Independent Component Analysis
for
Environmentally Robust
Speech Recognition

Von der Fakultit Elektrotechnik und Informatik
der Technischen Universitéit Berlin
zur Verleihung des akademischen Grades
Doktor-Ingenieur

genehmigte Dissertation

vorgelegt von Dipl.-Ing. Dorothea Kolossa

Berlin 2008
D 83



Independent Component Analysis
for
Environmentally Robust
Speech Recognition

Von der Fakultit Elektrotechnik und Informatik
der Technischen Universitéit Berlin
zur Verleihung des akademischen Grades
Doktor-Ingenieur

genehmigte Dissertation

vorgelegt von Dipl.-Ing. Dorothea Kolossa

Promotionsausschuss:

Vorsitzender: Prof. Dr. Klaus-Robert Miiller
Gutachter: Prof. Dr.-Ing. Reinhold Orglmeister
Gutachter: Prof. Dr. Te-Won Lee

Tag der wissenschaftlichen Aussprache: 21. Dezember 2007
Berlin 2008
D 83



Acknowledgments

The work on this dissertation was carried out mainly at the TU Berlin, but
it has also profited greatly from the visits and collaborations which I have had the
chance to participate in. I wish to thank everyone who has been involved in and
helped during the last years.

I am grateful to Prof. Orglmeister for the supervision and support and for the
many helpful comments and I would also like to extend many thanks to Prof. Lee
for accepting the co-supervision and for the detailed suggestions which have helped
greatly to improve the thesis. Prof. Klaus-Robert Miiller, who has agreed to become
head of the committee, has also helped me gain a deepened understanding by his in-
terested and inquisitive questions, and I am thankful to him for this impulse towards
improvement.

Also, many discussions have taken place here and much of what I have
learned is due to my colleagues. Especially the collaboration with Wolf Baumann
and Bert-Uwe Kohler, Ramon Fernandez Astudillo, Alexander Vorwerk and Diep
Huynh has helped the dissertation along greatly, and I appreciate their contributions
very much.

Likewise, the collaboration with DaimlerChrysler has helped immensely.
They supported the data acquisition by providing not only equipment but very much
active help in what was a truly time-consuming process, and I am grateful to Dr.
Linhard, to Dr. Class and Dr. Bourgeois for the support and for allowing me to use
DaimlerChrysler’s speech recognition system for the evaluation.

11



Much support has also been extended to me in the joint work with NTT. I
am indebted to Dr. Makino, Dr. Miyoshi, Dr. Sawada, Dr. Araki, Dr. Delcroix, Dr.
Nakatani and Dr. Kinoshita for their kind invitation and for letting me stay in their
lab and participate in their efforts. I am looking forward to all future collaborations
and I am very thankful for the joint work. Very many thanks also go to Prof. Huo at
the University of Hong Kong for welcoming me for two visits, during which many
helpful discussions have taken place. I have been given many an idea and much
motivation during these stays.

Finally, what has made the time spent here a period that I like to think back
to are my friends and colleagues. I want to thank especially Steffen Zeiler for
the patience and great support, and I wish to thank everyone whom I worked with
during the last seven years for making our institute a great and friendly place to be
at.

v



Table of Contents

Chapter 1. Introduction

Chapter 2. Speech Recognition by Hidden Markov Models
2.1 Feature Extraction . . . . . . . . ... ... .. ... ... ...
2.1.1 Production Modeling . . . ... ... ... ... .. .......
2.1.1.1 Source-Filter Models . . . . ... ... ... .......
2112 LPC . . .o
2.1.1.3 Homomorphic Signal Processing and the Cepstrum . . . .
2.1.2 Perceptionof Speech . . . . .. ... ... ... .. ...,
2.1.2.1 The hearing system . . . . . . .. .. ... .. ......
2.1.2.2 Perceptual Linear Prediction . . . . ... ... ... ...
2.1.2.3 Mel-Frequency Cepstrum . . . . . . . ... ... .....
2.1.3 Speech Parameterization for recognition . . . . . . ... ... ..
22 SpeechModels . . . . . .. ... L
2.3 Pattern Matching . . . . . . . .. ... ...

Chapter 3. Environmental Effects on Speech Signals

3.1 IdealModel . . . . . . . . ... e
3.1.1 Frequency Domain Formulation. . . . . ... ... ... ... ..

3.2 Non-ideal Effects . . . . . . .. .. . ... . ... .. ... ...
3.2.1 Long Room Impulse Responses . . . . . ... ... ........
3.2.2 Effects of Ambient and Sensor Noise . . . . .. ... ... ....

Chapter 4. Robust Speech Recognition
4.1 RobustFeatures. . . . . . .. .. . ... ... ... .. ... ...,
4.1.1 Mel Frequency Cepstral Coefficients . . . . ... ... ... ...
4.1.1.1 Vocal Tract Length Normalization . . . . .. ... .. ..
4.1.1.2 Cepstral Mean Subtraction . . . . .. ... ........

22
22
23
24
24
25



4.1.2 RASTA Processing . . . . . . . . . . . i .. 30

4.13 Longtermfeatures . . . . . . . . . . ... ... ... 31
4.1.4 Auditory based features . . . . ... ... ... ... ..., 31

4.2 Signal Preprocessing . . . . . . . . ... Lo oo 32
4.2.1 Single-Microphone Techniques . . . . . . ... ... ....... 33
4.2.1.1 Spectral Subtraction . . ... ... ... ......... 33

4.2.1.2 Optimum Spectral Estimation . . . ... ... ... ... 34

4.2.1.3 Model Based Processing . . . .. ... .......... 36

4.2.2 Multi-Microphone Techniques . . . . . .. .. ... ... ... .. 40
422.1 Beamforming . . . . ... ... ... ........... 40

4222 ICA . . .. e 50

4.2.2.3 Computational Auditory Scene Analysis . . . . . .. ... 60

4.3 Adaptive Recognition . . . . . . ... ... L o 62
4.3.1 Parallel Model Combination . . . . . .. ... ... ........ 63
4.3.2 Maximum Likelihood Linear Regression . . . . ... ... .. .. 65

4.4 Incorporation of Uncertainties . . . . . . . . ... ... ... ...... 66
4.4.1 Model Domain Uncertainty . . . . . ... ... .......... 66
4.4.1.1 Maximum a Posteriori Adaptation . . . . . ... ... .. 68

4.4.1.2 Minimax Classification . . . . . .. .. ... ... .... 69

4.4.1.3 Bayesian Predictive Classification . . . . ... ... ... 69

4.4.2 Feature Domain Uncertainty Processing . . . . . . .. ... ... 69
4.4.2.1 Missing Data Techniques . . . . . . ... ... ...... 70

4.4.2.2 Marginalization versus Imputation . . . . . . .. ... .. 71

4.4.2.3 Uncertainty Decoding . .. ... ............. 72

Chapter 5. ICA for Multi-Speaker Speech Recognition 74
5.1 ICA using priorknowledge . . . . . . . ... .. .. ... ........ 74
5.1.1 Constant Direction of Arrival . . . . . . . ... ... ... .... 75
5.1.1.1 Beampattern Analysis . . . ... ... ... ....... 75

5.1.1.2 Permutation Correction by Statistical DOA-Modeling . . . 79

5.1.2 Time-Frequency Masking . . . . . . ... ... ... ....... 85
5.1.2.1 Theoretical Considerations . . . . . . . ... ... .... 85

Vi



5.1.2.2 Practical Implementation . . . . . ... ... .......
5.1.2.3 Overall Strategy . . . . . . ... ... ... .. ......
5.1.2.4 Amplitude Masking . . . . . ... ... ... ... ....
5.1.2.5 Phase Angle Masking . . . . .. ... ... ........

Chapter 6. Connecting Speech Processing and Recognition
by Uncertain Feature Transformation
and Missing Data Techniques

6.1 Framework . . . . . . . .. ... ...
6.2 Interfacing Signal Processing and Speech Recognition . . . . . .. . ..
6.2.1 Interfacing ICA to Missing Data Speech Recognition . . . . . . .

6.3 Feature Transformation. . . . . . .. .. .. ... ... .........
6.3.0.1 Logarithm . . . . . ... ... ... .. ..........

6.3.0.2 Delta and Acceleration Coefficients . . . . .. ... ...

6.3.1 Analytic Computation for Linear Transformations . . . . . . . . .
6.3.2 Monte Carlo Sampling . . . ... ... ... ... ........
6.3.3 Unscented Transform . . . . ... ... ... ... ........

6.4 Recognition . . . . . . . . . .. L
6.4.1 Modified Imputation . . . . . ... ... ... ... ... ...,

6.5 Summary . . . . ...

Chapter 7. Evaluation
7.1 DataGeneration . . . . . . . . . . .. e e e e
7.1.1 Artificial Mixtures . . . . . .. ...
7.1.2 CarData . . . . . . . . . . e
7.1.2.1 Speaker Positioning . . . . . ... ... ..........
7.1.2.2 Microphone Installation . . . .. ... ... .......
7.1.2.3 Recording Setup . . . . . .. ...
7.1.2.4 Recordings of Single Speakers . . . . .. ... ... ...
7.1.2.5 Recordings of Multiple Speakers . . . . . .. ... .. ..
7.1.2.6 Room Conditions . . . . . .. .. ... ... .......
7.1.3 Data Collection in a Reverberant Environment . . . . . . . .. ..
7.2 Evaluation . . . . . . ... ...

vil



7.2.1 Performance Measures . . . . . . . . . . . .. 126

7.2.2 Evaluation on DaimlerChrysler Speech Recognition System . . . . 128
7.2.2.1 Grammar Specification . . . . . .. ... ... ... ... 129
7.2.2.2 File Preparation . . . . . . ... ... ... ........ 130
7.2.2.3 Parameter Adjustment . . . . . ... ... .. ... ... 130
7.2.2.4 Baseline Recognition Performance . . . . . . . ... ... 131
7.3 Results of ICA-Methods . . . . ... ... ... ... ... .. ..... 133
7.3.1 Results for Beampattern Based Permutation Correction . . . . . . 133
7.3.2 DISCUSSION . . . . . o v v e e e e e e e 136
7.3.3 Results Time-Frequency Masking . . . . . .. ... ... ..... 137
7.3.3.1 Amplitude Mask . . .. ... ... ... .. 137
7332 PhaseMask . . . .. .. ..o oo 150
7.3.4 Discussion . . . ... ..o 154

7.4 Evaluation of combined ICA and Missing
Feature Recognition . . . . . . . . .. ... ... ... ... . ..., 156
7.4.1 Speech RecognitionSetup . . . . . .. . ... ... ... ..... 156
7.4.1.1 Hidden Markov Model Toolkit (HTK) . . . ... ... .. 156
7.4.1.2 Matlab Implementation . . . . . ... ... ........ 157
7.4.2 Results Missing Feature Recognition . . . . . .. ... ... ... 157
7.42.1 In-Car-Datasets . . . . . . ... ... ... ........ 158
7.4.2.2 Lab-Room-Datasets . . . . . ... .. ... .. ...... 160
7.4.2.3 Artificial Datasets . . . . . .. ... Lo 162
7.4.3 Discussion . . . . ... Lo e 163
Chapter 8. Conclusions and Outlook 166
Appendices 168
Appendix A. From the Theory of Random Variables and Statistics 169
A.l1 Random Variables . . . . . .. .. .. .. ... ... ... .. ... 169
A.1.1 Moment Generating Functions . . . . . . ... ... ....... 169
A.2 Matrix Multiplication for Random Variables . . . . ... ... ... .. 170
A.3 Unscented Transform . . . . . . . . ... ... ... ... ... 171



Appendix B. Independent Component Analysis 174

Appendix C. Measurement of Room Impulse Responses 188
List of Symbols 191
List of Abbreviations 193
References 194
Bibliography 194

References 194

X



Chapter 1

Introduction

It has long been a dream of many to be able to speak to a computer and be
understood. Whereas this dream will remain in the realm of fantasy for a while,
there are some applications which appear worthwile as well as achievable. One of
those is speech recognition in car environments, useful, as it may be used to control
electronic devices like the phone, radio or navigation system, without needing to
take the hands and the eyes off the wheel and the road, and achievable, as the nec-
essary recognition vocabulary is sufficiently limited, which makes recognition far
easier than general, large vocabulary applications.

However, the speech is distorted in the car by background noise and it is
undesirable to make all drivers wear close-talking microphones, so that it is nec-
essary to cope with noisy speech and with an unknown transfer function from the
speaker’s mouth to the microphone.

This necessitates signal processing methods, which will remove noise and
other possible interference from the speech signal and compensate for changes in
the speech signal caused by the room impulse response.

In the following two chapters, the effects of this environment on the speech
recognition system will be described. For this purpose, a short introduction to cur-
rent speech recognition system is given, followed by a mathematical analysis of
the effects of noise and reverberation in the car. Subsequently, Chapter 4 describes
approaches to make speech recognition systems perform more robustly under these
conditions. These approaches can be grouped into three classes:

e Processing the speech signal so as to get a good estimate of the clean speech

e Using speech features in the recognition system, which are invariant under or
not strongly affected by noise and reverberation



¢ Adapting the speech models used in recognition so that these include all dis-
turbances introduced by the environment.

After summarizing the state of the art, here, two routes of improvement
are suggested. Firstly, Chapter 5 deals with possible improvements of frequency-
domain independent component analysis (ICA) by using statistical models of speech
incidence angles as well as by time-frequency masking. However, time-frequency
masking alone can actually be detrimental to recognition results, due to inher-
ent feature distortions. In order to avoid these negative effects, Chapter 6 de-
scribes a suggested new framework for integrating speech processing and recog-
nition by means of what will be referred to as uncertain feature transformation.
These suggested enhancements for processing and recognizing mixed speech sig-
nals are tested on two platforms in Chapter 7. Whereas ICA-performance is mea-
sured using SNR and recognition rates on a state-of-the-art recognizer provided by
DaimlerChrysler, the new method of integrating processing and recognition can be
tested only on a platform, where source code is available for modification. There-
fore, uncertain feature transformation was evaluated on a Matlab recognizer which
was programmed and modified based on the standard algorithms of HMM speech
recognition. This recognizer and its results are shown and described also in the
evaluation in Chapter 7. Finally, conclusions are drawn in Chapter 8.



Chapter 2

Speech Recognition by Hidden Markov Models

Whereas many approaches for speech recognition have been discussed in
the past, currently all major systems show great similarity in the signal processing
and pattern matching they perform.'

The structure, which is widely used, is shown in Figure 2.1.

Speech
Models
s(t) Feature | x(k) || Pattern | | Recognized
Extraction Matching Speech

Figure 2.1: Basic recognizer structure.

In the subsequent sections, the stages of feature extraction, speech modeling
and pattern matching will be explained in more detail.

2.1 Feature Extraction

The feature extraction stage transforms the speech signal to another rep-
resentation, which accentuates the relevant characteristics of words or phonemes,
while reducing irrelevant or redundant information. Two concepts are found in

Previously discussed approaches include the use of Time Delay Neural Networks [Wai1989],
hybrid HMM/Neural-Network approaches ([Mor1995],[Tre2003]) and so-called phonetic speech
recognition systems, which detect speech features such as pitch and formant frequencies and use
those to segment and label the utterances, finally parsing the segment lattice to obtain the most
likely sequence of words [Rab1993].



many relevant representations and they are combined in the currently most widely
spread speech representation, so they are described in some detail in the following
section. The first of these concepts is production modeling, forming the basis e.g. of
linear predictive coding and the second is incorporating models of human percep-
tion, which is attempted e.g. in perceptual linear prediction (PLP) and motivates
the use of the mel-scale in cepstral speech representations.

2.1.1 Production Modeling
2.1.1.1 Source-Filter Models

A common model of human speech production, as it is described for ex-
ample in [Rab1978], consists of two alternative sources of sound and one variable
filter. The sound sources are either a noise source, which is active in the production
of fricatives, or a periodic source, which is used when the speech is voiced. More
physiologically speaking, these sources represent the turbulent stream of air that is
caused by very narrow passages on the one hand, and the harmonic excitation of the
vocal cords on the other hand. In either case, the stream of air has to pass through
the vocal tract, where the spectral characteristics are shaped by poles and zeros of
the vocal tract transfer function. Finally, further filtering of the signal is due to the
radiation characteristics. A block diagram of this model can be seen in Figure 2.2.

Gain for
voice source

Pitch

period Impulse train Glottal pulse @
— >
generator model

voiced/ Vocaltract | | Radiation

unvoiced filter H(z) model R(2)  |speech
switch s(k)
Random noise c Z)
generator
Gain for

noise source

Figure 2.2: Source-filter model for speech production.



2.1.1.2 LPC

The two parts of the production model, lungs and vocal cords as the speech
source and the vocal tract as its filter, can be influenced separately and in wide parts
independently by the speaker. Linear Predictive Coding (LPC) [Atal982, Mar1974]
attempts to recreate the two distinct influences on the sound by using the following
mathematical expression for the model:

s(t) = n(t) = hy(1), 2.1

where £, stands for the vocal tract impulse response and n(f) represents the excita-
tion signal. Using a discrete time IIR approximation of the system model, as shown
in Figure 2.3, an optimum set of FIR predictor coefficients for the FIR prediction
structure displayed in 2.4 is determined.

For this purpose, LPC computes the autocorrelation vector rgs, which is de-
fined entrywise for a T-sample segment by

T-1-d

rad) = Y stk)stk +d), 2.2)

k=0

and the autocorrelation matrix given as

rss(o) rss(l) rss(z) s rss(n - 1) ]
rys(1) rys(0) ro(1) oo rg(n-2)
Rss = rss(z) rss(l) rss(o) v rss(n - 3)
| = 1) ra=2) ra(i=3) o ()

It then finds an optimum set of filter coefficients a by solving
a=R]r. (2.3)

Since the autocorrelation matrix is a Toeplitz matrix, efficient methods for its inver-
sion are available and one very efficient algorithm, which uses the Toeplitz structure
to find a solution quickly is the Levinson-Durbin Recursion [Kai2000]. This algo-
rithm starts with a first order predictor and in each iteration and with each new piece
of data increases the predictor order by one, so that even during initialization, an
optimum model of maximum attainable order is always available.
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Figure 2.3: Discrete-time IIR Speech Production Model for LPC, with k as the
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Speech
s(k) » T

A 4
—
—

|

‘ | Speech Prediction
Ve N P— 500

Figure 2.4: FIR Linear Prediction.



2.1.1.3 Homomorphic Signal Processing and the Cepstrum

Similarly to LPC, cepstral processing [Bog1963] also aims to reconstruct
a model for speech production based on (2.1). Also similarly to LPC, this model
is used in an attempt to separate the vocal tract transfer function, which is crucial
for speech recognition, from the excitation signal, which does not carry relevant
information for recognition, aside from the binary question of whether it is voiced
or not.> But furthermore, and in addition to LPC, the cepstrum offers a possibility
to separate all components of an extended model

x(t) = n(t) * hy(1) * h, (1), (24)

where £;,(t) denotes the room impulse response. It is based on one very popular idea
of the 60ies and 70ies, so-called homomorphic signal processing [Opp2004]. The
rationale behind it is the wide range of available linear signal processing methods
which are easy to apply and in many cases can be shown to yield optimal results (in
terms of minimum-mean square error, minimum absolute error, and regarding as
many other criteria as may be cast into a linear optimization framework.) The chief
limit of applicability for linear models, thus, lies in reality, which does not always
behave linearly and the idea of homomorphic processing is to find a transform to
another domain of representation, where linearity is re-established. Then, linear
processing can be carried out in this linear domain, and, if necessary, the inverse
transform can bring the signal back to the original, physical domain. This, it may
be argued, is also the approach of convolutive ICA (where a convolutive mixing
model is transformed to the approximately linear frequency domain, see the Section
4.2.2.2 and e.g. [Smal997]). For the case of convolutive signal distortions, that is,
when the desired signal x(¢) is modulated by an undesired impulse response A(?), a
simple, linear superposition of the source and the impulse response representation

2This is true for a wide range of languages, with the notable exception of fonal languages, where
the frequency f; of the excitation signal is also distinctive.



is obtained, when the distorted output y(t) = x(t) = h(¢) is processed as follows:

y(0) = x() = h(1)

{ (2.5)
Y(w) = X(w)- H(w)

U log|l-IP
Y(w) = X'(w)+ H(w) (2.6)

Thus, signals which are convolved in the time domain are simply added in the
log-spectral domain, and so at first view, the log-spectral domain could be seen
as an adequate, homomorphic transform. However, many frequency components
of the log-spectrum are affected even when the signal is just superimposed by one
reflection. That is, when

y(t) = x(t) + ax(t — 1), 2.7)

the log-spectrum is obtained via

() x(t) * (0(1) + ad(t — 1)) (2.8)

!
Y(jw) =
Y(jw)?

X(jw)(1 + aexp(—jwr))

X(jw)(1 + aexp(—jwr)) - X(—jw)(1 + aexp(jwT))
IX(w)*(1 + @ + 2a cos(wT)) (2.9)

and, after taking the logarithm, becomes
Y(w) = X'(w) +log 1 + o + 2a cos(wr)). (2.10)

As can be seen from (2.10), the effect of this convolution is that of adding a periodic
disturbance in the log-spectrum domain. Applying another Fourier transform, or
equivalently, a discrete cosine transform (DCT) 3, in order to find the periodicities
in the log-spectrum will bring the signal to another domain of representation, where
the independent variable is in units of time again and the analysis values correspond
to periodicities in the spectrum. Thus, the analysis from the above example would

3Both are equivalent here, since the log-spectrum is an even function.



lead to a peak at "time delay” 7. A similar situation arises for periodic signals, i.e.,
when a signal is periodic with pitch period 7,, the DCT of the log-spectrum will
show a peak at 7,,. This form of signal representation, defined via

v = §'(Vw)

1 (7 .
— f Yi(w)e' dw (2.11)
2 J_,

and referred to as the signal’s cepstrum, thus turns out to have three advantages.
Firstly, it allows to separate a nonstationary zero-mean source from a stationary
filter by subtracting the cepstral mean value :

Y(r) = X(n)+H(r)
E[Y'(n] = EX‘(D]+E[H (7]
= H()
= Y(M-E[X(Mm] = X(1)

(2.12)

or by including temporal derivatives of the cepstrum as additional features, and
secondly, regarding voiced speech segments, periodic excitation signals can be sep-
arated from the vocal tract. Thus the cepstral speech representation allows an ex-
tended speech production model of the form

x(t) = (n(t) + v(t)) = h,(t) = h; (1), (2.13)

where v(¢) represents the voiced excitation, to be separated into its constituent com-
ponents and especially also to focus on the most relevant one, being the vocal tract
response A,(f). Finally, it has been observed that this set of speech features yields
an approximately uncorrelated set of features. Whereas the Fourier coefficients of
adjacent bins are highly correlated for speech signals, necessitating the use of full
covariance matrices in construction of stochastic models, the cepstral coeflicients
are only very weakly correlated, so that computationally much simpler diagonal
covariance models will often suffice.



2.1.2 Perception of Speech
2.1.2.1 The hearing system

Human hearing takes part in two stages: in the peripheral auditory system
(i.e. the ear) and the auditory nervous system (i.e. the auditory nerves and the brain)
[Zw11999]. In the ear, variations in air pressure are transformed into mechanical
vibrations on the basilar membrane. These are then represented by impulse trains
traveling along the auditory nerve to the brain. While all stages of the processing
are relevant for perception, the focus here is on those parts of processing which take
place before the auditory nerve is stimulated. The ear consists of three parts, which
are the outer ear, the middle and the inner ear, as shown in Figure 2.5. The outer
ear consists of the visible part and of the auditory canal along which the sound trav-
els. It ends at the eardrum, where air pressure variations make this thin membrane
vibrate. The middle ear is an air filled cavity, in which three small bones, the ossi-
cles called malleus, incus and stapes, transmit and amplify the sound between the
eardrum and the cochlea. The transmission to the inner ear takes place at the oval
window, a small membrane which can be compressed towards the cochlea by the
stapes. In the cochlea, belonging to the inner ear, perception takes place insofar, as
the auditory nerve is stimulated at this point. The cochlea itself is a spiral tube of
about 3.5 cm length which coils about 2.6 times. It is divided into two fluid-filled
chambers by the basilar membrane. The outputs of the cochlea are ordered by lo-
cation and the location where an incoming sound wave excites the cochlea depends
on the frequency, so the cochlea can be said to effect a frequency-to-location trans-
formation. Filters close to the base are excited by high frequencies and lower fre-
quencies affect points further on in the organ. However, the functional dependency
between frequency and perceived pitch is not a linear one. Rather, the cochlea acts
like a bank of filters whose center frequencies are approximately exponential (that
is, the logarithm of the center frequencies behave approximately linear). Also, the
critical bandwidth of the filters is not constant, but rather increases with growing
frequency. Physiological experiments have led to the Bark scale, which models hu-
man perception through 24 critical bands of hearing, with the bark scale defined
by

2

7500 ). (2.14)

Another perceptually motivated frequency scale is the mel scale, which is approx-
imately linear below 1000Hz and logarithmic above. This scale has been designed

b(f) = 13 arctan(0.00076 f) + 3.5 arctan(

10



based on experiments with sinusoidal tones, in which the subjects were asked to
divide a given frequency range into perceptually equal intervals. The mel scale can
be approximated by

M(f) = 11251n(1 + £/700). (2.15)

As shown in Figure 2.6, the mel and the bark scale behave similarly and both

!—Outer Ear—\\YMiddle Earj l,—lnner Ear—!

! Auditory
¢ nerve

tube to
throat

Figure 2.5: Physiology of the ear, from [Cou2002].

have been used extensively for perceptual speech representation and recognition
(see. e.g. [Dav1980, Hua2001, Her1990, Syr1986, Yap2003]. Aside from its
nonlinear frequency resolution, the human ear and hearing system also contains
other non-linearities such as non-linear loudness perception, which also depends
non-linearly on frequency [Zwi11999]. These effects are modeled explicitly in some
more recent experiments in perceptually motivated speech parametrization, see e.g.
[Tch1999, Sko2004], but they were not implemented here, and thus will not be
considered in more detail in the following. Also, human perception has inherently
an ability to perform grouping between auditory cues in such a way, as to allow even
single channel source separation, also referred to as auditory streaming [Bre1999].
Since this can most likely be attributed to higher levels of processing beyond that
found in the inner ear itself, it also does not form a part of this chapter, but will
rather be considered in more detail in Section 4.2.2.3.

11
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Figure 2.6: Bark and mel frequency scale.

2.1.2.2 Perceptual Linear Prediction

In perceptual linear prediction (PLP), the knowledge about the human hear-
ing system is used to process the recorded waveform in such a way that only the
perceptually relevant details remain. This processing is carried out in the frequency
domain, where a critical band analysis is followed by equal-loudness preempha-
sis and intensity to loudness compression [Her1990]. In this way, the warped fre-
quency perception is modeled as well as the nonlinear and frequency-variant human
loudness perception. After processing, the signal is transformed back to the time
domain, where regular linear prediction analysis is carried out as described above.
The block diagram of this highly perceptually motivated feature extraction method
is shown in Figure 2.7.
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Figure 2.7: Perceptual linear prediction, adapted from [Her1990].

2.1.2.3 Mel-Frequency Cepstrum

While PLP uses perceptual considerations to enhance the LPC parameters,
the mel-frequency cepstrum [Dav1980] is an equivalent enhancement of the basic
linear cepstrum. Figure 2.8 shows the flow of processing. As can be seen there, the
mel-frequency cepstrum and the cepstrum differ only in an additional warping of
the frequency scale, which is transformed from linear to mel-scaled by a bank of
filters. This bank of filters is just a weighted summation over linear spectral values,
with the center frequencies chosen equidistant on the mel-scale defined in (2.15).
The summation is carried out as follows.

nf
Smam, k) = " H,y(Q)IS (Q, k)| (2.16)

Q=1
Here, nf denotes the number of frequency bins, S ,,.;(m, k) is the value of m’th bank
of the mel spectrum at frame number k and H,,(Q2) is the weight of frequency band
Q in the calculation of the m’th bank. Literature differs on whether the M filters
should have equal peak heights or energies ([Del1993]), but as long as training and
recognition take place on the same parameterization, no significant changes can be
expected between the two choices. Finally, to compute the filterbank coefficients, it
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Figure 2.8: Cepstrum versus mel cepstrum.

is typical to use triangular filters with an overlap of 50%. Thus, for the case of equal
band energies, the filter coefficients for obtaining M mel-scaled filterbank-outputs
can be obtained in the following manner.

For m=1:M
0 for0 < Q< f(m—-1),
2Q-fm-1) .
FmD=fn-DyFm—famy for fim —1) <Q < f(m);
H,(Q) = 2.17)
2f(m+1)-Q) .
FamD=fm-Dyfm—fay oF fm) <Q < fm+1);
0 for f(m+ 1) < Q.

Here, the frequency f(m) is the FFT-index of the center frequency associated with
the m’th band. From these filterbank outputs, finally, cepstrum values (the MFCC’s)
are obtained via an inverse Fourier transform or, due to symmetry, equivalently via
a DCT.
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2.1.3 Speech Parameterization for recognition

From different approaches to speech coding, some of which were more in-
tended as production models, others as perceptually motivated representations, a
number of different feature sets has come to be suggested for speech recognition
purposes. The most important of these are

e Mel Scaled Spectrum
e Linear Prediction Spectrum or equivalently PARCOR-coefficients [Fel1984]
e Linear Prediction Cepstrum [Rab1993]

e Mel Scaled Cepstrum together with its first and second temporal derivative
[Dav1980]

e Perceptual Linear Prediction Coefficients [Her1990]

Of these, the mel-scaled cepstrum with its derivatives has emerged as the typical
parameterization for current state-of-the-art speech recognition systems [Hua2001,
You2002] and even though they are not as well founded in either theoretical prop-
erties or closeness to human perception as other parameters, they have proven prac-
tical enough to be used as references in current speech recognition standard im-
plementations (e.g. in the basic and as well as advanced versions of the current
ETSI standard [ETS2003A] and [ETS2003A]), for recognition tasks at conferences
[Hir2002] and currently developed large-scale systems, e.g. by IBM and Daimler-
Chrysler [Cla1993, Mac2005, Hai2001] and have therefore been chosen for use in
this thesis.

2.2 Speech Models

When the speech features have been extracted from the waveform, they need
to be compared to a reference, whatever form this may take. A few years ago,
there was decidedly more disagreement on the right form of a speech model, and
a few widely differing routes were taken, such as neural networks, especially time
delay neural networks (TDNN) [Wai1989], generating speech templates combined
with dynamic time warping (DTW) [Myel1981] and knowledge based approaches
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focusing on extracting and matching high level phonetic information such as pitch,
voicedness, frication and others ([Rab1993]). Currently, the Hidden Markov Model
(HMM) has emerged as the primary means for representing the static and dynamic
properties that combine to make up the characteristics of a speech sound [Hua2001].

A Markov model is a stochastic process model*. In the original mathemati-
cal sense it is comprised of a set of states, which a stochastic process may assume,
and a probability matrix which defines the probability of the state at the next point
in time p(g(t + 1)) given the current state g(¢). The following graph shows the basic
structure and introduces the notation.

Figure 2.9: A Markov chain with four states and selected transitions.

In a hidden Markov model (HMM), the state of the process is assumed hid-
den from the observer, but there exists an observable variable o, vector valued in
general, which can give implicit information about the state of the process. To
describe this dependency, each state is assigned a probability distribution function
to describe the process output when the process is currently in that state. Thus,
mathematically speaking, the defining parameters A of a Markov model are:

o The initial state probabilities ay(i)
e The transition matrix A and

e The output probability distributions b;(0)

4A stochastic process {Q(¢),t € T} is a collection of random variables [Ros1997], where each
value describes the state of the process at index #, and ¢ is often interpreted as the time.
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The initial state probabilities describe the probability, that the Markov model will
start in state i at time zero, SO

ao(i) = p(g(0) = 1). (2.18)

The transition matrix consists of the probabilities that the state j is assumed at time
t + 1, given that the state at time 7 was i:

aij=p(q@+1) =jlg@®)=1. (2.19)

In most speech recognizers, this very general structure is abandoned in favor of
pure left-right models as the one shown in Figure 2.10. These models only allow
transitions from a state i to states j > i.

Finally, the output probability distribution b;(0) gives the probability that
observation vector o0 will occur at time ¢, when the Markov model is known to be in
state { at that time, so:

bi(0) = p(o(t) = olq(r) = i). (2.20)

A shorthand notation, with o, “ o(t) and ¢, o q(1), leads to the equivalent

expression
bi(0) = p(o, = olg, = i). (2.21)

This specification of an HMM allows to compute the probability of an obser-
vation sequence for any given state sequence by combining transition probabilities
a;j and observation probabilities b(0). In the example shown in Figure 2.10, the
associated probability of the observation sequence O = [0,0,...,05] would be
computed via

p(O) = ap(1) - aiz - b2(01) - ax - b2(02) - a3 - b3(03) - azs - bs(04) - ass - bs(0s). (2.22)

Regarding the output probability distribution, two alternative approaches
are viable, one continuous and one discrete. For the first case, a multivariate mix-
ture of Gaussian (MOG) model of the following form is customary for continuous
observation vectors. It consists of a set of M single Gaussians

Pm(0; = 0lg; = i) = exp((0 — )" 2,1 (0 — 1)), (2.23)

1
V(@2m)" (]
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Figure 2.10: Example of a left-right HMM with output probabilities of an observa-
tion sequence.

where n is the dimensionality of the observation vector, y,, is the mean and X, the
covariance of the m’th mixture. These single Gaussians are combined in a weighted
sum using the mixture weights y,,:

M
P, =olg =)= D" Y- pul0, = 0lg, = i). (2.24)

m=1...

