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Introduction

Focal point of this work are so called semi-monic (operator) functions of the form

q(λ) = λme− a(λ) = λme−
∑
j∈Z

λjaj

for some m ∈ N defined on a suitable annulus and where the coefficients aj are elements
in a Banach algebra with unit e. Typically there will be some restrictions imposed on
the coefficients aj .
Semi-monic functions appear throughout the literature, mostly for the special case when
m = 1 and the function a(·) is a polynomial. This is true in e.g. probability theory when
studying Markov chains where the coefficients aj are entrywise nonnegative matrices (see
[BNS13, BLM02, GHT96, GHT98, Neu89]).
Comparison theorems for ordinary differential equations give rise to semi-monic matrix
polynomials of degree 2. One is then interested in finding nonnegative solutions (see
[BJW85]).
Semi-monic polynomials also appear in physics where the coefficients are then often
self-adjoint or positive semi-definite operators in Hilbert spaces, for example in hydrody-
namics when studying small motions of fluids in a container (see [AHKM03, KK01]).
In [Mar88] A. Markus implicitly treats semi-monic functions in Banach spaces when
establishing conditions for when operator polynomials admit so called canonical factor-
izations.
Spectral properties of semi-monic functions were systematically investigated in [Har11].

Part of the thesis will be concerned with the block numerical range of semi-monic operator
functions and operator polynomials. The block numerical range first appeared as the
quadratic numerical range for operators in Hilbert spaces in [LMMT01]. For Hilbert
spaces it was introduced in its full generality in [TW03, Tre08, Wag07], including its
extension to operator functions. In the unpublished Bachelor’s thesis [Kal11] the block
numerical range was extended to bounded operators defined on a product space X =
X1 × · · · ×Xn of n Banach spaces (combined via some p-norm) in the following way: A
bounded operator A on X admits a block matrix representation⎡⎢⎣A11 . . . A1n

...
. . .

...
An1 . . . Ann

⎤⎥⎦ .

The block numerical range of A with respect to the particular product space, denoted
Θ(A;X1, . . . , Xn), is then defined as the set

⋃
(f,u)∈Satt(X1,...,Xn)

Σ

⎡⎢⎣f1(A11u1) . . . f1(A1nun)
...

. . .
...

fn(An1u1) . . . fn(Annun)

⎤⎥⎦

6



where Σ(·) denotes the eigenvalues of the scalar matrix and

Satt(X1, . . . , Xn) := {(f, u) :u = (ui)i=1,...,n ∈ X1 × · · · ×Xn,

f = (fi)i=1,...,n ∈ X ′
1 × · · · ×X ′

n,

fi(ui) = ∥fi∥ = ∥ui∥ = 1}.

For n = 1 this is precisely the spatial numerical range of an operator on a Banach space
(see [BD71]). A noteworthy property of the block numerical range is that its closure
contains the spectrum of A and it itself is contained in the numerical range of A.
Recently the block numerical range has been applied to positive operators in Hilbert
lattices (see [Rad13]) and Banach lattices (see [Rad15b, Rad15a]).
Applications of the block numerical range are diverse: It can for example be used to
determine if an operator is block diagonalizable (see [KMM07]). Block operator ma-
trices, which naturally appear with the block numerical range, play an important role
in several fields, like the discretisation of PDEs (see [SAD+00]) and evolution problems
(see [EN00]) with applications in quantum mechanics (see [Tha92]), hydrodynamics (see
[Cha61]) and magnetohydrodynamics (see [Lif89]). In these applications properties of the
spectrum and numerical range of these block operator matrices are often of particular
interest, which shows the usefulness of the block numerical range.

The main body of the thesis is structured as follows.
Chapter 1 is mainly concerned with proving a Perron-Frobenius type result for the block
numerical range of irreducible semi-monic matrix polynomials with entrywise nonnegative
coefficients, that is polynomials of the form

Q(λ) = λmI −A(λ) = λmI −
l∑

j=0

λjAj

for m, l ∈ N, where the Aj are entrywise nonnegative square matrices and their sum A(1)
is irreducible. We start by introducing the functions

sprA : ρ ↦→ sup
|λ|=ρ

spectral radius(A(λ)),

nurA : ρ ↦→ sup
|λ|=ρ

numerical radius(A(λ)),

bnrA : ρ ↦→ sup
|λ|=ρ

block numerical radius(A(λ))

(the subscript refers to the function A(·)). The functions sprA and nurA were used in
[FH08, FN05a, FN05b, FN15, Har11] and [FK15] respectively to derive results on the
spectrum and numerical range of semi-monic functions. The function bnrA was intro-
duced in [Kal11] and it is studied and used in Sections 1.1 and 1.2 to determine areas
which are disjoint to the block numerical range of semi-monic operator functions.
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In Section 1.3 we consider the infinite graph Gm(Al, . . . , A0) for m ∈ N and entrywise
nonnegative matrices Aj and recall some of its properties. A similar concept first ap-
peared in [GHT96] in the context of Markov chains, though a graph structure was not
established. The graph was used in [Har11] and [FK15] to prove Perron-Frobenius type
results for the spectrum and the numerical range of semi-monic matrix functions.
We generalize these results in our main theorem in Section 1.4 to the block numerical
range: It says that on circles Tβ centred at 0 with radii β > 0 satisfying

bnrA(β) = βm

the points in the block numerical range of the semi-monic matrix polynomial Q(·) have
a cyclic distribution, where the number of distinct values on Tβ can be derived from the
infinite graph Gm(Al, . . . , A0). Known Perron-Frobenius type results for the spectrum
and the numerical range of single matrices (see e.g. [Min88] and [Iss66]) or monic matrix
polynomials (see e.g. [PT04]) then appear as special cases of our theorem.
In Section 1.5 we look at monic matrix polynomials with entrywise nonnegative coeffi-
cients

Q(λ) = λmI −
m−1∑
j=0

λjAj .

For such polynomials one can consider the companion matrix

C =

⎡⎢⎢⎢⎣
Am−1 . . . A1 A0

−I 0
. . .

...
−I 0

⎤⎥⎥⎥⎦
which can be used to prove Perron-Frobenius type results in the monic case. We study
how the graph GC associated with C and the infinite graph Gm(Am−1, . . . , A0)are related
and conclude that the infinite graph can be seen as a generalization of GC .
We close the chapter by considering semi-monic operator functions with positive semi-
definite or normal operator coefficients. Extending results of [SW10, Wim11] we show
that eigenvalues on certain circles around the origin are normal and semisimple.

Chapter 2 deals with factorizations of elements in (strongly) decomposing (Banach) al-
gebras. An algebra A with unit e is said to be decomposing if it can be written as the
direct sum of two subalgebras A− and A+. It is said to be strongly decomposing if it can
be written as the direct sum of three subalgebras

A = A− +̇ A0 +̇ A+

where the subalgebras satisfy some additional conditions (e.g. elements in A− and A+

are required to be quasi-nilpotent). As an example one might think of strictly lower
triangular, diagonal and strictly upper triangular matrices. Also note that each strongly
decomposing algebra is also a decomposing algebra.
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Then it is known that an element a ∈ A, which is in some sense close to the unit element,
factorizes as

e− a = (e− a−)(e− a+)

in decomposing Banach algebras and as

e− a = (e− a−)a0(e− a+)

in strongly decomposing Banach algebras, where the elements aα, α = −, 0,+, lie in
the respective subalgebras Aα and fulfil some additional invertibility conditions (see
[GGK93, GKS03, Mar88]).
We introduce a third type of algebra, called semi-strongly decomposing algebra, which
fits in between the two definitions above. In contrast to strongly decomposing algebras,
it includes the important special case of the Wiener algebra.
In Section 2.1 we extend the concept to ordered algebras A with a cone C and define
((semi-)strongly) ordered decomposing algebras from which we require that the natural
projections onto their subalgebras leave the cone C invariant. A general way to construct
strong decompositions of bounded operators on Banach spaces is given by the concept
of chains of projections (see [GGK93]), and we extend it to the Banach algebra case in
Section 2.1.1.
Section 2.2 contains our two main factorization results for positive elements with spec-
tral radius smaller than 1 in either a decomposing or semi-strongly decomposing Banach
algebra. The factorizations we obtain give elements a± and a−1

0 which are again nonneg-
ative. Our theorems extend a result previously given [FN05b].
We continue by showing how the factorization results can be applied for M-matrices,
Hilbert-Schmidt operators with nonnegative kernel function and positive operators in
the Banach algebra of regular operators.
Finally we return to semi-monic functions in the form of semi-monic polynomials q(λ) =
λm −

∑l
j=0 λ

jaj with coefficients in C to restate a result given in [FN05b] which follows
more easily in our case: By first proving a factorization result in the Wiener algebra we
are able to show that q(·) factorizes into

q(λ) = b(λ)q0c(λ)

if and only if there exists a ρ > 0 such that

spra(ρ) < ρm.

Here b(·) is monic of degree m and c(·) is semi-monic. Furthermore the spectrum of q(·)
is divided between b(·) and c(·), with b(·) accounting for the spectrum inside the disc
with radius ρ and c(·) for the spectrum outside of it.
As a corollary we obtain a version of Pellet’s theorem for semi-monic polynomials with
nonnegative coefficients.

The topic of Chapter 3 are degree-reductions of operator polynomials with the coeffi-
cients acting on Banach spaces. Linearisations of operator polynomials (for example via
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the companion matrix displayed above) are a useful tool for studying properties of the
original polynomial without having to deal with its higher degree (see [Rod89]). Degree-
reductions generalize this concept by reducing the polynomial to an arbitrary degree.
They were recently considered in [TDM14, TDD15, TDD] for matrix polynomials.
The aim of this chapter is mainly the study of a particular degree-reduction which we
call canonical degree-reduction. For an operator polynomial

A(λ) = λlAl + · · ·+A0,

with coefficients acting between some Banach spaces X and Y , the canonical reduction
to degree l̂ < l is the operator polynomial (in block matrix form)

Â(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[l̂](λ) Al−l̂−1 Al−l̂−2 . . . A1 A0

−IX λIX 0X . . . . . . 0X

0X −IX λIX
. . .

...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0X

0X . . . . . . 0X −IX λIX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where A[l̂](·) is the l̂-th Horner shift of A(·), i.e.

A[l̂](λ) = λl̂Al + · · ·+ λAl−l̂+1 +Al−l̂.

Note that for λ ∈ C the operator Â(λ) goes from X l−l̂ to Y × X l−l̂−1. These types of
degree-reductions were introduced in [Nag07] and used in [Har11].
In Section 3.1 we look at divisions with remainder and show how the factors of a division
with remainder of Â(·) can be recovered from a division with remainder of A(·) (and vice
versa). In the case of a monic A(·) we show how a given division with remainder easily
allows one to recover a spectral triple for A(·).
Consecutive degree-reductions of A(·) first to degree l̂1 and then to degree l̂2 < l̂1 never
coincide with the degree-reduction that goes straight to l̂2. They are however closely
related, and we examine their connection in Section 3.3 following a procedure outlined
in [MX13] for matrix polynomials.
Lastly, we return once again to our semi-monic operator polynomials Q(·). Specifically,
the canonical reduction Q̂(·) to degree l − m + 1 is again semi-monic, but now the
monic part has degree 1. Additionally the operator coefficients inherit properties such as
nonnegativeness. We outline how a fixpoint iteration for the operator equation

Q̂(C) = C − Ã(C) = 0

can be used to recover the factors of a division without remainder of Q(·).

The chapters are written to be mostly self-contained, with the exception of Sections 2.4
and 3.5.
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Notation

- ⟨n⟩ the set of integers 1, . . . , n and ⟨n⟩0 = ⟨n⟩ ∪ {0},
- Tρ = {λ ∈ C : |λ| = ρ} the circle in the complex plane C centred at the origin with

radius ρ > 0,

- Aρ1,ρ2 = {λ ∈ C : ρ1 < |λ| < ρ2} the open annulus in the complex plane C centred at
the origin with radii 0 ≤ ρ1 < ρ2,

- Cn,n the set of complex n×n matrices and Rn,n
+ the set of entrywise nonnegative n×n

matrices,

- for A = (ars) ∈ Rn,n
+ we also write A ≥ 0 (iff ars ≥ 0 for all r, s ∈ ⟨n⟩),

- for x ∈ Rn
+ we write x≫ 0 iff all entries of x are strictly positive,

- for normed spaces X and Y denote by L(X) the set of bounded linear operators on X,
and L(X,Y ) the set of bounded operators from X to Y

- Σ(B) the spectrum and spr(B) the spectral radius of B where either B ∈ L(X) or B
an element in a Banach algebra,

- Σp(B) the point spectrum or eigenvalues of B ∈ L(X),

- Θ(b;A) the numerical range and nur(b;A) the numerical radius of an element b in a
Banach algebra A,

- Θ(B;X) the spatial numerical range and nur(b;X) the spatial numerical radius of a
bounded operator B on a Banach space X.
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1. Semi-monic operator functions

The objects of main interest in this work will be so called semi-monic operator functions
which we will now introduce. For that purpose let A be a Banach-algebra with unit e
and m ∈ N. Then we call

q(·) : Aρ1,ρ2 ↦→ A : λ ↦→ λme−
∑
j∈Z

λjaj =: λme− a(λ) (1.1)

a semi-monic function with monic part of degree m, where the aj ∈ A, j ∈ Z and the
domain Aρ1,ρ2 is the maximal annulus on which the Laurent series function a(·) in (1.1)
converges.

Remark 1.1. The term ’semi-monic’ is derived from monic polynomials, i.e. polynomials
of the form

q(λ) = λme−
l∑

j=0

λjaj

where m, l ∈ N, m > l (typically l = m − 1). Since we do not require for m > l (and
in fact allow a(·) to be a Laurent series function), we call operator functions of the form
(1.1) semi-monic.

We will now introduce several real valued functions that are helpful in studying properties
of semi-monic operator functions. First recall that the spectrum of an element b ∈ A is
defined as

Σ(b) := {λ ∈ C : λe− b is not invertible}
and the spectral radius as

spr(b) := max{|λ| : λ ∈ Σ(b)}.
The numerical range of b ∈ A as a Banach algebra element is defined as

Θ(b,A) := {f(b) : f ∈ A′, f(e) = ∥f∥ = 1},
with A′ the dual of A. The numerical radius is then defined as

nur(b;A) := max{|λ| : λ ∈ Θ(b;A)}.
Moreover, there holds spr(b) ≤ nur(b;A) ≤ ∥b∥ (see e.g. [BD71, Theorem 2.6]). We can
define the aforementioned functions for a(·) as in (1.1):

spra(·) : (ρ1, ρ2)→ R+ : ρ ↦→ sup
|λ|=ρ

spr(a(λ)), (1.2)

nura(·) : (ρ1, ρ2)→ R+ : ρ ↦→ sup
|λ|=ρ

nur(a(λ);A), (1.3)

norma(·) : (ρ1, ρ2)→ R+ : ρ ↦→
∑
j∈Z

ρj∥aj∥. (1.4)
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It follows immediately that spra(ρ) ≤ nura(ρ) ≤ norma(ρ) for all ρ ∈ (ρ1, ρ2). The
function spra(·) was introduced and used in [FN05a] and [FN05b] and later [Har11] to
derive spectral properties of semi-monic functions, nura(·) was introduced in [FK15] and
used to derive properties of the numerical range of semi-monic functions, while norma(·)
implicitly appeared in [Mar88, p.122] to formulate a sufficient condition for factorizations
of semi-monic polynomials.

1.1. The block numerical range for semi-monic operator functions

We want to recall the block numerical range for operator functions with coefficients on
a Banach space and introduce an analogue to the functions in (1.2) - (1.4) for the block
numerical range. In order to do that we need to move our setting from Banach algebras
to Banach spaces.
Knowledge of the block numerical range of operators on a Banach space will be required
for the sequel. For the convenience of the reader we provide a self-contained introduc-
tion to the topic along with a collection of properties and their proofs in Appendix A.
Nonetheless we will start this section with a very brief overview of the block numerical
range of operators on Banach spaces which should enable the reader to follow the text.

Let (X1, ∥·∥1), . . . , (Xn, ∥·∥n) be n Banach spaces and X = X1× . . .×Xn be the product
space where the component norms are combined via some p-norm, 1 ≤ p <∞.
A bounded operator A on X = X1 × · · · × Xn can then be identified with the block
matrix operator ⎡⎢⎣A11 . . . A1n

...
. . .

...
An1 . . . Ann

⎤⎥⎦
where Ars ∈ L(Xs, Xr). We also need the set

Satt(X1, . . . , Xn) = {(f, u)i=1,...,n : (fi, ui) ∈ X ′
i ×Xi, fi(ui) = ∥fi∥ = ∥ui∥ = 1}.

The block numerical range of A with respect to the particular product space is then
defined as the set

Θ(A;X1, . . . , Xn) :=
⋃

(f,u)∈Satt(X1,...,Xd)

Σ

⎡⎢⎣f1(A11u1) . . . f1(A1nun)
...

. . .
...

fn(An1u1) . . . fn(Annun)

⎤⎥⎦ (1.5)

where Σ(·) denotes the eigenvalues of the scalar matrix. The block numerical radius of
A is defined as

bnr(A;X1, . . . , Xn) := sup{|λ| : λ ∈ Θ(A;X1, . . . , Xn)}.

A pair (f, u) ∈ Satt(X1, . . . , Xn) can be identified with a pair of operators F and U via

F : X1 × . . .×Xn → Cn : (x1, . . . , xn) ↦→ (f1(x1), . . . , fn(xn))

U : Cn → X1 × . . .×Xn : (λ1, . . . , λn) ↦→ (λ1u1, . . . , λnun).
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The matrix in (1.5) can then be written as FAU which is sometimes more convenient.
The set of of all of these operator pairs will be denoted Sop

att(X1, . . . , Xn). Note that there
is a 1 to 1 correspondence between Satt(X1, . . . , Xn) and Sop

att(X1, . . . , Xn).
If we do not decompose X into a product space we end up with

Θ(A;X) = {f(Au) : (f, u) ∈ X ′ ×X, f(u) = ∥f∥ = ∥u∥ = 1}

which is precisely the spatial numerical range of A as in [BD71]. The spatial numerical
radius is denoted nur(A;X).

Remark 1.2. Note that we can also treat an operator A ∈ L(X) as an element of the
Banach algebra L(X) and consider the numerical range in algebra sense

Θ(A;L(X)) = {f(A) : f ∈ L(X)′, f(IX) = ∥f∥ = 1}

as in the previous section. These two definitions do not coincide. In general there only
holds

Θ(A;X) ⊂ Θ(A;L(X)).

However, it can be shown that Θ(A;L(X)) is the closed convex hull of Θ(A;X) (see
[BD71, Theorem 9.4]). Therefore the (spatial) numerical radius of A is equal with respect
to either definition and we will simply write nur(A).

We close this overview by collecting some important properties of the block numerical
range of an operator A (proofs of which can be found in Appendix A):

- Σp(A) ⊆ Θ(A;X1, . . . , Xn) ⊂ Θ(A;X),

- Σ(A) ⊆ Θ(A;X1, . . . , Xn),

- spr(A) ≤ bnr(A;X1, . . . , Xn) ≤ nur(A) ≤ ∥A∥,

- Θ(A;X1, . . . , Xn) consists of at most n connected components.

In the Banach space setting the semi-monic functions in (1.1) now read as

Q(·) : Aρ1,ρ2 ↦→ L(X) : λ ↦→ λmI −
∑
j∈Z

λjAj =: λmI −A(λ) (1.6)

with the Aj ∈ L(X).
Similarly to how the spectrum and spectral radius of an operator are extended to operator
functions we define:

Definition 1.3. For an operator function T (·) : Ω → L(X) define the block numerical
range

Θ(T (·);X1, . . . , Xn) := {λ ∈ Ω : 0 ∈ Θ(T (λ);X1, . . . , Xn)},

and block numerical radius

bnr(T (·);X1, . . . , Xn) := sup{|λ| : λ ∈ Θ(T (·);X1, . . . , Xn)}

where bnr(T (·);X1, . . . , Xn) :=∞ should the supremum not exist.
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Example 1.4. For an operator A ∈ L(X) and the operator polynomial PA(·) : C →
L(X) : λ ↦→ λ−A we have Θ(PA(·);X1, . . . , Xn) = Θ(A;X1, . . . , Xn).

Some numerically achieved illustrations of block numerical ranges of semi-monic matrix
polynomials can be found in [Wag07, p.29, p.31].

Remark 1.5. For an operator function T : Ω → L(X) and (F,U) ∈ Sop
att(X1, . . . , Xn)

we can construct a complex valued function det(FT (·)U) : Ω→ C. The block numerical
range of T can then be characterized through

λ ∈ Θ(T ;X1, . . . , Xn) ⇐⇒ ∃(F,U) ∈ Sop
att(X1, . . . , Xn) : λ is a zero of det(FT (·)U).

Finally we can define for an analytic operator function as in (1.6)

bnrA(·;X1, . . . , Xn) : (ρ1, ρ2)→ R+ : ρ ↦→ sup
|λ|=ρ

bnr(A(λ);X1, . . . , Xn). (1.7)

The functions in (1.2) - (1.4) are still well defined in the Banach space case of this
section, we just need to use the Banach space definitions of the spectrum and the spatial
numerical range.

Lemma 1.6. For A(·) as in (1.6) there holds

sprA(ρ) ≤ bnrA(ρ;X1, . . . , Xn) ≤ nurA(ρ) ≤ normA(ρ)

for all ρ ∈ (ρ1, ρ2).

Proof. The first inequality follows from Theorem A.13, the second inequality follows from
Theorem A.16 and the third inequality is clear because nur(B) ≤ ∥B∥ for a bounded
operator B.

Of particular interest will be inequalities (or equalities) of the form

bnrA(ρ;X1, . . . , Xn) ≤ (=)ρm (1.8)

where the m ∈ N comes from the semi-monic operator function.

We will now extend results for semi-monic operator functions to the block numerical
range that were previously shown for the spectrum in [Har11] and the numerical range
in [FK15]. There is one more preliminary result that we need that appeared in [Har11].

Lemma 1.7. For an analytic operator function A(·) : Aρ1,ρ2 → L(X) the function

sprA(·) : (ρ1, ρ2)→ R : σ ↦→ sup
|λ|=σ

spr(A(λ)),

is geometrically convex, that is for all σ1, σ2 ∈ (ρ1, ρ2) and θ ∈ [0, 1] the functional
inequality

sprA(σ
θ
1σ

1−θ
2 ) ≤ (sprA(σ1))

θ(sprA(σ2))
θ−1

holds.
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Proof. See [Har11, p.14].

This result naturally extends to the case of the block numerical range.

Lemma 1.8. For an analytic operator function A : Aρ1,ρ2 → L(X) the function

bnrA(· ;X1, . . . , Xn) : (ρ1, ρ2)→ R : σ ↦→ sup
|λ|=σ

bnr(A(λ), X1, . . . , Xn)

is geometrically convex, i.e. for σ1, σ2 ∈ (ρ1, ρ2) and θ ∈ [0, 1] there holds

bnrA(σ
θ
1σ

1−θ
2 ;X1, . . . , Xn) ≤ (bnrA(σ1;X1, . . . , Xn))

θ(bnrA(σ2;X1, . . . , Xn))
1−θ.

Proof. First note that Θ(B;X1, . . . , Xn) =
⋃

(F,U)∈Sop
att

Σ(FBU) for an operator B ∈
L(X) implies

bnr(B;X1, . . . , Xn) = sup
(F,U)∈Sop

att

spr(FBU).

Therefore it follows that for σ1, σ2 ∈ (ρ1, ρ2) and θ ∈ [0, 1]

bnrA(σ
θ
1σ

1−θ
2 ;X1, . . . , Xn) = sup

|λ|=σθ
1σ

1−θ
2

{nur(A(λ);X1, . . . , Xn)}

= sup
|λ|=σθ

1σ
1−θ
2

{
sup

(F,U)∈Sop
att

spr(FA(λ)U)

}

= sup
(F,U)∈Sop

att

{
sup

|λ|=σθ
1σ

1−θ
2

spr(FA(λ)U)

}
= sup

(F,U)∈Sop
att

sprFA(·)U (σ
θ
1σ

1−θ
2 )

≤ sup
(F,U)∈Sop

att

(sprFA(·)U (σ1))
θ(sprFA(·)U (σ2))

1−θ

≤

(
sup

(F,U)∈Sop
att

sprFA(·)U (σ1)

)θ(
sup

(F,U)∈Sop
att

sprFA(·)U (σ2)

)1−θ

= (bnrA(σ1;X1, . . . , Xn))
θ(bnrA(σ2;X1, . . . , Xn))

1−θ

that is, bnrA(·) is geometrically convex. Here the second to last inequality follows from
Lemma 1.7.

The following proposition characterizes the behaviour of bnrA(·) on intervals.

Proposition 1.9. Let A(·) : Aρ1,ρ2 → L(X) be an analytic operator function and σ1, σ2 ∈
(ρ1, ρ2) with σ1 ≤ σ2 and bnrA(σj) = σm

j for j = 1, 2 and some m ∈ N. Then exactly
one of the following assertions is true.

(i) bnrA(σ;X1, . . . , Xn) = σm for all σ ∈ (σ1, σ2).

(ii) bnrA(σ;X1, . . . , Xn) < σm for all σ ∈ (σ1, σ2).
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Proof. Note that the geometric convexity of bnrA(·) implies that t ↦→ log bnrA(e
t), t ∈ R+

is convex. Since t ↦→ log(et)m = mt is linear the result follows from well known facts
about convex functions.

Remark 1.10. Proposition 1.9 also implies that the equality

bnrA(β;X1, . . . , Xn) = βm

can be satisfied for none, one , two or for all β ∈ (σ1, σ2). All of these cases can occur.
For a thorough analysis of the function sprA(·) see [FN05a, Theorem 4.10].

The next two results provide conditions under which the block numerical range of semi-
monic operator functions is disjoint to some annulus around the origin. See Figure 1 for
an illustration.

Proposition 1.11. Let A(·) : Aρ1,ρ2 → L(X) be an analytic operator function and Q(·)
its corresponding semi-monic operator function for some m ∈ N. Let σ1, σ2 ∈ (ρ1, ρ2),
σ1 < σ2, such that bnrA(σ;X1, . . . , Xn) < σm for all σ ∈ (σ1, σ2). Then

Θ(Q(·);X1, . . . , Xn) ∩ Aσ1,σ2 = ∅.

Proof. Assume there exists λ0 ∈ Θ(Q(·);X1, . . . , Xn) ∩ Aσ1,σ2 . This means that

0 ∈ Θ(Q(λ0);X1, . . . , Xn)

⇔ 0 ∈ Θ(λm
0 −A(λ0);X1, . . . , Xn)

⇔ λm
0 ∈ Θ(A(λ0);X1, . . . , Xn).

Additionally we have |λ0| ∈ (σ1, σ2). It follows that

|λ0|m ≤ bnr(A(λ0);X1, . . . , Xn)

≤ sup
|λ|=|λ0|

bnr(A(λ);X1, . . . , Xn)

= bnrA(|λ0|;X1, . . . , Xn)

< |λ0|m

which is a contradiction.

Theorem 1.12. Let A(·) : Aρ1,ρ2 → L(X) be an analytic operator function and Q(·)
its corresponding semi-monic operator function. Let σ1, σ2 ∈ (ρ1, ρ2), σ1 < σ2, with
bnrA(σj ;X1, . . . , Xn) = σm

j for j = 1, 2. If there exists a σ ∈ (σ1, σ2) such that
bnrA(σ;X1, . . . , Xn) < σm then

Θ(Q(·);X1, . . . , Xd) ∩ Aσ1,σ2 = ∅.

Proof. Proposition 1.9 implies that bnrA(σ;X1, . . . , Xn) < σm for all σ ∈ (σ1, σ2). The
assertion then follows from Proposition 1.11.
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bnrA(σ)

σm

Figure 1: The open annulus characterized be the inequality bnr(A(σ);X1, . . . , Xn) < σm

contains no block numerical range.

1.2. Semi-monic operator functions with nonnegative coefficients

We will now provide conditions under which the representation of the function bnrA(·)
can be simplified. We first consider the case where the coefficients of the operator function
A(·) are positive operators on a Banach lattice.
Let Xj be Banach lattices for k = 1 . . . , n. Then the product space X = X1 × . . .×Xn

is also a Banach lattice where the order is defined component wise. Moreover by [Sch74,
Proposition II.5.5] the dual spaces X ′

j are again Banach lattices. Thus we can state the
following lemma.

