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Abstract

We consider the problem of acquiring accurate channel state information at the trans-

mitters of a wireless network. We develop different feedback and transmit strategies for

different network architectures and analyze their performance. First, we consider a sin-

gle cell of cellular system and assume that the beamforming vectors are given by a fixed

transmit codebook. We develop and analyze a new feedback and transmit strategy which

combines flexibility and robustness needed for efficient and reliable communication. We

prove that it has better scaling properties compared to classical results on the limited

feedback problem in the broadcast channel and that this benefit improves with an increas-

ing number of transmit antennas. We show how feedback codebooks can be designed for

different propagation environments. Link level and system level simulations sustain the

analytic results showing performance gains of up to 50% or 70% compared to zeroforc-

ing when using multiple antennas at the base station and multiple antennas or a single

antenna at the terminals, respectively.

We characterize the degrees of freedom (i.e. the multiplexing gain) of multi-cellular

systems under different assumptions on the channel model and for different system setups.

We propose different algorithms that possibly achieve the optimal degrees of freedom.

The first algorithm aims on aligning the interference at each receiver in a subspace of the

available receive space. Our second algorithm aims on directly maximizing the signal-to-

interference-plus-noise ratio (SINR) of all receivers. By allowing symbol extensions over

time or frequency and including a user selection we are able to achieve the alignment

of interference for many system setups and exploit multi-user diversity. For coordinated

transmit strategies we find the scaling of the performance loss with the feedback load. A

distributed interference alignment algorithm is introduced. The algorithm makes efficient

use of quantized channel state information and significantly reduces the feedback overhead.

We develop a framework that we call compressive rate estimation. To this end, we as-

sume that the composite channel gain matrix (i.e. the matrix of all channel gains between

all network nodes) is compressible which means it can be approximated by a sparse or low

rank representation. We develop a sensing protocol that exploits the superposition princi-

ple of the wireless channel and enables the receiving nodes to obtain non-adaptive random

measurements of columns of the composite channel matrix. The random measurements
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are fed back to a central controller who decodes the composite channel gain matrix (or

parts of it) and estimates individual user rates. We analyze the rate loss for a linear and

a non-linear decoder and find the scaling laws according to the number of non-adaptive

measurements.
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Zusammenfassung

Wir betrachten das Problem der Akquirierung von Kanalzustandsinformationen an den

Sendern von drahtlosen Netzwerken und entwickeln Feedbackverfahren und Sendestrategi-

en für verschiedene Netzwerk Architekturen. Die entwickelten Verfahren werden analysiert

und die Skalierung der Performance des Gesamtsystems anhand bestimmter Systempara-

meter bestimmt. Zuerst betrachten wir eine einzelne Zelle eines zellularen Systems und

nehmen an, dass die Beamformingvektoren durch ein festes Codebuch vorgegeben sind.

Wir entwickeln und analysieren ein neues Feedbackverfahren, dass Flexibilität und Robust-

heit vereint und dadurch effiziente und zuverlässige Kommunikation mit den Empfängern

ermöglicht. Eine Analyse des Verfahrens zeigt, dass die Skalierung des Ratenverlustes

durch quantisierte Kanalzustandsinformation besser ist als bei vergleichbaren Verfahren.

Für das Feedbackverfahren wird ein spezieller Algorithmus entwickelt der es ermöglicht

Codebücher für verschiedene Kanalmodelle zu generieren und zu optimieren. Die ana-

lytischen Ergebnisse werden durch Simulationen validiert und bestätigen einen Gewinn

gegenüber vergleichbaren Verfahren.

Anschließend betrachten wir zellulare Systeme mit mehreren Zellen. Wir charakteri-

sieren die Freiheitsgrade (degrees of freedom) unter verschiedenen Annahmen über das

Kanalmodell. Des weiteren entwickeln wir verschiedene Algorithmen, die die optimalen

Freiheitsgrade erreichen können. Anschließend wird ein Feedbackverfahren entwickelt, dass

den Feedbackaufwand für die entwickelten Algorithmen signifikant reduziert. Wir analysie-

ren eine breite Klasse von zellularen Systemen die beliebige koordinierte Sendestrategien

verwenden. Für diese Klasse von Systemen leiten wir die Skalierung des Ratenverlustes re-

lativ zum Feedbackaufwand her. Abschließend zeigen wir, wie die analytischen Ergebnisse

auf das entwickelte Feedbackverfahren angewendet werden können.

Im letzten Kapitel entwickeln wir ein Framework, dass das Potenzial von Compressed

Sensing nutzt um den Messaufwand und Feedbackaufwand in zellularen Systemen mit vie-

len Teilnehmern signifikant zu reduzieren. Das Framework ermöglicht es die Datenraten

der Nutzer innerhalb gegebener Fehlerschranken zu schätzen. Grundlage ist neben Com-

pressed Sensing ein neues Messverfahren, dass die Überlagerung von Signalen im Kanal

nutzt, um zufällige nicht adaptive Messungen der Kanalkoeffizienten am Empfänger zu

ermöglichen. Diese Messungen werden zu einer zentralen Steuereinheit übertragen und
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dort dekodiert. Wir analysieren die Genauigkeit der Rekonstruktion für einen linearen

und einen nicht-linearen Dekodierer und leiten die Skalierung mit der Anzahl der Mes-

sungen her. Abschließend zeigen wir, wie der entwickelte Ansatz in zellularen Systemen

angewendet werden kann.
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3.12 Alignment condition C2: for all j = 1, . . . , T the interference subspace

of the users m ∈ Ui in cell i = 3, 4, . . . , T , with i ̸= j, aligns with the
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1 Introduction

The information age is a historical period which is characterized by the significance of in-

formation as a primary product and commodity [Cas96]. Of central importance in the shift

from the industrial age to the information age are global information flows and electronic

data processing. To date the fastest expanding communication technology are wireless

networks. Over the last decades cellular networks have been a subject of intense theoret-

ical and practical research. The requirements on the data rates and coverage of cellular

networks have been dramatically increased, due to the huge commercial success of smart

phones, tablets and other mobile devices. It is expected that global mobile data traffic

will increase 11-fold over the course of the next five years [Cis14]. While former networks

had to support only voice and data services, future so-called fifth generation networks are

expected to support novel services which require a dramatic delay decrease and guaranteed

maximum latencies. Researchers are currently trying to meet delay constraints around 1

ms referring to the next big thing; the Tactile Internet. Moreover, the introduction of

the Internet of Things will lead to a massive increase of mobile devices. Most of those

mobile devices are sensor nodes that are conveying information to distributed cloud ser-

vices. With the current centralized approach, this would lead to a massive consumption of

energy and spectral resources. To cope with all those challenges, researchers around the

globe are currently rethinking wireless networks and inventing new network architectures,

network protocols and signal processing schemes.

Due to the scattering of electromagnetic waves in the environment, different components

of the transmitted signal arrive at the intended receiver through different angles, time de-

lays, and frequency shifts. Due to the superposition of different multi-path components

at a receiver, the wireless channels fluctuate in space, time and frequency. This fading

effects substantially limit the reliability of a communication channel. However, at the

same time it is well known that channel variations in time frequency and space increase

the diversity of a communication system [PW98]. But, to efficiently exploit the variations

of the channel, a substantial amount of maintenance signaling is required. Maintenance

signaling includes pilot signals for channel estimation and feedback messages containing

information about the channel states. To increase the spectral efficiency of wireless net-

works, the signaling schemes are getting more and more involved which usually comes at

1
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the cost of increased sensitivity. Therefore, also the amount of feedback and maintenance

signaling increases and, if not carefully designed, this overhead may eats up most of the

performance gains.

The wireless channel is a shared medium. Due to the large and growing number of

wireless devices competing for access to the wireless channel, interference is another ma-

jor challenge [GHH+10]. To minimize the performance loss caused by interference, the

signaling strategies must be carefully designed. In [FKV06] coherent and coordinated

transmission of multiple base stations to users has been considered to be a promising can-

didate to achieve enormous gains in spectral efficiency. However, today it is still difficult

to realize these gains under practical constraints [IDM+11]. One major drawback is that

data sharing between base stations is needed, which requires a huge capacity and low

latency of the back haul network. Another possibility to enhance the spectral efficiency

of future cellular systems is coordinated scheduling, which requires no data sharing. The

only information that needs to be exchanged between base stations is a certain amount of

scheduling information. In the landmark paper [CJ08] interference alignment was used to

show that the capacity of the interference channel in fading environment is much higher

than previously assumed. Under certain assumptions the downlink or uplink of a cellu-

lar system can be modeled as multiple mutually interfering broadcast or multiple access

channels. Interference alignment for cellular systems was considered in [ST08].

Another possibility to mitigate the interference problem is to deploy additional sites

(base stations) to the existing network infrastructure. This approach is based on a simple

observation: if the distance between transmitting and receiving nodes is decreased, less

transmit power is required and this leads to a decrease of the overall interference in the

network. At the same time, with less distance and less interference, the serving nodes

can be much simpler and therefore consume less power, are cheaper, smaller and so on.

Adding more and more base stations is usually infeasible due to the cost for the physical

deployment and maintenance of base stations. Therefore, in order to provide significantly

more wireless bandwidth at lower costs, novel types of network architectures and pro-

tocols are envisioned and implemented, including stationary relay stations or mini base

stations positioned within macro-cell areas. The relay stations are deployed to form (in a

decentralized manner) a high capacity wireless backbone that provides multi-hop wireless

connectivity between the central base station and mobile users. In such scenarios, chan-

nel state information at the central base station plays a crucial role in the ability of the

network to optimally utilize the wireless resources. However, channel state information is

not for free and therefore training and feedback protocols have to be carefully designed.

In summary, modern and future cellular systems need to make efficient use of channel

adaptive signaling schemes. Efficient strategies to acquire channel state information at
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the transmitting nodes are of utmost importance. This thesis is devoted to the problem

of channel state information quantization and feedback. An outline and the main results

are summarized in the next section.

1.1 Outline and Main Results

This thesis deals with the so-called limited feedback problem1 in wireless networks. If

channel state information is available at the transmitter, channel adaptive transmission

can be performed which is known to significantly increase the spectral efficiency of wireless

networks. In nowadays cellular systems, channel state information can be acquired at the

receiving nodes through training and channel estimation and must than be fed back to

the transmitting nodes. But, the feedback channel is usually rate-constrained. Therefore,

channel state information needs to be compressed and quantized before it can be fed back

to the transmitting nodes. We develop different feedback protocols for different network

architectures and analyze their performance. We start by considering a single cell and

assume that the beamforming vectors are given by a fixed transmit codebook. Next, we

consider a multi-cellular system and characterize the degrees of freedom (i.e. multiplexing

gain) for certain system setups under different channel models. If the number of serving

nodes (e.g. base stations, relays, mini base stations, device to device links) and their

number of antennas increases, standard pilot based channel measurement schemes result

in the pollution of the available spectrum with pilot signals. Therefore, acquiring channel

state information at the receiving nodes can be a challenging task on its own. To this

end we explore the potential of compressed sensing and simpler related methods which

enable the reduction of the training and feedback overhead in dense wireless networks.

Throughout this thesis we use tools from matrix analysis, information theory, covering

theory and compressed sensing. The main topics and results are outlined in more details

below.

In Chapter 2 we investigate the downlink performance of the multi-user MIMO channel

under a limited feedback constrained. We present and analyze a new robust feedback

and transmit strategy for multi-user MIMO downlink communication systems, termed

Rate Approximation. Rate approximation combines flexibility and robustness needed for

efficient and reliable communications with the user terminals. Loosely speaking, using

the proposed rate approximation strategy, the terminal selects a channel quantization

vector from a feedback codebook considering any possible scheduling decision that can

be taken by the base station. As we show, this enables the base station to approximate

the achievable user rates, rather than the user channels, subject to a small uniform a

1Carefully defined later on.
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priori error. We analyze the a priori rate error at the base station (before any scheduling

decision) for each individual terminal evoked by our rate approximation strategy. We

prove that the rate error can have better scaling properties compared to classical baseline

results on the limited feedback problem in the broadcast channel. It is shown that the

rate approximation strategy achieves the optimal multi-user multiplexing gain. Moreover,

we show how feedback codebooks can be designed for different propagation environments.

Link level and system level simulations sustain the analytic results, showing performance

gains of up to 50% or 70% compared to zeroforcing when using multiple antennas at the

base station and multiple antennas or a single antenna at the terminals, respectively.

The work presented in Chapter 2 has been published in [1], [2], [3], [4], [5] , [6] and [7].

Based on the work the following patents have been filled [8], [9] and [10] .

In Chapter 3 we investigate the degrees of freedom of cellular systems for certain

scenarios and system setups. First, we assume a fading environment and allow a asymp-

totically large number of symbol extensions. Here, we find the degrees of freedom for

certain system setups. Next, we find sufficient conditions for the feasibility of interference

alignment if the number of symbol extensions is limited. Finally, we assume that trans-

mission needs to be performed over constant channels (i.e. no symbol extensions); here

we find a sufficient condition for the feasibility of interference alignment. Based on the

insight achieved by the analysis, we propose different algorithms, which possibly achieve

the optimal degrees of freedom. The first algorithm aims on aligning the interference at

each receiver in a subspace of the available receive space. Our second algorithm aims on

directly maximizing the signal-to-interference-plus-noise ratio (SINR) of all receivers. By

allowing symbol extensions over time or frequency and including a user selection, we are

able to achieve the cancellation of interference for any system setup (if perfect channel

state information is available) and exploit multi-user diversity. Finally, our findings are

underlined by extensive simulations. First, we consider a Wyner-like channel model to

validate the analytic results. Then, we use a LTE related channel model to evaluate the

performance of the proposed algorithms in practical scenarios. The work presented in

Chapter 3 has been published in [11], [12], [13] and [14]

In Chapter 4 we analyze the performance of multi-cellular systems under a limited

feedback constrained. We make a step forward towards a more realistic assessment of the

limited feedback problem by introducing a new metric for the performance evaluation. The

new metric captures the throughput degradation due to beamforming and link adaption

based on partial channel state information. We obtain the relevant scaling laws of the

throughput degradation (lower and upper bounds) and show that they differ from existing
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ones. A distributed interference alignment algorithm is introduced which makes efficient

use of quantized channel state information and significantly reduces the feedback overhead.

The algorithm includes a user selection which, under certain assumptions ensures the

feasibility of interference alignment. Finally, we underline our findings with simulations.

The work presented in Chapter 4 has been published in [15], [16] and [17].

In Chapter 5 we develop a framework that we call compressive rate estimation. To

this end, we assume that the composite channel gain matrix (i.e. the matrix of all channel

gains between all network nodes) is compressible which means it can be approximated

by a sparse or low rank representation. We develop a sensing protocol that exploits the

superposition principle of the wireless channel and enables the receiving nodes to obtain

non-adaptive random measurements of columns of the composite channel matrix. The

random measurements are fed back to a central controller who decodes the composite

channel gain matrix (or parts of it) and estimates individual user rates. We analyze the

rate loss for a linear and a non-linear decoder and find the scaling laws according to the

number of non-adaptive measurements.

The work presented in Chapter 5 has been published in [18] and [19],

Further results which are not part of this thesis:

• In [20] a remote channel estimation scheme for multi-user MIMO OFDM systems

that is based on compressed sensing was proposed. The feedback scheme signifi-

cantly reduces the feedback load and the complexity at the receiver site. Extensive

simulations showed significant advantages of the proposed scheme over conventional

feedback schemes.

• In [21] a feedback and rate control protocol for two-hop wireless networks is proposed.

The protocol is based on estimates of a function of the channel gains, the Perron

root, which can be efficiently computed in the wireless channel by exploiting the

superposition property. It is shown that the proposed protocol significantly reduces

the training and feedback overhead. Numerical experiments demonstrate that the

protocol enables efficient rate allocation in two-hop wireless networks.

1.2 Mathematical Preliminaries

Unless stated otherwise, the following notation and conventions are used throughout the

thesis. The logarithm to the base 2 is given by log(x) and the natural logarithm is given

by ln(x). Bold letters denote vectors and bold capital letters matrices. The conjugate
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transpose of a matrix X is denoted as XH and XT is the transpose of matrix X. The

element in the ith row and jth column of a matrix X is given by xi,j , similarly, the ith

element of a vector x is given by xi. The operator x = vec(X) stacks the columns of matrix

X in a large column vector x. Element wise non–negativity is denoted by X ≥ 0. The set

of all natural numbers 1, 2, . . . is denoted as N, the set of all real numbers is denoted as R
and the set of all complex numbers is denoted as C. The n× n identity matrix is defined

as In and the ith column is given by ei. The vector of all zeros is denoted as 0. The

support of a vector x is the number of non-zero elements and denoted as supp(x). The

null space or kernel of a matrix X ∈ CM×N is denoted as ker(X) = {v ∈ CN : Xv = 0}.
Sets are denoted in calligraphic letters. We use the concept of index sets to denote

entities of the system (e.g. base stations, users, data streams). An index set is defined

as a set whose elements index elements of another set. For example we will collect the

indices of the users denoted as u1, u2, . . . in the index set U = {1, 2, . . .}. We will also use

ordered lists to collect different elements; lists are denoted as V = (a, b, c, . . .).

The expected value of a random variable X is denoted as E [X]. The probability of

some event A is denoted as Pr (A). We frequently consider circularly-symmetric com-

plex Gaussian random variables X = Y + iZ ∼ CN (0, σ2), with i =
√
−1 and Y, Z ∼

N (0, σ2/2) Gaussian distributed with zero mean and variance σ2/2. Usually we say that

X ∼ CN (0, σ2) is complex Gaussian distributed without stating “circularly-symmetric”

explicitly.

We will typically consider normed vector spaces. In the case of a discrete and finite

domain N we will look at vectors in CN . For x,y ∈ CN we consider the standard inner

product

⟨x,y⟩ = xHy =
N

i=1

x̄iyi.

which yields the ℓ2 norm

∥x∥2 =

⟨x,x⟩.

The unit sphere in CN with the norm ∥ · ∥2 is defined as

SN−1 = {x ∈ CN : ∥x∥2 = 1},

and will be denoted as the unit sphere without referring explicitly to the used norm. We

will frequently use the Cauchy-Schwarz inequality, which states that for any two vectors

x,y ∈ CN ,

|⟨x,y⟩| ≤ ∥x∥2∥y|2.

A proof of the Cauchy-Schwarz inequality can be found in [HJ85]. Also useful will be the
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Parseval’s identity which asserts that for every x ∈ CN and any orthonormal basis B of

CN



e∈B
|⟨x, e⟩|2 = ∥x∥22.

If a sequence of vectors C ⊂ CN satisfies



w∈C
|⟨x,w⟩|2 = A∥x∥22, (1.1)

for every x ∈ CN and with a fixed constant A ≥ 1, we say that C is tight frame of CN .

We will also use other ℓp norms, which are defined for 1 ≤ p <∞ as

∥x∥p =


N

i=1

|xi|p
1/p

and for p =∞ as

∥x∥∞ = max
i=1,...,N

|xi|.

For matrices X ∈ CM×N we will consider the Schatten-p norm which is given by

∥X∥sp =




min(M,N)

i=1

σpi (X)




1/p

where {σi(X)}i are the singular values of the matrix X in decreasing order. Moreover

the special case of the Frobenius norm will be denoted as

∥X∥F =


M

i=1

N

j=1

|xi,j |2 = ∥X∥s2 .

1.3 Modeling of Cellular Systems and Basic Assumptions

Here we describe our approach to model cellular systems which is used throughout this

thesis. We introduce the channel model, discuss transmit and receive strategies and define

performance measures. In the subsequent chapters the model will be refined to fit the

individual needs of each chapter.
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1.3.1 Channel Model

We describe the downlink model of a cellular system (i.e. data is transmitted from the

base stations to the users); the uplink model will be introduced in place when required.

Consider the downlink of a cellular system with T base stations (cells) and U users.

The indices of all users are collected in the index set U = {1, 2, . . . , U} and the indices of

users connected to base station b are collected in the index set Ub ⊆ U . It is assumed that

each user is connected to at least one base station, i.e., U =
T

i=1 Ui. For simplicity we

assume that all base stations are equipped with nt antennas and all users are equipped

with nr antennas. We assume a discrete-time flat-fading channel model. The channel

model is based on several simplifications but for most parts of the present work the model

is of sufficient detail; if required extensions are introduced in place. The discrete-time

representation represents the symbol rate of the system. Moreover we assume that the

system is perfectly synchronous in time and frequency. The signal received by user m in

time slot t is

ym[t] =
T

l=1

Hm,l[t]xl[t] + nm[t] ∈ Cnr ,

where nm[t] ∼ CN (0, Inr) is complex Gaussian noise with zero mean and unit variance,

xl[t] is the signal transmitted by base station l, and Hm,l[t] is the linear channel transfer

function from base station l to user m. We adopt a block fading channel model. That is,

we assume that the channels stay constant for a time frame of Ts time slots and change

independently in the next frame of Ts time slots. We assume that the channel coefficients

from time frame to frame are given by an ergodic process. If not stated explicitly we

assume that the absolute values of the channel coefficients are bounded between a non-

zero minimum and a finite maximum, this is to avoid degenerated channel conditions.

Most of the results in this thesis do not assume a specific distribution of the channel

fading process; if we assume a specific random model it is defined in place. For a given

time slot t all channels that can be observed by user m are collected in the list

Hm[t] := (Hm,l[t])l=1,...,T .

Throughout this thesis we assume that the channels Hm[t] can be perfectly tracked by

each user m ∈ U . Finally, all channel realizations for a given time slot t are collected in

the list

H[t] := (Hm[t])m∈U .

For simplicity we will drop the time slot reference in the following. For example for an
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arbitrary but fixed time slot the signal received by user m is

ym =
T

l=1

Hm,lxl + nm ∈ Cnr .

1.3.2 Transmit Protocol

A set of distributed algorithms that are performed to respond to variations of the network

state is called a protocol. Here we describe the downlink transmit protocol which is invoked

periodically for each frame of Ts time slots.

1) Channel measurement Throughout this thesis we assume that all receivers m can

perfectly track the channels Hm. However we stress that in a practical system typically

pilot signals need to be transmitted by the base stations from each antenna separately.

For each of the Tnt transmit antennas in the system the pilot signals must be transmitted

on a different time slot, i.e. pilot signals must be transmitted on orthogonal resources. In

Chapter 5 we will show how the requirement of orthogonal pilot signals can be relaxed.

2) Feedback The measured channels are quantized and fed back to the base stations or,

depending on the system architecture, a central controller. We will develop and discuss

different feedback schemes throughout this work. The general approach and challenges

are described in Subsection 1.4 below.

3) Scheduling Scheduling is performed based on the channel state information available

at the base stations or a central controller. Throughout this thesis we assume that schedul-

ing includes a user selection and the determination of transmit parameters like precoding

vectors, number of scheduled data streams and transmit powers. We will apply different

scheduling strategies. The general approach is specified in Subsection 1.3.3.

4) Measurement of effective channels Orthogonal precoded pilots (i.e. dedicated pilots)

are transmitted by all base stations b = 1, . . . , T and used by the users m to measure the

effective channels Hm,bπ(i), where π(i) is a precoding vector (defined later on) used to

precode data stream i. Similar to the first channel measurement phase we assume that all

receivers can perfectly track the effective channels.

5) Data transmission The rest of the transmission frame is used to transmit data to

the selected users. Data transmission is performed simultaneously by all base stations

9
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to all selected receivers. Interference is treated as noise. Different transmit and receive

strategies are discussed in Section 1.3.3.

Remark 1.1. Throughout this thesis we assume that the number of time slots τ required

for training and feedback of the channel states is much smaller than the length of a time

frame τ ≪ Ts. This assumption enables us to focus our effort on the limited feedback

problem and the performance loss due to precoding and scheduling based on quantized

channel state information.

1.3.3 Transmit and Receive Strategies

We restrict the class of transmit and receive strategies to linear beamforming strategies,

i.e., we assume linear transmit precoding and linear receive filtering (defined below). We

stress that linear beamforming strategies are in general not performance optimal but

known to perform reasonably well in many systems. For example, [DS05] showed for the

Gaussian broadcast channel with more users than transmit antennas that linear beam-

forming with user selection performs close to the optimal dirty paper coding limit [CS03].

Non-linear dirty paper coding based techniques are known to achieve the performance of

the Gaussian broadcast channel, but in general implementations of dirty paper coding

based techniques are to complex for practical systems. On the other hand, linear beam-

forming strategies are known to yield a good trade off between implementation complexity

and achievable performance.

If the base stations and the users have multiple antennas, beamforming strategies enable

the transmission of multiple data streams on the same spectral resources (i.e. in the same

frequency band and in the same time slot). For point-to-point MIMO systems spatial

multiplexing was shown in [PK94, Fos96] to yield a substantial increase of the system

performance. On the other hand, in point-to-point MIMO systems multiple antennas can

be used to increase the reliability of communication by increasing the receive and transmit

diversity [Ala98,TSC98]. The concepts of transmit/receive diversity and multiplexing can

also be extended to systems with multiple users. In systems with multiple users multiple

antennas can also be used to reduce interference and in this way increase the overall

performance of the system. All these goals are mutually conflicting and therefore a smart

balancing is required in order to maximize the system sum-rate or any other performance

metric. In fact, [ZT03] showed for the point-to-point MIMO channel that there is a

fundamental trade off between multiplexing and diversity.
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Scheduling

Assume that each user is associated with at least one data stream and that all data streams

have a full buffer of infinite length. In a fully loaded system adaptive adjustment of the

number of active data streams is crucial to maximize the performance. Thus, for each

transmission frame a scheduling decision must be taken. A scheduling decision is defined

as follows.

Definition 1.2. A scheduling decision is given by a pair (S,π), which consists of i) the

list of all scheduled data streams

S := (S1,S2, . . . ,ST ),

with Sb the index set of data streams scheduled for transmission by base station b, and ii)

a precoding vector for each scheduled data stream i ∈ S := S1 ∪S2 ∪ . . .∪ST , given by the

mapping

π : S → Snt−1. (1.2)

We stress the difference between the list of scheduled data streams S and the index set

of scheduled data streams S. The first will be convenient later on since it preserves the

cardinality of the sets Sb, and the latter mainly acts as domain of the mapping π. We will

not state the domain of π explicitly if it is clear from the context. Further we define the

index set of all scheduled data streams assigned to user m ∈ S as,

Rm = {i ∈ S : data stream si is assigned to user m}.

Linear Beamforming

The transmitted signal must fulfill an average transmit power constraint E

∥xb∥22


≤ P .

If not stated otherwise, we assume that the base station distributes its available power

equally among all scheduled data streams. The signal transmitted by base station b is

given by the superposition

xb =


i∈Sb


P

|Sb|
π(i)si.

Each data stream is given by a sequence of i.i.d. complex Gaussian random variables with

zero mean and unit variance. After passing through the channel the signal received by

user m ∈ U can now be written as

ym =

T

b=1



i∈Sb


P

|Sb|
Hm,bπ(i)si + nm.
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To decode data symbol si from the received signal ym user m applies a linear receive filter,

which is given by the mapping

ρ : S → Snr−1.

The receive filter ρ(i) for data stream i transmitted from base station b to receiver m

usually depends on the effective channel Hm,bπ(i). If the receiver is able to estimate the

effective channel Hm,lπ(j) for some base station l and data stream j ∈ Sl, the receive

filter may also consider interference from other data streams. However, we stress that

throughout this thesis we consider only linear receive filter techniques and no non-linear

techniques like successive interference cancellation or other multi-user detection schemes.

For now we just assume that each user independently optimizes its receive filter. Specific

receive strategies are introduced in place when required.

1.3.4 Achievable Rates

The capacity C of a channel is defined as the maximum achievable rate at which reliable

communication is possible. In [Sha48] Shannon showed for the Gaussian discrete time

channel with average power constraint that for any rate R < C and error probability

bound Pe > 0 there exists a channel code that achieves Pe. Conversely, a code with a rate

R > C cannot achieve an arbitrary small error probability. Consider the discrete-time

channel

y = x+ n,

with complex input symbols x ∈ C, n ∼ CN (0, N0) i.i.d. complex Gaussian noise, and

assume an average power constraint P and unit bandwidth, then the channel capacity is

maximized if the input is complex Gaussian distributed with zero mean and variance P

and equal to [Sha49]

C = log(1 + SNR), bit/s,

where SNR = P/(N0) is the SNR per receive dimension. If we consider a discrete-time

fast-fading channel, the received signal per channel use is

y = hx+ n

where h is an ergodic process, the ergodic capacity [Eri70] without channel state informa-

tion at the transmitter is given by

C = E

log(1 + |h|2SNR)


, bit/s.

12



1.3 Modeling of Cellular Systems and Basic Assumptions

For a fast-fading (Ts = 1) point-to-point MIMO channel

y = Hx+ n,

with n ∼ CN (0, Inr) and the elements of H distributed as hi,j ∼ CN (0, σ2) and x ∼
CN (0, P/ntInt), the ergodic channel capacity with channel state information at the re-

ceiver was shown by [Tel99,FG98] to be

C = E

log det(Inr + (P/nt)HH

H)

.

The fast-fading point-to-point “Rayleigh” channel is one of a few examples the channel

capacity is known for. However, for most of the channels we are going to consider the

capacity is generally unknown, and, even if it is known, the capacity achieving coding

schemes are usually very complex and by no means applicable under practical constraints.

In fact, we will mainly consider cellular systems which can be modeled as multiple in-

terfering broadcast channels (downlink), interfering multiple access channels (uplink) or

interference channel (single user per base station). To the best of our knowledge, for none

of these channels the capacity region is known so far.

Therefore, we resort to linear beamforming schemes with Gaussian inputs and adopt an

achievable rate as performance measure. If the input symbols are i.i.d. complex Gaussian

distributed, si ∼ CN (0, 1), and the channels H, the precoders π, and the receive filters ρ

are fixed, the achievable rate can be given as a function of the SINR. The SINR is defined

as the ratio of the desired signal power to the sum of the interference plus noise power.

For fixed receive filters ρ the SINR of data stream i ∈ Sb transmitted by base station b

and decoded by receiver m can be given as a function of the linear precoding vectors π,

scheduled data streams S = {S1, . . . ,ST } and a channel realization H,

SINRi(P,π, S,Hm) =

P
|Sb| |⟨ρ(i),Hm,bπ(i)⟩|2

1 +
T

l=1


j∈Sl
j ̸=i

P
|Sl| |⟨ρ(i),Hm,lπ(j)⟩|2

. (1.3)

Now, if receiver m has perfect knowledge of the effective channels ⟨ρ(i),Hm,lπ(j)⟩, for

all j ∈ Sl and l = 1, . . . , T , then, for fixed channels the achievable rate of stream i ∈ Sb
transmitted by base station b and decoded by receiver m is

ri(P,π, S,Hm) = log (1 + SINRi(P,π, S,Hm)) . (1.4)

To see this, without loss of generality assume a single data stream per user and let data

streamm be associated with userm. Define the effective channel αm,b = ⟨ρ(m),Hm,bπ(m)⟩,
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such that the filtered received signal of user i ∈ Sb can be written as

ŝi = ⟨ρ(i),yi⟩ =


P

|Sb|
αi,bsi +

T

l=1



m∈Sl\{i}


P

|Sl|
αm,lsm + ⟨ρ(i),nm⟩ (1.5)

Since the sum is taken over complex Gaussian random variables with zero mean and

variance P
|Sl| |αm,l|2, the channel (1.5) is a Gaussian channel with noise variance

T

l=1



m∈Sl\{i}

P

|Sb|
|αm,l|2 + 1

and therefore has the achievable rate (1.4). However, to achieve this rate a large number of

symbols must be transmitted. We stress that throughout this thesis we use the achievable

rate as utility function to measure the performance of the considered systems. We will

further use the achievable sum-rate of the system

R(P,π, S,H) :=

T

b=1



m∈Ub



i∈Rm

ri(P,π, S,Hm) (1.6)

as utility function. To evaluate the average achievable sum-rate, we assume a specific

signaling strategy that adapts π and S to the instantaneous channel realization. For

example, if we assume perfect channel state information at a central controller, the sum-

rate optimal signaling strategy is the solution to the optimization problem

max
π:S→Snt−1

max
S={S1,...,ST }

R(P,π, S,H), (1.7)

with the domain of π given by S = S1 ∪ . . . ∪ ST , as defined above. Define the sum-rate

optimal scheduling decision with perfect channel state information as (SH ,πH). Assuming

that the random process underlying the channel statistics is ergodic, the average achievable

sum-rate with perfect channel state information is

R̄H(P ) = E [R(P,πH , SH , H)] , (1.8)

where the expectation is taken over the channel realizations H. We stress that solving

(1.7) without further constraints is in general not feasible. Therefore, if we need to solve

(1.7) explicitly we will resort to sub-optimal solutions. For instance, in Chapter 2 we

assume that the beamforming vectors are given by a fixed codebook, and in Chapter 3 we

consider interference alignment. Moreover, in the theoretical setting of Chapter 2 and 4
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1.4 Limited Feedback Problem

will assume that (1.7) has been perfectly solved.

1.4 Limited Feedback Problem

In multi-user and multi-cellular MIMO systems channel adaptive signaling can yield large

performance gains. To perform channel adaptive signaling channel state information at the

base station is required. For instance, to exploit multi-user diversity in a multi-user MIMO

channel, channel state information at the base station is essential. In fact, [CS03] showed

for the multi-user MIMO channel, if the base station has no channel state information and

all channels have the same statistics, then point-to-point communication is optimal. A

comprehensive survey on the limited feedback problem in wireless communication systems

can be found [LHN+08]. A review of related literature will be presented in the introduction

of each chapter.

