

MASTER THESIS

A novel approach to Job Scheduling applying
Deep Reinforcement Learning and Neural Network

Architectures of Natural Language Processing

Diego de Oliveira Hitzges

M.Sc. Mathematics

01. April 2023

Faculty II | Mathematics and Science
Institute of Mathematics
Research Group for Algorithmic and Discrete
Mathematics

Supervision by:
Dr. Guillaume Sagnol
Prof. Dr. Martin Skutella

Affidavit

I hereby declare that I have prepared this thesis independently and on my own, without any
unauthorized external assistance and exclusively using the sources and aids listed.

Diego de Oliveira Hitzges

Berlin, 01.04.2023

Contents

1 Introduction 8

2 Job Scheduling Problems 13
2.1 Problem formulation . 16
2.2 Related Work . 18
2.3 Our Approach . 19

3 Deep Reinforcement Learning 22
3.1 Markovian decision problems 22
3.2 Q-learning and its convergence 24
3.3 Deep Q-learning . 28

4 Neural Network Architectures of Natural Language Pro-
cessing 31
4.1 Word Embedding . 31
4.2 Recurrent Neural Networks 33
4.3 Vanishing/Exploding Gradients 42
4.4 Long Short-Term Memory . 44
4.5 Attention . 49
4.6 Pointer Networks . 51
4.7 Transformers . 53

5 Problem Embedding 59
5.1 States and Actions . 60
5.2 Policies . 64
5.3 Action Values . 66
5.4 Target Values . 70
5.5 Normalization . 72

6 Network Architecture 78
6.1 Overview . 78
6.2 Preprocessing . 78
6.3 Input . 80
6.4 Sequential Embedding . 80
6.5 Transformer Encoder . 83
6.6 Action-Pointer Decoder . 84

3

7 Data Creation 88
7.1 Supervised Job Scheduling Problems 88
7.2 Deeply Reinforced Job Scheduling Problems 91

8 Training and Testing 95
8.1 Supervised Training . 95
8.2 Supervised Testing . 96
8.3 Deeply Reinforced Training 97
8.4 Deeply Reinforced Testing . 98

9 Results 100

10 Conclusion and Future Work 102

11 References 105

List of Figures

1 Schedule minimizing Makespan on Identical Machines 16
2 Target Network in Deep Q-learning [15] 30
3 Neural Network with Word Embedding 33
4 One-to-One Mapping . 33
5 Zero-Padding . 34
6 Output Sequence . 35
7 Feeding Network one-by-one 36
8 Simple Recurrent Neural Network 38
9 Bidirectional RNN . 40
10 Stacked RNN . 41
11 LSTM Unit . 46
12 Forget Gate . 47
13 Input Gate and Candidate Memory 47
14 Output Gate . 48
15 Pointer Network . 51
16 Encoder of Transformer [47] 54
17 Transformer [47] . 56
18 State to Data . 62
19 Normalization of Target Values 73
20 Normalization of Data . 74

4

21 Data to Input . 80
22 Sequential Embedding of a Job’s Machine Resource Environ-

ment . 81
23 Embed Urgencies of Jobs . 82
24 Action-Pointer Decoder . 86

List of Tables

1 Embedding Layers . 83
2 Encoder Layers . 84
3 Decoder Layers . 87
4 Data Results of Supervised Learning 96
5 Policy Cost Results from Supervised Learning 97
6 Data Results of Deep Reinforcement Learning 98
7 Comparing Policy Costs from Supervised Learning to DRL . 99
8 Comparing Policy Costs from NN to Scheduling Algorithm . 100

