eq. (3.8), consequently, hard particle
fluids are often called athermal. In turn, the configurational energy depends only on the
density and is determined by the non–overlapping configurations in space.

3.1.2 Onsager’s second virial theory

Historically the first attempt to describe the structural and thermodynamical properties
of anisotropic fluids from a microscopic point of view was made by Lars Onsager in
1949. In his seminal work The effects of shape on the interaction of colloidal particles
he considered a low density gas of needle–like particles and wrote down the orientational
free energy introducing a much more efficient way of using the virial expansion [24]. To
this end, he did a cluster expansion of the free energy following the work of Mayer [90].
This expansion reads

F
NkBT

= c(T ) + ln ρ− 1− β1
2
ρ− β2

3
ρ2 + · · · , (3.9)

where c(T ) is a constant that depends only on the temperature and βn are the irreducible
cluster integrals 2, given in terms of Mayer functions as

β1 =
1

V

∫
S2

f12 dû1dû2 and β2 =
1

2V

∫
S2

f12f23f31 dû1dû2dû2 . (3.10)

For hard–core potentials −β1 determines the excluded volume between particles. Indeed,
excluded volume effects can account for most ordering transitions in simple liquids and
liquid crystals [93].

For a pair of hard–spheres of radius r the excluded volume is obviously a sphere of
radius 2r. However, the determination of an exact expression of the excluded volume
between non–spherical particles is not an easy task. In fact, this assignment normally
includes concepts from analytic geometry and integral geometry3. Onsager himself de-
termined the pair–excluded volume of hard–spherocylinders (see Ref. [24]). Hard sphero-
cylinders are cylinders of length l caped at both ends with hemispheres whose diameters

2For a modern and didactic introduction to the Mayer cluster integrals and its formalism we refer the
reader to Chapter 3 in the book of Hansen and McDonald Theory of simple liquids, Ref. [88].

3A very nice introduction to the topic is given in the book: Theory of anisotropic colloidal solutions
by A. Isihara, Ref. [94].
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are the same as the diameter of the cylinder d. They are characterized by their aspect
ratio κ = l/d and possess a particle volume of v = (π/12)(3κ + 2)d3. The excluded
volume between a pair of spherocylinders (i, j) is

Vexc(γ) =
π

4
(κid

3
i + κjd

3
j ) +

π

4
didj(di + dj) sin γ +

π

4
(κidid

2
j + κjdjd

2
i )| cos γ|

+ κiκjdidj(di + dj) sin γ + (κidi + κjdj)didjE(sin γ) , (3.11)

where E(sin γ) denotes the complete elliptic integral of the second kind and γ =
arccos (ûi · ûj). A modern derivation in the framework of general expressions for gen-
eralized hard sphero–zonotopes can be found in Ref. [93].

The irreducible cluster integrals (3.10) are related to the well known virial coefficients
Bn by Bn+1 = −n/(n+1)βn [82]. Omitting all constants that are independent of density
Eq. (3.10) can be rewritten as

F
NkBT

= ln ρ+ ρB2 +
1

2
ρ2B3 + · · · . (3.12)

For highly elongated spherocylinders (κ → ∞) Onsager showed that the contribution to
Eq. (3.12) of all virial coefficients beyond the second goes to zero. As it is confirmed by
numerous simulations, in this limit all higher order terms vanish and may be neglected
for all finite densities ρB2 
 κ [82].

Up to this point we have assumed that the density of the system is constant. However,
we should allow the possibility of an orientational ordered phase with a lower free energy.
To this end the density of the system should be a one–particle density distribution of the
form ρ = ρ(r, û). Although this approach is made in a very clear fashion by Onsager in
Ref. [24] we will turn to a much more modern description. For this purpose we use the
density functional description for fluids which is described in the following sections.

3.2 Density functional theory

In its original form, the density functional formalism was developed in 1964 to deal with
a gas of interacting electrons in an external potential. Hohenberg and Kohn [95] derived
a variational principle to determine the ground state of this quantum mechanical system.
One year later this theoretical approach was generalized to non-zero temperatures by
Mermin [96].

In Soft Matter theory this formalism was introduced by R. Evans in The nature
of the liquid-vapor interface and other topics in the statistical mechanics of nonuni-
form, classical fluids in 1979 [25, 26]. The following summary of the theory is based on
the above mentioned publications as well as in the review articles Density Functional
Theories of Hard Particle Systems by P. Tarazona et al [28] and Density functional the-
ory of inhomogeneous classical fluids: recent developments and new perspectives by H.
Löwen [97].
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In short, density functional theory (DFT) consists on a variational principle of the
grand canonical free energy functional Ω(T, μ, [ρ(r, û)]). Here T is the temperature of
the system and μ is its chemical potential [96, 25]. Within this formalism, the basic
variables describing the microscopic degrees of freedom of a many–body fluid are the
one–particle densities ρ(r, û). Here ρ(r, û) dV is the average number of particles in an
infinitesimal volume dV located at position r with orientation û. In terms of {rk, ûk}
the one–particle density is defined as

ρ(r, û) ≡
〈

N∑
k=1

δ(r− rk)δ(û− ûk)

〉
, (3.13)

where 〈· · · 〉 denotes the conformational average in Eq. (3.4). In the DFT the structural
an thermodynamic properties of the system will be described in terms of ρ(r, û). The
one–particle density distribution ρ(r, û) gives the probability of finding a particle at
position r with orientation û.

At fixed T and μ, Ω(T, μ, [ρ(r, û)]), the functional Ω([ρ(r, û)]) becomes minimal
for the equilibrium one–particle density ρ0(r, û), i.e.,

δΩ[ρ]

δρ

∣∣∣∣∣
ρ=ρ0

= 0 , Ω[ρ0(r, û)] = Ω . (3.14)

Here, the value of the functional at the equilibrium density Ω0 is the real equilibrium
grand canonical free energy. Moreover, the functional Ω(T, μ, [ρ(r, û)]) can be decom-
posed as

Ω[ρ] = F [ρ] +

∫
V

dr

∫
S2

dû ρ(r, û))(Vext(r, û))− μ) , (3.15)

where Vext(r, û)) is the external potential acting on the particles. Normally, this external
potential is in charge of describing the system boundaries and external fields (gravita-
tional, electro–magnetic, etc.).

The free energy functional F [ρ] appearing in Eq. (3.15) may be splitted in an ideal
contribution, Fid[ρ], plus an excess free energy, Fexc[ρ], that accounts for the particles
interaction. In kBT units F [ρ] is written as

βF [ρ] = βFid[ρ] + βFexc[ρ] , (3.16)

where β = 1/kBT . The ideal free energy functional is known exactly [29] and reads

βFid[ρ] =

∫
V

∫
S2

ρ(r, û){ln (Λ3ρ(r, û))− 1} dû dr , (3.17)

where Λ2 = h2/2πmkBT is the thermal de Broglie wavelength with m the particle’s
mass and includes the translational and rotational contributions of the kinetic energy. If
the system is an ideal gas, Fexc[ρ] vanishes. For a system of non-vanishing pair interaction
the excess part is not known in general and one has to rely on approximations.
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3.2.1 Excess free energy

The effects of particle interactions are introduced through the excess free energy func-
tional Fexc[ρ]. For its construction it is useful to introduce an effective one–body potential
known as the direct correlation function. The direct correlation function c(1) is related
to the excess free energy functional via

c(1)[ρ(r, û)] ≡ −β
δFexc[ρ]

δρ
. (3.18)

In fact, c(1)[ρ(r, û)] is only the first member of a hierarchy of correlation functions
generated by Fexc[ρ]. Higher order functions are obtained by differentiation

c(n)[ρ] = −β
δnFexc[ρ]

δρ1 · · · δρn = −β
δnFexc[ρ]

δρn · · · δρ1 , (3.19)

where ρi = ρ(ri, ûi). Of particular interest is the second derivative of this hierarchy, the
so–called direct correlation function

c(2)(r12, û1, û2) = −β
δ2Fexc[ρ(r, û)]

δρ(r1, û1)δρ(r2, û2)
. (3.20)

The direct correlation function serves as a measure of the structure and the properties of
the fluid [98] and is related to the total pair correlation function which can be measured
using diffraction experiments and computer simulations.

In terms of the direct correlation function the total pair correlation function h(r12, û1, û2)
is given by4:

h(r12, û1, û2) = c(2)(r12, û1, û2) + ρ0

∫
V

dr3〈c(2)(r13, û1, û2)h(r32, û3, û2)〉û3
,

(3.21)
and it measures the total effect of a molecule 1 on a molecule 2 at a separation r12 and
with orientations û1 and û2. Equation (3.21) is a generalization of the Ornstein–Zernike
equation to non–spherical molecules for a homogeneous fluid [99]. This expression indi-
cates that the total pair correlation between two particles consists of two contributions:
the direct correlation function between them and an indirect correlation arising because
of their interactions with the remaining particles in the system[91]. In general, the knowl-
edge of the direct correlation function allows us to calculate many fluid properties, for
example, the isothermal compressibility.

Approximations work on different levels. The usual virial expansion of Onsager can
be obtained directly from Eqs. (3.20) and (3.21) doing a cluster expansion of the pair
correlation function in a system with uniform density ρ0, i.e.,

− c(2)(r12, û1, û2; ρ0) = f12 + ρ0f12

∫∫
V

∫∫
S2

f23f31 dû
′ dû dr′ dr+ · · · , (3.22)

4For an inhomogeneous fluid ρ0 will depend on r3 and û3 and cannot be taken outside the integral.



26 Chapter 3. Microscopical description

where fij = fij(rij , ûi, ûj) is the corresponding Mayer function. This choice is asymptot-
ically exact in the dilute limit [24, 82]. Another choice is a the mean field approximation
which is asymptotically exact at very high densities for bounded potentials [100]. A per-
turbative treatment out of the homogeneous liquid which needs the direct correlation
function as an input is the Ramakrishnan–Youssuf (RY) approximation [39]. It is a func-
tional Taylor expansion of Fexc[ρ] in terms of the density difference Δρ = ρ(r, û)− ρ0
where ρ0 is the homogeneous density in the isotropic phase. It follows from Eqs. (3.20)
and (3.21) that

− c(2)(r12, û1, û2; ρ0) = β
δ2Fexc[ρ(r, û)]

δρ(r1, û1)δρ(r2, û2)

∣∣∣∣
ρ0

, (3.23)

with the second functional derivative of Fexc[ρ] evaluated at ρ(r, û) = ρ0. Therefore,

βFexc[{ρ}] � −1

2

∫∫
V

∫∫
S2

c(2)(r− r′; û, û′)Δρ(r, û)Δρ(r′, û′) dû′ dû dr′ dr . (3.24)

For hard spheres, the RY approximation leads to freezing and was the first demonstration
that freezing can be described within DFT. There are a couple of non–perturbative
functionals based on Rosenfeld’s fundamental measure theory [101]. These are more
accurate approximations of the excluded energy of hard convex bodies and can be found
in Refs. [102, 103].

3.2.2 Density functional theories for systems of hard rods

In this section we summarize the most important results regarding isotropic and nematic
phases in the DFT formalism. We discuss different theories for systems of hard rods
using the smoothed density approximation of Poniewierski and Holyst [29] as a starting
point.

The smoothed density approximation in its original form is a DFT of a homogeneous
hard–sphere system (see for example Refs. [27, 104]). For systems of hard rods, it relies
on the definition of a weight function which is related to the direct correlation function.
The ideal gas contribution to the free energy is given as usual [see Eq. (3.17)] by

βFid[ρ] =

∫
V

∫
S2

ρ(r, û){ln (Λ3ρ(r, û))− 1} dû dr , (3.25)

where ρ(r, û) is the one–particle density function. On the other hand, within this ap-
proximation the excess free energy of the system is

Fexc[ρ] =

∫
V

ρ(r)Δψ(ρ̄(r) dr (3.26)
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where ρ(r) and ρ̄(r) are the physical and smoothed densities and Δψ is the excess free
energy per particle of the reference fluid, which, in this case, is a homogeneous and
isotropic fluid of hard rods. The first nontrivial step beyond the SDA corresponds to a
relation between ρ and ρ̄. To this end Poniewierski et al used the following expression

ρ̄(r, û) =

∫
V

∫∫
S2

w(r− r′, û, û′)f(r, û)f(r′, û′)dr′dûdû′ . (3.27)

Here f(r, û) = ρ(r, û)/ρ(r) is the angular distribution function also known as orien-
tational distribution function and w(r − r′, û, û′) is a weight function satisfying the
normalization condition∫

V

∫∫
S2

w(r− r′, û, û′)dr′dûdû′ = (4π)2 . (3.28)

For the isotropic fluid the orientational distribution function is given by f = 1/
∫
dû =

1/4π. In general, the weight function w should be calculated via the direct correlation
function of a homogeneous and isotropic fluids of hard rods. However any analytic form
of c(2) is in general unknown. Instead of making approximations on the level of c(2)

Poniewierski and Holyst did some approximations on the weight function itself.

Onsager’s approximation

Onsager’s second virial theory can be obtained directly from the SDA assuming that

w(r− r′, û, û′) = −f12(r− r′, û, û′)
2B2

, (3.29)

together with

βΔψ(ρ) = ρB2 +O(3) . (3.30)

Here f12 is the Mayer function for hard rods and B2 is the second virial coefficient given
by

B2 =
1

2

∫
V

∫∫
S2

f12(r− r′, û, û′)dûdû′ . (3.31)

For uniform fluids (ρ �= ρ(r)) the Mayer function only depends on the orientational
degrees of freedom and determines the volume of exclusion between the particles. In this
limit the second virial coefficient is

B2 =
1

2
ρV

∫∫
S2

V exc(û, û′)f(û)f(û′)dûdû′ , (3.32)



28 Chapter 3. Microscopical description

where V is the volume of the system5. As we can see, introducing the simple ansatz (3.28)
in the DFT formalism develops into the well known Onsager approximation [see Eq. (3.12)].
Finally the excess contribution to the free energy is

βFexc

V
=

1

2
ρ2
∫∫
S2

V exc(û, û′)f(û)f(û′)dûdû′ . (3.33)

One can obtain the isotropic and nematic coexistence densities directly from the total
free energy Eqs. (3.25) and (3.32). To this end one needs to do functional minimization
of the total free energy with respect to f(û). After this procedure one gets the integral
equation

f(θ) =
exp

[
−8ρ∗

π

∫ 1
−1 d(cos θ

′)K(θ, θ′)f(θ′)
]

∫ 1
−1 d(cos θ) exp

[
−8ρ∗

π

∫ 1
−1 d(cos θ

′)K(θ, θ′)f(θ′)
] , (3.34)

where ρ∗ = ρ∗BI
2 is a dimensionless density scaled with respect to the value of B2 for

the isotropic fluid and the kernel function K(θ, θ′) is

K(θ, θ′) =
∫ 2π

0
dφ

√
1− (cos θ cos θ′ cosφ+ sin θ sin θ′)2 , (3.35)

Equation (3.32) can be solved for f(θ) using an iterative procedure at a fixed ρ∗. The
resulting function should be inserted back into the total free energy and after using the
Maxwell construction (see Ref. [105]) obtain the coexistence densities [28, 106]. The
main drawback of this theory is that it is limited to very long aspect ratios and it is only
valid in the dilute regime (very low densities).

Parsons–Lee Approximation

For finite values of κ further virial coefficients should be included in order to obtain
with increased accuracy the I − N coexistence densities. In the original treatment in
Ref. [29] the ansatz for Δψ [see Eq. (3.30)] has an additional contribution which takes
into account the packing between the particles. This inclusion corresponds to the virial
expansion of Parsons and Lee [37, 38, 107]. Parsons and Lee proposed an excess free
energy density given by

βFexc[f(û)]

V
= ρGHS(η)

B2[f(û)]

BHS
2

. (3.36)

5The excluded volume between the particles 1 and 2 is related to the contact distance (see Eq. (3.7))
via

V exc(û1, û2) =
1

3

∫
S2

d(û1, û2, û12)dû12 .
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where BHS
2 = 4v is the second virial coefficient of the hard sphere model with a molecular

volume v equal to the volume of the hard rod. The prefactor GHS(η) is the compress-
ibility factor of the system and corresponds to the usual Carnahan–Sterling free energy
per particle of the hard sphere fluid. The compressibility factor GHS(η) is given by

GHS(η) =
η(4− 3η)

(1− η)2
, (3.37)

with η = ρv the packing fraction. From construction, this approximation recovers the
second virial low–density limit when ρ → 0. For a system of spherocylinders with aspect
ratios κ � 5− 8, this simple approach is very accurate. As it is proven by Bolhuis et al
in Ref. [108] using Gibbs-ensemble simulations.

Density-functional theory of distortion

The distortions of the nematic director can be formulated within the DFT formalism. A
first approximation was done by A. Poniewierski and J. Stecki in 1979–1982 [40, 41].
Later, in a series of studies between 1985 and 1987, Y. Singh and K. Singh derived
an excess free energy of the aligned nematic liquids in terms of the direct correlation
functions of the isotropic fluids [30, 31, 32].

In both approximations the Frank elastic constants [see Eq. (2.23)] are expressed
in terms of the direct correlation function c(2)(r12, û1, û2) and the one–particle density
distribution function. These studies are based on the assumption that the one–particle
density is such that

ρ(r, û) = ρ0(n̂(r) · û) , (3.38)

where n̂ is the nematic director specifying the axis of symmetry of the uniaxial homoge-
neous sample. In terms of the director field and the one–particle density the free energy
of deformation is [40]:

βFdef[ρ] =

∫
V

Aαμ(r)∇αnμ dr+
1

2

∫
V

[Mαβμν(r) +Hαβμν(r)]×∇αnμ∇βnν dr

+
1

2

∫
S2

Bαβμ(r)∇αnμ dσβ . (3.39)

where the coefficients Aαμ, Bαβμ, Mαβμν , and Hαβμν are functions of r defined as
integrals of a hierarchy of direct correlation functions integrated over ρ0(n̂(r) · û), (see
Ref. [40]).

Finally, in terms of the direct correlation function of the undistorted nematic state
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c(2)(r12, û1, û2; ρ0) in Eq. (3.24) the Frank elastic coefficients are

K1 =
1

2

∫
V

∫∫
S2

(r12)
2
x c

(2)(r12; û, û
′; ρ0)ρ0(n̂ · û)ρ0(n̂ · û′) ûxû′xdûdû

′dr , (3.40)

K2 =
1

2

∫
V

∫∫
S2

(r12)
2
x c

(2)(r12; û, û
′; ρ0)ρ0(n̂ · û)ρ0(n̂ · û′) ûyû′ydûdû

′dr , (3.41)

K3 =
1

2

∫
V

∫∫
S2

(r12)
2
z c

(2)(r12; û, û
′; ρ0)ρ0(n̂ · û)ρ0(n̂ · û′) ûyû′ydûdû

′dr , (3.42)

where (r12)i denotes the magnitude of the i–th component of the vector r12 = r − r′.
To calculate these constants for a model nematic fluid we must know the direct corre-
lation function and the orientational distribution function calculated in the undistorted
homogeneous nematic [40, 41].

3.3 Density functional theories for mixtures

For an n–component mixture of non spherical hard–body particles, the total number of
molecules of all species is

N =
n∑

α=1

Nα .

where α labels the components of the mixture. In the scope of DFT, there is a one–
body density ρα for each component of the fluid and it is such that ρα(r, û) dV is the
average number of α–molecules in an infinitesimal volume dV located at position r with
orientation û. In terms of {rαk , ûα

k} the one–body density is

ρα(r, û) ≡
〈

Nα∑
k=1

δ(r− rαk )δ(û− ûα
k )

〉
, (3.43)

where 〈· · · 〉 denotes the conformational average. Since, the density functional approach
focuses on the Helmholtz free energy F as a unique functional of these one–body densi-
ties ρα then F [ρα]. The free energy functional, F [ρα], is splitted in an ideal contribution,
Fid[ρα], plus an excess free energy, Fex[ρα], that accounts for the particles’ interaction.
In β = 1/kBT units F [ρα] is written as

βF [ρα] = βFid[ρα] + βFex[ρα] . (3.44)
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Ideal contribution

A straightforward generalization of the single component system (see Ref. [29]) of the
ideal free energy for the n–component mixture reads

βFid[ρα] =

n∑
α=1

∫
V

∫
S2

ρα(r, û){ln (Λ3
αρα(r, û))− 1} dû dr , (3.45)

where Λα is the thermal de Broglie wavelength of component α of mass mα and is given
by

Λα =

(
h2

2πmαkBT

)1/2

.

Excess contribution

As stated previously, the excess free energy functional Fex[ρα] is unknown and therefore
one has to rely on several approximations. In the following we present two approximations
of the one–body density of each component α which lead to two very distinct density
functionals. First we consider spatially homogeneous densities where the dependency
of ρα on the translational degrees of freedom is disregarded. Later we assume that the
dependence of the one–body densities on the translational degrees of freedom is inherited
through û with the ansatz û = û(r).

3.3.1 Many–fluid Parsons–Lee theory

Here we focus on spatially homogeneous densities such that

ρα(r, û) = ρα fα(û) , (3.46)

where ρα = Nα/V is the number density of species α (with V being the volume) and
fα(û) is the orientational distribution function (ODF), which is normalized such that∫
dûfα(û) = 1. This ansatz allows us to describe isotropic and nematic phases of the

system.
With this specification, the ideal part of the free energy functional [see Eq. (3.45)]

can be written as

βFH
id

V
[ρα] =

n∑
α=1

ρα
(
ln(ραΛ

3
α)− 1 + σ[fα]

)
, (3.47)

where σ[fα] is the orientational entropy given by

σ[fα] =

∫
S2

dûfα(û) ln(4πfα(û)), (3.48)
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The quantity σ is zero in the isotropic state, where fα(u) = f0 = (4π)−1 and becomes
positive in the nematic state. It thus reflects the loss of orientational entropy due to
ordering.

Regarding the excess part of the free energy, we here employ a generalization of the
so–called Parsons–Lee theory [37, 38] to mixtures, as suggested by Malijevsky et al. [35].
This approach is derived by starting from the virial expression for the pressure, which
involves (apart from the singlet densities) the spatial derivative of the pair potential,
Uαβ and the pair correlation function gαβ . Noting that Uαβ can be re–expressed in
terms of a hard–sphere (HS) potential with scaled distance rij/dαβ(ûi, ûj ,uij), the
same assumption is made for the correlation function, i.e., gαβ = gHS

αβ (rij/dαβ) (note
that this is an approximation). By integrating over the total density ρ =

∑
α ρα (and

noting that ∂UHS
αβ (y)/∂y is proportional to a delta function in space), one obtains the

excess free energy

βFH
ex

V
[ρα] =

1

2

n∑
α=1

n∑
β=1

ραρβGαβ

∫
S2

dûi

∫
S2

dûjV
exc
αβ (ûi, ûj)fα(ûi)fβ(ûj) . (3.49)

In (3.49), V exc
αβ is the excluded volume between particles i and j, which is related to the

contact distance via

V exc
αβ (ûi, ûj) =

1

3

∫
S2

dûij d3αβ(ûi, ûj , ûij) . (3.50)

The quantities Gαβ are averages (in terms of the total density) of the contact values of
the HS pair correlation functions, gHS

αβ (1+), in the considered density range [35].
As discussed extensively in Ref. [35], the free energy given in (3.49) reduces to

the familiar second–virial theory of Onsager [24] in the limit of low densities. Then,
one has gHS

αβ (1+) → 1, and therefore Gαβ = 1 for all combinations α, β. Although
the Onsager theory provides an intuitive approach regarding the effects related to the
geometry of the particles, it is known to become inaccurate for particles of finite length
at the densities close to orientational phase transitions [108, 109]. In this respect the
generalized Parsons–Lee approach provides a significant improvement, as demonstrated
by comparison with Monte Carlo simulations of hard Gaussian molecules with different
elongations and concentrations [14].

