
en ‘nt Lik +t 1 lechnische Universitat Berlin 
Mathematische Fachbibliothek 

Inv.Nr.: S S460 

Stability and convergence of the two-step BDF for 

the incompressible Navier-Stokes problem 

Etienne Emmrich 

Preprint No. 709 

Preprint Reihe Mathematik 

Technische Universitat Berlin 

Fachbereich Mathematik 

StraBe des 17. Juni 136, 10623 Berlin 

February 2001 

_ ‘ 4 7" waning vk 
bd de de 

a < 

{\ Rey 233 a Fanchinit aot Esk 
Viz US } 

sa} L4HA 3 
Serr. MA Tei 

a { 47 tron 126 
Stra se Ges i7. Juni 1Go0 

10623 Berin





Stability and convergence of the two-step BDF for the 

incompressible Navier-Stokes problem 

Etienne Emmrich 

Technische Universitat Berlin, Fachbereich Mathematik, 

Strafe des 17. Juni 186, 10623 Berlin, Germany 

eMail: emmrich@math.iu-berlin. de 

  

Abstract 

The incompressible Navier-Stokes problem is discretised in time by means of the 

two-step backward differentiation formula with constant step sizes. Existence and 

stability of a time discrete solution is proved as well as the convergence of a piecewise 

polynomial prolongation towards a weak solution. The results presented cover both 

the two- and three-dimensional case. Furthermore, a linearisation that is based 

upon a modification of the convective term using a second-order extrapolation is 

considered. 

Key words: Incompressible Navier-Stokes equation, time discretisation, backward 

differentiation formula, stability, convergence 
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1 Introduction 

Whereas the spatial approximation of the incompressible Navier-Stokes problem 

seems to be rather well-understood, only a comparably small number of articles focus 

on a strict mathematical analysis of time discretisation methods. For an overview 

and the state-of-the-art, we refer to Rannacher [13] and Marion/Temam [10]. 
Especially, the question of “realistic” higher-order error estimates has become 

topical since Heywood/Rannacher [7] have proven optimal second-order estimates 
for the Crank-Nicolson scheme. Higher regularity of the exact solution is equiv- 

alent to compatibility conditions on the problem’s data, which lead —due to the 

divergence-free constraint— to a virtually uncheckable and often violated over-deter- 

mined Neumann problem for the initial pressure (cf. Heywood [6], Temam [15]). 
So higher-order estimates should rely upon parabolic smoothing properties. The 

method under consideration, therefore, needs to be A- or G-stable. 

The backward differentiation formulae (BDF), even with variable time steps, 
have been used by many authors for the time integration of (nonlinear) ordinary 

and partial differential equations. The two-step BDF with constant time steps is 

known to be formally of second order and zero- as well as A- and G-stable (cf. 

Hairer/Wanner [5]).



In the context of the incompressible Navier-Stokes problem, the two-step BDF 
has been firstly studied by Girault/Raviart [4]. They have considered a linearised 
variant and replaced the convective term (u”-V)u", where u” is the approximate 
velocity at time tn, by ((2u"~! — u®-2) . V) ut. Unfortunately, the optimal er- 
ror estimate given there relies upon inappropriate higher regularity assumptions. 
In Baker/Dougalis/Karakashian [1], the three-step BDF has been analysed, and a 
second-order error estimate has been postulated for the linearised variant of the 
two-step BDF under higher regularity assumptions as well as restrictions on the 
time step size in dependence of the mesh size of an underlying spatial discretisation. 
Recently, Hill/Siili [8] have proven sub-optimal error estimates of order 1 /4 under 
more realistic regularity assumptions. Their result applies to the two-dimensional 
case with autonomous right-hand side. Yet, the original nonlinear approximation 
has not been considered in the literature so far. Moreover, stability of the discrete 
problem and convergence of a time continuous approximate solution obtained by 
piecewise polynomial prolongation has not been dealt with. Convergence of time 
continuous approximate solutions is, beside error estimates, of interest in its own 
since it does not follow directly from and might be proven under weaker assump- 
tions than error estimates. Furthermore, it answers the question of how to compute 
approximate values between the discrete time points. 

