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On solving norm equations in global function fields
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Abstract. The potential of solving norm equations is crucial for a variety of applications of algebraic
number theory, especially in cryptography. In this article we develop general effective methods for
that task in global function fields for the first time.
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1 Introduction

Let E/F be a (finite) extension of fields of degréeLetws, . ..,w, be a fixedF-basis
of E. Then each elemente F has a presentation

x(wl, “ee ,wd) = ((.4.)1, SN ,wd)Mx

with a matrix M, € F?*4. The determinant dét/,,) is called thenorm N(z) of the
element: € E with respect taF'. SinceN(z) is — up to sign — the constant term in the
characteristic polynomial of it is independent of the choice of the basis.

The calculation of elements of prescribed norm is an important task in algebraic
number theory.

From now on, we consider the situation in which the base figikleither the field of
rationalsQ or a rational function field(¢) over a finite fieldk = F, of characteristip,
say withq = p®. Letor be the ring of integers of, i.e.Z or k[t], respectively.

The extension® of F' is assumed to be separably generated by an elemeith
minimal polynomiakn,, (T') € or[T]. Then there ard different embeddings aF into
the algebraic closurg, sayoy, ..., o4. It can be easily shown that

N(z)=]]oi(x) VzeE.
j=1

In the context of global fields, norm equations are in general discussed as follows.
We choose X m < d F-linearly independent elemens, . .. ,~,, of E, usually in
og, the integral closure of in E.
ThenM = & 0rv; is a freeop-module inE. We are going to look for solutions
of
N(z)=c (zeM)
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238 Istvan Gaal and Michael E. Pohst

for givenc of op. Writing z = z171 + -+ + Ty ym With z; € op, the normN (z)
becomes a form in the; with coefficients inF.

For two special values of. the computation of solutions is quite well understood.
The first one isn = d and the modulé\/ is an order ofE. This means that the unit
groupU,, of M operates or/. If there is a solution ofV(z) = ¢ then alsare is one
for anye € Uy, of norm 1.

Multiplying = with a suitables, we can impose conditions on thenjugatesr; (z).

All elements of M satisfying those conditions can then be calculated by reduction
theory. These ideas are well known for algebraic number fields, see [3], [11], for
example. For global function fields the reduction procedure is more subtle because
there does not exist an analogue of the LLL-algorithm. We discuss that reduction
procedure in Section 3.

We note that both methods require the computation of a set of generatdgs thfe
unit group ofog. The latter is possible with KANT or Magma, for example. (In the
number field case also by Pari, of course.)

The second well understood casenis= 2 andd > 2. In this situationN (z)
becomes a binary form and(z) = ¢ a so-calledThueequation. It can be reduced
to a unit equation in two unknowns as follows. For simplicity’s sake we assgame
1, v2 = «, hencer = z; + z2a. Then we have Siegel’s identity:

(0i(@) = oj(a))or(z) + (0;(@) — or(@))oi(2) + (ok(@) — oi(@))o;(z) = 0

for any three pairwise different indices<li, j, k < d. Dividing by the last summand,
we obtain

(03() — o5(@)ox(z) | (03(a) — ox(@))oalz) _
(0:(@) —ox(@)o; (@) | (0:(0) —ox(@)os(e)

The last equation becomes &runit equationu; + up = 1 by writing x = pe with
e € Ug andp € og from a finite set of non-associate solutionsiofu) = c. (Note
that.S-units are defined at the beginning of the next section.)

In the number field case one uses Baker type results on linear forms in logarithms, re-
duction theory and refined enumeration strategies for computing solutions. The fastest
algorithm known is that of Bilu and Hanrot [1]. The function field case is discussed in
detail in [5]. We just sketch the method below.

According to our present knowledge the resolution of unit equations in more than
two variables is needed for solving norm equations ikt 2n < d variables. It is
not known how to do this in number fields. Therefore it is somewhat surprising that
a resolution is still possible in function fields. In [6] we considered the ease 3
which we now generalize to arbitrary. Also, the casen = d will shortly be treated
since we came up with some improvements over the known methods. We conclude
with a small illustrative example.

In recent years, the construction of elliptic curves suitable for pairings has attracted
increasing interest. The construction of Weil numbers in CM-fields, suitable for pair-
ings, leads to systems of diophantine equations. In a current project we will apply the
methods of this paper to obtain solutions in integers as well as polynomials.
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On solving norm equations in global function fields 239

2 Global fields: unit equations

Unit equations of type
upt - tu, =1,

where theu; are elements in a unit group of a function field, play an essential role in the
theory and in applications of diophantine equations. We introduce several important
notations.