5

Zusammenfassung

Diese Masterarbeit stellt einen neuartigen Ansatz zum Job Scheduling basi-
erend auf Deep Reinforcement Learning vor. Sie behandelt das Job Schedul-
ing Problem, deterministisch und nicht-präemptiv auf unabhängigen, paral-
lelen Maschinen zu planen. Diese können zu Beginn belegt sein und während
des Prozesses deaktiviert werden. Das Ziel besteht darin, die Summe aus der
Prozessdauer und den gewichteten Verspätungen von Jobs und Maschinen
zu minimieren. Die Struktur des Problems wird in eine Deep Reinforcement
Learning Umgebung eingebettet. Policies werden als Planungsalgorithmen
identifiziert. Jede resultierende Sequenz von Zustands-Aktions-Paaren stellt
einen durchführbaren Zeitplan dar. Die Summe der Übergangskosten ents-
pricht den jeweiligen Planungskosten. Jeder Zustand entspricht einem Zeit-
punkt, in dem eine Maschine unbesetzt und somit verfügbar wird. Die
Zuweisung ausstehender Jobs auf diese Maschine bildet zusammen mit der
Entscheidung, sie auszuschalten, falls mindestens eine weitere Maschine be-
trieben wird, die Menge der durchführbaren Aktionen. Es wird ein ausge-
feiltes Neuronales Netzwerk vorgestellt, das eine Schätzung der optimalen
Policy induziert, die einem kostenoptimalen Zeitplan entspricht. Das Net-
zwerk basiert auf Architekturen aus dem Bereich des Natural Language
Processing. Jobs und Maschinen werden als Zeitreihen von einem LSTM
verarbeitet und anschließend von einem Transformer Encoder codiert. Ein
Action-Pointer Decoder „zeigt“ dann auf die durchführbare Aktion, die als
optimal eingeschätzt wird. Folglich kann das Neuronale Netzwerk eine be-
liebige Anzahl von Jobs und Maschinen verarbeiten. Dieses wird trainiert,
validiert und getestet, indem die Planungskosten für Job Scheduling Prob-
leme mit 8 Jobs und 4 Maschinen explizit berechnet werden. Bei seiner An-
wendung auf unbekannte Probleme unter denselben Bedingungen entstehen
Zeitplanungen, die Zusatzkosten von 2,51% erzeugen in Bezug auf die jew-
eiligen theoretischen Minimalkosten. Im Vergleich zu Standard-Heuristiken
bei Job Scheduling Problemen mit bis zu 100 Jobs und 15 Maschinen über-
trifft das Neuronale Netzwerk diese signifikant bei bis zu 100 Jobs und 10
Maschinen. Im Bereich von 3 bis 8 Maschinen und bis zu 30 Jobs überragt
es diese sogar bei weitem. Unter diesen Bedingungen führt die Verwendung
eines solchen kombinatorischen Planungsalgorithmus in der Regel zu 20% bis
40% höheren relativen Kosten. Weitere auf Deep Reinforcement Learning
basierende Techniken werden vorgestellt, um das Training des Neuronalen
Netzwerks auf größere Anzahlen von Jobs zu ermöglichen.

6

Abstract

This master thesis presents a novel approach to Job Scheduling based on
Deep Reinforcement Learning. It treats the Job Scheduling Problems of de-
terministically and non-preemptively scheduling on Unrelated Parallel Ma-
chines. These are allowed to be initially occupied and can be deactivated
during the process. The objective is to minimize the sum of the makespan
together with the weighted tardinesses of the Jobs and Machines. The prob-
lem structure is embedded into a Deep Reinforcement Learning environment.
Policies are identified as scheduling algorithms. Any ensuing sequence of
state-action pairs denotes a feasible schedule. The sum over their transition
costs equals the respective scheduling costs. Each state is associated with
an instance in which a Machine becomes unoccupied. The assignments of
pending Jobs form the set of feasible actions, together with the decision to
turn it off in case that there is at least one more Machine operating. A
sophisticated Neural Network is presented that induces an estimation of the
optimal policy, corresponding to a least-cost schedule. It is based on Natural
Language Processing Architectures. The Jobs and Machines get processed
as time series by an LSTM and subsequently encoded by a Transformer
Encoder. An Action-Pointer Decoder then points to the feasible action es-
timated to be optimal. Consequently, the Neural Network is able to process
any number of Jobs and Machines. It is trained and tested supervisedly by
computing the scheduling costs for Job Scheduling Problems of 8 Jobs and
4 Machines. Applying it to unseen problems of the same conditions induces
schedules that yield additional costs of 2.51% relative to the optimal ones.
When comparing it to standard heuristics on Job Scheduling Problems with
up to 100 Jobs and 15 Machines, the Neural Network significantly outper-
forms for up to 100 Jobs and 10 Machines and vastly outperforms in the
range of 3 to 8 Machines and up to 30 Jobs. Under these circumstances,
applying a combinatorial scheduling algorithm in general results in average
costs 20% to 40% higher than with the use of the Neural Network. Further
Deep Reinforcement Learning based techniques are presented to enable the
training of the Neural Network on higher numbers of Jobs.

7

1 Introduction

Mathematical optimization problems are often not only interesting from a
theoretical perspective but also from a practical one, since they might re-
semble situations occuring in the real world where one would want to take
decisions based on the goal of optimizing some cost or reward related ob-
jective. Job Scheduling Problems, trying to assign tasks or Jobs to the
associated resources, namely Machines in this context, certainly fit this de-
scription. Scheduling is needed when deciding which goods in a fabric shall
be produced by which unit in which order, which airplane shall land on which
runway at what time, which deeds shall be done when and by which employee
in a company or even in every day situations like in which sequence every
team member should take care of which parts of the work within a group
project. On a personal level, one could think of it as a time-related plan
of how to tackle a To-Do-List. While in reality we often use simple heur-
istics, one might benefit from introducing more sophisticated approaches
yielding costs or rewards closer to the optimal ones. Although this might
not be strictly necessary in simple cases with little information to consider,
it becomes more advantegous the more Jobs have to be handled, the more
Machines are available and the less they are related in the times they need
to process the Jobs as well as the more additional conditions and constraints
having to be considered, like possible deadlines, priorities, dependencies etc.
Unfortunately, the more complex the scheduling environment becomes, the
more challenging it also gets to find exact or even approximative solutions
guaranteed to stay within a certain range of the theoretical optimal solu-
tion. In fact, these problems get NP-hard very quickly [1, p. 26] and even
approximation algorithms often only have been found for narrowly tailored
circumstances and specifially defined objective functions, lacking flexibility
for many real world applications for which, varying from situation to situ-
ation, some additional cost-contributing factors might have to be considered
or can be neglected.

