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Abstract

Geometry processing algorithms commonly need to solve linear systems involv-
ing discrete Laplacians. In many cases this constitutes a central building block of
the algorithm and dominates runtime. Usually highly optimized libraries are em-
ployed to solve these systems, however, they are built to solve very general linear
systems. I argue that it is possible to create more efficient algorithms by exploit-
ing domain knowledge and modifying the structure of these solvers accordingly.
In this thesis I take a first step in that direction. The focus lies on Cholesky fac-
torizations that are commonly employed in the context of geometry processing.
More specifically I am interested in the solution of linear systems where variables
are associated with vertices of a mesh. The central questionis: Given the Cholesky
factorization of alinear system defined on the full mesh, how can we efficiently ob-
tain solutions for a local set of vertices, possibly with new boundary conditions?
I present methods to achieve this without computing the value at all vertices or
refactoring the system from scratch. Developing these algorithms requires a de-
tailed understanding of sparse Cholesky factorizations and modifications of their
implementation. The methods are analyzed and validated in concrete applica-
tions. Ideally this thesis will stimulates research in geometry processing and re-
lated fields to jointly develop algorithms and numerical methods rather than treat-

ing them as distinct blocks.
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Zusammenfassung

Algorithmen im Feld der Geometrieverarbeitung benétigen in vielen Fillen
die Losung linearer Gleichungssysteme, die im Zusammenhang mit diskreten
Laplace Operatoren stehen. Haufig stellt dies eine zentrale Operation dar,
die die Laufzeit des Algorithmus mafigeblich mitbestimmt. Normalerweise
werden dafiir hoch optimierte Programmbibliotheken eingesetzt, die jedoch
fir sehr allgemeine lineare Systeme erstellt wurden. In dieser Arbeit schlage
ich vor, effizientere Algorithmen zu konstruieren, indem die Struktur dieser
Programmbibliotheken modifiziert und ausgenutzt wird. Der Fokus liegt hierbei
auf der Cholesky Zerlegung, die im Kontext der Geometrieverarbeitung haufig
Verwendung findet. Dabei interessiere ich mich besonders fiir Teile der Losung
linearer Gleichungssysteme, die zu einer lokalisierten Region auf dreidimension-
alen Dreiecksnetzen gehoren. Die zentrale Frage dabei lautet: Angenommen
die Cholesky Zerlegung eines linearen Gleichungssystems, definiert auf dem
gesamten Netz, ist gegeben. Wie kann man die Losung an einer kleinen
lokalisierten Menge von Knotenpunkten, méglicherweise unter neu gewiahlten
Randbedingungen, effizient bestimmen? In dieser Arbeit zeige ich Wege auf, wie
dies, ohne die Lésung an allen Knotenpunkten zu bestimmen oder die Zerlegung
komplett neu zu berechnen, erreicht werden kann. Dazu ist es notwendig, die
Funktionsweise von Methoden zur Cholesky Zerlegung diinnbesetzter Matrizen
zu analysieren, um sie dann in geeigneter Weise zu modifizieren. Die Methoden
werden anhand konkreter Anwendungsbeispiele analysiert. Im Idealfall kann
diese Dissertation zukiinftige Forschung im Bereich der Geometrieverarbeitung
und verwandter Felder stimulieren, Algorithmen und numerische Methode

gemeinsam zu entwickeln und sie nicht mehr als unabhingige Teile zu verstehen.






Acknowledgments

I am deeply grateful to Marc Alexa who gave me the chance to pursue the journey
thatlead to this thesis. Doing a PhD is a challenging task, scary at times but always
exciting. In many situations it was the continued support and trust that Marc put
in me that helped me push through all challenges I was facing. Ilearned from him
how to conduct science and ask the right questions. Instead of just putting pressure
on me he was always able to motivate with his genuine excitement for the field.
From day one he met me on eye level and created an atmosphere in which anything

could be discussed and questioned.

Besides my advisor many people shaped me as a researcher. I was lucky enough to
spend six months at MIT with Wojciech Matusik before starting my PhD. He gave
me the chance to experience the research environment in one of the worlds most
prolific universities. In 20135 I was invited back to Cambridge for an internship at
Disney Research under the supervision of David Levin who helped me broaden

the scope of my research.

Over the years many colleagues in the Computer Graphics group at TU Berlin
helped me on a daily basis. Many discussions and encouragement made working
there a great experience. It was always extremely helpful to talk to colleagues that
already went through the process I was in. Christian Lessig and Jan-Eric Kypri-
anidis took their time to guide me through the academic world and where always
extremely helpful, especially in deadline times. When David Lindlbauer joined the
group in late 2014 I could not know that I would not only meet a new colleague

but, together with Alexandra Ion, new friends. Their advise and encouragement

vii



exceeding the academic domain were indispensable during the years.

I am indebted to my parents Christiane and Paul and my brother Christoph for
their continued unconditional support. Lisa supported me relentlessly at all times
and I am thankful for her loving encouragement. I am grateful for having a close

friend like Eugen to talk to about anything at any time.

viii



Contents

Abstract
Zusammenfassung

1 Introduction

1.1 DiscreteLaplacians . . . . . ... ... ... .. 0L
1.2 Localizedlinearsystems . . .. ... ..............
1.3 Applications . . . .. .. ... L
1.4 Contributions . . . . . ... ... ..
1.5 Publications . . .. ... ... .. ... ...
1.6 Notation . ... ....... .. ... .. ... ..

2 Perfect Laplacians

2.1 Introduction . . ... ... ... . oo oL
2.2 Discrete Laplace operators . . . . .. ... ... ... .....
23 Method . . . .. ... ..
2.4  Meshes admitting perfect Laplacians . . . . . . ... ... ...
2.5 Results . .. ... .. . ..
2.6 Applications . . ... ... Lo o oo
2.7 Discussion . . . . . . . ... e e e e

3 Diffusion diagrams

3.1 Introduction . ... ... ... ... ...

iii

11
13
17
18

21

25

27



3.2 Discrete heatdiffusion . . ... .. ... ... ......... 29

3.3 Relatedwork . . ... ... ... .. .. ... .. . . 31
3.4 Voronoicells . ... .. ... ... . .. ... .. .. ... . 33
3.5 Centroidsonsurfaces. . . . .. ... ... ........... 40
3.6 Localizedsolving . . . ... ........... ... ..... 45
3.7 Applications . . . ... ... L o 49
3.8 Conclusion . . . . ... ... 57
Localized solutions of sparse linear systems 61
4.1 Introduction . ... ... ... .. ... 61
42 Background . . ... ... ... o o o oL 63
43 Localsolves . . . . . . . ... . ... 70
4.4 Poissonproblemsonpatches . . . ... ... ... ... 73
4.5  Comparison to approximate sparsesolving . . . . . .. ... .. 81
4.6 Applications . . ... .. ... L 83
4.7 Discussion & conclusions . . . . ... ... ... .. ... .. 85
Reusing Cholesky factorizations on submeshes 87
5.1 Introduction . . ... ... ... .. .. ... . 87
52 Relatedwork . . ... ... ... .. ... .. 90
5.3  Background: Sparse Cholesky factorization . . ... ... ... 92
54 Approach . . ... ... ... L 97
5.5 Sparseupdates . . . ... ... ... L 98
5.6 Implementation . ... ..................... 103
57 Evaluation . .. .. ... ... ... .. 103
5.8 Discussion&conclusion . . . ... ... .. .. ........ 109
Efficient computation of smoothed exponential maps 113
6.1 Introduction . .. ... .. ... ... .. .. 113
6.2 Relatedwork . .. ... ... ... ... ... ... .. ... 116
6.3 Preliminaries . . . . . . ... ... ... .. 118

ii



6.4 Background . . ... ... ... ... oo L 119
6.5 Algorithm . . . ... ... ... ... ... ... ... ..... 121
6.6 Implementation . ........................ 12§
6.7 Evaluation . ... .. ... . ... ... 125
6.8 Conclusion . . . . ... ... ... 133
=~ Conclusion 139
7.1 Contributions . . . ... ... . 140
72 Outlook. . .. . ... . 141
Bibliography 143

ii






Introduction

Geometry processing emerged as a field within computer graphics in the last
decades. It covers a diverse range of topics like surface reconstruction from point
samples, parameterization and mesh deformation with applications in rapid
prototyping, interactive mesh modeling, simulation and animation. Being at
the intersection of topics from pure mathematics like topology and differential
geometry, and ones from computer science like numerical analysis and computer

graphics, the field poses unique questions, both challenging and fascinating.

One particular direction of research in geometry processing is concerned with the
discretization of concepts from differential geometry on surface meshes. They en-
able the generalization of tools from signal processing, which are well established
in the context of image processing, to discrete geometry. This endeavor is con-
siderably more difficult than equivalent problems in signal processing of image or

audio data. In image processing the signal can be represented as data on a highly



regular domain, enabling the use of tools like the fast Fourier transform, filtering
and multigrid methods. Moreover, distances and angles are easily computed. In
the case of triangle meshes, however, the data is represented as a set of vertices in
3-space along with a set of polygons connecting the vertices. This means the sig-
nal is the domain itself, so that the direct application of algorithms from the signal
processing toolbox is not possible. A key to deal with this issue is the construc-
tion of a proper discretization of the Laplace-Beltrami operator, or Laplacian for
short. A surprising number of algorithms in geometry processing make use of this
operator in one form or another. As a generalization of the second derivative to
surfaces, it allows to define the notions of frequency and eigenmodes in direct anal-
ogy to Fourier analysis of one- or multidimensional signals defined over R?. This
enables filtering of surface signals, most prominently for smoothing. From a more
geometric point of view, the Laplace-Beltrami operator can be used to compute

mean curvature.

Since the Laplace-Beltrami operator is linear, its discretization can be represented
as a matrix. In the context of geometry processing this matrix is usually part of a
linear system that needs to be solved. In many cases this step dominates the run-
time of algorithms and highly optimized oft-the-shelf solvers are employed. The
idea of this thesis is to open the black boxes these solvers represent. As a first step
in this direction, properties of Cholesky factorization algorithms are exploited to
design algorithms that are significantly faster and more robust. The main focus lies
on localization, that is, solving for the variables of a local surface patch only, possi-
bly while introducing new boundary conditions. The contributions of this thesis

fall into three categories:

« The definition of a discrete Laplace-Beltrami operator retaining as many

properties from the smooth setting as possible by modifying the geometry.

« Efficient numerical methods to solve local linear systems involving the dis-

crete Laplace-Beltrami operator.

« Concrete algorithms employing the developed numerical methods in the

context of heat flow.



In the following I give a brief outlook on the key contributions of this thesis.

1.1 Discrete Laplacians

There are different ways to discretize the Laplace-Beltrami operator from contin-
uous differential geometry on surface meshes. Generally one wants to retain as

many properties of the operator from the smooth setting as possible.

Wardetzky et al. [107] proofed that a perfect discrete Laplace Operator can not
exist in the sense that the construction guarantees all properties of the continuous
Laplacian, like symmetry and positive semi-definiteness, for every triangle mesh.
This explains the variety of discretization available; depending on the application
one has to choose an operator that possesses properties important for that set-
ting. In Chapter 2 I propose a change of perspective and introduce an algorithm
that constructs a perfect Laplace operator based on an arbitrary mesh by slightly
changing vertex positions if necessary. I argue that mathematical properties of the
Laplacian are, in many situations, more important than keeping the exact mesh ge-
ometry. Another way of looking at the technique is to associate a Laplacian of a

nearby mesh to some input geometry ifa perfect one does not exist.

1.2 Localized linear systems

The solution of linear systems involving discrete Laplacians is at the core of many
geometry processing algorithms. Linear systems have to be solved once, e.g. to
compute a discrete conformal parameterization [26], or several times in the con-
text of physical simulations or Newton based optimization approaches. In many
cases, solving linear systems poses, together with the assembly of the Hessian,
the main computational burden, making the choice of linear solver crucial. For-
tunately, the system matrix is in many cases sparse, positive (semi-)definite and
symmetric so that a sparse Cholesky factorization can be constructed leading to
efficient linear solves, possibly with multiple right-hand sides. A crucial property
of this factorization is the fact that a sparse system matrix usually leads to a sparse

Cholesky factor. If this would not be the case storage and runtime requirements



would hinder the use of this technique. Even though the solution of linear systems
is a fundamental task, implementations of geometry processing algorithms usu-
ally rely on off-the-shelf solvers that are highly efficient but are designed for much
more general problems. The systems we are interested in usually have a very dis-
tinct structure. In particular, the sparsity patterns of system matrices are related to
the combinatorics of an embedded triangle mesh. Moreover, if we are interested
in the exact solution of a linear system given its factorization in a few variables
only, we have to solve for all of them and then extract the required values. The
situation is even more complicated if we also want to impose new boundary con-
ditions for a set of variables. In this case the factorization has to be recomputed.
One particular example is mesh deformation. Usually only a small portion of the
mesh should be manipulated at a time and the rest should stay fixed. Introducing
this kind of boundary conditions makes the factorization of a new system matrix
necessary whenever a new region of interest is defined. Even though this matrix is
very similar to the original one, for which a factorization exists, the factorization
is done from scratch. In Chapter 5 I introduce a method that reuses information
from the original factorization in order to compute the new factorization signifi-
cantly faster. For the case of a local system that does not impose new boundary
conditions I present in Chapter 4 a technique that uses selective back substitution

to compute the required values without determining all others.

1.3 Applications

I introduce a set of algorithms that benefit from the presented localization tech-

niques, demonstrating that they can be an enabler for practical algorithms.

Building on recent work by Crane et al. [17] we use heat diffusion on meshes to
measure distances. The idea is to discretize the common heat diffusion PDE in-
volving the Laplacian using a discrete Laplacian. Varahdan [103] proved that the
solution of the heat diffusion equation is directly related to distance. With a no-
tion of distance we can evaluate Voronoi diagrams. In Chapter 3 I present an algo-
rithm using this idea to compute approximate, well-balanced (centroidal) Voronoi

diagrams. This technique is among the only ones operating purely intrinsic in the



sense that it does not rely on extrinsic distances induced by the specific embedding
of the mesh. Since distance information is relevant only close to the heat source
in this application, I use approximate sparse localization techniques to implement
the algorithm. In Chapter 6 I demonstrate that techniques similar to those used for
heat flow based geodesic distance computations can be employed to compute the
direction of the geodesic connecting a given point to a set of neighboring vertices.
This enables heat based computation of logarithmic maps on meshes which can
be used to define local coordinate systems on the surface in the vicinity of a given

point.

1.4 Contributions

The contributions of this thesis fall into three categories. Chapter 2 which intro-
duces the construction of a discrete Laplace operator. Chapters 3 and 6 which in-
troduce concrete algorithms involving discrete Laplacians. Chapters 4 and 5 deal
with effective strategies to solve linear systems by modifying Cholesky factoriza-

tions. In more detail, they are given by:

Chapter 2: A construction of a discrete Laplace-Beltrami operator enforcing a
set of properties from continuous differential geometry, possibly by

altering the input geometry.

Chapter 3:  An algorithm for the computation of intrinsic centroidal Voronoi di-

agrams based on heat diffusion.

Chapter 4: A method to locally evaluate the solution of a linear system defined
on the surface without the need to compute the solution vector in its

entirety.

Chapter 5:  An algorithm to update the factorization of linear systems to accom-
modate changes in a mesh. In particular changing boundary condi-
tions for mesh deformation or parameterization can be incorporated

without the need of an expensive refactorization.

Chapter 6:  An algorithm to compute exponential maps based on heat diffusion,

extending previous approach for computing geodesic distances be-



tween points by the computation of the angle of geodesics relative

to a fixed direction in the tangent plane.

1.§ Publications

The presented algorithms have all been published in peer-reviewed journals
and were presented at international conferences. I am greatly indebted to my
co-authors without whom this work would not have been possible. Therefore I
will use the plural form “we” when referring to the contributions in the individual

chapters.

o Chapter 2 was published and presented as: Philipp Herholz, Jan Eric Kypri-
anidis and Marc Alexa. Perfect Laplacians for Polygon Meshes. In Com-
puter Graphics Forum (Proceedings of the Eurographics Symposium on Geom-
etry Processing ), volume 34, pages 211218, Aire-la-Ville, Switzerland, 2015.

Eurographics Association. doi:10.1111/cgf.12709.

o Chapter 3 was published and presented as: Philipp Herholz, Felix Haase
and Marc Alexa. Diffusion Diagrams: Voronoi Cells and Centroids from
Diffusion. In Computer Graphics Forum (Proceedings of Eurographics), vol-
ume 36, pages 163—175, Aire-la-Ville, Switzerland, 2017. Eurographics As-

sociation. doi:10.1111/cgf.12556.

« Chapter 4 was published and presented as: Philipp Herholz, Timothy A.
Davis and Marc Alexa. Localized solutions of sparse linear systems for
geometry processing. © Owner/Author | ACM 2017. This is the author’s
revised and adapted version. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in
ACM Transactions on Graphics (Proceedings of Siggraph Asia), volume
36, number 6, pages 183:1-183:8, New York, USA, 2017. ACM Press.
doi:10.1145/3130800.3130849.

« Chapter 5 was published and presented as: Philipp Herholz and Marc
Alexa. Factor Once: Reusing Cholesky Factorizations on Sub-Meshes.
© Owner/Author | ACM 2018. This is the author’s revised and adapted


https://doi.org/10.1111/cgf.12709
https://doi.org/10.1111/cgf.12556
https://doi.org/10.1145/3130800.3130849

version. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in ACM Transactions on Graph-
ics (Proceedings of Siggraph Asia), volume 37, number 6, pages 230:1-230:9,
New York, USA, 2018. ACM Press. doi:10.1145/3272127.3275107.

« Chapter 6 was published and presented as: Philipp Herholz and Marc
Alexa. Efficient Computation of Smoothed Exponential Maps. In Com-
puter Graphics Forum, volume 38, number 6, pages 79—90, Aire-la-Ville,

Switzerland, 2019. Eurographics Association. doi:10.1111/cgf.13607.

1.6 Notation

The central object of interest in this thesis are surface meshes. They can be thought
of as discretizations of 2-manifolds (possibly with boundaries). Because this the-
sis exclusively deals with surface meshes, the short form “meshes” will also be
used. A surface mesh is denoted as M = (V, &, F) or M = (V, F) where
V = (o,1,2,...,n, — 1) represents a set of vertices. The set of edges & =
((i05jo)s (ixsjs), - - - ) consists of 2-tuples indexing vertices in V. Similiary faces are
represented as a set of ng tuples F = ((i, jo, kos - - - )5 (ir jus kiy - - - ), - - . ) each of

which indexes vertices of that face in counterclockwise order.

The position of the i-th vertex will be denoted by v; € R, the embedding of a mesh
can therefore be thought of asamap V — R, i — v, or, alternatively, as a matrix
V € R™*3, Each edge (i, /) has an associated edge vector e; = v; — v; and each
triangular face (i, j, k) an associated area weighted surface normal

= i(vi —vi) X (vj — vi) (1.1)

and area a; = |||

Because meshes will be used as to discretize 2-manifolds, the set of possible poly-
gon lists N"*" needs to be further restricted. In particular I make the following

assumptions if no further restrictions are explicitly stated:

« The edges of each polygon form simply connected loops.


https://doi.org/10.1145/3272127.3275107
https://doi.org/10.1111/cgf.13607

« If two faces share an edge both polygons are consistently oriented, i.e. if

(k, ) is an edge of the first face then (I, k) is an edge of the second.

« Allvertices \V; connected to a vertex i are connected by a set of edges form-

ing a simple polygon.

Bold capital letters (A, B, C . . . ) will be used to refer to matrices while small bold
letters (a,b,c...) denote vectors and small regular letters (a, b, c) represent
scalars. The entries of a matrix A or a vector b are referred to as a; and b;,

respectively.



Perfect Laplacians

2.1 Introduction

Discrete approximations of the Laplace-Beltrami operator are at the heart of many
mesh processing techniques, such as representation [93 ], deformation [7], spec-
tral processing [ 58], or descriptors [ 10]. For triangle meshes the cotan Laplacian
[25, 79] is a common choice because it enjoys many desirable properties. How-
ever, as discussed by Wardetzky et al. [107], discrete Laplace operators cannot
be perfect in the sense that they may fail to possess all properties of their smooth
counterpart for an arbitrary triangle mesh. We recall the desired properties in Sec-

tion 2.2 and explain why they are important for mesh processing applications.

The notion of perfect Laplace operators can be linked to force networks in equi-
librium that only pull vertices along edges. This viewpoint allows the characteri-

zation of triangle meshes that admit perfect Laplace operators, namely, so called



regular or weighted Delaunay meshes. Vertex weights can be used to generalize the
cotan Laplacian [39, 40], and for any weighted Delaunay mesh there exists a per-

fect Laplace operator of this form [41].

The situation is far less developed for general polygon meshes, i.e., meshes with
face degrees larger than three. Alexa and Wardetzky [ 1] provide a construction
that reduces to the cotan-Laplace for triangle meshes, but it is unclear for which
meshes this operator is perfect. More importantly, there is no obvious general-
ization for weighted meshes, and therefore the question of existence of perfect
Laplace operators for polygon meshes is open. Using the connection to orthog-
onal duals or force networks we are able to close this gap and generally describe

(planar) meshes that admit perfect Laplacians (see Section 2.4.).

Our main contribution is an algorithm that generates perfect Laplace operators
for any polygonal mesh without changing the combinatorics but possibly changing

the embedding. The main ideas for this algorithm are as follows:

1. Weidentify a perfect Laplace operator for a mesh with given combinatorics
with a unique embedding by fixing the boundary. This defines a mapping
from the coefficients of the Laplace operator to the edge lengths.

2. By analogy to force networks, we derive a simple update rule for the coeffi-

cients such that the edge lengths converge to the desired ones (if possible).

We describe and discuss this algorithm in Section 2.3. An important point of the
algorithm is that it is based only on defining boundary conditions and measur-
ing edge lengths of the embedding and thus has a natural extension to (possibly

closed) non-planar meshes embedded in higher dimension.

We demonstrate the construction of perfect Laplace operators for polygon meshes
by means of self-supporting surfaces with polygonal tiles as well as by computing
parameterizations in Section 2.6 and discuss the properties of our construction, in

particular in relation to other approaches, in Section 2.7.