As describe above (Subsection 1.3.2) we assume no significant delay in the process of

channel measurement, quantization and feedback. In other words, for an arbitrary channel

realization H the base stations (or the central controller) have instantaneous knowledge

of the quantized channel state information,

Vm :=

H̃m,l = Q(Hm,l)


l=1,...,T

, ∀m ∈ U

where Q(X) is some quantization operator, defined later on when required. The quantized

channel state information from all users is collected in the list

V := (Vm)m∈U .

If the central controller or the base stations have quantized channel state information V ,

the sub-optimal scheduling decision (SV ,πV ) can be found by solving

max
π:S→Snt−1

max
S={S1,...,ST }

R(P,π, S, V ). (1.9)

Such that, the achievable sum-rate with quantized channel state information V at the

central controller is

R(P,πV , SV , H).

and the average achievable sum-rate with quantized channel state information V at the

central controller is

R̄V (P ) = E [R(P,πV , SV , H)] .
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1 Introduction

Clearly, the achievable sum-rate with quantized channel state information is smaller or

equal than the sum-rate with perfect channel state information.

R(P,πV , SV , H) ≤ R(P,πH , SH , H).

Obviously, the same is true for the average sum-rates,

R̄V (P ) ≤ R̄H(P ).

In the subsequent chapters we will explore the rate loss due to quantized channel state

information under various assumptions on the quantization of the channels, the system

architecture and the transmit strategies.
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2 Single Cell Processing with Limited

Feedback

Multiple antenna downlink technology offers the possibility of sharing the same frequency

band at the same time between multiple users. If perfect channel state information is

available at the base station (transmitter), the sum-rate optimal transmission technique is

a combination of linear beamforming and dirty paper coding [CS03,VJG02,VT02]. Since

it is difficult to implement dirty paper coding in practical systems, linear beamforming

techniques have been studied extensively and shown to perform close to the optimal so-

lution [DS05]. However, due to the rate-constrained feedback channel, obtaining channel

state information at the base station remains a non-trivial task.

Over the last years, there have been a vast number of publications dealing with so-

called limited feedback multi-user MIMO systems (reviewed below). In these scenarios, the

base station obtains quantized channel state information via a rate-constrained feedback

channel. Transmit strategies for limited feedback multi-user MIMO systems can be roughly

divided in two categories. One category is based on adaptive beamforming where the choice

of beamforming vectors is not restricted to a specific codebook. Zeroforcing beamforming is

a popular adaptive beamforming strategy. The other category is based on the assumption

that the transmit beamforming vectors are chosen from a fixed transmit codebook and

called fixed beamforming.

In this chapter we consider fixed beamforming. Most of the fixed beamforming schemes

require that each user reports information about its preferred transmit codebook entry.

This feedback information is then used by the base station to select users for transmis-

sion. One candidate is the so-called per user unitary rate control (PU2RC) introduced

in [KKL05]. In [HAH09] it is shown that PU2RC achieves the full multi-user diversity

and multiplexing gain asymptotically, i.e. for a large number of users. However as pointed

out by [CJKR10], the case of a large number of users is actually quiet the opposite of

what next generation wireless systems aim at, namely to provide very high data rates to

individual users. Therefore, we claim that for a small number of users the interference

situation has to be more accurately predicted. This can not be achieved by PU2RC or

other schemes based on reporting the preferred beamforming vector, see e.g. [3GP07].
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2 Single Cell Processing with Limited Feedback

Making the interference situation available to the base station is exactly the purpose

of the rate approximation feedback strategy discussed in this chapter. It allows the base

station to uniformly approximate the multi-user rates for any selection of users and any

combination of beamforming vectors defined by a transmit codebook. The main idea is

to distinguish between a transmit- and a feedback codebook. Two striking advantages

come with this concept. First, the base station has now all degrees of freedom for the user

selection and second, the rate allocation is more reliable due to the uniform approximation

and the reliability scales with the number of feedback bits.

Related Work

An extensive survey on the limited feedback problem in MIMO systems can be found

in [LHN+08]. The standard reference for point-to-point MISO systems is [KSEA03] where

groundbreaking analytic expressions for the problem are derived. Reference [AYL07] eval-

uates the performance of point-to-point MISO systems using random vector quantization.

In [SH09] is shown that random vector quantization is asymptotically optimal (i.e. the

number of feedback bits, the number of transmit antennas and the number of receive

antennas all go to infinity with fixed ratios) for point-to-point MIMO systems.

For multi-user MIMO systems, [Jin06] provides the standard performance analysis for

the throughput degradation assuming random vector quantization. In [CJKR10] different

feedback schemes are analyzed and compared under a variety of assumptions; includ-

ing imperfect channel state information at the receivers and feedback delay. The major

drawbacks of [Jin06, CJKR10] are that no user selection is considered. However, user se-

lection is essential to achieve high data rates and to exploit multi-user diversity [DS05].

In [KdFG+07] different feedback schemes are proposed that enable the base station to

estimate the SINR of each user and to perform user selections at the base station. Refer-

ence [TBH08] also considers zeroforcing beamforming and jointly designs the receive filters

and the channel quantization to maximize the expected SINR of each user. In [DLZ07]

different types of partial channel state information are assumed and the performance

of dirty paper coding and zeroforcing beamforming is compared. However, all of these

works [Jin06,CJKR10,KdFG+07,TBH08,DLZ07] focus on zeroforcing beamforming, usu-

ally arguing that zeroforcing enables closed form analysis.

If the choice of beamforming vectors is restricted to a codebook with orthogonal unit

norm vectors, we will talk about unitary beamforming. Unitary beamforming with ran-

dom orthogonal beamforming vectors was proposed in [SH05] and shown to achieve the

same multi-user multiplexing gain as dirty paper coding. Based on this work different

unitary beamforming algorithms with sum feedback rate constraints have been proposed
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and compared in [HHA07]. In [dFKSG07] unitary beamforming with user selection is con-

sidered and a feedback protocol developed that enables the base station to compute exact

SINR expressions. In [Sam06] a unitary beamforming scheme named per user unitary

rate control (PU2RC) has been proposed for LTE. PU2RC uses codebooks with multiple

groups of orthogonal vectors to achieve performance gains. In [ZXC09] an improved user

selection scheme for PU2RC is proposed.

Contributions

We consider linear beamforming and assume that the beamforming vectors are defined by

a fixed transmit codebook known to the base stations and all users, a priori. In contrast

to previous work, we allow a possibly different codebook for the feedback and apply a new

feedback strategy which we call rate approximation. Loosely speaking, using the proposed

rate approximation feedback strategy the terminal selects a channel quantization vector

from the feedback codebook, considering any possible scheduling decision that can be

taken by the base station. As we show, this enables the base station to approximate the

user rates rather than the user channels, subject to a small uniform a priori error. Then,

given the feedback message, the base station is permitted to use any beamforming vector

from the transmit codebook for some network oriented optimization purpose, and not just

the beamforming vector dictated by the user.

In the first part of this chapter (Section 2.3) we prove that for the low to average SNR

range beamforming with a fixed codebook can achieve higher rates than zeroforcing beam-

forming. For the rate approximation feedback strategy we analyze the rate approximation

error at the base station, that is the rate error before any scheduling decision. We prove

that rate error has essentially the same scaling properties compared to the zeroforcing

beamforming results in [Jin06]. In fact, we find that the scaling improves with an increas-

ing number of transmit antennas and can even be better than the scaling for zeroforcing

beamforming in [Jin06]. To this end, we derive a vector quantization problem related to

the rate approximation feedback strategy by replacing the chordal distance with a new

distance function which inherently uses the structure of the transmit codebook. Moreover,

we prove that the scaling of the rate approximation error at the base station is inherited

by the achievable system sum-rate.

In the second part (Section 2.4) we highlight some of the advantages of the rate approx-

imation feedback strategy in practical scenarios. We show how the rate approximation

scheme can be naturally extended to OFDM systems. We demonstrate how feedback code-

books for arbitrary scenarios can be designed using an algorithm proposed by Linde, Buzo

and Gray in [LBG80]. Using the proposed feedback method, different feedback codebooks
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2 Single Cell Processing with Limited Feedback

can be optimized beforehand and then loaded if the environment changes, for example if

a user moves from indoors to outdoors). Moreover, we develop a sub-optimal feedback

protocol that reduces the complexity of the rate approximation feedback strategy but still

considers the transmit codebook. Finally in Section 2.5 we underline our results with sys-

tem level simulations showing the benefits obtained by the proposed rate approximation

feedback strategy.

2.1 System Setup and Problem Statement

u2
h

u1

U
bs x

y1

noise

y2

limited feedback: v = {(ϑ1,v1), (ϑ2,v2)}

C V

C V

C V

Figure 2.1: Example of a single cell system architecture with 2 users receiving independent
data from a single base station. Based on quantized channel state information
v the base station (bs) performs scheduling. The channel direction information
vm ∈ V of user m is taken from a feedback codebook V. Beamforming vectors
are elements of a predefined transmit codebook C. All terms are defined in
Section 2.1.

We consider the downlink channel of a cellular network, introduced in Section 1.3, and

take the following additional assumptions. We consider a single cell (base station), T = 1,

and assume that all out-of-cell interference can be treated as additive complex Gaussian

noise. In the literature such systems are frequently called multi-user MIMO systems. To

simplify the notation we drop the base station index. Hence, the signal received by user

m through the channel Hm = Hm,1 ∈ Cnr×nt is

ym = Hmx+ nm,

where nm ∼ CN (0, Inr) is the out-of-cell interference plus noise. If not stated otherwise we

make no assumption on the channel We assume a single data stream per user and let data

stream i be associated to user i. Hence, we may say that user i is scheduled for transmission

implying that data stream i associated to user i is scheduled. The maximum number of
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2.1 System Setup and Problem Statement

scheduled users (or data streams) is bounded by |S| ≤ ns ≤ nt. In the single cell case of

this chapter the list of scheduled data streams S = S, and we will use S throughout this

chapter. The beamforming vectors are taken from a finite transmit codebook C ⊂ Snt−1,

known to the base station and all users. According to (1.2) the assignment of users to

beamforming vectors is defined by the mapping

πC : S → C,

that maps each user m ∈ S to an element of the transmit codebook C. Therefore, a

scheduling decision can be given by a pair (πC ,S). Throughout this chapter we assume

that the transmit codebook constitutes a tight frame (1.1) in Cnt , with frame constant

A. If A = 1, C constitutes an orthonormal base and we call C an unitary codebook. The

transmitted signal is given by the superposition

x =


m∈S


P

|S|πC(m)sm. (2.1)

Since E

|sm|2


= 1 (see Section 1.3.3 for more details), the transmitted signal fulfills an

average power constraint E

∥x∥22


≤ P . For simplicity, we assume that the receive filter

ρ(m) is fixed during the feedback and transmission phase. Such that we can define the

effective channel ĥm = ⟨Hm,ρ(m)⟩ and the normalized effective channel hm = ĥm/∥ĥm∥2.
To simplify notation, we define the receive SNR (normalized to the number of transmit

antennas nt) of user m as

λ2m :=
P∥ĥm∥22

nt
,

and collect the set of all effective channels in the list

h := (λmhm)m∈U . (2.2)

Now the SINR of user m ∈ S can be rewritten as a function of the scheduling decision

(πC , S) and the effective channel λmhm,

SINRm(πC ,S, λmhm) =
λ2m|⟨hm,πC(m)⟩|2

|S|/nt + λ2m


l∈S\{m} |⟨hm,πC(l)⟩|2 . (2.3)

Further, the achievable rate of user m can be rewritten as

rm(πC ,S, λmhm) = log (1 + SINRm(πC ,S, λmhm)) , (2.4)
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2 Single Cell Processing with Limited Feedback

and the system sum-rate for scheduling decision (πC , S) and channel realization h can be

written as

R (πC ,S, h) =


m∈S
rm(πC ,S, λmhm).

Throughout this chapter we assume that scheduling is performed to maximize the system

sum-rate. Hence, if the base station has perfect channel state information the optimal

scheduling decision (Sh,πC,h) is the solution to the optimization problem

max
S⊆U

max
πC :S→C

R (πC ,S, h) subject to |S| ≤ ns. (2.5)

Such that the system sum-rate with perfect channel state information is given by

R (πC,h,Sh, h) .

Our goal is to explore the rate loss due to quantized channel state information. To

this end, assume that quantized channel state information at the base station is given

by a channel direction information (CDI) vm ∈ V, which is an element of the feedback

codebook V ⊂ Snt−1 of size |V| = 2B, and a channel quality information (CQI) given by

a scalar ϑm ∈ R. The feedback protocol will be specified in the next section. We assume

that the feedback codebook V is a priori known to all users and the base station and that

the CQI is perfectly transferred to the base station. The scheduling decision (Sv,πC,v)

based on quantized channel state information

v := (ϑmvm)m∈U

is the solution to the optimization problem

max
S⊆U

max
πC :S→C

R (πC ,S, v) subject to |S| ≤ ns. (2.6)

Hence, the system sum-rate with quantized channel state information is R (πC,v,Sv, h).

Obviously the system sum-rate with quantized channel state information is smaller than

the system sum-rate with perfect channel state information,

R (πC,v,Sv, h) ≤ R (πC,h,Sh, h) .

Clearly, the scheduling decisions based on quantized channel state information (2.6) should

match with the scheduling decision based on perfect channel state information (2.5) as

good as possible. This is the motivation for the feedback protocol developed in the next
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2.2 Rate Approximation Feedback Strategy

section.

Remark 2.1. Since the precoding vectors are given by a fixed codebook, the optimization

problems (2.5) and (2.6) are combinatorial problems that can be solved either by a brute

force search over the user sets S ⊆ U , with |S| ≤ ns, and the mappings πC : S → C or

more efficiently in a greedy fashion. Efficient algorithms to solve the scheduling problems

(2.6) and (2.5) are important in practical applications. In the theoretical setting of the

next sections, one can always assume that the scheduling problem is perfectly solved. In

the simulations presented in Section 2.5 we compare the performance of a greedy solution

and a brute force solution numerically.

2.2 Rate Approximation Feedback Strategy

In this section we develop the rate approximation feedback strategy that enables the base

station to approximate the per user rates (2.4) for any scheduling decision (πC ,S). The

key idea is to let each user m minimize the maximal rate mismatch between the per user

rates rm(πC ,S, λmhm) in (2.5) and rm(πC ,S, ϑmvm) in (2.6) independent of the scheduling

decision. As we will see this approach enables the base station to control the average gap

between the system sum-rate based on scheduling with perfect and quantized channel state

information, defined as

∆ := E [R (πC,h,Sh, h)−R (πC,v,Sv, h)] .

The following lemma shows that to control ∆ the maximal instantaneous per user rate

approximation error, for some h ∈ Cnt and v ∈ Cnt ,

d(h,v) := max
S∈Sm

max
πC :S→C

|rm(πC ,S,h)− rm (πC ,S,v) |, (2.7)

needs to be minimized. We defined Sm as the set of scheduled decisions that include user

m and have cardinality not exceeding ns,

Sm := {S ⊆ U : m ∈ S and |S| ≤ ns} .

The following lemma states the upper bound on ∆.

Lemma 2.2. Let the beamforming vectors be given by a fixed codebook C ⊂ Snt−1. If the

base station has quantized channel state information v = {ϑmvm}m∈U , the average system
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2 Single Cell Processing with Limited Feedback

sum-rate gap is bounded by

∆ = E [R (πC,h,Sh, h)−R (πC,v,Sv, h)] ≤ 2E


 

m∈Sh∪Sv

d(λmhm, ϑmvm)


 ,

where (πC,h,Sh) is the solution to (2.5) and (πC,v,Sv) is the solution to (2.6).

The proof is given in Section 2.7.1. A few remarks are in place. If the worst case rate

approximation error

∆RA := 2E


 

m∈Sh∪Sv

d(λmhm, ϑmvm)


 (2.8)

is minimized, the average average system sum-rate gap ∆ remains bounded by ∆RA. To

control ∆RA each user m ∈ U needs to individually minimize the per user rate approxi-

mation error d(ĥm, ϑmvm). Therefore, we define the following feedback strategy.

Definition 2.3 (Rate approximation feedback strategy). To determine its feedback mes-

sage each user m ∈ U must find a tuple (ϑm,vm) ∈ (R,V) that minimizes the per user

rate approximation error

min
ϑ∈R

min
v∈V

d(λmhm, ϑv). (2.9)

Although not apparent at this point, let us indicate some relevant properties of the rate

approximation feedback strategy.

1. In the feedback decision function d(h,v) (2.5) the transmit codebook matters which

seems good engineering practice as we use all available information. See Lemma 2.7

for an illustration.

2. The feedback strategy can be extended towards scenarios where the quantized chan-

nel state information must be averaged over multiple correlated channel realizations

(e.g. OFDM subcarriers) (see Section 2.4.1).

3. Based on the per user rate approximation error d(h,v) feedback codebooks can be

designed as described in Section 2.4.2.

In the following section we analyze the performance of a wireless network that uses

the rate approximation feedback strategy. Moreover, a simpler quantization function is

found which is easier to calculate than the computationally complex rate approximation

error (2.7). Based on the simpler quantization function, we develop an efficient and robust

feedback protocol which is presented in Section 2.4.3.
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2.3 Performance Analysis

2.3 Performance Analysis

Providing good analysis techniques and results is a difficult issue. Not only should the

analysis reflect the actual scenario but also give the correct tendency with respect to real

system performance. One good example in this regard is given by the large number of

users results, typically proving to achieve the optimal multi-user diversity gain. Another

example are degrees of freedom or multiplexing gain results which prove that a particular

transmit strategy achieves the optimal degrees of freedom if the SNR (i.e. transmit power)

is taken to infinity. For a multi-user MIMO system with limited feedback it has been

proved that for asymptotically large number of users |U| and asymptotically large SNR

the sum-rate scales like nt log log |U|. This was shown for unitary random beamforming

(i.e. the beamforming vectors are given by a random unitary codebook) [SH05], zeroforcing

beamforming [YG06] and PU2RC [HAH09]. However, since the number of users is finite

in a practical system and the operating point is typically in the low to average SNR

range, the significance of such results can be questioned. Putting it the other way around:

two methods achieving the optimal multi-user multiplexing gain might behave completely

different in a practical system. Therefore our analysis is more inspired by the finite user

results in [Jin06,dFKSG07,CJKR10]. First, we assume that the number of users is equal

to the number of transmit antennas |U| = nt, all users are active S = U and the elements

of the transmit codebook is unitary C. These assumptions enable stringent comparison

to Jindal’s result in [Jin06] for zeroforcing beamforming. In Section 2.3.3, we extend the

results to include a user selection and codebooks that constitute a tight frame.

2.3.1 Fixed Codebook Beamforming vs. Zeroforcing Beamforming

Before analyzing the rate approximation feedback strategy, we review some basic results

for zeroforcing beamforming and show (Theorem 2.6) that beamforming based on a fixed

codebook can indeed outperform zeroforcing beamforming. Many papers consider zero-

forcing beamforming for the performance analysis of multi-user MIMO systems; for exam-

ple [Jin06, AYL07, CJKR10]. When using zeroforcing beamforming with perfect channel

state information at the base station, each beamforming vector πZF,h(m) ∈ Snt−1 is chosen

to be in the null space of the matrix [hl]l∈S\{m}. If |S| ≤ nt and the channel vectors are

random and independent, a zeroforcing beamforming solution exists with high probability.

For zeroforcing beamforming with perfect channel state information at the base station

the system sum-rate is given by

R (πZF,h,S, h) =


m∈S
log

1 + λ2m|⟨hm,πZF,h(m)⟩|2


,
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2 Single Cell Processing with Limited Feedback

which is almost surely non-zero for any receive SNR λm > 0.

A popular feedback strategy is random vector quantization (RVQ) where VRV Q =

{v1,v2, . . . ,v2B} ⊆ Snt−1 is a codebook of random vectors isotropically distributed on

the unit sphere. In contrast to the rate approximation feedback strategy, user m chooses

his feedback message to minimize the chordal distance

dC(hm,v) =


1− |⟨v,hm⟩|2. (2.10)

Remark 2.4. The chordal distance aims at approximating the channel of each user as

good as possible. But in contrast to the rate approximation distance (2.7), the minimum

chordal distance is not capable of considering the relations between the channel and the

beamforming vectors, defined by a fixed codebook.

Define R(πZF,v,S, h) as the sum-rate with zeroforcing beamforming based on quantized

channel state information

vRV Q =


vm = arg min

v∈VRV Q

dC(hm,v)



m∈U

.

From [Jin06] we have the following performance bound for zeroforcing beamforming with

random vector quantization, which will act as a baseline for our analysis presented below.

Theorem 2.5 ( [Jin06, Theorem 2]). Let S = U = {1, 2, . . . , nt}. Suppose that the

channels are distributed according to ĥm,i ∼ CN (0, 1), ∀m ∈ U and all 1 ≤ i ≤ nt,

independent across users and antennas. Then, random vector quantization with B feedback

bits per user incurs a throughput loss relative to zeroforcing beamforming with perfect

channel state information according to

∆RV Q = E [R (πZF,h,S, h)]− E [R(πZF,v,S, h)]

< nt log


1 + P2
− B

nt−1


, (2.11)

where the expectation is taken with respect to the random channels and the random code-

book.

The proof is given in [Jin06]. Before we are analyzing the performance of the rate

approximation feedback strategy we assume perfect channel state information at the base

station and compare the performance of zeroforcing beamforming and beamforming based

on a fixed codebook. To this end, define

∆CSI = E [R (πZF,h,S, h)−R (πC,h,S, h)] ,
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for fixed S. In the following theorem, the channel is modeled as isotropic fading [JG05]. In

particular, we fix the channel gains µm = ∥ĥm∥2 for m ∈ U and let the only randomness

be an independent phase ambiguity in the channel coefficients, i.e. ĥm = µmhm where

hm ∈ Snt−1 is an isotropically distributed random complex unit vector. This assumption

has no impact on the generality of the results; in fact, it only allows us to streamline the

presentation throughout this proof. The following result is qualitatively known but we

make it mathematically more precise.

Theorem 2.6. If U = S = {1, 2, . . . , nt} and each user has perfect channel state informa-

tion, then for isotropic fading with any non-random µ1 ≥ µ2 ≥ ... ≥ µnt (i.e. non-random

λ21 ≥ λ22 ≥ ... ≥ λ2nt
) the rate gap between zeroforcing beamforming and beamforming with

a fixed unitary codebook is bounded from above by

∆CSI ≤


m∈S
log


1 + min

ϵ>0
λ2m


1 + λ2m


1

nt−1 −


1 + λ2
m

nt−1


c(ϵ)(1−ϵ) log(nt−m+1)

(1+ϵ)2nt

1 + λ2m




where c (ϵ) :=


1− e−(nt−m+1)ϵ − 1
ϵnt


.

The proof can be found in Subsection 2.7.2. Theorem 2.6 states that for some λm ≤ λ∗
the rate gap ∆CSI is indeed negative; this can be seen by observing that at low SNR (i.e.

λm → 0) for all m < nt the difference is roughly

1

nt − 1
− log(nt −m+ 1)

nt
< 0

by choosing c (ϵ) = log(log(nt))
log(nt)

and nt large enough. Thus, for low SNR beamforming

based on a fixed transmit codebook can indeed outperform zeroforcing beamforming. This

observation is further underlined by Figure 2.3. We stress that this is not a surprising

result because zeroforcing beamforming is an altruistic beamforming scheme which does

not consider the desired channel. However, the result motivates the analysis of a fixed

beamforming scheme for practical scenarios which operate in a low to moderate SNR

regime.

2.3.2 Rate Approximation with Unitary Transmit Codebooks

Let us first provide a rather technical bound for the per user rate approximation error

(2.7).

Lemma 2.7. Let U = S = {1, 2, . . . , nt}, the transmit codebook C be unitary and a subset

of the feedback codebook V ⊂ Snt−1, C ⊆ V. Let w∗ = arg maxw∈C |⟨hm,w⟩|2. If for fixed
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h

w1 = v1

w2 = v2

v3

v4

Figure 2.2: Example in R2, with nt = 2 and nr = 1. The sub-optimal feedback strategy
considered in Lemma 2.7 selects v1 since |⟨v1,w∗⟩| ≥ |⟨h,w∗⟩| must hold and
in this example w∗ = w1. In contrast, if the minimum chordal distance (2.10)
is used, v3 is selected since dC(h,v) is minimized by v = v3.

λm ∈ R and hm ∈ Snt−1 the feedback message is given by the vector

vm = arg max
v∈V

|⟨v,hm⟩| subject to max
w∈C
|⟨vm,w⟩| ≥ max

w∈C
|⟨hm,w⟩|

and the scalar ϑm is chosen to satisfy λ2
m|⟨hm,w∗⟩|2

1+λ2
m(1−|⟨hm,w∗⟩|2) = ϑ2

m|⟨vm,w∗⟩|2
1+ϑ2

m(1−|⟨vm,w∗⟩|2) , then

d(λmhm, ϑmvm) = max
πC :S→C

|rm(πC ,S, λmhm)− rm(πC ,S, ϑmvm)|

≤ max
w ̸=w∗

log


1 +

λ2m

|⟨hm,w⟩|2 − |⟨vm,w⟩|2
+ ⟨vm,w⟩

⟨vm,w∗⟩
|⟨vm,w∗⟩|2 − |⟨hm,w

∗⟩|2



1 + λ2m (1−max {|⟨hm,w⟩|2, |⟨vm,w⟩|2})


 .

The proof is given in Subsection 2.7.3.

Remark 2.8. The sub-optimal feedback strategy in Lemma 2.7 supports the intuition that

the rate approximation error for the best beamforming vector, taken from the codebook

C, should be set to zero by the feedback strategy. Consider the example in Figure 2.2:

The sub-optimal feedback strategy considered in Lemma 2.7 selects v1 since |⟨v1,w∗⟩| ≥
|⟨h,w∗⟩| must hold and in this example w∗ = w1. In contrast, if the minimum chordal

distance (2.10) is used, v3 is selected since dC(h,v) is minimized by v = v3.
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Figure 2.3: Achievable rate vs. receive SNR, comparison of zeroforcing beamforming with
perfect channel state information, unitary beamforming with perfect chan-
nel state information, the rate approximation feedback strategy with unitary
transmit codebooks, the unitary beamforming bound (UB; bound) is given by
Corollary 2.9. Setup: nt = 4, U = S = {1, 2, 3, 4}.

While the error term in Lemma 2.7 is not easy to access, we devise the following corollary.

Corollary 2.9. Under the assumptions of Lemma 2.7. If C ≡ V then

∆RA ≤ 2

nt

m=1

E

log


1 + max

w ̸=w∗

λ2m|⟨hm,w⟩|2
1 + λ2m(1− |⟨hm,w⟩|2)



and

ϑ2m :=
λ2m|⟨hm,vm⟩|2

1 + λ2m(1− |⟨hm,vm⟩|2)
.

Proof. If C ≡ V, than |⟨vm,w⟩|2 = 0 for all w ̸= w∗. Thus, from Lemma 2.7 we have

d(λmhm, ϑmvm) ≤ max
w ̸=w∗

log


1 +

λ2m
|⟨hm,w⟩|2 − |⟨vm,w⟩|2


1 + λ2m (1− |⟨hm,w⟩|2)


.

Since, Sh = Sv = S the claim follows from (2.8).

Corollary 2.9 together with Lemma 2.2 gives a first lower bound on the performance of

the rate approximation feedback strategy with a unitary transmit and feedback codebook.

Under the assumptions of Corollary 2.9 the bound can be given by

E [R (πC,v,Sv, h)] ≥ E [R (πC,h,Sh, h)]−∆RA.
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2 Single Cell Processing with Limited Feedback

Figure 2.3 depicts the achievable rate over the receive SNR. The rate approximation feed-

back strategy with a unitary transmit and feedback codebook, C = V, is compared with

random vector quantization and zeroforcing beamforming. We observe that for a relevant

range of SNR values (3 to 8 dB) the rate error bound for the rate approximation feedback

strategy predicts a better performance then the simulated achievable rate for zeroforcing

beamforming with random vector quantization; while random vector quantization requires

10 bit of feedback the rate approximation feedback strategy bound holds for log(nt) = 2

bit. In fact, the achievable rate of the rate approximation scheme with 2 bit feedback is

very close to unitary beamforming with perfect channel state information.

So far, we assumed that the feedback codebook is unitary and equal to the transmit

codebook V = C. We saw that the rate loss due to limited feedback is very small. However,

we assumed that the number of users is equal the number of receive antennas and enabled

no user selection. To enable efficient user selection the size of the feedback codebook must

be increased. The following lemma shows that ∆RA remains bounded when the SNR

increases and that the rate error is dominated by the function

Dm(B) = min
V⊂Snt−1

|V|=2B

E


1

1− λ̃m
min

0<ϑ̃m<1
min
v∈V

max
w∈C

λ̃m|⟨hm,w⟩|2 − ϑ̃m|⟨v,w⟩|2


,

with λ̃m = λ2
m

1+λ2
m

and ϑ̃m = ϑ2
m

1+ϑ2
m

and B the number of bits required to feed back the

index of an element of the codebook V, |V| = 2B.

Lemma 2.10. Let U = S = {1, 2, . . . , nt}, the transmit codebook C be unitary and a subset

of the feedback codebook V ⊂ Snt−1, C ⊆ V. If the rate approximation feedback strategy

(2.9) is used, then

∆RA ≤ 2

nt

m=1

log


1 + min

ϵ>0

(1 + ϵ)Dm(B)

1 + ϵ
nt−1Dm(B)


.

The proof is given in Subsection 2.7.4. The following lemma gives a fundamental bound

on Dm(B).

Lemma 2.11. If the transmit codebook C is unitary, then

Dm(B) ≤ c(nt)E

λ2m


2
− B

nt−1 ,

with

c(nt) =


Θ(Bnt−1

2 )


2nt − 2

nt − 1


Γ(1 + nt−1

2 )
√
nt

(nt − 1)!π
nt−1

2

 1
nt−1

(2.12)
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and B ≥ (nt−1)
2 log[(nt− 1)

√
nt − 1]. For nt− 1 small tight bounds are known for the cov-

ering density Θ(Bnt−1
2 ), e.g. Θ(B22) ≤ 1.2091 (Kershner, 1939), Θ(B32) ≤ 1.4635 (Bambah,

1954), Θ(B42) ≤ 1.7655 (Delone & Ryshkov, 1963). For nt− 1 ≥ 3 the Rogers bound [B0̈4]

Θ(Bnt−1
2 ) < 4(nt − 1) log(nt − 1) can be used.

The proof can be found in Subsection 2.7.5. Note that c(nt) is close to unity and falls

below unity not before nt ≥ 14, as required for improved scaling compared to Jindal’s

result. As the following illustration for the case nt = 3 shows, this seems to be an artifact

of the proof technique.

Example 2.12. Without loss of generality, we assume the unitary transmit codebook is

given by the standard ONB. We drop the user index m and define the real positive vectors

ψ = (ψ1, . . . , ψ3) with ψn := |⟨h,πC(n)⟩|2 and ϕv = (ϕv1 , . . . , ϕ
v
3 ) with ϕvn := |⟨v,πC(n)⟩|2

for each v ∈ V. Per definition, all these vectors have unit ℓ1-norm, ∥ψ∥1 = ∥ϕv∥1 = 1 and,

hence, define points on the standard 2-simplex. Further, maxπC |ψn − ϕvn| = ∥ψ − ϕv∥∞
defines a distance between two points on the standard 2-simplex. Hence, for a given

feedback codebook V we can define the Voronoi region around the point ϕv for a particular

v ∈ V as V (ϕv) = {x ∈ R3
+ : ∥x − ϕv∥∞ < ∥x − ϕξ∥∞, ∀ξ ∈ V, ξ ̸= v}. If B ∈

{1, 2, 4, . . .} and nt = 3, the feedback codebook can be chosen such that the Voronoi

regions are 2-simplices with edge length δ̃ ≤
√

2. Using the symmetry of the covering and

projecting the quantization points back on the coordinate axes (see Figure 2.4) we get

maxx∈V (ϕv) ∥x− ϕv∥∞ = δ̃/
√

8 = δ.

Now we can compute the volumes of the 2-simplices (the standard simplex and the

scaled simplex) and proceed as in the proof of Lemma 2.11 to obtain the result

δ = max
x∈V (ϕv)

∥x− ϕv∥∞ = 2
− B

nt−1
−1
.

Hence, if nt = 3 and Rayleigh fading is assumed (i.e. ĥm,i ∼ CN (0, 1) for i = 1, . . . , nt

and m ∈ U), the rate loss due to the rate-constrained feedback channel scales like

∆RA ≤2

nt

m=1

log


1 + min

ϵ>0

(1 + ϵ)E


λ̃m

1−λ̃m


2
− B

nt−1
−1

1 + E


λ̃m

1−λ̃m


ϵ

nt−12
− B

nt−1
−1




≤2

nt

m=1

log


1 + P2
− B

nt−1
−1

.

Therefore, we have an improvement of nt − 1 bits in the exponential term compared to

Jindal’s result for zeroforcing beamforming with feedback based on minimizing the chordal

distance (see [Jin06]) – under the very same assumptions.
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1

1

1

1
δ

δ

δ

δ

Figure 2.4: The standard 2-simplex in 3 dimensions. The projection of the quantization
points Q on the coordinate axes implies a worst case quantization error δ.

2.3.3 Rate Approximation with User Selection and Extended Codebooks

In this subsection we assume that the elements of the transmit codebook constitute a tight

frame and allow user selection at the base station.