Nowadays, a popular approach to tackle pattern related challenges that
might be too complex to be solved intuitively or with traditional mathem-
atical methods is to apply some form of machine learning. In fact, some
problems of related nature like Resource Management or Job Shop Prob-
lems, where every Job has to be processed by every Machine at some time,
have been addressed this way in [2, 3, 4]. However, there is an evident lack
of available research on solving Job Scheduling Problems with any form of
artifical intelligence in the scientific literature. This thesis therefore rep-
resents a novel approach to solving Job Scheduling Problems on Unrelated
Machines by using a Neural Network, derived from a version of Deep Re-
inforcement Learning slightly modified to the specific needs of our problem

8

environment, which is further specified below. This Neural Network will be
used to solve any Job Scheduling Problem meeting said criteria, but could
also easily be modified to solve similiar types of problems, turning it a more
polyvalent approach. Since knowledge from several different fields will be
required for this method, a brief overview of all the necessary theoretical
background will be given, focussing on the parts relevant to our specific
application to enable the reader to understand the problem formulation as
well as the successive construction of its solution.

We will start by giving some mathematical insight to Job Scheduling Prob-
lems in section 2 by introducing some basic definitions, problem environ-
ments and objective funtioncs along with known combinatorial approaches
to them, mostly in form of approximation algorithms. We will analyze their
limitations, hence legitimizing the motivation behind this thesis and introdu-
cing the special case that we wish to solve, for which no satisfying solution is
established in the scientific literature. Especifically, we are trying to find an
efficient way of solving the strongly NP-hard problem of non-preemptively
scheduling Jobs with deadlines and weights on unrelated parallel Machines,
having deadlines and weights as well together with initial occupations, with
the objective of minimizing the costs arising by the makespan, i.e. the time
at which the process finishes, alongside the total total weighted tardiness of
the Jobs and Machines. We will restrain to the case of deterministic pro-
cessing times but discuss briefly how our approach could be generalized to
the stochastic formulation at the end of the thesis.

Due to the infeasibility of constructing sufficiently simple mathematical solu-
tions to the stated problem, we turn to machine learning and the tools it has
to offer. We will therefore give a short resumee of Reinforcement Learning
in section 3, starting with Q-learning whose convergence property we will
mathematically prove and which will serve as ground-laying structure for
the computation of the costs. For every feasible action, these Q-values will
consist of the immediate costs of taking said action of shutting a currently
unoccupied Machine down or assigning a Job to it that has not been pro-
cessed yet, and the future costs, derived from the assumption that every
subsequent decision will be optimal, or respectively what is estimated to be
optimal at a given point of the learning process.
Since we do not wish to solve a single Job Scheduling Problem but any one
that coheres with the given specifications, for higher numbers of Jobs and
Machines the amount of states to consider becomes significantly too vast to
compute the true costs to every feasible action in every possibly occuring
state for any given set of Jobs and Machines. Consequently, we expend our
approach to include Deep Reinforcement Learning, where the agent is given
in form of a Neural Network, learning the mapping of any state to the costs

9

associated with any feasible action, represented by the associated unit in
its output layer. This Neural Network is the one that we will finally use
to successively create schedules by following its greedily implied policy of
always taking the action it estimates to generate the least costs at any point
of decision in the scheduling process.

With regards to the architecture of said Neural Network we will face a lot
of structural challenges induced by the nature of the data. Vanilla Neural
Networks require data of static dimension as input and produce outputs of
static dimension as well. In scheduling tasks on the other side, the number of
remaining Jobs and usable Machines varies for every problem. Moreover, to
guarantee the Markovian property needed in Deep Reinforcement Learning,
an architecture is required that only considers the set of remaining Jobs and
still working Machines at any given time point in a scheduling process. As
a consequence, the number of Jobs and Machines changes even within any
scheduling process whenever an action is taken. Accordingly, the number
of feasible actions differs for every state as well. We therefore need an ar-
chitecture capable of processing inputs of varying sizes as well as producing
ouputs of dynamic dimensions.
One important field of machine learning that has to deal with data of vari-
able size and that has developed a lot over the last years is the one of Natural
Language Processing. Thus, in section 4 we will give an overview of the cur-
rent architectures of said area that are suited to our needs and discuss their
benefits and weaknesses from a mathematical as well as an empirical stand-
point to properly incorporate them into our Neural Network.