Other methods with constant time steps have been considered e. g. in Temam [14], 
Heywood/Rannacher [7], Miiller-Urbaniak [11], and Prohl [12]. Although efficient 
time integration requires adaptive methods, there is, to the best knowledge of the 
author, no analysis of time discretisations of the Navier-Stokes equations on non- 
uniform grids available. Only in Prohl [12], discretisations on structured time grids 
have been considered in order to overcome the incompatibility of flows. 

In this paper, we consider the two-step BDF with constant time steps for the 
two- and three-dimensional Navier-Stokes problem in its pressure-free variational 
formulation. Beside the original nonlinear approximation, we also consider the 
above-mentioned linearised variant. We firstly study solvability. Afterwards, we 
prove 1°(L?)- and 1?(H})-stability for the discrete solution as well as estimates for 
the discrete time derivative. We then construct piecewise polynomial time continu- 
ous solutions from the discrete values. Finally, we show under suitable assumptions 
on the problem’s data that these approximate solutions converge towards a weak 
solution whenever the time steps tend to zero. The convergence is strong in L4(L7) 
for q € [2,00), weak in L?(Hj), and weak* in L®(L?). 

In a forthcoming paper, optimal second-order smoothing error estimates under 
suitable regularity assumptions that avoid global compatibility conditions will be 
considered. Preliminary results can be found in Emmrich [3]. 

2 Continuous and time discrete problem 

We consider the Navier-Stokes equations describing the non-stationary flow of an 
incompressible, homogeneous, viscous fluid at constant temperature, 

u;p—-VAu+(u-V)u+Vp=f, V-u=0 inQ~x (0,7), 

u=0 ondQx(0,T), u(-,0) =u in,



where 2 C R?2, d = dimQ € {2,3}, is a bounded domain with locally Lipschitz 

continuous boundary dQ, (0,7) is the time interval under consideration, vy = 1/Re > 

Q denotes the inverse of the Reynolds number, u = u(x,t) is the d-dimensional 

velocity vector with prescribed initial velocity up = uo(z), p = p(z,t) is the pressure, 

and f = f(z,t) is an outer force per unit mass. 
We introduce the solenoidal function spaces 

V := {v € Hj(Q)?: V-v=0}, H:= {ve L2(9)?:V-v=0, Inv = 0}, 

where y, denotes the trace operator in normal direction, cf. Temam [14] for more 

details. As usual, the subspace of H+(Q)-functions vanishing at the boundary is 
denoted by Hj(M). Here, by L? and W™? (W™? = H™), we denote the usual 
Lebesgue and Sobolev spaces with the natural norms ||- lo.) and ||-||m,», respectively. 
We will not distinguish between the scalar and vector case. With 

Oui (x) +) Ov; (x _ 10 

=> [3S On; Oi) a, [lal] = (uu), uve, 

j=l On 

(u,v) = -y uj(x)u;j(z)dz, |ul:=(u,u)/?, uvedH, 
= YO 

the spaces V and H are Hilbert spaces. The space V is dense and continuously 

embedded in H. Note that V, H, and the dual V* form a Gelfand triple. The dual 

pairing between V and V* is denoted by (-,-), the dual norm by || - ||,, which is 
different from the H—!(Q)4¢-norm. 

We then consider the weak formulation of the Navier-Stokes problem: 

Problem (P) For given uo € H and f € L7(0,T;V*), find u € L?(0,T;V) such 
that for allu € V and almost everywhere in (0,T) 

5 (u(t), v) +v (u(Z), v)) + b(u(Z), u(t), v) = (f(t), v) (2.1) 

holds with u(0) = uo. 

Here, 

b(u, v,w) := ((u- V)u, w) 

incorporates the nonlinearity. By L?(0,T;.X) with some Banach space X, we de- 
note the usual spaces of Bochner integrable abstract functions u : [0,7] ~~ X. 

The discrete counterparts for functions defined on a time grid are denoted by 

l?(0,T; X). Spaces of m-times continuously differentiable functions will be denoted 

by C”([0,T];X), where X is omitted if X = R. The natural norm of a function 

space Y will be sometimes denoted by || - |ly. 