Theorem 2.13. Assume each element of the channel matrix are given by independent

copies of h ∼ CN (0, 1). Let the transmit codebook C ⊂ Snt−1 and the feedback codebook

V ⊂ Snt−1 be arbitrary. If for each transmission the base station select a subset of active

users S ⊆ U , then under the rate approximation feedback strategy

∆RA ≤ 4ns log


1 + PntE


max
w∈C

|⟨hm,w⟩|2 − |⟨v,w⟩|2



.

The proof can be found in Subsection 2.7.6. The expected value

D̂m(B) := min
V,|V|=2B

E

min
v∈V

max
w∈C

|⟨hm,w⟩|2 − |⟨v,w⟩|2



has been shown to be analytically tractable – in the previous section – for unitary transmit

codebooks. For codebooks constituting a tight frame (see (1.1)) we devise the following

corollary.

Corollary 2.14. If the transmit codebook C is a tight frame, then D̂m(B) ≤ Ac(nt)2−
B

nt−1 ,

where c(nt) is defined in (2.12) and A is the frame constant in (1.1).
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Proof. The proof is a simple extension of Lemma 2.11. A tight frame with frame constantA

can be generated by the union of A orthonormal bases Bi, i = 1, . . . , A. Hence, C = ∪Ai=1Bi

and therefore

D̂m(B) ≤ A min
V,|V|=2B

E

min
v∈V

max
i=1,...,A

max
w∈B⟩

|⟨hm,w⟩|2 − |⟨v,w⟩|2



and we can proceed as in the proof of Lemma 2.11.

2.4 Practical Considerations

This section highlights some of the advantages of the rate approximation feedback strategy

in practical scenarios. The rate approximation feedback strategy is extended to systems

using OFDM. We show that the rate approximation scheme can be used to implicitly

averages the achievable rates over multiple OFDM subcarriers. An algorithm to generate

feedback codebooks based in the channel statistics is presented. Finally, we introduce a

new distance function that is less complex than the original rate approximation distance

function (2.7).

2.4.1 Rate Approximation Feedback for OFDM Systems

A popular transmission technique for wideband systems is OFDM. OFDM essentially

divides the frequency band in many orthogonal subcarriers. In cellular systems like LTE,

the OFDM subcarriers are grouped in scheduling blocks; the smallest scheduling unit.

Usually a single feedback message per scheduling block is required. The extension of

the rate approximation feedback strategy to OFDM systems exploits the correlation of

neighboring subcarriers and provides a single feedback message that implicitly averages

the channels over a scheduling block by operating on the average achievable rate per

scheduling block.

Consider a single scheduling block and collect its subcarrier indices in the set F . For

simplicity assume that all users have single antenna, nr = 1. Extensions to multiple

antennas are straightforward if the receive filter is fixed prior feedback. The signal received

by user m on subcarrier f ∈ F can be written as

ym(f) = ⟨ĥm(f),x(f)⟩+ nm(f),

where ĥm(f) is the channel, x(f) ∈ Cnt×1 is the transmitted signal vector and nm(f) ∼
CN (0, 1) is additive white Gaussian noise. On all subcarriers in F the same users are

scheduled, collected in the set S. Each user m ∈ S is assigned to a beamforming vector
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2 Single Cell Processing with Limited Feedback

πC(m) which is also the same for all subcarriers f ∈ F and given by an element of a

transmit codebook C, similar to (2.1) the signal transmitted on subcarrier f ∈ F is

x(f) =


m∈S

P

|S|πC(m)sm(f),

where sm(f) are the information symbols for user m ∈ S transmitted on subcarrier f ∈
F . For simplicity, we assume an average sum-power constraint per subcarrier, i.e., the

transmitted signal must satisfy E

∥x(f)∥22


≤ P . The channels of user m are collected in

the set

hm(F) = (λm(f)hm(f))f∈F .

Such that we can extend definition (2.2) to

h(F) = (hm(F))m∈U .

Now the average rate of user m on scheduling block F is

r̄m(πC ,S, hm(F)) :=
1

|F|


h∈hm(F)

log (1 + SINRm(πC ,S,h)) , (2.13)

where SINR(·) is defined in (2.3). Since we assume that user m has perfect knowledge

of hm(F), for any potential scheduling decision (πC ,S) user m can compute the average

rate r̄m(πC ,S, hm(F)). Therefore, instead of solving problem (2.9) to find the feedback

message user m solves the problem

min
v∈V

max
S⊆Sm

max
πC :S→C

r̄m(πC ,S, hm(F))− rm(πC ,S, ϑ̂mv)
 ,

where ϑ̂m depends on the feedback codebook element v and the true channels hm(F). We

define this dependency by requiring that ϑ̂2m should be the SNR of a Gaussian channel

having the same rate as if user m has the resource exclusively and uses beamforming vector

v, i.e., for a given v we define ϑ̂m as

log(1 + ϑ̂2m) =
1

|F|


h∈hm(F)

log

1 + |⟨h,v⟩|2


.

The performance of the rate approximation scheme for OFDM systems is evaluated in the

simulations in Section 2.5.
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2.4.2 Feedback Codebook Design

In this section we describe how feedback codebooks for the rate approximation feedback

strategy can be designed. The proposed algorithm is based on an algorithm by Linde,

Buzo and Gray (LBG) [LBG80] which is an extension of the generalized Lloyd algorithm

[Llo57]. A comprehensive overview of different versions of the Lloyd algorithm can be

found in [GG92]. The LBG algorithm is known to converge to an optimum that is not

guaranteed to be global. However, it is a practical way to design codebooks even if the

statistics of the channels are unknown. The LBG algorithm can be used to generate

codebooks for any given training set of sufficient size. Codebooks of arbitrary size can be

generated from scratch or given codebooks can be adapted to the environment of a base

station.

Our approach is inspired by [TBH08] and [MK06] who used the LBG algorithm to gen-

erate codebooks for wireless networks but with a different feedback and transmit strategy.

For a given distance function d(h,v) the LBG algorithm finds the feedback codebook

V = {v1, . . . ,vN} that (at least locally) minimizes the average distortion

D =
1

|T |

|V|

i=1



h∈Ri

d(h,vi) (2.14)

where T = {h1, . . . ,hT } is a possibly large set of channel realizations (i.e. training

sequence) and Ri is the quantization region of vi ∈ V,

Ri = {h ∈ T : d(h,vi) ≤ d(h,vj),∀ j}.

Another key ingredient of the LBG algorithm is the centroid condition. The centroid

condition [GG92] states that the optimal codebook entry for quantization region Ri is

min
ζi∈Snt−1

1

|Ri|


h∈Ri

d(h, ζi)

For the rate approximation feedback strategy the distance function is given by (2.9). In

this case, an analytic expression of the centroid is hard to obtain. We apply the following

simplification

cent(Ri) = arg min
ζi∈Ri

1

|Ri|


h∈Ri

d(h, ζi).

The LBG algorithm starts by computing the centroid of the training set T , i.e., cent(T ).
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2 Single Cell Processing with Limited Feedback

Algorithm 1 LBG algorithm

1: Input: training sequence T , desired codebook size L
2: Compute initial codebook K0 defined by (2.15).
3: Set: k = 0, Dk =∞
4: while |K0| < L do
5: repeat
6: k = k + 1
7: Compute the quantization regions Ri for i = 1, . . . , |Kk−1|.
8: Compute the new codebook

Kk = {cent(R1), . . . , cent(R|Kk−1|)

9: Compute the average distortion Dk = D defined in (2.14).
10: until (Dk−1 −Dk)/(Dk) < ε
11: Splitting: Kk = Kk + ε ∩ Kk

12: end while

The initial codebook is then given by

K0 = {cent(T ) + ε, cent(T )} (2.15)

Where ε > 0 is a design parameter that should be small. The LBG algorithm is summa-

rized in Algorithm 1. It is executed until the desired codebook size is reached. In Figure

2.8 the performance gains with an optimized codebook are shown.

2.4.3 Decreased Complexity Rate Approximation

Mobile users usually have limited computing capabilities, therefore, solving the full rate

approximation feedback problem (the min-max problem (2.9)) may not be feasible. There-

fore, based on Lemma 2.10 we advise to use the sub-optimal distance function

dS(h,v) = max
w∈C

|⟨h,w⟩|2 − |⟨v,w⟩|2
 . (2.16)

Corollary 2.9 gives some rule of thumb for computing the CQI. We define the CQI reported

by user m as

ϑ2m = λ2m|⟨hm,vm⟩|2 (2.17)

which can also be interpreted as the effective channel of user m over the feedback codebook

element vm. Note that this CQI captures two important aspects. On the one hand, if the

CDI is equal to the channel direction, the user gets no penalty (i.e. |⟨hm,vm⟩|2 = 1) on the

other hand, if the CDI is orthogonal to the channel direction, the effective channel is zero
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Table 2.1: Configuration of channel model

Parameter Value

Channel Model SCME [BSM+05]
Scenario Urban macro
Tx antennas 4
Rx antennas 1
Tx antenna spacing 0.5λ
Antenna element positions (−3/4λ, −1/4λ, 1/4λ, 3/4λ)
Angle spread 15 (high)
User velocity 30 [km/h]
Sampling frequency 7.68 [MHz]
System bandwidth 5 [MHz]
Carrier frequency 2 [GHz]
Wavelength (λ) 50 [nm]
Base station to user distance 200 [m]

(i.e. |⟨hm,vm⟩|2 = 0). Hence, the CQI (2.17) reflects the receive SNR and the quantization

error, which is also in accordance with the results in [YJG07]. The performance of the

proposed feedback protocol is evaluated numerically in the simulations in the next section.

Later on in Lemma 4.11 we will show that if C ≡ Snt−1, the proposed distance function is

equal to the chordal distance (2.10), dS(h,v) = dC(h,v).

2.5 Simulations

2.5.1 Single-Cell Simulations

In this subsection we consider single cell simulations. We assume a single antenna per user

(multi-antenna users are considered in Section 2.5.2). The rate approximation feedback

strategy is compared to different feedback schemes which have been discussed in the con-

text of LTE. We demonstrate the gains which can be achieved if the feedback codebook

is optimized and compare different user selection schemes.

Simulation Setup

The performance is compared using SINR based simulations. The simulation setup is

given by a single 120◦-sector of a cellular system. The users are uniformly distributed in

[−60◦, 60◦] and placed at a distance of 200 m to the base station. A scheduling block con-

sists of |F| = 36 subcarriers. The configuration of the OFDM downlink channel is chosen

according to the configuration of the LTE downlink [3GP09b]. The channel is modeled

37



2 Single Cell Processing with Limited Feedback

using the spatial channel model extended (SCME) [BSM+05]. Table 2.1 summarizes the

configuration of the channel model. We use the high angle spread option in order to

demonstrate the performance in a highly scattered environment.

We apply two different transmit codebooks. The first is the LTE codebook for trans-

mission on four antenna ports [3GP09b]. The LTE codebook has 16 elements which result

in a feedback load of 4 bits per scheduling block for the feedback of the CDI. Furthermore,

it consists of four unitary groups which makes it applicable for PU2RC. The second code-

book (LOS codebook) is the beamforming codebook proposed in [3GP07]. It is designed

such that the “beam distance method” (as explained in 2.5.1) can be used. The codebook

elements are given by line of sight channels with equidistant angles of departure. The nth

component of vi ∈ VLOS is defined as:

(vi)n =
1√
N
e−j 2π

λ
δn sin(θi)

where δn is the position of the nth antenna element, λ is the wavelength and the line of

sight angles of departure are chosen to be θ = [−60◦,−43◦,−26◦,−8.5◦, 8.5◦, 26◦, 43◦, 60◦].

On top we apply tapering [Dol46], i.e., codebook elements with different amplitudes per

antenna port. In the simulations we use a windowing of [0.6, 1, 1, 0.6], this results in

reduced side lobes.

Considered Limited Feedback Methods

An upper bound on the performance of the rate approximation feedback strategy can be

obtained by assuming perfect channel state information at the base station. In this case,

the selection of users S and corresponding beamforming vectors πC can be performed

by a brute force search over the possible user selections (at least for a small number of

users) or by the greedy user selection proposed in [DS04] and [TBT07]. The theoretical

upper bound is given by the dirty paper coding limit for equal power allocation over the

subcarriers which is implemented using the algorithm described in [JRV+05].

A popular limited feedback scheme for scenarios with fixed beamforming vectors is

PU2RC proposed in [KKL05]. PU2RC requires that the transmit codebook consists of

multiple unitary groups. Each user feeds back a preferred codebook index and a CQI

reflecting the SINR this user expects if all beams within its selected unitary group are

used, i.e., its CQI is a worst case SINR. The performance of this approach was further

investigated in [HAH09]. First, the user with the best CQI is selected. Then subsequently,

the base station checks for other users who have reported a preferred codebook index in

the same unitary group and selects those users with the best CQI.
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Figure 2.5: Spectral efficiency vs. averaged SNR. ”DPC” denotes the dirty paper coding
limit for equal power allocation over the subcarriers (using the algorithm in
[JRV+05]). Setup: |U| = 8, |S| ≤ 2, transmit codebook: LOS codebook [3 bits]
(LTE codebook [4 bit] for PU2RC), rate approximation feedback codebook:
LOS codebook [3 bits].

Another limited feedback scheme for fixed transmit codebooks was proposed in [3GP07].

This scheme is based on a beam distance criterion and will be termed “beam distance

method”. Each user reports a preferred codebook index chosen from a transmit codebook

and a CQI reflecting the expected SNR. The base station selects the user with the best

CQI first and blocks the beamforming vectors that are within a predefined distance to the

selected beamforming vectors. Subsequently the remaining users with the best CQI are

selected if their preferred beam is not blocked by a previously selected user.

To obtain a lower bound on the performance, we apply some simple user selection

schemes. Each user feeds back its preferred codebook index and a CQI reflecting its SNR

if this beamforming vector is used. The “best users” scheme selects a predefined number

of users with the best CQI (if they reported different beamforming vectors). The “round

robin” user selection selects randomly a predefined number of users that have reported

different beamforming vectors.
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Figure 2.6: CDF of the spectral efficiency at averaged SNR of 20 dB. Setup: |U| = 8,
|S| ≤ 2, transmit codebook: LOS codebook [3 bits] (LTE codebook [4 bit] for
PU2RC), feedback codebook: LOS codebook [3bit].

Simulations

We evaluate the achievable average sum-rate per unit bandwidth1



m∈S
r̄m(πC ,S, hm(F))

where r̄m(πC ,S, hm(F)) is defined in (2.13). Note that this implies perfect link adaption.

Fig. 2.5 shows the spectral efficiency over the averaged SNR for different feedback and

user selection schemes, with |U| = 8 and |S| ≤ ns = 2. The lower bound is given by

the round robin user selection. The upper bound is given by the dirty paper coding

limit for equal power allocation over the subcarriers (using the algorithm in [JRV+05]).

Since in general the dirty paper coding algorithm selects all users S = U for transmission,

the figure additionally shows the dirty paper coding limit for the best subset S with

|S| = 2. The beam distance method which requires 3 bit for CDI feedback outperforms the

PU2RC which requires 4 bit of CDI feedback. Both methods are outperformed by the rate

approximation feedback strategy. Additionally, the performance of the rate approximation

feedback strategy can be scaled by increasing the size of the feedback codebook (3 bits

and 4 bits shown in the figure). The upper bound is given by the case with perfect channel

1That is the spectral efficiency in bits/sec/Hz.
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perfect CSIT; greedy

perfect CSIT; brute force

PU2RC [4 bit]

beam distance [3 bit]

rate approxiamtion [3 bit]; brute force

rate approximatin [3 bit]; greedy

Figure 2.7: Spectral efficiency vs. averaged SNR. Comparing the brute force user selection
with the greedy user selection. Setup: |U| = 10, |S| ≤ 4, transmit codebook:
LOS codebook [3 bits] (LTE codebook [4 bit] for PU2RC), feedback codebook:
LOS codebook [3 bits].

state information at the base station. These observations are substantiated by Fig. 2.6

which shows the inverse cumulative distribution function (CDF) of the spectral efficiency

at SNR=20 dB for the same setup.

Fig. 2.7 compares the brute force user selection with a greedy user selection. In the case

of perfect channel state information at the base station, the brute force selection outper-

forms the greedy user selection. If we apply the rate approximation feedback strategy, the

performance of both user selection algorithms is very similar. The PU2RC and the beam

distance method are both outperformed by the rate approximation feedback strategy with

greedy user selection.

Finally, a feedback codebook generated by the LBG algorithm, as described in Section

2.4.2, is compared to the LOS codebook. Figure 2.8 depicts the performance of the rate

approximation feedback strategy with greedy user selection for two different 3 bit feedback

codebooks: The LBG-optimized feedback codebook and the LOS feedback codebook. The

rate approximation feedback strategy with the LOS feedback codebook already outper-

forms the beam distance method. With the optimized feedback codebook the performance

increases by up to 5 dB, in the high SNR range. The upper bound is given by the greedy

user selection with perfect channel state information at the base station.
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rate approximation; beam distance codebook [3bit]

perfect CSIT

rate approximation; LBG codebook [3bit]
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Figure 2.8: Spectral efficiency vs. averaged SNR for the rate approximation approach
with greedy user selection. The LBG feedback codebook outperforms the LOS
feedback codebook and the beam distance method. The upper bound is given
by the greedy user selection with perfect channel state information at the base
station and fixed beamforming. Setup: |U| = 10, |S| ≤ 4, transmit codebook:
LOS codebook

2.5.2 Multi-Cell Simulations

In this subsection we present multi-cell simulations for the rate approximation feedback

strategy. We consider a LTE like system architecture; multiple base stations transmit to

multiple users using the same spectral resources. The considered system comprises three

base stations which are located at different sites but have the same network area. Figure

2.9 shows the average SINR distributions of the users over the network area. The three

peaks are close to the base stations. It is assumed that all three base stations transmit

with equal power on all antennas. The spectrum is divided in orthogonal subcarriers

using OFDM. We use a frequency reuse factor of one, i.e., each base station uses all

available subcarriers. Since no cooperation is assumed between the base stations, inter

cell interference is indispensable.

The simulation parameters are given in Table 2.2, they can be summarized as follows.

3 base stations located in 3 adjacent cells and 30 users uniformly distributed over the

network area; given by a radius of 250 meter around the center of the base stations. The

physical layer is configured according to LTE [3GP09b]. The base stations are equipped
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Figure 2.9: Distribution of user SINR in the LTE related simulations.

with nt = 4 transmit antennas and each user is equipped with nr = 1 or nr = 2 receive

antenna (specified in place). The transmit codebook and feedback codebook is given

by the LTE codebook defined in [3GP09b] which has N = 16 elements. The channels

are modeled by the spatial channel model extended (SCME) [BSM+05] using the urban

macro scenario. In total, 600 subcarriers per base station are available. The subcarriers

are clustered in groups of F = 12 subcarriers; in LTE one subcarrier group is denoted

as physical resource block (PRB). We assume that one PRB is the smallest scheduling

unit. The subcarrier indices of the scheduling block are collected in the index set F . The

average channel gain of PRB p is defined as σ2p := 1/|F|f∈F ∥Hb,m(f)∥2F . Each user

is assigned to that base station which has maximal average channel gain σ2p. Each user

reports one feedback message per PRB to the base station it is assigned to.

Each of the base stations runs an independent local scheduler. In every transmission

interval up to ns = 2 users can be scheduled by a base station. Scheduling is performed in

a greedy fashion according to [TBT07]. For simplicity we assume no delay in the channel

state information report, scheduling, and transmission. The performance is evaluated

based on the achievable system sum-rate per unit bandwidth,

T

b=1



m∈Sb



f∈F
log(1 + SINRm(πC,X ,SX , λmhm)),

where SINRm is defined in (2.3), the scheduling decision (πC,X ,SX) depends on the avail-

able channel state information X.
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2 Single Cell Processing with Limited Feedback

Table 2.2: Summary of simulation parameters.

Parameter Value/Assumption

Number of base stations 3
Frequency reuse full
Number of users |U| 30 (uniformly distributed)
Number of transmit antennas nt 4 (uncorrelated)
Number of receive antennas nr 1 or 2 (uncorrelated)
Receiver type maximum ratio combining
Maximum number of scheduled users ns 2
LTE carrier frequency / bandwidth 2 GHz / 10 MHz
Number of PRB 50
Scheduling block size 1 PRB = 12 subcarriers
LTE channel model SCME (urban macro)
Inter cell interference modeling explicit

In the simulation we compare four different feedback strategies.

1. Perfect (average) channel state information: the base station knows the channel

averaged over all subcarriers, within a scheduling block, perfectly,

H̄m =
1

|F|


f∈F
Hm(f).

2. Minimum chordal distance: user m determines its CDI feedback by minimizing the

chordal distance (2.10) to the average effective channel

h̄m = max
u∈Snt−1

⟨u, H̄m⟩.

3. Rate approximation feedback strategy extended to OFDM as described above in

Section 2.4.1.

4. Efficient rate approximation feedback as described in Section 2.4.3, with effective

channels h̄m.

Figure 2.10 depicts the CDF of the achievable rate for users with nr = 1 receive antenna.

The zeroforcing beamforming scheme is implemented according to [TBH08]. The PU2RC

scheme is implemented according to [Sam06] and uses the same transmit codebook as

is used for the rate approximation scheme. We observe that with perfect channel state

information at the base station zeroforcing beamforming outperforms greedy scheduling

with a fixed codebook. With partial channel state information the rate approximation
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ZF; partial CSIT; (mean spec. eff. 11.42 bits/s/Hz)

RA simple; partial CSIT; (mean spec. eff. 18.77 bits/s/Hz)

RA; partial CSIT; (19.15 bits/s/Hz)

ZF; ideal CSIT; (mean spec. eff. 33.50 bits/s/Hz)

UB; ideal CSIT; (mean spec. eff. 27.29 bits/s/Hz)

PU2RC; partial CSIT; (mean spec. eff. 14.15 bits/s/Hz)

Figure 2.10: System level simulation: CDF of achievable rate for nr = 1; Comparing
PU2RC, zeroforcing beamforming with perfect and quantized channel state
information, beamforming with a fixed codebook (UB) with perfect channel
state information and the rate approximation feedback strategy.

scheme significantly outperforms zeroforcing beamforming with a gain of approximately

70%. Remarkable is also the gain of about 35% of the rate approximation scheme over

PU2RC, both using the same transmit codebook. Moreover Figure 2.10 shows that rate

approximation with the efficient distance function (2.16) performs very close to the full

rate approximation scheme.

Figure 2.11 depicts the CDF of the achievable rate for users with nr = 2 receive antennas.

We observe that with perfect channel state information at the base station zeroforcing

beamforming outperforms greedy user selection with a fixed codebook. With quantized

channel state information the rate approximation scheme significantly outperforms all

other schemes and achieves a gain of approximately 50% over zeroforcing beamforming.

Remarkable is also the 35% gain of rate approximation over PU2RC, both using the same

transmit codebook.

2.6 Summary and Conclusions

In this chapter we developed and analyzed the rate approximation feedback strategy. It

was shown that each user can individually minimize its rate loss relative, to perfect channel

state information at the base station, by selecting the feedback message that incorporates
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ZF; partial CSIT; (mean spec. eff. 21.42 bits/s/Hz)

RA; partial CSIT; fixed CB; (mean spec. eff. 31.67 bits/s/Hz)

ZF; ideal CSIT; (mean spec. eff. 46.50 bits/s/Hz)

UB; ideal CSIT; (mean spec. eff. 38.89 bits/s/Hz)

PU2RC; partial CSIT; (mean spec. eff. 23.51 bits/s/Hz)

Figure 2.11: System level simulation: CDF of achievable rate for nr = 2; Comparing
PU2RC, zeroforcing beamforming with perfect and quantized channel state
information, beamforming with a fixed codebook and perfect channel state
information and the rate approximation feedback strategy.

the transmit codebook. The scaling with the number of feedback bits of the rate loss gap

was derived and compared to baseline expressions for zeroforcing beamforming. It was

proved that a better scaling is possible if the number of transmit antennas is sufficiently

large. A remarkable result is that it is often better to reduce flexibility at the base station

(by resorting the beamforming vectors to a fixed transmit codebook) in favor of being able

to provide more reliable channel state information to the base station.

The proposed rate approximation feedback strategy was extended towards more prac-

tical scenarios. An Extension to OFDM was proposed, an algorithm to design feedback

codebooks was presented, and reduced complexity version of the rate approximation feed-

back strategy was introduced. The performance was evaluated by extensive numerical

simulations, showing significant gains over state of the art baseline schemes.

The rate approximation philosophy will be picked up and extended in Chapter 4 where

we analyze the performance of multi-cellular systems under more general transmit strate-

gies; including cooperated transmission by multiple base stations.
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2.7 Proofs

In this section we collect all proofs of this chapter. To keep the notation simple we define

the following variables.

ϑ̃m :=
ϑ2m

ϑ2m + 1
,

λ̃m :=
λ2m

λ2m + 1
,

ϕhm,l := |⟨hm,πC(l)⟩|2, ∀m, l ∈ S,
ϕvm,l := |⟨vm,πC(l)⟩|2, ∀m, l ∈ S.

2.7.1 Proof of Lemma 2.2

Proof. Since (πC,v,Sv) is the sum-rate optimal scheduling decision with quantized channel

state information v, R (πC,h,Sh, v) ≤ R (πC,v,Sv, v). Thus,

∆ = E [R (πC,h,Sh, h)−R (πC,v,Sv, h)]

= E [R (πC,h,Sh, h)−R (πC,h,Sh, v) +R (πC,h,Sh, v)−R (πC,v,Sv, h)]

≤ E [R (πC,h,Sh, h)−R (πC,h,Sh, v) +R (πC,v,Sv, v)−R (πC,v,Sv, h)] (2.18)

≤ E [|R (πC,h,Sh, h)−R (πC,h,Sh, v)|] + E [|R (πC,v,Sv, v)−R (πC,v,Sv, h)|]

≤ 2 · E


 

m∈Sh∪Sv

d(ĥm, ϑmvm)


 ,

where (2.18) must hold since R (πC,v,Sv, v) ≥ R (πC,h,Sh, v) by (2.6) and d(·) is defined

in (2.7).
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2 Single Cell Processing with Limited Feedback

2.7.2 Proof of Theorem 2.6

Proof. Define ϕhm,ZF := |⟨hm,πZF,h(m)⟩|2. For S = {1, . . . , nt} and any mapping of

beamforming vectors πC : S → C we have

∆CSI ≤ E [RZF (πZF,h,S, h)−R (πC ,S, h)]

= E



m∈S
log


1 + λ2mϕ
h
m,ZF


− log


1 +

λ2mϕ
h
m,m

1 + λ2m

1− ϕhm,m




= E




m∈S
log


1 + λ2m

ϕhm,ZF − ϕhm,m + λ2mϕ
h
m,ZF


1− ϕhm,l



1 + λ2m






= E




m∈S
log


1 + λ2m


1 + λ2m


ϕhm,ZF −


1 + λ2mϕ

h
m,ZF


ϕhm,m

1 + λ2m




 .

Since C is an ONB, πC : S → C is a permutation on the beamforming vectors in C. Since,

ϕhm,m and ϕhm,ZF are independent random variables from Jensen’s inequality we get

E




m∈S
log


1 + λ2m


1 + λ2m


ϕhm,ZF −


1 + λ2mϕ

h
m,ZF


ϕhm,m

1 + λ2m






≤


m∈S
log


1 + λ2m


1 + λ2m


E

ϕhm,ZF


−


1 + λ2mE

ϕhm,ZF


E

ϕhm,m



1 + λ2m




Due to the zeroforcing beamforming criterion, for all i, hi and πZF,h(i) are independent

isotropic vectors, see e.g. [Jin06]. Hence, we have that ϕhm,ZF is a beta distributed random

variable with parameters 1 and nt − 2 and expectation

E

ϕhm,ZF


=

1

nt − 1
.

The expectation E

ϕhm,m


is harder to obtain; we resort to bounding it. Suppose that

without loss of generality µ1 ≥ µ2 ≥ ... ≥ µnt . Since, hm is isotropically distributed on

Snt−1 we can chose C as the columns the standard ONB in Cnt . Now a reasonable but

sub-optimal choice of πC,h can be obtained by processing the users in a greedy fashion,

i.e., user m gets the beamformer

πC,h(m) = arg max
w∈J (m)

|⟨hm,w⟩|2 ,
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where we defined the set of possible beamforming vectors as

J (m) = C \ {πC,h(1),πC,h(2), . . . ,πC,h(m− 1)}.

Consider a fixed m, to get the image of πC,h(m) we have nt −m + 1 degrees of freedom.

To get an explicit expression for E

|⟨hm,πC,h(m)⟩|2


we require the order statistics of

elements of vectors uniformly distributed on the unit sphere Snt−1. More specifically we

need the expectation of maxj∈J⊆{1,2,...,nt} |ĥm,j |2, where ĥm ∈ Cnt . From standard results

we have the inequalities

Pr


max

j∈J (m)
|ĥm,j |2≤


(1− ϵ) log (|J (m) |)


≤ e−|J (m)|ϵ ,

Pr

∥ĥm∥2≥ (1 + ϵ)

√
nt


≤ 1

ϵnt
,

where ϵ > 0, so that we arrive at the following expression for the expectation

E

ϕhm,m


≥ (1− ϵ) log (nt −m+ 1)

(1 + ϵ)2 nt


1− e−(nt−m+1)ϵ − 1

ϵnt


.

which proves the claim.

2.7.3 Proof of Lemma 2.7

Proof. We use the notation defined at the beginning of this section. If S = U , d(λmhm, ϑmvm) =

maxπC :S→C |rm(πC ,S, λmhm)− rm(πC ,S, ϑmvm)|. Using U = {1, 2, . . . , nt} we get

rm(πC ,S, λm · hm)− rm(πC ,S, ϑm · vm) = log





λ2m + 1

 
1 + ϑ2m


1− ϕvm,m



(ϑ2m + 1)


1 + λ2m


1− ϕhm,π(m)






= log


1− ϑ̃mϕvm,m

1− λ̃mϕhm,m



= log


1 +

λ̃mϕ
h
m,m − ϑ̃mϕvm,m

1− λ̃mϕhm,m


.

Similarly, the negative term can be written as

−rm(πC ,S, λm · hm) + rm(πC ,S, ϑm · vm) = − log


1− ϑ̃mϕvm,m

1− λ̃mϕhm,m



= log


1 +

ϑ̃mϕ
v
m,m − λ̃mϕhm,m

1− ϑ̃mϕvm,m


.
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Hence, we have the upper bound

max
πC :S→C

|rm(πC ,S, λmhm)− rm(πC ,S, ϑmvm)| (2.19)

≤ max


max
πC

log


1 +

λ̃mϕ
h
m,m − ϑ̃mϕvm,m

1− λ̃mϕhm,m


,max

πC
log


1 +

ϑ̃mϕ
v
m,m − λ̃mϕhm,m

1− ϑ̃mϕvm,m


,

which is valid for any vm ∈ V. Under the the assumed feedback strategy (for which always

a solution exists since C ⊆ V) we get

ϑ̃m =
λ2m

λ2m + 1

|⟨hm,w
∗⟩|2

|⟨vm,w∗⟩|2 = λ̃m
|⟨hm,w

∗⟩|2
|⟨vm,w∗⟩|2

and finally

max
π

log


1 +

λ̃mϕ
h
m,m − ϑ̃mϕvm,m

1− λ̃mϕhm,m



= max
w ̸=w∗

log


1 +

λ̃m|⟨hm,w⟩|2 − λ̃m |⟨hm,w∗⟩|2
|⟨vm,w∗⟩|2 |⟨vm,w⟩|2

1− λ̃m|⟨hm,w⟩|2




≤ max
w ̸=w∗

log


1 + λ̃m

|⟨hm,w⟩|2 − |⟨vm,w⟩|2


1− λ̃m|⟨hm,w⟩|2
+
⟨vm,w⟩
⟨vm,w∗⟩

|⟨vm,w∗⟩|2 − |⟨hm,w
∗⟩|2


1− λ̃m⟨hm,w⟩


,

and for the other term since |⟨hm,w
∗⟩|2 ≤ |⟨vm,w∗⟩|2 we have

max
π

log


1 +

ϑ̃mϕ
v
m,m − λ̃mϕhm,m

1− ϑ̃mϕvm,m



≤ max
w ̸=w∗

log


1 +

λ̃m
|⟨hm,w∗⟩|2
|⟨vm,w∗⟩|2 |⟨vm,w⟩|2 − λ̃m|⟨hm,w⟩|2

1− λ̃m |⟨hm,w∗⟩|2
|⟨vm,w∗⟩|2 |⟨vm,w⟩|2




≤ max
w ̸=w∗

log


1 + λ̃m

|⟨hm,w⟩|2 − |⟨vm,w⟩|2


1− λ̃m|⟨vm,w⟩|2
+
⟨vm,w⟩
⟨vm,w∗⟩

|⟨vm,w∗⟩|2 − |⟨hm,w
∗⟩|2


1− λ̃m|⟨vm,w⟩|2


.

