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Abstract

In this thesis, we use techniques from polyhedral geometry and statistics in order to detect and
quantify biological interactions within a system of genes or species described by a given data set.
Our concept relies on the theory of regular subdivisions. A regular subdivision decomposes a
space into convex cells and can be used to showcase some distinct aspects of the given data set
in its cell structure. After all, one can implement and compute with regular subdivisions and
this is an important feature of polyhedral and discrete geometry. The way these cells spatially
relate to each other is exploited to determine a list of moderate length with potentially significant
biological interactions. A statistical test allows us to diminish this list further and to point to
few but statistically significant interactions. A major benefit of our method, and in a way this is
reciprocal compared to other existing methods, is the concise extent of our findings which allows for
communicating them in a comprehensive form, for instance in data tables or specifically developed
bar diagrams.

We applied our methods to several experimentally obtained genetic and microbiome data sets.
A central use case was the analysis of two instances of Drosophila melanogaster fly gut microbiome
studies. The gut of these fruit flies has a microbiome with a small number of constituting species
and can be manipulated in the laboratory by regulation of the food. The two Drosophila data
sets we applied our methods on describe a microbiome system with five species and hence each of
the two data sets can be related to some regular subdivision of the 5 - dimensional 0/1 - cube from
where our method departs. We are able to point to significant higher dimensional interactions
which are not perceived by other existing methods and, in particular, are not captured by looking
at pairs of interacting species only.

Further, we reinterpret and analyze our method mathematically. It produces and is in some
way equivalent to naming a network of shortest genetic distances, i.e. a minimum spanning tree
of a certain fixed weighted graph with biological meaning. Tropical hypersurfaces, central objects
of tropical geometry, which is an active field of research at the border of polyhedral, discrete
and algebraic geometry, encapsulate these structures inside their 1 - dimensional skeleton. We
determine the parameter space of the minimum spanning trees arising this way. It turns out to
be encoded by a collection of cones given by linear hyperplanes. For a few elected examples we
computed an explicit representation of all occuring parameter cones. Yet, this rapidly reaches
limits of complexity.

The rest of this thesis is about an achievement beyond these limits. Given a cell decomposition
in some implicit form, one may not be able to recuperate the defining geometric data for every cell.
But it still may be possible to enumerate them. We present a method for computing the number
of chambers of a hyperplane arrangement in real euclidean space which uses purely combinatorial
techniques and which makes use of the combinatorial symmetries of the given hyperplane arrange-
ment. With this method, it was possible to compute the previously unknown number of chambers
of the ninth resonance arrangement given by 511 hyperplanes in R9.
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Zusammenfassung

In dieser Arbeit werden Techniken aus der polyedrischen Geometrie und der Statistik vorgestellt,
die benutzt werden können, um biologische Wechselwirkungen in einem durch Datensätze beschrie-
benen Gen- oder Speziensystem aufzufinden und zu quantifizieren.

Unser Konzept beruht auf der Theorie der regulären Unterteilungen. Eine reguläre Unterteilung
zerlegt einen Raum in konvexe Zellen, die im vorliegenden Fall dazu dienen, ausgewiesene Eigen-
schaften der zugrundeliegenden Daten aufzuzeigen. Desweiteren lassen sich reguläre Unterteilungen
in Computerprogrammen implementieren und berechnen, was allgemein einen wichtigen Aspekt
der polyedrischen und diskreten Geometrie darstellt.

Der räumliche Bezug der Zellen zueinander wird hierbei benutzt, um eine Liste angemessener
Länge mit potenziell signifikanten biologischen Wechselwirkungen zu erstellen. Desweiteren dient
ein statistischer Signifikanztest zur weiteren Ausdünnung dieser Liste, die schließlich nur noch
statistisch nachweißbar signifikante Wechselwirkungen enthält. Durch die Bündelung und Konzen-
tration auf relevante Wechselwirkungen zeichnet sich unsere Methode wesentlich aus, da dies sich
durchaus konträr zu den bereits existierenden Methoden verhält und eine stringente Kommunika-
tion der Ergebnisse gestattet, beispielsweise in Form von Datentabellen oder eigens konzipierter
Bardiagramme.

Wir haben unsere Methode auf mehrere Experimentaldatensätze mit Genetik- und Mikro-
biombezug angewandt. Ein zentraler Anwendungsfall stellte dabei die Analyse zweier Datensätze
dar, die das Mikrobiom des Magens der Drosophila melanogaster Fliege experimentell erfassen.
Das Mikrobiom des Magens dieser Fruchtfliege hat die besondere Eigenschaft, durch eine geringe
Anzahl von teilhabenden Spezien bestimmt und im Labor leicht manipulierbar zu sein, etwa durch
Regulierung des Futters. Die zwei Drosophila Datensätze, die wir betrachteten, beschreiben je-
weils ein Mikrobiomsystem mit fünf konstituierenden Spezien und können folglich mit regulären
Unterteilungen des fünfdimensionalen 0/1 -Würfels assoziiert werden, welche die von uns entwick-
elte Methode verarbeitet. Es war uns möglich, höherdimensionale Wechselwirkungen zu finden, die
von den bereits existierenden Methoden nicht gesehen werden und insbesondere vom Paarvergleich
wechselwirkender Spezien übergangen werden.

Desweiteren interpretieren und analysieren wir unsere biologisch motivierte Methode inner-
mathematisch. Im Einzelfall ist der Verlauf dieser äquivalent zur Konstruktion eines Spannbaums
minimalen Gewichts in einem festgeschriebenen gewichteten Graph. Dieser Spannbaum lässt sich
biologisch wiederum als Netzwerk kürzester genetischer Distanz interpretieren. Tropische Hyper-
flächen sind zentrale Objekte der tropischen Geometrie, eines eigens für sich aktiven Forschungsge-
biets mit Anknüpfungspunkten zur polyedrischen, diskreten und algebraischen Geometrie. Diese
Hyperflächen enthalten die betreffenden minimalen Spannbäume in ihrem eindimensionalen Skelett.
Wir zeigen, dass der Parameterbereich dieser minimalen Spannbäume durch eine Sammlung poly-
edrischer Kegel gegeben ist. Für ausgewählte, kleine Bespiele gelingt es, eine explizite Darstellung
für jeden einzelnen Parameterkegel zu berechnen. Dennoch stößt man dabei schnell auf unüber-
windbare Komplexitätsschranken.

Der Rest dieser Arbeit beschäftigt sich mit einer Thematik, die jenseits dieser Komplexitäts-
schranken liegt. Zwar mag es für eine implizit gegebene Zellzerlegung mit den aktuellen Methoden
unmöglich sein, für jede einzelne Zelle eine explizite geometrische Beschreibung zu errechnen, je-
doch kann durchaus eine Abzählung der Zellen erfolgen. Wir präsentieren eine rein kombinatorische
Methode zur Abzählung der Kammern eines reellen Hyperebenenarrangements, die wesentlich auf
der Ausnutzung kombinatorischer Symmetrie fußt. Mit dieser Methode war es uns möglich, die
zuvor unbekannte Kammeranzahl des neunten Resonanzarrangements zu bestimmen, das durch
511 Hyperebenen im R9 gegeben ist.
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Introduction

In data analysis, detecting dependencies and independencies within a given data set is an important
task. Any sound method provided for a concrete investigation needs to reflect the sort of inde-
pendency one is seeking for in its description in order to insure the interpretability of the gained
results. This may happen in algebraic, geometric or statistical terms, for instance. In Chapter 1
of this thesis, we study a phenomenon from computational biology, called epistasis, where given
data sets describe certain geometric situations provided with a local notation of independence,
namely affine independence. More concretely, the genetic setup of an investigated organism is
encoded as a point configuration A of 0/1-vectors, i.e. any vector a ∈ A describes a distinct
genotype of the organism indicating the presence or absence of each examinated gene. A data set
D = {Da : a ∈ A} of phenotypes, drawn from an experiment for instance, might be interpreted as
a genotype-phenotype map h : A → R where each value h(a) = h(Da) is obtained from the data
row Da via some prescribed arithmetic operation. Roughly speaking, epistasis is about detecting
and measuring the degree of affine independences, called epistatic interactions, within the point
set {(a, h(a)) : a ∈ A}.

In this way, epistasis is naturally connected to the realm of polyhedral geometry whose theo-
retical and algorithmic body has already turned out useful to provide machinery for performing
this specific data analytic task, cf. [9]. Based on that, we introduce in Chapter 1 a new method to
study epistasis. One of its key features is the ability to deal with both the local nature of epistatic
interactions and as well capture global information about the entire genotype-phenotype system
(A, h) via a clustering structure, called epistatic filtration, depicting a certain kind of epistatic
behavior of the underlying data set D as a whole.

In general, a cell decomposition serves for splitting up a space into simpler pieces which are
theoretically or computationally more accessible than the original space. Further, the combina-
torial structure of this splitting may be used to encode some aspects of additional information
which the original space might be equipped with. Each epistatic filtration is constructed from a
cell decomposition of the convex hull of A, namely a special kind of triangulation called regular
subdivision, which is induced by the system (A, h) and where every cell, i.e. a simplex in A, has a
biological meaning. Since all genotypes A are considered simultaneously, both local and global no-
tions of epistasis can be studied: An epistatic filtration features a list of epistatic interactions with
distinct geometric properties and, as a whole, this collection showcases certain aspects of global
epistatic behavior of the examinated organism. In particular, this applies to higher dimensions
where existing methods tend to struggle with the involved combinatorial complexity.

Further, we enriched our polyhedral techniques with a statistical component. Each perceived
epistatic interaction receives a p-number from a p-test which serves for deciding about the statistical
significance of the interaction. In this way, the actual statistics of the data set D is taken into
account, i.e. importance is attributed to the distribution of the phenotype data points. Within
the wide range of all epistatic interactions, our method usually points to very few relevant ones
whose geometric significance is confirmed by the statistics of the underlying data set. Establishing
this novel interplay between polyhedral geometry and statistics is one of the central achievements
of Chapter 1.

Chapter 2 is devoted to presenting the material of Chapter 1 to the biology community. We
applied our method profoundly to some authentic experimental data, for instance to two data
sets examining the microbiome of the Drosophila fly gut, compare the outcomes and showcase how
established procedures in the field of population genetics can be interpreted and investigated within
our framework. An important role in our study played the concept of context dependence, where an
epistatically interacting genotype system shares a common gene, called a bystander, which is then
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simultaneously removed. Comparing the epistatic filtration of the resulting system with that of
the original system describes the epistatic effect of adding the bystander gene, which is a relevant
practice in biology.

Generally speaking, the focus of Chapter 2 lies on the study of data sets D = {Da : a ∈ A}
which describe phenotype data over higher-dimensional genotype sets A, notably where A is a
hypercube of dimension bigger than three. These considerations are rare or even lacking to some
degree in the biology literature, again due to dramatically increasing combinatorial complexity in
higher dimensions where the 2-dimensional intuition turns out to be too simplistic or even wrong. In
this practical investigation, we found geometrically and statistically significant higher-dimensional
epistatic interactions which are overlooked by low-dimensional methods.

Chapter 3 takes a reversed approach and answers the following innermathematical questions
which are motivated by the data analysis application from Chapter 1 and Chapter 2.

(A) Which epistatic filtrations may arise?

(B) Given a fixed epistatic filtration, what are the constraints on the data set D to retrieve it?

(C) What is the parameter space of all feasible epistatic filtrations?

In Chapter 3, epistatic filtrations are reinterpreted in combinatorial terms, namely as minimum
spanning trees of some weighted graph induced by the genotype-phenotype system (A, h). More
precisely, the graph in question is the dual graph of the regular subdivision induced by the system
(A, h) and its edges encode the incidences of this cell decomposition. The edge weights indicate
the strength of the epistatic interactions which are gathered in the filtration. Since this measure
can be described as a linear functional in h, the parameter space of (C) lives in the linear world
as well. It turns out to be a fan, i.e. a collection of polyhedral cones, and is hence given by
another type of cell decomposition where again each cell carries specific information. A single
epistatic filtration as in (B) is represented by exactly one such parameter cone. If the entire fan
structure is computationally accessible, then it provides an answer to question (A). We also indicate
computational bounds, which are reached very quickly when increasing the dimension of the point
configuration A. The reason is that questions (A) to (C) from above demand a concrete geometric
description of every single parameter cone, which all live in RA.

As is done in Chapter 3 with the parameter fan of epistatic filtrations, a cell decomposition
of a space can be described by explicitly listing its cells in a concrete geometric encoding. For
instance, the polyhedral cones of a fan can be given in half-space description. Alternatively, a cell
decomposition sometimes might be described in a more implicit way. A real hyperplane arrange-
ment is a collection of hyperplanes in some fixed Rn. Each of its cells, also known as chambers,
is a component of the complement of the arrangement and is indexed by a string of signs, plus or
minus, describing its relative location with respect to each hyperplane of the arrangement. In this
case, an explicit geometric cellular description is a priori missing and computing one efficiently is
a separate task, cf. [89].

In Chapter 4 we present examples of real hyperplane arrangements for which implementations
of currently known algorithms fail by far to provide an explicit description of the chambers due to
complexity reasons. Instead, we limit our considerations to counting their number of chambers only.
This attenuation allows the usage of coarser methods demanding much less time and memory. We
present a chamber counting algorithm which evolved from the idea of systematically deconstructing
a given hyperplane arrangement in depth-first manner along a binary tree and thereby keeping
track of combinatorial invariants, the Whitney numbers. Our approach is purely combinatorial
and avoids costly operations like computing convex hulls. The number of chambers can finally be
reconstructed from the computed Whitney numbers. As a key modification of this rudimentary
depth-first approach, we further make use of symmetry inherent to the arrangement to cut off
branches of the binary tree which would result in redundant computations. This results in a
significant speed-up of the algorithm and we were able to compute a chamber number which was
formerly unknown.

The rest of the introduction presents the material covered in this thesis in more detail.
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0.1 Some notes on epistasis

Epistasis is a subfield of genetics, which studies the effect of gene interactions on the underlying
organism, cf. [121]. Historically, the term epistasis was first introduced by William Bateson in
the early 1900 as a model for dominant or recessive effects in genetic systems, cf. [8]. However, in
this thesis we stick to a slightly different paradigm established by R. A. Fisher in 1918 [53] who
defined epistasis as deviation from linearity in the measured phenotypes. In the literature - both
ancient and recent - this is often motivated with the following example: Given an organism with
two genes or species A and B involved, the list A of all possible genotypes consists of:

• (0A, 0B), the wild type, meaning that neither species A nor species B is present,

• (1A, 0B), meaning that species A is present but species B is absent,

• (0A, 1B), meaning that species A is absent but species B is present and

• (1A, 1B), meaning that both species A and B are present.

Now, assume that each genotype of A receives a physical quantity via a genotype-phenotype map
h : A → R, say with h(0A, 0B) = 0. Then the single-mutation (0A, 0B)  (1A, 0B) has the
phenotypic effect h(1A, 0B) and similarly for (0A, 0B)  (0A, 1B). In Fisher’s school, the system
(A, h) describes an epistatic interaction if the double-mutation (0A, 0B)  (1A, 1B) cannot be
additively deduced from the two single mutations, i.e. if h(1A, 1B) 6= h(1A, 0B) + h(0A, 1B) holds.

(a)

(1A, 0B)

(0A, 0B)

(1A, 1B)

(0A, 1B)

�

�

�

�

�

�

�

�

(b)
number in ∗∗∗∗∗/in 0∗∗∗∗ genotype comment

0/0 0 0 0 0 0 germ-free
1/ - 1 0 0 0 0 Lactobacillus plantarum
2/1 0 1 0 0 0 Lactobacillus brevis
3/2 0 0 1 0 0 Acetobacter cerevisiae
4/3 0 0 0 1 0 Acetobacter malorum
5/4 0 0 0 0 1 Acetobacter orientalis
6/ - 1 1 0 0 0 bacterial growth decreases: competition
7/ - 1 0 1 0 0 bacterial growth increases: synergy
8/ - 1 0 0 1 0 synergy
9/ - 1 0 0 0 1 synergy
10/5 0 1 1 0 0 synergy
11/6 0 1 0 1 0 synergy
12/7 0 1 0 0 1 synergy
13/8 0 0 1 1 0 competition
14/9 0 0 1 0 1 competition

15/10 0 0 0 1 1 competition
16/ - 1 1 1 0 0
17/ - 1 1 0 1 0
18/ - 1 1 0 0 1
19/ - 1 0 1 1 0
20/ - 1 0 1 0 1
21/ - 1 0 0 1 1
22/11 0 1 1 1 0
23/12 0 1 1 0 1
24/13 0 1 0 1 1
25/14 0 0 1 1 1
26/ - 1 1 1 1 0
27/ - 1 1 1 0 1
28/ - 1 1 0 1 1
29/ - 1 0 1 1 1
30/15 0 1 1 1 1
31/ - 1 1 1 1 1

Figure 1: (a) A genotype-phenotype map h : A → R for which the system (A, h) describes an
epistatic interaction. The value h(1A, 1B) is lower than expected and cannot be linearly deduced
from the values h(0A, 0B), h(1A, 0B) and h(0A, 1B). The reference hyperplane for the wild type is
pictured in gray. (b) An encoding of the genotypes involved in an experimental investigation of the
Drosophila fly gut microbiome featuring two types of bacteria, the lactobacilli and the acetobacters.
This Eble data set, bi-allelic on five loci, is analyzed in Chapter 2. The idea of interpreting the
genotypes as 0/1 - vectors and lifting them one dimension higher via h dates back to 1932, cf. [156].

The system (A, h) is an epistatic interaction if and only if the quantity

E := h(0A, 0B) + h(1A, 1B)− h(1A, 0B)− h(0A, 1B) ,

which is omnipresent in the epistasis literature, does not vanish. Further, if E changes its sign from
minus to plus, then the combinatorial situation switches as well: The diagonal {(1A, 0B), (0A, 1B)}
of the square at the bottom of Figure 1(a) is then replaced by {(0A, 0B), (1A, 1B)}. But this
perception is based on a bias towards choosing the wild type as point of reference: In general, the
phenotype h(0A, 0B) of the wild type receives the positive coefficient 1 in E but the equation (−E)
would equally serve for decisions on epistasis.
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In this thesis, we adapt these ideas with regard to detecting and studying specific epistatic
interactions, but focus on higher dimensional systems where signs of equations like E do not have
an unbiased meaning and occur in a vast number due to much more complicated combinatorics.

0.2 Epistatic interactions and epistatic weights

In Section 1.3 we provide a general framework for the detection and the study of a certain kind of
epistatic interactions in any fitness landscape (A, h), where A ⊂ Rn is some point configuration
and h : A→ R is any height function on A. There we introduce a non-negative quantity eh, which
is designed for measuring the strength of epistatic interactions, called epistatic weight. Our method
exploits the cell structure of the regular subdivsion Σ(h) of A induced by h. For a generic height
function h, each maximal cell of Σ(h) is an n-dimensional simplex and arises as the projection of
an upper facet of the polytope Ph := conv{(a, h(a)) : a ∈ A} ⊂ Rn+1, cf. [40, Definition 2.2.10.].

A bipyramid in A is a pair (s, t) of adjacent n-dimensional simplices s and t, both spanned
by points of A, sharing a common (n − 1)-dimensional face. An epistatic interaction in A is a
bipyramid in A such that the polytope (s, t)h := conv{(a, h(a)) : a ∈ vert(s ∪ t)} ⊂ Rn+1 is not
contained in a hyperplane. The epistatic weight eh(s, t) of an epistatic interaction (s, t) is defined
to be a dimensionally scaled adaption of the normalized volume of the lifted bipyramid (s, t)h and
hence measures how far the lifted vertices {(x, h(x)) : x ∈ vert(s ∪ t)} are away from living on a
hyperplane. Note that for a generic height function h : A→ R, e.g. for a reasonable outcome h of
some real-world experiment, the lifted bipyramid (s, t)h almost never lies on a hyperplane. Hence,
we may refer to epistatic interactions in A simply as the bipyramids in A and the number of these
is big, even for small point configurations A.

From a data analysis point of view, the foremost purpose while developing our techniques was
to be able to point to few but specific and significant epistatic interactions. We first restricted our
consideration to epistatic interactions of Σ(h), i.e. to pairs (s, t) of adjacent maximal simplices of
the regular subdivision Σ(h). In the biological application we had in mind, these maximal cells
encode fittest populations with respect to the height function h and varying allele frequencies, cf.
Section 1.2.2. The specific geometric context related to Σ(h) can be described as follows. Each
maximal cell s of Σ(h) gives rise to a unique affine map h̃s : conv(s) → conv(s)h ⊂ Ph, which
identifies the cell s with the upper facet of Ph it came from and which affinely extends to a map
aff[h̃s] : conv(A) → Rn+1. Now, according to [23, Section 1.F], the piecewise linear and concave
map h̃ : conv(A) → Rn+1, patched together from the various h̃s, takes for any x ∈ conv(A) the
value

h̃(x) = min
{
aff[h̃s](x) : s is a maximal cell of Σ(h)

}
(1)

and serves as support function for Σ(h): Its regions of linearity are precisely the maximal cells
of Σ(h). Now, an epistatic interaction b = (s, t) of Σ(h) with adjacent maximal simplices s and
t of Σ(h) features the two distinct satellite vertices, or satellite genotypes, b1 = s \ t of s and
b2 = t \ s of t. From equation (1) one sees that in this situation, the epistatic weight eh(s, t)
measures the magnitude to which the two satellite data points (b1, h(b1)) resp. (b2, h(b2)) are lower
than expected with respect to a given reference system inherent to (s, t), namely the hyperplane
spanned by the data points {(x, h(x)) : x ∈ vert(t)} resp. {(x, h(x)) : x ∈ vert(s)}.

In the bi-allelic n-loci case, a fitness landscapes (A, h) has the n-dimensional 0/1-cube as
underlying point configuration A. In the two-dimensional example from Section 0.1 above, the
height function h is hence defined over the unit square and the epistatic weight

eh({(0, 0), (1, 0), (0, 1)}, {(1, 0), (0, 1), (1, 1)})

coincides with the absolute value of the quantity E, upto a dimensionally related factor of
√

2.
The regular triangulations of A are parametrized by full-dimensional cones in RA, called sec-

ondary cones, which fit together nicely to form the secondary fan of A. More precisely, any choice
of height functions from the interior of a fixed secondary cone yields the same triangulation of
A. Consequently, small perturbations h′ of h occuring under the influence of data noise tend to
produce the same triangulation Σ(h′) = Σ(h). The separation of data noise from relevant epistatic
signal hence cannot be achieved by solely looking at the combinatorics of Σ(h). In Section 0.3 we
briefly present the metric and statistical techniques we developed to do so.
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0.3 Separating significant signal from data noise

In order to get closer to our actual use cases in the field of population genetics, let A ⊂ Rn be
a point configuration respresenting a microbiome, i.e. A is the vertex set of the n-dimensional
0/1 - cube, in the bi-allic case, or more generally of any n-dimensional product of simplices, and let
h : A→ R be a height function on A, cf. [10]. Assume that h is sufficiently generic, i.e. h lies in the
interior of a secondary cone and hence the regular subdivision Σ(h) of A is a triangulation. Since
big epistatic weights describe big deviations from linearity, we first compile a list L of some length
m which comprises all epistatic interactions (si, ti) of (A, h), i.e. of Σ(h), ascendingly ordered by
their epistatic weight eh(si, ti). The driving idea is to seek for some subset I ⊂ [m], ideally oriented
towards the tail of L, such that an interaction (si, ti) ∈ L can verifiably be considered significant
if i ∈ I holds. This is achieved in two levels.

0.3.1 Geometric level: The epistatic filtration process

In order to extract a global statement about relevant epistatic information, we established a pro-
cedure called epistatic filtration, which successively keeps track of the epistatic interactions of L
and which records how they relate to each other, going from lowest to highest epistatic weight and
avoiding redundant geometric information. The rough idea on which the filtration process is based
is that a single epistatic interaction (s, t) of (A, h) is recorded by merging the cells s and t to form
the cluster (s ∪ t) ⊂ conv(A), which is the projection of the lifted bipyramid (s, t)h the epistatic
weight eh(s, t) measures the volume of. Processing along the list L yields the following evolution
of cell decompositions, also called cluster partitions in Section 1.3.2, of conv(A):

(A0) Start with the cell decomposition C0 of conv(A) given by the maximal simplices of Σ(h).

(Ak) Assume that the first k − 1 epistatic interactions of L are processed and conv(A) has a cell
decomposition Ck−1 into connected sets ci. Then the k-th interaction (sk, tk) of L determines
unique cells csk , ctk of Ck−1 with conv(sk) ⊂ csk and conv(tk) ⊂ ctk . If merging sk and tk
is geometrically redundant, i.e. if csk = ctk holds, then the interaction (sk, tk) is called
uncritical. In this case, step (Ak+1) is performed with the cell decomposition Ck := Ck−1
and the next interaction (sk+1, tk+1) ∈ L if there is any. Otherwise, we have csk 6= ctk . In
this case, we call the interaction (sk, tk) critical and we merge the cells csk and ctk . Step
(Ak+1) is hence performed with the cell decomposition Ck := (Ck−1 \ {csk , ctk})∪{csk ∪ ctk}
of conv(A) and the next epistatic interaction (sk+1, tk+1) ∈ L if there is any.

The ordered list of tuples F(h) := (Ck, eh(sk, tk)), where (sk, tk) runs through the critical
epistatic interactions only, is called epistatic filtration of (A, h). The concept of merging cells in
this way is motivated is by the following theorem.

Theorem (Undo Theorem, Theorem 1.3.3). Let Σ(h′) be a regular subdivision of A which is not
a triangulation. Then there is an ε > 0 such that for any choice of h ∈ Bε(h′) the epistatic
filtration F(h) features some cluster partition Ck which coincides with the cell decomposition Σ(h′)
of conv(A).

The Undo Theorem has the following interpratation in terms of data analysis. Assume there is
a comprehensive data collection D of experimental measured data, which associates to every a ∈ A
some data row Da. Now, let the height function h be an arithmetic outcome of D, e.g. the value
h(a) is the sample mean of Da. Then the function h is almost always generic. Yet, there may exist
epistatic interactions of (A, h) whose non-negative epistatic weights are derived from inaccuracies
in the measuring process but may tend to vanish in an ideal experimental environment. Phrased
differtently, some affine dependencies are conceiled by data noise inherent to D. By the Undo
Theorem, these dependencies are then revealed at some stage of the epistatic filtration F(h).
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0.3.2 Statistical level: A significance test for epistatic interactions

Still we assume that there is a data collection D = (Da) we want to analyze. In order to enrich
regular subdivisions with a statistics, we consider a vector of random variables X = (Xa)a∈A
where each Xa is normally distributed with the first two moments given by the sample mean
and the standard error of Da, cf. Section 1.4. Taking h : A → R to be the sample means of D
yields a regular triangulation Σ(h) of A. Now, for every epistatic interaction (s, t) of (A, h) our
significance test pursues the question if there is statistical evididence that the de facto positive
epistatic weight eh(s, t) is not based on data noise of D. This is done by establishing a null
hypothesis via a certain dummy random variable Z with expected value zero. According to the
practice of p-tests, the null hypothesis for the epistatic interaction (s, t) of (A, h) is refuted if
the p-value p(s, t) := P(Z ≥ eh(s, t)) is sufficently small. Here, the p-value bound 0.05 seems
to be an engraved law, i.e. the epistatic interaction (s, t) is significant if p(s, t) < 0.05 holds,
but we decided to install a second class of semi-significant interactions, namely those which fulfill
0.05 ≤ p(s, t) < 0, 1.

Intuitively, critical significant epistatic interactions of (A, h) should always be big, i.e. appear
in advanced stages of the filtration F(h). But also interactions with small epistatic weight have
the chance to be significant since the second moment of the random variable Z depends on the
standard errors of D. However, on all computations with real data we run, significant epistatic
interactions only occured at the very end of the filtrations, often preceded by a remarkable gap
between the epistatic weights of the last non-significant and the first significant critical interaction.

0.3.3 Visualization

Since our primal goal was to be able to select few but significant information out of a big collection
of epistatic interactions, namely all bipyramids in A, the development of a concise visualization
of our findings became central and we came up with bar diagrams as in Figure 2(a). There, we
showcase the epistatic filtration of the 4-dimensional face A := {0, 1}4 ↪0∗∗∗∗−−−−→ {0, 1}5 of the Eble
data set analyzing the Drosophila gut microbiome with the first (Lactobacillus plantarum) of five
species required to be absent, cf. Section 2.2.6 for instance.

0.3.4 Application: Parallel transport

Context dependent epistasis is an important subfield of study, which is concerned about the effect
of changing bystanders of epistatic interactions. More precisely, assume we have a fixed bi-allelic
fitness landscape h : A → R on n loci, i.e. A = {0, 1}n is the n-dimensional 0/1 - cube. For
instance, if we want to consider epistatic interactions of genotypes where the first species is always
present, then we may pass to the (n − 1)-dimensional subcube A′ := 1∗∗ . . . ∗ of A, restrict h
to h′ : A′ → R and compute the epistatic filtration F(h′). Each epistatic interaction of (A′, h′)
now has the first species as a bystander. In order to study the context dependence of F(h′), we
pass to its parallel epistatic filtration: Parallely translating 1∗∗ . . . ∗ onto the facet 0∗∗ . . . ∗ of the
n-cube associates to each critical interaction (s, t) of F(h′) a parallel epistatic interaction (s0, t0),
i.e. a bipyramid in the point configuration 0∗∗ . . . ∗, for which the first species is always absent.
The parallel epistatic interactions equally allow for the computation of epistatic weights and its p-
values. Comparing these quantities of the original filtration F(h′) with their parallel counterparts
accounts for a method which contributes to the study of context dependence, cf. Section 1.6.6.

For this technique, an important situation arises when the occurences of all but two species are
prescribed. Then the point configuration A′ is the vertex set of a square, which has exactly two
triangulations. Passing to any parallel square B′ ⊂ {0, 1}n by reverting the constraint for precisely
one fixed species yields the sign + if the triangulations of A′ and B′ induced by h parallelly translate
into each other, and the sign − if the triangulations are reversed. Note that with the introduction
of non-negative epistatic weights we ommited signs as the direct outcomes of numerical functions
evaluating the height function h. In our opinion, this is necessary to accomodate the complicated
combinatorics in higher dimensions.
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( a )

{ 0 ,1 ,5 ,1 1 ,1 5 }
{ 0 ,1 ,5 ,1 2 ,1 5 }

{ 0 ,2 ,5 ,8 ,9 }
{ 0 ,5 ,8 ,9 ,1 4 }

{ 0 ,5 ,9 ,1 2 ,1 4 }
{ 0 ,5 ,8 ,1 1 ,1 5 }

{ 0 ,5 ,8 ,1 4 ,1 5 }
{ 0 ,5 ,1 2 ,1 4 ,1 5 }

{ 0 ,1 ,7 ,1 2 ,1 5 }
{ 0 ,1 ,7 ,1 3 ,1 5 }

{ 0 ,4 ,7 ,1 2 ,1 4 }
{ 0 ,7 ,1 2 ,1 4 ,1 5 }

{ 0 ,4 ,9 ,1 2 ,1 4 }
{ 0 ,4 ,7 ,1 3 ,1 4 }

{ 0 ,7 ,1 3 ,1 4 ,1 5 }
{ 0 ,4 ,1 0 ,1 3 ,1 4 }

{ 0 ,1 ,6 ,1 1 ,1 3 }
{ 0 ,1 ,1 1 ,1 3 ,1 5 }

{ 0 ,3 ,6 ,8 ,1 3 }
{ 0 ,6 ,8 ,1 1 ,1 3 }

{ 0 ,3 ,8 ,1 3 ,1 4 }
{ 0 ,3 ,1 0 ,1 3 ,1 4 }

{ 0 ,8 ,1 1 ,1 3 ,1 5 }
{ 0 ,8 ,1 3 ,1 4 ,1 5 }

({ 0 ,4 ,7 ,1 3 ,1 4 } ,
{ 0 ,7 ,1 3 ,1 4 ,1 5 } )

({ 0 ,4 ,7 ,1 2 ,1 4 } ,
{ 0 ,7 ,1 2 ,1 4 ,1 5 } )

({ 0 ,8 ,1 3 ,1 4 ,1 5 } ,
{ 0 ,8 ,1 1 ,1 3 ,1 5 } )

({ 0 ,5 ,8 ,1 4 ,1 5 } ,
{ 0 ,5 ,8 ,1 1 ,1 5 } )

({ 0 ,5 ,1 2 ,1 4 ,1 5 } ,
{ 0 ,5 ,8 ,1 4 ,1 5 } )

({ 0 ,5 ,8 ,9 ,1 4 } ,
{ 0 ,5 ,9 ,1 2 ,1 4 } )

({ 0 ,1 ,5 ,1 2 ,1 5 } ,
{ 0 ,1 ,5 ,1 1 ,1 5 } )

({ 0 ,3 ,8 ,1 3 ,1 4 } ,
{ 0 ,3 ,1 0 ,1 3 ,1 4 } )

({ 0 ,6 ,8 ,1 1 ,1 3 } ,
{ 0 ,3 ,6 ,8 ,1 3 } )

({ 0 ,3 ,8 ,1 3 ,1 4 } ,
{ 0 ,3 ,6 ,8 ,1 3 } )

({ 0 ,6 ,8 ,1 1 ,1 3 } ,
{ 0 ,8 ,1 1 ,1 3 ,1 5 } )

({ 0 ,1 ,6 ,1 1 ,1 3 } ,
{ 0 ,1 ,1 1 ,1 3 ,1 5 } )

({ 0 ,5 ,8 ,9 ,1 4 } ,
{ 0 ,2 ,5 ,8 ,9 } )

({ 0 ,4 ,9 ,1 2 ,1 4 } ,
{ 0 ,4 ,7 ,1 2 ,1 4 } )

({ 0 ,5 ,9 ,1 2 ,1 4 } ,
{ 0 ,5 ,1 2 ,1 4 ,1 5 } )

({ 0 ,7 ,1 3 ,1 4 ,1 5 } ,
{ 0 ,7 ,1 2 ,1 4 ,1 5 } )

({ 0 ,1 ,7 ,1 3 ,1 5 } ,
{ 0 ,1 ,7 ,1 2 ,1 5 } )

({ 0 ,4 ,1 0 ,1 3 ,1 4 } ,
{ 0 ,4 ,7 ,1 3 ,1 4 } )

({ 0 ,1 ,6 ,1 1 ,1 3 } ,
{ 0 ,6 ,8 ,1 1 ,1 3 } )

({ 0 ,5 ,8 ,1 1 ,1 5 } ,
{ 0 ,1 ,5 ,1 1 ,1 5 } )

({ 0 ,1 ,7 ,1 3 ,1 5 } ,
{ 0 ,7 ,1 3 ,1 4 ,1 5 } )

({ 0 ,1 ,7 ,1 2 ,1 5 } ,
{ 0 ,1 ,5 ,1 2 ,1 5 } )

({ 0 ,1 ,7 ,1 3 ,1 5 } ,
{ 0 ,1 ,1 1 ,1 3 ,1 5 } )
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Fi g ur e 2: ( a) E pi st ati c filtr ati o n of t h e 4 - di m e n si o n al f a c e 0 ∗ ∗ ∗ ∗ of t h e bi- all eli c E bl e d at a s et o n
fi v e l o ci. T h e t o p r o w s h o w c a s e s t h e cl u st er p artiti o n C 0 wit h 2 4 l a b el e d m a xi m al si m pli c e s. E v er y
r o w b el o w ari s e s fr o m a m er gi n g st e p ( A k ) fr o m S e cti o n 0. 3. 1 f or a criti c al e pi st ati c i nt er a cti o n
w hi c h i s i n di c at e d at t h e ri g ht e n d of t h at r o w. Alt o g et h er, t hi s e pi st ati c filtr ati o n h a s 2 3 = 2 4 − 1
criti c al e pi st ati c i nt er a cti o n s, w hi c h i s n ot a c oi n ci d e n c e, cf. S e cti o n 0. 4. T h e t w o si g ni fi c a nt
i nt er a cti o n s ({ 0 , 1 , 7 , 1 2 , 1 5 } ,{ 0 , 1 , 5 , 1 2 , 1 5 } ) a n d ({ 0 , 1 , 7 , 1 3 , 1 5 } ,{ 0 , 1 , 1 1 , 1 3 , 1 5 } ) ar e c ol or e d i n
bl u e, t h e t w o s e mi- si g ni fi c a nt i nt er a cti o n s ar e p ur pl e. T h e s e l a b el s r ef er t o a s p e ci fi c e n c o di n g of
t h e p oi nt c o n fi g ur ati o n A , cf. Fi g ur e 1( b). T h e fir st of t h e s e t w o si g ni fi c a nt i nt er a cti o n s h a s s at ellit e
g e n ot y p e s 5 = ( 0 , 1 , 1 , 0 , 0) a n d 7 = ( 0 , 1 , 0 , 0 , 1) , b ot h d e s cri bi n g s y n er g eti c e ff e ct s si n c e b ot h t y p e s
of b a ct eri a ar e i n v ol v e d. T h e b ar di a gr a m i s r e c o n str u ct e d fr o m a u ni q u e r o ot e d bi n ar y tr e e wit h
2 4 l a b el e d l e a v e s, cf. S e cti o n 1. 3. 3. ( b) T h e mi ni m u m s p a n ni n g tr e e ( b ol d) of t h e w ei g ht e d d u al
gr a p h Γ( h ), cf. S e cti o n 0. 4, c orr e s p o n di n g t o t h e filtr ati o n of ( a). T h e t w o si g ni fi c a nt i nt er a cti o n s
ar e cl o s e t o e a c h ot h er i n t h e s h ort e st p at h m etri c.

