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Remarks

This document is meant to be a helpful resource to comprehend the derivation of the
image source model for a rectangular room according to [AB79, Appendix A] in more de-
tail. If you find any mistakes, please contact us! We are happy to improve this document.

The following conventions for the Fourier transform are used in this document: The
Fourier transform of the sound pressure p(x, t) with respect to time t reads

P (x, ω) = Ft {p(x, t)} =
∞∫
−∞

p(x, t)e−jωtdt (1)

and the Fourier transform with respect to space x reads

P (kx, t) = Fx {p(x, t)} =
∞∫
−∞

p(x, t)e jkxxdx, (2)

where ω denotes the angular frequency and kx denotes the wavenumber in x-direction.
A monochromatic plane wave in 3D space is then written as

p(x, t) = e−jkxe jωt (3)

with field point x = (x, y, z)T, and propagates in direction of the wavenumber vector
k = (kx, ky, kz)

T, |k| = k. Please note that these conventions differ from the ones used
in the original paper [AB79] where for both spatial and temporal Fourier transform the
opposite sign in the exponential function is used.
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Derivation

The inhomogeneous Helmholtz equation with an exciting source in x0 = (x0, y0, z0)
T is

∇2P (x,x0, ω) +
(ω
c

)2
P (x,x0, ω) = −δ(x− x0), (4)

where c denotes the speed of sound, exhibits for a rectangular room with rigid walls
(Neumann boundary conditions) and the volume V = Lx · Ly · Lz the solution

P (x,x0, ω) =
1

V

∞∑
m=−∞

ψm(x)ψm(x0)

k2m − k2
(5)

with

ψm(x) = cos

(
mxπ

Lx
x

)
cos

(
myπ

Ly
y

)
cos

(
mzπ

Lz
z

)
, (6)

m =

mx

my

mz

 (7)

and the modal wave vector

km =


mxπ
Lxmyπ
Ly
mzπ
Lz

 =

kxky
kz

 , |km|2 = k2m. (8)

Please note that source and receiver point can be interchanged in eq. (4). The inverse
formulation can be found in [AB79, eq. (A1)] but the formulation here is preferred for
clarity.
Eq. (5) shall now be converted to an expression containing exponential functions to arrive
at [AB79, eq. (A5)], which is done with the exponential expansion of the cosine

cos(x) =
1

2

(
e jx + e−jx

)
. (9)
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Expanding the numerator product of eq. (5) and reordering gives

ψm(x)ψm(x0) = cos

(
mxπ

Lx
x

)
cos

(
myπ

Ly
y

)
cos

(
mzπ

Lz
z

)
...

· cos
(
mxπ

Lx
x0

)
cos

(
myπ

Ly
y0

)
cos

(
mzπ

Lz
z0

)
(10)

=
1

2

(
e jkxx + e−jkxx

) 1

2

(
e jkxx0 + e−jkxx0

)
...

·1
2

(
e jkyy + e−jkyy

) 1

2

(
e jkyy0 + e−jkyy0

)
...

·1
2

(
e jkzz + e−jkzz

) 1

2

(
e jkzz0 + e−jkzz0

)
(11)

=
1

4

(
e jkx(x+x0) + e jkx(x−x0) + e−jkx(x−x0) + e−jkx(x+x0)

)
...

·1
4

(
e jky(y+y0) + e jky(y−y0) + e−jky(y−y0) + e−jky(y+y0)

)
...

·1
4

(
e jkz(z+z0) + e jkz(z−z0) + e−jkz(z−z0) + e−jkz(z+z0)

)
(12)

=
1

43
(2 · cos(kx(x+ x0)) + 2 · cos(kx(x− x0)))...

· (2 · cos(ky(y + y0)) + 2 · cos(ky(y − y0)))...
· (2 · cos(kz(z + z0)) + 2 · cos(kz(z − z0))) (13)

=
23

43
(cos(kx(x+ x0)) + cos(kx(x− x0)))...

· (cos(ky(y + y0)) cos(kz(z + z0)) + cos(ky(y + y0)) cos(kz(z − z0))...
+ cos(ky(y − y0)) cos(kz(z + z0)) + cos(ky(y − y0)) cos(kz(z − z0)))

(14)

=
1

8
(cos(kx(x+ x0)) cos(ky(y + y0)) cos(kz(z + z0)) + ...). (15)
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Looking only at the first out of eight completely expanded triple cosine terms yields

cos(kx(x+ x0)) cos(ky(y + y0)) cos(kz(z + z0)) (16)

=
1

2

(
e jkx(x+x0) + e−jkx(x+x0)

) 1

2

(
e jky(y+y0) + e−jky(y+y0)

) 1

2

(
e jkz(z+z0) + e−jkz(z+z0)

)
(17)

=
1

8

(
e jkx(x+x0)e jky(y+y0)e jkz(z+z0) + e jkx(x+x0)e jky(y+y0)e−jkz(z+z0) ...