10



2.2 Discrete Laplace operators

The smooth Laplace-Beltrami operator has several properties that naturally
translate into properties of a discrete analogue. Loosely following Wardetzky
et al. [107], we call a discrete Laplace operator perfect if it is locally defined,
symmetric, non-negative, affinely invariant (the constant functions are in the
kernel), and has linear precision. In the following, we detail these properties and

discuss implications.

Let M = (V, &, F) be a polygon mesh. A (discrete) Laplace operator L on M
is defined by symmetric coefficients w; = wj; associated to each oriented edge

(i,j) € &, acting on real-valued functionsu : V +— R, i — u; by:

(Lu); = Z wi(u; — ;) . (2.1)

(ij)e€

This definition identifies all discrete Laplacians that are local and symmetricin the
sense of Wardetzky. Being defined on the differences of vertex values, the constant

functions are always in the kernel, making the operator affinely invariant.

Non-negativity A Laplace operator is said to be non-negative, if all its coeffi-
cients are non-negative and if there is a spanning tree consisting of edges with pos-
itive coefficients. In combination with symmetry, this property ensures that (i)
the operator is positive semi-definite and (ii) harmonic functions (with respect
to the operator and appropriate boundary conditions) obey the maximum prin-
ciple. This principle states that harmonic functions take their extremal values at
the boundary. In the context of our work (and more generally for the application
of computing parameterizations) it ensures that Laplacians can be used to obtain

embeddings (with convex boundary) of planar graphs [102].

Linear precision In the smooth setting, the Laplace-Beltrami operator L ap-
plied to the embedding of a smooth 2d manifold yields the area gradient [27]. In

particular, it vanishes on planar domains. Hence, in the discrete setting we ask that

11



(Lu); = oifiis an interior vertex and all edges (i,j) € £ are contained in a plane.
Linear precision implies that mean curvature flow modifies the mesh only in nor-
mal direction (i.e., there is no tangential smoothing) and parameterization based

on the Laplacian preserves meshes in the plane.

Force networks For symmetric Laplace operators of the form in Equa-
tion (2.1), the consequences of linear precision and non-negativity can be made
more intuitive by considering the (planar) mesh as a force network [70]: each
edge is a spring pulling or pushing the incident vertices together or apart from

each other. In this picture, the coefficients w;; take the role of spring constants.

Consider the mesh to be embedded with vertex positions v,, v, ... and edges

e; = v; — v;. Then Hook’s law takes the form

fi = wjey, (2.2)
describing the force vector fj; acting on the spring (i, j). Comparing this to Equa-
tion (2.1), we see that applying the Laplace operator to the vertex positions yields
the sum of the forces for each node. Hence, linear precision means that forces can-
cel in each interior node or, in other words, the force network is in equilibrium.
The sign of the coefficients wj; distinguishes between pulling or pushing forces.
If all coefficients are positive, vertices are in equilibrium and the springs along all

edges are pulling.

No freelunch Based on the force network interpretation of Laplacians, Wardet-
zky et al. [ 107] prove that there are triangle meshes without a discrete Laplacian of
the form in Equation (2.1) obeying both linear precision and non-negativity (see
Figure 2.2 for an example). However, some applications call for a perfect Lapla-
cian: parameterization techniques based on the Laplacian, for example, require an
injective mapping; yet this is only guaranteed if the coefficients are non-negative
(and the boundary is fixed in convex position). Asking additionally that planar
meshes are mapped to themselves requires linear precision. See Section 2.6 for

details on parameterization. Further applications include the computation of self

12



supporting surfaces (Section 2.6) and the fitting of discrete minimal surfaces with

fixed convex boundaries.

2.3 Method

In this section, we derive an algorithm for constructing a perfect Laplace operator
for a given mesh. As not all meshes admit such an operator, the mesh vertices may
be perturbed by the algorithm. The idea of our approach for planar meshes can
be intuitively described in terms of force networks: starting from an arbitrary set
of positive spring constants, we compute vertex positions by fixing the boundary.
Then we compare the resulting edge lengths to the original ones. If an edge is too
short we lower the spring constant, yet keeping it positive. If the edge is too long

we increase the spring constant.

In the following we describe this idea rigorously, providing a principled way for
updating the coefficients. By introducing different boundary conditions, we can
extend this idea to meshes embedded into R3. An analysis of the steady state yields

a characterization of the solution.

2.3.1 Planar polygon meshes

Let M = (V, €, F) be aplanar 3-connected polygon mesh with single boundary
OM C V), and let the geometry be given by vertex positions V € R™**, where
the positions of vertices appear as row vectors v;. We assume that the boundary
vertices are in strictly convex position. One may augment the mesh with an outer

boundary in the spirit of [ 57] in order to relax this condition.

Let the coefficients of the Laplace operator and the edge lengths at the k-th itera-
tion of the algorithm be given by

|| (23)

w;’ >0 and ’

We start with {w,-(jo) = 1} (or any other positive choice). Then we repeatedly em-
bed the mesh with the given Laplace operator and update the coefficients. The

updates preserve positivity of the coefficients, ensuring their positivity for all iter-

13



ations. This algorithm is summarized as pseudo code in Algorithm 1. The details

are discussed in the remainder of this section.

Embedding Since we assume that the polygon mesh M has a convexboundary,
a solution for the equilibrium state of the spring network can be obtained by solv-
ing Laplace’s equation given by the coefficients w;; subject to the constraint that

the boundary {v;: i € 0 M} is held fixed. More specifically, at each iteration &,

we solve
QPVH = p (2.4)

with

0 (i,j) € E, i ¢ OM

ij y) ) 1 ¢
KoL .. .
oo )~ impagom [ o) oM
1 i=j, i€ oM v i€ oM
o otherwise

\

Since the coefficients are non-negative by construction, the resulting vertex ge-
ometry V¥ is a unique embedding. This follows from Tutte’s spring-embedding
theorem [ 102] and its extension by Floater [33]. In particular, uniqueness implies
that we have a mapping

wij — ||e,]|| (2.5)

from the Laplace operator coefficients to edge lengths. Note that this mapping is

invariant to multiplying all w; with a constant positive scalar.

(k)
ij
to the edge length ||¢;|| of the input mesh. Since the coefficients are positive, we

Updaterule We want to update the coefficients w;;~ such that Hei(jk) || gets closer

can derive from Hook’s law that

Fy= I = o el (26)
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Algorithm 1: Compute perfect Laplacian

Input: A mesh M = (V, &, F), coordinates V.
Output: Coordinates V, coefficients w;.

wij <1
fork =1, ..., max_itersdo
assemble Q%)
solve QY VK = p
why ol =9
’ Tl =il

k41 k41 k+1)\ 2
af e oS ()

| if [v®) — v || < ¢ then break

return V¥ , w,-(jk)

Assuming that forces stay constant for small changes in the spring constants sug-

gests the following update for the spring constants:

F.

k+1 i

ot = (2.7)
e,»j

Combining Equations (2.6) and (2.7) eliminates the dependence on forces and

yields our simple multiplicative update rule for the coefficients:

¢ le”|
wi(j ) = wi(jk) 1] . (2.8)
€ij

After updating all coefficients, we scale them uniformly to avoid them to become

arbitrarily small or large, potentially causing numerical problems. Note that the

(k)

fraction of current to original edge lengths is always positive so that w;” > o for

all k, as desired.

2.3.2 Polygon meshes in space

The algorithm can be readily generalized to polygonal meshes in 3d (V € R"™>3),

The property of non-negativity carries over directly. Linear precision on the other
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hand must be replaced by a condition on the mean curvature normal
(Lx)i = Hini ) (29)

with H; being the mean curvature and n; being the normal at vertex i. The mean
curvature normal may be computed using the cotan Laplacian or the area gradient
[1]. Condition (2.9) is consistent with the planar case, since discrete mean curva-
ture vanishes for planar vertices. Hence, to compute perfect Laplacians for closed

3d meshes, we replace the right-hand side of Equation (2.4) with

(Hin,-)T ¢ 8M
v/ i€ oM

1

b, = (2.10)

2.3.3 Steady state of the solution

We have applied the algorithm to numerous meshes and in all our examples it con-
verged quickly and uniformly to a steady state. An empirical study of convergence
will be presented in Section 2.5. Based on this experimental evidence we conjec-
ture that Algorithm 1 converges for arbitrary input meshes with prescribed convex

boundary.

It is instructive, however, to inspect the steady state of the solution. Recall that
we scale the w;; uniformly and denote this factor y. The update in Equation (2.8)

reaches a steady state if, for any edge, either

e,

oo)
7; H — {A_l or w_(_oo) = 0. (2.11)

Heg
In particular, if all w; > o then all original edge lengths are preserved. This means
that if a mesh admits a perfect Laplace operator, it is a steady state of our algo-
rithm. If the mesh admits no perfect Laplace operator, a subset of edges (in planar
regions) have zero Laplace coefficients while the rest is scaled by a constant fac-
tor relative to the original geometry. In the latter case, the lengths of edges corre-

sponding to zero Laplace coefficients are determined by the embedding based on
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the edges with positive coefficients. In a sense, the algorithm resorts to a subset of

the edges, i.e., a coarsening of the mesh.

2.4 Meshes admitting perfect Laplacians

Unless we can characterize the meshes that admit perfect Laplace operators, it is
difficult to claim that the algorithm always performs as expected. In the following,
we will therefore extend known results for triangle meshes [107] to the general

polygonal case.

Recall that a perfect Laplace operatorinduces a force network that is in equilibrium
where all forces are pulling. Note that, conversely, the existence of such a force net-
work implies the existence of a perfect Laplacian, noting that the spring constants
must be positive. So the existence of perfect Laplacians corresponds exactly to the
existence of pulling forces such that the nodes are in equilibrium. There is a useful
characterization for such meshes: the vertices can be lifted such that their convex
hull provides the given combinatorics [3]. In particular, triangle meshes with this
property are referred to as regular', yielding the characterization of meshes that

admit perfect Laplace operators in the sense of Wardetzky et al. [ 107].

However, the notion of meshes admitting lifts into convex position applies more
generally to any planar mesh and the meshes that do admit such a lift are called
regular subdivisions. Jaume and Roter [51] analyze the case of regular subdivi-
sions in detail and in particular distinguish between convex and strictly convex
lifts. This distinction also appears in the solutions provided by our algorithm (see
Section 2.3.3), as it translates to distinguishing zero and strictly positive coeffi-
cients in the Laplace operator. Jaume and Roter also apply their results to the case
of force networks, and we can adapt their Proposition 4.4 to derive the following

characterization:

A polygon mesh in the plane admits a perfect Laplace operator if

there exists a lift of the vertex positions such that the combinatorics

"We avoid the notion of weighted Delaunay here because it is limited to triangulations with a
single boundary, see for example [24].
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of the convex hull of the vertices is a 3-connected spanning subgraph

of the mesh.

Any edge not part of the subgraph corresponds to a dual edge of zero length or,

equivalently, to a zero coefficient of the Laplacian.

The polygons in regular subdivisions are quite restricted. In particular, since they
are projections of polyhedral faces, they are necessarily convex. In this view, it is
not surprising that Alexa and Wardetzky [ 1] implicitly consider a more general
construction: any two vertices that are part of the same face may carry a nonzero
coefficient. We may characterize the meshes that admit a perfect Laplacian with
such additional diagonals as follows: there exists a lift of the vertex positions
such that a subgraph of the combinatorics of the convex hull of the vertices is a
3-connected spanning subgraph of the mesh. In particular, a polygon mesh in this
case admits a perfect Laplace operator if it is contained in a regular triangulation

of the vertices.

Note that the natural notion of allowing nonzero coefficients means that faces with
higher degree are an obstruction for perfect Laplace operators, while allowing di-
agonals means that faces with higher degree relax the situation. We discuss the

practical consequences of this distinction further in Section 2.7.

2.5 Results

In order to verify the validity of our approach, we performed a series of experi-
ments covering different classes and types of meshes. We check for convergence
as described in Algorithm 1 with a value of ¢ = 107°. All meshes have been scaled
to fit a unit bounding box. For all experiments we conducted, the algorithm con-

verged numerically.

Triangle meshes Our first test case concerned triangular meshes. To this end,

we created random triangle meshes by computing tessellations of the unit square
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Figure 2.1: Results created by our approach for different classes of polygon meshes.
Each row depicts iterations of our algorithm starting with an input tesselation.

(a) Delaunay triangulation: Original, 1, 5, and 20 iterations.

(b) Regular triangulation that is not Delaunay: Original, 1, 5, and 20 iterations.
(c) Polygonal mesh with convex faces: Original, 1, 5, and 20 iterations.

(d) Polygonal mesh with non-convex faces: Original, 1, 5, and 5o iterations.

(e) Polygonal mesh with non-convex faces: Original, 1, 5, and so iterations.
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Figure 2.2: The shadow of the Schonhardt polyhedron, a well-known
examples for triangular mesh not admitting a perfect Laplacian. From
left to right: Original, 1, 5, 10, 50 iterations of our algorithm.

and unit circle using the software Triangle [90]. In addition, we created convex
tessellations of random point clouds using CGAL [101]. Since the tessellation al-
gorithms create Delaunay triangulations, we also further modified the tessellations
by randomly flipping approximately 20% of the edges. While flipping, we ensured
that the boundary is preserved and edges are not flipped if the flip would introduce
inverted triangles. We tested the algorithm on 1000 random meshes, each with
about 50 vertices sampled on a square and a disc. For all cases, we observed that
each iteration produces a valid embedding together with an accompanying perfect
Laplacian. Moreover, the vertices reached steady state and converged towards the
input mesh, achieving good approximations after s—10 iterations. This indicates
that for all these cases the randomly generated meshes were regular, admitting a

perfect Laplace operator. Figures 2.1(a) and (b) show two typical examples.

A more challenging test case is given by meshes that do not admit a perfect Lapla-
cian. To this end, we created five manual examples with 8 to 15 vertices, such as
the shadow of the Schonhardt polyhedron shown in Figure 2.2. The algorithm
handles these cases as well; however, necessarily by changing some edge lengths

and thereby moving the vertices (see Section 2.3.3 for details).

While we observe that our approach reaches steady state in all cases, the obtained
solutions are not unique. Choosing different initial coefficients typically leads to
different results. In particular, for Delaunay meshes with convex boundary, our

approach does not recover the cotan Laplacian (which is perfect in this case).
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Figure 2.3: Given a polygonal input mesh (left), our algorithm is ap-
plied. Iteration 1,2,5 and 20 are shown (center). The converged result is
shown on the right. The color coding illustrates the vertex displacement
from input mesh to the result. The maximal vertex displacement is about

0.85% of the bounding box diagonal.

Polygon meshes In a second series of tests we considered planar polygonal
meshes. Proceeding as in the previous section, we created random triangle meshes
but removed some of the edges. As for triangle meshes, we observed convergence
for all 1000 random polygonal meshes tested. The algorithm enforces convex
faces in all iterations even in case of non-convex input meshes. Two examples

produced by our approach are shown in Figures 2.1(c), (d) and (e).

3D meshes For meshes embedded in 3-space the algorithm performs similar to
the 2d case. Figure 2.3 illustrates the convergence for a polygonal input mesh. We
tested the algorithm on a number of standard meshes and added artificial noise
to assess robustness. For all examples the algorithm converged and produced a
valid perfect Laplacian. The next section details applications involving meshes in

3-space.

2.6 Applications

Self-supporting surfaces Several recent works investigate self-supporting sur-
faces in equilibrium [24, 65, 77]. The central idea is that a network of rigid struts
can withstand its own dead load if it is in force equilibrium at the points where

struts meet (vertices), except for supported vertices where force can be dissipated.
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Denoting the gravitational force acting on vertex i along the z-direction by F; and

the force along the edge e; by f; the condition for structural stability at vertex i

becomes
0
Zf]H || o |, withf; >o. (2.12)
Gjee NV Vi —F,

All forces have to be compressive as indicated by the positivity of the forces. Con-
sidering w; = f;/||v; — vi|| we are faced with the problem of computing a perfect
Laplacian for a polygon mesh embedded in 3-space. Hence, we can apply our algo-
rithm with appropriate boundary conditions for supported vertices. In contrast to
recent work, our algorithm does not rely on interior-point solvers and can be easily
implemented using a sparse linear solver. Moreover, our system handles polygon
meshes naturally. The results of our algorithm match results of existing methods.
Self-supporting surfaces for several input meshes and comparisons to state of the

art methods are shown in Figures 2.4 and 2.5, respectively.

In contrast to related work, we do not modify the combinatorics of the mesh which
limits the direct applicability of our approach. However, our algorithm can serve
as a central building block in a more sophisticated algorithm, driving a remeshing
step based on the force distribution or in situations where a certain frame topology

needs to be fixed.

Parameterization A classical application of discrete Laplacians is mesh param-
eterization. Given a fixed convex boundary in the plane and a discrete Laplacian
of a polygon mesh embedded in R* we can compute an embedding into R* by
solving Equation (2.4). Using operators with negative coefficients can result in
face flips, i.e.,, the embedding is not injective. For applications like texture map-
ping this behavior in not acceptable. With our algorithm a flip-free embedding is
always guaranteed. This holds for the triangle as well as for the polygonal case. To
our knowledge this is the first algorithm to introduce a geometry aware flip-free

parameterization technique for polygon meshes without resorting to a triangula-
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Figure 2.4: Fitting of self-supporting surfaces to several polygonal
meshes. The last row shows the planar projection of the input mesh above,
the projection of the self-supporting surface and its dual.
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Our algorithm produces self-supporting surfaces comparable
to state of the art methods. The input mesh (top, left) is deformed towards
a self-supporting surface by our method (top, right), the method by Vouga
et al. [104] (bottom, left), and using the technique of de Goes et al. [24].

Figure 2.5

Parameterizing using the Laplace operator of Alexa et al. [ 1]

can introduce flipped faces (left, flipped faces marked red). Our operator

Figure 2.6

theoretically ensures a flip-free embedding. In practice numerical effects

need to be taken into account [89].
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tion.

2.7 Discussion

Our approach provides a perfect Laplace operator for any input mesh, albeit at the
cost of potentially moving the vertices. In the following, we briefly discuss the

consequences, particularly in light of related approaches.

2.7.1 Modifying combinatorics

If triangle meshes with convex boundary are Delaunay, all triangle angles are
smaller than 7/2 and the cotan operator is non-negative. An interesting theorem
due to Rippa [81] states that general planar triangle meshes can be turned into
Delaunay triangulations by incrementally flipping edges violating the Delaunay
property. Bobenko and Springborn [6] construct perfect Laplacians for triangle
meshes embedded in R? by generalizing this theorem using intrinsic edge flips,
i.e., they flip edges only for the generation of the Laplace operator—the operator
may still be applied to the original mesh. Although these algorithm are guaranteed
to terminate, it might take up to n? edge flips in the planar case [30] and even
more for intrinsic edge flips on non planar meshes. Perhaps more importantly,
in some applications it might be important to fix combinatorics, such as for
different vertex geometries that represent different instances of a mesh. In a
sense both approaches are related: they apply an operator derived from different
underlying combinatorics, while we may apply an operator derived from different
geometry; so in both cases the Laplace operator was derived from a metric that is

inconsistent with the input.

2.7.2  Modifying geometry

The work of Mullen et al. [75] is similar in spirit to ours. Using non-linear opti-
mization, they search for a weighted cotan Laplacian exhibiting good numerical
behavior and mostly non-negative weights. Optionally, vertex positions are op-
timized as well. Although non-negativity is not implied, the results are impres-

sive and can significantly improve the accuracy of computations involving the dis-
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crete Laplacian. By contrast, our approach guarantees non-negativity and, perhaps
more importantly, generalizes to polygonal meshes. We also think it is conceptu-

ally simpler and offers a more straightforward implementation.

2.7.3 Using diagonals

As mentioned earlier, Alexa and Wardetzky [ 1] implicitly consider all diagonals in
a face. Interestingly, while this improves flexibility and makes it easier to generate
non-negative Laplacians, their construction equally uses all diagonals, resulting in

negative coefficients for almost all faces.

A downside of our approach is that using only the original edges, a perfect Lapla-
cian requires convex faces. We could use all diagonals in our construction but at
the expense of being able to guarantee an embedding in the planar case. This might
be acceptable especially for the practical case of meshes in R3. In fact, we have ex-

perimented with using diagonals and the results look reasonable.

There is, however, a good reason for avoiding diagonals also in the case of meshes
in R*: in a non-planar face, positive Laplace coefficients for the diagonals imply
that the area gradient flow would reduce the area by folding the polygon rather than
making it planar (as desired). This suggests that the choice of a Laplace operator
may be application dependent.
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Diffusion diagrams

3.1 Introduction

The notion of being closer is a fundamental geometric relation, which gives rise
to Voronoi cells and centroids. It is commonly defined based on a distance func-
tion. In the Euclidean domain, smallest distances are continuous and can be easily
computed. Consequently, bisectors for Voronoi tessellations or centroids are also

stable and fast to compute.

On curved surfaces, the most natural way to define distance is the length of the
shortest path between two points. This path is a geodesic and the corresponding
distance is called geodesic distance. Geodesic distances to a fixed point is generally
not continuous, and their computation is more involved and potentially unstable.

This has motivated alternative definitions of distance for curved surfaces [ 4, 60,

78, 92]-
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Our main observation is that the property of being closer can be computed based on
a smooth function on the surface that may not satisfy the properties of a distance
measure. A smooth function might overcome stability problems that are present
for exact distance functions and might be easier to compute. We suggest to use heat
diffusion for this purpose. An important property of heat diffusion is that it repre-
sents a monotone function of distance in Euclidean domains for infinitesimal small
timesteps. Computing heat diffusion on a discrete domain is well understood and
amounts to solving a linear system. We recall basic properties of the continuous

and discrete heat equation in Section 3.2.

We analyze the definition of bisectors (or Voronoi cells) based on heat values in
Section 3.4. We show that heat values yield Voronoi diagrams that are identical
for Euclidean and spherical domains. An important consequences of defining the
bisectors based on heat values, and not a derived measure of distance, is that they
converge quadratically. We demonstrate that generating curved Voronoi cells from
heat is asymptotically as accurate as defining them from discrete geodesics, while

being much faster.

We also use heat to define centroids of cells (see Section 3.5). We can show that
for large time values the heat centroid converges against Euclidean centroids. For
curved domains we find that heat centroids provide more stable (and more intu-

itive) results than geodesic centroids because of the underlying smooth function.