7



0.4 Epistatic filtrations as minimum spanning trees

In fact, the epistatic filtration process as described in Section 0.3.1 can be reformulated in terms of
a well-known optimization algorithm on a certain weighted graph, the dual graph Γ(h) of Σ(h). The
nodes of the graph Γ(h) correspond to the maximal simplices of Σ(h) and there is an edge connecting
two nodes of Γ(h) precisely if the corresponding maximal simplices share a common codimension
one face. To every edge {s, t} ∈ E(Γ(h)) we assign the epistatic edge weight eh(s, t) = eh(t, s).
In this terminology, the procedure described in the merging steps (Ak) of Section 0.3.1 produces
a spanning tree of Γ(h) with minimum total weight. In terms of biology, we may interpret this
minimum spanning tree as a network of shortest genetic distances. The parameter space of all
minimum spanning trees of Γ(h), i.e. of all epistatic filtrations which can be realized over the fixed
point configuration A for height functions h varying in its secondary cone, is a fan.

Theorem (Theorem 3.4.3). Let sc(h) be the secondary cone of the regular triangulation Σ(h).
The cone sc(h) splits into relatively disjoint full-dimensional parameter cones KT , such that every
choice g ∈ int(KT ) produces the same minimum spanning tree T (g) = T of Γ(h) during the epistatic
filtration process. The parameter cones KT form a fan.

In biology terms, the conesKT are precisely the shapes of bar diagrams as in Figure 2, which can
arise for a fixed regular subdivision Σ(h), i.e. for a fixed cell decomposition of conv(A) into fittest
populations. In Section 3.4 we give an algorithm which computes the underlying fan structure.
Further, we relate our results to tropical geometry, where the dual graph Γ(h) is the bounded
1-skeleton of a certain tropical hypersurface associated to the height function h.

0.5 Counting chambers of hyperplane arrangements

The secondary fan of point configurations A which are Lawrence polytopes describe a class of
hyperplane arrangements in RA, cf. [40, Section 5.5.3]. In this case, the chambers of the hyperplane
arrangement are precisely the interiors of the maximal cones of the secondary fan. In general, from
an applied point of view one might primarily be interested in an explicit representation of every
single maximal cone of the fan, in half-space description for instance. In Chapter 4, we discuss
examples of hyperplane arrangements for which this is computationally not feasible with currently
available algorithms and hardware. Still, some relevant information can be extracted using purely
combinatorial techniques: Given a hyperplane arrangement H in Rn, the number of chambers of
H is in fact determined by its characteristic polynomial χH(t), whose coefficients, the Whitney
numbers, sum up in absolute value to the number of chambers of H, cf. Section 4.2.1. Further, any
hyperplane arrangement allows for two operations, deletion and restriction, which produce two new
hyperplane arrangements, temporarily called artefacts of H here in the introduction, and which
are compatible with taking characteristic polynomials, cf. Lemma 4.3.1. This observation results
in the elementary depth-first binary tree Algorithm 2. It produces a left child for every deletion
and a right child for every restriction step. Globally taking a vertical perspective of the course of
this algorithm, the idea of Algorithm 4 is now to horizontally identify artefacts of H which coincide
upto combinatorial symmetry of H. Thus, Algorithm 4 is a breadth-first style algorithm whose
strength lies in avoiding computations of redundant combinatorial information. This modification
allowed us to compute the number of chambers of the ninth resonance arrangement given by 511
hyperplanes in R9. This number reads 1,955,230,985,997,140 and the computation took roughly
11 days, cf. Section 4.7.
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Cluster partitions and fitness landscapes of the Drosophila
fly microbiome

This chapter is based on the published article “Cluster partitions and fitness landscapes of the
Drosophila fly microbiome” [47] by Holger Eble, Michael Joswig, Lisa Lamberti and William Lud-
ington. This version of the article has been accepted for publication, after peer review and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not re-
flect post-acceptance improvements, or any corrections. The Version of Record is available online
at: https://doi.org/10.1007/s00285-019-01381-0. The article appeared in the Journal of Mathe-
matical Biology volume 79.3, pp. 861–899.

1.0 Abstract

The concept of genetic epistasis defines an interaction between two genetic loci as the degree of
non-additivity in their phenotypes. A fitness landscape describes the phenotypes over many genetic
loci, and the shape of this landscape can be used to predict evolutionary trajectories. Epistasis
in a fitness landscape makes prediction of evolutionary trajectories more complex because the in-
teractions between loci can produce local fitness peaks or troughs, which changes the likelihood
of different paths. While various mathematical frameworks have been proposed to calculate the
shapes of fitness landscapes, Beerenwinkel, Pachter and Sturmfels (2007) suggested studying regu-
lar subdivisions of convex polytopes. In this sense, each locus provides one dimension, so that the
genotypes form a cube with the number of dimensions equal to the number of genetic loci consid-
ered. The fitness landscape is a height function on the coordinates of the cube. Here, we propose
cluster partitions and cluster filtrations of fitness landscapes as a new mathematical tool, which
provides a concise combinatorial way of processing metric information from epistatic interactions.
Furthermore, we extend the calculation of genetic interactions to consider interactions between mi-
crobial taxa in the gut microbiome of Drosophila fruit flies. We demonstrate similarities with and
differences to the previous approach. As one outcome we locate interesting epistatic information
on the fitness landscape where the previous approach is less conclusive.

1.1 Introduction

In evolutionary biology, the concept of a fitness landscape plays a prominent role in the study
of genetic mutations, evolutionary trajectories, and the consequences for organismal health and
disease [41]. These landscapes were introduced by Sewall Wright in [156] and typically arise as high
dimensional discrete or continuous genotype–phenotype mappings. The underlying coordinates in
these mappings encode alleles at n genetic loci of interest and are called genotypes. The convex
hull of these genotypes, which might be viewed as points in Rn, is a polytope called the genotope.
In non-technical terms, we can think of each genetic locus as a separate dimension. The collection
of all combinations of these loci (e.g. of double mutants, triple mutants, etc.) forms a cube where
the dimension n is the number of loci considered. Thus, for a two locus, bi-allelic set, the genotope
is a square (i.e., two-dimensional cube) with vertices (i.e., corners) representing the wild type, each
single mutant, and the double mutant.

Fitness landscapes then arise by mapping the reproductive success (or other fitness traits) of
each genotype to its corresponding vertex on the cube. The concept of genetic epistasis defines an
interaction between two genetic loci as the degree of non-additivity in their phenotypes. Shapes
of fitness landscapes reveal the epistasis and are regular subdivisions of the genotope induced by
genotype–phenotype mappings, meaning that the degree to which a set of vertices interact has a
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physical shape that we can measure (as studied in Beerenwinkel et al. [10, 11]). Such subdivisions
play a key role in determining interaction patterns among altered genes and pathways on the
genotope, and they shed light on the possible orders in which genetic mutations might occur. For
instance, where an epistatic interaction lowers fitness, evolutionary paths traversing that vertex
would have lower odds of occurring. The study of interaction patterns is a general one that applies
also to economies, social networks, and food webs in ecology.

Recently the gut microbiome has arisen in biology as a major factor shaping the genotype–
phenotype mappings in animals [94]. The microbiome itself is an ecological interaction network of
microbial species. Resolving the structure of the microbiome interaction patterns and their impacts
on genotype–phenotype mappings in the host is a major unsolved problem in biology. However, the
number of possible interactions is massive in general, as the number of species in the microbiome
is on the order of hundreds to thousands. Thus, there is a great need to develop methods capable
of detecting interactions without drowning in data. Here, we focus on a naturally simple gut
microbiome, the Drosophila fruit fly's gut, with only five species of bacteria. For the purposes of
the present paper, we keep the notations and terminology of genetic interactions, noting that they
apply also to microbiome interactions.

In this work, we build on the approach developed by Beerenwinkel et al. [10, 11] and propose
a new method to process metric interaction information, also known as epistasis, usually arising
from interactions among altered genes. The main idea we bring to the theory of interactions are
cluster partitions and cluster filtrations. These deal with connected components, called clusters,
of some subgraph of the dual graph associated to a regular subdivision that is induced, e.g., by a
genotype–phenotype mapping. To build these clusters, we first associate positive weights to pairs
of maximal and adjacent simplices in the regular subdivision. Similar to an angle, these weights
measure the deviation of the two adjacent simplices from being affinely dependent. Using these
weights we form progressively bigger clusters by gluing the ones with lower weight together in a
continuous process, which we call cluster filtration. The important new aspect in this algorithm
is that the filtration process is designed to statistically distinguish an essential biological signal,
encoded in the positive weight, from noise. In this way, filtrations enable us to handle and interpret
the usually vast interaction information, which is currently only fully characterized for double and
triple mutants; cf. [10, 11].

To describe the strength of our approach, we consider fitness landscapes for microbiome-
modified Drosophila flies. We then describe similarities and differences to previous approaches.
More precisely, the data set we inspect in this work consists of Drosophila flies prepared with
up to five different bacterial species in their gut. We then view each bacterial combination as a
genotype. In this way, the genotope is given by a 5-dimensional cube. The fitness landscapes we
consider are defined by daily fecundity (referred to as fec), time to death (ttd) and development
time (dev) mappings. For each such fitness landscape we study the induced regular subdivision
and describe their properties in the language of clusters and cluster filtrations. To compare the
epistatic information between fitness landscapes we use cluster partitions. Our results show that
cluster filtrations detect interactions when these are present in the sense of [10, 11]. Addition-
ally, we locate statistically relevant and previously undetected epistatic information. Comparing
our findings with previous studies confirms that cluster filtrations can also be used to strengthen
existing analysis and prompt new possible conclusions in interaction networks. Cluster partitions
and their filtrations are a new mathematical idea, and we hope that this will find applications also
beyond Drosophila microbiome data.

1.2 Mathematical background and terminology

Our approach relies on the theoretical framework for revealing epistatic interactions in genetic
systems given in [10, 11], and we use the same terminology. The theory of regular subdivisions is
developed in the 2010 monograph by DeLoera, Rambau, and Santos [39].

1.2.1 Genotopes and their regular subdivisions

We consider a fixed n-dimensional convex polytope P in Rn. That is, P is the convex hull of
finitely many points and we will assume that P affinely spans the entire space. A point v ∈ P for
which there exists an affine hyperplane which meets P only in v is called a vertex of P . The set of
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vertices, denoted as V , forms the unique minimal set which generates P as the convex hull. Our
second ingredient is a height function on the vertices, which is any function h : V → R that assigns
a real number to each vertex of P .

We will be particularly interested in the case where V = {0, 1}n, and P = [0, 1]n is the
n-dimensional unit cube. Following the approach of [10, 11] we call [0, 1]n the genotope of an
n-biallelic system. The vertices in {0, 1}n are identified with binary strings of length n called
genotypes. In the biological applications we have in mind, the points in the genotope correspond
to the allele frequencies in a population; cf. Section 1.2.2 below. Height functions then correspond
to traits, such as reproductive fitness of an organism or other experimental measurements —also
called phenotypes— on the genotypes of the n-biallelic system.

The set of lifted points
V (h) := {(v, h(v)) | v ∈ V }

generates a polytope P (h) := convV (h) in Rn+1. We will assume that the height function h is
nontrivial in the sense that the lifted polytope P (h) has full dimension n+1. By construction, the
points in V (h) are precisely the vertices of P (h). In general, there are three types of facets of P (h):
if ν is an outward normal vector on the facet F , then F is called an upper/vertical/lower facet of
P (h) if the (n+1)-st coordinate of ν is positive/zero/negative. It may happen that there are no
vertical facets, but there are always upper and lower facets. The upper facets form a polyhedral
ball sitting in the boundary complex of the lifted polytope P (h). Projecting them back to P ,
by omitting the last coordinate, yields a polyhedral subdivision S = S(V, h) of P . A polyhedral
subdivision of P is a finite family of polyhedra, whose elements we call the cells of the subdivision,
such that each face of a cell is a cell, and the intersection of any two cells is a (possibly empty)
cell. Those subdivisions which are induced by a height function are called regular ; cf. Definition
2.3.1 and Lemma 2.3.11 in [39]. A polyhedral subdivision for which all cells are simplices is called
a triangulation. Triangulations induced by a height function are generic in the following sense. If
each value of the height function is chosen at random (e.g., uniformly in a fixed interval) then the
induced regular subdivision is a triangulation almost surely.

The height function h is called a fitness landscape in [10, §3]. The genotope subdivision S(V, h)
is known as the shape of the fitness landscape h. Geometric properties of these shapes of fitness
reflect interactions among organisms or genotypes. In the biological setting we have in mind, height
functions are given by certain fittings of replicated measurements. Depending on the nature of the
data, these fittings can, for instance, be means, medians or modes of the observed measurements,
as well as expected values of nonparametric density estimators, described as in [58, Chapter 9].
As such we can assume that the height functions are generic, so they induce regular triangula-
tions of the n-cube [0, 1]n. In the concrete computations below, we consider means of replicated
measurements.

Before we continue with our exposition, let us consider an example which we will revisit later.
This is about the smallest nontrivial case which arises.

Example 1.2.1. We consider a 2-biallelic system, and so the genotope is the unit square P =
[0, 1]2. Its four vertices 00, 10, 01 and 11 form the set V ; here, 01 is shorthand notation for the
point with coordinates (0, 1). Assume that some measurement gives the height function h which
reads

h(00) = 53.25 h(10) = 46.65 h(01) = 43.16 h(11) = 43.48 . (1.2)

The lifted polytope P (h) is a 3-dimensional simplex (a.k.a. tetrahedron). In this case there are
two upper and two lower facets; no vertical ones. Figure 1.3 shows the upper facets of P (h) and
the resulting genotope subdivision S(V, h). The latter is a triangulation with two maximal cells,
indicated in green and red.

Remark 1.2.2. Most polytopes admit triangulations which are not regular, i.e., not induced by
any height function; cf. [39, Theorem 6.3.11] for examples of non-regular triangulations of [0, 1]n
for n ≥ 4. While the triangulations of interest here will always be regular, the algorithmic methods
discussed below generalize to the nonregular setting.
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Figure 1.3: Upper facets of the lifted polytope [0, 1]2(h) and the induced regular triangulation
S({0, 1}2, h).

1.2.2 Fittest populations

Again we consider the genotypes V = {0, 1}n of an n-biallelic system. A map p : V → R is a
(relative) population if it attains only nonnegative values which sum to one. This yields a point

ρ = ρ(p) :=
∑
v∈V

p(v)v

in the genotope [0, 1]n, which is the allele frequency vector. Its coordinate ρi describes the prob-
ability for the population p to have allele 1 in its i-th locus. The set of all relative populations,
denoted as ∆V , is a simplex of dimension 2n − 1.

Now we add the height function h : V → R to the picture. For a fixed allele frequency vector
w ∈ [0, 1]n this gives rise to the linear program

maximize h · p
subject to p ∈ ∆V and ρ(p) = w .

(LP(h,w))

The coordinates of the vector p are the variables to be determined. If h and w both are generic
then LP(h,w) has a unique optimal solution, the fittest population p∗ = p∗(h,w), and this a vertex
of the polytope

∆V,w := {p ∈ ∆V | ρ(p) = w} ,

which is contained in the 2n-dimensional vector space RV . The condition ρ(p) = w is equivalent
to n linear equations, one for each coordinate of the allele frequency vector w. It follows that the
fittest population p∗ is the convex combination of at most n+ 1 vertices of ∆V , and the projection
ρ(p∗) = w gives rise to a representation of w = λ1v1 + · · ·+ λn+1vn+1, with λi ≥ 0 and

∑
λi = 1,

as the convex combination of at most n + 1 genotypes v1, . . . , vn+1 ∈ V . These genotypes are
precisely the vertices of the unique simplex s of S(V, h) which contains w. The genericity of h
implies that S(V, h) is a triangulation, while the genericity of w implies that the simplex s is
unique. The optimal value of LP(h,w) is h · p∗ =

∑
λi(h(vi)). In this way we obtain the piecewise

linear function
h∗ : [0, 1]n −→ R

w 7−→ h · p∗(h,w)
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on the genotope. Now the regions of linearity of h∗ coincide with the maximal cells of the regular
triangulation S(V, h).

Applying our methods to measurement data will almost always establish generic height func-
tions, and thus the relevant polyhedral subdivisions will almost always be triangulations.
Remark 1.2.3. For every fitness landscape h there are two shapes. One shape is induced by the
upper facets of the convex hull P (h), the other by the lower facets. Considering simultaneously
both shapes might be advisable. However, previous approaches [10, 11] adopted the convention of
considering upper facets in the definition of a regular subdivision, see also [64]. This convention
is consistent with modelling the fitness of a population via the linear program LP(h,w), which is a
maximization problem.

With a few straightforward technical adjustments, such as phrasing fitness in terms of a mini-
mization problem, all our results also hold using lower facets.

1.2.3 The dual graph of a subdivision and its complexity

Let S be a polyhedral subdivision of some n-dimensional polytope P . Two maximal cells of S are
adjacent if they share a common (n− 1)-dimensional cell. This adjacency relation induces a graph
structure as follows: the nodes are the maximal cells (of dimension n), and an edge connects two
nodes if the two cells are adjacent. This is known as the dual graph of S, and we denote it by
Γ(S). Notice that Γ(S) is always connected. The edges of Γ(S) are the dual edges of S.

The lemma below gives essential complexity bounds in the case of most interest to us. Let us
denote the minimal number of maximal cells of any triangulation of [0, 1]n by k∗(n).
Lemma 1.2.4. Let S be a triangulation of the unit cube [0, 1]n, and let k be the number of nodes
of Γ(S). Then

2n − n ≤ k∗(n) ≤ k ≤ n! . (1.3)
The lower bound is attained if and only if Γ(S) has no cycles. Moreover, the number of dual edges
is at most k(n+ 1)/2− n · k∗(n− 1) < (n+ 1)!.
Proof. The first part of the claim is a special case of [39, Theorem 2.6.1]. For the second part,
observe that each n-simplex is adjacent to at most n + 1 other simplices as this is the number of
its facets. Yet S induces a triangulation on each of the 2n facets of [0, 1]n. Therefore, at least
2n · k∗(n − 1) of the k(n + 1) cells of dimension n − 1 in S lie in the boundary of [0, 1]n. These
(n−1)-cells are contained in a unique maximal one. We arrive at the estimate of at most

k(n+ 1)− 2n · k∗(n− 1) ≤ (n+ 1)!− 2n(2n−1 − n+ 1)

incident pairs of nodes and edges of Γ(S). Dividing by two gives the upper bound on the number
of dual edges.

For n = 3 we get 23 − 3 = 5 as the lower bound in (1.3), and 3! = 6 as the upper bound.
Both bounds are tight; i.e., there are triangulations of [0, 1]3 with five and six facets, respectively.
While, for n = 4, the lower bound in (1.3) is only 24− 4 = 12 we have k∗(4) = 16; cf. [39, Example
6.3.14]. To determine the exact lower bound k∗(n) for n ≥ 8 is a difficult open problem; cf. [39,
§6.3.3] and Table 1.1 for an overview.

Table 1.1: The minimal number k∗(n) of maximal cells of a triangulation of [0, 1]n.

n 1 2 3 4 5 6 7 8
k∗(n) 1 2 5 16 67 308 1493 ≤ 11 944
2n − n 1 2 5 12 27 58 121 248

2nn!
(n+1)(n+1)/2 1 1.54 3 6.87 17.78 50.78 157.5 524.41

The proof of Lemma 1.2.4 is based on the interplay between the size of a triangulation and
the volumes of its maximal cells. This can be carried further to derive bounds which are better
asymptotically. The key ingredient is Hadamard’s famous problem of giving an upper bound for
the determinant of a matrix with given entries; cf. [21] for a survey. In our context this yields the
following.
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Lemma 1.2.5. The normalized volume of any simplex spanned by vertices of [0, 1]n is bounded by

(n+ 1)(n+1)/2

2n .

This can be employed to derive a lower bound for k∗(n). The even better bound

2nn!
(n+ 1)(n+1)/2 ≤ k∗(n) (1.4)

arises from the Hadamard inequality for matrices with ±1 coefficients; cf. [39, §6.3.3]. Starting
from n ≥ 7 the bound (1.4) is better than the more naive lower bound 2n − n from Lemma 1.2.4.

1.3 Clusters in fitness landscapes

Our next goal is to show how epistatic information can be extracted from the dual graph associated
to the triangulation of the genotope [0, 1]n by a given height function. To do this we first associate
a positive weight with each dual edge, we then relate this information to interaction coordinates
and epistasis. Later, we introduce cluster and cluster filtrations as a new tool to filter, summarize
and analyze epistatic information.

1.3.1 Epistatic weight

As before, let P be an arbitrary n-polytope in Rn, equipped with a generic height function h. This
induces a regular triangulation S = S(V, h), where V is the vertex set of P . Let s and t be two
adjacent n-simplices in S. Then there are altogether n+ 2 vertices v1, v2, . . . , vn+2 of P such that

s = conv{v1, v2, . . . , vn+1} and t = conv{v2, v3, . . . , vn+2} .

We consider the (n+ 2)×(n+ 2)-matrix

Eh(s, t) :=


1 v1,1 v1,2 . . . v1,n h(v1)
1 v2,1 v2,2 . . . v2,n h(v2)
...

...
...

...
...

...
1 vn+2,1 vn+2,2 . . . vn+2,n h(vn+2)

 , (1.5)

where vi1, vi2, . . . , vin are the coordinates of vi ∈ Rn. The epistatic weight of the dual edge
connecting s and t is then defined as

eh(s, t) :=
∣∣detEh(s, t)

∣∣ · nvol(s ∩ t)
nvol s · nvol t , (1.6)

where nvol s is the normalized volume of s, i.e., the determinant of the submatrix N(s) obtained
from Eh(s, t) by omitting the last column and the row corresponding to the vertex vn+2 not lying
in s. Similarly, N(t) is the submatrix of Eh(s, t) obtained by omitting the last column and the
row corresponding to the vertex v1 not lying in t. The determinant of Eh(s, t) is the volume of
the convex hull of the (n + 2) vertices of s and t lifted to Rn+1 by the height function h. The
intersection s∩ t is spanned by v2, v3, . . . , vn+1 and separates the two satellite vertices v1 and vn+2.
Its normalized (n− 1)-dimensional volume nvol(s∩ t) coincides with the n-dimensional normalized
volume of a pyramid over s ∩ t with height 1.

The epistatic weight eh(s, t) vanishes if the lifted point configuration of s ∪ t with respect to
h lies in a hyperplane and is positive otherwise. If the denominator of (1.6) is one, we say that
the simplices s and t are unimodular. One then says that a triangulation is unimodular, if all its
simplices are unimodular.

For λ > 0, the scaled height function λh over the scaled genotope λP provides the same
combinatorial data, i.e., the same labeled maximal cells. The factor nvol(s ∩ t)/(nvol s · nvol t) in
(1.6) makes the epistatic weight eλh(s, t) = eh(s, t) invariant under the scaling by λ.

If h′ is non-trivial and not generic, then S ′ = S(V, h′) is a non-trivial regular subdivision. By
Lemma 2.3.4 in [39], all maximal cells of S ′ are full-dimensional, but not necessarily simplices. Let
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C and D be two maximal cells in S ′ which are adjacent, i.e., the intersection C ∩D is a common
face of codimension one. A maximal collection of points v1, v2, . . . , vn+2 is called a bipyramid in
the dual edge (C,D) of S ′ if v1, . . . , vn+1 are affinely independent vertices of C and v2, . . . , vn+2
are affinely independent vertices of D. In this way a bipyramid spans a pair (s, t) of adjacent
n-simplices contained in the union of C and D, and s∩ t ⊆ C ∩D. For each such pair (s, t) one can
form the matrix Eh′(s, t) as in (1.5), and find the corresponding epistatic value eh′(s, t) via (1.6).
To define eh′(C,D), we take the mean over all eh′(s, t) where (s, t) runs through the bipyramids
in the dual edge (C,D).

Example 1.3.1. We continue Example 1.2.1 where P = [0, 1]2, and h is given by (1.2). The
induced triangulation has precisely two maximal cells. The dual graph has a single edge connecting
these two cells. We compute the epistatic weight

eh({00, 10, 11}, {00, 01, 11}) =

∣∣∣∣∣∣∣∣det


1 0 0 53.25
1 1 0 46.65
1 0 1 43.16
1 1 1 43.48


∣∣∣∣∣∣∣∣ ·
√

2 ≈ 9.786 . (1.7)

Notice that the denominator in (1.6) is one. The factor
√

2 is the one-dimensional volume of the
shared face conv({00, 11}). For this 2-locus system, the computation (1.7) thus agrees with the
usual epistasis formula of [10, Example 3.7] up to the factor

√
2, which does not depend on h:

ε(00, 11, 10, 01) := h(00) + h(11)− h(10)− h(01) .

Biologically, the non-vanishing of the epistatic weight means that the additive epistatic assumption
is violated: the fitness of the double mutant is higher than what one would expect by knowing the
fitness of the single mutants and the wild type.

Remark 1.3.2. Since we did not fix orderings of the vertices of s and t, the matrix Eh(s, t) is
only defined up to row reordering. However, our approach solely rests on the epistatic weights from
(1.6); taking absolute values here makes those values independent of any ordering.

Let us now summarize the biological information encoded in the dual graph valued by the
epistatic weight. First, each node in Γ(S) corresponds to an (n + 1)-tuple of genotypes that can
be realized as the support of a fittest population, i.e., of an optimal solution of LP(h,w) for some
w. In this sense, we can state (by a slight abuse of language) that each edge of Γ(S) describes the
union of genotypes occurring in two fittest populations. This union consists of n + 2 genotypes
with n genotypes shared by the two fittest populations and where the remaining two are satellites.
The edges incident to a given node s in Γ(S) thus encode exactly those genotypes which together
with n genotypes of s form a fittest population in the above sense.

Finally, the epistatic weight associated with an edge e = {s, t} of Γ(S) measures how far the
supporting genotypes of the two adjacent fittest populations s and t are away from being affinely
dependent. In this sense, eh(s, t) can be seen as a deformation of the usual statistical correlation
notion, see the discussion in Section 1.4. The non-vanishing of the epistatic weight of e thus means
that knowing the fitness of the genotypes supported by the fittest population s does not allow us
to deduce the fitness of the satellite genotype not in s.

1.3.2 Cluster partitions and epistatic filtrations

Let Γ′ be a spanning subgraph of the dual graph Γ = Γ(S) of the subdivision S. Spanning means
that Γ′ has all the nodes of Γ but some dual edges may be missing. We call a connected component
of Γ′ a Γ′-cluster. Further, we call the partition of the nodes of Γ into Γ′-clusters the Γ′-cluster
partition of S. That is, a cluster partition is an additional combinatorial structure imposed on S
by the choice of the spanning subgraph Γ′.

Our next goal is to define a filtration process on S by a sequence of nested cluster partitions. For
this, consider a threshold value θ, where θ ≥ 0. The specification of a threshold value defines a not
necessarily connected subgraph, Γ(θ), of Γ by deleting those dual edges whose normalized epistatic
weight exceeds θ. The Γ(θ)-clusters and the Γ(θ)-cluster partition are shortened to θ-clusters and
the θ-cluster partition, respectively.
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The intuition behind these concepts comes from the following. Consider two height functions,
h′ and h′′, on the vertices of P such that h′ is not generic and such that h′′ is a small perturbation.
More precisely, we assume that there is a positive number ε such that |h′′(v)| < ε for all v ∈ V .
Our assumption on h′ means that S(V, h′) is not a triangulation. We call h′′ sufficiently generic for
h′ if h′+h′′ is generic, i.e., S(V, h′+h′′) is a regular triangulation. Note that it does not suffice to
require h′′ to be generic: e.g., if h′ is generic, then −h′ is generic, too, but their sum h′+(−h′) ≡ 0
is not. Now θ-cluster partitions can detect the perturbation by h′′ in the following sense.

Theorem 1.3.3. For every height function h′ there are positive numbers ε and θ such that the
following holds: If h′′ is sufficiently generic for h′ and additionally satisfies |h′′(v)| < ε for all
v ∈ V , then each maximal cell of S(V, h′) corresponds to exactly one θ-cluster of the triangulation
S(V, h′ + h′′).

Proof. First assume that h′ is generic, and thus the partition S = S(V, h′) induced by h′ is a
triangulation. Pick ε > 0 sufficiently small such that for |h′′(v)| < ε we have S(V, h′ + h′′) =
S(V, h′). That is, h′ and h′+h′′ lie in the same secondary cone, defined as in [39, Def. 5.2.1]. Such
an ε can always be found since the secondary cone of a triangulation is an open subset of Rm−n−1,
where m is the cardinality of V ; cf. [39, §5.2.1]. Then the claim in the generic case becomes trivial,
e.g., with θ = 0. The maximal cells of S(V, h′) are precisely the 0-clusters of S(V, h′ + h′′).

A second case arises when S(V, h′) has only one maximal cell given by the entire polytope
conv(V ). Then we can pick ε > 0 arbitrary and make θ sufficiently large such that the θ-cluster
partition of S(V, h′ + h′′) comprises a single cluster.

Now we consider the only interesting case where h′ is not generic and S := S(V, h′) is a non-
trivial regular decomposition of V induced by h′ which is not necessarily a triangulation. Here we
pick ε1 > 0 small enough such that for all sufficiently generic h′′ with |h′′(v)| < ε1 the subdivision
S(V, h′ + h′′) is a triangulation which refines S. Such an ε always exists as shown for instance
in Lemma 2.3.15 in [39]. This claim can equivalently be expressed by saying that h′ lies in the
boundary of the (full-dimensional) secondary cone of S ′ := S(V, h′ + h′′).

Let C andD be two maximal cells in S which are adjacent. Let (s, t) be the adjacent n-simplices
spanned by a bipyramid contained in the union of C and D, and s ∩ t ⊆ C ∩D. Let eh′(s, t) be
the corresponding epistatic value given by (1.6). Now we let

θ := 1
2 ·min {eh′(s, t) | s ∪ t bipyramid in some dual edge of Γ(S)} , (1.8)

which is the minimum taken over a finite set of non-zero positive real numbers and thus θ > 0.
Let (s′, t′) be adjacent n-simplices in the triangulation S ′. We call the dual edge (s′, t′) local if s′
and t′ are contained in some maximal cell of S. Now, the maximal cells of S belong to a θ-cluster
partition of S ′ if and only if

eh′+h′′(s′, t′)
{
< θ if (s′, t′) is local dual edge
≥ θ otherwise .

(1.9)

We observe that setting h′′ ≡ 0 yields eh′+h′′(s′, t′) = 0 for any local dual edge (s′, t′) since then
the n + 2 vertices of s′ ∪ t′, lifted by h′ = h′ + 0 are contained in some hyperplane. Hence, since
the determinant is multilinear (and thus continuous), we can find ε2 > 0 such that all h′′ with
|h′′(v)| < ε2 satisfy eh′+h′′(s′, t′) < θ for all local dual edges (s′, t′). An explicit expression for
ε2 can be given in terms of the maximal minors of the matrix formed from all vertices lifted by
h; we leave the details to the reader. In this way, all local dual edges of S ′ are contained in a
θ-cluster. For a nonlocal dual edge (s′, t′) of S ′ observe that s′ ∪ t′ is a bipyramid in some dual
edge of S and eh′(s′, t′) > θ holds by definition (1.8). Again by continuity of eh′+h′′ in h′′ we get
an ε3-neighbourhood of h′ where all nonlocal dual edges of S ′ have epistatic weight lying above θ
and form singleton θ-clusters. Setting ε := min(ε1, ε2, ε3) settles the claim.

Example 1.3.4. We further continue the Example 1.2.1. Suppose h′ ≡ 0 is the null function and
h′′ is the height function h given in (1.2). Then S({0, 1}2, h′) is the trivial subdivision of [0, 1]2 by
itself, and S({0, 1}2, h′ + h′′) is the triangulation shown in Figure 1.3. The epistatic weight of the
single edge is 9.786 as determined in (1.7). That is, for all θ ≥ 9.786 the cluster partition recovers
the trivial subdivision of the unit square [0, 1]2.
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Varying θ yields a stepwise coarsening of S into larger and larger clusters which we call the
cluster filtration of S. For sufficiently small values of θ (including, e.g., θ = 0) the θ-cluster
partition simply consists of the partition of the node set of Γ into singletons. On the other hand,
for sufficiently large values of θ the θ-cluster partition consists of a single cluster which comprises
all the nodes. Letting the threshold value vary between these two extremes provides a simple
descriptor of the “biologically relevant signal” in the data and allows us to separate epistatic
information from noise. Therefore, we also use the name epistatic filtration instead of “cluster
filtration”. For an illustration of an epistatic filtration see Section 1.3.4.

A threshold value θ is critical if the cluster partition S(θ) differs from S(θ− ε) for all ε > 0. In
this case, θ is necessarily the epistatic value of some dual edge, and S(θ) has strictly fewer clusters
than S(θ−ε). However, the converse is not true: there may exist dual edges whose epistatic values
are not critical. An open interval (θ0, θ1) with critical thresholds θ0 < θ1 is regular if it does not
contain any critical value.

From a more geometric perspective we could also use dihedral angles instead of our epistatic
weights. This approach would yield a theoretical result similar to Theorem 1.3.3. Here, we refrain
from doing so since in Section 1.4, we will take statistical information into account. There the height
of a vertex is actually a mean value, and we do not see a natural way to extend the statistics to
dihedral angles.

Remark 1.3.5. The tight span of an arbitrary n-dimensional polyhedral subdivision S (of some
point configuration) is a CW-complex S∗ whose 0-skeleton is formed by the maximal cells of S;
cf. [71]. The k-cells of S∗ correspond to those subsets of the maximal cells of S∗ which share a
common cell of dimension n−k. In this way, the 1-skeleton of S∗ agrees with the dual graph Γ(S).
If the subdivision is regular, its tight span is a polyhedral complex. Assigning epistatic weights
to all cells of S∗, not only to the edges, would open up a way to study more involved epistatic
interactions.

Remark 1.3.6. The regular subdivision S of any (rational) point configuration is dual to a tropical
hypersurface [105, §3.1]. In this way our epistatic filtrations, which are defined on the dual graph
Γ(S), impose an additional structure on the 1-skeleton of any tropical hypersurface.

Remark 1.3.7. The graph Γ(S) equipped with the epistatic weights induces a finite metric space
(on the facets of S), via taking shortest paths. Considering Vietoris–Rips filtrations then allow
for studying the geometry of the lifted points by means of persistent homology [48]. It could be
interesting to investigate if there is any connection with the epistatic filtrations.

Studying the ramifications into higher-dimensional epistatic weights, tropical geometry or per-
sistent homology looks very promising, but all these topics are beyond the scope of this article.

1.3.3 Computing epistatic filtrations

We now explain how to compute the epistatic filtration from the vertex set V ⊂ Rn and the height
function h : V 7→ R as input. In the first step we need to determine the list of maximal cells of
the regular subdivision S = S(V, h); the standard encoding of each maximal cell is as a subset
of V . Determining S is achieved by computing the convex hull of the lifted points in Rn+1 and
selecting the facets with upward pointing normals. Computing convex hulls is a standard problem
in computational geometry [136] with a somewhat delicate complexity status [136, Open problem
26.3.4]; see [3] for a recent survey from a practical point of view.

The input to the second step is the list of maximal cells of S as subsets of V ; let k denote their
number. If V are the vertices of the n-cube then k ≤ n! by Lemma 1.2.4. The k maximal cells
form the nodes of the dual graph Γ(S). To find the edges one can check the

(
k
2
)
pairs of maximal

cells, looking for those pairwise intersections which are maximal with respect to inclusion. This
yields the edges of Γ(S). In the most relevant special case where S is a triangulation, the maximal
pairwise intersections are precisely those of cardinality n. So the total cost for this step amounts
to O(k2n). Let ` denote the number of dual edges. If V are the vertices of the n-cube then
` ≤ k(n+ 1)/2− n(2n−1 − n+ 1) < (n+ 1)! by Lemma 1.2.4. Depending on the method used for
the first step, this second step of finding the dual graph may not be necessary, since some convex
hull algorithms produce it as a side product [136, 3].
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The third step is to find the ` epistatic weights, each of which is gotten by computing three
determinants of size at most (n+ 2)×(n+ 2). This adds up to a total cost of O(`n3). Sorting the
dual edges ascendingly by epistatic weight takes O(` log `).

In the fourth and final step we create the epistatic filtration as a rooted binary tree. We iterate
over the thresholds, which define cluster partitions. On the way we maintain a forest where each
tree represents one cluster in the corresponding partition. Initially, each tree in the forest is an
isolated node, one for each maximal cell of S. For each dual edge (s, t) with the next epistatic
weight θ we merge clusters of S(θ − ε) into clusters of S(θ). Then we remove the trees T and T ′
containing the leaf nodes corresponding to s and t and add one tree with a new root and T, T ′ as
children. By convention, the left child should always be smaller than the right child with respect
to some linear order. In our calculations, we use the lexicographic order on the underlying vertex
sets. The process ends with the dual edge of highest epistatic weight, and we obtain a rooted
binary tree that is uniquely determined up to the choice of the order. The running time of this
step is linear in the number of nodes in the resulting tree. Any binary tree has less than twice as
many nodes as leaves; hence the cost adds up to O(k).

Altogether we arrive at a complexity of

O(k2n+ `n3 + ` log `+ k) = O(k2n+ `n3)

for the steps two through four. Note that ` log ` ≤ k2n in view of ` ≤ kn by Lemma 1.2.4. The
first step, which requires a convex hull computation, is the bottleneck.

We implemented our method in polymake [56, 3], and this was used to produce all computa-
tional results presented in this article.

1.3.4 An extended example

To illustrate the concepts described in Section 1.3, let P be a 3-dimensional cube contained in
[0, 1]5 with vertex set V (3) given by

0 = 00000 ; 1 = 10000 ; 5 = 00001 ; 9 = 10001 ;
4 = 00010 ; 8 = 10010 ; 15 = 00011 ; 21 = 10011 .

