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Abstract

A comparison is made between two classical methods for the exploitation of the
second law of thermodynamics: the Coleman–Noll and the Liu procedure. On the
example of a rigid heat conductor with general entropy flux, it is shown that the
two procedures are equivalent. This equivalence is demonstrated in the case of a
state space including the wanted fields, only, as well as in the case of gradients
being relevant for constitutive equations, too. Also, the possible importance of an
internal variable or an internal degree of freedom is considered.

1. Introduction

In continuum thermodynamics, the entropy principle constitutes a basic tool
in deriving thermodynamic restrictions on constitutive equations. In fact, the
requirement of the Coleman–Mizel formulation of the second law [1] that all
solutions of the balance equations have to satisfy the dissipation inequality
greatly reduces the freedom in modelling the material behavior [2–4].
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Exploitation of the second law rests upon the local balance of entropy

σs = ṡ + divJs − rs ≥ 0, (1)

where s means the entropy density, Js is the entropy flux vector, rs is the
entropy supply density, and σs means the local entropy production. Here and
in the following, we have assumed the material to be at rest, v ≡ 0. In this
case, the material time derivative ṡ and the partial time derivative ∂s/∂t are
equal. The second law of thermodynamics forces σs to be non-negative.

The local balance of internal energy for a material at rest reads

ε̇ + divq − r = 0, (2)

where ε is the internal energy density, q is the heat flux vector, and r is the
heat supply density. Originally, in rational thermodynamics [5], the vector Js
and the entropy supply rs are assumed to be given by

Js = q

ϑ
, (3)

rs = r

ϑ
. (4)

Hereϑ is the absolute temperature. However, it is known that for instance in the
case of mixtures of chemical components [6], or in the case of liquid crystals
[7], this constitutive assumption on the entropy flux is too restrictive. In our
exploitation of the dissipation inequality, we will not make any assumption
about the entropy flux, which is considered as an independent constitutive
quantity, as it is done in some branches of rational thermodynamics [8,9]; see
also [10].

Once the local balance of energy (2) is taken into account, then Eq. (1), (3),
and (4) yield

−(ψ̇ + sϑ̇ ) − 1

ϑ
q · gradϑ ≥ 0, (5)

with the Helmholtz free energy ψ defined by

ψ := ε − ϑs. (6)

The unilateral differential relation (5) is referred to as Clausius–Duhem in-
equality [5].

There are two different techniques, well known in the literature, for the ex-
ploitation of the second law: the Coleman–Noll procedure [11] and the Liu
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procedure [12]. Both are faced with the problem of finding necessary and
sufficient conditions satisfying Eq. (1) under the differential constraint of the
energy balance (2), and, depending on the problem, of other additional bal-
ances as well. For examples of the application of the Coleman–Noll method,
see, e.g., [13], and for the Liu–procedure see e.g., [8, 14]. However, several
remarkable differences distinguish the two approaches. In the original version
of rational thermodynamics, Coleman and Noll assume that Eqs. (3) and (4)
hold, and take into account the constraint (2) by considering Eq. (5) instead of
Eq. (1). In other words, the constraints are substituted into the inequality to
be solved. Here we define the methods to be compared in such a way that the
entropy flux is an undetermined constitutive quantity, and the Coleman–Noll
technique means that all balance equations, and eventually other differential
equations for additional variables, are inserted into the expression for the
entropy production.

In the Liu technique, Eqs. (3) and (4) are not assumed while the constraint
(2), multiplied by an undetermined Lagrange multiplier, is added to Eq. (1).
In general, each constraint is taken into account, introducing a new (undeter-
mined) multiplier. Then, a classical result by Farkas and Minkowski [15, 16]
is applied (see also [4]), which gives necessary and sufficient conditions for
a linear inequality on a finite dimensional space to be implied by a given set
of linear equalities.

In this paper, we present three different classes of state spaces for which the
Coleman–Noll technique and the Liu technique are equivalent for a rigid heat
conductor. In two cases, the chosen constitutive state spaces contain gradients
of the wanted fields. We do not use the constitutive assumption (3), but we
take into account Eqs. (1), (2) and (4).