Lemma 1.13. Let Xj be Banach lattices for k = 1, . . . , n and (f, u) ∈ Satt(X1, . . . , Xn).
Then also (|f |, |u|) = [(|f1|, |u1|), . . . , (|fn|, |un|)] ∈ Satt(X1, . . . , Xn) and the correspond-
ing operator pair (|F |, |U |) is a pair of positive operators w.r.t. the standard order on
Rn.
Moreover for a positive operator A ∈ L(X) the operator |F |A |U | is again positive and

∥FAU∥ ≤ ∥ |F |A |U | ∥.

Lemma 1.14. Let A(·) : Aρ1,ρ2 → L(X) be an analytic operator function whose Laurent
coefficients are positive operators in the Banach lattice X = X1 × . . . × Xn. Then for
(F,U) ∈ Sop

att(X1, . . . , Xn) there exists a γ > 0 such that

∥ |F |A(λ) |U | ∥ ≤ γ∥ |F |A(|λ|) |U | ∥

for every λ ∈ Aρ1,ρ2 .
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Proof. This follows directly from the preceding lemma together with [Har11, Lemma
1.13].

Proposition 1.15. Let A(·) : Aρ1,ρ2 → L(X) be an analytic operator function whose
Laurent coefficients are positive operators in the Banach lattice X = X1 × . . . × Xn.
Then for all ρ ∈ (ρ1, ρ2) we have the equality

bnrA(ρ,X1, . . . , Xn) = bnr(A(ρ), X1, . . . , Xn).

Proof. Clearly bnrA(ρ;X1, . . . , Xn) ≥ bnr(A(ρ);X1, . . . , Xn). The other direction follows
from Lemma 1.13 and Lemma 1.14 via

bnrA(ρ;X1, . . . , Xn) = sup
|λ|=ρ

bnr(A(λ);X1, . . . , Xn)

= sup
|λ|=ρ

sup
(F,U)∈Sop

att

spr(FA(λ)U)

= sup
|λ|=ρ

sup
(F,U)∈Sop

att

lim
k→∞

∥(FA(λ)U)k∥1/k

≤ sup
|λ|=ρ

sup
(F,U)∈Sop

att

lim
k→∞

∥(|F |A(λ)|U |)k∥1/k

≤ sup
|λ|=ρ

sup
(F,U)∈Sop

att

lim
k→∞

γ1/k
→1

∥(|F |A(|λ|)|U |)k∥1/k

= sup
|λ|=ρ

sup
(F,U)∈Sop

att

spr(|F |A(ρ)|U |)

= sup
(F,U)∈Sop

att,(F,U)=(|F |,|U |)
spr(FA(ρ)U)

≤ sup
(F,U)∈Sop

att

spr(FA(ρ)U)

= bnr(A(ρ);X1, . . . , Xn)

The equation
bnrA(β;X1, . . . , Xn) = βm

has a special significance for strictly monic matrix polynomials with entrywise nonnega-
tive coefficients, i.e. polynomials

Q(λ) = λmI −A(λ) = λmI −
m−1∑
j=0

λjAj , (1.9)

where m ∈ N and the Aj ∈ Rn,n
+ . Since we are working with matrices the block numerical

range will be formed with respect to the product space Cn = Cn1 × · · · × Cnp (for
an exposition on block numerical ranges of matrices see Section A.5). Since Q(·) is
monic its numerical range is compact (see [PT04, p.12]) and thus its numerical radius
nur(Q(·)) = sup{|λ| : λ ∈ Θ(Q(·))} is finite. Then by Theorem A.16 (which trivially
extends to functions) its block numerical radius bnr(Q(·);Cn1 × . . .×Cnp) is also finite.
We can then state the following result:
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Lemma 1.16. Let Q(·) be as in (1.9) and define βbnr = bnr(Q(·);Cn1 , . . . ,Cnp). Then

bnrA(βbnr;Cn1 , . . . ,Cnp) = bnr(A(βbnr);Cn1 , . . . ,Cnp) = βm
bnr.

Proof. Since Θ(Q(·);Cn1 , . . . ,Cnp) is compact we can find a λ̂ ∈ Θ(Q(·);Cn1 , . . . ,Cnp)
with |λ̂| = βbnr. Then by definition λ̂m ∈ Θ(A(λ̂);Cn1 , . . . ,Cnp) and thus

bnrA(βbnr;Cn1 , . . . ,Cnp) = sup
|λ|=βbnr

bnr(A(λ);Cn1 , . . . ,Cnp)

≥ bnr(A(λ̂);Cn1 , . . . ,Cnp) ≥ |λ̂m| = βm
bnr.

To see the other inequality assume that bnrA(βbnr;Cn1 , . . . ,Cnp) > βm
bnr. Since Q(·) is

monic it is easy to see that for large β > 0 there holds bnrA(β;Cn1 , . . . ,Cnp) < βm and
thus there needs to exist a β̃ > βbnr satisfying

bnr(A(β̃);Cn1 , . . . ,Cnp) = bnrA(β̃;Cn1 , . . . ,Cnp) = β̃m.

Since A(β̃) is entrywise nonnegative it follows from Proposition A.30.(i) that its block
numerical radius is contained in its block numerical range, β̃m ∈ Θ(A(β̃);Cn1 , . . . ,Cnp).
But then β̃ ∈ Θ(Q(·);Cn1 , . . . ,Cnp) contradicting β̃ > bnr(Q(·);Cn1 , . . . ,Cnp).

1.3. The infinite graph Gm(Al, . . . , A0)

A useful tool for studying semi-monic matrix polynomials is the infinite graph

Gm(Al, . . . , A0) = (V ;E)

for matrices A0, . . . , Al ∈ Rn,n
+ and m ∈ N. We define the set of vertices of Gm(Al, . . . , A0)

via
V = {(r, p) : r ∈ ⟨n⟩, p ∈ Z}

and the set of its edges via

E = {[(r, p), (s, q)] : Am−p+q(r, s) > 0},

where Am+p−q(r, s) denotes the entry with coordinates (r, s) in the matrix Am+p−q. For
(r, p) ∈ V we call r the phase and p the level of the vertex. A sequence of edges

[(r0, p0), (r1, p1)], [(r1, p1), (r2, p2)], . . . , [(rw−1, pw−1), (rw, pw)]

is called a path of length w connecting (r0, p0) with (rw, pw) and we might also write

(r0, p0)→ (r1, p1)→ · · · → (rw, pw).

For the above path the number pw − p0 is called its level displacement. Furthermore we
call a path (r0, p0)→ · · · → (rw, pw) a phase cycle if r0 = rw.

Then the index of phase imprimitivity of the graph Gm(Al, . . . , A0) is defined as the
greatest common divisor (g.c.d.) of the level displacements of all of its phase cycles. In
the case where every phase cycle has level displacement 0 (which can happen, see [FN05a,
Example 4.3]) the index of phase imprimitivity is defined as 0. Moreover, the index of
phase imprimitivity is defined to be nonnegative.
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Example 1.17. Consider the matrices

A4 =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ , A3 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , A0 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
and let m = 3. Let us construct a path in the graph G3(A4, A3, A0): Starting in the
vertex (r, p) = (1, 0) we see that only the matrix A4 has a nonzero entry in its first row.
Setting q = 1 we get Am−p+q(r, 2) = A4(1, 2) > 0 and therefore [(1, 0), (2, 1)] is an edge
in G3(A4, A3, A0) (it is the only edge starting in (1, 0)). Continuing like that we get a
path

(1, 0)→ (2, 1)→ (5, 1)→ (4, 2)→ (3,−1)→ (1,−1).

This path can be illustrated in a two-dimensional diagram as follows:

↑↑

level

↓↓

◦(4,2)

↓↓

◦(2.1) →→ ◦(5,1)

↖↖

◦(1,0)

↗↗

• • • •

◦(1,−1) ◦(3,−1)
←←

1 ←←
phase

→→ 5

The path we constructed is in fact a phase cycle with level displacement −1. It is
also essentially the only phase cycle in G3(A4, A3, A0), as it can be easily seen that
changing the starting level only ’shifts’ the path up or down. As such the index of phase
imprimitivity of G3(A4, A3, A0) is 1.

A concept similar to the infinite graph above was considered in [GHT96, p.132]. Note that
the graph associated with a single matrix A0 ∈ Rn,n

+ can be expressed by G1(A0). Then
the index of phase imprimitivity of G1(A0) coincides with the usual index of imprimitivity
of A0 used in the Perron-Frobenius theory. Thus the graph Gm(Al, . . . , A0) can be seen
as an extension of the usual graph associated with an entrywise nonnegative matrix.
In [Har11] the infinite graph was used to derive results for the spectrum of semi-monic
Perron-Frobenius polynomials similar to our main result for the block numerical range
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in the following section. We collect some properties of these infinite graphs which will
be needed in the proof of our main result. The proofs are straight forward and can be
found in [Har11, pp. 66-67].

Lemma 1.18. For the graph Gm(Al, . . . , A0) we have that [(r, p), (s, q)] ∈ E implies that
[(r, p+ u), (s, q + u)] ∈ E for all u ∈ Z.
Moreover for any u ∈ Z the paths (r0, p0)→ (r1, p1)→ · · · → (rw, pw) and (r0, p0+u)→
(r1, p1 + u)→ · · · → (rw, pw + u) have the same level displacement.

Lemma 1.19. Let A0, . . . , Al ∈ Rn,n
+ and m ∈ N. Then for r, s ∈ ⟨n⟩ the following

assertions are equivalent:

(i) There exists a path from r to s in the directed graph associated with the matrix
A0 + · · ·+Al ∈ Rn,n

+ .

(ii) For all p ∈ Z there exists a q ∈ Z such that there is a path from (r, p) to (s, q) in
Gm(Al, . . . , A0).

(iii) For all q ∈ Z there exists a p ∈ Z such that there is a path from (r, p) to (s, q) in
Gm(Al, . . . , A0).

For the next Lemma recall that a matrix B ∈ Rn,n
+ is irreducible if and only if its

associated directed graph is strongly connected, i.e. there exists a path between any two
vertices.

Lemma 1.20. Let A0, . . . , Al ∈ Rn,n
+ and m ∈ N. Then the following assertions are

equivalent:

(i) A0 + · · ·+Al ∈ Rn,n
+ is irreducible.

(ii) For all r, s ∈ ⟨n⟩ and p ∈ Z there exists a q ∈ Z such that there is a path from (r, p)
to (s, q) in Gm(Al, . . . , A0).

(iii) For all r, s ∈ ⟨n⟩ and q ∈ Z there exists a p ∈ Z such that there is a path from (r, p)
to (s, q) in Gm(Al, . . . , A0).

We will need one more lemma which is usually attributed to I. Schur. A proof can be
found in [BR91, Lemma 3.4.2].

Lemma 1.21. Let M be a nonempty set of integers which is closed under addition and
let d ∈ N be the greatest common divisor of M . Then we have kd ∈M for all but finitely
many k ∈ N.

1.4. A Perron-Frobenius type result for the block numerical range

In this section we will prove a Perron-Frobenius type result for the block numerical range
of semi-monic matrix polynomials. Perron-Frobenius type results for a single matrix are
known for the spectrum (see e.g. [HJ85] and [Min88, Chapter 1.4]) and the numerical
range (see. e.g. [Iss66, MPT02, PT04]). More recently they were proven for the block
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numerical range of a matrix (see [FH08]) and of an operator in a Hilbert lattice (see
[Rad14]).
These results were extended to monic matrix polynomials in (see e.g. [PT04]) for the
spectrum and in [MPT02] for the numerical range. They were further extended to the
semi-monic case in [Har11] and [FK15] respectiviely. Recently an analogue was proved
in [FN15] for the spectrum of semi-monic operator polynomials with coefficients in a
Banach lattice.
Results for the block numerical range of monic polynomials can be found in [FH08] for
matrix coefficients, and in [Rad14, RTW14] for operator coefficients in a Hilbert lattice.

The setting for this section is that of semi-monic matrix polynomials

Q(λ) = λmI −A(λ) = λmI −
l∑

j=0

λjAj (1.10)

where we assume the coefficients to be entrywise nonnegative, i.e. Aj ∈ Rn,n
+ . We will

call A(·) irreducible if
∑l

j=0Aj is irreducible or if, equivalently, the real positive matrix
A(β) is irreducible for one (and then for all) β > 0.
The block numerical range will be formed with respect to the product space Cn =
Cn1 × · · · × Cnp . For an exposition on block numerical ranges of matrices we point the
reader to Section A.5. In particular recall the index sets Ik and the integer function ι(·)
from Definition A.28.
The main result, which is illustrated in Figure 2, is as follows.

Theorem 1.22. Let Cn = Cn1 ×· · ·×Cnp and A(λ) =
∑l

j=0 λ
jAj an irreducible matrix

polynomial with entrywise nonnegative coefficients and Q(λ) = λmI − A(λ) its corre-
sponding semi-monic polynomial. Let further d be the index of phase imprimitivity of the
graph Gm(Al, . . . , A0). Then for all β > 0 with

βm = bnr(A(β);Cn1 , . . . ,Cnp) (1.11)

the following statements hold:

(i) If d = 0 then Tβ ⊂ Θ(Q(β);Cn1 , . . . ,Cnp).

(ii) If d ≥ 1 then Θ(Q(β);Cn1 , . . . ,Cnp) ∩ Tβ = {βe2πi
k
d : k = 1, . . . , d}.

Proof. We first prove (ii).
”⊆”: Take an element of Θ(Q(·);Cn1 , . . . ,Cnp) ∩ Tβ , i.e. an βω with ω ∈ T1. Then
there exists some X ∈ Sop

att(Cn1 , . . . ,Cnp) (with corresponding x ∈ Satt(Cn1 , . . . ,Cnp))
and some u ∈ Cp such that

(βω)mu = X∗A(βω)Xu. (1.12)

We further have that

spr(X∗A(βω)X) ≤ bnr(A(βω)) ≤ bnr(A(β)) = βm.
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Figure 2: The dots represent values of Θ((Q(·);Cn1 , . . . ,Cnp) on the circles with radii β
satisfying βm = bnr(A(β);Cn1 , . . . ,Cnp).

Noting that |X| ∈ Sop
att (with corresponding |x| ∈ Satt) we then have

βm = spr(X∗A(βω)X) ≤ spr(|X∗A(βω)X|) ≤ spr(|X|∗A(β)|X|) ≤ βm.

This implies bnr(A(β)) = spr(|X|∗A(β)|X|) and since A(β) is irreducible and |X| ≥ 0
it follows from Proposition A.30.(iii) that |x| ≫ 0. Then by Proposition A.30.(ii) the
matrix |X|∗A(β)|X| is irreducible. We also know that

spr(|X|∗A(β)|X|)|u| = βm|u| = |X∗A(βω)Xu| ≤ |X|∗A(β)|X| |u|

which implies together with the irreducibility of |X|∗A(β)|X| that the vector |u| is an
eigenvector of |X|∗A(β)|X| to the eigenvalue βm and is thus strictly positive.
Setting Y := |X| and v := |u| this reads as

βmv = Y ∗A(β)Y v.
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Taking a coordinate h ∈ ⟨p⟩ we can write

βmvh =

p∑
k=1

(Y ∗A(β)Y )hkvk

=
l∑

j=1

p∑
k=1

βj(Y ∗AjY )hkvk

=
l∑

j=1

p∑
k=1

∑
r∈Ih

∑
s∈Ik

βj ȳrAj(r, s)ysvk.

Now dividing by the left-hand side we arrive at

1 =
l∑

j=1

p∑
k=1

∑
r∈Ih

∑
s∈Ik

βj−mȳrAj(r, s)ys
vk
vh

(1.13)

where the summands on the right-hand side are all nonnegative. Now doing the same
for (1.12) we get

1 =
l∑

j=1

p∑
k=1

∑
r∈Ih

∑
s∈Ik

(βω)j−mx̄rAj(r, s)xs
uk
uh

=

l∑
j=1

p∑
k=1

∑
r∈Ih

∑
s∈Ik

[
βj−mȳrAj(r, s)ys

vk
vh

] [
x̄r
ȳr

xs
ys

uk
vk

vh
uh

ωj−m

]
. (1.14)

Moreover ⏐⏐⏐⏐ x̄rȳr xsys ukvk vh
uh

ωj−m

⏐⏐⏐⏐ = ⏐⏐⏐⏐ x̄rȳr
⏐⏐⏐⏐ ⏐⏐⏐⏐xsys

⏐⏐⏐⏐ ⏐⏐⏐⏐ukvk
⏐⏐⏐⏐ ⏐⏐⏐⏐ vhuh

⏐⏐⏐⏐ ⏐⏐ωj−m
⏐⏐ = 1. (1.15)

Due to (1.13) we now see that (1.14) is a convex combination of numbers with absolute
value 1 whose sum is equal to 1. This is only possible if for all r, s where Aj(r, s) > 0 we
have that

1 =
x̄r
ȳr

xs
ys

uk
vk

vh
uh

ωj−m.

Note that in the above equation h = ι(r) and k = ι(s). We can therefore write it as

ys
xs

vι(s)

vι(r)
=

x̄r
ȳr

uι(s)

uι(r)
ωj−m. (1.16)

Now take any phase cycle (r0, p0) → . . . → (rw, pw) in Gm(Al, . . . , A0) of some length
w ∈ N (which is possible by Lemma 1.20) and denote its level displacement by d̃. Then
r0 = rw and Am−pt−1+pt(rt−1, rt) > 0 for t ∈ ⟨w⟩. Setting jt = m−pt−1+pt we can then
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write d̃ =
∑w

t=1 jt −m and with (1.16) it follows that

ωd̃ =
uι(r0)

uι(rw)

w∏
t=1

ωjt−m uι(rt)

uι(rt−1)

x̄rt−1

ȳrt−1

w∏
t=1

ȳrt−1

x̄rt−1

=
uι(r0)

uι(rw)

w∏
t=1

vι(rt)

vι(rt−1)

yrt
xrt

w∏
t=1

ȳrt−1

x̄rt−1

=
uι(r0)

uι(rw)

vι(rw)

vι(r0)  
:=I

w∏
t=1

yrt
xrt

ȳrt−1

x̄rt−1  
:=II

.

Since r0 = rw we immediately see that I = 1. For part II calculate

II =
w∏
t=1

yrt
xrt

ȳrt−1

x̄rt−1

=
w∏
t=1

yrt
xrt

ȳrt
x̄rt

=
w∏
t=1

|yrt |2

|xrt |2
= 1,

where we again used that r0 = rw.
Thus ωd̃ = 1. In order to see that then also ωd = 1 consider the set

M =

{
the set of all level displacements of phase cycles

in Gm(Al, . . . , A0) and their sums

}
which is closed under addition. Obviously for an element d̂ ∈M there still holds ωd̂ = 1.
Moreover the index of phase imprimitivity d is the greatest common divisor of M . Now
by Lemma 1.21 there exists a k ∈ N such that kd and (k + 1)d are both in M , i.e.
ωkd = ω(k+1)d = 1. Thus the increment d must also fulfil ωd = 1. It follows that

βω ∈ {e2πi
k
d : k = 0, . . . , d− 1}.

”⊇”: For this inclusion choose an ω ∈ T1 with ωd = 1. Since A(·) is irreducible by Propo-
sition A.30 we can find a strictly positive y ∈ Satt(Cn1 , . . . ,Cnp) (with corresponding
Y ∈ Sop

att(Cn1 , . . . ,Cnp)) and v ∈ Cp satisfying βmv = Y ∗A(β)Y v.
Our goal is to construct an x ∈ Satt(Cn1 , . . . ,Cnp) and u ∈ Cp satisfying (βω)mu =
X∗A(βω)Xu. Set u = v and x1 = y1. For s ∈ ⟨2, n⟩ take a path (r0, p0)→ . . .→ (rw, pw)
in Gm(Al, . . . , A0) such that r0 = 1 and rw = s (which is possible by Lemma 1.20). Fur-
ther by Lemma 1.18 we can assume w.l.o.g. that pw = 0. Thus the path will have level
displacement −p0.
Now define xs recursively via

xrt = yrt
ȳrt−1

x̄rt−1

ωpt−1−pt , t ∈ ⟨w⟩.

Claim: The above construction is well defined, i.e. it is independent of the specific path.
To see the claim first note that |xrt | = |yrt |, t ∈ ⟨w⟩0 and we can thus write

xrt = yrt
ȳrt−1

x̄rt−1

ωpt−1−pt = yrt
xrt−1

yrt−1

|yrt−1 |2

|xrt−1 |2
ωpt−1−pt = yrt

xrt−1

yrt−1

ωpt−1−pt .
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Then

xs = ys
xrw−1

yrw−1

ωpw−1−pw

= ys
yrw−1

yrw−1

xrw−2

yrw−2

ωpw−2−pw−1ωpw−1−pw

...

= ysω
p0−pw = ysω

p0

Now take another path (r̃0, p̃0)→ . . .→ (r̃w̃, p̃w̃) satisfying r̃0 = 1 and r̃w̃ = s and again
w.l.o.g. p̃w̃ = 0 (so that this path has level displacement −p̃0). This path gives rise to a
x̃s and by the same calculation as above we get

x̃s = ysω
p̃0 .

In the last step consider a third path from (s, 0) to (1, d̂) with level displacement d̂ (any
such path will do). Attaching this path to either of the previous two paths gives phase
cycles with level displacements d̂− p0 and d̂− p̃0 respectively. We can now divide xs by
x̃s to get

xs
x̃s

= ωp0−p̃0 = ω−(d̂−p0)ωd̂−p̃0 = 1,

where the last equality holds because both exponents are level displacements of phase
cycles and thus divisible by d. The claim is proved.
The vector x was constructed in a way that whenever Aj(r, s) > 0 relation (1.16) is
satisfied. We can thus write for h ∈ ⟨p⟩

(X∗A(βω)Xu)h =
l∑

j=0

(βω)j(X∗AjXu)h

=
l∑

j=0

p∑
k=1

(βω)j(X∗AjX)hkuk

=
l∑

j=0

p∑
k=1

∑
r∈Ih

∑
s∈Ik

(βω)mx̄rAj(r, s)xsuk

=
l∑

j=0

p∑
k=1

∑
r∈Ih

∑
s∈Ik

[
βj ȳrAj(r, s)ysvk

] [
ωj−m x̄r

ȳr

xs
ys

uk
vk

vh
uh

]
uh
vh

ωm

= (Y ∗A(β)Y v)h
uh
vh

ωm

= βmvh
uh
vh

ωm = (βω)muh

which shows βω ∈ Θ(Q(·);Cn1 , . . . ,Cnp) ∩ Tβ .
(i) Note that d = 0 implies that in the proof of the reverse inclusion above we can choose
any ω ∈ T1. It then follows that Tβ ⊆ Θ(Q(·);Cn1 , . . . ,Cnp).
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Remark 1.23. Theorem 1.22 is a generalisation of both [Har11, Theorem 4.23] for the
spectral case and [FK15, Theorem 5.2] for the numerical range case. In fact if we form
the block numerical range with respect to the trivial product space Cn or the maximal
product space Cn = C× · · · × C, then those two results are exactly Theorem 1.22.
Lemma 1.16 implies that Theorem 1.22 is also a generalisation of analogous results for
monic matrix polynomials. In particular it is a generalisation of [PT04, Theorem 3.3] for
the spectral case and of [PT04, Corollary 5.6] for the numerical range case.

Remark 1.24. Equation (1.11) can be satisfied for several β > 0. However, the number
of elements on the circles of radius β are the same for all β > 0 satisfying (1.11), since the
number of elements depends only on the index of phase imprimitivity of Gm(Al, . . . , A0).
Equation (1.11) can further be satisfied with respect to different decompositions of the
product space Cn (which might happen for different β > 0). In particular we can
compare the cyclic distribution of block numerical ranges to the cyclic distribution of
the spectrum and the numerical range. But as above the actual number of elements on
circles Tβ remains the same in all cases.
Finally, even changing the coefficient matrices Aj will not result in a different number
of cyclic elements as long as the nonzero structure of the Aj ’s is preserved (though this
will most likely result in changed radii β > 0).

Example 1.25. Let

Qm(λ) = λm −A(λ) = λm − λ4A4 −A0

with

A4 =

⎡⎢⎢⎣
0 0 2 0
0 0 0 2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , A0 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0.5 0 0
0.5 0 0 0

⎤⎥⎥⎦
and m ∈ N. Note that the matrix A(1) is irreducible. Let us first consider the infinite
graph Gm(A4, A0). Since A(1) contains exactly one nonzero element in every row and
column there is effectively only on phase cycle in Gm(A4, A0). Starting in the vertex
(1, 0). The cycle then is

(1, 0)→ (3, 4−m)→ (2, 4− 2m)→ (4, 8− 3m)→ (1, 8− 4m).

The level displacement of this cycle is 8 − 4m. The index of phase imprimitivity is
therefore d = |8− 4m|.
For the block numerical range we choose the decomposition C4 = C2 × C2. Let us
first compute bnr(A(β);C2,C2) for β > 0: Take a nonnegative x ∈ Satt(C2,C2) with
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corresponding X ∈ Sop
att(C2,C2). Then

spr(X∗A(β)X) = spr

⎡⎢⎢⎣ 0

[
x1
x2

]∗ [
2β4

2β4

] [
x3
x4

]
[
x3
x4

]∗ [
0.5

0.5

] [
x1
x2

]
0

⎤⎥⎥⎦
= spr

[
0 2β4(x1x3 + x2x4)

0.5(x2x3 + x4x1) 0

]
= β2

√
(x1x3 + x2x4)(x3x2 + x4x1)

= β2√x1x2 + x3x4

The term under the root is maximal for x1 = x2 = x3 = x4 =
√
0.5 and then

bnr(A(β);C2,C2) = β2. Therefore

bnr(A(β);C2,C2)
!
= βm

⇐⇒ β2 = βm

⇐⇒ 1 = β

(where we left out the solution β = 0 since we require β > 0).
A similar calculation to the above shows that the peripheral block numerical range of
A(β) for any β > 0 is

Θ(A(β);C2,C2) ∩ Tβ2 = {β2 exp(2πi
k

4
) : k = 0, . . . , 3}

(alternatively one could get this result by applying [FH08, Theorem 4.6]).
We claim that for any ω ∈ C with |ω| = 1 there holds

Θ(A(βω);C2,C2) = ω2Θ(A(β);C2,C2).

To see this take any vector x ∈ Satt(C2,C2) and write

Σ(X∗A(βω)X) = Σ

⎡⎢⎢⎣ 0

[
x1
x2

]∗ [
2β4ω4

2β4ω4

] [
x3
x4

]
[
x3
x4

]∗ [
0.5

0.5

] [
x1
x2

]
0

⎤⎥⎥⎦
= Σ

[
0 2β4ω4(x̄1x3 + x̄2x4)

0.5(x̄3x2 + x̄4x1) 0

]
.

The claim now follows because

Σ

[
0 2β4ω4(x̄1x3 + x̄2x4)

0.5(x̄3x2 + x̄4x1) 0

]

= ω2Σ

[
0 2β4(x̄1x3 + x̄2x4)

0.5(x̄3x2 + x̄4x1) 0

]
.
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It follows that

Θ(A(βω);C2,C2) ∩ Tβ2 = {β2ω2 exp(2πi
k

4
) : k = 0, . . . , 3}.

Now let β = 1 such that bnr(A(β);C2,C2) = βm. We are interested in the distribution
of

Θ(Qm(·);C2,C2) ∩ T1.

Our above calculations show that an element ω ∈ C, |ω| = 1 satisfies ω ∈ Θ(Qm(·);C2,C2)∩
T1 if and only if

ωm ∈ {ω2 exp(2πi
k

4
) : k = 0, . . . , 3}

⇐⇒ ωm−2 ∈ {±1,±i}.
(1.17)

This already implies a cyclic distribution. Let us now look at some specific values for m:

- m = 2: Condition (1.17) is satisfied for any ω with absolute value 1. Therefore

Θ(Q2(·);C2,C2) ∩ T1 = T1.

This is consistent with Theorem 1.22 since the index of phase imprimitivity is d =
|8− 2m| = 0.

- m = 3: Condition (1.17) implies that

Θ(Q3(·);C2,C2) ∩ T1 = {±1,±i}.

This is again consistent with Theorem 1.22 since the index of phase imprimitivity is
d = 4.

- m = 4: Now condition (1.17) implies that

Θ(Q4(·);C2,C2) ∩ T1 = {exp(2πi
k

8
) : k = 0, . . . , 7}.

As expected the index of phase imprimitivity is d = 8.

- m = 5: We are now in the monic case. Here we have

Θ(Q5(·);C2,C2) ∩ T1 = {exp(2πi
k

12
) : k = 0, . . . , 11}

and d = 12.