3.3.2 Second–order perturbation theory for mixtures

To our account the excess free energy functional of a mixture of hard–body particles
in terms of spatially inhomogeneous one–body densities has not been addressed in lit-
erature. To this end we assume that the one–body density of the α component of the
mixture can be written as:

ρα(r, û) = ρα fα(û(r)) . (3.51)
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This ansatz of the one–body densities is similar to the one in Ref. [40, 41], however,
the spatial dependence of the orientational degrees of freedom is not given in terms of
the nematic director but in terms of full vector û. This allows a description of the fluid
in terms of the space–fixed frame of reference instead of the usual director dependent
frame of reference. With this assumption the ideal contribution of the free energy [see
Eq. (3.45)] is simply given by:

βFI
id[ρα] =

n∑
α=1

∫
V

∫
S2

ρα(û(r)){ln (Λ3
αρα(û(r))− 1} dû dr , (3.52)

where Λα is the thermal de Broglie wavelength of component α.
Since our interest is to study spatially homogeneous nematic phases a first choice of

the excess free energy functional may be an extension of Onsager’s second virial theory
for mixtures or a mean field approximation. However, inspired on previous results for
the one component system [39, 40, 41, 30, 31, 32] we use a second order perturbation
theory of the full excess free energy functional, Fex[ρα]. This perturbation resolves on an
extension of the well known Ramakrishnan–Youssuf [39] to a mixture of n–components
which is:

βFI
ex = −1

2

n∑
α=1

n∑
β=1

∫∫
V

∫∫
S2

c
(2)
αβ(r− r′; û, û′)Δρα(r, û)Δρβ(r

′, û′) dû′ dû dr′ dr .

(3.53)

Here Δρα(r, û) = ρα(r, û) − ρ̄α with the mean number density ρ̄α = ραf0 and the

direct correlation function c
(2)
αβ(r − r′; û, û′) calculated in the isotropic phase. As it is

discussed previously, with this assumption Uαβ(rij , ûi, ûj) is a smoothly varying long
range function of the distance and orientation [110, 36, 39].





Chapter 4

Bridging microscopic and

mesoscopic theories

The first goal of our investigations is to construct an expression of the equilib-
rium free energy functional capable of describing the thermodynamic phase behav-
ior of a mixture. In addition, this functional should contain microscopic features of
the system such as, number density, length and diameter of the particles, etc. In
this chapter we take on the task of bridging the microscopic and phenomenological
descriptions introduced in the preceding chapters. We address this issue for both,
spatially homogeneous and inhomogeneous systems, starting from the previously
discussed density functional theories for mixtures (Many–fluid Parsons–Lee theory
and the Ramakrishnan-Youssuf approximation for mixtures).

4.1 DFT based Q–tensor theory for mixtures

The aim of this chapter is to rewrite the free energy functionals consisting of ideal and
excess contributions [see Eqs. (3.47)–(3.53)] in terms of the k–th order alignment tensors
Qα

(k) (one for each component of the mixture) where α = 1, · · · , n [see Chapter 2]. These

tensors are defined in terms of the k–fold product û(k) as [22]

Qα
(k) =

√
(2k + 1)!!

k!

〈
û(k)

〉
α

. (4.1)

where 〈· · · 〉α denotes the configurational ensemble average of û(k) with respect to the
orientational distribution function fα(û). For most systems of rigid particles, it is suf-
ficient to consider tensors with even k due to the head–to–tail symmetry. Within this
subset, the tensors of rank k = 2 and k = 4 are of particular importance since they may
be related to the birefringence and fluorescence of the sample [19, 23].

35
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4.2 Homogeneous systems

First we will discuss the construction of the Q-tensor functional for homogeneous systems
based on the publication Binary mixtures of rod–like colloids under shear: microscopically–
based equilibrium theory and order–parameter dynamics which was written in collabora-
tion with S. H. L. Klapp [111].

4.2.1 Ideal contribution

The first task is to rewrite the orientational entropy, given in (3.48). Here we follow
earlier approaches [23, 112], where the one–particle ODF was expressed as fα(û) =
f0 (1 + ψα(û)), with ψ(û) being a small deviation from the isotropic state, f0 = 1/4π.
Inserting this ansatz into (3.48) and performing a Taylor expansion of the logarithm
yields [23, 113]

σ[fα] =
∞∑
n=2

(−1)n

n(n− 1)
〈ψn

α(û)〉0 , (4.2)

where 〈· · ·〉0 denotes the orientational average evaluated with f0. Due to normalization
of the ODF the term n = 1 is zero and thus it is disregarded. Next, one assumes that the

function ψ(û) may be expanded in terms of the tensor quantities ((2k + 1)!!/k!) û(k)

[see (4.1)], where the prefactors are determined by their orientational averages, Qα
(k).

Following [23, 113], we restrict this expansion to terms involving k = 2 and k = 4.
Inserting the resulting ansatz for ψα into (4.2) and retaining terms up to fourth power
in Qα

(2) and up to second power in Qα
(4), one obtains

σ[Qα
(2),Q

α
(4)] =

1

2
Qα

(2) 
Qα
(2) −

√
30

21
Qα

(2) ·Qα
(2) 
Qα

(2) +
5

28

[
Qα

(2) 
Qα
(2)

]2
+

1

2
Qα

(4) 
Qα
(4) +O(Qα

(4))
2 . (4.3)

In (4.3), the product A(k) ·B(k) yields a tensor of rank k [see Appendix A].

4.2.2 Excess contribution

We now turn to the reformulation of the excess free energy as functions of the Qα
(k). To

our knowledge, before our publication [111], this problem has not been addressed in the
literature so far.

As a starting point we expand the excluded volume of the hard–core particles ap-
pearing in Eq. (3.49) in terms of the Legendre polynomials (following Refs. [35, 114]
and references therein),

V exc
αβ (ûi, ûj) =

∞∑
k=0

V αβ
k Pk(cos γ), (4.4)
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where γ is the angle between ûi and ûj (see Appendix B) and the coefficients V αβ
k are

calculated using the relation

V αβ
k =

2k + 1

2

∫ 1

−1
d cos γPk(cos γ)V

exc
αβ (γ). (4.5)

Next, we replace Pk in (4.4) by using the addition theorem for spherical harmonics [99]
(see Appendix B), yielding

V exc
αβ (ûi, ûj) =

∞∑
k=0

4πV αβ
k

2k + 1

k∑
m=−k

Y∗
km(ûi)Ykm(ûj) . (4.6)

The sum on the right side of Eq. (4.6) can be rewritten as a full scalar product of the

two tensors û(k) [99]. One obtains

V exc
αβ (ûi, ûj) =

∞∑
k=0

V αβ
k

(2k + 1)!!

(2k + 1)k!
û
(k)
i 
 û

(k)
j . (4.7)

Inserting (4.7) into (3.49), noting that the angular integrals (weighted by the ODFs)
in (3.49) lead to orientational averages, and using the definition of the tensor order
parameter [see (4.1)] one finds

βFH
exc

V
=

1

2

n∑
α=1

n∑
β=1

ραρβGαβ

∞∑
k=0

V αβ
k

2k + 1
Qα

(k) 
Qβ
(k) . (4.8)

Equation (4.8) provides the excess free energy as a function of order parameter tensors.
It still depends on the microscopic parameters of the mixture, that is, the geometry of
the particles (defining the excluded volume) and the densities.

4.2.3 Full free energy

We now turn to the full free energy containing ideal and excess parts, FH = FH
id +FH

ex.
Restricting to terms involving 2nd– and 4th– rank tensors we have

βFH
id [Q]

V
=

n∑
α=1

[
Fα
00 + ρασ

(
Qα

(2),Q
α
(4)

)]
, (4.9)

where Fα
00 = ρα(ln(ραΛ

3
α)−1), σ is given in (4.3), and the notation [Q] on the left side

indicates the dependence of the (ideal) free energy on all four order parameter tensors
(k = 2, 4, α = 1, · · · , n). Further, we obtain from Eq. (4.8)

βFH
ex[Q]

V
=

1

2

n∑
α=1

n∑
β=1

ραρβGαβ

[
V αβ
0 +

V αβ
2

5
(Qα

(2) 
Qβ
(2)) +

V αβ
4

9
(Qα

(4) 
Qβ
(4))

]
.

(4.10)



38 Chapter 4. Bridging microscopic and mesoscopic theories

These expressions can be further simplified by using a ”closure” relation expressing the
4th–rank tensor with the one of second rank. For uniaxial systems characterized by a

(nematic) director n [115, 116], there exists the exact relation S2
2Q(4) = S4 Q(2)Q(2) ,

where S2 = 〈P2(û · n̂)〉 and S4 = 〈P4(û · n̂)〉. In strongly aligned systems one has

S4 ≈ S2
2 ≈ 1. In that limit, the closure thus takes the form Q(4) ≡ Q(2)Q(2) . This

choice is the simplest and most widely used approximation without requiring further
assumptions in the ODF. In this direction, one could have used the Bingham closure
which is suitable for rotational flows but loses precision for simple shear flow [117].

Since we can now express all quantities in terms of the second–rank tensor, we ease
notation and set Qα = Qα

(2) (α = 1, · · · , n). Further, we rewrite the notation for the

tensor products appearing in Eq. (4.10) into the form commonly used for second–rank
tensors, that is Qα 
Qα = Qα : Qα = Tr(Q ·Q) = QμνQμν . Adding ideal and excess
contributions of the free energy, we obtain

ΦH [Q] =
βFH [Q]

V

ΦH [Q] =

n∑
α=1

(
Fα
0 +Aα(Q

α : Qα)−BαTr(Q
α ·Qα ·Qα) + Cα(Q

α : Qα)2
)

+
1

2

n∑
α=1

n∑
β=1

(
Fαβ
0 +Aαβ(Q

α : Qβ) + Cαβ(Q
α : Qβ)2

)
, (4.11)

where the coefficients are functions of the number densities, the factors Gαβ and the
coefficients of the excluded volume. Explicitly, they are given by

Fα
0 = ρα

(
ln(ραΛ

3
α)− 1

)
+

1

2
ρ2αGααV

αα
0 , (4.12)

Aα =
1

2
ρα +

1

10
ρ2αGααV

αα
2 , (4.13)

Bα =

√
30

21
ρα , (4.14)

Cα =
19

28
ρα +

1

18
ρ2αGααV

αα
4 , (4.15)

Fαβ
0 = ραρβGαβV

αβ
0 , (4.16)

Aαβ =
1

5
ραρβGαβV

αβ
2 , (4.17)

Cαβ =
1

9
ραρβGαβV

αβ
4 . (4.18)

As seen from Eq. (4.11), the mesoscopic free energy derived here has the standard
Landau–de Gennes (LdG) form [19] in the sense that it involves an expansion into order
parameters. Contrary to standard LdG theory, however, the coefficients are related to
microscopic properties of the system. We also note that the free energy does not depend
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explicitly on the temperature, which reflects the hard–core character of the interactions.
Consequently, the ordering behavior of the resulting ”lyotropic” system is essentially
controlled by the concentration of the system.

4.3 Inhomogeneous systems

In the previous Subsection (4.2) we took on the task of writing the mesoscopic free energy
functional of the mixture in terms of tensor order parameters of second and fourth rank.
This was done using an expansion of the excluded volume between anisotropic particles
in terms of the spherical harmonic functions. Here we propose a different but at the
same time complementary approach based on a particular ansatz for the one–particle
density ρα(r, û).

As in Eq. (3.51) in the following we assume that the one–particle density is of the
form

ρα(r, û) = ραfα(û(r)) , (4.19)

where ρ = N/V is the number density and f(û) is the normalized orientational distri-
bution function with û = û(r)) [see Chapter 3]. Following Ref. [112] assuming simple
angle dependence of the ODF viz f(û) = f0(1 + ϕ(û)) we employ the ansatz

ρα(r, û) = ραf0(1 + ϕα(û)) (4.20)

= ραf0

(
1 +

√
15

2
ûû : Qα

)
, (4.21)

where ϕ(û) describes a small deviation from f0 corresponding to anisotropic states. In
expressions (4.20–4.21) the explicit dependence of û and Qμν with the space dependent
vector r is not written to avoid any confusion.

Equation (4.20) implies that the one–particle density is comparable with the mean
number density of the fluid in the isotropic phase given by ρ̄ = ρf0. Inserting Eq. (4.21)
in the density difference Δρα(r, û) = ρα(r, û)− ρ̄α given by the RY approximation [see
Eq. (3.53)] results in

Δρα(r, û) = ραf0 ϕα(û) ,

= ραf0

√
15

2
ûû : Qα . (4.22)

With the above expressions of the one–particle density and the difference Δρα(r, û),
Eqs. (4.21–4.22), we will proceed writing the ideal (3.52) and excess (3.53) contributions
of the free energy functional in terms of the spatially inhomogeneous second rank tensor
order parameters Qα(r).
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4.3.1 Ideal contribution

The first assignment is to write the ideal contribution of the free energy (3.52) in terms
of Qα(r). Using the initial assumption for inhomogeneous systems Eq. (4.19), the ideal
free energy functional in Eq. (3.52) is given by 1

βFI
id[ρα] =

n∑
α=1

∫
V

{
ρα

(
ln(ραΛ

3
α)− 1 + σ[fα]

)}
dr , (4.23)

where σ[fα] is the inhomogeneous orientational entropy given by

σ[fα] =

∫
S2

dûfα(û) ln(4πfα(û)) . (4.24)

Inserting the ansatz (4.20) in Eq. (4.24) results in

σ[fα] = f0

∫
S2

(1 + ϕα(û)) ln((1 + ϕα(û)))dû . (4.25)

For small non–zero deviations we expand the integrand in (4.25) up to fourth order, thus

(1 + ϕα(û)) ln((1 + ϕα(û))) ≈ ϕα(û) +
1

2
ϕα(û)

2 − 1

6
ϕα(û)

3 +
1

12
ϕα(û)

4 +O(ϕ5
α) ,

(4.26)
yielding to the inhomogeneous orientational entropy

σ[fα] = f0

∫
S2

(
ϕα(û) +

1

2
ϕα(û)

2 − 1

6
ϕα(û)

3 +
1

12
ϕα(û)

4

)
dû . (4.27)

Due to normalization of the ODFs the first integral in (4.27) must vanish. Further,
inserting the explicit ansatz (4.21) in each term of the right side of (4.27) results in

σ[Q(r)] =
1

2
(Qα : Qα)−

√
30

21
Tr (Qα ·Qα ·Qα) +

5

28
(Qα : Qα)2 , (4.28)

Evidently the above derivation is consistent with the one for homogeneous systems [see
Eq. (4.3)]. Finally, inserting Eq. (4.28) in Eq. (4.23) results in

βFI
id[Q(r)] =

∫
V

{
Φα
0 +Φid[Q(r)]

}
dr . (4.29)

1Note that the form of the ideal contribution to the free energy is similar to the one for spatially
homogeneous phases [see Eq. (3.47)] with the difference that here the integration over the volume V is
in general more complicated because of the implicit dependence û(r).
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where Φα
0 =

∑
α ρα

(
ln(ραΛ

3
α)− 1

)
and Φid[Q(r)] is the ideal contribution of the meso-

scopic free energy density (per unit volume)

Φid[Q(r)] =
n∑

α=1

{
1

2
ρα (Q

α : Qα)− 1

7

√
10

3
ρα Tr (Q

α ·Qα ·Qα) +
5

28
ρα (Qα : Qα)2

}
.

(4.30)

4.3.2 Excess contribution

Now we turn to the reformulation of the excess free energy as function of Q(r). To
our knowledge this has not been done systematically from a DFT basis, however, some
attempts have been reported following Taylor expansions of the one–particle densities
and moments of the Mayer function [118] similar to the generalized DFT for weakly
twisted director fields [119].

Here we use the extension to mixtures of the RY approximation [see Eq. (3.53)].
Inserting the ansatz given for the density difference in (4.22) into Eq. (3.53) and after
some rearrangement yields2

βFI
ex[Q(r)] = −1

2

n∑
α=1

n∑
β=1

∫
V

dr

∫
V

dr′
(ρα
4π

)(ρβ
4π

)(
15

2

)
Qα

μν(r)Q
β
μν(r

′)

×
∫
S2

dû

∫
S2

dû′ c(2)αβ(r− r′; û, û′)
(
û μû ν

)(
û′μû′ν

)
.

(4.31)

Now, the task is to rewrite the integrals over the unit sphere, i.e.,

Intûû′ =

∫
S2

dû

∫
S2

dû′ c(2)αβ(r− r′; û, û′)
(
û μû ν

)(
û′μû′ν

)
, (4.32)

in terms of the tensor quantities Qα. Here it is important to mention, once again, that
according to the RY approximation [39] the direct correlation function is calculated in
the isotropic phase.

Referred to an arbitrary space–fixed reference frame the direct correlation function

c
(2)
αβ(r − r′; û, û′) can be expanded in terms of the spherical invariants as (see e.g.
Refs. [88, 99])

c
(2)
αβ(r− r′; û, û′) =

∑
l1l2l

c
(2)
αβ(l1l2l; r− r′)Φ(l1l2l; û, û′, ûx) , (4.33)

2For simplicity in the following expressions Einstein’s index convention will be used.
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where ûx is the unit vector pointing in the direction of the vector difference x = r− r′

and c
(2)
αβ(lil2l; r − r′) are the harmonic expansion coefficients of the direct correlation

function

c
(2)
αβ(l1l2l;x) =

(2l1 + 1)(2l2 + 1)

4π(2l + 1)

∫
S2

dû

∫
S2

dû′c(2)αβ(r− r′; û, û′)Φ(l1l2l; û, û′, ûx) .

(4.34)

Here, the rotational invariants Φ(l1l2l; û, û
′, ûx) are given by

Φ(l1l2l; û, û
′, ûx) =

∑
m1m2m

C(l1l2l;m1m2m)Yl1m1(û)Yl2m2(û
′)Y∗

lm(ûx) , (4.35)

where Ylm are the spherical harmonics and C(l1l2l;m1m2m) are the Clebsch–Gordan
coefficients [see Appendix B] 3. Inserting the series expansion (4.33) in Eq. (4.32) yields

Intûû′ =

∫
S2

dû

∫
S2

dû′ ∑
l1l2l

c
(2)
αβ(l1l2l;x)Φ(l1l2l; û, û

′, ûx)

(
û μû ν

)(
û′μû′ν

)
.

(4.36)

Since the Cartesian product ûμûν is isomorphic to the l = 2 spherical harmonics
[see Appendix B], i.e., (

ûû
)
m

=

√
8π

15
Y2m(û) , (4.37)

then we find after substitution of the isomorphism (4.37) in Eq. (4.36)

Intûû′ =
8π

15

∫
S2

dû

∫
S2

dû′ ∑
l1l2l

c
(2)
αβ(l1l2l;x)Φ(l1l2l; û, û

′, ûx)Y2m1(û)Y2m2(û
′) .

(4.38)

Considering that the rotational invariants Φ(l1l2l; û, û
′, ûx) are given in terms of spher-

ical harmonics [see Eq. (4.35)] and since [see Appendix B]∫
S2

Y∗
l1m1

(û)Yl2m2(û)dû = δl1l2δm1m2 , and Y∗
l1m1

(û) = (−1)−m1Yl1−m1(û) ,

3The notation in Eqs. (4.33) and (4.35) represents explicitly the following [see Appendix B]:

∑
l1l2l

→
∞∑

l1=0

∞∑
l2=0

|l1+l2|∑
l=|l1−l2|

and
∑

m1m2m

→
l1∑

m1=−l1

l2∑
m2=−l2

l∑
m=−l

δm,m1+m2 .
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the integral over û and û′ in Eq. (4.38) reduces to

Intûû′ =
8π

15

4∑
l=0

l∑
m=−l

c(2)(22l;x)C(22l; 00m)Y∗
lm(ûx) . (4.39)

Equation (4.39) defines the reduced direct correlation function (independent of û and
û′) as

c̄
(2)
αβ(r− r′) =

4∑
l=0

l∑
m=−l

c
(2)
αβ(22l;x)C(22l; 00m)Y∗

lm(ûx) . (4.40)

Finally, writing Eq. (4.31) in terms of the reduced direct correlation function (4.39)
yields

βFI
ex[Q(r)] = −1

2

n∑
α=1

n∑
β=1

∫
V

dr

∫
V

dr′
ρα ρβ
4π

c̄(2)(r− r′)Qα
μν(r)Q

β
μν(r

′) . (4.41)

4.3.3 Gradient expansion of the direct correlation function

As mentioned in Chapter 3, c
(2)
αβ(r−r′) is related to the pair interaction between particles.

To gain an insight of the properties of the system and compare them with experimental
results (often obtained by small–angle X–ray or neutron scattering see e.g. Ref. [120]) it is
useful to write the direct correlation function in the Fourier space (see e.g. Ref. [88, 89]).

Here, we follow Ref. [121], to write a gradient expansion of the pair correlation
function. First we focus on the integral over r′ appearing on the right hand side of
Eq. (4.41),

J(r) =

∫
V

dr′ c̄(2)αβ(r− r′)Qβ
μν(r

′) . (4.42)

Taking the Fourier transform of Eq. (4.42),

F
{
J(r)

}
= F

{∫
V

dr′ c̄(2)αβ(r− r′)Qβ
μν(r

′)
}
, (4.43)

and after using the convolution theorem (see e.g. Ref. [122]) from Eq. (4.43) it follows

Ĵ(k) =
1

(2π)3/2
̂̄
c
(2)
αβ(k)Q̂

β
μν(k) . (4.44)

where k is the wave number and the notation f̂(k) represents the Fourier transform of
the real valued function f(r). Second, in the small wave number approximation (k ≈ 0)
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we expand
̂̄
c
(2)
αβ(k) in the series

̂̄
c
(2)
αβ(k) = Mαβ

0 +Mαβ
2 |k|2 +Mαβ

4 |k|4 +O(|k|6) , (4.45)

where Mαβ
n are expansion coefficients related to the moments of the direct correlation

function in the Fourier space [89]. Inserting (4.45) back into Eq. (4.44) we obtain

Ĵ(k) =
1

(2π)3/2

(
Mαβ

0 +Mαβ
2 |k|2 +Mαβ

4 |k|4
)
Q̂β

μν(k) . (4.46)

Back in real space the Fourier transform (4.46) corresponds to the product between the

gradient expansion of the direct correlation function and the tensor Qβ
μν , i.e.

J(r) =

∫
V

dr′
(
Mαβ

0 −Mαβ
2 ∇2 +Mαβ

4 ∇4
)
δ(r− r′)Qβ

μν(r
′) , (4.47)

where the operator∇ is taken with respect to the r′ coordinates. Finally, upon integration
of (4.47) with respect to r′ one obtains

J(r) =
(
Mαβ

0 −Mαβ
2 ∇2 +Mαβ

4 ∇4
)
Qβ

μν(r) , (4.48)

where the coefficients Mαβ
n are the moments of the expansion coefficients of the direct

correlation function given by

Mαβ
n =

1

(2π)3/2

∫
V

dx c̄
(2)
αβ(x) |x|n . (4.49)

In this analysis the properties of the mixture are parametrized only by the moments Mαβ
0 ,

Mαβ
2 and Mαβ

4 . In general, these moments depend on the thermodynamic properties
of the mixture expressed in terms of the mean number densities ρα. For example, the
k = 0 term is related to the liquid phase isothermal compressibility whereas the k = 2
and k = 4 terms are usually related with the bulk modulus of the isotropic system and
the Frank elastic constants [121].