In Section 2, we obtain two inequalities generated by applying the Coleman–
Noll and the Liu procedure, respectively, to Eqs. (1) and (2). We prove that
these inequalities are equivalent in the sense that they result in the same
thermodynamic restrictions for the constitutive equations. In particular, the
reduced entropy inequality, which represents the local entropy production σs,
is the same in both cases, as well as the constraints on constitutive func-
tions.

In Section 3, we consider a weakly non-local constitutive space including the
first gradient of the basic fields. Again, both the derived reduced inequalities
are equivalent.

As an example, in Section 4, we consider a weakly non-local state space of
a rigid heat conductor with internal variables. Such a case has already been
treated in the framework of a thermodynamic approach to the problem of
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boundary conditions in the presence of internal variables [17]. Also in this
case, the thermodynamic restrictions are equivalent.

Finally, in Section 5, we provide a sketch of our main conclusions and discuss
some possible generalizations of the present results.

2. A state space without derivatives

Let us consider a rigid heat conductor whose constitutive state space is spanned
by the specific internal energy ε and by vector fields z,

Z = (ε, z), (7)

not containing derivatives of the internal energy. The set of governing equa-
tions for z is in balance form,

ż + div � = π . (8)

Here,� is the flux of z and π its production. It is worth noticing that the system
we are dealing with encompasses the 4-field model of extended thermody-
namics [9, 18], which can be obtained by Eqs. (2) and (8) and by identifying
z
.= q in the case that is considered here. The constitutive quantities s, Js, q,

and � are assumed to depend on the chosen state space (ε, z).

2.1. Coleman–Noll method

By substituting the values of ε̇ and ż, given by Eqs. (2) and (8), into the time
derivative of s in Eq. (1), we obtain the Coleman–Noll inequality (CNI):

(
− ∂s

∂ε

∂q

∂ε
− ∂s

∂z
· ∂�
∂ε

+ ∂Js

∂ε

)
·∇ε+

(
− ∂s

∂ε

∂q

∂z
− ∂s

∂z
· ∂�
∂z

+ ∂Js

∂z

)
: ∇z+

+ ∂s

∂z
· π + ∂s

∂ε
r − rs � 0. (9)

We now assume that the entropy supply is given by Eq. (4). However, we do not
presuppose that the entropy flux is q/ϑ , since this form seems to hold only for
a restricted class of materials. Different proposals for a generalized entropy
flux are given in [6,8,19,20], and in the context of extended thermodynamics;
see [18]. Under the previous assumptions and due to the thermodynamic
relation ∂s/∂ε := 1/ϑ , the supply terms in the inequality (9) cancel, and we
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obtain

(
− ∂s

∂ε

∂q

∂ε
− ∂s

∂z
· ∂�
∂ε

+ ∂Js

∂ε

)
· ∇ε+

+
(

− ∂s

∂ε

∂q

∂z
− ∂s

∂z
· ∂�
∂z

+ ∂Js

∂z

)
: ∇z + ∂s

∂z
· π � 0. (10)

2.2. Liu method

The Liu inequality can be obtained by multiplying Eq. (2) by an a priori unde-
termined scalar Lagrange–Farkas multiplier −λ(ε, z), Eq. (8), by a vectorial
Lagrange–Farkas multiplier −λ(ε, z) and adding the obtained equations to
Eq. (1). Then we obtain the Liu inequality (LI),

( ∂s

∂ε
− λ
)
ε̇ +
(

− λ
∂q

∂ε
− λ · ∂�

∂ε
+ ∂Js

∂ε

)
· ∇ε +

(∂s

∂z
− λ
)

· ż+

+
(

− λ
∂q

∂z
− λ · ∂�

∂z
+ ∂Js

∂z

)
: ∇z + λ · π (z) � 0. (11)