By slightly altering the proof of Theorem 1.22 we can obtain a result about the rotation
invariance of the whole block numerical range of semi-monic matrix polynomials. It is
not necessary for equation (1.11) to be satisfied, but in turn we obtain a slightly weaker
statement.
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Theorem 1.26. Let A(λ) =
∑l

j=0 λ
jAj be an irreducible matrix polynomial with en-

trywise nonnegative coefficients and Q(λ) = λm − A(λ) its corresponding semi-monic
polynomial for some m ∈ N. Let further d be the index of phase imprimitivity of the
associated graph Gm(Al, . . . , A0) and assume d ≥ 1. Then Θ(Q(·);Cn1 , . . . ,Cnp) is in-
variant under rotation with the angle θ = 2π

d , i.e.

Θ(Q(·);Cn1 , . . . ,Cnp) = ei
2π
d Θ(Q(·);Cn1 , . . . ,Cnp).

Moreover if there exists a β > 0 such that nur(A(β)) = βm then θ is the smallest such
angle.

Proof. The proof is conceptually very similar to the second inclusion in part (ii) of the
proof of Theorem 1.22. Let λ ∈ Θ(Q(·);Cn1 , . . . ,Cnp) and ω ∈ T1 with ωd = 1. Then
there exist y ∈ Satt(Cn1 , . . . ,Cnp) (with corresponding Y ∈ Sop

att(Cn1 , . . . ,Cnp)) and
v ∈ Cp satisfying βmv = Y ∗A(β)Y v. Our goal is to construct an x ∈ Satt(Cn1 , . . . ,Cnp)
and u ∈ Cp satisfying (λω)mu = X∗A(βω)Xu. Set u = v and x1 = y1. For s ∈ ⟨2, n⟩
take a path (r0, p0) → . . . → (rw, pw) in Gm(Al, . . . , A0) such that r0 = 1 and rw = s
(which is possible by Lemma 1.20). Further by Lemma 1.18 we can assume w.l.o.g. that
pw = 0. Thus the path will have level displacement −p0.
Now define xs recursively via

xrt =

{
yrt

ȳrt−1

x̄rt−1
ωpt−1−pt , x̄rt−1 ̸= 0

yrtω
p0−pt−1 , x̄rt−1 = 0

t ∈ ⟨w⟩.

Claim: The above construction is well defined, i.e. it is independent of the specific path.
To see the claim first note that |xrt | = |yrt |, t ∈ ⟨w⟩0 and we can thus write

xrt = yrt
ȳrt−1

x̄rt−1

ωpt−1−pt = yrt
xrt−1

yrt−1

|yrt−1 |2

|xrt−1 |2
ωpt−1−pt = yrt

xrt−1

yrt−1

ωpt−1−pt

if x̄rt−1 ̸= 0. Then

xs = ys
xrw−1

yrw−1

ωpw−1−pw

= ys
yrw−1

yrw−1

xrw−2

yrw−2

ωpw−2−pw−1ωpw−1−pw

...

= ysω
p0−pw = ysω

p0

Note that the above recursive expansion of xs might stop early if the vector y has a zero
entry, but the result will remain the same. Now take another path (r̃0, p̃0) → . . . →
(r̃w̃, p̃w̃) satisfying r̃0 = 1 and r̃w̃ = s and again w.l.o.g. p̃w̃ = 0 (so that this path has
level displacement −p̃0). This path gives rise to a x̃s and by the same calculation as
above we get

x̃s = ysω
p̃0 .
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In the last step consider a third path from (s, 0) to (1, d̂) with level displacement d̂ (any
such path will do). Attaching this path to either of the previous two paths gives phase
cycles with level displacements d̂− p0 and d̂− p̃0 respectively. We can now divide xs by
x̃s to get

xs
x̃s

= ωp0−p̃0 = ω−(d̂−p0)ωd̂−p̃0 = 1,

where the last equality holds because both exponents are level displacements of phase
cycles and thus divisible by d. The claim is proved.
The vector x was constructed in a way that whenever Aj(r, s) > 0 the following relation
(which is the analogue to relation (1.16), taking into account that we chose u = v) is
satisfied:

ωj−mx̄rxs = ȳrys. (1.18)

In the following equation we will use
∑′ to denote that we leave out all elements of the

sum that are equal to zero. We can thus write for h ∈ ⟨p⟩

(X∗A(λω)Xu)h =
l∑

j=0

(λω)j(X∗AjXu)h

=

l∑′

j=0

p∑′

k=1

(λω)j(X∗AjX)hkuk

=

l∑′

j=0

p∑′

k=1

∑′

r∈Ih

∑′

s∈Ik

(λω)mx̄rAj(r, s)xsuk

=

l∑′

j=0

p∑′

k=1

∑′

r∈Ih

∑′

s∈Ik

[
λj ȳrAj(r, s)ysvk

] [
ωj−m x̄r

ȳr

xs
ys

uk
vk

vh
uh

]
uh
vh

ωm

= (Y ∗A(λ)Y v)h
uh
vh

ωm

= λmvh
uh
vh

ωm = (λω)muh

which shows λω ∈ Θ(Q(·);Cn1 , . . . ,Cnp).
The second assertion follows immediately from Theorem 1.22 since a smaller angle would
imply that we would get additional elements of the block numerical range on the circle
Tβ .

1.5. The special case of monic matrix polynomials

In this section we consider the case where Q(·) is a monic matrix polynomial, that is

Q(λ) = λmI − λm−1Am−1 − · · · −A0 = λmI −A(λ) (1.19)
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where m ∈ N and the Aj ∈ Rn,n
+ . For a matrix polynomial of this form we can define the

(negative of the) companion matrix

CQ := −Comp[−Am−1, . . . ,−A0] =

⎡⎢⎢⎢⎣
Am−1 . . . A1 A0

In
. . .

In

⎤⎥⎥⎥⎦ ∈ Rmn,mn (1.20)

where In is the identity operator in Rn,n. It is well known that CQ is a linearisation of
Q(·) (for more on degree-reductions and linearisations of operator polynomials such as
the companion matrix see Section 3). Since CQ is again entrywise nonnegative we can
associate it with a directed graph

GQ = {V,E}

with vertices V = {1, . . . , nm} and edges given by the nonzero entries of CQ.
In the Perron-Frobenius theory for matrix polynomials it is well known (see e.g. [PT04])
that, given CQ is irreducible, the index of imprimitivity (or cyclic index = gcd of the
lengths of all cycles in GQ)) of the graph GQ is equal to the number of distinct eigenval-
ues of Q(·) with maximal modulus.
Given that A(·) is irreducible (which follows from CQ being irreducible) we can apply
Theorem 1.22 with the one dimensional decomposition Cn = C× · · · ×C to see that the
number of eigenvalues with maximal modulus of Q(·) also coincides with the index of
phase imprimitivity of the infinite graph Gm(Am−1, . . . , A0).
Motivated by this we study how Gm(Am−1, . . . , A0) and the graph associated with
CQ are related. We will see that the equality of the index of phase imprimitivity of
Gm(Am−1, . . . , A0) and the index of imprimitivity of GQ holds even without any irre-
ducibility assumptions.

Lemma 1.27. Let [(r0, p0), (r1, p1)] be an edge in Gm(Am−1, . . . , A0). Then there exists
a path s0 → . . .→ sp0−p1 of length p0 − p1 in GQ such that r0 = s0 and r1 = sp0−pq .

Proof. Since [(r0, p0), (r1, p1)] is an edge in Gm(Am−1, . . . , A0) it follows that

Am−(p0−p1)(r0, r1) > 0

(note that necessarily p0 − p1 ∈ ⟨m⟩). This implies that

CQ(r0, r1 + (p0 − p1 − 1)n) > 0

and thus [r0, r1 + (p0 − p1 − 1)n] is an edge in GQ. If p0 − p1 = 1 this already completes
the proof.
Otherwise, due to the identities on the lower minor diagonal of the matrix CQ, we see
that

[r1 + (p0 − p1 − 1)n, r1 + (p0 − p1 − 2)n]
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is an edge in GQ. Repeating this procedure we construct edges

[r1 + (p0 − p1 − 2)n, r1 + (p0 − p1 − 3)n]

...

[r1 + 2n, r1 + n]

[r1 + n, r1].

By setting s0 = r0 and sg = r1 + (p0 − p1 − g)n for g ∈ ⟨2, p0 − p1⟩ we have constructed
a path

s0 → s1 → . . .→ sp0−p1

in GQ of length p0 − p1.

Lemma 1.28. Let s0 → . . . → sq be a cycle in GQ. Then there exists a g ∈ ⟨q⟩0 such
that sg ∈ ⟨n⟩.

Proof. Assume that for all i ∈ ⟨q⟩ there holds si /∈ ⟨n⟩, that is si ∈ ⟨n+ 1,mn⟩. Then

CQ(si, s) = 0 ∀s ≥ si

since the identities on the lower minor diagonal of CQ are the only nonzero elements in
these rows. That implies

s0 < s1 < . . . < sq

which contradicts s0 → . . .→ sq being a cycle.

Theorem 1.29. The following assertions hold:

(i) Let (r0, p0) → . . . → (rw, pw) be a phase cycle in Gm(Am−1, . . . , A0) of length w
and level displacement rw − r0. Then there exists a cycle s0 → . . .→ sp0−pw in GQ

of length p0 − pw such that r0 = s0 = sp0−pw .

(ii) Let s0 → . . . → sq be a cycle in GQ of length q. Then there exists a phase cycle
(r0, p0) → . . . → (rw, pw) in Gm(Am−1, . . . , A0) with level displacement pw − p0 =
−q.
Additionally if s0 ∈ ⟨n⟩ then the phase cycle can be chose such that s0 = sq = r0 =
rw.

Proof. (i) This follows immediately by consecutively applying Lemma 1.27 w times.
(ii) Due to Lemma 1.28 we can assume w.l.o.g. that s0 = sq ∈ ⟨n⟩. We can thus define
(r0, p0) = (s0, 0). Now there exist s̃1 ∈ ⟨n⟩ and k1 ∈ ⟨m⟩ such that s1 = s̃1 + (k1 − 1)m
and Am−k(s0, s̃1) > 0.
Now similar to the proof of Lemma 1.29 it follows that sk1 = s̃1. Setting p1 = p0 − k1 it
follows that m− k = m− (p0 − p1) and thus

Am−(p0−p1)(r0, sk1) > 0.
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We can now set (r1, p1) = (sk1 , p0 − k1) and see that [(r0, p0), (r1, p1)] is an edge in
Gm(Am−1, . . . , A0) with level displacement p1 − p0 = −k1.
Continuing iteratively we find ki’s and set

(ri, pi) =
(
s∑i

j=1 kj
, pi−1 − ki

)
.

Denote by w the number of steps until we arrive at sq. We have now defined a phase
cycle

(r0, p0)→ (r1, p1)→ . . .→ (rw, pw)

in Gm(Am−1, . . . , A0) with level displacement

pw − p0 =

w∑
i=1

pi − pi−1 =

w∑
i=1

−ki = −q.

The last assertion follows directly from our construction.

Corollary 1.30. The index of phase imprimitivity of Gm(Am−1, . . . , A0) coincides with
the index of imprimitivity of GQ.

Proof. By Theorem 1.29 it follows that the sets

M1 = {|q| : there exists a phase cycle with level displacement q in Gm(Am−1, . . . , A0)}

and
M2 = {q : there exists a path of length q in GQ}

coincide. Since the index of phase imprimitivity of Gm(Am−1, . . . , A0) and the index of
imprimitivity of GQ are the greatest common divisors of the sets M1 and M2 respectively
the assertion follows.

1.6. Positive semi-definite and normal coefficients

In this section we will look at eigenvalues of semi-monic operator polynomials

Q(λ) = λmI −A(λ) = λmI −
l∑

j=0

λjAj , (1.21)

Aj ∈ L(H), H a Hilbert space, where the coefficients are either positive semi-definite
or normal. In [Wim08] and [Wim11] the author showed that eigenvalues of maximal
modulus of monic matrix polynomials are normal and semisimple for these coefficient
classes (in [SW10] the result was extended to monic operator polynomials with positive
semi-definite coefficients on a Hilbert space). We will do the same for semi-monic operator
polynomials on circles with radii β > 0 satisfying

nurA(β) = βm. (1.22)

We first prove a result about scalar semi-monic polynomials.
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Theorem 1.31. Consider the scalar semi-monic polynomial

q(λ) = λm − a(λ) = λm −
l∑

j=0

λjaj ,

with aj ≥ 0 and m, l ∈ N and assume that q(ρ0) > 0 for some ρ0 > 0. Let β > 0 be a
positive root of q(·). Then all roots of q(·) on the circle Tβ are simple.

Proof. Because the aj are nonnegative it follows that the function

(0,∞)→ (0,∞) : ρ ↦→ a(ρ) =

l∑
j=0

ρjaj

is geometrically convex (see e.g [Nic00, Proposition 2.4]). Since q(ρ0) > 0 for some
positive ρ we have a(ρ) < ρm. It then follows that q(ρ) has at most two positive roots
and that for such a root β > 0 there holds q′(β) ̸= 0. To see this note that the real
function

b(·) : R→ R : τ ↦→ log(a(eτ ))

is differentiable and convex and the function

l(·) : R→ R : τ ↦→ log(eτ )m = mτ

is linear. The functions b(·) and l(·) are monotone transformations of ρ ↦→ a(ρ) and
ρ ↦→ ρm. Therefore b(log(ρ0)) < l(log(ρ0)). The convexity of b(·) now implies that it has
at most two intersections with l(·) and that for such a root log(β) there holds

b′(log(β)) ̸= l′(log(β)).

These conclusions relate 1 to 1 to the original setting and imply a′(β) ̸= mβm−1.
We can now apply [Har11, Proposition 4.27] for the scalar case to conclude that all roots
of q(·) on the circle Tβ are simple.

We will also need some characterisation of eigenvalues which lie in the boundary of the
block numerical range.

Theorem 1.32. Let λ ∈ Σp(Q(·)) ∩ ∂Θ(Q(·);H) be an eigenvalue. Then λ is a normal
eigenvalue, i.e.

Ker(Q(λ)) = Ker(Q(λ)∗). (1.23)

Proof. This follows from [SW10, Theorem 3.5.(ii)]. While [SW10, Theorem 3.5.(ii)] for-
mally assumes that Q(·) is self-adjoint, the proof still works if we assume that λ0 is an
eigenvalue.

Recall that an eigenvalue λ ∈ Σp(Q(·)) is semisimple if there exists no Jordan chain of
length two, that is no two vectors v, w ∈ H such that v is an eigenvector of λ and

Q′(λ)v +Q(λ)w = 0. (1.24)
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Remark 1.33. If λ is a normal eigenvector, i.e. Ker(Q(λ)) = Ker(Q(λ)∗), we can
multiply v∗ from the left in the above equation and then semisimplicity of λ is equivalent
to

v∗Q′(λ)v ̸= 0 (1.25)

for all eigenvectors v.

1.6.1. Positive semi-definite coefficients

Let us now deal with positive semi-definite coefficients.

Proposition 1.34. Let A(·) be as in (1.21) with positive semi-definite coefficients Aj,
j = 0, . . . , l. For β > 0 there holds

sprA(β) = spr(A(β)) = nur(A(β)) = nurA(β). (1.26)

Proof. The first equality follows from [Har11, Proposition 1.10]. The second equality
holds because A(β) is positive semi-definite (see e.g. [GR97, p.15]). For the last equality
let λ ∈ Tβ and v ∈ H, v∗v = 1 and write

|v∗A(λ)v| =
⏐⏐ l∑
j=1

λjv∗Ajv
⏐⏐ ≤ l∑

j=1

|λ|j |v∗Ajv| =
l∑

j=1

βjv∗Ajv ≤ nur(A(β)).

The assumption now follows by taking the supremum over all λ and v.

The next result is a generalization of [Wim08, Theorem 2.2] to semi-monic operator
polynomials.

Theorem 1.35. Let Q(·) be as in (1.21) with positive semi-definite coefficients Aj, j =
0, . . . , l. Let β > 0 such that spr(A(β)) = nur(A(β)) = βm. Further assume that there
exists an ε > 0 such that either

nur(A(ρ)) < ρm for all ρ ∈ (β − ε, β) (1.27)

or
nur(A(ρ)) < ρm for all ρ ∈ (β, β + ε). (1.28)

Then every eigenvalue λ0 ∈ Σp(Q(·)) ∩ Tρ is normal and semisimple.

Proof. Without loss of generality assume that assumption (1.27) is satisfied. Let λ0 ∈
Σp(Q(·)) ∩ Tβ be an eigenvalue. From assumption (1.27) and Proposition 1.12 it follows
that λ0 lies in the boundary of Θ(Q(·);H) and thus by Theorem 1.32 it follows that λ0

is a normal eigenvalue.
For the semisimplicity let v be an eigenvector of λ0 such that v∗v = 1. Define the function

q(λ) = λm −
l∑

j=0

λjv∗Ajv. (1.29)
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Since the Aj are positive semi-definite the coefficients of q(·) are real positives. By
construction there holds q(λ0) = 0. The next line shows that also q(β) = 0.

βm = |λm
0 | =

⏐⏐ l∑
j=0

λj
0v

∗Ajv
⏐⏐ ≤ l∑

j=0

βj |v∗Ajv| =
l∑

j=0

βjv∗Ajv ≤ βm (1.30)

where the last inequality holds because nur(A(β)) = βm.
Now let ρ ∈ (β − ε, β). By assumption (1.27) it follows that

l∑
j=0

ρjv∗Av ≤ nur(A(ρ)) < ρm

and thus q(ρ) > 0. The function q(·) now fulfils the conditions of Theorem 1.31 and thus
λ0 is a simple root of q(·). This implies that v∗Q′(λ0)v ̸= 0 and by Remark 1.33 this is
equivalent to λ0 being semisimple.

Remark 1.36. Roughly speaking assumptions (1.27) and (1.28) guarantee that the
function nur(A(·)) ’cuts through’ the function ρ ↦→ ρm (as opposed to only touching it).
This is crucial for Theorem 1.35 to hold. For a counter example where eigenvalues fail
to be semisimple see [Har11, Example 2.15].

1.6.2. Normal coefficients

Let now

Q(λ) = λm −A(λ) = λm −
l∑

j=0

λjAj (1.31)

where Aj ∈ L(H) are normal. Further define

Q̄(λ) = λm − Ā(λ) = λm −
l∑

j=0

λj |Aj | (1.32)

with |Aj | the unique square root of A∗
jAj = AjA

∗
j . Note that the coefficients of Ā(·) are

positive semi-definite.

Lemma 1.37. Let B ∈ L(H) be normal and v ∈ H. Then

|v∗Bv| ≤ v∗|B|v. (1.33)

Proof. This is [Har11, Lemma 2.2].

Proposition 1.38. There holds for β > 0

sprA(β) ≤ nurA(β) ≤ nur(Ā(β)) = spr(Ā(β)). (1.34)
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Proof. The first inequality is clear. The last equality follows because Ā(β) is positive
semi-definite. For the second inequality let λ ∈ T1 and v ∈ H, v∗v = 1. Then

|v∗A(λ)v| ≤
l∑

j=0

|λ|m|v∗Ajv| ≤
l∑

j=0

βmv∗|Aj |v ≤ nur(Ā(β))

where we used Lemma 1.37. The assertion now follows by taking the supremum over all
λ and v.

Theorem 1.39. Let Q(·) and Q̄(·) as in (1.31) and (1.32). Let β > 0 with βm =
sprA(β) = spr(Ā(β)) and assume there exists ε > 0 such that either

nur(Ā(ρ)) < ρm for all ρ ∈ (β − ε, β) (1.35)

or
nur(Ā(ρ)) < ρm for all ρ ∈ (β, β + ε). (1.36)

Then

(i) sprA(β) = nurA(β) = βm,

(ii) if λ0 ∈ Σp(Q) ∩ Tβ then λ0 is a normal eigenvalue.

Proof. (i) follows directly from Proposition 1.38. For (ii) assume without loss of generality
that assumption (1.35) is satisfied. Then again by Proposition 1.38

nurA(ρ) ≤ nur(Ā(ρ)) < ρm for all ρ ∈ (β − ε, β).

It then follows from (i) and Proposition 1.12 that λ0 lies in the boundary of Θ(Q(·);H)
and thus by Theorem 1.32 it follows that λ0 is a normal eigenvalue.
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2. Factorization in ordered Banach algebras

Multiplicative factorizations of elements in an algebra with respect to some additive
decomposition of the algebra are well known and appear for example in [GGK93, GKS03,
Mar88]. Additionally factorizations of polynomials have been studied in [Mar88].
We begin this chapter by stating some definitions and known results before we introduce
an order structure in the next section.

Definition 2.1. (i) We call an algebra A a decomposing algebra if it contains two
subalgebras A+ and A− such that A is the direct sum of these subalgebras, i.e.
A = A+ +̇ A−.
We denote the natural projection onto A+ along A− by P and Q = IdA − P .

(ii) We call A with unit e a semi-strongly decomposing algebra if it contains three
subalgebras A± and A0 such that A = A+ +̇ A0 +̇ A− (with natural projections
P+, P0 and P−) and

a) e ∈ A0, if a0 ∈ A0 ∩ Ainv then a−1
0 ∈ A0,

b) if a0 ∈ A0 and a± ∈ A± then a0a± ∈ A± and a±a0 ∈ A±.

(iii) We call A with unit e a strongly decomposing algebra if it is a semi-strongly decom-
posing algebra and

c) if a± ∈ A± then e− a± ∈ Ainv and (e− a±)
−1 − e ∈ A±.

If A is additionally a Banach algebra we call A a ((semi-)strongly) decomposing Banach
algebra if it is a ((semi-)strongly) decomposing algebra and the corresponding natural
projections are continuous.

Part (i) appeared in [CG81, p. 34] and [GGK93, p. 806] and part (iii) in [GGK93,
p. 545]. Note that we have the implications (iii) ⇒ (ii) ⇒ (i), where in the second
implication one needs to add A0 to one of the other two subalgebras. The reverse is in
general not true as the following example illustrates.

Example 2.2. (i) Consider the Banach algebra Cn with component-wise multiplication
as the algebra operation and unit e = (1 · · · 1)T . We can define the two closed subalgebras

Cn
odd := {(λj)j ∈ Cn : λj = 0 for j even},

Cn
even := {(λj)j ∈ Cn : λj = 0 for j odd}.

It is easy to see that Cn = Cn
odd + Cn

even is indeed a decomposing Banach algebra.
Note that the unit element is split up between the two subalgebras, therefore there is no
straightforward way to further decompose Cn into a semi-strongly decomposing Banach
algebra.

(ii) Let A be a Banach algebra with unit e. Then the Wiener algebra on the unit circle
T with coefficients in A is defined as
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W (A) = {a(·) : a(λ) =
∞∑

k=−∞
λkak, λ ∈ T, (ak) ∈ ℓ1Z(A)}

where ℓ1Z(A) = (ak)k∈Z ⊂ A :
∑∞

k=−∞ ∥ak∥ < ∞} and the algebra operations are the
usual addition and pointwise multiplication of continuous functions. In other words
W (A) is the algebra of all continuous functions on T mapping into A whose series of
Fourier coefficients is absolutely convergent. If we endow W (A) with the norm

∥a(·)∥W =

∞∑
k=−∞

∥ak∥

then W (A) becomes a Banach algebra (since A is a Banach algebra) with unit eW (·) ≡ e
(see e.g. [Kat04, I.6.1 and VIII.2.9]).
The Wiener algebra is the direct sum of the subsets

W−(A) = {a(·) ∈W (A) : ak = 0 for k ≥ 0},
W+(A) = {a(·) ∈W (A) : ak = 0 for k ≤ 0},
W0(A) = {a(·) ∈W (A) : a(·) ≡ a0, a0 ∈ A}.

Since the Fourier coefficients of the product of two functions are obtained via convo-
lution, it follows that the three subsets Wα(A), α = −, 0,+ are subalgebras of W (A).
They are also closed which follows from the ℓ1Z-norm. Definition 2.1.(ii).a) and Defini-
tion 2.1.(ii).b) are also clearly satisfied so that with the above decomposition the Wiener
algebra becomes a semi-strongly decomposing Banach algebra.
However the Wiener algebra is not a strongly decomposing Banach algebra. The function
a(λ) = λe belongs to W+(A) but clearly eW (·) − a(·) is not invertible in W (A) since it
has a root at λ = 1.

(iii) Consider the Banach algebra Cn,n of complex n×n- matrices with the usual matrix
multiplication and unit element the identity matrix I. Then Cn,n can be written as the
direct sum of strictly lower triangular, diagonal and strictly upper triangular matrices.
It is easy to check that Cn,n becomes a semi-strongly decomposing Banach algebra in
this way. Indeed it even becomes a strongly decomposing Banach algebra since a strictly
lower (respectively upper) triangular matrix A is nilpotent and thus (I−A)−1−I is again
a strictly lower (respectively upper) triangular matrix by Neumann’s series. Therefore
Definition 2.1.(iii).c) is also satisfied.

The next proposition collects some known factorization results.

Proposition 2.3. (i) Let A = A− +̇ A+ be a decomposing Banach algebra with unit
e and natural projections P and Q. If a ∈ A and ∥a∥ < min{∥P∥−1, ∥Q∥−1}, then
e− a admits a factorization

e− a = (e− a−)(e− a+) (2.1)
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with a± ∈ A± and e − a± invertible with (e − a±)
−1 − e ∈ A±. Moreover such a

factorization is unique.

(ii) Let A = A− +̇ A0 +̇ A+ be a strongly decomposing algebra with natural projections
P−, P0 and P+. An element a ∈ A admits a factorization

e− a = (e− a−)a0(e− a+) (2.2)

with a± ∈ A± and a0 ∈ A0 if and only if there exist elements x± ∈ A0 + A±
satisfying

x+ −Q+(ax+) = Q+(a),

x− −Q−(x−a) = Q−(a),

where Q± = P0 + P±. Moreover such a factorization is unique.

Proof. (i) is the result given in [GGK93, Theorem XXIX.9.1]. A similar version is given
in [Mar88, Theorem 23.3].
(ii) is [GGK93, Theorem XXII.8.2].

In [Mar88] A. S. Markus considers factorization results for operator functions and polyno-
mials. In particular he implicitly states a factorization result for semi-monic polynomials
which we restate here.

Proposition 2.4. Let 1 ≤ m < l and

q(λ) = λme− a(λ) = λme−
l∑

j=0

λjaj

with the aj elements in a Banach algebra A and e the unit element. If

norma(ρ) =

l∑
j=0

ρj∥aj∥ ≤ ρm (2.3)

for some ρ > 0, then λ−mq(λ) admits a canonical factorization with respect to the circle
with radius |λ| = ρ, that is

λ−ma(λ) = a+(λ)(e+ a−(λ)), λ ∈ Tρ, (2.4)

with continuous functions a±(·) such that a+(·) has a holomorphic extension to the disk
D≤ρ and a−(·) has a holomorphic extension to the outer disc D≥ρ which vanishes at
infinity.

Proof. This is a slight reformulation of [Mar88, Corollary 23.5] where we emphasized
the semi-monic structure of q(·). We further changed the setting from Banach spaces to
Banach algebras since the proofs given also apply in this more general case.
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Markus then continues by specifying spectral properties of the divisors in (2.4). An order
version of these results is given in Section 2.4.

Markus additionally considered other sufficient conditions for an operator polynomial
A(·), with coefficients in L(H), H a Hilbert space, to admit a canonical factorization. It
reads

inf
|λ|=ρ,∥x∥=1

|(A(λ)x, x)| > 0 (2.5)

for some ρ > 0 and where x ∈ H. Then (2.5) and other conditions imply a factorization
result; for an example see [Mar88, Theorem 26.12].
We want to show that conditions of the form (2.5) are satisfied for semi-monic functions
if the function nura(·) from (1.3) satisfies an inequality nura(ρ) < ρm for ρ > 0. We show
this in three different settings.

(i) Let A be a Banach algebra with unity e and q(λ) = λme − a(λ) as in (1.1) with
coefficients in A. Recall that for b ∈ A the numerical range is defined as

Θ(b;A) = {f(b) : f ∈ A′, f(e) = ∥f∥ = 1}.

Then nura(ρ) = sup|λ|=ρ nur(a(λ)) < ρm implies

inf{|f(q(λ))| : |λ| = ρ, f ∈ A′, f(e) = ∥f∥ = 1}
= inf{|f(λme− a(λ))| : |λ| = ρ, f ∈ A′, f(e) = ∥f∥ = 1}
= inf{|λm − f(a(λ))| : |λ| = ρ, f ∈ A′, f(e) = ∥f∥ = 1}
≥ inf{ρm − |f(a(λ))| : |λ| = ρ, f ∈ A′, f(e) = ∥f∥ = 1}
= λm − sup

|λ|=ρ
nur(a(λ)) > 0.