An alternative is the use of vector quantization, in which each of the set of possible
values is assigned its own probability.

Having defined the model structure, three problems need to be solved in
order to use HMMs for speech recognition ([Rab1989]):

e Evaluating the probability of observing a given sequence of speech features
O = [0y, 04,...,07] given the model parameters (the evaluation problem).

e Finding the most likely state sequence Q = [qi,q;,...,qs] according to
Q = arg mélx P(Q|0, A), given the model and the observation sequence (the

decoding problem).

e Estimating the model parameters A (the estimation problem).
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The probability of an observation sequence O is composed of a sum of the proba-
bilities over all possible state sequences of appropriate lengths:

POIA) = > P(O,QIA)
Q
= Z P(QIA) - P(O|Q, A)
Q
T
= Z ao(qo) rl Agt-1.g1041(0). (2.25)
Q =1

For its computation, the straightforward implementation is numerically prohibitive,
therefore, this evaluation problem is usually handled with a dynamic programming
approach especially adapted for this purpose, which is the forward-algorithm.

The decoding problem is usually solved with the help of the Viterbi algo-
rithm as described in Section 2.3 and for the estimation problem, highly efficient
maximum likelihood estimation procedures, such as the Baum-Welch algorithm,
exist, which compute the model parameters A in such a way that
A =argmaxP(Oy,...,0py|1), when N observation sequences are available

1

[Rab1989].

2.3 Pattern Matching

Speech recognition can be viewed as a communication problem: the human
brain formulates a word which is transmitted via the speakers articulatory tract and
the transmission channel from the mouth to the measured waveform. Recognition
then is the search for that word or word sequence W which is most likely, given the
observation sequence O.

The Viterbi algorithm [Vit1967] steps through the observation sequence
time frame by time frame. At each time it regards all states of the model and com-
putes that path which leads up to the given state and time with the least cost, i.e. with
the greatest probability. All other paths except for the one with optimum score are
discarded. A trellis diagram serves to illustrate this approach: Thus, the Viterbi
algorithm can be used to find the most likely sequence through a given model. This
property is used, when a recognizer for continuous speech is needed. In that case,
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Figure 2.11: Finding the optimum state sequence with the Viterbi algorithm, from
[You2002].

the simplest solution consists in modeling single words > and concatenating those
models as shown in Figure 2.12 to obtain a complete ”‘speech model”’. Then, for
a given utterance, the best path through the speech model is sought and found with
the Viterbi algorithm or another dynamic programming approach, and since the an-
notation for each state is stored with the model, the best state sequence can easily
be converted into the desired speech transcription.

SFor large vocabularies, word models are constructed from phoneme or triphone models.
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Figure 2.12: Possible HMM structure for recognition of continuously spoken digits.
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Chapter 3

Environmental Effects on Speech Signals

3.1 1Ideal Model

Speech recorded by one microphone in a noisy environment can be approx-
imately described by the system model shown in Figure 3.1. The source signals
are described by the s;, and they are modified by their associated room impulse
responses h;. As all systems are linear, the sources signals add at the microphone,
together with possible sensor noise n, to form the microphone signal x.

S1— h n
\ ¢ microphone
S$— h, 4@—> x signal

4

Figure 3.1: Noisy, convolutive mixing model.

This model can be extended to two microphones, where some simplification
is achieved by concentrating on one directional interferer only, which is referred to
as d, while subsuming all other, directional as well as non-directional, disturbances
in the sensor noise terms n; and n,. The thus obtained system model, shown in
Figure 3.2, forms the basis of all subsequently described algorithms.

Here, one desired speaker signal, s, is convolved with the room impulse
response /' before reaching the sensors. Furthermore, one interfering speaker or
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Figure 3.2: Noisy, convolutive mixing model for the case of two directional sources
and two microphones.

noise from one localized disturbance source, is also modeled by convolution with
a room impulse response, //,. These three kinds of signals, desired and interfering
speaker as well as directional noise, may be modeled by independent sources which
arrive at the sensors, filtered with their associated room impulse responses. These
responses, from origin to sensor i, will be referred to as h‘X for the desired signal,
and /', for interfering speech or direction noise signals, in the following. In addition
to the directional sources, whose effect is modeled by a wavefront impinging on the
array from the source direction, there is also incoherent noise of two types - sensor
noise n,; and the ambient noise field, caused in part by driving, n,. These two types
of noise are subsumed in the sensor noise terms #;.

3.1.1 Frequency Domain Formulation

Concentrating on just one speaker and one directional interferer d (which
may model a speaker or a coherent ambient noise component), source separation
can use the model

xi(1) = B(t) = d(t) + B.(t) * s(2), (3.1

which has an especially simple equivalent in the frequency domain in X;(w) =
H'(w) - D(w) + Hi(w) - S(w). This equation is better known in matrix form, as
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in
X=A-S, (3.2)

where X = [X;(w) X2 (w)]7, S = [S(w) D(w)]" (so the vector of sources S consists
of two parts, the desired speaker S and the interfering signal D) and

HW)@@} (3.3)

A@:@w>@w

This model, with its linear dependence of measured signals X on the sources §
and D, forms the basis of convolutive source separation. In the ideal case that is
described by the model, it is possible to blindly identify the so-called mixing matrix
A, to invert it and to obtain the desired speech signal S. However, in contrast to the
idealized model, real environments, such as cars or office rooms, pose a number of
challenges, which are not adequately described by a simple linear model. These are
the subject of the following subsections.

3.2 Non-ideal Effects
3.2.1 Long Room Impulse Responses

One of the best-known properties of frequency domain signal representa-
tion is its translation of convolutions to multiplications'. However, this only holds
ideally, when the analysis frame is infinitely long (i.e. for the Fourier Transform.)
Speech signals are not stationary and therefore are better described by the short time
Fourier transform (STFT), which splits the signal into short, overlapping segments,
so-called analysis frames. These analysis frames have a typical length of 10 to
20ms, reflecting the length of approximate stationarity of speech signals [Hua2001].
However, when the impulse response is longer than N, the segment length of the
STFT, the effect of the convolution extends over more than one frame of the STFT,
with the first part of the impulse response influencing the current signal STFT, the
second block of the impulse response describing the effect of the most recent past
signal frame on the current observation frame and so forth. When the signal is
thus analyzed, the room transfer function effect in the STFT-domain needs to be

'In contrast, cepstral representations are “homomorphic” in the ideal case, which means that a
time domain convolution will be represented by summation in the cepstral domain.
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modeled by a segmentwise convolution between the STFT of the signal and the
STFT-coeflicients of the impulse response. This is mathematically described by

W-f-x(m)=F > S(n-kN)-Hy (3.4)
k=0..K~1

where W is the DFT matrix composed of W, = exp(—j2nkl/2N), f denotes a di-
agonal matrix of the window (fy,...fy—1) defined by f = diag(0,0, ..., fo, .. fn-1),
x(n) is the block of samples [x(n — N),x(n — N + 1),...,xn + N - D]’. Fisa
2Nx2N matrix which contains the DFT coefficients of the zero padded window
f, S(n — kN) is the 2Nx2N diagonal Matrix of DFT-coefficients of the block of
input samples [s(n — kN — N),s(n — kN — N + 1),...,s(n — kN + N — 1)]” and
H, is the vector of DFT-coeflicients of the k’th segment of the impulse response
[W(kN), h(kN + 1),...,h(kN + N — 1),0,...,0]" padded with N zeros [Ser2003].
Thus, in oder to be able to apply (3.2), the framelength of the STFT should be cho-
sen greater than the length of the impulse response. In general, this leads to the
best source separation results, but it is not always applicable when ICA is used as
preprocessing for speech recognition, since reverberation times can become so long
that the computational effort would be prohibitive.

3.2.2 Effects of Ambient and Sensor Noise

In addition to the directed noise component d, ambient noise n;, and sensor
noise n; is also measured on all microphones. These noise signals are assumed
to be independent on both sensors. The effect of additive noise on the signal (dis-
regarding the directional noise component) can be described in the time domain
by:

xi(t) = s(t) * h'(t) + ni (1) + ng . (3.5)

Combining both ambient and sensor noise into a single term for isotropic noise
n;(t), the power spectral domain representation of the i sensor signal at the angular
frequency w; becomes

Xi(wol = 1S (Wl - |H (@)l + IN(wi)l, (3.6)

under the assumption of short impulse responses. Since speech recognition systems
typically use cepstral features for signal representation, it is interesting to analyze
the effect that additive isotropic noise has on the cepstrum of the signal.
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Cepstral coefficients are obtained from the spectrum of a signal X(w) via
2 2 21"
x. =C [ln X (wo)l” In|X(wy)|” ... In X (wp-1)I ] (3.7)

for a length-M spectral representation of the signal, where C is the DCT matrix
defined by

oS (O-H(IA;I/Z) oS (o.n(zl;]/z) cos (O-n(M;/lHl/Z)
(1+1/2) 7(2+1/2) a(M=1+1/2)
cos(=—=) cos(=—*=) ... cos|———=
C= (M) (M) . (,M ) 3.8)
Cos(kyr(l;ll/Z)) COS(k;r(Z;/—Il/Z)) COS(kn(M;VlIH/Z))
and k is the desired number of cepstral coeflicients.
Taking the logarithm in equation (3.6) results in
; IN{(w)?
In|X(w)l = (Sl - |H @)l - (1 + : )
‘ (St ‘ S0P - [P
= In|S(wl + In|H (Wl ... (3.9)
+ In(1 + MNP -niSiwof—InlH @oP)y
Multiplying the entire log spectra with the DCT-Matrix thus yields
CIn[X;?> = CIn|SP? + Cln[H? + Cln (1 + MNP -IniSiF-nlHP)y) (3.10)
When the speech features s, are denoted by
se @ Clnisp 3.11)

and x.,h, and n, are defined accordingly, (3.10) can be written somewhat more
concisely:

Sc + he + Cln (1 + € e C s C o)) (3.12)
= sc+he+ Cln(l + € Meseho)),

Xc

which, combined with equation (3.7), and defining

g(u) = Cln(1 + ¢ (3.13)
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results in
X = Sc + he + g(ne — s — hy). (3.14)

This equation thus describes the approximate effect of additive noise on the cepstral
speech features. In practice, the matrix C is not usually square, since the higher
cepstral coefficients are irrelevant for the purpose of speech recognition. Thus,
Equation (3.12) can only be calculated approximately via the pseudo inverse of C.
This results in some smoothing and approximation in the spectral domain, but it
has been shown to work reasonably well in practice [Hua2001]. As can be seen
from Eq. (3.14), the effect of noise on the cepstrum is a highly non-linear one. This
firstly motivates using denoising and source separation in the frequency domain,
where linear methods are available, secondly, it also shows that any method seeking
cepstral representations from uncertain values in the spectrum will need to be able
to deal with non-linearities in order to succeed.
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Chapter 4

Robust Speech Recognition

Approaches to robust speech recognition, generally speaking, have four
points at which they may attempt improvements:

¢ Finding more robust speech features for better representation of the speech
signal,

e cleaning the speech signal from interference,

e adapting recognition models online or offline, so as to capture the speech
characteristics in the given situation and finally

e modifying the recognition process itself to include information about feature
uncertainty.

A short overview of these approaches will be given in the following sections.

4.1 Robust Features
4.1.1 Mel Frequency Cepstral Coefficients

The currently most widely used representation of speech signals in the area
of speech recognition is the mel-frequency domain cepstrum with its associated
time derivatives, sometimes in conjunction with the signal’s log-energy. A reason
why it has been widely accepted is its relatively good performance, which may be
due to its concentration on perceptually relevant features [Dav1980]. Also, high ro-
bustness can be attained with respect to environmental changes and to the speaker
by adequate preprocessing. For attaining more robustness in these two respects,
vocal-tract length normalization can help to normalize the characteristics of differ-
ent speakers and cepstral mean normalization can compensate for changes in the
room impulse response.
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4.1.1.1 Vocal Tract Length Normalization

Different speakers are distinguishable especially by different shapes of their
vocal tracts, which shift the resonances and thus the formant frequencies of their
speech. In order to compensate for such shifts, a transformation of the frequency
axis can be used. Often, it is linear (e.g. [Gar2005]) or piecewise linear ([Zhal1997,
You2002]), as shown in Figure 4.1. The depicted frequency warping is mathemati-

max Stretch _
— no Warp g -
----- max Compress ’ /

f warp

Figure 4.1: Piecewise linear frequency warping curves for vocal tract length nor-
malization.

cally formulated and implemented as

@ forig  fOT forig < fo
ar — ori ori 9 4.1
5 ? { bﬁ)fig +c for forig > fo, “.1)

where « is the warping factor and b and ¢ are determined from @ and f;. As vocal
tract length normalization thus amounts to a linear or nonlinear transformation of
the frequency axis, this method of improving robustness is actually available for all
spectrum-based speech parameterizations. In this way, the speaker dependence of a
system can be reduced significantly ([Zhal997]).
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4.1.1.2 Cepstral Mean Subtraction

Cepstral features are obtained by taking the logarithm of spectral features
and subsequently applying a DCT, as described in Section 3.2.2:

Xeep(t) = DCT (log(X(w)P). (4.2)

Therefore, convolutions with the room impulse response, which have a multiplica-
tive effect in the frequency domain, now become additive disturbances. As shown
on page 9, a separation of the speech signal from the influence of the room impulse
response thus becomes possible at least in an approximate sense by subtracting the
mean value of the cepstrum from all cepstral features frame by frame via

Xcms(T, k) = Xcep(Ta k) - icep(T)’ (43)

with k denoting the frame index. Thus, the mismatch caused by the channel from
mouth to microphone will be compensated at least under stationary conditions. Real
time implementations of this method replace the subtraction of the cepstral mean
X..p(7) itself by an adaptive estimate X,,(7, k), as in

X = OXeop(T, k) + (1 — a@)Xeep(T,k = 1). “4.4)

This is equivalent to a high pass filtering of the cepstral features, and thus also
related to the so called RASTA methods [Hua2001] described below.

4.1.2 RASTA Processing

RASTA stands for “relative spectral” processing. The basic idea is to utilize
the fact that speech usually changes at a different rate than environmental conditions
such as background noise or the room impulse response. Thus, using band-pass
filters for each frequency component, only those parts of the spectrum are retained,
whose rate-of-change is in the same range as the rate-of-change of typical vocal
tract parameters. This enables RASTA processing, introduced by Hermansky in
[Her1994], to treat changed room and channel conditions as well as additive or
convolutional background noise within the same framework. In principle, this also
works by filtering of the speech features, but whereas cepstral mean subtraction

30



filters the cepstrum according to (4.3), RASTA processing utilizes more complex
bandpass filters on the speech spectrum, e.g.

Xpasta(€, k)= 0.2-X(Q, k) +0.1-X(Q,k-1)-0.1-X(Q,k-3) -
0.2-X(Q,k—4)+0.98 - Xpasra(2,k—1) 4.5)

in the version described in [Her1994]. However, since the method is tuned specif-
ically to exclude non-speech signals and retain speech components, it is expected
to perform poorly for speaker-speaker separation and was therefore not considered
for the problem at hand.

4.1.3 Long term features

The core operations used in deriving a speech representation for recognition
have essentially remained unchanged over the last decades. They consist of com-
puting a speech feature vector in some way from the spectral envelope of the signal
over frames of around 20-30ms and with a frame shift of around 10ms [Mor2005].
However, human phoneme recognition is significantly degraded over such short
segments, which has motivated experiments on longer term representations. These
can be, for example, low-dimensional feature projections derived from a number of
frames [Hae1994, Hun1989], Gabor features [Kle2002] with their multiscale char-
acteristics, long term evolution of critical band energies [Che2004] or 2D features
resulting from the application of linear prediction over both frequency and time to
model time-frequency peaks accurately [Ath2004]. However, even though there ex-
ist some promising results for incorporating long term features into the recognition
process, they are not widely used at the moment, which may be due to their need for
a new statistical framework, possibly based on neural networks or more complex
graphical models than customary HMMs [Mor2005].

4.1.4 Auditory based features

Another idea which is currently under much discussion is how to tune speech
recognizers more specifically to those features which are dominant in human per-
ception. This appears attractive, since human learning of speaking is also tuned
to perceptible features so that speech can be expected to vary little in terms of the
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characteristics which are accessible to human hearing. Therefore, the use of hearing
models for robust speech recognition has been proposed e.g. in [Den2004, Lee2003,
Hem2004, Mak2004, Tch1999, Wan2001]. However, at the moment, speech recog-
nition rates of large vocabulary, speaker independent MFCC-based systems are not
yet matched by other, auditory based features, so this route was also not pursued
further for the current purpose, which is to obtain best possible recognition rates
under strong and quickly varying directional interference.

4.2 Signal Preprocessing

It is convenient to distinguish single-channel and multi-channel techniques
for speech processing. Regarding single-channel techniques, the following sec-
tions will show how spectral subtraction and related techniques process the signal
based on simple models of the noise signal obtained in pauses of speech activity
[McA1980, Eph1984]. These methods, described in 4.2.1.1 and 4.2.1.2, gener-
ally rely on the noise being at least sufficiently stationary to remain approximately
the same during periods of speech. In contrast, the so-called model-based ap-
proaches, e.g. by Deng [Den2001], by Attias [Att1998], by Benaroya [Ben2003]
and by Seltzer and Stern [Sel2003], discussed in 4.2.1.3, are capable of handling
instationary noise also, but for this purpose they have to rely on the availability of
an additional speech model.

Regarding multi-microphone signal processing, it is not easy to find a clas-
sification mechanism distinguishing ICA methods and beamforming. Still, these ar-
eas will be treated in separate sections. Here, all those adaptive, multi-microphone
methods will be described as ICA, which rely on simultaneous diagonalization of
cross-statistics or directly on information theoretic criteria to obtain speech signal
estimates. In contrast, the section on beamforming subsumes systems with fixed
directional characteristics and those adaptive methods which rely solely on second
order statistics to adapt their directional characteristics.

Finally, after ICA and beamforming, the section also contains a short over-
view of nonlinear source separation, the so-called CASA-methods which have re-
cently emerged as an alternative in two-channel, and possibly underdetermined,
source separation. These methods rely on spatial, temporal or time-frequency char-
acteristics of speech and noise signals to design an optimal one/zero-mask or smooth
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mask, which ideally retains all speech-dominated time-frequency bins and masks all
interferer bins.

4.2.1 Single-Microphone Techniques

For stationary noise environments, it is possible to obtain an estimate of the
noise spectrum during speech pauses and to process subsequent segments of speech
in principle by subtracting the noise spectrum, as described in the following two
sections. For further improvements, a dynamic model of speech or noise signals is
a prerequisite, which is described in more detail in Section 4.2.1.3.

4.2.1.1 Spectral Subtraction

Spectral subtraction deals with additive, stationary noise, see e.g. [Bol1979,
Koe2005]. It is always necessary to assume that an estimate of the noise spectrum
N(w) is available, be it from a reference microphone, from a reliable voice activity
detection algorithm, or from using an online capable statistical noise estimation
method such as the minimum statistics described in [Mar1994] and [Coh2002].
When statistical independence of speech and noise spectrum is assumed, this results
in

E(X()P) = E(S (w)P*) + E(IN(w)P), (4.6)

and the speech spectrum can be obtained from
E(S (w)P) = E(IX(w)P) = E(N(w)). 4.7

This can also be written as

E(N(w)P

2N _ (1 - —-
E(S @)F) = EQX(@)P)1 =z =0

). (4.8)
For implementation purposes, expectations of the signals are generally replaced by
instantaneous values and the noise value must be replaced by its estimate, which is
often taken to be the long term average N(w), resulting in

IN(w)P

N 2 _ 2 e ——
1S (w, k)I* = | X(w, k)*(1 IX(w, k))2

). 4.9)
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A general problem of spectral subtraction is musical noise, which can have a de-
grading effect on recognition performance. Using minimum mean square error
(MMSE) estimation for noise suppression alleviates this effect, as described in the
following Section 4.2.1.2. Alternatively, rather than resorting to MMSE estimation,
it is also possible to improve spectral subtraction by choosing

1S (w, )P = 1X(w, k)P - alN(w, b (4.10)

with @ > 1 and N(w, k) as the estimated noise spectrum, and by compensating any
physically impossible negative values. This approach, called oversubtraction, re-
duces the residual peaks responsible for musical noise. The basic version of spectral
subtraction, with @ = 1, can be shown to yield a maximum likelihood estimate of
the signal’s Fourier coefficients, when a Gaussian distribution is assumed for the
complex Fourier coefficients of speech and noise [McA1980]. However, spectral
subtraction cannot be assumed to be applicable for multi-speaker scenarios due to
its inherent inability to cope with multiple microphones and instationary noise en-
vironments.

4.2.1.2 Optimum Spectral Estimation

Statistical estimation can be used to obtain a speech signal estimate, which
is optimal with respect to some cost function. In many cases, this approach results
in a nonlinear gain function G(w, k), which is applied to the noisy signal spectrum
|X(w, k)|? in the form

S(w, k) = G(w, k) - X(w, k) (4.11)

to yield the speech signal estimate S (w, k).

In maximum likelihood estimation, for this purpose, the clean speech spec-
trum S (w, k) 1s parameterized via

S (w, k) = A(w, k) exp /@@ (4.12)

and a maximum likelihood estimate A is obtained from a Gaussian noise model and
is given by

A 1
Aw, k) = z[|X(w, k)l + \/lX(w, P - o3|, (4.13)

where 0']2\, corresponds to the noise variance [Koe2005].
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Similarly, the Ephraim-Malah filter operates on the amplitude spectrum of
the measured signals. In this domain, it gives a minimum mean square error esti-
mate of the speech amplitude, based on modeling both speech and noise as Gaussian
distributed with means g (€2), uy(€2) and variances os(Q), on(L). The variances
are estimated online for each frequency bin Q, whereas the mean values are as-
sumed to be zero. Defining variables uy for the real part and vy for the imaginary
part of the noise Fourier coefficients (and ug and vg, respectively, for the speech
signal) gives a joint distribution

2 2 1 ”12\/ + szv
p(uy,vy) = N(O,0y/2) - N, 0y/2) = — exp|— 5 . 4.14)
noy, o

This can be transformed to polar coordinates with magnitude Ay and phase ay
according to

dI/tNdVN = ANdANdaN, (415)
yielding [Koe2005]
Ay A
P(Ay, ay) = —% exp - =X (4.16)
oy N

for the noise signal and a similar equation for the speech magnitude and phase.
Furthermore, from (4.14) the following distribution of the noisy signal Fourier co-
efficients X, is obtained [Eph1984]:

p(XalAq, aq) =

_1Xa —Aq eXP(j(lQ)|2) . 4.17)

TN (Q)? eXp( 2 (Q)

with Ag and aq denoting the clean signal magnitude and phase in frequency bin
Q). Minimum mean square error estimation leads to Aq = E(Ao|Xq), which can be
computed analytically using Bayes’ law and integration of the conditional proba-
bilities p(XqlAq, @) over all Ag and ag [Eph1984]. In this way, a nonlinear gain
function G s £(€2) is derived, which is used as shown in (4.11).

As an alternative to MMSE estimation, an optimal estimate may also be
obtained by noting that the speech covariance matrix has distinct eigenvectors with
pronounced eigenvalues, which allows decomposition of a noisy signal into a speech
and a noise subspace, as derived in [Eph1995]. As a further alternative, maxi-
mum a posteriori (MAP) estimation rather than MMSE estimation has also been

35



used in the power spectrum domain, which allows incorporation of prior informa-
tion about the noise power spectrum [Jia2003]. However, a disadvantage of the
original Ephraim-Malah-filter, as well as of the more recent subspace and MAP
estimation methods, is their reliance on time or spectral domain speech models.
Alternatively, it is also possible to use optimum estimation in the log-spectrum do-
main via logA = E(log A]X) as described in [Eph1985]. What all these methods
have in common, however, is their reliance on a noise spectrum estimate. Recently,
methods for estimation of noise even during speech presence have been used in-
creasingly to cope with this disadvantage [Coh2001]. However, noise from such
sources as interfering speakers is still too instationary to differentiate it from the
desired signal, thus the above methods cannot be expected to be successful for the
task of speaker-speaker separation.

4.2.1.3 Model Based Processing

In this situation, is seems reasonable to use as much information as is avail-
able, and especially for speech recognition, where a good model of the speech signal
is needed in any case, model based preprocessing has been applied in many cases.

State-Based Filtering

In a simple manner, a way to use speech model information is given by the
Wiener filtering equations. When a speech HMM is available, each state of the
HMM can be associated with its average speech autocorrelation function, where
autocorrelations r;(7) for HMM-state i are obtained after HMM-training by

e estimating the time-/state-alignment of the training dataset to the HMM using
the Viterbi algorithm

e and for each state i computing the autocorrelation of the sequences which
have been aligned with this state.

From this procedure, each HMM-state i is then equipped with knowledge about

the associated speech autocorrelation function r;(7). Thus, once an estimate of the
noisy speech autocorrelation matrix R, is available, a Wiener filter for each of the
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HMM states i = 1... N can be calculated using
Rxhopt,i =T (418)

and it can then be used during recognition via filtering of the input signal, sepa-
rately for each of the HMM states [Beal991]. Thus, each of the states gets its own,
optimum observation estimate 0;(¢) for recognition, which is obtained by its own
associated Wiener filter

0,(t) = o(t) x h,, ;. (4.19)

As can be seen from Equation (4.19), filtering is carried out here on the time domain
signal. The alternative of computing MMSE filers in the feature domain (e.g. the
cepstrum domain) is also viable, but it requires a significant increase in complexity,
since here, the combination function for speech and noise is nonlinear, as shown in
Equation (3.14) for the case of cepstral features. This problem must be dealt with
by techniques such as linearization!, but is highly successful also in nonstationary
noise environments [Cou2000].

Model-Based Optimum Estimation

However, the approach of state-based filtering only works well, when the
number of states is not too large, so that separate filtering and also separate design
of a Wiener filter for each state and in the presence of each new noise signal is
practical. Relaxing this requirement, another way to go about integrating prior
knowledge is via optimum estimation techniques, similar to the above discussed
methods of minimum mean square error estimation. In this framework, the clean
speech log-spectrum S; can be estimated from the noisy spectrum X; via

Siumse = E(SIX) (4.20)
= X, - E(X; - S/X)). 4.21)

The term E(X; — S;|X;) describes the difference between noisy and clean spectrum
that is due to noise N;. Since the log spectrum changes nonlinearly when noise

'For example, the vector Taylor series can be used.
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is added, it is necessary to model the nonlinearity explicitly to obtain the MMSE
estimate via

Simse = X; - f 2(S1, N;, Hp)p(S[X;)dS,. (4.22)

S
Here g stands for the environmental model

g(s,n,h) = H; + 101og,,(1 + 10N -5-Hr) (4.23)

as described in [Mor1996] and the noise and channel models N; and H; are learned
as the hidden variables of an EM algorithm. This environmental model is the log-
spectrum equivalent of (3.13) and (3.14), which are derived in detail in Chapter 3.
Using a vector Taylor series approximation of (4.23), MMSE estimation can then
be carried out using the log-spectrum domain speech model (a standard Gaussian
mixture model)

M-1
PS) = > PNt s ) (4.24)
m=0
in the MMSE framework via
M-1
Smmse =Xy = > PUIX))g(tt, Ni, H). (4.25)
m=0

But while this method is successful in improved estimation of log-spectrum
speech, a cepstrum domain estimator is often even more desirable, since the cep-
strum is a major domain for speech recognition applications. One such algorithm
that is implemented directly in the cepstral domain is the so called "SPLICE-al-
gorithm” 2 [Den2001]. This algorithm uses stereo training data’® to learn a joint
probability distribution of the clean and the distorted signal. A theoretically plausi-
ble way to formulate this joint probability distribution p(s,, X.) would be:

P(Se; Xe) = P(SelXe)P(Xe)- (4.26)

But since the speech cepstrum has a nonlinear dependence on the observed cep-
strum X,, this learning task is ill-posed. Therefore, a piecewise linear approxima-
tion of the joint probability is obtained via introducing an auxiliary variable i. This

2SPLICE: Stereo-Based Piecewise Linear Compensation for Environments
3Stereo data containing one channel of clean and one of distorted speech
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variable partitions the space of observations into regions, in which the clean and the
distorted speech have a linear dependence. Thus, it is possible to write:

P(Se>Xe) = ), PlSelXe, DP(Xeli)P(i). (4.27)

For each of the partitions i, the dependence of the clean speech on the observed
signal is
Se = X¢ + Tj. (4.28)

where r; is the cepstral correction vector for partition i. One additional assump-
tion - namely, the Gaussianity of the cepstral coeflicients, allows calculating the
probability distribution of the clean conditional on the noisy speech:

P(SelXe) = D N(se, X + 10, T)p(i) (4.29)

The minimum mean square error estimate of a random variable is its conditional
mean [Vas2001]. Therefore, s. is estimated via:

Sc = E(s¢xc) (4.30)
= > BNGse X + 13, T)p()I) (431)
= D (% +T)plilxe) (4.32)
= X+ ) Tiplilxe). (4.33)

Thus, it is possible to obtain a minimum mean square error estimate, as soon as
the noise correction vectors r; are known and once the partition probabilities p(i|x,)
have been determined. Both these quantities are trained, respectively calculated,
from stereo training data in which one dataset contains the clean and the other the
noisy speech. To find the correction vectors, the maximum likelihood criterion is
used [Dro2002]. For this purpose, the expected value of the joint likelihood of x,
and s, given r, can be maximized with respect to r., which leads to

o S plixe(k)(se(k) = %e(K))
‘ S plilxe(k)) '

(4.34)
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The noise type probability here can be calculated via Bayes’ Rule:

P, X(K)) _  pDp(Xe(K)li)

pxc(k) X pi)p(xe (i)
Whereas this kind of speech processing requires a great amount of work in the
training phase, as noise correction vectors must be learned for as many kinds of
noise and distortion as possible, it is highly successful in applications with additive
noise and convolutional distortions. However, it is not a good candidate for multi-
speaker environments, since it would be necessary to obtain training data for all

p(ilxc(k)) = (4.35)

possible kinds of interfering sounds and in all kinds of convolutive environments,
which makes the approach impractical for this scenario.

4.2.2 Multi-Microphone Techniques
4.2.2.1 Beamforming

Microphone arrays have been used “traditionally” for source separation.
Their use preceded information theoretic methods by nearly a quarter of a century
(see e.g. [Gri1969]). The main difference between ICA methods and “classical”
beamforming lies in the fact, that neither the array geometry nor the position of the
speaker relative to the array is required for ICA methods, whereas array methods
in their original, non-adaptive formulation, do need this information for the design.
Adaptive beamforming methods can also infer the speaker position, as ICA methods
do, however, they still require advance knowledge regarding the array geometry.

Propagation Models for Beamforming

In general, beamformers rely on a model of signal generation where the
source signal s(¢) propagates as an acoustic wave from the source to the sensor.
Propagation can take place along a circular wavefront in the nearfield or along
straight line in the farfield model. Both these models are shown in Figure 4.2.

In the farfield model, which is commonly used for source-to-microphone
distances greater than 2L?/A, plane wave propagation is often assumed.* For a

4L is the largest array dimension, see e.g. [Ken1998].
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Circular Wave Propagation: Plane Wave Propagation:
Nearfield Model Farfield Model
Microphone Microphone
Arra Arra

y — y

O x; - X,
k

O x, X,

O x X
.3 —~— ¢ .3
O xy Xy

Figure 4.2: Nearfield (left) and farfield (right) model of sound propagation.

monochromatic wave, the amplitude as a function of space and time is given by
s(x, ) = Ae/ KX, (4.36)

where x denotes the location and k stands for the wavenumber vector [Joh1993],
which has the direction of wave propagation and the magnitude 27/ A, with A denot-
ing the wavelength.

For the nearfield model, again in the monochromatic case, wave propagation
is described by

A .
s(r,1) = =&, (4.37)
r
where r is the distance to the sound source and the wavenumber k is given by w/c.