As a consequence of the Liu–Farkas lemma [12,15,16,21], the higher deriva-
tives in the brackets in Eq. (11) are treated as independent variables. The
inequality implies that the brackets vanish, and we have

λ = ∂s

∂ε
, λ = ∂s

∂z
, (12)

−λ∂q

∂ε
− λ · ∂�

∂ε
+ ∂Js

∂ε
= 0, (13)

−λ∂q

∂z
− λ · ∂�

∂z
+ ∂Js

∂z
= 0, (14)

λ · π ≥ 0. (15)

The same set of equations is obtained from an exploitation of the entropy
inequality together with the balance equations, applying the Coleman–Mizel
formulation of the second law; for a proof, see [4].

If instead we require that the fields ε and z satisfy the CNI (10), since for the
higher derivatives ∇ε and ∇z arbitrary values can be prescribed (see, e.g., [22]
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for details), we obtain

− ∂s

∂ε

∂q

∂ε
− ∂s

∂z
· ∂�
∂ε

+ ∂Js

∂ε
= 0, (16)

− ∂s

∂ε

∂q

∂z
− ∂s

∂z
· ∂�
∂z

+ ∂Js

∂z
= 0, (17)

∂s

∂z
· π ≥ 0. (18)

It is easily seen that, if Eqs. (12)–(15) hold, then we can substitute Eq. (12) into
Eqs. (13)–(15), in order to obtain Eqs. (16)–(18). Conversely, if Eqs. (16)–

(18) hold, then Eqs. (12)–(15) are recovered by setting λ
.= ∂s

∂ε
and λ

.= ∂s

∂z
.

In such a way we have proved the following:

Theorem of equivalence
If the state space (7) is chosen and if the evolution of (ε, z) is governed by
the system (2) and (8), then the CNI (10) and the LI (11) are equivalent and
result in the same set of thermodynamic restrictions.

3. Equivalence of CNI and LI in the case of gradient theory

In this section, we assume that the thermodynamic state space is spanned by
the set of variables

Z = {ε, z,∇ε,∇z}, (19)

namely a first-order non-locality enters the constitutive equations. Moreover,
let the evolution of the basic field (ε, z) be governed by Eqs. (2) and (8). If
z is an internal variable of state, the model leads to some celebrated equa-
tions of low-temperature physics such as the Ginsburg–Landau and Guyer–
Krumhansl equation [23].

Using Eqs. (1), (2), and (8), we can apply the CN technique and write the
entropy production σs as follows:

σs = ∂s

∂z
· π + ∂s

∂∇ε · ∇ε̇ + ∂s

∂∇z
: ∇ż +

(∂Js

∂ε
− ∂s

∂ε

∂q

∂ε
− ∂s

∂z
· ∂�
∂ε

)
· ∇ε+

+
(∂Js

∂z
− ∂s

∂ε

∂q

∂z
− ∂s

∂z
· ∂�
∂z

)
: ∇z +

( ∂Js

∂∇ε − ∂s

∂ε

∂q

∂∇ε − ∂s

∂z
· ∂�
∂∇ε
)

: ∇2ε+

+
( ∂Js

∂∇z
− ∂s

∂ε

∂q

∂∇z
− ∂s

∂z
· ∂�
∂∇z

)
.
: ∇2z ≥ 0. (20)
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By the same arguments as in the previous section, it follows that Eq. (20) is
fulfilled for any solution of the balance equations, if and only if

s = s(ε, z), (21)

∂s

∂z
· π +

(∂Js

∂ε
− ∂s

∂ε

∂q

∂ε
− ∂s

∂z
· ∂�
∂ε

)
· ∇ε+

+
(∂Js

∂z
− ∂s

∂ε

∂q

∂z
− ∂s

∂z
· ∂�
∂z

)
: ∇z ≥ 0, (22)

∂Js

∂∇ε − ∂s

∂ε

∂q

∂∇ε − ∂s

∂z
· ∂�
∂∇ε = 0, (23)

∂Js

∂∇z
− ∂s

∂ε

∂q

∂∇z
− ∂s

∂z
· ∂�
∂∇z

= 0. (24)