All computations are based on the same linear system, which is factorized in a
preprocessing step. Generating Voronoi tessellations for arbitrary generators or
finding centroids of arbitrary cells only require back substitutions. Moreover, we
explain in Section 3.6 how to localize the solve — this means we can compute heat
values only where needed for comparison with other heat values. Thisidea extends
existing methods in numerical linear algebra libraries and should be of interest for

other applications in geometry processing.

We demonstrate the relevance of our approach by tessellating large meshes with
centroidal Voronoi tessellations (CVT) and computing barycentric coordinates
on surfaces (see Section 3.7). Lastly, we discuss more potential applications and

future work in Section 3.8.
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3.2 Discrete heat diffusion

Given a domain Q, the heat kernel k;, : RT x Q describes how much heat diffuses
from a fixed point p € Q to a pointq € Q intime t € R*. On a Riemannian
manifold without boundary the heat kernel is the fundamental solution of the heat

equation

Kk
at = Dgkp(t q)

kp(o,q) = 8(p—4q),

(3.1)

where Ay is the Laplace-Beltrami operator in q and 6 represents the Dirac delta.

For Q = R the heat kernel is explicitly given by the formula

1 lp — al
kP(t7 q) = (47ft)d/2 exp (_&> (3-2)

4t

Inverting this expression one obtains Varadhan’s formula [ 103 ]

limy/—4tloghy(t,q) = [[p — qll, (33)

revealing the close connection of the heat kernel k, (¢, q) to the distance to p which

also generalizes to manifolds away from the cut locus [103].

We are interested in heat diffusion on discrete surfaces embedded in IR3, repre-

sented as triangulated surfaces.

Every pointp € M = (V, F) on the mesh can be represented using barycentric
coordinates b(p) € R™,b(p); > o,>  b(p); = 1 with respect to the mesh

vertices such that
p=V'b(p). (3.4)

Note that b(p) can be chosen to have at most three nonzero entries for any point

p on the mesh which are defined by a face containing p.

To solve Equation 3.1 numerically on a triangle mesh we discretize the Laplacian

using the cotan operator [79], following the same approach as Crane et al. [17].
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Using their notation, the cotan Laplacian is represented by L = M™'L¢ where the
diagonal (lumped) mass matrixM € R™*™ and Lc € R™*"™ are given by

(Leu); = i Z (cot a;; + cot :Bij)(uj —u) (3-5)

(ij)e€

1
My = - Z Aijlc- (3.6)

(i, k) EF, 1€ (irj,k)

Here u € R™ is a vector of coefficients with respect to the piecewise linear fi-
nite element basis. Performing an implicit Euler step of length ¢ for Equation 3.1
amounts to solving the sparse, symmetric, positive-definite system (for an appro-

priate choice of )
(M — fLc)u = Mh. (3.7)

In order to model a discrete Dirac delta, the right-hand side has to represent a point

with unit energy which leads to
h =M 'b(p). (3.8)

In the following sections we will also consider more general initial conditions.
Namely we want to generalize the heat source to a surface patch C C M. With

the characteristic function y,(q) the initial condition can be formulated as

k(o q) = xcl@)- (3.9)
Practically this amounts to setting

fc b(p) dp
fc 1dp

Here, the denominator is just the area of the set C. Computing this integral is easy

h = (3.10)

for piecewise linear sets, as they can be triangulated. For convenience, assume the
mesh has been triangulated such that the interior of each triangle is either com-

pletely inside or completely outside the set C. Each interior triangle (i, j, k) € F
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contributes

hj = ; (e + e+ ex) (3.11)

where e; denotes a canonical basis vector. The vector h¢ representing the set C can

then be build by summing up over the faces,i.e.hc = Z( yec Mijk- We can easily

ij,k
solve Equation 3.7 repeatedly for different initial heat distributions if we have the
Cholesky factorization of the system matrix M — ¢ Lc. Computing heat diffusion
then comes down to one pass of forward and back substitution for the case of a

singular heat source as well as for an area heat source.

3.3 Related work

We focus on the computation of CVTs and geodesics on meshes embedded in R3.

Geodesics on meshes In principle, any algorithm computing geodesic dis-
tances on meshes can be used to generate Voronoi diagrams. One of the earliest
approaches generalizes fast marching on regular grids to 3d triangle meshes
[87]. However, this method is inaccurate in presence of obtuse triangles. Several
strategies to deal with this problem have been proposed, e.g. [55], leading to
approximate solutions. Mitchell et al. [73] describe an algorithm to compute
exact geodesic distances on triangle meshes which has been implemented by
Surazhsky et al. [99]. Chen et al. [13] also propose a method to compute exact
geodesic distances which has been improved by Xin et al. [108] outperforming

both the latter and Surazhsky et al’s code.

Diffusion Solutions to the heat equation have been extensively used in machine
learning and geometry processing, for example by Benjamin et al. [ 5] in the con-

text of mesh segmentation.

The central idea is to compute the fundamental solution to (3.1) on a manifold.
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Given a discrete Laplacian L this solution can be expressed as

d:(p,q) = > _f(&)(9,(p) — 9,())* (3.12)
f(d) = exp(—2£d) (3.13)

where A; and ¢, are eigenvalues and eigenvectors of the Laplacian L, respectively.
Using a discrete Laplacian based on the Gaussian kernel, Coifman et al.[ 15] intro-
duced the term diffusion distance for values of d for applications in machine learn-

ing. Altering the function f yields different notions of distance, notably commute
time distance for f(1) = 1/2 [34] and biharmonic distance for f(1) = 1/1* [60].

Computing these distances up to a specified accuracy is possible using only a sub-
set of eigenvectors rendering these methods feasible on meshes of moderate size.
Patané et al. [78] compute fundamental solutions of the heat kernel by approxi-
mating the matrix exponential using Padé approximation. Our method can be un-
derstood as using a Padé approximation of order [0, 1]. Recently, Crane et al. [17]
introduced a fast approximate method to compute geodesic distances based on
heat diffusion. The central idea is to diffuse an initial heat distribution by solv-
ing a sparse linear system and integrating the normalized gradients of the solution.
Iterating the normalization and integration step, Belyaev et al.[4] propose an al-
gorithm tailored to the task of finding the shortest distance to the boundary of a

domain in R* or R3.

These methods inspired our use of heat diffusion to measure distance. In con-
trast to Crane et al. we use heat diffusion directly as a “pseudo”, distance similar to

Solomon et al. [92].

Centroidal Voronoi tessellations on meshes Many methods for the construc-
tion of CVTs on triangle meshes reduce the problem to the Euclidean case. Alliez
etal. [2] use a planar conformal parameterization of the mesh to map a CVT with
respect to a spatially varying distance function on R* to the mesh. This approach
requires cutting the mesh into a disk. This is a challenging task in itself and might

introduce misalignments at the seams. Another common idea is to restrict CV'Ts
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in R? to a surface mesh (see for example [110]). Whenever the cells are large rela-
tive to the variation of the metric this method fails to capture the distances on the
surface. For example using few generators to define intrinsic barycentric coordi-
nates (see Section 3.7) really requires an intrinsic method. Moreover, close sheets

and self-intersection can not be handled by this method.

One of the few practical intrinsic methods for the computation of CVTs was pre-
sented by Wang et al. [ 105]. They employ a modified and parallelized version of
Xin et al’s [ 108] implementation of geodesic distances to rapidly compute intrin-
sic Voronoi diagrams. The computation of cell centroids relies on the repeated
evaluation of the exponential map at the cell vertices. Approximating centroids on
planar projections of the cells is problematic in terms of convergence and quality
for large cells with high variation in curvature. Our method in contrast produces

cell centroid that are well defined and insensitive to noise and cell size.

3.4 Voronoi cells

The notion of being closer may be used to tessellate a domain based on a set of
points in that domain. Concretely, given a domain Q) as well as a set of points p; €
Q,i € {1,...,n}, called generators, the Voronoi tessellation is the decomposition
of the domain € into Voronoi cells C; C € consisting of the points x € ) that are

not further from p; than from any other of the generators p;:

Ci={xeQdxp)<dxp)i#j}. (3.14)

Hered : Q x Q — Ris a distance measure on €. The set of points x that are
elements of more than one cell C,, i.e. lie in the intersection of two or more cells are
called the Voronoi diagram. For non-degenerate configurations it consists of edges,
which are the intersections of exactly two Voronoi cells, and corners, which are the

intersections of three or more Voronoi cells.

We define a Voronoi cell based on heat diffusion. As heat values decrease from the
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source, we use

Ci(t) = {x € Q,ky (t,x) > ky (t,x, ), #]} . (3.15)

A motivation for this definition is that it is equivalent to the above in Euclidean do-
mains because k,(t, q) is monotone in the squared distance ||p — q||* (see Equa-

tion 3.2).

Discrete approximation For computing a Voronoi cell on a triangle mesh we
compute a piecewise linear approximation of the heat equation as discussed in Sec-
tion 3.2. For each generator p; we compute the corresponding heat distribution,

which can be written as

(M_tL)U: (b(Po),b(P1>;~-->7 (3-16)

so that the i-th column of U represents the heat values corresponding to generator
pi- The rows of U correspond to the different heat values in each vertex. For an
arbitrary point q on the mesh we can find the heat values by computing Ub(q).
This allows us to define the Voronoi cell C; as the set of points for which the i-th

component in the vector of heat values is larger than any other component:

Ci = {x €Q, (UTb(x))l_ > (UTb(x))]_ i 751} . (3.17)

Based on this information we approximate the Voronoi diagram. First we associate

each vertex with a label

l; ;= arg max u; (3.18)

j
corresponding to the closest generator. Ifall vertices of a face are assigned the same
label the face belongs to the corresponding generator and does not contain parts
of the Voronoi diagram. We further distinguish two situations. If two vertices i

and j carry the same label different from the label of the third vertex k, we identify
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points of the Voronoi diagram on edges (ik) and (jk) by linear interpolation:

buy + (1 — b)ugy, = buy, + (1 — b)uy, (3.19)
.o Ukl — Ui, (3.20)
Wy, — U, — Wy, + Upg,

the final point can then be computed as s = bv; + (1 — b)vy. sj is determined
analogously. Connecting these points across the triangle yields our local approxi-
mation of the Voronoi diagram. The third case covers triangles with three different
labels. In this situation we compute points on each edge via interpolation like in
the previous case. All three points are then connected to a central point that is

defined using barycentric coordinates

1

Sijk = (uill.vi + Ui, v + uklkvk)- (3.21)

Wi, + wiy, + U,
Note that this is just an approximation, the piecewise linear function defined by
the heat values might even intersect in an point outside the triangle. This could be
alleviated by a more sophisticated intersection analysis of the linear functions at
the cost of some performance. For sufficiently dense tessellations we have found

our approximation to perform very well.

Numerical convergence Now that we have a process in place that computes the
Voronoi diagram, we ask about the numerical accuracy of this procedure. Com-
puting exact geodesics results in exact intrinsic Voronoi diagrams with respect to
the surface mesh. However, if the surface mesh discretizes an underlying smooth
surface this might not be the result we are interested in. Topological noise, for ex-
ample, will influence geodesic distances dramatically while diffusion methods are
potentially more robust to these artifacts. Moreover, coarse tessellations will have
a strong effect on geodesic distances. Consider the tessellated sphere in Figure 3.1

(inset below).

Experimentally we measure the derivation of the Voronoi diagrams from the ex-

act result on the unit sphere with the following locations as generators: p, =
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Figure 3.1: Errors of bisectors approximated on triangulations of a
sphere relative to mean edge length. The left is based on uniform vertex
distributions with one generator at the pole and another on the equator.
The right plot is based on a distribution biased along the one axis and the
generators on opposite points on this axis. Both plots show the errors of
exact polyhedral geodesics and heat diffusion usingt = 2° andt = 277.
Examples of the meshes used in the experiments are shown as insets.
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(1,0,0)7,p, = (—1,0,0)7, p, = (0,1,0) . For this example the ground truth is
easily established. We measure the errors of the bisectors between p,, p, and p,.
Let x be a point on the approximated bisector, then we can measure its squared

€rror as

el(x) — XTM (3,22)
lpi — Pj||

as all bisectors are contained in planes through the origin.

In this setting, we analyze the approximation error relative to the time step t and
the maximal or mean edge length in the mesh. Based on prior analysis of diffusion
operators on meshes, we expect that the approximation is better for larger values of
t [17], and that it converges quadratically as edge lengths decrease [28]. Note that
we cannot expect any better convergence, as all metric properties of the discrete
surface are converging at most quadratically. In particular, also discrete geodesics

are converging quadratically against their smooth counterpart.

We have generated a set of triangulations of the unit sphere with varying charac-
teristics. In all cases the process starts with a regular octahedron. Then vertices are
randomly sampled from the unit sphere. For generation of uniform random points
we draw the three coordinates independently from normal distributions and then
normalize the result. This results in triangulations with varying triangle quality,

including many with obtuse angles (see the insets in Figure 3.1).

We also bias the distribution so that the average density varies along the first co-
ordinate axis. Such spheres with different densities around the points p, and p,
allow us to check if the bisectors still converge to the ground truth, and how much
they are affected by differently sized triangles. Using this set of meshes, we mea-
sure the error of the bisectors as a function of the edge length based on two values
for the time step: t = 1and t = 277 =~ 0.008. For comparison, we also compute
the bisectors using polyhedral geodesics, i.e. the exact distance on the piecewise
linear surface, based on Kirsanov’s implementation [99]. The resulting root mean
squared errors relative to the mean edge lengths are shown in Figure 3.1. All plots
clearly show the expected quadratic convergence for the diffusion bisectors as well
as for polyhedral distances. For the uniformly sampled case the constant is better

compared to the biased case. Diffusion using large values for ¢ seems to be slightly
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Figure 3.2: Computing the exact polyhedral distance from one points to
each other using the algorithm of Qin et al. [ 80 ] takes orders of magnitudes
longer than computing heat diffusion given a prefactored matrix. This is
true for a range of mesh sizes.

more robust to variations in triangle size, as can be seen in the slightly better results
for the biased vertex distribution for ¢ = 1. Statistics based on max-errors and/or

max edge lengths show similar characteristics.

Performance The computation of Voronoi diagrams is dominated by the evalu-
ation of heat diffusion. We compare this to the time it takes to compute polyhedral

distances using the state of the art method by Qin et al. [80].

The graph in Figure3.2 shows the time needed for computing heat values and poly-
hedral distances relative to the number of vertices of a planar disk-shaped mesh.
For each vertex count we generate a spherical mesh and average timings over all
possible seed vertices. Timings include set up costs, such as the matrix factoriza-
tion for the computation based on diffusion. In this experiment heat diffusion is

significantly faster and also scales better with the number of vertices.
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3.5 Centroids on surfaces

For Euclidean domains the centroid is the center of mass. For more general do-
mains one may employ the notion of Riemannian center of mass [ 52 ], which can be
defined as the point that minimizes the integrated squared distance values to all

points in the cell:

C = argmin/ & (x,y) dx. (3.23)
Ci

yeQ

This definition works with arbitrary choices for the distance function d(-, ). For

Riemannian surfaces a common choice for d(-, ) is geodesic distance.

Using heat diffusion we define the center as the point in a cell that generates the

most heat within the cell when diffused:

ci(t) = argmax [ ky(t,x) dx. (3.24)

YEQ Ci
Using the symmetry of the heat kernel (3.2) we have
ky(t,x) = kx(t,y). (3:25)
Moreover, because the heat equation (3.1) is a linear PDE we have

ta(t) = [ bt ds (3:26)
Cl
which describes more general initial conditions for the heat diffusion problem as

discussed earlier (3.10). Because we discretize the heat equation as a linear system

of equations these properties are exactly captured in the discrete setting.
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We can now reformulate the optimization problem

ci(t) = argmax [ ky(t,x)dx (3.27)
yEQ Ci
= argmax | k(t,y)dx (3.28)
yEQ C;
= argmaxke,(t, y). (3.29)
yEQ

This means we diffuse heat for all points in the cell C; and then look for the point
that is hottest after some time . This interpretation is more appealing because it
requires only a single solve for heat values, as described in Section 3.2, followed by

finding the point with the largest heat value.

Relation to Euclidean centroids As it turns out, this definition is not just an
approximation to Euclidean centroids, it approaches them for large t. To see this,

we plug the heat kernel into equation 3.24

1 x — YHz)
c;(t) = argmax exp| ————— | dx (3.30)
< %eﬂ Ci (4t)4/ P ( 4t
= argmax [ exp (—M> dx. (3.31)
yEQ G 4t

Writing the exponential function as a series leads to

_ 2 — 4
c(f) =argmax [ 1— < — ¥l + Ix =l — ... dx (3.32)
yEQ G 4t 32t
x — vll*
:argmin/ Ix—yl|I* — u—i— dx. (3.33)
YGQ C; 8t

We see that for t — 00 the first term dominates, i.e.

lim ¢(t) = argmm/ |lx — yl||*dx (3-34)
t—00 yGQ G
= argmin/ & (x,y)dx (3.35)
yE.O. C,‘
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which is exactly the definition of the Riemannian center of mass (3.23).

Discrete version and numerics The interpretation of setting the cell to con-
stant heat and defining the center as the hottest point carries over nicely to the
discrete setting. We again solve Equation 3.7 and set h as described in Section 3.2.
Then we just need to iterate over the elements in the solution vector u to identify
the center. As before, the system matrix can be factored in a preprocess, so finding

the center amounts to performing back substitution.

With this procedure in place, we are able to show experimentally that the heat cen-
ter indeed converges to the centroid in the plane as t grows. For this we generate a
tessellation of the unit circle similar to the sphere used before. Then we generate
polygons in two different ways: 1) We start a random walk over the vertex graph
from the center. Triangles are included if all three vertices have been visited. This
leads to irregularly shaped, non-convex polygons, which are not necessarily sim-
ply connected. 2) We select vertices inside differently sized and oriented ellipses.
These polygons are simply connected, well shaped but not strictly convex. The

triangles comprising the polygons define h and solving for u yields the center.

In order to properly simulate the behavior of the heat function for large ¢ it is nec-
essary to use a higher order (e.g. Padé) approximation, amounting to performing
several time steps: for this we solve for u based on the initial value h and then it-
erate h <— uin Equation 3.7. Note that we only use a higher order approximation
for the sake of this experiment. Figure 3.3 shows the result. The horizontal line
depicts the error that would result from picking the vertex closest to the true cen-
troid. We see that, indeed, the discrete solution converges to this optimum value
as t grows, however, convergence requires several time steps. This behavior should
be expected, as the similarity between centroid and heat center is non-linear. The
solutions tend to get worse for larger values of ¢t because of boundary effects: the
approximation assumes an infinite plane, and once values start to be nonzero at the
boundary the approximation is distorted. The two plots suggest that Euclidean
centroids are matched for smaller time values ¢ if the polygon is well-shaped (i.e.

roughly convex and symmetric).
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Figure 3.4: The functional defining the center on an elongated ellipsoid.
Cells are defined by cutting the ellipsoid orthogonal to the long axis (cell
boundaries are marked in red). The left part shows the sum of squared
geodesic distances, the right part diffusion values. Color coding is chosen
so that the center is in the red area. Already for moderately large cells,
geodesic distances become non-unique and the center(s) moves away from
the tip. Diffusion naturally defines the tip to be the center.

Smoothnessand uniqueness Defining the centroid based on geodesic distance
leads to problems for larger non-Euclidean cells: given a point x on the surface, the
cut-locus of x is the set of points that have more than one shortest geodesic. This
means the function of geodesic distances to x is non-smooth at the cut locus. This
has an important numerical consequence: consider a convex cell around x. Then
the geodesic distance function is not convex if the cell contains points of the cut

locus which means that the centroid is not necessarily unique.

Note that the definition of the center (Equation 3.23) considers all points in a cell.
This means the integrand is non-convex if the cutlocus of any of the points in the cell
intersects the cell. Computing the minimum of non-convex function is generally
difficult. The fact that the function is not smooth also has consequences: small
perturbations of the cell boundary may lead to large, non-continuous jumps of the

centroid of the cell.

We illustrate this behavior in Figure 3.4. Here we define a cell by cutting an elon-
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Figure 3.5: The saddle point is correctly identified as centroid for two
different cells (red) using heat diffusion. The left side of each image illus-

trates the sum of squared distances used to define the Riemannian center
of mass (3.23).

gated ellipsoid orthogonal to the long axis. The left side of each ellipsoid shows the
sum of squared geodesic distances, i.e. the functional defining geodesic centroids.
The color coding represents the small values with red, so the geodesic centroid is
located in the red area. The right side shows the heat functional, color coded with
red representing large values. So, again, the center is in the red area. As the cell gets
larger, the geodesic functional has a ring of maxima around the center axis and not
just fails to uniquely identify a center but also provides a rather unintuitive result.
The heat center functional, perhaps not surprisingly given the setup, identifies the

tip of the ellipsoid as the center in all cases.

The better behavior of heat centers can be expected in much more general situa-
tions: the fundamental solution to the heat function is log-concave in Euclidean
domains for all ¢, and this also holds for positively curved Riemannian manifolds
(see [68] for recent results in this area). It follows from the Précopa-Leindler the-
orem [9] that the integral of log-concave functions over a convex domain is log-
concave. So for convex cells with positive curvature the heat centroid is unique.

Smoothness of the function also implies it is smoothly varying with the cell bound-
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ary; this is useful for optimization with smoothly varying cells.

It is known that the estimates on log-concavity are only slightly perturbed for neg-
ative curvature [45]. This means while we may not have a guarantee for unique-
ness of the centroid, the functional is always close to be log-concave. Indeed, we
have failed to generate examples (with simple convex boundary) that would ex-
hibit more than one local maximum. A generic example of the functional on a
saddle for two sizes of a cell symmetric around the saddle point is shown in Fig-
ure 3.5. Note that the extremum is in the saddle point, as expected, for geodesic

distances as well as diffusion.

3.6 Localized solving

As the mesh in our application is static and the linear system symmetric and pos-
itive definite, we compute a Cholesky factor of the matrix as a preprocess. Then
the dominating operation for the various solves are forward and back substitutions.
We show that forward substitution is generally efficient and the resulting vector is
sparse. While back substitution is also quite fast, it still requires looping over all
vertices in the mesh. This makes sense, as the solution of heat diffusion is global,
i.e. heat values are nonzero everywhere. However, in our context, we typically need
the solution only in a certain area close to the heat source to compute bisectors or
centroids. We can obtain an approximate solution by setting heat values far away
from the source explicitly to zero since they will be relatively small anyways. This
way the runtime of back substitution is proportional to the number of values we

are actually interested in and not the size of the full mesh.