(ii) Let X be a Banach space and Q(λ) = λmI − A(λ) as in (1.6) with coefficients in
L(X). The spatial numerical range for B ∈ L(X) is

Θ(B;X) = {f(Bx) : (f, x) ∈ Satt(X)}
= {f(Bx) : x ∈ X, f ∈ X ′, f(x) = ∥f∥ = ∥x∥ = 1}.

Then similarly to above the inequality nurA(ρ) < ρm for a ρ > 0 implies

inf{|f(Q(λ)x)| : |λ| = ρ, (f, x) ∈ Satt(X)}
= inf{|f(λmx−A(λ)x)| : |λ| = ρ, (f, x) ∈ Satt(X)} > 0.

(iii) Lastly we show the Hilbert space case. Let H be a Hilbert space and Q(λ) =
λmI −A(λ) be as above with coefficients in L(H). We have for B ∈ L(H)

Θ(B;H) = {(Bx, x) : x ∈ H, ∥x∥ = 1}.

Then nurA(ρ) < ρm implies

inf{|(Q(λ)x, x)| : |λ| = ρ, x ∈ H, ∥x∥ = 1}
= inf{|λm − (A(λ)x, x)| : |λ| = ρ, x ∈ H, ∥x∥ = 1} > 0.
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2.1. Decomposing ordered Banach algebras

We will now introduce an order structure to the additive decompositions in the previous
decomposition which will allow us to later state factorization results that take the order
of the underlying algebra into account. This concept was previously examined in [FN05b]
for decomposing Banach algebras, however we will be able to derive stronger factorization
results.
Recall that an algebra A is called an ordered algebra if it contains a cone, that is, a subset
C ⊂ A satisfying

1. C + C ⊂ C,

2. λC ⊂ C, λ > 0.

If C additionally satisfies

3. C · C ⊂ C,

then it is called an algebra cone. If A contains a unit e then we also require

4. e ∈ C.

For a, b ∈ A an algebra cone induces a partial ordering via

a ≤ b if and only if b− a ∈ C.

Moreover if A is a Banach algebra then the (algebra) cone C is called normal if there
exists γ > 0 such that for every a, b ∈ A satisfying 0 ≤ a ≤ b there holds ∥a∥A ≤ γ∥b∥A.
The following proposition, which collects some known results, will prove useful through-
out this chapter.

Proposition 2.5. Let A be an ordered Banach algebra with closed normal algebra cone
C. Then

(i) The spectral radius spr(·) is a monotone function on C, i.e. if 0 ≤ a ≤ b then
spr(a) ≤ spr(b).

(ii) For all a ∈ C its spectral radius spr(a) belongs to its spectrum Σ(a).

(iii) Let a ∈ C and λ ∈ C. Then λ /∈ Σ(a) and (λe− a)−1 ∈ C if and only if λ ≥ 0 and
spr(a) < λ.

Proof. For the first two assertions see [RR89, Theorem 4.1.1 and Proposition 5.1]. The
’if’ part of the last assertion is an immediate consequence of [KLS89, Theorem 25.1], and
the ’only if’ part follows by using Neumann’s series.

We can now introduce the order sensitive version of Definition 2.1

Definition 2.6. Let A be an ordered algebra with cone C.
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(i) We call A a decomposing ordered algebra if it is a decomposing algebra and C is
invariant under the natural projections P and Q = IdA − P .

(ii) We call A a semi-strongly decomposing ordered algebra if it is a semi-strongly de-
composing algebra and

a) C is invariant under the natural projections P+, P0 and P−.

(iii) We call A a strongly decomposing ordered algebra if it is a strongly decomposing
algebra and

a) C is invariant under the natural projections P+, P0 and P−.

b) if a± ∈ A± ∩ C then (e− a±)
−1 − e ∈ A± ∩ C.

If A is additionally a Banach algebra we call A a ((semi-)strongly) decomposing ordered
Banach algebra if it is a ((semi-)strongly) decomposing ordered algebra and the corre-
sponding natural projections are continuous.

The Banach algebras from Example 2.2 can all be endowed with an order structure such
that they become ((semi-)strongly) decomposing ordered Banach algebras.

Example 2.7. (i) The Banach algebra Cn from Example 2.2.(i) can be endowed with
the closed normal algebra cone Rn

+. It is easy to see that Cn = Cn
odd + Cn

even becomes a
decomposing ordered Banach algebra in this way.

(ii) For the Wiener algebra W (A) from Example 2.2 assume that the coefficient algebra
A contains an algebra cone C. Then the order on A induces an order on W (A) via the
algebra cone

CW := {a(·) : ak ∈ C for all k ∈ Z}.

The cone CW will be normal and closed if and only if C is normal and closed. Since
CW is invariant under the natural projections onto the subalgebras, W (A) becomes a
semi-strongly decomposing ordered Banach algebra.
However, as before, W (A) is not a strongly decomposing ordered Banach algebra.

(iii) For the Banach algebra Cn,n from Example 2.2.(iii) consider the closed normal
algebra cone Rn,n

+ . Then it is easy to see that Cn,n becomes a semi-strongly decomposing
ordered Banach algebra.
Furthermore Definition 2.6.(iii).b) is satisfied which makes Cn,n a strongly decomposing
ordered Banach algebra. Indeed let L be strictly lower triangular matrix with nonnegative
entries. Then via the Neumann series

(I − L)−1 − I =

n∑
j=1

Lj

which is again entrywise nonnegative.

The next section introduces a general method to define strongly decomposing ordered
Banach algebras.
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2.1.1. Chains of projections

For a vector space X one can introduce a partial order on the set of projections on X by
setting

P1 ≤c P2 iff Im(P1) ⊂ Im(P2) and Ker(P2) ⊂ Ker(P1)

or equivalently

P1 ≤c P2 iff P1P2 = P2P1 = P1.

Then we call a set π = {P0, P1, . . . , Pn} a finite chain on A if

0 = P0 ≤c P1 ≤c . . . ≤c Pn = I.

We call a set P = {P} of projections of X a chain if 0, I ∈ P and the elements in P
are linearly ordered with respect to ≤c. If X is additionally a Banach space then we re-
quire the projections to be continuous (for a thorough expositions on chains see [GGK93,
Chapter XX]).

The concept of chains can also be introduced in an algebra A with unit e by setting

p1 ≤c p2 iff p1p2 = p2p1 = p1 (2.6)

for two elements p1, p2 ∈ A. Then (finite) chains are defined in exactly the same way
as above where the identity operator I is replaced by the unit element e ∈ A. For two
chains P1,P2 we say that P1 is finer than P2 if P2 ⊆ P1.
If A is an ordered algebra with algebra cone C then following [Ale11] we call an element
p order idempotent if

0 ≤ p ≤ e and p2 = p

where ≤ refers to the order induced by C. The next lemma shows that for order idem-
potents the order on chains as in (2.6) is equivalent to the algebra order induced by C.
Recall that the infimum of two elements a, b ∈ A, denoted a ∧ b, is defined as the lowest
upper bound of the set {a, b} with respect to the order induced by C if it exists.

Lemma 2.8. Let A be an ordered algebra and p1, p2 ∈ A be two order idempotents. Then

p1 ≤ p2 iff p1 ≤c p2.

Proof. By [Ale11, Lemma 2.1.(b)] there holds

p1p2 = p2p1 = p1 ∧ p2.

Since p1 ≤ p2 if and only if p1 = p1 ∧ p2 the assertion follows.
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Consequently we call a set P a chain of order idempotents if P is a chain whose elements
are order idempotents and are linearly ordered with respect to ≤ (analogously for finite
chains).

In the following we will recall constructions and results from [GGK93] which are stated
for projections and operators on Banach spaces but can also be applied to our more
general setting.
Let A be a Banach algebra, P a chain and a ∈ A. Then for a finite subchain π = {0 =
p0, p1, . . . , pn = e} ⊂ P one can define

D(a, π) :=
n∑

j=1

(∆pj)a(∆pj)

where ∆pj = pj − pj−1, j = 1, . . . , n. We can then define a diagonal of a with respect to
P as

D(a,P) := lim
π⊂P

D(a, π), (2.7)

assuming the limit exists in the norm of A. Here the limit is to be understood as for
each ε > 0 there exists a finite subchain πε ⊂ P such that

∥D(a,P)−D(a, π)∥ < ε

for all finite subchains π ⊂ P that are finer than πε. The set A(P) is then defined as the
set of all a ∈ A that have a diagonal.
We need to introduce one more definition: A chain P is called uniform if there exists
γ > 0 such that for every a ∈ A(P) and finite subchain π ⊂ P there holds

∥D(a, π)∥ ≤ γ∥a∥.

Note that in an ordered Banach algebra with normal algebra cone every chain of order
idempotents is uniform.

Lemma 2.9. If P is a uniform chain then the set A(P) is closed and it exists a constant
γ > 0 such that for all a ∈ A(P) there holds

∥D(a,P)∥ ≤ γ∥a∥.

Proof. This is [GGK93, Proposition XX.3.1].

We can now introduce the three sets.

A−(P) = {a ∈ A(P) : pa = pap for all p ∈ P, D(a,P) = 0},
A+(P) = {a ∈ A(P) : ap = pap for all p ∈ P, D(a,P) = 0},
A0(P) = {a ∈ A(P) : ap = pa for all p ∈ P}.

(2.8)
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Lemma 2.10. If P is a uniform chain then the sets in (2.8) are closed subalgebras of A.

Proof. We show this exemplary for A−(P). To see that it is a subalgebra let a, b ∈ A−(P)
and p ∈ P. Then

pab = papb = papbp = pabp,

so the first property is satisfied. For any finite subchain π ⊂ P there holds

D(a, π)D(b, π) =
n∑

j=1

(∆pj)a(∆pj)
n∑

k=1

(∆pk)b(∆pk)

=
n∑

j,k=1

(∆pj)a(∆pj)(∆pk)b(∆pk)

=

n∑
j=1

(∆pj)a(∆pj)
2b(∆pj)

=

n∑
j=1

(∆pj)a(∆pj)b(∆pj)

=
n∑

j=1

(∆pj)ab(∆pj) = D(ab, π)

because (∆pj)(∆pk) = 0 for k ̸= j. Now let ε > 0, then there exists a finite subchain πε
such that for all πε ⊂ π ⊂ P there holds

∥D(a,P)−D(a, π)∥ < ε, ∥D(b,P)−D(b, π)∥ < ε.

Then also

∥D(a,P)D(b,P)−D(ab, π)∥ = ∥D(a,P)D(b,P)−D(a, π)D(b, π)∥
= ∥D(a,P)D(b,P)−D(a, π)D(b,P) +D(a, π)D(b,P)−D(a, π)D(b, π)∥
≤ ∥D(a,P)D(b,P)−D(a, π)D(b,P)∥+ ∥D(a, π)D(b,P)−D(a, π)D(b, π)∥
≤ ∥D(a,P)−D(a, π)∥  

ε

∥D(b,P)∥  
γ∥b∥

+ ∥D(a, π)∥  
γ∥a∥

∥D(b,P)−D(b, π)∥  
ε

≤ εγ(∥a∥+ ∥b∥)

where γ > 0 is the constant from Lemma 2.9. It follows that D(ab,P) exists and

D(ab,P) = D(a,P)D(b,P) = 0

and thus ab ∈ A−(P).
It remains to see that A−(P) is closed. Multiplication is continuous in Banach algebras
so that we only need concern ourselves with the condition D(a,P) = 0. Let (ak)k∈N ⊂
A−(P), a ∈ A and ak → a. Since A(P) is closed we know that there exists a diagonal
D(a,P) of a. Now let ε > 0 and choose a kε ∈ N and a finite subchain πε ⊂ P such that

∥a− ak∥ < ε, ∥D(a,P)−D(a, π)∥ < ε, ∥D(ak, π)∥ < ε
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for all k ≥ kε and finite subchains πε ⊂ π ⊂ P. It then follows that

∥D(a,P)∥ ≤ ∥D(a,P)−D(a, π)∥  
≤ε

+ ∥D(a, π)−D(ak, π)  
=∥D(a−ak,π)∥≤γε

∥+ ∥D(ak, π)∥  
≤ε

≤ (2 + γ)ε

for all k ≥ kε and finite subchains πε ⊂ π ⊂ P (the γ comes once again from Lemma
2.9). We conclude that A−(P) is closed.

Similarly to the diagonal one can define for a ∈ A lower and upper triangular parts
L(a,P) and U(a,P) with respect to P as the limits of

lim
π∈P

∑
0≤l<k≤n

(∆pk)a(∆pl) and lim
π∈P

∑
0≤l<k≤n

(∆pl)a(∆pk) (2.9)

respectively if the limits exist.
Note that in general

A−(P) +A0(P) +A+(P) ⫋ A(P) ⫋ A

since the limits in (2.7) and (2.9) need not exist.
We can now state the main result about chains.

Proposition 2.11. Let A be a Banach algebra with unit e and P a uniform chain and
assume

A = A−(P) +A0(P) +A+(P). (2.10)

Then there holds:

(i) The sum in (2.10) is direct and A is a strongly decomposing Banach algebra. For
every element a ∈ A the limits L(a,P), D(a,P) and U(a,P) exist, a can be written
as

a = L(a,P) +D(a,P) + U(a,P)

and L(a,P) ∈ A−(P), D(a,P) ∈ A0(P) and U(a,P) ∈ A+(P).

(ii) If additionally A is an ordered Banach algebra with normal closed algebra cone C
and P is a chain of order idempotents then A is a strongly decomposing ordered
Banach algebra.

Proof. Assertion (i) follows from [GGK93, Proposition XX.5.1] and [GGK93, Theorem
XX.7.1]. For (ii) note that Definition 2.6.(ii).a) is satisfied since P is a chain of order
idempotents and Definition 2.6.(iii).b) follows by the Neumann series since by [GGK93,
Proposition XX.5.1] elements in A±(P) are quasi-nilpotent.

Example 2.12. (i) In Cn consider the canonical coordinate projections P̃0 = 0 and P̃j ,
j = 1, . . . , n given by

Pj : Cn → Cn : (xi)i=1,...,n ↦→ (δijxi)i=1,...,n
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where δij is the usual Kronecker delta. Then, for Cn,n with cone Rn,n
+ , the set π :=

{Pk}k=0,...,n with Pk =
∑k

j=0 P̃j defines a finite chain of order idempotents. We will
call π the canonical chain on Cn,n. The associated decomposition decomposes Cn,n into
strictly lower triangular, diagonal and strictly upper triangular matrices.
It is also possible to consider subchains of π which will result in a block triangular de-
composition.

(ii) Consider the classical function spaces Lp([a, b]), 1 ≤ p ≤ ∞. Then the projections

Pr : L
p([a, b])→ Lp([a, b]) : f(·) ↦→ 1[a,r](·)f(·), r ∈ [a, b]

give rise to the uniform chain P := {Pr : a ≤ r ≤ b} for the Banach algebra L(Lp([a, b])).
If we restrict ourselves to an appropriate set of integral operators on Lp([a, b]) then the
set of integral operators with positive kernel function forms an algebra cone. In this
context P then becomes a chain of order idempotents. For precise conditions see Section
2.3.2.

Remark 2.13. We have seen in Example 2.7.(ii) that the Wiener algebra W (A) is only
a semi-strongly decomposing ordered Banach algebra. This implies that there does not
exist a chain in W (A) giving rise to the decomposition W (A) = W−(A)+W0(A)+W+(A)
as then by Proposition 2.11 it would have to be strongly decomposing.

2.2. Factorization in decomposing ordered Banach algebras

We present now the two main results of this section. The next theorem can be seen
as an extension of [GGK93, Theorem XXIX.9.1] that takes the order structure of the
underlying Banach algebra into account.

Theorem 2.14. Let A = A+ +̇ A− be a decomposing ordered Banach algebra with unit
e and closed normal algebra cone C where e ∈ C. For a (positive) element a ∈ C are
equivalent

(i) spr(a) < 1,

(ii) e− a = (e− b−)(e− b+) where b± ∈ A± ∩ C and spr(b±) < 1.

The factorization in (ii) is unique.

Proof. Denote by P the projection in A onto A+ along A− and Q = IdA − P .
(i)⇒ (ii): For n ∈ N0

0 ≤ (PLa)
ne ≤ an and 0 ≤ (RaQ)ne ≤ an

hold; indeed 0 ≤ (PLa)
0e = e = a0. Assume for some n the inequality 0 ≤ (PLa)

ne ≤ an

holds then 0 ≤ (PLa)
n+1e ≤ PLa(a

n) = P (an+1) = (IdA −Q)(an+1) ≤ an+1 since P , Q
and La all map the cone C into itself. The right inequalities follow similarly.
Since C is normal, there exists a γ > 0 such that
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||(PLa)
ne|| ≤ γ||an|| and ||(QRa)

ne|| ≤ γ||an||, n ∈ N0.

Now spr(a) < 1 implies that there exists a β > 0 and ρ ∈ [0, 1[ such that

||(PLa)
ne|| ≤ βρn and ||(RaQ)ne|| ≤ βρn, n ∈ N0.

Therefore

x+ =
∞∑
n=0

(PLa)
n+1e =

∞∑
n=0

(PLa)
n(Pa)

and

x− =
∞∑
n=0

(QRa)
n+1e =

∞∑
n=0

(QRa)
n(Qa)

exist, belong to C and satisfy

x+ − (PLa)x+ = Pa and x− − (QRa)x− = Qa.

Define

b+ := P ((e+ x+)a) = PRa(e+ x+) and b− := Q(a(e+ x−)) = QLa(e+ x+).

Then b± ∈ A± ∩ C. Now using P +Q = IdA we see that the equations

(e− a)(e+ x+) = e− b− and (e+ x−)(e− a) = e− b+

hold, and the following equation holds:

(e− b+)(e+ x+) = (e+ x−)(e− b−).

Then
−b+ + x+ − b+x+ = x− − b− − x−b− ∈ A− ∩ A+ = {0}

and finally
(e− b+)(e+ x+) = e = (e+ x−)(e− b−).

By [GGK93, Lemma XXIX.9.2] (see the proof of part (d) of [GGK93, Theorem XXIX.9.1])
it follows that e+ x+ and e− b− are invertible and (e+ x+)

−1 = e− b+, therefore

(e− a) = (e− b−)(e+ x+)
−1 = (e− b−)(e− b+).

Further (e−b±)−1 = e+x± ∈ C which by Proposition 2.5.(iii) is equivalent to spr(b±) < 1
since b± ∈ C and the cone is normal.
(ii)⇒ (i) We obtain that e− a ∈ Ainv and (e− a)−1 = (e− b+)

−1(e− b+)
−1 ∈ C which

is equivalent to spr(a) < 1 again by Proposition 2.5.(iii) since a ∈ C.
To see the uniqueness of the decomposition in (ii) we can apply the same proof as part
(a) of the proof of [GGK93, Theorem XXIX.9.1].

Remark 2.15. - In Theorem 2.14 the conditions (i) and (ii) are equivalent to:
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(iii) The equations

x+ − (PLa)x+ = Pa and x− − (QRa)x− = Qa

have solutions in C.
Further, for all solutions of these equations which belong to C

x+ ≥
∞∑
n=0

(PLa)
n+1e and x− ≥

∞∑
n=0

(QRa)
n+1e

holds (see [FN05b]).

- The elements b± defined in the proof of Theorem 2.14 depend monotone increasing on
the positive element a.

The next factorization result appeared implicitly in [FN05b, Theorem 4.1]. Our theorem
can be seen as a stronger version.

Theorem 2.16. Let A = A+ +̇ A0 +̇ A− be a semi-strongly decomposing ordered
Banach algebra with unit e and closed normal algebra cone C where e ∈ C. For a (positive)
element a ∈ C are equivalent

(i) spr(a) < 1,

(ii) e− a = (e− a−)a0(e− a+) where a± ∈ A± ∩ C, spr(a±) < 1, a0 ∈ A0 is invertible
and a−1

0 ∈ C.

The factorization in (ii) is unique.

Proof. We define Ã+ := A+ + A0 and Ã− := A−, then A = Ã+ + Ã− and this sum is
direct. Now we define P̃ = P+ + P0 and Q̃ = P−, where P+, P0 and P− are the pro-
jections corresponding to the semi-strong decomposition of A. The cone C is invariant
under these 5 projections.

(i) ⇒ (ii) We can apply Theorem 2.14 and obtain b̃± ∈ Ã± ∩ C such that spr(b̃±) < 1
and e− a = (e− b̃−)(e− b̃+). Then b̃+ ∈ Ã+ = A+ +A0 implies b̃+ = b+ + b0, where

b+ = P+(b̃+) ∈ A+ ∩ C and b0 = P0(b̃+) ∈ A0 ∩ C.

Now 0 ≤ b+ ≤ b̃+ and therefore spr(b+) ≤ spr(b̃+) < 1 and similarly spr(b0) ≤ spr(b̃+) <
1. Therefore e− b+ and e− b0 are invertible and their inverses belong to C.
Define

a+ := (e− b0)
−1b+, a0 := e− b0, a− := b̃−.

Then
e− a = (e− a−)a0(e− a+)

and
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- a− ∈ A− ∩ C and spr(a−) = spr(b̃−) < 1,

- a0
−1 = (e−b0)

−1 ∈ A0∩C and therefore a−1
0 ∈ C and by Definition 2.1 a0 = (a−1

0 )−1 ∈
A0,

- a+ ∈ A+∩C by Definition 2.1 and (e−a+)−1 = e+(e− b̃+)−1b+ ∈ C which is equivalent
to spr(a+) < 1.

(ii)⇒ (i) follows as in the corresponding implication in the proof of Theorem 2.14.

For the uniqueness of the factorization in (ii) assume there exist two factorizations

(e− a) = (e− a−)a0(e− a+) = (e− b−)b0(e− b+).

Since spr(a±), spr(b±) < 1 it follows with Neumann’s series that (e − a±), (e − b±) are
invertible and

(e− a−±)
−1 − e, (e− b±)

−1 − e ∈ A±.

Then also a0, b0 ∈ Ainv and we can write

(e− a−)
−1(e− b−) = a0(e− a+)(e− b+)

−1b−1
0 (2.11)

where all factors on the left-hand side belong to A−+A0 and all factors on the right-hand
side belong to A+ +A0. It follows that the left-hand side belongs to A0. Moreover

(e− a−)
−1(e− b−)− e = (e− a−)

−1 − e  
∈A−

− (e− a−)
−1b  

∈A−

so that (e− a−)
−1(e− b−)− e ∈ A− ∩A0 = {0}. This implies a− = b− and analogously

one shows a+ = b+. Then also a0 = b0.

Remark 2.17. In the case when A is a strongly decomposing ordered Banach algebra
one can replace assertion (ii) in Theorem 2.16 by the relaxed assertion

(ii)’ e− a = (e− a−)a0(e− a+) where a± ∈ A± ∩ C, a0 ∈ A0 is invertible and a−1
0 ∈ C.

The omitted assumption spr(a±) < 1 then follows from Proposition 2.5.(iii) since a± ∈ C
and by Definition 2.6.(iii).b) also (e− a±)

−1 − e ∈ C.
This is not true if A is only a semi-strongly decomposing ordered Banach algebra. The
implication (i) ⇒ (ii)’ obviously still holds but the reverse implication as well as the
uniqueness of the decomposition do no longer hold.
To see this consider the Wiener algebra W (C) from Example 2.7.(ii) with the complex
numbers as coefficient algebra and closed normal algebra cone R+.
First look at

eW (λ)− a(λ) = 1− 5λ

53



which is in itself a factorization as in (ii)’. However, since a(λ) = 5λ, we have spr(a(·)) =
5 so that the reverse implication in Theorem 2.16 does not hold.
For the uniqueness consider

eW (λ)− a(λ) = 1− (αβλ−1 + 1− β − αβγ + βγλ)

= (1− αλ−1)β(1− γ−1)

= (1− γ−1λ−1)(αβγ)(1− α−1λ−1)

with coefficients α, β, γ ∈ R+. Choosing for example

α, γ = 0.1, β = 0.5

it is easy to see that spr(a(·)) ≤ ∥a(·)∥W < 1 and that both factorization satisfy (ii)’.
However only the first factorization also satisfies assumption (ii) and is thus the unique
factorization in Theorem 2.16.

We present examples that show the necessity of some of the assumptions in Theorem
2.14 and Theorem 2.16.

Example 2.18. Set A = C2×2 which can be written as A = A− +̇ A0 +̇ A+ where
A− (resp. A+) denote the strictly lower (resp. strictly upper) triangular 2× 2-matrices
and A0 the diagonal 2 × 2-matrices, and consider the normal algebra cone C in A of
entrywise nonnegative 2 × 2-matrices which makes A a strongly decomposing ordered
Banach algebra. Then for a matrix A ∈ A a factorization

I −A = (I −A−)A0(I −A+)

as in Theorem 2.16 coincides with an LDU factorization of the matrix I − A where L
(resp. U) is a lower (resp. upper) triangular matrix with all diagonal entries equal to 1
and D is a diagonal matrix. By [HJ85, Corollary 3.5.5] every invertible square matrix
admits such a factorization if and only if its leading principal minors are not equal to
zero. In that case the LDU factorization is unique.

(i) Take A =

[
2 2
2 2

]
∈ C which can be factorized as

I −A = (I −A−)A0(I −A+) :=

(
I −

[
0 0
−2 0

])[
−1 0
0 3

](
I −

[
0 −2
0 0

])
.

However A−, A
−1
0 , A+ /∈ C in contrast to Theorem 2.16. Here spr(A) = 4 > 1.

(ii) Set A =

[
1 i
i −1

]
and note that A2 = 0 and thus spr(A) = 0 < 1. Then

I −A =

[
0 −i
−i 2

]
is invertible but the first leading principal minor is 0. As such the matrix I −A does not
admit an LDU factorization. Here A /∈ C.
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Remark 2.19. We have written our factorizations such that (e − a−) is the left factor
and (e− a+) is the right factor. We could simply swap the algebras A− and A+ in the
above proofs to obtain factorizations

e− a = (e− a+)(e− a−)

and
e− a = (e− a+)a0(e− a−).

Note however, that such factorizations will in general result in different elements a± ∈ A±
(i.e. the factors (e− a+) and (e− a−) do not commute). For example

I −
[
1/3 1/3
1/3 1/3

]
=

(
I −

[
0 0

1/2 0

])(
I −

[
1/3 1/3
0 1/2

])
̸=
(
I −

[
1/3 1/3
0 1/2

])(
I −

[
0 0
1/2 0

])
= I −

[
1/6 1/3
1/4 1/2

]
.

2.3. Applications

We now present various applications of the preceding two results.

2.3.1. M-matrices

Consider matrices

B = βI −A (2.12)

with scalar β > 0 and A ∈ Rn,n
+ . A matrix of the form (2.12) is called an M-matrix if

the spectral radius of A satisfies spr(A) ≤ β. An M-matrix is nonsingular if and only if
spr(A) < β.

Theorem 2.20. Let B ∈ Cn,n be of the form (2.12) and P be a chain of order idempotents
on Cn. Then the following assertions are equivalent:

(i) B is a nonsingular M-matrix,

(ii) there exist unique (n× n)-matrices B+ = I −A+, B− = I −A− and A0 such that

B = B−A0B+,

B± are nonsingular M-matrices, A± ∈ A±(P) ∩Rn,n
+ , A0 ∈ A0(P) is invertible and

A−1
0 ∈ Rn,n

+ .

Proof. Since B is of the form (2.12) it can be written as B = βI−A with A ∈ Rn,n
+ . Note

that B being a nonsingular M-matrix is equivalent to spr( 1βA) < 1. Applying Theorem
2.16 to 1

βB gives a factorization

1

β
B = B−Ã0B+.

Now define A0 := βÃ0 to get the assertion.
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This equivalence is known for the case of the canonical chain on Cn from Example 2.12.(i),
i.e. the chain P = {Pk : k = 1, . . . , n} with P0 = 0 and

Pk : Cn → Cn : (xj)
n
j=1 ↦→ (yj)

n
j=1,

where yj = xj for j = 1, . . . , k and yj = 0 for j = k + 1, . . . , n (see e.g. [BP79, Theorem
2.3], [HJ91, p. 117]).

I. Kuo (see [Kuo77]) proved that for a singular irreducible M-matrix there exists an LU -
factorization with respect to the canonical chain of projections on Cn. This result also
holds for arbitrary chains of order idempotents:

Theorem 2.21. Let B = βI − A ∈ Cn,n be a singular irreducible M-matrix and P a
chain of order idempotents on Cn. Then B admits an LU -factorization

B = B−A0B+

such that B± = I −A± are M-matrices with A± ∈ A±(P) and A0 ∈ A0(P).