On the other hand, by applying the Liu procedure, the entropy production
takes the form

σs =
[ ∂s

∂ε
− λ
]
ε̇ +
[∂s

∂z
− λ
]

· ż + ∂s

∂∇ε · ∇ε̇ + ∂s

∂∇z
: ∇ż+

+
[∂Js

∂ε
− λ

∂q

∂ε
− λ · ∂�

∂ε

]
· ∇ε +

[∂Js

∂z
− λ

∂q

∂z
− λ · ∂�

∂z

]
: ∇z+

+
[ ∂Js

∂∇ε − λ
∂q

∂∇ε − λ · ∂�
∂∇ε
]

: ∇2ε +
[ ∂Js

∂∇z
− λ

∂q

∂∇z
− λ · ∂�

∂∇z

]
.
: ∇2z+

+λ · π ≥ 0. (25)

The inequality above implies the thermodynamic restrictions

λ = ∂s

∂ε
, λ = ∂s

∂z
, (26)

s = s(ε, z), (27)

∂Js

∂∇ε − λ
∂q

∂∇ε − λ · ∂�
∂∇ε = 0, (28)

∂Js

∂∇z
− λ

∂q

∂∇z
− λ · ∂�

∂∇z
= 0, (29)

J. Non-Equilib. Thermodyn. 2008 · Vol. 33 · No. 1 Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 01.10.18 17:28



“JNET, Verlag Walter de Gruyter GmbH & Co. KG” — 2008/2/26 — 17:04 — page 54 — #8

54 V. Triani et al.

λ · π +
(∂Js

∂ε
− λ

∂q
∂ε

− λ
∂�

∂ε

)
· ∇ε+

+
(∂Js

∂z
− λ · ∂q

∂z
− λ · ∂�

∂z

)
: ∇z ≥ 0. (30)

Again, we can see that if Eqs. (26)–(30) hold, then on substituting Eq. (26) into
Eqs. (28)–(30) we get the thermodynamic restrictions (21)–(24). Conversely,

if Eqs. (21)–(24) are true, we can recover Eqs. (26)–(30) by setting λ
.= ∂s

∂ε

and λ
.= ∂s

∂z
. Hence, we conclude that the equivalence theorem proved in

Section 2 can be extended to the state space (19) of a first-order gradient
theory. Moreover, it is easily seen that the considerations above apply to a
gradient theory of arbitrary order.

4. A gradient theory with an internal variable

The internal variables of state constitute an efficient means of dealing with
non-equilibrium processes involving complex thermodynamical systems [24].
This is the case, for instance, in the inelastic behavior of solids or in the re-
laxation effects in thermo-viscous fluids [25]. Their evolution is ruled either
by ordinary differential equations (local theory) [26], or by partial differ-
ential equations (weakly non-local theory) [16, 23, 27–30]. In this last case,
exploitation of second law takes on a particular meaning, since it also allows
the derivation of suitable boundary conditions [17].

In the present section, we are dealing with a rigid heat conductor with a single
internal variable. We assume that the material is described by the following
choice of the state space:

Z = {ε,∇ε, α,∇α}, (31)

where α is a scalar internal variable satisfying the partial differential equation

α̇ = f (α,∇α), (32)

from which follows the extended evolution equation for ∇α,

∇α̇ = ∂f

∂α
∇α + ∂f

∂∇α · ∇2α. (33)

Equations (32) and (33) together with the local balance of the energy (2)
are the field equations for the wanted fields ε and α. Let us remark that the
argument of f is now included in Z, meaning that α̇ is expressed as a function
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of the elements of the state space variables. Such a situation is rather different
from that of the previous section in which z can also be an internal degree
of freedom, due to a complex structure of the material. However, because
of Eq. (8), ż cannot be expressed as a function of the state space, due to
the flux term in the equation for z. In other words, the right-hand side of
Eq. (32) does not contain the higher derivatives of the basic field. This case
is very frequent in the theory of complex materials in which the internal
parameters are often governed by ordinary differential equations. In such a
case, if only the evolution equation is substituted into the entropy inequality,
some information is lost and one can get only an additional term in the reduced
entropy inequality representing the local entropy production due to the internal
variable. To overcome this problem, we substitute into the entropy inequality
the extended evolution equation, too, in such a way that the obtained inequality
contains derivatives of α of higher order than those already included in the
state space [16,23,28–30]. It is easily seen by direct inspection that the further
substitution of the second-order extended evolution equation, too, does not
furnish any additional constitutive restriction.