Selective Cholesky Solve Let LLT = M — fLc be the (lower triangular)
Cholesky factorization' of the system matrix computed using a modified version
of LDL [19]. Solving for the right-hand side b € R™ requires solving La = b
with an auxiliary vector a € R™ and subsequently solving LTu = a. It can be

shown that the auxiliary vector a € R™ is usually sparse if b is sparse. A more

"We follow the usual convention to refer to the Cholesky factor as L. This matrix is not to be
confused with the Laplacian. The cotan Laplacian will be written as Lc.
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Figure 3.6: The central Voronoi cell is computed using the heat method.
The left image shows the heat distribution, the middle image the result
of the selective solve, which restricts heat computation to a neighborhood
around the cell. The right image illustrates the logarithm of the (relative)
distance between the functions. The mean error is 1.8% (max 16%).

detailed discussion of this fact and Cholesky factorizations in general is deferred

to the next chapter.

The solution to L™u = a is dense for a connected mesh because heat diffusion is
a global process. This is unfortunate because it would mean that computational
complexity is at least linear in the number of vertices of the whole mesh, even
though we are only interested in values relatively close to the source. To allevi-
ate this problem, we use the fact that values far away from the heat source will be
close to zero. Setting them to zero explicitly results in an approximate solution but

allows us to fix the sparsity structure of the solution u.

More formally, we define the sparsity of u by an index set Z, i.e. allowing nonzero
coefficients only for u;, i € Z. Because the upper triangular matrix LT is given in a
row-major sparse matrix format, solving LTu = a can be easily restricted to the in-
dex set 7 by ignoring rows in the complement of 7 during back substitution. As a
result, the complexity of selective back substitution depends on the number of ele-
ments in 7 and not on the number of vertices of the mesh. Algorithm 2 details this
selective back substitution algorithm. We integrated sparse forward substitution

and selective back substitution in our sparse Cholesky solver based on the LDL
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Input:
« Cholesky factor LT € R™" in row-major format (I, Ic, V).
o Sparse right-hand side y € R".

o Index set Z sorted in descending order.

Output: Sparse approximate solution y.
forkin7Z do

for p from I k| to Iz [k + 1] do
L | 3K = ylk] = Vip] # yllclp]

Algorithm 2: In the row-major sparse format the matrix is represented by three
arrays. The row array Ir contains the position of the first index of each row in the
column array Ic, where the position of all nonzeros per row are stored. The array V
contains for each column position in Ic the respective matrix entry.

package [19].

Numerical experiments Measuring the performance gain using the selective
solve method, we find that the performance is almost perfectly linear in the num-
ber of requested result values. For error measurement we use again the irregularly
sampled unit spheres. This time we generate a Voronoi diagram of moderate com-
plexity, each Voronoi cell covering about 17% of all vertices, and measure the error
on all intersections of triangle edges with Voronoi edges. We restrict the set of ver-
tices used for computing the heat distribution for a particular generator: let p be a
generator, then we set all values that are outside a neighborhood covering a certain
amount of vertices to zero by skipping the corresponding rows as described in al-
gorithm 2. The result of this experiment is illustrated in Figure 3.7. Clearly, fixing
no value at zero gives the most accurate result. Choosing smaller neighborhoods
introduces more error. The amount of error is also linked to the time parameter
t. For smaller values we know that heat decays faster with distance to the source.
Consequently setting values away from the source to zero is a better approxima-
tion for small values as compared to larger values of t. For very small values of ¢
the solution is indistinguishable from the full solution as soon as all vertices in the

eventual Voronoi cells are being evaluated. This suggest that using smaller values
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of t and local solves are a good choice in practice.

3.7 Applications

Intrinsic Voronoi diagrams can be used in a variety of applications. We focus on
two scenarios that particularly benefit from smoothness and efficiency of the com-
putation. We have found that the results in these applications are largely indepen-
dent of the choice of t and that there is no significant benefit of performing several
implicit time steps. We have followed the suggestion by Crane et al. [17] and use

t = h*, where h is the mean edge length, in all of the following experiments.

3.7.1 Centroidal Voronoi tessellations

Computing an (approximate) centroidal Voronoi tessellation using Lloyd’s algo-
rithm proceeds by alternating two steps. Starting with a set of n generators p; €

M one iterates:

1. constructing the Voronoi tessellation of p¥, . . . | p;

2. setting p ™ to the centroids of their respective Voronoi cells.

Each of the two steps can be performed as explained in the previous sections. In
the following, we provide details on how to adjust the techniques to the specifics of
Lloyd’s algorithm. We discuss the results and extend the technique to anisotropic

diagrams.

Determining the relevant neighborhood Using the selective solve requires
defining a local neighborhood. In the context of Lloyd’s algorithm we exploit
the Voronoi tessellation of the previous step and use a union of adjacent Voronoi
cells as neighborhood. When computing heat diffusion for centroid or distance
computation of a cell C;, we select all adjacent Voronoi cells of this cell. For
increased robustness we also include 2nd degree neighbors. The error due to the

selective solve is small as illustrated in Fig. 3.6 and in particular, is concentrated
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on the boundary of the region and negligible in the area of interest. In the initial
step, we estimate an appropriate radius for each generator and compute the local

neighborhood using Dijkstra’s algorithm.

Centroids on faces The discrete energies we consider are all based on piece-
wise linear approximation. This means maxima, and therefore centroids, neces-
sarily coincide with vertices. For convergence of Lloyd’s method it is beneficial
to move the generators smoothly on the surface over the course of the procedure.
A possible solution would be to use higher order finite elements to solve the heat
equation, yet this would increase storage and computation requirements of the

factorization.

For the purpose of Lloyd’s algorithm, we decided to smooth the trajectories of
generators by locally fitting bivariate quadratic polynomials to the piecewise linear
heat function in the vicinity of the maximum ¢; and to compute the centroid as its

unique maximizer.

More specifically, we first determine the heat centroid ¢; as detailed in the previ-
ous section. Then we select all faces incident to the vertex ¢; and project them onto
the tangent plane at ¢; as defined by the vertex normal at this point. Any choice of
vertex normal could be used here, we decided to use the area weighted face nor-
mals. Next, we fit a bivariate polynomial to the heat values at the projected vertices.
Finally, we determine the triangle that contains the maximum of the polynomial
and map this point back to the geometry using barycentric coordinates. If the max-
imum is not contained in a triangle we use the point on one of the triangles that is

closest to the solution.

Even though this is just a local approximation, the quality of the resulting CVT is
significantly increased using this method as generators move freely on the surface.

We observed an increase of the quality metric ¢ (see below) of up to 2°.

Parallelization The bulk of computation time (> 95%) is typically spent dur-

ingback substitution to solve the heat equation. This step can be easily parallelized

§1



Figure 3.8: Left: the accuracy of our method is not systematically affected
by curvature variation. Right: Our fully intrinsic approach enables the
computation of Vornoi diagrams and centroids on surface that can not be
injectively embedded.

since we solve the equation for each centroid (or Voronoi cell) independently. We

use std: : thread for parallelization.

Results We tested our approach on meshes varying in vertex count, triangle
quality and curvature. For each mesh we generated a CVT from a random initial
distribution of the generators. The quality of the CVT can be measured based
on the interior angles of its dual triangulation. For easy comparison with related
work we also report the mean and minimum of the smallest interior angle per
triangle. Table 3.7.1 shows that the resulting tessellations are similar in regularity
compared to other approaches. Since the results depend on random initialization,

we report the best out of § runs with respect to mean interior angle.

In terms of computational efficiency, we note that we have been able to generate
an intrinsic CVT on meshes with larger vertex count than reported so far in the
literature. To provide a rough comparison to Wang et al. [105] we have run our
algorithm on the ARMADILLO model with the same number of generators on com-
parable hardware (2.6GHz Intel is, four cores) and found a three-fold speed-up of
the time needed per iteration (0.82s vs. 2.125). Quality metrics in this experiment

turned out to be very similar.
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Figure 3.9: Dual Delaunay triangulation of a CVT computed using our
Algorithm.

The diffusion CVT shows no significant dependence on curvature. To demon-
strate this, we have generated 20 and 500 sites on a torus and a sphere (similar
mesh resolution) scaled to unit area. After 100 iterations we measured the vari-
ance in cell area and obtained values on the order of 10~¢ for 20 sites and 10~ ¢ for
soo sites, for both the torus and the sphere. The inset shows the torus with the sites
color coded based on the squared difference to average area. There is apparently

no systematic dependence of area on curvature.

The intrinsic nature of the computations allows applying the algorithm to surfaces
that contain self intersections, i.e. that are not properly embedded. This is impor-
tant as many meshes encountered in practice contain self intersections. Figure 3.10
shows an example ofa CVT on an instance of the Klein bottle, which is an example

of a surface that cannot be embedded in R3 without selfintersections.

Meshing The regularity of a CVT induces dual Delaunay triangulations with
close to regular triangles (see Figure 3.9). This makes our approach attractive
for computing high-quality base meshes as needed e.g. in semi-regular remesh-
ing [44]. As mentioned, the intrinsic computation makes the meshing robust
against the geometric properties of the embedding, such as proximity of different
parts of the surface. For generating meshes of high resolution the source mesh

might need to be upsampled, as the Voronoi diagrams cannot have more cells
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than the underlying mesh has vertices.

On the other hand, intrinsic computations are costly compared to distance com-
putations in Euclidean space. For surfaces that are simple enough extrinsic ap-

proaches [ 110] would be more appropriate.

Anisotropic centroidal Voronoi tessellations The Laplacian is an intrinsic
operator and the cotan discretization consequently only depends on intrinsic
properties such as edge lengths and angles. This means our approach is inde-
pendent of the ambient space and directly extends to higher co-dimension. We
exploit this feature to get anisotropic CVTs that consider distances in positions as
well as normals: For a mesh with vertices p; and corresponding vertex normals n;
the mapping fi : M — R® p, — (p?, p}, p?, An?, An}, An?) lifts the mesh M into
R®[11]. A € R controls the relative influence of the normal information. In this
immersion, intrinsic distances also account for normal variation. Note that f; is

not necessarily injective and the mesh will generally have many self intersections.

We construct anisotropic centroidal Voronoi tessellations by evaluating Voronoi
cells with respect to the immersion induced by f, and cell centroids using the dif-
fusion metric. To fix the relative importance of normals in this computation we
normalize all meshes to a unit bounding box. In this setting we chose a value of
A = o.0s. Figure 3.10 shows to results that demonstrate how edges align with

high-curvature regions.

3.7.2 Natural neighbor coordinates

Voronoi diagrams can be used to define barycentric coordinates on meshes using
natural neighbor coordinates [91] which are useful e.g. to interpolate data defined

at fixed points.

Letp,, ..., P, be points in the Euclidean domain. Barycentric coordinates b;(q)

at a point q have to fulfill the following requirements:

PosrTiviTy: b;(q) > o foralli.
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Figure 3.10: Intrinsic Voronoi diagrams enable interesting applications.
Anisotropic CVTs are generated by immersing the surface into R® using
positions and normals. For non-convex surfaces, this leads to self intersec-
tions. The Voronoi diagram on the Klein bottle has been computed in R?,
where no embedding of the surface exists.

LAGRANGE PROPERTY: b;(p;) = 8.

PARTITION OF UNITY: Coordinates at a pointsumto,ie. Y, bi(q) = 1.

LINEAR PRECISION: The point is the weighted average of the fixed sites:

q=> bi(q)p:

Natural neighbor coordinates define barycentric coordinates using Voronoi dia-
grams. The basic idea is to first form the Voronoi diagram of the fixed sites p; and
compute the area of each Voronoi cell 4;. The barycentric coordinates of a point q
are determined as follows: Construct a new Voronoi diagram with the added site
q and compute the cell areas a; and a, respectively. The coordinates are now de-
fined as b;(q) = (a; — a;)/a,. This definition motivates the alternative name area

stealing coordinate.

Given our fast approximation of Voronoi diagrams on meshes natural neighbor co-
ordinates can be readily generalized to triangle meshes, however, for non-planar
meshes linear precision can not carry over to curved domains. Figure 3.11 illus-
trates barycentric interpolation of texture coordinates. Out method is relatively

slow compared to previous work. Rustamov [82] generalizes 2d barycentric coor-
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Figure 3.11: Natural neighbor coordinates can be used to perform tex-
ture mapping.

dinates to the surface case by using the exponential map. This method is limited
to sites forming polygons whereas our method can interpolate between arbitrary

data points.

Panozzo etal. [ 76] compute approximate geodesic distances by mapping the mesh
to a higher dimensional space where Euclidean distances mimic geodesic distances
on the original mesh. This approximation is used to define barycentric coordinates
variationally. The resulting algorithm is very fast and robust, however, the pre-
computation is quite heavy and the approximation might fail. Moreover, negative
weights might occur for coarse samplings. Our algorithm has faster precomputa-

tion time and can guarantee positive weights at the cost of much slower evaluation.

Blend skinning Another application of barycentric coordinates is blend skin-
ning. Given a set of point handles on a mesh (usually structured in a skeletal hi-
erarchy), the mesh should deform when the handles are moved. The influence of
each handle on a given point can be computed using barycentric coordinates. To
average transformations given barycentric weights we use dual quaternion skin-

ning [ 54] as implemented in libigl [50]. Figure 3.12 shows skinning weights com-
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Figure 3.12: Voronoi diagram of handles (left), two weight functions
(center), posed model (right).

puted using the described method and a posed model.

One of the favorable properties of natural neighbor coordinates is their locality.
Weights of distant handles are guaranteed to be exactly zero. This feature sets nat-
ural neighbor skinning apart from competing methods like Bounded Biharmonic
Weights [49] which uses non-linear optimization to compute a set of weights with
all required properties. Our method, albeit easy to implement, is comparably slow.
For seven handles on the armadillo with 55102 vertices (Fig. 3.12) computing
blending weights for a specific vertex takes about 1.1 ms on a 3.9 GHz CPU with
four cores, which adds up to about a minute for all vertices. The main reason for
this long computing time is the fact that we can not efficiently localize the com-
putation of the heat kernel if we are interested in a very coarse diagram. Natural
neighbor coordinates could be made useful in practice by computing the weights

on a coarse mesh and subsequently propagating them to the original version.

3.8 Conclusion

We defined Voronoi cells and centroids based on heat diffusion. This enables sta-
ble and very efficient computation on various discrete surfaces. Since diffusion

is based on the Laplace operator, our algorithms extend to any domain that al-
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lows the definition of a Laplacian like polygonal meshes [ 1] and point clouds [64].
Computing CVT’s on point sets using the operator defined in [64] immediately
allows us to reconstruct surfaces from points using the dual Delaunay triangulation

(see Figure 3.13).

While we have not demonstrated this, the computation of Voronoi tessellations
extends to arbitrary generators such as lines or more general shapes. This would al-

low to efficiently implement corresponding centroidal Voronoi tessellations [67].

An important ingredient for efficiency is the localized back substitution. Back sub-
stitution for prefactored Laplace operator matrices is a part of many geometric pro-
cessing algorithms. Consequently, we believe that many other algorithms could
benefit from this idea. As an example, an important ingredient in many recent ge-
ometry processing techniques [ 16, 17, 94] involves solving constant linear systems
based on the Laplacian and local non-linear operations. Localized back substitu-
tion would be applicable whenever the desired solution is restricted to a local area

in the mesh.

So far we have restricted our analysis to plain heat diffusion. It seems promising
to use the solutions of other PDEs [4] for defining Voronoi cells or centroids —
efficiency of computation would be similar to the heat method as long as a sparse

linearization is available.
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Figure 3.13: Meshing a point cloud by generating a CVT followed by

dualization.
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Figure 3.14: Results obtained with our algorithm. See Tab. 3.7.1 for tim-
ings and statistics.
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Localized solutions of sparse linear

systems

4.1 Introduction

The central operation in many geometry processing tasks is the (repeated) solu-
tion of a sparse linear system [ 7, 8, 12, 25, 26, 59, 94]. These problems can be effi-
ciently solved by computing a (sparse) factorization of the system matrix and then
performing a step of forward and back substitution. This is particularly attractive

if several solves against varying right-hand sides are necessary.

Computing a solution vector given the factorization is quite efficient if the factors
are sparse, but solving for a simple regular 2d mesh with n vertices still has a time
complexity of at least O(nlogn) [35]. However, many geometry processing op-

erations are local, i.e. a solution to the linear system is required only for a subset of
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the mesh, e.g. for generating a parameterization of a patch. Our main contribution
lies in describing a method that uses a global factorization to compute solutions
for subsets of mesh vertices in time that depends mostly on the size and structure
of the subset and not the whole mesh. This approach is favorable to the common

solution of setting up a new system for the subset of the mesh and factorizing it.

In order to present our approach we first provide some background on sparse
Cholesky factorizations in Section 4.2. Then we explain how sparsity in the
right-hand side as well as in the desired solution can be exploited. Sparsity in
the right-hand side leads to sparse intermediate solutions — this is commonly
exploited in libraries for numerical linear algebra. Our contribution lies in
exploiting ‘sparsity’ in the desired solution. By sparsity we mean that only a
subset of the solution vector is desired — while the solution may still be dense,
i.e. nonzero in all its elements. We explain how this is possible without resorting
to an approximation: the solution for the desired elements is exactly the same
as if all elements of the solution were computed. An important point of our
analysis and the resulting algorithm is that the sparsity in the solution can be
exploited independently from sparsity in the right-hand side (if any). In addition,
we explain how our implementation exploits vectorization and cache coherence.

The details of the analysis and resulting algorithms are described in Section 4.3.

We first evaluate the effectiveness of the main operations at the common example
of generating a conformal parameterization with prescribed boundary. Our ap-
proach follows the now classic idea to generate a harmonic embedding [26] and
requires only a single linear solve. This allows us to compare the time required
for numerical solutions based on the local patch or using the sparse localized solve
based on the prefactored global system. We find that our approach provides a sig-

nificant speed-up in all practical scenarios.

Next we analyze the behavior for extremely sparse vectors at the example of dis-
crete heat diffusion. Here, we assume that the heat source is local (i.e. a single ver-
tex). Then we demonstrate the gain in efficiency if only a single value is desired,
either far away or in the vertex itself (the case of auto-diffusion, which is used for

many signatures and matching [38, 97]). Both cases show significantly reduced
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Figure 4.1: To parameterize a small surface patch (left) a global factor-
ization of the Laplacian can be utilized. For the computation of the exact
solution for patch vertices (gray vertices on the right) not all columns of the
Cholesky factor have to be considered. More specifically, only those associ-
ated with paths in the elimination tree connecting root and patch-vertices
are required additionally (white vertices).

computational cost compared to standard solutions; the scenario of different loca-
tions for source and desired heat value allow us to analyze the benefit of exploiting
the sparsity in the solution independently from the sparsity in the right-hand side
(see Section 4.6).

4.2 Background

The central operation we are concerned with are solutions of linear systems that
are the result of discretizing differential equations over the domain of a triangle

mesh M = (V, F).

Alarge number of geometry processing operations involve discrete differential op-
erators. There are many alternatives on how to derive the matrix representations
of these operators [ 1, 31, 72, 79]. The important point is that in all constructions

the operators are built from the adjacency structure of the mesh, and the sparsity
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pattern is identical to a low order power of the adjacency matrix. Moreover, in
most cases the system is, or can be made, symmetric. In other words, the common
task is to solve a sparse symmetric system of the form Ax = b, where x represents
values attached to the mesh elements, most commonly the vertices, in which case
A € Rwxm,

Sparse Cholesky factorization If the resulting sparse symmetric linear system

is positive definite it can be solved using Cholesky factorization
A=LDL" withL,D € R**™, (4.1)

Here, D is a diagonal matrix and L is a lower triangular matrix with unit diagonal
commonly called the Cholesky factor. Since A is positive definite all entries of the
diagonal matrix D are positive. The diagonal entries of L will all have the value

one. The alternative definition
A=LL"T withL' = LD (4.2)

is equivalent to the first one but has some practical advantages when applying so
called supernodal methods that will be used in the next chapter. Keeping the ex-
plicit matrix D has the advantage that matrices that are not numerical positive def-
inite, i.e. possesses an eigenvalue that is numerically not positive, can also be han-

dled to a certain extend. In this chapter we will therefore proceed with this variant.

The Cholesky factorization has many favorable properties, for example it is uncon-
ditionally stable, allowing permutations for optimizing other properties. In our
context a permutation can be selected with the goal to reduce fill-in. A fill-in en-
try is a nonzero that appears in L but not in A. In particular, for the adjacency
structures resulting from triangle meshes it is usually possible to generate sparse

Cholesky factors using an appropriate ordering.

Eliminationtree The sparsity of the Cholesky factor isimportant in our context

because it leads to efficient solves. Solving a system forx € R™ given a right-hand
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Figure 4.2: If we know the value y; to be nonzero and I;; is a nonzero as
well we know that y; has to be a (structural) nonzero.

side b € R™ requires a forward substitution (or forward solve) step to compute

the auxiliary vectory € R™

Ax =b (4-3)
= LDL'x=»b (4.4)
= LDy=b (4.5)

followed by the back substitution LTx = y.

Now consider computing the forward solve. The elements of the solution y are
computed in order of increasing index, i.e. y, = b,/do, is computed first, then y,,

and so on.

For a sparse right-hand side b the vector y is usually also sparse and knowing the
nonzero structure of y in advance would significantly improve performance —

columns in L corresponding to a zero in y can simply be ignored.

In what follows we refer to elements as nonzero if they potentially take on values dif-
ferent from zero, because their computation depends on other nonzero elements.
It is still possible that nonzero elements carry a zero value due to numerical can-

cellation. Zero values of this kind are commonly not exploited algorithmically.