+ e jkx(x+x0)e−jky(y+y0)e jkz(z+z0) + e jkx(x+x0)e−jky(y+y0)e−jkz(z+z0)...

+ e−jkx(x+x0)e jky(y+y0)e jkz(z+z0) + e−jkx(x+x0)e jky(y+y0)e−jkz(z+z0)...

+ e−jkx(x+x0)e−jky(y+y0)e jkz(z+z0) + e−jkx(x+x0)e−jky(y+y0)e−jkz(z+z0)
)
. (18)

Each product of three exponential functions can be written as one exponential function
with a longer exponent. This exponent then contains a scalar product of a certain vector
km (with all three vector components running from −∞ to ∞, cf. eq. (5) together with
(8)) and a vector for field and source points Rp = (x± x0, y ± y0, z ± z0), e.g.

e j(kx(x+x0)+ky(y+y0)+kz(z+z0)) = ekm·Rp . (19)

There obviously exist 8 different vectors Rp if considering all ±-combinations and the 8
combinations of exponential functions from eq. (18) arise for each Rp.
Considering now all terms arising from the 8 triple cosines in eq. (15), there are 8 vectors
km resulting from all possible combinations of the components and their opposite num-
bers (because the indices in eq. (5) run from −∞ to ∞), and from each vector km, the
same (!) exponential functions as in eq. (18) result. Thus, the sum in eq. (5) contains
each exponential function 8 times, which cancels the 1

8 from eq. (15) (the factor 1
8 from

eq. (18) remains, however) and this results in [AB79, eq. (A5)]

P (x,x0, ω) =
1

8V

∞∑
m=−∞

8∑
p=1

e jkm·Rp

k2m − k2
. (20)

The exponent of the exponential function in eq. (20) might as well be negative, as this
only changes the order in which the terms are summed up:

P (x,x0, ω) =
1

8V

∞∑
m=−∞

8∑
p=1

e−jkm·Rp

k2m − k2
. (21)

This was done to be able to directly apply the Fourier conventions used throughout this
derivation, cf. eq. (1) and (2).
Because of the sifting property of the Dirac function for time instant t0 [GRS01]

∞∫
−∞

f(t)δ(t− t0)dt = f(t0), (22)
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eq. (20) can be rewritten as [AB79, eq. (A8)]

P (x,x0, ω) =
1

8V

8∑
p=1

∞∫∫∫
−∞

e−jξ·Rp

|ξ|2 − k2
∞∑

m=−∞
δ(ξ − km)d3ξ (23)

with ξ = (ξx, ξy, ξz)
T. Due to the Fourier series of the Dirac comb with sampling period T

[Wik18a]
∞∑

n=−∞
δ(t− nT ) = 1

T

∞∑
n=−∞

e jn
2π
T
t, (24)

the following expression can be used for each component ofm in eq. (23), here exemplarily
shown for mx:

∞∑
mx=−∞

δ(ξx −
mxπ

Lx
) =

Lx
π

∞∑
mx=−∞

e jmx2Lxξx . (25)

When considering all 3 dimensions of m, this leads to
∞∑

m=−∞
δ(ξ − km) =

LxLyLz
π3

∞∑
m=−∞

e jmx2Lxξxe jmy2Lyξye jmz2Lzξz (26)

=
V

π3

∞∑
m=−∞

e j2(mxLxξx+myLyξy+mzLzξz) (27)

=
V

π3

∞∑
m=−∞

e jRm·ξ, (28)

where the exponent holds the scalar product of the vector ξ with

Rm = 2 ·

mxLx
myLy
mzLz

 . (29)

Substituting eq. (28) in (23) cancels the room volume V and leads to

P (x,x0, ω) =
1

8π3

8∑
p=1

∞∑
m=−∞

∞∫∫∫
−∞

e−jξ(Rp−Rm)

|ξ|2 − k2
d3ξ. (30)

The sign in the exponent can be inverted again, because adding instead of subtracting
Rm inside the brackets only changes the order of summation (cf. [AB79, eq. (A10)])