Inserting Eq. (4.48) into the excess free energy contribution Eq. (4.41) yields:

βFI
ex[Q(r)] = −1

2

n∑
α=1

n∑
β=1

ρα ρβ
4π

∫
V

dr Qα
μν(r)

(
Mαβ

0 −Mαβ
2 ∇2 +Mαβ

4 ∇4
)
Qβ

μν(r) .

(4.50)

Equation (4.50) may be interpreted as the excess free energy cost due to the spatial
inhomogeneities of the mixture. However, as it is written it does not measure properly
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how the inhomogeneities of the tensor quantities Qα and Qβ are correlated. To this end
it is useful to re–write Eq. (4.50) in terms of gradients of the alignment tensors Qα and
Qβ .

Focusing on the integral

−
∫
V

dr Qα
μν(r)

(
Mαβ

2 ∇2 −Mαβ
4 ∇4

)
Qβ

μν(r) , (4.51)

we note that the ∇2 and ∇4 operators are acting (only) on Qβ . However, both may be
rewritten in terms of the derivatives of the product Qα : Qβ .

Focusing on second order derivatives and using Green’s tensor identity [see Ap-
pendix A]

∇2(Qα
μνQ

β
μν) = Qα

μν(∇2Qβ
μν) + 2(∇λQ

α
μν)(∇λQ

β
μν) (4.52)

+ (∇λQ
α
λν)(∇μQ

β
μν) +Qα

μν(εμγδ∇γ(εδκλ∇κQ
β
λν)) ,

equation (4.51) after integration by parts yields (where we used the property of the
Levi–Civita symbol εμγδεδκλ = δμκδγλ − δμλδκγ)

−
∫
V

drQα
μν(r)

(
Mαβ

2 ∇2
)
Qβ

μν(r) = (4.53)

=

∫
V

drMαβ
2

{(
∇λQ

α
μν∇λQ

β
μν

)
+

(
∇νQ

α
μν∇λQ

β
μλ

)
+

(
∇νQ

α
μλ∇λQ

β
μν

)}
.

Finally, the excess free energy contribution Eq. (4.41) in terms of gradients of Qα and
Qβ is

βFI
ex[Q(r)] = −

∫
V

Φex[Q(r)] dr , (4.54)

where Φex[Q(r)] is the excess contribution of the mesoscopic free energy density (per
unit volume) which in the tensor notation is

Φex =
1

2

n∑
α=1

n∑
β=1

ραρβ
4π

{
Mαβ

0

(
Qα :Qβ

)
+Mαβ

2

(∇Qα
∇Qβ
)

(4.55)

+Mαβ
2

(∇ ·Qα
) · (∇ ·Qβ

)
+Mαβ

2

(∇×Qα
)
:
(∇×Qβ

)}
.

In general each gradient term on the right hand side of Eq. (4.55) contributes differently
to the excess free energy. However, this expression indicates that in our approximation,
all distortions of the fluid (splay, twist, bend and saddle–splay) contribute equally to the
energy cost of deformation. Taking this into account Eq. (4.55) may be rewritten as

Φex =
1

2

n∑
α=1

n∑
β=1

ραρβ
4π

{
Mαβ

0

(
Qα :Qβ

)
+Mαβ

2

(∇Qα
∇Qβ
)}

. (4.56)
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4.3.4 Full free energy

As in Subsection (4.2), in the following we write the full free energy given by the sum
of ideal and excess parts FI = FI

id +FI
ex. Adding ideal (4.29) and excess (4.54) contri-

butions we get

βFI [Q(r)] =

∫
V

{
Φα
0 +Φid[Q(r)]− Φex[Q(r)]

}
dr ,

where Φα
0 , Φid[Q(r)] and Φex[Q(r)] are the ideal (4.30) and excess (4.56) contributions

of the mesoscopic free energy density (per unit volume), respectively.
In terms of the alignment tensors the mesoscopic free energy density of the system:

Φ[Q(r)] =

n∑
α=1

(
Φα
0 +Aα (Q

α : Qα)− Bα Tr (Q
α ·Qα ·Qα) + Cα (Qα : Qα)2

)

+
1

2

n∑
α=1

n∑
β=1

(
Aαβ

(
Qα :Qβ

)
+ Cαβ

(∇Qα
∇Qβ
))

. (4.57)

where the coefficients Φα
0 , Aα, Bα, Cα, Aαβ and Cαβ are given by

Φα
0 = ρα

(
ln(ραΛ

3
α)− 1

)
, (4.58)

Aα =
1

2
ρα , (4.59)

Bα =

√
30

21
ρα , (4.60)

Cα =
5

28
ρα , (4.61)

Aαβ =
ραρβ
4π

Mαβ
0 , (4.62)

Cαβ =
ραρβ
4π

Mαβ
2 . (4.63)

and the moments of the direct correlation function c̄
(2)
αβ(r − r′) in Eq. (4.49) are given

by

Mαβ
n =

1

(2π)3/2

∫
V

dx c̄
(2)
αβ(x) |x|n .

As in the case of homogeneous systems, the mesoscopic free energy density derived for
inhomogeneous systems (4.57) has the standard de Gennes form of the elastic energy [19]
in terms of an expansion in terms of the order parameters and its gradients [see Chap-
ter 2]. The main difference with the de Gennes’s approximation and our approach is that
terms with third order derivatives vanish. It is important to note that the microscopical
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information entering in Eq. (4.57) through the expansion coefficients is closely related to
the intrinsic properties of the fluid namely the number density and the moments of the
direct correlation function [see Eq. (4.49)]. We have to remark that similar expressions
of these moments are given in various previous studies in Refs. [110, 36, 123, 124] based
on a particle–fixed frame description (parallel to êz). Both descriptions are equivalent,
however, with our approach the connection with simulation analysis and experiments
may be simpler.

4.4 Comparison between mesoscopic free energies

To conclude this chapter it is necessary to discuss and establish the connection between
the full mesoscopic free energy density for homogeneous systems, Eq. (4.11)], and the
one corresponding to inhomogeneous systems, Eq. (4.57). This can be done in straight-
forwardly focusing only on the part of the free energy which depends on the orientational
order parameters Qα. With this specialization the mesoscopic free energy densities (per
unit volume), Φ[Q] are:

Homogeneous systems:

ΦH [Q] =
n∑

α=1

(
Aα(Q

α : Qα)−BαTr(Q
α ·Qα ·Qα) + Cα(Q

α : Qα)2
)

(4.64)

+
1

2

n∑
α=1

n∑
β=1

(
Aαβ(Q

α : Qβ) + Cαβ(Q
α : Qβ)2

)
,

Inhomogeneous systems:

ΦI [Q] =

n∑
α=1

(
Aα (Q

α : Qα)− Bα Tr (Q
α ·Qα ·Qα) + Cα (Qα : Qα)2

)
(4.65)

+
1

2

n∑
α=1

n∑
β=1

(
Aαβ

(
Qα :Qβ

)
+ Cαβ

(∇Qα
∇Qβ
))

,

where the coefficients appearing in Eqs. (4.64) and (4.65) are listed (for convenience)
on Table 4.1. Clearly, the first point of convergence between both expressions is that for
each independent component α terms of second, third and fourth terms of Qα appear.
This confirms that both derivations result in a Landau–like expression of the single
component system.

The coefficients appearing in Eqs. (4.64) and (4.65) depend on the number densities
of each components of the mixture and on different microscopic details. On the one hand,
for homogeneous systems the dependency of the excluded volume coefficients implies
short–range structural properties of the fluid. On the other hand, for inhomogeneous
systems the microscopic dependence on the direct correlation function of the isotropic
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Homogeneous systems Inhomogeneous systems

Eq. (4.64) Eq. (4.65)

Qα : Qα 1
2ρα + 1

10ρ
2
αGααV

αα
2

1
2ρα

Tr (Qα ·Qα ·Qα)
√
30
21 ρα

√
30
21 ρα

(Qα : Qα)2 19
28ρα + 1

18ρ
2
αGααV

αα
4

5
28ρα

Qα : Qβ 1
5ραρβGαβV

αβ
2

ραρβ
4π Mαβ

0(
Qα : Qβ

)2 1
9ραρβGαβV

αβ
4 —–

∇Qα 
∇Qβ —–
ραρβ
4π Mαβ

2

Table 4.1: Comparison of the coefficients appearing on the final forms of the mesoscopic
free energy densities for homogeneous (4.11) and inhomogeneous systems (4.57).

system implies an measure of the mean interaction of the particles. This feature is what
makes both descriptions, albeit independent, complementary.

Regarding the coupling terms between component α and component β we see that
the derivation of the mesoscopic free energy for homogeneous systems includes and

extra term of the type
(
Qα : Qβ

)2
which is evidently due to the detailed expansion

of the excluded volume interaction up 4–th rank tensors (see Section 3.3.1). On the
other hand, this term is not present on the derivation for inhomogeneous systems due
to the simple angle dependence assumption introduced in Eq. (4.20). However, what
is recovered by this assumption are terms of gradients of the alignment tensors Qα.
Therefore we conclude that both derivations do not exclude each other but are indeed
complementary and, to certain extent, reciprocal.

4.5 Summary

In this chapter we established a bridge between density functional theory and meso-
scopic Q–tensor theory. To create this link we proposed two different, but at the same
time complementary strategies. First, based on the many fluid Parson-Lee theory, we
performed an expansion of the free energy functional in powers of the Q–tensors of
each species. This procedure yields a spatially homogeneous Landau–like expression for
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the orientational part of the free energy. On the other hand, starting with an ansatz of
the one–particle densities (which assumes small deviations from the isotropic state), we
expressed the second order perturbation theory (Ramakrishnan–Youssuf approximation)
in terms of powers of Q and its gradients. The resulting expressions for the free energy
density are:

Homogeneous systems:

ΦH [Q] =
n∑

α=1

(
Aα(Q

α : Qα)−BαTr(Q
α ·Qα ·Qα) + Cα(Q

α : Qα)2
)

+
1

2

n∑
α=1

n∑
β=1

(
Aαβ(Q

α : Qβ) + Cαβ(Q
α : Qβ)2

)
,

Inhomogeneous systems:

ΦI [Q] =
n∑

α=1

(
Aα (Q

α : Qα)− Bα Tr (Q
α ·Qα ·Qα) + Cα (Qα : Qα)2

)

+
1

2

n∑
α=1

n∑
β=1

(
Aαβ

(
Qα :Qβ

)
+ Cαβ

(∇Qα
∇Qβ
))

,

where the coefficients appearing in these expressions are functions of the microscopic
properties of the system, namely, the number density, aspect ratio and, in the case of
spatially inhomogeneous systems, moments of the inter–component direct correlation
function.

The combination of microscopic (DFT) and mesoscopic descriptions makes our ap-
proach a part of the theories aiming to contribute to a scale–bridging characterization of
complex colloidal mixtures. However, the biggest restriction of our approach is that we
focused on the orientational distribution function alone. This enhances a clear qualitative
difference with classical density functional theories for fluids which describe a variety of
density driven transitions (such as demixing). In the future, it would be interesting to un-
derstand to what extent the above–mentioned expressions are preempted (or modified)
by coupling to density fluctuations.





Chapter 5

Application to binary mixtures

Athermal mixtures of non spherical particles are widely used in functional ma-
terials. These include liquid crystal displays, adaptive optic devices and switchable
windows. Typically these mixtures are characterized by their polydispersity, i.e.,
non uniform range of lengths and diameters. The lowest form of polydispersity is
constituted by binary mixtures. In this chapter we aim to connect our theoretical
approach with real systems.

There are a number of studies focusing on the equilibrium behavior of binary
mixtures [13, 14, 15, 16, 17, 18]. However, for our theoretical investigations we
focused on two of them: particle based simulations [14] and experimental mea-
surements [16]. First, based on a standard Monte Carlo simulations in Ref. [14]
the behavior of a binary mixture of Hard Gaussian particles is studied. In this
study, they observed the spontaneous formation of orientationally ordered phases
in systems of short and long molecules. On the other hand, the first experimental
observation of such phenomena is due to Purdy et al [16]. Here, for a system
composed of thin semi flexible fd–viruses and thick PEG coated fd–viruses, they
observed that as the concentration of the system is higher, a vast variety of coexist-
ing phases (isotropic–nematic, isotropic–nematic–nematic and nematic–nematic)
appear. Interestingly, for sufficiently low concentrations there is a clear separation
of an isotropic (thin–rich) and nematic (thick–rich) phases. As we can see both
studies describe systems of rigid rod–like particles with very different geometry
which develops in different quantitative results. However, the overall qualitative
behavior of both, simulations and experiments, is very similar.

5.1 Binary mixtures of hard spherocylinders

Since the derivation presented in Chapter 4 can be applied to binary mixtures of any type
of rigid anisotropic particles (as long as they are uniaxial and have head–tail symmetry),

51
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Figure 5.1: (a) Binary mixture of A (short) and B (long) molecules (in this case hard
spherocylinders) having the molecular orientations ûi and ûj . (b) Hard spherocylinders
are cylinder cape at both sides with hemispheres characterized by two geometrical pa-
rameters: their length lα and their diameter dα which defines their aspect ratio, i.e.,
κα = lα/dα.

to make a connection with real systems, in the following we focus on systems of long
and short hard spherocylinders labeled A and B for convenience [see Fig. (5.1)].

Hard spherocylinders are characterized by two geometrical parameters, their length
lα and their diameter dα, defining their aspect ratio κα = lα/dα. The resulting particle
volume is

vα =
π

12
(3κα + 2)d3

α .

Between a couple of spherocylinders the excluded volume Vexc(γ) [defined in (3.50)] is
given by

Vexc(γ) =
π

4
(καd

3
α + κβd

3
β) +

π

4
dαdβ(dα + dβ) sin γ +

π

4
(καdαd

2
β + κβdβd

2
α)| cos γ|

+ κακβdαdβ(dα + dβ) sin γ + (καdα + κβdβ)dαdβE(sin γ) , (5.1)

where E(sin γ) denotes the complete elliptic integral of the second kind. Within the
original Onsager theory, only terms up to linear order in sin γ are considered; that is, the
terms involving | cos γ| and E(sin γ) are neglected. In the present work we keep the full
expression (5.1).

5.1.1 Orientational free energy

To calculate the resulting expansion coefficients V αβ
k which are defined in (4.5) and

which determine the coefficients appearing in the free energy [see (4.13–4.15)], we derive

the following analytic expressions for the coefficients V αβ
k , k = 0, 2, 4, appearing in the

expansion of Vexc(γ) in Legendre polynomials [see equations (4.4–4.5)]. To this end we
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expand the functions | cos γ| and E(sin γ) in Eq. (5.18) up to fourth order in sin γ,
yielding

| cos γ| = (1− sin γ)1/2 = 1− 1

2
sin2 γ − 1

8
sin4 γ +O(6) , (5.2)

and

E(sin γ) =
π

2
− π

8
sin2 γ − 3π

128
sin4 γ +O(6) . (5.3)

Neglecting the term O(6), the excluded volume becomes

V O(4)
exc (γ) =

π

4
c1 +

π

4
c2 sin γ +

π

4
c3

(
1− 1

2
sin2 γ − 1

8
sin4 γ

)
+ c4

(
π

2
− π

8
sin2 γ − 3π

128
sin4 γ

)
+ c5 sin γ , (5.4)

where the constants ci depend on the aspect ratio and diameters of the particles and
are

c1 = καd
3
α + κβd

3
β , c2 = dαdβ(dα + dβ ,

c3 = καdαd
2
β + κβdβd

2
α , c4 = (καdα + κβdβ)dαdβ

c5 = κακβdαdβ(dα + dβ) . (5.5)

We note that the coefficients c3 and c4 vanish within the original Onsager approach [24].
Starting from Eq. (5.4), we can now employ Eq. (4.5) to calculate the expansion

coefficients of interest (k = 0, 2, 4):

V αβ
k =

2k + 1

2

∫ π

0
dγ V O(4)

exc (γ)Pk(cos γ) sin γ . (5.6)

Using P0(cos γ) = 1 and performing the angular integral, we obtain the zero–order
coefficient

V αβ
0 =

π

4
c1 +

π2

16
c2 +

3π

20
c3 +

97π

240
c4 +

π

4
c5 . (5.7)

To calculate V αβ
2 we use that P2(cos γ) =

1
2(3 cos

2 γ − 1). Since∫ π

0
dγ P2(cos γ) sin γ = 0 , (5.8)

all linear functions of sin γ do not contribute to the coefficient. However, powers of sin γ
do contribute since ∫ π

0
dγ sin γ P2(cos γ) sin γ = − π

16
, (5.9)∫ π

0
dγ sin2 γ P2(cos γ) sin γ = − 4

15
, (5.10)∫ π

0
dγ sin4 γ P2(cos γ) sin γ = − 32

105
. (5.11)
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Inserting these results into (5.6) with k = 2 we obtain

V αβ
2 = −5π2

128
c2 +

3π

28
c3 +

17π

168
c4 − 5π

32
c5. (5.12)

The coefficients V αβ
4 involve the Legendre polynomial P4(cos γ) =

1
8(35 cos

4 γ−30 cos2 γ+
3). We find that integrals involving linear and cubic terms in sin γ vanish whereas the
other integrals give non-zero results. Specifically,∫ π

0
dγ sin γ P4(cos γ) sin γ = − π

128
, (5.13)∫ π

0
dγ sin4 γ P4(cos γ) sin γ =

16

315
. (5.14)

With this we finally obtain

V αβ
4 = − 9π2

1024
c2 − π

140
c3 − 3π

560
c4 − 9π

256
c5 . (5.15)

It is worth noting that, since the aspect ratio and the diameter are always positive, the
coefficients ci must be positive as well. It follows that V αβ

4 is always negative, whereas

the sign of V αβ
2 depends on the combination of sizes. This is different from standard

Onsager theory where c3 = c4 = 0 and thus, V αβ
2 is always negative.

Focusing only on the binary mixture (where the components are labeled A and B)
and on the part of the free energy which depends on the orientational order parameters,
that is,

βFor

V
= βF [Q]/V − (FA

0 + FB
0 + FAB

0 ) , (5.16)

where the terms on the right side are defined in equations (4.12 and (4.13), respectively.
We further specialize on situations where the hard spherocylinders have equal diameters,
i.e., dA = dB = d, but different aspect ratios, κA �= κB. This allows to introduce a
dimensionless form of the orientational free energy, F or = βFord3/V , and the reduced
densities ρ∗α = ραd

3. With these assumptions, the orientational free energy of a binary
mixture of hard spherocylinders becomes

F or = F or[ρ∗, κ;Q]

=
∑

α=A,B

{
Aα(Q

α : Qα)−BαTr(Q
α ·Qα ·Qα) + Cα(Q

α : Qα)2
}

−AAB(Q
A : QB)− CAB(Q

A : QB)2 , (5.17)
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where the coefficients Aα, Bα, ρα, AAB and CAB, depend on {ρ∗α}, {κα} and are

Aα =
1

2
ρ∗α − 1

10
ρ∗2α

(
5π2

64
− 5π

12
κα +

5π

16
κ2α

)
Gαα , (5.18)

Bα =

√
30

21
ρ∗α (5.19)

Cα =
19

28
ρ∗α − 1

18
ρ∗2α

(
9π2

512
+

π

40
κα +

9π

128
κ2α

)
Gαα , (5.20)

AAB =
1

5
ρ∗Aρ

∗
B

(
5π2

64
− 5π

24
(κA + κB) +

5π

32
κAκB

)
GAB , (5.21)

CAB =
1

9
ρ∗Aρ

∗
B

(
9π2

512
+

π

80
(κA + κB) +

9π

256
κAκB

)
GAB . (5.22)

An explicit expression for the quantities Gαβ in equations (5.18–5.22) results from a
generalization of the Carnahan–Starling theory for HS systems to mixtures [125, 126],
yielding [35]

Gαβ =
4− 3(ρ∗ανα + ρ∗βνβ)
4(1− ρ∗ανα − ρ∗βνβ)2

, (5.23)

where να = vα/d
3.

5.2 Isotropic–Nematic transition

As a background for our later discussion of mixtures under shear we first investigate the
isotropic–nematic transition in equilibrium. Specifically, we are interested in the stability
of the two phases in dependence of the densities and aspect ratios.

As mentioned in detail in Chapter 2, in equilibrium one expects a uniaxial ne-
matic phase described by a single director, n, characterizing the preferred alignment
of the rods [82, 127].For uniaxial alignment, the second rank tensor reduces to Qα =√

3
2q

α〈 nn 〉, where qα is the eigenvalue related to n. An important remark is that the

products appearing in (5.17) become

Tr(Qα ·Qβ) = qαqβ and Tr(Qα ·Qα ·Qα) = qα
3
/
√
6 .

By definition of the second rank tensor [see Eq. (4.1) with k = 2] the eigenvalues qα

are related to the well known Maier–Saupe order parameter S2 via qα =
√
5S2 [22].

As a further simplification, we focus on the semi–dilute regime corresponding to low
densities. Physically, this implies that the particles have few contacts [128] and that
long–range hydrodynamic interactions are negligible [129]. On a more formal level, the
low–density limit implies that the contact values of the pair correlation functions tend
to one, and the same holds for their density averages.
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Mathematically, this limit corresponds to Gαβ → 1. Still, even for this simplification,
the mesoscopic theory we develop provides reliable results (in comparison to particle–
based simulations [108]) in the range κ = 20–40 (as we will demonstrate below for the
case of a one–component system). Although the choice Gαβ = 1 corresponds to that
in the original Onsager theory [24], the present orientational free energy functional is
different due to the treatment of the coefficients in the excluded volume.

5.2.1 Single component system

To compare our approach against literature results, we initially consider the case of a
one–component system. The orientational free energy then reduces to the well–known
Landau free energy [19]

F or = A(ρ∗, κ)q2 − B(ρ∗)√
6

q3 + C(ρ∗, κ)q4 , (5.24)

where the coefficients now depend on the aspect ratio and the density. From Eq. (5.24),
we find the three stationary solutions (determined by dF or/dq = 0)

q0 = 0 , (5.25)

q± =

√
6B

16C

(
1±

√
1− 64AC

3B2

)
. (5.26)

As usual, the isotropic phase becomes globally unstable (i.e., d2F or/dq2|q0 < 0) when
the second–order coefficient A(ρ∗, κ) changes sign from positive and negative. In terms
of the density, this implies that within the stable or meta stable isotropic phase,

ρ∗ < 5

(
5π2

64
− 5π

12
κ+

5π

16
κ2
)−1

. (5.27)

Directly at A = 0, the nematic state already exists as a meta stable state. The cor-
responding value of the order parameter follows from Eq. (5.26) as qc =

√
6B/8C.