The key observations for the nonzero structure of y are the following: (1) if b; is

nonzero then y; is nonzero (because D has to be full-rank), and (2) if y; is nonzero
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and there is a nonzero [;;, then y; will be nonzero, as illustrated in Figure 4.2. Con-
sequently we can find the nonzero structure of y by traversing the graph of L that
has an oriented edge (j, i) for each nonzero I;. Note that all edges in the graph are
directed from a node with smaller index to a node with larger index, reflecting the
computation of elements in increasing order of index. The traversal is started in
the nodes corresponding to the nonzeros in b, following observation (1). Then the
graph is traversed following the oriented edges, reflecting observation (2). The
nonzero structure of y is given by the nodes that are visited during this traver-
sal [37]. If the elimination tree is fairly balanced we can expect the vector y to

be sparse if b is sparse, albeit with some fill in.

The graph mentioned above is a useful tool for quickly identifying the columns in
L that need to be considered during the solve. To store the graph without compro-
mising on the possibility to quickly identify all dependencies a particular spanning
tree of the graph is used: the elimination tree. This tree results from keeping only
one outgoing edge for each node. In particular, in node i we pick the edge (i, j)
with the smallest index j. By retaining only one edge per node and since all edges
go from nodes with smaller index to larger index, it is clear that in the resulting
graph there is at most one path from a node with smaller index to one with higher
index. But why is it connected? It is a specific property of the Cholesky factor that
whenever node i has outgoing edges (i, j) and (i, k) with j < k, then node j has
the outgoing edge (j, k). We refer the reader to Liu [62] and Davis [18] for an
explanation and proof of this property.

The elimination tree not just stores the connectivity of the graph, it also allows
identifying the dependence among nonzero elements by starting the traversal in
any of its nodes. By traversing only along the spanning tree we are guaranteed to
reach all nodes we would find when traversing the full graph. A space and runtime
efficient representation is to simply store for each index j its parent index #(j) in

the elimination tree.

By exploiting this representation of the elimination tree, computing the nonzero
pattern of y takes an amount of time proportional to the number of nonzerosiny.

Simply traverse the tree up to its root starting at all indices that contain a nonzero
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in b and mark all visited notes. Figure 4.4 illustrates an elimination tree. Consider
aright-hand side b with nonzeros in positions 1 and 5. Traversing the tree informs
us that the vector y will have nonzeros in positions 1, 4 — 8 and 17 — 20. In this
example there are nonzeros only in roughly half of the entries, however, for larger

trees this ratio will be significantly smaller.

The tree itself can be directly constructed from the input matrix and will be avail-
able anyway because it is used during the construction of the Cholesky factor itself

and determines its nonzero structure.

Ordering: nested dissection An important factor in the efficiency of comput-
ing the intermediate solution for sparse right-hand sides is the (average) length of
the sequence (j, #(j), #(#(j)), . . .) or, in other words, the height of the elimina-
tion tree. Of much lesser importance, in our context, is the fill-in: note that a zero
fill-in structure might still have an elimination tree with worst case height. The se-
quence #(j) = j + 1, for example, corresponds to a dense subdiagonal and would
imply that starting from column j all following columns are visited, which is sim-
ilar to the situation for dense matrices, so the number of columns considered are

linear instead of logarithmic.

To limit the height of the elimination tree one can exploit a crucial property of
Cholesky factors: If a; is the leftmost entry in row i of the matrix A, all values I
with k < j in the factor L are guaranteed to be zero. For the example in Figure
4.3 this implies that the block in rows 1 — 8 will not be connected to block 8 — 16
in the matrix graph of L, therefore these blocks reside on separate subtrees in the
elimination tree. This property can be brought to use by reordering the matrix
columns and rows such that blocks are grouped together. In Figure 4.3 (upper
right) a separator consists of nodes 17, 20, 18, 19 which are sorted last. All nodes
left and right are grouped and sorted before the separator. Proceeding recursively

produces a factorization with balanced elimination tree.

This process is called nested dissection [36]. Note that finding the best ordering

to minimize the tree height and/or to minimize fill-in is an NP-hard problem, so
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heuristics must be used. The main goal in nested dissection is to quickly find good
separators, i.e. consisting of a small number of edges while still generating balanced
components, each of which can again be divided by good separators. We note
that the graphs of the meshes encountered in geometry processing naturally al-
low finding good separators. The reason for this is that the triangle mesh is usually
embedded. This means, adjacency along the surface, which is important for the dif-
ferential operators, corresponds to adjacency in the graph. This makes it possible
to find efficient separators in the graph because graph distance is correlated with
euclidean distance to some degree. Davis [ 18] notes that for many discretization
of two-dimensional problems this leads to an overall computational complexity of
O(n3/*) with O(nlogn) nonzeros in L. In Section 4.4 we indeed observe this to

be the case for the particular problems we consider here.
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Figure 4.3: The nonzero structure of a discrete Laplacian (upper left)
based on the triangular mesh (upper right). The corresponding Cholesky
factor contains elements that were zero in the Laplacian matrix (middle),
however, because the elimination tree (lower right and Figure 4.4) is nearly
balanced, fill in can be limited. A balanced elimination tree will also facil-
itate fast solving times for sparse and localized sets of vertices.
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4.3 Local solves

We have seen that it is possible to reorder the matrices commonly encountered
in geometry processing such that the Cholesky factors have a small number of fill-
edges (the total number of nonzero elements is on the order O(n log n) if the elim-
ination tree is fairly balanced). The elimination tree provides an efficient imple-

mentation of the forward and back substitution for sparse right-hand sides.

Consider a right-hand side b with a single nonzero element for index i. The for-
ward solve involves only visiting the elements on the path from i in the elimination
tree to the root, which is available as the sequence (i, 7 (i), #(7(i)), . . . ). Choos-
ing i = 5 in the example (see Figure 4.3 and 4.4), one ends up with the nodes on
the bold black path which represent the only columns that have to be considered.
This is not only computationally efficient, it also means the number of nonzero el-
ements in the intermediate solution y is bounded by the height of the elimination

tree or, in other words, y is very sparse.

What happens if in addition to b; the element b; is nonzero? The additional ele-
ments in y are given by the path (j, 7(j), #(=(j)), . . . ).

If the additional node lies on the path of b;, e.g. j = 7 in our example, there is
no extra computational work involved. For a node not on the path the additional
work depends on the position in the tree. If the paths for nodes i and j have many
nodes in common, e.g. for j = 1, the amount of additional computation is very

limited.

This is a consequence of the nested dissection ordering, which is constructed such
that vertices close in the triangle graph are likely to fall in the same subtree. More
generally, the intermediate solution y is sparse for sparse right-hand sides b if the
nonzero elements in b are close to each other. This property is also illustrated in
Figure 4.1 which shows the subtree of nodes necessary to perform a forward solve

for the gray vertices.

In other words, the particular geometry of many problems in geometry processing

lends itself well to the sparse solve if nested dissection has been used for ordering.
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Figure 4.4: The elimination tree of the factorization depicted in Figure
4.3. Having a nonzero at vertex s on the right-hand side b will result in all
nodes on the bold black path to become nonzero in the intermediate vector
y. An additional nonzero at vertex o will only add vertices on the red path
to this set.

While these connections between geometry processing and sparse linear solves
might not be obvious, they have been routinely exploited by simply calling the
right library functions. In the following we extend the possibilities for exploiting

sparsity by also considering sparsity in the desired solution vector x.

Subset solve Even if the right-hand side b and the intermediate vector y are
sparse, the final solutionx = L~ "y is usually dense. In heat diffusion with a single
vertex as source, for example, b contains only a single nonzero entry but all vertices
receive some nonzero quantity of heat, regardless of the timestep (cf. Section 4.6).
However, it turns out that any subset of elements in the solution x can usually be

computed exactly, without computing all of them.

Consider performing back substitution with an upper triangular n,-by-n, system
L'x = y, one row at a time. The right-hand side y is sparse, and derives from
the forward solve described in Section 4.2. The backsolve accesses L column-by-

column (or L row-by-row, the i-th step accessing the i-th column of L):
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fori=ndownto 1do
X = Yi
for each j > ifor which /;n.o do
X = x; — L

X = xi/lii

At first glance, it would seem that nothing can be gained by considering only a

subset of the solution vector x.

However, suppose we are interested in the solution only at a subset of the vertices.
These vertices correspond to a particular subtree of the elimination tree (see Fig-
ure 4.1). By construction, all elements in this subtree are not influenced by the
value in any other subtree. In other words, the solution for any subtree of the root
node can be computed independently. This argument applies recursively for any
subtree. In particular, suppose only a single entry x; is desired. It suffices to com-
pute all the components of x along the path from node i to the root, starting from
the root and moving down towards node i. This gives a similar result as the forward
solve: starting with the nodes of desired values of x, find the reach of these nodes

in the elimination tree to determine the components of x that must be computed.

In a preprocessing symbolic analysis phase, we traverse the elimination tree from
the nodes of all desired values and store the set of visited indices. This index set
represents all nodes that could possibly influence the desired values. Visiting the
necessary rows in order yields only a subset of the solution, including the desired
nodes, and the values in this subset are correct. Note that the symbolic traversal
goes up the tree to the root, starting from the desired nodes, but the numeric back

substitution traverses the same nodes in opposite order.

Exploiting the elimination tree, the symbolic analysis time for determining which
components of x are required for computing the desired subset is proportional to

the size of the output set (the visited indices).

Itisimportant to note that the sparsity of b and the desired subset of x play different

roles for the efficiency of the computation and can (and should) be set indepen-
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dently: the sparsity of b affects the efficiency of the forward substitution and the
sparsity of the intermediate solution y. The desired subset in the solution affects
the subsets of rows that need to be evaluated during back substitution. It is possi-
ble, and we will exploit this feature, that the nonzeros in b are disjoint from the set

of desired values in x.

Solving for multiple right-hand sides  In geometry processing applications ge-
ometry is often considered to be the signal. This means we commonly need to
solve the same system for the different components of each coordinate, e.g. the
x- and the y-vector in a parameterization task. In any case that requires solving for
several right-hand sides with the same sparsity (but different numerical values) it is
beneficial to perform the solves simultaneously. This has two reasons: First, cache
coherence is improved for accessing the data structures that store the factorization.

And, second, vectorization can be exploited for the numerical operations.

In our implementation we use templates to provide a convenient way to provide
optimized solvers for different situations. Because of the limits of vectorization we
limit the number of concurrent solves to 8. In this scenario we observe a 2.5-fold

speed-up for 8 concurrent solves compared to 8 sequential ones.

4.4 Poisson problems on patches

One of the most basic tasks in geometry processing is the parameterization of a
surface patch. The classic technique is based on elementary results in complex
analysis, namely that every topological disk admits a conformal mapping into a
disk. The analogue for triangle meshes is the discrete harmonic map [29]. This
method minimizes the Dirichlet energy subject to Dirichlet boundary conditions,
i.e. fixing boundary vertices in the plane. To compute these mappings, the linear
system Lcx = bwithx, b € R™** has to be solved, where L represents the cotan
Laplacian [79]. The boundary conditions require replacing rows that correspond
to boundary vertices by canonical basis vectors and the right-hand side b is a sparse

vector containing the x and y component of the desired positions, respectively.
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Figure 4.5: A surface patch parameterized using localized harmonic pa-
rameterization.

We wish to use the factorization for the full mesh M to efficiently compute a har-
monic parameterization of a surface patch M, C M. The global factorization
is unaware of the patch boundary .M, Dirichlet boundary conditions are there-
fore not an option. Instead we use Neumann boundary conditions [26] which
amounts to prescribing values (Lcx); = b; fori € B where B C V is the set of
boundary vertices. Different choices of Neumann boundary conditions are possi-
ble. We suggest generating the Neumann boundary data by laying out the bound-
ary vertices in the plane, for example on a circle, yielding positions (x5, x5, . . . )
where (B;, B;4,) is an edge in the mesh. The right-hand side b € R™** can then
be defined as

Yxp, —x5 )" B =ieB
bi _ 2( B,+1 B, 1) ] (46)
(o o) else.

These boundary conditions do not guarantee that the boundary vertices are fixed
at the positions xp, but tend to produce disc like parameterizations. Sawhney et
al. [83] describe a method to generate Neumann boundary conditions that are
consistent with Dirichlet boundary conditions, however, their method needs to

solve linear systems defined over the surface patch which is the operation we would
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patch size:

time (ms)

number of vertices

100000 200000 300 000

patch size: | 2000 10000 30000 50000
refactorize & solve | 6 42 180 386

conjugate gradients 18 227 1209 2580

Figure 4.6: Parameterizing surface patches using sparse solves depends
on the size of the full mesh. However, even for small patches on large
meshes the method still significantly outperforms conjugate gradients and
refactorization & solve techniques which do only depend on the patch size
(see table, timings in ms).

like to avoid in the first place.

We are now interested in the solution of Lcx = b, evaluated at vertices V, C V
of the surface patch. Note that this system also defines the positions of the ver-
tices V' \ V, outside of the surface patch. The benefit of our approach is that their
positions do not have to be computed which has no effect on neither the solution
inside the patch nor the computational complexity of the sparse subset solve ap-
plied to the interior of the patch. Figure 4.5 shows an example of a surface patch

parameterized using our localization technique.
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Figure 4.7: For a mesh with 4 X 10° vertices patches of different size are
parameterized. Despite the relatively large size of the full mesh compared
to the surface patches, sparse solves are still orders of magnitude faster than
local approaches. Because the number of columns involved in a sparse solve
depend on the pattern of the right-hand side, we show the average of 100
runs for each patch size.

Evaluation We conduct two experiments to evaluate the computational effi-
ciency of our approach relative to pertinent parameters. We compare the perfor-
mance to the two solutions suggested in the literature, namely computing the solu-
tion inside the patch using conjugate gradients, or generating a new system matrix
for the patch, factorizing the matrix, and computing the solution using the sparse

factorization.

We base our implementation on Eigen[43]. Sparsity is exploited whenever pos-
sible. In particular, we also exploit the sparsity of the right-hand side for solving
of the locally factored system. For conjugate gradients we use diagonal precondi-
tioning (the default in Eigen). For reference we also include timings for forward

and back substitution without exploiting sparsity.

In the first experiment we consider patches with a fixed number of vertices and
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vary the mesh size. The idea is that traditional approaches would be affected only
by the size of the patch, but not by the size of the surrounding mesh. This is dif-
ferent in our approach, as the height of the elimination tree and, consequently, the

local solve, depend on the size of the mesh.

We generate patches with vertex counts 2 X 10,1 X 10%, 3 X 10* and 5 X 10* using
BFS on the vertex-edge graph of the triangle mesh. The table in Figure 4.6 shows
the running times of the traditional solutions, which were indeed nearly constant
across all experiments. The graph in Figure 4.6 shows the performance of our ap-
proach. As expected, the runtime increases with the size of the mesh, seemingly
involving a logarithmic dependence. The local variation in runtime is due to the
varying alignment of the patches with the nested dissection structure. In other
words, if the patch happens to align nicely with the separators used in nested dis-
section, the sparsity in the right-hand side and the patch results in fewer nonzeros
in the solution and reduced cost. If the patch intersects many such separators at
a high level, the performance degrades. Importantly, the performance of our ap-
proach is significantly better than for traditional approaches, even in unfavorable

constellations.

In the second experiment we take a fixed mesh with 4 X 10° vertices and vary the
patch size. We take a relatively large mesh, as smaller meshes lead to smaller elim-
ination trees and would be to the advantage of our approach. In this scenario we
consider comparably small patches since larger patches are to the disadvantage of
the traditional techniques. The graph in Figure 4.7 shows the result of this experi-
ment: for all but the smallest patch sizes our approach outperforms the traditional

techniques by one or more orders of magnitude.

Consistently with the literature on the numerical solution of the 2d Poisson prob-
lem, the direct solver based on sparse factorization outperforms the iterative solver

based on conjugate gradients.

Reusing the factorization of the mesh Laplacian obviously requires building this
factorization in a preprocess. Figure 4.8 illustrates the time required for meshes

of different size. For triangle meshes reordered by nested dissection the asymp-
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Figure 4.8: Time required for Cholesky factorization and nested dissec-
tion (Metis) reordering (left). Time ratio of local patch factorization and
factorization time for the full mesh over vertex fraction of the patch (right).
Time fraction quantifies how many local factorizations can be computed
until it becomes beneficial to compute and exploit a global factorization.

totic runtime of O(n*/*) [42, 11.1.7] can be observed (see fitted curve). The
second plot also includes the time taken for nested dissection reordering (using
Metis [53]).

In many geometry processing applications the factorization of the full mesh is nec-
essary anyway, and it could simply be reused for localized solves. If only few small
patches are processed it may be faster to compute the factorizations for the sub-
sets. The amortization of a full factorization depends on the size of the patch and
the full mesh. Figure 4.8 (right) illustrates the ratio of local and global factoriza-
tion time as a function of the relative size of the patch. For example, factorizing
the Laplace matrix of a patch consisting of roughly 20% of the vertices is 10 times

faster then factorizing the matrix for the whole mesh.

Compared to the times necessary for factorization, solving requires negligible
time. So if indeed the overall processing time is of importance, one would have to
estimate how many local solutions on patches of what size are required in order
to exploit the benefit of local vs. global factorization. To stay with the previous
example, if less than 10 local geometry processing problems have to be solved
on patches consisting of 20% of the vertices in the mesh it is better to compute
local factorizations. For more than 10 problems it is better to compute a global

factorization.
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Figure 4.9: The height of the elimination tree for different mesh resolu-
tions, revealing the influence of mesh geometry on performance.

Influence of geometry The efficiency of the proposed approach relies on a bal-
anced elimination tree. While embedded models usually allow for a very efficient
nested dissection reordering, results might differ with geometry. A high resolution
mesh of a thin cylinder will allow for a very small separator dividing the vertices
into two roughly equal sets. The mesh of a sphere, on the other hand, will have
larger separators and consequently a denser Cholesky factor and higher elimina-
tion tree. The height of the elimination tree is the main factor determining the time
needed for back substitution. To asses how much geometry affects performance
we compare total tree height for different meshes at different resolutions in Figure
4.9. As expected the spherical mesh seems to be among the worst and the elon-
gated cylinder among the best cases for the presented algorithm. Other meshes
are ranked somewhere in between. For the evaluation in the previous paragraph

we used spherical meshes at different resolution.

Non-linear parameterization More recent techniques for parameterizing
patches are non-linear and typically involve iterative solutions of sparse linear
systems. Some popular techniques are based on a fixed system and only modify

the right-hand side throughout the iterations: As-rigid-as-possible parameteri-
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Figure 4.10: Performance ratio of the exact and approximate sparse
solve with respect to (circular) patch size (as percentage of all vertices).
The radius needs to be enlarged for the approximate method, here we use
a factor of one, two and three. Only for patches covering more than s% of
the surface and a factor of > 2 the exact method will be faster.

zation [63] optimizes the per-triangle transformation to be rigid or a similarity
transformation. They report up to 10 iterations for the minimization of their
energy. Spectral-conformal parameterizations [74] are based on extracting the
Fiedler vector from a Laplacian system. Computing this eigenvector can be
done based on inverse iterations quite efficiently using our approach, as the
Cholesky factors allow quick computation of the iterates. Inverse iteration is
known to converge extremely rapidly, with a good starting guess in well under §

iterations [48].

Given the performance data we have shown, even for these techniques it is bene-
ficial to exploit a global prefactorization and then use the local sparse subset solve

we provide.
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Figure 4.11: The accuracy of the approximate solve increases with the
amount of additional values computed.

4.5 Comparison to approximate sparse solving

Chapter 3 introduces techniques to compute Voronoi diagrams and cell centroids
based on heat diffusion. These techniques can be used to approximate centroidal
Voronoi diagrams by means of Lloyd iterations. Naturally the solution to the
involved diffusion problems is only interesting close to the source which is why
they can potentially profit from the localized solution technique introduced
in this Chapter. Here we compare the approximate sparse solution technique

described in 3.6 with the new exact approach.

Both methods do not evaluate the result for all variables during back substitution.
The approximate sparse solve uses the fact that values decay fast with distance from
the source and just assumes that they are zero outside a certain neighborhood.
The accuracy of the result depends on how well the assumption is actually ful-
filled which depends on the diffusion time step and the size of the neighborhood.
Because only values associated with vertices in a neighborhood are considered the

performance of this method is largely unaffected by the size of the full mesh.

The exact sparse solution technique introduced in this chapter computes the cor-

rect result for a set of vertices and thus does not require to extend the neighbor-
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hood, however, additional values also have to be computed as dictated by the elim-
ination tree. The amount of these values depends on the size of the mesh, as ana-
lyzed in Section 3.6. This makes the exact technique more versatile since it applies
to any sparse linear system for which a Cholesky factorization exists but perfor-

mance will depend on the ratio of neighborhood and mesh size.

Naturally the question arises which technique is better suited for the computation
of (centroidal) Voronoi diagrams. We can expect that for quite fine diagrams with
small cell sizes, small time steps and large meshes the approximate technique will
be very accurate and faster than the exact one, for larger cells the exact method
should perform better. For a quantitative analysis we conduct the following ex-
periment: For a triangulation of the sphere we randomly select circular patches
containing a certain ratio of all vertices. We choose the sphere since this geome-
try can be considered to be among the worst cases for elimination tree height as
detailed in Section 4.5. For each patch we perform heat diffusion using all vertices
as source and set 500 times the squared average edge length as time step, as would
be necessary for the computation of accurate cell centroids (cf. Section 3.5). All
computations are performed using the exact sparse method and the approximate
method with a patch radius increased by a factor of one, two and three. In Figure
4.11 we report the performance of the approximate method divided by the per-
formance of the exact one. Figure 4.10 illustrates the average relative error of the
approximate solve. Using only the neighborhood itself will naturally lead to a quite
large error, increasing this radius brings the error down to an acceptable level. A
factor of at least two is therefore recommended. The exact method will then be
faster for cell sizes larger than 5% of the full mesh. For a factor of one the exact
method can never be faster since the rows of LT considered during back substitu-
tion are a superset of the rows considered for the approximate solve. We can con-
clude that, except for very coarse diagrams, the approximate method will perform
faster and is accurate enough. For more general problems or diffusion problems

with large step size the exact method is to be preferred.
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4.6 Applications

The autodiffusion function The auto-diffusion function ADF,(x) [38] mea-
sures the amount of heat that stays at a source after diffusing for time t. The more
general heat kernel signature HKS(x) [97] combines several values of the auto-
diffusion function for varying timesteps t. These functions are used to generate

descriptors and have a variety of applications, particularly in shape matching.