Proof. Without loss of generality assume that β = 1 (for details see the proof of Theorem
2.20). Note that an order idempotent projection in Cn is necessarily the sum of canonical
coordinate projections in Cn. Therefore there is a 1-to-1 correspondence between index
sets I ⊂ {1, . . . , n} and order idempotent projections

PI : Cn → Cn : (zk)k ↦→ (zkδI(k))k,

with

δI(k) =

{
1 , k ∈ I
0 , otherwise

.

As such we can identify the matrix PIAPI with the principal minor A[I, I] of A. Since
A is irreducible it follows by [BR97, Theorem 1.7.4] that for I ≠ {1, . . . , n}

spr(PIAPI) = spr(A[I, I]) < spr(A)

and I − PIAPI is invertible.
Let P = {0 = P0 < P1 < . . . < Pl = I} be the chain of order idempotents. We can now
apply the same argument as in the reverse implication of the proof of [GGK93, Theorem
XXII.1.1] to obtain the factorization with respect to P

B = (I −A−)A0(I −A+)

with A± ∈ A±(P) and invertible A0 ∈ A0(P). Note that for the argument in [GGK93]
we need I − PjAPj to be invertible only for j = 1, . . . , l − 1 and not for j = l.
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2.3.2. LU-factorizations of Hilbert-Schmidt perturbations of the identity

Let H = L2(Ω) be the Hilbert space of square integrable functions on a domain Ω.
We then consider the space of Hilbert-Schmidt integral operators S2(H) on H, that is
operators of the form

(Kf)(x) =

∫
y∈Ω

k(x, y)f(y)dy, x ∈ Ω

where the measurable kernel function k satisfies∫
x∈Ω

∫
y∈Ω
|k(x, y)|2dydx <∞. (2.13)

Equation (2.13) gives rise to the Hilbert-Schmidt norm with which together S2(H) be-
comes a Banach space and with the usual multiplication it becomes a Banach algebra
without unit element. S2(H) becomes an ordered Banach algebra with the algebra cone
C2 := {K ∈ S2(H) : k ≥ 0 a.s.}. Note that C2 is normal since the Hilbert-Schmidt norm
is monotone.
Let P be an orthogonal chain of order idempotents. Then by [GGK93, Corollary XX.8.2]

S2(H) = A2,−(H,P) + A2,0(H,P) + A2,+(H,P) (2.14)

gives rise to an additive decomposition as in Section 2.1.1. But since for our purposes
we need A2,0(H,P) to contain a unit element we need to modify S2(H). Define

A(2)(H) := {λIH +K : λ ∈ C,K ∈ S2(H)} (2.15)

with norm

∥λIH +K∥(2) := max{|λ|, ∥K∥2}. (2.16)

We can now introduce the decomposition

A(2)(H) = A(2)
− (H,P) + A(2)

0 (H,P) + A(2)
+ (H,P) (2.17)

where

A(2)
− (H,P) = A2,−(H,P),

A(2)
+ (H,P) = A2,+(H,P),

A(2)
0 (H,P) = {λIH +K : λ ∈ C,K ∈ A2,0(H,P)}.

In the same way we can modify the cone C2 to obtain an algebra cone with unit

C(2) := {λIH +K : λ ≥ 0,K ∈ C2}.

57



Proposition 2.22. Let A(2)(H) with the normal algebra cone C(2) be as above and let P
be an orthogonal chain of order idempotents. Then

A(2)(H) = A(2)
− (H,P) + A(2)

0 (H,P) + A(2)
+ (H,P) (2.18)

is a strongly decomposing ordered Banach algebra.

Proof. This follows from Proposition 2.11.

We can now apply Theorem 2.16.

2.3.3. Factorization in the Banach algebra of regular operators

When decomposing operators with respect to a chain of projections as in Section 2.1.1
it turns out that not every bounded operator has a diagonal and thus cannot be decom-
posed (see Example 2.24). In this section we will define decompositions with respect to
chains of order idempotents in a weaker sense for regular operators (which are a subset
of bounded operators), so that we can still apply Theorem 2.16.

Let E be a real or the complexification of a real Banach lattice with order continuous
norm (for reference see e.g. [MN91, Sch74, Wnu99]). The set Lr(E) of regular operators
in E (= the linear span of all positive operators in E) is an order complete lattice algebra
which is a Banach algebra with the r-norm ∥A∥r = ∥ |A| ∥L(E) for A ∈ Lr(E) (see [MN91,
p.27], [Sch74, Proposition IV.1.3]) and L(E)+ is a closed normal algebra cone in Lr(E).
Let P be a chain of order idempotents on E, i.e. all P ∈ P satisfy 0 ≤ P ≤ I in the
order of L(E); which is equivalent to all P ∈ P being band projections on E (see [Sch74,
p.61]).
For a finite subchain π = {0 = P0, P1, . . . , Pn = I} ⊂ P (in the remainder of the section a
small π will always denote a finite subchain of P) and A ∈ Lr(E) we define the diagonal
of A with respect to π as

Dr(A, π) :=

n∑
j=1

(∆Pj)A(∆Pj) ∈ Lr(E) (2.19)

where (∆Pj) = Pj − Pj−1 (see [GGK93, p.473]).
For A ∈ L(E)+ the system {Dr(A, π) : π ⊂ P} is downwards directed with respect to
the refinements of subchains of P; indeed if π1, π2 ⊂ P then

π1 ⊂ π2 ⇒ 0 ≤ Dr(A, π2) ≤ Dr(A, π1) ≤ A.

In addition for a positive element x ∈ E+ the set {Dr(A, π)x : π ∈ P} ⊂ E+ is also
downwards directed. Since the norm on E is order continuous and E is Dedekind complete
the vector infπ Dr(A, π)x exists in E and limπ Dr(A, π)x = infπ Dr(A, π)x where the
limit exists with respect to the norm topology of E.
Each x ∈ E can be written as a linear combination of at most four vectors in E+ and
each A ∈ Lr(E) is the linear combination of at most four operators in L(E)+, therefore:
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For all A ∈ Lr(E) and all x ∈ E the limit limπ Dr(A, π)x exists. Now by the Banach-
Steinhaus Theorem the operator

Dr(A,P) : E → E : x ↦→ Dr(A,P)x

exists in Lr(E) as a pointwise limit of the Dr(A, π).
It follows that the map Lr(E)→ Lr(E) : A ↦→ Dr(A,P) is linear, maps L(E)+ into itself
and

|Dr(A,P)| ≤ Dr(|A|,P) ≤ |A|

for all A ∈ Lr(E). We call Dr(A,P) the diagonal of A with respect to P.
In analogy to Section 2.1.1 we define the subspaces

Ar,−(E,P) = {A ∈ Lr(E) : PA = PAP for all P ∈ P, Dr(A,P) = 0},
Ar,+(E,P) = {A ∈ Lr(E) : AP = PAP for all P ∈ P, Dr(A,P) = 0},
Ar,0(E,P) = {A ∈ Lr(E) : AP = PA for all P ∈ P}.

Proposition 2.23. Let E ba a Banach lattice with order continuous norm and P be a
chain of order idempotents on E. Then

Lr(E) = Ar,−(E,P) +̇ Ar,0(E,P) +̇ Ar,+(E,P) (2.20)

is a semi-strongly decomposing ordered Banach algebra. The canonical projections are
order idempotents.

Proof. For a finite subchain π = {0 = P0, P1, . . . , Pn = I} ⊂ P and A ∈ Lr(E) we define

Lr(A, π) =
∑

0≤j<k≤n

(∆Pk)A(∆Pj) and U(A, π) =
∑

0≤j<k≤n

(∆Pj)A(∆Pk).

For A ∈ L(E)+ it follows that 0E ≤ Lr(A, π) ≤ A and it is easy to see that the system
{Lr(A, π) : π ∈ P} is upwards directed. Then for all x ∈ E+ the set {Lr(A, π)x : π ∈ P}
is upwards directed in E and limπ Lr(A, π)x exists since 0 ≤ Lr(A, π)x ≤ Ax and the
norm of E is order continuous. As in the case of the diagonal Dr(A,P) it follows that
limπ L(A, π)x exists in the norm topology of E for all A ∈ Lr(E) and for all x ∈ E,
therefore the operator

Lr(A,P) : E → E : x ↦→ lim
π

Lr(A, π)x

belongs to Lr(E) and |Lr(A,P)| ≤ Lr(|A|,P) ≤ |A|. Similarly the operator

Ur(A,P) : E → E : x ↦→ lim
π

Ur(A, π)x

is well defined, belongs to Lr(E) and |Ur(A,P)| ≤ Ur(|A|,P) ≤ |A|.
Now for all A ∈ Lr(E) there holds

A = Lr(A,P) +Dr(A,P) + Ur(A,P)
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since for all π ⊂ P
A = Lr(A, π) +Dr(A, π) + Ur(A, π).

We need to show that for all A ∈ Lr(E)

Lr(A,P) ∈ Ar,−(E,P), Dr(A,P) ∈ Ar,0(E,P) and Ur(A,P) ∈ Ar,+(E,P). (2.21)

Consider the first assertion: Let P ∈ P and π = {0 = P0, P1, . . . , Pn = I} ⊂ P a finite
subchain, then

PLr(A, π) = PLr(A, π)P

if P ∈ π. Indeed let P = Pl for some 0 ≤ l ≤ n, then

PlLr(A, π) =
∑

0≤j<k≤l

(∆Pk)A(∆Pj) = PlLr(A, π)Pl.

Thus PLr(A,P) = PLr(A,P)P for all P ∈ P. To see that Dr(Lr(A,P),P) = 0 holds
for all A ∈ Lr(E) first note that Dr(Lr(A, π), π) = 0 for any finite subchain π ⊂ P.
Therefore for all x ∈ E+ and all A ∈ L(E)+

0 ≤ Dr(Lr(A,P), π)x =
(
Dr(Lr(A,P), π)−Dr(Lr(A, π), π)

)
x

= Dr(Lr(A,P)− Lr(A, π),P)x
=
(
Lr(A,P)− Lr(A, π)

)
x

noting that 0 ≤ Lr(A, π) ≤ Lr(A,P) ≤ A since A ∈ L(E)+. This implies that

Dr(Lr(A,P),P)x = 0

for all x ∈ E+ and A ∈ L(E)+, but then this equally holds for all x ∈ E and A ∈ Lr(E).
Therefore Dr(Lr(A,P),P) = 0 for all A ∈ Lr(E) and Lr(A,P) ∈ Ar,−(E,P).
The other two assertion in (2.21) follow similarly. In summary: The decomposition (2.20)
holds.
Of course I ∈ Ar,0(E,P) and for A ∈ Ar,0(E,P) ∩ Lr(E)inv and P ∈ P the equality
PA = AP implies A−1P = PA−1, so that Definition 2.1.(ii).a) holds.
To see that Definition 2.1.(ii).b) holds it suffices to show that for A ∈ Lr(E) and B ∈
Ar,0(E,P) there holds

Dr(AB,P) = Dr(A,P)Dr(B,P),
Dr(BA,P) = Dr(B,P)Dr(A,P).

60



Let us consider the first equation. For a finite subchain

Dr(A, π)Dr(B, π) =

n∑
j=0

(∆Pj)A(∆Pj)

n∑
k=0

(∆Pk)B(∆Pk)

=

n∑
j,k=0

(∆Pj)A (∆Pj)(∆Pk)  
=δjk(∆Pj)

B(∆Pk)

=
n∑

j=0

(∆Pj)A(∆Pj)B(∆Pj)

=

n∑
j=0

(∆Pj)AB(∆Pj)(∆Pj)

=

n∑
j=0

(∆Pj)AB(∆Pj) = Dr(AB, π).

Now for all x ∈ E

Dr(AB,P)x = lim
π

Dr(AB, π)x = lim
π

Dr(A, π)Dr(B, π)x = Dr(A,P)Dr(B,P)x

proving the assertion.

It is now possible to apply Theorem 2.16 to Lr(E) = Ar,−(E,P) +̇ Ar,0(E,P) +̇
Ar,+(E,P).

One could ask whether the decomposition introduced in this section for regular operators
is really a generalization of the theory in Section 2.1.1 for bounded operators. The next
example shows that this is indeed the case by presenting an operator that has a diagonal
as a regular operator but not as a bounded operator.
First we make an additional observation: By [TL80, Theorem IV.6.3] and [TL80, Problem
IV.6.4] every operator A in the classical sequence spaces c0 and ℓ1 can be represented
as an infinite matrix A = (ars)r,s∈N. Additionally for A ∈ L(c0) the operator norm of A
can be represented by

∥A∥ = sup
r

∑
s

|ars| = ∥ |A| ∥ = ∥A∥r

which shows that A is regular. A similar result holds for A ∈ L(ℓ1), where in the above
equation one takes the supremum over the column sums instead. We conclude that every
bounded operator in c0 and in ℓ1 is regular.
This is no longer true in ℓ2. Even if a bounded operator admits a matrix representation
(ars)r,s∈N, the matrix (|ars|)r,s∈N will in general not define a bounded operator. For an
explicit example of such an operator see [HS78, Example 10.1].
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Example 2.24. Let S be the left shift operator in c0 or ℓ1. For S we have the matrix
representation

S =̂

⎡⎢⎢⎢⎣
0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
...

...
...

. . .
. . .

. . .

⎤⎥⎥⎥⎦ .

Consider the chain P = {0, P1, P2, . . . , I} where Pk is the projection on the first k coor-
dinates.
We first show that S has a diagonal as a regular operator: Let n ∈ N. It is easy to see
that

∆PnS∆Pn = 0

and

(1− Pn)S(1− Pn) =̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
...

. . .
...

0 . . . 0
0 1

0 1
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For x = (xj)j∈N ∈ c0 it follows that

(1− Pn)S(1− Pn)x =
[
0 · · · 0 xn+1 xn+2 · · ·

]T n→∞−−−→ 0.

Then for any finite subchain πn = {0, P1, . . . , Pn, I} we have

D(S, πn)x =
n∑

j=1

∆PjS∆Pjx = (1− Pn)S(1− Pn)x
n→∞−−−→ 0.

It follows that Dr(S,P) = 0.
However ∥(1 − Pn)S(1 − Pn)∥ = 1 and then also ∥D(S, πn)∥ = 1. Therefore the limit
limn→∞D(S;πn) does not exist in the norm topology and S does not have a diagonal as
in Section 2.1.1.

2.3.4. Wiener algebra and Laurent polynomials

Recall the Wiener algebra

W (A) = W−(A) +W0(A) +W+(A) (2.22)

with cone CW from Example 2.7.(ii) where we showed that (2.22) is a semi-strongly
decomposing ordered Banach algebra as long as the coefficient algebra A is an ordered
Banach algebra with closed normal algebra cone C.
The Wiener algebra is a subalgebra of C(T1,A) (= the set of continuous functions from
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the unit circle into A) endowed with the supremums norm ∥ · ∥∞. For a(·) ∈W (A) there
holds

∥a(·)∥∞ = max
|λ|=1

∥a(λ)∥A ≤ ∥a(·)∥W

where subscripts indicate the respective algebra. We may also by superscripts denote
with regards to which algebra we take the spectral radius.

Now let us apply Theorem 2.16 to W (A) to get:

Theorem 2.25. Let A be an ordered Banach algebra with closed normal cone C. Then
for a(·) ∈W (A) ∩ CW are equivalent:

(i) sprW (a(·)) < 1,

(ii) eW (·) − a(·) = (eW (·) − a−(·))a0(·)(eW (·) − a+(·)), where a±(·) ∈ W±(A) ∩ CW ,
sprW (a±(·)) < 1, a0(·) ∈W0(A) is invertible and a−1

0 (·) ∈ CW .

A factorization result for the Wiener algebra as a decomposing Banach algebra (without
order) was previously established in [CG81, Theorem 6.1].
It is possible to obtain a stronger result if we restrict ourselves to Laurent polynomials,
that is functions a(·) ∈ W (A) with only finitely many non-zero Fourier coefficients. We
say that a(·) is of degree ≤ m ∈ N if

a(λ) =
m∑

k=−m

λkak, λ ∈ T

where we do not require a−m ̸= 0 or am ̸= 0. Note that W (A) is a subalgebra of
C(A,T) of continuous functions on the unit circle with supremums norm ∥·∥∞. Moreover
∥a(·)∥∞ ≤ ∥a(·)∥W for all a(·) ∈W (A).
We will need two lemmas to state our result.

Lemma 2.26. Let A be a Banach algebra and a(·) ∈ W (A) a Laurent polynomial of
degree m ∈ N. Then

∥a(·)∥W ≤ (2m+ 1)∥a(·)∥∞ and sprW (a(·)) = spr∞(a(·)).

Proof. This is [FN05b, Lemma 4.3].

Lemma 2.27. Let A be an ordered Banach algebra with closed normal algebra cone.
Then there exists β > 0 such that

∥a(·)∥∞ ≤ β∥a(1)∥A and spr∞(a(·)) = sprA(a(1))

for all a(·) ∈ CW .

Proof. This is [FN05b, Lemma 4.4].
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Theorem 2.28. Let A be an ordered Banach algebra with closed normal cone. Then for
a Laurent polynomial a(·) ∈W (A) ∩ CW of degree ≤ m are equivalent:

(i) sprA(a(1)) < 1,

(ii) eW (·) − a(·) = (eW (·) − a−(·))a0(·)(eW (·) − a+(·)), where a±(·) ∈ W±(A) ∩ CW ,
sprW (a±(·)) = sprA(a±(1)) < 1, a0(·) ∈W0(A) is invertible and a−1

0 (·) ∈ CW .

Proof. By Lemma 2.26 and 2.27 we have sprW (a(·)) = spr∞(a(·)) = sprA(a(1)) < 1 so
that we can apply Theorem 2.16.

2.4. Factorization of semi-monic polynomials

We now turn our attention back to semi-monic polynomials and apply the results of
this section. Following results from [Mar88] and [FN05b] we achieve a factorization for
semi-monic polynomials with coefficients in an algebra cone such that the factors have
special spectral properties.

Theorem 2.29. Let A be an ordered Banach algebra with identity e and C a closed
normal algebra cone. Let

q(λ) = λme− a(λ) = λme−
l∑

j=0

λjaj ,

with aj ∈ C, j = 1, . . . , n and let ρ > 0. Then

spr(a(ρ)) < ρm

if and only if there exists a unique factorization

q(·) = b(·)q0c(·) (2.23)

where

(i) b(·) is monic with degree m, i.e.

b(λ) = λme−
m−1∑
j=0

λjbj ,

with bj ∈ C, j = 0, . . . ,m− 1 and Σ(b(·)) = Σ(q(·)) ∩ {λ ∈ C : |λ| < ρ},

(ii) q0 ∈ A is invertible and q−1
0 ∈ C,

(iii) c(·) is a polynomial of the form

c(λ) = e−
l−m∑
j=1

λjcj ,

with cj ∈ C, j = 1, . . . ,m− l and Σ(c(·)) = Σ(q(·)) ∩ {λ ∈ C : |λ| > ρ}.
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Proof. We first proof the ’only if’ part: Define the function ã(λ) := λ−ma(λ) which by
(2.23) satisfies spr(ã(ρ)) < 1. Now setting ãρ(λ) := ã(ρλ) we obtain a function that
satisfies the conditions of Theorem 2.28. Therefore ãρ(·) factorizes as

e− ãρ(λ) = (e− a−(λ))a0(e− a+(λ)), λ ∈ T

where a±(·) ∈W±(A) ∩ CW , spr(a±(·)) < 1 and a0 invertible with a−1
0 ∈ C. Now

q(ρλ) = ρmλm(e− ãρ(λ)) = ρm(λme− λma−(λ))a0(e− a+(λ)), λ ∈ T.

Note that a−(·) has an analytic extension outside of the unit circle T and vanishes at
infinity whereas (e − a+(·)) has an analytic extension inside of T. It then follows as in
the proof of [Mar88, Theorem 22.11] that b(λ) := λm − λma−(ρ

−1λ) is as in (i).
Now define c(λ) := e − a+(ρ

−1λ) and note that (e − a+(·))−1 ∈ W (A) ∩ C implies that
Σ(c(·)) ⊂ {λ ∈ C : |λ| > ρ}. The assumptions in (iii) then follow immediately. The
uniqueness of the decomposition follows from Theorem 2.16.
For the reverse implication, using the same notation as above, note that we can write

e− ãρ(λ) = (e− a−(λ))a0(e− a+(λ)), λ ∈ T

where aα, α = −, 0,+ satisfy the conditions in Theorem 2.28.(ii). It then follows that
spr(ãρ(1)) < 1 which in turn implies that spr(a(ρ)) < ρm.

The above theorem is the analogue of [FN05b, Theorem 5.1 and Corollary 5.2]. How-
ever, due to the more differentiated formulation in Theorem 2.16 compared to [FN05b,
Theorem 4.1], it follows directly in our case.

As an immediate consequence we can formulate a version of Pellet’s theorem for semi-
monic entrywise nonnegative matrix polynomials. Our version is a modification of [Mel13,
Theorem 3.3] where we require the matrix coefficients to be nonnegative but in turn
achieve better bounds.

Theorem 2.30 (Pellet). Let

Q(λ) = λmI −
l∑

j=0

λjAj

with the Aj ∈ Rn,n
+ , j = 0, . . . , l. Assume there exist 0 < ρ1 < ρ2 satisfying

spr(A(ρi)) = ρmi , i = 1, 2 (2.24)

and spr(A(ρ)) < ρm for at least one ρ ∈ (ρ1, ρ2).
Then Q(·) has exactly nm eigenvalues (counting multiplicities) in the closed disk D≤ρ1

and no eigenvalues in the open annulus Aρ1,ρ2.
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Proof. By Theorem 1.12 (in the spectral case) Σ(Q(·)) ∩ Aρ1,ρ2 = ∅.
By Theorem 2.29 we can factorize Q(·) as

Q(·) = B(·)Q0C(·)

where B(·) is a monic matrix polynomial of degree m and

Σ(B(·)) = Σ(Q(·)) ∩ {λ ∈ C : |λ| < ρ} = Σ(Q(·)) ∩ D≤ρ1 .

Since B(·) is of degree m it has exactly nm eigenvalues (counting multiplicities), which
implies the assertion.

Remark 2.31. Instead of the condition (2.24) A. Melman required in [Mel13, Theorem
3.3] that

normA(σi) = σm
i , i = 1, 2

for some 0 < σ1 < σ2. But since sprA(·) ≤ normA(·) it follows that Theorem 2.30 offers
stronger bounds if the Aj ∈ Rn,n

+ .
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3. Degree-reduction of operator polynomials

Linearisations of matrix or operator polynomials are well studied in the literature (see
[GLR82] for the matrix case and [Rod89] for the operator case), most famously via the
companion form. They make it possible to acquire results on e.g. the eigenstructure
of polynomials with arbitrary degree by only considering linear polynomials. It is then
natural to generalize the concept of linearisations and reduce an operator polynomial to
other degrees. Such degree reductions were previously considered in [Nag07] and [Har11]
for operator polynomials.
More recently in [TDM14] the authors investigated degree reductions for matrix polyno-
mials in the form of so called ℓ-ififcations and proved spectral relations between polyno-
mials and their ℓ-ifications. In [TDD15] they proved existence results relating to degree
reductions in a more abstract setting, and in [TDD] they derive an algorithm to construct
certain ℓ-ifications using dual minimal bases.
In this section we will introduce a special type of degree reduction and prove a variety
of related results.

Let X and Y be (real or complex) vector spaces, let l ∈ N and let Aj : X → Y be linear
operators, j = 1, . . . , l. We consider the operator-valued polynomial

A(λ) =
l∑

j=0

λjAj , (3.1)

of degree l (where we do not require the leading coefficient to be nonzero). Inspired by
the matrix case we call an operator polynomial F (·) : C→ L(X,Y ) unimodular if F (λ)
is invertible for all λ ∈ C.

Definition 3.1. Two operator polynomials A(·) : X1 → Y1 and B(·) : X2 → Y2 are
said to be extended unimodular equivalent if for some Banach spaces Z1, Z2 there exist
unimodular operator polynomials

E(·) : C→ L(Y2 × Z2, Y1 × Z1),

F (·) : C→ L(X1 × Z1, X2 × Z2)

such that
Diag(A(λ), IZ1) = E(λ)Diag(B(λ), IZ2)F (λ), λ ∈ C.

We can now state the definition of a degree reduction.

Definition 3.2. Let A(λ) be as in (3.1) with degree l and B(·) : C → L(X2, Y2) an
operator polynomial of degree l̂ ∈ N. Then we call B(·) a degree reduction of A(·) to
degree l̂ if A(·) and B(·) are extended unimodular equivalent.

We stated Definition 3.2 in a very general setting. In particular the degree l̂ of the
’reduced’ polynomial does not actually need to be smaller than the degree of A(·) (and
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[TDD15] has results pertaining to this case).

We will now introduce a special type of degree reduction which we will use throughout
the remainder of this chapter. For l̂ ∈ {1, . . . , l− 1} we define the canonical reduction of
A(·) to degree l̂ as the polynomial

Â(λ) = λl̂Âl̂ + λl̂−1Âl̂−1 + · · ·+ λÂ1 + Â0, (3.2)

where the coefficients are defined as

Â0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Al−l̂ Al−l̂−1 . . . A1 A0

−IX 0X . . . . . . 0X

0X −IX
. . .

...

...
. . .

. . .
. . .

...

0X . . . 0X −IX 0X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

= Comp[Al−l̂, Al−l̂−1, . . . , A1, A0], (3.4)

Â1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Al−l̂+1 0Y X 0Y X . . . 0Y X

0X IX 0X . . . 0X

...
. . .

. . .
. . .

...

...
. . .

. . . 0X

0X . . . . . . 0X IX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

= Diag[Al−l̂+1, IX , . . . , IX ] (3.6)

and for i = 2, . . . , l̂

Âi =

⎡⎢⎢⎢⎢⎢⎢⎣
Al−l̂+i 0Y X . . . 0Y X 0Y X

0X 0X . . . 0X 0X

...
...

. . .
...

...

0X 0X . . . 0X 0X

⎤⎥⎥⎥⎥⎥⎥⎦ (3.7)

= Diag[Al−l̂+i, 0X , . . . , 0X ], (3.8)

where 0X and IX denote the zero and the identity operator in X, respectively, and 0Y X

denotes the zero operator from X into Y .
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The (l − l̂ + 1) × (l − l̂ + 1) block matrices Âi, i = 0, 1, . . . , l̂ , are (the block matrix
representiations of) linear operators from the product space X l−l̂+1 into the product
space Y ×X l−l̂.
For Â(λ) we have the following block matrix representation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[l̂](λ) Al−l̂−1 Al−l̂−2 . . . A1 A0

−IX λIX 0X . . . . . . 0X

0X −IX λIX
. . .

...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0X

0X . . . . . . 0X −IX λIX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.9)

where A[l̂](·) is the l̂-th Horner shift of A(·), i.e.

A[l̂](λ) = λl̂Al + · · ·+ λAl−l̂+1 +Al−l̂.

Furthermore λÂ1 + Â0 is the companion polynomial of the operator polynomial

λl−l̂+1Al−l̂+1 + · · ·+A0

and if X = Y then Â0 is the companion matrix of the monic operator polynomial

λl−l̂+1IX + λl−l̂Al−l̂ + · · ·+A0.

To simplify the notation we will from now on write 0 and I instead of 0X and IX , unless
the domain and range spaces should not be clear from the context.
The following lemma shows that the term canonical degree reduction for Â(·) is justified.

Lemma 3.3. The operator polynomial Â(·) is a degree reduction to degree l̂ of A(·)
as according to Definition 3.2. In particular A(·) and Â(·) are extended unimodular
equivalent via

E(λ)Â(λ)F (λ) = Diag(A(λ), Il−l̂)

where Il−l̂ is the identity operator on X l−l̂ and the unimodular operator polynomials

E(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I A[l̂](λ) A[l̂+1](λ) A[l̂+2](λ) . . . A[l−2](λ) A[l−1](λ)

−I −λI −λ2I . . . −λl−l̂−2I −λl−l̂−1I

−I −λI . . . −λl−l̂−3I −λl−l̂−2I
. . .

. . .
...

...
−I −λI −λ2I

−I −λI
−I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

F (λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
λl−l̂I I

λl−l̂−1I I
...

. . .

λI I
I 0 . . . . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦
where A[k](·) is again the k-th Horner shift of A(·). Their inverses are

E−1(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
I A[l̂] Al−l̂−1 . . . A1

−I λI
. . .

. . .

−I λI
−I

⎤⎥⎥⎥⎥⎥⎥⎦
and

F−1(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . . . . 0 I

I −λl−l̂I

I −λl−l̂−1I
. . .