After providing the reader with all the required theoretical knowledge, we
will explain in section 5 how to interprete our Job Scheduling Problems in
a way that we can apply our approach, i.e how we interprete any decision-
demanding moment of a scheduling process as a state and how we extract
the data from its pertinent information to feed it to our Neural Network.
Subsequently, in section 6 we present the architecture of our Neural Net-
work in detail, stating the motivation behind every part of its architecture
by analyzing which of the difficulties inherent in the nature of our data it is
supposed to address.

The creation of the data for the learning process will be divided into two
parts in section 7. We will start by training the Neural Network in a super-
vised maneer. For this, we construct the training, validation and test data
ourselves by repeatedly creating Job Scheduling Problems consisting of 8
Jobs and 4 Machines, generated randomly within some value restrictions.
Then, for every possible state of every scheduling problem, we exhaustively
compute the ground-true costs associated with every action. We then select

10

some of these states at random, following a distribution ensuring balancing
in the data with regards to which of the actions is optimal. From these
states we then extract the data to train the Neural Network. We do, how-
ever, only consider states with at least 3 Jobs and 2 Machines remaining,
since it would elsewise be too cheap to just compute the optimal action.
The states used to generate the validation and test set do not get balanced.
Naturally, this approach would be applicable for higher Job and Machine
numbers as well when greater computational power is at hand.
In the second part we want to increase the number of Jobs. This time, we
make use of Deep Reinforcement Learning techniques. We create scheduling
problems consisting of 9 Jobs and 2 to 4 Machines. Then, we approximate
the costs of assigning a Job in this state by computing the immediate costs
and estimating the optimal future costs by feeding the successor state of 8
Jobs to our Neural Network and greedily selecting the smallest produced
value. Hence, our pretrained Neural Network serves as Target Network.
This way, we can create training data for Job Scheduling Problems with 9
Jobs and 2,3 and 4 Machines, with which we continue to train our Neural
Network, acting as Q-Network. We then update the Target Network and
repeat this process, always increasing the number of Jobs by one, until we
have trained our Neural Network on up to 12 Jobs. Note that due to the
drastically reduced computational costs of this approach, we do not need to
select the actions ϵ-greedily or follow any other behaviour policy, but can
efficiently compute the costs for every action at any given initial state.

We will use the Neural Network to solve Job Scheduling Problems by al-
ways taking the action corresponding to the estimated optimal value in any
given state of the scheduling process. In section 8 we will compare the costs
obtained by using our Neural Network as an implicit policy for several Job
Scheduling Problems to the optimal costs as well as the ones produced by an
heuristic algorithm which will serve as comparative and competetive metric.
Afterwards, we will investigate if applying the updated parameters obtained
by the deeply reinforced learning phase improves its performance .

In section 9 we will then see how our Neural Network compares to the
scheduling algorithm when applying both to Job Scheduling Problems with
a higher number of Jobs and Machines than the Neural Network has been
trained on. We will test them on up to 100 Jobs and 15 Machines.

Throughout this thesis, we will use the letters j and m to index the Jobs
and Machines respectively and the belonging capital versions J and M to
denote their number inside a Job Scheduling Problem. This slightly deviates
from the standard notation, where the Machines usually are indexed with
i and their number is referenced with m while n refers to the number of

11

Jobs [1, 5]. Since we however cover a lot of different theoretical fields, we
decided for this adjustment to guarantee notational coherence throughout
our elaboration and to minimize the total deviation from standard notation.

A code for the entire procedure, from creating the states and extracting the
data over constructing the Neural Network up to comparing its results, is
given in form of Notebooks, viewable on Github under [6]:

Dieguinho1612/Job-Scheduling-Deep-Reinforcement-Learning

12

2 Job Scheduling Problems

Adult life can be hard and everybody probably knows the sensation of feeling
overwhelmed by the quantity of tasks that have to be done at times. This
holds especially true when there are deadlines involved that should not be
exceeded (as in writing this master thesis). A common type of advise for
these situations is to first create a schedule in which order one wants to
tackle the tasks. So let us say there are J ∈ N tasks (or Jobs) that have
to be done. Some of them are shorter than others, so let pj be the units
of time it takes to complete Job j and dj ≥ the date it is due. We start
at time 0. So if we complete the Job at date Cj , its lateness is denoted by
Lj := Cj − dj . We hope that being a little late on a Job may be pardoned,
but being very late on any of them could cause us trouble, so our objective
is to minimize the maximum lateness Lmax := maxj=1,...,J Lj . We quickly
realize that the number of possible schedules is equal to the number of
permutations of J , i.e. J !. Unfortunately, this problem turns out to be
strictly NP-hard [5, p. 36], so computing all of them to then pick the one with
the minimum lateness becomes infeasible for greater J . As a consequence,
we do not even know if there exists a solution for us to be on time, expressly
to guarantee Lmax ≤ 0, which really bothers the mathematician in us. But
what about an approximation, providing us with a solution not worse than
a certain threshold? So let L∗max be the minimum maximum lateness that
could possibly be achieved. An algorithm that grants us a solution whose
value is assured to not be worse than α times the value of the optimal
solution for an α > 1 is called an α-approximation-algorithm. In our case,
that would mean