The standard way to compute the auto-diffusion function or heat kernel signature
is based on computing a set of eigenvectors of the discrete Laplace-Beltrami op-
erator. However, it is clear that the value of ADF;(v;) could also be computed by
solving heat diffusion for b = e; and considering the result in ;. If a standard
approach to solving the linear equation is used, the solution would provide all val-
ues in x. Then computing the auto-diffusion amounts to effectively inverting the
diffusion operator, which is more expensive than computing a few eigenvectors.
Computing the HKS would mean to compute the inverses for a set of matrices of

the form M — fL¢ with varying t, which appears to not be attractive.

Using our approach, computing the value of the solution only for x; is a best case
scenario. What our approach effectively does is computing only the main diago-
nal of the inverse operator. This can be done at a fraction of the cost of computing
the full inverse. For the HKS, we can exploit the common sparsity structure of all
operators: Note that the elimination trees in the factorizations of M —fL are inde-
pendent of t. This means we can effectively solve for the values in one vertex with
varying t in parallel, by traversing the elimination tree and computing the values
based on different numerical values for the factorizations. This approach becomes
particularly attractive if the auto-diffusion values are needed only in a sparse subset
of the vertices, because the complexity is trivially linear in the number of desired
values (whereas the computation of eigenvectors depends on the mesh size, even

if the signatures are evaluated only on a subset of the vertices).

Computing the autodiffusion function using our method on a mesh with 53000
vertices (Figure 4.12 left) took 11 seconds while solving the system each time using

classical forward/back substitution would take 3 minutes and 45 seconds. Com-
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Figure 4.12: Left: The result of computing the autodiffusion function
with our method. Right: Histogram of speedup for pairwise heat exchange
using our technique.

puting 300 eigenfunctions using ARPACK to compute the autodiffusion function
as described in [38] takes 39 seconds.

We wish to stress that computing the solution of the linear equation for only the
source vertex is fundamentally different from restricting the computation to a sub-
mesh around the vertex i. For small time steps the results might be fairly similar,
for larger t values, however, heat diffusion on a small disk like mesh around i will
behave fundamentally different from the global solution. The sparse solve com-
putes the exact results no matter what value of ¢ is set. Moreover, the amount of

computation is exactly the same for all time steps .

Pairwise heat exchange The case of autodiffusion is optimal for the sparse
solve. All that is required is to walk down one path in the elimination tree for the
forward solve and move back up for the back solve. In many cases we are interested
in the distance or heat exchanged by a small set of points, for example when
computing embeddings [76]. If we are interested in how much heat is exchanged
by two disjoint sets of points or two single points, the obvious approach is to

compute the subtree of the elimination tree with respect to the union of both
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sets. This can be quite efficient if both sets share most of the subtree. If this is not
the case it is beneficial to use different subtrees for the forward and back solve
respectively. We implemented this technique and conducted an experiment to
assess its benefit. On a mesh we randomly select pairs of points. Depending on
how many nodes in the paths traced to the root of the elimination are shared
we expect different speedups. For 10* pairs on a mesh with 2 X 10° vertices we
show a histogram of the achieved speedup (Figure 4.12 right). In almost all cases
runtime significantly profits from using two separate subtrees. In a small number
of cases, where points are quite close on the mesh, setup cost for the second tree

outweighs the benefit by a small margin.

4.7 Discussion & conclusions

Geometry processing applications commonly require solving symmetric, positive-
definite linear systems Ax = b. In many situations either the right-hand side b
and/or the set of solution values of interest in x corresponds to a small and lo-
calized set of vertices. We have shown how to systematically exploit the resulting
sparsity of x and b when the Cholesky factorization of A is provided without com-
promising on numerical accuracy. As a result of the nested dissection reordering
strategy, the speedup over a full solve can be significant when the sparse sets cor-
respond to spatially close vertices. Even if this is not the case, improved solving
times can usually be observed. Due to the small overhead, our strategy will exhibit
nearly identical running times as the full solve not exploiting sparsity in the worst
case. We have demonstrated the efficiency of local solutions on representative ap-
plications in geometry processing. For these we find that using sparse subset solves

on prefactored system matrices can improve the runtimes by orders of magnitude.

Localization is not always straightforward. For example, fixing a subset of arbitrary
vertices (such as in many modeling scenarios) requires updating the system matrix,
which may not be very efficient [23 ]. The next Chapter will introduce a technique

to tackle this kind of problem.
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Reusing Cholesky factorizations on

submeshes

§.1 Introduction

Many interactive modeling operations require solving a linear system on a subset
of a mesh. As a guiding example for this type of operation we take mesh deforma-
tion: the user marks a region of interest and a set of handle vertices; moving the
handle vertices will then affect the vertex positions in the region of interest, while
the vertices outside the region of interest stay fixed. Many approaches for this op-

eration are based on minimizing a quadratic (or nonlinear) deformation energy

87



subject to position constraints of all fixed vertices [8, 94, 96]:

argmin  Tr (xTAx)
xERm X3 (5 1 )

st.x; =x fori € B

Note that these are actually three separate optimization problems, one for each
dimension. Here the index set 13 contains the constrained vertices. The matrix
A € R™*™ is symmetric and positive semi-definite, in many cases the mesh
Laplacian [7, 72, 79] or alow power of it. The order of vertices in x is arranged so
that the set of unconstrained vertices Z and the fixed vertices /3 form blocks:
X7 A Amp
X = , A= . (5.2)
Xp Apr Aps
The minimization can be performed by substitutingxz with the constrained vertex

positions x3; and solving the resulting system

(AZZ AJB> zz =0 = Apgxz=—Apxs (5.3)

B
Because A is positive definite or can be regularized the matrix A7z will inherit this
property, and the system is commonly solved by computing the Cholesky factor-
ization A7z = LL" followed by performing forward and back substitution. This
is particularly effective if the system is sparse. The sparsity of the resulting factor

can be further improved by reordering.

While solving a sparse system given its Cholesky factorization is very fast, the nec-
essary preordering and factorization steps are expensive computations. This can
lead to problems for operations that are intended for real-time interaction. Our
central idea is to reuse the ordering and factorization of a linear system defined on the
complete mesh to construct the factorization of a linear operator on a submesh. The
first idea is straightforward: The reordering that is necessary for the computation
of Cholesky factors can be reused for linear systems on submeshes by just keep-

ing the vertex indices in the same relative order. This avoids the time consuming
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Figure 5.1: Deforming a mesh based on selecting a region of interest
(green) and a handle (red) commonly requires solving a sparse linear sys-
tem. This is typically done using the Cholesky factorization. The compu-
tation time for the factorization depends on the number of vertices in the
region of interest, and may prohibit interactive use for large meshes. We
propose a method that exploits the factorization of the operator L on the
whole mesh for computing the new factorization of L' on the submesh, in-
stead of computing it from scratch. For the depicted mesh with one million
vertices our update algorithm computes a new factorization in 0.47 sec-
onds whereas the factorization of the desired system matrix for the region
of interest using Cholmod takes 3.4 seconds.
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ordering step for the local problem.

More significantly, we observe that the factors for the local problem can be de-
rived from the factors of the global problem by a series of rank-one updates (Sec-
tion 5.4). This updates can be efficiently performed by copying data from the
global factor and running a modified Cholesky factorization algorithm only on a

subset of columns.

In Section 5.5 we first show that the nonzero structure of the desired local
Cholesky factor can be easily deferred from the global factor. This observation
is non-trivial as it is not generally true for arbitrary sparse factorizations. Based
on this observation we develop an update strategy that is significantly faster than

general purpose rank-one updates [21].

We compare the efficiency of our approach with complete refactorization for a
range of different meshes and differently sized submeshes. Reusing the ordering
already provides a speedup for solving local problems. Our update strategy results
in significant further progress. Compared to the common call to a matrix library,
which would perform preordering and factorization, our update strategy is signifi-
cantly faster. We present detailed results in Section 5.7. In general, every algorithm
that requires solving several constrained local problems on a mesh can benefit from
our approach. This includes parameterization [26, 74], local mesh filtering [25]

and constrained heat diffusion [17].

5.2 Related work

Hechtatal. [46] suggest a method which is similar in spirit to ours. They apply par-
tial refactorization to Cholesky factors in a nonlinear finite element simulation of
elastic objects. During the simulation the problem is repeatedly linearized, leading
to sparse linear systems. The main observation is that in many cases the simulated
object and therefore the linear system only changes locally. These changes in turn
only affect certain parts of the Cholesky factor, which can be partially refactored.
This leads to an approximation that is good enough for small time steps. The

system is completely factored only sporadically. Like our approach, this method
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leverages the block structure of the Cholesky factor of a matrix that has been rear-
ranged using nested dissection reordering. The authors report a two to three fold

speedup compared to full refactorization at every frame.

In a similar vein, Yeung et al. [ 111] consider updates to a linear FEM system when
the structure of a simulated mesh is changing, e.g. during a surgical simulation.
They augment the matrix with additional rows and columns to account for new
constraints effectively modifying columns of the original matrix. The new system
can be solved by using the original factorized matrix in conjunction with an iter-
ative scheme. This method is very well suited for continuous changes in mesh
topology. After a certain number of iterations, however, a new factorization has to
be computed. Our approach on the other hand is targeted towards incorporating
many constraints at once and would not be competitive if changes have to be made

one at a time. In that sense this method is complementary to ours.

Modifying a given Cholesky factorization has been an active research area for many
years. The central observation is that the factorization of a given matrix A € R"*"
can be modified to become the factorization of a matrix A’ € R"*" with much less
effort than computing the new factorization as long as A’ has been obtained from
A by certain simple modifications. Not all modifications are allowed since A" has
to stay symmetric and positive definite. One class of modifications that necessarily

respects these properties are rank-one updates:
A=LL"=A+w'=LL" +w'. (5.4)

with v € R". This type of modification appears quite naturally, e.g. when adding
an observation in a regression model that has to be solved usingleast squares. Davis
et al. [21] provide an efficient implementation of this method for sparse matri-
ces. Special care has to be taken when the nonzero structure of the factor changes,
which can generally happen. The method is very efficient if updates are performed
one at a time. If several updates are necessary at once, i.e. A+ VV' with V € R"*¥,
the update can be performed slightly faster than consecutive rank-one updates,
however, the amount of speedup is limited to about a factor of two because up-

dates can only be efficiently processed in small batches [22]. If the update is of
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very low rank (i.e. kis very small) this method might actually be faster than our
approach. However, this assumption is not true for almost all use cases considered
here. In Section 5.7 we compare the performance of our approach to multi-rank

updates as implemented in Cholmod.

Itis one of our central observations that in our particular scenario, where only very
specific updates have to take place, the nonzero structure is unaffected by the up-
dates. We show how this simplifies the operation and allows for much faster multi-

rank updates.

5.3 Background: Sparse Cholesky factorization

Our approach is based on the Cholesky factorization of the linear system. We
make use of several properties of sparse Cholesky decompositions, its common
data structures, and the basic factorization algorithm. We already covered the ba-
sics of Cholesky factorizations in Section 4.2, here we will provide some further
details of the factorization procedure itself as far as they are required for under-
standing our algorithm. For practical reasons we use the variant A = LLT of the
decomposition in this chapter and do not explicitly represent the diagonal matrix

D (cf. Section 4.2).

Left-looking Cholesky factorization In principle there are many ways to com-
pute Cholesky factorizations. A popular method is the so called left-looking algo-
rithm that computes the factor L column by column using the already computed
columns to the left — hence the name. Assume the first i — 1 columns of the factor
have already been computed and one wants to determine the i-th column (I;, £;)

(see Figure 5.3). For the diagonal value [; we get

L * llr + lizi = aj (5-5)

= l,‘,‘ = \/ a4 — 11 % l;r (5.6)
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Figure §5.2: Nested dissection reordering hierarchically divides the mesh
into two balanced parts separated by a small divider (top right). The
mesh Laplacian will then exhibit a block structure (top left). These blocks
are preserved in the Cholesky factor (bottom left) which has additional
nonzero entries only inside these blocks (red pixels). The block structure
yields a fairly balanced elimination tree (bottom right).
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Figure 5.3: Schematic illustration of the left-looking Cholesky algorithm.
The algorithm subsequently computes the columns £; by using already
computed values to its left in the factor.

Expressing a; with the matrix product on the left in Figure 5.3 provides a relation-
ship for £;:

L2 * I;r + lii * Ei = a; (5.7)

= 4=1 (a-L 1), (5.8)
i

If the matrix is positive (semi-)definite, the square root in the expression for J; is
real-valued. In many computer graphics application the matrix might actually not
be positive definite because of a rank deficit. Due to numeric errors the square root
might produce complex values. This can be prevented by regularizing the system
matrix effectively adding a small multiple of the identity matrix to the operator.
Most importantly for our setting, this algorithm can be efficiently implemented
for sparse matrices. Equation (5.8) also demonstrates why the block structure of
Ais preserved. If the k-th row of L does not contain a nonzero until column i and

the same is true for A, the value of [, ; will also be zero.

Sparse matrix representation Sparse matrices can be represented in several
ways with advantages for different access patterns or modifications. For Cholesky
factors and system matrices we use the compressed column format which main-

tains three arrays: one that holds all nonzero values in column major order, a sec-
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ond one of the same size that stores the corresponding row indices and a smaller
array that contains pointers to the start of each column in the row and value array

respectively. In 5.9 we depict an example matrix (left) and its compressed column

representation.
o 2 3 5} column array
1 0 2 L
0 3 o 0o 21 0 z} row array (5.9)
4 0 5 [ }
1 4 3 2 5§ value array

Storing a sparse matrix this way it is generally very fast to visit all nonzeros per col-
umn. To traverse a matrix row is much less efficient. Alternatively the matrix can
be represented in a compressed row major order by interchanging the role of rows
and columns. All operations performed during the sparse Cholesky factorization,
as described in [ 18], are carefully designed with the compressed column format in

mind.

Elimination Tree In Section 4.2 the elimination tree of a Cholesky factor was
introduced. Given a sparse right-hand side b this data structure allowed us to de-
termine the nonzero pattern of the vector y in Ly = b. The elimination tree can

also be used to determine dependencies among columns in the Cholesky factor.

Considering the left-looking Cholesky factorization algorithm one can see that the
values of the i-th column of the Cholesky factor depend only on a sparse set of
columns to the left because £; is sparse (see equation 5.8). Knowing what columns
depend on each other is the key to our efficient factor update: Changing a set of

columns in A only affects columns that depend on them in the Cholesky factor.

To find all columns that depend on a column i numerically one can simply traverse
the elimination tree starting at node i up to its root and collect all visited nodes. A

proof of this fact can be found in [62].

This makes an update quite efficient and also illustrates why changing a column

usually does not affect too many others: when modifying a column in the blue
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block of Figure 5.2 (lower left) all columns in the green block remain unaffected

because they reside on a separate sub-tree.

Sparse Cholesky The left-looking Cholesky factorization can be efficiently im-
plemented for compressed column matrices. The computation proceeds in two
phases. The symbolic phase builds the elimination tree and uses it to analyze
the nonzero pattern of the Cholesky factor. During the numeric phase the ac-
tual values are computed and stored in the prepared sparse matrix. Running the
left-looking Cholesky factorization proceeds by constructing L column by column.
The computation is dominated by the evaluation of equation (5.8) which involves
the multiplication of the block L, with the row vector £,. Due to the compressed
column matrix format we do not have an efficient way to access the nonzero pat-
tern of a row. In this setting, however, we scan the rows £; of the matrix one after
another which enables us to use a simple pointer per column that is incremented
whenever a value in the current row is accessed. With this pointer one has access to
the value of a column in that row. However, this technique is only beneficial if we
know the nonzero pattern of £; because every column pointer needs to be checked
for every row otherwise. This nonzero pattern can be found quite efficiently by

traversing the elimination tree, starting from all nonzeros in a; (see [18]).

In our implementation we take a slightly different route. During the symbolic
phase we not only compute the combinatorial structure of the matrix in com-
pressed column form but also in compressed row form. This gives us easy access
to each column in a row and makes row access more efficient — at the cost of
storage. Moreover, this row information is needed during our partial update

procedure.

Supernodal Cholesky When inspecting the elimination tree one can identify
strings of nodes that have only one child. Since traversing the tree determines the
nonzero structure of each column it can be shown that columns of the Cholesky
factorin such a string have two properties: They are immediate neighbors and they

have, apart from diagonal entries, the same nonzero pattern as illustrated in Figure
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Figure §.4: Cholesky factors commonly include consecutive columns that
share the same nonzero pattern (excluding the diagonal), here shown as
red blocks. Aggregating these columns and storing the row information
only once is known as the supernodal compressed column representation.

5.4. Itis therefore beneficial to aggregate these columns into so called supernodes to
store the common row information only once and keep the values of such a group
of columns as a dense matrix. The inset highlights supernodes of a Cholesky factor
in red. Supernodes are not only convenient for storage, they can also be exploited
during computation, leveraging fast dense matrix kernels (BLAS / LAPACK). Our
implementation based on Cholmod makes extensive use of this fact. However, for
clarity of exposition we describe our algorithm in terms of simple columns and
hide the implementation details of the supernodal version of the algorithm. For

more detail see the book by Davis [18].

5.4 Approach

Our goaliis to use the factorization A = LLT of the (global) matrix for alocal prob-
lem on the same mesh. Note that A has been reordered to optimize the sparsity of
the factor L; changing the order of A would require recomputing the factorization.
This means the common approach of ordering the system such that the uncon-

strained and constrained vertices form blocks, as described in the introduction, is
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infeasible.

Nonetheless, A7z and Az can still be expressed in terms of subblocks of L. Let
a; be an arbitrary matrix entry of A. This entry can be represented by the inner
product a; = 11, of two rows of the Cholesky factor L. These two rows can be
split into columns for B and Z, which can be interpreted as computing the inner

product in a different order:

gy =1L = Ll = L+ Ll =11 +1gLs.  (s.10)
k

keZ keB

Putting this together for all entries a;; of A7z and Az yields:

Aﬂ:LﬂL}—I—i—Lﬂ;L}—B (5.11)

Ag; = LLk + LgLks. (5.12)

Note that if the system was ordered such that the indices in Z came first, the zero
structure of L would imply L7z = o and Lz would be sufficient to solve the local
problem. In general, however, this is not the case and Equation (5.11) is the key
to generate the desired factor: we are updating the Cholesky factor L7z to become

the factorization of Az7.

It has been observed [20] that a low-rank update will only affect a small set of
columns. Instead of using the general purpose rank-one update procedure for
sparse Cholesky factorizations, which is prohibitively slow when changing a larger
set of columns, we identify the set of columns that will change and rerun the
factorization algorithm only on these columns, while simply copying columns

that remain unchanged from the matrix L7.

5.5 Sparse updates

Our central observation is that in order to compute the Cholesky factor of a subma-
trix A7z the submatrix of the factor L7z has to be modified by means of a low-rank

update, affecting only a small number of columns in most cases. Moreover, the set
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Figure s.5: (a) The turquoise section of the bunny model, consisting of
vertices indexed by Z, is selected and a Cholesky factor L' for this submesh
is to be computed. The Cholesky factor of the full mesh L induces an elim-
ination tree, the first three levels of which are highlighted on the mesh. (b)
The submatrix Lz, highlighted in (a), is extracted. (c) The matrix Lz
can be used to determine the columns in Lz that need to be updated. To
do this, the index of the first entry in each column (highlighted in red) is
identified and the elimination tree is traversed upwards, collecting the in-
dices of columns that need to be updated (highlighted in (e)). To obtain
the numerical values for the updated Cholesky factor L' the left-looking
Cholesky factorization algorithm is run only on the highlighted columns
while copying data from Lz for all other columns.
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of these columns can be determined very efficiently. Furthermore the update leves
the sparsity structure of the sub factor unaffected, allowing us to just copy the data

and refactor only those columns that need to be updated.

Sparsity structure Changing the nonzero structure of a sparse matrix can be
computationally challenging since inserting values in the continuous row index
and value arrays potentially involves reallocation and shifting of a lot of entries. It
is therefore beneficial in our situation that the nonzero structure of the factor ma-
trix L7z does not change after it has been extracted from L. Note that a nonzero in
a sparse matrix always refers to a structural nonzero, that is, a value that is explic-
itly represented in the matrix — it may contain the numerical value o. To see that
the structure of the matrix L7z does not have to be changed when performing the
update we have to show that the same structure can represent the Cholesky factor-
ization of Azz. Consider an element a;; of A with i,j € Z. In order to represent

this element the value
(LzLp) = 1.1} (5.13)

can not be structurally zero where 1,7 and ;7 are rows in Lzz. Assumei > jwithout
loss of generality. Since the nonzero structure of Cholesky factors only contain
additional nonzeros as compared to the lower triangular part of the system matrix
A, we know that all nonzeros in Azz are also nonzero in Lzz. This means that [;
and ;; are both nonzero and it follows that the inner product in (5.13) does not

vanish in general.

Due to this fact, A7z can indeed be represented by a Cholesky factor with the same
sparsity structure as L77. This saves us the need to analyze the sparsity structure of
L’ based on its elimination tree. However, it is possible that the updated Cholesky
factors explicitly store elements that are structurally zero as an explicit zero. In

Section 5.7 we show that these values are actually quite rare.

Update Algorithm  Our algorithm proceeds as depicted in Figure 5.5. Once the

submesh consisting of vertices indexed by 7 is selected, the submatrix consisting
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of rows and columns in 7 is extracted from L. The update
A =LULT =L L + LLi, (5.14)
can be thought of as a series of rank one updates of the form
Ly’ =L Ll + €67, (5.15)

where k > o and £7;, is a column in Lz and L = Lzz. The columns in which

. and L;__ differ can be determined efficiently by finding the first off-diagonal
nonzero in £7;,. The row index of this value is then used to traverse the elimination
tree of L7z upwards to the root. The set of nodes that are discovered along the way
represent the set of columns that will change due to the update. The columns that
are modified across all rank one updates are found by traversing the tree starting
from the first entries in every column of Lz (depicted red in Figure 5.5¢,d). What
contributes to the efficiency of the traversal is that it is stopped as soon as a node
is found that has been discovered and treated previously. At this point it is guar-
anteed that all nodes up to the root have already been discovered while traversing

from a different start node before.

The performance of the algorithm depends critically on the number of columns
we have to update. Luckily the nested dissection structure ensures that in most
practical cases this number is low compared to the recomputation of all columns

— as would be needed for the full refactorization of the submesh.