...
I −λ2I

I −λI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. Straightforward calculation.

For l̂ = 1, this is the linearization (or companion form) of A(·), see e.g. [Rod89].
Degree-reductions of this form were discussed in [Nag07] for matrix polynomials and later
in [Har11] for polynomials with coefficients in a Banach algebra.

As an immediate consequence we can state a result about the finite spectrum of degree-
reductions.

Corollary 3.4. For X = Y there holds

Σ(A(·)) = Σ(Â(·)).

Proof. Since E(·) and F (·) are invertible for all λ ∈ C it follows that

Â(λ) invertible ⇔ (A(λ)⊕ I
Xl−l̂) invertible ⇔ A(λ) invertible.

Remark 3.5. In [TDM14] the authors distinguish between the grade and the degree of
matrix polynomials. A matrix or operator polynomial

A(λ) =
l∑

j=0

λjAj ,
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where the leading coefficients are allowed to be equal to zero, is then said to be of grade
l; whereas the degree of A(λ) corresponds to the highest nonzero coefficient as usual.
This distinction has implications for the infinite eigenstructure of matrix polynomials.

3.0.1. Matrix polynomials and strong degree-reductions

For matrix polynomials A(λ) =
∑l

j=0 λ
jAj with coefficients Aj ∈ Cn,n the equality in

Corollary 3.4 implies that the finite elementary divisors of Â(·) and Diag(A(·), I(l−l̂)n)

coincide (here I(l−l̂)n is the identity on C(l−l̂)n). Since A(·) need not be a monic polyno-
mial it is of interest to also consider its infinite elementary divisors, i.e. the elementary
divisors at zero of the reversed polynomial

revA(λ) :=
l∑

j=0

λjAl−j = λlA(λ−1). (3.10)

We state an important relation between degree reductions and reversed polynomials.

Lemma 3.6. Let A(·) as above and Â(·) its canonical degree reduction to degree l̂. Then
the reversed polynomial rev Â(·) is unimodular equivalent to Diag(revA(·), I(l−l̂)n). In
particular

Ẽ(λ) rev Â(λ)F̃ (λ) = Diag(revA(·), I(l−l̂)n)

where

Ẽ(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −
∑l−l̂

j=1 λ
jAl−l̂−j −

∑l−l̂−1
j=1 λjAl−l̂−1−j . . . . . . −(λA1 + λ2A0) −λA0

0 λl−l̂−1I λl−l̂−2I . . . . . . λI I

0 λl−l̂−2I λl−l̂−3I . .
.

. .
.

...
...

... . .
.

. .
.

0 λ2I λI I

0 λI I

0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

F̃ (λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
I 0 . . . . . . 0
λI I
... . .

.

λl−l̂−1I I

λl−l̂I I

⎤⎥⎥⎥⎥⎥⎥⎦
are unimodular (block) matrix polynomials.

Proof. Straightforward calculation.
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The lemma implies that the elementary divisors at 0 of rev Â(·) are equal to the ele-
mentary divisors at 0 of revA(·) plus (l − l̂)n copies of λl̂−1. This motivates the next
definition.

Definition 3.7. Let A(·) be a matrix polynomial of degree l. Then we call a matrix
polynomial Â(·) of degree l̂ a strong degree reduction (to degree l̂) if A(·) is extended uni-
modular equivalent to Â(·) and the reversed polynomial revA(·) is extended unimodular
equivalent to rev Â(·).

This definition is consistent with the classical notion of strong linearisations and strong
ℓ-ifications (see [TDM14]). It follows immediately that a canonical degree reduction to
degree l̂ is strong if and only if l̂ = l or l̂ = 1. In [TDM14] the authors consider other
forms of degree reductions which are strong for different values of l̂. In [TDD15] they
proved that a strong degree reduction exists for any l̂ (even for l̂ > l), but no explicit
formulas are given.

3.1. Division with remainder

For this section we assume that A(·) has full degree l. We will show how a division with
remainder of the canonical degree reduction Â(·) can be recovered from a division with
remainder of the original operator polynomial A(·) (and vice versa). This was previously
investigated in [Har11] for the special case where division is possible without remainder.

Theorem 3.8. Let 1 < l̂ < l and

A(λ) = L(λ)D(λ) +R(λ), (3.11)

where

L(λ) = λl̂−1Ll̂−1 + · · ·+ λL1 + L0, (3.12)

D(λ) = λl−l̂+1 + λl−l̂Dl−l̂ + · · ·+ λD1 +D0, (3.13)

R(λ) = λl−l̂Rl−l̂ + · · ·+R0 (3.14)

with Lj : X → Y , Dj : X → X and Rj : X → Y .
Further let

Â(λ) = L̃(λ)(λ+ D̂0) + R̃0, (3.15)

where Â(·) is the canonical degree reduction of A(·) to degree l̂, D̂0 is the companion
matrix of D(·), R̃0 is independent of λ and

L̃(λ) = λl̂−1L̂l̂−1 + · · ·+ λL̂1 + L̂0 (3.16)

(note that, since the right divisors are monic, the coefficients of the operator polynomials
L(·), L̃(·), R(·) and the matrix R̃0 are uniquely determined by the principle of division
with remainder; see [Rod89, Theorem 2.6.2]).
Then
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R̃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rl−l̂ Rl−l̂−1 . . . R1 R0

0X 0X . . . 0X 0X

0X 0X . . . 0X 0X

...
...

. . .
...

...

0X 0X . . . 0X 0X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.17)

for j = 1, 2, . . . , l̂ − 1

L̃j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lj,l−l̂ Lj,l−l̂−1 . . . Lj,1 Lj,0

0X 0X . . . 0X 0X

0X 0X . . . 0X 0X

...
...

. . .
...

...

0X 0X . . . 0X 0X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.18)

and

L̃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L0,l−l̂ L0,l−l̂−1 L0,l−l̂−2 . . . L0,0

0X IX 0X . . . 0X

0X 0X
. . .

. . .
...

...
...

. . .
. . . 0X

0X 0X . . . 0X IX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.19)

where
Lj,l−l̂ = Lj (3.20)

and for s = 0, 1, . . . , l − l̂ − 1

Lj,s = −
∞∑

i=−∞
Lj+iDs−i, (3.21)

where we extend the index set for Lj and Dj by setting

Lj =

{
Lj , 0 ≤ j ≤ l̂ − 1

0 , otherwise
, Dj =

⎧⎪⎨⎪⎩
Dj , 0 ≤ j ≤ l − l̂

I , j = l − l̂ + 1

0 , otherwise
.

Proof. First note that

L0,0D0 +R0 = A0,

L0,sDs − L0,s−1 +Rs = As, 1 ≤ s ≤ l − l̂,
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for j = 1, . . . , l̂ − 1

Lj,0D0 + Lj−1,0 = 0,

Lj,l−l̂Ds − Lj,s−1 + Lj−1,s = 0, 1 ≤ s ≤ l − l̂ − 1,

Lj,l−l̂Dl−l̂ − Lj,l−l̂−1 + Lj−1,l−l̂ = Al−l̂+j

and

Ll̂−1,l−l̂ = Al,

Ll̂−1,s = 0, 0 ≤ s ≤ l − l̂ − 1.

It is then straight forward to check that

Â0 = L̃0D̂0 + R̃0,

Âj = L̃jD̂0 + L̃j−1, 1 ≤ j ≤ l̂ − 1,

Âl̂ = L̃l̂−1

which proves the assertion.

A question that naturally arises in the context of divisions with remainder is how, given
an operator polynomial A(·) of degree l and monic operator polynomial D(·) as in (3.13),
one computes the unique operator polynomials L(·) and R(·) as in (3.12) and (3.14) such
that

A(λ) = L(λ)D(λ) +R(λ).

In [Rod89, Theorem 2.6.2] L. Rodman answers this question using spectral triples. The-
orem 3.8 gives rise to an alternative approach.
First consider the case when the divisor D(·) is linear, i.e.

L(λ) =

l−1∑
j=0

λjLj , D(λ) = λ+D0, R(λ) ≡ R0.

Then the coefficients Lj are given by

Lj =
l∑

i=j+1

Ai(−D0)
i−j−1 , j = 0, . . . , l − 1 (3.22)

and R0 is given by

R0 =

l∑
i=0

Ai(−D0)
i. (3.23)

Theorem 3.8 then tells us that, given A(·) and a monic but not necessarily linear D(·),
we can first compute the degree reduction (respectively linearisation) Â(·) and D̂0. Then
use formulas (3.22) and (3.23) to compute L̃(·) and R̃0. Since division with remainder is
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unique we can now use the representations in (3.17) - (3.19) to obtain the coefficients of
L(·) and R(·) (note that the coefficients of L(·) and R(·) explicitly appear as entries in
the block matrices).
We illustrate the procedure in a diagram:

A(·), D(·) degree reduction−−−−−−−−−−→ Â(·), D̂0

[Rod89, Theorem 2.6.2]
⏐⏐↓ ⏐⏐↓(3.22) and (3.23)

L(·), R(·) Theorem 3.8←−−−−−−−− L̃(·), R̃0

The reverse direction in Theorem 3.8 is in general not true if we divide Â(·) by some
arbitrary linear factor (λI + B) (i.e. B is not the companion matrix of a polynomial),
because the coefficients of the quotient polynomial, divisor and rest will be of arbitrary
structure.
This changes however if we consider only divisions without remainder.

Proposition 3.9. Let A(·) and Â(·) be as in Theorem 3.8 and assume Â(·) has a fac-
torization

Â(λ) = L̃(λ)(λI + D̂0)

for some operator polynomial

L̃(λ) =

l̂−1∑
j=0

λjL̃j

and block operator matrix D̂0. Then D̂0 is the companion (operator) matrix of a monic
operator polynomial

D(λ) = λl−l̂+1 +
l−l̂∑
j=0

λjDj ,

and the operator polynomial A(·) admits a factorization

A(λ) =

⎛⎝ l̂−1∑
j=0

λjLj

⎞⎠D(λ)

where Lj is the upper left entry in L̃j.

Proof. This is [Har11, Theorem3.4.(ii)] together with [Har11, Remark 3.5.(ii)].

3.2. Spectral triples

In this section we consider only monic operator polynomials A(·), so that

A(λ) = λlIX + λl−1Al−1 + · · ·+ λA1 +A0, (3.24)
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with Aj : X → X for j = 0, . . . , l − 1.
Recall the definition of right spectral pairs and spectral triples: Let Z be a (real or
complex) vector space. Then a pair (V, T ), where V : Z → X and T : Z → Z is called a
right spectral pair for A(·) if the operator⎡⎢⎢⎢⎢⎢⎣

V
V T
...

V T l−2

V T l−1

⎤⎥⎥⎥⎥⎥⎦ : Z → X l (3.25)

is invertible and
A0V +A1V T + · · ·+Al−1V T l−1 + V T l = 0. (3.26)

A triple (V, T,W ) where V : Z → X, T : Z → Z and W : X → Z is called a spectral
triple for A(·) if (V, T ) is a right spectral pair for A(·) and⎡⎢⎢⎢⎣

V
V T
...

V T l−1

⎤⎥⎥⎥⎦W =

⎡⎢⎢⎢⎣
0
...
0
I

⎤⎥⎥⎥⎦ . (3.27)

The next theorem, which gives a spectral triple with respect to a division of A(·), is
motivated by an abstract representation result in [LŠ10, Equation (4)].

Theorem 3.10. Let
A(λ) = L(λ)D(λ) +R(λ), (3.28)

where D(·) is monic with degree d (then necessarily L(·) is monic with degree l − d and
degR(·) = d − 1). Then the triplet of operators [Vl,d,−Tl,d,Wl,d] is a spectral triple for
A(·), where

Vl,d =
[
0 . . . 0 I 0 . . . 0

]
(3.29)

with I in the d-th entry,

Tl,d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dd−1 . . . D1 D0 0 . . . 0 −I
−I 0 0 . . . 0 0

. . .
...

...
. . .

...
...

−I 0 0 . . . 0 0

Rd−1 . . . R1 R0 Ll−d−1 . . . L1 L0

0 . . . 0 0 −I 0
...

...
...

. . .
...

0 . . . 0 0 −I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.30)

and
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Wl,d =
[
0 . . . 0 I 0 . . . 0

]T (3.31)

with I in the (d+ 1)-th entry. In particular we have

V = Vl,dSl,d, Sl,dComp[Al−1, . . . , A0] = Tl,dSl,d, Sl,dW = Wl,d (3.32)

where V =
[
0 . . . 0 I

]
, W =

[
I 0 . . . 0

]T and Sl,d is the invertible operator

Sl,d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I

. . .

I

I Dd−1 Dd−2 . . . D0

I Dd−1 Dd−2 . . . D0

. . .
. . .

. . .
. . .

I Dd−1 Dd−2 . . . D0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭ d

⎫⎪⎪⎬⎪⎪⎭ l − d

. (3.33)

Proof. By [Rod89, Theorem 2.1.1] and its proof together with [Rod89, Proposition 2.5.1]
it follows that (V,−Comp[Al−1, . . . , A0],W ) is a spectral triple for A(·) and thus it is
sufficient to show that the equations in (3.32) hold.
The first and last equations are obvious. For the second equation define

Lj =

⎧⎪⎨⎪⎩
Lj , 0 ≤ j ≤ l − d− 1

I , j = l − d

0 , otherwise

, Dj =

⎧⎪⎨⎪⎩
Dj , 0 ≤ j ≤ d− 1

I , j = d

0 , otherwise

Rj =

{
Rj , 0 ≤ j ≤ d− 1

0 , otherwise

for j ∈ Z, so that we can write

Aj =
∞∑

k=−∞
Lj−kDk +Rj , 0 ≤ j ≤ l − 1. (3.34)
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Keeping the above in mind one calculates that indeed

Sl,dComp[Al−1, . . . , A0] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0

−I
...

. . .

−I 0
Al−1 −Dd−1 Al−2 −Dd−2 . . . Al−d −D0 Al−d−1 . . . A1 A0

−I −Dd−1 . . . D1 D0 0

. . .
. . .

. . .
. . .

...

−I −Dd−1 . . . D1 D0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Tl,dSl,d.

3.3. Consecutive degree-reduction

One question that naturally arises in this context is the one of consecutive degree-
reductions and their relation with the corresponding one-step degree-reduction.
To make this clear let A(·) be as in (3.1) and let 0 < l2 < l1 < l. Then we can reduce
the degree of A(·) to l2 to obtain A(l2)(·). However we can also first reduce the degree
of A(·) down to l1 to obtain A(l1)(·) and then further decrease the degree to l2 to obtain
(A(l1))(l2)(·). We will denote this two-step degree-reduction by A(l1,l2)(·).
It is clear that, despite having the same degree, there holds A(l2)(·) ̸= A(l1,l2)(·) (since
they do not even have the same block dimension). However we will see that A(l1,l2)(·)
is equivalent to the direct sum of A(l2)(·) and an operator polynomial with eigenvalues
only at infinity.
The upcoming result is inspired by a procedure outlined in [MX13] for consecutive degree-
reductions of degree 1 of matrix polynomials. We will first be looking at an example
before moving to the general result.

Example 3.11. Consider the operator polynomial of degree l = 7, i.e.

A(λ) = λ7A7 + · · ·λA1 +A0 (3.35)

and consecutive degree-reductions to l1 = 5 and l2 = 2. Then A(5,2)(·) has the block
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matrix representation

A(5,2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[2](λ) A4 A3 A2 A1 A0

I −I
I −I

−I λ
−I λ

−I λ

−I λ
−I λ

−I λ

−I λ
−I λ

−I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.36)

By applying the permutation that moves the block rows and columns with indices
(2, 3, 5, 6, 8, 9) to the end we arrive at

A(5,2) ∼=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[2](λ) A4 A3 A2 A1 A0

−I λ
−I λ

−I λ
λ −I

λ −I
−I I

−I I
−I λ

−I λ
−I λ

−I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.37)

Note how the lengths of the diagonal parts correspond to l1 and l2. We can now add
block rows 7 and 8 to rows 5 and 6 respectively to obtain

A(5,2) ∼=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[2](λ) A4 A3 A2 A1 A0

−I λ
−I λ

−I λ
−I λ

−I λ

−I I
−I I

−I λ
−I λ

−I λ
−I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.38)
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The only thing left to do is removing the elements in the lower left quadrant which can
be accomplished by a succession of elementary column and row additions: The first step
is to add the columns 11 and 12 to the columns 5 and 6 respectively.

A(5,2) ∼=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[2](λ) A4 A3 A2 A1 A0

−I λ
−I λ

−I λ
−I λ

−I λ

I
I

−I λ
−I λ

λ −I λ
λ −I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.39)

Now subtract rows 4 and 5 from rows 11 and 12 respectively.

A(5,2) ∼=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[2](λ) A4 A3 A2 A1 A0

−I λ
−I λ

−I λ
−I λ

−I λ

I
I

−I λ
−I λ

I −I λ
I −I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.40)

At first it seems that not much was gained but we can repeat the procedure to move the
block of identities up and left.

A(5,2) ∼=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[2](λ) A4 A3 A2 A1 A0

−I λ
−I λ

−I λ
−I λ

−I λ

I
I

I −I λ
I −I λ

−I λ
−I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.41)
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Now the block of identities can be eliminated by adding columns 7 and 8. Note that the
size of the block of identities is related to the size of the first degree-reduction, while the
number of times the block has to be moved is related to the size of the second degree
reduction. We finally arrive at

A(5,2) ∼=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[2](λ) A4 A3 A2 A1 A0

−I λ
−I λ

−I λ
−I λ

−I λ

I
I

−I λ
−I λ

−I λ
−I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.42)

The upper left block in (3.42) is the block matrix representation of A(2)(λ). The lower
right part is an operator polynomial that has eigenvalues only at infinity.

From the procedure outlined above it is clear that these steps translate to general degree-
reductions to degrees l1 and l2.

Theorem 3.12. Let A(λ) = λlAl + · · · + A1 + A0 and 0 < l2 < l1 < l. Then the block
matrix representation of the consecutive degree-reduction A(l1,l2)(·) is equivalent to[

CA(l2)(λ) 0
0 K(λ)

]
, (3.43)

where CA(l2)(·) denotes the block matrix representation of the one-step degree-reduction
A(l2)(·) and

K(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I
. . .

. . .

0 I

−I λ
. . .

. . .
. . .

. . .

−I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎬⎭ l − l1⎫⎪⎪⎬⎪⎪⎭ (l1 − l2 − 1)(l − l1)

. (3.44)

3.4. Degree-reduction and the block numerical range

In this section we will examine how the block numerical range of operator polynomials
and their degree-reductions are related, extending results in [TW03] and [GLW09]. For
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definitions and basic properties of the block numerical range see Appendix A and for the
block numerical range of functions see Section 1.1.
A helpful tool in studying the invertability of operator matrices is the Schur complement:

Definition 3.13. Let Y1, Y2 be Banach spaces and Bij ∈ L(Yj , Yi) for i, j ∈ {1, 2}. On
Y1 × Y2 define the operator B through

B :=

[
B11 B12

B21 B22

]
∈ L(Y1 × Y2).

For B22 invertible define the Schur complement S of B22 in B as

S := B11 −B12(B22)
−1B21.

Proposition 3.14. Let B as in Definition 3.13 with B22 invertible. Then

(i) B is invertible ⇔ S = B11 −B12(B22)
−1B21 is invertible,

(ii) for B invertible the equality

B−1 =

[
S−1 −S−1B12B

−1
22

−B−1
22 B21S

−1 B−1
22 +B−1

22 B21S
−1B12B

−1
22

]
holds.

Proof. See [GGK93, p. 514].

Results that we are about to state for degree reduced polynomials are also true in a more
general context:

Definition 3.15. For Banach spaces Y1, Y2 and 0 < l̂ < l define the operator polynomial

P(l̂) : C→ L(Y1 × Y2) : λ ↦→
[
C(λ) C12

C21 λ−N

]
where C : C → L(Y1) is an operator polynomial of degree l̂, Cij ∈ L(Yj , Yi) for i, j ∈
{1, 2}, i ̸= j and N ∈ L(Y2) nilpotent with N l−l̂ = 0.

Lemma 3.16. For λ ̸= 0 the operator λ−N is invertible. The Schur complement Sλ of
λ−N in P(l̂)(λ) is

Sλ = λ−(l−l̂)

⎛⎝λl−l̂C(λ)−
l−l̂−1∑
j=0

λjC12N
l−l̂−j−1C21

⎞⎠ =: λ−(l−l̂)P (λ),

with an operator polynomial P : C→ L(Y1) of degree l.
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Proof. First note that the series
∑∞

j=0N
j =

∑l−l̂−1
j=0 N j converges. For λ ̸= 0 it then

follows with the Neumann series that

(λ−N)−1 =
l−l̂−1∑
j=0

λ−(j+1)N j ∈ L(Y2).

For Sλ we then have

Sλ = C(λ)− C12(λ−N)−1C21

= C(λ)−
l−l̂−1∑
j=0

λ−(j+1)C12N
jC21

= λ−(l−l̂)

⎛⎝λl−l̂C(λ)−
l−l̂−1∑
j=0

λl−l̂−j−1C12N
jC21

⎞⎠
= λ−(l−l̂)

⎛⎝λl−l̂C(λ)−
l−l̂−1∑
j=0

λjC12N
l−l̂−j−1C21

⎞⎠ .

Remark 3.17. For an operator polynomial A(·) of degree l as in (3.1) we can identify
its canonical degree l̂ reduction Â(·) with P(l̂)(·) via⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l̂∑
j=0

λjAl−l̂+j Al−l̂−1 . . . . . . A0

−I λ

−I
. . .

. . .
. . .

−I λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=̂

[
C(λ) C12

C21 λ−N

]
, λ ∈ C.

Through straightforward multiplication it then follows that P (·) = A(·).
With the exception of the point λ = 0 a spectral equivalence as in Corollary 3.4 holds in
this more general setting.

Corollary 3.18. For P(l̂)(·), P (·) as in Lemma 3.16 and λ ̸= 0 we get

λ ∈ Σ(P(l̂)(·)) ⇐⇒ λ ∈ Σ(P (·)).

Proof. From Lemma 3.16 it immediately follows that for λ ̸= 0 the operator P(l̂)(λ) is

invertible if and only if its Schur complement λ−(l−l̂)P (λ) is invertible.

To state a similar result for the block numerical range we need the Banach space Y2 to
be of finite dimension n so that we can decompose it into 1-dimensional spaces. We then
consider a decomposition

Y = Y1 × Y2 = (Y11 × . . .× Y1d)× (Y21 × . . .× Y2n)

where the Y2j are 1-dimensional for j ∈ ⟨n⟩.
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Theorem 3.19. For P(l̂)(·), P (·) as in Lemma 3.16 and λ ̸= 0 there holds

λ ∈ Θ(P (·);Y11, . . . , Y1d) ⇐⇒ λ ∈ Θ(P(l̂);Y11, . . . , Y1d, Y21, . . . , Y2n).

Proof. For this whole proof let λ ̸= 0. Now λ /∈ Θ(P(l̂)(·);Y11, . . . , Y1d, Y21, . . . , Y2n) if
and only if for all (F,U) ∈ Sop

att(Y11, . . . , Y1d) and (G,V ) ∈ Sop
att(Y21, . . . , Y2n) the operator[

F 0
0 G

]
P(l̂)(λ)

[
U 0
0 V

]
=

[
F 0
0 G

] [
C(λ) C12

C21 Iλ−N

] [
U 0
0 V

]
=

[
FC(λ)U FC12V
GC21U G(λ−N)V

]
is invertible. Note that the diagonal entries of the operators[

F 0
0 G

]
: Y1 × Y2 → Cd × Cn,

[
U 0
0 V

]
: Cd × Cn → Y1 × Y2

are mapping between different spaces. The zero operators are also to be interpreted
between the corresponding spaces. However due to the 1-dimensionality imposed on the
spaces Y2j the operators G and V are invertible. Therefore G(λ−N)V is also invertible
and we can apply the Schur complement.
Now λ /∈ Θ(P(l̂)(·);Y11, . . . , Y1d, Y21, . . . , Y2n) if and only if for all (F,U) ∈ Sop

att(Y11, . . . , Y1d)

and (G,V ) ∈ Sop
att(Y21, . . . , Y2n) the operator

FC(λ)U − FC12V (G(λ−N)V )−1GC21U

= FC(λ)U − FC12V V −1(λ−N)−1G−1GC21U

= FC(λ)U − FC12(λ−N)−1C21U

= F (C(λ)− C12(λ−N)−1C21)U

= F (λ−(l−l̂)P (λ))U

is invertible. And this is the case if and only if λ /∈ Θ(P (·);Y11, . . . , Y1d).

Back to our original operator polynomial A(·) as in (3.1) and its canonical degree reduc-
tion Â(·) to l̂ this theorem translates as follows.

Theorem 3.20. Let the operator polynomial A(·) be defined on a finite dimensional
Banach space X with dimension n. Let X1, . . . , Xd be an arbitrary (not necessarily 1-
dimensional) decomposition of X and X̃1, . . . , X̃(l−l̂)n be a 1-dimensional decomposition

of X l−l̂. Then for λ ̸= 0 there holds

λ ∈ Θ(A(·);X1, . . . , Xd) ⇐⇒ λ ∈ Θ(Â(·);X1, . . . , Xd, X̃1, . . . , X̃(l−l̂)n).
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Proof. This follows immediately from Remark 3.17 and Theorem 3.19.

Theorem 3.20 is a generalisation of [TW03, Theorem 5.2], which was posed in the Hilbert
space setting and for linearisations (via the companion matrix) instead of degree reduc-
tions.
If we omit the finite dimensionality on X we can at least formulate an inclusion result
extending [TW03, Theorem 5.1] and [Wag07, Proposition 3.15]. To make notation a little
less cluttered we abbreviate the decomposition

X(l−l̂+1) := X1, . . . , Xd, . . . , X1, . . . , Xd  
(l−l̂+1)-times

.

Proposition 3.21. Let A(·) and Â(·) be as above. Then

Θ(A(·);X1, . . . , Xd) ⊂ Θ(Â(·);X(l−l̂+1)).

Proof. Let λ0 ∈ Θ(A(·);X1, . . . , Xd). Then there exists (F,U) ∈ Sop
att(X1, . . . , Xd) such

that 0 ∈ Σ(FA(λ0)U). We can regard FA(·)U as an operator polynomial

FA(·)U : C→ L(Cd) : λ ↦→
l∑

j=0

λjFAjU.

Then λ ∈ Σ(FA(·)U). Since FA(·)U is an operator polynomial of degree l it has a
canonical degree l̂ reduction

ˆ(FA(·)U) : C→ L(Cd(l−l̂+1)).

Now with Proposition 3.4 we obtain Σ(FA(·)U) = Σ
( ˆ(FA(·)U)

)
and therefore 0 ∈

Σ
( ˆ(FA(λ0)U)

)
.

Now define the pair (F (l−l̂+1), U (l−l̂+1)) through

F (l−l̂+1) := F ⊕ . . .⊕ F  
(l−l̂+1)-times

, U (l−l̂+1) := U ⊕ . . .⊕ U  
(l−l̂+1)-times

resulting in (F (l−l̂+1), U (l−l̂+1)) ∈ Sop
att(X

(l−l̂+1)). In the same way as above we then get
the operator polynomial F (l−l̂+1)Â(·)U (l−l̂+1) : C → L(Cd(l−l̂+1)). There now holds the
equality

ˆ(FA(·)U) = F (l−l̂+1)Â(·)U (l−l̂+1)

and therefore
0 ∈ Σ

( ˆ(FA(λ0)U)
)
= Σ

(
F (l−l̂+1)P̂ (λ0)U

(l−l̂+1)
)

which yields λ0 ∈ Θ(Â(·);X(l−l̂+1)).

Inclusions of this type in the case of linearisations were also considered [GLW09] where
the authors used them to derive bounds of the block numerical range.
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3.5. Degree-reduction of semi-monic operator polynomials

We return to our discussion of semi-monic operator polynomials

Q(λ) = λmI −A(λ) = λmI −
l∑

j=0

λjAj (3.45)

with l > m and Aj ∈ L(X), j = 1, . . . , l. Consider the degree-reduction of Q(λ) to
degree l −m+ 1

Q̂(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λI −A[l−m+1](λ) −Am−2 . . . −A0

−I λI

. . .
. . .

−I λI

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= λIXm −

⎡⎢⎢⎢⎢⎢⎢⎣

A[l−m+1](λ) Am−2 . . . A0

I 0

. . .
...

I 0

⎤⎥⎥⎥⎥⎥⎥⎦
=: λIXm − Ã(λ) = λIXm −

l−m+1∑
j=0

λjÃj

(3.46)

where

Ã0 =

⎡⎢⎢⎢⎣
Am−1 Am−2 . . . A0

I 0
. . .