Let k = FF, be a finite field withy = p’ elements. LeE be a finite extension of the
rational function fieldF” = k(¢) of degreel and genug. The integral closure df[t] in
E is denoted by ;. We assume that is separably generated ovgft) by an element
y € og and thatk is the full constant field of.

Any elementf € E has a unique presentation

f= Zhiyi’l (hi € k(t)) .

Conjugates of elements (fields) are denoted by upper case indices, i.e. weliifibe
oj(z)andEY) for o;(E). Let

A\ i— —dxd
A= ()Y 1 yea € B

have determinanD. SinceF is separably generated we habe# 0.
From the system of linear equations

(U DY = (k.. hg) A

we conclude that thg; are rational functions in thgl@) (y(@))i-1,

The set of all (exponentialaluationsof E is denoted by, the subset of infinite
valuations byV,.. We write deg for the degree of the divisor belonging to the valu-
ationv € V. For a non-zero elemerjt € F the value off atv is denoted by (f) .

For integral elements this is the highest power of the divisor belonginghat divides
the divisor(f), and this concept is extended to rational elements in the usual way. The
normalized valuationsy (f) = v(f) degv satisfy theproduct formula

> on(f) =0 ¥feB\{0}.
veV
Theheightof a non-zero element of E is defined via
H(f) := Y max{0,on(f)}
veV
Because of the product formula this is tantamount to

H(f) ==Y min{0,un(f)} (f€E).

veV

Brought to you by | Technische Universitat Berlin
Authenticated
Download Date | 10/1/18 10:19 AM



240 Istvan Gaal and Michael E. Pohst

Let 15 be a finite subset df. We then consider th&-unitsy € E with v(y) =0
forallv & V4.

As we saw in the introduction, the resolution of various Diophantine equations, for
example, Thue equations, can often be reduced to that of equations of the form

Y1+72+73 =0,

where they; areVp-units for a suitable séty. We excerpt the following crucial lemma
from [4].

Lemma 2.1.Let 1, be a finite subset df and lety; (1 <4 < 3) be Vp-units the sum
of which equal®. Then either’! is in E” or its height is bounded:

H(z;) <29 -2+ ) deg.

veVy
Setting® = —v1 /73, WY = —72/~3, we obtain aunit equation in two variables
d+W=1,

with Vp-units @, W. Because of the characteristithe number of solutions of such a
unit equation is in general infinite.

For example, ifip is just the set of infinite valuations amd1 — n are both units of
og \ k, then alsoy™, (1 — n)" is a solution for every exponent= p™. Hence, there
exist solutions of arbitrary large heights in this situation.

The subsequent corollary shows that for any finite subgetf V' the group of/-
units of E contains only a finite number, say of Vp-unitsn which are nop™th powers
and for which also 1- n is aVp-unit. We denote the set of these units{y, ..., 7, }.

Corollary 2.2. Let V, be a finite subset of. We assume that &-unit ® in E is
a solution of a unit equation in two variables. df is not ap”th power of an element
n; (L<i <o, 7 € Z>9), then® belongs to a finite subset fwhich can be effectively
calculated.

For the proof we refer to [7, Page 98, Lemma 11]. The proof starts by assuming that
@ is not apth power inK and therefore also provides the means to calculate;tteor
an example of a Thue equation with infinitely many solutions see [5].

Next we consider unit equations in more than two variables. Addjmdenotes

a finite subset of” containing the infinite valuations. Let (1 < i < n) be Vp-units.
The equation

M+...+v% =0 (2.2)
is equivalent to the unit equation
mn R L
(—%) Fot ( - ) 1 2.2)

in n — 1 variables. We note that we only need to postulate that all fractions in the last
equation must b&jp-units.
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On solving norm equations in global function fields 241

Those unit equations are of importance since several well-known Diophantine equa-
tions (e.g. norm form equations) can be reduced to unit equations in more than two
variables. From the results in [6] we easily deduce the following theorem.

Theorem 2.3.Let 1, be a finite subset df and lety; (1 < i < n) be Vp-units satis-
fying (2.1). Assume that no proper subsum of the surfRith) vanishes. Then we can
explicitly construct a finite subséf of V', such that

N (2.3)
Tn

wherez;,, is a solution of a unit equation
Tipn + 230+ -+ Tp—1n = 1
with Vo U N-unitsx,;,, (i = 1,3,...,n — 1), and alp U N-unit ®; satisfying

H(®;) <29 — 2+ Y degy. (2.4)

veVy

Hence, the solution of a unit equationsn— 1 Vp-units is reduced to determining
the solutions of unit equations im— 2 V5 U N-units. In [6] only the case = 4 was
considered. The generalization to arbitraris done here for the first time.