The vertex labels with their corresponding bit strings (e.g., 4=00010 means that vertex 4 corre-
sponds to bit string 00010) are the genotypes listed in Table 1.9 and are viewed as points in R5.
Consider a height function ttd(3) assigning the following values to the eight vertices of P :

0 7→ 53.25 ; 1 7→ 46.65 ; 5 7→ 43.16 ; 9 7→ 43.48 ;
4 7→ 48.3 ; 8 7→ 47.79 ; 15 7→ 43.53 ; 21 7→ 40.71 .

(1.10)

Specifically, this height function ttd(3), is given by restricting the time to death fitness landscape
defined over the whole [0, 1]5 to the 3-cube with vertices as above. Details about this fitness
landscape and others are given in Section 1.6.1.

The induced triangulation S := S(V (3), ttd(3)) has six maximal cells:

A = {0 1 8 9} ; B = {0 5 9 15} ; C = {0 8 9 15} ;
D = {8 9 15 21} ; E = {0 4 8 15} .

A basic combinatorial invariant of an n-dimensional polyhedral complex is its f -vector f =
(f0, f1, . . . , fn), where fk is the number of k-dimensional cells. Here we have f(S) = (8, 18, 16, 5).
For the tight span, which agrees with the dual graph, we get f(S∗) = (5, 4).

A direct computation shows that the normalized volume of the cell D is two whereas all the
other cells have normalized volume one. This makes S a non-unimodular triangulation. Its dual
graph Γ(S) is shown in Figure 1.4. For each edge in Γ(S) we can compute the epistatic weight
using the determinant expression from (1.6). For instance, the 3-simplices C and D are adjacent
in S, and we have

ettd(3)(C,D) =
∣∣detEttd(3)(C,D)

∣∣ · √3
2 ≈ 0.113 .

This computation reveals that ttd(3) almost induces a linear dependence among the lifted points
indexed by vertices of C and D, i.e. {(v, ttd(3)(v))|v ∈ C∪D}. The computations in Example 1.4.4
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also provide no evidence against the vanishing of ettd(3)(C,D). Therefore, we can assume that the
additive assumption holds, thus knowing the fitness of the genotypes belonging to C allows us to
deduce the fitness of the unique (satellite) genotype of D which is not in C.

A similar computation of the epistatic weights of the remaining dual edges yields the epistatic
filtration in Table 1.4. The rows are sorted with increasing epistatic weight.

A

B

EC

D

0.113

3.888

5.326

6.660

Figure 1.4: Dual graph Γ(S) of S induced by the restricted height function ttd(3). Each dual edge
is labeled with its epistatic value. The shading of the colors indicates the nesting of the cluster
partitions.

Table 1.2: Epistatic filtration arising from the restricted height function ttd(3). The color of the
circle to the right of each cluster partition agrees with Figure 1.4.

θ (s, t) S(θ)
0 − A|B|C|D|E
0.113 (C,D) A|B|CD|E
3.888 (C,E) A|B|CDE
5.326 (B,C) A|BCDE
6.660 (A,C) ABCDE

The initial cluster partition, for θ = 0, consists of five connected components, one for each
maximal cell of S:

S(0) = A|B|C|D|E ,

From Table 1.2 we see that, among the four dual edges of Γ(S), the dual edge (C,D) is the one of
lowest epistatic weight. This is the second row of Table 1.2 and we have

S(0.113) = A|B|CD|E .

After three more steps for θ = 3.888, 5.326, 6.660 we finally arrive at the trivial cluster partition

S(6.660) = ABCDE ,

obtained from joining the adjacent simplices A and C. In this triangulation all dual edges are
critical. That is, the cluster partitions arising from the epistatic weights of all dual edges are
pairwise distinct.
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Figure 1.5: Visualizing the epistatic filtration from Table 1.2. The black ticks mark the pairs (θ, `),
where θ is a critical threshold, and ` is the corresponding level. The cluster partitions are drawn
consistently through all levels. The color of the circle to the right of each cluster partition agrees
with Figure 1.4. The colors of the bars represent various levels of statistical significance (p < 0.05:
blue, 0.05 ≤ p < 0.1: purple, p ≥ 0.1: red); cf. Section 1.4.

The epistatic filtration is the sequence of nested cluster partitions which arises from increasing
the threshold values. The whole process can be visualized as follows. For each critical threshold
θ we mark the point (θ, `) in a planar diagram, where ` is the level, i.e., the number of clusters
in the θ-cluster partition. To the right of the marking (θ, `) we draw the ` clusters as intervals
such that the length of each interval is proportional to the size of the corresponding cluster. Any
two subsequent levels are consistently drawn in the following sense, suppose that θ and θ′ are two
subsequent critical thresholds; i.e., the open interval (θ, θ′) is regular. Let ` and `′ be the θ- and
θ′-level, respectively. Then the θ-cluster partition refines the θ′-cluster partition or, conversely,
the θ′ cluster partition arises from joining clusters. That is, ` > `′. To see which clusters get
joined one can compare the two sequences of intervals starting from the left (or from the right).
The length of each interval on level `′ indicates how many clusters of level ` get joined. Such a
consistent way of drawing an epistatic filtration always exists since the nested cluster partition of
all levels form a tree. By labeling the clusters on the top level, such a diagram encodes the entire
epistatic filtration.

1.4 Significant cluster partitions

The purpose of our epistatic filtrations is to help separate “biologically interesting” epistatic in-
formation from noise; a geometric view is expressed in Theorem 1.3.3. Our next goal is to detect
cluster partitions which are significant in a statistical sense. To do so, in Section 1.4.2 we develop
a hypothesis test for edges in the dual graph Γ(S).

1.4.1 Error analysis and standard deviation

Let P and V be as before. Throughout, for each v ∈ V let Xv be a positive (absolutely) continuous
random variable. Assume the first two moments of Xv exist and are given by E

(
Xv

)
and σXv =√

E
(
X2
v

)
−
(
E(Xv)

)2. We view X = (Xv), for v ∈ V , as a vector of random variables and
assume that each realization of X is a generic height function on V with probability one. Let
s = conv{v1, . . . , vn+1} and t = conv{v2, . . . , vn+2} be two simplices which are spanned by points
in V and which share a common codimension-1-cell. These are candidates for two adjacent maximal
cells of S(V,X); such cells are simplices almost surely, as X is generic with probability one. In
addition, let EX(s, t) be the matrix from (1.5) with h replaced by X. We write Ei = EX(s, t)i for
the matrix obtained from EX(s, t) by deleting the i-th row and the last column. Note that the
coefficients of Ei are ones or coordinates of vertices in V . In particular, those coefficients do not
depend on X or any other entries of the last column of the matrix given in (1.5).

Remark 1.4.1. The epistatic weight was defined in the situation where the pair (s, t) forms a dual
edge of some subdivision. Yet the formula (1.6) makes sense even without that assumption, i.e.,
for an arbitrary bipyramid.
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To simplify the exposition, in the following claim let N := nvol(s ∩ t)/(nvol s · nvol t) and let
i, j ∈ {1, n+ 2}. Let X ∼ N (µ, σ2), then Y = |X| ∼ FN (µ, σ2) is again defined by µ and σ2 and
is called a folded normal distribution, see [145]. The density function of Y is given by:

f(y |µ, σ2) = 1√
2πσ2

(
e−

1
2σ2 (y−µ)2

+ e−
1

2σ2 (y+µ)2)
. (1.11)

Proposition 1.4.2. We set
λi := (−1)n+iN det(Ei) .

First, the expectation of the random variable eX(s, t) satisfies∣∣∣∣ n+2∑
i=1

λi E
(
Xvi

)∣∣∣∣ ≤ E
(
eX(s, t)

)
≤

n+2∑
i=1

∣∣λi∣∣E(Xvi

)
,

and its variance satisfies

σ2
eX(s,t) ≤

n+2∑
i=1

(
N det(Ei)σXvi

)2
+ 2N2

∑
1≤i<j≤n+2

|det(Ei · Ej)| σXviσXvj .

(1.12)

Second, if the n+ 2 random variables Xvi are mutually independent then

σ2
eX(s,t) ≤

n+2∑
i=1

(
N det(Ei)σXvi

)2
. (1.13)

Third, if in addition to independence the relation Xvi ∼ N (E(Xvi), σ2
Xvi

) holds for all i, then
eX(s, t) has folded normal distribution

FN

(
n+2∑
i=1

λi E
(
Xvi

)
,
n+2∑
i=1

(
λi σXvi

)2 )
. (1.14)

Proof. For a fixed ordering of the n + 2 vertices in s ∪ t, the numbers λi are real constants. To
deduce the first claim, use the Laplace expansion of EX(s, t) along the last column and the linearity
of the expected value. The left inequality follows by Jensen’s inequality |E(Y )| ≤ E(|Y |), [132,
Thm. B.17 in §.B.2.2]. The right inequality follows from the triangle inequality and since Xvi are
assumed to be positive. The approximations of the variance of eX(s, t) in (1.12) follow by the
bilinearity of the covariance, Jensen’s inequality and the Cauchy-Schwarz inequality [132, Thm.
B.19].

If all Xvi and Xvj are mutually independent, then cov
(
Xvi , Xvj

)
= 0 in (1.12), and this

settles (1.13) in our claim.
The last claim follows, e.g., from the convolution property of the density functions of Xvi , see

[132, §. B.1.3] or [38, Prop.7.17]. Passing to the absolute value implies that the distribution of
eX(s, t) is the folded normal distribution, defined by the claimed parameters.

1.4.2 Significance test for the epistatic weight

Assume that the distribution mean µ = E
(
eX(s, t)

)
is unknown. To test if µ is zero or not, we set up

a one-sided test of significance. The null hypothesis is µ = 0, and the alternative hypothesis is µ >
0. To define the test statistics, for each v ∈ V, consider a sample xxx(v) =

(
x1(v), x2(v), . . . , xL(v)

)
of size L of independent and equally distributed realizations of Xv. The number L may vary
across v ∈ V . Let x̄ : V → R be defined by the sample mean x̄v at each v ∈ V . Let X̄v be
the random variable evaluating to x̄. Since the sample size L is large enough, we assume that
X̄v ∼ N (x̄v, sx̄v ), for each v ∈ V , and where sx̄v =

√∑L
i=1(xi(v)− x̄v)2/

√
L. Let s and t be two

adjacent simplices of the triangulation induced by x̄. We define the test statistics for the dual edge
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(s, t) to be z = ex̄(s, t). Assuming pairwise independence of Xv for v ∈ V , we deduce that the
random variable Z evaluating to z satisfies Z ∼ FN (0, σ2

eX̄(s,t)) under the null assumption.
The validity of the null hypothesis is then deduced by computing the p-value of the test:

P (Z ≥ z) =
∫ ∞
z

√
2

σeX̄(s,t)
√
π
e
− 1

2

(
y

σe
X̄

(s,t)

)2

dy , (1.15)

where the integrand is the density function given in (1.11) and σeX̄(s,t) is estimated as in Prop.
1.4.2. We call the dual edge (s, t) statistically significant if its p-value fulfills p < 0.05. In this case
the null hypothesis can be rejected. Setting the significance level at 0.05 is a common choice; cf.
[50].

Naturally higher epistatic weights are more likely to be significant. However, this does not
always have to be the case as also the standard deviation of eX̄(s, t) is taken into consideration in
this test.
Remark 1.4.3. Our assumptions on Z are plausible for the data analyzed in this paper, see Section
1.6.1. At the same time, these assumptions are permissive in terms of significance. Moreover,
computing epistatic weights can be of interest, if the lifted point configuration is given by mutually
independent random variables, as well as correlated random variables.

1.4.3 Clusters from significant epistatic weights

We now explain how the notion of significant epistatic weights makes the cluster filtration process
discussed in Section 1.3.2 into a biologically meaningful clustering algorithm. For this let S(V, X̄)
be as above an induced regular triangulation of an n-polytope P equipped with a height function
X̄. Again we assume that X̄ assigns to each vertex of P the sample mean over a number of
experimental measurements.

We saw that varying the parameter θ partitions S into clusters ordered according to their
epistatic weight. This can be used to discard noisy signal from relevant data. However, that
approach does not take into account the dispersion of the experimental measurements. To account
for this, we propose to combine the epistatic filtrations with the significance test discussed above.
More precisely, we suggest to compute all epistatic weights for the dual graph of S, contract the
edges whose epistatic weight does not reach significance at p < 0.05 and unify the labels of the
affected vertices. We call the remaining graph the significant subgraph Γsig(S) of Γ(S). This
induces significant clusters and the significant cluster partition Ssig. Now the epistatic filtration
process from Section 1.3.2 and the algorithm from Section 1.3.3 carry over.

1.4.4 Continuation of the extended example

We now illustrate the above definitions on the example in 1.3.4. Consider again the regular
triangulation S = S(V (3), ttd(3)) induced by the height function ttd(3) from (1.10). Figure 1.4
shows the dual graph of S; the five maximal cells are labeled A,B,C,D,E. The value for each
vertex is the sample mean over a large number of outcomes of replicated experiments. Therefore
we now write X̄ instead of ttd(3). The standard error of the mean for the eight vertices is given
by:

0 7→ 1.450 1 7→ 1.498 5 7→ 1.136 9 7→ 0.988
4 7→ 1.010 8 7→ 1.098 15 7→ 1.156 21 7→ 0.907 .

Assuming independence, for each dual edge in Γ(S) we now compute bounds on the associated
standard deviation using (1.13). For instance, for eX̄(C,D) consider

EσX̄ (C,D) =


1 0 0 0 1.450
1 0 1 1 1.098
1 1 0 1 0.988
1 1 1 0 1.156
1 1 1 1 0.907

 .

This yields

σeX̄ (C,D) ≤
( 5∑
i=1

(
N det(EσX̄ (C,D)i)σX̄(vi)

)2)1/2

≈ 2.586
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with N := nvol(C ∩ D)/ nvol(C) · nvol(D). Processing the other epistatic weights in a similar
fashion yields the values in Table 1.3. The rows are sorted by increasing epistatic weight. The
bounds on the p-values in the last column are determined by (1.15).

Table 1.3: Significance of epistatic weights. The dual edge in bold is asserted to reach significance
for p < 0.05.

(s, t) eX̄(s, t) σeX̄ (s, t) ≤ p-value ≤
(C,D) 0.113 2.586 0.965
(C,E) 3.888 2.698 0.149
(B,C) 5.326 2.844 0.061
(A, C) 6.660 3.309 0.044

In this example, the significant cluster partition Ssig arising from the restricted height function
X̄ reads A|BCDE.

Remark 1.4.4. Since (1.13) only provides an upper bound on the p-value, it is useful to also
investigate dual edges and epistatic weights whose p-value bounds are near 0.05. In this way, the
dual edge (B,C) with epistatic weight 5.326 and p-value bound 0.061 comes into focus. It would
be interesting to check if additional experiments involving the five genotypes 0, 5, 8, 9, 15 in B ∪ C
lead to a higher level of significance or not.

1.4.5 A synthetic experiment

In this section we describe one synthetic experiment on a quantitative analysis of Theorem 1.3.3 in
relationship with the concept of statistical significance from Section 1.4. The purpose is to evaluate
the extent to which changes in the height function for a single vertex impact the overall epistatic
filtration.

We consider the vertex set V = {0, 1}5 of the regular 5-cube and a height function η which takes
every vertex to height 5 except for the wild type, which is mapped to 5+η0 for some strictly positive
real number η0. The wild type corresponds to the vertex 0; cf. Table 1.9. The combinatorial type
of the regular subdivision S(V, η) does not depend on the precise value η0 > 0. In fact, there are
precisely two maximal cells, s0 and t, and S(V, η) is a vertex split in the terminology of [69]. The
cell s0 is a simplex spanned by the wild type and its five neighbors (i.e., the standard simplex with
the origin and the five unit vectors as its vertices). The other cell, t, is not a simplex; instead this
is the convex hull of all 31 vertices different from the wild type. The intersection of s0 and t is the
regular 4-simplex spanned by the five unit vectors. So the dual graph Γ(S(V, η)) has two nodes
connected by the single dual edge (s0, t).

Our experiments depend on the choice of η0 and a second strictly positive real number σ. To
each vertex v ∈ V we assign a normally distributed random variable Xv with zero mean and
standard deviation σ. From 100 realizations per vertex we compute the resulting sample means
and standard errors. This gives rise to a generic perturbation

η′ = η + (X̄v | v ∈ V )

of the height function η by adding the sample means. For the resulting triangulation S(V, η′) we
compute the epistatic weights and the p-values (based on the standard errors computed). These are
all the ingredients required for the significance test via (1.13). We start with a height function η at
level 5 since the mean values X̄v from the perturbation may be negative; note that the perturbed
height function η′ needs to be strictly positive in order to qualify for the analysis via the p-values
from (1.15).

We only consider perturbed height functions η′ such that the simplex s0 is a maximal cell of
S(V, η′), just as in S(V, η). For σ sufficiently small compared to η0 this holds almost always. If
s0 is a maximal cell then s0 is adjacent to some unique maximal cell of S(V, η′). We call the
corresponding dual edge the bridge of Γ(S(V, η′)).

Now, for a fixed pair (η0, σ) we repeat the above random construction 100 times, and we count
how often the bridge is significant with respect to p = 0.05 and p = 0.1. In all the cases that
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Figure 1.6: Percentage of significant bridges depending on σ, for various choices of η0 and p.

we saw the simplex s0 was a maximal cell, and the bridge existed. Further all perturbed height
functions η′ were nonnegative. Figure 1.6 shows the result for η0 ∈ {0.8, 1.0, 1.2} and 0.1 ≤ σ ≤ 2.

The experimental results displayed in Figure 1.6 can be summarized as follows: for any fixed
choice of η0 and p the percentage of triangulations with the bridge present approximates a threshold
function in the parameter σ. If σ is sufficiently low then the bridge is always significant; this
observation can be seen as a variation of Theorem 1.3.3 for this particular setup. The lower the
value of η0, the steeper the corresponding curve in Figure 1.6. For larger values of σ random
fluctuations kick in, and this makes the curve less smooth.

This experiment provides evidence that our concept of significant cluster partitions is suitable
to weed out small statistical fluctuations in the height function.

1.5 Epistasis, interaction coordinates and circuit interactions

In this section we compare the cluster partition to previous approaches. To do so, we now recall
the biological phenomenon of epistasis as described in the work of Beerenwinkel et al. [10].

1.5.1 Interaction spaces

Let P be any n-dimensional convex polytope with vertex set V . Let RV be the real vector space
of all height functions on V . Let LV be the subspace of RV consisting of all height functions on V
for which the lifted polytope has dimension n. The interaction space is the quotient

IV :=
(
RV /LV

)∗
.

Elements of IV are linear forms

λ : RV −→ R

h 7−→
∑
v∈V

αvh(v) ,

with vanishing restriction λ|LV . In the following, we call elements of IV interactions. The dimen-
sion of the interaction space is dim(IV ) = dim(RV )− dim(LV ) = |V | − dim(P )− 1.

When V is the vertex set of an n-cube, a basis for IV is given by the interaction coordinates
defined up to multiplication by a scalar as:

uh,w : RV −→ R

h 7−→
∑
v∈V

(−1)〈v,w〉h(v) ,

24



where v, w ∈ {0, 1}n are vertices of P and w is assumed to have at least two coordinates being 1.
When n = 2, and a height function is fixed, then uh,11 = ε(00, 01, 10, 11) as defined in Example

1.3.1. A possible generalization of the usual epistasis formula arises by considering circuit inter-
actions, as defined in [10]. These are linear forms contained in the interaction space with support
given by a minimal affinely dependent set of vertices of P . Notice that if the height function h
induces an affine function on s∪ t, then the lift of a set of affinely dependent points is also affinely
dependent. Some examples of circuit interactions and possible epistatic interpretations are given
in [10, Example 3.8, 3.9].

1.5.2 Epistatic weight interactions

In this work, a new distinguished set of interactions inside IV are given by the linear forms:

RV −→ R
h 7−→ eh(s, t) ,

where s and t are adjacent n-simplices with vertex set in V . When h is generic, s and t are given
as maximal adjacent simplices in the induced regular triangulation S(V, h).

When V = {0, 1}2, there is a unique epistatic weight which agrees with the absolute value of
the linear form uh,11. This is the only case where the epistatic weight agrees with the notion of
interaction coordinates. Now we will summarize the relation to circuit interactions.

Let v1, v2, . . . , vn+2 be vertices in V such that s = conv{v1, . . . , vn+1} and t = conv{v2, . . . , vn+2}
are two n-simplices. Then the n + 2 vertices in s ∪ t are affinely dependent and contain a unique
circuit, i.e., a minimal affinely dependent set; cf. [39, §2.4.1]. Furthermore, eh(s, t) ∈ IV is a circuit
interaction in the sense of [10].

1.6 Epistasis in Drosophila melanogaster fruit fly microbiomes

In this section, we use the above approach and analyze existing Drosophila microbiome data. In
particular, we demonstrate similarities with and differences from the methods used in [10, 11] and
locate interesting epistatic information where the previous approach is less conclusive.

1.6.1 Data

The data we use is published in Tables S1 in [61, p.30, Supplemental Material(SM)]. It consists
of experimental measurements of Drosophila flies inoculated with all possible combinations of five
bacterial species naturally present in the gut of wild flies. This dataset is remarkably complete as
all 32 bacterial combinations are considered.

The data set includes measurements of time to death (days), daily fecundity (progeny/day/female)
and development time (days). All measurements were repeated many times to give a mean and
standard error for each measurement and bacterial combination. More details on the replications
of measurements and experimental settings can be found in the Materials and Methods Section of
[61, SM]. In this work, we consistently referred to the above fitness landscapes by the labels ttd,
fec and dev. When restricting one of these fitness landscapes to smaller sub-genotopes, we add a
superscription, as in Example 1.3.4.

1.6.2 Epistatic weight approach

With the approach developed in this paper one asks for general epistatic information in genotype–
phenotype mappings. Contrary to previous studies, epistasis here is understood as a general
deviation from additivity rather than a specific manifestation of it, quantified for instance by
marginal, conditional, 2-, 3-, 4- or 5-way interactions, see [10] for the terminology.

In the specific Drosophila data set, the methods developed in this work allowed us to distin-
guish certain bacterial combinations with vanishing epistatic weights from statistically significant
ones. Bacterial combinations with low epistatic weights are not expected to have synergistic or
antagonistic interactions between the species, while such effects are expected for bacterial combi-
nations with statistically significant epistatic weight. Filtrations then provide clusters of bacterial
combinations, based on adjacent relationships between simplices in a triangulation. Clusters thus
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determine interesting regions inside the genotope, which we propose should be the targets for
further analysis. An example of such an analysis is given in Section 1.6.3.

Our method intentionally involves a relatively small number of tests, limited by the adjacency
relations among maximal simplices in the triangulated genotope and are specific to each phenotype
mapping. In Section 1.4 we provided statistical tools for the data analysis. These tools also facil-
itate comparisons with previous approaches. In [61] a number of specific epistatic formulas were
classified as significant. These epistatic formulas include standard tests, contextual tests, interac-
tion coordinates and circuits, as described in [61, §5, Math Supplement, SM, pp.62]. Significance
was tested as described in [61, §6, Math Supplement, pp.69 SM]. The results of these tests and
their significance was reported in Figure 4 A-E, [61, Main text].

Comparing our work with the results of these tests reveals important differences between the
epistatic formulas of [61] and the epistatic filtrations examined here. Examples are given below.

1.6.3 The case of the entire [0, 1]5

Filtrations for the fitness landscapes of [0, 1]5 defined for the time to death (ttd), daily fecun-
dity (fec) and development time (dev) provide insights on the different cluster patterns arising
but revealed a unique significant epistatic weights. The significant dual edge in ttd is given by
ettd(s, t) ≈ 5.435 with a p-value of approximatively 0.0376. This epistatic weight arises over the
bipyramid with vertex set s = {0, 9, 12, 14, 15, 28} and t = {0, 9, 12, 14, 27, 28}.

This fact has two biological implications. First, it shows that we have evidence against one 5-
dimensional affine relation between the ttd measurements for 15 and 27, given the ttd measurements
for s ∪ t\{15, 27}.

Second, we observe that s∪ t = {0, 9, 12, 14, 15, 27, 28} is not a minimal affinely dependent set.
Yet, the subset {14,15,27,28} is a minimal affinely dependent set, which gives rise to the linear
form

ωh =
(
h(00101)− h(00011)

)
−
(
h(11101)− h(11011)

)
. (1.16)

This linear form cannot be written as a 3-cube circuit interaction, and allows for a new biological
interpretation. More specifically, the linear form of equation (1.16), compares the effect of two
pairs of Acetobacter bacteria (pasteurianus with orientalis, resp. tropicalis with orientalis) in the
joint presence, resp. absence, of both Lactobacillus bacteria. Evaluating equation (1.16) at ttd
gives |ωttd| = 1

2 | detEttd(s, t)| ≈ 4.86 with a p-value of approximatively 0.038. Thus, there is
evidence to believe that the above form of marginal epistasis is non-additive. This fact refines our
first conclusion. By the discussion in Section 1.5.2, there is no other circuit interaction on s ∪ t.

Significant outcomes for other linear forms on [0, 1]5 studied in the context of epistasis are also
possible. For instance, results of recent work imply that for ttd, 124 tests out of 936 resulted to
be significantly different than zero, (p < 0.05), see [61, §5, Math Supplement, SM]. These 936
tests include: epistatic weights on all 2-faces in [0, 1]5, all 20 circuit interactions, a-` in [10], for all
3-faces in [0, 1]5, and all interaction coordinates for the k-faces of [0, 1]5, for k ∈ {3, 4, 5}, defined
as in Section 1.5.1.

Remark 1.6.1. In [61, §6, Math Supplement, pp.69 SM] the discovery rate was corrected by
Benjamini–Hochberg multiple testing correction method [12]. Correction methods of this type aim
at decreasing the number of significant outcomes by varying the p-values of the tests. They are
typically used when a large number of tests are made, making false discoveries more likely. Due
to the fact that there are very few significant epistatic weights, here we refrained from applying
similar correction methods.

1.6.4 The case of parallel facets inside [0, 1]5

Consider the interaction coordinate:

uh,0∗101 = h(0∗000) + h(0∗010) + h(1∗000) + h(0∗101)
+ h(1∗010) + h(0∗111) + h(1∗101) + h(1∗111)
− h(0∗001)− h(0∗100)− h(0∗011)− h(1∗001)
− h(1∗100)− h(0∗110)− h(1∗011)− h(1∗110) ,

(1.17)
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where ∗ ∈ {0, 1}. The two values of ∗ determine so called four-way interactions, [10], on parallel
facets of [0, 1]5. If ∗ = 0, the above interaction is considered in the absence of the Lactobacillus
brevis bacteria, otherwise the bacteria are present. The computations of [61, §5, Math Supplement,
SM, pp.62] determine that uh,0∗101 is simultaneously significant for h given by fec, dev and ttd,
only in the absence of the Lactobacillus brevis bacteria.

To further inspect the effect of inoculating Lactobacillus brevis bacteria in Drosophilas, we
compute the fitness landscape defined by the vertices in the summands of uh,0∗101 for both values
of ∗ and for h given by fec, dev and ttd. Results are shown in Figure 1.7. For ttd and fec, different
cluster patterns appear on the parallel facets. The presence of significant epistatic weights in the
absence of the Lactobacillus brevis bacteria confirms that these bacteria significantly affect epistatic
interactions. Further dissecting the significant epistatic weights, as above, as well as the filtration
steps, restricts the set of possible bacterial combinations responsible for this effect. For dev, all
epistatic weights are near zero. As a consequence, this phenotype produced no significant dual
edges (all bars are red in Figure 5). We conclude that the epistatic filtration effect of Lactobacillus
brevis on the Drosophila microbiome is most pronounced for the phenotypes of fec and ttd.

This result is in contrast to the local significance tests computed in [61, §5, Math Supplement,
SM, pp.62]. Out of those tests, 15 interactions can be seen to be simultaneously significant for
fec and dev. Thus, the two approaches to discover epistatic interactions reveal different biologi-
cal insights, and it remains for future empirical investigations to determine which approach best
captures the underlying biological phenomena.

1.6.5 The case of three-cubes inside [0, 1]5

Table 1.4: Circuit interactions and interaction coordinates for ttd(3) on the 3-cube of Example
1.3.4 which reached significance for p < 0.05.

Interaction |Z| σ2
Z p-value folded Vertices

a 6.09 2.57 0.02 0 1 4 8
c 6.92 2.58 0.01 0 1 5 9
e 5.32 2.40 0.03 0 4 5 15
m 9.10 3.72 0.01 0 1 4 5 21
ς 7.69 3.83 0.04 0 1 8 9 15
u111 9.23 3.32 0.01 0 1 5 9 4 8 15 21

To make the comparison between the two methods more explicit, consider again Example
1.3.4. As before, let ttd(3) denote the time to death fitness landscape restricted to the genotypes
defining the 3-dimensional cube in [0, 1]5 with vertex set V (3) = {0, 1, 4, 5, 8, 9, 15, 21}. On the one
hand, following [10] we know that there are 20 circuit interactions of interest and four interaction
coordinates for such a 3-cube. Out of these 24 tests, six reached statistical significance for p <
0.05 and assuming that the test statistic satisfies |Z| ∼ FN (µ, σ2

Z). These significant tests are
reported in Table 1.6.5. Using the terminology of [10], these significant tests capture three forms
of conditional epistasis (for a, c, e), an interaction coordinate (u111, the three-way interaction) and
the circuit interactions (m, ς , two bipyramids in the 3-cube).

On the other hand, out of the four epistatic weights for S(V (3), ttd(3)), computed in Example
1.3.4, only ettd(3)(A,C) reached statistical significance; cf. Section 1.4.4. As before, we have

ςttd(3) = | detEttd(3)(A,C)| .

1.6.6 Parallel epistatic weights

In Section 1.6.4 we studied epistatic effects arising from the presence or the absence of one type of
bacteria. Here we discuss a different way to address the same.

The presence or the absence of the kth type of bacteria defines one pair of parallel facets,
which induce a partition on the full vertex set. We denote these facets as F = ∗ · · · ∗0∗ · · · ∗ and
F ′ = ∗ · · · ∗1∗ · · · ∗, respectively; the 0 and 1 are in the kth position. The map, φ, which sends a

27



0 1 2 3 4 5 6

5

10

15

20

25

epistatic weight

#
cl
us
te
rs

(a) ttd restricted to ∗0∗∗∗

0 1 2 3 4 5 6

5

10

15

20

25

epistatic weight

#
cl
us
te
rs

(b) ttd restricted to ∗1∗∗∗
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(c) dev restricted to ∗0∗∗∗
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(d) dev restricted to ∗1∗∗∗
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(e) fec restricted to ∗0∗∗∗
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(f) fec restricted to ∗1∗∗∗.

Figure 1.7: Filtrations of distinguished four-faces. The colors of the bars represent various levels
of statistical significance ( p < 0.05: blue, 0.05 ≤ p < 0.1: purple, p ≥ 0.1: red); cf. Section 1.4. .
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Figure 1.8: Left: Epistatic filtration of the triangulation S(V (3), ttd(3)) of the 3-cube ∗00∗∗. Right:
Parallel epistatic weights in ∗10∗∗. The colors of the bars represent various levels of statistical
significance (p < 0.05: blue, 0.05 ≤ p < 0.1: purple, p ≥ 0.1: red); cf. Section 1.4.

vertex v = (v1v2 . . . vn) ∈ {0, 1}n to v′ = (v′1v′2 . . . v′n) where

v′i =
{

1− vk if i = k

vi otherwise

is a reflection which exchanges F and F ′. Restricting any generic height function on the entire cube
[0, 1]n to the two facets induces two triangulations, of F and F ’, respectively. Now we can compare
the epistatic weights of the bipyramids arising from the triangulation of F with the epistatic weights
of their images in F ′ under the reflection map φ. We call these parallel epistatic weights. Note
that the bipyramids in F ′, in general, are not bipyramids of the triangulation induced on F ′.
Still we can compute their epistatic weights, assess their statistical significance and compare; cf.
Remark 1.4.1. Note that this also applies to any face of the n-cube, as faces of cubes are cubes.

Example 1.6.2. In Example 1.3.4, we investigated the epistatic filtration arising from restricting
the height function ttd to the 3-face ∗00∗∗. Now we can view ∗00∗∗ as a facet of the 4-cube ∗∗0∗∗,
and ∗10∗∗ is the parallel 3-face. Its vertices are

2 = 01000 ; 6 = 11000 ; 12 = 01001 ; 18 = 11001 ;
11 = 01010 ; 17 = 11010 ; 24 = 01011 ; 28 = 11011 .

Restricting the height function ttd yields

2 7→ 52.175 ; 6 7→ 50.81 ; 12 7→ 46.79 ; 18 7→ 43.1 ;
11 7→ 45.46 ; 17 7→ 43.37 ; 24 7→ 44.97 ; 28 7→ 46.15 .

(1.18)

Thus with k = 2, the bipyramid (C,D) in the triangulation S(V (3), ttd(3)) of ∗00∗∗ gets reflected
onto a bipyramid with vertex set {2, 17, 18, 24, 28}. The epistatic weight of this bipyramid restriction
to the 3-cube, i.e., after deleting the second and third coordinate, is the parallel epistatic weight of
ettd(3)(C,D) for the 3-face ∗10∗∗. It is given by∣∣∣∣∣∣∣∣∣∣

det


1 0 0 0 52.175
1 0 1 1 43.37
1 1 0 1 43.1
1 1 1 0 44.97
1 1 1 1 46.15


∣∣∣∣∣∣∣∣∣∣
·
√

3
2 ≈ 11.289 . (1.19)

The epistatic filtration of ttd (3) and the parallel epistatic weights in ∗10∗∗ are visualized in
Figure 1.8, where the bipyramid (C,D) is processed in level 4. Note that the image on the left of
that same figure is a horizontally squeezed version of Figure 1.5.

Figure 1.9 shows (the epistatic filtration of) the triangulation of ∗0∗∗∗ induced by ttd (upper
left), the parallel epistatic weights in ∗1∗∗∗ (upper right), the triangulation of ∗1∗∗∗ (lower right)
and the parallel epistatic weights in ∗0∗∗∗.
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Computing circuit interactions and interaction coordinates, as describe in Section 1.6.5, on
∗10∗∗ yields the significant results reported in Table 1.5. As above, there is a unique circuit in-
teraction with support given by the points {2, 17, 18, 24, 28}. Its projection to the 3-cube is given
by

nh = h(011) + h(101) + h(110)− h(000)− 2h(111) .

Evaluating nh at ttd (3) agrees with the determinant of Equation (1.19), up to sign.

Table 1.5: Parallel circuit interactions and interaction coordinates for ttd(3) on the 3-face of ∗10∗∗
which reached significance for p < 0.05.

Interaction |Z| σ2
Z p-value folded Vertices

b 4.87 2.23 0.029 12 18 24 28
e 4.90 2.50 0.050 2 11 12 24
f 10.49 2.68 0.000 6 17 18 28
i 9.77 2.66 0.000 2 11 17 28
j 5.62 2.52 0.026 6 12 17 24
k 8.17 2.60 0.002 2 12 17 28
l 7.22 2.58 0.005 6 11 18 24
n 13.04 3.41 0.000 2 17 18 24 28
o 8.89 3.50 0.011 6 11 12 17 28
q 12.09 3.66 0.001 6 11 12 18 28
u011 15.39 3.66 0.000 2 6 11 12 17 18 24 28

1.6.7 The case of parallel squares inside [0, 1]5

Fixing two bacterial species, α and β, defines a 2-dimensional face of [0, 1]5, i.e., a square. This is
the set of four points in {0, 1}5 where the α- and β-coordinates vary, and all others are set to zero.
Now a third bacterial species, γ, defines a parallel square in [0, 1]5, where the α- and β-coordinates
vary, and the γ-coordinate is set to one. Altogether, α, β and γ define a 3-dimensional face of
[0, 1]5. We want to investigate the impact of the presence of γ on the epistatic interaction between
α and β. This amounts to comparing the epistatic weights of the two subdivisions induced on the
parallel pair of squares.

Empirically, we know that the Lactobacillus bacteria compete with one another and Ace-
tobacters also compete with one another, while Acetobacters form mutualist relationships with
the Lactobacilli. We therefore focus on the combinations α ∈ {1, 2}, β ∈ {3, 4, 5} and γ ∈
{1, 2, 3, 4, 5} − {α, β}. This means that, for each height function, we obtain 2 · 3 · (5 − 2) = 18
faces which are spanned by α, β and γ. Each face is a row in each of the three Tables 1.6, 1.8 and
1.7 in the appendix; these tables show the result of our analysis for the three height functions ttd,
dev and fec, respectively. The results can also be compared with [61, Figure S.13, p20, SM].

Each table shows the normalized volumes of the 3-dimensional simplices obtained from the four
vertices of each square lifted by the respective height function; here ω0 is the normalized volume
of the simplex arising from the square with γ-coordinate zero, and ω1 corresponds to γ-coordinate
equal to one. The epistatic weights of the single dual edges of the two induced subdivisions on the
two parallel squares are the absolute values |ω0| and |ω1|. Yet, in order to track the effect of adding
γ to α and β, here we take the orientation into account. The sign entry is positive if qualitatively
the epistasis is the same, and it is negative if the effect gets reversed. The final column lists the
relative increase or decrease (multiplicatively); i.e., a value of 1 would mean that the effect stays
the same while larger values mean that the effect gets stronger.

Here are a few observations that we find particularly noteworthy.
1. There are some cases where adding γ seems to almost annihilate the epistasis, meaning that

bystander species can disrupt an interacting pair.

2. A distinguished combination appears to be (α, β) = (2, 4): for which the time to death and
the development time results match, suggesting the interaction affects these two traits in the
same manner.
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3. Another interesting case is (α, β) = (1, 5): adding γ weakens the epistasis for both time to
death and development time.