It is known that Problem (P) has at least one solution, which is unique in the two- 
dimensional case, cf. Temam [14]. For more regular data (up € V, f € L™(0,7; H), 
dQ. € C*), a so-called strong solution, i. e. a unique solution u € C ((0,7];V), exists 

in the two-dimensional case for arbitrary T, but in the three-dimensional case only 

locally up to a (possibly rather small) time T, cf. Temam [16]. 

The trilinear form 0(-,-,-) satisfies the following properties, cf. Temam [16], that 

will be needed in the sequel.



Lemma 2.1 Let u,v,w € V be arbitrary. Then b(u,v,w) = —b(u,w,v) and for 
some B > 0 

lello,4 lollo,a {lel , 

f]?/? |feu||*/? oy [leo 

eal] fo]?/? [le|l2/? Ileal 

[eel [etl lew. 

lb(u,v, w)| < B 

Moreover, in the two-dimensional case, there holds for some B >0 

[b(u, v, w)| < B ful /? |frul]*/? |r|] fev]2/? |fewl]2/? . 

We now come to the time discrete problem. Let the time interval [0,7] for 
given N € N be equidistantly partitioned with the time step At and t, := nAt 
(n =0,...,N). For a grid function {u"}nen, we denote by D; and Dy the backward 
divided differences: 

n _ ,n-1 1 1 
Dy u” := — Dou” := Ai (Su ne Qa t 5 su) ot “Diu” ~ sDiu™. 

For Bochner integrable functions f, we also consider the natural restrictions 

n 1 im n 3 n 1 n—1 
t= a Feat, af= sRif- sR f. 

Furthermore, we use the formally second-order extrapolation 

Bu” := Qu?-! — yr? 

Note that Ru’ = Dgu(tn) = u'(tr) + O((At)%) (¢ € {1,2}) and Eu(t,) = u(t,) + 
O((At)?) for smooth functions u. 

The time discretisation of Problem (P) by the two-step BDF for computing u” 
approximating u(t,) reads as 

Problem (Pa:) For given u®, ul € H and f € L*(0,T;V*), find u® 6 V n= 
2, 3,..., N) such that for allu EV 

(Dou",v) + v((u", v)) + b(u",u",v) = (REf,v). (2.2) 

We also consider the linearised variant: 

Problem (LPat) For given u°, u' € V and f € L*(0,T;V*), find u™ EV (n= 
2, 3,..., N) such that for allu EV 

(Dou",v) +v(u",v)) + b(Eu",u”,v) = (Ref, v). (2.3) 

In opposite to the original method, the convective term b(u”,u",v) has been 
replaced by the formally second-order modification b(Eu”, u”, v). 
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In both problems, the starting values can be obtained by taking u® := ug and 

computing u! from u° using the implicit Euler method. The use of Rf instead of 
an arbitrary approximation {” is only for simplicity and avoids to consider an extra 

error f” — Rjf. By standard arguments, it can be shown that 

n : tn 

Aty > RAFIE <4 / WF(@U2 at. (2.4) 
j= : 

Theorem 2.1 There is at least one solution to Problem (Pa;) and there is a unique 

solution to Problem (LPaz). 

Proof We start with Problem (P,;) and wish to apply Brézis’ main theorem on 

pseudomonotone operators, cf. Zeidler [17, Thm. 27.A]. If u"~?, u”~-! are known, 

the problem of determining u” € V can be written in operator form, 

1 
An(u”) = g” i Ref ve Ai (20 _ su) é V* , 

bo
 

where 

An(v) = AM (v) + Biv), AM (v) = i v+vAv. 

Here, A: V — V*, defined by (Au,v) := ((u,v)), is the energetic extension of 

the classical Stokes operator. Furthermore, B : V - V*, defined by (B(v),w) := 

b(v,v,w), describes the nonlinearity. Obviously, AW) : V + V* is linear, bounded, 

and strongly monotone since V + H. 