2.7.4 Proof of Lemma 2.10

Proof. We use the notation defined at the beginning of this section. According to (2.9),

for S = U , the rate approximation feedback strategy aims on minimizing

max
πC
|rm(πC ,S, λmhm)− rm (πC ,S, ϑv) |
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over ϑ ∈ R and v ∈ V. Therefore, from (2.19) and Jensen’s inequality we have

∆RRA ≤
nt

m=1

log


1 + E


 min

1>ϑ̃m>0
v∈V

max
πC

λ̃mϕhm,m − ϑ̃mϕvm,m


1− λ̃mϕhm,m






+

nt

m=1

log


1 + E


 min

1>ϑ̃m>0
v∈V

max
πC

λ̃mϕhm,m − ϑ̃mϕvm,m


1− ϑ̃mϕvm,m




 . (2.20)

Let us re-write the first term on the right side of (2.20). We first exploit that whenever

maxπC |ϕhm,m| ≥ 1 − ϵ, ϵ ≤ 1/2, then by Lemma 2.7 the error can be uniformly bounded

from above by

λ̃mϵ

1− λ̃mϵ
=

λ2mϵ

1 + λ2m (1− ϵ) ≤
λ2mϵ

1 + λ2mϵ
,

and since maxπC |ϕhm,m| ≥ 1
nt

and (1− ϵ) ≤ ϵ
nt−1 for ϵ ≤ 1− 1

nt
we have for maxπC |ϕhm,m| ≥

max (0, 1− ϵ)

λ̃mϵ

1− λ̃mϵ
≤ λ2mϵ

1 + λ2m
ϵ

nt−1

=
λ̃mϵ

1 + λ̃m


ϵ

nt−1 − 1
 ,

for any ϵ > 0 (even that for ϵ > 1). On the other hand, we have for maxπC |ϕhm,m| <
max (0, 1− ϵ)

λ̃mϕhm,m − ϑ̃mϕvm,m


1− λ̃mϕhm,m

≤

λ̃mϕhm,m − ϑ̃mϕvm,m


1− λ̃m + λ̃mϵ

≤

λ̃mϕhm,m − ϑ̃mϕvm,m



1 + λ̃m


ϵ

nt−1 − 1
 ,

Hence, we can write for some pair hm,vm

λ̃mϕhm,m − ϑ̃mϕvm,m


1− λ̃mϕhm,m

≤
max


λ̃mϵ,

λ̃mϕhm,m − ϑ̃mϕvm,m




1 + λ̃m


ϵ

nt−1 − 1


and set

λ̃mϵ = min
1>ϑ̃m>0

v∈V

max
π

λ̃mϕhm,m − ϑ̃mϕvm,m

 =
λ̃mϕhm,m∗ − ϑ̃∗mϕv

∗
m,m∗

 ,
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where we defined ϕhm,m∗ := |⟨hm,π
∗(m)⟩|2 and ϕv

∗
m,m∗ := |⟨v∗,π∗(m)⟩|2, yields

min
1>ϑ̃m>0

v∈V

max
π

λ̃mϕhm,m − ϑ̃mϕvm,m


1− λ̃mϕhm,m

≤

λ̃mϕhm,m∗ − ϑ̃∗mϕv
∗

m,m∗



1− λ̃m + 1
nt−1

λ̃mϕhm,m∗ − ϑ̃∗mϕv
∗

m,m∗


.

Equivalently, for the second term on the right side of (2.20) we have

λ̃mϕhm,m − ϑ̃mϕvm,m


1− ϑ̃mϕvm,m

≤
max


λ̃mϵ,

λ̃mϕhm,m − ϑ̃mϕvm,m




1− λ̃mϕhm,m + λ̃mϕhm,m − ϑ̃mϕvm,m

≤
max


λ̃mϵ,

λ̃mϕhm,m − ϑ̃mϕvm,m




1 + λ̃m


max{ϵ−|λ̃mϕh

m,m−ϑ̃mϕv
m,m|,0}

nt−1 − 1

 .

Setting ϵ = (1 + ϵ′) |λ̃mϕhm,m∗ − ϑ̃∗mϕv
∗

m,m∗ |, ϵ′ > 0, since the error term is still increasing in

ϵ, yields

min
1>ϑ̃m>0

v∈V

max
πC

λ̃mϕhm,m − ϑ̃mϕvm,m


1− ϑ̃mϕvm,m

≤
(1 + ϵ′)

λ̃mϕhm,m∗ − ϑ̃∗mϕv
∗

m,m∗



1− λ̃m + ϵ′

nt−1

λ̃mϕhm,m∗ − ϑ̃∗mϕv
∗

m,m∗


,

expanding the fraction with (1−λ̃m) and applying Jensen’s inequality proves the claim.

2.7.5 Proof of Lemma 2.11

Proof. Consider an arbitrary but fixed user m ∈ U and, without loss of generality, assume

the transmit codebook C is given by the standard ONB. Define the vector

ψm =

|⟨hm,πC(1)⟩|2, . . . , |⟨hm,πC(nt)⟩|2


. Since, ∥hm∥ = 1 from the Parseval’s identity

follows that ∥ψm∥1 = 1 and, therefore, any ψm corresponds to a point on the d := nt − 1

dimensional simplex defined by Kd = {x ∈ Rd+1 : xi > 0, i = 1, . . . , nt and ∥x∥1 = 1},
which has edge length

√
2. Similarly, each element of the feedback codebook v ∈ V defines

a point q ∈ Kd on the d-simplex, collected in the set Q ⊂ Kd, with |Q| = |V| = 2B. Setting

ϑ̃m = λ̃m the function Dm(B) can be bounded from above by

Dm(B) ≤ E

λ2m


max
x∈Kd

min
q∈Q
∥x− q∥∞.

Now we show that δ := maxx∈Kd
minq∈Q ∥x − q∥∞ can be bounded from above by

c(nt)2
− B

(nt−1) , with c(nt) a constant. Consider the cubes Bnt
∞(y; δ) := {x ∈ Rnt : ∥y −

x∥∞ ≤ δ}. If y ∈ Kd, then the intersection of the centered cubes Bnt
∞(y; δ) with Kd is a
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polytope with 2d facets. Let Bd2(δ) := {x ∈ Rd : ∥x∥2 ≤ δ} be the balls with radius δ

that are inscribed in this polytopes. Hence, to upperbound the number of centered cubes

Bnt
∞(y; δ), with y ∈ Kd, required to cover the simplex Kd we need to compute the number

of balls Bd2(δ) required to cover Kd. Let the number of balls Bd2(δ) required to cover the

simplex Kd be given by the covering number N(Kd,Bd2(δ)). The covering number N(A,B)

is defined as the number of convex bodies B in Rd required to cover a convex body A
in Rd. Using the Rogers-Zong Lemma [RZ97] the covering number can be bounded from

above by

N(A,B) ≤ Θ(B)
vol(A− B)

vol(B)
, (2.21)

where vol(·) is a function that computes the volume and Θ(B) ≥ 1 is the covering density

of B; if Rd can be tiled by translates of B then Θ(B) = 1; if the covering has some overlap

then Θ(B) > 1. Now we can use the Rogers-Shephard inequality [RS57], which states that

vol(A− B)vol(A ∩ B) ≤


2d

d


vol(A)vol(B). (2.22)

Assuming that vol(A∩B) = vol(B) we get from (2.21) and (2.22) that the covering number

N(A,B) is upper bounded by

N(A,B) ≤ Θ(B)


2d

d


vol(A)

vol(B)
. (2.23)

Now we can apply this bound to our problem. The volumes of the d-simplex Kd and the

balls Bd2(δ) are vol(Kd) =
√
d+1
d! and vol(Bd2(δ)) = πd/2

Γ(1+d/2)δ
d, where Γ(·) is the gamma

function. Hence, the covering number can be bounded from above by

N(Kd,Bd2(δ)) = N(
1

δ
Kd,Bd2(1)) ≤ Θ(Bd2(1))


2d

d


Γ(1 + d/2)

√
d+ 1

d!πd/2
· 1

δd
.

Solving for δ and using 2B ≤ N(Kd,Bd2(δ)) = we get

δ ≤


Θ(Bd2)


2nt − 2

nt − 1


Γ(1 + nt−1

2 )
√
nt

(nt − 1)!π
nt−1

2

 1
nt−1

2
− B

nt−1 .

Finally, for (2.23) to be valid we need to ensure that vol(Kd ∩ Bd2(δ)) = vol(Bd2(δ)) or, in

other words, δ is smaller than the inradius of the inscribed circle of the simplex. According

to Klamkin [KT79] for a regular simplex the inradius equals the circumradius divided by

nt − 1. Finally, the circumradius can be shown by the volume ratio and Stirlings formula

to be greater than
√
nt − 1, which completes the proof.
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2.7.6 Proof of Theorem 2.13

Proof. We use the notation defined at the beginning of this section. Recall that

∆RA = 2E


 

m∈Sh∪Sv

d(λmhm, ϑmvm)


 .

We take an approach similar to Lemma 2.7 and use the same notation. For an arbitrary

but fixed m ∈ Sh ∪ Sv we have

rm(πC ,S, λmhm)− rm(πC ,S, ϑmvm)

= log

 |S|
nt

+ λ2m


l∈S ϕ
h
m,l

|S|
nt

+ λ2m


l∈S\{m} ϕ
h
m,l


− log

 |S|
nt

+ ϑ2m


l∈S ϕ
v
m,l

|S|
nt

+ ϑ2m


l∈S\{m} ϕ
v
m,l



= log

 |S|
nt

+ λ2m


l∈S ϕ
h
m,l

|S|
nt

+ ϑ2m


l∈S ϕ
v
m,l


+ log

 |S|
nt

+ ϑ2m


l∈S\{m} ϕ
v
m,l

|S|
nt

+ λ2m


l∈S\{m} ϕ
h
m,l


.

Setting ϑ2m = λ2m we get

rm(πC ,S, λmhm)− rm(πC ,S, λmvm)

= log


1 +

ntλ
2
m

|S|


l∈S ϕ

h
m,l − ϕvm,l

1 + λ2m


l∈S ϕ
v
m,l


+ log


1 +

ntλ
2
m

|S|


l∈S\{m} ϕ

v
m,l − ϕhm,l

1 + λ2m


l∈S\{m} ϕ
h
m,l



≤ log


1 +

ntλ
2
m

|S|




l∈S
ϕhm,l − ϕvm,l




+ log


1 +

ntλ
2
m

|S|




l∈S\{m}

ϕhm,l − ϕvm,l






≤ log


1 +

ntλ
2
m

|S| |S|max
πC

ϕhm,m − ϕvm,m




+ log


1 +

ntλ
2
m

|S| |S \ {m}|max
πC

ϕhm,m − ϕvm,m




≤ 2 log


1 + ntλ

2
m max

πC

ϕhm,m − ϕvm,m




= 2 log


1 + P∥ĥm∥22 max

πC

ϕhm,m − ϕvm,m



.

The lower bound on −(rm(πC ,S, λmhm)− rm(πC ,S, ϑmvm)) can be obtained in a similar

manner. Taking expectations and using Jensen’s inequality we obtain

E [rm(πC ,S, λmhm)− rm(πC ,S, λmvm)]

≤ 2 log


1 + E


P∥ĥm∥22 max

πC

ϕhm,m − ϕvm,m




.
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Since maxπC |ϕhm,m − ϕvm,m| depends only on the channel directions hm, it is independent

of the channel magnitude ∥ĥm∥2. Using the independence and E

∥ĥm∥22


= nt we get

E [rm(πC ,S, λmhm)− rm(πC ,S, λmvm)] ≤ 2 log


1 + PntE


max
πC

ϕhm,m − ϕvm,m




.

Since the number of elements in the sum (2.8) are bounded by 2ns the claim follows.
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A key challenge in wireless networks is interference. Over many decades, treating inter-

ference as noise has been seen as one of the best options to handle interfering signals with

weak to moderate strength. In recent years, a technique called interference alignment has

become a popular research topic. Interference alignment refers to techniques where the

transmit and receive parameters are chosen such that interfering signals cast overlapping

shadows at the corresponding receivers. In the landmark paper [CJ08] interference align-

ment was used to show that, in a fading environment, the degrees of freedom of the K-user

interference channel is K/2. Hence, every user is able to access half of the spectrum free

from interference. The degrees of freedom measure the number of signaling dimension that

can be accessed free from interference. In fact, the notion of degrees of freedom has shown

to be a useful metric for a better understanding of the interference problem in wireless

networks. For example, in cooperative cellular systems the degrees of freedom can give a

hint for user scheduling and beamforming design.

Many interference alignment schemes [Sye10, NGJV12], including the scheme used in

[CJ08], use long symbol extensions (in time or frequency) to approach arbitrarily close to

the optimal degrees of freedom. Instead of coding over time or frequency extensions the

optimal degrees of freedom can also be achieved by coding over signal levels [MGMAK09].

However, interference alignment over limited signaling dimensions is a long standing open

problem. Progress was made in [BCT11] where, for symmetric interference channels (i.e.

all nodes have the same number of antennas and transmit/receive the same number of data

streams), necessary and sufficient conditions for the feasibility of interference alignment

were found. Recently the same authors [BCT14] have shown that for the K-User MIMO

interference channel with no symbol extensions (i.e. diversity is only achieved through

multiple antennas) the maximum number of degrees of freedom is bounded by 2 which is

in stark contrast to the K/2 degrees of freedom result for fading channels.

Related Work

The downlink or uplink of a cellular system can be modeled as multiple mutually inter-

fering broadcast or multiple access channels, respectively. To the best of our knowledge,

interference alignment for cellular systems was first considered in [ST08] where an inter-
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ference alignment scheme termed subspace interference alignment was proposed. The idea

is to align all interference to a subspace of the receive space such that each receiver has

at least one interference free dimension. The degrees of freedom of cellular systems with

single antenna users are characterized in [PL09,PL11]. Further, in [SLZ10] the degrees of

freedom of a two-cell cellular system with multiple base station antennas are characterized.

Further results on the two-cell scenario have been found in [SLL+11,SY13]. In [NMAC14]

is shown that if the cells are divided in orthogonal sectors and interference from neighbor-

ing cells is the only interference, then the optimal degrees of freedom K/2 can be achieved

– even without symbol extensions.

Analytic solutions for the interference alignment problem in the MIMO interference

channel are only know for a very few special cases, e.g., the “toy example” in [CJ08].

Therefore, iterative algorithms that find an approximate interference alignment solutions

have been considered. In [GCJ08, PH11] different algorithms have been proposed that

possibly achieve interference alignment in the interference channel. The algorithms are

based on alternating the optimization of receive filters and transmit precoders. These

algorithms cannot directly be applied to cellular systems; at least, if the algorithms are

applied to cellular systems, they have a very poor convergence behavior. In [ZBH11]

algorithms that are based on alternating optimization are proposed for cellular systems.

In [YJK10] the notion of proper systems has been introduced for the MIMO interference

channel. The proper condition is a necessary condition for the feasibility of interference

alignment. The concept was extended to symmetric multi-antenna cellular systems in

[ZBH11], partially connected cellular systems in [GG11] and general multi-antenna cellular

systems in [LY13].

Contributions

The contributions of this chapter can be summarized as follows. We characterize the de-

grees of freedom of fully connected symmetric cellular systems (defined below) for certain

system setups and under different assumptions on the channels. First, we assume a fad-

ing environment and allow a asymptotically large number of symbol extensions. Next,

we find sufficient conditions for the feasibility of interference alignment, if the number of

symbol extensions is limited. Finally we assume that the transmission must be performed

over constant channels (i.e. no symbol extensions are possible); here we find a sufficient

condition for the feasibility of interference alignment. Based on the insight achieved by

the analysis, we propose different algorithms which possibly achieve the optimal degrees

of freedom. The algorithms are based on alternating the optimization of the transmit

precoders and receive filters. The first algorithm aims on aligning the out-of-cell inter-
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ference at each receiver in a subspace of the available receive space. It is inspired by the

minimum interference leakage algorithm proposed for the interference channel in [GCJ08]

and the subspace interference alignment scheme for cellular systems in [ST08]. Our second

algorithm aims on directly maximizing the SINR of all receivers. A similar algorithms was

independently reported in [ZBH11], but in contrast to [ZBH11] we allow symbol extensions

over time or frequency and include a user selection. Therefore, our algorithm is able to

operate in more general system setups. Finally our findings are underlined by extensive

simulations. First, we consider a Wyner-like channel model to validate the analytic results.

Then, we use a LTE related channel model to evaluate the performance of the proposed

algorithms in practical scenarios.

3.1 System Setup

The system is modeled according to Section 1.3. To streamline the presentation we specify

some of the assumptions and introduce shorthand notations. We assume that the number

of base stations is lager than one, T > 1, and that each base station provides wireless

service to a disjoint set of users, i.e., Ub ∩ Ul = ∅ for all base stations b ̸= l. We focus on

symmetric cellular systems which are defined as follows.

Definition 3.1. A cellular system, with T base stations each equipped with nt antennas

and K users per cell each equipped with nr antennas is denoted a

(T, nt) × (K,nr)



symmetric cellular system.

We assume that µ ∈ N symbol extensions are used for the transmission of a codeword.

Therefore, the downlink channel from base station l to user m ∈ Ub is given by Hm,l ∈
Cµnr×µnt which has a block diagonal structure with µ blocks. Each non-zero element of the

channel matrix Hm,l is given by independent copies of a continuous distributed random

variable, and to avoid degenerated channel conditions we assume that these values are

bounded between a non-zero minimum and and a finite maximum. The signal vector

received by user m ∈ Ub is

ym = Hm,bxb +

B

l=1
l̸=b

Hm,lxl + nm ∈ Cµnr ,

with nm ∼ CN (0, Iµnr). The transmitted signal vector xb ∈ Cµnt×1 is constructed by a

linear combination of multiple data streams. Assume that Sb data streams are scheduled
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for transmission by base station b. Precoding matrix Vb ∈ Cnt × |Sb| is given by

Vb = [π(i)]i∈Sb
.

Such that the signal received by user m can be written as

ym =
T

b=1

Hm,bVbsb + nm,

where sb =

µP
|Sb|si

T
i∈Sb

is the vector of data symbols transmitted by base station b. As de-

scribed in Section 1.3.3, the data symbols are modeled as complex Gaussian, si ∼ CN (0, 1),

and power allocation between data streams is uniform. Hence, the signal transmitted over

µ symbol extensions satisfies an average power constraint, E

∥xb∥22


≤ µP . To decode its

intended data streams Rm ⊆ S user m uses the receive filter

Um = [ρ(i)]i∈Rm
.

Such that the estimated data symbols of receiver m can be written as the vector

ŝm = UH
mym.

3.2 Degrees of Freedom of Cellular Systems

The degrees of freedom characterize the system sum-rate of a cellular system, if the trans-

mit power P is taken to infinity. Let the scheduled data streams S be fixed. For asymp-

totically large transmit power P the ergodic system sum-rate with perfect channel state

information, defined in (1.8), can be approximated by

R̄H(P ) = d log(P ) + o(log(P )),

where d are the degrees of freedom of the cellular system, defined as

d :=
T

b=1

db = lim
P→∞

R̄(P )

log(P )
.

Intuitively, the degrees of freedom can be seen as the number of interference free parallel

data streams that can be transmitted in a wireless system.
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When analyzing the degrees of freedom, the assumptions made about the channel model

are crucial. One possibility is to assume that it is possible to encode the signal over many

(possibly an infinite number) independent channel realizations. This coding strategy was

considered in the landmark paper by Cadambe and Jafar [CJ08]. Another line of research

assumes that the signal must be encoded over a single channel realization. Yet another

possibility is to assume that the coding can be preformed over a small finite number

of channel realizations. In the following we evaluate the degrees of freedom of cellular

networks for each of these assumptions.

3.2.1 Degrees of Freedom with Varying Channels

In this subsection we assume that coding can be performed over many independent channel

realizations. First, we consider single antenna users, then the degrees of freedom for users

with multiple antennas follow from the single antenna case. The results are extension

to cellular systems of results in [CJ08, GJ10] for the interference channel. The following

corollary characterizes the degrees of freedom of certain system setups for symmetric

cellular systems with single antenna users.

Corollary 3.2. Assume a varying channel and let the channel coefficients be independent

and drawn from a continuous distribution. Let T > 1 and assume a

(T, nt) × (K, 1)



symmetric cellular system.

i) If TK ≤ nt, then d = TK.

ii) If K < nt < TK and nt/K is an integer, then d = TKnt
K+nt

.

iii) If K ≥ nt, then then d = TKnt
K+nt

.

The proof is given in Section 3.6.1. We stress that similar results have been recently

reported in [PL11]. The degrees of freedom for users with multiple receive antennas can

now be characterized as follows.

Corollary 3.3. Assume a

(T, nt) × (K,nr)


symmetric cellular system and a varying

channel and let the channel coefficients be independent and drawn from a continuous distri-

bution. If R = max(nt,Knr)
min(nt,Knr)

is an integer, the degrees of freedom are partially characterized

as follows.

i) If T > R, then d = TntKnr
Knr+nt

.

ii) If T ≤ R and Knr ≤ nt, then d = TKnr.

iii) If T ≤ R and Knr > nt, then
TntKnr
Knr+nt

≤ d ≤ Tnt.

The proof is given in Section 3.6.2.
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Coordination Versus Joint Transmission.

In [3GP09a] the 3GPP defined further advancements for LTE including coordinated schedul-

ing/beamforming and joint processing/transmission. From our point of view, a

(T, nt)×

(K,nr)


cellular system using joint transmission can be seen as a broadcast channel with

Tnt transmit antennas and TK users with nr receive antennas each. Hence, using joint

transmission a cellular system has

dBC = min(Tnt, TKnr)

degrees of freedom [Jaf05]. On the other hand, from Corollary 3.3 we know that – for

K sufficiently large – a symmetric cellular system operating in a coordinated scheduling

mode (i.e. using interference alignment) achieves at least d = TntKnr
Knr+nt

degrees of freedom.

Hence, for a large number of users K we observe that

lim
K→∞

dBC = lim
K→∞

d = Tnt.

We conclude that with increasing number of users a symmetric cellular system operating

in coordinated scheduling mode can achieve the same degrees of freedom as a symmetric

cellular system operating in joint transmission mode.

3.2.2 Degrees of Freedom with a Limited Number of Symbol Extensions

Corollary 3.2 and 3.3 state the maximal degrees of freedom of a symmetric cellular system,

if an asymptotically large number of symbol extensions and data streams is available.

However, in practical systems the number of symbol extensions and data streams is limited.

Therefore, the following question arises: How many symbol extensions µ are required to

guarantee interference free transmission in a

(T, nt) × (K,nr)


cellular system with one

data stream per user? For simplicity, we consider a single data stream per user. However,

extensions to multiple data streams are possible.

Mathematically, this means we have to find transmit precoding vectors π and receive

filters ρ such that the following conditions can be fulfilled.

ρ(j)HHk,bπ(i) = 0, ∀k ∈ Ub, ∀b ∈ [1, T ] and ∀ j ∈ Rk,∀i ∈ Sb with i ̸= j, (3.1)

ρ(i)HHk,bπ(i) > 0, ∀i ∈ Rk,∀k ∈ Ub and ∀ b ∈ [1, T ] (3.2)

If these so-called interference alignment conditions are fulfilled, all receivers can null all

interference and receive an interference free signal. Therefore, if conditions (3.1) and (3.2)
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can be fulfilled, we say that interference alignment is feasible and the system is called

proper. More precisely:

Definition 3.4. A cellular system for which a set of transmit precoding vectors π and

receive filters ρ exists, such that the interference alignment conditions (3.1) and (3.2) can

be fulfilled, is called a proper cellular system.

The notion of proper systems was introduced in [YJK10] for the MIMO interference

channel. Recently, [ZBH11] considered

(T, nt)×(K,nr)


cellular systems, with no symbol

extensions µ = 1 and a single stream per user |Rk| = 1, and found necessary conditions for

the existence of transmit precoders and receive filters such that the interference alignment

conditions (3.1) and (3.2) can be fulfilled. Since we consider (orthogonal) symbol exten-

sions, every cellular system can be turned into a proper cellular system by increasing the

number of symbol extensions µ. However, we stress that not every proper cellular system

achieves the maximal degrees of freedom. The following corollary follows from [ZBH11];

it states a necessary condition for a proper cellular system with symbol extensions.

Corollary 3.5. Assume a

(T, nt)×(K,nr)


symmetric cellular system and let the channel

coefficients be independent and drawn from a continuous distribution. If the number of

data streams per user |Rk| = 1 for all k ∈ U and

µ ≥ KT + 1

nt + nr
and (3.3)

µ ≥ K

nt
and (3.4)

µ ≥ K + 1

nr
, (3.5)

then the cellular system is proper according to Definition (3.4).

The proof is given in Section 3.6.3.

3.2.3 Degrees of Freedom without Symbol Extensions

In this subsection we consider the problem of finding interference alignment solutions for

a single channel realization. This scenario is frequently also termed the constant channel

case (see e.g. [CJ08]). To establish the feasibility of interference alignment with constant

channels we consider

(T, nt) × (K,nr)


symmetric cellular systems and assume that in

each transmission all users Ub are scheduled. We assume that the number of antennas is

equal at all nodes N = nt = nr, and for each user the same number of data streams is

assigned, δ := |Rk| = |Rm| for all k,m ∈ U . The results in this section are extensions of

the feasibility results for MIMO interference channels in [BCT11] and [RLL12].
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Figure 3.1: Feasibility of interference alignment for a symmetric cellular system with B
base stations, K users per base station, d data streams per user and 5 antennas
per node.

Corollary 3.6. Let the number of base stations T , the number of users per base station K

and the number of data streams per user δ be fixed and let the number of transmit antennas

be equal to the number of receive antennas N = nt = nr. For independent channel

coefficients drawn from a continuous distribution, the interference alignment problem is

feasible if

N ≥ δ(KT + 1)

2
.

The corollary is proved in Section 3.6.4. The following corollary follows directly from

the Corollary 3.6.

Corollary 3.7. Under the assumptions of Corollary 3.6

δ ≤ 2N

TK + 1

degrees of freedom are achievable for each user.

We conclude that the total degrees of freedom of a symmetric cellular system with N

antennas at each node and constant channels are bounded by

d ≤ 2NTK

TK + 1
.

64



3.3 Interference Alignment Algorithms

Figure 3.1 depicts the feasible degrees of freedom for N = 5 transmit and receive antennas

and a different number of base stations T and users K.

3.3 Interference Alignment Algorithms

In this section we present two algorithms that find sub-optimal solutions to the schedul-

ing problem (1.7) or (1.9) (depending on the available channel state information). The

algorithms exploit the duality of cellular systems. Due to the reciprocity of the wireless

channel, a set of precoding vectors and receive filters achieving interference alignment in

the downlink also achieve interference alignment in the uplink, if the roles of the pre-

coder and receive filter are swapped. We stress that alternating optimization of transmit

and receive parameters has been applied beforehand to wireless networks. For exam-

ple [RFLT98, SCR05] considered the joint beamforming and power control problem with

individual SINR constraints. Recently [GCJ08] showed that through alternating optimiza-

tion interference alignment solutions for the MIMO interference channel can be found.

Another (yet related) line of research was carried out in [SKB09], where power control

with active link protection was considered and results from [BCP00] were extended to

the axiomatic interference model of [Yat95]. In fact, it turns out that such power con-

trol schemes are requiered to prove convergence (of the objective function) of the SINR

maximization algorithm presented below.

Below we introduce a centralized interference alignment algorithm for proper cellular

systems (according to Definition 3.4). Then, we introduce an improved algorithm which

aims on maximizing the SINR of individual users and includes a user selection. The latter

algorithm does not require the systems to be proper and can be applied to arbitrary

cellular systems. Later on, in Chapter 4 we introduce a distributed interference alignment

algorithm that significantly reduces the feedback load by feeding back the effective channel

vector instead of the entire channel matrix.

3.3.1 Centralized System Architecture

If the uplink and downlink use the same frequency band, forward and backward training

can be used to obtain channel state information at the transmitters and receivers. However,

cellular systems usually use different frequency bands for uplink and downlink transmis-

sions; therefore feedback of channel state information is required. Figure 3.2 depicts an

example of a centralized system architecture with feedback. Scheduling is performed by a

central controller which receives channel state information through a feedback channel.

To acquire channel state information each base station b transmits orthogonal common

pilots which are used by all users m to measure the channels Hm. Each user m quan-
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Figure 3.2: Centralized system architecture. Each user um feeds back quantized channel
state information Vm to a central controller. Based on the available channel
state information V = {V1, . . . , VK} the central controller performs scheduling
and distributes the scheduling decision to the base stations bs1, . . . , bsT .

tizes and feeds back the measured channels Vm = (H̃m,b = Q(Hm,b))b=1,...,T such that

the central controller has knowledge of all quantized channels V = (Vm)m∈U . Based on

this quantized channel state information the central controller performs scheduling and

distributes the scheduling decision among all base stations. Finally, orthogonal dedicated

(i.e. precoded) pilots are transmitted by all base stations such that each user m ∈ S
can estimate the effective channel Hm,lπ(i) and compute the receive filters ρ(i), for all

i ∈ Rm. The algorithms presented in the subsequent subsections alternates between the

optimization of the receive filters and transmit precoders. The alternating optimization

algorithm is summarized as follows:

i) Initialization: Select an arbitrary transmit precoder Vb ∈ Cnt×K , for all base stations

b = 1, . . . , T .

ii) Receive filter optimization: For fixed transmit precoders optimize the receive filter

ρ(k) ∈ Cnr , for all users k.

iii) Transmit precoder optimization: For fixed receive filters optimize the transmit pre-

coder Vb ∈ Cnt×K , for all base stations b = 1, . . . , T .
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iv) Iteration: start from ii) until a termination condition is satisfied (e.g. maximum

number of iterations, minimum residual interference).

3.3.2 Iterative Out-of-Cell Interference Minimization

Consider a proper cellular system

(T, nt) × (K,nr)


with |Rk| = 1 data streams per

user k and let all users be scheduled, Sb = Ub. (In Section 3.3.3 below we extend the

algorithm to systems which do not need to be proper by including a user selection and

using a different objective function when optimizing the precoders and receive filters.)

The receive filters and transmit precoders are optimized to minimize all interference. The

approach is inspired by the iterative interference alignment algorithm for the interference

channel [GCJ08] and the interference alignment scheme for cellular systems described

in [ST08]. Our goal is to minimize the out-of-cell interference by finding receive filters

Uk ∈ Cnr×|Rk| and a transmit subspace Ṽb ∈ Cnt×|Sb|. The intra-cell interference is

handled by an additional zeroforcing precoder. The precoder for stream i ∈ Sb is given by

π(i) = Ṽbwi, where wi ∈ C|Sb| is the zeroforcing precoder.

Receive Filter Optimization

The goal of the receive filter optimization is to pick the receive subspace with minimum out-

of-cell interference. Assume that all transmit precoders Vb, b = 1, . . . , T , are fixed, then

the receive filter that minimizes the out-of-cell interference of data stream k ∈ Rk = {k}
is given by

ρ(k) = νmin




T

l=1
l ̸=b

H̃k,lVl


H̃k,lVl

H


 , (3.6)

where νmin(X) is defined as the eigenvector corresponding to the smallest magnitude

eigenvalue of the matrix X. In the receive filter optimization no intra-cell interference

is considered. Intra-cell interference is considered only in the beamformer optimization.

This approach ensures that the intra-cell interference gets aligned with the out-of-cell

interference.

Transmit Subspace Optimization

The transmit precoder optimization is performed in the reciprocal network. In the recip-

rocal network the channel from user k to base station l is given by
←−
H b,k =


H̃k,b

H
. The

transmit precoders are given by the receive filters in the forward network,
←−
V k = Uk. The

67



3 Degrees of Freedom of Cellular Systems

receive subspace that minimizes the out-of-cell interference at base station b is given by

←−
U b = ν

[|Ub|]
min




B

l=1
l ̸=b



k∈Ul

←−
H l,k
←−
V k

←−
H l,k
←−
V k

H


 ,

where ν
[n]
min(X) is defined as the eigenvectors corresponding to the n smallest magnitude

eigenvalues of the matrixX. The transmit subspace with minimum out-of-cell interference

is then given by Ṽb =
←−
U b.

Zeroforcing of Intra-Cell Interference

After iterating between the optimization of the receive filters and the transmit subspaces,

intra-cell interference is handled by an additional zeroforcing step. For each user m ∈ Ub
base station b picks a zeroforcing precoding vector based on H̃k,bṼb, for all k ∈ Ub \ {m}.
The zeroforcing precoding vector wm ∈ S|Ub|−1 is picked from the null space of

wm ∈ ker


[ξk]k∈Ub\{m}


,

with ξk =

ρ(k)HH̃k,bṼb

T
∈ C|Ub| and ker (X) the null space of the matrix X. Finally,

the transmit precoder used by base station b is given by

Vb =

Ṽbwk


k∈Ub

. (3.7)

In the simulations presented in Section 3.4 we show that if interference alignment is fea-

sible, the algorithm finds an interference alignment solution with high probability.

Convergence of the Residual Interference

The convergence of the residual interference using the minimum interference algorithm

can be proved in a similar manner as the proof of convergence in [GCJ08] for the K-user

interference channel. Key observations are the following. First, the out-of-cell interference

is monotonically decreased when computing the receive filter (3.6). Second, the transmit

beamformer computation (3.7) decreases the out-of-cell interference and nulls all intra-cell

interference. Note that even if the residual interference converges to a local minimum, it

is not guaranteed that the algorithm converges to a unique solution.
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Algorithm 2 - Outer loop: Receive filter optimization and iteration

1: Set π(i) = 1/
√
N [1, 1, . . . , 1]T for all i ∈ U and Sb = ∅ for all b.

2: repeat
3: for b = 1 to T and all k ∈ Ub do
4: if k ∈ Sb then
5: Compute receive filter ρ(k) according to (3.8).
6: else
7: Receive filter is ρ(k) = H̃k,bπ(k).
8: end if
9: end for

10: Inner loop: User selection and precoder optimization (Input: ρ. Output: Sb and
π).

11: until some termination condition is satisfied.