Further, from the second derivative evaluated at q+ one finds that the nematic state
becomes globally unstable (d2F or/dq2|q± < 0) when A > 3B2/64C. The free energies
F or(q0) and F or(q+) become equal at

AIN =
B2

24C
, (5.28)

The resulting order parameter at isotropic–nematic coexistence is given by

q0 =

√
6B

12C
. (5.29)

This simple analysis provides straightforward relations between the density, ρ∗, and the
aspect ratio, κ. In Fig. 5.2 we visualize the stability ranges following from the above
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Figure 5.2: Isotropic–nematic transition of a system of hard spherocylinders with aspect
ratios between 20 and 60. The (red) squares correspond to the lower limit of the density
ρ∗ given by inequality (5.30), while (green) down–triangles are the numerical solutions
of the relation A = 3B2/64C. For comparison, the (blue) circles and up–triangles
correspond to data for the isotropic–nematic phase coexistence from Gibbs ensemble
simulations of Bolhuis et al, see [108].

analysis where the axes are given by the density and the aspect ratio. In Fig. 5.2, the
(red) � line represents the boundary of (meta–)stability of the isotropic state, determined
by the maximal density fulfilling the inequality (5.27), as function of κ. On the other
hand, the (green) � line indicates the solutions of the relation A = 3B2/64C for a given
value of κ. This line can be seen as the upper boundary of the stable isotropic state.

For smaller aspect ratios, we compare the stability limits with the coexistence densi-
ties of isotropic and nematic phases (plotted in (blue) • and �) obtained by Bolhuis et
al in Ref. [108]. We find that two sets of data agree reasonably well. Analytically, in the
limit of very large aspect ratios, κ > 80, our theoretical description is consistent with
Onsager’s second virial theory [24]. However, for smaller aspect ratios (10 < κ < 20) the
analytic calculations are very dissimilar, as we can see when they are compared to the
Gibbs ensemble simulations [see Ref. [108]]. A very important remark is that the orien-
tational free energy Eq. (5.24) can, by definition, not predict the coexistence densities,
since we neglected the densities ρα as order parameters.

5.2.2 Binary mixture

Depending on the overall density and concentrations, binary mixtures of particles with
different aspect ratios can exhibit a very rich phase behavior [16, 33]. As mentioned
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Figure 5.3: State diagrams for a mixture of long and short hard spherocylinders with
uniaxial ordering. The nematic ordering is marked with (•), whereas (×) denotes an
isotropic state. In the limit where xB = 0 these diagrams coincide with the one compo-
nent results portrayed in Fig, (5.2).

before, in order to calculate full phase diagrams, including first–order coexistence regions
in density space, one would have to consider the full free energy given in equations (3.47–
3.50). Here we restricted ourselves to computing orientational state diagrams of the
binary mixture by minimizing the orientational part of the free energy, F or, with respect
to the uniaxial order parameters qA and qB. The state diagrams hereby presented are
evaluated in the plane spanned by the total density ρ∗ = Nd3/V and concentration
xα = Nα/N (such that ρ∗α = Nd3xα/V = ρ∗xα is the density of component α). We
focus on two mixtures characterized by aspect ratios also occurring in real systems [16].

The methodology is the following. Using a standard Newton–Raphson minimization
algorithm, we search for values of qA and qB corresponding to minima of F or. We then
evaluate the orientational free energy at these points and determine the minimum value,
min{F or}. In the case that min{F or} = 0 the isotropic phase is stable whereas if
min{F or} �= 0 a nematic state exists. The result of this procedure is shown in Fig. 5.3.

In both diagrams, Figs. 5.3.(a) and (5.3.(b), we see that for relatively low densities,
ρ∗ ∼ 0.005, the isotropic state is stable for all concentrations. As the total density of the
system increases, the isotropic phase becomes unstable with respect to the nematic, and
for sufficiently high densities, ρ∗ ∼ 0.020, the system is in the nematic state irrespective
of the concentration.
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As expected, the mole fraction of long spherocylinders plays an important role for
the location of the transition. This is observed by focusing on a constant density value,
ρ∗ ∼ 0.010 in Fig. 5.3.(b). For xB = 0.2 the nematic phase does not exist, but as xB
increases, xB = 0.8, the nematic state appears. In the limiting case where xB = 0 the
results coincide with the one component system presented in Fig. 5.2.

Clearly, it would be very interesting to compare the equilibrium behavior found here
to that of real systems. However, to our knowledge, experimental results have only be
reported on binary mixtures of fd–viruses with equal length and different diameters [16].
This is different from the mixture of rods with different lengths and equal diameters
considered in Fig. 5.3. One could apply the present theory also to the case of hard
spherocylinders of equal length and different diameters only by re-scaling the number
densities by the length (instead of the diameter) of the particles and recalculating the
excluded volume coefficients in equations (5.21–5.25).

5.2.3 Scaled free energy

Here we make emphasis on the case of different length with the final motivation of
analyze and characterize of the non–equilibrium behavior of rod–disk mixtures such as
(models of) blood [44]. However, for the subsequent analysis of sheared systems it is
convenient to re–write Eq. (5.17) into a dimensionless form using an appropriate scaling
of the free energy. In principle, different scalings are possible. Here we follow the strategy
used in earlier studies [57, 80, 23, 22] of one–component systems.

To develop a proper scaling, let us introduce the scaled alignment tensors, Q̃α and
the scaled free energy, F or

ref , given by

Q̃α =
Qα

qα0
and F̃ or =

F or

F or
ref

(5.30)

where qα0 is the coexistence value of the uniaxial order parameter of the corresponding

one–component system given in Eq. (5.29), and F or
ref = 2CAB

(
qA0 q

B
0

)2
. In the latter

expression, CAB is the coupling coefficient of the fourth–order term (QA : QB)2 of the
free energy (5.17).

To simplify the expression for the scaled free energy resulting from inserting Eq. (5.30)
into Eq. (5.17), we make the following assumptions. First, we set the coefficients Bα

and Cα [see equations (5.19) and (5.20), respectively] equal to their (positive) values
at I–N coexistence of the one–component system, that is,

Bα = Bα(ρ
∗
αIN

) and Cα = Cα(ρ
∗
αIN

, κα) , (5.31)

where the densities ρ∗αIN
are calculated by solving Eq. (5.31). Thus, we henceforth

neglect changes of Bα and Cα with ρα. We further suppose that the fourth–order
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coefficient of the one–component system, CA and CB, are related to CAB via

CAB = CA

(
qA0
qB0

)2

= CB

(
qB0
qA0

)2

. (5.32)

Equation (5.32) implies that for given values of κα and ρ∗α, |C2
AB −CACB| = 0. To test

this assumption for a representative example, we consider a binary mixture in the nematic
state (ρ∗ = 0.002) where 30% of the particles have an aspect ratio κA = 20 and the
others have an aspect ratio κB = 25. In this case we find |C2

AB−CACB| ≈ 3.79×10−7,
which makes our ansatz plausible.

With the simplifications (5.31–5.32), the scaled version of the orientational free
energy [see Eq. (5.17)] becomes

F̃ or[Q̃A, Q̃B] =

B∑
α=A

{Θα

2
(Q̃α : Q̃α)−

√
6Tr(Q̃α · Q̃α · Q̃α)+

1

2
(Q̃α : Q̃α)2

}
− ΘAB

2
(Q̃A : Q̃B)− 1

2
(Q̃A : Q̃B)2 . (5.33)

In Eq. (5.33), the coefficients Θα of the second–orders term are given by

Θα = 24
Aα(ρ

∗
α, κα)Cα(ρ

∗
αIN

, κα)

Bα(ρ∗αIN
)2

=
Aα(ρ

∗
α, κα)

AIN (ρ∗αIN
, κα)

, (5.34)

which shows the explicit dependence of Θα on the composition (that is, on ρα) and
κ. The remaining coefficient ΘAB is a positive quantity which is depends not on the
composition, but only on the aspect ratios. Explicitly,

ΘAB =
9
[
5π2

64 − 5π
24 (κA + κB) +

5π
32κAκB

]
5
[
9π2

512 + π
80(κA + κB) +

9π
256κAκB

]
qA0 q

B
0

. (5.35)

In the limiting case of the one–component system, the scaled free energy (5.33) reduces
to the corresponding expression given in [57, 80, 23, 22].

Analysis of the scaled free energy

To better understand the properties of the scaled free energy we consider, first, the
explicit density dependence of the coefficients Θα appearing in front of the quadratic
powers of Q̃α [see Eq. (5.34)]. As an illustration, we show in 5.4 numerical results for
an equimolar binary mixture and three values of the aspect ratio (note that each Θα

depends only on κα).
In Fig. 5.4, one observes the same qualitative behavior irrespective of the actual

value of κ: the coefficient Θα first increases with density and then reaches a maximum,
after which it monotonically decreases and changes sign from positive to negative. This
change of sign is expected (within the Landau picture) for a system displaying a phase
transition. The corresponding density is the smaller, the larger κ.
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Figure 5.4: Relation of Θα versus the reduced density, given by Eq. (5.34), for equimolar
binary mixtures (xA = xB = 0.5) and different aspect ratio. The coexistence densities
ρ∗αIN

are given by the roots of Eq. (5.31).

To examine the relation between the sign of Θα and the mixture’s stability, we
consider the case of uniaxial order. In this case 5.33 reduces to

F̃ or
uni =

B∑
α=A

{Θα

2
q̃2α − q̃3α +

1

2
q̃4α} −

ΘAB

2
q̃Aq̃B − 1

2
q̃2Aq̃

2
B , (5.36)

where q̃α = qα/q
α
0 . The stability of a minimum q̃ can be determined using the Hessian

matrix [122, 130] given by

H(q̃A, q̃B) =

⎛⎝ ΘA − 6q̃A + 6q̃2A − q̃2B −ΘAB
2 − 2q̃Aq̃B

−ΘAB
2 − 2q̃Aq̃B ΘB − 6q̃B + 6q̃2B − q̃2A

⎞⎠ (5.37)

evaluated of the minimum. We now focus on the stability of the isotropic state, q̃t =
(0, 0). Stability then requires that the two eigenvalues or, alternatively, the two diagonal
elements Θα and the determinant

det[H(q̃t)] = ΘAΘB − Θ2
AB

4
> 0, (5.38)

are positive (where we recall that ΘAB is a positive quantity). An illustration of the
regions of stability of the isotropic phase in the ΘA–ΘB plane at fixed ΘAB is portrayed
in Fig. 5.5.



62 Chapter 5. Application to binary mixtures

(a)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ΘA

Θ
B

Unstable

Isotropic
(b)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ΘA

Θ
B

Unstable

Isotropic

Figure 5.5: Stability regions of the isotropic state (q̃t = (0, 0)) according to (5.38). The
values of ΘAB are (a) ΘAB = 0.50 and (b) ΘAB = 1.50.

From Fig. 5.5 we notice that q̃t is locally stable for ΘA,ΘB � 0.5 and locally
unstable for ΘA,ΘB � 0.5. This areas are marked by the white striped and solid blue
portions, respectively. The center solid green area denotes values where (5.38) is negative
and thus q̃t is locally meta stable. The larger ΘAB, the smaller is the region where the
isotropic state is a minimum of the free energy.

It seems straightforward to repeat the same analysis for free energy minima cor-
responding to nematic states (qA �= 0, qB �= 0). However, in that context we face a
problem already discussed in the context of one–component systems [63, 61], which con-
cerns the bounds of possible values. This can be seen as follows: The order parameters
qA and qB are related to the Maier–Saupe order parameter S2 by qα =

√
5S2 [22].

Since S2 is defined within the range −1/2 ≤ S2 ≤ 1. The bounds of the correspond-
ing scaled order parameters, qA and qB, involve the factor 1/qα0 . Using Eq. (5.32) and
the values of the coexisting densities ρ∗αIN

given by the roots of Eq. (5.31), we find that
the scaled order parameters are defined in the range

− 1.30 � qα � 2.60 . (5.39)

However, free minimization of the scaled free energy Eq. (5.33) does not automatically
respect these bounds; rather it yields, for a range of parameters, nematic minima outside
the allowed domain. To solve this problem, one could consider an ”amended” version
of the free energy, similar to what has been done for one–component systems [63, 61].
However, this would go beyond the scope of the present work.

Given the simplifications involved in our scaling of the free energy, another question
that arises is to which extent the stability conditions for the isotropic phase found here
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Fig. 5.3.(a) Fig. 5.3.(b) Eq. (5.38)

ρ∗ Θα Θα det[H(q̃t)]

(10−2) κA = 20 κB = 25 κA = 24 κB = 25

0.50 0.599 0.825 0.783 0.825 + Isotropic

1.00 0.929 0.973 0.995 0.973 + Isotropic

1.75 0.918 -0.073 0.239 -0.073 - Unstable

2.00 0.779 -0.759 -0.298 -0.759 - Unstable

ΘAB = 1.203 ΘAB = 1.223

Table 5.1: Numerical values of the constants ΘA, ΘB and ΘAB for equimolar binary
mixtures (xA = xB = 0.5). This values correspond to different points in the phase
diagrams in figures 5.3(a–b) and are calculated using Eq. (5.34) and Eq. (5.35).

are consistent with our earlier results obtained by minimization of the unscaled free
energy [see Fig. 5.3]. To solve this, in Table (5.1) we summarize a simple evaluation
of the quantities Θα for several state points in the diagrams plotted in Fig. 5.3, which
shows consistency of unscaled and scaled free energy.

5.3 Elastic energy

In this section we turn to the elastic energy of the binary mixture. As mentioned at
the end of Chapter 4 the difference between the mesoscopic free energy for homoge-
neous systems (4.64) and the one for inhomogeneous systems (4.65) is that in the later
terms of gradients of the alignment tensor Q are taken into account. These additional
terms correspond to the so–called elastic free energy or distortion free energy, For

e [∇Q].
Focusing on this contribution we have

For
e = DAA

(∇QA
∇QA
)
+DBB

(∇QB
∇QB
)
+DAB

(∇QA
∇QB
)
, (5.40)

where the Dαβ coefficients are given by

DAA =
ρ2A
4π

MAA
2 , DBB =

ρ2B
4π

MBB
2 and DAB =

ρAρB
4π

MAB
2 . (5.41)

and Mαβ
2 are the moments of the direct pair correlation function [see Chapter 4]:

Mαβ
2 =

1

(2π)3/2

∫
V

dx c̄
(2)
αβ(x) |x|2 .
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5.3.1 Oseen–Frank theory

As mentioned in Chapter 2, the Landau–de Gennes theory [19] couples phenomenological
elastic coefficients L with the well known Frank elastic constants Kij . In the one–
constant approximation [19] this relation is given by

L =
1

2S2
eq

K , (5.42)

where Seq is the equilibrium uniaxial order parameter of the single component fluid [81].
In analogy with this we propose that

Dαβ =
1

4 qα0 qβ0
Kαβ , (5.43)

where qα0 is the coexistence value of the uniaxial order parameter in Eq. (5.29). Substi-
tution of Eq. (5.41) in Eq. (5.43) leads to

Kαβ =
ραρβ
4π

qα0 qβ0

(2π)3/2

∫
V

dx c̄
(2)
αβ(x) |x|2 , (5.44)

Doing so, we obtained the Frank elastic constants Kαβ of the binary mixture in the
one–constant approximation. Comparing to previous studies (see e.g. Refs. [41, 32] and
references therein) the aforementioned elastic constants are given in terms of the direct
pair correlation function measured in the isotropic phase and the coexistence values
of the uniaxial order parameter of the one component fluid, instead of the direct pair
correlation function of the undistorted nematic phase [41, 32]. As it is, Eq. (5.44) is an
approximation that relates weak distortions of the nematic phase to the the isotropic
fluid.

As a further simplification, as before, we may assume that the diameter of the
molecules is such that dα = dβ = d, we may write the dimensionless elastic energy F or

e

in terms of the reduced densities ρ∗α = ραd
3 viz:

F or
e =

ξ2AA

2

(∇QA
∇QA
)
+

ξ2BB

2

(∇QB
∇QB
)
+

ξ2AB

2

(∇QA
∇QB
)
, (5.45)

where ξαβ are the elastic correlation length coefficients given in terms of the Frank
elastic constants as

ξ2αβ =
Kαβ

2qα0 qβ0 d3
. (5.46)

In general ξαβ is given in terms of the pitch of the cholesteric which determines the
typical length scale associated to the helical periodicity. The pitch length is normally on
the order of hundreds or thousands times the particle length. However, a unified picture
which links microscopic and macroscopic chirality is still to be achieved since it is clear
that the relation between pitch and elastic constants depends on both the single-particle
properties and the thermodynamic state of the system [131].
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5.4 Summary

In this chapter we developed a theory suitable for the description of isotropic and nematic
phases of binary mixtures of hard spherocylinders in thermodynamic equilibrium. We
started from the general expressions of the mesoscopic theory obtained in Chapter 4 and
specialize our description to the semi–dilute regime reaching similar expressions to the
well–known Landau–de Gennes theory. The resulting expression for the orientational free
energy is then:

F or=

B∑
α=A

{
Aα(Q

α : Qα)−BαTr(Q
α ·Qα ·Qα) + Cα(Q

α : Qα)2
}

−AAB(Q
A : QB)− CAB(Q

A : QB)2 ,

where the coefficients Aα, Bα, ρα, AAB and CAB are

Aα =
1

2
ρ∗α − 1

10
ρ∗2α

(
5π2

64
− 5π

12
κα +

5π

16
κ2α

)
Gαα ,

Bα =

√
30

21
ρ∗α

Cα =
19

28
ρ∗α − 1

18
ρ∗2α

(
9π2

512
+

π

40
κα +

9π

128
κ2α

)
Gαα ,

AAB =
1

5
ρ∗Aρ

∗
B

(
5π2

64
− 5π

24
(κA + κB) +

5π

32
κAκB

)
GAB ,

CAB =
1

9
ρ∗Aρ

∗
B

(
9π2

512
+

π

80
(κA + κB) +

9π

256
κAκB

)
GAB .

To validate our theory, we further analyze mixtures characterized by molecules hav-
ing equal diameters and different length as in Ref. [14] (opposed to the experimental
realizations of ”thick–thin” mixtures of fd–viruses having equal length and different
diameters [16]). Our numerical calculations show that even for the one–component sys-
tem, there is an reasonable agreement with the coexistence densities obtained by Gibbs
ensemble simulations [108]. In case of binary mixtures we did not resolve a full phase
diagram of the system. However, we calculate a state diagram which can be use to give
some predictions of the overall behavior of the mixture.

At the end of this chapter we briefly discuss the Oseen–Frank elastic theory and
its relation with the mesoscopic free energy density of distortion for a binary mixture.
We show how after a simple assumption it is possible to write an expression similar to
the well–known Frank elastic constants in terms of the direct correlation function. The
resulting expression is given in of gradients of Q viz

F or
e [∇Q] =

ξ2AA

2

(∇QA
∇QA
)
+

ξ2BB

2

(∇QB
∇QB
)
+

ξ2AB

2

(∇QA
∇QB
)
,
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where ξαβ are the elastic correlation lengths

ξ2αβ =
Kαβ

2qα0 qβ0 d3
where Kαβ =

ρ∗αρ∗β
4π

qα0 qβ0

(2π)3/2

∫
V

dx c̄
(2)
αβ(x) |x|2

where Kαβ are the Frank elastic coefficients of the weakly distorted nematic phase. As
in the case of homogeneous systems, this relation may be used to further character-
ize the material and to provide a first approximation to link between microscopic and
macroscopic chirality. However, we should point out that at this level of simplification
the material is only defined by a small number of quantities which may not be enough
to fully parametrize any material.



Chapter 6

Dynamic equations and
constitutive relations for binary
mixtures

The non–equilibrium phenomena associated with the molecular orientation of
anisotropic fluids is coupled with the exchange of mass, energy and momen-
tum. However, due to its molecular structure, a proper description of their dy-
namic properties requires a measure of the rotational degrees of freedom of the
molecules. Such description can be done in different levels: in terms of single–
particle models where each particle is described by the set {ri(t), φi(t)} (Jef-
fery orbits [132]); in terms of probability distribution functions p(r, φ, t) (Fokker–
Planck equation [80, 133], Dynamical Density Functional theory [100, 134]); or, in
terms of the evolution of macroscopic variables, like the nematic director n(r, t)
(Ericksen–Leslie theory [135, 136]) or the alignment tensor Q(r, t) (Doi–Hess
theory [57, 137]). In this chapter we aim to extend the later description for bi-
nary mixtures employing our equilibrium theory and the basic concepts of linear
irreversible thermodynamics.

6.1 General remarks

The Doi–Hess theory [57, 80] of irreversible processes in liquid crystals is based on
the local equilibrium hypothesis. This hypothesis states that all equilibrium thermo-
dynamic relations are valid for the thermodynamic variables assigned to an elemental
volume [138]. Thus, individual molecules are ignored and the fluid consists of continu-
ous matter. Hence, all thermodynamic variables like temperature, internal energy U and

67



68 Chapter 6. Dynamic equations and constitutive relations for binary mixtures

entropy S are given in terms of field variables, i.e.,

T = T (�r, t) , U(t) =

∫
V
� u(�r, t)dV , S(t) =

∫
V
� s(�r, t)dV , (6.1)

where � is the mass density of the fluid and the field variables u(�r, t), s(�r, t) are the
specific internal energy and entropy, respectively. Consequently, the thermodynamics of
irreversible processes is a continuum theory treating the state parameters of the system
as field variables [105, 139].

For fluids with internal degrees of freedom the general assumption of the Doi–Hess
theory [57, 80] is that the thermodynamic functions, such as specific internal energy,
specific volume and specific entropy, depend on the alignment. Further, these quantities
may be decomposed in two parts: one that is independent on the alignment (0) and the
other which vanishes in the absence of it (a). Thus,

u = u0 + ua(Q) , �−1 = �−1
0 + �−1

a (Q) , s = s0 + sa(Q) . (6.2)

Under this assumption the Gibbs fundamental relation [57] is

Tds = du+ pd�−1 −
(
∂ ga(Q)

∂Q

)
dQ , (6.3)

where ga(Q) is the specific Gibbs free energy associated with the alignment

ga = ua + p�−1
a − Tsa . (6.4)

Commonly, ga is associated with the alignment tensor and its gradients [57],

ga = ga(Q,∇Q) . (6.5)

6.2 Extension to binary mixtures

In order to extend the treatment of irreversible thermodynamics to a binary mixture
several modifications of the standard theory are needed 1. First, we assume that we
have an homogeneously mixed system, i.e. every element of volume has the same mass
density � = m/V where m is the mass of the mixture.

Firstly, in the standard theory [57, 23], the Gibbs free energy of alignment is given
by a dimensionless form of the sum of the Landau–de Gennes potential (2.17) with the
energy of distortion (2.23) [see Chapter 2] with a proportionality factor. For the binary
mixture we assume that ga(Q,∇Q) is given in terms of the free energy density functional
F or[Q,∇Q] = F or[Q] + F or

e [∇Q],

ga(Q,∇Q) =
kBT

m
F or[Q,∇Q] . (6.6)

1For an alternative derivation, please refer to Henning Reinken’s Master’s thesis [71].
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where F or and F or
e are given by

F or[Q] =
B∑

α=A

{
Aα(Q

α : Qα)−BαTr(Q
α ·Qα ·Qα) + C(Q

α : Qα)2
}

−AAB(Q
A : QB)− CAB(Q

A : QB)2 , (6.7)

F or
e [∇Q] =

ξ2AA

2

(∇QA
∇QA
)
+

ξ2BB

2

(∇QB
∇QB
)
, (6.8)

where Aα, Bα, ρα, AAB and CAB are given by Eqs. (5.18)–(5.22) in the semi–dilute
regime [see Chapter 5 Sect. 5.2] and ξ2αα by Eq. (5.46). Notice that in Eq. (6.8) terms
carrying the coupling

(∇QA
∇QB
)
are not taken into account. This might corresponds

to weak distortions of the coexisting nematic state. This assumption is similar to the one
adopted in Ref. [133] which is based in the mean field potential approximation. Thus,
the coupling between component A and component B is only carried out through terms
containing the products (QA : QB) appearing in Eq. (6.7).