It follows from Holder’s inequality and embedding arguments that B: V - V* 

is bounded. Furthermore, B is strongly continuous: Let {vz} C V be weakly 

convergent with limit v. Since V is compactly embedded in L*(Q)?, {vg} is strongly 

convergent and bounded in L4()4. We have for arbitrary w € V with Hdlder’s 

inequality (see Lemma 2.1) 

(B(vuz) — B(v), w) = b(vp, — v, v, w) + b(vR, VE — v, Ww) 

<cjloe ~ v|lo,4 ((ullo,4 + Ilvello.a) levi, 

and thus B(v,) converges strongly to B(v) in V*. 
Hence, A,, is pseudomonotone since the sum of a linear monotone and a strongly 

continuous operator is pseudomonotone. Because of (B(v),v) = b(v,v,v) = 0, it 
also follows that Ay is coercive. Finally, the boundedness of A, is clear. Since V 

is a separable, reflexive Banach space, Brézis’ theorem ensures the existence of a 

solution to Problem (Pat). 

For Problem (LP a:), the assertion follows from the Lax-Milgram lemma. Hf: 

Remark 2.1 A solution te Problem (Paz) is unique for small data: 

| 1 ty | 
ju? |? + fut? + 5 I flieorv-) + At max, | Ff (e)I2 dt < Cv? At. (2.5) 

jm



Uniqueness can also be obtained for more regular solutions. Furthermore, in the 
two-dimensional case, uniqueness can be ensured by a small data condition more 
refined than (2.5) and independent on At that relies upon higher regularity of the 
discrete solution. 

Here and in the following, C denotes a generic constant that may depend on 
the domain 2 and its dimension, on embedding constants, the constant 6 or B from 
Lemma 2.1, etc., but not on the Reynolds number, the exact solution, or the initial 
data or right-hand side. However, let c be a generic constant that does not depend 
on problem parameters at all. 

3 Stability 

In the following, let 

0/2 12,1 a Mi (Whe mes? ["ascoieae) 
We may also use the abbreviation D? for the second divided difference: 

yrtt — 2yr + yr 

D2u” := 
. (At? 

Note that D?u(t,) = uw" (tn) + O((At)?). 

Theorem 3.1 Any solution to Problem (Pat) or (LPaz) is stable in 1° (0,7; H) 
and 17(0,T;V) with 

n—1 n 

ju")? + (At)* $0 |D?uP? + vAtS~ lui? <cM?, n=2,3,...,N. 

Proof Set v =u” in (2.2) or (2.3). Since b(u®,u”,u”) = b(Bu",u”,u”) = 0 and 

4(Dgu”,u”) = Dy (lu"|? + |Eu"*} |?) + (Ad)3|D2u"—}/? , (3.1) 

the assertion follows with 

ARZ Fu") < 2||Roflls lull < REFIE + Iu” |l? 
and (2.4) after summation. +: 

We shall remark that higher regularity (i. e. stability in [?(0,T; H?(Q)2NV) and 
i°°(0,T;V)) can be proved in the two-dimensional case. This relies upon a discrete 
Gronwall-type lemma for resolving a difference inequality with a quadratic term. 
However, in the three-dimensional case, a cubic term would arise that cannot be 
handled similarly. This situation is in accordance with the time continuous case 
regarding the global existence of strong solutions (cf. Temam [16]). 

We now provide some estimates for the discrete time derivative Dou”. These 
results will again reflect the same situation as it appears in the continuous case: Let 
u be a weak solution to Problem (P). Then u’ € L?(0, 7; V*) in the two-dimensional 
case, but only u’ € L4/3(0,T; V*) in the three-dimensional case.



Theorem 3.2 Let {u”} be a solution to Problem (Pat) or (LPa,). Then forn = 
2,3,...,N 

2 

AtS> [Ds wil < oi (v?+M?) if dimQ=2, 
j=2 

4/3 
ae) Ido Aes < <n ((rv*)'/3 + my*) if dimQ=3. 

Proof We commence with Problem (Paz). From (2.2), it immediately follows that 

[Dou]. < Refills + v |u|] + [Buh (3.2) 

Due to Lemma 2.1, we have 

B |u™| |u| for dimQ = 2, 
|B(u")||. < (3.3) 

B |u| 2/2 |r |3/2 for dimQ = 3. 

If dim Q = 2, we thus find from (3.2) with Theorem 3.1 and (2.4) 

nm 

At) | ||Dou4||2 < (/" IF (eK dt + Pay Iu? ||? +B? x max tw at wt 
0 

  

j=2 j=2 j=2 

D274 
ce (vgs? st) ‘ 

V 

which is the assertion. 