3.3.3 Iterative SINR Maximization with User Selection

The algorithm presented in this subsection can handle cellular systems with an arbitrary

number of users U . For the ease of presentation we assume a single data stream per

user an let user i be associated with data stream i. For each transmission interval the

central controller selects a subset of users Sb ⊆ U for transmission. Users are selected to

maximize the approximated sum rate R(P,π, S, V ). However, finding the optimal user

selection is computationally not tractable, therefore we apply a greedy user selection that

starts with no selected users and adds a new user – if this increases the approximated

sum rate R(P,π, S, V ) – every time the transmit precoders are updated. The receive

filters and transmit precoders are optimized to maximize the achievable rate of each user.

The approach is inspired by the maximum SINR algorithm proposed for the interference

channel in [GCJ08]. However, cellular systems differ from the interference channel since

intra-cell and out-of-cell interference occurs and the intra-cell interference is observed

through the same channel as the desired signal. For cellular systems we have found

that the best convergence behavior can be achieved if intra-cell interference is considered

only in the optimization of the transmit precoders. Another algorithm that aims on

maximizing the SINR was recently proposed in [ZBH11]. In contrast to the algorithm

proposed here [ZBH11] considers intra-cell interference only at the receivers and required

an additional orthogonality constraint at the transmitters.

For the ease of presentation, the algorithm is split in an outer loop and an inner loop.

For fixed receive filters the inner loop performs the user selection and the optimization

of transmit precoders. The outer loop optimizes the receive filters for a fixed set of users

and fixed precoders. The outer loop is summarized in Algorithm 2. It is performed until

some termination condition is satisfied, e.g. a maximum number of iterations is reached.
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3 Degrees of Freedom of Cellular Systems

Algorithm 3 - Inner loop: User selection and precoder optimization

1: Input: uk for all k ∈ U
2: Set: Sb = ∅ for all b
3: repeat
4: for b = 1 to T do
5: for k ∈ Ub \ Sb do
6: Tb = {k} ∪ Sb
7: Compute precoder for potential new user and all other users selected by

that base station π(k) =←−ρ (k) for all k ∈ Tb.
8: Update precoder of all previously selected users π(m) =←−ρ (m) for all l ̸= b

and all m ∈ Sl.
9: Compute achievable system sum-rate R(P,π, S, V ) with S =

(S1, . . . ,Sb−1, Tb, Sb+1, . . . ,ST ).
10: end for
11: Add one new user if sum rate increases.
12: end for
13: until No new users added at any base station b.

In the outer loop all base stations are processed in an arbitrary ordering and the optimal

receive filters ρ(k) are computed as described below. If no users are selected by a base

station, isotropic interference from that base station is assumed, i.e., it is assumed the

base station transmits with the precoding vector Vb = 1/
√
N [1, 1, . . . , 1]T . The inner loop

is summarized in Algorithm 3. It comprises of the user selection and the computation of

transmit precoders. In every iteration step the inner loop starts with no selected users.

All base stations are processed in an arbitrary ordering until no new users are added to

the system. For each base station b a new user is added, if this increases the system sum

rate. Each time a user is added to the system all precoders are updated such that the new

interference situation is considered.

Receive Filter Optimization

The receive filter optimization is performed as follows. Assume that all transmit precoders

Vb, b = 1, . . . , T are fixed. The receive filter for user k ∈ S is then given by

ρ(k) = νmax


Θ−1

k,bGk,b


, (3.8)
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where νmax(X) is defined as the eigenvector corresponding to the largest magnitude eigen-

value of the matrix X. The gain covariance matrix is defined as

Gb,k = H̃k,bπ(k)

H̃k,bπ(k)

H

and the out-of-cell interference plus noise covariance matrix is defined as

Θk,b =

T

l=1
l̸=b

H̃k,bVl


H̃k,bVl

H
+ Iµnr .

We stress that in the receive filter optimization no intra-cell interference is considered.

Transmit Precoder Optimization

The transmit precoder optimization is performed on the (virtual) reciprocal network. The

receive filter (in the reciprocal network) for user k is given by

←−ρ (k) = νmax

←−
Θ−1

b,k

←−
G b,k


.

The interference plus noise covariance matrix is defined as

←−
Θ b,k =

T

l=1



j∈Sl\{k}

←−
H l,k
←−π (k)

←−
H l,k
←−π (k)

H
+Iµnt

and the gain covariance matrix is defined as

←−
G b,k =

←−
H b,k
←−π (k)

←−
H b,k
←−π (k)

H
.

Finally, the transmit precoder for user k is given by π(k) =←−ρ (k).

3.4 Simulations

First we validate the results in Section 3.2. Then we consider a more practical scenario to

further evaluate the performance of the algorithms described in Section 3.3.

3.4.1 Numerical Evaluation

In this subsection we validate the results of Section 3.2. We consider the Wyner-like

channel model [Wyn94]. All channels are given by Hk,b = αk,bĤk,b. The elements of Ĥk,b

are drawn from a complex Gaussian distribution with zero mean and variance (2ntnr)
−1/2
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optimal DoF; d = 4/3

max. SINR; number iter. 8

min. out−of−cell int.; number iter. 8

Figure 3.3:

(2, 1) × (2, 1)


cellular system; spectral efficiency vs. SNR; µ = 3 symbol

extensions the proposed algorithms achieve the optimal degrees of freedom
d = 4/3.

such that E

∥Ĥk,b∥2F


= 1. The channel gain between base station b and user k is

modeled by αk,b ∈ R+. In the simulations αk,b = 1 was chosen for all b and all k. We

assume perfect channel state information at the central controller and a single data stream

per user. We apply the out-of-cell interference minimization algorithm and the SINR

maximization algorithm without user selection, i.e., all users are scheduled and only the

receive filters and precoders are optimized. As a baseline we consider local zeroforcing,

i.e., each base station selects the transmit precoder under the zeroforcing constrained,

considering only users within the same cell. The receive beamforming vector is given by

the SINR maximizing solution.


(2, 1)× (2, 1)


Cellular System

Consider a

(2, 1) × (2, 1)


symmetric cellular system. From Corollary 3.6 we know that

interference alignment is feasible µ ≥ 2.5. If we chose µ = 3 each user has a three

dimensional receive space but also receives three interfering streams. Thus, to enable

each user to cancel all interference, the interference must be aligned in two dimensions at

each user. If interference alignment can be achieved, the maximal degrees of freedom are

d = 4/3.
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max. SINR; number iter. 8 µ = 3

min. out−of−cell int.; number iter. 8, µ =3

max. SINR; number iter. 8 µ = 2

min. out−of−cell int.; number iter. 8 µ = 2

Figure 3.4:

(2, 1) × (2, 1)


cellular system; spectral efficiency vs. SNR; µ = 3 and µ = 2

symbol extensions; with µ < 3 the optimal degrees of freedom cannot be
achieved.

Figure 3.3 shows that the cellular max SINR algorithm and the min out-of-cell interfer-

ence algorithm are not interference limited at high SNR and achieve the maximal degrees

of freedom. The dashed black graph shows the 3/4 slope; the offset was chosen arbitrarily.

Figure 3.4 depicts the performance of the proposed algorithms if µ = 2 symbol extensions

are used, i.e. interference alignment is not feasible. It can be observed that with µ = 2

the spectral efficiency becomes interference limited at high SNR.

In Figure 3.5 we compare the proposed algorithms with local zeroforcing. We observe

that local zeroforcing is interference limited and is clearly outperformed by the proposed

algorithms. A remarkable result is that one iteration is sufficient to achieve a significant

gain over the zeroforcing performance. If we increase the number of iterations, the perfor-

mance of the min out-of-cell interference algorithm increases only slightly but the cellular

max SINR algorithm increases its performance significantly.


(3, 5)× (3, 5)


Cellular System

From Corollary 3.6 we know that in a

(3, 5)×(3, 5)


cellular system interference alignment

is feasible if µ ≥ 1. We chose µ = 1 and make the following observation: At each receiver

the interference from 8 unintended signals must be aligned in at least 4 dimensions of the

5 dimensional receive space. From Corollary 3.3 we have that 45/4 ≤ d ≤ 15, but to

73



3 Degrees of Freedom of Cellular Systems

0 5 10 15 20 25 30
0

2

4

6

8

10

12

SNR [dB]

s
p

e
c
tr

a
l 
e

ff
ic

ie
n

c
y
 [

b
it
s
/s

e
c
/H

z
]

 

 

max. SINR; number iter. 1

max. SINR; number iter. 8

max. SINR; number iter. 32

min. out−of−cell int.; number iter. 1

min. out−of−cell int.; number iter. 8

min. out−of−cell int.; number iter. 32

local zero forcing

Figure 3.5:

(2, 1) × (2, 1)


cellular system with µ = 3; spectral efficiency vs. SNR; pro-

posed algorithms outperform local zero forcing beamforming.

achieve the optimal degrees of freedom we require multiple data streams per user and an

increasing number of symbol extensions. With a single stream per user and no symbol

extensions the maximal degrees of freedom are d = TK = 9.


(3, 4)× (2, 2)


Cellular System

In a

(3, 4) × (2, 2)


cellular system interference alignment is feasible if the number of

symbol extensions µ ≥ 7/6. Hence, if we chose µ = 1 we expect that the performance

becomes interference limited at high SNR. Figure 3.7 shows a comparison of the proposed

algorithms with local zeroforcing. We observe that the max SINR algorithm and the min

out-of-cell interference algorithm are interference limited at high SNR. The cellular max

SINR algorithm clearly outperforms local zeroforcing and the min out-of-cell interference

algorithm outperforms local zeroforcing if SNR is higher than 10 dB. We conclude that even

if the proposed algorithms cannot guarantee interference free transmissions for arbitrary

cellular systems, a significant gain over non-cooperating schemes can be achieved.

3.4.2 LTE Related Simulations

In this subsection we consider SINR based simulations. The system setup is in accordance

with the LTE specifications [3GP09b] and summarized in Table 3.1. The simulation setup
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cellular max. SINR; number iter. 10

min. out−of−cell int. leak.; number iter. 10

cellular max. SINR; number iter. 100

min. out−of−cell int. leak.; number iter. 100

cellular max. SINR; number iter. 10000

min. out−of−cell int. leak.; number iter. 10000

max. slope d=9

local zero forcing

Figure 3.6:

(3, 5)× (3, 5)


cellular system; spectral efficiency vs. SNR; comparison of the

minimum out-of-cell interference algorithm and the cellular max SINR algo-
rithm for different number of iterations. Both algorithms achieve the maximal
degrees of freedom.

is essentially similar to the setup used in Section 2.5.2. The channels are modeled using the

SCME [BSM+05]. The cluster of cooperating base stations comprises three base stations

which are located at different sites but have the same network area. Figure 2.9 shows

the average SINR distribution over the network area. The three peaks are close to the

base station locations. Channel state information is assumed to be averaged over one

scheduling block. One scheduling block comprises of 12 adjacent subcarriers. Therefore,

the transmit precoders and receive filters are computed per scheduling block.

We compare the SINR maximization algorithm with user selection (Subsection 3.3.3)

with two baseline schemes. The first baseline is given by local zeroforcing and block diag-

onalization with greedy user selection. Using local zeroforcing each base station nulls all

intra-cell interference but takes no steps to minimize the out-of-cell interference. The user

selection is performed in a greedy fashion [TBT07]. The second baseline is block diagonal-

ization. When using block diagonalization each scheduled user is connected to all (three)

base stations. The detailed algorithm is described in [SSH04]. Block diagonalization is a

joint transmission scheme and therefore requires data sharing between the base stations.

In Figure 3.8 we assume perfect channel state information and compare the system

spectral efficiency of the proposed SINR maximization algorithm with local zeroforcing
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local zero forcing

cellular max. SINR; number iter. 10

min. out−of−cell int. leak.; number iter. 10

cellular max. SINR; number iter. 100

min. out−of−cell int. leak.; number iter. 100

Figure 3.7:

(3, 4) × (2, 2)


cellular system with µ = 1; spectral efficiency vs. SNR; com-

paring the proposed algorithms with local zeroforcing beamforming.

and block diagonalization. We observe that block diagonalization performs about 10

bit/s/Hz better than the proposed scheme which performs about 15 bit/s/Hz better than

local zeroforcing. We conclude that with perfect channel state information we can observe

a significant cooperation gain.

Now we consider quantized channel state information at the base stations. Assume each

user quantizes its channel in the time-domain; an approach proposed for LTE in [Wil10].

To do so, we assume that most significant np = 6 channel taps lie within the first ncp = 100

samples. The real and imaginary parts of each of the np channel taps is quantized using

nB bits. Further, we assume that a user reports a feedback message every TFB = 0.5 ms.

Thus, the feedback rate is

RFB =
ntnr
TFB

(log2(ncp) + 2npnB) bit/s/user.

Figure 3.9 shows the mean spectral efficiency of the feedback rate. We observe that at

a relevant feedback rate (i.e. RFB < 5 Mbit/s/user) the proposed max SINR algorithm

performs close to block diagonalization. This is a remarkable result since the requirements

on the backhaul network are significantly smaller than with block diagonalization which

requires data sharing. In the regime of very small feedback rates the rate approximation

scheme discussed in Chapter 2 gives the best performance.
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Table 3.1: Summary of simulation parameters.

Parameter Description

Scenario FDD Downlink
Number BS 3
Number UE 30
Antenna configuration BS: 4 Tx Ant.; MS: 2 Rx Ant.

uniform linear array (λ/2 spacing)
Carrier Frequency 2.1 GHz, 10 MHz bandwidth
Scheduling block size 1 PRB
Number streams per user 1
Modulation and Coding ideal link adaptation
Pilot/control overhead not taken into account
Feedback per scheduling block
Channel model SCME: urban macro (3 km/h, high angular spread)
Scheduling frequency selective SDMA.
Max. users per SB 4 (MU-MIMO mode)
Receiver linear receiver with ideal channel state information
Intra-cell/Out-of-cell interference fully modeled

3.5 Summary and Conclusions

We considered cellular systems which are a natural extension of the interference channel.

The degrees of freedom of certain cellular systems and under different assumptions on

the channel statistics have been derived. Conditions for the feasibility of interference

alignment for systems with symbol extension have been found. The insights obtained in the

analysis motivated us to propose different algorithms for the optimization of beamforming

vectors and receive filters. One of the algorithms includes a greedy user selection, which

exploits the multi-user diversity of cellular systems. In the simulations we showed that

in certain scenarios the optimal degrees of freedom can be achieved with the proposed

algorithms. We demonstrated that even if the optimal degrees of freedom can not be

achieved – in some scenarios – an interference free transmission can be guaranteed. For

other scenarios, we saw that even if an interference free transmission can not possible

the proposed algorithms have huge advantages, in terms of sum rate, over uncoordinated

schemes. We demonstrated by LTE related simulations that – in a practical scenario – the

proposed algorithms performs very close to joint transmission schemes that require data

sharing. In Chapter 4 we will further evaluate the performance degradation of coordinated

transmit strategies due quantized channel state information feedback.
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Figure 3.8: CDF of system spectral efficiency; ideal channel state information; comparing
the proposed max SINR algorithm with local zeroforcing and block diagonal-
ization.
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3.6 Proofs

3.6.1 Proof of Corollary 3.2

Proof. We consider the three cases TK ≤ nt, K < nt < TK and nt ≤ K separately.

Case TK ≤ nt: Each base station has more antennas than users in the system, hence,

the degrees of freedom are bounded from bellow by d ≥ TK, which can be achieved by

zeroforcing at the base station. The outer bound is obtained by allowing all users and all

base stations to cooperate. Hence, the outer bound is given by the degrees of freedom of

the Tnt×TK point-to-point MIMO channel [Jaf05], that is, d ≤ TK. Since the inner and

outer bound are the same, the claim d = TK if TK ≤ nt follows.

Case K < nt < TK: If nt/K is an integer the inner bound is given by the degrees of

freedom of the TK user nt/K×1 interference channel, that is, each user communicates with

nt/K antennas of its assigned base station. Using [GJ10, Theorem 3] we obtain the inner

bound d ≥ ntTK
nt+K . The outer bound follows by allowing cooperation between users in the

same cell, which yields the T user nt×K interference channel. Applying [GJ10, Theorem

1] the degrees of freedom are bounded from above by d ≤ ntTK
nt+K .

Case K ≥ nt: The outer bound can be proved in a similar manner as the degrees of

freedom outer bound for the X-channel in [CJ09]. Due to the duality of the degrees of

freedom in the uplink and downlink of cellular systems [ST08] it is sufficient to show the

degrees of freedom for the uplink. To this end define the set of messages

W [l,b] = {Wi : ∀ i ∈ Ub} ∪ {Wi : ∀ i ∈ Sl ⊆ Ul, |Sl| = nt} ,

that is, nt messages Wi that originate from users in cell l plus all messages that are

intended for base station b. See Figure 3.10 for an example.

Now we compute the degrees of freedom of a cellular system where all messages that are

not in W [l,b] are eliminated. Obviously, this assumption cannot reduce the rate achieved

by the remaining messages. Subsequent, the outer bound of the total degrees of freedom

follows by summing these partial outer bounds over all cells b and l ̸= b.

Fix some pair (b, l) with l ̸= b. Consider any reliable coding scheme such that base

station b can decode and subtract all messages Wi ∈ W [l,b] with i ∈ Ub from the received

signal. Now, if we reduce the noise at base station b this base station can also decode the

messages Wi ∈ W [l,b] with k ∈ Sl, l ̸= b. This has transformed the cellular system into

a MAC with messages W [l,b]. Hence, the degrees of freedom of the cellular system with
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Figure 3.10: Example of message set W [l,b] for a

(3, 2) × (4, 1)


cellular system. Base

station b decodes all messages from the users in Ub and additionally decodes

the messages W
[l,1]
l and W

[l,2]
l from users in cell l.

reduced noise and messages W [l,b] is upper bounded by



i∈Ub

db,i +


k∈Sl

dl,k ≤ nt.

Summing the last inequality over all b and l ̸= b and using d =
T

b=1


i∈Ub

db,i we obtain

the outer bound,

T

b=1

T

l=1
l̸=b




i∈Ub

db,i +


k∈Sl

dl,k


 ≤ T (T − 1)nt

⇔ (T − 1)d+
T

b=1

T

l ̸=b



k∈Sl

dl,k ≤ T (T − 1)nt

Since, dl,k = dl,k′ for all k, k′ ∈ Ul we can sum the last inequality over all k′ ∈ Ul and

obtain the outer bound

⇔ K(T − 1)d+ (T − 1)ntd ≤ T (T − 1)Knt

⇔ Kd+ ntd ≤ TKnt

⇔ d ≤ TKnt
K + nt

.
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The achievable scheme can be summarized as follows. nt users in cell 1 and nt users

in cell 2 define the interference subspace at each base station b = 1, . . . , T . All remaining

users align their interference in this interference subspace. Further, we require that the

two interference subspaces at base station b = 3, . . . , T have an overlap of sufficient size,

as depicted in Figure 3.13. Then, as we will show, for any n ∈ N the achievable scheme

achieves the degrees of freedom

δ(n) =
2n2t (n+ 1)Γ + 2nt(K − nt)nΓ + (T − 2)ntKn

Γ

2nt(n+ 1)Γ + (K − nt)nΓ
, (3.9)

where the parameter Γ must be careful chosen, as shown below. Taking n→∞ yields the

degrees of freedom of the achievable scheme

d = lim
n→∞

δ(n) =
TKnt
K + nt

.

Next the achievable scheme is described in details. The uplink channel between some

base station (receiver) b and user (transmitter) m ∈ Ul is denoted as H̄ l,m
b . Let the total

number of dimensions available at each transmitter be

µn = 2nt(n+ 1)Γ + (K − nt)nΓ,

that is, H̄ l,m
b ∈ Cµnnt×µn , for all m, b, l. We stress that this notation is somewhat incon-

sistent with the notation used in this thesis but it will simplify the readability the proof

significantly. In cell b = 1, 2 a subset of nt users, collected in the index set Ûb ⊆ Ub,
transmits nt(n+ 1)Γ streams using the precoder

V̄ [b,κ] = V1 ∈ Cµn×nt(n+1)Γ , with κ ∈ Ûi.

All remaining users m ∈ Ul \ Ûl with l = 1, 2, . . . , T transmit ntn
Γ streams using the

precoder

V̄ [l,m] = V2 ∈ Cµn×ntnΓ
.

Hence, at base station b = 1, 2 the intended signals span n2t (n + 1)Γ + (K − nt)ntn
Γ

dimensions and at base station b = 3, . . . , T the intended signals span Kntn
Γ dimensions.

Consequently, at the base stations 1, 2 all interference must align in a ntµn − n2t (n +

1)Γ − (K − nt)ntnΓ = n2t (n + 1)Γ dimensional subspace and at base stations 3, . . . , T all

interference must align in a ntµn −KntnΓ = 2n2t (n + 1)Γ − n2tnΓ dimensional subspace.

If we require the following conditions on the precoders V1 and V2, interference alignment

can be achieved as required.
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span
(
H̄

[b,m]
j V 2

)

span
([

H̄
[b,κ]
j V 1

]
κ∈Ûb

)

Figure 3.11: Alignment condition C1: The users κ ∈ Ûb in cells b = 1, 2 span an in-
terference subspace at all base stations j = 1, 2, . . . , T , j ̸= b, in which the
interference subspace spanned by the users m ∈ Ub \ Ûb aligns.

C1 At all base stations j = 1, 2, . . . , T the interference generated by the users m ∈ Ub \Ûb,
with b = 1, 2, b ̸= j, must align with the interference generated by the users κ ∈ Ûb,

span

H̄

[b,m]
j V2


⊆ span


H̄

[b,κ]
j V1


κ∈Ûb



C2 The interference at base stations j = 1, . . . , T generated by the users m ∈ Ui in cell

i = 3, 4, . . . , T , with i ̸= j, must align with the interference subspace spanned by the

users κ ∈ Ûb with b = 1, 2 and b ̸= j. That is,

span

H̄

[i,m]
j V2


⊆ span


H̄

[b,κ]
j V1


κ∈Ûb



An example of the interference subspace alignment according to conditions C1 and C2

are depicted in Figure 3.11 and 3.12, respectively.

According to condition C1 and C2 at base stations b = 1, 2 the interference occupies

n2t (n + 1)Γ dimensions, which leaves the required n2t (n + 1)Γ + nt(K − nt)nΓ dimensions

for the intended signals.

To obtain the Kntn
Γ dimensional interference free subspace at base station i = 3, . . . , T

we need one extra alignment condition. Due to condition C1 and C2 we can guarantee

that all interference is aligned in a 2n2t (n + 1)Γ dimensional subspace. To achieve the

required Kntn
Γ interference free dimensions we need that n2tn

Γ interfering signals from

users Û1 align with the interfering signals from users Û2.
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span
(
H̄

[i,m]
j V 2

)

span
([

H̄
[b,κ]
j V 1

]
κ∈Ûb

)

Figure 3.12: Alignment condition C2: for all j = 1, . . . , T the interference subspace of the
users m ∈ Ui in cell i = 3, 4, . . . , T , with i ̸= j, aligns with the interference
generated by the users κ ∈ Ûb in cell b = 1, 2 with b ̸= j.

Figure 3.13 depicts an example of the required alignment. To achieve this alignment

we proceed as follows. We write V1 =

V +
1 V

−
1


, where V +

1 ∈ Cµn×ntnΓ
and V −

1 ∈
Cµn×nt((n+1)Γ−nΓ). Now we require that

span

H̄

[1,m]
j V +

1


⊆ span


H̄

[2,κ]
j V1


κ∈Ûb


,

for all m ∈ Û1.
Note that conditions C1 and C2 can be rewritten as

span

H̄

[i,m]
j V2


⊆ span


H̄

[b,κ]
j V1


κ∈Ûb



⇔span


H̄

[b,κ]
j

−1

κ∈Ûb

H̄
[i,m]
j V2


⊆ span (Int ⊗ V1)

⇔span

T

[b,im]
j V2


⊆ span (Int ⊗ V1) ,

where

T
[b,im]
j =


T

[b,im]
j,1 , . . . ,T

[b,im]
j,nt

T
=

H̄

[b,κ]
j

−1

κ∈Ûb

H̄
[i,m]
j

and T
[b,im]
j,o are diagonal matrices.

Hence, from C1 we have that span

T

[b,bm]
j,o V2


⊆ span (V1), for all i = 1, . . . , nt. With-

out loss of generality we fix b = 2 , m = 1, j = 1, o = 1, set span

V +
1


= span


T

[2,21]
1,1 V2



and claim the condition

C3

span

H̄

[1,m]
j T

[2,21]
1,1 V2


⊆ span


H̄

[2,κ]
j V1


κ∈Ûb
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span
([

H̄
[2,κ]
j V 1

]
κ∈Û2

)

span
([

H̄
[1,κ]
j V 1

]
κ∈Û1

)

n2
tn

Γ dimensional intersection

Figure 3.13: Interference alignment at receivers j = 3, . . . , T the interference subspace
defined by base station 1 and 2 has an overlap of at least n2tn

Γ dimensions.

for all m ∈ Û1 and all j = 3, . . . , T .

This condition together with C1 and C2 implies that the interference at base stations

b = 3, . . . , T lies in a 2n2t (n+ 1)Γ − n2tnΓ dimensional subspace.

If we are able to find precoders V1 and V2 such that C1, C2 and C3 are fulfilled, δ(n)

in (3.9) is achievable. Note that from C1 we have L1 = 2(T − 1)(K − nt) conditions, C2

we have L2 = 2K

(T − 2) + (T − 3)


conditions and from C3 we have L3 = nt(T − 2)

conditions. Hence, we have nt(L1 + L2 + L3) conditions of the form

span (ΥgV2) ⊆ span (V1) , g = 1, . . . , nt(L1 + L2 + L3),

where Υg = T
[b,im]
j,n as defined above. Now we can chose Γ = nt(L1 + L2 + L3) and

use [CJ09, Lemma 2] to construct the precoders V1 and V2 such that C1, C2 and C3 are

fulfilled.

Finally, it remains to show that all received signals are linearly independent. This can

easily be seen by checking if the conditions in [CJ09, Lemma 1] are fulfilled.

3.6.2 Proof of Corollary 3.3

Proof. Case T > R: The outer bound follows by allowing cooperation among the users in

a cell and using the degrees of freedom outer bound for the T user KM × nt interference
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channel [GJ10, Theorem 1] which yields

d ≤ TntKnr
Knr + nt

.

The inner bound follows from Corollary 3.2 by considering a

(T, nt)× (Knr, 1)


cellular

system and noting that TKnr > nt due to the assumption T > R. Hence, we have

d ≥ TntKnr
Knr + nt

.

Case T ≤ R and Knr ≤ nt: The outer bound is obtained by allowing cooperation among

the receivers and among the transmitters, which cannot decrease the degrees of freedom.

Therefore the degrees of freedom are bounded from above by the degrees of freedom of

the point-to-point Tnt × TKnr MIMO channel. By assumption TKnr ≤ nt ≤ Tnt and

therefore d ≤ TKnr. The inner bound is obtained by considering the

(T, nt)× (Knr, 1)



cellular system and using Corollary 3.2. Since, by assumption TKnr ≤ nt we have d ≥
TKnr.

Case T ≤ R and Knr > nt: The outer bound follows by allowing cooperation among

the receivers and using the outer bound for the inference channel [GJ10, Theorem 1],

d ≤ TntKnr
Knr+nt

. The inner bound follows by considering the

(T, nt) × (Knr, 1)


cellular

system and using Corollary 3.2, d ≥ TntKnr
Knr+nt

.

3.6.3 Proof of Corollary 3.5

Proof. The claim can be proved in a similar manner as the proof of a proper cellular

system, with µ = 1, in [ZBH11].

To prove condition (3.3) we count the number of equations and the number of variables,

eliminating superfluous variables. Then, we use Bezout’s Theorem which states that a sys-

tem of multivariate polynomial equations is solvable if and only if the number of equations

does not exceed the number of variables.

Condition (3.4) must hold since each base station must be able to transmit K indepen-

dent signals simultaneously. Therefore, µN ≥ K must hold.

Condition (3.5) must hold since each user will receive at least K independent signals

from one interfering base station, but must be able to decode its desired data stream.

3.6.4 Proof of Corollary 3.6

The proof is strongly inspired by [BCT11] and [RLL12] who proved the feasibility of

interference alignment for the interference channel. To prove Corollary 3.6 we use basic
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results from algebraic geometry. A good introduction to algebraic geometry can be found

in [Sha95]. The following theorem is essential in the proof of Corollary 3.6.

Theorem 3.8. (Dimension of fibres [Sha95]) Let f : X → Y be a regular map between

irreducible varieties. Suppose that f is surjective: f(X) = Y , and that dim X = n,

dim Y = m. Then m ≤ n, and

1. dimF ≥ n−m for any y ∈ Y and for any component F of the fibre f−1(y);

2. there exists a nonempty open subset U ⊂ Y such that dim f−1(y) = n−m for y ∈ U .

A proof can be found in [Sha95].

For a cellular system the vector space of all interfering channel is given as follows. The

interfering channels experienced by an arbitrary but fixed user k ∈ Sb are

Hb,k = Cnr×nt ×
T

l=1
l ̸=b

Cnr×nt ,

where
nt

n=1Xn is the Cartesian product of the vector spaces Xn. Note that in contrast

to the interference channel results in [BCT11,RLL12] we also need to consider the direct

channels H
[b]
b,k. The first term corresponds to the intra-cell interference and the second

term corresponds to the out-of-cell interference. The vector space of all interfering channels

is given by

H =

T

b=1

K

k=1

Hb,k =

T

b=1

K

k=1

T

l=1

Cnr×nt ,

which is an irreducible variety and has dimension dim H = TKTntnr. The vector space

of all possible transmit precoding and receive filter matrices (i.e. the strategy space) can

be defined as product of Grassmannians G(d, n), i.e.,

S =
T

b=1

K

k=1

G(d, nt)×
T

b=1

K

k=1

G(d, nr),

which has dimension dim S = TK(d(nr−d)+d(nt−d)) (see [Sha95, Example 5, pg. 68]).

Now we define I ⊆ S × H as the set of all (s, h) such s ∈ S is a feasible strategy for the

channel realization h ∈ H. The following lemma gives the dimensions of I.

Lemma 3.9. Let the number of base stations T , the number of users per base station K

and the number of streams per user d be fixed and let the number of transmit antennas be

equal the number of receive antennas N = nt = nr, then I is a irreducible variety with
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dimension

dim I = 2dTK(N − d) + TK

T (N2 −Kd2) + d2


.

Proof. The proof is a simple extension of [BCT11, Lemma 6] and omitted.

Now we can prove Corollary 3.6.

Proof of Corollary 3.6. Define the regular map

q : I → H and its inverse q−1 : H → I.

If for a given h ∈ H the interference alignment problem at hand has a solution, then

dim q−1(h) ≥ 0 (3.10)

must hold.

Let Z0 = q(I) and let Z denote the closure of Z0, then by definition q : I → Z is

dominant. Hence, from [Sha95, Theorem 7, pg. 76] we have

dim q−1(h) ≥ dim I − dim Z
⇒dim Z ≥ dim I − dim q−1(h)

Therefore, if

dim q−1(h) = TK

d2(1− TK) + 2d(N − d)


, (3.11)

we have

dim Z ≥ dim I − dim q−1(h) = dimH.

Since Z ⊆ H and H is irreducible we have Z = H from which follows that q : I → H
is dominant. Now, to check that q−1(h) has the required dimensions (3.11) we can use

[BCT11, Lemma 8]. Finally, solving (3.10) for N the claim follows

N ≥ d(KT + 1)

2
.
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Feedback

Coordinated processing of signals by multiple network nodes is regarded as a key de-

sign element in future cellular networks. In the downlink of cellular systems coordinated

processing strategies can be divided in two categories: i) Joint coherent transmission

from multiple transmitters; which is usually referred to as network MIMO. ii) Coordi-

nated beamforming by multiple transmitters. In theory coherent transmission (network

MIMO) from multiple base stations to multiple users promises vast gains in achievable

rates [KFV06,GHH+10,MF11]. In practice a high capacity backhaul network is required

that enables data sharing and the exchange of control messages. Industrial field trials

show rather disappointing throughput gains [IDM+11]. The main limiting factors are

the bandwidth and latency requirements on the backhaul network, and the problem of

efficiently acquiring and sharing channel state information [RC09].

Coordinated beamforming requires no message sharing and therefore the requirements

on the backhaul network are much more relaxed. In recent years interference align-

ment schemes have attracted much attention, see for example [CJ08, MGMAK09, GG11,

NGJV12, BCT14, NMAC14]. Interference alignment is a coordinated beamforming tech-

nique which essentially aligns the signaling spaces so that multiple interfering signals

appear as a single one or at least cast overlapping shadows at the receivers. In Chap-

ter 3 we discussed different interference alignment schemes. The scheme used in [CJ08]

requires long symbol extensions and a fast fading environment. Therefore, coordinated

linear beamforming schemes that exploit spatial diversity are considered to be a good

candidate for future cellular systems [IDM+11] and gained much attention in recent

years [ZHG09, HPC10, DY10]. However, the acquisition and sharing of channel state in-

formation is still a formidable challenge to enable coordinated linear beamforming. Inter-

ference alignment with limited feedback has been considered in [TB09, EAH12, EALH12]

for the interference channel and in [LSHC12] for cellular systems. In [TG09] interference

alignment with imperfect (noisy) channel state information at the receivers and transmit-

ters was considered. Even though analytic treatment of the limited feedback problem has

made significant progress in the past, many results focus on the large SNR regime; essen-

89



4 Coordinated Processing with Limited Feedback

tially carrying out system degrees of freedom analysis. For example, degrees of freedom

analysis with limited feedback was provided for the broadcast channel in [Jin06], for inter-

ference channel [RG12,EAH12] and for network MIMO in [dKG12]. However, the degrees

of freedom approach cannot really account for the throughput degradation experienced

in practice. The main reasons are: i) The large SNR regime where achieving degrees of

freedom is optimal is considered. The primary goal in this regime is interference miti-

gation instead of signal enhancement. ii) No user selection is considered. iii) Ideal link

adaptation is assumed. Altogether, this renders the performance analysis too optimistic

and motivates extended analysis of the limited feedback problem.