With both these models, the measured signal at the sensors will correspond
to the original signal s(¢), which arrives at all sensors x;,i = 1...N with a given
delay ¢, and attenuation a;, so

a S(l -01)
X(t) = azs(t:_ o) | (4.38)
aNs(t.— 61\/)

41



In the frequency domain, this is equivalent to

a1S (jw)e @
@S (jw)e %2

X(jw) = : , (4.39)
anS ( ja.))e‘j‘”‘SN
which can also be written in matrix form via
X(jw) = r(w) - S (jw), (4.40)
where r(w) is the steering-vector comprising the amplitude attenuations and the
phase shifts incurred by the signal between source and sensor and is defined by

ae /¥
aze—jw(52

r(jw) = : . (4.41)

aNe—jwéN

For the farfield model, the delays 6; depend on the direction of arrival (DOA) ¢,

measured relative to broadside, via

_ di Sll’l((p)
= —C ,

5 (4.42)

where d; stands for the distance between microphone i and the array origin. There-
fore, r may also be expressed as a function of source-DOA, which is denoted as
aze_jw‘SZ(‘P)

r(jw,p) = : . (4.43)

aNef‘]w‘sN(SD)

Delay and Sum Beamforming

Among the classical beamformers, a very popular one is the delay and sum
beamformer. It attempts to emphasize the signal by phase-correct summation of the
sensor signals, thus, for the model given in Equation (4.38), computing

N
§() = ) xi(t = (61 = 6)), (4.44)

i=1
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with 67 > max; d;, can exactly compensate the incurred signal delays. Due to
this phase-correct addition, § consists of the sum of the amplitudes of the received
source signals, whereas for incoherent noise, summation adds the energies. Thus,
the desired signal energy in § grows with N2, whereas the noise energy increases
only with the factor N, yielding an SNR-improvement of 3dB for each doubling of
N, or

SNR,ost = SNRy,, = 10log,, N. (4.45)

However, the delay and sum beamformer performance is hampered by the
breadth of its main lobe at low frequencies, see Figure 4.3, whereas at high frequen-
cies, spatial aliasing occurs due to undersampling of the incoming sound waves.

A

This effect sets in as soon as d > 5 where d is the distance between the mi-

crophones. The effect is illustrated in the second subplot of Figure 4.3, where

d = 5cm > % ~ 3.4cm, so that the spatial sampling frequency is less than twice
the spatial frequency, leading to two distinct nulldirections instead of only one as

desired.

Filter and Sum Beamforming

More design parameters offer more flexibility in shaping beampatterns. This
is the basic reason for employing a filter and sum beamformer. In this method, the
simple delays of the delay-and-sum beamformer are replaced by filters w;(k), as
shown in Figure 4.4. This allows a separate design of the discrete time frequency
response for each frequency range, since the contribution and delay of each micro-
phone can be adjusted over frequency. When the conjugate complex filter transfer
functions W} are composed in a row vector W*(jw) = [W[(jw),..., Wy (jw)] ac-
cording to [Gan2001], the array response can now be computed as the product of
two linear systems, the room transfer function modeled by the steering vector in
(4.39) in series with the filter responses, so that

$ (jw) = W*(jo)r(, ¢) - S (jw) (4.46)

and the transfer function ¥(w, ¢) from source to beamformer output is obtained
from
Y(w,¢) = W (jw)r(w, ¢). (4.47)
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Delay and Sum Beamformer at 3000Hz.
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Delay and Sum Beamformer at 6000Hz.
T T T

Absolute value of array response, ||

Figure 4.3: Directional response of a delay and sum beamformer for a microphone
distance d = 5cm, at f = 3000Hz (top) and f = 6000Hz (bottom). See (4.47) for a
definition of the array response V.
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Figure 4.4: Structure of a filter and sum beamformer.
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Therefore, the directional response (or beampattern) in general varies over fre-
quency and DOA ¢, so that signals arriving from different directions are effectively
filtered by different W(w). However, if an equal response of the array is desired for
all frequencies, this can be approximated by so-called frequency invariant beam-
formers, which strive to keep the array response constant over an arbitrarily wide
bandwidth [War1996].

Optimal Beamforming

To adapt beamformers to arbitrary source and interferer directions, three
criteria are significant.

e One is the minimization of noise energy,
o the second is keeping directional interference to a minimum,

e and the third is the constraint of maintaining an undistorted signal.

For attaining an optimum with respect to these criteria, two principally dif-
ferent approaches exist, the deterministic optimization approach and Bayesian (sto-
chastic) estimation techniques.

In deterministic optimization, one of the most influential adaptive beam-
formers was designed by Frost [Fro1972]. In this approach, noise energy and direc-
tional interferers are combined in a joint optimization criterion, namely, the array
output energy, subject to the constraint of undistorted signals arriving from the tar-
get direction ¢,. This leads to the cost function

Iuvor = E(IS (jo)P) + AW (jo)r(w, ¢,) = 1), (4.48)

which can be optimized to obtain minimum signal energy, subject to the constraint
that W*(jw)r(w, ¢;) = 1 for signals coming from the desired look direction ¢;.
The resulting beamformers are also referred to as minimum variance distortionless
response (MVDR) beamformers and are described in more detail below.

A major enhancement to MVDR beamforming has been incorporated in
the optimization by Griffiths and Jim [Gri1982]. They describe an extension of the
beamformer structure to include zeroing interferer directions. For this purpose, they
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combine two beamformers, a conventional delay and sum beamformer to enhance
the target signal and an adaptive path, from which the target signal is first removed
by means of a blocking matrix W. In the adaptive, lower path, unconstrained adap-
tation is employed to find an optimum estimate of the interferer signal y,(k), which
is then subtracted from the conventional beamformer output yc(k) to yield an opti-
mum signal estimate §(k) = yc(k) — ya(k). Since the lower path suppresses energy
impinging from any but the target sources, the method is known not only as the
Griffiths-Jim Beamformer but alternatively also as the Generalized Sidelobe Can-
celer. lIts structure, which is shown in detail in Figure 4.5, has been extended in

x; [O— T W,

A
x5 [(O— Wy :CD
v k) §(k)
0O A e Van .
XN TN Wy s\ > ’CSO '\“/ i >
__unconstrained | |
i adaptive algorithm
A 4
] Ty
H !
W ) {)
v
_/+\ ya(k)
Ton W\

Figure 4.5: Structure of the generalized sidelobe canceller.

[Gan2001] to become applicable also to reverberant mixtures.

Aside from deterministic optimization, the second principal approach is sto-
chastic signal estimation. It was first formulated for the beamforming problem in a
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maximum likelihood sense as
§ = argmax p(x|s) (4.49)

by Capon, e.g. in [Cap1979]. While optimization by the minimum variance princi-
ple only needs the autocorrelation function of the measured signal - desired signal
plus noise and interference - the maximum likelihood approach requires the covari-
ance matrix of noise and interference, so that an additional voice activity detection
is required for the system.

MVDR Beamforming

Minimum variance distortionless response beamforming is based on mini-
mizing the beamformer output W*(w)X(w)X(w)?W(w)! with W*(w) as the filter
transfer functions, subject to the constraint W*(w)r(w, ¢;) = 1 Yw, which means
that the signal arriving from the desired direction ¢, is not attenuated [Fro1972].
Stating these requirements as an optimization problem, as seen in (4.48), and drop-
ping the frequency index for notational simplicity leads to

min (WRLW + - (Wr(g) - 1)), (4.50)

where A is the Lagrange multiplier for this constrained optimization problem and
R,, is the sensor autocorrelation matrix E(X(w)X(w)H ) To obtain the optimum
with respect to the complex parameter W, the gradient of (4.50) with respect to W*
must be used, as shown in [Bral983]. Taking the derivative and equating it with
zero results in

R W’ + Ar(p,) = 0. (4.51)

Therefore,
W = AR !r(¢,) (4.52)

and inserting the distortionlessness criterion W*r(y,) = 1 leads to
H
1=Wr = —(W)'r

- (AR r () vy
~Ar(p) "R} x(p,), (453)
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where the last equality follows from the fact that R} is a symmetric, real matrix.
Then, Equation (4.53) gives A to be

1
A=— . 4.54
@) R (p)) (454)

Finally, this can be plugged into (4.52) to obtain the optimal filter transfer functions

T _ R;; r(e;)
r(p)"R;Ir(p,)

A similarly structured equation results, when the noise plus non-directed interfer-
ence autocorrelation is used in the optimization:

r(@) R Ir(p,)

In that case, the output of the array will contain the minimum amount of noise
and interference, instead of the minimum energy [Cap1967]. This is desirable in
practice, however, it requires an estimate not of the sensor autocorrelation (which
is easy to obtain), but of the noise autocorrelation, so that a voice activity detection
will be required.

(4.55)

(4.56)

Bayesian Approach to MVDR Beamforming

When the direction of arrival of the desired signal ¢, is not known in ad-
vance, it also needs to be estimated. An erroneous estimation can be shown to be
highly detrimental for the resultant SNR improvement [Kna2003]. With increasing
angular error, the target signal is increasingly attenuated, and due to the frequency
dependent beamformer response, is also filtered. Additionally, suppression of the
interferer is reduced to such a degree, that even at relatively small angular errors
the interferer energy can already exceed the target signal energy. To minimize the
detrimental effects of not knowing the source direction, Bell et. al. suggest adapting
the beamformer to the current source direction in [Bel2000]. For this purpose, the
DOA is assumed to be a discrete random variable, and a beamformer can then be
designed as a weighted sum of minimum variance distortionless response (MVDR)
beamformers, of which each is weighted by the a posteriori probability of its asso-
ciated target DOA.
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Beamforming for Robust Speech Recognition

A variety of publications deal with the application of beamforming to ro-
bust speech recognition. Both principal approaches, deterministic and stochastic
estimation, have been applied successfully.

Bayesian estimation has been applied to magnitude (short time spectral
amplitude estimation) and phase estimation in the spectral domain by Balan and
Rosca in [Bal2002]. This results in an extension of the Ephraim-Malah-filter to
microphone arrays. Bayesian estimation of Log Spectra is described in detail in
[Ban2003], where it is employed for noisy in-car speech recognition and results
in an average word error rate reduction of 43% over a single microphone, when
averaged over a number of noise conditions.

The basic deterministic beamformer structures are investigated by Omologo
et. al. in [Omo1997], where a delay and sum beamformer is used, or by Saruwatari
et. al. in [Sar1999]. Here, complementary beamforming (a nonlinear extension
of the generalized sidelobe canceller shown in 4.5) is shown to improve speech
recognition rates by more than 20% in low-SNR-conditions.

Regarding deterministic optimization, postfiltering of the beamformer out-
put has emerged as a quasi-standard in recent publications. Since the achievable
noise reduction rate using a beamforming system is restricted, and since superdirec-
tive beamformers, focused on removal of directional interferers, may even increase
the incoherent noise part in the beamformer output, postfiltering of the beamformer
output is an interesting option. With beamforming plus postfiltering, McCowan
et. al. achieve an error rate reduction from 41% down to 9% in a reverberant room
[McC2000] with incoherent noise and undesired background speech. Speech recog-
nition improvements for beamforming with a denoising postfilter are also reported
by Meyer and Simmer, who use delay and sum beamforming with spectral sub-
traction and Wiener filtering as postfilters in [Mey1997], by Maganti et. al., who
employ filter and sum beamforming with postfiltering in [Mag2005], or by Moore
and McCowan [M002003], who add a postfilter to a delay and sum beamformer.

Using speech characteristics for beamformer adaptation has also been in-
vestigated in different publications. For this purpose, [Yam1996] use the pitch-
harmonic structure of speech to obtain a speaker direction estimate for adaptive
delay and sum beamforming. Seltzer et. al. [Sel2003] integrate speech recogni-
tion directly in the adaptation by optimizing log-likelihoods of the speech data in
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all subbands, while [Nis2003] incorporate the average speech spectrum in beam-
former adaptation, for this purpose allowing small deviations from the otherwise
desired distortionless response.

Beamforming in conjunction with recognizer relevant features has been
evaluated in detail by Stern et. al. [Ste1992], who use a 23-microphone delay and
sum beamformer. As shown, this can provide complementary benefits when used
in conjunction with code dependent cepstral normalization for Mel-Frequency Cep-
stral Coefficients. Also, it was tested in the same setup as a preprocessor for an au-
ditory type feature extraction (the Seneff haircell model [Sen1984]), where it gave
inconclusive results.

Also, good VAD is essential for adaptation control of adaptive beamform-
ers. This was shown in the work of Van Campernolle [Van1990], who investigated
a switched Griffiths & Jim beamformer with robust VAD to prohibit incorrect adap-
tation of the noise reference during speech presence. Improved VAD was also a
central aim in [Lun1999], which compares a generalized sidelobe canceller with
soft adaptation during speech absence to spectral subtraction, and comes to the con-
clusion that beamforming offers a recognition rate improvement superior to spectral
subtraction, which corresponds well with its lower cepstral distortion measures.

However, even though many publications deal with the application of beam-
forming to noisy speech recognition, it is rarely employed for speech-speech sepa-
ration and recognition. McCowan et. al. in [McC2000] make an exception, where
background speech is also successfully removed. Among the cited publications
on beamforming, only [M002003] and [Mag2005] explicitly deal with 0dB SNR
speech-speech-mixtures, which can be expected to pose additional problems due to
the spectral similarities, making recognition under residual crosstalk more challeng-
ing. However, they still find microphone arrays significantly inferior to close-talk
microphones in realistic scenarios, where an error rate of 19% is the best reported
performance on a number recognition task after beamforming and maximum a pos-
teriori (MAP) HMM-adaptation.

4.2.22 ICA

In contrast to beamforming, independent component analysis (ICA) has of-
ten been employed for speech-speech segregation.
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In the original ICA methods, much emphasis was on the blindness of source
separation, that is, on obtaining the correct unmixing system without resorting to
any assumption regarding the characteristics of the source signals. Usually, one of
the three following properties is used [Car2001]

Non-Gaussianity No more than one of the sources is allowed to adhere to a Gaussian
probability distribution.

Non-Stationarity The sources must change in some of their statistical properties
over time.

Non-Whiteness Sources are not allowed to have a flat spectrum.

As soon as at least one of these properties is given for the mixed sources (except
for one source, which is allowed to be Gaussian, white and stationary), mixtures
can be segregated without needing further information regarding the source charac-
teristics. If that is the case, the separation process can be carried out by estimating
and subsequently inverting the mixing matrix according to a suitable cost function,
which, often indirectly, measures deviation of the sources from Gaussianity, their
whiteness or stationarity. The mathematical background of these original, linear
ICA methods is described in some more detail in Appendix B. But since the origi-
nal methods of ICA, like the Infomax algorithm and JADE, are designed for purely
additive mixtures of signals like

x1(0)
X(1)

they are not applicable in the convolutive case, where each source signal i is con-
volved with the room impulse response 4;;(¢) before it reaches sensor j:

x1(1) = hy(0) x 51(2) + hio(t) * 55(2)
X(t) = hoi(1) % 51(2) + hyo() * 55(2). (4.58)

aysi1(t) +apsy(1)
as; 51(1) + ax s (1), (4.57)

Therefore, the frequency domain formulation is often taken as a basis of
convolutive source separation. Here, convolutions with the room impulse response
reduce to multiplications with scalar (but complex) weights at each frequency:

Xi(w)
Xr(w)

Hi(w)S 1(w) + Hi2S 2 (w)
Hy (w)S 1(w) + Hy» S (w). (4.59)
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In this way, for each frequency bin the convolutive problem is reduced to a set
of additive mixtures similar to (4.57), at least when sufficiently long frames can
be used.” However, the ordering and scaling of ICA outputs is arbitrary and may
change from frequency bin to frequency bin as detailed in Appendix B. Therefore,
special care must be taken in assigning the ICA outputs to the sources and in deter-
mining their scale. Regarding the scaling problem, one possible solution consists
of constraining all direct paths in the convolutive mixing model to one. This results
in the modified convolutive mixing model shown in Figure 4.6. Such a model does
not allow identification or compensation of the direct path room transfer functions.
However, statistical independence alone is an insufficient criterion to identify these
transfer functions, so no significant information is lost by this model choice as long
as there are no additional sources of information [Bau2005].

s#w»—lﬁ;ﬂ@—e X,(0)
|H21(00)

‘—|| H;,(®)

S(@—t— 1 |+ ——X (o)

Figure 4.6: Constrained convolutive mixing model.

Regarding the permutation problem, a number of different solutions have
been applied, three of which, namely

o utilizing the similarity of the transfer function in adjacent frequency bins,

e optimizing criteria which consider the independence of a number of fre-
quency bands simultaneously and

SWhen the room impulse response is longer than the frame length, a signal which was emitted
in frame number 7 will also influence later frames 7 + 1 etc., so that the filtering effect can only be
described approximately as a multiplication but in general must be modeled by a convolution in the
frequency domain [Ser2003].
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e aligning frequency bins according to their directivity characteristics

are described in more detail here.

Constraining adjacent frequency bands to be similar leads directly to flatness
criteria, which evaluate the similarity between neighboring bins and are exploited
e.g. by [Bau2001, Cap1995], and indirectly to a constraint of short time domain
mixing filters, since flatness in the frequency domain directly corresponds to short-
ness in the time domain [Par2000]. However, such methods are difficult to apply in
reverberant environments, where unmixing filters need to be long for good separa-
tion performance. In this case, choosing the parameter for constraint enforcement,
e.g. the maximum filter length in Parra’s method, is difficult, because the optimal
trade-off between errors caused by insufficiently long unmixing filters and errors
due to permutations is often difficult to find.

Joint optimization of the output cross correlation across frequency bins is
another strategy, which is often successful for reducing frequency permutations. In
its implementation by Anemiiller [Ane2001], the cost function ¢ for this purpose is
the amplitude modulation correlation, which is defined by

c(Y1(3, f), Va3, ) = EUVi (5, £l = E(QYi(x, fOD) (Va(r, )l = E(Ya(z, f)D)
(4.60)
as the correlated deviation of the short time spectral amplitudes |Y;(¢, f;)| and
|Y,(¢, f7)| from their mean values. When a matrix is constructed from this basic cost
function by computing the cost for each pair of frequencies according to

[C(Y1, Y2)lu = c(Yi (7, fo), Ya(T, /1)), (4.61)

the Frobenius norm of this matrix® is a suitable cost function for minimizing per-
mutations, since a frequency permutation will lead to correlations between different
output signals at some frequencies. However, this procedure carries a large com-
putational burden since evaluation of the cost function is time-consuming and its
local optima require multiple sweeps of the optimization procedure. An alterna-
tive consists in constructing a cost function which models output distributions p(y)

The Frobenius norm of a matrix is given by ||M||g., = . /Z[,j ;|2
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as multivariate, taking into account different frequencies and time lags simultane-
ously. Minimizing the mutual information between estimated output distributions
[Buc2003] represented by the cost function

= 1
C(m) = Bli,m) - — ... (4.62)
0 N

=

{log (Ppp(y1(i, J)s - -, yp(i, ) = log (pp(y1 (i, j)) - - .. - Pp(yp(i, D))}

J=

=]

leads to an inclusion of across frequency permutations in a single cost function,
where y,(i, j) is the n’th output signal in block i with the time shift j within the
block, N is the block length, S is a window function’ and pj and ppp, are the esti-
mated or assumed probability distributions of the dimension D (which is the number
of considered time lags), respectively PD (with P as the number of sensors). Also,
with an appropriate form of probability distribution p, one can exploit properties of
the sources such as short-time stationarity and higher order statistics.

Another technique for the explicit modelling of inter-frequency dependen-
cies is to move from scalar complex valued independent component analysis to
a complex vector valued source model in independent vector analysis [Kim2006,
Lee2006]. In this approach, the output of the source separation algorithm is a set of
N vectors y;,i = 1...N, each containing all frequency bands of the desired source
i. Then, it is possible to construct priors for these vector valued random variables,
which include the constraints of sparseness as well as variance dependencies be-
tween entries in the source vectors (i.e. source spectra). Using such priors, the cost
function C will be independence of the entire vectors as in

H p(yi) ) (4.63)

where KL denotes Kullback-Leibler divergence. This cost function can be used as
the optimality criterion for gradient descent methods, which will then lead to most
independent vectors rather than independent frequency band outputs, thus avoiding
opermutations explicitly due to the applied cost function.

C=%XL [p(YI’---’YN)

7B can be used for blockwise weighting of the data, which allows for online adaptive implemen-
tations.
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Finally, it is also possible to consider the ICA unmixing matrix in the fre-
quency domain as a beamformer to obtain its impact on sources as a function of
frequency and DOA. For this purpose, it is useful to analyze the effect, which a
weighted summation of microphone signals has on the output signal. This effect
has already been derived for beamformers in Section 4.2.2.1, resulting in Equation
(4.47). Thereby, the beampattern of an arbitrary frequency domain unmixing matrix
W(jw) can be computed over frequency and angle of incidence by concentrating on
one column i of the unmixing matrix at a time, resulting in

Fi(w,¢) = r(w, o)’ W.i(jw). (4.64)

for the i’th unmixing filter. Application of this equation results in n beampatterns
for an n X n unmixing matrix. An example of such patterns is shown in Figure 4.7.

As can be seen, these beampatterns show strong attenuations of a small
range of directions for most frequencies. Since the unmixing structure of ICA is
equivalent to that of a frequency variant nullbeamformer [Kna2003], the minimum
directions of an ICA unmixing filter can be interpreted as zero directions, which
point to the interferer directions upon convergence. This idea directly leads to the
last concept for permutation correction, the analysis of directivity characteristics.
With this principle, ICA unmixing filters are sorted in such a way as to align mini-
mum directions. Different implementations for this principle exist. For example, in
[Kur2000], first, source directions are estimated from an analysis of the minimum
direction statistics and in a second step, unmixing filters are sorted in accordance
with these estimated source directions, and in [Saw2004] the null directions are
computed analytically from W and mixing matrix columns are sorted by null direc-
tions for all those frequencies, at which a high confidence null direction estimate is
available, whereas other frequencies are assigned by inter-frequency correlations.
In [Muk2004] the principle is extended to find zero directions together with zeroing
distances based on a nearfield beamforming model. This also allows for separating
speakers which stand in the same angular position relative to the microphones. One
further approach for assigning permutations based on directivity patterns, which
leads to the permutation corrected unmixing filters shown in Figure 4.8, is discussed
in Section 5.1.1.

Aside from time-frequency processing, another approach for carrying out
independent component analysis is based on an analysis method that is closer to
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Figure 4.7: Beampatterns computed as 201log,, [¥;(w, ¢)| for both columns of an
ICA unmixing matrix W before permutation correction.

human auditory processing than the Fourier analysis described above. Here, a set
of so-called correlograms is used, which are believed to offer a more accurate rep-
resentation of the features extracted in the human hearing process than the spectro-
gram [Slal1993].

Correlograms are computed directly from the time domain source signals.
First, the sensor signals are analyzed in a filter bank which models the human fil-
tering process in the cochlea. The filter bank outputs are windowed, and then, for
each windowed filter bank output, sets of autocorrelation coefficients are computed
for all pairs of filterbank outputs, as described first in [SIa1993]. An example of a
correlogram is shown in Figure 4.9.

After the signal is thus preprocessed, standard ICA techniques can also be
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Figure 4.8: Beampatterns computed as 201log;, [¥;(w, ¢)| for both columns of an
ICA unmixing matrix W after permutation correction.

applied to the correlograms, yielding a new set of demixed correlograms. Finally,
these unmixed correlograms of the source signals are transformed back into the
time domain, leading to an alternative solution for the source separation problem
[Rut2001].

Finally, probabilistic models for speech and noise can also be included to
perform source separation. One such method of incorporating the speech model in
the source separation algorithm was developed by Attias in [Att1998]. The principal
idea is to describe speech by its probability distribution, e.g. by an MOG model in
the time domain: "

Pa(s) = D Y NCsis i, i), (4.65)

m=1
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Figure 4.9: A correlogram shows the autocorrelation of auditory based filter bank
outputs over time lag.

where N(-, u, o) denotes the normal distribution with mean u and standard deviation
o. With this model, the mixing matrix A is estimated together with all source
distribution parameters g = yy ...y and o = 07 ... 0y to obtain the closest match
between the probability distribution p;(S) of the unmixed signal

§=A""x (4.66)

and the postulated source distribution py,(s;) from (4.65). To achieve this optimal
match, one suitable approach is to find that parameter set {A, /1, 6} which makes the
observed data as likely as possible:

[A,f1, 6] = arg max p(xA, . ). (4.67)
MO

An expectation maximization algorithm can be used for this purpose, however, the
problem becomes intractable as soon as noise is present in addition to speech, in
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which case computationally expensive variational methods are the only currently
applicable learning strategy, see, e.g. [Att2001, Lee2005].

ICA for Robust Speech Recognition

ICA has been applied successfully for speech/speech separation. However,
the still not completely solved permutation problem as well as insufficient demixing
performance in reverberant environments still pose problems for the recognition of
overlapping speech signals. Still, a number of publications already show a signifi-
cant improvement in recognition performance, when ICA is used as a preprocessing
method.

For this purpose, it is necessary to explicitly deal with two problems, rever-
beration as well as permutations.

Once that is achieved, significant performance improvements can be ob-
tained. For example, Asano et. al. [Asa2003] reduce the error rate from 50% to
32% in a reverberant room with t,,, = 400ms by means of ICA with additional
beamforming as a preprocessor to reduce room reflections impinging from other
than the source directions. In their approach, the detrimental effect of permutations
is reduced by sorting ICA outputs according to the nulldirections of the unmixing
filters as described above. Another approach for limiting permutations is by requir-
ing smooth frequency domain unmixing filters, or equivalently, short time domain
unmixing filters. This principle has been utilized by [Par2000] to reduce the word
error rate on the Wall Street Journal task of continuous large vocabulary recognition
from 43.7% to 34.5%. A further option to avoid permutations is a search for that
assignment of sources in subbands, which leads to the smallest overall correlation
between unmixed outputs. This principle has been applied successfully for speech
recognition, where the error rate on a connected digits task was reduced from about
35% to 20% at 0dB SNR [Ane2001], but it is an expensive option, computationally.

Rather than complete demixing, sometimes it is sufficient to utilize a defla-
tionary approach, which extracts the dominant target source first. This can also be
used advantageously in reverberant environments, as shown in [Kou2002], with the
advantage of lower computational complexity than conventional ICA. Alternatively,
computational effort may be reduced by using second order criteria for separation.
For example, Ehlers and Schuster in [Eh11997], employ multiple decorrelation of
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output signals at different time delays to obtain an error rate reduction from 52%
down to 9% on a connected digit recognition task in a 20m? reverberant room.

Noise is another significant problem. Here, it has been shown to be benefi-
cial, when ICA is followed by a denoising stage. In this way Visser and Lee have
applied ICA to noisy in-car speech mixtures, followed by an ICA-based and a sec-
ond, wavelet-coeflicient-shrinkage denoising stage and have achieved a reduction
of error rates from 43% to 20% at 0-4dB SNR, when the baseline error was 10%
[Vis2003]. In noisy scenarios, it is also very helpful, when a reliable voice activity
detection is available, since this can be used for further denoising and recognition
rate improvements [Vis2003b].

In contrast to the described methods, in which ICA is followed by feature
extraction for the recognizer, it is also possible to apply ICA directly on the recog-
nizer features, as shown in [Par1999]. In Park’s approach, ICA is directly applied
to auditory filter bank outputs on a mel-scale. However, this approach is not di-
rectly practicable for recognizer features with a non-linear dependence on spectral
features, since the mixing model becomes intractable to estimate and non-linear
ICA methods would be required, which is probably an inordinately difficult task for
features such as MFCCs, where source and interference are mixed as in (3.14).

4.2.2.3 Computational Auditory Scene Analysis

When two speakers are simultaneously talking, it is impossible to separate
the signals either by time segmentation or by “frequency segmentation” (i.e. filter-
ing). However, two speech signals tend to be almost orthogonal in a time-frequency
representation derived with the parameters usual for speech processing. This prop-
erty is referred to as ”W-disjoint orthogonality” of the signals, with the "W” stand-
ing for "windowed”. This concept was introduced by Jourjine et al. in [Jou2000].
The property of approximate W-disjoint orthogonality leads directly to the idea of
using spectral characteristics to obtain a binary mask for source segregation, and in
this form, it has been used to obtain real time source separation for more sources
than sensors in [Ric2001], [Y1l2004], [Sri2004] and [Rom2003]. Reliance on a
constant delay and attenuation between microphones is widely used in these ex-
amples of so-termed computational auditory scene analysis (CASA) methods. For
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example, the mixing model used by Yilmaz et. al. in [Yil2004] is

N

xw k) = ) siwk) (4.68)
j=1
]N

0@ k) = ) ajsiw,k)exp(-jws)) (4.69)

=1

where a; is the attenuation and ¢; the delay of source j on sensor 2 compared to
sensor 1. This model is used to derive estimators for the two parameters delay

N 1 [(x(w,k)
o(w, k) = —54 (xl(a), k)) (4.70)
and dampin
’ xi(w, k)’ '

which are subsequently used to derive appropriate masking functions.

A shortcoming of this delay- and attenuation-based approach is its reliance
on a constant angle of incidence over frequency (equivalent to a constant delay)
as well as a constant damping factor, which can lead to problems in reverberant
source separation. However, considering more reflections in the model is not always
helpful. As shown in [Bal2001], using greater numbers of reflections in the same
structure shows performance comparable to the simple model of Equations (4.70)
and (4.71). Also, the search algorithm employed to find the predominant angles of
incidence and damping factors will often fail to converge, when the 2D-Histogram
of amplitude and delay does not show the required sharp peaks. This is also the
case for in-car recordings, for which histograms of noisy and clean data are shown
in Figure 4.10 and 4.11.

However, there are a number of speech characteristics, which can be used
to improve the separation performance of the CASA approach. Such cues, indi-
cators of how the time-frequency points should be grouped to form the different
sources, include synchronization cues such as common onset or common ampli-
tude modulation, and harmonicity cues. Since these features help to include more
speech-specific characteristics, which are also less sensitive to noise and reverbera-
tion than the above mentioned amplitude and delay differences, it can be expected
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Figure 4.10: Histogram of two speakers in quiet surroundings.

that a combination of these criteria with the currently used methods will lead to a
more robust solution of the auditory grouping problem, and much work is currently
in progress to prove this point (e.g. [Bre1999, Row2000, Div2005, E112006]).

4.3 Adaptive Recognition

Changing environmental conditions can be dealt with on two sides. Ei-
ther the feature estimate or the recognizer model can be adapted to the changing
situations. Adaptation of the Feature Vector is another expression for adaptive pre-
processing methods, many of which are already described in 4.2, so this chapter
will focus on model but not on feature adaptation in Section 4.3.1 and 4.3.2.
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Figure 4.11: Histogram with equal speaker positions and amplitudes but with added
noise.

4.3.1 Parallel Model Combination

Parallel model combination (PMC) offers a way of combining noise models
and speech models to obtain noisy speech models. The principle behind PMC is
the following: the speech model in the recognition system describes the probability
distribution of speech in the cepstral domain, but the effects of noise and reverber-
ation are most easily modeled in the linear spectral domain. Therefore, the models
of the speech recognition system are transformed back to the spectral domain, the
noise and reverberation (which must be known or estimated) are added to, respec-
tively convolved with, the clean speech model, and a subsequent transformation of
these models back to the cepstral features results in models of speech as it would
be observed in the given noisy and reverberant environment. Figure 4.12, from
[Gal1995], shows the associated data flow.

PMC is often successfully used, when the noise is purely additive and sta-
tionary or when the only effect to be compensated is that of an unknown transfer
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Figure 4.12: Structure of Parallel Model Combination [Gal1995].

function. However, for convolutive mixing of noise and speech, the offered exten-
sions are problematic and nonstationarity of the noise can only be handled by having
a multitude of models which needs a large amount of storage and computational ef-
fort at the same time. This problem can be alleviated for mildly nonstationary noise
environments by computing online the updated models. For this purpose, a fast
version of PMC has also been proposed [Gal1995b].

Also, PMC can be combined with noise reduction methods to give a further
performance improvement. For example, it has been combined with spectral sub-
traction to obtain improvements over spectral subtraction alone [Nol1993] as well
as over only parallel model combination [Nol1994]. Still, its need for an accurate
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noise estimate makes it unsuitable for very quickly changing noise scenarios. To
deal with this scenario, recently, PMC has been used in combination with an HMM
noise model by jointly recognizing the speech state and the noise state. While this
approach requires a pre-trained noise model for all possible scenarios, it is applica-
ble also for situations, in which a fast noise model update is necessary [Kri2001].
However, joint recognition of speech and interfering speech is still computation-
ally far too intensive for real-time or embedded applications and was therefore not
considered here.

4.3.2 Maximum Likelihood Linear Regression

With maximum likelihood linear regression (MLLR), a linear transforma-
tion model is set up which can be used to compensate for

e added noise
e changed channel or

e speaker characteristics.

For this, the model parameters are assumed to be transformed linearly, thus, a linear
and hopefully inverse transformation is learned [Leg1994]. When the parameters
to be adapted are the means of a Gaussian mixture model, the following transform

equation is used:
u =Tu". (4.72)

Here, T is the learned transformation matrix and p* stands for an augmented mean
vector u* = [w, iy, ...,] Which contains a constant w in order to allow for a bias.
The transformation matrix is learned by maximizing the observation likelihood
p(oly’) in an EM algorithm®. Additionally, the compensation of variances is also
possible for improved adaptation performance, see [Leg1995]. Recently, an alter-
native to the maximum likelihood criterion has emerged for learning optimal linear
regression parameters. This is the minimum classification error criterion, which has
been shown to outperform maximum likelihood based adaptation consistently even
in large-vocabulary tasks [Wu2002, He2003].