Because of 
2/3 

ard [43 < YT At >> |ayl? . 
2 

we find in the shres-dimensional case that 

, 2/3 | , 2/3 

arty? Dow" <e | YP | Aty RGF | 4 YT Pato Iw? 
j=2 j=2 j=2 

1/3 n 

+ V/p4 (mex, je?) At = |lu7|!? |, 
j=2 

and the assertion follows again with Theorem 3.1 and (2.4). 
For Problem (LPaz), we may use, instead of (3.3), the estimates 

B \But|1/? Eu |]/? ju |1/2 ju |[2/2 ol] for dimQ = 2, 
|b(Eu”,u”,v)| < 

(a perp ju 2 a 2 fo for dim = 3



that follow from Lemma 2.1. Remembering Eu” = 2u"-1 — u”-2, the rest of the 
proof is the same as for Problem (P,;). #: 

The following result will be needed in order to justify assumptions that are 
necessary for our convergence result below. 

Theorem 3.3 Let uy be i, solution to Problem (Paz) or (LP,t) with the addi- 
tional assumption that u°,u' € V and f € I+(0,T;H). Then 

n n—-1 

Un = (At)? S~ |Dau? |? + vAt llu"|? + (At)? S "Dew? |, n=2,3,...,N, 

can be estimated by 

M3 ps Un $0 (At(v +My) (Il? + INP) + IS lEozray + a) iy dima=2, 

(At)/4U, < C (a: (o(A0)/4 + My!) (fu |? + Iu) 

mol? 
+(At)* If Zara i a7 (vi? + mi) if dimQ = 3.   

Proof With v = Dou” in (2.2) and the Cauchy-Schwarz as well as Young’s inequal- 
ity, it follows 

1 1 5 Dau"? +» (Dau",u") < 5 | 1 
BIP + ob (a Qu! ee 

If dimQ = 2, we thus find with an identity analogous to (3.1) after summing up 

1 . 
Un < vAt (|lu*||? + |[Eu? ||?) + 2(At) FD IR3 |? wants (w, Qui-} — su ~2 vv!) , 

j j 

With standard arguments, it can be shown that 

2 

(At)? S |RIF/? < AtS> IRZf|] <4 If lz orn 
j=2 j=2 

Furthermore, we have with Lemma 2.1 and Theorem 3.1 

n n 1. ; ~ 
4AtS~b (ui,2u4 — 50? w!) < 4BAtS~ |? | |e? || 

; 

2uI-} — us? 
        

QuI-} — 9 us? < 26 4 max «bw At > (wt + 
j=2     

  

  

< 
cB M3 = 

cut. + ¢8M,At (||u°|? + |lu*||?) ,



and the assertion follows. 

For dim? = 3, we firstly observe analogously to the foregoing case that 

(At)/2 Un, < v(At)?/* (llut|]? + Eu?|/?) + 8(Ae)!/*| fUl% 
n , , 1. , 

+ 4(At)>/4 Sob (w,20— = s wu!) 

j=2 

(0,7;H) 

With Lemma 2.1, Young’s inequality, and Theorem 3.1, we find 

4(At)°/4 S~b (vi,2u4 — su? w!) 
j=2 

S48 (A4)°/4 D1 esd |? pee |]9/? 
. 1. 

2u)-! — ~ 4)? 

j=2 7         
nm 

< ji1/2 3/21, 94/3 S28 max, |u!| > (cas [lw] + At 
—~Byeeey 

1. 
QyI-t — su 

    

  

  ) j=2 

2\ 3/2 2 

< 6M,” (3 si ) + eBM;!"At (\lu°? + [lat IP) , 
and the assertion follows. 

With obvious modifications, the proof for Problem (LP ,;) is the same. Ht. 

4 Convergence 

From the discrete values u” (n = 0,1,...,.N), computed by solving Problem (P j¢) 
or (LP a:), we now construct a piecewise constant function Ua; and a piecewise linear 
function Va; defined on [0, 7: 

ry (t) = u if t € [0,41], 

Atl) = u” if t€ [tn-1,tn] (nm = 2,3,...,N); 

(ul + Bu?) + Diu! (t — t1) if ¢€ [0,t], Vai(t) = At(t) (u” + Bu"t!) + Dou” (t — ty) if t€ [tn_i,tn] (n=2,3,...,N). 