If we replace they; /v, in the original unit equation (2.2) via (2.3), then we get

D i ® = —1. (2.5)

We need to consider several cases. The main ingredient is to deduce solutions of
unit equations from those of unit equations in fewer variables. We remark that this
discussion does not include the case in whichegll ®; are ink (compare also the
premises in Theorem 2.3).

I. If any of the elements;,, (i =1,3,...,n — 1), sayri,, iS not apth power, then
they are obtained from a finite set of solutions of%nnit equation im — 2 variables
(compare Theorem 2.3). Also, tl@&, ..., d,,_1 can attain only finitely many values
by that theorem. This reduction needs to be carried out until we get unit equations in
at most 3 variables, a case which is already treated in [6].

I Ifall z;, (i =1,3,...,n — 1) arepth powers, then using local derivation at an
arbitrary valuation we get from (2.5) equations
n—1 ]
Sawd! =0 (jeN), (2.6)
where(DEj] denotes thegth derivative of®d;. We note that the derivatives of the,
vanish in this case. We need to discuss subcases (A), (B).
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242 Istvan Gaal and Michael E. Pohst

(A) Ifall &, (: =1,3,...,n — 1) arepth powers (especially, if they all are &),
then equation (2.6) is meaningless but both sides of (2.5)tarpowers and we can
take pth roots to make the valuations of thg,, ®; smaller. This can be applied re-
peatedly until we end up in case I.

(B) Without loss of generality, we assurdg ¢ k with CD[f] =+ 0. Because of our

assumption, in this case we have at least one index1 with dDLl] # 0. We compute
equations (2.6) foj = 1,2,... and obtain a linear system of equations for the If

there aren — 2 independent equations for thg, then that system has only the trivial
solution and there does not exist a solution of (2.5) for this case. Otherwise, those
equations can be used for eliminating variables. We end up in case Il but with fewer
variables.

3 Application to norm form equations

As before, letE be a finite extension field of' = &(¢) of degreed > 3 and denote
by o the integral closure of[t] in E. Thenog has amvp-basis {ntegral basi3, say
ag,...,04.

3.1 Norms fromog

This subsection improves the results of [10]. In that thesis the reduction theory of
W. Schmidt in characteristic 0 was generalized to arbitrary characteristics. However,
the case when the infinite prime is wildly ramified remained open. In [8] we also
showed how to treat that case. Here, we shortly discuss the whole reduction procedure.
Leta € o be a solution ofV/r(a) = cfor ¢ € op. Then alsaxe is a solution for
any unite of the unit groupUr with Ny, () = 1. We are therefore only interested
in non-associatesolutions of the original norm equation, i.e. solutions which do not
differ by a unit. Scaling such a solution with a power product of the generatdrg of
(fundamental unifswe obtain a solution in an appropriate finite dimensiafalector
space. For this we need a system of fundamental spits. , ¢,_1 and areduced basis
for o, wheres denotes the number of infinite primes. A system of fundamental units
can be computed with Kash or Magma. The full reduction procedure was originally
developed in [8]. We sketch the ideas.
We make use of the fact that the non-zero elememkE admit series expansions
(Puiseux series, respectively, Hamburger—Noether series) of the form

I(v) = Z@t—w (3.1)

with rational exponents,, < v,,11 < ... and coefficients; € F,*. (We note that
this is a simplification, in general thig may belong to a small finite extension Bf

of degreee, wheree is the least common multiple of the ramification indices of the
infinite primes inE.) We need to assume th&tover F' is separately generated (which
can always be achieved by the choicergf We then have? = F(y) for a suitable
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On solving norm equations in global function fields 243

elementy whose minimal polynomial inr[t] hasd different zeros. Each zero admits
a series expansion so that we obtain a total éries expansions corresponding to the
conjugates of over F'. The isomorphic embeddings @&f into the algebraic closure

F are denoted by(y),...,0q4(y), as usual. In each case we obtain an exponential
valuation onk via

vm forv =0,

oo forv=0. (32)

od: F-Q:v— {
We denote the exponential valuations belongingto...,o, by ordy,...,ordy, re-
spectively.