To see this, consider the selected surface patch (turquoise region in Figure s5.52).
As the surface patch only covers a very localized part of the mesh, the matrix L3
will be very sparse with most of its columns containing only zeros. This is de-
spite its large dimensions, covering all columns of vertices not contained in Z.
Moreover, considering the position of the first nonzero per column in the elim-
ination tree of Lzz (red in Figure 5.5¢,d), it becomes clear that they will only in-
duce a change in a small subset of columns. Note that there are only seven dis-
tinct row indices highlighted in Figure 5.5c. The columns corresponding to dis-

covered nodes are highlighted in Figure 5.5e. Values in not highlighted columns
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are directly copied from L and will not be touched by the update procedure. All
sub-trees that are completely contained in 7 are skipped when updating L7 since
L75 cannot have a row index contained in these sub-trees. Again the block struc-
ture given by the nested dissection ordering limits the amount of computation.
After the columns that are affected by the update are determined, the left-looking
Cholesky algorithm is run on the sub-factor, skipping all columns that remain un-
changed. Our algorithm can be summarized as follows. Given the vertex indices

of the submesh vertices 7

1. Compute the elimination tree of L.
2. Find the first nonzero in all columns of L75.

3. Traverse the elimination tree to its root starting at these indices and mark

all columns corresponding to discovered nodes.
4. Initialize the Cholesky factor L’ of A7z based on its elimination tree.

5. Fillall unmarked columns of L' with corresponding values from Lzz and set

all marked columns to zero.

6. Run the left-looking Cholesky factorization of A7z using the initialized fac-

tor while skipping unmarked columns.

Row indices As discussed in Section 5.3, we store information about all
columns in a row explicitly. As we are skipping most columns during factorization
we cannot use techniques that rely on the fact that rows are accessed one after
the other in order to access all values in a row. The row information we maintain
has to be recomputed when extracting the sub-factor L7z, producing only a small
overhead, however, it still doubles the amount of information necessary to store
the nonzero structure of L7z. Since the algorithm is implemented in terms of
supernodes instead of columns, the amount of structural information necessary
is reduced compared to a regular sparse format. In Section 5.7 we analyze this
overhead which amounts to below 15% of the total memory used to store the

factorization in all our experiments.
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5.6 Implementation

We implemented our algorithm from scratch in C++ inspired by Cholmod [14].
Since supernodal Cholesky factorization algorithms can leverage fast BLAS ker-
nels we use the Intel MKL [47] with openMP support. To ensure a fair compari-
son, we link Cholmod with the same library for our performance evaluation. Be-
sides the need for a BLAS/LAPACK compatible library, the code we provide is
self-contained, however, if desired, it can be used in conjunction with Eigen [43].
For nested dissection reordering we employ Metis [53]. All timings have been
conducted on a computer with a 3.49 GHz Intel Core i7 processor (four physical

cores) and 32 GB of RAM.

§.7 Evaluation

To evaluate performance we compare our approach to Cholmod [ 14]. For a set of
meshes of different sizes (shown in Figure 5.6), patches are generated by randomly
selecting a vertex and then collecting 10%, 25% or 50% of all vertices closest to that
vertex. For each such patch, the sub-factor is extracted and updated according to

our algorithm.

The traditional approach consists in building the operator for the surface patch
and refactoring it from scratch using Cholmod. For a fair comparison, we do not
include setup operations like forming a submesh and setting up the operator ma-
trix. Instead the submatrix A7z is extracted directly from A, which is much faster.
We observe some variance in performance — our approach depends on how the
patch appears in the elimination tree. When selecting a well separated feature, like
in Figure 5.5, it is very likely that the sub-factor will contain large sub-trees of the
elimination tree. Any sub-tree that is completely contained in the patch can be
copied without modification. Selecting patches at random is therefore a slight dis-

advantage for our method.

Because the nested dissection ordering is spatially adaptive, it makes sense to ex-
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Figure 5.6: Speedup factor of our update method compared to refactor-
ization using Cholmod. The plots show the total range and quartiles for
updates consisting of 10%, 25% and 50% of all vertices on three different
meshes. Each experiment has been repeated so times for the mesh Lapla-
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Figure s.7: Detailed statistics for the Cholesky factor of AT A on a mesh
with s million vertices. Absolute updating and factorization times across
50 experiments are illustrated (top row) along with the distribution of
speedup factors and the fraction of values that need to be updated in Lyz.

tract sub-factors and submatrices in ascending order. In other words, the set of
patch indices 7 is sorted. For a compact, localized patch, a restriction of the order-
ing to that patch will yield a good block structure which in turn guarantees a sparse
factorization and fast updates. This is illustrated in Figure 5.5b. Selecting the sub-
matrix from L while keeping the relative ordering of columns and rows produces

a well ordered matrix L77.

However, it might be possible to improve sparsity by reordering the matrix A7z,
which is not an option for our update procedure. To test if Cholmod can profit
from sorting the matrix, we ran our experiments with Cholmod twice, turning re-
sorting on and off respectively. Across all instances Cholmod could not amortize
resorting times during the factorization phase. It appears that the matrices are al-
ready sorted in a way that allows efficient computation, i.e. induce a well balanced
elimination tree so the benefit of resorting is negligible compared to the necessary

computation.
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Figure 5.8: Histograms of speedup for updates of the Cholesky factor of
AT A on a mesh with s million vertices. The diagrams show the frequency
of occurrence in 5o random updates producing Cholesky factorizations for
submeshes of the given size.

Across all experiments, our method outperformed the costly refactorization step
by a factor of 4 to 6 on average. Figure 5.6 highlights how total mesh size affects
our algorithm. The plots show the mean (black), quartiles (blue) and the range
(gray) of speedup factors across 50 experiments. We present experiments on three
meshes of different sizes updating the factorization of the mesh Laplacian A and

AT A used in least squares systems.

Our method performs better for large patches on large meshes as in these cases
a lot of data can be reused, which would otherwise have to be recomputed. Best
performance is to be expected if a majority of vertices is selected forming a locally

separated patch as shown in Figure s.1. This also explains the high variance to-
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wards larger speedups whenever the randomly chosen patch happened to select a

well separated region.

The performance of Cholmod is measured separately and shown in Figure 5.7.
The data shows almost linear growth in time with system size. The performance
of our method depends critically on the fraction of values that have to be updated
in the Cholesky factor (Figure 5.7, right). We can see, again, that updating becomes

more beneficial for larger patch sizes.

Figure 5.8 shows histograms of performance data for a mesh with 5 million ver-
tices across so random experiments for each submesh size (Figure 5.6, left). The
bimodal distribution for larger neighborhoods can be explained by patches that
cover the complete upper or lower half of the mesh, and patches that cut the mesh
in half, therefore having a larger interface region between vertices of the patch and

the rest of the mesh.

Performance breakdown To get a better understand-

ing of how much each step of our algorithm contributes s

to the overall runtime, we break down the total run- 0.5

time by setup costs such as determining the columns that < |
S

need to be updated (red), copying data from the global =

0.3f
Cholesky factor (green) and running the refactorization 0.1k Q |

(blue). Again, we averaged values for 50 experiments on

10% 25% 50%
a mesh of one million vertices, selecting patches of 10%,

2.5 X 10° and 5 X 10° vertices respectively. Generally 30% of the time is used to copy
the unchanged values to the new factor. The refactorization accounts for around
68% and the rest of the time is spend for graph traversal to find the columns that

need to be updated. These numbers are consistent across mesh and submesh sizes.

Memory cost Compared to refactoring from scratch our algorithm needs to
maintain the matrix structure in compressed row form as well. This amounts to

some extra memory that we measure as percentage of the memory for this data
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Figure 5.9: Left: The fraction of matrix values that are explicitly stored
in our updated factorization although they are actually zero. Right: The
amount of extra memory used by our factorization to store additional row

information.
mem (MB) submesh vertices
10% 25% 50%
2 | 250k | 19(17) | 45 (40) 111 (100)
| 1M 114 (113) | 324 (204) | 697 (637)
> | sM 599 (539) | 1626 (1476) | 3395 (3096)

Table s.7.1: Memory consumptions (in MB) for factors computed using
our updating algorithm and using refactorization (in brackets).

with respect to the total memory occupied by the Cholesky factor (Figure 5.9,
right). Again we used a mesh with one million vertices and different submesh
sizes. The fraction of additional memory decreases with submesh size and stays
below 15% in all our experiments. The results are also consistent across mesh sizes.
Table 5.7.1 shows absolute memory consumption in MB for factors computed
by updating a global factorization compared to factorizations computed from
scratch. In Section 5.5 we have shown that the nonzero structure of the extracted
sub-factor L7z is compatible with the updated factor. However, there are possibly
nonzeros present in L7z that are zero in L'. This might be another source for
additional memory. In Figure 5.9 (left) we show that these structural nonzeros
that have the numerical value zero amount for less than 0.1% of all values and

therefore occupy only a negligible amount of extra memory.
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Figure s.10: Performance comparison of our algorithm and the update
procedure implemented in Cholmod. Even for very small meshes and sub-
meshes our method outperforms Cholmod significantly.

Comparison to low-rank updates Cholmod provides a method to update
Cholesky factors when the original matrix has been updated by a low rank
modification of the form A + VVT with V € R"™* [22]. This method is quite
efficient when the update has low rank (i.e. k is very small). We could use this
method to perform the update in Equation (5.14), which is the central step in our
algorithm. Even for very small submeshes with less than 0.1% of the vertices our
algorithm outperforms Cholmod’s update procedure (Figure 5.10). The speedup
of our method compared to Cholmod becomes more extreme for larger meshes
and we conclude that our algorithm is to be preferred for almost all practical usage
scenarios where submeshes of reasonable size are considered. However, when
updating only a few rows of a least squares system to constrain single vertices,
which might for example be necessary when constructing Least Squares Meshes

[95], Cholmod’s algorithm will be faster.
5.8 Discussion & conclusion

We proposed a method to quickly build a sparse Cholesky factorization for a lin-

ear operator defined on a localized submesh using a factorization of an operator
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Figure 5.11: Non local patches (left) will induce sub-factors Lz collect-
ing data from many different sub-trees of the elimination tree of L (cen-
ter, columns in I colored) and consequently require costly updates of Lz

S R H

(right, columns requiring an update are highlighted).

defined on the full mesh. This operation is more efficient than constructing a new
factorization for that submesh from scratch. Depending on the shape and size of
the submesh we observe speedup factors of 4 to 6 on average, however, this fac-
tor gets higher for submeshes covering a significant number of vertices on large
meshes. These are the situations where performance is most critical and applica-
tions will benefit from our algorithm the most. Moreover, our approach was never
slower than a complete refactorization in our experiments because it just performs
a partial refactorization, reducing to a full refactorization in the worst case, which
is very unlikely for sensible regions of interest. An example of an update that is
not very efficient is depicted in Figure 5.11. Selected vertices (in red) are not lo-
calized and the columns and rows that are selected by Lz are scattered all over L.
This also means that many sub-trees of the elimination tree are covered and alarge
number of columns have to be updated as depicted in the right image. However
even in this extreme example not all columns of the factor need to be updated and

we can slightly outperform a complete refactorization.

Compared to other methods for fast factorization updates, like [ 111], our method
is not approximate. We construct the unique Cholesky factor of the constrained
matrix, moreover, since we are just reusing information that has been already com-

puted and compute updated columns from scratch, our algorithm is numerically



as stable as a complete refactorization. This also enables cascading updates: After
computing the Cholesky factor with respect to a submesh by our update procedure
it can be used to compute a Cholesky factor on a new submesh contained in the

first one. This is a reasonable scenario when interactively editing a mesh.

As the solution of linear systems is a fundamental building block in geometry pro-
cessing and simulation we expect a variety of methods to benefit from our algo-
rithm. We provide ready to use C++ code that only depends ona BLAS/LAPACK
implementation to facilitate further applications. The code can be conveniently

used with Eigen [43] sparse matrices.






Efticient computation of smoothed

exponential maps

6.1 Introduction

Many interactive geometry processing applications require local parameteri-
zations around a point of interest, e.g. for local texture mapping (decals) or

editing [85, 100]. Desirable properties for these maps are:

o their computation should be as fast as possible, enabling operations at in-

teractive rates for moderately sized regions, and

o theisometric distortion of the parameterization should be small around the

point of interest and then possibly degrade with distance.
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Let p be the desired origin of the local parameterization. Fast local parameteriza-
tion is commonly based on the idea of tracing geodesics emanating from p. Each
point can then be parameterized based on its geodesic distance to p and the angle
of this geodesic at p relative to a fixed reference direction in the tangent frame. In
the plane, using straight lines as paths, this approach leads to polar coordinates.
The concept analogous to straight lines on a surface are geodesic paths leading to
geodesic polar coordinates. The shortest path between two points on a surfaceisa
geodesic. In contrast to the planar setting, there might be more than one shortest
path. On the sphere, for example, there are infinitely many shortest path connect-
ing a point to its antipode. Local parameterizations based on geodesics therefore
only make sense for regions where there is a unique shortest geodesic for every
point connecting it to the central point p. In this case the polar coordinates in-
duced by the geodesics are refereed to as log map or, arguably more common, by

its inverse, the exponential map (see Figure 6.3).

While tracing geodesics may be natural and the concept of exponential maps
may be well established there are fundamental and practical problems: distinct
geodesic curves emanating from the origin p may intersect, leading to singularities
in the parameterization. Also, computing exact geodesic curves on discrete
surfaces is expensive. This suggests that one rather wants to approximate the
exponential map, focusing on fast computation rather than generating exact

geodesic distances and angles [86].

For discrete surfaces Crane et al. [17] show how distances can be computed by
solving sparse linear systems. In particular they observe that gradients of the dis-
crete heat kernel at a specific vertex closely approximate gradients of the distance
field. Our technical contribution is an extension of this method that also deter-
mines the required angular information at the center vertex (see Figure 6.1). Since
our method is based on evaluating angles of gradients formed with a fixed refer-
ence direction it inherits the robustness of the original method. As a result, we
can efficiently compute both, distances as well as angles, by solving sparse linear

systems.

The heat kernel is the result of simulating heat diffusion for a short time starting
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Figure 6.1: Computing the heat kernel centered at a small set of vertices
(left) can be used to efficiently compute exponential maps (right).

with a singular heat source. For larger times, however, one gets curves that re-
semble geodesics but are smoother. In other words, the diffusion time provides
a parameter that allows to control the smoothness of the map. This property is
useful in presence of surface features that would cause the exact exponential map

to be discontinuous or exhibit large distortion.

Defining the linear systems on the local surface patch and then solving them us-
ing either direct or iterative methods would be significantly slower than forward
traversals from the center vertex. However, the localization technique presented
in Chapter 4 demonstrates how to reuse the factorization of global systems for lo-
cal diffusion problems, resulting in a significant speedup for the type of problem
we consider. Our central observation is that the computation of distances and an-
gles is in fact faster than methods based on Dijkstra’s algorithm. We believe this
is a counter-intuitive and very useful result. It can be explained by the fact that
the factorization of the global system is effectively a precomputation step, which

is exploited in the solution of a particular local problem.

We demonstrate how to exploit the symmetry of the diffusion problem to obtain

angular information for all vertices in a specific region using only a few local solves
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of the prefactored system.

This allows us to compute the angles at almost negligible extra cost compared to
the distances along the paths. We demonstrate that our method is not only overall
faster than existing techniques but also that the smoothness resulting from using
diffusion for the definition of paths avoids fold-over and distortions occurring in

exact exponential maps or Dijsktra-based approximations.

6.2 Related work

Our work aims at the fast generation of local parameterizations, suitable for use in
interactive applications. We focus our description of related work on the subset of
local parameterization techniques that are capable of generating parameterizations

at interactive rates.

Schmidt et al. [86] (DEM) approximate exponential maps at a vertex v; by aug-
menting Dijkstra’s algorithm. For each vertex v; an arbitrary tangent frame F; or-
thogonal to the vertex normal is determined. Next, local exponential maps for each
vertex are computed by rotating each adjacent edge of that vertex into the tangent
frame. To express vectors in a tangent frame F; with respect to F; a rotation aligning
both frames is computed. To find the final exponential map, the mesh graph is tra-
versed using Dijkstra’s algorithm starting at vertex v, When traversing an edge its
local exponential map representation is rotated to the reference frame and added
up. The robustness of this approach can be improved by averaging local exponen-
tial maps from all already visited neighbors in each Dijkstra step [84]. We use this

robust version of the algorithm in our comparisons.

The algorithm merely computes an approximation of the exponential map because
it only uses linear isotropic mappings between coordinate systems and approxi-
mates the real geodesic by an edge path. Nevertheless, the mappings produced

resemble exact exponential maps nicely in many practical cases.

Malver et al. [71] (DGPC) also propagate information using a Dijkstra-like al-
gorithm. They proceed by inferring information for a vertex in a triangle when

distance information to both other vertices is known. To this end a virtual source
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point in the triangle plane is computed that has the correct distance to both ver-
tices. The authors report increased accuracy as compared to Schmidt et al. [86],

assuming exact exponential maps as the reference.

Exact exponential maps can be defined using exact polyhedral geodesics, i.e. the
shortest paths connecting two vertices on the mesh geometry. There are several
algorithms computing this piecewise linear path. While earlier approaches where
rather slow [13, 73] more sophisticated implementations could improve perfor-
mance significantly [99, 106, 108]. Some of these algorithms can sacrifice accuracy
for performance. Ying et al. [112] present an algorithm with tunable accuracy that
also propagates angular information thus producing all information needed for a
exponential map. The authors report that they can outperform Crane et al. [17]
when the accuracy is relatively low but fail to match their performance when com-
parable accuracy is requested. Precomputation times are several orders of magni-
tude higher than for the method of Crane et al. in that case. Since our algorithm
has essentially the same precomputation step as Crane et al. [ 17], this comparison
carries over to our method. Algorithms that compute polyhedral geodesics, either
exact or approximate, have the advantage that they are usually not affected by the
triangulation quality in contrast to heat based methods that can exhibit artifacts for
anisotropic, irregular and non-Delaunay meshes. This comes usually at a higher
performance cost. Moreover, we have found exponential maps based on polyhe-
dral algorithms to lack smoothness because angles are strongly influenced by the
shape of triangles adjacent to the source vertex. Furthermore, even the smallest
cavity on a smooth mesh will lead to artifacts due to non-unique geodesics. We ar-
gue that smoothed versions of the exponential map, as computed by our heat based

method, are preferable over exact geodesic exponential maps in many scenarios.

Sun et al. [98] compute local stroke parameterizations enabling texture manipula-
tion on a mesh. They employ exact polyhedral geodesics based on on Xin et al’s
work [108, 109]. Each point close to a stroke is parameterized by its distance to

the stroke and the arclength at the closest point.

Exponential maps on triangular meshes have recently be used to define local charts

for convolutional neural networks [ 69]. In these applications very fast approxima-
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tions of the exponential map for small neighborhoods are required. This emphasis
on performance, however, can introduce significant inaccuracies that seem to be

tolerable for this specific task.

In concurrent work Sharp et al. [88] introduce a heat based method to perform
parallel transport of vector valued data on meshes. The basic idea of their method
is similar to ours, yet they approach the development from the perspective of gen-
eralizing the heat method. This naturally leads to stronger theoretical foundation.
They also provide a wide range of different instances for specific problems, includ-

ing how to quickly compute exponential maps.

In contrast, we focus on the specific problem and provide a detailed analysis of
the preservation of length and angles as well as the behavior of singularities with
respect to the time step, and contrast this behavior with a range of possibly com-

peting methods.

6.3 Preliminaries

We introduce and recall some notation and quantities associated with the triangu-
lated surface. In particular, we need the area vector per face and the mean curvature

normal derived from the discrete Laplace-Beltrami operator.

For discretizing the heat equation we need a discrete Laplace-Beltrami operator.
We suggest to use the cotan operator, which we denoteas L € R"*" and alumped
mass matrix M € R"*" 3.5. Using this operator we define normal directions at the

vertices as the direction of the area gradient (or, equivalently, the mean curvature)

n, = (Lc(vc,,v17 .. .)T)i . (6.1)

This allows us to assign a unit normal direction as

n;/||n; n, # o
L fasal # o
Zijk aijk/ || Zijk aiij 81567

where we derive the vertex normal from the area vectors if the mean curvature is
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Figure 6.2: Computing geodesic distance using heat diffusion. First the
heat kernel is evaluated at a vertex and the piecewise linear gradient is
computed (left). Integrating the normalized gradients yields geodesic dis-
tances (right).

Z€ero.

6.4 Background

6.4.1 Distances from diffusion

Crane et al. [17] compute geodesic distances by employing a result by Varad-
han [103] stating that geodesic distance can be computed as a point wise
transformation of the heat kernel. The heat kernel is the fundamental solution of
the heat equation and describes how much heat is distributed from a point p to a

point q on the surface in time ¢.

The heat kernel for a fixed point p and time ¢ can be approximated on a surface
mesh by solving a sparse linear system. For this the heat equation is discretized

using the discrete Laplace-Beltrami operator Lc [ 17]. Solving the linear system

(M — tLC)ht = Ahi = € (6.3)
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where e; is the i—th unit vector, representing a singular heat source at vertex i,
yields values of the heat kernel for the fixed source point v; and time step ¢, see
Figure 6.2 (left). Instead of using these values directly the authors observe that ac-
curacy can be significantly improved by exploiting the fact that the gradient of the
heat kernel is parallel to the gradient of the distance function. The gradient of the
piecewise linear function defined by h; can be computed for triangle k = (k,k,k;)

as

Z o X (v, —vi,) (6.4)

2Hatk||

where indices are interpreted modulo 3. Because the gradient of the distance func-
tion has unit length everywhere, the correct and desired gradient field is obtained

by normalizing the gradient of the heat values on each triangle

=g'/lg - (6.5)

Integrating this gradient field by solving the Poisson equation

Ld =D(g.g....)", (6.6)

where D is the discrete divergence operator, results in the distance values d;.

6.4.2 Localized linear solves

The cost for the computation of geodesic distances using heat diffusion is domi-
nated by the solution of two linear systems. Since both of them are sparse, symmet-
ric and positive definite (when regularized) the systems can be efficiently solved

by constructing the sparse Cholesky factorization.

Both linear systems can be prefactored and reused to efficiently solve for geodesic

distances between an arbitrary vertex and all others in a small local patch.