8EM has been used as a shorthand both for expectation maximization and estimate maximize,
with the first explanation being far more common.
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4.4 Incorporation of Uncertainties

Additionally, instead of adapting the model or feature, there is the alterna-
tive of estimating the model or feature uncertainty. Thus, the methods employed
for uncertain recognition do not need to directly estimate the model distortion or
feature distortion, as long as they can provide an estimate of the probability that
the observed feature or noisy model can deviate from the clean feature or model
by a certain amount. Then, the Viterbi search’ which is performed during recog-
nition, will make an online estimate of the true model or feature, along with its
estimate of the best HMM state-sequence. This leaves more work but also more
flexibility for the search algorithm, but it also allows dealing with distortions more
quickly, for example on a frame by frame basis, than it would be possible purely
with model adaptation. Model domain uncertainty processing is described in Sec-
tion 4.4.1 through 4.4.1.3, whereas the methods of feature domain uncertainty pro-
cessing are explained in more detail starting from Section 4.4.2.

4.4.1 Model Domain Uncertainty

Since the data input to the recognizer is only known with a limited accuracy,
some robust recognition systems aim at incorporating the uncertainty into the de-
coding process by calculating a new, uncertain speech HMM [Hu02000, Mer1993,
J1a1999]. These approaches are subsequently termed “uncertainty modeling meth-
ods”, as they incorporate uncertainty information into a flexible speech model with
uncertain parameters. An HMM-based speech model usually is described by the
following parameters:

e The initial state probabilities ay(i)
e The transition matrix A and

e The parameters of the output probability distributions b;(0)

which are introduced in Section 2.2. When a clean speech signal is corrupted by
noise, it can be assumed that the probability of each word and the speaking speed

The same is also true for any other HMM-based dynamic programming search strategy such as
beam search or token passing.
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stay approximately the same, only the speech features are changed by the added
noise signal.!® Thus, in order to describe how a noisy speech model would deviate
from a clean speech model, the change in the state- and transition probabilities is
often neglected, but it is always necessary to describe the influence of the noise
and interference on the output probability distributions b;(0). This influence can
be described by focusing on the parameters of the pdfs b;(0). In the following,
these parameters will be denoted by the parameter vector A and they can have a
number of concrete forms, but most likely will take the shape of means, variances
and mixture probabilities of a Gaussian mixture model as defined in (2.24).

When a known noise signal is added to the speech signal, it is possible to
compute new values A’ for these parameters and to use those for recognition, as it
is done in model adaptation techniques, e.g. in Parallel Model Combination, see
4.3.1. However, the noise is usually not known precisely but rather, it is itself a
random variable. Thus, it is not precisely possible to obtain new model parameters
and instead, it is often useful to consider the parameters A also as random variables.

To compute the probability of a certain model parameter taking a given
value, another probability model, the so-called prior pdf pr(A), is set up. There
are different ways to define this pdf, and thus describe model uncertainty. For ex-
ample, in [Hub1965], model uncertainty is described nonparametrically by letting
the probability distribution be a mixture of the nominal model pdf P,,, learned
from training data and another arbitrary probability measure P,;, as in

Probusl(o) = EPnom(O) + (1 - e)Pdisl(O)- (473)

Alternatively, the uncertainty of the speech model can also be described
parametrically, by allowing the model parameters to vary within a certain fixed
amount around the parameters estimated from the training data. This model will
depend on the training data, which gives the first estimate of A, and on the noise
process estimate, which indirectly gives information about how far each parameter
A; may deviate from the original estimate.

19This model actually ignores all changes in speech characteristics caused by the speaker also
perceiving his noisy environment, which in reality leads to modified speech amplitude and pitch as
well as a slight change in formants, the so-called Lombard effect, see e.g. [Jun1993].
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Once the model uncertainties have been defined, either parametrically or
nonparametrically, this uncertain model can be used for recognition. At this point,
there are three alternatives.

4.4.1.1 Maximum a Posteriori Adaptation

In many ways similar to maximum likelihood linear regression, maximum a
posteriori (MAP) adaptation is also used for noise, channel and speaker adaptation.
In addition to the likelihood of the observation o given the adapted model para-
meters, p(o|A™), MAP adaptation also considers prior probabilities for the model
parameters in form of a prior pdf pA(A) [Gaul994]. This allows a maximization of
the model parameter probabilities via

AN = arg max P(Alo, P)

_ polA)pA(AIP)
= argmax

, 474
A p(0) @74

where P stands for the prior information. Due to the use of this Bayesian formula-
tion, MAP adaptation itself is sometimes also referred to as Bayesian adaptation.
If no prior probabilities are used or a non-informative prior is employed, the MAP
solution corresponds to that of maximum likelihood linear regression, since, with a
noninformative prior p(A)

P(0|A)pA(A)

p(o)
arg rn/’tlx p(o|A), 4.75)

A’ = argmax
A

which is exactly the maximum likelihood solution. However, in contrast to MLLR,
MAP adaptation updates every component of a model separately, whereas MLLR
can estimate a single transformation for entire phonetic classes, which makes MLLR
more efficient, when few adaptation data is available. In contrast, MAP begins to
outperform MLLR as soon as sufficient adaptation information has been obtained,
since then, its detailed granularity and principled inclusion of prior information be-
gin to give this method an advantage [You2002]. However, as can be seen from
these considerations already, MAP adaptation is applicable only for fairly station-
ary situations, where neither noise nor channel change too quickly.
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4.4.1.2 Minimax Classification

The minimax classification rule strives to minimize the upper bound on the
worst case classification error. This results ([Mer1993]) in the classification rule

A

W = arg max[max p(o|A, W) - pr(W)], (4.76)
W AeQ

where pr(W) is the language model for the task under consideration and Q is the
range of the uncertain parameters.

4.4.1.3 Bayesian Predictive Classification

Alternatively, in Bayesian predictive classification ([Jial999]), the proba-
bility of a given feature vector o is computed in two stages. First, the so-called
predictive pdf is computed for all words, using

po|W) = fg p(o|W, A)p(A|W)dA (4.77)

where W is the word to be recognized and p(A|W) is the, parametrical or nonpara-
metrical, prior pdf learned from training data. Once this probability distribution has
been obtained, recognition amounts to finding

W = arg max p(Wo) = arg max (p(o|W) - pr(W)) (4.78)

where pr(W) stands, again, for the language model. As can be seen, unlike the
above described minimax approach, here, not only a single set of parameter values
is taken into account, but rather, the entire function of the prior distribution can be
utilized for decision making.

4.4.2 Feature Domain Uncertainty Processing

All preceding approaches to processing distorted speech work in two dis-
tinct stages, as shown in Fig. 4.13. First, signal preprocessing calculates a point
estimate of the speech signal, subsequently, this point estimate is used in the recog-
nition process. During speech preprocessing, a model of the speech signal may
well be obtained, for example, an ICA algorithm might estimate signal statistics
up to order four, but this statistical information is discarded at the output of the
preprocessing stage.
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X, (t) — point

X, (t) — . estimate .
Preprocessing = Speech Recognition

X0 o)

Figure 4.13: Structure of Preprocessing and Recognition.

4.4.2.1 Missing Data Techniques

When the speech data is considered uncertain, so-called missing data tech-
niques can be applied. These can be grouped roughly into two approaches:

o Imputation Methods which attempt to recover missing features and

e Marginalization Techniques which perform recognition using only the avail-
able information.

For marginalization techniques, it is possible either to classify all features into two
groups, the reliable and the unreliable ones, or, alternatively, to assign to each un-
reliable feature o, an uncertainty range [0, min, Oy.max], Within which the true value
of the feature is expected to lie. In the first case, all those speech features o, which
have been labeled as unreliable by the preprocessing stage, are disregarded in the
recognition process. This can be effected by a modified computation of the fea-
ture vector likelihood. In customary speech recognizers, the likelihood that a given
speech feature o was produced by an M-Component MOG is found by

M
P©) = > Yo N0, 1, Z). (4.79)

m=1
Here, vy,, are the mixture weights, and the Gaussian probability associated with
mixture m is N(o, u,,, Z,,). When the observed variables are vectors o0, consisting
of elements o;, they can be partitioned into reliable and unreliable components o,
respectively o,. The probability of the joint vector o = (o,, 0,) can then be obtained
via integration over all unreliable components as in

p(o) = f

M
Ym N(O, HMim> z:m)dou- (480)

m=1
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An actual implementation of this equation causes a great computational effort
though, as Equation (4.80) needs to be evaluated at every frame for every HMM
state. One major improvement can be obtained when the features are modeled as
independent random variables. This simplification allows replacing Equation (4.80)
by the expression

o M
po) = f D Y N(©, f, Z)do, (4.81)
—® m=1
co M
= f Z Ym * N(Or’ Mmnrs 2m,r)j\f(ou’ Mm,us 2m,u)dou (482)
~® m=1
M 00
= Z Ym * N(Or’ HMm,rs z:m,r) f N(Ou’ HMmus z:m,u)dou- (483)
m=1 -

When the integral in (4.83) is evaluated over the entire range of possible values for
0,, the expression simplifies to

M
P©) = > Y- N0 s Zn), (4.84)

m=1

so by integration, the uncertain features are removed completely from calcula-
tions. This is the most efficient approach computationally, but using the uncertainty
range [0, uin, Oumax], @ further increase in recognition performance can be obtained
[C002001]. In this case, p(0) becomes

u,max M
P(O) = f Z Ym N(O, Mms Zm)dou’ (485)

u,min m=1

where one reasonable setting for the uncertainty range for spectral features might
be
0 <o, <|xl (4.86)

with [|x|| as the observed energy in the speech noise mixture.

4.4.2.2 Marginalization versus Imputation

The idea of marginalization has been proposed by Barker, Green et. al.
[Bark2001]. It has been used in conjunction with spectral [Sri2004, Ren2000,
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Raj2005] and cepstral [Van2004] features. In marginalization, preprocessing is
used to obtain a set of admissible values for the speech features and integration
is carried out over this set of values in the recognition stage. In contrast, data impu-
tation can also be employed, which does carry out a point estimation of the speech
features, but it is done not at the output of the preprocessing stage (where all input
data is known but no prior knowledge on the speech signal is available) but rather
inside the recognition stage, using the full speech models. This also allows im-
putation to be used in speech enhancement as well as in recognition, as it is only
necessary to transform the point estimates back into the time domain to compose
a maximum likelihood model based speech estimate [C002001, Raj2005]. For this
purpose, the bounded marginalization equation (4.85) is replaced by an estimate of
the unreliable components via

0,=arg max P(o,lo,) (4.87)
ou,minsousoumax
to reconstruct the full feature vector 0. This reconstructed vector can then be used
for preprocessing as well as for recognition.

4.4.2.3 Uncertainty Decoding

Another way of incorporating feature level uncertainties is described under
the name uncertainty decoding for example in [Den2005]. In contrast to the model
domain uncertainty processing described in Section 4.4.1 ff., and similar to the mar-
ginalization and imputation methods above, this approach uses feature level uncer-
tainties, which are computed by an arbitrary preprocessing method in the cepstrum
domain. In contrast to the feature domain methods from Section 4.4.2, however,
they are incorporated in the recognition process via a strict Bayesian formulation.
For this purpose, first, a feature level uncertainty must be described in terms of a
probabilistic model p(S..,|X..p), Where the s, are the true cepstral features of the
clean speech signal whose probabilities are conditioned on the noisy observation
vectors X..,. Such a model can be obtained by all statistical processing methods
defined on the cepstral domain. The approaches that have been followed so far to
obtain the probabilistic model p(s..,[X..,) are

e a parametric distortion model as in [Den2005] or
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e apre-trained joint distribution of the clean speech cepstrum s, and the noisy
cepstrum X,, obtained from stereo training data, in which one channel con-
tains clean and the other noisy data [Dro2002].

Using this conditional feature probability distribution, the word probability can be
estimated and maximized via

W= arg mvf/le PXeeplSceps A W)P(Scepl A, WS, - pr(W) (4.88)
Scep

in order to recognize the noisy data. Here, A are the fixed model parameters and

pr(W) stands for the language model. In contrast to imputation, this procedure has

the advantage of interpolating between the processing and the recognition model

and is closely related to the approach suggested in subsequent chapters.
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Chapter 5

ICA for Multi-Speaker Speech Recognition

Whereas multi-channel noise reduction only profits from sensor arrays with
M elements via
SNR,oss = SNR,,. + 10log,, M (5.1)

when the noise is uncorrelated and the desired signal is available and the same at
all sensors [Joh1993], directional interferers can in the ideal case be completely
canceled when multi-sensor processing is applied.

For this purpose, independent component analysis has emerged as a pow-
erful tool in the past decade [Car1999, Rob2001, Muk2003, Div2005]. Frequency
domain ICA can be employed to obtain estimates of clean speech signals in rever-
berant environments, as is described in more detail in Section 4.2.2.2.

In the following, two enhancements for ICA will be introduced, which allow
the incorporation of additional knowledge regarding the structure of speech signals
in real environments. The first of these, an EM-algorithm for permutation correc-
tion, is described in Section 5.1.1, and the second, time-frequency masking based
on ICA results, is presented in Section 5.1.2.

5.1 ICA using prior knowledge

Independent component analysis is one area in the wider field of so called
”blind source separation”. It is called blind because it does not rely on any prior
knowledge regarding the structure of the mixing system or the properties of the
signal. However, introducing some additional knowledge regarding these two con-
stituents can effectively improve the separation result and to some extent additional
information becomes a necessity as soon as real-room signals rather than artificial
mixtures are to be separated. Here, two enhancements to ICA are applied, using
properties of speech signals as well as the mixing system in car environments:
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e In cars, the angle of incidence for each speaker is approximately constant
over time as well as over frequency.

e Speech signals are approximately disjoint orthogonal in the frequency do-
main [Ric2001].

5.1.1 Constant Direction of Arrival
5.1.1.1 Beampattern Analysis

In frequency domain ICA, an estimate of the mixing system (i.e. the room
transfer function) is obtained and subsequently inverted for each frequency band
Q. Applying this unmixing system to the signals yields estimates of the short time
spectra of the speech signals S 1(Q, k) ... S y(Q, k).

In this approach, the major problem consists of permutations between fre-
quency bands, due to which the unmixing performance of the entire system is often
negligible before permutation correction. A number of solutions for this problem
exist, however, which are discussed in more detail in Section 4.2.2.2.

As also described in that section, a valuable tool for permutation correction
is the directional response of the unmixing system, determined by

Yi(f, o) = [Wiu(f) Wi (D] - x(f, ¢) (5.2)
Yo (f, @) = [War(f) War()] - x(f, )

for the two-by-two case and in general, with N sources and M sensors, by

Yi(f, o) = [Wu(h) ... Win(D] - x(f, ¢) (5.3)
Yo (f, ) = [War(f) ... Wan ()] - x(f, @)

n(f, ) = [Wani(f) ... Wau()] - r(f, @).

The directional characteristics of the unmixing filters W at all frequencies are thus
captured in the beampatterns ¥, (f, ¢), which describe the transfer function of the
series connection of array response r(f,¢) and unmixing system W, _.(f) for each
output n.
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Here, the array response is given in the form of the steering vector r(f, ¢),
which is computed as

1

@ o= j27f(62(p)=01(¢))
aj

r(f,¢) = (5.4)

au o= 27 f(Ou(p)=61(¢))
aj

This is just the array response given in (4.43), with the only difference that
it is normalized with respect to a reference sensor.

In order to obtain the delays 9,,(¢), assuming farfield sound propagation as
shown in Figure 5.1 is often a practical solution.

1

R

N
NP

mic2 micl

Figure 5.1: Farfield beamforming model

This results in

kd,,
Om(@) = 61(¢) = onf (5.5

with k as the wavenumber vector and d,, as the vector connecting sensor 1 to sen-
sor m. For a linear array, with the angle ¢ measured relative to broadside and an
intersensor spacing d, this is equal to

i d
i) — b1(p) = S (5.6)
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for the m’th microphone, resulting in

1

Z—f exp (—jZJTfSin(L—fp)d)

r(f.¢) = (5.7

a . sin(p)(M—1)d
Shexp (—]Zfo)
for the steering vector.

Putting together (5.3) and (5.7), the directivity patterns of a demixing filter
W(Q) in the frequency band 2, Q = 0... NFFT -1, can be calculated as a function

of the frequency f = N?;TQ and the angle of incidence of the signal via

(5.8)

M
a
¥ Q)= ) W@ exp SFET .
) .

( ~ Fkd sin(o)Q
D Vil chimns sl
=1

Here, NFFT is the number of frequency bins and F; is the sample rate.

When such beampatterns are computed for the unmixing filters determined
by ICA, the result is often similar to the one shown in Figure 4.7. As can be seen,
there tends to be a fairly strong directional minimum in each of the bands. This is
consistent with the observation, that the unmixing structure of ICA is the same as
that of a set of parallel filter and sum beamformers, see Figure 5.2 for a compar-
ison. The only major difference lies in the criterion by which these beamformers
are adjusted. In conventional beamforming, adjustment takes place by second or-
der criteria such as minimum interference energy for known interferer directions,
whereas ICA unmixing filters are adjusted with a cost function which leads to min-
imum statistical dependences between outputs under a unit norm constraint. If [CA
converges, it often results in a filter and sum beamformer that is effectively a null-
beamformer pointing to the strongest interferer direction(s). Due to these structural
similarities, ICA can often give results equivalent to a frequency variant nullbeam-
former, with the null directions being adjusted blindly by an information theoretic
criterion [Ara2001, Bau2003, Kna2003].

Therefore, important parameters that can be extracted from the beampat-
terns are the spatial minima, determined by

$n(Q2) = argmin ¥, (Q, ¢), (5.9)
12
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2-Channel Filter and Sum
Beamformer X [O— W, (o)
S(w
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2-Channel ICA
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Figure 5.2: Structural comparison between two-channel ICA and beamforming.
The parts shown in gray comprise the additional estimator for a further output signal
of ICA, which can be seen to be equivalent to a parallelly connected, additional filter
and sum beamformer.

which can additionally be mapped to the range in front of the array by

¢" = max[—90°, min(¢, 90°)]. (5.10)

Alignment of these directional minima ¢, or ¢/, is a criterion which has al-
ready been successfully used for permutation correction, see e.g. [Kur2000]. How-
ever, it is customary to sort frequency bins with a deterministic approach, which
consists of putting the directional minima in one set order. Further details of these
approaches are given in Section 4.2.2.2. Here, instead, a stochastic direction-of-
arrival (DOA) model is employed, which will allow also the computation of con-
fidence values for ICA results in each frequency bin, as well as the use of source
directivity models with different spatial characteristics and different degrees of fluc-
tuation around their mean.
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5.1.1.2 Permutation Correction by Statistical DOA-Modeling

The result of frequency domain ICA is a set of estimated unmixing matrices
W(Q), one for each frequency bin. The directivity patterns of W(Q), determined
by (5.8), should ideally have one minimum for each output in the two-source two-
sensor case. This minimum should point to the direction of the main interfering
signal, making unmixing equivalent to frequency domain adaptive nullbeamform-
ing, as was shown e.g. by [Kur2000]. This fact can be used to find and correct
permutation errors, which are inherent in ICA.

However, due to phase shifts of the transfer function as well as due to noise,
the zero-direction which corresponds to each of the sources is not fixed, but can
better be described as the result of a stochastic process. Therefore, it is suggested
to use a statistical model for learning the zero direction distribution associated with
each source, and, subsequently, to use maximum likelihood classification for detect-
ing permutations and unreliable frequency bands in the unmixing system. To obtain
such a model, two choices are necessary, firstly, the choice of a statistical model for
the zero directions and secondly, that of an appropriate learning algorithm.

Statistical Model for Null Directions

Once the zero directions of the ICA filters have been obtained from beam-
pattern analysis, each frequency band can be characterized by its vector of zero
directions ®g = [¢1q - . . dno]. For the two-by-two-case, which is considered in the
following, the filters of the ICA stage can be grouped into one of three classes -
those which extract the sources in the correct order, i.e. in the order they are ex-
tracted in the first frequency bin, those which extract the signals in the opposite
order, and those that, possibly due to sparsity of signal energy, contain look direc-
tions which point to neither source. In order to model the probability density func-
tions for both the permuted and the non-permuted look direction vectors, Gaussian
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distributions are assumed, i.e.

mp 1 -1 T
Pp = zﬂ—m - exp (—5(05 —Hp)Z, (& — up) ) (5.11)
p
Myp 1 -1 T
Pnp = 27_[—'2' + €Xp (_§(¢ _/an)znp((l5 _/'an) ) (512)
np
(5.13)

where p, denotes the probability of ® = [¢,, ¢,] belonging to the class of permuted
filters C,, and equivalently p,, is the probability of it belonging to the non-permuted
class C,,. The terms m,, and m, stand for the prior probabilities of non-permuted
and permuted bins, respectively, and u,, u,, and X,,%,, are the mean vectors and
covariance matrices of the pdfs. An example of such distributions is shown in Fig-
ure 5.3 for the mean vectors u,, = [25°,70°] and u,, = [70°,25°]. As the histograms
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Figure 5.3: Probability density functions of permuted and non-permuted zero-
directions.

obtained in noisy and reverberant environments show, cf. Figure 5.4, a Gaussian
model is not an exact match. However, since a mixture of Gaussian distributions
can approximate an arbitrary distribution [Als1972], and since, with the EM algo-
rithm, a method is readily available for parameter estimation, it was considered as
a reasonable choice for a zero direction model.
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What can also be seen in Figure 5.4, is that there are outliers at ¢ = —90°
and 90°, which are significant enough to justify explicit modeling. These outliers
are caused by explicit mapping of all angles to the physically reasonable range
-90° < ¢ < 90° by (5.10), whereby many of the incorrectly converged frequency
bands, such as noisy bands, low energy bands, and frequencies, at which spatial
aliasing occurs, all are assigned values of £90°. In order to be able to model such
outliers, the number of Gaussian components in the zero-direction model was in-
creased to four for the two-by-two case. Of these four components, two are the
source zero direction models given in (5.11), with the parameters (m,,u,,X,) and
(Myp, tnps Znp), and the other two components form a Gaussian mixture model for
the unreliable bins, with the probability of the unreliable component computed by

2
M 1 -1 T
Pu= ) ——=="CXp (——(¢ — Mui)Zyi (P — i)™ |- (5.14)
,-Z‘ 27 V2l 2
In order for this probability model to be appropriately normalized, the weights
m,, m,, and m,; have to fulfill the condition m, + m,, + Z,-2=] m,; = 1.

Learning Algorithm

In order to learn the zero direction models, the EM algorithm is used, since
it is guaranteed to converge at least to a local optimum [Dem1977]. Because the
algorithm needs an initial estimate and convergence to local optima can be avoided
by proper choice of a starting point, initialization is an important step.

Initialization

To initialize the means and covariances of the distributions, the histogram of all
found zero directions ¢;q, i = 1...N,Q = 1...NFFT, is analyzed to obtain
the zero directions associated with its two maxima, ¢,,,,; and ¢,...». These two
angles are used for initialization of the means via ,, = [@max1> Pmare] and p, =
[Dmax2s Pmax1]. Subsequently, the first stage of permutation correction estimates the
arrangement of all frequency bands Q by a least squared error criterion, so that
all frequency bands are assigned to either the correct or the permuted class by
min(|®q — ,u,,lz, |Dq — ,unplz). From this assignment, the covariance matrices X,
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Figure 5.4: Histograms of estimated angles of incidence in a car traveling at 100
km/h, the experiments are described in Section 7.1.2 (top). Histograms of esti-
mated angles of incidence in lab room, configuration A, with ¢,,, = 300ms, the
experiments are described in Section 7.1.3 (bottom).

and X, of the class distributions p, and p,, can be calculated by

D — Dy —u,)"
Ef, _ Z( Q /Jp)( Q ,up) and (515)
N
QeC, p
(@ — ) (P — )"
5, = y e (5.16)

QeCy) an
with N, and N,, as the numbers of frequency bands Q assigned to class C,, and C,,,,,
respectively. Finally, the unreliable mixtures are initialized to the extrema, thus,
M = [-90°,90°] and pw,» = [90°,-90°] and all mixture weights are initialized to
m, = my, =m, = 1/4.

EM Algorithm
The EM-algorithm is used to arrive at three classes of frequency bands, those that
are either permuted or not permuted, and those, where the ICA unmixing system
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must be considered unreliable. For this purpose, the log-likelihoods of the two
source classes, permuted and not permuted, are obtained from

1
Inp(@q|p) = Inm, — In27 /IS, - 5(<1>Q — ) (@ — 1) (5.17)

[ 1
In p(q)Q|np) =1In myp, — In2m |2np| - E(q)Q - /an)TEy:;((I)Q - ,unp) (518)

for each frequency bin Q and a Gaussian mixture model with two mixture compo-
nents is used for the unreliable class via
2

m .
Inp(@qlu) =In ) ————- exp(
; 27 VIZuil

The iterations are then carried out as follows:

1
—5(®@a - ) Ty (@ — ,um-)) - (519

Calculation of Expected Class Labels For each frequency band €, calculate the
probability p(p|®g) of it belonging to the set of permuted frequency bands,
and the probabilities p(np|®g) of the non-permuted and p(u|®g) of the unre-
liable class. These probabilities are obtained using Bayes’ law for each of the
three classes j = {p, np, u} via

P(@al)p())
p(®@q)
_ p(@q|p())
X p(®alHp()
To evaluate this term, (5.17), (5.18) and (5.19) are used, and the class prior
probabilities p(j) are equal to the corresponding mixture weights, so p(p) =
my, p(np) = my, and p(u) = Y7, my:.

p(jl®g) =

Density Estimation - Likelihood Maximization Estimate the new probability dis-
tributions for the permuted, non-permuted and unreliable class via maximum
likelihood estimation. This would not have been possible directly in one step,
since the true classes of the frequency bins Q = 1... NFFT are not known,
but it becomes possible in the two-step process, where the degree of assign-
ment of each frequency band to each of the classes is estimated by the proba-
bilities p(j|®q) from the expectation step above. With these probabilities, the
maximum likelihood estimation of all parameters can be carried out in three
steps [Vas2001]:
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e Update mean values for all classes j via

new __ ZgifT QQP(JM’Q)

- (5.20)
' ot p(/Pg)
e Update covariance values for all classes j via
oot (g — 1) (g — 1) p(jlPq)
e = T (5.21)
‘ o=1 PUIPo)
e Update mixture probabilities m,,, m,,,, m,; for all classes j via
NFFT _ -
new _1 pUlPa)
m = =2 I‘VFFT (5.22)
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Figure 5.5: Histogram of zero directions for noisy car environment, shown with pdf
estimated by EM algorithm.

These steps are iterated until the likelihood converges, which usually hap-
pens after 4 to 7 iterations for the considered real-room recordings. After the algo-
rithm has converged, those frequency bands, for which neither of the classes p and
np reaches a set confidence threshold vy, so that In p(®q|p) < v and In p(®g|np) < v,
are considered unreliable. In these frequency bands, the unmixing filters are re-
placed by unmixing filters of the nearest frequency band with a reliable permutation
estimate. Figures 5.5 and 5.6 show examples of converged pdf estimates for noisy
and reverberant recordings.
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Figure 5.6: Histogram of zero directions for reverberant room recordings, shown
with pdf estimated by EM algorithm.

5.1.2 Time-Frequency Masking
5.1.2.1 Theoretical Considerations

Two speech signals tend to have relatively little overlap, when they are trans-
formed into a suitable time-frequency representation. For a more formal definition
of this fact, the concept of W-disjoint orthogonality is useful.

Two signals s(¢) and s,(¢) are called W-disjoint orthogonal, when the sup-
port of their windowed Fourier transforms do not overlap, i.e. when

S1(Q,k)S2(Q,k) =0 Vk,Q, (5.23)

for the window function W(r) used to compute the short time spectra S (€2, k) and
S,(Q, k), where k refers to the frame number and Q to the frequency bin number,
ranging from O to @ + 1.

This condition does not hold exactly for overlapping speech signals, how-
ever, it is true approximately for an appropriate choice of time-frequency repre-
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sentation, as shown in [Yil2004]. This property is also referred to as approximate
disjoint orthogonality of speech.

Due to this characteristic of speech signals, time-frequency masking (TF-
masking), i.e. the multiplication of the spectrum of mixed speech signals with bi-
nary masks M,(Q, k), can separate multiple sources from a single mixture X(Q, k)
according to

S1(Q, k) =M (Q, k) - X(Q, k)
S2(Q, k) =M>(Q, k) - X(Q, k)

SN (Q, k) =My(Q, k) - X(Q, k) (5.24)

without causing excessive distortion.

In order for this technique to be effective, an appropriate time-frequency rep-
resentation needs to be chosen, for which condition (5.23) is approximately true. In
order to find such an appropriate representation, the degree of separability by means
of masking needs to be assessed. For this purpose, the two criteria of achievable
signal-to-interference-ratio (SIR) improvement AS /R and of consequential speech
distortion (measured by the signal to distortion ratio S DR) need to be considered
simultaneously.

The second of these criteria can be measured for each sourcen = 1... N

from

§,(t) = IFFT (M,,(Q, k) - S ,(Q, k)) (5.25)
by

SDR, = 101 () (5.26)

n = V) ’ .
B0 L) = 5,00
with (-) denoting time averaging.! The first criterion is obtained via
ASIR = SIR,y1n — S IR . (5.27)

'This computation implicitly assumes that source 7 is the source extracted on output 7, a condi-
tion which can not be guaranteed due to the permutation problem. However, it is assumed here that
an arbitrary reordering of outputs is not problematic, and that it is hence acceptable to define source
n as the source extracted on output n.
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The input SIR SIR;,, is kept fixed at OdB for the following experiments and the
output SIR is determined using the residual interference signals after masking

Sm(®) = IFFT (M,,(Q, k) - S,,(Q, k)) form # n (5.28)
in computing
(5u(27)

SIR,:n = 10log .
’ (SN e S(02)

(5.29)

In order to find good parameters for the time-frequency representation, it is
interesting to consider the achievable trade-off between possible SIR improvement
and consequential distortion in terms of SDR. In order to find such trade-off curves,
artificial mixtures have been created by adding speech signals from the TIDigits
speech database [LDC1993]. For this purpose, twelve different pairs of speakers
have been used, four of them with two male, four with two female and four with
speakers of mixed gender. Since the source signals are known, it is then possible
to separate them again with an ideal masking function. This ideal mask is based on
knowledge of the true source signals and determined via

IS m (Kl

v = [ 1 if20log 51RO Gup Vm # n (5.30)
" | 0 otherwise '

for various thresholds 6,5.

The resulting trade-off curves depend both on the speaker characteristics
and on the chosen time-frequency-representation. To give a concrete example, three
such trade-off curves are shown for a 1024-point Hamming window in Figure 5.7.
As can be seen, the change in SIR and SDR is smooth, and the choice of a threshold
0,5 allows to vary the mask performance smoothly between very effective masking
with high distortion and between low-distortion masks which are less aggressive
and show a reduced performance in terms of source separation capability. Overall,
it can be noted that, at least for the TIDigits database, high SNR gains are pos-
sible with little consequential distortion. While this performance depends also on
the similarity or dissimilarity between the speakers, as can be seen in the differing
results in Figure 5.7 as well as in the spread of results over all cases, displayed in
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Figure 5.7: Degree of source separation achievable by ideal masking, depicted by
SIR-improvement and SDR versus 6,5 and tested on speech data of two male speak-
ers, two female speakers and speakers with mixed gender at a frame length of 1024
samples, corresponding to 51.2ms, calculated with a Hamming window.

Figure 5.8, it is very strongly influenced by the choice of time-frequency represen-
tation.

As it is also intuitively clear, inappropriate window functions as well as un-
suitable frame lengths can have a negative impact on the source separation potential
of time-frequency masking. Figure 5.9 shows the influence of the chosen window
function and in Figure 5.10, the influence of the frame size is visible. Here, it is also
apparent, that the influence of the frame length on the achievable separation is far
greater than the difference between the commonly used window functions. Using
such information, it is possible to make a selection of a time-frequency represen-
tation that is suitable for TF-masking. Here, and for the following experiments, a
Hamming window, together with a 1024-sample frame size has been chosen, since
the Hamming window has shown good potential performance and the 1024 frame
size gives a good trade-off between separation performance and computational ef-
fort at the given sample rate.
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Figure 5.8: Degree of source separation achievable by ideal masking. The spread
over all 24 considered speakers can be seen for 1024-sample Hamming window.

5.1.2.2 Practical Implementation

However, an ideal mask such as the one used in the above experiments is not
available in practice. Therefore, it is suggested here to compute the time-frequency
mask based on results of ICA. This has two advantages. First, ICA gives a set of
results, namely the estimated output signals, the estimated mixing and unmixing
system per frequency and possibly an estimated DOA, which are useful in deciding
which of the sources of interest (if any) is active. These ICA results are obtained by
averaging over many time frames, thus they are fairly robust to spurious noise and
distortion.

Secondly, using ICA gives separated results for the non-sparse time-fre-
quency points, thus making sparseness less of a requirement for the quality of
source separation. This is especially important in the case of noisy mixtures, where
it is often very difficult to find good criteria for computing time-frequency masks,
but where ICA, due to its inherent robustness to noise, can help to pre-separate
sources so that computation of a mask also becomes possible.
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Figure 5.9: Degree of source separation achievable by ideal masking with a window
length of 1024 points. The influence of the chosen window function is visible, as
can be observed, the Hamming window gives marginally better performance than
the other used window functions.