Finally, from Eq. (6.6), taking into account the concentration xα (μα chemical po-
tential) of the components in the mixture, the Gibbs fundamental relation (6.3) for the
binary mixture is

Tds = du+ pd�−1 +
B∑

α=A

μαdxα − kBT

m

B∑
α=A

∂F or[Q,∇Q]

∂Qα
dQα . (6.9)

6.2.1 Gibbs fundamental relation

In the non–equilibrium situation, the thermodynamic variables are functions of time and
thus the Gibbs fundamental relation becomes [57]

T
ds

dt
=

du

dt
+ p

d�−1

dt
+

B∑
α=A

μα
dxα
dt

− kBT

m

B∑
α=A

∂F or

∂Qα

dQα

dt
. (6.10)

The quantities dA/dt are known as thermodynamic fluxes and measure the rate of
change of A due to the different transport processes occurring in the system. To link
transport processes with thermodynamic fluxes a set of constitutive equations is needed.
For example, disregarding spatial inhomogeneities, one of the simplest (non–trivial) con-
stitutive equations for the alignment tensors is

dQα

dt
= −ταQ

α , (6.11)

where τα is the relaxation time of the alignment of the system towards equilibrium. This
equation describes the simple exponential relaxation of the alignment of component
α in the absence of orienting fields or flows. However, Eq. (6.11) is an oversimplified
assumption and in reality it may be more complicated depending on the effects of flow
or external fields.
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6.2.2 Conservation laws and balance equation

From the standpoint of the theory of irreversible processes, the constitutive equations
are obtained from local conservation laws, particularly conservation of mass, momentum,
internal energy and angular momentum). In isothermal conditions the conservation of
mass, momentum and internal energy for the mixture are:

�
dxα
dt

+∇ · Jα = 0 , (6.12)

�
dv

dt
−∇ ·Ttot = 0 , (6.13)

�
du

dt
−Ttot : ∇v = 0 . (6.14)

As it is common in continuum theories, d/dt denotes the material derivative given by

d

dt
≡ ∂

∂t
+ v · ∇ . (6.15)

In Eqs. (6.12)–(6.14) v(r, t) is the flow velocity, Ttot is the total stress tensor and Jα

is the diffusion flux of the component α with concentration xα.

A key quantity used for the study of the hydrodynamic properties of the mixture is
the stress tensor Ttot. The total stress tensor can be written as

Ttot = −pα+Tasy + T , (6.16)

where the first term represents the (isotropic) hydrostatic pressure and the two other
terms describe flow–induced effects [57]. The antisymmetric part of the stress tensor,
Tasy, relates the angular momentum of the particles with the velocity field v. For liquid
crystals (and other colloidal systems) the angular relaxation times are much smaller than
the collective orientational order relaxation rate [140] and therefore Tasy is usually set
to zero. In fact, in Newtonian flow regimes Tasy naturally vanishes [22, 63]. However,
as we will see in the following section, the remaining contribution of the stress tensor

T does not vanish and in fact is associated with the alignment tensors Qα.

The time dependence of the alignment tensors Qα is described by balance equations
which couple the dynamics of the alignment with the velocity field v. Following the
ansatz of Hess–Pereira [57, 58] and disregarding non–convective flow of alignment we
assume

dQα

dt
= 2 Ω ·Qα + 2σ Γ ·Qα +

(
δQα

δt

)
irr

, (6.17)

where Ω = (1/2)(∇vT − ∇v) and Γ = (1/2)(∇vT + ∇v) are the flow vorticity and
deformation, respectively. In Eq. (6.17), (δQα/δt)irr represents the production and decay
of alignment due to irreversible processes [57, 23, 58].
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Finally, for the theory of non–equilibrium thermodynamics the so–called balance
equation for the entropy plays a central role. This equation reads:

�
ds

dt
+∇ · Js =

(
δs

δt

)
irr

≥ 0 . (6.18)

Equation (6.18) expresses the fact that the entropy of a volume element changes in
time for two reasons: it changes because entropy flows into the volume element with a
rate Js; and because there is an entropy source due to irreversible phenomena inside the
volume element, (δs/δt)irr. The entropy production, (δs/δt)irr, is always non–negative
(Second law of thermodynamics) [139].

6.2.3 Entropy production and phenomenological equations

In order to find an explicit form of the entropy production in the volume element due
to the hydrodynamic interactions and the decay or production of alignment we have to
insert Eqs. (6.12)–(6.18) into the Gibbs fundamental relation (6.8). This yields

T

(
δs

δt

)
irr

=

(
T − 2

�

m
kBTσ

B∑
α=A

Qα ·Ψα

)
: Γ− �

m
kBT

B∑
α=A

Ψα :

(
δQα

δt

)
irr

,

(6.19)

where the second rank tensor Ψα is given by [see Eqs. (6.7) and (6.8)]. The entropy
production in (6.19) takes into account two processes which correspond to dissipative
processes: viscous flow and production (decay) of alignment. Moreover, each of these
terms contains a thermodynamic force–flux pair. In general, the choice of which quantity
is a thermodynamic flux or force depends on their spatial and temporal symmetry. Con-
sidering that Γ and (δQα/δt)irr are not independent under time reversal it is convention
to choose them as thermodynamic forces [58].

In the linear approximation [139] fluxes are proportional to the thermodynamic forces
and thus, the entropy production (6.19) is a bi–linear expression in the fluxes and ther-
modynamic forces. Within this approximation we write the relation between fluxes and
forces for the binary mixture as:

−ΨA = τA

(
δQA

δt

)
irr

+ τAB

(
δQB

δt

)
irr

+
√
2τApΓ , (6.20)

−ΨB = τB

(
δQB

δt

)
irr

+ τAB

(
δQA

δt

)
irr

+
√
2τBpΓ , (6.21)(

T−2
�

m
kBTσ

B∑
α=A

Qα ·Ψα

)
=
(√

2
�

m
kBT

)(
τpA

(
δQB

δt

)
irr

+ τpB

(
δQA

δt

)
irr

+
√
2τpΓ

)
. (6.22)
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In Eqs. (6.20)–(6.22) the phenomenological coefficients τx and have units of time. It is
possible to write Eqs. (6.20)–(6.22) in a somewhat more transparent form as:⎛⎜⎜⎜⎜⎜⎝

−ΨA

−ΨB

T − 2 �
mkBTσ

∑B
α=A Qα ·Ψα

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
τA τAB τAp

τBA τB τBp

τpA τpB τp

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

(
δQA

δt

)
irr(

δQB

δt

)
irr

2 �
mkBT Γ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(6.23)
where we identify Onsager’s matrix of phenomenological coefficients L which is

L =

⎛⎜⎜⎜⎜⎝
τA τAB τAp

τBA τB τBp

τpA τpB τp

⎞⎟⎟⎟⎟⎠ . (6.24)

According to Onsager’s theorem L is a symmetric matrix [141] and thus the cross
coupling coefficients obey the so–called Onsager’s reciprocal relations

τAp = τpA, τBp = τpB and τAB = τBA . (6.25)

Since the production of entropy is always a non–negative quantity, a by–product of
Onsager’s theorem is that L should always be positive semi–definite matrix [141]. Thus
the following relations exist between the coefficients of the phenomenological laws in
Eqs. (6.20)–(6.22):

τA > 0 , τB > 0 , τp > 0 , (6.26)

τAτB > τ2Ap , τBτp > τ2Bp , τAτB > τ2AB , (6.27)

τAτBτp + 2τABτApτBp > τAτ
2
Bp + τBτ

2
Ap + τpτ

2
AB . (6.28)

As expected making τB = τAB = τBp = 0 results in the original phenomenological laws
set by the standard Doi–Hess theory [57].

6.2.4 Complete dynamic equations

Using the subtraction method, the set of equations for the thermodynamic fluxes of
alignment (6.20) and (6.21) can be written into(

δQA

δt

)
irr

= πAΨ
A + πABΨ

B + πAp

√
2Γ , (6.29)(

δQB

δt

)
irr

= πABΨ
A + πBΨ

B + πBp

√
2Γ , (6.30)
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where the coupling coefficients πx have units of time−1 and are given in terms of the
relaxation times τx viz

πA = − τB
τAτB − τ2AB

, πAB =
τAB

τAτB − τ2AB

, πB = − τA
τAτB − τ2AB

, (6.31)

πAp =
τABτBp − τApτB
τAτB − τ2AB

, πBp =
τABτAp − τBpτA
τAτB − τ2AB

. (6.32)

Finally, inserting Eqs. (6.29) and (6.30) into Eq. (6.17) results into the equations
that describe the dynamical behavior of a binary mixture in the presence of a velocity
field v(r, t), which are,

dQA

dt
= 2 Ω ·QA + 2σ Γ ·QA + πAp

√
2Γ+ πAΨ

A + πABΨ
B , (6.33)

dQB

dt
= 2 Ω ·QB + 2σ Γ ·QB + πBp

√
2Γ+ πABΨ

A + πBΨ
B . (6.34)

where Ψα takes into account the relaxation of the alignment towards equilibrium via

ΨA =
∂F or[Q]

∂QA
− ξ2AA∇2QA , (6.35)

ΨB =
∂F or[Q]

∂QB
− ξ2BB∇2QB . (6.36)

6.2.5 Equation for the stress tensor

Before further discussion and applications of the dynamic equations of the alignment
tensors [Eqs. (6.33) and (6.36)] some implications of the phenomenological laws (6.20)–
(6.22) have to view reviewed. Particularly the viscous flow of the binary mixture.

Inserting Eqs. (6.29) and (6.30) into the phenomenological law of the stress ten-
sor (6.22) results into the relation

T = 2ηisoΓ+ T al . (6.37)

According to Eq. (6.37), T splits into a Newtonian contribution (already present in
fluids with vanishing orientational order) and a contribution depending explicitly on the
alignment. The Newtonian viscosity ηiso is modified viz

ηiso =
�

m
kBTτp

(
1− τ2ApτB + τ2BpτA − 2τABτApτBp

τAτBτp − τ2ABτp

)
. (6.38)

The first term of Eq. (6.38) corresponds to the viscosity of the mixture when QA and
QB and consequently ΨA(ΨB) completely vanish. The second term characterizes the
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coupling between the stress tensor and the alignment when QA and QB are non–zero.
Lastly, the contribution depending explicitly on QA and QB is given by

T al =
�

m
kBT

(√
2

B∑
α=A

παpΨ
α + 2σ

B∑
α=A

Qα ·Ψα

)
, (6.39)

where the coefficients παp are given by Eq. (6.32). Equation (6.39) is known as the stress
tensor of alignment and is this contribution which allows us to study the hydrodynamic
properties of the fluid.

Finally, to measure the hydrodynamic effects arising in the binary mixture due to the
alignment QA and QB the momentum balance equation reads

�
dv

dt
−∇ · T = 0 , (6.40)

6.3 Relaxation of the alignment

In the absence of flow (v = 0) and disregarding spatial inhomogeneities Eqs. (6.33)–
(6.34) read

dQA

dt
= πA

∂F or[Q]

∂QA
+ πAB

∂F or[Q]

∂QB
, (6.41)

dQB

dt
= πAB

∂F or[Q]

∂QA
+ πB

∂F or[Q]

∂QB
. (6.42)

Notice that (6.41)–(6.42) are non–linear relaxation equations since F or[Q] as given
in (6.7) is non–linear with respect to QA and QB. The full relaxation of the order
parameters is governed by Eqs. (6.41) and (6.42). Though this non linear system can
solved in general, only some special features are discussed in the following. In particular,
we study the linear decay of the alignment.

If F or[Q] is replaced by its linear approximation, Eqs. (6.41)–(6.42) reduce to the
system of coupled linear equations

dQA

dt
= πA(AAQ

A −AABQ
B) + πAB(ABQ

B −AABQ
A) , (6.43)

dQB

dt
= πAB(AAQ

A −AABQ
B) + πB(ABQ

B −AABQ
A) , (6.44)

which can be written as the system

Q̇ = MQ , (6.45)

where Q = (QA,QB)T and the matrix M is given by

M =

⎛⎝πAAA − πABAAB πABAB − πAAAB

πABAA − πBAAB πBAB − πABAAB

⎞⎠ . (6.46)
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Figure 6.1: Relaxation towards equilibrium of the binary mixture given in Eq. (6.51):
(a) Non coupled system AAB = 0, (b) Coupled system AAB �= 0.

This approximation is applicable for small alignment and low concentrations. Since the
relaxation times τx and for small concentrations the coefficients Ax are always posi-
tive, then M is a positive definite matrix. Hence, Eq. (6.45) shows that the alignment
of the binary mixture relaxes to zero. This feature is common in liquid crystals with
concentrations above the isotropic–nematic coexistence characteristic value [19].

6.3.1 Vanishing cross–coupling of the entropy production

When the system relaxes towards its equilibrium value it is possible to track the relaxation
of the full alignment tensors QA and QB by only looking at the uniaxial alignment with
a constant director [57]. The coupling between the true relaxation times in the full non–
linear equations (6.41)) and (6.42)) is more complicated and requires further analysis
by its own. In order to simplify the analysis, in the following we will assume vanishing
cross–coupling.

The assumption of vanishing cross–coupling implies that the production of entropy
of component A and the production of entropy of component B are completely inde-
pendent. Thus, the relaxation time τAB vanishes and consequently πAB = 0. Under this
approximations Eq. (6.45) reduces to⎛⎝dtq

A(t)

dtq
B(t)

⎞⎠ =

⎛⎝−τ−1
A AA τ−1

A AAB

τ−1
B AAB −τ−1

B AB

⎞⎠⎛⎝qA(t)

qB(t)

⎞⎠ , (6.47)

where qA(t) and qB(t) are the uniaxial order parameters of the corresponding alignment
tensors and dt denotes the material derivative (6.15). The quantities τAA

−1
A and τBA

−1
B
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are known as the true relaxation time of alignment of the single component system [80].
Thus, the true relaxation times of alignment for the binary mixture are τAA

−1
AB and

τBA
−1
AB

In general, the solutions of the system (6.47) have the form

q(t) = C1x1 exp(λ1t) + C2x2 exp(λ2t) (6.48)

where Ci (with i = 1, 2) are constants that depend on the initial conditions, and xi and
λi are the eigenvectors and eigenvalues of M. The simplest solution of (6.47) is obtained
when the relaxation towards equilibrium of A is independent of the relaxation of B, i.e.
there is no inter–component coupling, thus, AAB = 0 [see Fig. 6.1.(a)]. However, the
real solution is obtained after solving the eigenvalue equation

det |M− λα| = 0 . (6.49)

Before solving Eq. (6.49) it is important to make some general remarks on the
phenomenological relaxation times τA and τB. In Ref. [80] the single particle relaxation
times τα are

τα =
8πηR3

g

6kBT
, (6.50)

where η is the viscosity of the solvent (usually water for colloidal suspensions) and Rg
is the radius of gyration of the rigid molecule. Considering fd–viruses with a radius of
gyration∼ 11nm embedded in a aqueous solution at room temperature (η ≈ 0.79mPa·s
at 300K) [142, 143] we get τfd–virus ≈ 10−2 − 10−3s.

Considering a binary mixture of short and long fd–viruses with aspect ratios κA = 20
and κB = 25 and phenomenological relaxation times τA = 7.5×10−3 and τb = 2.5×10−3

in the isotropic state [see Fig. 5.3], Eq. (6.47) reads:dtqA(t)

dtq
B(t)

 =

−0.215 −1.286

−0.428 −0.069

qA(t)

qB(t)

 , (6.51)

Given an initial value different form zero, the analytic solutions of (6.51) may be obtained
straightforwardly from Eq. (6.47). The behavior of these solutions in time is showed in
Fig. 6.1.(b). As expected, even for the simplest inter–component coupling the mixture
relaxes towards the values qA = qB = 0. Here, the alignment presents a regular oscillatory
decay of the type sin(t) exp(−t) showing that even for a simple linear approximation
the coupling coefficient AAB plays a very important role.

In the same manner, it is possible to study the relaxation of uniaxial order parameters
towards its equilibrium nematic values. This task is in general more complicated since
(at least) terms of second order in qA and qB (i.e. q2

α(t)) should be included. Thus we
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have to consider the full system

dQA

dt
= − 1

τA

∂F or[Q]

∂QA
, (6.52)

dQB

dt
= − 1

τB

∂F or[Q]

∂QB
. (6.53)

Trivially, for the uncoupled system (AAB = CAB = 0), the uniaxial order parameters
qA and qB must decay uniformly [23] at a rate τ−1

α Aα to the equilibrium value of the
corresponding one–component system (qcA and qcB) [see above Eq. (5.28) in Sec. 5.2.1].
However, depending on the degree of nematicity of the system the dynamic behavior
may be sensitive to the values of Aα, Bα and Cα or even to the initial conditions of the
system. On the other hand, when the coupling coefficients does not vanish, i.e. AAB �= 0
and CAB �= 0, this analysis is even more complex and further studies in this direction
are needed.

In this work we assume that in the nematic state both components of the mixture
decay uniformly at a same rate τref . As it is the case for the one component system [80]
this rate is supposed to be modulated by the ratio of the coefficients Bα and Cα

τref = τA
24CA

B2
A

= τB
24CB

B2
B

. (6.54)

The ratio B2
α/24Cα corresponds to the isotropic–nematic coexistence value of Aα [see

Eq. (5.28)]. Equation (6.54) indicates that the solutions of Eqs. (6.52) and (6.53) decay
uniformly at the same rate towards the value of qA and qB in the stationary state.

6.3.2 Final dynamic equations

Under the vanishing cross–coupling approximation (πAB = 0), Eqs. (6.33) and (6.34)
simplify to the set of equations:

dQA

dt
= 2 Ω ·QA + 2σ Γ ·QA −

√
2
τAp

τA
Γ− 1

τA

∂F or[Q]

∂QA
+ ξ2AA∇2QA , (6.55)

dQB

dt
= 2 Ω ·QB + 2σ Γ ·QB −

√
2
τBp

τB
Γ− 1

τB

∂F or[Q]

∂QB
+ ξ2BB∇2QB . (6.56)

whereΩ = 1
2(∇v T−∇v) and Γ = 1

2(∇v T+∇v) describe the effect of flow vorticity and
its deformation on the average alignment of the particles, respectively. The ratio τip/τα
in the third term of Eqs. (6.55–6.56) measures the impact of external perturbations. It
defines the tumbling parameter λα a quantity related to the aspect ratio κα viz

λα = −ταp
τα

=

√
3

5

κ2α − 1

κ2α + 1
. (6.57)

For spherical particles λ = 0, whereas for prolate and oblate particles, λ > 0 and λ < 0,
respectively.



78 Chapter 6. Dynamic equations and constitutive relations for binary mixtures

Figure 6.2: Sketch of a binary mixture in a planar Couette flow. Here, the mixture of
rod–like molecules is enclosed between two infinite parallel plates at y = ±L moving
along the x–axis with velocities vx = ±Lγ̇.

6.4 Simple Couette geometry

In the following we specialize to a planar Couette flow (see Fig. 6.2) where the fluid
is confined between two infinitely extended, parallel plates (separated by a distance 2L
along the y–direction) moving in opposite directions. The flow profile (for a Newtonian
fluid) is then given by v(r) = γ̇yêx, with γ̇ the shear rate.

6.4.1 Scaled dynamic equations

Reintroducing the scaled alignment tensors Q̃α and the scaled free energy according to
Eq, (5.30) and the definition of λα in Eq. (6.54), equations (6.55) and (6.56) become

dQ̃A

dt̃
= 2˜̇γΩ̃ · Q̃A+ 2σ˜̇γΓ̃ · Q̃A − Φ̃′

A +
√
2λ̃A

˜̇γΓ̃+ ξ̃2A∇̃2Q̃A , (6.58)

dQ̃B

dt̃
= 2˜̇γΩ̃ · Q̃B+ 2σ˜̇γΓ̃ · Q̃B − Φ̃′

B +
√
2λ̃B

˜̇γΓ̃+ ξ̃2B∇̃2Q̃B , (6.59)

where t̃ = t/tref and ˜̇γ = γ̇tref are the re-scaled time and shear rate, ∇̃2 = ∇2/L2,
and the reference time tref is given by

tref =
τα(q

α
0 )

2

F or
ref

. (6.60)

The scaled vorticity and deformation tensors are Ω̃ = (1/2)(êxêy − êy êx) and Γ̃ =
(1/2)(êxêy+ êy êx), respectively. Further, the scaled tumbling parameters and correlation
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lengths are

λ̃α =
λα

qα0
=

√
3

5

1

qα0

κ2α − 1

κ2α + 1
, ξ̃2 =

(qα0 )
2

L2F or
ref

ξ2ii . (6.61)

An example of typical values of the scaled tumbling parameters, we consider systems
involving the PEG–coated fd–virus, like the ones used in the experiments of thick and thin
colloidal rods of Purdy et al. [16]. For these systems, the Maier-Saupe order parameter
at coexistence is S0 = 〈P2〉 ≈ 0.5 − 0.8 [143] . Using qα0 =

√
5S0 [22] one obtains

λ̃α ∼ 0.43 − 0.69. Finally, the derivative of the scaled free energy [see Eq. (5.33)] is
given by

Φ̃′
α =

∂F̃ or(Q̃A, Q̃B)

∂Q̃α
,

Φ̃′
α = ΘαQ̃

α − 2
√
6 Q̃α · Q̃α + 2(Q̃α : Q̃α) · Q̃α − 1

2
ΘABQ̃

β − (Q̃A : Q̃B) · Q̃β .

(6.62)

6.4.2 Scaled momentum balance equation

Using the above definitions it is possible to write the scaled momentum balance equation

dṽ

dt̃
=

1

β
∇̃ · T̃ , (6.63)

where we introduced the definition of the scaled stress tensor T = �m−1F or
ref T̃ and the

additional parameter β is defined as

β =
γ̇L2m

kBTF or
ref tref

. (6.64)

This coefficient, or rather the ratio between β and the scaled viscosity η̃iso = ηiso ˜̇γ
defines the Reynolds number of the solvent

Re =
β

η̃iso
=

γ̇L2ρ

ηiso
. (6.65)

Experiments of shear–induced instabilities are typically performed in the low Reynolds
number limit (Stokesian limit), Re 
 1 [144, 145]. In this limit the momentum balance
equation (6.63) reduces to

∇̃ · T̃ = 0 . (6.66)

We note that due to the time dependence of Q̃(t), the total stress T̃ generally depends on
time, however, at each time the total stress has to fulfill Eq. (6.66). The resulting velocity
profile may deviate from the linear profile assumed initially. This feature is essential for
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the description of spatial symmetry–breaking such as shear banding. Finally, the scaled
contribution to the stress tensor is

T̃ = −p̃I+ 2η̃isoΓ̃+ T̃ al (6.67)

where p̃ = p/�m−1F or
ref and the contribution to the stress tensor due to the changes in

the alignment of the binary mixture is

T̃ al =

B∑
α=A

(√
2λ̃αΦ̃α −

√
2λ̃αξ̃

2
α∇̃2Q̃α + 2σ Q̃α · Φ̃α − 2σξ̃2 Q̃α · Φ̃α

)
. (6.68)

Remarks: In the following, we drop the tilde (∼) on all variables appearing in Eqs. (6.55–
6.68). Thus, all quantities are identified with the same symbols as originally unless vague-
ness could arise. Following previous studies of one–component systems [146, 147] we set
σ = 0 since this parameter has minor effect on the dynamics of the system for planar
Couette flow geometry.