The Coleman–Noll technique is applied by substituting Eq. (33) into the en-
tropy inequality. In such a case, due to Eqs. (32), (33), and (2), the CNI reads

σs = ∂s

∂α
f +
( ∂s

∂∇α
∂f

∂α
− ∂s

∂ε

∂q

∂α
+ ∂Js

∂α

)
· ∇α +

+
( ∂s

∂∇α
∂f

∂∇α − ∂s

∂ε

∂q

∂∇α + ∂Js

∂∇α
)

: ∇2α + ∂s

∂∇ε · ∇ε̇ +

+
(∂Js

∂ε
− ∂s

∂ε

∂q

∂ε

)
· ∇ε +

( ∂Js

∂∇ε − ∂s

∂ε

∂q

∂∇ε
)

: ∇2ε ≥ 0. (34)

Again, by the same arguments as in the previous sections, we obtain the
thermodynamic restrictions

s = s(α,∇α, ε), (35)

∂s

∂∇α
∂f

∂∇α − ∂s

∂ε

∂q

∂∇α + ∂Js

∂∇α = 0, (36)

∂Js

∂∇ε − ∂s

∂ε

∂q

∂∇ε = 0, (37)

together with the reduced entropy inequality

∂s

∂α
f +
( ∂s

∂∇α
∂f

∂α
− ∂s

∂ε

∂q
∂α

+ ∂Js

∂α

)
·∇α+

(∂Js

∂ε
− ∂s

∂ε

∂q
∂ε

)
·∇ε ≥ 0. (38)
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On the other hand, due to Eqs. (32), (33), and (2), the Liu technique results
in the inequality

σs = ∂s

∂α
α̇ + ∂s

∂∇α · ∇α̇ + ∂s

∂ε
ε̇ + ∂s

∂∇ε · ∇ε̇+

+ ∂Js

∂α
· ∇α + ∂Js

∂∇α · ∇2α + ∂Js

∂ε
· ∇ε + ∂Js

∂∇ε : ∇2ε − λa (α̇ − f )−

−λ
(
ε̇ + ∂q

∂α
· ∇α + ∂q

∂ε
· ∇ε + ∂q

∂∇α : ∇2α + ∂q

∂∇ε : ∇2ε
)
−

−λ ·
(
∇α̇ − ∂f

∂α
∇α − ∂f

∂∇α · ∇2α
)

≥ 0. (39)

The inequality above can be rearranged as follows:

σs =
( ∂s

∂ε
− λ
)
ε̇ +
( ∂s

∂∇α − λ
)

· ∇α̇ +
(
∂s

∂α
− λa

)
α̇ + ∂s

∂∇ε · ∇ε̇+

+
(∂Js

∂α
− λ

∂q

∂α
+ ∂f

∂α
λ

)
· ∇α +

(∂Js

∂ε
− λ

∂q

∂ε

)
· ∇ε +

+
( ∂Js

∂∇ε − λ
∂q

∂∇ε
)

: ∇2ε +

+
( ∂Js

∂∇α − λ
∂q

∂∇α + ∂f

∂∇αλ
)

: ∇2α + λaf ≥ 0. (40)

By applying the Liu–Farkas lemma [12,21] to Eq. (40), we get the following
thermodynamic restrictions:

λ = ∂s

∂ε
, λ = ∂s

∂∇α , λa = ∂s

∂α
, (41)

s = s(α,∇α, ε), (42)