Now, the question is: How can we get reliable estimates of the performance degradation

due to limited feedback. In this chapter we take a step forward towards a more realistic

answer to this question. Our approach is universal in the sense that we do not consider a

specific transmit strategy. By considering cellular systems which in fact can be modeled

as multiple interfering broadcast channels our results also hold for the interference channel

and the broadcast channel, which are special cases of the interfering broadcast channel.

In particular our findings can be summarized as follows.

• We introduce a new metric for the performance evaluation which better captures the

achievable rate degradation due to limited feedback. The metric is defined per user

instead of sum-rate.

• We calculate an upper bound on the achievable rate degradation for any scheduling

decision, any beamforming strategy, and any SNR regime which is a useful perfor-

mance benchmark for the design of systems.

• We derive a lower and upper bound on the the achievable rate degradation for

interference alignment.

• We introduce a distributed iterative interference alignment algorithm which achieves

the optimal scaling for any SNR regime. The main idea is that instead of sending the

complete channel matrix each user fixes a receive filter and feeds back a quantized

version of the effective channel.

• We show that the proposed distributed approach is favorable over centralized ap-

proaches in terms of performance, convergence speed and computational complexity.

Even if the algorithm requires feedback for every iteration step, the overall feedback

compared to a centralized approach can be significantly reduced.
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4.1 Problem Formulation

A comprehensive description of the system model is given in Section 1.3. We review some

of the assumptions and specify some others, then we state the problem. We consider

cellular networks with T base stations each equipped with nt antennas and U users each

equipped with nr antennas. Each base station b provides wireless service to a disjoint set

of users Ub, i.e., Ub ∩ Us = ∅ for all b ̸= s. For simplicity, we assume a single data stream

per user and no symbol extensions. Let data stream i be associated to user i such that we

can say that user i is scheduled for transmission implying that data stream i associated to

user i is scheduled. The base stations are grouped in coordination clusters and all T base

stations are within the same cluster. In an ideal world the cluster would be coordinated

by a central controller. The central controller receives channel state information from all

users, performs scheduling and distributes the scheduling decision among all base stations.

Figure 3.2 on page 66 depicts an example of this ideal centralized system setup. If full

channel state information is available at the central controller (as it would be the case in

an ideal world), the sum-rate optimal scheduling decision (SH ,πH) is the solution to the

optimization problem

max
S={S1,...,ST }

Si⊆Ui

max
π:S→Snt−1

R(P,π, S,H), (4.1)

where R(P,π,S, H) is defined in (1.6) and the domain of π is S = S1∪. . .∪ST . Hence, with

perfect channel state information at a central controller the achievable system sum-rate is

R(P,πH ,SH , H).

However, in practice a central controller needs to receive quantized channel state infor-

mation through a rate-constrained feedback channel. Based on quantized channel state

information V the scheduling decision (πV ,SV ) is found by solving the problem

max
S={S1,...,ST }

Si⊆Ui

max
π:S→Snt−1

R (P,π,S, V ) , (4.2)

instead of problem (4.1). Such that the achievable system sum-rate with quantized chan-

nel state information is R(P,πV ,SV , H). In general, the achievable system sum-rate with

quantized channel state information is smaller or equal the achievable system sum-rate

with perfect channel state information, R(P,πV ,SV , H) ≤ R(P,πH ,SH , H). In Sec-

tion 4.2 we explore this performance degradation caused by quantized channel state infor-

mation. We find an universal upper bound on the performance degradation which holds

for any receive and transmit strategy, incorporates user selection and is valid for any SNR

regime.

Solving optimization problem (4.1) or (4.2) is in general not feasible. In the previous

91



4 Coordinated Processing with Limited Feedback

chapter we discussed centralized iterative algorithms that find sub-optimal solutions to

this scheduling problems. However, a centralized system architecture requires a backhaul

network which provides high data rates and very low delays. Such that the feasibility of

a centralized system architecture can at least be questioned. In this chapter we go one

step further and claim that connecting all base stations to a central controller may not

be required. We present a distributed iterative algorithm that significantly reduces the

feedback overhead. Based on the universal rate gap bound (devised in the next section)

we evaluate its performance degradation with respect to the feedback overhead.

4.2 Universal Rate Loss Gap Analysis

In this section we present a universal upper bound for the rate loss due to quantized

channel state information. The bound is universal in the sense that it holds for any

receive and transmit strategy, incorporates user selection and is valid for any SNR regime.

Before we state our result we review some of the related results.

4.2.1 Related Work

For interference alignment, a limited feedback scheme for the K-user interference chan-

nel is proposed in [RG12], and it is shown that the throughput loss due to the channel

quantization scales like

E [rm(P,πIA,H , SIC , H)− rm(P,πIA,V , SIC , H)] < log


1 + P2

− B
Ng

+1

, (4.3)

where Ng = 2nr((K − 1)nt − nr) is the real dimension of the Grassmannian manifold

and SIC = ({1}, {2}, . . . , {K}) is the user selection. In [KV10] similar results have been

obtained for a system using OFDM. An in depth treatment of the scaling law analysis

using Grassmannian manifolds can be found in [Kri11]. In [LSHC12] the uplink of a

cellular system with two base stations and four users was considered and it was shown

that the rate gap scaling is exactly as the scaling for zeroforcing beamforming with RVQ

in Theorem 2.5. As we will see this result cannot be generalized to systems with more

than two cells. In Section 2.3.1 we reviewed some of the related results for the broadcast

channel. In particular, Theorem 2.5 provided by [Jin06] gives the scaling of the rate gap

for zeroforcing beamforming with RVQ. Based on the rate gap [Jin06] found a scaling

law for the number of feedback bits that guarantees that the optimal number of degrees

of freedom can be achieved. This result has been recently generalized by [dKG12] who

considered joint transmission in a multi-cellular system. However, to characterize the

performance degradation experienced in practice one cannot rely completely on a degrees
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of freedom analysis; when considering degrees of freedom implicitly the infinite SNR regime

is considered. In this section we take a different approach. We show that the scaling law

in Theorem 2.5 is to optimistic, if we consider more general systems and a different but

more realistic metric. On the other hand, we will see that the scaling laws (4.3) can be

significantly improved if we use a different feedback strategy.

4.2.2 Performance Metric

Assume that channel state information is not only used to perform scheduling (i.e. precod-

ing and user selection) but is also for link adaptation. If the controller has only quantized

channel state information, each of these tasks causes a rate loss compared to the perfor-

mance with perfect channel state information. Therefore, we define the following per user

performance metric

∆rm := max{rm(P,πH , SH , H)− rm(P,πV , SV , H), rm(P,πH , SH , H)− rm(P,πV , SV , V )}
= rm(P,πH , SH , H)−min{rm(P,πV , SV , H), rm(P,πV , SV , V )}. (4.4)

Because of the per user formulation ∆rm is not necessarily positive for all H. The rate loss

gap ∆rm captures basically two cases. First, if rm(P,πV , SV , H) > rm(P,πV , SV , V ) the

rate gap is rm(P,πH , SH , H)−rm(P,πV , SV , V ). Thus, the rate gap captures the rate loss

due to beamforming, scheduling and link adaptation based on quantized channel state in-

formation since it is assumed that the base station transmits with a rate rm(P,πV , SV , V ).

Second, if rm(P,πV , SV , H) < rm(P,πV , SV , V ), the rate gap is rm(P,πH , SH , H) −
rm(P,πV , SV , H) and describes the rate loss due to beamforming and scheduling based

on quantized channel state information. In the later, we do not consider link adaptation,

since even if allocation of a rate rm(P,πV , SV , V ) > rm(P,πV , SV , H) causes an outage

event with high probability in practice mechanisms like automatic repeat requests are

used to handle such events. As we will see ∆rm is strong enough to address some of the

drawbacks of the conventional analysis and leads to indeed different results.

The following lemma sets the basis for our analysis; it allows us to bound the expected

value of the rate gap E [∆rm] in terms of the same scheduling decisions.

Lemma 4.1. Let (SH , πH) denote the scheduling decision under perfect channel state

information H according to (4.1). Let (SV ,πV ) be the scheduling decision under quantized

channel state information V according to (4.2). Assume that the random channels Hm,l

are independent and identically distributed for all m ∈ U and all l = 1, . . . , T , then for
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any fixed user m ∈ U the expected rate gap E [∆rm] is bounded by

E [max {rm(P,πV , SV , H)− rm(P,πV , SV , V ), 0}]
≤ E [∆rm]

≤ 3E


 max

S={S1,...,ST }
Si⊆Ui

max
π:S→Snt−1

|rm(P,π, S,H)− rm(P,π, S, V )|


 .

The proof can be found in Section 4.7.1. We offer some brief remarks.

Remark 4.2. The upper bound in Lemma 4.1 is also true, if we consider the rate gap

rm(P,πH , SH , H)−rm(P,πV , SV , H) which is more in line with the results for zero forcing

and interference alignment (4.3) discussed above.

Remark 4.3. The lower and upper bounds in Lemma 4.1 are tight if H = V . On the

other hand, if there is no correlation between H and V , the bound can be arbitrarily

loose. However, since we assume that V is a “good” approximation of H the bounds in

Lemma 4.1 can be assumed to be reasonably tight.

Remark 4.4. Even though we assumed achievable rates, it is possible to consider extensions

of this lemma for different or more general utility functions. In addition, the assumptions

on the channel distribution may be relaxed but they are required in the following.

4.2.3 Main Result

Our first result is an universal upper bound on the expected rate gap E [∆rm] defined in

(4.4). It is based on the following feedback strategy. For fixed receive filters ρ(m) each

user m ∈ U quantizes and feeds back the effective channels ĥm,l := (Hm,l)
Hρ(m) to base

station l. We stress that each base station requires only local channel state information,

i.e., it needs not to know the channel between some other base station and any user. The

normalized effective channels

hm,l :=
ĥm,l

∥ĥm,l∥2
are quantized by a random codebook Vm ⊂ Snt−1, with 2B isotropically distributed ele-

ments. Each user m ∈ U uses an independent copy of the random codebook which ensures

with high probability that the feedback messages from different users are linearly inde-

pendent. User m quantizes its normalized effective channels hm.l, for all l = 1, . . . , T , by

minimizing the chordal distance dC(hm,l,v), defined in (2.10),

vm,l := arg min
v∈Vm

dC(hm,l,v), (4.5)
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For simplicity we assume that base station l knows the channel norm µm,l := ∥ĥm,l∥2, for

all m ∈ U perfectly. After base station l has received a feedback message from each user

m ∈ U it has local channel state information

V l := (v̂m,l = µm,lvm,l)m∈U . (4.6)

Such that the quantized channel state information distributed in the system can be col-

lected in the list V = (V l)l=1,...,T .

Now we are ready to prove our man result. The following theorem holds for any receive

and transmit strategy, incorporates user selection and is valid for any SNR regime.

Theorem 4.5. Assume that the elements of random channels Hm,l are independent and

identically distributed for all m ∈ U and all l = 1, . . . , T . Let the transmit beamformer π

and the user selection S be arbitrary but fixed. If each user m ∈ U uses RVQ (4.5) with

B bits per base station feedback link and each base station l has instantaneous knowledge

of µm,l, for all m ∈ U ,

E [|rm(P,π, S,H)− rm(P,π, S, V )|]

≤ 2 log


1 +

P

2


T (T − 1)E


µ4m,1


2
− B

nt−1 + 2
− B

2(nt−1)


E

1
4

µ8m,1


+TE

1
2

µ2m,1


,

holds for any SNR P .

The proof is presented in Section 4.7.2. According to Remark 4.2 the upper bound in

Theorem 4.5 can indeed be regarded as generalizations of Jindal’s result (2.11) and the

result for interference alignment (4.3). Some more remarks are in place.

Remark 4.6. In contrast to the previous results results (2.11) and (4.3) we obtain a dif-

ferent scaling for the RVQ scheme (4.5). It is significantly better than the result (4.3) for

interference alignment with Grassmannian feedback but requires two times more feedback

bits than the result (2.11) for the broadcast channel with zero forcing.

4.3 Distributed Interference Alignment with Quantized Channel

State Information

We assume that each base station and all users are equipped with N = nt = nr antennas.

This assumption enables us to use Corollary 3.6 and to select users such that interfer-

ence alignment is possible. However, if nt ̸= nr feasibility of interference alignment can

be ensured in a different way, e.g., increasing the number of users step by step. As we
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u2

H

u1

uK

uK−1

S1

ST

bs1

limited feedback: V T = (v̂k,T )k∈S

x1

xT

y1

noise

y2

yK−1

yKbsT

limited feedback: V 1 = (v̂k,1)k∈S

Figure 4.1: Distributed system architecture. Each scheduled user um, m ∈ S, feeds back
quantized channel state information v̂m,l = µm,lvm,l to base station l. Based
on local channel state information V l = (µm,lvm,l)m∈S each base station l com-
putes the precoders π(m), m ∈ Sl, and transmits dedicated pilots to initiate
the next iteration step.

will see, the distributed algorithm makes efficient use of quantized channel state informa-

tion. Figure 4.1 depicts an example of the distributed system architecture. The minimum

interference algorithm with user selection and quantized channel state information is sum-

marized in Algorithm 4. At the beginning of each transmission frame, orthogonal common

pilots are transmitted so that all users m can measure the channel matrices Hm,b for all b.

Knowledge of the channel matrices Hm,b is required by the users to compute the effective

channels; common pilots must be retransmitted in intervals depending on the coherence

time of the channel. Next, the user selection is performed and then the iterative opti-

mization of transmit precoders and receive filters is executed. In each iteration, after

the transmit precoders have been optimized every base station transmits dedicated pilots

on orthogonal resources such that each user m ∈ S can measure the effective channels

Hm,lπ(m), for all m ∈ Sl and all l = 1, . . . , T . Based on the measured effective channels

each user optimizes its receive filter and feeds back the effective channels (Hm,l)
Hum,

which requires knowledge of Hm,l. A detailed description of each step is given now.
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4.3 Distributed Interference Alignment with Quantized Channel State Information

Algorithm 4 minimum interference algorithm with user selection

Begin of transmission frame:
Transmit common pilots to all users and make an estimate Hm,b, with b = 1, . . . , T and
m ∈ U .
Each base station b = 1, . . . , T selects Sb ⊆ U according to (4.7).
Set π(m) = 1/

√
nt(1, 1, . . . , 1)T for all m ∈ S.

repeat
Each base station b = 1, . . . , T transmits dedicated pilots.
for b = 1, . . . , T do

Compute receive filter matrix um, for all m ∈ Sb, according to (3.6).
Quantize and feed back the effective channels v̂m,l, for all m ∈ Sb, l = 1, . . . , T ,

according to (4.6).
end for
for b = 1, . . . , T do

Compute beamforming vectors π(m), for all m ∈ Sb, according to (4.8).
end for

until termination condition is satisfied (e.g. maximum number of iterations, minimum
residual interference, . . . ).
End of transmission frame

User Selection

If the channel coefficients are independent and drawn from a continuous distribution we

can apply Corollary 3.6 to ensure that interference alignment is feasible. According to

Corollary 3.6 spatial interference alignment is feasible if the number of active users per

base station is bounded by

|Sb| ≤
1

T
(2nt − 1) , b = 1, . . . , T. (4.7)

Therefore, at the beginning of every transmission frame each base station selects ⌊ 1T (2nt − 1)⌋
users. The users can be selected according to some metric, e.g, maximum fairness, maxi-

mum channel gain or the user selection can be defined by higher layers.

Receive Filter Optimization Based on Perfect Channel State Information

The receive filters are optimized by the users in a distributed manner. During the receive

filter optimization all transmit precoders π are fixed. In the first iteration it is assumed

that each base station transmits with a beamforming vector 1/
√
nt(1, 1, . . . , 1)T . Based on

dedicated pilots each user m ∈ S measures the effective channels Hm,lπ(m), l = 1, . . . , T,

l ̸= b, m ∈ Sl. and computes the receive filter ρ(m) according to (3.6). Next each user

m ∈ S feeds back the effective channels (Hm,l)
Hρ(m).
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Feedback of Effective Channels

In each iteration step all scheduled users m ∈ S feed back quantized channel state infor-

mation to all base stations. For fixed receive filters ρ(m) each user m ∈ S quantizes and

feeds back the effective channels ĥm,l to base station l. Such that in each iteration base

station l gets an update of the local channel state information V l (4.6). Based on V l base

station l updates the precoders π(m) for all m ∈ Sl.

Distributed Transmit Precoder Optimization Based on Quantized Channel State

Information

The transmit precoder optimization is performed by each base station independently and is

based on quantized local channel state information Vl. Similar to the centralized algorithm

(Section 3.3.2) the transmit precoders are computed in two steps. First, the transmit

subspace which causes minimum out-of-cell interference is determined. Second, the intra-

cell interference is canceled by a zero forcing step.

Consider the reciprocal network, the reciprocal precoded channel from user m in cell b

to base station l is given by ←−v m,l = v̂m,l. For base station b the receive subspace (in the

reciprocal system) which causes minimum out-of-cell interference is given by

Πb = ν
|Sb|
min

←−
Θb


∈ Cnt×|Sb|,

where νNmin(X) is defined as the eigenvectors corresponding to the N smallest magnitude

eigenvalues of the Hermitian matrix X. The interference covariance matrix
←−
Θb is defined

as

←−
Θb =

T

l=1
l̸=b



m∈Sl

←−v m,b(
←−v m,b)

H .

Finally, the intra-cell interference is canceled by an additional zero forcing step. The zero

forcing precoder wm,b ∈ C|Sb| for user m in cell b is chosen from the null space of the

effective channels vHk,bΠb, with k ∈ Sb and k ̸= m such that the transmit precoder for user

m ∈ Sb is given by

π(m) = Πbwm,b. (4.8)

After each base station l has determined the precoding vectors for all m ∈ Sl it transmits

dedicated pilots such that the next iteration can be initiated by the users.

In the next section we are going to analyze the rate loss gap of the distributed interfer-

ence alignment algorithm with respect to the centralized solution with full channel state
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information. In Section 4.5 we compare the algorithms numerically and demonstrate that

the distributed algorithm significantly reduces the feedback load.

4.4 Rate Loss Gap Analysis for Distributed Interference

Alignment

Together with Lemma 4.1 we have the following corollary which tailors Theorem 4.5 to

the distributed interference alignment algorithm described in Section 4.3 (Algorithm 4).

Corollary 4.7. Under the assumptions of Theorem 4.5, in any iteration of Algorithm 4

the average rate loss per user is upper bounded by

E [∆rm] ≤ 6 log


1 +

P

2


T 2n2r2

− B
nt−1 + (nr + T )2

− B
2(nt−1)



≤ 3P

T 2n2r2

− B
nt−1 + (nr + T )2

− B
2(nt−1)


.

The prove is devised to Section 4.7.3. The following theorem shows that the scaling

2
− B

2(nt−1) can not be improved if we consider interference alignment with RVQ and link

adaptation. In particular it can not be improved for the distributed interference alignment

algorithm (Algorithm 4) described in Section 4.3,

Theorem 4.8. Under the assumptions of Theorem 4.5, for sufficiently high SNR the

average rate loss is bounded from below by

E [∆rm] ≥ max
c1>0

1

c1


1− n2t (nt + 1)

4
√
c1 (nt − 1) 2−nt



E


log


1 +

c1PE

µ2m,b



|Sb|


1 + PE

µ2m,b




4 · 2−ntnt − 1

n2t (nt + 1)
2

−B
2(nt−1)






− log


1 + PT


E

µ4m,b


2

−B
nt−1



where |Sb| satisfies the interference alignment feasibility condition (4.7), for all b = 1, . . . , T ,

with equality. In particular, for some c2 > 0

E [∆rm] ≥ c2 log


1 +

PE

µ2m,b



|Sb|


1 + PE

µ2m,b

2
−B

2(nt−1)


+ o


2

−B
(nt−1)



holds.
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The proof can be found in Section 4.7.4. Note that the lower bound is bounded in P .

Therefore, it can not be used for degrees of freedom analysis where P is taken to infinity.

But, Theorem 4.8 shows that the scaling 2(−B/(2(nt−1))) cannot be improved for finite SNR

P .

4.5 Simulations

Baseline

As a baseline scheme we consider the centralized interference alignment algorithm de-

scribed in Subsection 3.6. The baseline scheme requires a central processing unit which

has global (quantized) channel state information. Each user m quantizes and feeds back

the channel matrix Hm,l, for all l = 1, . . . , T , to the central processing unit. To quantize

the channel matrices, we apply a scalar quantization or a vector quantization scheme.

Scalar Quantization Each user maps each element of the channel matrix to an element

of a scalar feedback codebook with 2Bs elements. Scalar quantization (SQ) leads to a

feedback load of 2TntnrBs bits per user and per feedback message. As we will see, the

feedback and control overhead is significantly larger than for the proposed distributed

algorithm.

Vector Quantization Vector quantization (VQ) is a popular quantization scheme for

multi-antenna channels. As a baseline we consider the following scheme which was also

used in [KMLL12] and [KV10]. Each user m quantizes the channel matrices Hm,l, for all

l = 1, . . . ,K, by applying RVQ on the vector vec(Hm,l), where vec(X) stacks the columns

of the matrix X one over the other.

Simulation Setup

In the simulations we consider a cellular network with T = 3 base stations and U = 9 users.

Each node is equipped with nt = nr = 5 antennas. Hence, according to Corollary 3.6

interference alignment is feasible if each base station b serves |Sb| = 3 users. For the

minimum interference algorithm (Algorithm 4) each base station is assigned randomly

to three users. Power allocation is assumed to be uniform. The channels are modeled

according to the Wyner-like channel model described in Section 3.4.1.
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Figure 4.2: Spectral efficiency over SNR. Convergence of the proposed minimum interfer-
ence algorithm (MIA – Algorithm 4). Observation: The proposed algorithm
converges quickly.

Simulation Results

First, we investigate the convergence of the proposed Algorithm 4. Figure 4.2 depicts

the residual interference of Algorithm 4. We observe that with quantized channel state

information the residual interference converges rapidly to its minimum of approximately

4.5 dB, 3.5 dB and 2.5 dB for 8, 10 and 12 bit per user per iteration, respectively. In

contrast, with ideal channel state information the residual interference keeps decreasing

with the number of iterations. We conclude that with quantized channel state information

the number of iterations can be kept low (≈ 5 iterations) without losing a significant part

of the performance that can be achieved with more iterations. Hence, the algorithm seems

to be well suited for practical applications where a small number of iterations is mandatory.

This observation is further supported by Figure 4.3 which depicts the spectral efficiency

over the SNR for the minimum interference algorithm (Algorithm 4). Each user uses

an independent random codebook with 216 isotropic elements. Again, we observe that

the proposed interference alignment algorithm converges rapidly, i.e., going from 4 to 6

iterations the performance is increased only slightly. This is a remarkable result since a

small number of iterations keeps the feedback load small.
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MIA; #iter = 100; ideal CSI;

MIA; #iter= 6; 288 bit/transmisson

MIA; #iter= 4; 192 bit/transmission
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VQ baseline; #iter= 10; 45 bit/transmission

Figure 4.3: Spectral efficiency over SNR. Convergence of the proposed minimum inter-
ference algorithm (MIA – Algorithm 4). The proposed algorithm converges
quickly and outperforms the base line with less than half the number of feed-
back bits and iterations.

In addition, Figure 4.3 shows the performance of the SQ baseline and VQ baseline

schemes as defined above. Due to the centralized approach the feedback load of these

schemes does not increase with the number of iterations. After 10 iterations the base-

line schemes have converged. The SQ baseline is clearly outperformed by the minimum

interference algorithm with 4 iterations and 192 bit feedback load per user and per trans-

mission. That is, with the iterative minimum interference algorithm we require less than

half the number feedback bits to outperform the SQ baseline. The VQ base line with a 15

bit random codebook (45 bit feedback per transmission per user) performs very poorly.

To obtain a better performance significantly larger codebooks are required. However,

computing the feedback decision for larger codebooks becomes quickly infeasible.

4.6 Conclusion and Future Work

We introduced an improved metric for the performance evaluation of the interfering broad-

cast channel. The improved metric captures the throughput degradation due to quantized

channel state information by modelling the beamformer offset and the link adaptation

problem. We obtained the rate loss scaling laws with the number of feedback bits and
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showed that they are different from existing ones. We provided an distributed iterative

interference alignment algorithm and corresponding feedback strategies which achieve the

derived scaling laws and significantly reduces the feedback load compared to centralized

algorithms.

The considered performance metric takes a step towards a more realistic assessment

of the performance degradation in practical systems by modelling also the link adaption

problem based on quantized channel state information. However, for an even more realistic

assessment of the performance degradation other metrics are also of interest. For example

extension to outage probability or outage rates would be interesting.

103



4 Coordinated Processing with Limited Feedback

4.7 Proofs

4.7.1 Proof of Lemma 4.1

Proof. First we need to show that E [rm(P,πH ,SH , V )] ≤ E [rm(P,πV ,SV , V )] which

does not trivially follow from the sum-rate maximization (4.2). To see this assume that

E [rm(P,πH ,SH , V )] > E [rm(P,πV ,SV , V )] for some userm. Since E [rm(P,πH ,SH , V )] =

E [rl(P,πH ,SH , V )] and E [rm(P,πV ,SV , V )] = E [rl(P,πV ,SV , V )] for all m, l ∈ U , it fol-

lows from the symmetry of the system that E [rm(πH ,SH , V )] > E [rm(P,πV ,SV , V )] for

all m ∈ U . Hence, we have

E



m∈U
rm(P,πV ,SV , V )


< E



m∈U
rm(P,πH ,SH , V )


,

which contradicts with the definition of SV and πV given in (4.2). Therefore,

E [rm(P,πH ,SH , V )] ≤ E [rm(P,πV ,SV , V )] , (4.9)

must hold for all m ∈ U . In a similar manner we can show that

E [rm(P,πV ,SV , H)] ≤ E [rm(P,πH ,SH , H)] (4.10)

holds for all m ∈ U . Inequalities (4.9) and (4.10) state that in expectation the sum-rate

optimal scheduling decision maximizes also the individual per user rates. To prove the

upper bound we write E [∆rm] as

E [∆rm] = E[rm(P,πH ,SH , H)− rm(P,πV ,SV , H)+

max{rm(P,πV ,SV , H)− rm(P,πV ,SV , V ), 0}].

The first term can be bounded by

E[rm(P,πH ,SH , H)− rm(P,πV ,SV , H)]

= E[rm(P,πH ,SH , H)− rm(P,πV ,SV , V ) + rm(P,πV ,SV , V )− rm(P,πV ,SV , H)](4.11)

≤ E[rm(P,πH ,SH , H)− rm(P,πH ,SH , V ) + rm(P,πV ,SV , V )− rm(P,πV ,SV , H)](4.12)

≤ 2E[max
S⊆U

max
π:S→Snt−1

|rm(P,π,S, H)− rm(P,π,S, V )|].

Equation (4.11) holds since we simply added a 0 = −rm(P,πV ,SV , V )+rm(P,πV ,SV , V ).

The first inequality (4.12) holds according to (4.9). Further by (4.10) we have E[rm(P,πH ,SH , H)−
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rm(P,πV ,SV , H)] ≥ 0. Since

E[max{rm(P,πH ,SH , H)−rm(P,πV ,SV , V ), 0}] ≤ E[max
S⊆U

max
π:S→Snt−1

|rm(P,π,S, H)− rm(P,π,S, V )|].

is also true the upper bounds follows. Since according to (4.10)

E[rm(P,πH ,SH , H)− rm(P,πV ,SV , H)] ≥ 0,

the lower bound follows by setting the first term in (4.4) equal to 0.

4.7.2 Proof of Theorem 4.5

Before proving Theorem 4.5 we prove two lemmas which are required in the proof.

Lemma 4.9. Let x ∈ Snt−1 be an independent isotropic random vector and V = (v1, ...,v2B ) ⊂
Snt−1 be a collection of 2B independent isotropic random vectors. If we define

Z := min
v∈V

(1− |⟨x,v⟩|2),

then for some n ≥ 1 we have


nt − 1

nt
2

−B
nt−1

n

≤ E [Zn] ≤


2
−B
nt−1

n
≤


nt
nt − 1

E [Z]

n

.

Proof. Since 1−|⟨x,v⟩|2 is beta distributed with parameters nt−1 and 1 [Jin06], Z is the

minimum of 2B beta(nt−1, 1) distributed random variables. Therefore, E [Z] ≥ nt−1
nt

2
−B
nt−1

(see e.g. [Jin06]) and by Jensen’s inequality we get the lower bound

E [Zn] ≥ E [Z]n =


nt − 1

nt
2

−B
nt−1

n

.

For the upper bound we use [AYL07, Lemma 1] which states that Pr (Z > x) =

1− xnt−1

2B
.

Thus, Pr (Zn > x) = Pr

Z > x1/n


=


1− xnt−1
n

2B
, with n ≥ 1, and therefore

E [Zn] ≤


2
−B
nt−1

n
.

Using, E [Z] ≥ nt−1
nt

2
−B
nt−1 once more the second upper bound follows.

Let us now define the following metric.
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Definition 4.10.

ω (x,y) := max
w∈Snt−1

|⟨x,w⟩|2 − |⟨y,w⟩|2
 (4.13)

As we will see, this metric essentially dictates the rate loss gap in Theorem 4.5. We

have the following lemma, which shows that this metric is equal to the chordal distance.

Lemma 4.11. Let x ∈ Snt−1 and y ∈ Snt−1 be unit norm vectors, then

max
w∈Snt−1

|⟨x,w⟩|2 − |⟨y,w⟩|2
 =


1− |⟨x,y⟩|2.

Proof. We have |⟨x,w⟩|2 − |⟨y,w⟩|2
 =

wH(xxH − yyH)w
 .

Consider the matrixA := xxH−yyH . Since rank (·) is a subadditive function we have that

the matrix A has maximum rank of two and, therefore, has only two non-zero eigenvalues

λ1 and λ2. But the matrix A is trace-less as well

Tr(A) = λ1 + λ2 = Tr(xxH − yyH) = ∥x∥22 − ∥y∥22 = 0. (4.14)

Therefore, λ1 = −λ2 must hold. On the other hand, we get from the Frobenius norm

∥A∥2F = Tr(AHA) that

Tr(AHA) = λ21 + λ22 = ∥x∥42 + ∥y∥42 − 2|⟨x,y⟩|2

= 2(1− |⟨x,y⟩|2)

Thus, using λ1 = −λ2 we get for the two non-zero eigenvalues

|λ1| = |λ2| =


1− |⟨x,y⟩|2, (4.15)

which proves the claim.

We are now ready to prove Theorem 4.5.

Proof. Fix the user selection S and the transmit beamformers π. Denote the optimal

receive filter as u∗
m with respect to the collection H, we have ĥm,b = (Hm,b)

Hu∗
m, µm,b =

∥ĥm,b∥2 and hm,b = ĥm,b/µm,b for all b = 1, ..., T . Hence, the achievable rate of user

m ∈ Sb is

rm(P,π,S, H) = log


1 +

Pµ2
m,b

|Sb| |⟨hm,b,π(m)⟩|2

1 +
T

l=1


k∈Sl
k ̸=m

Pµ2
m,l

|Sl| |⟨hm,l,π(k)⟩|2


 .
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Since the base station does not know the channels H it must use the imperfect channel

state information V = {v̂m,b = µm,bvm,b : m ∈ U , b = 1, . . . , T}. Based on V the base

station estimates the rates achievable by user m as

rm(P,π,S, V ) = log


1 +

Pµ2
m,b

|Sb| |⟨vm,b,π(m)⟩|2

1 +
T

l=1


k∈Sl
k ̸=m

Pµ2
m,l

|Sl| |⟨vm,l,π(k)⟩|2


 .

For the ease of presentation, we define the following variables (index m omitted),

Φb,k :=
Pµ2m,b

|Sb|
|⟨hm,b,π(k)⟩|2 (4.16)

Ψb,k :=
Pµ2m,b

|Sb|
|⟨vm,b,π(k)⟩|2 (4.17)

∆b,k := Φb,k −Ψb,k

ΨΣ =


1 +

T

l=1



k∈Sl

Ψl,k




−1

ΦΣ =


1 +

T

l=1



k∈Sl
k ̸=m

Φl,k




−1

.

Equation (4.16) and (4.17) can be interpreted as the effective received SNR of user m

through the channels hm,b and vm,b, respectively. Further, define δ := |rm(P,π,S, H) −
rm(P,π,S, V )|, which can bounded from above by

δ ≤max
S⊆U

max
π:S→Snt−1

|rm(P,π,S, H)− rm(P,π,S, V )|

= max
S⊆U

max
π:S→Snt−1


log


1 +

T
l=1


k∈Sl

Φl,k

1 +
T

l=1


k∈Sl

Ψl,k


+ log




1 +
T

l=1


k∈Sl
k ̸=m

Ψl,k

1 +
T

l=1


k∈Sl
k ̸=m

Φl,k





= max
S⊆U

max
π:S→Snt−1


log


1 +

T

l=1



k∈Sl

ΨΣ∆l,k


+ log


1 +

T

l=1



k∈Sl
k ̸=m

ΦΣ (−∆l,k)





.
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Using log (1 + a) + log (1 + b) ≤ 2 log

1 + 1

2(a+ b)

, with a, b > −1, yields

δ ≤ max
S⊆U

max
π:S→Snt−1


log


1 +

T

l=1



k∈Sl

ΨΣ ·∆l,k




+ log


1 +

T

l=1



k∈Sl

ΦΣ · (−∆l,k) +
T

l=1

ΦΣ ·∆l,m





= 2 max
S⊆U

max
π:S→Snt−1


log


1 +

1

2
(ΨΣ − ΦΣ)

T

l=1



k∈Sl

∆l,k +
1

2

T

l=1

ΦΣ ·∆l,m





≤ 2 max
S⊆U

max
π:S→Snt−1

log


1 +

1

2
|ΨΣ − ΦΣ|



T

l=1



k∈Sl

∆l,k


+

1

2

T

l=1

|∆l,m|


 .