6.5 Explicit equations of motion

All together, the set of equations (6.58)–(6.68) represent the spatiotemporal evolution
of second rank tensors. In fact, this set of equations can not be solved analytically
beyond the uniaxial approximation (introduced to study the relaxation of the alignment
in Sect. 6.3). Therefore, in order to study the full non–linear evolution of the alignment
and the stress, Qα and T may be expanded in terms of a standard tensor basis Bi with
five independent elements [see Appendix A]. In this basis

Qα =

4∑
i=0

qαi Bi and T =

4∑
i=0

TiBi (6.69)

where the coefficients xi (where x = q, T ) are determined using the relation xi = X :
Bi [79].

Using the basis (6.69) in the Stokesian limit (Re 
 1), Eqs. (6.58), (6.59) and (6.66)
reduce to

dQA

dt
= ξ2A∇2QA + 2γ̇Ω·QA +

√
2λΓ−Φ′

A , (6.70)

dQB

dt
= ξ2B∇2QB + 2γ̇Ω·QB +

√
2λΓ−Φ′

B , (6.71)

∇ ·T = 0 , (6.72)

whereΦ′
α is the derivative of the one component orientational free energy [see Eq. (6.62)]

Φ′
α = ΘαQ

α − 2
√
6Qα ·Qα + 2(Qα : Qα) ·Qα − 1

2
ΘABQ

β − (QA : QB) ·Qβ .

(6.73)
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Further, we assume that the spatial variation of Q and T, is restricted to a one–
dimensional investigation along the y–axis (the direction of the shear gradient [see
Fig. 6.2]). This assumption reduces the degrees of freedom of the solution and implies
that the possibility of banding in vorticity (z–) direction is excluded.

Using the tensor basis (6.69), Eq. (6.70) transforms into the set of equations:

dqα0
dt

= −(φα
0 + ϕβ

0 ) + ξ2
∂2qα0
∂y2

,

dqα1
dt

= −(φα
1 + ϕβ

1 ) + γ̇
∂v

∂y
qα2 + ξ2

∂2qα1
∂y2

,

dqα2
dt

= −(φα
2 + ϕβ

2 )− γ̇
∂v

∂y
qα1 + ξ2

∂qα2
∂y2

+ γ̇λ
∂v

∂y
, (6.74)

dqα3
dt

= −(φα
3 + ϕβ

3 ) +
1

2
γ̇
∂v

∂y
qα4 + ξ2

∂2qα3
∂y2

, ,

dqα4
dt

= −(φα
4 + ϕβ

4 )−
1

2
γ̇
∂v

∂y
qα3 + ξ2

∂2qα4
∂y2

.

Here the quantities φα
i describe the relaxation of the particles towards equilibrium and

are

φα
0 = qα0

(
Θi − 3qα0 + 2q2α

)
+ 3(qα 2

1 + qα 2
2 )− 3

2
(qα 2

3 + qα 2
4 ) ,

φα
1 = qα1

(
Θi + 6qα0 + 2q2α

)− 3

2

√
3 (qα 2

3 − qα 2
4 ) ,

φα
2 = qα2

(
Θi + 6qα0 + 2q2α

)− 3
√
3 qα3 q

α
4 , (6.75)

φα
3 = qα3

(
Θi − 3qα0 + 2q2α

)− 3
√
3 (qα1 q

α
3 + qα2 q

α
4 ) ,

φα
4 = qα4

(
Θi − 3qα0 + 2q2α

)
+ 3

√
3 (qα1 q

α
4 − qα2 q

α
3 ) .

while the quantities ϕβ
i display the inter–component interaction within the mixture and

are
ϕβ
i = −qβi (ΘAB + q2AB) , (6.76)

where i = 0, · · · , 4. In equations (6.74)–(6.75), q2α =
∑

qα 2
i and q2AB =

∑
qαi q

β
i . For

one–component systems, it can be shown by general arguments [50] (and has been
demonstrated numerically [48, 49]) that the structure of equations (6.74)–(6.75) leads
to various types of oscillatory solutions as long as that the shear rate γ̇ �= 0.

Finally, the divergence of the stress tensor in Eq. (6.72) is now rewritten as

∂T2

∂y
=

√
2ηisoγ̇

∂2v

∂y2
+

B∑
α=A

(√
2λα

∂(φα
2 + ϕβ

2 )

∂y
−

√
2λαξ

2
α

∂3qα2
∂y3

)
. (6.77)

The surviving component of the stress tensor T2 refers to the in–shear plane stress (Txy)
exerted on the system due to the velocity field.
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6.6 Summary

In this chapter we present a natural extension of the theory of non–equilibrium alignment
phenomena to a system composed of a binary mixture of rigid anisotropic particles. We
achieved this combining the equilibrium theory developed in Chapter 5 with the theory
of irreversible processes for liquid crystals.

Following standard calculations of the theory of linear irreversible thermodynamics
we obtained a set of phenomenological laws which relate the hydrodynamic behavior
of the fluid and the thermodynamic fluxes and forces of alignment. Further, employing
Onsager’s theorem we get a complete set of hydrodynamic equations where the alignment
tensors QA and QB are coupled with the flow velocity v. The final hydrodynamic
equations for the mixture are:

dQA

dt
= 2 Ω ·QA + 2σ Γ ·QA + πAp

√
2Γ + πAΨA + πABΨB ,

dQB

dt
= 2 Ω ·QB + 2σ Γ ·QB + πBp

√
2Γ + πABΨA + πBΨB .

where πx are related to phenomenological times and the terms Ψα (given by the deriva-
tives of the scaled free energy densities derived in Chapter 5) account for the relaxation
of the alignment towards equilibrium. Here Ω = 1

2(∇v T −∇v) and Γ = 1
2(∇v T +∇v)

describe the effect of flow vorticity and its deformation on the average alignment of the
particles, respectively.

We analyze these equations in the limit when the entropy production of component
A and B are completely independent and study the relaxation of the mixture towards
equilibrium in the absence of flow. We show that even with the simplest inter–component
coupling (entering through the free energy of alignment) the dynamics of the decay of
alignment are very complicated. Thus we conclude that the vanishing cross–coupling
approximation is suitable as a first approach to study the full dynamics of the system.

Finally, specializing to a planar Couette shear flow geometry, we introduce the scaled
alignment tensors QA and QB and re–write the hydrodynamic equations (for the align-
ment and the stress tensors) into a dimensionless form which are used in the subsequent
chapter to analyze the shear–induced instabilities.



Chapter 7

Shear induced instabilities and
oscillatory states in binary mixtures

In this chapter we study the dynamic behavior of binary mixtures under shear.
However, to provide a systematic approach we subdivide this chapter in two parts:
On the first part, we review the well–known oscillatory orientational dynamics of an
homogeneous single component system [49]. However, we expand this analysis to
study the spatiotemporal behavior of the alignment order parameter and its impact
on the underlying relations between stress and shear rate. On the second part we
turn to the analysis of the orientational dynamics of a spatially homogeneous
binary mixture. This chapter includes the main results of the publications: Binary
mixtures of rod-like colloids under shear: microscopically-based equilibrium theory
and order–parameter dynamics [111] and Shear banding in nematogenic fluids with
oscillating orientational dynamics [148].

7.1 General Remarks

The shear induced behavior of nematogenic fluids has been intensely studied for the
one component system on the basis of equations (6.74)–(6.75) (see e.g. [149, 49, 50]).
In these studies it has been proven that nematogenic fluids present a wide variety of
orientational dynamics depending on the initial equilibrium state (isotropic or nematic).

The dynamics of the full alignment tensor are characterized by the dynamics of the
corresponding nematic director. Thus, in average, the particles in the fluid perform a
variety of shear induced oscillatory states. The different types of regular oscillatory states
are: wagging (W), tumbling (T), kayaking–wagging (KW), kayaking–tumbling (KT), and
(flow–)alignment states (A). Moreover, under certain conditions chaotic dynamics may
be present [48, 51, 49, 150]. All these states are characterized by the time–dependent

83
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Within the shear plane Out of the shear plane

Alignment
Tumbling
motion

Wagging Kayak
Tumbling

Kayak
Wagging

Figure 7.1: Sketch of the different types shear induced regular oscillatory states. The
blue arrows show the direction in which the Couette walls are moving whereas the green
arrows indicate the motion of the nematic director.

behavior Q(t) (and conversely of the coefficients qi(t)) and it is possible to set one
particular oscillatory state depending on the shear rate and the tumbling parameters
[see Eqs. (6.74)–(6.75)].

Excluding chaotic dynamics, the regular time–dependent states can be classified in
two groups: states lying within the shear plane (A, T, W) and states lying out of the shear
plane (KT, KW). Trivially, the A state corresponds to a fixed point of the system (6.74)–
(6.75) and therefore the dynamics of the qi(t) coefficients are ”frozen” as a function of
time. In contrast, the regular states W and T are characterized by full in–plane rotations
of nematic director and q3(t) = q4(t) = 0. Finally, the out of the shear plane oscillatory
states (KW, KT) are named after their in–shear plane counterparts with the difference
that here qi(t) �= 0 ∀i ∈ [0, 1, 2, 3, 4].

7.1.1 Dynamical state diagram

All the different steady oscillatory states can be summarized in a dynamical state dia-
gram [49]. In Fig. 7.2, we show the dynamical state diagram spanned in the plane γ̇−λ
for a one component system characterized by Θ = −1.0. The colored areas are com-
puted via direct numerical integration and each one corresponds to different dynamical
behavior: A = Alignment, W = Wagging, T = Tumbling, KW = Kayak–Wagging and
KT = Kayak–Tumbling (see Fig. 7.1). We should note that because of our choice of
scaling (see Chapter 6) the values of λ differ from those in earlier studies (e.g. [49]) by
a constant factor.

In earlier studies [51, 50] investigating similar values of Θ, the authors reported the
occurrence of an important region characterized by irregular and even chaotic motion
of the nematic director. This chaotic region is located around the point where the KT,
KW and A states meet. Here we do not detect such region because our algorithm does
not resolve Lyapunov exponents.

The boundaries between the colored regions in Fig. 7.2 correspond to different types
of dynamical bifurcations. The simplest one is a (supercritical) Hopf bifurcations occur-
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Figure 7.2: Dynamical state diagram for a one component system characterized by
Θ = −1.0. The colored areas are computed via direct numerical integration and each
one corresponds to different dynamical behavior: A = Alignment, W = Wagging, T =
Tumbling, KW = Kayak–Wagging and KT = Kayak–Tumbling.

ring at the boundary between alignment (A) and wagging (W). In Ref. [50] a complete
continuation analysis is presented which reveals the complexity of the dynamical behavior
already in the one component case (where one has already five dynamical variables).

In order to study the shear induced instabilities occurring in binary mixtures, it
is necessary to provide a systematic approach containing a deep analysis of the one
component case. Thus, in the following section (Section 7.2) we investigate systems
composed of only one component, i.e., in the limit ρb → 0. Further, in Section 7.3 we
continue our analysis with the investigations of binary mixtures of rod–like colloids

7.2 Shear banding with oscillating orientational dynamics

In recent years, several theoretical approximations have explored the spatial inhomo-
geneities of the alignment Q and the stress T, yielding shear banding between different
steady states. In some cases, the unsheared system is close to the isotropic–nematic tran-
sition [59] and in others the dynamics of the sheared homogeneous system is irregular
or chaotic [52, 75]. In this section, our purpose is to extend the work in Refs. [52, 75] to
parameter values where the homogeneous system exhibits regular oscillatory dynamics.

7.2.1 Numerical calculations and boundary conditions

For the study of inhomogeneous systems the gradient terms appearing in (6.74)–(6.77)
should be discretized. To this end we use a central finite difference scheme of fourth order
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Figure 7.3: Sketch of the boundary conditions applied to the tensor Q at the plates:
(a) Isotropic [see Eq. (7.1)] (b) Planar nematic [Eq. (7.2)] (c) Vertical nematic [Eq. (7.3)]
and (d) Planar degenerate [Eq. (7.4)].

where asymmetric stencils (using only available grid points) are implemented [151]. The
calculations are initialized with values of q0, · · · , q4 matching the boundary conditions,
with a small random perturbation. The steady configurations of the system are found
by monitoring the evolution of q0, · · · , q4 and T2, disregarding transient initial behavior.
The resulting dynamical states are characterized employing an algorithm that recognizes
the periodicity as in the previous section. For further details, please refer to Henning
Reinken’s Master’s thesis [71].

Regarding the boundary conditions at the plates (y = ±L), we assume strong an-
choring conditions, i.e., the value of Q at the plates is constant in time, but may have
different symmetries. From an experimental point of view, strong anchoring conditions
are possible by chemical or mechanical treatment of the plates [83, 84, 85, 86]. Here we
focus on the following idealized cases:

Q
∣∣∣y=L

y=−L
= 0 (Isotropic) , (7.1)

Q
∣∣∣y=L

y=−L
=

√
3

2
μ̃eq
3 êxêx (Planar nematic) , (7.2)

Q
∣∣∣y=L

y=−L
=

√
3

2
μ̃eq
3 êyêy (Vertical nematic) , (7.3)

Q
∣∣∣y=L

y=−L
= −

√
3

2
μ̃eq
3 êyêy (Planar degenerate) , (7.4)

where μ̃eq
3 is the equilibrium value of the alignment tensor in the nematic phase. Equa-

tions (7.1) and (7.4) describe disordered states where the particle orientations are dis-
tributed, either in all three directions (”isotropic”) or within the plane of the plates, i.e.,
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in the x–z plane (”planar degenerate”) (see Fig. 7.3). The other two boundary con-
ditions correspond to nematic states, with the director lying either in the plane of the
plates (”planar nematic”) or along the gradient (y–) direction (”vertical nematic”) (see
Fig. 7.3). For the velocity field usual no–slip boundary conditions, vx(y = ±1) = ±1 (in
reduced units), are implemented [63].

7.2.2 Homogeneous solutions

Here we consider spatially homogeneous systems far away from the boundaries in the limit
of infinite plate separation, i.e., L → ∞. In this limit, the correlation length appearing in
Eq. (6.77) is zero and thus, all gradient terms vanish. In particular, the stress T2 takes
the form

T2(t) =
√
2ηisoγ̇ +

√
2λΦ2 . (7.5)

Homogeneous systems sheared from the isotropic state

We start considering systems whose equilibrium state is isotropic (Θ = 1.20). Increasing
the shear rate from zero, the system develops a paranematic (PN) state1; this is illus-
trated in Fig. 7.4(a). The behavior upon further increase of γ̇ depends on the value of
the chosen tumbling parameter λ (a measure of the aspect ratio).

For λ � 0.62 one observes a transition from paranematic to shear–aligned (A) state.
The PN–A transition is accompanied by a narrow region of bistability (not visible in
Fig. 7.4) where the degree of ordering of the system is highly dependent on the initial
condition. For smaller values of the tumbling parameter (λ � 0.62) the A state is
unstable and the system develops wagging (W) motion. Overall, the behavior found in
the present calculations agrees qualitatively with that reported in ref. [50], however, the
quantitative data for the boundary lines differ due to the different scaling of the free
energy.

For each of the parameter sets (γ̇, λ) we calculated the stress T2 (in the W state,
averaging T2(t) over one period of time). Remarkably, we observe that different param-
eter sets may lead to the same value of T2. To illustrate this point, Fig. 7.4(a) includes
dashed (blue) lines and solid (green) lines corresponding to two constant values of T2.
Moreover, there are several regions of λ where T2 assumes the same value for different
shear rates. For example, at λ = 0.55 there are three values of γ̇ with T2 = 0.6, and for
λ ≥ 0.7 one finds two solutions with T2 = 0.4.

Due to this multivalued behavior, it is interesting to consider the corresponding flow
curves, T2(γ̇). The results for λ = 0.55 and λ = 1.25 are plotted in Figs. (7.4(b)
and (7.4(c), respectively. The flow curve for λ = 0.55 [see Fig. 7.4(b)] displays a region
with a negative slope between γ̇ ≈ 0.357 and γ̇ ≈ 0.365. Within this region the ho-
mogeneous flow is mechanically unstable, and as one might expect, the system forms a

1The paranematic state PN is similar to the AA state but it is characterized by weak nematic order.
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Figure 7.4: a) State diagram in the plane spanned by tumbling parameter (λ) and shear
rate (γ̇) at Θ = 1.20 (isotropic equilibrium system). The dotted gray lines indicate
the boundaries between three different states: paranematic (PN), shear–aligned (A) and
wagging (W). The dashed (blue) and solid (green) lines connect points with constant
stress T2 = 0.4 and T2 = 0.6, respectively. (Second row) Homogeneous flow curves
T2(γ̇) for (b) λ = 0.55 and (c) λ = 1.25.

spatially inhomogeneous, shear banded state. We also note that the shear rate γ̇ ≈ 0.359
characterized by T2 = 0.6 and dT2/dγ̇ < 0 agrees roughly with the corresponding point
on the boundary line PN–W in Fig. 7.4(a). This indicates that the orientational tran-
sition from the PN state to the (oscillatory) W state, on the one side, and the shear
banding instability, on the other side, are closely correlated.

In contrast, for λ = 1.25 [see Fig. 7.4(c)] the flow curve does not display a region with
negative slope. Rather one observes a discontinuity and, associated with this, hysteretic
behavior. Upon increase of γ̇ from the small values, i.e., from the paranematic (PN)
state, the systems discontinuously ”jumps” to the aligned (A) state only at γ̇ ≈ 0.14
[which is above the upper blue dashed line in Fig. 7.4(a)]. However, decreasing γ̇ starting
from the large shear rates characterizing the A state, the jump occurs at the much smaller
shear rate γ̇ ≈ 0.06. As we will show at the end of this section, the formation of shear
bands in this case (λ = 1.25) strongly depends on the boundary conditions.

Homogeneous systems sheared from the nematic state

We now turn to systems deep in the nematic phase. Specifically, we set Θ = −0.25 in
Eq. (6.75). The dashed (blue) and solid (green) lines in Fig. 7.5(a) indicate parameter
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Figure 7.5: (a) State diagram at Θ = −0.25. The dotted gray lines indicate the bound-
aries between the different dynamical states: wagging (W), tumbling (T), kayaking–
tumbling (KT), kayaking–wagging (KW), and shear–alignment (A). The dashed (blue)
and solid (green) lines connect points with constant stress T2 = 7.0 and T2 = 9.0, respec-
tively. (Second row) Homogeneous flow curves T2(γ̇) for (b) λ = 0.55 and (c) λ = 1.25.

sets at which the orientational dynamics yield the constant stress–values T2 = 9.0 and
T2 = 7.0, respectively. In the first case, the line provides a unique relation in the sense
that an increase of γ̇ at fixed λ yields only one crossing with this line. This is different
for the case T2 = 7.0 where, depending on λ, one or two crossings can be observed.

Exemplary flow curves for two values of the tumbling parameter are shown in the right
hand side of Fig. 7.5. At λ ≈ 0.55 [see Fig. 7.5(b)], where each of the constant–pressure
lines is crossed only once, one observes a monotonic increase of T2 with γ̇. In particular,
there is no discontinuity even at γ̇ ≈ 6.5, where the underlying orientational dynamics
changes from the KT to the T states. In fact, a systematic bifurcation analysis (such as
the one in Ref. [50]) would reveal a bistable region characterized by the presence of (at
least) two attractors between the pure KT and the pure T state. In such a situation, the
stress T2 would not be uniquely defined. This aspect certainly deserves more attention
in a future study.

In contrast, in the case λ = 1.25 showed in Fig. 7.5(a), an increase of γ̇ from
small values yields two crossings with the constant–stress curve T2 = 7.0. As seen from
Fig. 7.5(c), the flow curve exhibits a pronounced discontinuity related to the transforma-
tion of the (out–of–plane) oscillating KT state into the shear–aligned (A) steady state
at γ̇ ≈ 3.67. One also recognizes a strong dependence on initial conditions (hysteresis),
similar to the situation discussed in Fig. 7.4(c).
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Figure 7.6: Spatiotemporal behavior of the norm of Q at γ̇ = 3.65, λ = 1.25 and
different correlation lengths (a) ξ2 = 10−5, (b) ξ2 = 10−4 and (c) ξ2 = 10−3. The
equilibrium state (γ̇ = 0) is isotropic (Θ = 1.20).

7.2.3 Spatiotemporal behavior and shear banding

In the preceding discussion we found indications of the formation of inhomogeneous
states in both, systems sheared from the isotropic and systems sheared from the nematic
phase. Now, we turn to the analysis of the corresponding systems (characterized by
certain values of the tumbling parameter) calculating the full spatiotemporal behavior
of the Q and the resulting shear stress T2. To this end we have solved numerically
Eqs. (6.74)–(6.77) using the methodology described in Sect. 7.2.1.

Our discussion in this section is divided into two parts: First, we focus on the cor-
relation length ξ, which appears as a prefactor of the gradient term in the orientational
free energy density [see Eqs. (6.74)–(6.75)]; later we turn our attention to the boundary
condition for Q at the plates [see Eqs. (7.1)–(7.4)].

Impact of the correlation length

Initially isotropic system We first consider the system at Θ = 1.20 and λ = 0.55
[see Fig. 7.4(b)] focusing on a shear rate γ̇ = 0.365. In Figs. 7.6(a)–(c) we show the
spatiotemporal evolution of ||Q|| (the norm of Q–tensor) at three different values of
the correlation length. Since the equilibrium state is isotropic, we choose the boundary
conditions according to Eq. (7.1), thus the boundaries do not support any orientational
ordering.

As seen from Fig. 7.6(a) the system forms spatiotemporal structures with locally
large values of ||Q|| already at the smallest correlation length considered, ξ = 10−5. The
observed pattern is rather ”loose” with its width changing in time. We can also observe
that, within the inhomogeneous regions, ||Q|| is oscillating in time. The oscillations in
these regions are consistent with a wagging (W) state and outside ||Q|| takes values
typical of a paranematic (PN) state. This behavior is expected since the value of γ̇
considered in Fig. 7.6 is very close to the boundary between the PN and W state (see
Fig. 7.4).

Upon increasing the correlation length, ξ, we observe from Figs. 7.6(b) and 7.6(c)
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Figure 7.7: (a) Local shear rate within the banded state of the initially isotropic system
(Θ = 1.20, λ = 0.55, average (applied) shear rate γ̇ = 0.365). (b) Inhomogeneous flow
curves at different correlation lengths. The symbols � (red), × (blue) and ◦ (green)
correspond to ξ2 = 10−5, ξ2 = 10−4 and ξ2 = 10−3, respectively. As a reference the
homogeneous flow curve is included (black dashed line).

that the regions characterized by W motion become more defined, in terms of the shape
and oscillatory motion of the order parameter. At the same time the interface between
the W and PN region broadens. As a consequence, the W oscillations are transferred to
some extent into the outer region, however, with a very small amplitude.