Now letB = {v1,...,vs} be a basis of a non-zero idedlof o. We denote by ; =
(vij)1<i<a the vector whose components are thed series expansions;(v;) (1 <
i < d). We set

ord(vj) := min{ord(vj): 1<i<d} = y.
For each basis element we therefore obtain a vectd¥; = (¢;;)1<,<q Of coefficients
of the leading term of the series expansions, ¢,¢.is the coefficient ot ~*7 in the
expansion; (v; ).

We then set

ord(A) = ord(det((vij)lgingd))

(in the sense of (3.2)) and
d
$(B) := ord(A) — > ord(v;).
j=1

The basisB is calledreducedf the non-negative valug¢ (B) vanishes. We have

Lemma 3.1.An ideal basisB = {v1,...,vq} Of an idealA is reduced if and only if
forall (f1,..., fa) € Fqt]",

d
ord( Z fivi> = lrgiigd ord(fiv;) .

i=1

If a basis{vi,...,vq} of an ideal A is reduced and ordered subject teord(vy) <
—ord(v2) < ... < —ord(vg), then the values-ord(v;) are the successive minima of the
ideal A.

In [8] we developed an algorithm for computing a reduced basis which runs in poly-
nomial time in the input data.

From now on, we stipulate that we know areduced hasis. . ,wq of 0. Itis of im-
portance for calculating fundamental unitsfof10] and of elements of boundexax-
imum norm(see below) which we need for calculating a maximal set of non-associate
solutions ofNgp(a) = cforc € op.

In the following, the places of are denoted by lower case boldface letters, those
of E by upper case boldface letters. The infinite placeFoivhich corresponds to
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244 Istvan Gaal and Michael E. Pohst

the degree valuation is written as.. For P|p the integersp,, fp|p andnp|, =
epjpfp|p denote the ramification index, the residue class degree and the local degree,
respectively. N(P) is the number of elements in the residue class fiel@®ofThe
exponential valuation belonging @ is denoted byp. For every elemenft € E we
then set

|flp = N()=r /e

This normalization has the effect thatp is a prolongation of- |, and that the product
formula is still valid.

Definition 3.2. The maximum norm of an elemeyite E is defined by
[flloe := max|flp.
Plpe

We note that according to [10] a reduced basis . . ,w, Of og satisfies
1flloe = max{|Ailoclwillo : 1<i<n}

forany f = Zle X\w; € og. (This is the analogue of the previous lemma.)

We want to compute a full set of non-associate solution©fy(a) = cforc € op.
We improve the known methods for number fields and adapt them to the function field
case. For number fields the conjugatés of a solutiona of Ng/p(a) = || satisfy

) r ‘
o | = (”) _
Iog‘cﬂ‘ _;xilog|5i | (z:€R, 1<j<d)

for a full set of fundamental unitsy, ..., e, of og. (We note that = s — 1 and that a
full set of independent units suffices.) In the function field case wP lie¢ one of the
infinite primes of £ and obtain for a solution of Ny, p(a) = cu for arbitrary € k
analogously

vp(a) = inVp(&L') + %Vp(c).
i—1

We note that the coefficients are independent from the choice®fp. Substitutingy
by an associate element just changes the coefficignity rational integers. Such a

substitution is supposed to yield small bourilfor log |gl(%) , respectively for

vp (o)

lalp = N(P) "Fle
and hence fofla||~. This amounts to calculate the maximum distance of an element
in the fundamental parallelotope of the lattice spanned by the vectors

(log |g§j>|)l<j<d (i=1,....1),

respectively
(VP(Ei))PhD (Z = 1;"'3T)a
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On solving norm equations in global function fields 245

to any lattice point. That task does not cause problems in the dimensfonsvhich
independent (fundamental) units can be presently calculated. Kndwthg calcula-
tion of the corresponding solutions of the norm equation is straightforward by the
methods in [9], respectively, in the function field caBgields bounds for the height
of a.

We note that the methods of this subsection also hold for arbitrary ordétsruodt
just the maximal ordesg.