N
e
 

d
o
j
e
 

There are other possible prolongations we will not consider here (but see the remark 
at the end of this section). The construction of Va; reflects the choice of the method: 
The value u! is thought to be computed by the implicit Euler method. The slope 
of Vaz in (tn-1, tn] is Deu” for n = 2,3,...,N, and the function is continuous. 
However, Va; does not interpolate. 

In the following, we shall assume 

wu eV, fu]? + full? +vAe lull]? + Ag \[Dyuty3/? < const, (4.1) 

which is true if, for instance, u? € V and u! is computed by the implicit Euler 
method. (The proof follows similar arguments as used in the foregoing section.) 

9



Proposition 4.1 Let {(At),} be some sequence of time steps. If (4.1) holds true 
then {U an, } and {Viay,} are bounded in L©(0,T;H) and L?(0,T;V). Moreover, 
the sequence of derivatives {Viat, is bounded in L4/3(0,T;V*). 

Proof The first assertion follows directly from the definition of Ugt and Vaz, and 
from Theorem 3.1. The second assertion follows again from the construction of Vat, 
its continuity, and from Theorem 3.2 because of 

T N 

[ Warlle’? dt = At [Dau |f? + At Sr Dowd ft! 
j=2 

it 
At this point, it is worth to mention that rar, 3 possesses derivatives of frac- 

tional order less than 1/4 that are bounded in L?(0,T; H) if 

2 

(At)? ||D7u ||, < const. - (4,2) 
J I] wo

 

To be more precise, {U(,;), } is bounded in H7(0,T;V,H) for 7 € (0,1/4), where 

H"(0,T; V, H) = {v € L°(0,T;V) : 7 + |7|76(r) € L?(R; H)} 

and 6 is the Fourier transform of v. However, due to the nonlinearity, we do not 
have any proof of the hypothesis (4.2) at hand. 

Corollary 4.1 Let {(At),} be some sequence of time steps and assume (4.1). Then 
there is a subsequence of {U(ay,} that is weakly* convergent in L®(0,T;H) and 
weakly convergent in L?(0,T;V). Furthermore, there exists a subsequence of {Vaz } 
that is weakly* convergent in L©(0,T;H), weakly convergent in L7(0,T;V), and 
strongly convergent in L1(0,T; H) for q € [2, 00). 

Proof The existence of a weakly* in L©(0,T;H) and weakly in L?(0,T;V) con- 
vergent subsequence of {Uaz),} and {Vaz),} follows from standard compactness 
arguments because of Proposition 4.1, cf. Brézis [2, Thm. III.26 f.]. The strong 
convergence of a subsequence of {V(ay, } in L?(0,T; H) follows from a compactness 
theorem by Aubin and Lions, cf. Lions [9, Thm. 5.2 in Ch. 1], since {Viat, } is 
bounded in L?(0,7;V) and {Vint, is bounded in L*/3(0,T; V*) (see Proposition 
4.1). The boundedness in L™(0,7'; H) then implies convergence in any L1(0,T; H) 
with q < oo. # 

Let us remark that, under the hypothesis (4.2), there is also a strongly in 
L?(0,T;H) convergent subsequence of {Uat),} since the compact embedding of 
V in H implies that H7(0,7;V,H) is compactly embedded in L?(0,T;H). How- 
ever, we do not need to assume (4.2) since {U(az), } and {Vay, } must have the same 
limit in L?(0,7; H) under an assumption that follows directly from Theorem 3.3: 

10



Proposition 4.2 Let {(At),} be a null sequence and assume (4.1) as well as 

Ny . 

(At)? 2 Doug? +0 as k-+o (4.3) 
jJ= 

for the solutions {uri t to Problem (Prat),) or (LPcau),). If one of the sequences 

{Uat),} or {Viat), } converges strongly in L?(0,T;H) then the other one does so 
with the same limit. 

Proof For brevity, we omit the subscript k. With Dju” = Dou" — 44 D?u"—!, we 
find 

* dt 24 ee FQ (Ate FS po sp 
, [Vat — Vatl* dt [ul uo? + SY Pro 2 ull". 