So far, we have not determined biological explanations for these facts, however, the analysis defines
the direction of our ongoing experimental investigations. Our results underscore the importance of
context in determining microbiome interactions, which is to say that interacting groups of species
care a great deal about their neighbors.

1.7 Discussion and outlook

In this paper, we develop a new approach to studying properties of fitness landscapes via regular
subdivisions of convex polytopes, building on and extending previous work of Beerenwinkel et
al. (2007). Our approach offers a concise combinatorial way of processing and clustering epistatic
information in higher dimensions and is based on statistical principles. In Theorem 1.3.3 we present
first provable robustness considerations. The main new tools we propose are cluster partitions and
cluster filtrations in weighted graphs associated to fitness landscapes. To show that our methods
are capable of quantifying epistasis with a higher resolution than previously done, we investigated
an existing Drosophila microbiome data set. Among other results, we provide new forms of epistasis
together with their biological interpretations.

To biologically validate our first promising findings, more biological properties of coexisting
bacterial species, completing for instance Table 1.9, have to be determined. Moreover, further
research has to be undertaken to connect the approaches discussed in this paper to a variety of
other methodologies used within this theory, summarized for instance in [41]. Finally, although
our methods are fully scalable, it is a matter of time until potential computational bottlenecks can
fully be addressed.
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1.8 Additional computations, figures and information for Chapter 1

Table 1.6: Parallel squares in [0, 1]5 for ttd.

α = 1, β = 3 ω0 ω1 sign |quot|
γ=2 3.560 0.485 + 0.136
γ=4 3.560 −1.590 − 0.447
γ=5 3.560 −4.500 − 1.264

α = 1, β = 4 ω0 ω1 sign |quot|
γ=2 6.090 −0.725 − 0.119
γ=3 6.090 0.940 + 0.154
γ=5 6.090 −3.140 − 0.516

α = 1, β = 5 ω0 ω1 sign |quot|
γ=2 6.920 −2.325 − 0.336
γ=3 6.920 −1.140 − 0.165
γ=4 6.920 −2.310 − 0.334

α = 2, β = 3 ω0 ω1 sign |quot|
γ=1 0.715 3.790 + 5.301
γ=4 0.715 1.620 + 2.266
γ=5 0.715 8.090 + 11.315

α = 2, β = 4 ω0 ω1 sign |quot|
γ=1 1.765 8.580 + 4.861
γ=3 1.765 2.670 + 1.513
γ=5 1.765 2.190 + 1.241

α = 2, β = 5 ω0 ω1 sign |quot|
γ=1 4.705 −4.540 − 0.965
γ=3 4.705 −2.670 − 0.567
γ=4 4.705 4.280 + 0.910
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Table 1.7: Parallel squares in [0, 1]5 for dev.

α = 1, β = 3 ω0 ω1 sign |quot|
γ=2 0.712 0.083 + 0.117
γ=4 0.712 −0.208 − 0.293
γ=5 0.712 −0.208 − 0.293

α = 1, β = 4 ω0 ω1 sign |quot|
γ=2 0.795 0.167 + 0.210
γ=3 0.795 −0.125 − 0.157
γ=5 0.795 −0.083 − 0.105

α = 1, β = 5 ω0 ω1 sign |quot|
γ=2 0.754 −0.208 − 0.276
γ=3 0.754 −0.167 − 0.221
γ=4 0.754 −0.125 − 0.166

α = 2, β = 3 ω0 ω1 sign |quot|
γ=1 0.337 −0.292 − 0.865
γ=4 0.337 0.042 + 0.124
γ=5 0.337 0.125 + 0.371

α = 2, β = 4 ω0 ω1 sign |quot|
γ=1 0.163 0.792 + 4.860
γ=3 0.163 0.458 + 2.814
γ=5 0.163 0.417 + 2.558

α = 2, β = 5 ω0 ω1 sign |quot|
γ=1 0.080 1.042 + 13.095
γ=3 0.080 0.292 + 3.667
γ=4 0.080 0.333 + 4.190
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Table 1.8: Parallel squares in [0, 1]5 for fec.

α = 1, β = 3 ω0 ω1 sign |quot|
γ=2 1.152 −0.577 − 0.501
γ=4 1.152 1.008 + 0.876
γ=5 1.152 −0.336 − 0.292

α = 1, β = 4 ω0 ω1 sign |quot|
γ=2 0.172 0.823 + 4.784
γ=3 0.172 0.029 + 0.167
γ=5 0.172 −0.099 − 0.578

α = 1, β = 5 ω0 ω1 sign |quot|
γ=2 0.508 −1.138 − 2.241
γ=3 0.508 −0.980 − 1.929
γ=4 0.508 0.236 + 0.465

α = 2, β = 3 ω0 ω1 sign |quot|
γ=1 0.547 −1.183 − 2.163
γ=4 0.547 1.701 + 3.111
γ=5 0.547 0.146 + 0.267

α = 2, β = 4 ω0 ω1 sign |quot|
γ=1 0.577 −0.074 − 0.128
γ=3 0.577 −0.577 − 1.000
γ=5 0.577 0.065 + 0.113

α = 2, β = 5 ω0 ω1 sign |quot|
γ=1 0.739 −0.908 − 1.229
γ=3 0.739 0.338 + 0.458
γ=4 0.739 1.250 + 1.693
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Table 1.9: Numbering of the genotypes.

number genotype comment
0 0 0 0 0 0 germ-free
1 1 0 0 0 0 Lactobacillus plantarum
2 0 1 0 0 0 Lactobacillus brevis
3 0 0 1 0 0 Acetobacter pasteurianus
4 0 0 0 1 0 Acetobacter tropicalis
5 0 0 0 0 1 Acetobacter orientalis
6 1 1 0 0 0 bacterial growth decreases: competition
7 1 0 1 0 0 bacterial growth increases: synergy
8 1 0 0 1 0 synergy
9 1 0 0 0 1 synergy
10 0 1 1 0 0 synergy
11 0 1 0 1 0 synergy
12 0 1 0 0 1 synergy
13 0 0 1 1 0 competition
14 0 0 1 0 1 competition
15 0 0 0 1 1 competition
16 1 1 1 0 0
17 1 1 0 1 0
18 1 1 0 0 1
19 1 0 1 1 0
20 1 0 1 0 1
21 1 0 0 1 1
22 0 1 1 1 0
23 0 1 1 0 1
24 0 1 0 1 1
25 0 0 1 1 1
26 1 1 1 1 0
27 1 1 1 0 1
28 1 1 0 1 1
29 1 0 1 1 1
30 0 1 1 1 1
31 1 1 1 1 1
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(a) Triangulation of the 4-cube ∗0∗∗∗ induced
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(b) Parallel epistatic weights in ∗1∗∗∗ corre-
sponding to ttd-triangulation of ∗0∗∗∗.
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(c) Parallel epistatic weights in ∗0∗∗∗ corre-
sponding to ttd-triangulation of ∗1∗∗∗
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(d) Triangulation of the 4-cube ∗1∗∗∗ induced
by restricting ttd.

Figure 1.9: The ttd-triangulations of ∗0∗∗∗ and ∗1∗∗∗ with their parallel epistatic weights; see
Figures 1.7a and 1.7b. The f -vector for ∗0∗∗∗ reads (16, 63, 103, 76, 21) and (21, 29, 9) for its tight
span. The f -vector for ∗1∗∗∗ reads (16, 65, 110, 84, 24) and (24, 36, 14, 1) for its tight span. The
colors of the bars represent various levels of statistical significance (p < 0.05: blue, 0.05 ≤ p < 0.1:
purple, p ≥ 0.1: red); cf. Section 1.4.
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Figure 1.10: Epistatic filtration of the triangulation S({0, 1}5, ttd) with 111 maximal cells. The
colors of the bars represent various levels of statistical significance (p < 0.05: blue, 0.05 ≤ p < 0.1:
purple, p ≥ 0.1: red); cf. Section 1.4. The f -vector for S({0, 1}5, ttd) reads (32, 204, 540, 702, 446,
111) and (111, 220, 137, 28, 1) for its tight span.
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Master regulators of evolution and the microbiome in
higher dimensions

This chapter is based on the preprint “Master regulators of evolution and the microbiome in
higher dimensions” [46] by Holger Eble, Michael Joswig, Lisa Lamberti and William Ludington.
The preprint can be found on the arXiv with the number 2009.12277.

2.0 Abstract

A longstanding goal of biology is to identify the key genes and species that critically impact evolu-
tion, ecology, and health. Network analysis has revealed keystone species that regulate ecosystems
[118] and master regulators that regulate cellular genetic networks [134, 147, 32]. Yet these studies
have focused on pairwise biological interactions, which can be affected by the context of genetic
background [153, 98] and other species present [61, 28, 16, 62] generating higher-order interactions.
The important regulators of higher-order interactions are unstudied. To address this, we applied a
new high-dimensional geometry approach that quantifies epistasis in a fitness landscape [47] to ask
how individual genes and species influence the interactions in the rest of the biological network.
We then generated and also reanalyzed 5-dimensional datasets (two genetic, two microbiome). We
identified key genes (e.g. the rbs locus and pykF) and species (e.g. Lactobacilli) that control the
interactions of many other genes and species. These higher-order master regulators can induce or
suppress evolutionary and ecological diversification [5] by controlling the topography of the fitness
landscape. Thus, we provide mathematical intuition and justification for exploration of biological
networks in higher dimensions.

2.1 Introduction

Master regulators are nodes in a network that control the rest of the network. They are often
identified as highly connected nodes. For example, in eukarotic cells, the protein, target of ra-
pamycin (TOR), interacts with many other proteins and pathways to control cellular metabolism
[158]. Identifying TOR unified studies in many areas of cell biology, including regulation of tran-
scription, translation, and the cytoskeleton around a central signaling pathway, with druggable
targets for therapeutics of cancer, autoimmunity, metabolic disorders, and aging [158]. Ecological
master regulators are called keystone species, a classical example being the starfish, Pisaster, which
regulates the biodiversity of intertidal zone by eating many other species [118]. Identifying these
key nodes in biological networks provides control points that can be used for instance in cancer
therapy (through TOR) or ecological restoration (through starfish).

Epistasis is a framework to quantify biological networks, specifically gene networks, in terms of
which genes (the nodes) interact and are thus connected by an edge. Constructing a gene network
using epistasis works by iteratively mutating a set of individual genes and pairs of these genes,
and then using the phenotypes of the mutants to construct the network. For instance, if genes A
and B both affect a phenotype, C, we make the single mutants a and b and the double mutant
ab. By measuring the effects on the output phenotype, e.g. fitness, it can be determined if A and
B operate in parallel to affect C (A → C and B → C) or in serial (A → B → C). These two
possibilities are differentiated based on the degree of non-additivity: if the phenotypes of a and
b add up to the phenotype of ab, the genes do not interact and thus operate in parallel. If they
are non-additive, the genes interact and thus operate in serial. More specifically, if A → B → C,
then mutants a, b, and ab will each produce the same phenotype, thus, a + b 6= ab, indicating
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non-additivity or epistasis. The concept has been applied to map pairwise connections for protein
structure [157], genetics [27, 153, 98, 32, 30], microbiomes [61], and ecology [28, 16, 62].

Epistatic interactions are important in nature [155], for instance when mutations occur [138,
90, 107] or when sex, recombination, and horizontal gene transfer bring groups of genes together
[135, 154, 153, 35, 129, 108], making multiple loci interact. Applying epistasis to genome-wide mea-
surement of pairwise genetic interactions has revealed biochemical pathways composed of discrete
sets of genes [32, 30] as well as complex traits, such as human height, that are affected by almost
every gene in the genome [103, 18]. New innovations have applied epistasis to broader data types
[163, 98] and at different scales, making epistasis a widely valuable tool. For instance, epistasis
between bacteria in the microbiome has functional consequences [125, 54, 61, 143, 122, 130] when
community assembly combines groups of species in a fecal transplant. In this case, the nodes in
the network are bacterial species. The master regulators of biological networks are identified by
their position in the network, often as nodes with a higher degree of edges than average [117].

A known challenge of biological networks is that they are high-dimensional, meaning the in-
teractions can change depending on the biological context or the genetic background [150], cf.
[95] and references therein. This is important because such networks cannot be fully captured
by pairwise interactions. Higher-order epistatic interactions are interactions that require three or
more interacting parts, for instance genetic loci. From a network standpoint, loci that affect the
interactions of many other loci play a key role in regulation of network structure.

Identifying such regulators requires a high-dimensional formulation of network structure. We
recently developed such a formulation based on epistasis of fitness landscapes [47]. Fitness land-
scapes depict biological fitness as a function of genotype space [156, 138, 90]. Sewall Wright defined
the genotype space as a hypercube with each genetic locus represented as an independent dimen-
sion [156]. Previous work formalized the fitness landscape of this genotype space and quantified
epistasis on the fitness landscape [10, 36, 35, 47]. We developed the epistatic filtration technique,
which segments the high-dimensional fitness landscape into local subregions and quantifies their
epistasis in higher dimensions, allowing a researcher to hone in on important subregions of the
landscape.

Here we develop that framework further in order to apply it to identify regulators of high-
dimensional interactions. Rather than the traditional approach of assigning significance to a gene
or species based on its pairwise interactions [118, 119, 134, 147, 32], we assign significance based on
how the presence of that gene or species influences the structure and magnitude of interactions in
the rest of the network. In order to compare interaction magnitudes across different dimensions, we
develop a dimensionally-normalized definition of epistasis. We also develop a graphical approach
to determine whether high-dimensional epistasis has lower-dimensional roots and what they are.
We then analyze four data sets for 5-dimensional genotypes. Two are genetic datasets for (i)
mutations that arose in E. coli evolution [91] and (ii) β-galactosidase antibiotic resistance [144].
Two are microbiome datasets measuring the impact of bacterial interactions on Drosophila lifespan,
with one previously published [61] and another generated here. Our framework identifies regulators
of higher-dimensional network structure in both the genetics and microbiome datasets. We find
that specific genes and bacterial species suppress interactions in the rest of the network, meaning
they regulate the higher-order network structure.

2.2 Results

2.2.1 Epistatic filtrations describe higher-dimensional biological networks

Our goal is to identify master regulators of biological interactions in higher dimensions. We use
epistasis as a measure of interactions, and in higher dimensions, these occur on a fitness landscape.
Our approach is to first measure epistasis on the high dimensional fitness landscape and then ask
how individual loci, e.g. genes, change the shape of the landscape. We use the epistatic filtration
technique to quantify epistasis on the fitness landscape. We use parallel epistatic filtrations to
quantify the changes in the landscape due to each locus.

First, we describe epistatic filtrations. Epistatic filtrations are analogous to analyzing the
drainage sectors within a watershed (see 1), which is a real physical landscape with altitude as
a function of latitude and longitude. The topography sets where water will flow. Boundaries of
a watershed are set by ridges, which enclose sectors within the watershed. These sectors feed
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tributary creeks, which join with other tributaries to form larger sectors within the watershed. We
can think of a fitness landscape as having sectors as well. In a fitness landscape, the topography
is set not by altitude but by measurements of organismal fitness as a function of genotype. The
longitude and latitude of a watershed correspond to genotypes in the fitness landscape. Because
the biological entities are discrete (i.e., a gene is either wildtype or mutant), our framework is
discrete too. We represent each gene with a separate dimension as proposed by Wright [156]. The
space of all genotypes has many dimensions, one per mutated gene [156, 95]. This high-dimensional
space is a genotype hypercube [156, 138, 90]. We next quantify the epistasis of the fitness landscape.
This requires that we define sets of genotypes to compare. We do so by segmenting the genotype
cube into sectors (see Box 1). This approach is different from previous approaches that defined
sets of genotypes called circuits that traverse paths across the landscape [10]. An advantage of
our approach is that there are orders of magnitude fewer sectors in a landscape than circuits (c.f.
Table 2.10 versus Table 2.11), reducing the search space and the associated statistical constraints
from multiple testing comparisons. These sectors are sets of adjacent genotypes in the hypercube.
Geometrically speaking, these sectors are simplices, meaning each vertex (genotype) is directly
connected to every other vertex in the set. For instance in 2D, each vertex in a triangle is connected
to the other two. To perform the segmentation, we use a triangulation. In Box 2, we illustrate how
a two dimensional fitness landscape is triangulated using the phenotypes of the genotypes, which
form a third dimension that we depict on the vertical axis. We use the topography provided by the
phenotype data to uniquely determine the ridges of the landscape. Projecting these ridges back to
the 2D genotype plane forms a triangulation of the genotypes into sectors (see Box 2). This diagram
is similar to previous illustrations of epistasis on a two-dimensional landscape (c.f. [150, 95]), but
our approach is unique in that we use the triangulation to sector the fitness landscape. Next, we
construct a network representation of the sectored genotype space to depict the pairwise adjacency
of neighboring simplices (nodes) [47]. An edge in this network indicates that two simplices are
adjacent, meaning they share a face. Next, we locate the epistasis on this network topology. Our
definition of epistasis is unique yet consistent with previous ones in lower dimensions (see Box
2). We assess the magnitude of epistasis of each pair of adjacent sectors in the triangulation by
calculating the volume spanned by the fitness phenotypes corresponding to the genotypes of the
vertices if the adjacent sectors. This definition makes the framework consistent when applying it to
higher dimensions. We next rank the magnitudes of the adjacent sectors from smallest to largest.
Plotting these merges gives an epistatic filtration (see Box 1 & 3).

To determine how an individual locus, e.g. gene or species, affects the interactions in the rest
of the network, we compare the epistasis for each pair of adjacent sectors with the locus of interest
added or removed. This parallel filtration quantifies how adding or removing a locus affects the
epistasis of the individual sectors of the high-dimensional network (see Box 4). Discovering loci
that have outsized effects on their network allows a new approach to identify master regulators
that operate in higher dimensions.

2.2.2 A volume-based definition of epistasis is valid across many dimensions

In this section, we explain the definition of epistasis that we employ throughout. We start by
explaining the 2D genotype case. With two loci and two alleles (0 or 1) at each locus, we plot
the genotypes as a unit square in the x-y plane and the measured phenotypes of each genotype on
the z-axis (Box 2a). The phenotypes thus lift the genotypes into one higher dimension, here going
from 2D to 3D. Connecting the four phenotypes gives a simplex, shown as the green polytope
in Box 2a. Depending on the relative magnitudes of the phenotypes, the green polytope can be
larger or smaller, with the perfectly additive (no epistasis) case giving zero volume (Box 2a inset).
We define epistasis as the euclidean volume of the green polytope, which in 2D is proportional to
the absolute value of the established formula for epistasis, ε = h(00) + h(11) − (h(10) + h(01))
[10]. We call our definition the epistatic volume and note that it is of one dimension higher than
the genotype space due to the measured phenotype (Box 2). This definition of epistasis based on
volume is important because it applies equally well in higher dimensions (Box 2a,b; 2.6.1), as we
discuss in the next section.
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Box 1. Conceptual introduction to epistatic filtrations.
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An epistatic filtration depicts the epistasis of a fitness landscape. By analogy with a watershed, pro-
ducing the filtration can be conceptualized in four steps: (a) the fitness landscape defines topography;
(b) the landscape is segmented into sectors based on the topography; (c) epistasis is calculated as the
shared area of adjacent sectors and displayed on a graph that depicts the adjacency relationships of
sectors; (d) the epistatic filtration depicts the rank order of epistasis magnitude in the adjacent sectors
as a set of merges. Formal definitions follow in Box 2, Box 3, and text.

2.2.3 Epistatic filtrations: The n-loci case

In the n-loci case, the genotype set is given by {0, 1}n, i.e. every genotype is encoded as a bitstring
of length n, and the genotype-phenotype assignment h is a map h : {0, 1}n → R, meaning each
vertex v in the hypercube of genotype space has an associated phenotype h(v). This is shown in
Box 2 and Box 3 which visualize the two smallest cases n = 2 and n = 3, respectively. As in
these lower dimensional cases, the lifted convex body G(n+1) ⊂ Rn+1 is given by the convex hull
of the lifted points (v, h(v)) for genotypes v ∈ {0, 1}n. The upper hull of G(n+1) consists of many
facets and, as before, removing the phenotype coordinate, h(v), from the vertices of the ridges
(see Box 2a) yields the regular triangulation S(h) of the genotype space. Every sector s of S(h) is
an n-dimensional simplex and, as such, it is spanned by n + 1 vertices v(1), . . . , v(n+1) ∈ {0, 1}n,
cf. Box 3b). Given another simplex t of S(h), the pair (s, t) describes a bipyramid if the two
are adjacent, which is true when t is spanned by vertices v(2), . . . , v(n+2) ∈ {0, 1}n. We use the
notation

{v(1)}+ {v(2), . . . , v(n+1)}+ {v(n+2)} (2.21)

for the bipyramid (s, t) in order to emphasize its satellite vertices v(1) and v(n+2). As before, the
lifted bipyramid (s, t)(n+1) ⊂ Rn+1 is the convex hull of the points (v(i), h(v(i))) for 1 ≤ i ≤ n+2 and
the epistatic weight eh(s, t) of the bipyramid (s, t), defined in equation (1.6) of Appendix 2.6.1, can
be seen as a variant of the euclidean volume of the lifted bipyramid (s, t)(n+1). Since that volume is
non-negative, there are only two cases. Either eh(s, t) = 0, which signals perfect additivity. Or we
have eh(s, t) > 0, which means that G(n+1) breaks at the ridge {v(2), . . . , v(n+1)}. In that case the
phenotype of the satellite v(1) lies below the expected value, assuming that h extends additively
from the simplex t to the whole bipyramid (s, t) = {v(1)}+ t. A similar statement applies for the
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Box 2. Definition of epistatic filtrations for a genotype space with two loci.
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(a) The biallelic, 2D genotype set has two loci, each of which can be 0 or 1: {00, 01, 10, 11}. Each
genotype gets lifted into 3D space by appending the phenotype h(v) to each genotype coordinate in the
set, v ∈ {(00), (01), (10), (11)} ⊂ R2. Connecting these lifted phenotype points forms a convex hull,
depicted as the green 3D body G(3) above the grey genotype set. The upper surface of the green body
is two green triangles, which are divided by the ridge. The euclidean volume of the 3D body G(3)

yields a measure for epistasis (c.f. [91]). Inset: A higher degree of epistasis produces a larger volume,
and lower epistasis produces a lower volume of the green body. (b) The ridge sets a triangulation of
the genotype space in grey (a.k.a. genotope [10]). This is done by removing the phenotype dimension
from the ridge vertices, which projects it back to the 2D genotype space. The ridge thus splits the
space into sectors, which are two adjacent triangles, {00, 01, 10} and {01, 10, 11}, denoted as A and
B. We note that the euclidean volume of G(3) equals the absolute value of the established formula
ε = h(00) + h(11)− (h(10) + h(01)) for epistasis in the two-dimensional case, scaled by a dimension
related constant factor. (c) The dual graph connecting the adjacent triangles A and B is trivial in 2D
as is the (d) epistatic filtration. Generalizing to higher dimensions, the triangles become simplices.
These are explained further in Box 3 for the 3D case.

other satellite v(n+2). In this case, the n + 2 genotypes of the bipyramid (s, t) form an epistatic
interaction, and the value eh(s, t) measures its strength.

Visualizing an n-dimensional polytope can be non-intuitive, but as for the 3-dimensional case,
we can visualize the topography of the epistatic landscape by forming the dual graph of the
triangulation S(h), where the nodes are n-dimensional simplices and the edged are bipyramids
formed by adjacent simplices. We then calculate the volume of each bipyramid to determine the
epistasis. We rank the bipyramids by their epistasis and depict the order with what we call an
epistatic filtration.

As in lower dimensions, this visualization of a fitness landscape, ranked by epistasis, can be
thought of intuitively like a watershed. Ridges enclose sectors that are iteratively merged with
progressively larger sectors to form the entire landscape. Epistatic filtrations break apart a high-
dimensional fitness landscape into sectors using a triangulation to define the ridges. In higher
dimensions, the sectors are n-dimensional simplices. The dimensionality of the simplices is the
dimensionality of the fitness landscape. Epistasis within these sectors is calculated using the full
dimensionality. A statistical test determines significance of each epistatic interaction. The epistatic
filtration of the fitness landscape depicts the path from smallest to largest epistasis by merging
adjacent simplices to form connected clusters. Therefore, this is not a dimensional reduction but
rather an approach that allows a global view of epistasis on a fitness landscape in higher dimensions.
This process rests on the mathematical theory of linear optimization, convex polyhedra, and regular
subdivisions [39, 47].

It is often useful to restrict the analysis to subsystems which are characterized by assuming
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Box 3. Example epistatic filtration for three loci.
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(a) The 3D genotype set forms a cube, and, as before, mapping the phenotypes onto the genotypes,
h(v), adds an extra dimension. The convex hull of the phenotypes, h(v), forms a convex body G(4)

in dimension 4, which yields ridges (see Box 2). (b) The ridges produce a regular triangulation,
S, which consists of the six tetrahedra, A, B, C, D, E and F. Epistasis is calculated from the union
of adjacent tetrahedra, which form a convex body in 4D, cartooned in blue. The blue is called a
bipyramid because it is comprised of two neighboring tetrahedra that share a face. The vertices
of the shared face are called base vertices. The unshared vertices of the two tetrahedra are called
satellites. (c) The adjacency relations of the tetrahedra give rise to a network, which is the dual
graph of S. In this graph, for instance, the edge (A, F ) refers to the bipyramid comprised of A and
F with vertices {010}+{011 , 110 , 001}+{111} eqnnum . The set {011, 110, 001} is the base where A

and F meet, and it separates the two satellites 010 and 111. Analogous to the two-loci case, appending
the h(v) phenotypes to the genotypes in (2.20) yields a 4D simplex (A, F )(4). The volume of (A, F )(4)

is the epistatic weight eh(A, F ) (see Appendix 2.6.1. Color of edges indicates statistical significance
(Legend; see Appendix for method; [47]). (d) The epistatic filtration of the genotype-phenotype
map depicts the iterative process of glueing bipyramids in a non-redundant manner, going from lowest
to highest epistatic weight. For example, rank 5 is the merge between A and F and has the lowest
epistasis, rank 4 is the merge between E and F , and so forth. The black vertical tick mark at the
left end of each row of blocks gives the epistasis added to the filtration at that rank. (e) The epistatic
filtration is analogous to merging drainage sectors in a watershed.

the presence or absence of specific genes. These subsystems correspond to faces of the fitness
cube [0, 1]n, which are cubes of lower dimensions. We denote these faces as a string of zeros,
ones and stars. For instance, 0∗∗∗∗ in Fig. 2.11 is the 4-loci subsystem where the first gene is
wildtype, and only mutations among the remaining four loci are studied. The analysis applies to
such subsystems by restricting the genotype-phenotype map, which is important in our approach
for identifying master regulators, as discussed later.
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2.2.4 Epistatic filtrations reveal higher-order structure in E. coli evolution

To illustrate our approach, we examined an existing data set from Lenski’s [7] classic experimental
evolution of Esherichia coli, in a set of strains with each combination of five beneficial mutations
[91] (Fig. 2.11a). We first examine n = 3 loci, corresponding to biallelic mutations in topA, spoT,
and pykF. Epistasis was generally low in magnitude [91, 128], and occurs in two ways: (i) either
from merging groups of groups of simplices (c.f. BC + AFE in line #2 of Box 3e, or (ii) from
merging a single simplex, c.f. D, with the aggregated rest of the simplices (c.f. line #1 of Box 3e,
much like a dominant effect in the NK model [90]. This second way is consistent with a fitness
landscape distortion, which occurs when certain mutations influence the interactions of many other
genes [78]. Geometrically, such a distortion constitutes a vertex split [69]. We next add a fourth
biallelic mutation, in the glmUS locus (Fig. 2.11b,c), encoding peptidoglycan availability, which is
an essential component of the cell wall.

Figure 2.11: E. coli evolution is guided by epistatic landscape distortions. (a) (i) E.
coli mutants examined [91], (ii) their geometric relationships, and (iii) experimental approach
to measure fitness. (b) Edge labeled dual graph and (c) epistatic filtration restricted to n = 4
mutations in topA (locus 2), spoT (locus 3), glmUS (locus 4) and pykF (locus 5). Locus 1,
rbs, is fixed 0 (wildtype). Note that the left edge of the bars in (c) indicates there is very little
epistatic weight added to the filtration except for the final merge, where the single genotype 00001
gives weight to the entire filtration. This final interaction corresponds to the vertices {00001} +
{00000, 01001, 00101, 00011} + {00010}. (d) Dual graph for the complete Khan data set. Black
indices in (b) label the critical dual edges of S(h). (e) In the parallel filtration, for 1∗∗∗∗, where the
rbs mutation is present, the landscape is disorted by a concentrated area of higher epistasis. Inset:
graph in (b) recolored with weights from (e). The lengths of the bars in the parallel transport
figure (e) have no meaning. Only the horizontal position of the black marks, the vertical position
of the bars and its coloring encode information. The horizontal shift represents the value of the
epistatic weight, the vertical position of the bar indicates which dual edge is transported and the
color expresses if the epistatic weight is significant after parallel transport.
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The filtration reveals a smooth, additive landscape with one dominant cell where epistasis
arises only in the final merge of the filtration (Fig. 2.11c), meaning the epistatic topography of
the entire landscape (Fig. 2.11d) rests upon the single vertex, 00001, pykF. While the previous
analysis detected a significant, marginal effect of pykF [91], filtrations reveal the geometric struc-
ture in terms of which specific combinations of loci are responsible for the effect (Fig. 2.11e): we
establish an interaction between glmUS, {00001}, and pykF, {00010}. The interaction depends
on the genotypes {00000, 01001, 00101, 00011} in the bipyramid base. Interestingly, the four loci
context involves genotypes with the wild type and only up to double mutants. But these double
mutants must be present together to yield a higher dimensional interaction. This conclusion is
consistent with recent genome-wide work on trans-gene interactions [103], suggesting that com-
plex traits may arise from genome-wide epistasis, where each mutation’s contribution to the trait
depends on the presence of other mutations. Additionally, we observe that the interaction of
{00001}, {00000, 01001, 00101, 00011}, {00010} in the 4D case (with the first locus wildtype) re-
mains significant in the full 5-locus setting, ∗∗∗∗∗, see the blue critical edge in the dual graph of
Fig. 2.11d), indicating an interaction in lower dimensions that is unaffected when a mutation is
introduced in the first locus.

2.2.5 Parallel epistatic filtrations reveal master regulators in E. coli evolution

To discern the role of each locus on the 4D network structure, we applied parallel filtrations [47,
§6.6]. This technique measures context-dependence in the fitness landscape by assessing changes in
the epistasis of sectors that occur when a particular locus is mutated versus wildtype. For example,
the epistatic filtration can be calculated for 0∗∗∗∗, where the first locus is fixed as wildtype and
the filtration is performed for the remaining 4 loci. This yields a set of bipyramids for which
the epistasis is calculated. In the parallel filtration, we compare the epistasis for 0∗∗∗∗ with the
epistasis for 1∗∗∗∗ using the triangulation set by 0∗∗∗∗ as well as the rank order. In this way, two
parallel faces of the 5−cube are compared (see Box 4 and Fig. 2.13). Parallel filtrations extend the
concepts of conditional, marginal, and sign epistasis [59, 155] into the epistatic filtrations context.

Examining the Khan data with and without the pykF mutation [91] (Fig. 2.15) showed increased
significance in 8 out of 22 of the dual edges, when pykF was mutated. Each bipyramid in Fig. 2.15e)
matches a bipyramid in Fig. 2.15c) via the parallel transport operation [47]. In particular, both
filtrations have 22 dual edges.

The biological interpretation of the parallel transport operation is simple. It changes the context
in which the epistatic weights associated to the dual edges are measured. For Fig. 2.11e) this means
that epistatic weights in the genotype system with wildtype rbs are different when rbs is mutated.
Since this locus is fixed in the parallel transport operation, comparing the wildtype and mutant,
we call this locus the bystander. Here, changing the bystander state modifies the magnitude and
significance status of the epistatic weights (Fig. 2.11c,e), with epistatic weights generally higher
when rbs is mutated. Thus mutating the rbs locus distorts the fitness landscape. We note that the
precise locations of the distortions are concentrated as a set of adjacent blue edges in the dual graph
(Fig. 2.11e Inset). Examining the restoration of pykF to wildtype (Fig. 2.16), only 3 of 22 edges
changed significance and just one critical edge lost significance, emphasizing the importance of
context in the fitness landscape. Filtrations thus provide a new perspective on how genes regulate
biological network structure in higher dimensions.

2.2.6 Lactobacilli produce microbiome distortions

Up to this point, we have focused on genetic epistasis, but our framework is equally valid for
interactions of environmental parameters, including bacterial species in the gut microbiome. Like
the genome, which is composed of many genes that interact to determine organismal fitness, the
microbiome is also composed of many smaller units, i.e. bacterial species, that affect host fitness.
Hosts are known to select and maintain a certain core set of microbes [101, 127]; the interactions
of these bacteria can affect host fitness [61]; and it is debated to what extent these interactions
are of higher order, cf. [54]. See also [95] for a broad overview on papers elaborating on possible
meanings and instances of higher-order epistasis. While vertebrates have a gut taxonomic diversity
of ≈ 1000 species, precluding study of all possible combinations, the laboratory fruit fly, Drosophila
melanogaster, has naturally low diversity of ≈ 5 stably associated species [104].
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Box 4. Parallel epistatic filtration for three loci when a 4th locus is modified.
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(a) The 3D genotype space. (b) Adding a locus produces a 4D genotype space that can be visualized
as two parallel 3D genotype spaces, depicted in black and grey, where the grey genotype space has a
mutation in the 4th locus and the black is wildtype at the 4th locus. (c) The dual graph of S for the
black genotype space. (d) The parallel dual graph for the grey genotype space. Note several edges in c
(black cube) shift to significant in d (grey cube), indicating the context of the 4th locus influences the
interactions. (e) The epistatic filtration of the black genotype space. (f) The parallel filtration
calculates epistasis of the black genotype sectors with the phenotypes of the parallel cube (i.e. when
the 4th locus is present). This approach measures the influence of the 4th locus on the rest of the
epistatic interactions in the network. Specifically, note the shift in the x-values of the black vertical
tick marks on the left sides of the left-most colored bars in e versus the corresponding tick mark and
bar in f.

We made gnotobiotic flies inoculated with each combination of a set of n = 5 bacteria (25 = 32
combinations) that were isolated from a single wild-caught D. melanogaster, consisting of two mem-
bers of the Lactobacillus genus (L. plantarum and L. brevis) and three members of the Acetobacter
genus (Fig. 2.12a). We measured fly lifespan, which we previously identified as a reproducible phe-
notype that is changed by the microbiome [61]. Overall a reduction of microbial diversity (number
of species) led to an increase in fly lifespan as with a taxonomically similar set of bacteria we
examined previously, which came from multiple hosts [61].

The dual graph for the 5-loci genotype space revealed a single significant and critical epistatic
interaction (Fig. 2.12b). Abundant non-critical edges were distributed throughout the graph (Fig.
2.12c) indicating prevalent interactions that weakly affect the fitness landscape. We note that such
interactions were absent from the E. coli fitness landscape (compare the number of blue edges
in 2.12b versus Fig. 2.11d). Using parallel filtrations to measure the role of individual bacterial
species on the overall network, we found that the Lactobacilli drive changes in the global structure
(Fig 2.12d,e). In 46 out of 128 (36%) interactions, significance changed due to adding or removing
a Lactobacillus (Fig 2.12c-f, 2.20, 2.21). These changes in significance primarily derive from non-
significant interactions when L. brevis is present that become significant when it is removed and
vice versa, indicating L. brevis suppresses epistatic interactions that affect fly lifespan.

Microbiome abundances could drive the effects on host lifespan, however, comparing the epistatic
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Figure 2.12: Loss of lactobacilli causes global distortion of the microbiome epistastic
landscape. (a) Experimental design for Eble and Gould [61] microbiome manipulations in flies.
(b) Full graph of ∗∗∗∗∗ for the Eble data. (c) Filtration of S(h) for the 4-face, 1∗∗∗∗, of Eble
data, where L. plantarum is present, indicates epistasis where two clusters of maximal cells merge.
(d) Parallel filtration with L. plantarum removed shows a landscape distortion. (e) Filtration for
∗1∗∗∗, where L. brevis is present has similar structure to 1∗∗∗∗. (f) Parallel filtration with L. brevis
removed shows a landscape distortion.

landscapes for CFUs and lifespan, we found that only 2 of 99 dual edges were significant for both the
bacterial abundance and fly lifespan data sets (Fig. 2.22, 2.23, 2.24, 2.25, Tables 2.12, 2.13, 2.14, 2.15),
and there was a lack of correlation between the epistatic weights of the bipyramids (Spearman rank
correlations: p = 0.7, p = 0.5, p = 0.3, and p = 0.3 respectively). This discord between the epistatic
landscapes for microbiome fitness and host fitness could e.g. diminish the rate of co-evolution.

2.2.7 The epistatic landscape within a single enzyme is rugged

As a point of comparison with the Khan data set, we re-analyzed data from a fully factorial 5-
mutation data set in the β-lactamase gene, where each mutation is in a separate residue of the
same enzyme [144, 151]. We note that the data are discrete (growth/no growth for a given set
of antibiotic concentrations), and this type of microbiology experiment does not show variation
in general. Thus, we can generally treat the calculated interaction magnitudes as accurate. We
therefore discuss the meanings of the magnitudes. Due to a lack of the raw replicate data, our
computations are based on the reported mean values, and p-values are not calculated.