...
I 0

⎤⎥⎥⎥⎦ ,

Ãj =

⎡⎢⎢⎢⎢⎢⎢⎣

Aj+m−1 0 . . . 0
0 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ , j = 1, . . . , l −m+ 1.

We see that the reduced polynomial Q̂(·) is again a semi-monic operator polynomial with
linear monic part. In particular if the coefficients Aj are nonnegative then so are the
coefficients Ãj .

Remark 3.22. Note that in general the operator polynomial Ã(·) is not the degree-
reduction of A(·) to degree l −m+ 1.
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3.5.1. Fix point iteration in semi-monic operator polynomials

For the degree reduced semi-monic operator polynomial Q̂(·) as in (3.46) we can consider
the operator equation

Q̂(C) = C −
l−m+1∑
j=0

ÃjC
j = 0. (3.47)

By [Mar88, Lemma 22.9] the linear operator polynomial (λI −C) is then a right divisor
of Q̂(·). Consequently we will call an operator C satisfying (3.47) a root of Q̂(·).

Remark 3.23. In (3.47) we multiply C from the right and end up with a right divisor.
One could also multiply from the left and would then end up with a left divisor. While
the results in the remainder of this section could also be stated for left divisors, we will
only focus on right divisors.

In order to find a root of Q̂(·) one might consider the fix point iteration given by

Ck+1 :=

l−m+1∑
j=0

ÃjC
j
k (3.48)

for some starting point C0. Given that the iteration scheme converges (in the operator
norm), then the limit point Ĉ will satisfy (3.47). W restate two results from [Har11]
which give conditions under which the iteration scheme converges.

Proposition 3.24. (i) Assume there exists a ρ > 0 such that

normÃ(ρ) =
l−m+1∑
j=0

ρj∥Ãj∥ < ρ.

Then the fix point iteration given by (3.48) for C0 = 0 converges.

(ii) Let Q(·) be a semi-monic matrix polynomial with entrywise nonnegative matrix
coefficients Aj. Then the canonical degree reduction Q̂(·) as in (3.46) has en entry-
wise nonnegative root if and only if the fix point iteration (3.48) with starting point
0 ≤ C0 ≤ Ã0 converges.

Proof. (i) is [Har11, Proposition 4.32]. (ii) follows from [Har11, Proposition 4.4] since
the coefficients Ãj are entrywise nonnegative.

Now assume that we have found a fix point Ĉ satisfying (3.47). Then Ĉ is a root of Q̂(·)
and we can write

Q̂(λ) = L̃(λ)(λI − Ĉ)

for some operator polynomial L̃(·). By Proposition 3.9 we conclude that −Ĉ is the
companion matrix of a monic operator polynomial

D(λ) = λmI +
m−1∑
j=0

λjDj
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and Q̂(·) factorizes as

Q̂(λ) =

⎛⎝l−m∑
j=0

λjLj

⎞⎠D(λ),

where the coefficients Lj are determined by L̃(·) as in Proposition 3.9.
So in short we were able to find a monic right factor of A(·) by performing a fix point
iteration for its canonical degree reduction.

3.5.2. Degree-reduction of irreducible semi-monic matrix polynomials

Now let Q(·), A(·), Q̂(·) and Ã(·) as above but with the coefficients Aj ∈ Rn,n
+ . In Sec-

tion 1.4 we have seen that semi-monic matrix polynomials with entrywise nonnegative
coefficients are of particular interest if the sum of the coefficients

∑m
j=0Aj is irreducible.

However, it is easy to see that the sum of the coefficients of the reduced polynomial,∑l−m+1
j=0 Ãj = Ã(1), need no longer be irreducible (take any polynomial where A0 = 0).

We will show that this problem can be remedied via a suitable permutation. The following
algorithm describes how to obtain such a permutation.
For an mn×mn-matrix B we will by B[k, k] denote the leading principal minor of size
k × k, 1 ≤ k ≤ mn.
The algorithm operates by ’removing’ zero columns of Ã(1) by moving them to the right
via permutation (and leaving the order of the other columns unchanged). The same
permutation is then applied to the rows.

Algorithm 3.25. Step 1: If the matrix Ã(1) has no zero columns the algorithm stops.
Otherwise note that Ã(1) can only have zero columns in the last n coordinates. Let
s11, . . . , s

1
w1

be the coordinates of these w1 zero columns. Then apply the permutation
that moves the columns to the right, leaving their order and the order of the remaining
columns unchanged (i.e. the last w1 columns of the permuted matrix are, from left to
right, the previous columns s11, . . . , s

1
w1

).
Now apply the same permutation to the rows of Ã(1), resulting in a matrix B1. If we
denote by P1 the corresponding permutation matrix, then B1 = P T

1 Ã(1)P .
Step 2: If we restrict our view to the submatrix B1[mn−w1,mn−w1], it is possible that
the permutation in step 1 has resulted in additional zero columns in B1[mn−w1,mn−w1]
among the coordinates (m− 2)n+ 1, . . . , (m− 1)n. Note however, that every such zero
column must come from a zero column in step 1. To make this precise let s21, . . . , s

2
w2

be
(the coordinates of) the zero columns in B1[mn−w1,mn−w1]. Then for every i ∈ ⟨w2⟩
there must exist a j ∈ ⟨w1⟩ such that s2i = s1j−n. This additionally implies that w2 ≤ w1.
Now apply the permutation to B1 that moves the zero columns with coordinates s21, . . . , s2w2

to the coordinates mn− (w1 +w2) + 1, . . . ,mn−w1 (leaving again the ordering intact).
Apply the same permutation to the rows of B2. If P2 is the corresponding permutation
matrix then define B2 = P T

2 B1P2.
...
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Step k: Repeat step 2 for the zero columns sk1, . . . , s
k
wk

of the submatrix

Bk−1[mn− (w1 + · · ·+ wk−1),mn− (w1 + · · ·+ wk−1)].

Stop: Terminate if no more zero columns appear. Output the permutation matrix
P = P1P2 · · ·Pw where w is the number of steps the algorithm took.

The algorithm is guaranteed to terminate after at most m−1 steps (so the first n columns
will not be permuted). This follows because the irreducibility of A(1) =

∑l
j=0Aj implies

that for each i ∈ ⟨n⟩ at least one of the columns with coordinates i, i+n, . . . , i+(m−1)n
has nonzero entries among its first n entries.

Remark 3.26. We state some helpful observations:

(i) Let s ∈ ⟨m(n − 1)⟩. Then the s-th column in Ã(1) can only be removed by the
algorithm if the column with coordinate s+n was already removed by the algorithm.

(ii) Columns in Ã(1) that have a nonzero entry among their first n entries will not be
removed by the algorithm.

The next example illustrates the algorithm.

Example 3.27. Let B0 ∈ R6,6
+ be of the form

B0 =

⎡⎢⎢⎢⎢⎢⎢⎣

a b 0 c 0 d
a b 0 c 0 d
1

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎦
with some arbitrary positive numbers a, b, c, d. Then after the first step of Algorithm
3.25 we arrive at

B1 =

⎡⎢⎢⎢⎢⎢⎢⎣

a b 0 c d 0
a b 0 c d 0
1

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

The next step leads to

B2 =

⎡⎢⎢⎢⎢⎢⎢⎣

a b c d 0 0
a b c d 0 0

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎦
at which the algorithm concludes. Note that the upper left block is irreducible and the
lower right block is nilpotent.
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Our goal now is to show that the observation made at the end of Example 3.27 holds in
general. Let P be the permutation matrix from Algorithm 3.25 where we assume that∑l

j=0Aj is irreducible. Then we can identify

P T Ã(1)P =̂

[
C 0

R N

]
(3.49)

where C and N are quadratic matrices and C has no zero columns. We claim that C is
irreducible and that N is nilpotent. We denote by p ∈ N the size of C, i.e. C ∈ Rp,p

+ .
Note that n ≤ p ≤ mn. Let further π(·) : ⟨mn⟩ → ⟨mn⟩ the permutation function
belonging to P .

Lemma 3.28. Let r0 → r1 → · · · → rw be a path in the graph of Ã(1). If π(r0) ∈ ⟨p⟩
then π(ri) ∈ ⟨p⟩ for i = 1, . . . , w. In other words π(r0)→ π(r1)→ · · · → π(rw) is a path
in the graph of C.

Proof. We prove the assertion by induction: π(r0) ∈ ⟨p⟩ by assumption. Now assume
π(ri) ∈ ⟨p⟩. If ri ∈ ⟨n⟩ then the column of Ã(1) with coordinate ri+1 has a nonzero
entry among its first n entries. This implies (see Remark 3.26.(ii)) that π(ri+1) ∈ ⟨p⟩. If
ri /∈ ⟨n⟩ then the identities on the block minor diagonal of the matrix Ã(1) imply that
ri+1 = ri − n. It then follows by Remark 3.26.(i) that π(ri+1) ∈ ⟨p⟩.

Lemma 3.29. Let r ∈ ⟨mn⟩ and s ∈ ⟨n⟩ and assume that
∑l

j=0Aj is irreducible. Then
there exists a path in the graph of Ã(1) from r to s.

Proof. Without loss of generality assume that r ∈ ⟨n⟩. Otherwise, by moving along the
identities on the block minor diagonal of Ã(1), we can construct a path

r → r − n→ r − 2n→ · · · → r̃0

such that r̃0 ∈ ⟨n⟩.
Since the matrix

∑l
j=0Aj is irreducible, there exists a path in its corresponding graph

from r to s. Denote this path by

r0 → r1 → · · · → rw = r̂.

Then we can, as in the beginning of the proof, construct a path from r0 to rw in the
graph of Ã(1). We demonstrate it for the first edge from r0 to r1: Since Aj(r0, r1) > 0
for some j, it follows that there exists a k ∈ ⟨m− 1⟩0 such that Ã(1) has a nonzero entry
at coordinates (r0, r1+kn). Now, once again because of the identities on the block minor
diagonal of Ã(1), this implies the existence of the path

r0 → r1 + kn→ r1 + (k − 1)n→ · · · → r1 + n→ r1.

Proposition 3.30. Assume
∑l

j=0Aj is irreducible and let C ∈ Rp,p
+ and N ∈ Rmn−p,mn−p

+

be as in (3.49). Then C is irreducible and N is nilpotent.
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Proof. We first prove the irreducibility of C: Let s0, s̄ ∈ ⟨p⟩. We need to show there
exists a path from s0 to s̄ in the graph of C. Define t0 := π−1(s0) and t̄ := π−1(s̄). Our
goal is to construct a path from t0 to t̄ in the graph of Ã(1) and then apply Lemma 3.28.
If t̄ ∈ ⟨n⟩ we can use Lemma 3.29 to get the existence of such a path.
Now assume t̄ /∈ ⟨n⟩. Then there need to exist a t̂ ∈ ⟨n⟩ and a k ∈ ⟨m− 1⟩0 such that

t̂→ t̄+ kn→ t̄(k − 1)n→ · · · → t̄+ n→ t̄

in the graph of Ã(1). If such a path did not exist then, following Remark 3.26.(i), this
would contradict π(t̄) = s̄ ∈ ⟨p⟩. Together with Lemma 3.29 this gives us a path

t0 → · · · → t̂→ · · · → t̄

in the graph of Ã(1). Now Lemma 3.28 tells us that

s0 = π(t0)→ · · · → π(t̂)→ · · · → π(t̄) = s̄

is a path in the graph of C.

To see that N is nilpotent first note that the rightmost columns of N need to be zero
columns. All other columns will contain a single 1 entry and be zero otherwise. Let r
be the coordinate of a nonzero column in N . Then the column has coordinate p + r in
the bigger matrix P T Ã(1)P . In the original matrix Ã(1) it therefore had the coordinate
s := π−1(p+ r). In order to be removed by Algorithm 3.25 the column with coordinate
s+ n must have been removed first (see Remark 3.26.(i)). The s-th column in Ã(1) has
its 1 entry at coordinate s+ n. So when removing the column with coordinate s+ n by
moving it to the right (and at the same time moving row s+n down), the 1 entry in the
column s also gets moved down to coordinate π(s+n). After that it will not be affected
by any other row operations.
From Algorithm 3.25 it follows that π(s + n) > π(s) = p + r (since the algorithm adds
to the zero columns from the left). It follows that the 1 entry of column p+ r lies in the
strictly lower triangular part of Ã(1). For the matrix N this implies that the 1 entry of
the column r also lies in the strictly lower triangular part of N . Therefore N is a strictly
lower triangular matrix and thus nilpotent.

The proposition implies that the nonzero spectra of Ã(1) and C coincide. The same
holds for the semi-monic functions: Let P be the permutation matrix from Algorithm
3.25. Then we can identify

P T Q̂(λ)P = λImn − P T Ã(λ)P =̂

[
λIp

λImn−p

]
−
[
C(λ) 0

R N

]
where C(·) is a matrix polynomial of degree l −m+ 1 with entrywise nonnegative coef-
ficients and C(1) is irreducible. Now the semi-monic polynomial

QC(λ) = λIp − C(λ)

has the same nonzero spectrum as Q̂(·) and thus also Q(λ). But, in contrast to Q̂(·), the
irreducibility of C(1) allows one to apply the results of Section 1.4 to QC(·).
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A. The block numerical range

The content of this appendix is taken from [Kal11] with the exception of Section A.5
which was newly written for this thesis.

Let (X1, ∥ · ∥X1), . . . , (Xd, ∥ · ∥Xd
) be non trivial normed (Banach) spaces and consider

the product space X = X1 × . . .×Xd. Equipped with one of the equivalent norms ∥ · ∥p
defined through

∥ · ∥p : X → R : (x1, . . . , xd)
T ↦→

{
p

√∑d
i=1 ∥xi∥

p
Xi
, 1 ≤ p <∞

maxi=1,...,k ∥xi∥Xi , p =∞

X becomes a normed (Banach) space itself. Whenever we consider the space Cd it will
be equipped with the corresponding p-norm.
An operator A ∈ L(X) can then be written as a so called block operator or operator
matrix ⎡⎢⎣A11 . . . A1d

...
. . .

...
Ad1 . . . Add

⎤⎥⎦
where Ars ∈ L(Xs, Xr), for r, s ∈ ⟨d⟩. Introducing the natural ’projections’

Pk : X1 × . . .×Xd → Xk : (x1, . . . , xd)
T ↦→ xk

and ’embeddings’

Ek : Xk → X1 × . . .×Xd : xk ↦→ (0, . . . , 0, xd, 0, . . . , 0)
T

we can write Ars explicitly as Ars = PsAEr for k, r, s ∈ ⟨d⟩.

A.1. Definitions and basic properties

Definition A.1. For a normed space Y we will denote the set of functionals which attain
their norm on the unit sphere and corresponding points as

Satt(Y ) := {(f, u) : f ∈ Y ′, u ∈ Y, ∥f∥ = ∥u∥ = f(u) = 1}.

Note that by the Hahn-Banach theorem we find for every normed u ∈ X a normed
functional f ∈ X ′ with f(u) = 1 (the converse is in general only true in reflexive Banach
spaces).
In order to work with block operators we extend this to the product space X via

Satt(X1, . . . , Xd) := Satt(X1)× . . .× Satt(Xd).

Given
(
(f1, u1), . . . , (fd, ud)

)
∈ Satt(X1, . . . , Xd) we define the two maps

F : X1 × . . .×Xd → Cd, (x1, . . . , xd) ↦→ (f1(x1), . . . , fd(xd))

U : Cd → X1 × . . .×Xd, (µ1, . . . , µd) ↦→ (µ1u1, . . . , µdud)
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Let Sop
att(X1, . . . , Xd) denote the set of all pairs (F,U) of these operators. Finally we

define the block numerical range of an operator A ∈ L(X1 × . . .×Xd) as

Θ(A;X1, . . . , Xd) :=
⋃

(F,U)∈Sop
att(X1,...,Xd)

Σ(FAU).

If the underlying decomposition of the normed space is clear we will sometimes simply
write Sop

att instead of Sop
att(X1, . . . , Xd).

Remark A.2. - For A ∈ L(X) and (F,U) ∈ Sop
att(X1, . . . , Xd) the operator FAU can

be identified with the matrix⎡⎢⎣f1(A11u1) . . . f1(A1dud)
...

. . .
...

fd(Ad1u1) . . . fd(Addud)

⎤⎥⎦ .

- The block numerical range can be characterized with the determinant on Cd,d, i.e. for
λ ∈ C

λ ∈ Θ(A;X1, . . . , Xd)⇔ ∃(F,U) ∈ Sop
att(X1, . . . , Xd) : det(FAU − λ) = 0

⇔ ∃(F,U) ∈ Sop
att(X1, . . . , Xd) : det(F (A− λ)U) = 0.

The second equivalence follows from FU = I.

- For every operator A ∈ L(X) the block numerical range is bounded by ∥A∥X since

∥FAU∥L(Cd) ≤ ∥F∥L(X,Cd)  
=1

∥A∥X ∥U∥L(Cd,X)  
=1

= ∥A∥X

for all (F,U) ∈ Sop
att(X1, . . . , Xd). The claim now follows because the spectrum of a

matrix is bounded by its norm.

Let us now consider permutations of the order of the factors in X1 × . . . × Xd. For a
permutation π of the set ⟨d⟩ define Xπ := Xπ(1) × . . .×Xπ(d). The operator induced by
π is

P : X → Xπ :

⎡⎢⎣u1...
ud

⎤⎥⎦ ↦→
⎡⎢⎣uπ(1)...
uπ(d)

⎤⎥⎦
with the inverse operator P−1 induced by the inverse permutation. The operator Aπ :=
P−1AP is then the equivalent of A in L(Xπ).

Lemma A.3. The block numerical range of an operator A ∈ L(X) is invariant under
permutation of the factors Xi. That is for a permutation π of ⟨1, d⟩ there holds

Θ(Aπ;Xπ(1), . . . , Xπ(d)) = Θ(A;X1, . . . , Xd).
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Proof. Let λ ∈ Θ(A;X1, . . . , Xd) and (F,U) ∈ Sop
att(X1, . . . , Xd) such that det(FAU −

λ) = 0. Then
0 = det(FAU − λ) = det(FPAπP−1U − λ).

Obviously (FP, P−1U) ∈ Sop
att(Xπ(1), . . . , Xπ(d)) and thus λ ∈ Θ(Aπ;Xπ(1), . . . , Xπ(d)).

The assertion now follows because the reverse inclusion is symmetric.

Example A.4. (1) In case of a Hilbert space H with scalar product (·, ·) we can consider
an orthogonal decomposition H = H1⊕ . . .⊕Hd. If we combine the factors Hi with
the 2-norm we get the isometric isomorphism

H ∼= H1 × . . .×Hd.

In Hilbert spaces by the Riesz isomorphism theorem there is exactly one normed
fi ∈ H ′

i for every normed ui ∈ Hi such that fi(ui) = 1 and it can be identified
through the scalar product with (·, ui). Therefore Satt(H1, . . . ,Hd) can be identified
with the factor wise normed sphere S(H1, . . . ,Hd) := {u ∈ H : ∥ui∥Hi = 1}.
For an operator A ∈ L(H) the block numerical range then is

Θ(A;H1, . . . ,Hd) =
⋃

(F,U)∈Sop
att(H1,...,Hd)

Σ(FAU)

=
⋃

(f,u)∈Satt(H1,...,Hd)

Σ

⎡⎢⎣f1(A11u1) . . . f1(A1dud)
...

. . .
...

fd(Ad1u1) . . . fd(Addud)

⎤⎥⎦

=
⋃

u∈S(H1,...,Hd)

Σ

⎡⎢⎣(A11u1, u1) . . . (A1dud, u1)
...

. . .
...

(Ad1u1, ud) . . . (Addud, ud)

⎤⎥⎦ .

This is just the block numerical range for operators on Hilbert spaces as introduced
in [Wag07] or [Tre08]. The block numerical range for normed spaces as introduced
here is therefore a generelazition of the known case on Hilbert spaces. Lemma A.3
guarantees that the block numerical range does not depend on the order of the
orthogonal subspaces in the direct sum.

(2) Regarding the Hilbert space Cn a special type of orthogonal decomposition is the so
called component wise decomposition as introduced in [FH08]. For it consider index
sets Ji for i = 1, . . . , d such that

J1∪̇ . . . ∪̇Jd = ⟨1, n⟩.

Now define the spaces

Xi := {(ν1, . . . , νn)T ∈ Cn : νj = 0 for j /∈ Ji}.
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Since the Ni were disjoint we get the decomposition Cn = X1 ⊕ . . .⊕Xd.
The advantage of component wise decompositions is that the block operator repre-
sentation of entrywise nonnegative matrices A ∈ Cn×n with regard to these decom-
positions preserves the property of being entrywise nonnegative (this is in general
not true if we consider an arbitrary orthogonal decomposition of Cn). For more on
the block numerical range in Cn see Section A.5.

(3) Let a = t0 < t1 < . . . < td = b ∈ R. The Banach space X = Lp([a, b]) for p ∈ [0,∞]
can then be decomposed into

Lp([a, b]) ∼= Lp([t0, t1])× Lp([t1, t2])× . . .× Lp([td−1, td]),

where we have to combine the factors with the p-norm.

A.2. Spectral inclusion

We will now prove spectral inclusion results where the later results require the normed
spaces Xi to be Banach spaces.

Lemma A.5. There holds Σp(A) ⊆ Θ(A;X1, . . . , Xd).

Proof. Let λ ∈ Σp(A) then there exists x = (x1, . . . , xd)
T ∈ X1 × . . . × Xd, such that

Ax = λx. Define normed ui ∈ Xi satisfying ∥xi∥ui := xi for i = 1, . . . , d. By the Hahn-
Banach theorem there exist normed functionals fi ∈ X ′

i such that fi(ui) = ∥ui∥ = 1
for i = 1, . . . , d, thus

(
(f1, u1), . . . , (fd, ud)

)
∈ Satt(X1, . . . , Xd). For the corresponding

(F,U) ∈ Sop
att(X1, . . . , Xd) there holds

FAU

⎡⎢⎣∥x1∥...
∥xd∥

⎤⎥⎦ = FA

⎡⎢⎣x1...
xd

⎤⎥⎦ = λF

⎡⎢⎣x1...
xd

⎤⎥⎦ = λ

⎡⎢⎣∥x1∥...
∥xd∥

⎤⎥⎦ ,

i.e. λ ∈ Θ(A;X1, . . . , Xd).

Lemma A.6. Let X1, . . . , Xd be Banach spaces and X = X1 × . . . ×Xd endowed with
the p-norm and X ′

1 × . . .×X ′
d with the conjugated q-norm (i.e. p−1 + q−1 = 1 with the

usual convention 1
∞ = 0). Then the map

J : X ′
1 × . . .×X ′

d → X ′, (f1, . . . , fn) ↦→ f

with

f(x1, . . . , xd)
T :=

d∑
i=1

fi(xi)

is an isometric isomorphism.

Lemma A.7. Let A′ denote the adjoint operator of A ∈ L(X) and let (Ãij)ij be the
block operator representation of A′ with regard to the decomposition X ′

1× . . .×X ′
d. Then

there holds Ãij = A′
ji, i, j = 1, . . . , d. That is, the block operator of A′ is the transpose

of the component-wise adjoint of A.
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Proof. For k = 1, . . . , d let Ek denote the ’embedding’ from Xk into X1 × . . . ×Xd and
let Pk be the ’projection’ from X1× . . .×Xd onto Xk. Furthermore let Ẽk and P̃k denote
their dual space counterparts. Using the isometric isomorphism from Lemma A.6 we
obtain

Ãij = P̃i ◦ J−1 ◦A′ ◦ J ◦ Ẽj .

Let fk ∈ X ′
k and (x1, . . . , xd) ∈ X then

(fk ◦ Pk)

⎡⎢⎣x1...
xd

⎤⎥⎦ = fk(xk) = [(J ◦ Ẽk)(fk)]

⎡⎢⎣x1...
xd

⎤⎥⎦
i.e.

fk ◦ Pk = (J ◦ Ẽk)(fk). (A.1)

Let f = J−1(f1, . . . , fd) ∈ X ′ and xk ∈ Xk then

(f ◦ Ek)(xk) = fk(xk) =

⎛⎜⎝P̃k

⎡⎢⎣f1...
fd

⎤⎥⎦
⎞⎟⎠ (xk) = [(P̃k ◦ J−1)(f)](xk)

i.e.
f ◦ Ek = (P̃k ◦ J−1)(f). (A.2)

For fj ∈ X ′
j we then have

Ãijfj = (P̃i ◦ J−1 ◦A′ ◦ J ◦ Ẽj)(fj)

= (P̃i ◦ J−1)(A′[(J ◦ Ẽj)(fj)])

= (P̃i ◦ J−1)([(J ◦ Ẽj)(fj)] ◦A)
(A.1)
= (P̃ ◦ J−1)(fj ◦ Pj ◦A)

(A.2)
= fj ◦ Pj ◦A ◦ Ej

= fj ◦Aji = A′
jifj

as desired.

The following important theorem basically says that the norm attaining functionals lie
dense in the dual space.

Theorem A.8 (Bishop-Phelps-Bollobás). Let X be a Banach space and 0 < ε < 1. Let
f ∈ X ′, ∥f∥ = 1 and choose v ∈ X, ∥v∥ ≤ 1 such that |1− f(v)| < ε2

4 . Then there
exists u ∈ X, ∥u∥ = 1 and g ∈ X ′, ∥g∥ = 1 such that g(u) = 1 and ∥u− v∥ < ε and
∥g − f∥ < ε.

Proof. See [BD73, §16 Theorem 1].

96



Lemma A.9. Let X be decomposed as before then

Θ(A;X1, . . . , Xd) ⊆ Θ(A′;X ′
1, . . . , X

′
d) ⊆ Θ(A;X1, . . . , Xd)

holds.

Proof. For i = 1, . . . , d let Ji denote the canonical embedding of Xi into its double dual.
For the first inclusion let λ ∈ Θ(A;X1, . . . , Xd) i.e. there exist

(
(f1, u1), . . . , (fd, ud)

)
∈

Satt(X1, . . . , Xd) and corresponding (F,U) ∈ Sop
att(X1, . . . , Xd) such that det(FAU−λ) =

0. We define ũi := fi and f̃i := Ji(ui). Then
(
(f̃1, ũ1), . . . , (f̃d, ũd)

)
∈ Satt(X

′
1, . . . , X

′
d)

holds. Let (F̃ , Ũ) ∈ Sop
att(X

′
1, . . . , X

′
d) denote the corresponding pair of operators. Using

the last lemma we obtain

F̃A′Ũ =
(
f̃i(A

′
jiũj)

)
ij

=
(
f̃i(ũj ◦Aji)

)
ij

=
(
f̃i(fj ◦Aji)

)
ij

=
(
(fj ◦Aji)(ui)

)
ij

= (FAU)T

Since Σ(FAU)T = Σ(FAU) we have λ ∈ Θ(A′;X ′
1, . . . , X

′
d).

For the latter inclusion let λ ∈ Θ(A′;X ′
1, . . . , X

′
d), i.e. there exist (f̃ , ũ) ∈ Satt(X

′
1, . . . X

′
d)

and corresponding (F̃ , Ũ) ∈ Sop
att(X

′
1, . . . , X

′
d) such that det(F̃A′Ũ − λ) = 0. Since the

canonical embedding of the unit sphere of a Banach space into the unit sphere of its
double dual is weak-* dense, there exist for all i, j ∈ ⟨1, d⟩ and 0 < ε < 1 elements
vi ∈ Xi with ∥vi∥ ≤ 1 such that⏐⏐f̃i(ũi)− (Ji(vi))(ũi)⏐⏐ < ε2

4
,⏐⏐f̃i(A′

jiũj)−
(
Ji(vi)

)
(A′

jiũj)
⏐⏐ < ε.

Therefore

|1− ũi(vi)| =
⏐⏐f̃i(ũi)− (Ji(vi))(ũi)⏐⏐ < ε2

4
.

By the Bishops-Phelps-Bollobás theorem there exist (fi, ui) ∈ Satt(Xi) with ∥fi− ũi∥ < ε
and ∥ui−vi∥ < ε for all i ∈ ⟨1, d⟩, providing (f, u) ∈ Satt(X1, . . . , Xd) and corresponding
(F,U) ∈ Sop

att(X1, . . . , Xd). Now define for (v1, . . . , vd)
T as usual the operator

V : Cd → X :

⎡⎢⎣µ1

...
µd

⎤⎥⎦ ↦→
⎡⎢⎣µ1v1

...
µdvd

⎤⎥⎦ .