A further illustration of the presence of shear bands is plotted in Fig. 7.7(a), where
we present a snapshot of the local shear rate, γ̇(y), for the system at ξ2 = 10−3. Here,
we see that the band in the middle of the system has a significantly higher shear rate
than the PN state close to the boundaries. On the other hand, Fig. 7.7(b) shows the
flow curves obtained for the inhomogeneous (initially isotropic) systems for different
correlation length. We obtained these curves by calculating the mean value of T2 in-
creasing gradually from lower to larger values of γ̇ (see Ref. [152]). As a reference, the
corresponding homogeneous flow curve [see Fig. 7.4(b)] is included.

Interestingly, the value of T2 corresponding to the banded state is essentially inde-
pendent of ξ; in other words, the value of T2 appears to be unique. This observation is
consistent with previous studies on the basis of both, a Q–tensor model [59] and the
DJS model [74]. We further observe from Fig. 7.7(b) that there is a slight dependence on
the value of T2 on ξ at high shear rates beyond the banded state. This is an effect stem-
ming from the inhomogeneities induced by the confining walls: the larger ξ, the larger
is the extent of these inhomogeneities into the bulk–like region between the plates. In
fact, excluding these regions from the calculations the results for T2 completely agree
for different ξ.
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Figure 7.8: Spatiotemporal behavior of the norm of Q at γ̇ = 3.65, λ = 1.25 and
different correlation lengths (a) ξ2 = 10−5, (b) ξ2 = 10−4 and (c) ξ2 = 10−3. The
equilibrium state (γ̇ = 0) is nematic (Θ = −0.25).

Initially nematic system We now turn to the system at Θ = −0.25 and λ = 1.25,
where the homogeneous flow curve [see Fig. 7.5(c)] is discontinuous. Results for the
norm of Q as function of space and time are shown in Fig. 7.8, where we assumed
equivalent planar nematic boundary conditions [see Eq. (7.2)], but different correlation
lengths.

In all exemplary cases showed in Fig. 7.8, there is a a clear spatial separation of the
system into an inner band, where the orientational behavior corresponds to the kayak–
tumbling (KT) state, and an outer region where the system is in a shear–aligned (A)
state. Upon increase of ξ the width of the KT band widens, while the oscillations within
the band become more and more regular.

Corresponding results for the local shear rate and the inhomogeneous flow curves are
given in Fig. 7.9. Compared to the initially isotropic system, we see from Fig. 7.9(a) that
the oscillatory (KT) band is characterized by a smaller shear rate than the regions close
to the boundaries. A further difference comes up when we consider in Fig. 7.9(b) the
values of the stress plateau in the inhomogeneous flow curve. Here we find a dependence
on the correlation length; that is, the value of T2 at the plateau increases with ξ. This
contrasts with our corresponding results for the initially isotropic system.

Role of the boundary conditions

In this final subsection we will address the role of the boundary conditions [see eqs. (7.1)–
(7.4)]. For the following analysis we set the correlation length to a constant value of
ξ2 = 10−5. However, higher values yield very similar results. In Fig. 7.10 we present
numerical results for the resulting flow curves of the inhomogeneous systems previously
discussed.

As before, we first consider systems sheared from the isotropic state at λ = 0.55
where clear shear banding instabilities are found even for isotropic boundary conditions
[see figs. 7.6 and 7.7]. As indicated by the flow curves in Fig. 7.10(a), similar behavior
occurs for other (including nematic) boundary conditions. Indeed, all of the systems
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Figure 7.9: (a) Local shear rate within the banded state of the initially nematic system
(Θ = −0.25, λ = 1.25, average (applied) shear rate γ̇ = 3.65). (b) Inhomogeneous flow
curves at different correlation lengths. The symbols � (red), × (blue) and ◦ (green)
correspond to ξ2 = 10−5, ξ2 = 10−4 and ξ2 = 10−3, respectively. As a reference the
homogeneous flow curve is included (black dashed line).

form bands (within a range of shear rates γ̇ ≈ 0.355 – γ̇ = 0.385) with wagging–like
oscillations within PN regimes at the plates. Outside the banding region, the systems
are characterized by the same value of T2.

We observe that the value of the ”selected” stress within the banding region, T sel
2 ≈

0.59, is essentially independent of the boundary conditions. Specifically, for the two types
of isotropic boundary conditions, as well as for nematic ordering within the plane of the
plates, the system stays in the homogeneous PN state for all γ̇ up to the maximum of the
flow curve. In contrast, the system with vertical alignment at the plates, i.e., alignment
in the shear gradient (y–) direction, forms bands once the value of T sel

2 is reached (at
γ̇ ≈ 0.34). In this sense, the vertical nematic ordering favors the occurrence of the W
state characterized by oscillations in the gradient direction. For completeness we also
note that upon decreasing γ̇ from high values, the system goes without hysteresis into
the banded state (with the same stress), irrespective of the boundary conditions.

In the initially nematic case [see Fig. 7.10(b)], upon increasing γ̇ from lower values
all systems, irrespective of boundary conditions, display shear band formation at shear
rates in the range γ̇ ≈ 3.0 – γ̇ ≈ 4.5. After this critical values they break up into a band
with kayaking–tumbling dynamics (i.e., oscillations out of the shear plane) surrounded
by regions of shear–alignment at the boundaries. The stress T2 characterizing the banded
state seems to be unique, and the boundary conditions only affect the onset of shear
banding (upon starting from the low–shear rate branch, where the system is in the KT
state). Moreover, from Fig. 7.10(b) we see that the onset of banding is ”delayed” when
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Figure 7.10: Influence of the boundary conditions on the inhomogeneous flow curves for
(a) initially isotropic systems at Θ = 1.20, λ = 0.55 and (b) initially nematic systems
at Θ = −0.25, λ = 1.25. The correlation length is set to ξ2 = 10−5. As a reference the
homogeneous flow curves have been included.

planar degenerate boundaries are used. This is because these boundary conditions seem
to support the KT state. Interestingly, the behavior upon decreasing the shear rate from
the aligned state is different: in that case, all systems stay in the aligned state until the
lower end of the high–shear rate branch is reached; then they directly jump into the KT
state without an intermediate shear banded state.

Finally, both systems considered in Fig. 7.10 display shear banding irrespective of
the detailed nature of the boundary conditions, if the shear rate is increased from low
values. The boundary conditions then only influence the ”critical” shear rate at which
the homogeneous state observed at small γ̇ breaks up into bands. On the contrary, shear
banding upon decreasing γ̇ from high values is only seen in the initially isotropic system.
The behavior in the initially nematic system thus depends on the initial conditions,
similar to what has been found in the DJS model [153].

7.3 Binary mixtures of rod–like colloids

After the analysis of the spatiotemporal behavior, in this section we turn to the analysis
of binary mixtures. In the following we assume spatially homogeneous systems where the
boundaries of the system do not play a role. Thus, we numerically solve Eqs (6.74)–(6.77)
in the limit where L→∞.

To perform the numerical integration we employ a standard Runge-Kutta algorithm
with adaptive step size control [151]. As in the case of the one component system,
the starting values of the tensor components qα0 , · · · , qα4 (where α = A,B) are chosen
randomly in the interval [0, 1], using a uniform distribution. We note that due to the high
non–linearity of the problem at hand the choice of initial values and the overall number
of time–steps required to obtain reliable results (disregarding transient initial behavior)
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strongly depends on the chosen parameters. Therefore, all numerical integrations have
been repeated several times. Finally, to characterize the resulting dynamical states, we
use an algorithm that recognizes the periodicity and sign change of the calculated time–
dependent order parameters qαi (t) (see e.g. Refs. [149, 49, 146]).

7.4 Orientational dynamics of binary mixtures

In the following we investigate sheared systems whose equilibrium state (γ̇ = 0) is
nematic. Specifically, we set ΘA = ΘB = −0.25. According to the stability analysis in
Chapter 5, in this case the isotropic phase is unstable irrespective to the value of ΘAB.

The section is divided into two parts. First, we discuss the effect of varying the
shear rate, γ̇, and the tumbling parameter of species B, λB, while λA is fixed. We note
that in real experiments, variation of the tumbling parameter is somewhat difficult since
each value of this parameter corresponds to a different aspect ratio (and thus, particle
type), see Eq. (6.74). However, in the framework of our dynamical equations λB(A) is
the crucial parameter measuring the impact of the shear induced perturbation, thus it
seems worth to explore its role. Specifically, we set λA = 1.2 and consider a range of
values λB > λA, implying that the B–particles have larger aspect ratios. The second
part of the section addresses the role of the ”cross–coupling” parameter ΘAB.

7.4.1 Variation of the tumbling parameter and the shear rate

The numerical integration leads to dynamical state diagrams for each of the two species
which we present in Fig. 7.11. As in Fig. 7.2, each colored region corresponds to a
different dynamical state characterized by a specific behavior of the respective nematic
director, related to the largest eigenvalue of the alignment tensor QA(B). Specifically,
we observe wagging states (W), tumbling states (T), kayaking–wagging states (KW),
kayaking–tumbling states (KT), and (flow–)alignment states (A). The boundaries be-
tween these colored regions correspond to different types of dynamical bifurcations and
an analysis for the mixture would have been beyond the scope for this work. However,
we note that the shape of each state diagram in Fig. 7.11 is qualitatively similar to that
of one component systems (see Fig. 7.2). As in the one component system, we expect
that a chaotic or irregular also occurs in the mixture (for both species) at values of γ̇,
λB where the regions A, KW and KT meet.

While the overall behavior of the two species is very similar, there are interesting
differences for specific values of γ̇ and λB. For example, consider the shear rate γ̇ = 7.5
and λB = 3.0. At these parameters, the long rods are in the W state while the short rods
are in a tumbling (T) state. In other words, both directors display oscillatory behavior
in the shear plane, but with different characteristics: Tumbling is characterized by full
in–plane rotations of nematic director, whereas wagging just implies finite back–and–
forth–motion in angular space.
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Figure 7.11: Dynamical state diagram for a binary mixtures characterized by ΘA =
−0.25, ΘB = −0.25, ΘAB = 1.50, and λA = 1.2. Parts a) and b) illustrate the behavior
of the short and long particles, respectively. Color bar on the right side: A = Alignment,
W = Wagging, T = Tumbling, KW = Kayak–Wagging, KT = Kayak–Tumbling.

The tumbling and wagging states are characterized by in shear plane periodic motion
of the nematic director, but the T state is characterized by full rotations of nematic
director. Therefore, it is of interest to compare the angle between both nematic directors.
Since in the T and W states qα3 = qα4 = 0, in terms of the components qα0 , q

α
1 , q

α
2 , ϑ(t)

the angle between directors is given by

ϑ(t) = arccos

⎛⎝ qAj q
B
j√

qAj q
A
j

√
qBj q

B
j

⎞⎠ , (7.6)

where j = 0, 1, 2 and we used the Einstein convention. The angle between nematic
directors is showed in Fig. 7.12(a) where we choose a constant shear rate γ̇ = 7.5 and
three different values of λB.

As it can be seen form Fig. 7.12(a), at the largest λB considered, both species are
in a shear aligned state. For single–component systems, it is well known that the shear
aligned state is characterized by a finite angle between the (stationary) director and shear
direction, and that this ”flow angle” depends on the tumbling parameter. Therefore, one
would expect the two directors of the mixture to have different (stationary) flow angles
with respect to the shear direction, and consequently, enclose a finite angle in between.
This is exactly what we see from the corresponding curve in Fig. 7.12(a). At λB = 3.25,
both species are in the tumbling state (see Fig. 7.12), with the directors displaying
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Figure 7.12: (a) Angle between the nematic directors as function of time at γ̇ = 7.5 and
three values of λB. The green solid line (�) corresponds to shear–aligned states of both
species (λB = 5.0), whereas the blue line (�) corresponds to synchronized tumbling
states (λB = 2.75). Finally, the red line (•) represents a case where the A–species (B–
species) is in a tumbling (wagging) state (λB = 2.75). (b) Relative alignment of the
nematic directors as a function of time at γ̇ = 7.5. The dashed black lines and the
solid lines correspond to the behavior of the A–species (λA = 1.20) and B–species (with
varying λB), respectively. The (�) symbol correspond to shear–aligned states of both
components (λB = 5.0) whereas the (�) correspond to synchronized tumbling states
(λB = 3.25). Finally, (•) represents the coexisting T/W state (λB = 3.75).

full rotations. Still, we observe from Fig. 7.12(a) that the angle between the tumbling
directors is close to zero at all times considered. We interpret this behavior as (nearly)
synchronous tumbling. At λB = 2.75, the behavior is markedly different: Here we observe
a periodic variation of the angle between the directors, reaching values up to nearly 90
degree. This reflects the simultaneous appearance of tumbling (species A) and wagging
(species B).

To further compare the in–plane oscillations of the nematic directors in the different
regions of the state diagram (see Fig. 7.11) we also look at their relative amplitudes.
To this end we introduce a quantity that compares, for each component of the mixture,
the instantaneous magnitude |Qα|(t) with its maximum value max{|Qα|} (we recall at
this point that the tensors considered here are not normalized to one). In terms of the
components qi0, q

i
1, q

i
2, the relative alignment is therefore given by

d
A(B)
rel (t) =

√
q
A(B)
j q

A(B)
j

max

{√
q
A(B)
j q

A(B)
j

} , (7.7)

where j = 0, 1, 2 and we used the Einstein convention. This quantity is shown in
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Figure 7.13: Dynamical state diagram in the plane spanned by shear rate and cross
coupling parameter for a binary mixtures characterized by ΘA = −0.25, ΘB = −0.25,
λA = 1.2 and λB = 3.0. Parts a) and b) illustrate the behavior of the short and long
particles, respectively.

Fig. 7.12(b). As expected, in the shear aligned state (λB = 5.0) the relative alignment
of both components does not oscillate in time. Further, when both nematic directors
are tumbling (i.e., perform full rotations, here at λB = 2.75), the oscillations are in
phase and also their magnitude is comparable. In contrast, in the coexisting T/W state
(λB = 3.25), there is a marked difference between the amplitude of oscillations. Still,
the oscillations are in phase. Therefore, we conclude that both, the T state and the
coexisting T/W state are characterized by synchronous motion.

7.4.2 Variation of the cross coupling and the shear rate

In view of the variety of dynamical states at fixed cross coupling parameter ΘAB it
is interesting to further explore the impact of this parameter. To this end we present
in Fig. 7.13 the state diagrams obtained at fixed tumbling parameters λA = 1.20 and
λB = 3.0, in the plane spanned by ΘAB and γ̇. At γ̇ = 0 (equilibrium), all systems
considered are in the (meta–)stable nematic phase.

At small shear rates γ̇ � 5.0, both species are in the out–of–plane KT state for all
cross coupling parameters considered. At larger shear rates the out–of–plane oscillations
then transform into in–plane oscillations of W or T type. As indicated from Fig. 7.13,
an increase of ΘAB shifts this boundary between KT and T or W towards larger shear
rates for both components of the mixture. A further effect becomes apparent when we
consider a fixed, high shear rate, e.g., γ̇ = 8.0. Here, an increase of ΘAB can induce
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profound changes of the dynamical state, such as a change from W to T to KT. Along
this way, there a large regions where the two components display different dynamical
behavior (coexistence of T and W), similar to what we have discussed before.

Finally, we notice the small ”islands” of KT regions within the T state (A–species)
or W–state (B–species). This indicates a bistability of the solutions which may be inter-
preted as a coexistence of in–shear plane and out–of–shear plane oscillations (as already
mentioned in [50]). In fact, as we have previously showed for the one component system,
any type of bistability may translate into spatially separated dynamical coexistence of
different states (shear banding).

7.5 Summary

We present the shear induced instabilities occurring in systems of rod–like particles. We
divide our discussion in two parts: the study of shear banding in one component systems
and the analysis of oscillatory states in spatially homogeneous binary mixtures.

For one component systems, we focused on instabilities along the gradient direc-
tion. We saw that systems with different initial equilibrium states (isotropic or nematic),
tumbling parameters (i.e., aspect ratios), and boundary conditions show complex shear
banding behavior. Interestingly, the shear bands appearing in these systems are accom-
panied by oscillatory orientational motion in certain regions of space. We observe that
band formation strongly depends on the orientational boundary conditions applied to
the system. In this sense certain boundaries may enable or inhibit the formation of shear
bands.

Similar to what occurs in one component systems, for a binary mixture we found
a variety of oscillatory dynamical states of the nematic directors, either with in–plane
or with out–of–plane symmetry. However, given an specific set of tumbling parameters,
we observe symmetry breaking behavior for intermediate and high values of the shear
rate. This behavior is characterized by the coexistence of simultaneous appearance of
tumbling motion (short particles) and wagging motion (long particles). However, albeit
the actual motion is different, there is an overall synchronization of the system.

We also observed that an additional control parameter of this oscillatory behavior is
the coupling interaction ΘAB. We show that by increasing ΘAB at fixed shear rate, one
can find transitions from in–plane oscillations to out–of–plane oscillations (kayaking–
tumbling).





Chapter 8

Concluding remarks

8.1 Summary

In this thesis we investigated mixtures of rigid anisotropic colloidal particles under shear.
In particular, we focused on binary mixtures of rod–like particles and developed a theo-
retical framework capable to describe their equilibrium behavior and the shear induced
rheological response.

In Chapter 1, we give a general introduction to colloidal mixtures of rigid rod–like
particles and addressed their basic equilibrium and shear induced behavior. Further, in
Chapters 2 and 3, we continue this introductory remarks by presenting the phenomeno-
logical and microscopical descriptions of rod–like systems in equilibrium.

We begin our investigations in Chapter 4 where we cover the first goal of our research:
to bridge microscopic and phenomenological theories. There, on the basis of the density
functional theory, we construct a free energy functional given in terms of mesoscopic
variables (the second rank alignment tensors and their derivatives). In addition, this
functional contains both microscopic features of the system, namely, number density
and aspect ratio of the particles. The combination of microscopic (DFT) and mesoscopic
descriptions makes our approach a part of the theories contributing to a scale–bridging
characterization of colloidal mixtures.

To validate our approach, we focus on binary mixtures characterized by molecules
having equal diameters and different length in Chapter 5. Compared to previous experi-
ments and particle based simulations our calculations show a reasonable agreement. In
fact, the calculated state diagrams can be used to make predictions of the overall be-
havior of the mixture. At the end of this chapter, we discussed the relation between our
theory and the Oseen–Frank elastic theory. In this regard, we obtained expressions for
the Frank elastic constants (in the one constant approximation) in terms of the direct
correlation function for the mixture. However, we should point out that at this level of
simplification the material is only defined by a small number of quantities which may
not be enough to fully parametrize any material.
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We note that the biggest restriction of our equilibrium investigations (in general) is
that we have focused on the orientational part of the free energy alone. Therefore, the
stability analysis done in Chapter 5 does not give any information about phase transitions
(or coupled phase transitions) involving the number densities as order parameters. This
would clearly be an interesting extension of our work.

In Chapter 6, we presented a natural extension of the Doi–Hess description for binary
mixtures. We achieved this by combining our equilibrium theory with the concepts of
linear irreversible thermodynamics. By virtue of this, we got a pair of dynamic equations
of motion which relate the alignment tensors of the particles (one for each component)
with the hydrodynamic effects (through the stress tensor and the velocity field). Further,
specializing to a planar Couette flow geometry and by expanding these tensor equations
into an appropriate basis, we obtained an 11-dimensional coupled system of partial
differential equations.

Finally, in Chapter 7, we focused on the shear induced instabilities occurring in
binary mixtures. We divided our investigations in two parts: First, we analyzed the shear
banding instabilities occurring in one component systems, and then, we focused on the
shear induced orientational dynamics of binary mixtures.

In the case of shear banding instabilities, we focused on instabilities along the gradi-
ent direction and studied systems whose (un–sheared) equilibrium states were (stable)
isotropic or nematic. We studied various tumbling parameters (aspect ratios) and dif-
ferent anchoring conditions. Our results reveal the appearance of shear banded states in
the gradient direction accompanied by regions with oscillatory dynamics. This feature
is not seen in other models (such as the non–local DJS model) and it is due to the
coupling between alignment tensor and shear stress. Further, contrary to earlier stud-
ies [52, 75], we focused on parameters where the homogeneous systems exhibit regular
oscillatory dynamics, and as a result the shear bands are characterized by regions of
regular oscillatory orientational dynamics.

We noticed that the band formation is strongly dependent on two factors: the corre-
lation length and the orientational boundary conditions. We observed that by changing
these features the shear banded states (appearing in the middle of the sample see e.g.
Fig. 7.8) become more defined in terms of width and regularity of the dynamics. This
implies that the bands can be tuned, in principle, only by changing one of these parame-
ters. Since the spatial correlation length is a property of the fluid, the obvious candidates
are the boundary conditions. In fact, our observations prove that certain boundary con-
ditions can support or hinder the formation of shear bands depending on the anchoring
close to the plates.

We then turn to the analysis of binary mixtures. In this case, we showed that in a
binary mixture deep in the nematic state there is a variety of synchronized oscillatory
states of the nematic directors, either with in–plane or with out–of–plane symmetry.
Strikingly, given a specific set of tumbling parameters (aspect ratios) in the mixture, we
observe an area where two different in–plane oscillatory states coexist: tumbling motion
for short particles and wagging motion for long particles. Interestingly, even though the
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actual motion of the components is different, the oscillatory motion is still in synchrony.
Additionally, we observed that as the coupling between the particles is increased, at
a fixed shear rate, one can find transitions from in–plane oscillations to out–of–plane
oscillations (kayaking–tumbling). However, these transitions are highly bistable and this
can translate into an even more convoluted spatiotemporal behavior. At this point, it
would be very interesting to extend the present analysis to spatially inhomogeneous
systems.

8.2 Outlook and further investigations

Concerning the future development of our research, there are several directions that could
be followed to extend our work; both for equilibrium and non–equilibrium phenomena.

Regarding the equilibrium theory, it would be very interesting to understand to what
extent the mesoscopic free energy functionals are modified by coupling to density fluctu-
ations. Therefore, the next logical step would be to improve our theory in order to take
into account full spatial segregation. An idea is to the ansatz for the one body density:

ρ(r, û) = �(r)f(û) ,

where �(r) is an inhomogeneous density and f(û(r)) is the usual orientational distri-
bution function. In fact, with our investigations we prove that the ODF (under certain
approximations) can always be written in terms of Q–tensors, therefore the prospective
free energy functional should be:

F [ρ] → F [�(r),Q(r)] .

Doing so, we could encounter some challenges. For example, because r and û are
not independent variables, even the normalization of ρ(r, û) is not obvious. Another
interesting complication arising from this ansatz has to do with a more general issue, the
exact coupling between �(r) and the complete set ofQ(r) tensors. This is a problem that
has its roots on the closure approximation. Indeed changing the underlying assumption
of the theory will necessarily change the way we cut the series expansion in the excess
free energy [see Chapter 4].

Clearly, it would be interesting to extend the non–equilibrium investigations as well.
First, the obvious candidate is to extend the analysis for the binary mixture towards
spatially inhomogeneous systems. In fact, we ran some preliminary calculations for the
homogeneous flow curves and the related spatiotemporal behavior. These calculations
show that the region where the in–plane oscillatory states coexist is very unstable. The
nature of these instabilities is not clear, thus, further analysis should be done in this
direction.

Regarding the one component systems, it would also be interesting to study the
shear induced instabilities in the direction perpendicular to the gradient. In fact, recent
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publications [67, 68] show that fd–virus suspensions exhibit vorticity banding (where
regularly stacked bands are formed along the vorticity direction). In this way it could be
interesting to see if the Doi–Hess model is able to reproduce these phenomena.