Since

ΨΣ − ΦΣ =
1

Ψ−1
Σ Φ−1

Σ




T

l=1



k∈Sl
k ̸=m

Φl,k −
T

l=1



k∈Sl

Ψl,k


 ≤ 1

Ψ−1
Σ Φ−1

Σ

T

l=1



k∈Sl

|∆l,k|

holds, we have the result

δ ≤ 2 max
S⊆U

max
π:S→Snt−1

log


1 +

1

2




T

l=1



k∈Sl

|∆l,k|




2

+
1

2

T

l=1

|∆l,m|




≤ 2 log


1 +

1

2
max
S⊆U

T

l1=1



k1∈Sl1

T

l2=1



k2∈Sl2

max
π:S→Snt−1

|∆l1,k1 | max
π:S→Snt−1

|∆l2,k2 |

+
1

2

T

l=1

max
π:S→Snt−1

|∆l,m|

.

Now, observe that

max
π:S→Snt−1

|∆l,k| =
Pµ2m,l

|Sl|
max

π:S→Snt−1

|⟨hm,l,π(k)⟩|2 − |⟨vm,l,π(k)⟩|2


=
Pµ2m,l

|Sl|
max

x∈Snt−1

|⟨hm,l,x⟩|2 − |⟨vm,l,x⟩|2


=
Pµ2m,l

|Sl|
ω (hm,l,vm,l) ,

where ω(·, ·) was defined in (4.13) and the last term
Pµ2

m,b

|Sb| ω (hm,l,vm,l) is actually inde-
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pendent of k. Taking expectation and applying Jensen’s inequality we obtain

δ ≤ 2 log


1 +

P

2

T

l1=1

T

l2=1

E

µ2m,l1ω (hm,l1 ,vm,l1)µ2m,l2ω (hm,l2 ,vm,l2)



+
P

2

T

l=1

E

µ2m,lω (hm,l,vm,l)



. (4.18)

Now, for l1 ̸= l2 we have from the Cauchy-Schwarz inequality

E

µ2m,l1ω (hm,l1 ,vm,l1)µ2m,l2ω (hm,l2 ,vm,l2)


= E


µ2m,l1ω (hm,l1 ,vm,l1)


E

µ2m,l2ω (hm,l2 ,vm,l2)



≤ E
1
2

µ4m,l1


E

1
2

ω2 (hm,l1 ,vm,l1)


E

1
2

µ4m,l2


E

1
2

ω2 (hm,l2 ,vm,l2)


(4.19)

and for l1 = l2 we have from the Cauchy-Schwarz inequality

E

µ4m,l1ω

2 (hm,l1 ,vm,l1)

≤ E


µ4m,l1ω (hm,l1 ,vm,l1)



≤ E
1
4

µ8m,l1


E

1
2

ω2 (hm,l1 ,vm,l1)


. (4.20)

Using Lemma 4.11 and Lemma 4.9 we get

E

ω2 (hm,l,vm,l)


= E


min
v∈V


1− |⟨hk,l,v⟩|2


< 2

−B
nt−1 . (4.21)

Such that, the claim follows by plugging (4.19), (4.20) and (4.21) in (4.18).

4.7.3 Proof of Corollary 4.7

Proof: Using Lemma 4.1 we have

E [∆rm] ≤ 3E

max
S⊆U

max
π:S→Snt−1

|rm(P,π,S, H)− rm(P,π,S, V )|

.

Now, we can use Theorem 4.5 and obtain

E [∆rm]

≤ 6 log


1 +

P

2


T (T − 1)E


µ4m,1


2
− B

nt−1 + 2
− B

2(nt−1)


E

1
4

µ8m,1


+TE

1
2

µ2m,1
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When optimizing the beamformers using Algorithm 4 all receive filters are fixed. Thus,

we can compute the expected values

E

µ2m,1


= E


∥(Hm,1)

Hum∥22


= E

(um)HHm,1(Hm,1)

Hum


= 1

E

µ4m,1


≤ E





nt

i=1

∥hi∥22

2

 ≤ n2r

E
1
4

µ8m,1


≤ nr,

where hi is the ith column of Hm,1 and we used the Cauchy-Schwarz inequality and the

fact that nt
nt

i=1 ∥hi∥22 is chi-squared distributed with ntnr degrees of freedom.

4.7.4 Proof of Theorem 4.8

The following lemma allows us to bound the expected value of certain concave functions

from below. The lemma is a partial reverse of Jensen’s inequality when certain conditions

on the moments are fulfilled; more precisely, if


1−


E[z2]
c1E[z]2


≥ c3 holds, with c1 > 0

and c3 ̸= 0 being constants. Note that this is exactly the case for the quantization error,

as we will see in the proof of Theorem 4.8.

The following lemma is a partial reverse of Jensen’s inequality for super linear functions.

The lemma will be useful since log(1 + x) is a super linear function.

Lemma 4.12. If f : R→ R is superlinear, then for any constant c1 > 0 and any random

variable z > 0,

E [f(z)] ≥ f(c1E [z])

c1


1−


E [z2]

c1E [z]2



holds.

Proof. By assumption f(z) is superlinear and therefore f(0) = 0. Thus, for any x and

y and any t ∈ [0, 1], f(tx + (1 − t)y) ≥ tf(x) + (1 − t)f(y). Setting x = 0 and y = z∗,

f((1− t)z∗) ≥ z∗

z∗ (1− t)f(z∗). Hence, for any 0 ≤ z ≤ z∗,

f(z)

z
≥ f(z∗)

z∗
(4.22)
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For any z∗ > 0 we have

E [f(z)] ≥ E [f(z)I {z ≤ z∗}]

= E

f(z)

z
zI {z ≤ z∗}



≥ f(z∗)

z∗
E [zI {z ≤ z∗}] (4.23)

=
f(z∗)

z∗
E [z(1− I {z > z∗})]

=
f(z∗)

z∗
(E [z]− E [zI {z > z∗}])

≥ f(z∗)

z∗


E [z]−


E [z2]


E [I {z > z∗}]


(4.24)

=
f(z∗)

z∗
E [z]


1−


E [z2]

E [z]2


Pr(z > z∗)



≥ f(z∗)

z∗
E [z]


1−


E [z2]

E [z] z∗


. (4.25)

Inequality (4.23) follows from (4.22), (4.24) follows from the Cauchy-Schwarz inequality

and (4.25) follows from Markov’s inequality. If we choose z∗ = c1E [z] the claim follows.

The following lemma is a modification of Lemma 4.11.

Lemma 4.13. Let x ∈ Snt−1 and y ∈ Snt−1 be unit norm vectors. If w is uniformly

distributed on the unit sphere Snt−1 and m ≥ 2, then

4 · 2−nt

nt (nt + 1)


1− |⟨x,y⟩|2

m
2 ≤ E


max


|⟨x,w⟩|2 − |⟨y,w⟩|2, 0

m ≤

1− |⟨x,y⟩|2

m
2

holds.

Proof. We have |⟨x,w⟩|2 − |⟨y,w⟩|2
 =

wH(xxH − yyH)w
 .

Consider the eigen-decomposition of the Hermitian matrix A := xxH − yyH = QΛQH .

Since, A has maximum rank of 2, it has at most two non-zero eigenvalues. Therefore, the

diagonal matrix Λ can be written as Λ = diag (λ1, λ2, 0, . . . , 0), with λ1 ≤ λ2. Since, Q

is a Hermitian matrix, with columns given by the eigenvectors of A, and w is uniformly

distributed on Snt−1, the following is true

E

wHAw

m
= E


wHΛw

m
.
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According to (4.14) λ1 = −λ2. Thus, we have

E

max


wHAw, 0

m
= E


max


λ1|w1|2 − λ1|w2|2, 0

m

≥ λm1 E

max


2|w1|2 − 1, 0

m
(4.26)

= λm1 E

(2|w1|2 − 1)m

 |w1|2 ≥ 1/2


(4.27)

= λm1

 1

√
1/2

(2ε2 − 1)m dµ(ε). (4.28)

Inequality (4.26) holds since ∥w∥2 = 1 and therefore |w1|2 + |w2|2 ≤ 1. Equation (4.27)

is true because 2|w1|2 − 1 is non-negative only for |w1|2 ≥ 1/2. In (4.28) µ(ε) is the

Haar-measure of {w ∈ Snt−1 : |w1| ≤ ε}. Now we apply a result by Rudin [Rud80, page

15 equation (2)] for functions on the sphere Snt−1 in one parameter. We have, for some

function f : R→ R and a normalized measure σ(Snt−1) = 1,



Snt−1
f(σ) dσ =

nt − 1

π

 2π

0
dΘ

 1

0
(1− r2)nt−2f(r)r dr

= 2(nt − 1)

 1

0
(1− r2)nt−2f(r)r dr. (4.29)

By setting f(r) := λm1 (2r2 − 1)mχ√
1/2,1

(r), where χI(x) is the characteristic function,

the lower bound is proved as follows. Plugging f(r) in (4.29) and using (4.28) we have

E

max


wHAw, 0

m ≥λm1
 1

√
1/2

(2r2 − 1)m 2(nt − 1)(1− r2)nt−2r dr  
dµ(r)

= λm1 (nt − 1)

 1

1/2
(2u− 1)m(1− u)nt−2 du (4.30)

= λm1 (nt − 1)

 1

1/2
(2(u− 1) + 1)m(1− u)nt−2 du

= λm1 (nt − 1)

 1/2

0
(1− 2v)mvnt−2 dv (4.31)

= 4λm1
2−nt

nt(nt + 1)
. (4.32)

Equation (4.30) is obtained by substituting u = r2 and in (4.31) we substituted v = 1−u.

Finally, (4.32) follows by solving the integral. Using (4.15) in the proof of Lemma 4.11,

which states that the largest eigenvalue of A is λ1 =


1− |⟨x,y⟩|2, the lower bound is

obtained.
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The upper bound follows, since 0 ≤ max

|w1|2 − |w2|2, 0

m
≤ 1 holds for any w ∈

Snt−1. Therefore, E

max


wHAw, 0

m
= λm1 E


max


|w1|2 − |w2|2, 0

m
≤ λm1 to-

gether with (4.15) proves the upper bound.

Now we are ready to prove Theorem 4.8.

Proof. Consider an arbitrary but fixed user m ∈ Sb where |Sb| is non-random and fulfills

the feasibility condition (4.7), for all b = 1, ..., T , with equality. Define an interference

alignment solution πIA as |⟨vm,b,πIA(k)⟩|2 = 0, for all b = 1, . . . , T and k ∈ S \ {m}. For

sufficiently high SNR, R(P,πIA, S, V ) achieves the optimal capacity scaling (4.2). Thus,

we can use Lemma 4.1 and get

E [∆rm] ≥ E [max {rm(P,πIA,S, H)− rm(P,πIA,S, V ), 0}] ,

with

rm(P,πIA,S, H) = log


1 +

Pµ2
m,b

|Sb| |⟨hm,b,πIA(m)⟩|2

1 +
T

l=1


k∈Sl
k ̸=m

Pµ2
m,l

|Sl| |⟨hm,l,πIA(k)⟩|2




rm(P,πIA,S, V ) = log


1 +

P

|Sb|
µ2m,b|⟨vm,b,πIA(m)⟩|2


.

Similar to (4.16) and (4.17) we define the following variables (index m omitted)

Φ∗
b,k =

Pµ2m,b

|Sb|
|⟨hm,b,πIA(k)⟩|2

Ψ∗
b,k =

Pµ2m,b

|Sb|
|⟨vm,b,πIA(k)⟩|2

∆∗
b,k =

|Sb|
Pµ2m,b

max


Φ∗
b,k −Ψ∗

b,k, 0

,

which can be interpreted as the effective receive SNR of user m for the IA solution. Using

this notation the rate gap can be written in compact form,

∆rm(P,πH ,πV ) ≥ max





log


1 +

T

l=1



k∈Sl

Φ∗
l,k


− log


1 +

T

l=1



k∈Sl
k ̸=m

Φ∗
l,k


− log


1 + Ψ∗

b,m


, 0
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and since max{a − b − c, 0} ≥ max{a − b, 0} − c for c > 0, the rate gap for user m is

bounded from below by

∆rm(P,πH ,πV ) ≥ log


1 +

max


Φ∗
l,m −Ψ∗

b,m, 0


1 + Ψ∗
b,m


− log


1 +

T

l=1



k∈Sl
k ̸=m

Φ∗
l,k




≥ log


1 +

Pµ2m,b

|Sb|


1 + Pµ2m,b

∆∗
b,m



  
:=A

− log


1 +

T

l=1



k∈Sl
k ̸=m

Φ∗
l,k




  
:=B

.(4.33)

To bound E [∆rm(P,πH ,πV )] from below, we will derive a lower bound on the expected

value of A and an upper bound on the expected value of B.

We start with the upper bound for B. Since, πIA is an interference alignment solution

according to V , we have |⟨hm,b,πIA(k)⟩|2 ≤ Z, for k ̸= m, where Z = min
v∈V

(1− |⟨hk,l,v⟩|2)
is the quantization error (defined in Lemma 4.9) under RVQ. By Lemma 4.9 and the

Cauchy-Schwarz inequality we have

E

Φ∗
l,k


≤ P

|Sl|


E

µ4m,b


E [Z2] ≤ P

|Sl|


E

µ4m,b


2

−B
nt−1 , ∀k ̸= m, l.

Using Jensen’s inequality and |Sl|−1
|Sl| ≤ 1, for all l, we obtain the upper bound

E [B] ≤ log


1 + TP


E

µ4m,b


2

−B
nt−1


. (4.34)

To lower bound A we define the positive random variable

Y :=

∆∗

b,m

2
= max


|⟨hm,b,πIA(k)⟩|2 − |⟨vm,b,πIA(k)⟩|2, 0

2
,

where the mapping between Y and ∆∗
b,m is bijective, since ∆∗

b,m is positive per definition.

Taking expectation conditioned on µm,b and hm,b (denoted E [·|µm,b,hm,b] := E|µ,h [·]) and
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using Lemma 4.12 with the concave function f(x) = log (1 +
√
x) we get

E|µ,h [A] = E|µ,h


log


1 +

Pµ2m,b

|Sb|


1 + Pµ2m,b

∆∗
b,m






= E|µ,h


log


1 +

Pµ2m,b

|Sb|


1 + Pµ2m,b


√
Y






≥ 1

c1


1−


E|µ,h [Y 2]

c1E|µ,h [Y ]2


log


1 + c1

Pµ2m,b

|Sb|


1 + Pµ2m,b



E|µ,h (Y )


 .

It remains to compute the first and second moment of Y . Since, conditioned on µm,b and

hm,b the beamformer πIA(m) is isotropic distributed, we have by Lemma 4.13 (first step,

n = 2) and Lemma 4.9 (last step)

E|µ,h (Y ) = E|µ,h


max


|⟨hm,b,πIA(m)⟩|2 − |⟨vm,b,πIA(m)⟩|2, 0

2

≥ 4 · 2−nt

nt (nt + 1)
E|µ,h


min
v∈V

(1− |⟨hm,b,v⟩|2)


=
4 · 2−nt

nt (nt + 1)
E|µ,h (Z)

≥ 4 · 2−nt

nt (nt + 1)

nt − 1

nt
2

−B
nt−1 .

Again by Lemma 4.13 (first step) and Lemma 4.9 (second step) we have

E|µ,h

Y 2

≤ E|µ,h


Z2

≤


nt
nt − 1

E|µ,h [Z]

2

.

Such that,

E|µ,h [A] ≥ 1

c1


1− n2t (nt + 1)

4
√
c1 (nt − 1) 2−nt



log


1 +

c1Pµ
2
m,b

|Sb|


1 + Pµ2m,b




4 · 2−nt(nt − 1)

n2t (nt + 1)
2

−B
2(nt−1)


 . (4.35)

Plugging (4.35) and (4.34) in (4.33) and taking expectation with respect to µm,b the claim

follows.
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Measurements

With a rapidly growing number of devices current centralized signaling strategies lead

to a massive consumption and inefficient use of spectral resources. Different concepts

are currently discussed to cope with the tremendous increase of mutually interfering

signals. One of the most disruptive changes could be the enhancement of the central-

ized system architecture towards an ad-hoc networking technologies. In order to over-

come the limits of unassisted ad-hoc networking technologies, researchers have recently

turned their attention towards network-assisted device-to-device (D2D) communication,

which promises more efficient spectrum utilization, higher reliability and quality of ser-

vice (QoS) support, while providing D2D discovery support, synchronization and secu-

rity [DRW+09, FDM+12, LLAH15]. In particular, the design aspects of D2D commu-

nication are currently discussed in 3GPP, where the feasibility and the architecture en-

hancements of so called proximity services (ProSe) are under discussion [3GP13], [3GP14].

Thereby, D2D links can operate in in-band mode and out-band mode. While the in-band

D2D mode utilizes the same spectral resources as cellular users that transmit their data via

base stations in the traditional cellular mode, the out-band D2D mode allocates cellular

users and D2D links to different frequency bands. We focus on in-band D2D communica-

tion and assume that all users are in-coverage, which means that each user is connected

to some base station. As an underlay to cellular networks, in-band D2D communication

can be seen as a network-assisted interference channel, in which D2D transmissions reuse

cellular resources while being assisted by base stations.

Network-assisted D2D communication poses some fundamental challenges that include

transmission mode selection, robust interference management and feedback design. The

underlying problems are aggravated by the lack of channel state information1 at different

locations in a network. There is in particular a vital need for timely and accurate channel

state information that can be used by the network controller to facilitate reliable D2D

discovery and QoS-aware scheduling. In other words, when establishing D2D links and

1Notice that channel state information is used in a broad sense and does not necessarily mean the full
channel knowledge. In particular, channel state information may also refer to the information about
achievable rates.
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allocating cellular resources to them, the network controller must have enough channel

state information to ensure that the QoS demands of all cellular and D2D users (e.g.

expressed in terms of some minimum data rate requirements) are guaranteed once in-

band D2D links are established. This requires the development of measurement-based

feedback protocols that enable the network controller to acquire the required channel

state information in a highly efficient way and with it to open the door toward D2D

communication as an underlay to cellular networks.

Contributions

We develop and study a sensing and reconstruction strategy for the estimation of achiev-

able rates based on compressed non-adaptive measurements (which we call compressive

rate estimation). The developed protocol exploits collisions in an interference channel to

obtain compressed non-adaptive measurements from linear random projections. The pro-

posed protocol combines the estimation from compressed measurements with coded access

to reduce the number of pilot-based measurements that need to be fed back to estimate

the achievable rates (and to make timely and robust decisions) at a central controller.

We apply methods from compressed sensing and sparse approximation [CRT06]. Since,

a major drawback of compressed sensing based techniques is that they require highly

complex decoders, we also consider linear estimation methods which require significantly

less complexity. As we will see the advantages of the proposed protocol are three-fold.

First, by applying the concept of coded access we are able to significantly reduce the pilot

contamination in the network. Second, the feedback overhead is reduced since a much

smaller number of measurements needs to be quantized and fed back. Third, most of the

complexity required to estimate the achievable rates is imposed on the central controller.

Related Work

Sparse approximation is a compression technique where a signal is approximated by a

sparse representation. Nowadays, sparse approximation is widely used in many standards

like JPEG, MPEG, and MP3. The classical approach to compress a bandlimited signal

is to take a huge number of samples at a rate given by the Nyquist-Shannon sampling

theorem and then find a sparse representation, effectively throwing away a large number

of the taken measurements. However, in [CRT06, Don06] it was shown that a signal

having a sparse representation can be recovered from a small number of non-adaptive linear

measurements. Based on these works a huge number of sensing and recovery techniques for

different data models have been published in recent years. A significant amount of work has

been done on the theoretical frontier, see for example [HN06,CR07,RSV08,CP11,FR13].
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An endless number of applications has been envisioned, including channel estimation and

applications to wireless sensor networks. In [QAN10] a compressive sensing based feedback

resource reduction protocol for MIMO broadcast channels was proposed. In [KKT12]

systems with a very large number antennas (i.e. massive MIMO) where considered and

a compressed sensing based feedback protocol for spatially correlated antenna arrays was

proposed. In [DBWB10] a framework for what they call compressive signal processing was

developed. The idea of compressive signal processing is to extract certain information from

measurements instead of first reconstructing the full data. The problem of pilot signals

that contaminate the available resources was identified in [CRP10] as a crucial problem in

networks with many antennas (or nodes) that use pilot signals channel acquisition schemes.

5.1 System Setup and Problem Formulation

We consider a cellular network with a large number of users and multiple base stations

that are controlled by the same central network controller. Each user corresponds to a

transmitter-receiver pair and we assume there are N > 1 transmitters that access the

(wireless) channel to transfer independent data to N receivers. The users (transmitter-

receiver pairs) are indexed in an arbitrary but fixed order with indices from the set N =

{1, 2, . . . N}.2 In contrast to the previous chapters we assume a single antenna per node.

All transmitters are controlled by the same central controller. We adopt a discrete-time

flat-fading channel model; described in Section 1.3.1. In a given time slot (time index

dropped) the channel from transmitter j to receiver i is given by the transfer function

hi,j ∈ C. The vector of channel coefficients from all transmitters to receiver i is defined as

hi := (hi,1, . . . , hi,N )T ∈ CN

and the matrix of all channel coefficients as H := (h1, . . . ,hN ). The nodes are grouped

in G groups user Gg, g = 1, 2, . . . , G. Nodes within the same group are co-located; the

channels from node i to all nodes j ∈ Gg are given by

hi,j = ai,gbi,j ∈ C, (5.1)

where bj,i ∼ CN (0, 1) denotes the small scale fading coefficient and aj,g denotes the dis-

tance dependent path loss coefficient between node j and group g. We stress that a similar

channel model was used in [HTC12] to model large cellular networks with co-located users.

2We also use N to refer to transmitters, receivers and transmissions (i.e., users scheduled for transmis-
sions). According to this, transmission i ∈ N is the transmission from transmitter i ∈ N to receiver
i ∈ N
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5 Rate Estimation Based on Compressed Measurements

Depending on the path loss coefficients and the size of each group the channel matrix has

some structure. In the following, of particular interest will scenarios where a large number

of path loss components is zero, i.e., if many ai,g = 0, the channel vector hi, fr all i ∈ Gg
is sparse.

Let a subset S ⊆ N of transmissions be scheduled, then the signal received by receiver

i ∈ S is

yi = hi,isi +


j∈S\{i}

hi,jsj + ni, (5.2)

where sj ∈ C is the complex data symbol transmitted by transmitter j and ni ∼ CN (0, σ2i )

is additive noise at receiver i. We consider Gaussian codes such that the transmitted data

symbols can be modeled as i.i.d. complex Gaussian random variables with E [sj ] = 0

and E

|sj |2


= P , where P is the average power constraint of any node; for simplicity

we consider no power control. The SINR of receiver i ∈ S, defined in (1.3), can now be

rewritten as

SINRi(P,S,hi) =
P |hi,i|2

σ2i +


j∈S\{i} P |hi,j |2
.

For the data transmission phase we assume that each user can track its channel perfectly.

For fixed channels hi, and scheduling decision S an achievable rate for transmission i (from

transmitter i to receiver i) is defined as

ri(P,S,hi) = log (1 + SINRi(P,S,hi)) .

We stress that even if in the following the achievable rate will act as utility function,

extensions of the presented methods and results to other utility function are possible.

5.1.1 Problem Statement

Figure 5.1 depicts the envisioned system architecture. The network is controlled by a

central controller. The central controller obtains channel state information from all re-

ceivers. Depending on the services the network provides, the tasks of the central controller

can be manifold. For many tasks knowledge of the achievable rates ri(P,S,hi) for some

scheduling decision S is essential. Such rate estimates can for example be used to perform

scheduling, link adaption or proximity discovery and pairing for D2D communications.

If the central controller has perfect channel state information it can easily compute the

achievable rate ri(P,S,hi) for any scheduling decision S. However, obtaining perfect

channel state information is impossible in practical applications.
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Figure 5.1: Interference network controlled by a central controller. Based on feedback
information from the receivers the central controller performs scheduling and
distributes the scheduling decision.

In Section 5.2 we present a measurement and feedback protocol that provides the central

controller with quantized and compressed channel state information zi = f(hi) + µi, for

each receiver i ∈ N , where f : CN → CM is a linear function that compresses (M < N)

the channel state information and µi is additive (quantization) noise. Based on zi the

central controller estimates the achievable rates for any scheduling decision S by a function

γi(P,S, zi).

To make reliable decisions based on the estimated rates the rate gap

∆i := |r(P,S,hi)− γ(P,S, zi)|,

must be bounded (and small) for any scheduling decision S.

5.2 Rate Estimation Based on Compressed Measurements

In this section we introduce a channel measurement and feedback protocol and a linear

and a non-linear rate estimation function. The measurement and rate estimation protocol

is summarized in Table 5.1.
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5 Rate Estimation Based on Compressed Measurements

Table 5.1: Measurement and rate estimation protocol.

Central controller Transmit synchronization signal.

Transmitters Transmit sequences of M pilot signals.

Receivers Measure superpositions of pilot signals.
Quantize measurements and feed back to the central controller.

Central controller Estimate rates based on quantized compressed linear measurements.

5.2.1 Random Channel Measurement

To enable efficient channel measurements all transmitters simultaneously transmit a se-

quence of M pilot signals. The sequence transmitted by transmitter i is denoted as

ϕi ∈ CM and all sequences transmitted by all transmitters are collected in the measure-

ment matrix Φ = (ϕ1, . . . ,ϕN ) ∈ CM×N . According to (5.2) the vector of all M signals

received by node i can be written as

yi = Φhi + ni ∈ CM .

To feed back the vector of channel measurements yi to the network controller each receiver

i uses a quantization operator Q : CM → CM . For simplicity we assume that Q(yi) =

yi + n̄i, where n̄i is additive noise independent of yi. We assume an error and delay free

feedback channel from all nodes to the network controller, such that the channel state

information at the network controller is

zi = f(yi) + µi = Φhi + µi, (5.3)

where we defined the additive noise term µi = n̄i + ni, that collects the measurement

and quantization noise and is assumed to be independent of the measurements f(yi).

Further we define the matrix of all quantized channel measurements, known to the network

controller, as Z := (z1, . . . ,zN ) ∈ CM×N .

5.2.2 Rate Estimation

Based on the compressed and quantized measurements the achievable rate ri(P,S,hi) of

link i is estimated by the central controller with the function

γi(P,S, zi) = log


1 +

Pβ(zi, i)

1 +


j∈S\{i} Pβ(zi, j)


, (5.4)
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which is a function of the estimated SINR Pβ(zi,i)
1+


j∈S\{i} Pβ(zi,j)

. Since the SINR is a function

of the channel gains |hi,j |2 it is sufficient if the central controller has estimates of the

channel gains instead of the complex channel coefficients. The estimated channel gain

between receiver i and transmitter j is given by the function

|ĥi,j |2 = β(zi, j).

In the subsequent sections we compare the performance of different functions β(zi, j). One

class of functions is given by linear channel gain estimation functions:

Definition 5.1. A linear channel gain estimation function is given by

βl(zi, j) = |⟨Ψzi, ej⟩|2,

where the matrix Ψ ∈ CN×M depends on the measurement matrix Φ and ej is the jth

column of the identity matrix IN .

Another class of functions is given by non-linear channel gain estimation functions:

Definition 5.2. A non-linear channel gain estimation function is given by

βnl(zi, j) = |⟨α(zi), ej⟩|2

where α : CM → CN is some non-linear function.

5.3 Rate Gap Analysis

5.3.1 Concentration of Measure

The concentration of measure phenomenon is a power full tool. For an in depth treatment

we refer the reader to [Led05]. A concise introduction can be found in [Tao12]. Throughout

this chapter we assume that the elements of the measurement matrix Φ are chosen at

random and impose the following two conditions. First, the matrix is normalized such

that the expected value of the random variable ∥Φa∥22 satisfies

E

∥Φa∥22


= ∥a∥22, ∀a ∈ CN .

Second, we assume that for any a ∈ CN the random variable ∥Φa∥22 is strongly concen-

trated around its expected value,

Pr
∥Φa∥22 − ∥a∥22

 > ε∥a∥22

≤ c0e−γ(ε) (5.5)
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where c0 > 0 is a constant, and γ(ε) is a function that depends on the distribution of

Φ. Examples of measurement matrices that satisfy the concentration inequality (5.5) are

matrices with elements that are sub-Gaussian distributed (see e.g. [Ver10]). A random

variable X is called sub-Gaussian if there exists a constant c > 0 such that the moment

generating function can be bounded by

E [exp(Xt)] ≤ exp(c2t2/2). (5.6)

Examples of sub-Gaussian random variables are the normal distribution, and all bounded

distributions. In particular, if the elements of Φ ∈ CM×N are distributed according

to ϕi,j ∼ CN (0, 1/M), then E

ΦHΦ


= IN , and E


∥Φa∥22


= aHE


ΦHΦ


a = ∥a∥2.

Moreover, it can be shown (see e.g. [Dav11]) that

Pr
∥Φa∥22 − ∥a∥22

 > ε∥a∥22

≤ 2 exp


−ε2M 1− ln(2)

2


. (5.7)

Moreover, the following result will be useful in our analysis. Let a be a random vector

with elements ai ∼ CN (0, 1). Then, for all t > 0,

Pr

∥a∥22 − E


∥a∥22


> t

≤ exp(−t2/2). (5.8)

In fact, this is a special case of the concentration of measure theorem for Lipschitz func-

tions, see [FR13, Theorem 8.40].

5.3.2 Preliminary Result

First, we introduce a general result that enables us to bound ∆i independent of the

estimation function. To simplify the notation we define the channel gain xi,j := |hi,j |2,
the vector of channel gains xi := (xi,1, . . . , xi,N )T and the matrix of channel gains X :=

(x1, . . . ,xN ). In a similar manner we define the estimated channel gains as x̂i,j := β(zi, j),

the vector of estimated channel gains x̂i := (x̂i,1, . . . , x̂i,N )T and the matrix of estimated

channel gains X̂ := (x̂1, . . . , x̂N ).

Lemma 5.3. Let the achievable rates r(P,S,hi) be estimated by γi(P,S, zi) defined in

(5.4). For any scheduling decision S, with |S| ≤ n, and any channel gain estimation

x̂i,j = β(zi, j),

∆i = |ri(P,S,hi)− γi(P,S, zi)| ≤ 2P


j∈S
|xi,j − x̂i,j |,

holds simultaneously for all i ∈ S.
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To control ∆i we need to control


l∈N

|hi,l|2 − |ĥi,l|2
 based on the measurements

zi = Φhi +µi, defined in (5.3). Hence, it is not necessary that we recover the vectors hi,

for all i. Instead, recovery of the vectors xi is sufficient. We stress that this is different

from classical estimation theory (see e.g. [Lue68]) where based on the measurements zi

minimization of the error ∥hi − ĥi∥22 =


l∈N |hi,l − ĥi,l|2 is considered.

5.3.3 Non-Linear Rate Estimation

In this subsection we study a non-linear channel gain estimation function that uses con-

cepts from compressed sensing to exploit the sparsity of the channels. More precisely, we

assume that the channel vectors are compressible, that is, for some i ∈ N the channel

vector hi is sparse or has at least fast decaying magnitudes. Compressibility of a given

vector can be quantified by calculating

σk(x)p := min
x̂∈Σk

∥x− x̂∥p,

where Σk := {x ∈ CN : supp(x) ≤ k} the set of all k-sparse vectors. The function α,

defined in Definition 5.2, is given by the solution to the convex optimization problem

α(zi) = arg min
x∈CN

∥x∥1 subject to ∥Φx− zi∥2 ≤ ξ. (5.9)

The parameter ξ must be chosen such that ∥µi∥2 ≤ ξ.
We will first review some basic results from compressed sensing and then show how

these results can be applied to obtain bounds on ∆i. Compressed sensing recovering

results can be divided in uniform and nonuniform recovery results. A uniform recovery

result means that one can recover all k-sparse vectors – with high probability – from

linear measurements with the same matrix. Nonuniform recovery means that a fixed k-

sparse vector can be recovered with a randomly drawn measurement matrix, with high

probability. Uniform recovery results are obviously stronger since they imply nonuniform

recovery. To streamline the presentation we consider only uniform recovery. One class

of uniform recovery results are based on the restricted isometry property (RIP) of the

measurement matrix Φ. The RIP is defined as follows.

Definition 5.4. An M × N matrix Φ satisfies the RIP of order k ≥ 1, if there exists

0 ≤ δk such that the inequality

(1− δk)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δk)∥x∥22,
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5 Rate Estimation Based on Compressed Measurements

holds for all x ∈ Σk. The smallest number δk = δk(Φ) is called the restricted isometry

constant of the matrix Φ.

Many ensembles of random matrices are known to satisfy the RIP with high probability.

An important class of random matrices are matrices with elements that are i.i.d. sub-

Gaussian distributed. In particular, if X ∼ CN (0, σ2), then E [exp(Xt)] ≤ exp(σ2t2/2)

and therefore, according to (5.6), X is sub-Gaussian3.