Note that since ∥vi∥ ≤ 1 for all i ∈ ⟨1, d⟩ there holds ∥V ∥ < 1. Now

∥F̃A′Ũ − FAU∥ ≤ ∥F̃A′Ũ − ŨA′V ∥+ ∥ŨAV − ŨAU∥+ ∥ŨAU − FAU∥
≤
(f̃i(A′

jiũj)−
(
Ji(vi)

)
(A′

jiũj)
)
ij

  
<cε

+ ∥V − U∥  
<ε

+ ∥Ũ − F∥  
<ε

,
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where c is a constant only depending on the norm on Cd. Since ε was arbitrary we
conclude that λ ∈ Θ(A;X1, . . . , Xd).

Corollary A.10. If X1, . . . , Xd are reflexive, then

Θ(A;X1, . . . , Xd) = Θ(A′;X ′
1, . . . , X

′
d)

holds.

Lemma A.11. Let X be a product of Banach spaces and A ∈ L(X). Then

(i) Σr(A) ⊆ Σp(A
′)

(ii) Σc(A) ⊆ Σapp(A)

hold. The approximate point spectrum Σapp of A is defined by

λ ∈ Σapp(A) ⇔ ∃(xk)k ⊆ X, ∥xk∥ = 1 : Axk − λxk
k→∞−−−→ 0.

Lemma A.12. Let M ∈ Cd×d be a matrix. If M is invertible then

∥M−1∥ ≤ ∥M∥
d−1

| detM |
.

For x ∈ Cd with ∥x∥ = 1 we have

dist(0,Σ(M)) ≤ d

√
∥M∥d−1 ∥Mx∥.

Proof. See [Tre08, Lemma 1.11.5].

Theorem A.13. Let X and A be as in Lemma A.11. Then

(i) Σp(A) ⊆ Θ(A;X1, . . . , Xd)

(ii) Σ(A) ⊆ Θ(A;X1, . . . , Xd)

hold.

Proof. Point (i) is Lemma A.5. For point (ii) let λ ∈ Σ(A). If λ ∈ Σp(A) the claim
follows from point (i). If λ ∈ Σr(A) then by Lemma A.11, point (i) and Lemma A.9

λ ∈ Σp(A
′) ⊆ Θ(A′;X ′

1, . . . , X
′
d) ⊆ Θ(A;X1, . . . , Xd).

Lastly if λ ∈ Σc(A) then again by Lemma A.11 λ ∈ Σapp(A). Thus there is a sequence

(x(k))k =
((

x
(k)
1 , . . . , x

(k)
d

))
k
⊂ X, ∥x(k)∥ = 1

such that (A− λ)x(k)
k→∞−−−→ 0. Choose u

(k)
i ∈ Xi, ∥u(k)i ∥ = 1 such that x(k)i = ∥x(k)i ∥u

(k)
i

and f
(k)
i ∈ X ′

i, ∥f
(k)
i ∥ = 1 such that f (k)

i (u
(k)
i ) = 1 for i = 1, . . . , d and all k ∈ N. Now we
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can construct the corresponding pair of operators (F (k), U (k)) ∈ Sop
att(X1, . . . , Xd). Define

v(k) :=
(
∥x(k)1 ∥, . . . , ∥x

(k)
d ∥
)
, then there holds(

F (k)AU (k) − λ
)
v(k) =

(
F (k)AU (k) − F (k)U (k)λ

)
v(k)

=
(
F (k) (A− λ)U (k)

)
v(k)

= F (k)
(
(A− λ)x(k)

)
k→∞−−−→ 0.

Define εk := ∥(F (k)AU (k) − λ)v(k)∥. Using Lemma A.12 we obtain

dist
(
λ,Σ

(
F (k)AU (k)

))
= dist

(
0,Σ

(
F (k)AU (k) − λ

))
≤ d

√F (k)AU (k) − λ
d−1

εk

≤ d

√(F (k)AU (k)
+ |λ|)d−1

εk

≤ d

√(F (k)
 · ∥A∥ · U (k)

+ |λ|)d−1
εk

≤ d

√
(∥A∥+ |λ|)d−1 εk

k→∞−−−→ 0.

Therefore

λ ∈
⋃
k∈N

Σ
(
F (k)AU (k)

)
⊆

⋃
(F,U)∈Sop

att

Σ (FAU) = Θ (A;X1, . . . , Xd).

A.3. Refinement of the decomposition

Definition A.14. Let d, d̂ ∈ N and X1 × . . . × Xd = X̂1 × . . . × X̂d̂ = X be two
decompositions of X. We call X̂1, . . . , X̂d̂ a refinement of X1, . . . , Xd if d ≤ d̂ holds and
if there exist indices 0 = i0 < . . . < id = d̂ such that

Xk = X̂ik−1+1 × . . .× X̂ik , k = 1, . . . , d.

Remark A.15. Let X be the the product space of d one dimensional spaces X1, . . . , Xd.
Then for every linear map A ∈ L(X)

Θ (A;X1, . . . , Xd) = Σ (A) = Σp(A)

holds.

Theorem A.16. Let X1, . . . , Xd be a refinement of X̂1, . . . , X̂d̂, both product spaces
endowed with the p-norm for 1 ≤ p ≤ ∞ and A ∈ L(X). Then

Θ(A; X̂1, . . . , X̂d̂) ⊆ Θ(A;X1, . . . , Xd)

holds.
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Proof. Without loss of generality let d̂ = d + 1 and refine the first factor of X. The
general case then follows from Lemma A.3 and by induction.
We only consider the case for 1 ≤ p < ∞. The proof for p = ∞ is similar. Define
X1 = X̂0 × X̂1 and Xk = X̂k for k = 2, . . . , d. Let λ ∈ Θ(A; X̂0, X̂1, X̂2, . . . , X̂d), then
there exists [(f̂0, û0), . . . , (f̂d, ûd)]

T ∈ Satt(X̂0, X̂1, X̂2, . . . , X̂d) and the corresponding
pair of operators (F̂ , Û) ∈ Sop

att(X̂0, X̂1, X̂2, . . . , X̂d) such that λ is an eigenvalue of F̂AÛ .
Let v = (ν0, ν1, . . . , νd)

T ∈ Cd+1 be an associated eigenvector with the property

|ν0|p + |ν1|p = 1 (A.3)

which can be achieved by scaling as long as |ν0| + |ν1| ̸= 0 (otherwise take an arbitrary
eigenvector). We define two linear maps

P : Cd+1 → Cd : (ω0, . . . , ωd)
T ↦→ (αω0 + βω1, ω2, . . . , ωd)

T ,

E : Cd → Cd+1 : (ω1, . . . , ωd)
T ↦→ (ν0ω1, ν1ω1, ω2, . . . , ωd)

T

where

α :=
|ν0|p

ν0
, β :=

|ν1|p

ν1
.

If ν0 = 0 set α = 0, if ν1 = 0 set β = 0. We now show that the operators F := PF̂ and
U := ÛE are in Sop

att (X1, . . . , Xd):

regarding U : Let w := (ω1, . . . , ωd)
T ∈ Cd, then

Uw = ÛEw =
(
ω1

(
ν0û0
ν1û1

)
  

:=u1

, ω2û2, . . . , ωdûd

)T
.

So we calculate

∥u1∥p =
( ν0û0

ν1û1

)
p

= p

√
|ν0|p ∥û0∥p + |ν1|p ∥û1∥p

(A.3)
= 1.

If ν0 = ν1 = 0 choose an arbitrary u1 ∈ X1, ∥u1∥ = 1. Defining uk := ûk we have
∥uk∥ = 1 for k = 2, . . . , d.

regarding F : Let x := (x0, . . . , xd)
T ∈ X̂0 × X̂1 ×X2 × . . .×Xd, then

Fx = PF̂x =

((
αf̂0, βf̂1

)
  

:=f1

(
x0
x1

)
, f̂2 (x2) , . . . , f̂d (xd)

)T

.
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Now

∥f1∥ =
(αf̂0, βf̂1)

= sup
∥(x0,x1)∥p=1

(x0,x1)∈X1

⏐⏐⏐⏐(αf̂0, βf̂1)( x0
x1

)⏐⏐⏐⏐
= sup

∥x0∥p+∥x1∥p=1

⏐⏐⏐αf̂0 (x0) + βf̂1 (x1)
⏐⏐⏐

≤ sup
∥x0∥p+∥x1∥p=1

|ν0|p

|ν0|
∥f̂0∥ ∥x0∥+

|ν1|p

|ν1|
∥f̂1∥ ∥x1∥

= sup
∥x0∥p+∥x1∥p=1

|ν0|p−1 ∥x0∥+ |ν1|p−1 ∥x1∥

≤ |ν0|p + |ν1|p
(A.3)
= 1.

If ν0 = ν1 = 0 construct f1 ∈ X ′
1 such that f1(u1) = ∥f1∥ = 1. Otherwise

f1 (u1) =
(
αf̂0, βf̂1

)( ν0û0
ν1û1

)
= αν0f̂0(û0)+βν1f̂1(û1) =

|ν0|p

|ν0|
ν0+
|ν1|p

|ν1|
ν1

(A.3)
= 1.

Defining fk := f̂k we have ∥fk∥ = ∥f̂k∥ = 1 and fk (uk) = f̂k (ûk) = 1 for k =
2, . . . , d.

Hence (F,U) ∈ Sop
att(X1, . . . , Xd). Finally

FAU

⎛⎜⎜⎜⎝
1
ν2
...
νd

⎞⎟⎟⎟⎠ = PF̂AÛE

⎛⎜⎜⎜⎝
1
ν2
...
νd

⎞⎟⎟⎟⎠ = PF̂AÛ

⎛⎜⎜⎜⎝
ν0
ν1
...
νd

⎞⎟⎟⎟⎠ = λP

⎛⎜⎜⎜⎝
ν0
ν1
...
νd

⎞⎟⎟⎟⎠

= λ

⎛⎜⎜⎜⎝
|ν0|p + |ν1|p

ν2
...
νd

⎞⎟⎟⎟⎠ (A.3)
= λ

⎛⎜⎜⎜⎝
1
ν2
...
νd

⎞⎟⎟⎟⎠
holds (if ν0 = ν1 = 0 set the first entry of the vector to be zero instead of 1). That is
λ ∈ Θ(A;X1, . . . , Xd).

A.4. Continuity properties and connected components

In [BD71, §11 Theorem 4] it was shown that Satt(Y ) is connected for every Banach space
Y in the product topology on Y × Y ′ given by the norm topology on Y and the weak-*
topology on Y ′. Using the corresponding product topology on (X1×X ′

1)×. . .×(Xd×X ′
d)

this naturally extends to the following result.
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Lemma A.17. In the above mentioned topology Satt(X1, . . . , Xd) is connected.

In order to be able to state some continuity results on Satt and the block numerical range
we will use the following metrics.

- On the complex plane we will use the Hausdorff metric defined on compact subsets
Ψ1,Ψ2 of C through

dH(Ψ1,Ψ2) := max

{
sup
λ∈Ψ2

dist(λ,Ψ1), sup
λ∈Ψ1

dist(λ,Ψ2)

}
.

- Let (X, ∥ · ∥) be a Banach space. Denote by N(X) the set of norms on X equivalent to
∥ · ∥. In [BD73] F. F. Bonsall and J. Duncan introduced the following metric on N(X):
Let p, q ∈ N(X). Since p and q are equivalent there exists δ > 0 such that

1

δ
≤ p(x)

q(x)
≤ δ ∀x ∈ X \ {0}.

We then define

dN (p, q) := log inf

{
δ ≥ 1 :

1

δ
≤ p(x)

q(x)
≤ δ ∀x ∈ X \ {0}

}
.

It is not hard to see that dN forms a metric on N(X).

- On Satt(X1, . . . , Xd) we use the norm

∥(f, u)∥Satt :=
d∑

i=1

∥fi∥X′
i
+ ∥ui∥Xi , (f, u) ∈ Satt(X1, . . . , xd).

Note that this norm is always defined in terms of the original norms on the factors,
even if we change to equivalent norms.

The following statements about continuity are to be read in regard to these metrics.

Proposition A.18. Let X = X1 × · · · ×Xd be Banach spaces and A ∈ L(X).

(i) Satt(X1, . . . , Xd) depends continuously on equivalent norms on the factors Xi.

(ii) Θ(A;X1, . . . , Xd) depends continuously on equivalent norms on the factors Xi.

(iii) Θ(A;X1, . . . , Xd) depends continuously on the operator A.

Proof. (i) The proof for the case of a trivially decomposed space X was already done
in [BD73, §18 Theorem 3]. This immediately extends to Satt(X1, . . . , Xd).
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(ii) Let A ∈ L(X). First we show that the block numerical range depends continuously
on Satt: For a decomposition X1, . . . , Xd denote by X̂1, . . . , X̂d the same spaces
endowed with equivalent norms such that given δ > 0 we find for every (f, u) ∈
Satt(X1, . . . , Xd) a (g, v) ∈ Satt(X̂1, . . . , X̂d) such that ∥(f − g, u− v)∥Satt < δ (and
vice versa). Now

∥FAU −GAV ∥ ≤ ∥FAU −GAU∥+ ∥GAU −GAV ∥
≤ ∥F −G∥∥A∥∥U∥+ ∥G∥∥A∥∥U − V ∥
=
(
∥F −G∥+ ∥U − V ∥

)
∥A∥

< δ∥A∥.

It follows that the eigenvalues of FAU and GAV differ by at most δ∥A∥ and there-
fore

dH

(
Θ(A;X1, . . . , Xd),Θ(A; X̂1, . . . , X̂d)

)
≤ δ∥A∥.

The assertion now follows from point (i).

(iii) For fixed (F,U) ∈ Sop
att(X1, . . . , Xd) the mapping A ↦→ FAU is continuous for

A ∈ L(X) because

∥FAU∥L(Cd) ≤ ∥F∥L(X,Cd)∥A∥L(X)∥U∥L(Cd,X) = ∥A∥L(X).

Since the spectrum depends continuously on the operator on finite dimensional
spaces it follows that the mapping A ↦→ Σ(FAU) is continuous as well. This yields
the assertion.

Remark A.19. The definition of Satt(X1, . . . , Xd) only depends on the norms ∥ · ∥Xi

on the factors Xi. Therefore Satt(X1, . . . , Xd) as well as the block numerical range is
invariant under choice of a different p-norm on the product space X.

It is a well known result that the numerical range of an operator on a Banach space is
connected. This is not true in the case of block numerical ranges, however there holds a
similar result. For that we first need to state a fact about matrix sets.

Lemma A.20. If M ⊂ Cd×d is connected, then Σ(M) :=
⋃

M∈MΣ(M) consists of
at most d connected components. Moreover for every connected component Γ ⊂ Σ(M)
there exists nΓ ∈ N such that every M ∈ M has exactly nΓ eigenvalues in Γ (counting
multiplicities).

Proof. This is [Wag07, Proposition 1.10.(3)].

Theorem A.21. Let X = X1 × . . . × Xd be Banach spaces and A ∈ L(X). Then the
block numerical range Θ(A;X1, . . . , Xd) consists of at most d connected components.
Furthermore if Θj denote the connected components of Θ(A;X1, . . . , Xd) for j = 1, . . . ,m
with m ≤ d, there exist integers nj such that for each (F,U) ∈ Sop

att(X1, . . . , Xd) exactly
nj eigenvalues (counting multiplicities) of the matrix FAU are contained in Θj.
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Proof. The natural map Satt(X1, . . . , Xd) → Sop
att(X1, . . . , Xd) is continuous. Addition-

ally we have

∥F0AU0 − FAU∥ = ∥F0AU0 − F0AU + F0AU − FAU∥ ≤ ∥A(U0 − U)∥+ ∥(F0 − F )A∥

for all (F0, U0), (F,U) ∈ Sop
att(X1, . . . , Xd). Therefore the map (F,U) ↦→ FAU ∈ Cd×d is

continuous. Since Satt(X1, . . . , Xd) is connected by Lemma A.17 the set {FAU ∈ Cd×d :
(F,U) ∈ Sop

att(X1, . . . , Xd)} is a connected subset of Cd×d. Both assertions now follow
from Lemma A.20.

Although the above theorem is true for all equivalent norms on X, the actual number of
connected components of the block numerical range may differ under different norms as
the following example shows:

Example A.22. Let R be the right shift operator on the sequence space ℓ∞ endowed
with the supremums norm ∥(xi)i∥∞ := supi∈N xi. The spectrum of R is the unit disc
and |f(Ru)| ≤ ∥R∥∞ = 1 for (f, u) ∈ Satt(ℓ

∞) thus

{λ : |λ| < 1} ⊆ Θ(R; ℓ∞) ⊆ {λ : |λ| ≤ 1}.

Therefore the closure of the block numerical range of the block operator

A :=

(
R− 2.5 0

0 R

)
∈ L(ℓ∞ × ℓ∞)

consists of two disjoint discs, i.e.

Θ(A; ℓ∞, ℓ∞) = {λ : |λ− 2.5| ≤ 1}∪̇{λ : |λ| ≤ 1}.

The norm ∥(x1, x2, x3, x4, . . .)∥eq :=
(12x1, x2, 12x3, x4, . . .)∞ is equivalent to ∥·∥∞. De-

note ℓ∞ endowed with this norm by ℓ∞eq. Define u := (2, 1, 0, 0, . . .) and f : ℓ∞eq →
C, (xi)i → x2. Then ∥u∥eq = ∥f∥eq = f(u) = 1 that is (f, u) ∈ Satt(ℓ

∞
eq). We have

|f(Ru)| = |f(0, 2, 1, 0, 0, . . .)| = 2. Hence 2 ∈ Θ(R; ℓ∞eq) thus −0.5 ∈ Θ(R − 2.5; ℓ∞eq).
Since −0.5 ∈ Σ(R) ⊆ Θ(R; ℓ∞) the intersection of the closed numerical ranges of R
on ℓ∞ and R − 2.5 on ℓ∞eq are not empty. Therefore Θ(A; ℓ∞eq, ℓ

∞) consists of only one
component.
While we considered the infinite dimensional space ℓ∞, note that the example works just
as well in finite dimensions (where one then considers a cyclic right shift).

For an operator A ∈ L(X) such that its block operator representation (Aij)ij is upper
or lower triangular it is easily seen that

Θ(A;X1, . . . , Xd) =
d⋃

k=1

Θ(Akk;Xk),

so in particular Θ(Akk;Xk) ⊂ Θ(A;x1, . . . , Xd) for k ∈ ⟨1, d⟩. This is however not
true in general (consider for example the matrix ( 0 1

1 0 ) ∈ L(C × C)). Under a certain
dimensionality condition however the following holds.
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Proposition A.23. Let X = X1× . . .×Xd such that dimXi ≥ d for all i ∈ ⟨1, d⟩. Then

Θ(Akk;Xk) ⊂ Θ(A;X1, . . . , Xd) ∀k ∈ ⟨1, d⟩.

In particular Θ(Akk;Xk) is contained in a connected component of Θ(A;X1, . . . , Xd).

Proof. Due to Lemma A.3 we can without loss of generality assume that k = 1. Now
let λ ∈ Θ(A11;X1), so there exists (f1, u1) ∈ Satt(X1) such that f1(A11u1) = λ. We will
now recursively find pairs (fi, ui) ∈ Satt(Xi) for i = 2, . . . , d in the following way:
Define the space Vi := span{Aijuj : j = 1, . . . , i − 1} ⊂ Xi. Because of the dimension
condition we find a vector xi ∈ Xi such that xi /∈ Vi. Now consider the space Ui :=
span(Vi∪{xi}). Since Ui is finite dimensional we now find a normed ui ∈ Ui with ui /∈ Vi

such that there exists a normed f̂i ∈ U ′
i such that f̂i(Vi) = {0} and f̂i(ui) = 1. By the

Hahn-Banach theorem we can extend f̂i to a norm preserving fi ∈ X ′
i which yields the

desired pair (fi, ui) ∈ Satt(Xi).
Setting f = (f1, . . . , fd)

T and u = (u1, . . . , ud)
T we obtain (f, u) ∈ Satt(X1, . . . , Xd). The

corresponding (F,U) ∈ Sop
att(X1, . . . , Xd) now has the property that FAU is an upper

triangular matrix. Therefore

Σ(FAU) = {fi(Aiiui) : i ∈ ⟨1, d⟩}

and thus λ = f1(A11u1) ∈ Θ(A;X1, . . . , Xd).
The last assertion follows since Θ(Akk;Xk) is connected.

The aquired knowledge on connected components allows us to estimate the resolvent of
an operator A ∈ L(X) in analogy to [Tre08]. However we first need the following lemma
which corresponds to [Tre08, Lemma 1.11.16].

Lemma A.24. Let X = X1 × · · · ×Xd be Banach spaces and A ∈ L(X). If there exists
a δ > 0 such that for every (F,U) ∈ Sop

att(X1, . . . , Xd)

∥FAUv∥ ≥ δ∥v∥ ∀v ∈ Cn,

then
∥Ax∥ ≥ δ∥x∥ ∀x ∈ X.

Furthermore if A is invertible then ∥A−1∥ ≤ 1
δ .

Proof. Let x = (x1, . . . , xd)
T ∈ X. Define v = (ν1, . . . , νd)

T ∈ Cn through νi := ∥xi∥
and u = (u1, . . . , ud)

T ∈ X such that ∥ui∥ = 1 and ∥xi∥ui := xi. Pick an f ∈ X ′ such
that (f, u) ∈ Satt(X1, . . . , Xd) and let (F,U) ∈ Sop

att(X1, . . . , Xd) be the corresponding
operators. Now obviously Ax = AUv and ∥x∥X = ∥v∥Cn . We get

∥Ax∥ = ∥F∥
=1

∥Ax∥ ≥ ∥FAx∥ = ∥FAUv∥ ≥ δ∥v∥ = δ∥x∥.

Let now A be invertible. Then for all x ∈ X by the above

δ∥A−1x∥ ≤ ∥AA−1x∥ = ∥x∥.

Supremum over all normed x ∈ X yields the assertion.
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Theorem A.25. Let X = X1×· · ·×Xd be Banach spaces and A ∈ L(X). Let Θ1, . . .Θm

be the connected components of Θ(A;X1, . . . Xd). There exist integers nj for j = 1, . . . ,m

as in Theorem A.21 with
∑m

j=1 nj = d such that for every λ /∈ Θ(A;X1, . . . Xd) the
inequality

∥(A− λ)−1∥ ≤ ∥A− λ∥d−1∏m
j=1 dist(λ,Θj)nj

.

holds.

Proof. We first note that A − λ as well as FAU − λ for (F,U) ∈ Sop
att(X1, . . . , Xd) are

invertible for λ /∈ (A;X1, . . . Xd). We choose the integers nj as in Theorem A.21 so that
for each (F,U) ∈ Sop

att(X1, . . . , Xd) the matrix FAU has exactly nj eigenvalues in Θj .
For fixed (F,U) ∈ Sop

att(X1, . . . , Xd) let µ1, . . . , µd be the eigenvalues of FAU . Then

| det(FAU − λ)| =
d∏

i=1

|µi − λ| ≥
m∏
j=1

dist(λ,Θj)
nj > 0.

Together with Lemma A.12 this yields

∥(FAU − λ)−1∥ ≤ ∥FAU − λ∥d−1

| det(FAU − λ)|
≤ ∥A− λ∥d−1∏m

j=1 dist(λ,Θj)nj

for all (F,U) ∈ Sop
att(X1, . . . , Xd). The assertion now follows from Lemma A.24.

At the end of this section we give two consequences of Theorem A.25.

Corollary A.26. Let X = X1 × · · · × Xd be Banach spaces and A ∈ L(X). for every
λ /∈ Θ(A;X1, . . . Xd) the inequality

∥(A− λ)−1∥ ≤ ∥A− λ∥d−1

dist(λ,Θ(A;X1, . . . , Xd))d
.

holds.

Corollary A.27. Let X be a trivially decomposed Banach space and A ∈ L(X). For
every λ /∈ Θ(A;X) the inequality

∥(A− λ)−1∥ ≤ 1

dist(λ,Θ(A;X))

holds.

A.5. The block numerical range of positive matrices

When viewing the block numerical range of a matrix A ∈ Cn,n the question arises how
to decompose the space Cn. It seems natural to take some n1, . . . , np ∈ N such that∑

ni = n. Then
C = Cn1 × · · · × Cnp .
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When dealing with an element x ∈ C = Cn1 × · · · × Cnp it is useful to be able to keep
track of the product spaces a coordinate of the vector x lies in. The next definition makes
this possible.

Definition A.28. Let C = Cn1 × . . .× Cnp . Then define the integer sets

Ik :=

⎧⎨⎩
k−1∑
j=0

nj + 1,

k−1∑
j=0

nj + 2, . . . ,

k∑
j=0

nj − 1,

k∑
j=0

nj

⎫⎬⎭ , k = 1, . . . , p, (A.4)

where we set n0 = 0 and the functions

ι : ⟨n⟩ → ⟨p⟩ : i ↦→ k iff i ∈ Ik. (A.5)

A vector x ∈ Cn and A matrix A ∈ Cn,n can then be written in block form as

x =

⎡⎢⎣xI1...
xIp

⎤⎥⎦ , A =

⎡⎢⎣AI1,I1 . . . AI1,Ip
...

. . .
...

AIp,I1 . . . AIp,Ip

⎤⎥⎦
where xIk = (xi)i∈Ik and AIh,Ik ∈ Cnh,hk , h, k ∈ ⟨p⟩.
As in the Hilbert space case the set Satt(Cn1 , . . . ,Cnp) has a simplified form because by
Riesz’s lemma for any tuple (f, x) ∈ Satt(Cn1 , . . . ,Cnp) there holds (f, x) = (x, x). In the
matrix case we will therefore simply write x ∈ Satt(Cn1 , . . . ,Cnp) and for its associated
operator X ∈ Sop

att(Cn1 , . . . ,Cnp). It is instructive to write the definition down explicitly:

Satt(Cn1 , . . . ,Cnp) = {(xi) ∈ Cn : xIk ∈ Satt(Cnk), k = 1, . . . , p}
= {(xi) ∈ Cn : ∥xIk∥Cnk = 1, k = 1, . . . , p}.

For x ∈ Satt(Cn1 , . . . ,Cnp) the associated operator X : Cn → Cp then has the matrix
representation

X =

⎡⎢⎢⎢⎣
xI1

xI2
. . .

xIp

⎤⎥⎥⎥⎦ ∈ Cn,p.

For a matrix A = (ars) and a vector u ∈ Cp we then have

X∗AXu =

⎡⎢⎣x
∗
I1AI1,I1xI1 . . . x∗I1AI1,IpxIp

...
. . .

...
x∗IpAIp,I1xI1

. . . x∗IpAIp,IpxIp

⎤⎥⎦
⎡⎢⎣u1...
up

⎤⎥⎦

=

⎡⎣ p∑
k=0

∑
r∈Ih

∑
s∈Ik

x̄rA(r, s)xsuk

⎤⎦
h=1,...,p
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Remark A.29. This type of decomposition of Cn is restrictive in the sense that the
coordinates are grouped strictly sequentially. One might want to group them in any
order as in Example A.4.(ii), i.e. for some disjoint integer sets Jk, k = 1, . . . , p such that⋃
Jk = ⟨n⟩ and calculate the block numerical range of a matrix A in the Hilbert space

sense (this is the modus operandi in [FH08]).
However, one can simply take a permutation π(·) on Cn such that the coordinates of the
permuted index sets

J π
k := {π(i) : i ∈ Jk}

are then grouped sequentially. The block numerical range is then calculated for the
permuted matrix P TAP (where P is the permutation matrix associated with π(·)).

We will now turn to entrywise nonnegative matrices. Note that for x ∈ Satt(Cn1 , . . . ,Cnp)
the condition x ≫ 0 (i.e. x is entrywise strictly nonnegative) does not imply that the
associated matrix X ∈ Sop

att(Cn1 , . . . ,Cnp) is also entrywise strictly nonnegative (though
X ≥ 0 still holds). It is therefore useful to use both representations.

Proposition A.30. Let A ∈ Rn,n
+ be an entrywise nonnegative matrix. Then

(i) bnr(A;Cn1 , . . . ,Cnp) ∈ Θ(A;Cn1 , . . . ,Cnp).

If A is additionally irreducible and x ∈ Satt(Cn1 , . . . ,Cnp), x ≥ 0 with corresponding
X ∈ Sop

att(Cn1 , . . . ,Cnp), then

(ii) if x≫ 0 then X∗AX ∈ Rp,p
+ is irreducible,

(iii) if bnr(A;Cn1 , . . . ,Cnp) = spr(X∗AX) then x≫ 0.

Proof. (i) is [FH08, Proposition 3.1.2], (ii) and (iii) are [FH08, Proposition 4.1].
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