The assertion follows from (4.1), (4.3), and Theorem 3.1. Hf 

Remark 4.1 Assumption (4.3) indeed follows from Theorem 3.3 if u®,u! € V and 

f €L'(0,T; HH) L7(0,7;V*). 

Theorem 4.1 Let u° = ug € V and u! be computed by the nonlinear or linearised 

implicit Euler method with right-hand side Rif, i. e. 

(Dyu',v) + v((u', v)) + b(u',u!,v) = (Rif,v) WeV, (4.4) 

or b(u',ul,v) being replaced by b(u°,u',v), such that (4.1) is fulfilled. Assume 
further (4.3) and 

1 5 (ule + uth) uo weakly in Has k > 00 (4.5) 

for a null sequence {(At),}. The common limit U of the convergent subsequences 
of {Uat),} and {Viay,}, which exists in view of Corollary 4.1 and Proposition 4.2, 
then is a weak solution to Problem (P). The whole sequences {U(at),} and {V(az), } 
converge if Problem (P) admits a unique solution. 

Proof For brevity, we omit the subscript k’ indicating the subsequence. Because 

of (2.2) and (4.4) (for the starting phase), we have for ¢ € (0,7] and allu E V 

£ (Vault) v) +v (Uaz(t), v)) + b(Uad(t), Var(t), v) = (far(t), v) , 

where fa:(t) = R9f for t € (tn-1,tn] (n 28, .,N) and fa:(t) = Rif for 
t € [0, At]. Testing with a function ¢ = ¢(t Ve cif T)) , 0(T') = 0, and integration 

by parts give, because of Va:(0) = (u® + u*)/2, 

T T 

-| (Vae(t),») $(t)at + yf (Uaz(t), v)) o(t)dt + 
0 0 

T ; _ T ue + y} 

[ rack, arts),») aa =f raald,») ar+ (“E*,v) 600.   

il



With (4.5), we have for allu€é HDV 

uo + yt 
5 Y — (u,v). 

Since Unt, Var + U weakly in L*(0,T;V) and t + v¢"(t) € C([0,T];V) as well as 
tr> Av d(t) € C((0, T]; V*), it follows 

  

[ Wald,» doar [wr t),v) di (tat 
and, because of (-, A-) = ((-,-)), 

ff @ato.me ateae > [( (U(t),v)) o(t)dt 

Furthermore, we find with Lemma 2.1 and since ¢ € C({0, 7) 

T 

[ (b (Uac(t), Uae(t), v) — b(U(t),U(t),v)) (tae 

  

T 

c [ |b (Uaz(t) — UZ), Uar(t), v) + 6 (U(E), Vas(t) — U(t), v)| dt 
T 

<2pe | ar(t) — U(t)|'/? [[Var(t) — U@)I/? (]Uas(t)ll + IO @)ID loll at 
2 S 2Be||ar — Ol ory Wae — Ovo rv (IWaelleror-vy + lWllz20.7.vy) loll 

and in view of U € L*(0,T;V), the boundedness of {U,:} in L?(0,T; V), and the 
strong convergence Ua; — U in L?(0,T; H), we end up with 

T 

[ b(Uas(t), Uas(t),v) o(t)dt 3 [ow t), v)o(t)de. 
0 

It remains to show 

[ (fat(t), t)dt > [we \dt , 

for which 

fa:>f in L?(0,T;V*) (4.6) 

is sufficient. The mapping f +> fa: is obviously linear and bounded in L?(0,T; V*) 
since 

, 

J litaute)i2at = at Ry flf2ar+ At? RAs IPat < ellflRoorev-): 
0 a2 

Furthermore, (4.6) holds true for all functions of the dense subset C?({0,T];V*) C 
L*(0,T;V*), and so it is true for all f € L7(0,T;V*). 
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The limit U, finally, satisfies for all ¢ € C'((0,7]) with ¢(T) = 0 

T T 

-[ we, Oa+y [ (UW,» sat + 
0 0 

T T 

[ 2 wO,00,») oae= [ (F0,0) dat + (vo,0) 600), 
which shows that U is a weak solution to Problem (P). 