Lmax ≤ α ∗ L∗max

As constructed, no such near-optimal solution can exist, since for any α > 0
for every set of Jobs that can completely be finished on time, we would
obtain a schedule with exact optimal maximum lateness 0 ≤ Lmax ≤ α ∗ 0,
contradicting the NP-hardness of the problem. This can be fixed with the
technical tweak of forcing L∗max to always be strictly positive by defining the
deadlines to be negative. An intuitive heuristic approach would now be to
just start with the job with the earliest deadline. This actually turns out to
be a 2-approximation-algorithm.

The above is a very simple example for a general type of decision-making-
processes called Job Scheduling Problems. They are a common challenge
in the field of combinatorial optimization and still the object of a lot of re-
search [1, p. 13]. Let us now extend the simple example from above a little
further:

Let us say, we do realize that the work is just too much to be handled by us

13

alone. Lucky for us, a lot of tasks that might have required hard physical
labor in the past can these days be automated, given one has the right
resources to do so. Therefore, we decide to buy some Machines to get the
work done for us, let their number be denoted by M ∈ N. We now have
the big advantage of being able to process the Jobs in parallel by assigning
them to the Machines. Naturally, we want to schedule them in a way that
is beneficial to whatever our objective is. For this, we have to consider the
processing time pjm of how long it would take Machine m to to complete
Job j. We distinguish between the following three main cases of:

• Identical Machines (PM): Every Job j = 1, . . . , J has a processing
time pj that is identical on every Machine m = 1, . . . , M :

pjm = pj

• Uniform Machines (QM): Every Job j = 1, . . . , J has a processing
time pj and every Machine m = 1, . . . , M has a speed sm ∈ R+. The
processing time of Job j on Machine m is the product of:

pjm = pj ∗ sm

• Unrelated Machines (RM): The processing times of any two Ma-
chines m1, m2 = 1, . . . , M are not related with each other for any Job
j = 1, . . . , J in any way:

pjm1 ̸∼ pjm2

These options allow us to extend our application of Job Scheduling to several
real world problems. Our Jobs and Machines might be products that have
to be produced in a fabric by certain production units, patients in a hospital
that have to be attended by doctors, airplanes that have to be distributed
to runways, orders in a restaurant that have to be prepared by the cooks
working there, cars that have to be fixed my mechanics in a workshop and so
on. In all of these situations, it is desirable to find a schedule that is optim-
ally efficient with regards to certain conditions. Until now, these have been
restricted to the deterministic processing time of a Job on every Machine as
well as its deadline, but these can be furhter customized to the specific needs
of many problems. The Jobs might be of difference importance and therefore
have different weights wj . These weights function as a factor to the costs
that have to be paid due to its makespan or an exceedance of its deadline.
It is also possible that not all Jobs are available from the start, which would
be represented by their release date. All the features stated so far can also
apply to the Machines, so a Machine might not be available from the start,
due to it having an initial occupation of runtime rm analogous to the release
date of a job, has a date δm by which it should get turned off (which is

14

equivalent to the decision of not assigning any further Jobs to it) and some
penalty cost factor in form of a weight ωm. Further possible determining
factors are whether there are any precedence constraints, demanding for cer-
tain Jobs to be finished before processing other ones, whether the scheduling
allows for preemptiveness, meaning that the processing procedure of a Job
can be interrupted before it is completed and then continued later on, if a
Machine can be idle at any time point, if certain Jobs can only be done by
certain Machines, if a Machine can break down at some moment and so on.
Moreover, in many applications the processing time cannot be expteced to
be exactly known, but often only follows an estimated distribution. There-
fore, in Stochastic Job Scheduling the processing times of Jobs are not given
as a deterministic value, yet instead in form of such a probability distribu-
tion.

Alongside all these options for problem formulation, there also arise many
specific goals in form of different objective functions to them. The following
lists gives an overview of some possible choices:

• Maximum lateness: As already mentioned, this is defined as the
lateness of the Job whose completion date exceeds its deadline the
most.

Lmax := max(L1, . . . , LJ)

• Makespan: The makespan refers to the time point when the last Job
is finished. Minimizing the makespan therefore is equivalent to trying
to terminate the workload the earliest possible.