The filtration holds a high magnitude of epistasis (Fig. 2.18, 2.19) compared with the Khan
data set (Fig. 2.17, 2.15). Note that we can directly compare magnitudes (x-axis) due to the nor-
malization procedure (see section 2.6.3). The epistasis arises in many steps (note slope of filtration
adds magnitude in each step; (Fig. 2.18, 2.19)), consistent with the low number of possible evolu-
tionary paths observed by Weinreich [151], and distortions are apparent in the shifted magnitude
of epistasis by parallel transport (Fig. 2.18, 2.19). The filtration also reveals a tiered structure to
the epistasis, cf. the largest weight merges two clusters of simplices (Fig. 2.18, 2.19) in contrast to
the Khan data set, where epistasis came from one individual simplex on the periphery of the dual
graph, indicating a more complex epistatic landscape in the β-lactamase.

Comparing the filtrations between the different datasets (Fig. 2.12d), the epistatic weight (i.e.
magnitude) for the microbiome data generated ≈ 5% effect, roughly three times the weight in the
Khan data and half that in the Tan β-lactamase landscapes [144] (cf. x-axis between Fig. 2.12,
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2.17, 2.18), indicating comparable interactions.

2.2.8 Interactions are sparse in higher dimensions

We used epistatic filtrations to systematically evaluate the prevalence of higher-order interactions
as a function of the number of dimensions. Critical, significant, higher-order interactions were less
frequent than pairwise interactions (p < 10−6, Z-test) for each of the Khan, Eble, and Gould data
sets, with a decreasing probability as a function of the face dimension (Table 2.10). This occurs for
three primary reasons. First, the degrees of freedom increase fast in higher dimensions. Second, the
probability of selecting a significant interaction from the set of all possible interactions decreases
because the total number of interactions increases with increasing dimensions. Finally, the absolute
number of significant interactions decreases in higher dimensions (Table 2.10), meaning they are
biologically less prevalent. Overall, ≈ 10% of possible dual edges were significant at higher order,
with ≈ 1% significant for n = 5 dimensions (Table 2.10), suggesting limits to the dimensions of
biological complexity.

Table 2.10: Prevalence of interactions at different levels of complexity in genetics and microbiome
data sets. Significant versus all critical dual edges (p < 0.05).

Dataset: Dataset: Dataset:
Interaction dimension Khan Eble Gould
2: 20/80 (25%) 24/80 (30%) 22/80 (28%)
all higher order: 29/508 (5.7%) 58/540 (10%) 21/520 (4.0%)

3: 21/194 (11%) 35/199 (17%) 14/194 (7.2%)
4: 7/214 (3.2%) 22/226 (10%) 6/216 (2.7%)
5: 1/100 (1.0%) 1/115 (0.8%) 1/110 (0.9%)

total: 49/588 (8.3%) 82/620 (13%) 43/600 (7.1%)

The epistatic filtration of the Eble microbiome data in (Fig. 2.12) has a much richer texture
than the epistatic filtration of the Khan data set.

For instance, in the Eble microbiome data there are two top 4-dimensional epistatic weights
which greatly impact the topograpy of the fitness landscape, in the following sense. The two
epistatic weights are

{01001}+ {00000, 01000, 01101, 01111}+ {01100} 0.0451 #2
{01001}+ {00000, 01000, 01011, 01111}+ {01110} 0.0485 #1

here given with their spanning genotypes, magnitude of the interaction, and edge ID number. The
edge ID matches the position of the dual edge in the filtration of the left panel in Fig. 2.20 when
counting from down up. The magnitudes of these two interactions combined have a 9% effect on
fitness (sum of the magnitudes of the epistatic weights) with the largest accounting for ' 5%,
indicating a region of the landscape where epistasis is concentrated. Proximal to these genotypes
are two additional cells with nearly significant epistatic weight:

{01011}+ {00000, 01001, 00111, 01111}+ {01101} #8
{01011}+ {00000, 01000, 01001, 01111}+ {01101} #7

The corresponding dual edges are purple in the left panel in Fig. 2.20.
The genotypes in the interactions form a cluster relating the interactions between L. brevis and

increasing numbers of Acetobacters. Because the interaction is detected based on the phenotype of
fly lifespan, it suggests there may be interesting cellular and molecular mechanisms to investigate.
For instance, the interactions could derive from metabolic crossfeeding between the Acetobacters,
which produce many co-factors, and L. brevis, which produces lactate, stimulating Acetobacter
growth [31, 68, 1]. Note that the support sets of all four interactions above contain both the wild
type 00000 and 01111, which are the genotypes with maximum and minimum fitness respectively,
indicating that all loci contribute to the higher-dimensional epistatic effect, even ones with low
fitness.
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2.2.9 Higher-order interactions can arise from lower-order interactions

Lower-order interactions can produce interactions in higher dimensions [128]. In examining the
higher-order epistasis present in our data sets, we noted that the clusters where significant epistatic
weights occur are often preceded by clusters with nearly significant epistatic weights in lower
dimensions (Fig. 2.17). These lower dimensional interactions involve fewer genotypes than the
higher-order interactions that they set up, meaning that the addition of genotypes pushes nearly
significant interactions to significance.

We developed a graphical approach to distinguish these interactions from those that arise de
novo (Fig. 2.27b,c; Appendix B11). More specifically, these graphics are intended to answer the
question of to what extent higher-order epistatic effects are induced by lower dimensional ones or,
put in other terms, which lower dimensional epistatic effects maintain significance when embedded
into higher dimensions?

In (Fig. 2.27b) we exhibit an example for the Eble data set, with 5 loci, where we take the three
4-dimensional faces 0∗∗∗∗, ∗0∗∗∗ and ∗∗0∗∗ into consideration. For each such face, we computed
the corresponding filtration of epistatic weights. We then repeat this procedure, and display the
filtrations for relevant 3-dimensional subspaces ((Fig. 2.27b) second row), and finally filtrations
for 2-dimensional subspaces (Fig. 2.27b) last row). The reasoning behind this is similar to what
happens in regression-based epistasis calculations, where one can extract a certain portion of a
higher dimensional space into lower dimensional spaces.

Performing the same operations on the Gould data, there are over all fewer significant epistatic
weights. In this data set, we also observe examples of lower order interactions inducing higher
order ones, as explained above, but for which the statistical significance status changes - here,
from not significant (red bars) to significant (blue bars) (Fig. 2.27c). Linking the observed higher-
order interactions to their lower-dimensional sources can help design biological experiments into
the molecular mechanisms, for instance by designating two interacting bacteria to focus on from a
larger community where the higher-order interactions emerge.

We also observe that several higher order interactions in the Eble, Gould and Khan data could
not be attributed to lower-order effects (see (Fig. 2.27b,c) as well as Table 2.17). By this we
mean that the interactions could not be linked to subsets with four, three, or two loci inside the
5-locus system, regardless of their significance (cf. Fig. 2.27c). Thus, some interactions arise only
in the higher dimensional context and cannot be discovered or predicted by studying lower-order
interactions.

As we noted, the 4-dimensional interaction in the E. coli evolution experiment involved loci
with two genes (Fig. 2.11), whereas in the microbiome, interactions involved loci with four species,
suggesting there may be different types of underlying geometries for the interactions between genes
in evolution versus between species in the microbiome (Table 2.17).

2.3 Discussion and Conclusions

2.3.1 New biological findings

From an evolutionary perspective, the Red Queen hypothesis emphasizes how conflicts with other
organisms can drive continuous genetic innovation [146]. In our analysis of the shapes of fitness
landscapes, we find that epistasis in higher dimensions reshapes the fitness landscape. Thus, the
continuous diversification observed in long term evolution experiments [60] could be generated by
the continuously changing fitness landscape as new mutations occur. In particular, we identify
master regulators that operate in higher dimensions by significantly enhancing or suppressing
interactions in the rest of the biological network. In the microbiome these are lactobacilli, and in
E. coli evolution we identified rbs and pykF. While it would require future experiments, it might
be expected that such higher-order master regulators may also regulate the onset and progression
of cancers.

The prevalence and importance of higher-order interactions is debated, with some studies sug-
gesting pairwise interactions predict the vast majority of interactions in complex communities [54],
and others suggesting a large influence of context-dependent effects [61] [142], which would make
higher-order interactions unpredictable. Ample evidence that higher-order epistasis has at least
some evolutionary impact was established in recent publications, see [95] and its references. Our
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analyses suggest limitations on the existence of epistasis in higher dimensions. This could arise
due to e.g. limited phenotypic dimensions where interactions can be detected or to a lower di-
mensional manifold that absorbs the majority of the effects [76] (e.g. lifespan and fecundity are
anti-correlated, making fitness robust to changes in one or the other).

In Section 2.2.9, we analyzed how higher-order interactions in three data sets can arise from
lower order ones. We found that in the majority of cases, the full biological information can only be
obtained by analyzing epistatic weights in the full dimensional genotope space and that lower-order
interactions are not sufficient to describe all interactions. In a few cases, however, the source of the
higher dimensional interaction is rooted in a lower dimensional space and no additional biological
information is obtained by increasing the dimension.

Our analysis also shows that significant epistatic interactions are increasingly sparse as the
number of dimensions for interaction increase, indicating some limits to biological complexity.

2.3.2 Relation between epistatic filtrations and other measures of epistasis

From a methodological point of view, the present work lays the geometric groundwork for detect-
ing epistasis via interactions of higher-order as well as other geometric properties of large fitness
landscapes. Our work relies on polytope theory, following the shape approach of [10, 11], as this
is the only framework allowing a mathematical definition of epistasis in a fine grained manner for
a general n-locus system. By this we mean, that our interactions involve a minimal number of
genotypes in the sense of a minimal set of dependent points [39]. The motivation for this is that
these sets generalize the notion of adjacent triangles in a 2-locus system to an n-locus system. Ad-
ditionally, in this way interactions have a geometric meaning, which makes them comparable across
data sets. Although our method has similarities with [10, 11], it also has significant theoretical and
computational differences and improvements. For example, our analyses heavily rely on studying
the dual graph of the induced triangulation together with colored filtrations. This is a novelty in
the theory and provides a number of new biological findings. For example, we localize regions of
epistasis in four fitness landscapes, we quantify the sparsity of these regions, we compare portions
of fitness landscapes via the parallel transport operation or by changing bystander species. We
also further develop [47] by providing a new framework to detect and interpret how higher-order
epistasis arises from lower order epistasis via meta-epistatic charts.

More specifically, epistatic weights capture new properties of fitness landscapes even in the
3-locus case. In this case, there are between four and six epistatic weights, as these are the number
of adjacent pairs of simplices in the subdivision of the 3D cube, which appear as edges in the dual
graph [73, Fig.1]. In contrast, there are 20 circuit interactions [10, Ex.3.9] and many more possible
and potentially relevant interactions that must be checked in a randomized, exhaustive search. In
addition to reducing the search space, epistatic weights can be localized in the fitness landscape,
allowing the occurrence of mutations to be linked to changes in the topography of the epistatic
landscape. Furthermore, we can link these changes across dimensions, tracking the source of the
interactions.

Our method relates to other measures of epistasis, for example to linear regression approaches,
as we explain in Section 2.6.9, see also the recent work [163]. It also relates to methods originating
from harmonic analysis, cf. [148, 128, 152]; and to correlations between the effects of pairwise
mutations, as we pointed out in [47]. More concretely, in a 2-locus, biallelic system, all these
methods can easily be recovered from one another; some of them even agree. This is also true
for some ecological approaches, including the generalized Lotka-Voleterra equations, which yield
a mathematically equivalent form to epistasis for certain situations cf. see equation 9 of [28]. In
higher dimensional systems, these methods remain conceptually closely related but they generally
yield different insights about the problem, such as which interactions are considered, whether the
interactions are significant, what their magnitude is, and what their sign is. Because these previous
methods make specific, a priori assumptions about the forms of interactions, they are limited by
these assumptions. Epistatic filtrations add a global perspective, determining the structure of
interactions from the shape of the fitness landscape in a parameter-free approach.

Finally, rank orders play an important role in the recent fitness landscape theory [36, 102]. For
an overview and for references to relevant work in the theory, see the review article [95]. It is
straightforward to recast the fitness landscapes presented here into a rank-order fitness graph and
then count the number of peaks, i.e. the number of sinks in a fitness graph. The technical details
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are beyond the scope of the present paper.

2.3.3 Interactions in higher dimensions

We found that biologically-significant epistatic interactions in four and five dimensions are sparse
and often rooted in lower order, meaning that a limited number of regions of epistasis and hence of
distortion exist in these fitness landscapes. This extends to higher dimensions the trend that 3-way
interactions are often predicted from 2-way interactions [98, 54, 61]. However, our finding that
key genes and species cause distortions emphasizes the need to identify the significant higher-order
interactions from the vast number of possible ones, a task that epistatic filtrations enable.

In a five-loci case, we also found that the fitness landscape in the Eble data set is much
more distorted, i.e. non-linear, than the Khan fitness landscape. We also found the precise
locations of distortions inside the corresponding fitness landscapes and contextualize them in terms
of distortions visible in lower dimensional sub-fitness landscapes. These findings are new and cannot
be established with the old methods.

2.3.4 Strength and limitations of epistatic filtrations

A major advance of this work is that we provide a way to discover high dimensional regulators of
biological networks. Rather than identifying key nodes as having a high number of low dimensional
edges, we developed a method to identify nodes that regulate the higher-dimensional interactions
in the rest of the network. This operation is performed by the parallel transport function, and we
provide a web-based tool to perform the analysis (see Appendix 2.18). The implications of these
findings are that certain genes and species modulate the interactions in the rest of the network, and
perturbing these loci can destabilize the network. Destabilizing an unhealthy biological network
could be crucial to restoring a degraded ecosystem, a sick microbiome, or curing a cancer, while
destabilization of a healthy biological network could have the opposite consequences.

Methodologically, we also improve the framework in which higher-order epistasis can be math-
ematically formalized and analyzed geometrically. We provide concrete tools to find epistatic
interactions in the fitness landscape and to distinguish if the landscape is locally flat, i.e. a hyper-
plane of a certain dimension. Our work additionally allows us to localize and contextualize regions
inside the fitness landscape which are not flat and hence distorted.

Our approach does not provide a distinction between positive and negative epistasis, but only
between presence and absence of epistasis. However, this limitation is shared with other methods
including the circuit, linear regression, and Fourier expansion approaches. To give an example,
the circuit interactions in [10] can produce positive or negative values, but the sign depends on
the choice of a basis for the interaction space, without a real biological motivation. The biallelic
case provides an elementary case. In traditional terms, the epistasis in the Example from Box 2 is
negative since the lifted genotype 11 lies below the plane spanned by the lifted genotypes 00, 10 and
01. Picking that particular plane for choosing the sign rests on the basis where the wild type is 00.
If instead we use the genotype 10 as a basis, then the lifts of that genotype and its two neighbors
00 and 11, span a plane such that the lifted fourth genotype 10 lies above that plane of reference.
However, while circuit interactions use signs to locate epistatic effects, in our approach this is not
necessary, as the location information is concisely encoded in the regular triangulation induced
by the phenotypes as described (c.f. Box 2). In this sense, the lack of sign is not a limitation of
epistatic filtrations but a consequence of the high-dimensional approach.

A second limitation is a computational one which arises when one considers a multi-allelic
system. In that setting our method still applies in theory, but the computational bottlenecks are
reached rather quickly (at around n = 10 alleles without large hardware). However, it should be
pointed out that the number of circuits of the cube [0, 1]n grows even faster with n; cf. Table 2.11.
So methods based on these also suffer from combinatorial explosion.

2.3.5 Outlook

This geometric approach could be extended, e.g. to GWAS [51, 103, 27], ecosystems [28, 16],
or neuronal networks [126], to discover non-additive higher-order structures at different scales.
It should be noted that the polyhedral geometry methods for analyzing epistasis deserve to be
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developed further from the mathematical point of view. We believe that more concepts related to
curvature for piecewise linear manifolds will be useful [141].

Taken together, our approach offers a number of new insights on higher-dimensional properties
of fitness landscapes and their biological implications, and we think these will be useful as higher
throughput experiments enable more combinatorial approaches.
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2.5 Materials and Methods

2.5.1 Fly husbandry

Flies were reared germ-free and inoculated with one combination of bacteria on day 5 after eclosion.
N≥100 flies were assayed for lifespan in n≥5 independent vials per bacterial combination for a
total of 3200 individual flies. Food was 10% autoclaved fresh yeast, 5% filter-sterilized glucose,
1.2% agar, and 0.42% propionic acid, pH 4.5. Complete methods are described in Gould et al [61].

2.5.2 Bacterial cultures

Bacteria were cultured on MRS or MYPL, washed in PBS, standardized to a density of 107

CFU/mL and 50 µL was inoculated onto the fly food. Strains are indicated in Table 2.18. See
Gould et al [61] for complete methods.

2.5.3 Genetics data

Existing genetics data sets were gotten from Sailer and Harms 2017 [128] github repository (https:
//github.com/harmslab/epistasis) or from Tan et al [144].

For the Khan data in Fig. 2.11, the fitness function h is defined for (b) by assigning the
following normalized values to the 16 genotypes:

00000 7→ 0.1524 01000 7→ 0.1745 00100 7→ 0.1689 00010 7→ 0.1569
00001 7→ 0.1528 01100 7→ 0.1842 01010 7→ 0.1756 01001 7→ 0.1823
00110 7→ 0.1718 00101 7→ 0.1810 00011 7→ 0.1642 01110 7→ 0.1836
01101 7→ 0.1956 01011 7→ 0.1858 00111 7→ 0.1813 01111 7→ 0.1987 .

The Tan data set is different from the other fitness values in that only median and mean values
are given, meaning we cannot compute p-values to assess the statistical significance. The fitness
values are minimum inhibitory concentrations of antibiotics from a well-standardized assay with
little experimental variation. Thus, the measurements and our analysis are believed to be robust.
We note that the regular subdivision resulting from the corresponding height function of [0, 1]5 is
degenerate in the sense that it is not a triangulation. This degeneracy arises because the data are
discrete antibiotic concentrations with 24 possible values. The repetition of exact values in several
cases means a triangulation does not occur. We extended our methods to this degenerate case by
restricting the analysis to the faces that do have a triangulation, broadening the application of
our approach. We focused on the piperacillin with clavanulate data from [144] as it is the better
behaved.

2.5.4 Computational analysis

The filtrations code is available as a polymake [56] package (c.f. https://github.com/holgereble/
EpistaticFiltration). We also provide an online client, which processes raw csv data sheets, on
https://www3.math.tu-berlin.de/combi/dmg/data/epistatic_filtrations/.
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2.6 Terminology

Loci (singular locus) refer to individual sites in the genome where a mutation may occur, or in
the microbiome sense, a locus is a particular bacterial species. We write [n] := {1, . . . , n} for the
set of all loci.

Genotypes, v = (v1, . . . , vn), are vectors of loci with 0/1-coordinates that form points in some
fixed Euclidean space Rn, where n is the number of genetic loci or bacterial species considered. In
this article we focus on biallelic n-locus systems, i.e. genotype sets of the form V = {0, 1}n where
n is the number of loci and each locus is either 0, absent, or 1, present. For instance, v = (1, 0, 1)
denotes a genotype in a 3-locus system R3, where the first and third loci are mutant and the second
is wild type. The set of all genotypes will be denoted by V . The convex hull P := conv(V ) of
all genotypes is called the genotope. In our setting P is the n-dimensional unit cube [0, 1]n (cf.
(Fig. 2.14) for a 2D projection of [0, 1]5).

A fitness function (also called height function) associates to each genotype v ∈ V a quan-
tified phenotype describing the impact of the genotype on the organism. For example, if the
measured phenotype is fitness, h encodes the reproductive output of the genotype.

The fitness landscape is the pair (V, h), which defines the fitness h(v) for each genotype v ∈ V .
Let v = (v1, . . . , vn) ∈ V be a genotype. Then its lift is given by (v, h(v)) = (v1, . . . , vn, h(v)) ∈
Rn+1.

A set of points W = {w(1), . . . , w(`)} is affinely independent if for every point x ∈ Rn which
admits real scalars λi with

∑`
i=1 λi = 1 and

∑`
i=1 λiw

(i) = x those scalars are uniquely determined.
Otherwise W is affinely dependent.

An interaction with respect to a fitness function h occurs between a collection of k+2 affinely
dependent genotypes v(1), . . . , v(k+2) ∈ V ⊂ Rn, for k ≤ n, whose lifts are affinely independent
points in Rn+1. This is in line with the standard concept of additive epistasis. The number k is
the dimension of the interaction; throughout we assume that k ≥ 2.

Let U = {v(1), . . . , v(`)} be a set of genotypes. Its support is the set

supp(U) :=
{
k ∈ [n]

∣∣∣ there are distinct 1 ≤ i, j ≤ ` with v(i)
k 6= v

(j)
k

}
.

That is, the support is the set of loci where at least two of the given genotypes differ. For example,
if n = 3 and U = {(0, 0, 0), (1, 0, 1), (1, 0, 0)} then supp(U) = {1, 3}.

The number of loci that vary (0 vs 1) in the support is called the order of an interaction; this
definition agrees with, cf., [152]: “We designate interactions among any subset of k mutations as
kth-order epistasis.”. We give two examples: First, let n = 2 and U = {(0, 0), (0, 1), (1, 0), (1, 1)} =
V such that U is an interaction with respect to some fitness function. Then U is an interaction
of dimension 2 and order 2. Second, let n = 3 and U = {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)} such
that, again, U is an interaction with respect to some height function. Then the dimension is 2 and
the order is 3. In general, the order is at least as large as the dimension, but the two quantities
may differ. We say that genes (corresponding to loci) interact if they form the support set of an
interaction of genotypes.

Remark 2.6.1. The dimension k of an interaction v(1), . . . , v(k+2) with respect to some fitness
function agrees with the dimension of the affine span of the given points in Rn. This can be
seen as follows. By definition the lifted points (v(1), h(v(1))), . . . , (v(k+2), h(v(k+2))) are affinely
independent in Rn+1. So their affine span has dimension k + 1. As v(1), . . . , v(k+2) are affinely
dependent, the dimension of their affine span is at most k. Now the affine dimension can only
increase by at most one if one coordinate is appended.

2.6.1 A primer on epistatic filtrations

We first explain the biallelic case with n ≥ 2 loci. In the geometric framework [10], two interacting
loci give rise to four possible genotypes, which form the vertices of a square and may be written as
vectors of zeros and ones, indicating the absence (0, wildtype) or the presence (1, mutant) of each
locus respectively (Box 2a) [47, 10]. The measured phenotypes lift the genotype vertices into 3-
space, and there is epistasis corresponding to the volume of the simplex enclosed by the lifted points
(see green simplex in Box 2a). Geometrically, the four genotypes involved are fully symmetric,
meaning that the sign of the epistasis for n = 2 is relative to the choice of a coordinate system.
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Thus, the sign of epistasis depends on which genotype is considered wildtype. By considering the
simplex volume rather than the fold of the upper shell of the simplex, epistatic filtrations do not
specify a sign and thus avoid this caveat. However, directionality is considered by parallel transport
(see later section). Returning to our explanation, by taking the upper convex hull of all 2n lifted
points and projecting back onto the genotope [0, 1]n we induce a subdivision S(h); cf. [47, 39,
§2.1], into maximal cells (Box 2b). Generically, every maximal cell of S(h) is an n-dimensional
simplex, which is the convex hull of (n + 1) affinely independent genotypes. Importantly, these
n-dimensional simplices are the most elementary parts into which a fitness landscape can naturally
be decomposed.

Our framework generalizes to higher dimensions through a geometric shape called a bipyramid,
where two satellite vertices, each the apex of one pyramid, are joined to a common set of base
vertices. The satellites correspond in the 2D example (Box 2) to 00 and 11 and the base to 10 and
01. This is naturally associated with S(h), set up by the ridge (Box 2). For an ordered sequence
of n+ 2 genotypes (v(1), v(2), . . . , v(n+2)) we let

s = conv{v(1), . . . , v(n+1)} and t = conv{v(2), . . . , v(n+2)} .

In other words, s and t form convex hulls. We call such a pair (s, t) a bipyramid with vertices
v(1), v(2), . . . , v(n+2). Then we can find the volume of the lifted bipyramid by forming the (n +
2)×(n+ 2)-matrix

Eh(s, t) :=


1 v1,1 v1,2 . . . v1,n h(v(1))
1 v2,1 v2,2 . . . v2,n h(v(2))
...

...
...

...
...

...
1 vn+2,1 vn+2,2 . . . vn+2,n h(v(n+2))

 , (2.22)

where vi,1, vi,2, . . . , vi,n are the coordinates of v(i) ∈ Rn. The epistatic weight of the bipyramid
(s, t) is

eh(s, t) :=
∣∣detEh(s, t)

∣∣ · nvol(s ∩ t)
nvol (s) · nvol (t) . (2.23)

Here nvol denotes the dimensionally normalized volume. The quantity nvol(s ∩ t) is the relative
(n−1)-dimensional normalized volume of the ridge of the bipyramid, given by the intersection
s ∩ t = conv(v(2), . . . , v(n+1)). We use the notation

{v(1)}+ {v(2), . . . , v(n+1)}+ {v(n+2)} (2.24)

for the bipyramid (s, t), where the first and last vertices are the satellites and the middle set forms
the base. Now the n + 2 genotypes of the bipyramid form an interaction of dimension n when
eh(s, t) > 0.

In our regular triangulation S(h), the two n-dimensional simplices, s and t, are adjacent
because their intersection s ∩ t is a common face of dimension n− 1.

2.6.2 Constructing a filtration from the epistasis of adjacent simplices

We visualize the topography of the epistatic landscape by forming a dual graph of S(h), where
the nodes are the maximal simplices and adjacent simplices form the dual edges. A rugged path
is one with more blue edges (Box 3d). To each such dual edge we associate an epistatic weight
and a label, epistatic weights are in shades of blue and red, while labels are in black). In this way,
we construct an epistatic landscape that corresponds to the underlying fitness landscape with the
ruggedness specified along the dual graph. The epistatic filtration of h (Box 3e) depicts the
path from weakest to highest epistasis by merging adjacent simplices. These diagrams summarize
the information contained in epistatic weights and dual graphs, and facilitate comparisons across
data sets. But there is important new information contained in epistatic filtrations, which is not
directly visible from the dual graph and its epistatic weights. Indeed, a step in the epistatic
filtration merges adjacent simplices. We build the complete fitness landscape by stepwise merging
of maximal cells, starting from the lowest epistatic weight and stepwise merging adjacent simplices
to form a connected cluster cf. [47]. In this sense, epistatic filtrations encode a global notion of
epistasis in higher dimensions by connecting adjacent bipyramids.
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To see this, notice that each row of the diagram has a number of bars and a black leftmost line.
In the top row the black line marks the epistatic weight of zero (x-coordinate). Each bar is red
and corresponds to one maximal simplex of S(h). In the second row (counting from the top), we
see three things: (1) the value of the lowest epistatic weight moves the x-coordinate of the black
line slightly to the right. (2) The two maximal simplices of S(h) corresponding to this epistatic
weight are merged into one. These correspond to the two bars in the previous row above the new,
longer bar in the row. The lengths of the other bars remain unchanged but are shifted horizontally
by the epistatic weight in (1). (3) The statistical significance of the epistatic weight giving rise to
the merging step, encoded by the colors of the bars; cf. Section 2.6.4.

The merging procedure is then repeated for each pair of maximal simplices arising in each
epistatic weight until one reaches the highest epistatic weight and the last maximal simplex of
S(h) to be merged with the rest. In this way the indentation of the bar charts increases from top
to bottom. The total width of the bars stays constant throughout.

Importantly, in the epistatic filtration diagram, not every merging step is displayed; e.g., in Box
3e there are fewer rows than dual edges in Box 3d. This is because some steps do not change the
resulting fitness landscape (no actual new portion is merged to the previous one). The reported
steps are only the ones increasing the connected components of the fitness landscape obtained from
the previous merging steps. The epistatic weights corresponding to these steps are the edges in
the dual graph which we call critical in [47, §.3.2].

2.6.3 Normalized epistatic weights

To gain a perspective on the generality of higher-order interactions, it is desirable to compare
epistatic landscapes. Different phenotypes have different metrics, making comparisons difficult for
current approaches to epistasis. Filtrations are well-suited in this sense. Scaling the height function
h by a positive constant does not change the regular triangulation, and thus it does not change the
dual graph. In order to compare different data sets, we scale the height function to Euclidean norm
one. The epistatic weights are scaled accordingly. The resulting normalized epistatic weights
are measured in epistatic units, giving a generalized metric for epistasis.

Measuring the effect of context on epistatic interactions is also desirable, e.g. to detect the
marginal or conditional effects of a locus [91], and these are a natural feature of filtrations. If
we fix some k loci and let the remaining n − k loci vary, we obtain a height function, which is
restricted to a face of the genotope [0, 1]n. That face has 2n−k vertices, and it is an isomorphic
copy of the cube [0, 1]n−k. For instance, if n = 5 and we fix the first and the fourth locus to 0, we
obtain a 3-dimensional face, which we denote 0∗∗0∗. That is, such a face is written as a string of n
symbols in the alphabet {0, 1, ∗}, where 0 or 1 mark the fixed choices, and ∗ stands for variation.
The number of ∗ symbols equals the dimension of the face. Triangulations, their dual graphs,
epistatic weights, etc. are well-defined for height functions restricted to faces. This aspect of the
theory allows the study of conditional epistatic effects.

2.6.4 Statistics of epistatic weights

We developed a statistical test to quantify the significance of an interaction associated with a fixed
bipyramid; cf. [47, §4.2]. Here we assume that h(v) is the mean value of the individual phenotype
measurements for some number of replicated experiments for the fixed genotype v. To each dual
edge we associate a p-value, which is independent of the epistatic weight normalization. If that
p-value is below 0.05 we call that dual edge significant. It is useful to also consider p-values, which
are slightly higher because one can use the shape of the landscape to identify interesting locations
for further statistical analysis. To this end we call a dual edge semi-significant if 0.05 ≤ p < 0.1.

While it may be possible that this approach misses some biologically relevant interactions (e.g.
if they do not correspond to a bipyramid selected by our method), those interactions that we
identify carry information that is robust and supported by a statistical model. The fact that not
all possible interactions can be approached is an inevitable consequence of the higher dimensional
nature of fitness landscapes, also reflected by a very high number of possible regular triangulations
of [0, 1]n. That number equals 74 for n = 3 and 87,959,448 for n = 4, whereas the precise numbers
for n ≥ 5 are unknown; cf. [39, §6.3]. Thus, filtrations use the data to greatly condense the number
of possible interactions considered.
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The bar colorings in the filtrations of epistatic weights, as in (Fig. 2.17), reflect the outcome of
multiple simultaneous statistical tests (one for each epistatic weight) [47].

Significant dual edges at p < 0.05 are shown in blue, 0.05 ≤ p < 0.1 in purple, and p ≥ 0.1 in
red.

It may happen that a triangulation has a significant dual edge, which is not critical, whence it
does not show in the epistatic filtration. In that case the next critical dual edge becomes blue; so
a filtration encodes all significant interactions found by our method.
Remark 2.6.2. By funneling the analysis through the concept of regular triangulations our ap-
proach pre-selects interactions, which are most relevant with respect to fitness [47, §2.2]. Via this
major deviation from [10] we are able to detect interactions in many data sets, which are biologi-
cally plausible; this suggests strongly that our method is particularly good at avoiding false positives.
Future work will investigate the relationship to other methods from statistics and signal processing.
While most of this is beyond the scope of the present study, in Appendix B12 we offer a first step
by comparing with traditional linear regression approaches.

2.6.5 A synthetic experiment examining how epistatic weights change as a function
of the interaction order

Our method calculates significance of detected interactions and normalizes the epistatic weight
to the volume of the unit cube of the same dimensionality. We used synthetic data to analyze
the method performance. We first examined 468 synthetic filtrations over the 4-dimensional cube,
producing 10011 critical dual edges. We found that the epistatic weight is indeed constant as a
function of the interaction order, see (Fig. 2.26a). This indicates that the normalization method is
effective. Furthermore, the number of significant interactions decreased as the standard deviation
of the input data increased, indicating the statistical method is sensitive to noise, see (Fig. 2.26b).

2.6.6 A microbiome example in dimension 4

Here n = 4, and the fitness function h is defined by assigning the following values to the 16
genotypes:

0000 7→ 0.2484 ; 1000 7→ 0.2320 ; 0100 7→ 0.1618 ; 0010 7→ 0.1698 ;
0001 7→ 0.1943 ; 1100 7→ 0.1749 ; 1010 7→ 0.1714 ; 1001 7→ 0.1929 ;
0110 7→ 0.1668 ; 0101 7→ 0.1608 ; 0011 7→ 0.1617 ; 1110 7→ 0.1643 ;
1101 7→ 0.1677 ; 1011 7→ 0.1715 ; 0111 7→ 0.1613 ; 1111 7→ 0.1594 .

The vertices U := {v(1), . . . , v(6)} ∈ V given by

v(1) = (1, 1, 0, 0) ; v(2) = (0, 0, 0, 0) ; v(3) = (1, 0, 0, 0) ;
v(4) = (1, 1, 0, 1) ; v(5) = (1, 1, 1, 1) ; v(6) = (1, 0, 0, 1)

form a bipyramid (s, t) consisting of 4-dimensional simplices s and t as above. The simplices s and
t correspond to nodes in the dual graph of S(h) that share a dual edge recording their adjacency
relation as indicated in (Fig. 2.12b).

In this situation, equation (2.23) reads

eh(s, t) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0.1749
1 0 0 0 0 0.2484
1 1 0 0 0 0.2320
1 1 1 0 1 0.1677
1 1 1 1 1 0.1594
1 1 0 0 1 0.1929

∣∣∣∣∣∣∣∣∣∣∣∣
· nvol(s ∩ t)

nvol (s) · nvol (t) = 0.0318 ·
√

2
1 · 1 ≈ 0.045 .

Since eh(s, t) > 0, the genotype set U defines a 4-dimensional interaction with full support
{1, 2, 3, 4} and of order 4, according to our terminology of Section Terminology. With a p-value of
0.0005 < 0.05 the significance test established in [47, §.4] rejects the zero hypothesis for eh(s, t)
and therefore proves the effect of the interaction U to be significant. We indicate this fact with
the color blue both in the dual graph of S(h) in (Fig. 2.12b) and in the epistatic filtration of h in
(Fig. 2.12c).

This example illustrates the following fact of biological interest. For the bacterial combinations
v(1), v(2), . . . , v(6) fitness, given by the fitness function h, varies significantly in a non-linear way.
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2.6.7 Parallel transport of epistatic weights

The notion of parallel transport in a fitness landscape (V, h) was introduced in [47, §6.6] as a way to
geometrically compare biological information between pairs of parallel facets of the convex polytope
convV . In this work, we extended that notion to include the case of two fitness landscapes, (V, h1)
and (V, h2), associated to different generic and normalized height functions hi : V → R, i ∈ {1, 2},
defined on the same vertex set V = {0, 1}n for some n ∈ N. To enable meaningful comparisons, we
assume that each hi is normalized and that there is a larger fitness landscape (W,h) with a generic
and normalized height function h : W → R restricting to h1 and h2 on the parallel facets V in
W , such that the partition of convW induced by h is compatible with the one of convV induced
by h1, resp. by h2. In this setting, we define normalized epistatic weights as with Eq. (2.23)
with h the normalized height function and s, t any adjacent simplices forming a bipyramid.

Parallel transports enable us to transport epistatic filtrations along the reflection map

φ : V → V ; v = (v1, v2, . . . , vn) 7→ (v′1, v′2, . . . , v′n) ,

with v′i = 1 − vk if i = k and v′i = vi otherwise. More precisely, let eh1(s, t) be the normalized
epistatic weight associated to a bipyramid of S(h1) and let φ(eh1(s, t)) := eh2(φ(s), φ(t)) be the
parallel normalized epistatic weight transported by φ. Then the filtration of normalized epistatic
weights induces a filtration of parallel normalized epistatic weights. Additionally, to eh1(s, t) and
to φ(eh1(s, t)) a p-value can unambiguously be associated [47, §4.1-4.2]. Notice that by design
epistatic filtrations for S(h1) only show normalized epistatic weights associated to critical dual
edges, defined as in [47]. But normalized epistatic weights and their significance can be defined for
all bipyramids including the ones associated to noncritical dual edges. This explains the labelling of
the parallel transport tables below. There a row is numbered only if the bipyramid corresponds to
a critical dual edge in the dual graph of S(h1). Noncritical dual edges whose normalized epistatic
weight remains non-significant after the parallel transport are omitted. The normalized epistatic
weight before (denoted by eo = eh1(s, t)) and after (denoted by ep = φ(eh1(s, t))) the parallel
transport, as well as their p-values (denoted by po and pp) are also reported, as well as ratios of
these quantities.

These parallel transport tables are linked to the epistatic filtration diagrams. Indeed, each
numbered row in the table corresponds to the row in the epistatic filtration diagram with the black
line set at eo. It also corresponds to the row with black line set at ep in the parallel transported
filtration diagram.

Recall from Section Statistics of epistatic weights that there may be dual edges of the trian-
gulations which are significant but not critical. Since only the critical dual edges are labeled (by
the row number in the epistatic filtration), in our tables for parallel transport these show up as
unlabelled rows.

Examples for the parallel transport of epistatic filtrations are shown in Figures 2.13, 2.15,
2.16, 2.18, and 2.19. The magnitude of the epistasis in the left panels are roughly comparable
between data sets due to normalization of the input data. Compare each left panel with its
corresponding right panel to observe the relative change in epistasis in the parallel path. Larger
changes in epistasis indicate stronger context-dependence of the interaction. For instance, in the
first Weinreich comparison (Fig. 2.18), bar 10 in the right panel has a parallel epistasis greater
than the original filtration on the left, indicating context-dependence.

2.6.8 Meta-epistatic charts

The meta-epistatic chart is a diagram drawn on top of the induced epistatic filtrations for some
selection of faces of a fixed cube; higher-order interactions induced by lower order interactions are
marked as corresponding.