This can be seen especially in phase-damping histograms, which are used to
compute masks in some CASA techniques (e.g. [Jou2000]). As already shown in
Figures 4.10 and 4.11, whereas such histograms can show very clear peaks for the
different speakers, their quality degrades markedly in noisy conditions. In contrast,
ICA results obtained using higher order statistics are not affected by the Gaussian
noise components at all.

Therefore, ICA is carried out as a first processing step, and it is followed by
time-frequency masking to additionally increase separation performance. This two-
stage architecture for blind source separation, which is introduced here, is shown in
Figure 5.11.

As seen there, the ICA-based estimate is further enhanced by time-frequency
masking. For this purpose, in each frequency bin Q and at each frame k, it is es-
timated which of the sources is dominant. Based on the assumption of disjoint
orthogonality, only one of the outputs should need to have a non-zero value at any
given frame and bin. Therefore, only the frequency bin with the dominant source is
retained, the other frequency bins are set to zero.
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Figure 5.10: Degree of source separation achievable by ideal masking, plotted for
different frame lengths which correspond to 12.8ms, 25.6ms, 51.2ms and 102.4ms
at the sampling rate of 20kHz.

As a criterion of source dominance, two alternatives were compared.

Amplitude Masking Under the assumption of disjoint support for the speech signals, that source,
which is active, should have a larger amplitude than all other sources. Thus,
in the first method, the magnitudes of the energy normalized ICA outputs are
compared.

Phase Angle Masking If the assumption of disjoint support for the speech signals is correct, the
phase angle between the two microphone signals X; (€2, k) and X, (€, k) should
closely correspond to one of the zero directions of the beampatterns for the
different speakers. Thus, the current frame angle is compared with all zero
directions to find the index of the most probably active source.

5.1.2.3 Overall Strategy

First, the microphone signals are transformed into the time-frequency do-
main via STFT using a Hamming window of 1024 samples, with a frame shift

91



Permutation
Correction

1 o)

SQ=P(QW(QX(Q)

Q)X
ﬂS(Q) ﬂi(g)

Time-Frequency

Masking
& {
yi(t) y,(t)

Figure 5.11: Overview of the algorithm

of 25%. In the ICA stage, the unmixing filters W(€2) are determined for each fre-
quency bin. This can be accomplished with any ICA algorithm, provided it operates
on complex data. For this work, three different ICA approaches were tested, one
of them Parra’s algorithm for convolutive source separation described in [Par2000],
and two implementations of JADE in the frequency domain with different permu-
tation correction strategies. The unmixing filters, determined by ICA, are applied
to the microphone signals to obtain initial speech estimates S (Q, k). The result of
this procedure is, in each channel, a linear, filtered combination of the input signals.
Subsequently, masking is carried out according to one of the strategies described
below, either Amplitude Masking (see Section 5.1.2.4) or Phase Angle Masking
(described in 5.1.2.5). Finally, the unmixed signals Y (€, k) are transformed back
into the time domain using the overlap-add method.

5.1.24 Amplitude Masking

In amplitude masking, a time-frequency mask determined from the relative
magnitudes of the pre-separated signals is applied to the ICA outputs, as shown
in Figure 5.12 for the special case of two signals. More specifically, the time-
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Figure 5.12: Postprocessing for the 2x2 case

frequency mask is determined from the ratio of demixed signal energies, which
provides an estimate of the local SNR. The masking function

A A T
_ 2 2
M; = ‘I’(log (IS:(P) - max log (1S (QP) - 10) (5.31)
is obtained by comparing this SNR-estimate to an acceptance threshold 7', with ¥

defined by
0 for—o0<x<0,

1 for0 < x < oo. (5.32)

P(x) = {
The threshold 7" was varied between -3dB and 5dB, with higher thresholds
leading to better SNR gains but in some test cases to musical noise.

The contrast between this proposed method and the DUET technique intro-
duced in [Jou2000] can be seen from the following Figure 5.13.

5.1.2.5 Phase Angle Masking

An overview of this strategy, which is similar in nature to the strategy de-
scribed in [Saw2006], is given in Figures 5.14 and 5.15. As can be seen, it also
consists of a first stage of ICA and beampattern-based permutation correction.
However, rather than the amplitude difference, the phase angle difference between
both input signals is used as a criterion for the post-masking function. Thus, the
phase-angle-difference is computed first in the masking block, Figure 5.15, and it is
converted to an estimated angle of incidence in accordance with the beamforming
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Figure 5.13: Relationship of ICA-based Amplitude-Masking to DUET algorithm.

model (5.4). As seen from (5.4), the phase angle difference between the signal X,
recorded at the reference microphone, and microphone signal X, at frequency f is

arg(X,(f)) — arg(Xa(f)) = 27/ (62(¢) — 61(¢)). (5.33)

The time delay difference 0,(¢) — d1(¢p) is given by (4.42) as

dysin(p)  d sin(p)

C C

_ dsin(p)
= P (5.34)

52—61 =

where the distances between the two sensors and the reference location, d; and d,,
are zero and d respectively, since microphone 1 has been used as the reference point.
Therefore

d sin(p(€2, k))

arg(X,(Q, k)) — arg(X,(Q, k) = 2nf — (5.35)
_ 2nF O d sin(p(Q, k))
- NFFT c '

94



And thus,
c (arg(X(Q, k)) — arg(X>(Q, k)))

sin(¢(Q, k))

2nF
NFFTQd
X (Q, k) — Xo)(Q, k
o = asin c (arg(X; ( 232 arg(X»)(Q, k)) .
NFFATQd

Due to the sparsity assumption, this estimated angle of incidence should
correspond well to the angle of incidence of the dominant source signal. Therefore,
the decision of which source is likely dominant is made by comparing the estimated
DOA in every time-frequency bin with the DOA-models for the sources, which have
already been estimated for the purpose of permutation correction in Section 5.1.1.2
by means of the EM-algorithm. These DOA-models are characterized by a mean
value yu, and a variance O'ﬁ = X,, for each source n. Using both the mean and
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Figure 5.14: Overview of Phase-Masking

the variance, the likelihood of source activity for each time-frequency bin can be
assessed via the Mahalanobis distance d,, (¢, i) between the observed angle of arrival
and the i’th source model

p(S; active in (Q, k) « d,, (@(Q, k), i)* = (@(Q, k) — @) |07 (5.36)
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By comparing p(S; active in (£, k)) for all sources, it is possible to mask out the
output value for less likely sources. More precisely, this decision was made by
comparing the Mahalanobis distance d,, of the current estimated DOA with the
probability model associated with each of the sources according to

d(p(L2, k), 1) = (p(€2, k) = @)/ ;. (5.37)

Based on the comparison of Mahalanobis distances, only those sources are retained,
whose Mahalanobis distance is not greater than the smallest Mahalanobis distance

dn(p(€2, k), 0pt) = (P82, k) = @op) [ Topr = mind, (¢(€2, k), D). (5.38)

by more than a threshold factor Thr. In the case when Thr = 1, this actually
approximates a maximum likelihood decision, since the source with the smallest
Mahalanobis distance is retained and all others are discarded. The entire procedure
is also illustrated in Figure 5.15 for the case of two sources.

([‘)1 1/‘(51
X, (k) -
2, DOA 8
032,
gy
= O— I
-T T Thr
(‘P ‘1/
) (o)
U, (Qk) - —O-Y.(@QK)
U,(Qk) (——Y,(QK)

Figure 5.15: Postprocessing by DOA-based masking for the 2x2 case.
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Chapter 6

Connecting Speech Processing and Recognition
by Uncertain Feature Transformation
and Missing Data Techniques

6.1 Framework

The most common approach for recognizing distorted speech consists of
two stages. First, the speech signal is enhanced, and if array processing is applied,
this is the stage where all input signals are combined into a single speech estimate
5. Speech recognition then runs independently of the first processing stage as illus-
trated in 6.1.

w>
=

Preprocessing Speech Recognized

"| Recognition Speech

— Internal Model
—> Internal Model

—> F)(S)ﬁ>

S

x(t)

Figure 6.1: Signal Preprocessing and Recognition

While this approach has its advantages in the independent design of both
subsystems and in easy, separate block testing, it is suboptimal in its use of avail-
able information. Many of the most successful approaches for speech processing
are based on stochastic speech modeling, that is, they learn a model of the speech
and possibly noise probability distribution from the data in order to obtain an opti-
mal signal estimate. This estimate is often calculated using statistically motivated
optimality criteria, such as MMSE or maximum likelihood, and is this way, a point
estimate § of the speech signal is obtained, which is optimal with respect to the
sensor data [Bit1999, Aal2002, Kou2002, Seg2002, Asa2003]. In the next step,
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the point estimate of speech is passed on to the recognition engine, which has its
own reference, in the form of another stochastic speech model. The point estimate
from the preprocessing (won from a statistical model) is thus compared to another
statistical model.

In this way, much of the information gathered in the preprocessing stage
is disregarded in the decoding phase and at the same time, the speech recognizer
models, which could contribute to make preprocessing more robust, are disregarded
in the signal processing. In this thesis, it is suggested to use an integrated approach
to speech processing and recognition in the form shown in Figure 6.2. Here, rather
than carrying out point estimation in the preprocessing stage, instead, a statistical
model of the speech signal is passed from the signal preprocessing to the recog-
nizer. Thus, it is possible to utilize knowledge about the varying degree of esti-
mation quality in the recognition stage, for example by regarding highly accurate
segments as more significant for recognition, and discarding unreliable parts. Also,
this structure allows estimation of the speech signal to take place in the recognition
stage, where information from signal preprocessing can be integrated with infor-
mation from the often detailed recognition models. In the following, the focus will
be only on the speech recognition itself, though, but it should be mentioned here,
that this possibility of improved speech estimation is a second advantage of this soft
interface between signal processing and speech recognition.

In the following chapter, first, this extended interface between signal pro-
cessing and speech recognition is described in more detail in Sections 6.2 through
6.3, and subsequently, the use of the statistical speech model for recognition pur-
poses is detailed in Section 6.4.

N Preprocessing Speech
x@® —*  Internal Model Speech Recognition Recognized
- Feature | |nternal Model Speech
— p(s) Model .
A Parameters O&O — 50
s (Ms09)

Figure 6.2: Conserving statistical information in the interface between signal pre-
processing and recognition
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6.2 Interfacing Signal Processing and Speech Recognition

When the conventional processing structure shown in 6.1 is used, i.e. when
signal processing is used to estimate the speech waveform or spectrum, which is
then passed on to the recognizer as a best point estimate, recognition rates can
suffer from nonlinear postprocessing. The following Figures 6.3 and 6.4 show the
development of SDR, SIR and recognition accuracy for three exemplary datasets,
more data can be found in the quantitative evaluation in Chapter 7.
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Figure 6.3: Effect of amplitude masking on recognition accuracy, signal to distor-
tion ratio and signal to interference ratio, obtained for mixtures of a male and a
female speaker, recorded in a car at standstill (dataset 2c).

As can be seen, despite the noticeable improvement in separation perfor-
mance, as measured by the SIR, for some datasets the best recognition rates are
achieved when no nonlinear postprocessing is applied at all. However, postprocess-
ing does increase the SIR significantly, so the cause for this effect most probably
lies in the additionally introduced distortions, 1.e. in the inaccurate estimates of the
speech signal in those time-frequency points which are masked. Figure 6.5 shows
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Figure 6.4: Effect of amplitude masking on recognition accuracy, signal to distor-
tion ratio and signal to interference ratio, obtained for an artificial, anechoic mixture
of two male speakers (dataset 1a).

the effect of time-frequency masking on the spectrum of speech, which visibly il-
lustrates the effect.

A way to deal with this problem can be found in the use of missing data
techniques for speech recognition, which are described in Subsection 4.4.2.1. As it
is detailed at that point, missing data recognizers use two quantities for calculating
the probability of a given set of speech features,

o the feature estimate itself

¢ and the associated reliability of each feature.

In classic binary missing data recognition, a distinction is made between reliable
and unreliable features, and only those features which are considered reliable are
used to evaluate the likelihood of the current speech feature vector. In the extended
approach of bounded marginalization, the degree, to which a feature vector com-
ponent influences the recognition result, increases gradually with the associated
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Figure 6.5: Effect of time-frequency masking on speech spectrogram.

reliability of the feature component [C002001]. Successful application of missing
data techniques have been described for example in [Bark2001, Co02001, Sri2004,
Ren2000, Raj2005]. However, there is one significant difficulty which arises when
missing data techniques are used.

e Which features are missing or uncertain is usually determined in a suitable
time-frequency representation. This is true for noise reduction, for array pro-
cessing and for source separation methods. Thus, missing feature recognition
is also carried out in time-frequency domain, where it is known which fea-
tures are certain (for binary missing data methods) or to which degree they
are uncertain (for bounded marginalization).

e Speech recognition is most robust on mel-frequency cepstral coefficients
[Dav1980], PLP cepstra [Her1990] or other specialized features (e.g.
[K1e2002, Mor2005]). This is due to a large part to a greater robustness of
cepstral or PLP features to variations in the room impulse response and the
vocal tract characteristics of the speaker, as well as to a reduction of redundant
and irrelevant information together with a concentration on auditorily relevant
characteristics of the speech signal [Hua2001].
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e Thus, missing data techniques are usually applied in a domain which is sub-
optimal for speech recognition. This leads to overall reduced performance,
when missing data techniques applied in the spectrum domain are compared
to feature reconstruction in the spectrum domain together with recognition in
the mel-frequency cepstrum [Raj2004].

The alternative which is suggested here is the following:

e Preprocessing yields uncertainty or variance values for each feature. From
these values, which are given in the spectrum domain, the variances of fea-
tures in the recognition domain can be calculated, when the spectrum domain
features are considered as random variables, and when the effect of the trans-
formation of these variables from the spectrum to the recognition domain
is determined. In this way, uncertainty information from the preprocessing
stage can be passed onto the recognizer, and still recognition can be carried
out with an appropriate feature set, e.g. MFCCs plus ¢ and acceleration coef-
ficients.

¢ In the recognition stage, features are assumed to be approximately Gaussian.
Using the feature mean and variance, modified imputation is proposed as an
alternative to marginalization by integration.

An overview of the processing stages suggested here is given in Figure 6.6. Both

Uncertain Yeen feci
x(Qk)| | ICA+ | Feature Missing Data
P Permutation Frequency- o HMM Speech
Correction Masking Transfor " LYPI| Recognition
mation
eg.
MFCC-Domain

N
—> denotes —+—

Figure 6.6: Overview of the data flow for ICA, time-frequency masking, uncertain
feature transformation and recognition.

uncertainty-related methods, the transformation of uncertain features from the do-
main of preprocessing to the domain of speech recognition, and the subsequent use
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of uncertainty values in modified imputation, are described in the following Sec-
tions 6.2.1 through 6.4.

6.2.1 Interfacing ICA to Missing Data Speech Recognition

ICA is carried out in the frequency domain, therefore, its outputs are two
or more speech signal estimates at each time-frequency point S ;(Q, 7),5,(Q, 7). At
this point, there are two possible strategies, hard masking and choice of a soft mask.

In the first case, the means and variances could be estimated as follows:

A

Ast =5 }if 2010g,0 1811 > 2010g,, 1S 2] — Ous

051 =0
Hs1 =0 if 201og,, 18] < 2010g,, |2 — 645 (6.1)
o5 = 00 10 = 10 :

and equivalently for g, and os,, where 6,5 is the threshold for amplitude masking
defined in (5.30). This is equivalent to the algorithm proposed by Rickard et al.
[Ric2001], where dominated frequency bands are masked completely.

Alternatively, the following more general strategy may be used to estimate
means and variances:

HMs1 =S1
J5s1 0
Ms1 =dm'§1

os1 =pe-Si }if 2010g,18 1] < 2010g, 12| = 6us (6.2)

}if 201o0g,, 18 1| > 2010g, 1S 2| — 645

with p, standing for the probability of erroneously masking out any given time-
frequency point and d, a mask damping factor. In this case, the estimates in all
masked time-frequency points are augmented by uncertainty values sigma, which
can also be considered as reliability measures specifically computed for each fea-
ture. Thus, at each point in time and frequency, not only an estimate of the signal
but also one of the signal quality is available.

6.3 Feature Transformation

In the transformation stage, spectral domain representations are transformed
to the chosen speech recognition features. Here,
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¢ mel frequency cepstral coefficients (MFCCs) together with
e delta coefficients and

e acceleration coefficients

were chosen due to their robustness and widespread use [Hua2001]. The follow-
ing flow diagram (Fig. 6.7) shows the necessary computations. Since the spectral

Microphone Signals X;

b

‘ Preprocessing (ICA) ‘

S(Q,k) 65(Q,k)

[ ol ]

1S K| | ol k)

3 Feature Transformation
Mel Filter Bank for Recognition

S el (€, k) (Q, k)
Siog (€2, k) 1 | Siog (Q, k)
o |
oo |
St I ]
’ A ‘ ’ Acceleration ‘
Ss(t, k)| |os(t, k)
‘ ° TSt K | ot k)

T T
: Feature Vector : ‘

Figure 6.7: Feature Extraction for Recognition

features are not known exactly, the feature transformation is not carried out on nu-
merical values but rather on estimated probability distributions. The most general
formulation of this problem would start out with an arbitrary probability distribution
and proceed to compute the probability distributions of all features by numerical in-
tegration, i.e. if the feature vector m is transformed to a vector n by the generally
nonlinear function 7 via

n = 7(m), (6.3)
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then the cdf of n can be obtained via

Pm < N) = f Prm(m)dm (6.4)
m:7' (m)<N
and dP(n < N)
n
p.(m) = AN (6.5)

when differentiability can be assumed. For invertible transformations T with con-
tinuous partial derivatives and nonzero Jacobians J, this can also be obtained via

Pa(0) = pp(M)J(T (m))[™! (6.6)

cf. [Ros1997].

However, carrying out these computations and working with entire pdfs in
an online algorithm is infeasible. Therefore, two alternatives were investigated.
Both approximations assume Gaussian distributions of speech vectors around their
mean, so that all probability distributions are adequately characterized using only
the first two moments, mean and variance. Thus, the computations consist of cal-
culating the effect that each transformation stage has on the first two moments of a
Gaussian input signal. This is simple for the case of linear transforms, which are
shown shaded in Figure 6.7, and in order to be as precise and efficient as possible,
the linear transformations were explicitly calculated as described in Section 6.3.1.
But for nonlinear transforms, (6.5) is not easy to solve in general, therefore the
effect of these transformations was approximated in two different ways, once by
using Monte Carlo simulation and secondly by applying the unscented transform.
The necessary equations are given for Monte Carlo simulation in 6.3.2 and for the
unscented transform in Section 6.3.3. But before the computations are detailed for
the transformation of random variables from the domain of preprocessing to the
domain of the speech recognition features, the remainder of this section details the
computations that are necessary to obtain MFCC features from spectral features
when no uncertainties need to be considered.

Absolute Value

Frequency domain source separation and noise reduction techniques work
on the complex speech spectrum. Thus, the result is a complex-valued estimate
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S(Q, k) together with a real-valued estimate for the variance 0-*(Q, k). The complex
ICA output values are then transformed to yield absolute value mean [S(€2, k)| and
variance o2, (Q, k).

Mel-Scaled Filter Bank

The mel-scaled filter bank is used to transform the signal representation
from a linear scale to perceptually motivated one, in which human hearing charac-
teristics are modeled (c.f. Section 2.1.2.1). In effect, this is equivalent to a matrix
multiplication of the spectral feature vector |[S(€2, k)| at each time index k with the
mel filterbank parameters:

Smel(wmela k) =M- S(Q7 k)’ (67)

with M defined as the matrix of frequency weights. These are triangle shaped filters
shown in Figure 6.8.

+ | B fieq

n m m Energy in
I (o] 1) EachBand

MELSPEC

Figure 6.8: Shape of subband filters used for mel-scaled filterbank, from [You2002].

6.3.0.1 Logarithm

After the mel-scaled signal S,,.;(w,..;, k) has been computed, its logarithm is
taken.

Slog(wmela k) = log (Smel(wmela k)) . (68)
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DCT

The mel-scale signals are then transformed into the cepstral (or "quefrency”)
domain by multiplying them with the DCT matrix C defined above in (3.8):

Scep(" k) =C- Slog(" k), (69)

again for each time index k. The matrix C need not be square. Since a DCT is ap-
plied to a signal in a spectrum domain, it is customary to regard the output dimen-
sion of the cepstral transformation as a dimension of time!, therefore, the cepstrum
is denoted as S .., (t, k) in the following.

6.3.0.2 Delta and Acceleration Coeflicients

Delta coefficients show how quickly speech features change and are of im-
portance in differentiating transients from stationary phonemes. They are defined
by
Scep(t,k+1) = Seep(t, k- 1)

2
when only two frames are used for their computation. In a more general way, they
can also be computed from a set of 20 frames using regression. In that case

Ss(t, k) = (6.10)

St 0+ (Scep(t, k +6) = Scep(t, k = 6))
St 0
is the linear regression formula (see [Bro2001], p. 802). The acceleration coeffi-

cients Sss5(2, k) are computed in a similar manner, only using the delta coefficients
rather than the static features as inputs.

Ss(t, k) = (6.11)

6.3.1 Analytic Computation for Linear Transformations

The effect of a matrix multiplication on mean and variance of a stochastic
variable z = My are:
py =My, (6.12)

I'This can be justified well for the case of a cepstrum computed on log spectral, rather than log
mel-spectral features. In that case, the cepstrum can be interpreted as a transformation to the domain
of time delays, as derived e.g. in [Opp2004].
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and
x, =MZ,M’, (6.13)

as derived in Appendix A.2.

6.3.2 Monte Carlo Sampling

At each stage of the feature transformations, a probability distribution for
the feature of interest p,(y) is given and the probability distribution of the trans-
formed feature z = T'(y) is desired. In the above approach for linear transforma-
tions, the computations for p,(z) are carried out explicitly. This has the advantage
of low computational effort, however, it is inflexible insofar as

¢ only Gaussian distributions for the features are considered at all stages of the
transformation and

e while for the linear stages of transformation (i.e. the mel filterbank, the DCT
and all calculations of derivatives) mathematical analysis is efficient and sim-
ple, as shown in Appendix A.2, all nonlinear transformations cause the diffi-
culty of calculating p,(z) according to (6.4) and (6.5).

Monte Carlo sampling offers an alternative solution by randomized simulations of
the nonlinear transformation stages. For this purpose, a number N of samples is
generated which share the probability distribution p,(y) of the input features. Since
a Gaussian model for the noise is assumed, it is easy to generate samples with
the given probability distribution. These samples are then transformed through the
given nonlinearity (which is the absolute value and the logarithm) and the desired
statistics of p,(z) are calculated from the result of the transformations. When second
order statistics are sufficient, mean and variance of z are the quantities of interest,
and can be estimated by approximating the expectations

1 N
ETy)~ 5 2, Tv) (6.14)
n=1
and
E(T()) Z T(y) (6.15)
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and using

E(T(y)) and
E(T(y?)-ET ) (6.16)

A

g

as estimators. These estimators for the mean and variance are unbiased and their
variance decreases with N via

var(jt,) oc var(u,)/N (6.17)

and
var(6-,) o« var(o,)/N (6.18)

according to [Mac2003].

6.3.3 Unscented Transform

Finally, a more efficient approach for transforming features was also in-
vestigated. The so-called Unscented Transform has been suggested as a way of
computing the effect which nonlinear transformations have on stochastic variables.
Originally, it has been used in a control systems context, where it was first used as
an alternative to the Extended Kalman Filter by Julier and Uhlmann [Jul1996].

In this context, the unscented transform was used for the nonlinear state
estimation problem, where a system state x(¢) is often estimated up to second order
moments and a prediction for the next time step is needed. Thus, an n-dimensional
random variable x(7), describing the system state with mean u, and covariance X,
is transformed by the nonlinear system via x( + 1) = g(x(¢)) and the statistics of the
state x(¢ + 1) are desired.

This is very similar to the problem encountered when uncertain speech fea-
tures x are transformed from the preprocessing domain to the recognition domain,
so the unscented transform was also tested here. In detail, it is comprised of the
following steps:

e Given the n-dimensional distribution of processing features x, a set of so-
called sigma points is calculated, which capture the statistics of the features
up to the desired order. For this purpose,
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— determine the scaled matrix square root P,, of the input covariance ma-
trix X,, via P,, = V(n + x)X,,, where n stands for the dimension of the
vector x and « is an adjustable scale parameter,

— denote the i’th column of P,, by (P,,).; ,

— select 2n + 1 so-called sigma points 8; = {X;, W;} with their associated
values X; and weights W; via

:X:O:i Wozﬁ l:O

— 1 ,
xi:X-l'(Pxx),,i Wi: 240 1= 1,...,]’1
Xi =X~ (P Wi=smmg i=n+1,....2n

This set of 2n + 1 points has weighted mean u, and covariance X,,. For a
proof, see Appendix A.3.

e The sigma points are propagated through the nonlinearity to form a set of
transformed points Y = g(X).

e The second order statistics of y = g(x) are then approximated by the weighted
mean Y and covariance Xyy of the transformed set Y according to

y = Z Wi (6.19)
”

Ly =~ Z Wi - Y -y (6.20)
i=0

This approach is also illustrated in Figure 6.9.

Compared to Monte Carlo simulation, this algorithm has the advantage of
efficiency: Whereas a large set of points needs to be simulated to obtain low errors
in Monte Carlo simulation, using the unscented transform, only 2n + 1 points are
simulated for each feature vector, where n is the feature vector size. In the concrete
case of transforming features from a 512-dimensional spectrum with diagonal co-
variances via 29-dimensional mel spectra to 39-dimensional cepstral features with
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Figure 6.9: The sigma points of the signal probability distribution are transformed
to obtain an estimate of the statistics after the transformation.

first and second derivatives, the improvement in computational effort was measured
with the MATLAB profiler to be a reduction by the factor 14.7.

The cost of these savings are increased estimation errors in the higher order
terms. However, when the scaling factor « is optimized, the errors can be reduced,
and with a higher number of generated sigma points, they can even be eliminated
up to an arbitrary order at the cost of additional computational effort. An estimate
of the errors can be found from the Taylor series expansion of g(x) around u,,
and, as shown in [Jul1996], for k = 3 — n they are minimal and of sixth order,
i.e. the statistics up to order four, being mean, covariance and kurtosis, of g(x) are
matched. Further reductions of higher order errors may also be achieved by the
scaled unscented transform [Mer2000]. However, since knowledge of higher order
statistics must be used for optimization of the scale parameter in this method, and
since higher order statistics for speech feature vectors are strongly dependent on the
(unknown) phoneme, this method was not considered for implementation here.

6.4 Recognition

In HMM speech recognition, the probability of a given vector of speech fea-
tures is evaluated at each frame for all HMM states, as detailed in Section 2.2. For
this purpose, the model states are equipped with output probability distributions.
These distributions are denoted by b,, where b,(0) gives the probability that obser-
vation vector 0 will occur at time ¢, when the Markov Model is known to be in state
q at that time, so:

b,(0) = p(o,; = 0lg; = q). (6.21)
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For the recognition of given, fixed observation vectors o, the probability distribution
b, can be evaluated for the available vector o. This is the customary computation of
output probabilities, denoted by p,,(0lg). With additional information from the pre-
processing stage, however, rather than only the observation o, its entire pdf p,.(0[x)
is known.

Thus, a new approach for calculating observation likelihoods is needed,
which incorporates all available information: the output probability distributions
of the states as well as the observation probability distributions obtained from the
preprocessing stage. For this purpose, a new method is suggested, which is termed
modified imputation and described in the following section.

6.4.1 Modified Imputation

To evaluate the likelihood of an HMM state, it is necessary to combine the
likelihood of the current observation p,,(0lg) given all possible HMM states g with
the likelihood of the observation given the preprocessing model p,.(0[x).

A Gaussian distribution for the speech features was assumed in all previ-
ously described stages of processing. Thus, a model of the observation probability
has been obtained, which gives p,(0[x) as a function of the observed signal vector
x in the following form:

Pos(01%) = N(0, 1, 7). (6.22)

Also, the Hidden Markov Model defines observation likelihoods for each
state, so that, given a hypothesized state g, it is possible to calculate p,,(0lg) as a
function of the model state g.

Thus, two models for the speech feature o are available and in order to make
maximum use of all available information, it is now suggested to obtain a combined
model p(o[x, g). With this probability distribution, it will be possible to evaluate

0 = arg max p(o[x, q) (6.23)

at each frame and to use this maximum likelihood estimate 0 of the feature vector
for recognition as well as for speech processing.
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In order to obtain the desired probability distribution, Bayes’ law 2 can be
applied as follows:

p(0,X, q)
p(X, q)
p(0, x|g)p(q)
pxlg)p(q)
p(0,x|q)
p(xlg)
p(olg)p(x|o, q)

[, pxlo’, ¢)p(0’lg)do’ ’

p(o[x, q)

(6.24)

where the law of total probabilities has been used in the last step. All statistical
dependencies between the microphone signals x and the HMM state g are assumed
to be captured in the feature vector 0. This makes p(x|o,qg) = p(x|o), that is, the
statistics of o are considered sufficient statistics for the input signal x. Therefore

p(olg)p(xlo, 9)
I, pxlo’, @)p(o’lg)do’
p(olg)p(x|o)
[, p(xlo’. 9)p(0’lg)do’

p(o[x, g)

(6.25)

In this formulation, p(x|o) is required, i.e., the probability of having ob-
served x given that the features are 0. This value is hard to obtain in practice,
therefore, Bayes’ law is applied again to yield

p(olg)p(o[x)p(x)
p(o) [, p(xlo’, ¢)p(0’|g)do’

p(olx, q) = (6.26)

In Equation (6.26), the integral fo . p(xlo’, g)p(0’|g)do’ in the denominator
as well as the term p(x) are independent of the feature vector 0. But since the
equation will only be needed for the optimization problem stated in (6.23), they can
be considered invariant scale factors. Defining a likelihood function p’ via

, (0lg)p(o[x)

p(olx.q) = ZEEPER o plolx. g) (6.27)
p(o)

21t is used here in the two forms p(alb) = p{%’)) and p(a, blc) = p(alc)p(bla, c).
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allows to reformulate and simplify the problem as follows:

0 = arg max p(o|x, g) = arg max p’(0|X, g). (6.28)

In order to simplify the following calculations, an uninformative, uniform
prior is assumed for p(0). Thus, the term to be maximized is

0 = arg max p(o|g)p(0|x), (6.29)

which is the product of the processing model and the recognition model.
The latter model may in general be chosen to be an MOG density. However, for
clarity, the derivation is first shown for the plain Gaussian density in both models.
In the processing model, this is

1
Po|x(0|X) = exXp (_5(0 - /JS)TE;I (0 - ﬂs)) (630)

1
V(@2r)" |2l

and in the recognition model, the output distribution for a given state ¢ is again
described by

1
Po(0lg) = exp (—5(0 — 1) Z, (0 - :uq)) (6.31)

1
VR lIXll

where p, and X, are the mean and variance of the output distribution for state g.

Therefore, the optimization problem is:

6 = arg max e~ ()" O+ (0-pg) 2 0-pg) (6.32)
o
Defining the log [ of the cost function by

1 _ _
[= =5 (=)= 0 - ) + (0 )5, (0~ py) (6.33)
the maximum likelihood estimate can be found by setting dp(0)/do equal to zero

dp(o) de!
—_— =0. 6.34
do * do ( )
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Since ¢’ is always positive, the extremum must meet the condition

dl

— =0. 6.35
o (6.35)
Because of d
—xAx" = Ax + A'x, (6.36)
dx
which, for symmetrical matrices, becomes
d T
—xAx' = 2Ax, (6.37)
dx
and since covariance matrices are symmetric,
d -1 -1
2o =250 -p) + 250 p)
oXo-pu) = -X,'(0-pu). (6.38)

In the case of diagonal covariance matrices, this means that the maximum will be
obtained for that value o which lies on a straight line connecting the mean given by
the processing model y, and the mean y, of the ¢’th state recognition model. Also,
it is separated from the processing model mean by the same factor of processing
standard deviations o as it is apart from the recognition model mean in terms of
recognition model standard deviations. This case is illustrated for the 1-dimensional
scenario in Figure 6.10.

Finally, for computing the maximum likelihood estimate 0, with
0 =arg moax Poig(0lq),

the following derivation

A ! N
0 -p) = X0 - py)
e E!+Zhe = prt+ux!
o6 = C+IH W +uzh (6.39)

is used.

In the limit, it can be seen that this method also has a desirable behavior,
since
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Figure 6.10: Composition of preprocessing model and recognition model with max-
imum likelihood estimate

e in the case of completely uncertain features, where X; tends toward infinity,
the method will choose exactly the recognition model mean as 0 = 1,

e and when features are completely certain, the recognition model will not
carry any weight and 6 = u; will hold.

This result can be plugged into the expression for the likelihood / given in
Equation (6.31) and used for speech recognition in the same way as Equation (2.21)
is applied for speech recognition when the features are considered given and fixed.