λ
∂f

∂∇α − λ
∂q

∂∇α + ∂Js

∂∇α = 0, (43)

∂Js

∂∇ε − λ
∂q

∂∇ε = 0, (44)

�af +
(
λ
∂f

∂α
− λ

∂q

∂α
+ ∂Js

∂α

)
· ∇α +

+
(∂Js

∂ε
− λ

∂q
∂ε

)
· ∇ε ≥ 0. (45)
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Let us assume that Eqs. (41)–(45) hold. Then we can substitute Eq. (41) into
the remaining relations and obtain Eqs. (35)–(38). Vice versa, if Eqs. (35)–

(38) hold, then the Liu relations Eqs. (41)–(45) are recovered, if we setλ
.= ∂s

∂ε
and λ

.= ∂s

∂∇α . This proves that, also in this case, the CN and Liu procedures

have the same consequences on the constitutive equations.

5. Conclusions

In this paper, we have compared the celebrated Coleman–Noll and Liu tech-
niques exploiting the second law for the example of a rigid heat conductor. We
have seen that the Coleman–Noll procedure, although it has been originally

designed for the class of materials for which Js = q

ϑ
, can be applied, if the en-

tropy flux is assumed to be an open constitutive equation. Consequently, it can
be used also for complex materials. By the substitution technique developed by
Coleman and Noll [11], we obtained the local form of entropy productionσs in
various situations.We also get the local entropy production by using the proce-
dure of the Lagrange multipliers developed by Liu [12]. We have analyzed the
local and the weakly non-local theory, and in both cases we have proved that
the two expressions of σs are equivalent in the case of a rigid heat conductor.
As a simple but meaningful application, we have considered a gradient theory
of a rigid heat conductor with a scalar internal variable. Also in this case, we
proved the complete equivalence of the Coleman–Noll and Liu techniques.

An interesting result is that the entropy density (27) does not depend on the
highest variables of the state space (19), if Eq. (8) is valid. If the evolution
equations are of relaxation type (32), the entropy density (42) depends also
on the highest derivatives of the state space (31).

Let us ask which procedure might be technically easier. To our opinion, the
Coleman–Noll procedure is less cumbersome in general, and so it is conve-
nient to apply such a technique in dealing with complex materials, whose
constitutive space contains several tensorial thermodynamical variables. On
the other hand, this procedure can be applied in different ways, leading to
different results, whose comparison is, in general, not easy.

On the contrary, the Liu procedure is clear and uniquely defined, whatever the
system of governing equations is, and such a property uniquely determines the
set of the thermodynamical restrictions. Hence, when the thermodynamical
state space is not too complex, the application of this procedure would be
preferable.
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The case of a rigid heat conductor considered here is not the general one,
which may be represented by a deformable body whose constitutive equations
contain space and time derivatives of the basic variables up to an arbitrary
order and by the presence of extra variables, such as the deformation tensor,
the symmetric part of the velocity gradient, the plasticity tensor, and which
also include different types of time derivatives. We presume that also in this
more general case the equivalence should not be affected, although the proof
of this conjecture may be cumbersome.

But there are situations in which the equivalence of both procedures cannot be
expected: If in case of the state space spanned by the variables Z = (ε, z), the
governing differential equation for the higher derivative ż cannot be resolved
to ż, so that they cannot be inserted into the dissipation inequality (1), in con-
trast to Eq. (8), which is in a normal form. Here the Coleman–Noll procedure
fails, but the Liu procedure is still possible by taking the governing diffential
equations as constraints into consideration according to Eq. (11).

Another point of future research is how the results generated by the Coleman–
Noll and Liu procedures are altered, if some of the governing equations are
not taken into account as constraints, or if differentiated balance equations
are treated as additional constraints. What happens with both the procedures
if the well-posedness of the Cauchy problem is not warrented, if stochastic
variables are included in the state space, or if transitions to the chaotic regime
appear ?

These short remarks demonstrate that the systematic exploitation of the dis-
sipation inequality makes more investigations necessary.
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