Cmax = max(C1, . . . , CJ)

• Total weighted completion time: The sum over all the completion
times indicates how much times the Machines had to be working in
total. Weighting the Jobs adds incentive to be working less time on
some compared to others, for instance because the process might be
more expensive per time unit.

J∑︂
j=1

wjCj

• Total weighted tardiness: Similiar to the total weighted completion
time, we wish to minimize the sum over the exceedence of all Jobs with
regards to their deadline. The tardiness here is therefore defined as
Tj := max(0, Cj − dj). Note that in contrast to the lateness of a Job,
its tardiness only refers to whether or not it gets finished on time, not
providing us with any additional reward for doing so even earlier.

15

Analogously, weighting every Job gives more importance to not exceed
certain deadlines over others.

J∑︂
j=1

wjTj

• Weighted number of tardy Jobs: Even though being related to
the total weighted tardiness, in this case we only care about how
many Jobs have exceeded their deadline, yet not about by how much.
Weighting them again gives stronger incentive to being on time for
certain Jobs than for others. For this purpose, we define the binary
variable Uj , indicating whether a Job has been tardy or not.

J∑︂
j=1

wjUj

Of course, combinations of these objective functions are valid, too. A
gantt chart of an optimal scheduling example to minimize the makespan
on Identical Machines with initial occupations is given by the following fig-
ure 1:

Figure 1: Schedule minimizing Makespan on Identical Machines

2.1 Problem formulation

In this master thesis, we will treat the problem of scheduling on Unrelated
Machines with initial occupations, not allowing for preemptions and aiming
for the goal of minimizing the sum of the makespan together with the total

16

weighted tardiness of the Jobs as well as of the Machines, the latter denoted
by τm:

Cmax +
J∑︂

j=1
wjTj +

M∑︂
m=1

ωmτm (1)

Since all Jobs are available from the start, deciding to leave an available
Machine unoccupied at some moment and appointing a Job to it later on
would always be suboptimal compared to doing so immediately. Therefore,
we do not allow for the Machines to be idle either, so not assigning any Job
to a Machine as soon as it finishes its last occupation is equivalent to turning
it off.

Thus, for j = 1, . . . , J and m = 1, . . . , M such a Job Scheduling Problem
can mathematically be described by an input consisting of the values:

• pij > 0

• dj ≥ 0

• δm ≥ 0

• wj > 0

• ωm > 0

• rm

Becasue we do not allow for preemptive solutions, every Job has to get
assigned exactly once. Consequently, a schedule is a sequence of 2-tuples

(st1, m1), . . . , (stJ , mJ)

which are composed of the starting times stj > 0 for every Job j = 1, . . . , J
and the Machine mj = 1, . . . , M to which it gets assigned, hence also indu-
cing its completion time:

Cj = stj + pjmj

Let

Am := {j | mj = j}

denote the set of all Jobs j that get processed by Machine m. Then, the
time ζm at which a Machine m gets shut down can be derived as:

ζm = max
j∈Am

Cj

17

Such a schedule is feasible if:

1. As soon as it finishes its initial occupation, every Machine either gets
its first Job assigned or is turned off immediately:

∀m = 1, . . . , M :
min

j∈Am

stj = rm ∨ ζm = rm (2)

2. No Machine has more than one Job assigned at a time:

∀m = 1, . . . , M :
∀j1 ̸= j2 ∈ Am :

Cj2 ≤ stj1 ∨ Cj1 ≤ stj2 (3)

3. No Machine is ever idle between two Jobs:

∀m = 1, . . . , M :
∀j1 ∈ Am :

(∃j2 ∈ Am : Cj1 = stj2 ∨ Cj1 = ζm) (4)

Requirement (2) ensures that no Machine receives a Job assignment before
finishing its initial occupation. Combined with (4) it prevents any idleness.
The remaining conditions are guaranteed by construction. Hence, we treat
the Job Scheduling Problem:

RM | dj , δm, wj , ωm, rm | Cmax +
J∑︂

j=1
wjTj +

M∑︂
m=1

ωmτm (5)

2.2 Related Work

Being a combination of both, before tackling the task of minimizing our
objective function stated in (1), we first want to take a look at how well
preexisting combinatorial algorithms approximate the two separate object-
ives of minimizing the makespan and the total weighted tardiness. We start
with the former.

Minimizing the Makespan Cmax is already NP-hard when scheduling on
two Identical Machines, what can be derived from the partition problem
[1, p. 112]. However, reasonable approximations can be achieved even
through simple greedy or local search algorithms, for which a set of rules
determine the movement from one local feasible solution to the next one [5,
p. 40]. For scheduling on Unrelated Machines, there have been proposed a

18

2-approximation algorithm by Versache and Wiese [7] as well as by Lenstra,
Shmoys and Tardos [8]. The latter team has also shown that no approxima-
tion algorithm running within polynomial time with a factor α smaller than
1.5 can exist unless P = NP .