For concreteness we assume that the elements of Φ are distributed complex Gaussian

ϕi,j ∼ CN (0, 1/M). In fact, this assumption enables us to explicitly compute most of

the constants that would otherwise depend on the distribution of Φ. We stress that

more general results for sub-Gaussian measurement matrices can be found for example

in [EK12,FR13] and references therein. The following theorem which is proved in [FR13,

Theorem 9.27] enables us to bound the RIP constant of Φ. To be self contained, we state

the theorem in our notation.

Theorem 5.5 ( [FR13, Theorem 9.27]). Let Φ be a random M × N matrix with i.i.d.

elements distributed according to ϕi,j ∼ CN (0, 1/M). Assume that

M ≥ 2η−2

k ln(eN/k) + ln(2ε−1)


,

with η, ε ∈ (0, 1). Then the RIP constant δk of Φ satisfies

δk ≤ 2


1 +

1
2 ln(eN/k)


η +


1 +

1
2 ln(eN/k)

2

η2,

with probability 1− ε.

As pointed out by [FR13, Remark 9.28] the statement of the last theorem can be

simplified by using δk ≤ δ ≤ C1η with C1 = 2(1 +


1/2) + (1 +


1/2)2 such that

M ≥ 2C2
1δ

−2

k ln(eN/k) + ln(2ε−1)


yields δk ≤ δ. According to Lemma 5.3 we need to

control ∥xi− x̂i∥2 to control the rate gap ∆i. If the measurement matrix satisfies the RIP

of order k with δk < 1/3, the following theorem provides an error estimate.

Theorem 5.6 ( [CZ13, Theorem 3.3]). Suppose Φ satisfies the RIP of order k with δk <

1/3. Let the measurements be given by z = Φh + µ, according to (5.3), with ∥µ∥2 ≤ ξ.

Then for any h ∈ CN the solution ĥ = α(z) to (5.9) obeys

∥h− ĥ∥2 ≤ C2(δk)
σk(hi)1√

k
+ 2C3(δk)ξ, (5.10)

3In fact, strictly sub-Gaussian since c2 = σ2.
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Figure 5.2: Bounds on compression ratio M/N over system size N . Maximal compression
to achieve perfect reconstruction with probability ε = 0.9 fixed sparsity k = 10.

where C2(δ) =
2
√
2(2δ+

√
(1−3δ)δ)+2(1−3δ)

1−3δ and C3(δ) =

√
2(1+δ)

1−3δ are constants.

The theorem is proved in [CZ13, Theorem 3.3]. We stress that many similar error bounds

for Problem 5.9 and related problems are known. The probably most popular error bound

was provided in the seminal paper [CRT06], which requires that the measurement matrix

has a RIP constant δ2k ≤
√

2− 1. A better error bound is given in [FR13, Theorem 6.12]

where δ2k ≤ 4/
√

41 is required. Figure 5.2 depicts the system size N over the compres-

sion ratio M/N for different RIP constants. The number of measurements is evaluated

according to Theorem 5.5. To obtain significantly reduced number of measurements the

number of links N must be large. Figure 5.2 includes also bounds on the number of mea-

surements for non-uniform recovery. Non-uniform recovery results give a error bounds

for much smaller system sizes N . However, we stress that the RIP is only a sufficient

condition for recovery. From Theorem 5.5, Theorem 5.6 and Lemma 5.3 we devise the

following corollary.

Corollary 5.7. Let Φ be a randomM×N matrix with i.i.d. elements distributed according

to ϕi,j ∼ CN (0, 1/M). Suppose the measurements are given by zi = Φhi + µi, according

127
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to (5.3), with ∥µ∥2 ≤ ξ. If

M ≥ 2C2
1δ

−2

k ln(eN/k) + ln(2ε−1)


,

with δ ≤ δ2k < 1/3 and ∥hi∥2 ≤ ai then for all {hi}i∈N the solutions {ĥi}i∈N to (5.9)

obey

Pr (∃i ∈ N : ∆i > 2Pq(hi, ξ)(2ai + q(hi, ξ))) ≤ ε,

with q(hi, ξ) = C2(δk)σk(hi)1√
k

+ 2C3(δk)ξ and C2(δ), C3(δ) > 0 as in Theorem 5.6.

The proof is given in Section 5.6.2. We present some brief remarks. If the number of

measurements are in the order of O(k ln(eN/k) and for all i ∈ N the channels hi are

k-sparse (i.e. σk(hi)1 = 0), then the rate estimation error ∆i remains bounded. Moreover,

in the noiseless case (ξ = 0) perfect recovery can be achieved. However, for both cases the

system size N must be sufficiently large as said before and illustrated in Figure 5.2.

5.3.4 Linear Rate Estimation

In this subsection we derive bounds on the rate gap ∆i for linear channel gain estimation

functions. First, we prove a general theorem that is valid for any linear estimation function

defined in Definition 5.1 and any ensemble of measurement matrices that satisfies the

concentration of measure inequality (5.5). We have the following general result, which is

the main result in this chapter.

Theorem 5.8. Let channel state information be given by any linear estimation function

β(zi, j) = |⟨Ψzi, ej⟩|2, with Ψ = ΦHA where A is any positive semi-definite matrix. If Φ

fulfills the concentration inequality (5.5) and the number of active transmissions is bounded

by 1 ≤ |S| ≤ n, then for any fixed hi and any u0 ≥ 0, e0 ≥ 0 and ε ≥ 0,

Pr

∃i ∈ N : ∆i > 2P


4∥hi∥22

√
n(1 + u0)ε+ e0



≤ 4nN exp(−γ (ε)) +NPr (smax(ΨΦ) > u0) +


i∈N
Pr (∥Ψe∥2(∥Ψe∥2 + 2∥ΨΦhi∥2) > e0) .

The prove is deferred to Section 5.6.3. Clearly the bound depends on the choice of Ψ and

the distribution of Φ. The latter determines the function γ(ε). However the theorem is

rather general and enables the evaluation of different linear estimation functions, different

assumptions on the channels and different distributions of the measurement matrix Φ.

As an illustration we assume that the channel vectors are k-sparse, hi ∈ Σk for all i,

and consider the following estimation function and measurement matrix. Let the elements
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of Φ be distributed complex Gaussian and define the linear estimation function as

βl(zi, j) = |⟨Φ+zi, ej⟩|2, (5.11)

where Φ+ is defined as the pseudo inverse Φ+ = ΦH(ΦΦH)−1, for M < N . We devise

the following corollary.

Corollary 5.9. Under the assumptions of Theorem 5.8. Let M < N . Suppose that the

elements of Φ are distributed ϕi,j ∼ CN (0, 1/M). Let βl(zi, j) = |⟨Φ+zi, ej⟩|2. Assume

that ∥e∥2 = 0 and for all i ∈ N we have hi is k-sparse, and hi,j ∼ CN (0, 1) for all

j ∈ supp(hi). We have

Pr


∃i ∈ N : ∆i > 16P


κn

M


√

2 ln


4nN + 1

ε


+ k


ln


4nN + 1

ε


≤ ε,

with κ = 2/(1− log(2)).

The proof is given in Section 5.6.4. A few remarks are in place. For fixed transmit

powers P , a fixed system size N , a given error probability ε and a fixed number of active

links n, the rate estimation error scales with


1/M , which is also in accordance with

the estimation results in [DWB06, Theorem 4.1], where essentially the same scaling is

achieved. As was be expected the linear decoding function is not able to achieve perfect

recovery (for M < N). Perfect recovery can only be achieved by the compressed sensing

based decoder but comes at the cost of additional complexity. However, the simulations

in the next section show that the linear decoder performs quiet well applied to a small

systems.

5.4 Application: Proximity Discovery and Pairing

A subset N1 ⊆ N is used to refer to so-called cellular users that have been scheduled

for (cellular) transmissions via some base stations. As a result, the remaining users with

indices in N2 = N \ N1 have been identified as potential D2D users. For concreteness

but without loss of generality, we assume that the cellular users transmit in the downlink

channel. As a result, if i ∈ N1 is a cellular user, then the ith transmitter is a base station,

while the ith receiver is a wireless device.

In what follows, we assume that each receiver i has a rate (or quality-of-service) require-

ment r̄i and we define a feasible scheduling decision as follows.

Definition 5.10 (Feasible scheduling decision). Given a channel matrix H, we say that

a scheduling decision S is feasible if r(hi,S) ≥ r̄i holds for each i ∈ S.
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It is important to emphasize that r(hi,S) ≥ r̄i is assumed to hold for each i ∈ N1 ⊂ S.

In other words, we assume that the requirements of cellular users are satisfied and N1 is a

feasible scheduling decision. As far as the remaining D2D users in N \N1 are concerned,

the network controller may schedule them to be paired with the transmissions in N1,

provided that (i) D2D devices are in proximity to each other (see below) and the resulting

scheduling decision is feasible in the sense of Definition 5.10.

5.4.1 Proximity discovery and pairing with perfect channel state information

Two main steps towards establishing a D2D communication are proximity discovery and

pairing. In the following we use the following definition.

Definition 5.11 (Proximity). Given some channel realization, we say that two nodes are

in proximity to each other if the achievable rate between the two nodes fulfills a given rate

requirement.

Ideally, proximity discovery and pairing should be based on the achievable rates. If the

network controller had perfect instantaneous knowledge of the channel matrix H, it could

compute the achievable rates r(hi,S), i ∈ N for any scheduling decision S ⊆ N . Thus,

proximity discovery can be performed as follows.

Definition 5.12 (Proximity discovery with perfect channel state information). Assuming

that the network controller has perfect knowledge of hi for some i ∈ N \ N1, we say that

transmitter and receiver i are in proximity if i ∈ N2 where

N2 = {i ∈ N \ N1 : r(P, {i},hi) ≥ r̄i} .

Therefore, N2 is the set of all transmitter-receiver pairs that are in proximity.

After performing proximity discovery, the network controller decides if additional D2D

transmissions N2 are paired with the cellular transmissions N1. The optimal scheduling

decision with rate constraints is found by solving the following optimization problem.

Under the assumption of perfect channel state information at the network controller, the

scheduling decision S ⊆ N1 ∪N2 is a solution to

max
X⊆N2



i∈X∪N1

r(P,X ∪N1,hi)

subject to r(P,X ∪N1,hi) ≥ r̄i for all i ∈ X ∪N1 .

Since N1 is assumed to be feasible decision scheduling, the problem in (5.4.1) has always a

solution in the sense that if no D2D user can be paired with cellular users, then S = N1 is
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the feasible scheduling decision. Note that since N1 is given, solving the pairing decision

problem provides a feasible scheduling decision S.

5.4.2 Proximity discovery and pairing with compressed channel state

information

The rationale behind the definition of the rate gap in (5.1.1) comes from the rate require-

ments. In particular, if ∆i ≤ λ for some known λ > 0, then the network controller can

reliably perform proximity discovery by identifying pairs of transmitters and receivers that

are in proximity and wish to communicate with each other.

Definition 5.13 (Proximity discovery with compressed channel state information). As-

suming that the network controller has compressed compressed channel state information

zi for some i ∈ N \ N1, we say that transmitter and receiver i are in proximity if i ∈ N̂2

where

N̂2 = {i ∈ N \ N1 : γ(P, {i}, zi) ≥ r̄i + λ} .

Hence, for a given rate estimation strategy the network controller needs to be able to

compute bounds of the rate gap ∆i, for all i ∈ S and any possible scheduling decision S.

The scheduling decision Ŝ based on estimated rates is found by solving

max
X⊆N̂2



i∈X∪N1

γ(P,X ∪N1, zi, ) (5.12)

subject to γ(P,X ∪N1, zi) ≥ r̄i + λ for all i ∈ X ∪N1.

The objective of the network controller is to make reliable pairing decisions or, equivalently,

scheduling decisions based on partial channel state information Z = (z1, . . . ,zN ). Reliable

decisions are those decisions that give a feasible scheduling decision according Definition

5.10.

5.4.3 Simulations

We consider a cellular system with 1 base station and 25 users. Every node has a single

antenna. The channels are modeled according to (5.1). We compare two setups: i) 5

groups of 5 users each, the path loss coefficients are chosen as 10z/10, with z uniformly

distributed in [0, 1]. ii) 25 users all in the same group and path loss coefficient is ai,g = 1

for all i, g, i.e., all channels are i.i.d. complex Gaussian distributed. The rate requirement

is set to r̄ = 1/10 log(1 + P ). Problem 5.9 was solved using the Tfocs toolbox [BCG11].
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Figure 5.3: Average sum-rate over compression factor M/N ; Setup: 25 users, 1 base sta-
tion, perfect feedback channel (no feedback and quantization noise), single
group; channel matrix i.i.d. Gauss and not compressible. Comparison of lin-
ear and non-linear rate estimation.

We compare the solution to problem (5.12) for the non-linear compressed sensing esti-

mation function (5.9) and the linear estimation function (5.11). In the simulations λ = 0,

since the analytic results do not give tight bounds for systems with N = 25. Nevertheless

the results in Figure 5.3 show that linear estimation performs very close to the much more

complex compressed sensing based estimation. Figure 5.4 shows that if the channel matrix

is compressible the compressed sensing estimation function performs better than the linear

estimation function. Since the considered systems are quiet small it is expected that the

gain of compressed sensing increases for larger systems.

5.5 Conclusions and Future Work

We developed a channel sensing and reconstruction protocol that enables the central con-

troller to estimate the achievable rates based on compressed non-adaptive measurements.

The scaling of the estimation error at the central controller has been analyzed for linear

and non-linear decoding functions. Scaling results for the non-linear decoding function

where shown to follow from well known compressed sensing results. However, for a small

to moderate system size N the compressed sensing results do not provide reasonable per-

formance bounds. For linear decoding functions we derived a general result which can be

used to analyze the performance of a variety of linear decoding functions and measure-
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Figure 5.4: Average sum-rate over compression factor M/N ; Setup: 25 users, 1 base sta-
tion, perfect feedback channel (no feedback and quantization noise), 5 group
of 5 users each; channel matrix compressible, single group; channel matrix
i.i.d. Gauss and not compressible. Comparison of linear and non-linear rate
estimation.

ment matrices. For a linear decoding function based on the pseudo inverse and Gaussian

measurement matrices we investigated the scaling of the rate estimation error with the

number of measurements.

The measurement protocol is based on a few simplifications which render the direct

application in practical systems rather difficult. For example, the assumption of perfect

time and frequency synchronization is hard (if not impossible) to achieve in distributed

networks with a huge number of devices. To this end, the analog coding developed in

[GS13] can be used to relax the requirements on the synchronization.

Future work may also include the exploration of different linear and non-linear decod-

ing functions. To this end, Theorem 5.8 provides a good basis to evaluate different linear

decoding functions. For non-linear decoding functions applications of matrix recovery

and other compressed sensing related approaches are a promising research direction. Ex-

tensions to other network architectures are another prospective direction. Coordinated

transmission techniques where groups of devices (or antennas) are jointly transmitting

with beamforming vectors w given by some finite codebook can be analyzed with the

proposed framework by estimating |⟨hi,w⟩|.
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5.6 Proofs

5.6.1 Proof of Lemma 5.3

Proof. Since xi,j = |hi,j |2 the rate gap ∆i can rewritten as

∆i =

log


1 +

pjxi,j
1 +


l∈S\{i} plxi,l


− log


1 +

pj x̂i,j
1 +


l∈S\{i} plx̂i,l



=

log


1 +


l∈S plxi,l

1 +


l∈S plx̂i,l


+ log


1 +


l∈S\{i} plx̂i,l

1 +


l∈S\{i} plxi,l



=

log


1 +


l∈S pl(xi,l − x̂i,l)
1 +


l∈S plx̂i,l


+ log


1 +


l∈S\{i} pl(x̂i,l − xi,l)
1 +


l∈S\{i} plxi,l



≤
log


1 +


l∈S pl(xi,l − x̂i,l)
1 +


l∈S plx̂i,l

+

log


1 +


l∈S\{i} pl(x̂i,l − xi,l)
1 +


l∈S\{i} plxi,l



≤ 2 log


1 +



l∈S
pl|xi,l − x̂i,l|


,

where the first inequality follows from the triangle inequality and the second inequality

follows from Jensen’s inequality and the fact that the denominators are positive. Since,

log(1 + x) ≤ x is a good bound for small positive x ≥ 0 and by assumption pj ≤ P , for all

j, we obtain the first claim

∆i ≤ 2P


l∈S
|xi,l − x̂i,l|.

5.6.2 Proof of Corollary 5.7

Proof. Using Lemma 5.3, the Cauchy-Schwarz inequality and the reverse triangle inequal-

ity we get

∆i ≤ 2P


j∈S
|xi,j − x̂i,j |

≤ 2P


j∈N
|(|hi,j | − |ĥi,j |)(|hi,j |+ |ĥi,j |)|

≤ 2P
hi − ĥi


2

|hi|+ |ĥi|

2

≤ 2P
hi − ĥi|


2


2∥hi∥2 +

hi − ĥi


2


. (5.13)
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By assumption M ≥ 2C2
1δ

−2

k ln(eN/k) + ln(2ε−1)


, with δ < 1/3, such that Φ satisfies

the RIP with probability at least 1 − ε. Hence, we can use Theorem 5.6 and plug (5.10)

in (5.13). Finally, defining q(hi, ξ) = C2(δk)σk(hi)1√
k

+ 2C3(δk)ξ the claim follows.

5.6.3 Proof of Theorem 5.8

We develop the prove Theorem 5.8 in several steps.

Lemma 5.14. Let X and Y be two non-negative real random variables. If f : R×R→ R
is monotonically increasing and y0 > 0 is a positive constant, then

Pr (f(X,Y ) > ε) ≤ min
y0≥0

Pr (f(X, y0) > ε) + Pr (Y > y0) .

Proof. First assume that the random variable Y is bounded by Y > y0. In this case the

claim is trivially true, since Pr (Y > y0) = 1. Therefore, assume that Pr (Y ≤ y0) > 0.

For any arbitrary but fixed y0 ≥ 0 we have,

Pr (f(X,Y ) > ε) = 1− Pr (f(X,Y ) ≤ ε|Y ≤ y0)− Pr (f(X,Y ) ≤ ε|Y > y0)

≤ 1− Pr (f(X,Y ) ≤ ε|Y ≤ y0)
≤ 1− Pr (f(X, y0) ≤ ε|Y ≤ y0)

= 1− Pr ({f(X, y0) ≤ ε} ∩ {Y ≤ y0})
Pr (Y ≤ y0)

= 1− 1− Pr ({f(X, y0) > ε} ∪ {Y > y0})
Pr (Y ≤ y0)

(5.14)

≤ 1− 1− Pr (f(X, y0) > ε)− Pr (Y > y0)

Pr (Y ≤ y0)
(5.15)

≤ Pr (f(X, y0) > ε) + Pr (Y > y0) ,

where (5.14) follows from De Morgan’s law and (5.15) follows from the union bound.

Lemma 5.15. Let V = {v1, . . . ,vn} ⊂ SN−1 be an arbitrary but fixed set of mutually

orthogonal vectors (n ≤ N), Ψ = ΦHA ∈ CN×M and A ∈ CM×M be a positive semi-

definite matrix. If w = Φu + e and Φ is a M × N random matrix that satisfies the

concentration inequality (5.5) and 0 ≤ δ < 1, then for any fixed u ∈ CN and e ∈ CM

Pr


n

i=1

|⟨u,vi⟩|2 − |⟨Ψw,vi⟩|2
 > 4|u∥22

√
n(1 + u0)ε+ e0


≤ 4n exp(−γ (ε))

+ Pr (smax(ΨΦ) > u0) + Pr (∥Ψe∥2(∥Ψe∥2 + 2∥ΨΦu∥2) > e0)
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holds, where γ(ε) depends on the distribution of Φ and u0 ≥ 0 is a positive constant.

Proof. Rewriting, using the triangle inequality, Parseval’s identity and the Cauchy-Schwartz

inequality we get

n

i=1

|⟨u,vi⟩|2 − |⟨Ψ(Φu+ e),vi⟩|2


=
n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2 − |⟨Ψe,vi⟩|2 − 2ℜ

⟨Ψe,vi⟩⟨ΨΦu,vi⟩



≤
n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
+

n

i=1

|⟨Ψe,vi⟩|2 + 2|⟨Ψe,vi⟩⟨ΨΦu,vi⟩|

≤
n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
+

n

i=1

|⟨Ψe,vi⟩|2 + 2


n

i=1

|⟨Ψe,vi⟩|2
n

i=1

|⟨ΨΦu,vi⟩|2

≤
n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
+ ∥Ψe∥2(∥Ψe∥2 + 2∥ΨΦu∥2).

Applying Lemma 5.14 we get for any 0 ≤ e0

Pr


n

i=1

|⟨u,vi⟩|2 − |⟨Ψw,vi⟩|2
 > ε′



≤ Pr


n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
+ e0 > ε′


+Pr (∥Ψe∥2(∥Ψe∥2 + 2∥ΨΦu∥2) > e0) .

(5.16)

Hence, we are left with the first term. If ∥u∥2 = 0, the claim is trivially true. Therefore

assume ∥u∥2 > 0 and define ū := u/∥u∥2. We start by deriving the following bound

n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
 = ∥u∥22

n

i=1

(|⟨ū,vi⟩| − |⟨ΨΦū,vi⟩|) (|⟨ū,vi⟩|+ |⟨ΨΦū,vi⟩|)


≤ ∥u∥22 max
i=1,...,n

|⟨ū,vi⟩| − |⟨ΨΦū,vi⟩|


n

i=1

(|⟨ū,vi⟩|+ |⟨ΨΦū,vi⟩|)

(5.17)
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Next, we bound the sum and the maximum independently. For the sum we have

n

i=1

(|⟨ū,vi⟩|+ |⟨ΨΦū,vi⟩|) ≤



n

n

i=1

|⟨ū,vi⟩|2 +

n
n

i=1

|⟨ΨΦū,vi⟩|2

 (5.18)

≤ √n (1 + ∥ΨΦū∥2) (5.19)

where (5.18) follows from the Cauchy-Schwarz inequality and (5.19) follows from the Par-

seval’s identity. By assumption Ψ = ΦHA = ΦHA1/2A1/2, where A1/2 is the principal

square root of A, therefore the maximum in (5.17) can be written as

max
i=1,...,n

|⟨ū,vi⟩| − |⟨ΨΦū,vi⟩|
 = max

i=1,...,n

|⟨ū,vi⟩| − |⟨A1/2Φū,A1/2Φvi⟩|
.

Thus, the polarization identity and the triangle inequality can be used to get,

|⟨ū,vi⟩| − |⟨A1/2Φū,A1/2Φvi⟩|
 ≤

⟨ū,vi⟩ − ⟨A1/2Φū,A1/2Φvi⟩


=
1

4

∥ū+ vi∥22 − ∥ū− vi∥22 + i∥ū+ ivi∥22 − i∥ū− ivi∥22

− ∥A1/2Φ(ū+ vi)∥22 + ∥A1/2Φ(ū− vi)∥22 − i∥A1/2Φ(ū+ ivi)∥22 + i∥A1/2Φ(ū− ivi)∥22


≤ 1

4

∥ū+ vi∥22 − ∥A1/2Φ(ū+ vi)∥22
+
∥A1/2Φ(ū− vi)∥22 − ∥ū− vi∥22



+
i∥ū+ ivi∥22 − i∥A1/2Φ(ū+ ivi)∥22

+
i∥A1/2Φ(ū− ivi)∥22 − i∥ū− ivi∥22




≤ max

∥ū+ vi∥22 − ∥A1/2Φ(ū+ vi)∥22
,
∥A1/2Φ(ū− vi)∥22 − ∥ū− vi∥22

,
i∥ū+ ivi∥22 − i∥A1/2Φ(ū+ ivi)∥22

,
i∥A1/2Φ(ū− ivi)∥22 − i∥ū− ivi∥22




=: Mi,

for any i. Therefore, the maximum can be bounded from above by

max
i=1,...,n

|⟨ū,vi⟩| − |⟨ΨΦū,vi⟩|
 ≤ max

i=1,...,n
Mi (5.20)

Substituting the bounds (5.20) and (5.19) in (5.17), taking probability with respect to Φ
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and applying Lemma 5.14,

Pr


n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
 > ε′ − e0


≤ Pr


∥u∥22

√
n (1 + ∥ΨΦū∥2) max

i=1,...,n
Mi > ε′ − e0



≤ min
u0≥0

Pr


∥u∥22

√
n (1 + u0) max

i=1,...,n
Mi > ε′ − e0


+ Pr (∥ΨΦū∥2 > u0) .

Using the union bound over all 4n terms in maxi=1,...,nMi we get

Pr


n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
 > ε′ − e0



≤ min
u0≥0

4nPr

∥u∥22

√
n (1 + u0)

∥ū+ vi∥22 − ∥A1/2Φ(ū+ vi)∥22
 > ε′ − e0


+Pr (∥ΨΦū∥2 > u0) .

for an arbitrary but fixed i ∈ [1, n]. Rearranging and using the concentration inequality

(5.5) we obtain,

Pr


n

i=1

|⟨u,vi⟩|2 − |⟨ΨΦu,vi⟩|2
 > ε′ − e0



≤ min
u0≥0

4nPr

∥ū+ vi∥22 − ∥A1/2Φ(ū+ vi)∥22
 > ε′ − e0
∥u∥22

√
n (1 + u0)


+ Pr (∥ΨΦū∥2 > u0)

≤ min
u0≥0

4n exp


−γ


ε′ − e0
∥ū+ vi∥22∥u∥22

√
n(1 + u0)


+ Pr (∥ΨΦū∥2 > u0)

≤ min
u0≥0

4n exp


−γ


ε′ − e0
4∥u∥22

√
n(1 + u0)


+ Pr (∥ΨΦū∥2 > u0) .

The last inequality holds since ∥ū+vi∥22 ≤ 4. Since Pr (∥ΨΦū∥2 > u0) ≤ Pr (smax(ΨΦ) > u0)

the claim follows from the last equation and (5.16), with ε′ = ε4∥u∥22
√
n(1 + u0) + e0.

Now we are ready to prove Theorem 5.8.

Proof of Theorem 5.8. Since |hi,j |2 = ⟨hi, ej⟩|2 and |ĥi,j |2 = |⟨ĥi, ej⟩|2 we can apply

Lemma 5.15 and Lemma 5.3, and obtain

Pr

∆i > ε8P∥hi∥22

√
n(1 + u0) + 2Pe0


≤ 4n exp (−γ (ε))

+ Pr (smax(ΨΦ) > u0) + Pr (∥Ψe∥2(∥Ψe∥2 + 2∥ΨΦhi∥2) > e0) .
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Using the union bound over all i ∈ N we get

Pr

∃i ∈ N : ∆i > ε8P∥hi∥22

√
n(1 + u0) + 2Pe0


≤ 4nN exp (−γ (ε))

+NPr (smax(ΨΦ) > u0) +


i∈N
Pr (∥Ψe∥2(∥Ψe∥2 + 2∥ΨΦhi∥2) > e0) .

Setting c1 = 8P∥hi∥22
√
n and c2 = 2P the claim follows.

5.6.4 Proof of Corollary 5.9

Proof. For an arbitrary but fixed hi. Setting e0 = 0, we have

Pr (∥Ψe∥2(∥Ψe∥2 + 2∥ΨΦu∥2) > e0) = 0.

Since Φ+Φ is a projector (i.e. Hermitian and idempotent) smax(Φ+Φ) = 1, and therefore

we can set u0 = 1 and obtain Pr (smax(ΨΦ) > 1) = 0. Hence, using (5.7) we get from

Theorem 5.8

Pr

∃i ∈ N : ∆i > 16P∥hi∥22

√
nε′)


≤ 4nN exp


−Mε′2/κ


,

with κ = 2
1−ln(2) . Since hi is also random we can use Lemma 5.14 and get

Pr

∃i ∈ N : ∆i > 16Ph0

√
nε′)


≤ 4nN exp


−Mε′2/κ


+ Pr


∥hi∥22 > h0


.

By assumption we have E

∥hi∥22


= k. Thus, (5.8) gives,

Pr

∥hi∥22 > h0


= Pr


∥hi∥22 > t+ k


≤ exp(−t2/2).

Hence, if we set h0 = t+ k and t =


2Mε′2/κ,

Pr

∃i ∈ N : ∆i > 16P

√
n(


2Mε′2/κ+ k)ε′)

≤ (4nN + 1) exp


−Mε′2/κ


.

Finally, setting ε = (4nN + 1) exp

−Mε′2/κ


the claim follows.

139





Publication List

[1] Jan Schreck, Peter Jung, Gerhard Wunder, Michael Ohm, and Hans-Peter Mayer.

Limited feedback in multiuser MIMO-OFDM systems based on rate approximation. In

IEEE Global Telecommunications Conference (GLOBECOM), pages 1–6, November

2009.

[2] Jan Schreck, Peter Jung, and Gerhard Wunder. Approximation of multiuser rates in

MIMO-OFDM downlink systems. In 14th International OFDM-Workshop, 2009.

[3] Gerhard Wunder, Jan Schreck, Peter Jung, Howard Huang, and Reinaldo Valenzuela.

A new robust transmission technique for the multiuser MIMO downlink. In IEEE

International Symposium on Information Theory (ISIT), pages 2123–2127, 2010.

[4] Gerhard Wunder and Jan Schreck. A robust and efficient transmission technique for

the LTE downlink. In 44th Annual Asilomar Conference on Signals, Systems, and

Computers, 2010.

[5] Gerhard Wunder, Jan Schreck, Peter Jung, Howard Huang, and Reinaldo Valenzuela.

Rate approximation: A new paradigm for multiuser MIMO downlink communica-

tions. In IEEE International Conference on Communications (ICC), 2010.

[6] Gerhard Wunder, Peter Jung, and Jan Schreck. Multiuser MIMO systems using code-

book tailored limited feedback protocol. In IEEE ITG Workshop on Smart Antennas

(WSA), March 2012.

[7] Gerhard Wunder, Jan Schreck, and Peter Jung. Nearly doubling the throughput of

multiuser MIMO systems using codebook tailored limited feedback protocol. IEEE

Transactions on Wireless Communications, 11(11):3921–3931, 2012.

[8] Peter Jung, Jan Schreck, Michael Ohm, and Gerhard Wunder. Method for resource

allocation, radio communication system, base station, and mobile station thereof,

September 2011. US Patent Application 13/131,729.

[9] Peter Jung, Jan Schreck, and Gerhard Wunder. Method for resource allocation

in a radio communication system, October 2011. European Patent Specification

EP2378688A1.

141



Publication List

[10] Gerhard Wunder and Jan Schreck. Feedback information transmission and scheduling

in a radio access network, November 2012. EP Patent Application EP20110305647.

[11] Jan Schreck and Gerhard Wunder. Iterative interference alignment for cellular sys-

tems. In 2011 International ITG Workshop on Smart Antennas (WSA), pages 1–8,

February 2011.

[12] Jan Schreck and Gerhard Wunder. Distributed interference alignment in cellular

systems: Analysis and algorithms. In IEEE European Wireless 2011, pages 1–8,

Vienna, 2011.

[13] Jan Schreck and Gerhard Wunder. Iterative interference alignment for cellular systems

with user selection. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 1–4, 2012.

[14] Jan Schreck and Gerhard Wunder. Interference alignment over limited dimensions for

cellular networks: Feasibility and algorithms. In 2012 International ITG Workshop

on Smart Antennas (WSA), pages 352–358, March 2012.

[15] Gerhard Wunder, Supreeth Raghuprakash, Peter Jung, and Jan Schreck. Multi-user

MIMO multi-cell systems: Finite SNR rate loss analysis. In IEEE ITG Workshop on

Smart Antennas (WSA), 2013.

[16] Jan Schreck, Gerhard Wunder, and Peter Jung. Distributed interference alignment

with limited feedback for cellular networks. In International Workshop on Emerg-

ing Technologies for LTE-Advanced and Beyond-4G at IEEE Globecom, pages 1–6,

Atlanta, December 2013.

[17] Jan Schreck, Gerhard Wunder, and Perter Jung. Robust iterative interference align-

ment for cellular networks with limited feedback. IEEE Transactions on Wireless

Communications, 14(2):882–894, Feb 2015.

[18] Jan Schreck, Peter Jung, and Slawomir Stańczak. On channel state feedback for two-
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downlink channel. In Asilomar Conference on Signals, Systems, and Computers,

pages 1–5, November 2012.

143





Bibliography

[3GP07] 3GPP R1-073937. Comparison aspects of fixed and adaptive beamforming

for LTE downlink. In 3GPP TSG RAN WG1, number R1-073937. Alcatel-

Lucent, 2007.

[3GP09a] 3GPP TR 36.814. Further advancements for E-UTRA physical layer aspects.

Evolved Universal Terrestrial Radio Access (E-UTRA), 2009.

[3GP09b] 3GPP TS 36.201. LTE physical layer - general description, 2009.

[3GP13] 3GPP. 3rd Generation Partnership Project; Technical Specification Group

Services and System Aspects; Feasibility study for Proximity Services

(ProSe) (Release 12). Technical report, 3GPP TR 22.803, 2013.

[3GP14] 3GPP. 3rd Generation Partnership Project; Technical Specification Group

Services and System Aspects; Study on architecture enhancements to sup-

port Proximity-based Services (ProSe). Technical report, 3GPP TR 23.703,

2014.

[Ala98] S. Alamouti. A simple transmit diversity technique for wireless communi-

cations. IEEE Journal on Selected Areas in Communications, 16(8):1451–

1458, Oct 1998.

[AYL07] C. Au-Yeung and D. Love. On the performance of random vector quantiza-

tion limited feedback beamforming in a MISO system. IEEE Transactions

on Wireless Communications, 6(2):458–462, February 2007.
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