For Gaussian mixture models in the HMM state distribution, the same opti-
mization problem needs to be carried out in principle, however, the exact solution
needs to be found by numerical optimization. This can be seen from taking the pro-
cessing model probability from Equation (6.30) and combining it with the MOG
recognition model

Pog0lg) = > YnNu(0: tw, ) (6.40)
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with the mixture index m. Taking these expressions and combining them via (6.29)
yields the new optimization problem

1
0 = argma

o T

Rather than using numerical optimization it is also possible to use a two-stage opti-
mization, where rather than optimization over all summed mixtures, (6.39) is eval-
uated for all mixtures, of which in a second step, the most likely one is selected.
This is equivalent to the optimization problem

1
exp(—5(0- 1) ET (0= p1y)) Z YmNn(0; i, 7). (6.41)

1 1
0 = arg max arg max ——— exp(—=(0 — ,uS)TZ);1 (0 —puy)) VN (0, s T ).
m o NVCr)|Zll 2 ;
(6.42)

Compared to (6.41), this has the advantage of computational efficiency, since it
scales linearly with the number of mixtures, and it can then also be used to evaluate
the likelihood in (6.40).

6.5 Summary

A new method for using uncertainty information has been introduced. It
consists of a two-stage process, where uncertainty values, interpreted as feature
variances, are transformed together with the features themselves, taking them from
the domain of preprocessing, usually the time-frequency domain, to an appropriate
domain of speech recognition. After transformation, which can be carried out using
analytical integration, Monte Carlo simulation or the unscented transform, these
features can be used for missing feature recognition. For the purpose of uncertain
recognition, a new method has been derived, which is termed modified imputa-
tion. This method leads to an estimate 0 of the speech features, which considers
both the information from the preprocessing stage and from the often very detailed
recognition model, and leads to a smooth interpolation between these models. The
following chapter will show results, which were obtained with the newly suggested
approach, using ICA and time-frequency masking as a preprocessing method.
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Chapter 7

Evaluation

7.1 Data Generation
7.1.1 Artificial Mixtures

In order to measure the algorithm performance on ideal and noise-corrupted
mixtures, artificial, anechoic mixtures were generated with two different sets of
speakers at four different noise levels. In all cases, the mixture was obtained by

[xl (ja»] _ [ ! dze-fwéz] [sl(ja»] N [Nl(jw)] o

X(jw)|  |die 1 Sa(jw)|  [N2(jw)

with the damping parameters d; = d, = 0.8. This model assumes that microphone
1 is a reference microphone for speaker 1 and microphone 2 for speaker 2. The
delay parameters were calculated for the configuration shown in Figure 7.1. A
microphone distance d=5cm and angles of incidence ¢; = —¢, = 30°, relative to
broadside, were chosen, yielding

d - si
51 =8y = L2500

~ 39us (7.2)
for ¢ = 330m/s. The damping factors were arbitrarily setto d; = d, = 0.8. Table 7.1
shows the datasets that were created in this setup. As noise signals, two recordings
were used, which were obtained during the in-car data collection (see Section 7.1.2)
at 100km/h.
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Figure 7.1: Signals are delayed according to their angles of incidence, which corre-
sponds to a farfield model. Signal 1 has the angle of incidence ¢; and the angle of
incidence for signal 2 is ¢,, both relative to broadside. Damping with the damping
factors d; and d, is also introduced, and realistic noise signals, which were recorded
in a driving car on two microphones d cm apart, are added to both microphones.

Table 7.1: Artificial Dataset Indices

| Dataset Label | Speakers | Noise Level

la 2 male noise free
2a male+female | noise free
3a 2 male 10dB SNR
4a male+female | 10dB SNR
5a 2 male 0dB SNR
6a male+female | 0dB SNR
Ta 2 male -10dB SNR
8a male+female | -10dB SNR

7.1.2 Car Data

In collaboration with DaimlerChrysler, a database of speech mixtures was
recorded in a Mercedes S 320. For this purpose, two artificial heads were used to
reproduce a subset of the TIDigits database, a database of continuously spoken digit

119



sequences [LDC1993], both separately as well as simultaneously.

7.1.2.1 Speaker Positioning

Recordings were made with the artificial heads at four different positions,
of which the driver position was only available at standstill. Figure 7.2 shows the
possible speaker locations for the recordings. Recordings were made for the com-

Figure 7.2: Dummy positions in car recordings.

binations given in Table 7.2.

Table 7.2: Speaker Combinations

| Situations | Recorded Dummy Positions |
Standstill, single speaker 1,2,3,4
Standstill, two speakers (1,2), (2,3), (2,4)
Driving, single speaker 2,34
Driving, two speakers 2,3), (2,4)

7.1.2.2 Microphone Installation

A microphone array, consisting of 8 omnidirectional microphones, was in-
stalled at the center of the ceiling near the interior light and the rear view mirror.
Also, four cardioid microphones, one above each seat, were oriented toward the
mouth of each respective speaker. Finally, two channels recorded the electrical sig-
nals at the loudspeakers of the artificial heads as reference signals. The microphone
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positions are given in Figure 7.3 and an overview of the actual microphone instal-
lation is given in Figure 7.4.

front

(87231456 )

O

(@b
refl =11
ref2=12

O

back

Figure 7.3: Channel arrangement in car recordings.

7.1.2.3 Recording Setup

The eight channel microphone array, the four cardioid microphones and
both reference signals were simultaneously recorded on a 16-channel DAT recorder
at 12khz with 16-bit resolution. Table 7.3 gives an overview of all parameters.
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Cardioid microphone, above
back right seat

Cardioid microphone, above back left seat

Cardioid microphone, above
front right seat

Figure 7.4: Microphone placement for car recordings.

Table 7.3: Recording Setup

Microphones
Array 8 omnidirectional Sennheiser ME 102
Ceiling 4 cardioid
Pre-Amplifier MidiMan
Recorder 16-channel DAT
File Format headerless 16bit 12000Hz PCM
Artificial Heads HEAD acoustics

7.1.2.4 Recordings of Single Speakers

To obtain reference signals for the evaluation, four speakers were selected
out of the TI-Digits database. For these speakers, whose codes are given in Ta-
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ble 7.4, all their 77 utterances from the TI-Digits database were concatenated and
recordings were made for all four possible speaking positions.

Table 7.4: Single Speaker Recordings

| Speaker Code | Gender |

AR Male

FM Male

GA Male
II Female

7.1.2.5 Recordings of Multiple Speakers

To allow for the evaluation of ICA under clean and noisy conditions, record-
ings were made of two simultaneous speech signals. For this purpose, two simul-
taneously active artificial heads were used, both during standstill, and driving at
different speeds and in different noise situations. Because of the low amplitude
of the artificial heads, a number of noisy recordings exhibit excessive noise levels
and are unsuitable for speech recognition tests, see also Table 7.7. Therefore, only
the least noisy of the datasets, recorded at standstill and at 100km/h, were chosen
for ICA and missing feature recognizer evaluation. Table 7.5 shows these selected
datasets.

Table 7.5: Dataset Indices for In-Car Recordings

Dataset Speakers Driving | Speaker
Label Situation | Positions
lc 2 male standstill 1+2
2c male+female | standstill 1+2
3c 2 male 100km/h 2+3
4c male+female | 100km/h 2+3
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7.1.2.6 Room Conditions

Using the TSP-technique described in Appendix C, the room impulse re-
sponses from all four speaker positions to all sensors were measured and the rever-
beration time! RT¢, was calculated. Table 7.6 shows the reverberation times that
were obtained.

Table 7.6: Reverberation Times

Speaker Overhead | Array
Microphone | Center

Driver 21.1ms 26.5ms
Co-Driver 15.2ms 23.0ms
Left Back-Seat 17.3ms 38.2ms
Right Back-Seat 14.9ms 22.5ms

Also, the signal to noise ratio of the recordings was estimated, by comparing
the energies of each noise-free reference recording with the energy of the noise-only
signal recorded in the corresponding driving situation. This gave the results shown
in Table 7.7, which also show why the recordings at 140 km/h were considered
too noisy for source separation and recognition. Since the very low SNR is due to
the low maximum amplitude of the artificial heads, these recordings would not be
indicative of algorithm performance in realistic driving scenarios.

7.1.3 Data Collection in a Reverberant Environment

In order to obtain a reverberant test set, recordings were made in a lab room
with dimensions of about 10 X 15m. The distance between the loudspeakers and the
two microphones (Behringer ECM 8000) was set to one meter. At this distance, the
reverberation time R7s, was measured to be 300ms. Again, speech signals from the
TIDigits were used; in this case two male speakers, with speaker codes ”AR” and
”GA”, were played back and recorded, once simultaneously and once separately, in
two different setups of loudspeakers.

IReverberation time is the time required for a sound in a room to decay by 60 dB.
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Table 7.7: SNR at Array Center, Microphone 3.

| Dataset | SNR |
lc 30.4dB
2c 27.5dB
3c -8.5dB
4c -9.5dB
Recording at 140 km/h || -14.5dB

\))\

=)
=)

»
)
3

Figure 7.5: Experimental setup

Each of the signals was recorded with the loudspeaker positions varied ac-
cording to the angles 6, and 6,. The experimental setup is shown in Figure 7.5 and
the following table gives an overview of the configurations.

Table 7.8: Overview of Reverberant Room Datasets

Dataset Label | Loudspeaker Setup
61, 0>
Ir 45°,25°
2r 10°, 25°
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7.2 Evaluation
7.2.1 Performance Measures

To measure the efficiency of a speech signal processing approach, no one
objectively ideal evaluation method can exist, and the evaluation will have to de-
pend on the use that is to be made of the processed signal.

While telephony applications will naturally aim for understandability of the
speech, as determined in listening tests, and for a good perceptual speech quality,
which should also be determined by human listeners, speech recognition applica-
tions have recognition accuracy as their primary measure of success.

In both cases, for human listeners as for machine recognizers, evaluation of
the signal processing success is a tedious process. On the one hand, listening tests
are costly and time consuming, on the other hand, speech recognition results depend
strongly on the recognizer that is used in the evaluation and need to be carried out
on a large dataset in order to be representative.

Therefore, other measures for signal quality improvement are often used to
complement the evaluation, even though they give results which are misleading in
some cases.

A primary measures is the signal to interference ratio improvement AS /R.
It is calculated for each source signal n = 1... N by comparing its input SIR S IR;,, ,
at a reference sensor i by

(i)

<Zszl,k¢n |xi,k|2>
with the output SIR S IR, »
B (nal?)
SIRyn = 10log, (7.4)

<Zszl,k¢n |yn,k|2> '

Here, (-) denotes time averaging and y,; stands for the component of source k
appearing in output signal n. This k" source component in output 7, y,., is obtained
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by using a recording in which only source k is active and demixing it with the
unmixing system calculated on the mixed data.’

From these input and output SIRs, the SIR improvement due to the unmix-
ing system, AS IR, is obtained for signal n via

ASIR, = SIRpun — S IRinn. (7.5)

However, especially for time-frequency masking, the SIR improvement is
not a sufficient measure of success. This can be seen from the fact that the degree of
achievable separation performance is very high for a hypothetical algorithm which
only retains those time-frequency bins that belong with very high probability to
the speaker of interest only. Such an algorithm would suppress the interference
energy almost completely. Still, it could lead to unacceptable performance in terms
of perceived quality and understandability, since it could be discarding significant
parts of the desired speaker signal.

Thus, the right balance between SIR improvement and consequential signal
distortion is much more significant for the choice of algorithm and parameters than
the SIR alone, and therefore, the signal to distortion ratio is also included in the
evaluation. It is defined by

(lxu(0)
(I = yua)

SDR, = 10log,, (7.6)

where x,(f) is the microphone signal n obtained by recording only source n and
ynx again stands for the n” ICA output, which is obtained by applying the ICA
unmixing system and possible post-masking to a recording of only source k.

Since ICA and masking usually change the signal amplitude and since exact
time-alignment between the reference signal and the processed output signal is of-
ten unavailable, in general, it is necessary to obtain a scale- and time-shift-invariant

2This formulation of SIR requires permutations of the output signals to be resolved, either by
correlation with the reference signals or manually, i.e. the n™ output must correspond to the n'"
source signal. This is no limitation to generality, since reference signals are needed in any case to
determine SIR and SDR.
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SDR measure. For source n, this can be found by

<|a'nxn(t - Dn)|2>

(@t = D) = yuat)

SDR, = 10log,, (1.7)

where delay D, and amplitude factor @, are adjusted to give optimum alignment
between the reference signal x,(7) and the ICA output y, ,(z) [Saw2006].

Finally, recognition accuracy and recognition correctness are significant
measures of recognizability. To determine these, the number of reference labels
(R), substitutions (S), insertions (/) and deletions (D) is counted. From them, both
criteria can be calculated:

The correctness is the percentage of correctly hypothesized words

_R-D-S
-

PC (7.8)

Correctness has one disadvantage for judging ICA performance though. Since
it ignores insertion errors, it will not penalize clear audibility of the interfering
speaker during periods, when the desired speaker is silent. Therefore, a more im-
portant criterion for the success of ICA is recognition accuracy, defined as

_R-D-S-1
- —

PA (7.9

Thus, PA will be used in the following evaluations of ICA performance, whereas,
for judging the robustness of the entire system both criteria will be given, so that
the recognizability of the processed signal can be judged by PC and the ability to
distinguish the desired speaker from interferers is evaluated by PA.

7.2.2 Evaluation on DaimlerChrysler Speech Recognition System

In order to evaluate the recognizability of the processed speech signals,
it was decided to use a standard, established recognizer with high robustness re-
garding environmental distortions. The DaimlerChrysler speech recognition engine
(DCSR) is one such system. It is in use for command and control applications
such as voice dialing in DaimlerChrysler cars in the so-called Linguatronic system,
which has been on the market since 1996 [Hei2001]. It is described in detail e.g. in
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[Hue2002]. Its recognition engine is comparable to the recognizer used in later
evaluation in that it is also based on hidden Markov models of cepstral speech fea-
tures. However, the features are not used directly, but rather, a vector quantization
process is employed to obtain discrete valued speech features, requiring a minimum
of storage space. Also, the system is adapted to the environment and to the speaker
by means of cepstral mean subtraction (see Section 4.1.1.2) and vocal tract length
normalization, described in 4.1.1.1.

7.2.2.1 Grammar Specification

For the purpose of recognizing the TI-Digits dataset, the sentence grammar
was specified as an arbitrary-length sequence of digits with optional silence inser-
tions. Figure 7.6 shows a graph representation of this grammar.

Figure 7.6: Specified grammar for recognition of digit strings. Here, rectangles
stand for the corresponding word models while circles are link nodes, linking the
last state of one HMM with the first state of another one. The black nodes represent
the entry and exit states of the compound model. Regarding the word models, /
through O stand for the HMMs of the words one to oh, z stands for the HMM
of the word zero and sil is the silence model, which has the purpose of capturing
background noise.
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7.2.2.2 File Preparation

The DaimlerChrysler speech recognition engine accepts three different sam-
ple rates, 8, 12 and 16khz. Since the speech HMMs for English were only available
for 16kHz speech data, it was necessary to resample all data to 16khz.

7.2.2.3 Parameter Adjustment

In order to find suitable settings for the system, speech recordings from the
quiet and noisy in-car datasets, recorded of only single speakers at standstill and
100km/h respectively, were used as an input to the speech recognition engine.

For obtaining the best baseline recognition rate on this single-speaker data,
different preprocessing algorithms were tested:

e no preprocessing
e spectral subtraction and

e vocal tract length normalization.

Table 7.9 shows the results which were obtained with these possible pre-
processing settings, all measured on a total of 920 words. The evaluation is per-
formed in terms of the word error rate®, and the number of substitutions (SUB),
insertions (INS) and deletions (DEL) is also given for the clean dataset. Perfor-
mance was generally low on the noisy dataset, which is due to the low SNR of
-9dB, for example, the word error rate was 99.1% without preprocessing. Thus, the
performance on the noisy data was also evaluated, and it is given in the final column
of Table 7.9 as the ’noisy word error rate” (WERN).

With both vocal tract length normalization and spectral subtraction, best
results were achieved, 7.8% with 85 errors, 22 substitutions, 3 insertions and 60
deletions on the clean and 43.3% on the noisy dataset.

Thus, both vocal tract length normalization as well as spectral subtraction
were used for all further experiments, with their internal parameters adjusted to give

3The word error rate is related to the previously introduced word accuracy by WER = 100 — PA.
It is the quality measure output by the DaimlerChrysler recognition system.
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Table 7.9: Recognition results for different recognizer settings

| Setting | WER | SUB | INS | DEL | WERN |
No Preprocessing 11.3% | 22 1 81 99.1%
Vocal Tract Norm. 8.5% 18 2 58 99.3%

Spectral Subtraction | 13.2% | 40 5 76 44.1%

Spectral Subtraction +
Vocal Tract Norm. 7.8% 22 3 60 43.3%

optimum performance on the noisy dataset with acceptable accuracy on the clean
data.

7.2.2.4 Baseline Recognition Performance

After the optimum recognizer settings were determined, baseline recogni-
tion rates were obtained for all datasets, using the set of parameters shown in Table

7.10.

Table 7.10: Recognizer Settings

Parameter | Value |
Sampling Frequency 16000Hz
Cepstral Mean Adaptation on
Decoding Compound Word Decoding
N Best 50
Automatic Gain Control on
Vocal Tract Normalization Framewise
| Spectral Subtraction | on |
’ Cepstral Mean Normalization H on ‘

The resultant recognition rates in terms of recognition accuracy are given
in Table 7.11. In the first column, it shows the recognition rate for the noise free
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recordings of only single speakers in the respective environments, with the dummy
positioned on the correct seat where car recordings are concerned, and in the second
column the performance for the mixed data is displayed. These word error rates give
the reference, to which all subsequent recognition results can be compared.

Table 7.11: Baseline results on reference recordings and mixtures for all datasets.

DATASET Percent Acc. | Percent Acc.
Type Label || Clean Data Mixture

Artificial, Noise free la 94.070 26.030
Artificial, Noise free 2a 97.100 23.200
Artificial,10dB SNR 3a 94.070 25.760
Artificial,10dB SNR 4a 97.100 21.705
Artificial, 0dB SNR 5a 94.070 24.015
Artificial, 0dB SNR 6a 97.100 22.320
Artificial,-10dB SNR 7a 94.070 26.100
Artificial,-10dB SNR 8a 97.100 23.580
Car, Quiet 1c 90.580 20.410
Car, Quiet 2c 78.740 22.160
Car, Noisy 3c 90.480 19.620
Car, Noisy 4c 93.100 23.495
Reverberant Room Ir 48.330 21.065
Reverberant Room 2r 50.000 14.535
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7.3 Results of ICA-Methods

The methods for improved speech source separation were tested on all 14
available datasets. Below, the results for both maximum likelihood permutation cor-
rection and for ICA-based time-frequency masking are presented in Section 7.3.1
and 7.3.3. For purpose of comparison, two ICA methods were used, on the one hand
an algorithm by Parra and Spence, which works by inverse filtering in the time-
domain, avoiding the permutation problem by constraining the filter length of the
unmixing filters [Par2000], and on the other hand, a frequency domain implemen-
tation of the JADE algorithm, with permutation correction based on the assumption
of a flat transfer function, as described in [Bau2001].

7.3.1 Results for Beampattern Based Permutation Correction

All experiments were carried out at a frequency resolution of NFFT=512
with a Hamming window and an overlap of 3/4, which is the minimum overlap
needed to avoid undersampling, when a Hamming window is used.

In the reverberant environments, as seen in Table 7.12, best performance
is achieved with maximum likelihood permutation correction. This is true for the
achieved recognition accuracy as well as for the signal to interference and signal to
distortion ratios.

In contrast to the reverberant recordings, for artificial delayed but not con-
volved mixtures, the Flatness criterion works better at times, as can be seen in the
following Tables 7.13 through 7.16. This is to be expected, since very short im-
pulse responses correspond to very flat transfer functions, which are exploited in
flatness-based permutation correction. However, the added flexibility of maximum
likelihood permutation correction does not pose a big disadvantage either, which
can be seen from the rather similar performance, and in the noisy scenarios, the
error-robust statistics-based approach is actually advantageous. In contrast, Parra’s
algorithm suffers from a low performance in this scenario. This may be due to the
fact, that the parameters were not adjusted from scenario to scenario, so that the
unmixing filter length, which is a constant in Parra’s algorithm, was inappropri-
ately long for the artificial data, since it had been chosen as NFFT /2 which is the
parameter default in Parra’s implementation and gave best overall performance.
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Table 7.12: Results of different ICA algorithms on reverberant room recordings.
Maximum Likelihood stands for the new algorithm with the EM-algorithm permu-
tation correction described in Section 5.1.1.2, Parra stands for Parra’s and Spence’s
algorithm [Par2000] and Flatness signifies the results obtained with frequency do-
main JADE and flatness-based permutation correction. Bold print indicates best
performance for the considered dataset.

| Algorithm | Label || Percent Accuracy | SDR | SIR |
Flatness Ir 26.8 56 | 4.0
Flatness 2r 23.3 59 | 3.7
Maximum Likelihood Ir 50.0 7.7 | 5.7
Maximum Likelihood 2r 42.3 73 | 4.8
Parra 1r 41.2 -1.3 | 3.3
Parra 2r 34.4 1.3 | 3.6

Table 7.13: Results of different ICA algorithms on artificial noisefree mixtures

Algorithm | Label || Percent Accuracy | SDR | SIR |
Flatness la 94.3 15.7 | 10.1
Flatness 2a 95.9 143 | 84

Maximum Likelihood la 94.3 15.7 | 10.1
Maximum Likelihood 2a 95.9 143 | 84
Parra la 24.2 0.5 5.6
Parra 2a 34.1 0.8 5.7
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Table 7.14: Results of different ICA algorithms on artificial mixtures with added
white noise at 10dB SNR.

Algorithm | Label || Percent Accuracy | SDR | SIR |
Flatness 3a 96.8 15.6 | 9.3
Flatness 4a 98.4 145 | 8.1

Maximum Likelihood 3a 96.6 11.2 | 8.9
Maximum Likelihood 4a 98.7 14.8 | 119
Parra 3a 24.9 1.4 4.3
Parra 4a 26.3 2.2 4.6

Table 7.15: Results of different ICA algorithms on artificial mixtures with added
white noise at 0dB SNR.

Algorithm | Label | Percent Accuracy | SDR | SIR |
Flatness S5a 94.8 13.1 | 6.6
Flatness 6a 96.7 8.8 | 54

Maximum Likelihood Sa 94.4 11.0 | 10.1
Maximum Likelihood 6a 96.4 9.6 7.4
Parra 5a 26.8 2.8 5.6
Parra 6a 29.1 3.1 3.7

Table 7.16: Results of different ICA algorithms on artificial mixtures with added
white noise at -10dB SNR.

| Algorithm | Label || Percent Accuracy | SDR | SIR |
Flatness 7a 67.7 57 | 0.1
Flatness 8a 404 6.7 | 0.1
Maximum Likelihood Ta 65.4 57 | 6.2
Maximum Likelihood 8a 72.1 55 | 5.0
Parra 7a 37.1 56 | 3.0
Parra 8a 497 5.3 1.1
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In the car recordings, the overall best performance was again achieved with
the maximum likelihood algorithm, as seen in Tables 7.17 and 7.18. The noise
robustness of the separation quality for Parra’s algorithm is also very high, as Table
7.18 shows, but while a good improvement in signal to interference ratio and a high
signal to distortion ratio is obtained, noise is also accentuated in one of the outputs,
which explains the low recognition rates achieved by Parra’s algorithm even in the
case where its other performance figures are best.

Table 7.17: Quiet car environment

Algorithm | Label || Percent Accuracy | SDR | SIR |
Flatness Ic 65.3 46 | 0.7
Flatness 2c 75.1 119 | 84

Maximum Likelihood Ic 69.0 83 | 44
Maximum Likelihood 2¢ 76.0 11.3 | 84
Parra Ic 28.2 47 | 0.1
Parra 2c 30.4 1.2 1.2

Table 7.18: Noisy car environment, 100km/h, approx. -10dB SNR

| Algorithm | Label || Percent Accuracy | SDR | SIR |
Flatness 3c 48.4 57 | 3.0
Flatness 4c 46.6 4.3 3.1
Maximum Likelihood 3c 60.7 71 | 44
Maximum Likelihood 4c 54.0 44 | 2.6
Parra 3c 38.6 35 | 2.8
Parra 4dc 34.8 45 | 3.5

7.3.2 Discussion

Beampattern based permutation correction has been performed with the help
of the EM algorithm and a simple probabilistic DOA model. The above results show
that
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¢ the proposed approach gives best recognition rates for all considered datasets,
e and it also leads to the best average SDR and SIR for all recorded mixtures.

e For artificial mixtures, flatness based permutation correction gives a better
signal quality (SDR), but the separation quality, measured as average SIR, is
again best for the newly suggested algorithm in all scenarios.

These results come at the price of an increase in computational effort. A number
of EM iterations are required, usually between 3 and 7 for the considered datasets.
When all related aspects, including the beampattern computation, are considered
as a part of the permutation correction, the algorithm requires about 25.1% of the
entire effort of source separation. Whether this is an acceptable computational effort
will rely very much on the mixing situation and the available resources, but since
the robustness is increased significantly, in many cases this trade-off appears to be
a positive one.

Additionally, beampattern based permutation correction results in a direc-
tion of arrival model for each of the sources. Aside from ICA, this may be useful
for other steps of signal processing such as DOA-based VAD, and especially also
for time-frequency masking, which is described in the following section.

7.3.3 Results Time-Frequency Masking

Time-Frequency masking was performed both with the amplitude mask de-
scribed in Section 5.1.2.4 and the phase mask defined in Section 5.1.2.5. The am-
plitude mask is applicable to all ICA methods, since only the output amplitudes
are needed in order to determine a mask. In contrast, the phase-based mask relies
on a direction-of-arrival model, as it is estimated in the EM algorithm of the new
maximum likelihood permutation correction described in Section 5.1.1.2.

7.3.3.1 Amplitude Mask

First, results were determined for Parra’s algorithm. Since the results on
artificial datasets in the evaluation of only linear ICA were not satisfactory with
one setting for the filter length, it was decided here to adjust the filter length for the
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artificial datasets to achieve optimum SDR. The value experimentally determined
was Q=16. For all other scenarios, the filter length Q=512 was still used.

As Figure 7.7 shows for all artificial datasets, the effect of time-frequency
masking is an increase of SIR and a simultaneous decrease in SDR, as was to be
expected. Both changes are fairly smooth over masking threshold, and the fact, that
the change continuously goes in the same direction of SIR improvement indicates,
that the correct frequency points are chosen for deletion, so that amplitudes of ICA
outputs appear to be a valid criterion for determining the mask. This is also visible
from Tables 7.19 through 7.21, which cover all available datasets, i.e. the artificial,
the reverberant room and the in-car recordings.

The point, at which best recognition rates were achieved is not consistent
across datasets, though. In the cases in Tables 7.19 and 7.20, masking is very ad-
vantageous for recognition accuracy, with the best results attained at 0dB masking
threshold, and at 78.9% very much better value than 49.2% without masking for
the artificial data. In Table 7.21, however, best results are achieved at 3dB, where
again, an improvement is visible, this time from 37.8% to 53.6% on average.

Table 7.19: Effect of amplitude-based mask on results of Parra’s ICA algorithm,
shown for all artificial datasets.

LABEL | Percent Accuracy | SDR | SIR |
mean Mask OFF 49.2 16.1 | 7.8
mean Mask ON, Thresh = -6dB 60.3 11.2 | 9.3
mean Mask ON, Thresh = -3dB 68.8 9.2 | 10.3
mean Mask ON, Thresh = 0dB 78.9 63 | 11.8
mean Mask ON, Thresh = 3dB 66.1 3.5 | 124
mean Mask ON, Thresh = 6dB 50.6 20 | 12.8
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Figure 7.7: Effect of amplitude-based mask on results of Parra’s ICA algorithm,

shown for all artificial datasets.

The red symbols show performance when no
mask is applied. All other results were obtained with amplitude-based postmasking,
where blue symbols indicate an amplitude threshold 6,3=-6dB, purple symbols cor-
respond to -3dB, for green symbols, the threshold was set at 0dB and the turquoise
symbols correspond to 6,5=3dB. Equal symbols denote equal datasets.
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Table 7.20: Effect of amplitude-based mask on results of Parra’s ICA algorithm,
shown for all in-car datasets.

| Method | Dataset || Percent Accuracy | SDR | SIR |

Mask OFF Ic 28.8 08 | 0.0

Mask OFF 2c 32.1 24 | 1.0

Mask OFF 3c 37.9 47 | 3.6

Mask OFF 4c 29.3 45 | 29

Mask OFF mean 32.0 31 | 1.9

Mask ON, Thresh = -6dB Ic 29.4 50 | 0.2
Mask ON, Thresh = -6dB 2c 45.9 2.1 2.2
Mask ON, Thresh = -6dB 3c 45.9 35 | 34
Mask ON, Thresh = -6dB 4c 39.2 39 | 44
Mask ON, Thresh = -6dB | mean 40.1 36 | 25
Mask ON, Thresh = -3dB 1c 32.5 4.7 0.3
Mask ON, Thresh = -3dB 2¢ 49.2 20 | 29
Mask ON, Thresh = -3dB 3c 56.7 33 | 42
Mask ON, Thresh = -3dB 4c 41.6 37 | 4.9
Mask ON, Thresh = -3dB | mean 45.0 34 | 3.1
Mask ON, Thresh = 0dB 1c 29.1 4.5 04
Mask ON, Thresh = 0dB 2c 494 1.9 4.4
Mask ON, Thresh = 0dB 3c 60.1 29 | 55
Mask ON, Thresh = 0dB 4c 48.9 36 | 5.6
Mask ON, Thresh = 0dB | mean 46.8 32 | 40
Mask ON, Thresh = 3dB Ic 28.5 42 | 0.5
Mask ON, Thresh = 3dB 2c 46.8 1.5 | 5.6
Mask ON, Thresh = 3dB 3c 60.8 2.4 6.7
Mask ON, Thresh = 3dB 4c 42.3 3.5 6.7
Mask ON, Thresh = 3dB | mean 44.6 29 | 49
Mask ON, Thresh = 6dB Ic 32.2 39 | 05
Mask ON, Thresh = 6dB 2c 37.9 1.1 6.7
Mask ON, Thresh = 6dB 3c 51.7 1.6 8.1
Mask ON, Thresh = 6dB 4c 37.0 3.2 8.2
Mask ON, Thresh = 6dB | mean 39.7 25 | 5.9
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Table 7.21: Effect of amplitude-based mask on results of Parra’s ICA algorithm,
shown for the reverberant datasets.

| Method | Dataset | Percent Accuracy | SDR | SIR |

Mask OFF Ir 41.2 -1.3 | 3.3

Mask OFF 2r 344 1.3 | 3.6

Mask OFF mean 37.8 00 | 34

Mask ON, Thresh = -6dB 1r 49.0 -1.3 | 4.0
Mask ON, Thresh = -6dB 2r 39.7 1.0 | 4.3
Mask ON, Thresh = -6dB | mean 44.3 -0.2 | 4.1
Mask ON, Thresh = -3dB Ir 52.0 -14 | 43
Mask ON, Thresh = -3dB 2r 40.5 09 | 47
Mask ON, Thresh = -3dB | mean 46.2 -0.2 | 45
Mask ON, Thresh = 0dB 1r 52.3 -1.6 | 49
Mask ON, Thresh = 0dB 2r 494 0.8 54
Mask ON, Thresh = 0dB | mean 50.9 -04 | 5.1
Mask ON, Thresh = 3dB 1r 54.2 -1.7 | 5.7
Mask ON, Thresh = 3dB 2r 52.9 06 | 59
Mask ON, Thresh = 3dB | mean 53.6 -0.6 | 5.8
Mask ON, Thresh = 6dB 1r 44.2 20 | 69
Mask ON, Thresh = 6dB 2r 48.0 04 6.6
Mask ON, Thresh = 6dB | mean 46.1 -0.8 | 6.7
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For JADE with flatness-based permutation correction, the situation is fairly
similar regarding the SDR and SIR improvement. Figure 7.8 again shows the same
tendencies as above, again the effect of time-frequency masking is an increase of
SIR and a simultaneous, smooth decrease in SDR. Tables 7.23 through 7.24 illus-
trate the results for the car-data and the reverberant room recordings, which are
again similar in nature.

However, in contrast to Parra’s algorithm, JADE with flatness-based per-
mutation correction does not always profit from time-frequency masking, where
recognition accuracy is concerned, as can be seen e.g. from Table 7.22 and Table
7.24. Still, as Table 7.23 shows, there are also some cases, where improvements can
be achieved, especially the noisy cases, where an improvement from 75.1 to 80.2%
takes place in one of the scenarios.

But overall, it can be concluded that time-frequency masking as postprocess-
ing is only suitable for the flatness-based algorithm when SIR improvements are the
goal, but as long, as there is no way to better deal with the missing features in this
case, it would not appear as a reasonable postprocessing method, when high recog-
nition accuracy is needed.

Table 7.22: Effect of amplitude-based mask on results of JADE with flatness-based
permutation correction algorithm, shown for all artificial datasets.