For minimizing the total weighted tardiness of Jobs on Unrelated Machines,
also strongly NP-hard, not many known solutions exist. This problem is
extremly hard to solve even for the case of Uniform Machine scheduling and
in an environment of only about 5 Machines and 30 Jobs [1, p. 143]. One
probabilistic solution was proposed in the paper [9] where they used an Ant
Colony Optimization Algorithm derived from an heuristic rule from single
Machine scheduling, outperforming the same in computational experiments
on Unrelated Machines.

2.3 Our Approach

Due to the complexity and difficulty of our scheduling problem as well as the
the lack of options within the theoretical literature to solve even only parts
of it, we decide to take a novel approach by applying Deep Learning with
immanent structures of Deep Reinforcement Learning with the objective to
construct a Neural Network that provides us with satisfying solutions. The
exact method will be unfolded over the next sections. Deep Learning has
already been used to solve Job-Shop Scheduling Problems as in [4]. However,
no such approach successfully tackling a Job Scheduling Problem similiar to
ours is known to this point.

To measure our results, we will use a combinatorial algorithm as a compar-
ative metric to the scheduling costs we obtain by following the estimations
of our Neural Network. The greedy algorithm of list scheduling, where the
Jobs get sorted according to a feature and then iteratively assigned to the
next Machine that becomes available, has shown to provide a reasonable
approximation for several objective functions when scheduling on Single or
Identical Machines [5]. Since this simple implementation might neglect too
much information in our more complex case, we extend this algorithm to
the following version:
Let Πm : {1, . . . , J} ↦→ {1, . . . , J} be a permutation, ordering the list of Jobs
by some feature depending on the machine m. So whenever a Machine m
becomes free during the scheduling process, check whether for the first re-
maining Job of that sorted list there exists another machine m∗ on which
it would finish sooner, i.e. if the processing time of said Job added to the
time until Machine m∗ finishes its current occupation is shorter than its pro-
cessing time on the free Machine m. If no such Machine m∗ exists, assign

19

the Job to Machine m. Otherwise, repeat the process for the next remain-
ing Job from the sorted list until a Job gets assigned to Machine m. If the
iteration completes the entire list of remaining Jobs without assigning any
one to the currently free Machine m, turn it off. Algorithm 1 describes this
decision process:

Algorithm 1: Comparative Scheduling Algorithm
Input: list of remaining Jobs LJ

list of working Machines LM
free Machine m
machine occupation runtimes r ∈ RM

1 LJ = Πm(LJ) ; // sort Jobs
2 for Job j in LJ do
3 assign = True;
4 for Machine m∗ in LM do
5 if rm∗ + pjm∗ < pjm; // compare completion times
6 then
7 assign = False ; // do not assign Job j
8 break;
9 if assign = True ; // no faster Machine

10 then
11 assign Job j to Machine m;
12 remove Job j from LJ ;
13 break
14 if assignment = False ; // no Job got assigned
15 then
16 turn off Machine m;
17 remove m from LM ;

To enable a dynamic sorting of the list of remaining Jobs, taking into ac-
count the development of the schedule over time, they will get reordered
whenever a Machine m becomes free. As for the features, Πm will sort the
Jobs in ascending order with regards to their processing time on Machine m.
If two processing times match, the Job with the greater weight will be put
first. If these are equal, too, the Job with the lower deadline will be ordered
before the other one. The pseudo code for ordering any two remaining Jobs
j1 and j2 with respect to Πm is given by the following algorithm 2:

20

Algorithm 2: Πm: Sorting Jobs for Machine m

Input : Jobs j1, j2
Output: Jobs sorted by Πm

1 if pj1m < pj2m ; // shorter processing time
2 then
3 return (j1, j2);
4 else if pj1m > pj2m then
5 return (j2, j1);
6 else // processing times are equal
7 if wj1 > wj2 ; // higher weight
8 then
9 return (j1, j2);

10 else if wj1 < wj2 then
11 return (j2, j1);
12 else // weights equal as well
13 if dj1 ≤ dj2 ; // earlier deadline
14 then
15 return (j1, j2);
16 else
17 return (j2, j1);

21

3 Deep Reinforcement Learning

When it comes to Machine Learning, there exist three basic paradigms.
On the one hand, there is Supervised Learning, which uses labeled data
sets to train an algorithm according to a task, usually to classify an in-
stance or to predict an outcome. In the context of Neural Networks, this
means that there exist target values which the Network tries to achieve and
that can be used to measure its success in doing so. On the other hand,
there is Unsupervised Learning, where no such targets are known and the
data is unlabeled. Pattern Classification is an example, where the Network
shall divide the data into clusters of data points with similiar characterist-
ics. Reinforcement Learning can be seen as somewhere inbetween these
two, since target values are not given, but shall be deducted by an agent
throughout his learning phase. In Job Scheduling, theoretically the costs of
all possible assignment of Jobs to Machines could be calculated, in particular
the optimal one. Due to many of these problems being NP-hard, doing so is
usually computationally infeasible. However, computing the costs for certain
chosen assignments might be possible, hence turning the problem into an
observable environment that might be suited for Reinforcement Learning,
especially for the subgenre of Deep Reinforcement Learning (DRL),
where the agent gets replaced by a Neural Network.