In (Fig. 2.27b) and (Fig. 2.27c) we exhibit an example for the Eble data set, with 5 loci, where
we take the five 4-dimensional faces 0∗∗∗∗, ∗0∗∗∗, ∗∗0∗∗, ∗∗∗0∗ and ∗∗∗∗0 into consideration.
Mathematically, these five 4-faces constitute the face figure of the wild type. Fix one 4-face, say
0∗∗∗∗. The induced epistatic filtration on this face shows two blue bars corresponding to dual edges
labeled 1 and 2. Each of them refers to the ridge of a bipyramid, which is a 3-dimensional simplex
in this case. These two ridges may intersect certain 3-dimensional faces in the right dimension
and thus may or may not descend to significant ridges within certain 3-dimensional filtrations. In
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case of an incidence with a lower dimensional significant ridge, the significant 4-dimensional effect
is induced by a lower dimensional effect and one may picture this fact as a directed assignment
pointing from the lower towards the higher dimensional interaction.

2.6.9 Comparison with a simple linear regression approach

In the theory of fitness landscapes many linear regression approaches have been proposed to study
higher-order interactions, cf. [13, 149, 163, 128]. In this section, we compare our epistatic weight
method to an elementary regression approach using an example from the data.

The regression analysis we have in mind assumes that there is a linear relationship between the
predictors X1, X2, . . . , Xn (one associated to each locus/dimension of the genotope) and response,
or dependent, variables Y (associated to the biological measurements). That is, one assumes that
Y = f(X1, X2, . . . , Xn) + ε where f : Rn → R; (X1, X2, . . . , Xn) 7→ β0 +β1X1 +β2X2 + · · ·+βnXn

and where ε is a random error term. The coefficients β1, β2, . . . , βn are unknown but can be
estimated by minimizing the sum of squared residuals associated to the observations pairs (x, y).
These observations pairs consisting of a genotype and a measurement associated to it. Notice that
more than one measurements are typically associated to a single genotype. With the coefficient
estimates one can make predictions for the dependent variable via

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂nxn . (2.25)

The hat symbolˆ indicates a prediction, for instance of Y on the basis of xi = Xi, or an estimate
for an unknown coefficient.

Below, we are interested in the differences between the observed measurements y associated
to the genotypes of [0, 1]n, expressed in terms of x1, x2, . . . xn and the predicated values ŷ on
the regression hyperplane (2.25). Notice that the regression analysis remains unchanged after
normalizing the height function to Euclidean norm one. Additionally, computing residues for all
replicated measurements (when provided) and then take averages builds on the assumption that
measurements associated to different genotypes are statistically independent from each other. This
assumption is consistent with the one underlying the computation of statistical significances for
epistatic weights, following [47, §. 4.2-4.3].

Remark 2.6.3. In the regression setting of (2.25) there are hypothesis tests (like the F -statistic,
t-statistics and p-value) to answer if at least one regression coefficient βj , 1 ≤ j ≤ n is nonzero, see
for example [79]. Such statistical approaches are different from the one in [47, §. 4.2-4.3], where
other hypothesis tests for each epistatic weight were proposed.

Regression for Eble data

In the following, we perform a regression analysis focusing on the replicated measurements for the
lifespan fitness landscape on [0, 1]5 obtained from Eble and subspaces thereof. Numerical measures
of model fit (F -statistic: 2357, with p-value essentially zero, and for 3840 observations and 5
predictors) show that the multiple linear regression model can be considered to be appropriated
for this data. Since the epistatic weights of the dual edges are close to zero (≤ 0.02) and are
mostly not significant, the above regression analysis conclusion is in line with what we see from
the filtration of epistatic weights associated to the same fitness landscapes, see (Fig. 2.28).

From this example we see that the regression approach provides some general information on
higher-order interactions. However, without further assumptions, only one interaction formula is
given in terms of a regression hyperplane (2.25) while the epistatic weight approach gives more
fine grained information. This example also illustrate that when the regression model fits the data
well (essentially the higher the F -statistics and the more coefficients in the hyperplane equation
are significantly non-zero) the epistatic filtration has little horizontal shifts and few significant
epistatic weights.

We now proceed repeating the above analysis on some of the bipyramids considered in the
parallel analysis for the normalized lifespan Eble data. Regressing over bipyramid 23 in Table 2.16

{0001}+ {0000, 1001, 1011, 0111}+ {1111}

in 0∗∗∗∗ and 1∗∗∗∗ reveals that only two average residues over 0∗∗∗∗ are non-zero (associated
to the microbiomes 00000 and 00001), and only one is non-zero over 1∗∗∗∗ (associated to the
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microbiome 10000). This confirms the two non significant epistatic weights over bipyramid 23 in
Table 2.16.

Remark 2.6.4. If minimally dependent sets of points in the genotope are fixed, as in the epistatic
weight approach, and one regresses above these points, then the corresponding regression hyper-
planes equations are learned from data and the equations generally differ from the epistatic weights
given as in (2.23), but similar biological and geometric conclusions can be drawn. This idea could
then be taken further by considering smoothing splines, instead of linear regression, and their rela-
tion to epistatic filtrations. From an application point of view, one would obtain an interesting new
extension of the concept of epistasis because intermediate genotypes could be assessed, which would
correspond to the case of genetically heterogeneous populations of organisms as occur in nature.

Other numerical results for the above regressions are summarized in Table 2.19. Over 0∗∗∗∗
two coefficients are significantly non-zero (for x1 and x4), see top part of Table 2.19. Similarly,
over 1∗∗∗∗ four coefficients are significantly non-zero (x1, x2, x3, x4), see bottom part of Table 2.19.
The fit of the linear regression models is confirmed by the relatively high values of the F -statistic.
Over 0∗∗∗v the F -statistics is 459.1 for a p-value near zero and 720 observations. Over 1∗∗∗∗ the
corresponding F -statistics (near zero) is 52.61.

2.6.10 Microbiome data sets

In this work, Drosophila microbiome fitness landscapes consist of experimental measurements on
germ-free Drosophila flies inoculated with different bacterial species. The lifespan of approximately
100 individual flies were measured for each combination of bacterial species, giving roughly 3,200
individual fly lifespans for each of the two data sets presented. The experimental methods are
described in [61, 99]. The first data set is the exact data presented in [61, 99]. The second data
set is the second set of species with exactly the same methods used in [61, 99]. The bacterial
compositions considered consist of all possible combinations of five species. The species considered
can all occur naturally in the gut of wild flies: Lactobacillus plantarum (LP), Lactobacillus brevis
(LB), Acetobacter pasteurianus (APa), Acetobacter tropicalis (AT), Acetobacter orientalis (AO),
Acetobacter cerevisiae (AC), Acetobacter malorum (AM). The 5-member communities both stably
persist in the fly gut. For the purposes of this work, we define stable as maintaining colonization
of the gut when ≤ 20 flies are co-housed in a standard fly vial and transferred daily to fresh
food containing 10% glucose, 5% live yeast that has subsequently been autoclaved, 1.2% agar, and
0.42% propionic acid, with a pH of 4.5. The total number of species found stably associated with an
individual fly is typically between 3 and 8. Consistently, Lactobacillus plantarum and Lactobacillus
brevis, are found with two to three Acetobacter species. Less consistently, species of Enterobacteria
and Enterococci occur, and these have been described as pathogens. While more strains may be
present, for each of the two data sets in the present work, a set of five non pathogen species was
chosen, including the two Lactobacilli and three Acetobacter species. The combinations of species
are shown in Table 2.18. Different strains of the same species were used in the two data sets.
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2.7 Additional computations, figures and information for Chapter 2
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Figure 2.13: Parallel transport from 0∗∗0∗ to 1∗∗0∗ within the Khan dataset. (a) Filtra-
tion based on the triangulation of 0∗∗0∗. (b) Parallel epistatic weights computed from 1∗∗0∗ for
the triangulation based on 0∗∗0∗. (c) The two parallel triangulations (and exploded copies) are
depicted. The partitions in the node set are transferred from the cube on the middle left to the
cube on the middle right. Exploded versions of these same triangulation on the far left and far
right demonstrate the geometry of the simplices generated by the triangulations.

Table 2.11: Number of circuits of [0, 1]n and bipyramids among these. This indicates that bipyra-
mids can analyze the majority of all possible interactions, which circuits exhaustively cover. Com-
pare with Table 2.10, which shows the actual number of bipyramids for three datasets, indicating
significantly fewer sectors are needed to cover the landscape.

dimensions circuits bipyramids percentage
2 1 1 100.00%
3 20 8 40.00%
4 1348 1088 80.71%
5 353616 309056 87.40%
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Figure 2.14: Vertices of the bipyramid {00001}+ {00000, 01001, 00101, 00011}+ {00010} aris-
ing for the Khan data set [91] restricted to n = 4 loci. Dark blue dots correspond to common
face s ∩ t of the bipyramid and light blue dots correspond to the satellite vertices of s and t.
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Figure 2.15: Epistatic filtration and parallel epistatic units for transport from ∗∗∗∗0 to ∗∗∗∗1
within the Khan data.
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Figure 2.16: Epistatic filtration and parallel epistatic units for transport from ∗∗∗∗1 to ∗∗∗∗0
within the Khan data.
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Figure 2.17: Complete filtration of the Khan data over the whole 5-cube.
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Figure 2.18: Parallel transport from 0∗∗∗∗ to 1∗∗∗∗ within the Tan data. Analysis based on mean
values only; hence there is no color coding for the significance.
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Figure 2.19: Parallel transport from the face ∗∗0∗∗ to the face ∗∗1∗∗ within the Tan data. Analysis
based on mean values only; hence there is no color coding for the significance.

0.05 0.150.1 0.2
1

5

10

15

20

epistatic units

du
al

ed
ge
s

0.025 0.05 0.075 0.1
1

5

10

15

20

epistatic units

du
al

ed
ge
s

1

2

3

4

5

6

7 8

9

10

11

12
13

1415 16

17

18

19

20

21

22

23

Figure 2.20: Effect of L. plantarum. Comparing 0∗∗∗∗ to 1∗∗∗∗ for Eble data. Left. Filtration of
0∗∗∗∗. Middle. Parallel filtration of 1∗∗∗∗. Right. Dual graph of 0∗∗∗∗.
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Figure 2.21: Effect of L. brevis. Comparing ∗0∗∗∗ to ∗1∗∗∗ for Eble data. Left. Filtration of ∗0∗∗∗.
Right. Parallel filtration of ∗1∗∗∗.
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Figure 2.22: Comparing 0∗∗∗∗(Gould bacterial CFU counts) to 0∗∗∗∗(Gould lifespans). Left.
Filtration of 0∗∗∗∗ CFU counts. Right. Parallel filtration of 0∗∗∗∗ lifespans.
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Figure 2.23: Comparing 1∗∗∗∗(Gould bacterial CFU counts) to 1∗∗∗∗(Gould lifespans). Left.
Filtration of 1∗∗∗∗ CFU counts. Right. Parallel filtration of 1∗∗∗∗ lifespans.
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Figure 2.24: Comparing ∗0∗∗∗(Gould bacterial CFU counts) to ∗0∗∗∗(Gould lifespans). Left.
Filtration of ∗0∗∗∗ CFU counts. Right. Parallel filtration of ∗0∗∗∗ lifespans.
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Figure 2.25: Comparing ∗1∗∗∗(Gould bacterial CFU counts) to ∗1∗∗∗(Gould lifespans). Left.
Filtration of ∗1∗∗∗ CFU counts. Right. Parallel filtration of ∗1∗∗∗ lifespans.
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Figure 2.26: Synthetic data demonstrate method performance. Synthetic height functions
over the 4-dimensional cube are generated with 100 replicates each and standard deviation as
indicated. The heights of the wild type 0000 and 0001 are sampled with mean 53, all the other
vertices with mean 50. (a) The distribution of log10-transformed epistatic weights is roughly
constant as a function of interaction order, indicating the dimensional normalization is effective.
(b) The number of significant interactions decreases as the standard deviation of the input data
for each genotype increases. A blue dot is drawn if the interaction is significant and a red dot is
drawn otherwise.
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Figure 2.27: Meta-epistatic charts illustrate whether or not higher-order interactions
arise from lower-order interactions. (a) Cartoon of the principle underlying meta-epistatic
charts. The important loci in the interaction are depicted as black dots in a hyperplane through the
genotypes, where the true dimensions of the genotypes are flattened onto the cartoon plane (pink).
Higher-order interactions that derive from lower-order interactions occur in a new hyperplane
(blue), which magnifies the weights of a subset of the landscape. In contrast, novel higher-order
interactions that only arise in higher dimensions do not lie in a single additional hyperplane but
instead require at least two additional hyperplanes (green). In (b) and (c) two meta-epistatic
charts are represented. In each chart we identify the source of a higher-order interaction for the
Eble and Gould data respectively. The results are compiled in Table 2.17.
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Figure 2.28: Complete filtration of the Eble fitness landscape over the whole 5-cube.

69



Table 2.12: Parallel analysis GouldCFU 0∗∗∗∗ → Gould 0∗∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

22 {01001}+{01000,01100,01010,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873
21 {01001}+{01000,00100,01100,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873
20 {01001}+{01000,00010,01010,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873
19 {01001}+{01000,00100,00010,00111}+{00110} red/blue 0.014 0.039 0.357 0.978 0.038 25.873
18 {01100}+{01001,01110,01101,00111}+{01111} red/red 0.017 0.006 2.747 0.815 0.677 1.204
17 {01000}+{01100,01010,00110,00111}+{01110} red/red 0.021 0.013 1.584 0.783 0.433 1.808
16 {00100}+{01100,01001,00101,00111}+{01101} red/red 0.026 0.017 1.514 0.807 0.302 2.672
15 {01001}+{01100,01010,01110,00111}+{00110} red/red 0.027 0.017 1.619 0.941 0.231 4.074
14 {00001}+{00010,01001,00011,00111}+{01011} red/red 0.031 0.012 2.630 0.905 0.312 2.901
13 {01000}+{00100,00010,00001,01001}+{00111} red/red 0.057 0.011 5.217 0.869 0.479 1.814
12 {00010}+{01000,01010,00110,00111}+{01100} red/red 0.057 0.019 2.943 0.531 0.148 3.588
11 {00010}+{01000,00100,00110,00111}+{01100} red/red 0.057 0.019 2.943 0.531 0.148 3.588

{00010}+{01000,01010,01001,00111}+{01100} red/blue 0.067 0.047 1.431 0.853 0.032 27.079
{00010}+{01000,00100,01001,00111}+{01100} red/blue 0.067 0.047 1.431 0.853 0.032 27.079

10 {01010}+{01001,01110,01011,00111}+{01111} red/red 0.067 0.018 3.722 0.323 0.186 1.737
9 {00000}+{01000,00100,00010,00001}+{01001} red/red 0.068 0.035 1.911 0.851 0.086 9.872
8 {00100}+{01000,01100,00110,00111}+{01010} red/red 0.085 0.025 3.408 0.317 0.083 3.819
7 {01000}+{00100,00010,01001,00111}+{00001} red/red 0.087 0.017 5.217 0.869 0.479 1.814

{00100}+{01000,01100,01001,00111}+{01010} red/blue 0.095 0.052 1.816 0.791 0.019 40.984
{00100}+{01000,00010,01001,00111}+{01010} red/blue 0.095 0.052 1.816 0.791 0.019 40.984

6 {01101}+{01001,01110,00111,01111}+{01011} red/red 0.157 0.010 15.097 0.533 0.362 1.472
5 {00001}+{00100,01001,00101,00111}+{01100} red/blue 0.159 0.029 5.516 0.541 0.028 19.049
4 {01010}+{00010,01001,01011,00111}+{00011} blue/blue 0.192 0.028 6.871 0.032 0.042 0.758
3 {00010}+{00100,00001,01001,00111}+{00101} red/red 0.197 0.014 13.654 0.262 0.211 1.242
2 {01100}+{01010,01001,01110,00111}+{01011} red/red 0.209 0.019 11.109 0.502 0.175 2.869
1 {01000}+{00010,01010,01001,00111}+{01011} blue/blue 0.229 0.032 7.188 0.458 0.049 9.271

{00100}+{00010,00001,01001,00111}+{00011} blue/red 0.365 0.007 53.243 0.026 0.526 0.049
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Table 2.13: Parallel analysis GouldCFU 1∗∗∗∗ → Gould 1∗∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

23 {11001}+{11000,10101,11101,11011}+{11111} red/blue 0.002 0.051 0.033 0.962 0.001 1286.096
22 {11100}+{11000,10101,11110,11101}+{11111} red/red 0.017 0.006 2.799 0.773 0.689 1.122
21 {10000}+{11010,10101,10011,10111}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105
20 {10000}+{11010,10101,10011,11011}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105
19 {10000}+{11000,11010,10101,11011}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105
18 {10000}+{11010,10110,10101,10111}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105
17 {10000}+{11010,10110,10101,11110}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105
16 {10000}+{11000,11010,10101,11110}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105
15 {11011}+{11010,10101,10011,11111}+{10111} red/blue 0.027 0.039 0.695 0.580 0.012 47.154
14 {10110}+{10000,10010,11010,10111}+{10011} red/red 0.031 0.012 2.513 0.693 0.277 2.502
13 {11001}+{10000,10001,10101,11011}+{10011} red/blue 0.033 0.031 1.066 0.388 0.007 54.190
12 {11010}+{11000,10101,11011,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846
11 {11010}+{11000,10101,11110,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846
10 {11010}+{10000,11000,10101,11011}+{11001} red/blue 0.060 0.068 0.881 0.902 0.000 ∞

9 {10000}+{11000,11100,10101,11110}+{11101} red/red 0.070 0.012 5.959 0.897 0.426 2.106
8 {10100}+{10000,11100,10110,10101}+{11110} red/red 0.080 0.021 3.820 0.430 0.274 1.569
7 {11110}+{11010,10110,10101,11111}+{10111} red/red 0.134 0.021 6.534 0.130 0.227 0.573
6 {11000}+{10000,11010,10101,11110}+{10110} red/blue 0.163 0.035 4.659 0.737 0.019 38.586
5 {10010}+{10000,11010,10110,10111}+{10101} red/red 0.163 0.028 5.788 0.776 0.075 10.402
4 {10010}+{10000,11010,10011,10111}+{10101} red/red 0.163 0.028 5.788 0.776 0.075 10.402

{11000}+{11010,10101,11110,11111}+{10110} red/blue 0.186 0.037 5.000 0.695 0.026 26.834
3 {11000}+{10000,11100,10101,11110}+{10110} red/blue 0.200 0.043 4.659 0.737 0.019 38.586
2 {11000}+{10000,11010,10101,11011}+{10011} red/red 0.239 0.007 35.102 0.621 0.628 0.989
1 {11000}+{10000,11001,10101,11011}+{10001} red/red 0.253 0.030 8.530 0.671 0.104 6.452

{11110}+{11000,11010,10101,11111}+{11011} red/blue 0.301 0.026 11.785 0.288 0.035 8.348
{10001}+{10000,10101,10011,11011}+{11010} red/blue 0.313 0.039 8.062 0.598 0.014 43.650
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Table 2.14: Parallel analysis GouldCFU ∗0∗∗∗ → Gould ∗0∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

21 {10001}+{10000,00001,10101,10011}+{00111} red/blue 0.012 0.024 0.481 0.963 0.026 36.756
20 {00010}+{10000,10010,00011,00111}+{10011} red/red 0.021 0.012 1.714 0.797 0.270 2.952
19 {10100}+{10000,00100,10110,10101}+{00110} red/red 0.022 0.007 3.155 0.869 0.717 1.212
18 {10110}+{10000,10010,00111,10111}+{10011} red/red 0.031 0.012 2.513 0.693 0.277 2.502
17 {00100}+{10000,00110,10101,00111}+{10110} red/red 0.040 0.018 2.266 0.915 0.290 3.155
16 {00100}+{10000,00110,10110,10101}+{00111} red/red 0.049 0.022 2.266 0.915 0.290 3.155
15 {00001}+{10000,00100,00010,00111}+{00110} red/blue 0.079 0.026 3.047 0.698 0.023 30.749
14 {00010}+{10000,10010,00110,00111}+{10110} red/red 0.113 0.008 13.352 0.295 0.461 0.640
13 {00000}+{10000,00100,00010,00001}+{00111} red/blue 0.133 0.048 2.775 0.476 0.001 707.281
12 {10010}+{10000,10011,00111,10111}+{10101} red/red 0.133 0.023 5.788 0.776 0.075 10.402
11 {10010}+{10000,10110,00111,10111}+{10101} red/red 0.133 0.023 5.788 0.776 0.075 10.402
10 {00011}+{10000,00001,10011,00111}+{10101} red/red 0.208 0.001 275.689 0.413 0.949 0.435

9 {00010}+{10000,00100,00001,00111}+{00101} red/red 0.227 0.017 13.654 0.262 0.211 1.242
8 {00100}+{10000,00001,00101,00111}+{10101} red/red 0.269 0.033 8.193 0.579 0.101 5.733
7 {00001}+{10000,00100,00101,00111}+{10101} red/red 0.269 0.033 8.193 0.579 0.101 5.733
6 {00001}+{10000,00010,00011,00111}+{10010} red/red 0.275 0.004 67.167 0.493 0.755 0.653
5 {00001}+{10000,00011,10011,00111}+{10010} red/red 0.275 0.004 67.167 0.493 0.755 0.653
4 {00110}+{10000,00100,10101,00111}+{00101} red/red 0.306 0.009 32.813 0.413 0.610 0.677
3 {00110}+{10000,10010,10110,00111}+{10111} red/blue 0.344 0.024 14.403 0.186 0.035 5.345
2 {00110}+{10000,00010,10010,00111}+{00011} red/blue 0.354 0.024 14.760 0.175 0.030 5.853

{00001}+{10000,10101,10011,00111}+{10111} red/blue 0.408 0.028 14.815 0.108 0.013 8.308
1 {00100}+{10000,00010,00001,00111}+{00011} blue/red 0.421 0.008 53.243 0.026 0.526 0.049

{00110}+{10000,10110,10101,00111}+{10111} red/blue 0.486 0.034 14.403 0.186 0.035 5.345

Table 2.15: Parallel analysis GouldCFU ∗1∗∗∗ → Gould ∗1∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

23 {01100}+{11000,01110,01101,11110}+{11010} red/red 0.001 0.018 0.054 0.998 0.292 3.418
22 {01100}+{11000,01010,01001,01110}+{11010} red/red 0.001 0.018 0.054 0.998 0.292 3.418
21 {01100}+{11000,01001,01110,01101}+{11010} red/red 0.001 0.018 0.054 0.998 0.292 3.418
20 {11001}+{11000,01001,11101,11011}+{11111} red/blue 0.002 0.059 0.033 0.962 0.001 1286.096
19 {11110}+{11010,01110,01101,11111}+{01111} red/red 0.005 0.009 0.488 0.945 0.576 1.641
18 {11100}+{11000,01100,11110,11101}+{01101} red/red 0.005 0.023 0.218 0.952 0.193 4.933
17 {11000}+{11010,01110,01101,11110}+{11111} red/red 0.010 0.026 0.369 0.981 0.106 9.255
16 {01110}+{11000,11010,01101,11110}+{11111} red/red 0.010 0.026 0.369 0.981 0.106 9.255
15 {01100}+{11000,01101,11110,11101}+{11111} red/red 0.013 0.014 0.905 0.866 0.346 2.503
14 {11000}+{01001,11010,01110,01101}+{01111} red/red 0.013 0.020 0.656 0.974 0.160 6.087
13 {11000}+{01001,11010,01101,11111}+{01111} red/red 0.013 0.020 0.656 0.974 0.160 6.087
12 {01000}+{11000,01100,01010,01001}+{01110} red/red 0.024 0.015 1.584 0.783 0.433 1.808
11 {11010}+{11000,01001,01101,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846
10 {11010}+{11000,01001,11011,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846

9 {11010}+{11000,01101,11110,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846
8 {01010}+{01001,11010,01110,01011}+{01111} red/red 0.067 0.018 3.722 0.323 0.186 1.737
7 {01110}+{01001,11010,01101,01111}+{11111} red/red 0.075 0.022 3.483 0.841 0.136 6.184
6 {01001}+{11010,01110,01101,01111}+{11111} red/red 0.075 0.022 3.483 0.841 0.136 6.184
5 {11011}+{01001,11010,01011,11111}+{01111} red/red 0.081 0.000 1235.241 0.126 0.996 0.127
4 {11000}+{01010,01001,11010,01110}+{01011} red/blue 0.170 0.030 5.666 0.718 0.026 27.722
3 {11000}+{01001,11010,11011,11111}+{01011} red/blue 0.170 0.030 5.666 0.718 0.026 27.722
2 {01101}+{01001,11010,01110,01111}+{01011} red/red 0.192 0.013 15.097 0.533 0.362 1.472
1 {01101}+{01001,11010,01111,11111}+{01011} red/red 0.192 0.013 15.097 0.533 0.362 1.472

72



Table 2.16: Parallel analysis Eble 0∗∗∗∗ → 1∗∗∗∗, non-critical red/red-case omitted.

No. bipyramids type eo ep eo/ep po pp po/pp

23 {00001}+{00000,01001,01011,00111}+{01111} red/red 0.001 0.012 0.066 0.953 0.390 2.444
22 {00001}+{00000,01001,01101,00111}+{01111} red/red 0.001 0.012 0.066 0.953 0.390 2.444
21 {01110}+{00000,00110,01011,01111}+{00111} red/blue 0.001 0.025 0.041 0.923 0.038 24.226
20 {01110}+{00000,01100,00110,01111}+{00111} red/blue 0.001 0.035 0.041 0.923 0.038 24.226
19 {00110}+{00000,01100,00111,01111}+{01101} red/red 0.002 0.012 0.201 0.827 0.303 2.729
18 {00110}+{00000,01100,00101,00111}+{01101} red/red 0.003 0.014 0.201 0.827 0.303 2.729
17 {01110}+{00000,01000,01100,01111}+{01101} red/red 0.003 0.013 0.264 0.742 0.251 2.956
16 {00110}+{00000,00010,01011,00111}+{00011} red/red 0.004 0.003 1.568 0.755 0.843 0.896
15 {00010}+{00000,01010,00110,01011}+{01110} red/red 0.007 0.010 0.748 0.606 0.488 1.242
14 {01010}+{00000,00010,00110,01011}+{00111} red/red 0.008 0.005 1.583 0.443 0.639 0.693
13 {01010}+{00000,00110,01110,01011}+{01111} red/red 0.009 0.024 0.359 0.475 0.062 7.686
12 {01010}+{00000,01000,01110,01011}+{01111} red/red 0.009 0.024 0.359 0.475 0.062 7.686
11 {00100}+{00000,01100,00110,00101}+{00111} red/red 0.009 0.018 0.498 0.533 0.269 1.981
10 {01001}+{00000,00001,01101,00111}+{00101} red/red 0.014 0.014 1.018 0.288 0.313 0.920

9 {00101}+{00000,01100,01101,00111}+{01111} red/red 0.015 0.026 0.584 0.228 0.062 3.695
{00101}+{00000,01100,00110,00111}+{01111} red/blue 0.018 0.040 0.446 0.321 0.035 9.119

8 {01101}+{00000,01001,00111,01111}+{01011} red/red 0.019 0.003 6.623 0.068 0.800 0.085
7 {01101}+{00000,01000,01001,01111}+{01011} red/red 0.019 0.003 6.623 0.068 0.800 0.085
6 {01001}+{00000,00001,01011,00111}+{00011} red/red 0.019 0.005 3.571 0.153 0.689 0.222
5 {01000}+{00000,01010,01110,01011}+{00110} red/red 0.020 0.011 1.750 0.169 0.443 0.381
4 {01000}+{00000,01100,01110,01111}+{00110} red/red 0.020 0.011 1.750 0.169 0.443 0.381
3 {01000}+{00000,01001,01011,01111}+{00111} red/red 0.021 0.013 1.535 0.140 0.339 0.413
2 {01100}+{00000,01000,01101,01111}+{01001} blue/blue 0.045 0.037 1.215 0.000 0.003 0.176
1 {01001}+{00000,01000,01011,01111}+{01110} blue/red 0.048 0.024 1.993 0.000 0.056 0.002

{01100}+{00000,01000,01110,01111}+{01011} blue/blue 0.064 0.034 1.855 0.000 0.005 0.000
{00010}+{00000,00011,01011,00111}+{00001} blue/blue 0.065 0.043 1.518 0.000 0.001 0.001
{01100}+{00000,01101,00111,01111}+{01001} blue/red 0.066 0.024 2.775 0.000 0.105 0.000
{00001}+{00000,00101,01101,00111}+{01100} blue/blue 0.066 0.033 1.989 0.000 0.009 0.000
{01001}+{00000,01011,00111,01111}+{00110} blue/blue 0.068 0.036 1.917 0.000 0.007 0.000
{01100}+{00000,00110,01110,01111}+{01011} blue/blue 0.083 0.045 1.829 0.000 0.002 0.000
{01100}+{00000,00110,00111,01111}+{01011} blue/red 0.084 0.021 4.035 0.000 0.210 0.000

Table 2.17: Significant 4-dimensional interactions, which cannot be seen in lower dimensions, cf.
(Fig. 2.27). The value p ↑ refers to the p-value of the 4-dimensional bipyramid in question whereas
p ↓ is the p-value of its ridge intersected with the ∩ - face, cf. (Fig. 2.27c) for the Gould data.

Data significant bipyramid ∩ - face p ↑ p ↓

Eble - - - -
Gould
∗∗0∗∗ {00010}+ {00000, 10010, 00011, 11011}+ {10001} ∗∗01∗ 0.041 0.270

∗00∗∗ 0.041 0.149
{10010}+ {00000, 11000, 10001, 11011}+ {01001} 1∗0∗∗ 0.041 0.076

∗∗00∗ 0.041 0.063

Khan
0∗∗∗∗ {00010}+ {00000, 01001, 00101, 00011}+ {00001} 0∗∗∗1 0.009 0.052

73



Table 2.18: Bacterial species considered in the two microbiome data sets.

Gould data set Eble data set
Species 1 L. plantarum L. plantarum
Species 2 L. brevis L. brevis
Species 3 A. pasteurianus A. cerevisiae
Species 4 A. tropicalis A. malorum
Species 5 A. orientalis A. orientalis

Table 2.19: Regressions over {0001}+{0000,1001,1011,0111}+{1111} for normalized lifespan data
for Eble 0∗∗∗∗ and Eble 1∗∗∗∗.

Coefficient Std. error t-statistic p-value
β0 0 0 nan nan
x1 −0.0270 0.009 −2.987 0.003
x2 −0.0149 0.012 −1.246 0.213
x3 −0.0156 0.012 −1.306 0.192
x4 0.2039 0.008 26.022 0.000
β0 0.2320 0.005 44.642 0.000
x1 0.0310 0.005 5.957 0.000
x2 0.0610 0.007 8.874 0.000
x3 −0.0185 0.007 −2.692 0.007
x4 −0.0861 0.007 −12.518 0.000
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The MST-fan of a regular subdivision

This chapter is based on the preprint “The MST-fan of a regular subdivision” [45] by Holger Eble.
The preprint can be found on the arXiv with the number 2205.10424.

3.0 Abstract

The dual graph Γ(h) of a regular triangulation Σ(h) carries a natural metric structure. The
minimum spanning trees of Γ(h) recently proved to be conclusive for detecting significant data
signal in the context of population genetics. In this paper we prove that the parameter space of
such minimum spanning trees is organized as a polyhedral fan, called the MST-fan of Σ(h), which
subdivides the secondary cone of Σ(h) into parameter cones. We partially describe its local face
structure and examine the connection to tropical geometry in virtue of matroids and Bergman
fans.

3.1 Introduction

Triangulations, or more generally polyhedral complexes, play a crucial role both in theoretical and
applied scientific fields related to mathematics, such as genetics [9] and machine learning [162].
See [40, Chapter 1] for an overview of triangulations appearing within mathematics. Given a finite
point configuration A ⊂ Zn, in practice one often considers a specific class of subdivisions of A,
known as regular subdivisions. Their maximal cells can be described as shadows of n-dimensional
polytopes in Rn+1, namely facets of the upper convex envelope associated to height functions
h : A→ R lifting A into Rn+1. The cellular incidences of a fixed regular triangulation Σ(h) of A
are recorded in its dual polyhedral complex, the tropical hypersurface V (H) given by the tropical
polynomial

H(x) :=
⊕
a∈A

h(a)� xa := max
a∈A
{h(a) + 〈a, x〉} ,

which is defined to be the set of points x ∈ Rn where at least two of the linear forms h(a) + 〈a, · 〉
of H attain the maximum H(x), cf. [86, 106]. The bounded cells of V (H) form the tight span
of Σ(h) [72], whose 1-skeleton is called the dual graph Γ(h) of Σ(h). The nodes of Γ(h), i.e. the
0-cells of V (H), correspond to maximal cells of Σ(h) and their adjacency relations are recorded
by the edges E(Γ(h)), which in addition are naturally weighted: If s = conv(v1, . . . , vn+1) and
t = conv(v2, . . . , vn+2) are adjacent maximal simplices of Σ(h), the lattice length [22] or tropical
edge length [112] of the edge (s, t) ∈ E(Γ(h)) is given by

Lh(s, t) := |L̃h(s, t)| :=

∣∣∣∣∣∣∣∣∣det


1 v1,1 v1,2 . . . v1,n h(v1)
1 v2,1 v2,2 . . . v2,n h(v2)
...

...
...

...
...

...
1 vn+2,1 vn+2,2 . . . vn+2,n h(vn+2)


∣∣∣∣∣∣∣∣∣ . (3.26)

Now, for a fixed height function h : A → R the greedy algorithm choses some minimum spanning
tree Tmin(h) ⊂ Γ(h), cf. [133, Chapter 50], and in the sequel of this article we will study the fibers of
the operation Tmin( · ). It is well-known [40, Section 5.2] that the parameter space RA for regular
subdivisions Σ(h) of A is organized in a nicely behaved union of secondary cones sc(h) ⊂ RA,
called the secondary fan of A. The following Main Theorem is Corollary 3.4.3 and it identifies the
parameter space K(h) = ∪K(T ) of realizable minimum spanning trees T ⊂ Γ(h), i.e. those trees
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T with T = Tmin(g) ⊂ Γ(h) for some g ∈ sc(h), as a conic subdivision K(h) of sc(h). We refer to
K(h) as the MST-fan structure on sc(h).

Main Theorem. Let Σ(h) be a regular triangulation of the point configuration A. The MST-fan
K(h) of Σ(h) is a pure fan in sc(h) ⊂ RA with full support. Its maximal cones are in bijection
with realizable minimum spanning trees of Γ(h).

Let again h : A → R be a fixed height function and let G = G(V,E) = Γ(h). A collection
C = {K(T (Ci))} of maximal cones in K(h) is called G-saturating if the spanning trees T (Ci) cover
G, i.e. if E = ∪iE(T (Ci)) holds. Let C ⊂ RA be the polyhedral complex with cells

⋂
K(T (Ci))

where C runs through the G-saturating collections.

Corollary. The complex C naturally embeds into the tropical linear space trop(M), where M :=
M(G) is the cycle matroid of G, and equals the Bergman fan of M restricted to valuations given
by tropical edge lengths as in equation (3.26).

Motivation from population genetics

Regular subdivisions admit a reformulation in terms of linear optimization: A subdivision Σ of a
point configuration A with support |Σ| :=

⋃
σ∈Σ σ is regular if and only if there is a convex support

function fΣ : |Σ| → R, whose domains of linearity coincide with the maximal cells of Σ, cf. [23,
Section 1.F].

This interplay of optimization and polyhedral combinatorics was the grounding for [46] and [47],
where the theory of regular subdivisions was applied to statistical population genetics in order to
detect and study non-additive mutational gene effects, called epistasis. Note that the tropical edge
length (3.26) measures the degree to which the points (x, h(x)), where x runs through the vertex
set of s∪ t, fail to lie on a hyperplane in Rn+1 and thus provides an adequate measure for epistasis.

Put in a biological wording, the point set A represents an n-loci biallelic (or multi-allelic) system
of genotypes, i.e. A = {0, 1}n or more generally, A is the vertex set of a product of simplices,
and the function h : A → R is a genotype-phenotype map which showcases some experimentally
obtained physical quantity. Since in this case the support function fΣ can be chosen to record
fittest populations on A with respect to h, cf. Section 3.7 and [9], so do the maximal cells of Σ(h).
With a slight modification of the tropical edge length (3.26) named epistatic weight, the minimum
spanning tree Tmin(h) was introduced as epistatic filtration in [47]. The edges of Tmin(h), especially
the significant ones satisfying a statistical p-test, depict a selective choice of epistatic interactions
and proved to be able to reveal biological relevant information.

Outline of the paper

In Section 3.2 we review facts on regular subdivisions and tropical geometry. In Section 3.3 we
introduce the MST-fan of some given regular subdivision. Section 3.4 provides an algorithm for
computing the single MST-cones from trees and in Section 3.5 we discuss the effect of changing the
edge order of the spanning trees. In Section 3.6 we reinterpret the MST-fan in terms of matroid
theory and tropical geometry. Section 3.7 shortly explains some use-case for applying tropical
geometry to biology from where the motivation to study MST-fan structures initially rebounded.
In Section 3.8 we provide some computational results.

I am indebted to Michael Joswig and Marta Panizzut for many helpful discussions.