3.2 Norms from free modules of degree less thadi

Welet2< m < danda; (i = 1,...,m) be F-linearly independent elements of;
with £ = F(aq,...,am). For 0# u € op we consider the norm form equationsin
variables

NE/F(inozi) =u (x;€0p, 1<i<m). (3.3)

=1

We recall thatxﬁj) (j =1,...,d) denote the conjugates of over F'. For any distinct
indices 1< 41 < ip < ... < i,, < d, the linear forms

m

(5ij (X]_, e ,Xm) = ZXian)
i=1

are linearly independent ovér. It is easy to calculate;, € op (1 < j < m) such that
any solutionzy, . . ., z,, of equation (3.3) satisfies

Z’yijéij (CC]_, N ,xm) = 0.
j=1

Dividing by the last summand on the left-hand side, we obtais-amit equation in
m — 1 variables:

m—1
i 0y (X1 T
-y B (@1 im) g (3.4)
j=1 ’Yim(sim (xla sy ‘rnL)

Let V5 be the set of valuations @ containing the infinite valuations and the valuations
occurring ing. Then all;, (x4, . .., z,,) areVp-units. LetV; be an extension of the set
Vo containing also the valuations occurring in any ofthec £ (j = 1,...,m). Then
all fractions in equation (3.4) afg-units and we can apply the results of the previous
section. Usuallypth powers can be excluded if there exist valuations (not contained
in Vo) which only occur iy, /+;,, with values not divisible by, but cannot occur in
8i, (1, ..., ®m) /8, (z1,...,2,) OF by considering Galois automorphisms (see [6]).

In this way we can calculate elememts such that

5ij (Ilv e 733771) = V’L‘J 5im (Ilv s 7x'm.)
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246 Istvan Gaal and Michael E. Pohst

for j = 1,...,m. Substituting them into equation (3.3), we get

m
<Hyij> 6im(xla-- -7xm)m = W,
j=1

from which we calculaté;, (x1,...,z,) and subsequently all;, (z1,...,z,,). By
solving systems of linear equations, we can then determine all possible solutions
(z1,...,zm) Of equation (3.3).

Remark. We note that increasing the number of variables in the unit equation makes
our procedure less efficient since the number of valuations usually increases drastically.
The amount of calculations to be performed grows roughly exponential with the growth
of the number of variables in the unit equation (see the construction in Theorem 2.3).

4 Example
Let k = F5 and leta = o1 be a root of
p(z)=2>—2—-t=0.

Let E = k(t)(«) and denote by the integral closure of[t] in E. The fieldE has
genusy = 0. This field is a GaloisArtin—Schreie) extension, the cyclic Galois group
is generated by

air1=o(a)=a;+1 (:=1,273/4).
Letr be a non-zero constant (k) and consider the solutions of the equation
Ng /) (21 4+ s + a3+ ora + a4x5) =7 N z,22, 23,74, 75 € k[t]. (4.1)
Setl;(z) = r1 + ;a2 + a2r3 + adrg + axs, then we have the identity
O1(z) + La(z) + la3(z) + la(z) + €s(z) = 0.

The function fieldE has one infinite valuation.. of degree 1. Lety = {v.}. Then
for any solutionz = (z1, 72, 3, 24, 25) € (k[t])® of equation (4.1), the terms in

h(@) (@) @) )

bs(z) ls(z) Ls(z) Ls(x)

areVp-units. (We note that in case of zero subsums we still get the same solutions.)
By [6] we have

=1

gl(g) = Z; cha
l5(z)
wherez;, @, areVy U N1-units,
1+ ax2+x3 =1, (4.2)
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On solving norm equations in global function fields 247

and
H(®;)<29-2+ »  degy.
veEVQUN,

Constructing the set of valuationg, we find thaty _ _,, degv can be estimated from
above (see [6]) by
29-2+ > degy=-1,

veVp

henceN; is empty. Thereforer;, ®; are Vp-units, and byH (®,) = 0 the ®; are
constants.
We describe now the solutions of (4.2). By [6] we have

ry =y Wi,

wherey;, W, areVpU N1 U N»-units,y1, y» are solutions of the unit equatigha+1y, = 1
and

HW;) <2g—-2+ Z degu.

vEVoUN1UN>

The setN, of valuations is again empty, sinGe
above by

+en, d€gu can be estimated from

29 -2+ Z degv = —1.

veVoUN1

Thereforey;, W; areVp-units, and byH (¥;) = 0 it follows that the¥; are constants.
Finally, we consider th&p-unit equation in two variableg + 1, = 1. The solutions
either satisfy

H(y;) <29 -2+ Z deguv = -1

vEVoUN1UN>2

or they are powers of such elements. Hencejthage also constants.
If all fractions
l; (&)

ls(z)

attain constant values, then by equation (4.1) &lée)° is a constant, as well dg(z).
Finally, if all the linear forms

(i =1,2,34)

li(z) (1=1,2,3,4,5)

attain constant values, then we get only the solutier® 0,0, 0) with = 1,2, 3,4 of
equation (4.1).
The calculations were carried out with KANT [2].
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