To close this discussion, for industrial and technological applications it would be
interesting to impose an additional control to the system in order to have a well–defined
rheological response. One idea is to tune the system introducing an additional feedback.
In fact, recent experimental studies [154, 155] use oscillatory rheometers to control the
behavior of the viscosity and stress of the system. In view of this, an extension of our
work would be to develop a theoretical approach that reproduces such behavior. In fact,
earlier studies [156] showed that in the scope of the Doi–Hess theory, a feedback control
strategy may lead to the stabilization of different dynamical states. The scheme used in
these investigations is based on a single time delay τ in the alignment tensor, such that
Q = Q(t − τ). However, considering our results for spatially inhomogeneous systems,
an alternative approach would be to introduce a similar scheme to the stress tensor, i.e.,
T = T(t− τ). This proposition would model the action of the oscillatory rheometer and
would make it easier to compare the theoretical results with experimental measurements.



Appendices

105





Appendix A

Basic tensor concepts

Introduction

Tensor calculus came into prominence with the development of Einstein’s general theory
of relativity in 1916. Since then it can be seen as a universal language in mathematical
physics [157]. Tensors not only enable us to write general equations in a very compact
manner, but they also serve as a guide in the selection of physical laws by indicating
invariance with respect to the transformation of coordinates.

The aim of this appendix is to serve as a short mathematical introduction to the
use of Cartesian tensors and tensor calculus and to provide the necessary identities and
relationships needed in the main text.

In physics it is usual to deal with real variables as functions represented by Cartesian
coordinates of a point in a plane. If we are dealing with a quantity of three variables
then the ordinary Euclidean space of three dimensions may be used. If the number of
variables exceeds three, the geometrical representation is more complicated and a space
of more than three dimensions is needed. For example, in the case of a rigid body in the
Euclidean space, additional variables (Euler angles) are needed to describe its rotations
around the fixed molecular axes.

In general, a tensor is a multidimensional array of numerical values. The rank (order)
of a tensor is the dimensionality of the array needed to represent it. For example, a scalar
is a zero rank tensor, whereas a linear map represented by a matrix is a 2nd order tensor.
A more abstract definition is that of tensors being multilinear maps taking an element of
a vector space into another vector space. Tensors do not change in any coordinate system
and its components only depend on the relating transformed coordinate systems [158].
Some examples of tensor quantities commonly used by physicists are:

• Scalar a ∈ R: 0–order tensor

• Vector v ∈ Rn: 1–order tensor

• Matrix M ∈ Rn × Rn: 2–order tensor
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• Levi–Civita symbols εijk ∈ R
n × R

n × R
n: 3–order tensor

A.1 General definitions and notations

Consider two right-handed coordinate systems V and V ′ in R
3. The components of a

vector v ∈ V are denoted by vμ where μ = 1, 2, 3, or μ = x, y, z. If v′ is the image of
v in V ′ then

v′ν = Dμνvμ

where D is an orthogonal matrix describing the rotation V → V ′. The analogous trans-
formation for a 2nd rank tensor Aμν is

A′
λγ = DλμDγνAμν ,

where Dkj = Djk. This transformation between Cartesian tensors can be extended to k
order tensors directly via [22]:

A′
μ1μ2···μk

= Dμ1ν1Dμ2ν2 · · ·DμkνkAμ1μ2···μk
.

For many applications it is necessary to manipulate tensors in different ways. The
multiplication of a tensor with a real number a means the multiplications of all its
elements by this number, i.e. aAμ1μ2···μk

. On the other hand, the addition of two tensors
can be done only when both have the same rank [22].

A.1.1 Scalar product

An important tensor manipulation is that of the tensor product. Between two vectors,
the usual scalar product is

a · b = aμbμ ,

where repeated indices are implicitly summed over (Einstein’s convention). However, for
second rank tensors the maximum contraction is done via the Frobenius inner product
defined by,

A : B = AμνBμν .

The most general contraction between two k rank tensors always results in a scalar and
it is denoted by 
,

A(k) 
B(k) = Aμ1μ2···μk
Bμ1μ2···μk

.

A.1.2 Tensor product

The cross product between two vectors in R
n results in a new vector in the same space,

i.e.

∀ a,b ∈ R
n ⇒ a× b = c ∈ R

n .
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However, the outer product, also known as tensor or dyadic product, between these pair
of vectors results into a matrix, i.e.

∀ a,b ∈ Rn ⇒ a⊗ b = C ∈ Rn×n .

In index notation the µν element of the product a⊗ b is

Cµν = (abT )µν = aµbν where µ, ν = 1, 2, · · · , n .

A tensor of rank k can be constructed as a hierarchy of outer products between a
set of vectors. Let {a,b, · · · k} be a set of vectors in Rn then, in terms of this set, the
tensor A(k) of order k is

A(k) = a⊗ b⊗ · · · ⊗ k index notation Aµ1µ2···µk = aµ1bµ2 · · · kµk .

A.2 Decomposition of tensors

The decomposition of tensors is unique. For example, a second rank tensor, having 9
components can be decomposed into a sum of three tensors, one of each with 1, 3, and
5 linearly independent components [113]. The irreducible parts of a second rank tensor
A are: an isotropic tensor Aiso; an antisymmetric tensor Aasy and a symmetric traceless

tensor A . Since Aiso = (TrA)I/3,

A =
1

2
TrAI + Aasy + A . (A.1)

Tensors are classified by their behavior under rotations. Therefore, we can learn
more about their representation by considering a decomposition of them in terms of the
rotation group SO(3). A Cartesian tensor of rank k has 3k components and can be
decomposed into a linear combination of its irreducible parts, each of which spans one
of the irreducible representations of SO(3) [113].

For an arbitrary Cartesian tensor of rank k, A(k), the symmetric traceless part,

A (k), is the only irreducible representation which is not reduced into a lower rank
tensor [22].The number of independent components of an irreducible tensor of rank k is

2k + 1 .

A.2.1 Isotropic tensors

The symmetric traceless part of a tensor A(k) can be written as a tensor contraction with
another tensor which does not change its form when the Cartesian coordinate system is
replaced by a rotated one, an isotropic tensor. Special cases are:



110 Chapter A. Basic tensor concepts

• Second rank (Kronecker delta):

δμν =

{
1 μ = ν

0 μ �= ν
.

• Third rank (Levi–Civita symbol):

ελμν =

⎧⎪⎨⎪⎩
1 λμν = 123; 312; 231

−1 λμν = 213; 132; 321

0 otherwise

.

In terms of this tensors, the antisymmetric and isotropic parts of a second rank tensor
A are:

Aasy = −1

2
ελμνεγηνAμν , (A.2)

Aiso =
1

3
δμηδλνAμν . (A.3)

A combination of second and third rank isotropic tensors can be constructed to give the
projector of the symmetric traceless part:

Δ(2) = Δμλην =
1

2
(δμηδλν + δμνδλη)− 1

3
δμλδην . (A.4)

This identity is such that for a arbitrary second rank tensor A:

A = Δ(2) : A . (A.5)

A generalization of the projection tensor Δ(2) is straightforward noticing that: the
isotropic tensor of rank 2k should be symmetric and traceless in the first k indices and
in the last k indices. This projection tensor is denoted by Δ(k) and is such that when
applied to an arbitrary tensor A(k) of rank k gives [113]:

A (k) = Δ(k) 
A(k) . (A.6)

A.3 Tensor operations

Restricting to second rank tensor quantities, in this section we list some basic identities
and results of tensor analysis. For a more detailed discussion around this topic we refer the
reader to Tensor Calculus by J. L. Synge et al [157] and Tensor Analysis and Elementary
Differential Geometry for Physicists and Engineers by H. Nguyen-Schäfer et al [158].
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A.3.1 First order derivatives

Gradient

The partial differentiation with respect to Cartesian components of the position vector
r is frequently denoted by the operator

∇μ =
∂

∂rμ
. (A.7)

The application of this operator to a 2nd rank tensor results in a 2+1 rank tensor. The
gradient of a second rank tensor A is

∇A = ∇λAμν = Bλμν = Q(3) . (A.8)

A useful identity in terms of the Kronecker delta is

∇μrν = δμν . (A.9)

Divergence

The divergence of a tensor of rank k results on a tensor of rank k − 1. The divergence
of a second rank tensor is denoted by

∇ ·A = ∇μAμν = Bν , (A.10)

where Bμ is a vector.

Curl

The curl can operate on any tensor of rank k (higher than one) and results in a tensor
of the same rank. For example, the curl of a second rank tensor is denoted

∇×A = ελμν∇μAνκ . (A.11)

A.3.2 Integration theorems

Gauss’ theorem

Let S be an open surface bounding a region Ω of volume V . Given the unit normal
vector n̂ (pointing outwards) and A(x) a tensor field, then:∫

V

A · ∇dV =

∮
S

A · n̂dS . (A.12)
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Stoke’s theorem:

Let S be an open surface bounded by a closed curve C. Given the unit normal vector n̂
(pointing outwards) and A(x) a tensor field, then:∮

C

A · dx =

∫
S

(A×∇) · n̂dS . (A.13)

A.3.3 Second order derivatives

Laplacian

The Laplacian refers to the special second derivative of a rank k tensor resulting on a
tensor of rank k. It is the result of taking the divergence of a gradient and is denoted by

∇2A = ∇ · ∇A = ∇λ∇λAμν . (A.14)

An important identity related to the second order derivative ∇2A is:

∇2A = ∇(∇ ·A) +∇× (∇×A) . (A.15)

Theorem

For a rank (k = 2) tensor field A the following identities for the second order derivative
hold:

∇× (∇A) = 0 (A∇)×∇ = 0 (A.16)

∇ · (∇×A) = 0 (A×∇) · ∇ = 0 (A.17)

given that A is smooth enough. This theorem can be reformulated in the following way:

• The gradient of a tensor field is curl–free, i.e., its curl vanishes.

• The curl of a tensor field is divergence–free, i.e., its divergence vanishes.

This theorem may be proved applying Gauss’ and Stoke’s theorems to the tensor products
(A∇) and (A×∇) [157].

Green’s identity for tensors

∇2(A : B) = (∇2B) : A+ 2(∇A)
 (∇B) +B : (∇(∇ ·A))−B : (∇× (∇×A)) .
(A.18)

The fourth order derivative of a tensor field is often referred as ”the Laplacian of the
Laplacian” and is denoted by

∇4A = ∇2∇2A .

The fourth order derivative of a tensor field is often used to stabilize an otherwise
divergent partial differential equation [130].
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A.3.4 Derivative with respect to second rank tensors

Given a scalar differentiable function f(A) which maps the matrix A ∈ M
n×m to R,

the derivative of f with respect to A is

C =
∂f(A)

∂A
=

⎛⎜⎝
∂f

∂A11
· · · ∂f

∂An1
...

. . .
...

∂f
∂A1n

· · · ∂f
∂Anm

⎞⎟⎠ . (A.19)

where C ∈ M
n×m. Some higher order derivatives referenced in the main text are:

∂

∂A
Tr(Al) = l(Al−1)T , (A.20)

∂

∂A
Tr(ATBA) = BA+BTA , (A.21)

∂

∂A
Tr(ABAT ) = ABT +AB . (A.22)

All of this identities may be extended according to the specific type of matrix operator.
Further information can be found in The Matrix Cookbook by K. B. Petersen et al [159].

A.4 Tensor basis

A symmetric traceless tensorQ has five independent components. Thus, it can be written
in terms of these components using a standard orthonormal tensor basis [79]:

Q =
4∑

i=0

qiBi , where B0 =

√
3

2
êzêz ,

B1 =

√
1

2
( êxêx − êyêy ) , B2 =

√
2 êxêy , (A.23)

B3 =
√
2 êxêz B4 =

√
2 êyêz .

This tensor basis has the property Bi : Bj = δij , where δij is the Kronecker symbol.
The qi components are given by the contraction qi = Q : Bi. In matrix notation the
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basis tensors are

B0 =
1√
6

−1 0 0
0 −1 0
0 0 2

 , B1 =
1√
2

 1 0 0
0 −1 0
0 0 0

 ,

B2 =
1√
2

 0 1 0
1 0 0
0 0 0

 , B3 =
1√
2

 0 0 1
0 0 0
1 0 0

 , (A.24)

B4 =
1√
2

 0 0 0
0 0 1
0 1 0

 .

Explicitly the qi components are related to the Cartesian components qij by

q0 = − 1√
6

(qxx + qyy − 2qzz) , q1 =
1√
2

(qxx − qyy) ,

q2 =
1√
2
qxy , q3 =

1√
2
qxz , (A.25)

q4 =
1√
2
qyz .

These basis tensors have been used in a wide variety of tensor equations including
flow alignment of liquid crystals [23, 79] and the non–linear behavior of gases, simple
liquids and molecular fluids [80, 160, 161]. An equivalent set of basis tensors is used to
study the Landau theory of blue phases and cholesterics [162, 163].



Appendix B

Spherical harmonics and their

tensor representation

The rotation group SO(3) is very relevant in fluid theory because it is used to repre-
sent physical quantities which are invariant under rotations, like tensors [see App. A],
intermolecular potentials or pair correlation functions [99].

In this appendix we provide a compendium of the properties of the spherical har-
monics and its relation with symmetric traceless tensors. For proofs of these relations we
refer to standard references in group theory and its representations (e.g. Introduction to
group theory with applications by G. Burns [164]).

B.1 Spherical harmonics

The spherical harmonic functions Yμν(û) employed in this study are

Yμν(û) ≡ Yμν(θ, φ) = (−1)ν
[
(2μ+ 1)(μ− ν)!

4π(μ+ ν)!

]1/2
Pμν(cos θ)e

iνφ , (B.1)

where ν = 0, · · · , μ and μ = 0, 1, 2, · · · . Here Pμν(û · û′) refers to the associated
Legendre functions (for a short overview see Ref. [130]).The unit vector û is such that
û = (sin θ cosφ, sin θ sinφ, cos θ). This definition may be extended to ν < 0 using the
identity

Yμ−ν = (−1)νY ∗
μν , (B.2)

where Y ∗
μν denotes the complex conjugate of Yμν . The spherical harmonics are orthog-

onalized functions such that:∫
S2

Y ∗
μν(û)Yμ′ν′(û)dû = δμμ′δνν′ . (B.3)
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The integral over S
2 denotes the solid angle integral where cos θ ∈ [−1, 1] and φ ∈

[0, 2π].

B.1.1 Addition theorem

Spherical harmonics having two different directors û and û′ can be related through the
addition theorem, which is:

∞∑
ν=0

Y ∗
μν(û)Yμν(û

′) =
(
2μ+ 1

4π

)
Pμ(û · û′) , (B.4)

where û · û′ = cosγ and γ is the angle between û and û′. Here Pk(û · û′) is the k–th
term of the Legendre polynomials.

B.1.2 Product rule

The multiplication of a pair of spherical harmonics results in

Yμ1ν1(û)Yμ2ν2(û) =
∑
μν

(
(2μ1 + 1)(2μ2 + 1)

4π(2μ+ 1)

)
1
2C(μ1μ2μ; 000)×

C(μ1μ2μ; ν1ν2ν)Yμν(û) , (B.5)

where C(μ1μ2μ; ν1ν2ν) is a Clebsch–Gordan coefficient (see Section B.2) . For a full
definition of these coefficients and their use in mathematical physics we refer to Refs. [99,
113].

B.1.3 Integrals

Since the spherical harmonics are orthogonal functions [see Eq. (B.3)] the following
integration rules are satisfied:∫

S2

Yμν(û)dû = (4π)1/2δμ0δν0 , (B.6)

∫
S2

Yμν(û)Y
∗
μ′ν′(û)dû = δμμ′δνν′ . (B.7)

B.1.4 Series expansion

The spherical harmonics form a complete set of orthonormal functions and thus form an
orthonormal basis of the field of quadratically integrable functions. Therefore an arbitrary
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function f(û) on the unit sphere can be expanded in terms of a linear combination of
spherical harmonics. Thus,

f(û) =

∞∑
μ=0

μ∑
ν=−μ

fμνYμν(û) , (B.8)

where the fμν coefficients are given by

f(û) =

∫
S2

dûfμνY
∗
μν(û) . (B.9)

The series in equation (B.8) is convergent if the μ coefficients decay sufficiently fast [122,
130].

B.2 Clebsch–Gordan coefficients

The spherical harmonics Yμν(û
′) transform under rotations

Yμν′(û
′) =

∑
ν

Dμ
νν′(Ω)Yμν(û) , (B.10)

and the inverse transformation

Yμν(û) =
∑
ν′

Dμ
ν′ν(Ω

−1)Yμν′(û
′) , (B.11)

where û and û′ are the orientation of r′ with respect to XY Z and X ′Y ′Z ′, respectively,
and Ω denotes the rotation carrying XY Z into coincidence with X ′Y ′Z ′ (see Ref. [99]).
Equation (B.8) defines the rotation matrix Dμ

νν′(Ω
−1) where μ = 1, 2, · · · ; ν, ν ′ =

−μ, · · · , μ. The rotation matrices (also called the representation coefficients of the ro-
tation group SO(3)) are functions of the rotation Ω = {φ, θ, ψ} (Euler angles) which
carries the initial frame XY Z into coincidence with the final frame X ′Y ′Z ′.

Equation (B.8) allows to write the product Yμ1ν′1(û
′)Yμ2ν′2(û

′) [see (B.5)]:

Yμ1ν′1(û
′
1)Yμ2ν′2(û

′
2) =

∑
ν1ν2

Dμ1

ν1ν′1
(Ω)Dμ2

ν2ν′2
(Ω)Yμ1ν1(û1)Yμ2ν2(û2) . (B.12)

For fixed μ1, μ2, the interest is to find a linear combination Fμν(û1, û2) of products of
spherical harmonics that transforms according to a single rotation matrix Dμ:

Fμν′(û
′
1, û

′
2) =

∑
ν

Dμ
νν′(Ω)Fμν(û1, û2) . (B.13)
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In terms of the product of spherical harmonics Fμν(û1, û2) is defined as:

Fμν′(û
′
1, û

′
2) =

∑
ν1ν2

C(μ1μ2μ; ν1ν2ν)Yμ1ν1Yμ2ν2 , (B.14)

where C(μ1μ2μ; ν1ν2ν) are the Clebsch–Gordan coefficients (see e.g. Ref. [99]). The
linear combinations Fμν(û1, û2) are normalized to unity to ensure that C(μ1μ2μ; ν1ν2ν)
in Eq. (B.12) is a real valued unitary transformation. The above argument can also be
extended to construct rotational invariants form triple products of spherical harmonics
Yμ1ν1Yμ2ν2Yμ3ν3 .

In the following we list a few properties of the Clebsch–Gordan coefficients:

Symmetry properties

C(μ1μ2μ3; ν1ν2ν3) = (−1)μ1+μ2+μ3C(μ1μ2μ3;−ν1 − ν2 − ν3) (B.15)

= (−1)μ1+μ2+μ3C(μ2μ1μ3; ν2ν1ν3) (B.16)

= (−1)μ1+ν1

(
2μ3 + 1

2μ2 + 1

) 1
2

C(μ1μ3μ2; ν1 − ν3 − ν2) (B.17)

= (−1)μ2+ν2

(
2μ3 + 1

2μ1 + 1

) 1
2

C(μ3μ2μ1;−ν3ν2 − ν1) (B.18)

= (−1)μ1+ν1

(
2μ3 + 1

2μ2 + 1

) 1
2

C(μ2μ3μ1; ν3 − ν1ν2) (B.19)

= (−1)μ2+ν2

(
2μ3 + 1

2μ1 + 1

) 1
2

C(μ2μ3μ1; ν2ν3 − ν1) (B.20)

Orthogonality relations

∑
μ1μ2

C(μ1μ2μ; ν1ν2ν)C(μ1μ2μ
′; ν1ν2ν ′) = δμμ′δνν′ , (B.21)∑

μ1μ2

C(μ1μ2μ; ν1ν2ν) C(μ1μ2μ; ν
′
1ν

′
2ν) = δμ1μ′

1
δμ2μ′

2
. (B.22)

Series expansion (Rotational invariants)

Referred to an arbitrary space–fixed reference frame a two–molecule quantity f(r −
r′, û, û′) (e.g. pair potential, pair correlation function, etc.) may be represented as an
infinite sum of spherical invariants.

f(r− r′; û, û′) =
∑
l1l2l

f(l1l2l; r− r′)Φ(l1l2l; û, û′, ûx) , (B.23)
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where f(lil2l; r− r′) are the harmonic expansion coefficients given by

f(l1l2l;x) =
(2l1 + 1)(2l2 + 1)

4π(2l + 1)

∫
S2

dû

∫
S2

dû′f(r− r′; û, û′)Φ(l1l2l; û, û′, ûx) . (B.24)

Here, the rotational invariants Φ(l1l2l; û, û
′, ûx) are given by

Φ(l1l2l; û, û
′, ûx) =

∑
m1m2m

C(l1l2l;m1m2m)Yl1m1(û)Yl2m2(û
′)Y∗

lm(ûx) , (B.25)

where Ylm are the spherical harmonics and C(l1l2l;m1m2m) are the Clebsch–Gordan
coefficients. The notation in Eqs. (B.23) and (B.25) represents explicitly the following:

∑
l1l2l

→
∞∑

l1=0

∞∑
l2=0

|l1+l2|∑
l=|l1−l2|

and
∑

m1m2m

→
l1∑

m1=−l1

l2∑
m2=−l2

l∑
m=−l

δm,m1+m2 . (B.26)

B.3 Spherical components of symmetric traceless tensors

An arbitrary Cartesian vector r = (rx, ry, rz) is written in terms of its spherical compo-
nents rμ with μ = 0,±1 in terms of the orthogonal basis

e0 = (0, 0, 1) , e±1 = ∓ 1√
2
(1,±i, 0) , (B.27)

where

e∗μeν = δμν and e∗μ = (−1)μe−μ . (B.28)

Hence r = rμeμ where the rμ coefficients are given by the relation rμ = r · eμ.

B.3.1 Arbitrary rank tensors

A k rank tensor can be expressed in terms of the basis [113]:

e(k)μ =

(
k!(2μ)!(2k − 1)!!

(k − μ)!μ!(k + μ)!(2μ− 1)!!

)1/2

ek−μ
0 eμ1 , μ ≥ 0 . (B.29)

with e
(k)
−μ = (−1)μe(k)∗μ . (B.30)

This tensor basis is orthogonal and complete, therefore:

e(k)∗μ 
 e(k)ν = δμν and e(k)μ e(k)∗μ = Δ(k) , (B.31)
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where Δ(k) is the 2k rank isotropic tensor addressed in App. A 1

It follows directly from Eqs. (B.10), (B.12) and the orthogonality of the spherical
harmonics that, in terms of the unit vector û = (sin θ cosφ, sin θ sinφ, cos θ):

Ykμ(û) =

(
(2k + 1)!!

4πk!

)1/2

( ûk )μ , (B.32)

ûk 
 ûk =
k!

(2k − 1)!!
, (B.33)∫

S2

ûk ûk′ dû =
4πk!

(2k + 1)!!
δkk′Δ

(k) . (B.34)

Further identities and properties of the spherical harmonics and their tensor repre-
sentation can be found in Refs. [99, 113].

1In the same manner as in the previous Appendix (App. A) Here the notation (k) refers to a 2k rank
tensor.
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