3.2 Regular subdivisions and tropical hypersurfaces

Let A ⊂ Rn be a point configuration with point labels J . Following [40, Section 2.3], a polyhe-
dral subdivision of A is a collection C of subsets of J , such that the convex hulls of C cover
A and intersect nicely. A regular subdivision of A is a polyhedral subdivision of A, which
is induced by a height function h : A → R taking the upper facets of the lifted configuration
conv(Ah) := conv{(v, h(v)) : v ∈ A} with the induced label set. For instance, the 3-cube has 74
triangulations (6 triangulations up to symmetry) and all of them are regular. The 4-cube has
92,487,256 triangulations (247,451 triangulations up to symmetry) and 87,959,448 of them are reg-
ular, cf. [74, 124] for the original results and [84] for a recomputation using parallelized reverse
search.
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Remark 3.2.1. The regularity of a polyhedral subdivision can be characterized in terms of convex
functions as follows, cf. [23, Section 1.F]. For a given convex set S ⊂ Rn, a function f : S → R
is called convex if for any two points x, y ∈ S the graph of the restriction of f to the line segment
[x, y] ⊂ S lies below the line segment [(x, f(x)), (y, f(y))] in Rn+1. Now, a polyhedral subdivision Σ
of A is regular precisely if it has a convex support function fΣ, i.e. the convex hulls of the maximal
cells in Σ are the regions of linearity of fΣ.

3.2.1 The parameter space for regular subdivision

Let Σ(h) be a regular triangulation of A. The parameter space of all g ∈ RA inducing the same
triangulation Σ(g) = Σ(h) is a full-dimensional cone in RA, called secondary cone sc(h) of Σ(h), cf.
[40, Section 5.2]. It can be understood by looking at local folding constraints on h, which push the
lifts (s, t)h of bipyramids (s, t) in A to the upper hull of Ah. For a given simplex s = (v1, · · · , vn+1)
in A, the conditions on a height function h ∈ RA to show s in its induced subdivision Σ(h) are
installed by the linear folding constraints Ψs,j ≥ 0 for vj ∈ A \ s, where

Ψs,j(h) := sign
(

det
(
L̃h(s)

))
· det


1 v1,1 v1,2 . . . v1,n h(v1)
1 v2,1 v2,2 . . . v2,n h(v2)
...

...
...

...
...

...
1 vn+1,1 vn+1,2 . . . vn+1,n h(vn+1)
1 vj,1 vj,2 . . . vj,n h(vj)

 (3.27)

and where L̃h(s) denotes the right matrix of (3.27) with the last row and column omitted. Hence,
the full-dimensional cone Hs :=

⋂
vj∈A\s{Ψs,j ≥ 0} ⊂ RA is the parameter space for s to appear in

the induced triangulation. Geometrically, this system requires (A−s)h to lie below the hyperplane
spanned by sh.

3.2.2 Tropical hypersurfaces

Tropical Geometry is a discrete variant of Algebraic Geometry and is established over the tropical
semifield (R ∪ {−∞},⊕,�), where a ⊕ b := max(a, b) and a � b := a + b. Similar to ordinary
Algebraic Geometry, tropical zero sets of tropical polynomials are the central geometric objects
of study. Given a set of exponents S ⊂ Zd and coefficients h(u) ∈ R for u ∈ S, the associated
d-variate tropical polynomial reads

Fh :=
⊕
u∈S

h(u)� xu1
1 � x

u2
2 � . . .� x

ud
d = max

u∈S
{h(u) + 〈u, x〉}

and can be understood as a function Fh(x) : Rd → R in x. The tropical hypersurface V (Fh) ⊂ Rd
is defined to be the locus where Fh tropically vanishes, i.e. V (Fh) is the set of all points x ∈ Rd
where at least two tropical summands of Fh evaluate at x to Fh(x).

Remark 3.2.2. Let (s, t) be a bounded edge of V (Fh). Then the tropical edge length `h(s, t) equals
the euclidean distance between the two 0-cells s and t of V (Fh) upto a constant factor not depending
on h.

An important result of tropical geometry states that the k-dimensional cells of the hypersur-
face V (Fh) are in bijection with the (n − k)-dimensional cells of the regular subdivision Σ(h) for
0 ≤ k < n, see [86, Theorem 1.13] for instance. This bijection is inclusion reversing and hence
establishes a duality between the combinatorics of V (Fh) and the combinatorics of Σ(h). The
bounded subcomplex of V (Fh) is called tight span of Σ(h), cf. [72]. The tight span showcases
the adjacency relations of interior cells of Σ(h) as will be indicated in Figures 3.29 and 3.30. The
1-cells, i.e. the edges, of the tight span yield the dual graph Γ(h) of Σ(h) with natural edge weights
given by the tropical edge lengths as in (3.26).
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A C D

F E

Figure 3.29: The tropical hypersurface associated to a height function on A = S = {0, 1}3, which
was obtained in a population genetics experiment on Esherichia coli mutations in the genes topA,
spoT, and pykF running Lenski’s long-term evolution experiment, cf. [91] and Section 3.7. The
bounded subcomplex of the hypersurface, i.e. the tight span of the regular subdivision Σ(h) of A
introduced in [72] generalizing the tight spans of finite metric spaces from [44] and [77], has six
vertices enumerated A to F , six bounded edges (A,B), (B,C), (C,D), (C,E), (E,F ) and (A,F )
and one bounded 2-dimensional face colored yellow.
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(a) Triangulation Σ(h). (b) Tight span of Σ(h), tropical edge weights (red).

Figure 3.30: Running example. (A) The regular triangulation Σ(h) dual to Figure 3.29. (B) The
tight span of Σ(h). Its 1-skeleton, i.e. with the yellow 2-cell removed, is the dual graph Γ(h) of
Σ(h) and records the adjacency relations among the maximal simplices of Σ(h). Tropical edge
weights of the dual edges are in red, their order with respect to how the greedy algorithm choses
the edges are in blue. Note that the edge (C,E) with label 4 is omitted. Geometrically, the glueing
information of this edge is already recorded in the partition ABCEF |D of the cube in (A), cf.
Section 3.7.
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3.3 The MST-Fan K(h)

Let again A be a fixed finite point configuration in Rn. In order to study the class of realizable
minimum spanning trees of Γ(h) for varying height functions h : RA → R, we first consider the
tropical edge length as a linear functional modulo sign.

Definition 3.3.1. The edge length linear form `•(r) : RA → R of an A-ridge r = (s, t) is given by
the determinant det(L̃•(r)) of the matrix L̃•(r) from equation (3.26) in Section 3.1. Thus, evalu-
ating `•(r) at the height function h ∈ RA yields the tropical edge length Lh(r) up to sign.

3.3.1 Linear forms and circuits

A matroid M = (E,B) on a finite ground set E is given by a non-empty collection B ⊂ 2M of
subsets of E, called the set of bases ofM, which fulfills the following base exchange axiom (BE),
cf. [116, Section 1.2]:

(BE) For any two members B1 and B2 of B and any element x ∈ B1 \B2 there is
an element y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} is a member of B .

A collection B of bases gives rise to a system I ⊂ 2M of independent sets of M collecting all
subsets of I ⊂ E lying in some base BI ∈ B and, vice versa, bases are independent sets of
maximal cardinality. For our purposes, we consider two matroids. First, given an undirected
graph G = (V,E), the cycle matroid M(G) on the ground set E has the spanning trees of G as its
bases. Second, the vector matroid M(A) on the ground set A depicts affine independences over
A, i.e. the bases ofM(A) are full-dimensional simplices spanned by points of A.

For a given A-ridge r, the coefficients (xi)i∈A of `•(r) regarded as a row vector in RA are
obtained by Laplacian expansion of L̃•(r) along its i-th row and last column. The support
supp(L̃•(r)) := {i ∈ A : xi 6= 0} is seen by the matroidM(A) as we will show now.

Lemma 3.3.2. [116, Corollary 1.2.6] Every A-ridge r = (s, t) contains a unique circuit Zr.

The circuit Zr of Lemma 3.3.2 is called the fundemental circuit of r. Now, fix an A-ridge
r = (s, t) and denote the coefficients of the linear form `•(r) by (dv)v∈A.

Proposition 3.3.3. The circuit Zr equals the support {v ∈ A : dv 6= 0} of `•(r).

Proof. If dv = 0 holds, then ker(`•(r)) yields relations in Zr ⊂ (s ∪ t) \ {v}. If dv 6= 0 holds, then
Zr * ((s ∪ t) \ {w}) ∈ I, and thus we get v ∈ Zr.

Remark 3.3.4. Consequently, one may have `h(r) = `h(r̃) for distinct ridges r and r̃ and generic
h. In this case the fundamental circuits of r and r̃ need to coincide.

Proposition 3.3.5. Every circuit Z ofM(A) equals Zr for some A-ridge (s, t).

Proof. Let Z = {z1, . . . , zr} ⊂ A. Then Z \ {z1} ⊂ t for some t ∈ B. Now, choose zt ∈ Z \ {z1}
and set s := t \ {zt} ∪ {z1}. Assume s /∈ I. Then there is some circuit Z∗ ⊂ s ∪ t with zt /∈ Z∗
contradicting Lemma 3.3.2.

In fact, the fundamental circuit Zr of the A-ridge r in Proposition 3.3.3 is subdivided into a
positive and a negative part, Zr = (Zr+, Zr−), according to the sign of the coefficients dv. This turns
M(A) into an oriented matroid, cf. [17]. Moreover, the regular triangulations of A are encoded
in the flip graph, which is the 1-skeleton of the secondary polytope Σ-poly(A) of A, cf. [40,
Section 5.3]. An edge of the flip graph connecting vertices of Σ-poly(A), i.e. triangulations whose
secondary cones Σ(h) and Σ(g) share a common facet, corresponds to an oriented fundamental
circuit Zr = (Zr+, Zr−) for some ridge r = (s, t) ∈ Γ(h) and represents a split of the bipyramid (s, t)
of A in two different ways.
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3.3.2 Reproducing spanning trees of Γ(h)

In order to reproduce an edge-ordered spanning tree T of Γ(h) as output Tmin(g) = T of the greedy
algorithm on the weighted dual graph Γ(h), one needs to impose conditions on the height function
g such that the algorithm is forced to choose the right edges in the correct order.
Lemma 3.3.6. Let g and h be distinct linear forms on Rm. Then

F (g,h) := {x ∈ Rm : |g(x)| ≤ |h(x)|}

is a polyhedral fan consisting of four maximal cones.
Proof. The choices for σg, σh ∈ {+,−} yield a subdivision of F (g,h) into the four cones

F (g,h)
σgσh

:= {σgg ≥ 0} ∩ {σhh ≥ 0} ∩ {(σhh− σgg) ≥ 0} .

Definition 3.3.7. An A-ridge graph R is a finite set of A-ridges, such that there exists a regular
subdivision Σ(h) of A which shows R among its adjacencies, i.e. R ⊂ Γ(h) holds. An A-ridge
forest is a cycle-free A-ridge graph and an A-ridge tree is a connected A-forest.
Lemma 3.3.8. For an A-ridge graph R, the set of height functions h ∈ RA such that R occurs in
Γ(h) is given by the interior of a full-dimensional cone.
Proof. Following 3.2.1, we see R ⊂ Γ(h) precisely if h lies in the interior of

⋂
s∈V (R)Hs.

The parameter cone of Lemma 3.3.8 is the union of those secondary cones whose triangulations
realize the adjacencies of R and we define it itself as the secondary cone sc(R) :=

⋂
s∈V (R)Hs of

R. For instance, if R is a spanning tree of Γ(h), then sc(R) = sc(h) holds since all maximal cells
of Σ(h) are required to appear. Yet, the graph R can be chosen significantly smaller in order to
fulfill sc(R) = sc(h), for instance in Figure 3.30 the ridge graphs {2, 3}, {1, 5}, {1, 3} and {2, 4, 5}
are inclusion minimal with this property.
Proposition 3.3.9. Given an A-ridge r ∈ Γ(h), the map sign(`•(r)) is constant and non-zero on
the interior int(sc(R)) of sc(R) for any A-ridge graph R containing r.
Proof. If there are h, h′ ∈ RA with sign(`h(r)) < 0 < sign(`h′(r)), then there is some g ∈
conv{h, h′} ⊂ sc(R) with `g(r) = 0 contradicting Lemma 3.3.8.

For an A-ridge r ∈ R, set σr ∈ {−1, 1} to be sign(`•(r)) on int(sc(R)).
Proposition 3.3.10. For A-ridges r1, r2 ∈ R of an A-ridge graph R, we have

#
{
c ∈ F (l(r1),l(r2)) : dim(c ∩ sc(R)) = #A

}
≤ 1 .

If this set has a unique full-dimensional cone, we denote it by F r1,r2(R).

Proof. By Proposition 3.3.9, the only candidate for c is F (l(r1),l(r2))
σr1σr2

. It appears in full dimension
precisely if {σr2 l(r2)− σr1 l(r1) ≥ 0} ∩ sc(R) is full-dimensional.

Remark 3.3.11. The proof of Proposition 3.3.10 shows that the hyperplane σr2 l(r2) = σr1 l(r1),
provided that it touches the interior of sc(R), subdivides sc(R) into the two subcones `•(r1) ≤ `•(r2)
and `•(r1) ≥ `•(r2).

With regard to Proposition 3.3.10, we define an ordered A-ridge graph R< to be an A-ridge
graph R equipped with an enumeration of its edges by an ascending sequence of subsequent integers.
Further, we call an ordered spanning tree T< of the dual graph Γ(h) realizable if there exists a
height function g ∈ sc(h), which satisfies T< = Tmin(g). Note that for a fixed spanning tree, one
order may be realizable while the other is not as we will see in Figure 3.31. A ridge r = (s, t) in the
dual graph Γ(h) is called stable if no other ridge of Γ(h) generically, i.e. for a generically chosen
h ∈ RA, has the same tropical edge length as r. Otherwise, the ridge r is called instable at some
circuit Z, or Z-instable, and its fundamental circuit Z needs to occur within some other ridge in
this case, cf. Lemma 3.3.2 and Remark 3.3.4. For instance, if Z-instable ridges do not receive
subsequent integers in the edge order, the tree is not realizable. Hence any set of Z-instable ridges
has an interval of integers as instability range.
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Definition 3.3.12. For a generic height function h ∈ RA and a realizable ordered spanning tree
T< of Γ(h), let the MST-cone K(T<) of T< be given by

K(T<) := {g ∈ sc(h) : g is generic and Tmin(g) =♦ T<} ⊂ RA

as the set of all height functions g on A such that the greedy algorithm on Γ(g) possibly chooses
T< as minimum spanning tree. This is reflected in the notation Tmin(g) =♦ T< as adaption from
modal logic.

The K in the notation of the MST-cone goes back to Kruskal, who described in [96] the greedy
algorithm in the graph context, today known as Kruskal’s algorithm, with regard to the travelling
salesperson problem (TSP). In fact, minimum spanning trees have been used ever since in heuristics
and approximations for the TSP, see e.g. [66, 67]. In the current paper, we only consider edge
weights which are dictated by geometric relations in tropical hypersurfaces. As such, the framework
as described in Definition 3.3.1 is linear.

In the sequel we will show that K(T<) is a full-dimensional polyhedral subcone of the sec-
ondary cone sc(h) of Σ(h). By Proposition 3.3.10, every edge of T< contributes at most one linear
hyperplane to K(T<) and the MST-cones give rise to a fan structure.

3.4 An algorithm for computing K(T<)

Let us fix a realizable ordered spanning tree T< := (r1, . . . , rm) ⊂ Γ(h) for some generic height
function h ∈ RA. For v = 0, . . . ,m we define Tv := (r1, · · · , rv) to be the tree with the same node
set as T but only with edges r1, . . . , rv inserted. Further, we set

c(Tv) := {e ∈ E(Γ(h)) \ E(Tv) : Tv ∪ e contains a circuit}

and we define the rv-relevant edges H(rv) to be

H(rv) := E(Γ(h))− E(Tv)− c(Tv) .

Thus, the edges in H(rv) are precisely the edges in Γ(h) which do not close a circuit in Tv. We say
that an edge r ∈ Γ(h) is relevant for rv if r lies in H(rv). Further, for every edge r ∈ E(Γ(h)) \ T
there is a unique minimal relevance index i(r) < m such that r is relevant for Ti(r)−1 but irrelevant
for Ti(r). In this case we call r = ri(r) the cut edge of r.

Example (Example of Figure 3.30 continued.). In Figure 3.30, edge 4 is relevant for the edges
0, 1 and 2. Once edge 3 is added, edge 4 closes a circuit in the tree {0, 1, 2, 3}. Thus i(4) = 4 and
edge 3 is the cut edge for edge 4.

In order to cut the MST-cone K(T<) out of sc(h) along Proposition 3.3.10, we need to consider
two kinds of conditions. First, the (m− 1) in-tree conditions are given by

`•(r1) ≤ `•(r2) ≤ `•(r3) ≤ · · · ≤ `•(rm−1) ≤ `•(rm) .

Second, for any r ∈ E(Γ(h))\T , we make sure that the greedy algorithm never choses r by requiring
the cut-edge condition `•(r) ≤ `•(r). As a consequence, the number of facets of K(T ) is always
lower than #E(Γ) and in practice, the actual number of facets is almost always a lot lower since
for instance by Remark 3.3.4 some of the in-tree conditions might be redundant due to multiple
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occurrences of instability ranges.
Algorithm 1: Compute the MST-cone K(T<)
Input:
(1) a generic height function h ∈ RA

(2) the secondary cone sc(h) of h

(3) a realizable ordered spanning tree T< = (r1, . . . , rm) ⊂ Γ(h)

Output: the MST-cone K(T<) = {g ∈ RA : Tmin(g) =♦ T<}
MST-cone

1 C ←− R|A|
2 for k = 1, . . . ,m− 1 do
3 C ←− C ∩ F rk,rk+1(T ) // Add (m− 1) in-tree conditions

4 for r ∈ E(Γ(h)) \ E(T ) do
5 C ←− C ∩ F r,r(T ) // Add cut-edge conditions

6 return C ∩ sc(h)

Proposition 3.4.1. Algorithm 1 outputs K(T<), which is indeed a full-dimensional cone.

Proof. The set of in-tree and cut-edge conditions is necessary and sufficient for T to possibly appear
as output of the greedy algorithm, and defines a cone by Proposition 3.3.10.

Let m∗ be the number #E(Γ(h)) of edges of Γ(h) and let v∗ be the number #V (Γ(h)) of
its vertices. In the discussion from Section 3.2.1 and in the proof of Lemma 3.3.6, we see that
the linear forms l•(r1), . . . , l•(rm) are byproducts of the secondary cone computation. Concerning
the relevance indices needed in the second for-loop of Algorithm 1, every edge which is not in
the spanning tree needs at most m cycle checks on subgraphs of Γ(h), which takes O(m∗ + v∗)
each using depth-first search. Thus, the complexity of Algorithm 1 adds up to O(m2

∗ + m∗v∗).
Concerning the quantities m∗ and v∗, for A = {0, 1}n the n-dimensional unit cube the estimate
2n − n ≤ v∗ ≤ n! follows from [40, Theorem 2.6.1], where 2n − n = v∗ holds precisely if Γ(h) is a
tree, and we have the bound m∗ ≤ 1

2 (n+ 1)!− n(2n−1− n+ 1). In a variant of Algorithm 1 where
any ordered input tree T< ⊂ Γ(h) is allowed, in order to verify its realizability one additionally
needs to ensure that the cone C ∩ sc(h) in line 6 is full-dimensional.

We remark that if T< is realizable and has only stable edges as in Figure 3.30, then the interior
K(T<) describes the locus where the greedy algorithm has only one possibility for choosing a
minimum spanning tree of Γ(h), i.e. int(K(T<)) = {g ∈ sc(h) : Tmin(g) = T<}. If T< has instable
edges, the greedy algorithm on g ∈ K(T<) may possibly choose minimum spanning trees whose
edge sets differ from E(T<). However, the tree T< is among the candidates for the optimum and
the other outcomes can be controlled.

Proposition 3.4.2. Let T< =♦ Tmin(h) and T ′< =♦ Tmin(h) be two valid outputs of the greedy
algorithm for the same height function h. Then each stable edge of T< also appears in T ′<.

Proof. Assume that the stable edge r = {s, t} ∈ E(T<) does not appear in T
′

<, i.e. it closes a
cycle when considered to be added to the forest T̃ ′< ⊂ T

′

<. Then every s-t path in T̃ ′< uses instable
edges rI of T ′< which are not in T<. These edges themselves close cycles in some subtree of T̃< of
T<. Replacing each of the rI by a path in T̃< implies that the nodes s and t belong to the same
component of T̃< before r is added. Contradiction.

We now define the MST-fan K(h) of h to be the collection of all MST-cones K(T<) where T<
runs through the realizable ordered spanning trees of Γ(h).

Theorem 3.4.3. Let Σ(h) be a regular triangulation of the point configuration A. The MST-fan
K(h) is a pure fan in RA with full support supp(K(h)) :=

⋃
c∈K(h) c = sc(h). Two height functions

f, g ∈ sc(h) are in the same cone of K(h) if and only if the greedy algorithm possibly produces the
same spanning tree on Γ(f) and Γ(g), i.e. precisely if there is an ordered spanning tree T< of Γ(h)
with Tmin(f) =♦ T< =♦ Tmin(g).
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Proof. If K(T<) and K(T ′<) meet, then by Remark 3.3.11 their intersection is induced by some
commonly active edge inequalities and therefore it is a face of both K(T ) and K(T ′). The bijectivity
is a consequence of Proposition 3.3.10.

For further study, we might also consider subfans of the form K(T ) = ∪K(T<) collecting all
realizable orders on a fixed tree T .

Example (Example of Figure 3.30 continued). The spanning tree we previously considered reads
T< = Tmin(h) = (0, 1, 2, 3, 5). Its MST-cone K(T<) has four facets given by the four in-tree
conditions 0 < 1 < 2 < 3 < 5. The facets (0 < 1), (3 < 5) and (2 < 3) meet the inte-
rior of sc(h), whereas the facet (1 < 2) lies in the boundary of sc(h), i.e. no tree with the re-
versed condition 2 < 1 is realizable. In Figure 3.31 the dotted lines describe the intersection of
K({0, 1, 2, 3, 5}) and K({0, 1, 3, 4, 5}), which lies in the hyperplane `•(2) = `•(4). The supports of
the fans K({0, 1, 2, 3, 5}) and K({0, 1, 3, 4, 5}) are two adjacent full-dimensional cones.
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Figure 3.31: The intersection of K({0, 1, 2, 3, 5}) and K({0, 1, 3, 4, 5}), cf. Figure 3.30. The dual
graph Γ(h) has five spanning trees, each necessarily featuring edge 5 and leaving out one of the
other five edges. As a computation shows, the only realizable ordered spanning trees arise as orders
on the trees {0, 1, 2, 3, 5} (white nodes) and {0, 1, 3, 4, 5} (black nodes). Hence, from 5 · 5! = 600
possible ordered spanning trees of Γ(h), only 1

12 ·600 = 50 are realizable. The thick subgraph on the
upper left corresponds to the subfan of K(h) leaving edge 5 fixed and the hyperplane `•(2) = `•(4)
is indicated by the dotted blue line segments. All computations were done using polymake [56].

3.5 Permutation groups acting on tree orders

Fix a realizable ordered spanning tree T< := (r1, . . . , rm) := Tmin(h) ⊂ Γ(h). As explained in
Section 3.3, every instable edge rk of T< has an interval Ik := [i, i+ j] with i ≤ k ≤ i+ j, positive
length j and integer endpoints as its instability range, i.e. where the linear forms `•(ri) = . . . =
`•(ri+j) coincide, cf. Remark 3.3.4. We may define the instability ranges of stable edges to be
the singleton sets depicting their index in the edge order. This convention yields a partition of
{1, . . . ,m} into an ordered collection I(T<) of w ≤ m instability ranges. Note that in practice,
occurences of instability ranges of positive length are frequently encountered in dimension n ≥ 4,
even several of them in the same tree.
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Now, the permutation group G := P(w) naturally acts on I(T<). For a fixed permutation
σ ∈ G, let m(σ) be the minimum number of adjacent transpositions that the permutation σ can
be decomposed into.

Proposition 3.5.1. Let σ ∈ G and let the partitions I(T<) and σI(T<) of {1, . . . ,m} both be
realizable, the latter by the tree σT<. If the MST-cones K(T<) and K(σT<) intersect in codimension
k, then m(σ) < k + 1 holds. In particular, if the MST-cones K(T<) and K(σT<) share a common
facet, then σ is an adjacent transposition.

Proof. Each adjacent transposition reverts one non-empty in-tree condition.

Remark 3.5.2. Let τ be an adjacent transposition. Then dim(K(T<) ∩ K(τT<)) may be of codi-
mension less than one, since there might be cut-edge conditions in the first place which change their
direction when reverting an in-tree condition.

3.6 Matroids and Bergman fans

3.6.1 Bergman fans

We follow [2] in our presentation. Let M = (E,B) be a matroid. Any w ∈ RE can be seen as a
valuation of bases by setting w(B) =

∑
b∈B w(b) for any base B ∈ B. The initial matroid Mw is

the matroid on the same ground set E with bases given precisely by those B ∈ B, whose evaluation
w(B) is minimal among all evaluations of bases in B. The Bergman fan B(M) is the set of all
w ∈ RE such that the initial matroid Mw has no loops. For instance, if we fix some undirected
graph G, then B(M(G)) is the set of all edge weights w ∈ RE(G) such that any edge of G lies in
some w-minimum spanning tree of G. On B(M) there are two established fan structures. First,
the coarse subdivision considers v, w ∈ RE to be equivalent if their initial matroids Mv andMw

coincide. It is the coarsest possible fan structure on B(M). Second, any valuation w ∈ RE gives
rise to a flag F(w) := {∅ =: F0 ⊂ F1 ⊂ . . . Fk+1 := E} of subset of E, such that w is constant on
each Fi \ Fi−1 and is strictly increasing with i, i.e. w(x) < w(y) for any x ∈ Fi and y ∈ Fi+1 \ Fi.
The fine subdivision of B(M) considers valuations v, w ∈ RE to be equivalent if their flags F(v)
and F(w) coincide. The mere set B(M(G)) ⊂ RE is also called the tropical linear space trop(M)
of the matroidM.

An important attribute of matroid theory is that there are several ways, called cryptomorphisms,
to define a matroid, all being equivalent but not in an obvious way. For instance, one may use rank
functions to do so. Given a matroid M = (E, I) with independence system I, cf. Section 3.3.1,
the rank ρ(A) for any subset A ⊂ E is defined to be the maximal cardinality of an independent
set lying inside A. A flat of M is a subset of F ⊂ E such that ρ(F ∪ {x}) > ρ(F ) holds for any
x /∈ F . The set of flats ofM forms a geometric lattice which fully describes the combinatorics of
M, i.e. giving the lattice of flats is another way to cryptomorphically define matroids.

Proposition 3.6.1. [2, Theorem 1] The fine subdivision realizes the lattice of flags of M.

In other words, a flag F of subsets of E can be written as F(w) for some w ∈ RE precisely
if every member of F is a flat of M. Hence, the faces of B(M) are given by pos(eF0 , . . . , eFk+1)
where F0 ⊂ . . . ⊂ Fk+1 is a chain of flats ofM.

3.6.2 The MST-fan as part of a Bergman fan

Let again A ⊂ Rn be a finite point configuration and let h : A → R be a height function on A.
We consider the dual graph G := Γ(h) ⊂ Σ(h) and the cycle matroidM(G). Consider the map

l : RA −→ RE(G)

h 7−→ (`h(r))r∈E(G) .

Since the graph G is naturally weighted by the tropical edge lengths, one may consider the
restriction B̂(M(G)) := {w ∈ l(RA) : M(G)w has no loops}, where we only allow tropical edge
lengths as valuations.

A collection C = {K(T (Ci))} of maximal cones in K(h) is called G-saturating if the ordered
spanning trees T (Ci) cover G, i.e. if E = ∪iE(T (Ci)) holds. Let C ⊂ RA be the polyhedral complex
with cells

⋂
K(T (Ci)) where C runs through the G-saturating collections.
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Corollary 3.6.2. The map l embeds the complex C into B(M) with image B̂(M(G)). The
induced fine subdivision on B̂(M(G)) ⊂ B(M(G)) comes from the cones K(T<), whereas the
coarse subdivision is perceived by dropping the order and considering K(T ) = ∪K(T<).

Example. In Figure 3.31, the coarse subdivision induced on B̂(M(G)) corresponds to the dotted
blue part given by the hyperplane `•(2) = `•(4) and is therefore trivial. There are eight distinct
dotted blue line segments and they constitute the fine subdivision.

3.7 Application in population genetics: epistasis and spanning trees

3.7.1 Regular subdivisions and epistatic weights

Epistatic filtrations are introduced in [46] and [47] to track significant epistatic interactions in a
fitness landscape (A, h). There, the function h : A→ R is an experimentally obtained genotype-
phenotype map on a biallelic (or multiallelic) n-loci genotype set A = {0, 1}n, resp. A =
vert(

∏
i ∆i) in the multiallelic case. As in the biology literature can be found [53], an affinely

independent genotype subsystem r = {vi : i ∈ I} ⊂ A is called an epistatic interaction if the lifted
genotype set rh = {(vi, h(vi)) : i ∈ I} ⊂ Ah ⊂ Rn+1 is affinely independent as well.

A special kind of epistatic interactions can be indicated by A-bipyramids, or A-ridges, i.e.
pairs (s, t) of adjacent n-simplices s = conv{v1, . . . , vn+1} and t = conv{v2, . . . , vn+2} with vertices
vi ∈ A, sharing a common facet. The epistatic weight eh(s, t) of the bipyramid r = (s, t) measures
the degree of non-additivity of h on r and is defined in [47] as

eh(r) := eh(s, t) := Lh(s, t) · λ(s, t)

with λ(s, t) := nvol(A ∩B)/(nvol(A) · nvol(B)), which doesn’t depend on h. Thus, the bipyramid
r is an epistatic interaction precisely if eh(r) > 0.

Bipyramids occur in a regular triangulation Σ(h) as adjacent maximal cells. The transfer from
the regular subdivision Σ(h) to an according biological statement is now made via the following
linear optimization problem LP(h,w), introduced in [9]:

maximize h · p
subject to p ∈ ∆2n and ρ(p) :=

∑
v∈A p(v)v = w ,

(LP(h,w))

for some given allele frequency w ∈ [0, 1]n and with decision variable p ranging over all relative
populations p ∈ ∆2n = {p ∈ RA :

∑
pi = 1} on A = {0, 1}n, presented here in the biallelic case

only. Since h is experimentally obtained and hence generic, there is a unique optimal solution
p∗(h,w) ∈ ρ−1(w) ⊂ ∆2n of (LP(h,w)). The map

h∗ : [0, 1]n → R
w 7→ h · p∗(h,w)

equals the convex support function fΣ(h) from Remark 3.2.1 and therefore its linear regions co-
incide with the maximal simplices of Σ(h). Further, given s and t as above as cells in Σ(h), the
quantity eh(s, t) measures the degree to which the exposed vertex v1 resp. vn+2 has a lower
than expected phenotype assuming that h extends affinely from t resp. s to the bipyramid
(s, t). In this sense eh(s, t) measures negative epistasis, cf. [121]. The polyhedral subdivision
{ρ−1(A) : A maximal simplex of Σ(h)} of ∆2n now stratifies ∆2n into fittest populations with re-
spect to varying allele frequencies.

3.7.2 Epistatic filtrations

The epistatic filtration of h serves as a tool to separate data noise from significant epistatic signal.
It operates on the ascendingly ordered eh-weighted dual graph Γ(h). Here, we explicitely interpret
the nodes of Γ(h) as simplices in Rn.

Geometrically, the set
∑

0 of maximal cells of Σ(h) yields a decomposition of [0, 1]n into
#V (Γ(h)) simplicial cells and marks the zero signal starting point of the filtration process. As-
sume

∑
k−1 is given as a cellular decomposition of the genotope [0, 1]n and the k-th edge reads

rk = (sk, tk). The decomposition
∑
k is now constructed by unifying the cells cks and ckt of

∑
k−1
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which contain sk resp. tk . If one has cks 6= ckt, the edge rk is called critical since the epistatic
information can be considered as irredundant in this case. The epistatic filtration of h is the col-
lection of all critical edges. In the biological context, late cell agglutinations reflect strong epistatic
effects and, since dual graphs are connected, the critical edge with the highest epistatic weight
always glues a two-cell split, cf. Figure 3.30(B).

Lemma 3.7.1. Epistatic filtrations are precisely the minimum spanning trees of Γ(h).

Proof. The geometric process depicted in 3.7.2 describes the greedy algorithm on the underlying
weighted dual graph Γ(h).

As described in [47, Section 3.3], each epistatic filtration of h gives rise to a unique rooted
binary tree T (h) with leaves labeled by the maximal cells of the regular triangulation Σ(h). In the
biological context, one refers to such trees with a fixed number of labeled leaves as phylogenetic
trees. Moreover, there is a natural distance function on the leaf set of T (h) measuring genetic
distances, which is given by the unique path lengths in the corresponding minimum spanning tree
inside Γ(h).

3.8 Computations

An extensive study about which trees are realizable as minimum spanning trees inside some dual
graph Γ(h) demands for an encoding of the regular triangulations of the underlying polytope. Thus,
we need to look at classes of polytopes with known secondary fan. These are the totally splittable
polytopes, introduced and studied in [70], whose regular subdivisions arise exclusively as refinements
of splits, i.e. subdivisions with exactly two cells. Totally splittable polytopes comprise simplices,
polygons, regular cross polytopes, and prisms and joins over simplices. The code used for the
following computations can be found on the author’s webpage https://holgereble.github.io/.

3.8.1 Case study I: polygons,

Proposition 3.8.1. Let Pn be an n-gon. The MST-fan structure, neglecting tree orders, is the
same as the secondary fan structure.

Proof. As the discussion in [40, Section 1.1] shows, the dual graph of a triangulation of Pn is itself
a tree.

0

1 

3

4 5

0

1 

3

4 5

0

1 

3

4 5

Figure 3.32: Three out of fourteen triangulations of the hexagon. The number of triangulations
of the n-gon Pn is given by the Catalan number Cn−2, cf. [40]. The underlying dual graphs are
trees with (n− 3) edges. Each of the C4-many maximal cones of the secondary fan of P6, i.e. the
normal fan of a 3-dimensional associahedron, is split by the MST-fan structure into 3! MST-cones
according to the permutations of the edge order.

3.8.2 Case study II: totally splittable polytopes

Let ΠPn denote the prism Pn× I over the n-gon Pn. Moreover, for any polytope P let ∆reg(P ) be
the set of all regular triangulations of P and let T (P ) be the set of all ordered spanning trees that
occur inside the dual graph of some regular subdivision of P . Similarly, let T real(P ) be the set of
those ordered spanning trees, which occur inside some dual graph of P and which are realizable as
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minimum spanning trees. The following computations were done in polymake [56] on an ordinary
office machine (Intel Core i7-8700).

Polytope #∆reg(P ) #T (P ) #T real(P ) timings

P5 5 5 · 2! = 10 10 1s

P6 14 14 · 3! = 84 84 16s

P7 42 42 · 4! = 1008 1008 289s

P8 132 132 · 5! = 15840 15840 1.5h

ΠP3 6 12 12 2s

ΠP4 74 37632 4944 3.3h

octahedron 3 72 24 15s

Table 3.20: Calculating realizable minimum spanning trees. Polytopes with a more complicated
secondary fan structure as the 3-dimensional cube ΠP4, which is not totally splittable, feature
many non-realizable spanning trees, cf. Figure 3.31.
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Computing characteristic polynomials of hyperplane
arrangements with symmetries

This chapter is based on the preprint “Computing characteristic polynomials of hyperplane ar-
rangements with symmetries” [24] by Taylor Brysiewicz, Holger Eble and Lukas Kühne. The
preprint can be found on the arXiv with the number 2105.14542.

4.0 Abstract

We introduce a new algorithm computing the characteristic polynomials of hyperplane arrange-
ments which exploits their underlying symmetry groups. Our algorithm counts the chambers of
an arrangement as a byproduct of computing its characteristic polynomial. We showcase our
julia implementation, based on OSCAR, on examples coming from hyperplane arrangements with
applications to physics and computer science.

4.1 Introduction

The problem of enumerating chambers of hyperplane arrangements is a ubiquitous challenge in
computational discrete geometry [65, 89, 109, 137]. A well-known approach to this problem is
through the computation of characteristic polynomials [4, 75, 92, 114, 139, 161]. We develop a novel
for computing characteristic polynomials which takes advantage of the combinatorial symmetries
of an arrangement. While most arrangements admit few combinatorial symmetries [120], most
arrangements of interest do [63, 123, 164].

We implemented our algorithm in julia [14] and published it as the package CountingChambers.jl1.
Our implementation relies heavily on the cornerstones of the new computer algebra system OSCAR
[115] for group theory computations (GAP [55]) and the ability to work over number fields (Hecke
and Nemo [52]). While other algorithms and pieces of software exist for studying hyperplane
arrangements (see, for instance, [29, 43, 89, 100, 140]), either their chamber-enumeration compu-
tations appear as byproducts of more difficult calculations, the code does not use symmetry, or it
only pertains to very specific types of arrangements. For example, [89] computes the associated
zonotope, whose vertices are in bijection with the chambers of the arrangement, containing much
more information than the characteristic polynomial. A similar approach is suggested in [43] in-
volving a search algorithm relying upon linear programming. To the best of our knowledge, our
implementation is the first publicly available software for counting chambers which uses symmetry.

We showcase our algorithm and its implementation on a number of well-known examples, such
as the resonance and discriminantal arrangements. Additionally, we study sequences of hyperplane
arrangements which come from the problem of linearly separating vertices of regular polytopes.
In particular, we investigate one corresponding to the hypercube [0, 1]d whose chambers are in
bijection with linearly separable Boolean functions.

In the presence of symmetry, our implementation outperforms the existing software by several
orders of magnitude (cf. Table 4.21). Moreover, its output is guaranteed to be correct since we
compute symbolically over the integers or exact number fields and avoid overflow errors thanks to
the package SaferIntegers.jl [131].