P (x,x0, ω) =
1

8π3

8∑
p=1

∞∑
m=−∞

∞∫∫∫
−∞

e−jξ(Rp+Rm)

|ξ|2 − k2
d3ξ. (31)

(Again, this step was done to better agree with the Fourier convention used here.)
It can be shown, that the integral in eq. (31) is a plane wave decomposition (PWD) of a
point source at the point Rp +Rm.
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Plane wave decomposition of a point source
Cf. e.g. [Wik18b], here rewritten according to the Fourier conventions used here (see
eq. (1) and (2)), [Wik18b] uses the same convention as [AB79].
The solution of the three-dimensional inhomogeneous Helmholtz equation for the
field ϕ(x)

∇2ϕ(x) + k20ϕ(x) = −δ(x) (32)

is given by a point source

ϕ(r) =
e−jk0r

4πr
(33)

with wavenumber k0 and distance to the origin r. Assuming that the Fourier trans-
form of ϕ(x), denoted as ϕ̂(k), exists, the inverse transform is given by

ϕ(x) =
1

8π3

∞∫∫∫
−∞

ϕ̂(k)e−jkxdk. (34)

When substituting the complete inverse Fourier transform in eq. (32), the prefactor
−jkx,y,z appears for each derivation. Note further that the Dirac impulse is the
inverse Fourier transform of 1:

δ(x) =
1

8π3

∞∫∫∫
−∞

1 · e−jkxdk. (35)

Thus, eq. (32) can be rewritten as

1

8π3

∞∫∫∫
−∞

(−k2x − k2y − k2z + k20)ϕ̂(k)e
−jkxdk = − 1

8π3

∞∫∫∫
−∞

e−jkxdk. (36)

The integrands can be considered in isolation (or the Fourier transforms are per-
formed), which yields

(−k2x − k2y − k2z︸ ︷︷ ︸
=−|k|2

+k20)ϕ̂(k) = −1 (37)

⇔ ϕ̂(k) =
1

|k|2 − k20
. (38)

Substituting eq. (38) in (34) gives

ϕ(x) =
1

8π3

∞∫∫∫
−∞

e−jkx

|k|2 − k20
dk =

e−jk0r

4πr
. (39)
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Eq. (39) expressed with the nomenclature used so far reads

e−jk|R|

4π|R|
=

1

8π3

∞∫∫∫
−∞

e−jξR

|ξ|2 − k2
d2ξ (40)

where |R| denotes the distance between source and field point. Consequently, the inte-
grals in equation eq. (31) disappear and it can be rewritten as [AB79, eq. (A13)]

P (x,x0, ω) =

8∑
p=1

∞∑
m=−∞

e−jk|Rp+Rm|

4π|Rp +Rm|
. (41)

To obtain the desired time domain solution, the inverse Fourier transform with respect
to time is applied

p(x,x0, t) =
1

2π

∞∫
−∞

8∑
p=1

∞∑
m=−∞

e−jk|Rp+Rm|

4π|Rp +Rm|
e jωtdω (42)

=

8∑
p=1

∞∑
m=−∞

1

4π|Rp +Rm|
1

2π

∞∫
−∞

e−jω
|Rp+Rm|

c e jωtdω. (43)

With the Fourier transform of a Dirac shifted by time period τ [GRS01]

∞∫
−∞

δ(t− τ)e−jωtdt = e−jωτ , (44)

the result (now not depending anymore on the choice of Fourier transform conventions)
is [AB79, eq. (A14)]

p(x,x0, t) =

8∑
p=1

∞∑
m=−∞

δ(t− |Rp+Rm|
c )

4π|Rp +Rm|
. (45)

Obviously, the sound field inside a rectangular room with rigid walls is a superposition
of delayed and weighted Dirac pulses. The delay and weighting factors for each Dirac
depend on the speed of sound and the distance between the (image) sources and the field
point, which is given by |Rp +Rm|.

The index p can be reformulated to directly account for the 8 possible Rp versions if
summing over the vector u = (u, v, w)T with every component being 0 or 1 and using
Ru instead of Rp

Ru =

x− x0 + 2ux0
y − y0 + 2vy0
z − z0 + 2wz0

 . (46)
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Now, the result is [LJ08, eq. (5)]

p(x,x0, t) =

1∑
u=0

∞∑
m=−∞

δ(t− |Ru+Rm|
c )

4π|Ru +Rm|
, (47)

where the sum over the vector u equals a triple summation:

1∑
u=0

=

1∑
u=0

1∑
v=0

1∑
w=0

. (48)
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