LABEL | Percent Accuracy | SDR | SIR |
mean Mask OFF 85.6 11.8 | 6.0
mean Mask ON, Thresh = -6dB 83.4 11.0 | 12.1
mean Mask ON, Thresh = -3dB 81.6 10.5 | 13.0
mean Mask ON, Thresh = 0dB 80.0 99 | 14.0
mean Mask ON, Thresh = 3dB 77.3 9.1 | 15.2
mean Mask ON, Thresh = 6dB 75.2 8.3 |16.5
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Figure 7.8: Effect of amplitude-based mask on results of JADE with flatness-based
permutation correction algorithm, shown for all artificial datasets. The red symbols
show performance when no mask is applied. All other results were obtained with
amplitude-based postmasking, where blue symbols indicate an amplitude threshold
0,3=-6dB, purple symbols correspond to -3dB, for green symbols, the threshold
was set at 0dB and the turquoise symbols correspond to 6,5=3dB. Equal symbols
denote equal datasets.
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Table 7.23: Effect of amplitude-based mask on results of JADE with flatness-based
permutation correction algorithm, shown for all in-car datasets.

| Method | Dataset || Percent Accuracy | SDR | SIR |

Mask OFF Ic 65.3 4.6 | -0.7

Mask OFF 3c 48.4 57 | 3.0

Mask OFF 2c 75.1 119 | 84

Mask OFF 4¢ 46.6 4.3 3.1

Mask OFF mean 58.9 6.6 | 3.5

Mask ON, Thresh = -6dB Ic 47.2 35 | -0.6
Mask ON, Thresh = -6dB 3c 44.5 5.2 3.7
Mask ON, Thresh = -6dB 2¢c 80.2 10.6 | 13.7
Mask ON, Thresh = -6dB 4c 474 5.5 4.2
Mask ON, Thresh = -6dB | mean 54.8 6.2 | 53
Mask ON, Thresh = -3dB 1c 48.1 34 | -0.6
Mask ON, Thresh = -3dB 3c 42.1 50 | 3.8
Mask ON, Thresh = -3dB 2¢ 79.4 10.0 | 144
Mask ON, Thresh = -3dB 4c 46.7 57 | 45
Mask ON, Thresh = -3dB | mean 54.1 6.0 | 55
Mask ON, Thresh = 0dB 1c 46.6 32 | -0.7
Mask ON, Thresh = 0dB 3c 40.0 4.7 3.9
Mask ON, Thresh = 0dB 2c 71.4 94 | 15.1
Mask ON, Thresh = 0dB 4c 45.1 58 | 4.8
Mask ON, Thresh = 0dB | mean 50.8 58 | 5.8
Mask ON, Thresh = 3dB Ic 46.4 3.0 | -09
Mask ON, Thresh = 3dB 3c 35.2 4.4 4.0
Mask ON, Thresh = 3dB 2¢c 66.6 8.7 | 15.8
Mask ON, Thresh = 3dB 4c 42.6 5.6 5.1
Mask ON, Thresh = 3dB | mean 47.7 54 | 6.0
Mask ON, Thresh = 6dB Ic 44.4 28 | -1.0
Mask ON, Thresh = 6dB 3c 30.6 39 | 4.0
Mask ON, Thresh = 6dB 2c 64.5 8.0 |16.5
Mask ON, Thresh = 6dB 4c 37.0 5.1 5.3
Mask ON, Thresh = 6dB | mean 44.1 49 | 6.2
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Table 7.24: Effect of amplitude-based mask on results of JADE with flatness-based
permutation correction algorithm, shown for the reverberant datasets.

| Method | Dataset | Percent Accuracy | SDR | SIR |

Mask OFF Ir 26.8 56 | 4.0

Mask OFF 2r 23.3 59 | 3.7

Mask OFF mean 25.0 58 | 3.9

Mask ON, Thresh = -6dB 1r 20.4 55 | 49
Mask ON, Thresh = -6dB 2r 15.1 5.5 4.1
Mask ON, Thresh = -6dB | mean 17.8 55 | 45
Mask ON, Thresh = -3dB Ir 17.0 53 | 52
Mask ON, Thresh = -3dB 2r 14.7 51 | 42
Mask ON, Thresh = -3dB | mean 15.9 52 | 4.7
Mask ON, Thresh = 0dB 1r 12.6 50 | 54
Mask ON, Thresh = 0dB 2r 13.8 4.7 4.4
Mask ON, Thresh = 0dB | mean 13.2 48 | 4.9
Mask ON, Thresh = 3dB Ir 13.7 45 | 5.7
Mask ON, Thresh = 3dB 2r 16.3 41 | 4.6
Mask ON, Thresh = 3dB | mean 15.0 43 | 5.1
Mask ON, Thresh = 6dB 1Ir 15.6 40 | 6.0
Mask ON, Thresh = 6dB 2r 7.3 35 | 49
Mask ON, Thresh = 6dB | mean 11.5 3.7 | 55
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In the case of the new EM-based algorithm, time-frequency masking once
again leads to large improvements in the SIR, for example an improvement from 8.5
to 14.9dB can be achieved on average for the artificial datasets. Also, there is only
one among 14 considered cases, in which the SIR does not improve from applica-
tion of the mask, making the method a good candidate for suppressing interfering
speakers further than ICA alone could do.

However, the results for recognition accuracy are once again inconclusive.
In some cases, for example in the reverberant room (see Table 7.27), significant
improvements result from application of the amplitude-based masking function. On
the other hand, on average the car-data becomes less recognizable after masking, as
is to be seen in Table 7.26.

Table 7.25: Effect of amplitude-based mask on results of JADE with new EM-based
permutation correction algorithm, mean calculated over all artificial datasets.

| LABEL | Percent Accuracy | SDR | SIR |
Mask OFF 89.2 11.0 | 8.5
Mask ON, Thresh = -6dB 87.4 10.7 | 11.6
Mask ON, Thresh = -3dB 86.0 10.3 | 12.3
Mask ON, Thresh = 0dB 83.6 9.8 | 13.1
Mask ON, Thresh = 3dB 80.7 9.2 | 139
Mask ON, Thresh = 6dB 77.9 8.6 | 149
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Figure 7.9: Effect of amplitude-based mask on results of JADE with new EM-based
permutation correction algorithm, shown for all artificial datasets. The red symbols
show performance when no mask is applied. All other results were obtained with
amplitude-based postmasking, where blue symbols indicate an amplitude threshold
0,3=-6dB, purple symbols correspond to -3dB, for green symbols, the threshold
was set at 0dB and the turquoise symbols correspond to 6,5=3dB. Equal symbols
denote equal datasets.
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Table 7.26: Effect of amplitude-based mask on results of JADE with new EM-based
permutation correction algorithm, shown for all in-car datasets.

| Method | Dataset || Percent Accuracy | SDR | SIR |

Mask OFF Ic 69.0 5.6 1.9

Mask OFF 2c 76.0 11.3 | 84

Mask OFF 3c 60.7 7.1 | 44

Mask OFF 4¢ 53.9 44 | 2.6

Mask OFF mean 64.9 71 | 4.3

Mask ON Thresh = -6dB 1lc 61.5 42 | 2.2
Mask ON Thresh = -6dB 2c 81.2 10.3 | 13.7
Mask ON Thresh = -6dB 3c 64.6 6.7 | 6.6
Mask ON Thresh = -6dB 4c 44.9 5.1 3.5
Mask ON, Thresh = -6dB | mean 63.1 6.6 | 6.5
Mask ON , Thresh = -3dB 1c 60.7 4.1 2.6
Mask ON , Thresh = -3dB 2¢ 78.0 97 | 144
Mask ON , Thresh = -3dB 3c 63.0 66 | 7.1
Mask ON , Thresh = -3dB 4c 454 5.2 3.7
Mask ON, Thresh = -3dB | mean 61.8 64 | 7.0
Mask ON, Thresh = 0dB 1c 64.3 39 3.1
Mask ON, Thresh = 0dB 2c 75.2 9.1 | 15.0
Mask ON, Thresh = 0dB 3c 61.6 6.3 7.5
Mask ON, Thresh = 0dB 4c 44.0 5.1 3.8
Mask ON, Thresh = 0dB | mean 61.3 61 | 74
Mask ON, Thresh = 3dB 1c 60.2 3.7 3.5
Mask ON, Thresh = 3dB 2¢c 68.7 8.6 | 15.6
Mask ON, Thresh = 3dB 3c 62.3 5.8 8.0
Mask ON, Thresh = 3dB 4c 437 4.9 39
Mask ON, Thresh = 3dB | mean 58.7 58 | 7.8
Mask ON, Thresh = 6dB Ic 58.8 35 | 39
Mask ON, Thresh = 6dB 2c 64.7 7.9 | 16.1
Mask ON, Thresh = 6dB 3c 55.8 53 8.5
Mask ON, Thresh = 6dB 4c 41.7 4.4 4.1
Mask ON, Thresh = 6dB | mean 55.2 53 | 8.2
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Table 7.27: Effect of amplitude-based mask on results of JADE with new EM-based
permutation correction algorithm, shown for the reverberant datasets.

| Method | Dataset | Percent Accuracy | SDR | SIR |

Mask OFF Ir 50.0 777 | 5.8

Mask OFF 2r 42.3 73 | 4.8

Mask OFF mean 46.1 75 | 53

Mask ON Thresh = -6dB 1r 61.6 6.4 7.4
Mask ON Thresh = -6dB 2r 39.0 6.2 5.6
Mask ON, Thresh = -6dB | mean 50.3 63 | 6.5
Mask ON , Thresh = -3dB Ir 58.2 6.1 8.0
Mask ON , Thresh = -3dB 2r 434 5.7 59
Mask ON, Thresh = -3dB | mean 50.8 59 | 69
Mask ON, Thresh = 0dB 1r 64.6 5.7 8.8
Mask ON, Thresh = 0dB 2r 51.2 5.1 6.2
Mask ON, Thresh = 0dB | mean 57.9 54 | 7.5
Mask ON, Thresh = 3dB Ir 68.0 5.1 9.8
Mask ON, Thresh = 3dB 2r 49.5 4.3 6.4
Mask ON, Thresh = 3dB | mean 58.8 4.7 | 8.1
Mask ON, Thresh = 6dB 1r 58.9 45 | 11.0
Mask ON, Thresh = 6dB 2r 53.8 34 | 6.6
Mask ON, Thresh = 6dB | mean 56.3 39 | 8.8
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7.3.3.2 Phase Mask

The phase-based mask can only be applied, when there is a possibility of
distinguishing the most likely source according to the phase angle. Among the con-
sidered ICA algorithms, this is only the case for JADE with maximum likelihood
permutation correction, thus, this is the only algorithm for which results are avail-
able here. Firstly, Figure 7.10 gives an overview of the achieved results for the
artificial datasets. As can be seen, the implemented phase-based mask only works
reliably for those datasets with an SNR above 0dB. This is evident from the fact that
only the SIR of the low-noise mixtures is reliably increased, but this is increased
by a large degree. Also, it can be seen from the fact that both the clean in-car
datasets (see Table 7.29) as well as the noise-free reverberant room recordings (in
Table 7.30) can be recognized with significantly better accuracy with the mask than
without it, whereas for the noisy in-car recordings, the SIR improves marginally but
at the cost of a significantly lowered SDR.

Therefore, overall, the phase-based mask as implemented here can be con-
sidered as an alternative to amplitude-based masking, but it is only suitable for
scenarios, where noise does not have a large impact on the signal. In further recog-
nition tests, only the amplitude-based mask was selected for evaluation, since it is
more robust to noise and reverberation and thus more suitable overall for the cases
considered in this thesis.

Table 7.28: Effect of phase-based mask on results of JADE with new EM-based
permutation correction algorithm, mean calculated over all artificial datasets.

| LABEL | Percent Accuracy | SDR | SIR |
Mask OFF 89.2 11.0 | 85
Mask ON, Likelihood Ratio 0.9 89.2 84 | 12.6
Mask ON, Likelihood Ratio 1.0 89.4 8.4 | 12.5
Mask ON, Likelihood Ratio 1.3 90.1 8.6 | 122
Mask ON, Likelihood Ratio 1.5 89.5 8.7 | 12.1
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Figure 7.10: Effect of phase-based mask on results of JADE with new EM-based
permutation correction algorithm, shown for all artificial datasets. Again, the red
symbols show performance when no mask is applied. All other results were ob-
tained with phase-based postmasking, with blue symbols indicating a likelihood
ratio threshold Thr=0.9, purple symbols correspond to a likelihood ratio threshold
of 1.0, for green symbols, the threshold was set to 1.3 and the turquoise symbols
correspond to Thr=1.5. As before, equal symbols denote equal datasets.
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Table 7.29: Effect of phase-based mask on results of JADE with new EM-based
permutation correction algorithm, shown for all in-car datasets.

| Method Dataset || Percent Accuracy | SDR | SIR |

Mask OFF lc 69.0 83 | 44

Mask OFF 2¢ 76.0 11.3 | 84

Mask OFF 3c 60.7 7.1 4.4

Mask OFF 4c 53.9 44 | 2.6

Mask OFF mean 64.9 7.8 | 5.0

Mask ON Likelihood Ratio 1.5 1lc 74.6 7.3 8.5
Mask ON Likelihood Ratio 1.5 2c 78.9 32 | 9.8
Mask ON Likelihood Ratio 1.5 3¢ 60.9 2.9 5.5
Mask ON Likelihood Ratio 1.5 4c 52.6 2.2 2.8
Mask ON, Thresh = 1.5 mean 66.7 39 | 6.6
Mask ON Likelihood Ratio 1.3 lc 73.7 72 | 85
Mask ON Likelihood Ratio 1.3 2c 78.3 32 | 99
Mask ON Likelihood Ratio 1.3 3c 60.8 26 | 53
Mask ON Likelihood Ratio 1.3 4c 52.6 2.1 29
Mask ON, Thresh = 1.3 mean 66.3 3.8 | 6.7
Mask ON Likelihood Ratio 1.0 lc 76.4 72 | 8.7
Mask ON Likelihood Ratio 1.0 2c 80.0 3.1 | 10.1
Mask ON Likelihood Ratio 1.0 3c 57.3 2.3 5.0
Mask ON Likelihood Ratio 1.0 4c 51.6 1.8 | 2.9
Mask ON, Thresh = 1.0 mean 66.3 3.6 | 6.7
Mask ON Likelihood Ratio 0.9 1lc 76.7 7.1 8.7
Mask ON Likelihood Ratio 0.9 2c 79.5 3.1 | 10.1
Mask ON Likelihood Ratio 0.9 3¢ 57.0 2.3 4.8
Mask ON Likelihood Ratio 0.9 4c 50.8 1.7 | 2.9
Mask ON, Thresh = 0.9 mean 66.0 35 | 6.6
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Table 7.30: Effect of phase-based mask on results of JADE with new EM-based
permutation correction algorithm, shown for the reverberant datasets.

| Method Dataset | Percent Accuracy | SDR | SIR |

Mask OFF Ir 50.0 7.7 | 5.8

Mask OFF 2r 42.3 73 | 4.8

Mask OFF mean 46.1 75 | 5.3

Mask ON, Likelihood Ratio 1.5 Ir 64.0 5.6 8.8
Mask ON, Likelihood Ratio 1.5 2r 53.4 53 | 7.0
Mask ON, Thresh = 1.5 mean 58.7 54 | 7.0
Mask ON, Likelihood Ratio 1.3 Ir 59.5 55 | 90
Mask ON, Likelihood Ratio 1.3 2r 48.9 52 | 7.1
Mask ON, Thresh = 1.3 mean 54.2 54 | 8.1
Mask ON, Likelihood Ratio 1.0 1r 59.2 54 9.2
Mask ON, Likelihood Ratio 1.0 2r 48.9 51 | 74
Mask ON, Thresh = 1.0 mean 55.1 52 | 83
Mask ON, Likelihood Ratio 0.9 1Ir 61.6 53 | 93
Mask ON, Likelihood Ratio 0.9 2r 54.2 50 | 7.5
Mask ON, Thresh = 0.9 mean 57.9 52 | 84
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7.3.4 Discussion

Time-frequency masks can be obtained based on the results of ICA and

they consistently improve separation performance as measured by Signal-to-Inter-
ference-Ratio (SIR).

Depending on the scenario, the best results are attained with different ICA
algorithms. When considering the detailed results in the preceding evaluation, the
following appear to be the most significant distinguishing characteristics of a mix-
ing situation.

¢ Non-reverberant mixtures When the mixing is non-reverberant, as in Ta-
bles 7.19, 7.22, 7.25 and 7.28, the best results are attained by JADE with
flatness permutation correction. This is also a reasonable result, since non-
reverberant mixtures have very short corresponding impulse responses, lead-
ing to very flat room transfer functions, just as utilized by flatness based per-
mutation correction.

¢ Non-noisy reverberant mixtures In fairly clean recordings with reverber-
ation, namely in the car at standstill and in the room recordings, JADE with
EM permutation correction and phase mask appears to be the best choice.

e Noisy reverberant mixtures In contrast, when real room recordings are
made under noisy conditions, the phase ratio of the signals appears to deteri-
orate more than the amplitude ratio. This could also be expected and it leads
to JADE with EM permutation correction plus amplitude mask clearly out-
performing the other algorithms, see Tables 7.20, 7.23, 7.26 and 7.29 for the
detailed performance.

Overall, thus, the appropriate choice of the ICA algorithm is the most im-
portant point in ascertaining the success of postmasking.

Once this decision has been made, postmasking can be applied successfully
to all considered scenarios. In each scenario, excepting in a few cases of artificial
mixtures at 0dB or -10dB, the signal to interference ratio is improved by all of the
amplitude based postmasks. In contrast, phase based postmasking can occasionally
converge only to the dominant target speaker, leading to a deterioration of separa-
tion for non-dominant targets, but among all experiments, this behavior was only
observed in one isolated case, namely the artificial dataset 3a.
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Otherwise, all presented algorithms perform robustly over all considered
cases and with all tested ICA algorithms. However, as a disadvantage, there is also
a consistent loss in Signal-to-Distortion-Ratio (SDR), thus, time-frequency mask-
ing will always lead to a trade-off between interferer suppression and target sig-
nal quality. This trade-off could be improved upon, either by employing a more
sophisticated mask calculation, or by replacing deleted time-frequency bins with
appropriate estimates. Nonwithstanding such improvements, though, while SIR is
improved, the signal is simultaneously distorted to some degree. Thus, it depends
on the chosen application area, whether or not the method is attractive for the spe-
cific case at hand.

For speech recognition purposes, this decision is not a clear one when only
time-frequency masking is applied without any sort of compensation or uncertainty
evaluation. However, as it is shown in the next section, with appropriate missing-
feature methods, time-frequency masking can be used as a consistent improvement
for speech recognition in all considered scenarios.
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7.4 Evaluation of combined ICA and Missing
Feature Recognition

7.4.1 Speech Recognition Setup
7.4.1.1 Hidden Markov Model Toolkit (HTK)

HTK is a toolkit for building speech recognition models based on HMMs.
The toolkit provides routines for building and training HMMs and for carrying out
the recognition by Viterbi decoding. The toolkit was used in this thesis to obtain
speech models of two different granularities: one at the word level, and one at the
phoneme level. These models were trained for the typical speech parameterizations
of 13 mel frequency cepstral coefficients with delta and acceleration parameters,
where a first order preemphasis filter was used to emphasize higher frequencies,
and the energy was normalized in order to be tolerant to changes in speech level.

The HTK parameters used for parameterization are given below, the syntax
of this parameter file is defined in [ You2002].

# coding parameters ’configMFCC’
TARGETKIND MFCC_O_D_A
TARGETRATE 100000.0
SAVECOMPRESSED = T
SAVEWITHCRC = T
SOURCEFORMAT = NIST
WINDOWSIZE = 250000.0
USEHAMMING T
PREEMCOEF = 0.97
NUMCHANS = 26

CEPLIFTER = 22

NUMCEPS = 12

ENORMALISE =T

To train the recognition model, a speaker independent seed model was
trained on all phonemes from the TIDigits database. From the phoneme models,
word models were built and they were adapted to the clean data recorded in the re-
verberant lab room. This explains why in contrast to DaimlerChrysler’s recognizer,
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which is designed for and trained on car data, the results for the HTK models are
best on the reverberant room and artificial data.

7.4.1.2 Matlab Implementation

A speech recognizer was implemented in Matlab due to a number of limita-
tions of HTK:

e HTK does not allow easy access to many internal variables, where especially
framewise log likelihoods and would have been needed.

e Matlab allows easier integration of preprocessing and speech recognizer, e.g.
for feeding feature likelihoods to the recognizer.

Thus, an HMM recognizer was implemented in the course of two diploma theses,
[Huy2004, Ast2005]. This recognition system consists of two main parts needed
here, which are on the one hand responsible for speech analysis (getspeech) and on
the other hand for speech recognition (recognize), of an own Baum-Welch reesti-
mation module for training and a couple of interface modules, as shown in Figure
7.11.

Since the recognizer training runs independently of the later recognition,
HTK was used for all recognizer training, therefore, the Matlab system is also
equipped with an interface for reading HTK HMMs.

7.4.2 Results Missing Feature Recognition

In order to make time-frequency masking a reliable option for speech recog-
nition purposes also, missing feature recognition as described in Chapter 6 was
implemented for the Matlab-based recognizer described above and tested on all
datasets, both using Monte Carlo simulation and the unscented transform. Recog-
nition was carried out by modified imputation as detailed in Section 6.4.

Experimentally, it was found that for the masking function defined in (6.2),
three different parameters were useful for different cases. These sets of parameters
are given in Table 7.31.

All other parameters were set as discussed above in 7.3.1.
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Figure 7.11: Structure and interfaces of Matlab and HTK speech recognizers.

Table 7.31: Parameters used for uncertain recognition.

Situation Label Mask Mask Error
Damping d,, | Threshold 6,3 | Probability p,
Strong interference

from noise L 0 -2dB 0.08
or other speaker

Occasional M 04 -1dB 0.08

interference
Clean separation H 0.9 -2dB 0.08

by ICA

7.4.2.1 In-Car-Datasets

For the car datasets, generally speaking, good separation was already
achieved by ICA alone at standstill, so the parameter set "H” was usually used in
that case, only the single female speaker (code II) makes an exception, since her
voice is not as present in the recordings as that of the interfering male speaker.
Regarding the quiet in-car data, it can be seen that missing feature techniques con-
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tribute only slightly to improved recognition. On average, the results change from
49.1% correctness and 34.9% accuracy without masking to 43.5% correctness and
38.4% accuracy with masking, corresponding to a notable drop in understandability
coupled with an about equal increase in interferer suppression. Using missing data
techniques gives a final result of 51.5% correctness and 39.0% in accuracy, thus
improving both figures, when compared to either purely linear ICA or ICA with
time-frequency masking.

On the other hand, for noisy data, the improvement is significant, though it
takes place at a low level. However, it can be expected that much better performance
would result, if a recognizer were trained on noisy data at -10dB, which was not
possible here due to a sparsity of recordings.

But at this low initial level, ICA alone leads to a recognition rate of 22.0%
and 18.0% correctness respectively accuracy. By time-frequency masking, accuracy
is actually improved to 25.3% and correctness also improves slightly to 19.0%. Af-
ter application of missing data techniques, both figures improve noticably to 34.8%
respectively 23.4%.

All detailed results can be seen in Tables 7.32 through 7.35.

Table 7.32: Results after missing feature recognition for in-car recording of speaker
GA, results are given as PC/PA.

Dataset | Parameter | ICA Out | Masked, No Monte | Unscented
Label No Mask | Missing Data | Carlo | Transform
Clean Ic H 45.7/31.0 36.5/33.6 47.4/33.7 | 47.6/33.6
Noisy 3c L 27.2/19.0 30.2/19.6 34.5/21.1 | 34.0/20.3
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Table 7.33: Results after missing feature recognition for in-car recording of speaker

AR, results are given as PC/PA.

Dataset | Mask | ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform

Clean Ic H 47.7/37.6 42.8/37.0 46.6/39.1 | 46.0/38.8

Noisy 3¢ L 19.9/18.4 24.0/22.8 26.7/22.8 | 29.2/23.0

Table 7.34: Results after missing feature recognition for in-car recording of speaker

FM, results are given as PC/PA.

Dataset | Mask | ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform

Clean 2¢ H 44.6/31.2 37.2/32.7 47.5/34.5 | 47.5/34.5

Noisy 4c L 21.3/18.3 27.5/15.6 31.6/22.3 | 32.4/21.9

Table 7.35: Results after missing feature recognition for in-car recording of speaker

II, results are given as PC/PA.

Dataset | Mask | ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform

Clean 2¢ M 58.4/39.8 57.4/50.5 65.3/49.0 | 65.4/48.7

Noisy 4c L 19.6/16.3 19.3/17.9 40.6/28.5 | 43.7/28.4

7.4.2.2 Lab-Room-Datasets

In the reverberant room datasets, separation was of intermediate quality
without postmasking, where one speaker was clearly better separated. Thus, for
the better speaker with code AR, to be seen in Table 7.37, the medium quality pa-
rameters were chosen, and the parameters for speaker GA were set for low quality
separation. With these settings, the average performance for configuration ”1r”, the
one, which is easier to separate due to greater distance between the loudspeakers,
changes from 83.4% respectively 58.8% without masking to 75.0% and 68.4% with
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masking, which is the usual improvement in accuracy at the cost of correctnes, due
to distortions in the speech signal. With missing feature techniques, here, the funal
performane is 86.8% correctness, so all problems caused by masking are compen-
sated, and the accuracy rises to 79.8%, which is a 49% relative error rate reduction,
when compared to its value before masking.

For the second configuration, separation is more difficult, but here, the same
tendency is visible. The original error rates after ICA are 76.2% and 55.8%, mask-
ing reduces the correctness to 72.9% and increases the accuracy to 66.7%. After
application of missing data techniques, the loss in correctness is compensated to a
final value of 86.7% and the correctness also improves to 70.9%.

For the reverberant room recording, in one dataset, Monte Carlo simulation
gave an improved recognition rate compared to the unscented transform, however,
since it is a technique where random changes can occur in the output occasionally,
which can by chance help to improve recognition in some cases, this is most likely
rather a random effect, especially since it was not observed in any of the other
datasets.

Table 7.36: Results missing feature recognition of speaker GA in lab-room, results
are given as PC/PA.

Dataset | Mask || ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform
Ir L 86.8/57.1 69.7/66.3 93.6/93.6 | 89.4/89.4
2r L 76.6/50.9 70.1/62.1 80.4/66.3 | 84.5/67.1

Table 7.37: Results missing feature recognition of speaker AR in lab-room, results
are given as PC/PA.

Dataset | Mask || ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform
Ir M 80.1/60.5 80.3/70.6 84.3/70.3 | 84.3/70.3
2r M 75.7/60.7 75.7/71.3 88.8/74.8 | 88.8/74.8
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7.4.2.3 Artificial Datasets

At higher SNRs, the source separation quality was very good with linear
ICA alone, as seen in Tables 7.13 and 7.14, thus there is no need for time-frequency
masking. However, at the lower SNRs of 0dB and -10dB, the artificial mixtures
can also profit from time-frequency masking. The tables below show the results on
these datasets, where dataset Sa and 6a were at 0dB and 7a and 8a at -10dB SNR.
Again, the only female speaker (code /1) is less well separated that the three male
speakers, so the parameterization L’ was chosen for missing feature recognition in
that case in Table 7.40, whereas all other datasets were recognized with the setting
”H” for well separated data.

On average, the recognition rates change from 64.5% and 51.5% for the
cleaner datasets and 37.3% respectively 32.7% for the noisy ones to 51.1% /42.3 %
for 0dB and 30.9% / 26.5% for -10dB after time-frequency masking. With missing
features, 68.6% correctness results for the 0dB dataset and the accuracy is 55.1%
which is a relative improvement of about 8% compared to purely linear ICA. For
the noisy dataset 47.6% is the correctness, up from 37.3% for linear ICA, and the
final accuracy after ICA, time-frequency masking and missing features at -10dB 1s
37.5% compared to originally 32.7%, so the relative correctness improvement in
this case is about 28%.

Table 7.38: Noisy Artificial Mixtures Speaker GA, results are given as PC/PA.

Dataset | Mask || ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform
S5a H 53.8/43.3 43.3/30.2 57.3/45.5 | 57.3/45.5
7a H 34.0/24.8 31.5/23.7 42.1/29.4 | 41.3/29.2
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Table 7.39: Noisy Artificial Mixtures Speaker AR, results are given as PC/PA.

Dataset | Mask | ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform
S5a H 84.5/65.8 66.5/56.5 85.5/66.2 | 85.1/65.8
7a H 52.6/43.2 32.1/30.6 54.4/47.6 | 58.3/50.0

Table 7.40: Noisy Artificial Mixtures Speaker II, results are given as PC/PA.

Dataset | Mask | ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform
6a L 61.5/48.5 53.3/44 .4 68.4/57.2 | 67.8/56.8
8a L 44.1/33.0 34.6/31.0 48.1/33.3 | 45.8/33.6

Table 7.41: Noisy Artificial Mixtures Speaker FM, results are given as PC/PA.

Dataset | Mask | ICA Out | Masked, No Monte | Unscented
No Mask | Missing Data | Carlo | Transform
6a H 58.2/48.3 41.4/38.3 64.0/52.1 | 64.0/52.1
8a H 35.2/29.6 25.5/20.8 44.1/36.2 | 44.9/37.0

7.4.3 Discussion

Overall, it can be seen that the proposed architecture of ICA, followed by
time-frequency masking and missing feature recognition, can improve the recogni-
tion performance on all datasets that were tested. Thus, uncertainty propagation and
uncertain recognition by means of modified imputation can provide the necessary
link between spectrum domain uncertainties and robust recognition in a multitude
of other domains.

There is an added computational effort, however, which consists of two as-
pects:
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e Transformation of uncertain features by linear stages is performed by two
rather than one matrix multiplications for each time frame. The nonlinear
transformations by means of the unscented transform require their respective
nonlinearity to be evaluated 2n times, with n = dim(0), instead of once.

e For recognition, for each time frame and each HMM state, an evaluation of
two additional matrix inversions and one more matrix multiplication become
necessary. This roughly triples the evaluation time for each state.

On the positive side, though, the new approach opens up the opportunity of
using uncertain recognition in other than the spectrum domain, even when uncer-
tainties are estimated in the spectrum, as is often the case. Also, the new approach
of uncertain recognition offers a smooth interpolation between completely uncer-
tain features, which would result in imputation or marginalization, and completely
certain features, as used in standard recognition. This allows for continuous-valued
uncertainties and thus leads to smoother and more flexible approach.

Regarding the parameter settings, it is still necessary to select the masking
parameters in accordance with the mixing situation, where experiments have shown
that three parameter sets are sufficient, one for reliably separable mixtures*, one for
noisy and highly reverberant mixtures® and one for low-quality or low-amplitude
speech signals in quiet scenarios. However, an automatic selection of the appro-
priate time-frequency masking parameters should also be possible, for example ac-
cording to confidence measures output by the recognizer or the DOA-model.

With such appropriately set parameters, then, the performance in terms of
recognition accuracy is always increased on all tested datasets, where it can be
seen that time-frequency masking generally entails a loss in performance, but the
subsequent missing-feature recognition can reliably compensate this loss.

Overall, best performance improvements are attained in the reverberant and
most noisy scenarios, and for speakers with low amplitudes, where ICA alone is
problematic. In those cases, missing features bring the biggest gains when com-
pared to only ICA, as it is visible e.g. in Tables 7.35,7.36 or 7.41.

“This comprises all artificial and quiet in-car datasets with a sufficient speaker amplitude, i.e. ex-
cluding the one low-amplitude female speaker with speaker code II.
SThese parameters are optimal for all noisy in-car recordings.
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But the performance improvement is also clear in general. This can be seen
from Table 7.42, which summarizes the results for all considered mixtures.

Table 7.42: Overview of all results in terms of PC/PA.

Datasets ICA Out | Masked, No Monte | Unscented

No Mask | Missing Data | Carlo | Transform
Quiet In-Car 49.1/34.9 43.5/38.5 51.7/39.1 | 51.6/38.9
Noisy In-Car 22.0/18.0 25.3/19.0 33.4/23.7 | 34.8/23.4
Reverberant Room | 79.8/57.3 74.0/67.6 86.8/76.3 | 86.8/75.4
Noisy Artificial 53.0/42.1 41.0/34.4 58.1/45.9 | 58.1/46.3

Here, for the reverberant room as well as for the quiet in-car recordings, it
is clearly visible how time-frequency masking results in a significant improvement
of accuracy entailing a loss in correctness, and how missing feature recognition
allows to increase correctness back to the original value, or even to a notably higher
value, while retaining or improving on the accuracy achieved by time-frequency
masking. In the noisy in-car-recordings, time-frequency masking on its own is
already successful at improving recognition performance, albeit at very low values
which are due to the insufficient SNR of -10dB. In this case, also, significantly
better values can be obtained by missing feature recognition. Finally, as seen from
the performance on artificial mixtures, at times time-frequency masking under noisy
conditions can actually result in a decrease of performance. Here, missing feature
techniques can again be used to improve results, and while the mask calculation is
not very reliable in such noisy conditions, the entire setup of masking followed by
missing feature recognition still improves performance in this difficult scenario.