The proof for the linearised variant follows the same arguments. The second 
assertion, regarding the unique solvability, is shown by standard arguments. # 

Remark 4.2 If u° = ug and u' is computed by the implicit Euler method then, 
under suitable regularity assumptions, (4.5) can be proved. The proof relies upon 
the pointwise convergence |u((At),) — Ucn — 0 that follows from a (possibly sub- 
optimal) error estimate and upon the demicontinuity in H of the exact solution u 
(i. e. t+ (u(t),v) € C([0,T]) for all v € H and thus u((At),) + up weakly in H). 

Finally, we remark that there are other possible prolongations leading to se- 
quences of approximate solutions that converge towards a weak solution: We may, 
for instance, consider the interpolating linear spline or the discontinuous interpolat- 
ing piecewise linear function whose slope in (tp_1, tn] (n = 2,3,...,N) is Dou”, or 
a continuous piecewise quadratic interpolation. 

References 

[1] G. A. Baker, V. A. Dougalis, and O. A. Karakashian. On a higher order accurate 
fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp., 
39 (1982) 160, pp. 339 — 375. 

[2] H. Brézis. Analyse fonctionnelle: Théorie et applications. Masson, Paris, 1987. 

[3] E. Emmrich. Error analysis of the second order BDF discretization of the incom- 
pressible Navier-Stokes problem. Subm. to Proc. 4th Summer Confer. Numer. Modell. 
Continuum Mech., Prague, August 2000. 

[4] V. Girault and P.-A. Raviart. Finite Element Approximation of the Navier-Stokes 
Equations, Lecture Notes in Mathematics 749. Springer, Berlin, 1979. 

[5] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and 
Differential-Algebraic Problems. Springer, Berlin, 1991. 

[6] J. G. Heywood. Classical solution of the Navier-Stokes equations, pp. 235 — 248. In 
R. Rautmann (ed.), Approximation Methods for Navier-Stokes Problems, Lecture Notes 
in Mathematics 771. Springer, Berlin, 1980. 

[7] J. G. Heywood and R. Rannacher. Finite element approximation of the nonstationary 
Navier-Stokes problem, Part IV. Error analysis for second-order time discretization. 

SIAM J. Numer. Anal., 27 (1990) 2, pp. 353 — 384. 

[8] A. T. Hill and E. Siili. Approximation of the global attractor for the incompressible 
Navier-Stokes equations IMA J. Numer. Anal., 20 (2000) 4, pp. 633 — 667. 

13





[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

J.-L. Lions. Quelques méthodes de résolution des problémes aux limites non linéaires. 
Dunod Gauthier-Villars, Paris, 1969. 

M. Marion and R. Temam. Navier-Stokes Equations: Theory and Approximation, p. 
503 ff. In P. G. Ciarlet and J.-L. Lions (eds.), Handbook of Numerical Analysis, Vol. 
VI: Numerical Methods for Fluids (Part 1). Elsevier, Amsterdam, 1998. 

S. Miiller-Urbaniak. Eine Analyse des Zwischenschritt-6-Verfahrens zur Lésung der 
instationaren Navier-Stokes-Gleichungen. Preprint 94-01 (SFB 359), Univ. Heidelberg, 
Interdisziplinares Zentrum fiir wissenschaftliches Rechnen, Heidelberg, Januar 1994. 

A. Prohl. Projection and Quasi-compressibility Methods for Solving the Incompressible 
Navier-Stokes Equations. Teubner, Stuttgart, 1997. 

R. Rannacher. Finite element methods for the incompressible Navier-Stokes equa- 
tions. Preprint 99-37 (SFB 359), Univ. Heidelberg, Interdisziplinires Zentrum fiir 
Wissenschaftliches Rechnen, Heidelberg, August 1999. To appear in Special Issue of J. 
Math. Fluid Mech. 

R. Temam. Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland 
Publishing Company, Amsterdam, 1977. 

R. Temam. Behaviour at time t = 0 of the solutions of semi-linear evolution equations. 
J. Diff. Eqs., 43 (1982), pp. 73 — 92. 

R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF 
(SIAM) Regional Conference Series in Applied Mathematics 41. SIAM, 1985. 

E. Zeidler. Nonlinear Functional Analysis and its Applications II/B. Nonlinear Mono- 
tone Operators. Springer, New York, 1990. 

14



A 

m
y