Since exponential maps are in many cases only desired in a local neighborhood

of a central vertex, both localized solution techniques, the approximate one intro-
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Figure 6.3: Illustration of the exponential map centered at p. Image
courtesy of Ryan Schmidt.

duced in Section 3.6 and the exact one described in Chapter 4, can be employed
to yield an efficient algorithm. Because heat values decay exponentially but their
gradients are renormalized (Equation (6.5)) the algorithm is sensitive to accuracy
issues. For that reason we adopt the exact sparse solution technique, the approxi-

mate method might also be applicable in certain scenarios.

6.5 Algorithm

Given a center vertex v; we wish to compute the log map for a set of vertices {v; }c7.
Each vertex in this set is mapped to the geodesic distance to v; and the the angle
of the tangent vector defined by that geodesic at v; with a fixed reference direc-
tion. We can use the methods laid out in the previous section to compute distances
based on solving prefactored sparse linear systems. The remaining problem is to
compute the angular part of the log map. Our first observation is similar to Crane
etal. [17]: the tangents of geodesics are parallel to the gradients of the solution of

heat diffusion for short times t.

An essential property of our solution is symmetry: the heat diffused in time t from
vertex i to vertex j is identical to the heat diffused from j to i in the same time. This
property is exactly captured in the discrete setting — at least if the discrete Laplace

operator matrix L and mass matrix M are symmetric. Then the heat diffused from
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Figure 6.4: Left: Simulating heat diffusion starting at vertex v; we obtain
tangent vectors to geodesics passing through v;. Evaluating these vectors at
v; defines the angular component of the log map centered at v;. Right:
We show that in order to evaluate tangent vectors at v, for all vertices in a
region it is enough to solve only a few diffusion problems close to the center

of the map.

i to j is (h;); where h is the solution to Equation 6.3. This is just the ij entry of
(M—tLc) ™" = A" Since the matrix A is symmetric, its inverse is also symmetric

and we have (h,)] == (h]),.

Computing the angle for one vertex To compute the tangent to the geodesic
connecting vertices i and j we diffuse heat starting at vertex j and evaluate the gradi-
ent in vertex i. To this end we solve Equation 6.3 with the right-hand side e;. Based
on the heat values h; we can compute the heat gradient per triangle using Equation
(6.4). To define the gradient of h; at vertex i we use gradients g]’? in the triangles
adjacent to it. We represent the discrete tangent space at vertex i by the vector
space orthogonal to the (normalized) mean curvature normal n; (6.2). Projecting
the vertex star of i along n; results in a conformal flattening, meaning the relative
angles incident at vertex i are being approximately preserved. Each gradient g}‘ is

projected onto this discrete tangent space, as illustrated in Figure 6.5, leading to

g]k = g]k — n,-niTg]’f. (6.7)
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Figure 6.5: Evaluating the gradient of the heat kernel centered at v; in
all triangles adjacent to v; and averaging in the tangent plane gives the
angular component of the map.

The final direction is then computed by taking the area weighted average of the
projected gradients:

g =) Ag. (6.8)
k

The angle of this vector to a fixed reference direction in the discrete tangent space
represents the angular component of the log map and forms, together with the
distance information, geodesic polar coordinates for vertex v; with respect to the
center v; . Figure 6.4 (left) illustrates the gradient vectors for many vertices, how-
ever, we are only interested in the vector at the center vertex of the log map. It
would also be possible, and arguably more elegant, to compute the gradient using
an intrinsic parameterization, i.e. renormalizing the angles at the central vertex to
27. However, we found the naive approach to consistently yield better results. Any

other method for computing the gradient at a vertex could also be used.

Computing directions for all vertices in the region = Suppose we want to eval-
uate the log map with respect to v; for all vertices in a specific region. Using the
technique described in the previous paragraph would require solving the heat dif-
fusion problem

(M —tLc)h; = ¢ (6.9)
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for each vertex v; in that region. To compute the gradient we are actually only
interested in a few elements of h;, namely those associated with the vertex v; and
its immediate neighbors N/ (i). While solving for these few values is very efficient
using the localization technique described before, doing so for a large number of

vertices still leads to an overall inefficient approach.

Yet, we observe that symmetry allows us to reverse the roles of source and desti-
nation. This means, instead of evaluating (h;) for every jand k € N (i) U {i} we
can evaluate (hy);, giving us the same values. This way we only need to perform
d = |N(i) U {i}| forward and back substitutions. We can easily compute these
solutions in parallel exploiting vectorization which allows us to traverse the sparse
matrix data structures only once during forward and back substitution. This means
that we can compute d solutions in time sublinear in d in practice. Moreover, we

need the values h; anyway to compute geodesic distances.

Efficient computation Even though we are interested in the exponential map
only in a small neighborhood around the source vertex the prefactored linear sys-
tems give values for all vertices of the mesh. Therefore performance depends on
the size of the full mesh which is undesirable in most applications. A possible rem-
edy would be to extract alocal neighborhood of the mesh and solve the linear sys-
tems locally. This requires factoring two linear systems for each instance of the
problem. Moreover, the result will differ since the heat kernel using the full op-
erator considers heat diffusing over the complete mesh. Using a sufficiently large
neighborhood, however, would mitigate this effect close to the surface vertex, see

3.6 for a discussion of this approach.

Using the approach described im Chapter 4 offers a way to sidestep the repeated
factorization of the local problems by reusing a global factorization. This tech-
nique computes the exact same numerical values as traditional forward and back

substitutions. The runtime of this approach depends only very mildly on the size

of the full mesh.
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6.6 Implementation

The implementation of the proposed approach is straightforward given an imple-
mentation of Cholesky factorization and local back substitution. Input for the al-
gorithm is the index of the source vertex i and a set of vertex indices 7 representing
the neighborhood for which the exponential map shall be computed. In a pre-
process Cholesky factorizations of the heat operator A and the mesh Laplacian L

have been computed for the full mesh. The algorithm proceeds as follows:

1. Locally solve the heat equation (6.3) for i and all vertices connected to i

using the precomputed Cholesky factor resulting in vectors hy.

2. Compute geodesic distances using h; following Crane et al. [17], integra-
tion of the gradient field is again computed by locally solving against a pref-

actored system.

3. For each vertexj € 7 compute the gradient of the values (hy); in all trian-
gles connected to i, project them onto the tangent plane at i, build the area
weighted average and compute the angle between the gradient and a fixed

reference direction in the tangent plane.

4. Optionally compute coordinates by converting the polar coordinates to

Cartesian ones.

6.7 Evaluation

We evaluated our algorithm on a set of meshes with different characteristic features
as well as standard geometries. It is well known that the heat method can produce
distorted resultsif the mesh is not Delaunay [ 66 ]. We therefore restrict our analysis
to Delaunay meshes where possible. For meshes that do not possess this property

a Laplacian based on the intrinsic Delaunay triangulation should be used [32, 66].

We compare our algorithm to the Dijkstra based approaches DEM and DGPC.
For DEM we use our carefully optimized custom implementation including im-

provements regarding robustness introduced in [84]. We have empirically found
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Figure 6.6: Performance for exponential maps using our method (heat),
discrete exponential maps (DEM) [86] and discrete geodesic polar coor-
dinates (DGPC) [71]. We compare timings for fixed meshes and varying
patch size (measured in fraction of total vertices). Each measurement is

averaged across 50 random patches.

that a Dijkstra implementation based on Fibonacci heaps for dynamically updat-

ing the priority queue provides the best performance. For DGPC we use publicly

available code provided by the authors.

6.7.1

Performance

To evaluate performance we conducted two basic experiments. First, we vary the

patch size for different meshes and compute exponential maps using our method,

DEM and DGPC (see Figure 6.6). Even though our algorithm exploits the sparse

local evaluation method there is still a dependency of runtime on the size of the full

mesh which is not the case for the alternative approaches. Across meshes of dif-

ferent sizes we find that our method outperforms its competitors when the patch

covers at least % of the mesh’s vertices.
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Figure 6.7: Keeping the patch size fixed at 25000 vertices we vary the
resolution of the full mesh. Left we see the performance of the heat method
(yellow) which can beat DEM (blue) and DGPC (green) if the patch size
is below 5% of the full mesh. Consequently we see our method outperform
its competitors for meshes with fewer than 5 X 10° vertices.

In a second experiment (Figure 6.7) we keep the shape of the mesh and the patch
size fixed and vary the tessellation density. The performance of DEM and DGPC
is unaffected because their runtime only depends on a local traversal that is not in-
fluenced by the size of the full mesh. As seen in the first experiment our algorithm
is only more efficient than the other two if the size of the exponential map is more
than 5% of the full mesh in terms of vertex count. We see this result confirmed
in the second experiment where we choose a patch size of 2.5 X 10* vertices and
consequently see better performance only for tessellations with fewer than § X 10°

vertices.

That our approach is faster than simple traversal algorithms can be explained by
the fact that the factorization of the system matrices is an effective precomputa-
tion step. This precomputation step may also be considered the downside of our
method. In order for the factorization to be reasonably sparse and allow for fast
local back solves, the matrices have to be reordered using nested dissection (see

Section 4.2).
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6.7.2 Quality

The main goal of our algorithm is to generate smooth exponential maps even close
to the cut locus or areas of high curvature where competing methods produce
artifacts. However, we also evaluate accuracy compared to analytic results, even
though this is not our main goal and might even contradict smoothness. We can
show that our method still produces quite accurate results for different standard

geometries.

Smoothness We compare our algorithm to the approaches by Schmidt et
al. [86] (DEM) and Malver et al. [71] (DGPC) in terms of smoothness of the
exponential map. Figure 6.8 shows some rather challenging cases of regions of
high curvature that might also include parts of the cut locus (e.g. second row,
close to the eyes). In all cases our algorithm produces smooth injective maps
whereas other methods exhibit fold over and discontinuities in the map. These
problems are usually more pronounced for DEM. For regions of low curvature
all results are very close (last row). Our algorithm also performs well on very
large meshes (Figure 6.9, 3.5sM vertices) and does not only produce smooth maps
but also outperforms competing methods. In this example we also compare to
discrete conformal maps [26] which might introduce severe area distortion and

is therefore not considered in the following experiments.

Exponential maps computed using our method are smooth even far away from
the central vertex (see Figure 6.9). However, they might exhibit distortions at
elongated features, like the exact exponential map would. Unlike competing ap-

proaches our technique does not produce noise for these regions.

Our method can not guarantee injectivity of the map. Figure 6.13 (left) shows
an extreme case. Even though our algorithm does not produce an injective map
it is still smooth in contrast to other methods. Note that even exact polyhedral
geodesics as implemented by Surazhsky et al. [99] will introduce artifacts at the
cut locus because the exponential map is not defined at these points. By tweaking

the time step parameter ¢ in equation (6.3) we can also compute injective maps
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Figure 6.8: Quality comparisons for our method (left), DEM (center)
and DGPC (right). Our method yields smoother results for regions of high
curvature. For smooth regions all methods perform similar.

for these extreme cases. A parameter of 10°h* produces an injective map that is
considerable smoothed and therefore not as close to the ground truth exponential

map. Choosing smaller values for t yields exponential maps that are more accurate
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Figure 6.9: Comparison of our method (top left), conformal map (top
right), DEM (lower left) and DGPC (lower right).

but exhibit artifacts. The parameter is therefore useful in order to tune the trade off
between accuracy and smoothness. Unless noted otherwise, we use the squared

mean edge length h* for this parameter, as suggested by Crane et al. [17].

Both Dijkstra based algorithms propagate information along one path and intro-
duce error due to the inherent assumption that mappings between tangent spaces
are isotropic, which is not true in general. Moreover, this implies that in cases
where geodesics are not unique the algorithm decides arbitrarily on one specific
path. Heat diffusion, in contrast, can be interpreted as tracing a large number of

particles moving randomly across the mesh [56]. Our approach therefore propa-
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Figure 6.10: Our exponential maps extend smoothly across the whole
surface except for the cut locus.

gates information along all possible paths simultaneously and consequently yields
smoother maps. For planar meshes the exponential maps by Schmidt et al. [86]

and Malver et al. [71] both produce exact results by construction.

Accuracy To evaluate accuracy we compare results on three analytically defined
geometries for which we can can explicitly compute values of the exponential map.
We do not expect our method to outperform the other two in every case because
these geometries are very smooth and therefore represent cases where the inherent

assumptions of the Dijkstra based methods are very well fulfilled.

For the sphere we can easily determine the correct value at every vertex. For the
two dimensional Gauss function we use the fact that it is rotationally symmetric
and therefore directly gives the angular part of the exponential map when using the
maximum as origin. The distance can be computed by numerical integration along
a one dimensional vertical slice of the object. The saddle mesh is defined in terms
of sine functions. By solving a differential equation with appropriate boundary

conditions we can trace geodesics across the surface. For these geodesics the an-

131



gle is constant and the distance can be easily determined by measuring arc length.
We numerically solve the differential equations using Mathematica and achieve a
residual error below 10, We project points sampled from a set of geodesics, start-
ing at the map origin, onto the mesh and compare values by linear interpolation

across the mesh triangles.

To investigate the influence of mesh resolution we compare results for different
mean edge lengths. For each method and mesh we measure the error in the dis-
tance and angle component (E; and E,, respectively) of the exponential map and
report averaged values in Table 6.8.1. Figure 6.14 shows error plots for the sphere
and Gauss meshes as well as the resulting map. For the saddle mesh only the maps
are shown because the reference solution is only defined along a discrete set of

geodesics.

Our method tends to yield better results if the tessellation is relatively fine. While
the average error is in most cases smaller for our method compared to DEM, both
in terms of distance and angle, the DGPC still produces better results in many
cases. In terms of visual quality our result matches those of DGPC on the test

meshes.

The influence of tessellation quality on accuracy is illustrated in Figure 6.12. The
first mesh is a very regular triangulation of the plane and serves as reference solu-
tion. For the second mesh 50% of the edges have been randomly flipped resulting
in non-regular and nearly degenerate triangles. This introduces artifacts in the ex-
ponential map but the overall quality is preserved, even at some distance from the
center. The errors in distance are 0.72 X 10 and 0.205 X 107 in angle as compared
to 0.91 X 10 and 0.9 X 107 respectively for the regular mesh. For an anisotropic
mesh, generated by anisotropic scaling, we see significant distortion close to the
center, however, at some distance accuracy can be recovered. The errors for dis-
tance and angle are 0.77 X 10 and 0.23 X 107. Since these meshes are planar most
method based on exact polyhedral geodesics or Dijkstra based propagation will
yield exact result. Our algorithm is useful whenever performance and smoothness

is more important than robustness against very irregular meshes.
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Figure 6.11: Exponential maps at a saddle point for meshes of different
resolution.

6.8 Conclusion

We presented an algorithm to generate smoothed exponential maps on discrete
surfaces. The method is based on discrete heat diffusion and localized solutions
oflinear systems. The most important observation is that exploiting linear solvers
that provide localization and using system factorization as a precomputation step,
it is possible to improve computation speed over simple traversal algorithms. As
computing angles of the paths is similar to solving a transport problem along the
path this observation could be very useful in a wide range of geometry processing

algorithms.

While we believe the local parameterizations our approach provides are improving
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Figure 6.12: Influence of mesh quality on accuracy. Our method per-
forms well also for irregular (center) and anisotropically scaled meshes

(right).

on earlier approaches also in terms of quality, it would be great to provide some
guarantees in terms of the quality of the mapping. Given the complexity of current
algorithms that provide such guarantees it may be doubtful that it is possible to
obtain mappings with guarantees at interactive rates. The option to increase the

diffusion time seems to be a good compromise in this direction.
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Figure 6.13: Exponential maps in a challenging case including parts of
the cut locus. Left: Our method compared to exact polyhedral geodesics,
DEM and DGPC. Right: By varying the time step t of the diffusion prob-
lem the smoothness of the map can be influenced. As default choice we use
the squared mean edge length h* as suggested by Crane et al. [17]. For
smaller time steps the exponential maps become similar to the result using
exact polyhedral geodesics but are smoother.

136



t

a

edge length: 0.01

t

a

edge length: 0.05

dge length: o.
eg:,meng 0.02

DO O

DEM

DGPC

ours

ours DEM DGPC

[\
Q
o
=
=)
50
8
50
ast
(5]
Ed‘ ‘ ‘ ° ‘ ’ N
i
o
=
50
8
EaT,
50
ae?
(]

D DO

00O
SO>b

00O
GO0

DS O

edge length: 0.05

Figure 6.14: Comparing our method, exact polyhedral geodesics, DGPC
and discrete exponential maps on basic geometries. The map and errors in
angle (E,) and distance (E,) are visualized for different mesh resolutions.






Conclusion

In this thesis I demonstrated how problems in geometry processing can be effi-
ciently solved by jointly employing insights from discrete differential geometry
and numerical linear algebra. I argue that many challenging tasks can be tackled by
looking at the tight interplay between both fields rather than treating them as two
distinct entities. Commonly numerical tools are used as black boxes, and for good
reasons. Using well established libraries leverages decades of expert knowledge.
However, the price we pay for this convenience lies in the generality of the libraries
interfaces. Direct sparse linear solvers, for example, accept arbitrary sparse matri-
ces that are subsequently factorized, only imposing global constraints such as sym-
metry. In this thesis, and in geometry processing in general, the sparse matrices are
most of the time related to the structure of a (triangle) mesh graph. Consequently,
the matrix has a very distinct structure. The solver is oblivious to the source of the

sparse matrix and can not exploit any of these specific properties. Moreover, when
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approximate solutions are sought, it is very hard to communicate what kind of ap-
proximation is tolerable. The approximate sparse solve in Section 3.6, for exam-
ple, requires knowledge about the spatial decay properties of this particular linear
problem. Opening the black box and exploiting the geometric nature of the input
data can reveal opportunities to find elegant and efficient solutions to common
problems. These optimized algorithms are not merely improvements that lead to
a performance increase by a fixed constant, they can fundamentally change the
algorithms complexity. The exact sparse solve in Chapter 4 allows to solve for a
single value of the solution in O(nlog(n)) instead of O(n*), if the meshes allow
for a balanced elimination tree which is usually the case. Even though the exact
sparse solve gives the exact results, its overhead is negligible and it can always be

employed whenever the solution is only relevant in a subset of the variables.

7.1 Contributions

In order to solve discrete geometric problems involving the Laplacian, knowledge
about the discretization of the operator is paramount. In Chapter 2 I elaborate on
a set of well established properties that one wants to maintain in the discretization
of the Laplacian. As demonstrated by Wardetzky et al. [107] these properties are
in general incompatible and a construction of a perfect Laplacian does not exist. I
propose a change of perspective: instead of constructing a perfect discrete Lapla-
cian for the given mesh one can find a mesh that is close to it but admits a perfect
Laplacian. My contribution is an iterative algorithm that finds such a mesh and its
associated Laplacian. Contrary to most other constructions, our algorithm natu-

rally generalizes to polygonal meshes.

Using a discrete Laplacian we can approximate heat diffusion. Crane et al. [17]
demonstrated that heat diffusion can be used to compute geodesic distances on
the mesh surface. I take this concept and use it to compute centroidal Voronoi
diagrams in Chapter 3. My contributions include the intrinsic approximation of
centroids on surfaces, where previous approaches use the embedding of the mesh.
Moreover, I demonstrate how local heat diffusion can be efficiently approximated

by selective back substitution.
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Motivated by the approximate local back substitution I present an exact sparse so-
lution method in Chapter 4. The method also does not compute the solution to all
variables but still yields the exact result for a subset of them. This can be achieved
by analyzing the dependencies among variables with the help of the elimination

tree.

While localized solves are efficient for diffusion type problems, we commonly
want to solve local problems that only differ from a global one in the boundary
conditions. Since this requires an update of the system matrix, the exact sparse
solve can not be employed directly. Chapter s proposes a solution to this
problem. Instead of refactoring the operator of the local problem, I demonstrate
how the factorization of the local problem, including boundary conditions, can
be computed faster by reusing information from the factorization of the global

linear operator.

Chapter 6 demonstrates how to compute the exponential map with the help of heat
diffusion. I propose an algorithm that extends the computation of geodesic dis-
tances, as introduced by Crane etal. [ 17], to also compute the angle of the geodesic
in the tangent plane of the source vertex. This algorithm constitutes an example
that benefits from the exact sparse solve as introduced in Chapter 4. The algo-
rithm is competitive in terms of performance and produces smooth maps while

still being accurate where competing approaches introduce artifacts.

7.2 Outlook

Exploiting the structure of Cholesky factorizations can have an impact in many
areas of geometry processing and the presented algorithms just scratch the sur-
face of potential applications. One possible direction is the approximate update
of Cholesky factors. For non-linear deformation energies one commonly needs
to factor system matrices at every step of a simulation. Being able to update the
factors when geometry changes potentially improves performance significantly.
Hecht et al. [46] propose a first step in this direction and achieve a speedup fac-
tor of about 2. Systematically analyzing the numeric effect of updating a specific

column of the factor with the help of the elimination tree can potentially lead to
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much faster algorithms.

While sparse matrix factorizations can be efficient and robust for medium size
meshes up to a million vertices, they reach their limits for larger meshes in terms of
runtime and memory. A common solution is to resort to iterative solvers like the
conjugate gradient method. These solvers can be very efficient but, unlike direct
methods, their convergence rate depends on the stiffness of the linear problem.
Using insights into the structure of factorization problems can help to implement
hybrid algorithms unifying the advantages of both approaches: limited memory
consumption and robustness. Several approaches in this direction for fluid solvers
based on the Schur complement exist, e.g. [61]. However, scalable general pur-
pose solvers on triangle meshes are still an open problem. In light of the hierarchi-
cal structure induced by the nested dissection ordering it will also be interesting

to combine factorizations with multigrid approaches.

The nested dissection algorithm usually constitutes another black box. Since re-
ordering can, depending on the implementation, take about the same time as the
factorization itself, this seems to be an interesting direction of research. Common
implementations such as Metis [ 53 ] assume a general input graph. Again, we could
exploit our knowledge about the mesh graph. Especially the fact that meshes are
usually embedded could help to find close to optimal separators.

On a broader scale, many numerical algorithms like iterative liner solvers, non-
linear optimization methods and sparse eigensolvers commonly represent black
boxes that can potentially be opened and optimized to leverage geometric a priori

knowledge about the input data.
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