As a target for future research, it will be interesting to combine the de-
scribed setup with noise reduction techniques. Since ICA can actually worsen the
SNR due to the white noise gain of the unmixing system, this may be a necessity
when encountering data such as those observed in car-environments. The proposed
architecture also allows seamless integration of noise reduction techniques, though,
and when it is of interest, the noise estimate can be used to estimate also the un-
certainty of features, which has already been successful in several tests and will be
investigated in more detail in the future.
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Chapter 8

Conclusions and Outlook

In this thesis, the use of independent component analysis for automatic
speech recognition has been investigated. The main contribution of this work con-
sists of three aspects.

Firstly, the problem of permutation correction was solved in a new, mathe-
matically rigorous manner, which applies probabilistic models of the source direc-
tions. These models are estimated via the EM-algorithm, which has been proved
to converge at least to a local optimum. Thus, a mathematically sound solution is
applied for a problem which has so far often been solved by ad hoc methods.

Secondly, the use of time-frequency masking for ICA output signals has
been suggested for the first time. While time-frequency masking for speech source
separation has recently gained attention, the masking function was customarily es-
timated from beamforming-related or speech specific characteristics. Here, ICA
has been successfully used as a basis for mask estimation, which brings with it the
advantage of being inherently noise robust and furthermore lends itself to the use
in reverberant environments, as it does not require the direction of arrival of source
and interference to be fixed over frequency.

However, while time-frequency masked ICA leads to high gains in SIR,
speech recognizer performance does not increase significantly and in some scenar-
ios it even deteriorates. More precisely speaking, when time-frequency masking is
applied after ICA, the interferer suppression increases, thus the accuracy figure gen-
erally increases significantly. But in many cases, this comes at the cost of reduced
understandability of the target speaker, usually leading to a significantly reduced
percentage of correctness, which is likely due to the distortion of recognition rele-
vant features.

Therefore, as the final aspect of this thesis, a novel method is suggested to
pass preprocessing information on to the recognition engine. This allows to inform
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the recognizer of the confidence of the preprocessing stage in the estimated fea-
tures and therefore lends itself easily to the integration of time-frequency masks in
the recognition process. The approach is based on the unscented transform which
makes it efficient computationally and flexible with respect to the parametrization
of the speech recognizer. Also, a method has been described, which uses feature
confidence information for recognition in a modified imputation approach, which
smoothly varies the weight of the observed features based on the ratio of feature
reliability and speech model variance. This approach does not require a threshold
to distinguish reliable features” from “unreliable” ones, and it compensates in-
curred feature distortions, giving better performance both in terms of correctness
and accuracy than either ICA alone or ICA with time-frequency masking.

Thus, overall, two improvements of convolutive ICA were suggested which
are specific to the speech processing scenario, and a new approach for integrating
the so enhanced ICA algorithm was presented, which is also easily applicable to
recognizing speech preprocessed by other speech enhancement algorithms.

Future investigations can proceed in a number of directions.

Regarding the mask, integrative mask computation can include other crite-
ria in addition to those derived from ICA. For example, Bayesian approaches can
flexibly handle an arbitrary number of information sources and integrate them into
one optimum decision. This would allow a joint evaluation of, for example, ICA,
beamforming and CASA criteria to arrive at one overall optimum masking function,
which can be either binary or soft.

Concerning the uncertain recognition, in contrast to other techniques of un-
certainty propagation, other features than the mel-cepstrum coefficients are also
suitable for use within this framework. For this purpose, it is only necessary to sep-
arate them into their linear and nonlinear stages, then, output uncertainties can be
obtained from input uncertainties also for currently much discussed features such
as wavelet coefficients or RASTA-PLP features.

And finally, going beyond ICA, it will be interesting to see how well the
proposed approach of uncertainty transformation and missing feature recognition
integrates with other speech processing methods such as the Ephraim-Malah filter,
with beamforming methods and with deconvolution techniques. It is expected that
many approaches which make use of hard or soft time-frequency masks can in this
way be better integrated with existing speech recognition systems.
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Appendix A

From the Theory of Random Variables and Statistics

A.1 Random Variables

In conducting random experiments, often, the interest of the observer lies
not so much in the outcome itself, but rather in some function of this outcome. For
example, when two dice are thrown, the observer might be interested not in the
values of the individual dice but rather in its sum. This function, defined over the
sample space, the space of all possible outcomes of a random experiment, is called a
random variable. Formally speaking, given a random experiment and an associated
sample space €, every function X that maps Q to R is called a random variable.

A.1.1 Moment Generating Functions

The moment generating function is an alternative description of a random
variable with a one-to-one correspondence between the distribution function and
the moment generating function. The moment generating function of a random
variable X is defined for all 7 by

¢(1) = E(e™). (A.1)

For a continuous random variable x, this means

(1) = f pr(x)etdx. (A.2)
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Successively differentiating ¢ at ¢ = 0 yields all moments of x, for example

o = G : Pu(x)edx
* d Xt
= Ioo pr(x)e dx
= f po(x)xe dx
= E(xe")
so that
¢(0) = E(x),
and
$(0)" = E(x),

and the n™ moment

$(0)" = E(x")

can be derived similarly.

A.2 Matrix Multiplication for Random Variables

(A.3)

(A.4)

(AS)

(A.6)

Given a vector of random variables s = [ 515> ... 5,], and a linear transform

X = As

(A7)

and also knowing the means and variances p; and X, what is needed are the means
and variances of the measurement vector x. To start out, matrix multiplication is
decomposed into its constituent operations. Each entry of the output vector is the

weighted sum of n random variables,

n
Xi = E Cl,‘j‘ Sj.
=1
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Regarding the mean of one random variable,

Hays; = Elaij-s))
= foo a;j - s;ps;(s;)ds;
= a,-jf sips;(sj)ds;
= ag, (A9)
holds, so the mean will just behave linearly according to
Ex) = E(As)

g

J

oz

J

= ZE(%’ - 55)
j
= > ay-E(s)

= AJ-E(s). (A.10)
Concerning the covariance,
T, = E(xx))
= E(As(4s)))
= E(Ass’AT)
= AE(ssHAT
= AXAT (A.11)

can be used to propagate variances through linear transformations.

A.3 Unscented Transform

For the unscented transform, it is desired to generate a set of samples and
weights, such that the weighted mean and average of the samples is equal to the
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mean X and covariance X,, of a random variable x. The points are generated by

szi

W():L i=0

n+k

xi:i"'(Pxx)-,i Wi: ! i=1,....n

2n+r)

:X:izi_(Pxx).,i—n Wi: . i:n+1""’2n'

where P,, is defined via

2(n+k)

P = V(I’l + K)Lx.

The weighted mean of the samples is given by

which is equal to

as desired.

=

Xi= > WX,

iWO + i Wi (i + (Pxx).,i +X— (Pxx)~,i)
i=1

= X [W,- + i 2Wi)
i=1

K 2n)_
=X

B X(n+/<+2(n+/<)

The weighted covariance is

which leads to

2

2n
S, = ), Wi (= %) (X - %),

i=0

n 2n
Z Wi (Pxx)~,i (Pxx)Tl + Z Wi (Pxx)~,(i—n) (Pxx).z;'_n
i=1

i=n+1

2 Z Wi (Pxx)~,i (Pxx)z,;
i=1

1
(n+«)

i] (Pe).i (P
i=1
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(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)



Because X, is a symmetric matrix, its matrix square root is also symmetric, so that
the transpose of its i’th column (Pxx)fi is equal to its i’th row (P,,);. and therefore

1 n
Sox = m;wm).,xm)i,.. (A21)

Since the summation in (A.21) describes a matrix multiplication of P,, with itself,
one can also write

1
Yo, = PP, A22
X 0 (A.22)
and due to the definition of P, in (A.12),
1
Yxx = )2 )2 A2
5 = g Ve R V0 (A23)
)N (A.24)

which is the intended result.
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Appendix B

Independent Component Analysis

Independent Component Analysis (ICA) has emerged as a mathematically
well founded tool for recovering original signals from mixtures of the general form

x = £(s) (B.1)

on the basis of statistical independence of the sources. Since the general formu-
lation of the problem is very much ill-posed, various restrictions on the mixing
process have been investigated to obtain practical solutions to the problem in spe-
cific cases. The most often applied simplification is the restriction to the linear mix-
ing case, which is described in this appendix. However, in the case discussed in this
thesis, convolutive mixing of sources is encountered. In order to solve this problem,
linear ICA can be applied in the frequency domain, solving one ICA problem for
each frequency bin of the mixtures. As discussed in the main section, care must be
taken when the frequency bins are re-assembled to find a correct assignment of the
outputs to the sources and to avoid arbitrary scaling of different frequency bins, but
as long as these scaling and permutation problems are dealt with appropriately, the
linear methods discussed here are applicable for general, convolutive mixing. The
only further requirement, which stems from the application in the frequency do-
main, is that the methods must be suitable for complex valued signals and mixing
systems, but this is the case for all algorithms discussed in the following.

Linear ICA

In linear ICA, the sensor signals are supposed to consist of linear combi-
nations of the sources, as it is shown in Figure B.1. Then, the mixing process is
described mathematically by

X = As. (B.2)
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Sz(t) o dy 4+ Xz(t)

Figure B.1: Linear Mixing Model

The aim of ICA is to identify and subsequently invert this mixing process, so that
the output signals y will be reconstructions of the source signals s. Ideal separation
would be achieved, if the mixing matrix A could be estimated perfectly and was
also invertible, for in that case, one would have

y=A"'x=A"'As =5, (B.3)

where A is the estimated mixing matrix. However, in general, insufficient infor-
mation is available to obtain back the original sources. Thus, in linear ICA, the
achievable, slightly lesser goal, consists in finding an unmixing matrix W = A~!,
which will reconstruct the source signals up to scaling and permutation. This can
be written as

y = A”'x = WAs = PDs, (B.4)

where D is a diagonal matrix of scaling factors for the individual sources and P is a
permutation matrix!.

This matrix is found by searching for an unmixing matrix which will pro-
duce independent outputs y; ...y,, as is shown in Figure B.2 for the two-by-two
case. Statistical independence is a strong requirement. Two random variables are
only independent, when their joint pdf factorizes. The requirement can thus be
stated as follows:

Pyi.y> ()71,)’2) = Dy, (yl)pyz ()b) . (BS)

! A permutation matrix has exactly one entry equal to one in each row and column, while all other
entries are zero.
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Figure B.2: Unmixing by Statistical Independence.

However, in order to obtain separated sources, the mere requirement of uncorrelat-
edness, or of

E(yiy2) =0 (B.6)
is insufficient to recover sources from mixed signals, as can be seen from the fol-
lowing consideration.

Firstly, two random vectors are called uncorrelated, when all pairs of vector
elements are uncorrelated according to (B.6), so

E ((y — ) (v - uy)T) = A, (B.7)

where A is an arbitrary diagonal matrix. Without loss of generality, the following
considerations are based on assuming zero-mean and unit-variance vectors y, such
that

Cy=E(yy")=1I (B.8)

Then, a rotation of the vector y can be performed by pre-multiplying with a unitary
matrix U via z = Uy.? The effect of this multiplication is seen from

C..=EUyy'U"=UIU" =1
if UU"=1I (B.9)

2 A matrix U is called unitary, iff U UH = I, with I as the unit matrix. A real unitary matrix is
also an orthogonal matrix with the defining property UU” = I.
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Therefore, if y is uncorrelated, an arbitrarily rotated version will also be uncorre-
lated. Thus, making output signals uncorrelated is necessary for obtaining source
separation but it is not sufficient and more information must be taken into consider-
ation in order to achieve blind source separation.

This is the major task of independent component analysis, which aims to
find output signals that are independent rather than merely uncorrelated.

Still, the most easily computed necessary condition for independence is un-
correlatedness of the data. Therefore, as a first processing step, the data are usually
orthogonalized by Principle Components Analysis (PCA), such that their autocor-
relation matrix Ey y becomes the unit matrix /. Then, the actual ICA algorithm itself
will only have to find an orthogonal rotation matrix, because this is the only part of
the unmixing system that is still unknown. Figure B.3 illustrates this approach.

1) Pre-Whitening 2) ICA
Mixed Data ITTTTTTTTTTTIIOTTI I Independent Data

0 / : EV(C,) :: W : W : 0

. : | _1 b
2 0 2 ' pca { Scaling :2 ! 0
5 5
0 0 *&";gy;‘:g},
05 0 0.5 5 0 5
Data after PCA Data after Pre-Whitening

Figure B.3: Demixing is usually a two-stage procedure composed of pre-whitening
followed by the actual ICA.

PCA

The first step, PCA, consists in finding that transformation matrix 7” which
will orthonormalize the data, so

E(Tx(Tx)”) = 1. (B.10)
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If one separates this process into two steps, the first one of finding an unitary basis®
and the second one of rescaling orthogonal data to make it orthonormal, this leads
to

E(Ux (Ux)") A
& UExxHU" = A (B.11)
& EBExxhHUu" = U'A
for the first step. Since U is assumed to be unitary, U? = U -1 so
Exx"\U? = UYA. (B.12)

This expression is recognized as an eigenvector-problem of the data’s autocorrela-
tion matrix R,, = E(xx!?), so the measurement vector must be projected onto the
eigenvectors of the autocorrelation matrix first.* Secondly, from (B.11) it is seen
that these decorrelated measurements will still be scaled by the eigenvalues of R,
which are contained in the diagonal matrix A. This can be compensated by mul-
tiplying with the inverse square root VA~ of this matrix of eigenvalues. On the
whole, then, the whitened data w can be obtained from the measurement values x
by projecting onto the eigenvectors of R,, first, and by secondly multiplying with
the associated inverse roots of eigenvalues VAT, which always exist because auto-
correlation matrices are positive definite and thus have only positive eigenvalues.

This yields

T = VAU (B.13)

as the entire whitening matrix, with U and A as the eigenvectors and eigenvalues
of E(x x),’ so that

E(TX(TX)H) = VATUEx x")U# VAT (B.14)
= VA UURAUUR VAT (B.15)
- I

3 A set of vectors forms a unitary basis, if each of the vectors has the length one, and the Hermitian
inner product of each pair of vectors is zero. A matrix composed of such a unitary basis as rows is
itself unitary (UU" = I) due to these properties of its constituent row vectors.

“The eigenvectors of a symmetric matrix are unitary [Hyv2001], so a solution with the assumed
property U = U~ can always be found.

SIf UM are the eigenvectors and A contains the eigenvalues of E(x x), this means that the corre-
sponding eigenvector decomposition is E(x x) = U7AU.
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ICA

After PCA, the data already is orthogonal and since it must remain so in
order to be independent, the actual search process of ICA is reduced to the search
for a unitary transform which makes the output signals as independent as possible.
For this purpose, some practical measure of statistical independence, which in itself
is not easily estimated, needs to be found. Independence, as stated above in (B.5),
implies that the joint pdf of the output vectors must factorize. Therefore, it is also
necessary that

Elg(ynh(y)] = E[g(y)]E[A(y))] (B.16)

holds for any set of nonlinear functions g(o), (o) and for each pair of output signals
vi»y;. This condition does not lend itself to direct verification, so many approxima-
tions to it have been investigated considering various types of nonlinear functions.
Most popular are the choice of sigmoid non-linearities, which is motivated from
the neural network perspective of source separation, and higher order polynomi-
als. Since the computational effort and the sensitivity to measurement errors both
increase with increased order, and since second order statistics alone are not suf-
ficient for source separation (unless additional information regarding temporal or
spectral source characteristics can be used), polynomials of third and fourth order
have an inherent advantage. However, third order statistics are zero for all symmet-
ric distributions. This consideration led to the use of fourth order statistics as the
criterion for ICA in the course of this thesis.

The j’th order moment of a random variable x is defined as
m;(x) = E((x = p.)). (B.17)
It can also be obtained from the variable’s first characteristic function
p(x) = E(e") = F(p.(x)) (B.18)

as the n’th coefficient of its Taylor series expansion.

While the moments of a random variable are thus based on its first charac-
teristic function, a mathematically attractive alternative lies in the use of the second
characteristic function ¢(x) defined via:

#(x) = In(p(x)). (B.19)
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The Taylor coefficients of this second characteristic function are called cumulants
and are very well suited as an ICA criterion due to three useful properties:

cum(x +y) = cum(x) + cum(y) (B.20)
cum(Xgquss) = 0 for all orders > 3 (B.21)
cum(Bx) = ,84 cum(x) for fourth order cumulants. (B.22)

These are properties of cumulants of a single random variable, whereas cross cumu-
lants are the cross statistics of vector valued random variables, defined equivalently
as the expansion coeflicients of (B.19), only for the multivariate case, which gives

cum(xy, Xp, X3, x4) = E(xy, X2, X3, X4) — E(x1, x2)E(x3, x4) = (B.23)
E(x1, x3)E(x2, x4) — E(x1, x4)E(x2, x3)

for fourth oder cumulants in the case of zero mean variables [Hyv2001]. For these
fourth order cross cumulants, the equivalent of equation (B.22) is the useful multi-
linearity property

Cum(Q'XI 7ﬁx25 VX3, 5X4) = Q’ﬁ'yd Cum(-xla X2, X3, x4)' (B24)

Because of these properties, joint diagonalization algorithms can be applied to the
fourth order cross cumulant tensor in order to obtain maximally independent out-

putsy.
The main assumptions, which are required for successful application of
fourth order diagonalization algorithms are

e There is at most one Gaussian source signal,
e all sources are statistically independent, and

e if there is additive noise, it is normally distributed, none of the sources is
Gaussian and the noise is independent from all sources.

Since these assumptions are all at least approximately fulfilled for speech

signals in realistic environments, diagonalization of the fourth order cumulant ten-
sor can be considered appropriate for the task of speech separation.

180



The JADE Algorithm

The algorithm which was used in this work to obtain fourth-order indepen-
dence is the JADE-algorithm [Car1993]. It was chosen because it works on the
basis of fourth order statistics only, so that it is not as sensitive to outliers as meth-
ods may be which consider even higher orders of source statistics, and because it
does not consider third order statistics, which would be of no value for symmetric
distributions such as those of speech. Also, among methods exploiting fourth or-
der statistics it offers a good trade-off between accuracy and computational effort,
because it makes efficient use of the eigenstructure of the fourth order cumulant
tensor.

JADE is always applied on pre-whitened signals z, where the whitening
matrix 7 is a result of PCA as described in Section B. The mixing model after
pre-whitening can be written as

z=TAs = WWs (B.25)

where W# is the whitened mixing matrix .

Since pre-whitening is carried out before ICA, the search can be constrained
to unitary unmixing matrices W. JADE finds such a matrix by diagonalizing the
fourth order cross cumulant tensor, whose entries are defined via

Ciju = cum(x;, X;, Xg, X;) (B.26)

for complex valued signals x; ... x,. Because a cross cumulant is zero as soon as
two of its argument variables are independent, this tensor needs to be diagonal in
the sense that

Cijki * 0=i=j=k=1 (B.27)

This condition can also be achieved by “piecewise” diagonalization of the cumulant
tensor. For this purpose, a cumulant matrix Q, is defined entry wise as a function
of an arbitrary n X n matrix M via

4ij = Z Z cum(x;, X3, X, X;) M. (B.28)

k=1 I=1

W is the desired unmixing matrix, and the mixing matrix is W=! = W#, since W is unitary after
pre-whitening.
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If the matrix M is composed of M = ble, where by is an n X 1 vector with a 1
in the k’th position and zeros everywhere else, the resulting cumulant matrix will
consist of the cumulant tensor entries with fixed third and fourth index, thus they
are referred to as parallel cumulant slices. All these parallel slices can be subsumed
in one set N” by defining

N Z 0.l < k.1 < ). (B.29)

If the cumulant tensor is diagonal, so is every one of its n” parallel slices, thus, diag-
onalization of the n*> matrices would offer a possibility of attaining independence.
However, the computational effort of this approach would be considerable and it
can be significantly reduced by concentrating on a reduced set of matrices. For this
purpose, it is possible to utilize the fact that computation of the cumulant matrix Q,
as a function of the matrix M is a linear operator Q(M). Since this operator is also
symmetric, it has an eigenvalue decomposition of the form Q(M) = AM, where A
is an associated eigenvalue and the matrix M is said to be an eigenmatrix of the
cumulant tensor [Hyv2001].

To find those eigenmatrices, it is useful to look at the columns of the whi-

T
tened mixing matrix W#, which is (WH ) = (W;,.) for column m. The outer

m
product’ of this vector is

My, = (W) W (B.30)

m,

These matrices M,, are eigenmatrices of the cumulant tensor. This can be seen from
the properties of cumulants (B.20) through (B.24) together with (B.28):

T n n
oMy = (W) W)= 3 D cumai oz DM (B3N
k=1 [=1
= 0> cum(zi, 2 20 )Wy Wk (B.32)
k=1 I=1
Since .
= (Whs =" (Whys, (B.33)
g=1

"The outer product of a complex column vector v is vv/.
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due to the mixing model in (B.25), this is

n

n n *oon n *
3k 3k e £ *
S eum| ST W S| S W, [Z W) W Wi
k=1 q=1 q'=1 r=1 r'=1

n

Q(M);

* * * * *
WoiWiniW Wy ;W W cum(sy, s, Sr, S,0)- (B.34)

klq.q r.r'=1

which follows from (B.24) and (B.20). Since the sources are independent, only the
terms with g = ¢’ = r = v’ are not equal to zero. Thus

QM) = > Wi Wi Wy Wy jWo Wy icum(sy, s, 54, 57). (B.35)
k,l,q

Because the matrix W is unitary, ), Wm,kW;’k =Omgand 3, W* W, = 6,,, 80

m,l

QM) = D Wi Wi Wy Wi ingcum(s,, s, 54, 55) (B.36)
lg=1

= > Wy Wy Ongcum(s,, s, 5 5)) (B.37)
g=1

= W, W jcum(s,, s, S, Sp,) (B.38)

= (M,); jcum(sy, S, Sm» S),)- (B.39)

Thus, matrices produced by on outer product of rows of the mixing matrix are
eigenmatrices of the cumulant tensor and the eigenvalues corresponding to them
are the fourth order cumulants of the corresponding source signals.

The entire set of eigenmatrices N of Q actually consists of n*> matrices
M, ... M, of the form
T
N = {(W ) Wi Il <mk < n}, (B.40)

m,

which can be shown in a proof similar to the one given above, and it is an ortho-
normal basis for the space of n X n matrices [Car1993]. Thus, any matrix M can be
composed of eigenmatrices of Q with

n2

M= Z KM, (B.41)

i=1
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and therefore

OM) = Q(nz KiMz‘] = "Z KiAdiM;. (B.42)

i=1 i=1
Thus, in order to diagonalize an arbitrary cumulant slice Q(M), it is sufficient to di-
agonalize those eigenmatrices of the cumulant tensor, whose eigenvalues are greater
than zero. As shown in [Car1993], at most n cumulant matrices have non-zero
eigenvalues, and these are exactly the matrices described in (B.30), for whichm = k
in (B.40). This is one of two points which make the JADE-algorithm computation-
ally efficient: Since only n of the n? eigenvalues of the cumulant tensor are not zero,
the n most significant eigenmatrices of Q are first determined and only these need
to be diagonalized.

To examine the properties of the resulting mixing + unmixing system, the
effect of the estimated unmixing matrix W on the estimated output signal § is of
interest. As described above, W is chosen so as to guarantee

WWH w,, W" = A, (B.43)
for the entire set of significant eigenmatrices M,,,m = 1...n, where A,, is a diago-
nal matrix. This is equivalent to

A=W (W) W W = W, W o WO(M,)W". (B.44)

m,

When this unmixing matrix W is found, the cumulant tensor of unmixed signals § =
Wz will own as eigenmatrices M,, the matrices composed of the nrows m = 1...n
of WW* according to (B.30), so that the cumulant matrix of an arbitrary matrix M
will have the form

OM) = Q) KknMy) (B.43)
m=1
= N kdaM,, (B.46)
m=1
= ZKm/lmMm (B.47)

m=1
n

= Dl (WWH ) WWY cum(s,, 55,0 5 53), (B48)

m=1
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which is zero in all off-diagonal elements if and only if the matrix WW# can be
described as WW# = PA, with P being a permutation matrix and A an arbitrary
diagonal matrix. Therefore, the diagonalization of significant cumulant eigenmatri-
ces leads to a signal estimate S, which is a permuted, scaled version of the original
signals:

S = PAs, (B.49)

which is the expected, fundamental indeterminacy in independent component analy-
sis.

In order to find such a matrix W, diagonalization of all eigenmatrices of the
cumulant tensor is thus necessary. This is achieved by means of successive rotations
of the cumulant eigenmatrices M according to

M,, = VijMmVi,j (B.50)

for each eigenmatrix m = 1...n, until all M, are sufficiently diagonal. For this
purpose, Givens rotation matrices are used for V; ;, which are of the form

1
cos(0) ... —exp(jo)sin(0)

: 1 :
exp(—jo)sin(6) ... cos(6)

1

All off-diagonal elements are zero, except for the elements u; ; = —exp(j¢) sin(6)
and u;; = exp(—j¢)sin(f), and all diagonal elements are equal to one, with the
exception of u;; = u;; = cos(d). With this elementary rotation matrix, each step
of the JADE algorithm has the goal of determining the optimum rotation angles
(6, ¢), which minimize the (i, j)’th entry in all cumulant eigenmatrices M,, simulta-

neously.

8This is a second point which makes JADE an efficient fourth order algorithm: Because diago-
nalization is carried out jointly for all eigenmatrices, computational effort scales roughly linear with
the dimension n and it can be further reduced by appropriate initialization of V [Car1993].
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Thus, the rotation angles 6, ¢ of the matrices V; ; are chosen in each step so
as to minimize a cost function

— : — : v o \H Y
0,¢ = arg {O%I}R = arg %n}pnz off(Vl-,j(G )M,V (60,0 )), (B.51)

m=1

which describes the squared sum of off-diagonal-elements of all M,,. This sum is
measured for each matrix by off(M,,), which is defined by

off(4) Y > ayP. (B.52)

1<i#j<n

Since a Givens rotation according to (B.50) minimizes the elements (i, j), an outer
loop is necessary which carries out the optimization according to (B.50) and (B.51)
for all matrix elements 1 <i # j < n.
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In summation, the entire JADE algorithm consists of the following steps:

Orthogonalize the data via z = Tx, so that z corresponds to the mixing model
z=TAs = Whs.

Compute the cumulant tensor of the whitened data, Q,.

Determine the n most significant eigenmatrices M,,,m = 1...n of the cumu-
lant tensor.

For all elements (i, j) find the rotation matrix V;; which is the minimizer of
R =30 off (VEM,V, ).

The unitary part of the unmixing matrix is then given by W = [l VIH;

Thus, the entire unmixing matrix A~' is composed of the unmixing matrix
VH and the whitening matrix T, and the sources can be estimated from the
complete mixing model § = V/TAs = A~'4s.
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Appendix C

Measurement of Room Impulse Responses

The so-called time stretched pulse signal was used to obtain the impulse
response from source to sensor.

This principle of measuring impulse responses is described in detail in
[Suz1995]. The basic idea is to use a chirp signal, defined in the discrete frequency
domain by

HQ) = G(Q)exp(iélﬂmQ /N7) for0 < Q< N/2, C.1)
H(N - Q) for N/2 < Q < N;

with G(Q) defining the signals power spectrum and m the stretch of the
pulse.

To get a better understanding of this signal, it is useful to consider it as
the output of a filter whose input is G(£2) and whose transfer function is given by
H(Q) = exp(j4rmQ?/N?). The application of H(Q) only changes the phase of an
input signal but not the magnitude, and the change of the phase can be seen from
computing the time-delay on each frequency resulting from filtering with H(Q)

5io dZ(H(Q)) _ 87m
TdQ 0 N2

Q, (C.2)

so the delay time is proportional to the frequency, and effectively H({2) expands its
input signal in time by shifting constituent frequencies by different amounts of time
[Aos1981].

Then, if G(Q) is just a constant over frequency, it has a Dirac impulse as a
time domain correspondence. After application of H(L), all constituent frequencies
of the delta impulse are spread out over time, which is the reason, why the signal
defined in Equation (C.1) is called a “time stretched pulse” (TSP).
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When this signal is transformed to the time domain by an IDFT, the resulting
signal h,,,(k) is real due to the definition of H as conjugate symmetric in Equation
(C.1).

The inverse filter for this TSP with G(€2) = 1 can be expressed in the discrete
frequency domain as follows:

exp(—jdnmQ?/N?) for0 < Q < N/2,

H YN -Q) for N/2 < Q < N. €3)

H™'(Q) :{

As the inverse TSP 47!

tsp
noteworthy characteristic of the TSP h,,,(k) is that its convolution with h7l (k) is an

tsp
almost perfect Dirac delta function, i.e.,

(k) is also a real sequence in the discrete time domain, a

hisp(k) = b L (k) = 6(k). (C4)

tsp

This is loosely speaking due to the fact, that, since H~'(Q) (the inverse of H(Q)) is
just the conjugate complex of H(L2), so

d2(H'(Q)  d«(H(Q)
dQ T dQ

and wherever H(€2) was shifting a constituent frequency of the Dirac pulse G(£2)
forward in time by a certain amount, applying H~'(Q) leads to an equivalent back-
ward shift, so that the time stretched pulse is compressed again to give back the
original Dirac function.

(C.5)

Therefore, when the TSP h,,,(k) is played back, transmitted, recorded, and

filtered by inverse TSP h,‘si)(k), the result is the impulse response of the whole sys-

tem including the sound playback system, the loudspeaker, the transmission chan-
nel, the microphone, and the recording system.

This can be seen from
x(k) = hygp(k) * hip(k) * h;L(k)

husp(k) # by, (k) % i (K)
6(k) * hir(k) = hip(k). (C.6)

This time stretched pulse signal was played back in the car and the lab room
from artificial mouths respectively loudspeakers 50 times each, with a 1 second
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pause between TSP signals. Subsequently, the recording was split into 1 second
segments and added synchronously, so that all TSP signals were also summed syn-
chronously, which is important to suppress noise in the recordings by averaging.
Finally, the synchronous sum of TSPs was inverse-filtered with h,‘S})(k) to obtain the
impulse response.
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List of Symbols

When a signal is defined in the time domain as x, its frequency domain
representation is the upper case version X and the mel spectrum, log mel spectrum
and cepstrum are always denoted as X,,.;, X;,, and x,,,, respectively.

To differentiate between different microphones, a subscript is used for indicating
the sensor number. Thus, the observed signal at sensor i in the frequency domain
would be denoted by X;.

Finally, when the true value of a signal or parameter is, e.g. s or A, its estimated
value is denoted as § and A, respectively.

| Symbol | Use in this thesis

A mixing matrix

a; initial probability of HMM state i
a; HMM transition probability from state i to j

b; output probability distribution of HMM state i

c speed of sound

C DCT-Matrix

d signal of directed disturbance (=interfering speaker)

0 Dirac delta distribution

0 delay or delay vector

0% required confidence for permutation detection

Vi mixture weight of m’th Gaussian mixture

h room impulse response desired speaker to microphone i

i room transfer function desired speaker to microphone i

i, room impulse response interfering speaker to microphone i
H, room transfer function interfering speaker to microphone i
h,, room impulse response directed noise to microphone i
H! room transfer function directed noise to microphone i
hiy room impulse response
husp TSP sequence

h, room impulse response in the cepstrum domain

k discrete time frame index

k wavenumber vector

A set of HMM model parameters
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| Symbol || Use in this thesis
L) likelihood of being in HMM-State j at time ¢
LF control parameter for cepstral liftering
M mel-filterbank parameters in matrix notation
M number of sensors
U mean
N number of sources
n’ ambient noise at sensor i
n' sensor noise of microphone i
N (x, 1, X) p«(x) 1s Gaussian with parameters p and X
NFFT number of frequency bands
0 sequence of observed feature vectors
o, observed feature vector at time ¢
Q frequency bin number
w continuous angular frequency
Wy angular frequency at center of k’th frequency bin
O direction of desired signal
oy direction of interfering signal
0 state sequence of HMM
q: state of HMM at time ¢
q state estimate
I SPLICE correction vector for noise type i
) - autocorrelation vector for signal x
Ry autocorrelation matrix for signal x
Ky estimated signal
s source signal of desired speaker
o variance
z covariance matrix
t continuous time, time delay index of cepstrum
W unmixing matrix
X observed signal
y i output of unmixing system
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List of Abbreviations

| Abbreviation | Use in this thesis
BSS Blind Source Separation
CASA Computational Auditory Scene Analysis
cdf cumulative distribution function
CMS Cepstral Mean Subtraction
DAT Digital Audio Tape
DCSR DaimlerChrysler speech recognition engine
DCT Discrete Cosine Transform
DOA Direction of Arrival
HMM Hidden Markov Model
EM Expectation Maximization
ETSI European Telecommunications Standards Institute
ICA Independent Component Analysis
MAP Maximum a Posteriori
MCE Minimum Classification Error
MFCC Mel Frequency Cepstral Coeflicient
MMSE Minimum Mean Squared Error
MOG Mixture of Gaussians
MVDR Minimum Variance Distortionless Response
PCM pulse code modulation
pdf probability density function
PMC Parallel Model Combination
SNR Signal to Noise Ratio
SIR Signal to Interference Ratio
TSP Time Stretched Pulse
VAD Voice Activity Detection
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