The ninth resonance arrangement (511 hyperplanes in R9) approaches the limit of what is pos-
sible with our implementation: the computation of its characteristic polynomial took 10 days on

1available at https://mathrepo.mis.mpg.de/CountingChambers
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42 processors. Our computation confirms that its chamber-count is 1955230985997140 as indepen-
dently and concurrently computed by Chroman and Singhar with different methods [29].

We first give background on hyperplane arrangements in Section 4.2. The ideas outlined in
Section 4.3, regarding deletion and restriction algorithms, form the basic structure of our algorithm.
We explain the relevant results regarding symmetries of arrangements in Section 4.4. The algorithm
and its implementation details reside in Section 4.5. In Section 4.6 we construct and discuss
examples of arrangements exhibiting large symmetry groups. We conclude in Section 4.7 with
timings and comparisons to other software.
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4.2 Hyperplane arrangements

We begin by discussing background on the theory of hyperplane arrangements related to the
problem of enumerating chambers: the main goal of this article and the associated software. Our
notation will mostly follow the textbook by Orlik and Terao [114].

For any field K, a hyperplane in Kd is an affine linear space of codimension one. Throughout
this article, we denote by A = {H1, . . . ,Hn} a (hyperplane) arrangement where Hi is a hyperplane
in Kd.

Definition 4.2.1. Suppose A is an arrangement in Rd. The connected components of the com-
plement Rd \

⋃
H∈A H are called chambers of A and the set of chambers of A is denoted by ch(A).

Example 4.2.2. We use the arrangement

{{y − x = 1}︸ ︷︷ ︸
H1

, {x = 0}︸ ︷︷ ︸
H2

, {x+ y = 1}︸ ︷︷ ︸
H3

, {y = 0}︸ ︷︷ ︸
H4

}

in R2 as a running example. This arrangement is depicted in Figure 4.33. It has 10 chambers: 2
bounded and 8 unbounded.

H1

H2

H3

H4

Figure 4.33: The arrangement introduced in Example 4.2.2.

Given a subset I ⊆ [n] := {1, . . . , n}, we write the set {Hi}i∈I as HI and its intersection as
LI =

⋂
i∈I Hi. The collection of these intersections form the set L(A) = {LI | I ⊆ [n] , LI 6= ∅},

a combinatorial shadow of A known as its intersection poset. This poset is ordered by reverse
inclusion and graded by the rank function, r : L(A) → Z≥0, where r(LI) = codim (LI). As a
notational convention, we set r(I) = r(LI) for I ⊆ [n] whenever LI 6= ∅.
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4.2.1 The characteristic polynomial

Our algorithm counts chambers of an arrangement by computing a more refined count, namely the
characteristic polynomial. The coefficients of this polynomial are known as the unsigned Whitney
numbers of the first kind of the intersection poset L(A), which we simply refer to as the Whitney
numbers of the arrangement.

Definition 4.2.3. The characteristic polynomial of an arrangement A in Kd is the polynomial

χA(t) =
∑

I⊆[n]:LI 6=∅

(−1)|I|td−r(I) =
d∑
i=0

(−1)ibi(A)td−i. (4.28)

The integers bi(A), defined via (4.28), are non-negative and are called the Whitney numbers of A.
We denote the vector of Whitney numbers by b(A).

The characteristic polynomial and Whitney numbers of an arrangement A depend only on
the intersection poset L(A) and have various interpretations depending on the field K as detailed
below.

Real For an arrangement A in Rd, Zaslavsky [161] proved that

| ch(A)| = (−1)dχA(−1) =
d∑
i=0

bi(A).

Thus, the Whitney numbers are a refined count of the chambers of A. They have the following
geometric interpretation. Given a generic flag F• : F0 ⊂ F1 ⊂ · · · ⊂ Fd = Rd of affine linear
subspaces Fi (where dim(Fi) = i) the number of chambers of A which meet Fi but do not
meet Fi−1 is equal to bi(A) [159, Proposition 2.3.2].

Complex If A is an arrangement in Cd where all hyperplanes contain the origin, then bi(A) is the
i-th topological Betti number of the complement Cd\

⋃
H∈A H with rational coefficients [113].

Because of this, some papers refer to the Whitney numbers bi(A) as the Betti numbers of
the arrangement A [160].

Finite When A is an arrangement over a finite field Fq, Crapo and Rota proved that χA(q) =
|Fdq \

⋃
H∈A H| [34]. Moreover, if A is a hyperplane arrangement in Qd one may consider its

reduction modulo q: A⊗Fq = {H1⊗Fq, . . . ,Hn⊗Fq}. When q is sufficiently large, we have
that L(A) = L(A⊗ Fq) and thus computing χA(t) for rational arrangements also yields the
number of points in the complement after reducing modulo large primes.

Example 4.2.4. Let A be the arrangement introduced in Example 4.2.2. Its characteristic poly-
nomial is χA(t) = t2 − 4t + 5. Figure 4.34 shows a generic flag F• intersecting this arrangement
verifying that b(A) = (1, 4, 5).

F0

F1

F2

Figure 4.34: The intersections of a generic flag (purple) in R2 with the chambers of A. The point
F0 intersects one chamber, F1 intersects four others, and F2 intersects the remaining 5, and so
b(A) = (1, 4, 5).
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4.3 A deletion-restriction algorithm

To compute the Whitney numbers of an arrangement A in Kd, we take advantage of the behavior
of χA(t) under the operations of deletion and restriction. These operations reduce computations
about A to computations about two smaller arrangements. Thus at its core, our main algorithm
is a divide-and-conquer algorithm.

Given a hyperplane H ∈ A, the deletion of H in A is the arrangement A\{H}. The restriction
of H in A is the arrangement in H ∼= Kd−1 defined by AH = {K∩H | K ∈ A\{H}}. The following
lemma provides the basic foundation of our algorithm.

Lemma 4.3.1 ([114, Corollary 2.57]). Given a hyperplane H ∈ A, we have that χA(t) = χA\{H}(t)−
χAH (t). In particular, b(A) = b(A\{H}) + 0|b(AH) where 0|b means prepending the vector b with
a zero.

4.3.1 A simple deletion-restriction algorithm

Lemma 4.3.1 along with the fact that the empty arrangement in Kd has the vector of Whitney
numbers (1, 0, . . . , 0) ∈ Nd+1 suggests the following well-known recursive algorithm for computing
b(A).

(1, 4, 5)

1
2

3

4

(1, 3, 3) (1, 2)

(1, 1)(1, 2, 1) (1, 2) (1)

(1, 1, 0) (1, 1) (1, 1) (1) (1, 0) (1)

(1, 0, 0) (1, 0) (1, 0) (1) (1, 0) (1)

Figure 4.35: The tree structure of Algorithm 2 on the hyperplane arrangement from Example 4.2.2.
Hyperplanes are chosen (Line 2) according to the ordering {1, 2, 3, 4}. In each box, the ambient
space of the arrangement is shaded green. Deletions are marked with red edges (left children) and
restrictions with blue edges (right children). Each arrangement box has the Whitney numbers
above its upper right corner.

Algorithm 2: Whitney numbers via simple deletion and restriction
Input: A hyperplane arrangement A in Kd
Output: The vector of Whitney numbers b(A)
WhitneyNumbers (A)

1 if ∅ 6= A then
2 choose H ∈ A
3 return WhitneyNumbers(A\{H}) + 0|WhitneyNumbers (AH)
4 else
5 return (1, 0, . . . , 0)
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Structurally, Algorithm 2 is a depth-first binary tree algorithm on arrangements, rooted at the
initial input: one child represents a deletion and the other a restriction, as shown in Figure 4.35.

The implementation of Algorithm 2 is already nontrivial as it is often the case that some
hyperplanes become the same after a restriction. Thus, its proper implementation requires care in
representing an arrangement on a computer.

4.3.2 Computationally representing deletions and restrictions

An arrangement B coming from A via deletions and restrictions may be represented by an encoding
of the restricted hyperplanes. To be precise, the pair

B = ({Hi1 , . . . ,Hik}, {Hj1 , . . . ,Hj`}) =: (HI , HJ)

represents the hyperplane arrangement B in LI ∼= Kd−r(LI) given by the hyperplanes in {Hj ∩
LI}j∈J . Note that Hj ∩ LI may be empty for some j ∈ J , in which case this intersection
does not correspond to any hyperplane. We extend notation regarding B to its representation
B (i.e. χB(t) := χB(t) and b(B) := b(B)).

If Hj1 ∩LI is a hyperplane which occurs uniquely with respect to the tuple (Hj1 ∩LI , . . . ,Hj` ∩
LI), then BHj1∩LI and B\{Hj1 ∩ LI} are represented by

BHj1 := ({Hi1 , . . . ,Hik , Hj1}, {Hj2 , . . . ,Hj`})
B\{Hj1} := ({Hi1 , . . . ,Hik}, {Hj2 , . . . ,Hj`}),

respectively. Whereas if Hj1∩LI is either empty or does not occur uniquely, then B\{Hj1} trivially
represents the same arrangement as B, namely B.

The following computational analogue of Lemma 4.3.1 establishes how such representations
behave under deletion and restriction.

Lemma 4.3.2. Let B = (HI , HJ) represent an arrangement B and fix H ∈ HJ . If H ∩ LI is a
hyperplane which occurs uniquely in the tuple (Hj ∩LI)j∈J then χB(t) = χB\{H}(t)− χBH (t) and
b(B) = b(B\{H}) + 0|b(BH). Otherwise, we have χB(t) = χB\{H}(t) and b(B) = b(B\{H}).

Proof. The first case follows from Lemma 4.3.1. In the second case, B and B\{H} represent the
same hyperplane arrangement and the result is trivial.

The following algorithm is equivalent to Algorithm 2.
Algorithm 3: Whitney numbers via extended deletion and restriction
Input: A representation B = (HI , HJ) of an arrangement in Kd
Output: The vector of Whitney numbers b(B)
WhitneyNumbers B = (HI , HJ)

1 if ∅ 6= HJ then
2 choose H ∈ HJ

3 if H ∩ LI 6= ∅ occurs uniquely in (Hj ∩ LI)j∈J then
4 return WhitneyNumbers(B\ {H}) + 0|WhitneyNumbers ( BH)
5 else
6 return WhitneyNumbers(B\{H})

7 else
8 return (1, 0, . . . , 0)

Given a hyperplane arrangement A = {H1, . . . ,Hn} in Kd, Algorithm 3 computes the Whitney
numbers bi(A) when given A = (∅, {H1, . . . ,Hn}) as input. This algorithm traverses a binary tree
which is essentially the same as the one from Algorithm 2. The only difference is that some edges
are extended with nodes that have only one child and so we say it computes the Whitney numbers
via extended deletion and restriction.

Algorithm 3 has the advantage that the representations of the original hyperplanes in A need
not be updated upon restriction, and that representations of hyperplanes in AH need not be
unique. As a consequence, structural aspects of A such as its symmetries extend trivially to the
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representations of the restricted arrangements, as we explain in Section 4.4. Figure 4.36 displays
the tree structure underlying Algorithm 3 on our running example. Note that J is constant amongst
nodes in the same depth.

∅, {1, 2, 3, 4} (1, 4, 5)

1
2

3

4

1

∅, {2, 3, 4} (1, 3, 3)

1

{1}, {2, 3, 4} (1, 2)

2

{1}, {3, 4} (1, 2)

2

∅, {3, 4} (1, 2, 1)

2

{2}, {3, 4} (1, 2)

3

∅, {4} (1, 1, 0)

3

{3}, {4} (1, 1)

3

{2}, {4} (1, 1)

3

{2, 3}, {4} (1)

3

{1}, {4} (1, 1)

3

{1, 3}, {4} (1)

4

∅, ∅ (1, 0, 0)

4

{4}, ∅ (1, 0)

4

{3}, ∅ (1, 0)

4

{3, 4}, ∅ (1)

4

{2}, ∅ (1, 0)

4

{2, 4}, ∅ (1)

4

{2, 3}, ∅ (1)

4

{1}, ∅ (1, 0)

4

{1, 4}, ∅ (1)

4

{1, 3}, ∅ (1)

Figure 4.36: The tree structure of Algorithm 3 on the hyperplane arrangement from Example 4.2.2.
Its nodes are represented by pairs of subsets I, J ⊂ {1, 2, 3, 4} (top-left) and the Whitney numbers
are given (top-right). Grey edges indicate that the condition in Line 3 has been violated.

4.4 Automorphisms of hyperplane arrangements

Our main contribution is the inclusion of symmetry-reduction in the deletion-restriction algorithm.
Many other algorithms in discrete geometry have also been adapted to take advantage of symmetry
[19, 20, 83, 85]. For us, the relevant symmetries for an arrangement are the rank-preserving
permutations of its hyperplanes.

Let Sn be the permutation group on [n]. Elements of a subgroup G ≤ Sn act on subsets of
[n]. Given g ∈ G and I ⊆ [n], we fix the notation

- gI = {g(i)}i∈I for the image of I under g,

- IG = {g ∈ G | gI = I} for the stabilizer of I in G,

- G · I = {gI | g ∈ G} for the orbit of I under G.

Definition 4.4.1. The automorphism group of A = {H1, . . . ,Hn} is

Aut(A) = {g ∈ Sn | r(HI) = r(HgI) for all I ⊆ [n]}.

Given a representation B = (HI , HJ) of an arrangement coming from A, the automorphism
group Aut(A) acts as gB = (HgI , HgJ).

Remark 4.4.2. Our definition of the automorphism group of an arrangement is combinatorial,
not geometric. This difference can be quite large. For example, a generic hyperplane arrangement
A = {H1, . . . ,Hn} has no geometric symmetries but Aut(A) = Sn.
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Lemma 4.4.3. Let A = {H1, . . . ,Hn} be an arrangement in Kd and let B1 and B2 represent
arrangements coming from deletions and restrictions. If B1 and B2 are in the same orbit under
Aut(A) then b(B1) = b(B2).

Proof. The conclusion of the lemma is equivalent to showing that the characteristic polynomials
of B1 and B2 are the same. This follows directly from the fact that the characteristic polynomial
depends only on the intersection poset (graded by rank) and that B1 and B2 are in the same orbit
under Aut(A) if and only if they are related by a rank-preserving permutation.

Our algorithm relies upon the following corollary of Lemma 4.4.3.

Corollary 4.4.4. Let B = (HI , HJ) represent a hyperplane arrangement coming from A =
{H1, . . . ,Hn}. For g ∈ JAut(A) we have that gB = (HgI , HJ) and B have the same Whitney
numbers.

4.5 Enumeration algorithm with symmetry

Our main algorithm augments Algorithm 3, making particular use of Corollary 4.4.4. It is es-
sentially a breadth-first tree algorithm except that at each level, nodes may be identified up to
symmetry and so the algorithmic structure is no longer that of a tree. The output is the vector of
Whitney numbers b(A) of an arrangement A, refining its chamber count. We remark that despite
the fact that our algorithm takes advantage of symmetry and counts the number of chambers, it
does not reveal any information about the sizes of orbits of chambers under this symmetry group.

Given an arrangement A = {H1, . . . ,Hn} in Kd, we represent the nodes of the algorithm at
depth k by a dictionary Tk. The keys of Tk are orbits Gk · I for I ⊆ [k] where Gk is a subgroup of
the stabilizer of {k+1, . . . , n} in Aut(A). The value of Gk ·I in this dictionary is a pair (BI , ω(BI))
where BI represents the hyperplane arrangement (HI , H{k+1,...,n}) and ω(BI) is some multiplicity,
tracking how many arrangements indexed by elements of the orbit Gk · I have appeared. We refer
to Tk as a k-th orbit-node dictionary.

Algorithm 4 presents the breadth-first structure of the algorithm.

Algorithm 4: Whitney numbers using symmetry
Input: A hyperplane arrangement A = {H1, . . . ,Hn} in Kd

A subgroup G ≤ Aut(A)
Output: The vector of Whitney numbers b(A)
WhitneyNumbers (A)

// compute the stabilizers of G

1 compute {Gi}ni=0 where Gi = {i+ 1, . . . , n}G and Gn = G
// initialize orbit-node dictionaries

2 initialize {Ti}ni=0 and set T0 = {G0 · ∅ ⇒ ((∅,A), 1)}
3 for k = 1, . . . , n do
4 set Tk = NextGeneration(A, Gk, Tk−1)
5 initialize b = (0, 0, . . . , 0)
6 for (BI , ω(BI)) ∈ Tn do
7 increment the entry b|I| by ω(BI)
8 return b

95



Moving from depth k − 1 to k is performed by Algorithm 5.
Algorithm 5: NextGeneration
Input: A hyperplane arrangement A = {H1, . . . ,Hn} in Kd

A subgroup Gk ≤ {k + 1, . . . , n}Aut(A)

An orbit-node dictionary Tk−1
Output: An orbit-node dictionary Tk
NextGeneration (A, Gk, Tk−1)

1 set J = {k + 1, . . . , n}
2 for (BI , ω(BI)) ∈ values(Tk−1) do
3 if Hk ∩ LI is a unique hyperplane amongst (Hj ∩ LI)nj=k then

// produce the restriction as the right child
4 set I ′ = I ∪ {k}
5 compute the orbit O = Gk · I ′
6 if O ∈ keys(Tk) then
7 increment the multiplicity of Tk[O] by ω(BI)
8 else
9 Tk[O] = ((HI′ , HJ), ω(BI))

// produce the deletion as the left child
10 compute the orbit O = Gk · I
11 if O ∈ keys(Tk) then
12 increment the multiplicity of Tk(O) by ω(BI)
13 else
14 Tk[O] = ((HI , HJ), ω(BI))

return Tk

Example 4.5.1. The structure underlying Algorithm 4 applied to the arrangement in Example
4.2.2 is shown in Figure 4.37. It is no longer a tree but may be obtained from the tree in Figure 4.36
by identifying nodes under the stabilizers of Aut(A). Each identification accumulates multiplicity
in the node and that multiplicity is passed down to its children.

4.5.1 Representing orbits

The computations of orbits in Line 5 and Line 10 require elaboration; specifically in regards to
representing an orbit G · I on a computer. One option is to use a canonical element of G · I,
which can be computed using the MinimalImage or CanonicalImage functions from GAP [82, 81].
An alternative approach is to provide any function ϕ : 2[n] → S taking values in an arbitrary set
S such that ϕ(I) = ϕ(J) only if G · I = G · J . Equivalently, ϕ is any factor of the projection
π : 2[n] → 2[n]/G as a map of sets where 2[n]/G is the set of orbits. In this case, the value of ϕ(I)
may be used to represent the orbit G ·I as a key in the orbit-node dictionaries. While this approach
may fail to identify all nodes in the same orbit, nodes in distinct orbits are never identified and so
the algorithm remains correct. The benefit is that it may be significantly more efficient to evaluate
ϕ than it is to compute minimal or canonical images.

Our default option for identifying orbits is called pseudo_minimal_image. Given a subset I ⊆
[n] and a collection of elements g1, . . . , gm ∈ G ≤ Sn, this function sequentially computes giI and
recursively calls itself on giI whenever giI < I lexicographically. If no such gi produces a smaller
subset, I itself is returned. Options are implemented for choosing m to be a proportion of |G|
subject to maximum and minimum values. For our computations, we take m = n random elements
of G. Although this greedy procedure does not make all possible identifications in the algorithm,
we have found that it is quicker than MinimalImage to evaluate and produces a comparably small
algorithmic structure.

Example 4.5.2. We compare the effect of three choices of identifications in Algorithm 4 (either
pseudo_minimal_image, the MinimalImage function in GAP, or no identifications at all) on the
resonance arrangement R7 (see Definition 4.6.3) consisting of 127 hyperplanes in R7. We compare
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∅, {1, 2, 3, 4} (1, 4, 5)

1
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4
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∅, {2, 3, 4} (1, 3, 3)

1

{1}, {2, 3, 4} (1, 2)
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∅, {3, 4} (1, 2, 1)
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{1}, {3, 4} (1, 2)
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∅, {4} (1, 1, 0) {2}, {4} (1, 1)

3

{1, 3}, {4} (1)

4

∅, ∅ (1, 0, 0)

4

{4}, ∅ (1, 0)

4

{1, 3}, ∅ (1)

4

{2}, ∅ (1, 0)

4

{2, 4}, ∅ (1)

Figure 4.37: The algorithmic structure underlying Algorithm 4. Starting at the top node, each
call of Algorithm 5 produces the next depth of this graph.

the number of leaves of the algorithm at some depth, as well as the time per depth of the algorithm
and display the results in Figure 4.38.

As depicted, the cost (in number of leaves) of using pseudo_minimal_image compared to
MinimalImage is negligible, while the benefits in terms of speed are significant. Similarly, while
the timing of our algorithm with MinimalImage is comparable to the timing without any identifica-
tions (Algorithm 3), the memory usage is significantly reduced as conveyed by the number of leaves
(a reasonable proxy for memory usage). This difference becomes even more dramatic for larger
arrangements.

(a) Leaves at depth. (b) Time per depth.

Figure 4.38: The leaves per depth and time per depth of Algorithm 4 on the arrangement R7 using
pseudo_minimal_image, MinimalImage, and no identifications.

4.5.2 Accumulating the Whitney numbers and skipping levels

Much of the computational burden occurs in Line 3 of Algorithm 5 and involves projecting the
normal vectors of the hyperplanes in A along those hyperplanes which have been restricted. When
implementing Algorithm 5, one may choose whether to save such computations at the cost of
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memory, or to perform redundant computations throughout the algorithm. We found that, for our
benchmark examples, recomputation held the most benefit.

Nonetheless, from the linear algebra involved in the evaluation of Line 3, one can read off jmin,
the smallest j ∈ J for which this uniqueness condition is true. Hence, one may immediately place
the left child of the corresponding node in level jmin rather than k to avoid redundancy in Line 3
later on. This comes at the cost of missing some identifications between the layers k and jmin.

Another implementation choice we made was to keep a running count of the Whitney numbers
of the arrangement throughout the algorithm. Whenever jmin = n while computing the children
of (BI , ω(BI)), we increment b|I| by ω(BI) and delete the node altogether since no other deletions
or restrictions are possible. Similarly, if A is a hyperplane arrangement where each hyperplane
contains the origin, b|I| and b|I|+1 are incremented by ω(BI) whenever jmin = n − 1 by a similar
reasoning. In this way, we can free memory occupied by nodes throughout the algorithm.

4.5.3 Relation to OSCAR

The new computer algebra system OSCAR in julia combines the existing systems GAP [55], Singular
[42], Polymake [57, 87], and Antic (Hecke, Nemo) [115]. Our software is written in julia and
builds heavily on these cornerstones. Specifically, we use the number theory components Nemo [52]
and Hecke to work with arrangements defined over algebraic field extensions of Q. For example
the separability arrangement of the vertices of the 600-cell is defined over Q(

√
5).

Secondly, we use GAP [55] for group theoretic computations in Algorithm 5. Concretely, we
compute stabilizers and minimal images using the GAP packages ferret [80] and images [81],
respectively.

4.5.4 Functionality of CountingChambers.jl

The julia package titled CountingChambers.jl contains our implementation and is available at

https://mathrepo.mis.mpg.de/CountingChambers

The following code snippet shows some standard functions of our package applied to the ar-
rangement introduced in Example 4.2.2. A collection of hyperplanes defined by the equations
`i(x1, . . . , xd) = ci for 1 ≤ i ≤ n is encoded by a d × n matrix A having the coefficients of `i as
columns and a vector c.

julia> A = [-1 1 1 0; 1 0 1 1];
julia> c = [1, 0, 1, 0];
julia> whitney_numbers(A; ConstantTerms=c)
3-element Vector{Int64}:
1 4 5
julia> characteristic_polynomial(A; ConstantTerms=c)
t^2 - 4*t + 5
julia> number_of_chambers(A; ConstantTerms=c)
10

Note that the automorphism group of this arrangement is S3 ↪→ S4 consisting of permutations
of the first three hyperplanes. This group can be passed to our algorithm via a list of generators
in one-line notation:

julia> G = [[2,3,1,4],[2,1,3,4]];
julia> whitney_numbers(A; ConstantTerms=c, SymmetryGroup=G)
3-element Vector{Int64}:
1 4 5

As it is easy to run julia on multiple threads, we also implemented our algorithm to take
advantage of this. By starting julia via the command julia –threads NUM_THREADS and passing
the optional parameter multi_threaded=true to our methods, the for loop in Algorithm 5 is
executed in parallel. Table 4.23 shows how the multithreading scales.

4.6 Examples and integer sequences

We apply our algorithm to a number of examples. Many of these arise from the following con-
struction of separability arrangements.
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4.6.1 Separability arrangements

Fix a finite set V ⊂ Rd. We associate to every v ∈ V the hyperplane Hv ⊂ (Rd+1)∗ comprised
of linear forms which vanish on (1, v). Equivalently, Hv represents the affine hyperplanes in Rd
which contain v. We call the arrangement HV := {Hv | v ∈ V} the separability arrangement of V.
We point out that by increasing the dimension d by one, this construction is distinct from the one
which defines real reflection arrangements from root systems. In particular, translating V does
not change the combinatorics of HV.

A hyperplane Hv partitions the points in (Rd+1)∗\Hv into the sets H+
v of linear forms which are

positive on v and H−v which are negative on v. Consequently, all affine hyperplanes corresponding
to points in a chamber of HV are positive on some subset V1 ⊂ V and negative on its complement
V2 = V\V1. Such a partition V1 t V2 = V is called linearly separable. Hence, chambers of HV are
in bijection with linearly separable partitions of V, motivating the terminology for HV. This point
of view, which connects linear separability and hyperplane arrangements, appears in [6, Section 2].

One purpose for introducing separability arrangements is that it immediately provides us with a
zoo of arrangements admitting considerable symmetry; for example, those V which are the vertices
of regular polytopes.

4.6.2 The threshold arrangement

The following arrangement appears in the study of neural networks [110, 111, 165] and algebraic
statistics [37].
Definition 4.6.1. The threshold arrangement2, Td is the separability arrangement associated to
the vertices of the hypercube [0, 1]d. That is,

Td := {{x0 + c1x1 + · · ·+ cdxd = 0} with ci ∈ {0, 1} for all ci}.
As a consequence of the definition of Td, the linear automorphisms of the hypercube [0, 1]d,

namely the hyperoctahedral group of order d!2d, is a subgroup of Aut(Td). The true size of
Aut(Td) is (d+ 1)!2d.

We computed the Whitney numbers of Td for 1 ≤ d ≤ 8, and thus their number of chambers.
The results are collected in Table 4.24 and the timings appear in Table 4.22. The values of | ch(Td)|
for 1 ≤ d ≤ 9 are listed in entry A000609 of the Online-Encyclopedia of Integer Sequences (OEIS),
whereas the Whitney numbers of Td, to the best of our knowledge, have not been published before.
Zuev showed that asymptotically | ch(Td)| ∼ 2d2 [164].
Remark 4.6.2. Using similar proof techniques as in [97] one can show that the values of bi(Td)
for 1 ≤ d ≤ 2i determine a formula for bi(Td) for all d. Applying this to the case of b2(Td)
and b3(Td) and using the results in Table 4.24 we obtain b2(Td) = 1

2 (4d − 2d) and b3(Td) =
1
24
(
4 · 8d − 3 · 6d − 6 · 4d + 5 · 2d

)
. For i ≥ 4 this technique requires knowledge of bi(Td) for at

least 1 ≤ d ≤ 16.

4.6.3 The resonance arrangement

The next arrangement we consider appears as a restriction of the threshold arrangement.
Definition 4.6.3. The resonance arrangement is the restriction of Td to the hyperplane H(0,...,0).
Equivalently, for d ≥ 1 the resonance arrangement is

Rd := {{c1x1 + c2x2 + · · ·+ cdxd = 0} with ci ∈ {0, 1} and not all ci are zero}.
The chambers of the resonance arrangements are in bijection with generalized retarded functions

in quantum field theory [49]. An overview of the applications of the resonance arrangement is given
in [97, Section 1]. A formula for their number of chambers remains elusive, let alone one for their
Whitney numbers. Nonetheless, partial formulas and bounds exist [15, 63, 97, 164].

The numbers of chambers of the resonance arrangements are listed in the sequence A034997 in
the OEIS up to d = 9. The Whitney numbers are published in [88] up to d = 7. Our software was
able to determine the Whitney numbers of R8 and R9 confirming the concurrent computations
in [29]. The computation for R9 took ten days, running multithreaded on 42 Intel Xeon E7-8867
v3 CPUs. All Whitney numbers of Rd up to d = 9 are given in Table 4.25 and the timings are
listed in Table 4.22.

2The arrangement {xi + xj}1≤i<j≤d in Rd is also referred to as a threshold arrangement in the literature. We
discuss the arrangement Td only as in Definition 4.6.1.

99

https://oeis.org/A000609
https://oeis.org/A034997


4.6.4 Separability arrangements of the cross-polytopes

The cross-polytope of dimension d is the polytope with the 2d vertices {±ei}di=1. Its symmetry
group is the hyperoctahedral group of order d!2d. We define the arrangement Cd in Rd+1 to be the
separability arrangement of its vertices.

Our computations show that | ch(Cd)| = 2·3d−2d for d ≤ 20, suggesting that | ch(Cd)| agrees with
this sequence (A027649 in the OEIS). This can indeed be proven by applying Athanasiadis’ finite
field method [4] and seems to be a new result obtained through experiments with our algorithm.

4.6.5 Separability arrangements of permutohedra

The permutohedron of dimension d−1 is the convex hull of the d! points σ(1, . . . , d) for all σ ∈ Sd.
The separability arrangements Pd of these points in Rd+1 consist of d! hyperplanes. We record
their Whitney numbers in Table 4.27 for 1 ≤ d ≤ 6.

4.6.6 Separability arrangements of demicubes

The d-demicube is the convex hull of those vertices of the hypercube [0, 1]d which have an odd
number of 1’s. For instance, the 3-demicube is a regular tetrahedron. We denote by Dd the
corresponding separability arrangement consisting of 2d−1 hyperplanes in Rd+1. Table 4.26 contains
the Whitney numbers of Dd up to d = 9.

4.6.7 Separability arrangements of some regular polytopes

In Table 4.28, we provide the Whitney numbers for the separability arrangements corresponding to
the remaining two Platonic solids: the icosahedron and the dodecahedron. This table also contains
the Whitney numbers of the separability arrangements of the vertices of the regular 24-cell, 600-cell,
and 120-cell. Except for the 24-cell, each of these computations uses irrational realizations.

4.6.8 Discriminantal arrangements

Given n points in Rd in general position, the discriminantal arrangement Discd,n is the hyperplane
arrangement in Rd consisting of the

(
n
d

)
hyperplanes spanned by d-subsets of such points. This

arrangement, originally called the “geometry of circuits” was introduced by Crapo [33]. We verify
the Whitney numbers of Disc4,n for 5 ≤ n ≤ 16 given in [93, Section 4.4]. From this data, we
recover their formula for the characteristic polynomial of Disc4,n for all n. A deformation of this
arrangement appears in physics [25, 26] and we were able to confirm the chamber counts given in
these papers.

4.7 Timings

While other pieces of software for counting chambers of arrangements exist, they do not take
advantage of symmetry and some compute significantly more data than our algorithm does. Con-
sequently, our software outperforms them with respect to the calculation of Whitney numbers as
shown below.

Software d = 3 4 5 6 7 8

CountingChambers.jl w/ symm. 0.0038s 0.011s 0.035s 0.12s 2.89s 19.8m

CountingChambers.jl w/o symm. 0.0002s 0.0004s 0.004s 0.53s 6.2m ∗

polymake 0.3s 4.31s 3.9m ∗

sage 0.05s 0.21s 5.45s 9.2m ∗

GAP 0, 006s 0.035s 1.09s 1.9m 12.87h ∗

Table 4.21: Timings for computing the number of chambers | ch(Rd)| of the resonance arrangement
Rd for 3 ≤ d ≤ 8 on a single thread (Intel Core i7-8700). An asterisk * indicates that the
computation was terminated after a day.
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The implementation [89] in polymake computes much more information than the Whitney
numbers, namely a chamber decomposition of the arrangement. The sage implementation, on
the other hand, uses basic deletion and restriction as in Algorithm 3. Similarly, the GAP package
alcove [100] computes the Tutte polynomial by simple deletion and restriction and then specializes
this to the characteristic polynomial.

To illustrate the performance of our software on the arrangements from Section 4.6, we collect
our timings in Table 4.22. This table also shows the growth in complexity for computing the
number of chambers of these arrangements. Based on our profiling, the main bottleneck in our
implementation is the identifications of orbits. Thus, improving pseudo_minimal_image would be
the most direct method for making our code faster.

A |Aut(A)| d = 3 4 5 6 7 8 9

Td (d+ 1)!2d 0.005s 0.013s 0.041s 0.28s 33.17s 8.16h
Rd (d+ 1)! 0.004s 0.011s 0.035s 0.12s 2.89s 19.8m ∼ 10d+

C2d (2d)!22d 0.015s 0.039s 0.085s 0.183s 0.42s 1.158s 4.50s
Pd d! 0.003s 0.013s 6.398s ∼ 8d+

Dd (d)!2d−1 0.002s 0.005s 0.018s 0.049s 0.54s 1.9m ∼ 8d+

Disc4,n n! − 0.0003s 0.0047s 0.055s 0.71s 7.62s 41.14s

Table 4.22: Our timings on examples from Section 4.6. Computations ran on a single thread
(Intel Core i7-8700) except for R9 which ran on 42 threads (Intel Xeon E7-8867).

A #threads = 1 2 4 8 12

R8 19.8m 10.5m 6.3m 5.9m 5.1m

T8 8.16h 3.9h 2.4h 1.8h 1.6h

Table 4.23: Comparison of the effect of number of threads on run times (Intel Core i7-8700).

4.8 Tables of Whitney numbers

d 1 2 3 4 5 6 7 8

b0(Td) 1 1 1 1 1 1 1 1
b1(Td) = |Td| 2 4 8 16 32 64 128 256

b2(Td) 1 6 28 120 496 2016 8128 32640
b3(Td) 3 44 460 4240 36848 310464 2569920
b4(Td) 23 820 19660 400400 7493808 133492800
b5(Td) 465 43014 2453248 112965776 4626016752
b6(Td) 27129 7111650 987779688 103818315888
b7(Td) 5023907 4075759064 1382897843304
b8(Td) 3193753807 8676817935144
b9(Td) 7393243346241

| ch(Td)| 2 14 104 1882 94572 15028134 8378070864 17561539552946

Table 4.24: The values of bi(Td) and | ch(Td)| of the threshold arrangement for 1 ≤ d ≤ 9 and
0 ≤ i ≤ d.
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d 1 2 3 4 5 6 7 8 9

b0(Rd) 1 1 1 1 1 1 1 1 1
b1(Rd) = |Rd| 1 3 7 15 31 63 127 255 511

b2(Rd) 2 15 80 375 1652 7035 29360 120975
b3(Rd) 9 170 2130 22435 215439 1957200 17153460
b4(Rd) 104 5270 159460 3831835 81029004 1582492380
b5(Rd) 3485 510524 37769977 2076831708 96834110730
b6(Rd) 371909 169824305 30623870732 3829831100340
b7(Rd) 135677633 207507589302 89702833260450
b8(Rd) 178881449368 973784079284874
b9(Rd) 887815808473419

| ch(Rd)| 2 6 32 370 11292 1066044 347326352 419172756930 1955230985997140

Table 4.25: The values of bi(Rd) and | ch(Rd)| of the resonance arrangement for 1 ≤ d ≤ 9 and
0 ≤ i ≤ d. We submitted these Whitney numbers to the OEIS as the sequence A344494.

d 2 3 4 5 6 7 8 9

b0(Dd) 1 1 1 1 1 1 1 1
b1(Dd) = |Dd| 2 4 8 16 32 64 128 256

b2(Dd) 1 6 28 120 496 2016 8128 32640
b3(Dd) 0 4 50 500 4480 38304 319200 2622400
b4(Dd) 1 44 1160 24340 461496 8283744 143504320
b5(Dd) 15 1362 76364 3486448 143595816 5483536464
b6(Dd) 597 120942 15440376 1615624080 145378334304
b7(Dd) 64903 33803416 10878083096 2574289938400
b8(Dd) 21424343 35828091880 27816202212040
b9(Dd) 26430009593 146101801794362
b10(Dd) 120719853808577

| ch(Dd)| 4 16 146 3756 291558 74656464 74904015666 297363155783764

Table 4.26: The values of bi(Dd) and | ch(Dd)| of the demicube arrangement for 2 ≤ d ≤ 9 and
0 ≤ i ≤ d+ 1.

d 1 2 3 4 5 6

b0(Pd) 1 1 1 1 1 1
b1(Pd) = |Pd| 1 2 6 24 120 720

b2(Pd) 1 15 276 7140 258840
b3(Pd) 10 1423 246605 59577390
b4(Pd) 1170 4290610 9271534305
b5(Pd) 4051026 834595018036
b6(Pd) 825382803000

| ch(Pd)| 2 4 32 2894 8595502 1669309192292

Table 4.27: The values of bi(Pd) and | ch(Pd)| of the permutohedron arrangement for 1 ≤ d ≤ 6
and 0 ≤ i ≤ d.
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polytope Icosahedron Dodecahedron 24-cell 600-cell 120-cell

b0(A) 1 1 1 1 1
b1(A) = |A| 12 20 24 120 600

b2(A) 66 166 276 7140 179700
b3(A) 157 577 1630 225782 31972550
b4(A) 102 430 4308 3118740 2979870540
b5(A) − − 2931 2899979 2948077091

| ch(A)| 338 1194 9170 6251762 5960100482

Table 4.28: The values of bi(A) and | ch(A)| of the icosahedral and dodecahedral arrangements as
well as arrangements stemming from regular 4-polytopes for 0 ≤ i ≤ 5.
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