Therefore, in this section we will give an overview of Reinforcement Learn-
ing by introducing markovian decision problems together with the method
of Q-learning and its associated temporal difference learning algorithm in
stochastic iterative processes. We will mathematically proof that the Q-
learning relaxation does indeed provide convergence to the minimal costs,
since especially the contraction property has been explained only very briefly
in the original paper of [10]. Subsequently, we will present the extension to
Deep Reinforcement Learning and how to apply it.

3.1 Markovian decision problems

This subsection is based on [11]. Basic Reinforcement Learning is modeled
as a markovian decision problem, in which an agent tries to pay the min-
imum cost (often also referred as the highest reward). He moves through a
set of states, choosing from a set of actions which will take him to a suc-
cesor state. The possible actions are determined by the state he is in. To
which state the transition will occur is not necessarily deterministic, yet the
probabilites only depend on the current state and the choosen action. The
arising immediate costs are defined by the current and the succesor state as
well as by the chosen action. The agent starts in a beginning state, there

22

can be diverse final states. After reaching one of them, there are no possible
actions anymore. The goal is it to find a policy, mapping an action to every
possible state such that the expected value of the total costs, being the sum
over all the immediate costs along the way, is minimal. We will use the
following notation:

• states S = {s1, . . . , sn}

• actions A = {a1, . . . , al}

• transition probabilty ρss′(a):
The probabilty of reaching state s′ by chossing action a in state s.
It is derived from the conditional probability mass function p(· | s, a)
of the discrete probability distribution P : S ×A× S ↦→ [0, 1]:

ρss′(a) := p(s′ | s, a)

• immediate costs cs(a):
The mean of the reward function R : S ×A× S ↦→ R over all the pos-
sible succesor states:

cs(a) :=
∑︂
s′∈S

ρss′(a)R(s, a, s′)

• policy µ : S → A

• Value function Vµ(s) = lim
N→∞

E{
N−1∑︁
t=0

γtcst(µ(st)) | s0 = s}

The value function indicates the expected total cost of playing policy µ
when starting in state s with the discount rate γ ∈ [0, 1]. If γ = 0, we only
worry about the next immediate cost, if γ = 1, we have no time pressure of
reaching a certain final state.
Clearly, our goal is to find an optimal policy µ∗, such that:

V ∗(s) := Vµ∗(s) = min
µ

Vµ(s)

For this, we use the recursevly defined Bellman Equation

V ∗(s) = min
a∈A(s)

{cs(a) + γ
∑︂
s′∈S

ρss′(a)V ∗(s′)} (6)

where the idea is to pretend for every state s ∈ S, that we are starting in this
state, taking the optimal action there and then continue playing an optimal

23

policy from the successor state on reached by this action.

In order to find such a V ∗, we use an interative process:

V (k+1)(s) = min
a∈A(s)

{cs(a) + γ
∑︂
s′∈S

ρss′(a)V (k)(s′)}

The iteration from V (k+1)(s) to V ∗(s) can be shown to be a contraction
mapping, the proof is analogous to the one in the following subsection.
Therefore:

max
s
| V (k+1)(s)− V ∗(s) |≤ γ max

s
| V (k)(s)− V ∗(s) |

which implies that V (k) converges to V ∗ for an arbitrary inicial V (0).

3.2 Q-learning and its convergence

Until now we assumed that the transition probabilites and expected costs
were known. Since this is not always the case, we opt to slightly change the
Bellman Eqaution to

V ∗(s) = min
a∈A(s)

Q∗(s, a)

by introducing the Q-values:

Q∗(s, a) := c̄s(a) + γ
∑︂
s′∈S

ρss′(a)V ∗(s′) (7)

This has the advantage that we can iteravely update the value of each action
instead of just the action with the minimal expected value. In this case the
Q-learning algorithm is a stochastic form of value iteration.

To perform a value iteration step, for any V the quantity ∑︁
s′∈S

ρss′(a)V (s′)

and the expected cost cs(a) have to be known. Said quantities can be estim-
ated by the quantities V (s′), if successor state s′ is chosen with probability
ρss′(a), which is assured by simply following the transitions of the actual
markovian environment, giving us an unbiased estimate of the sum. Rede-
fining cs(a) as an unbiased estimate of the actual expected cost leads to the
following relaxation of the Q-learning algorithm, where Qt(s, a) and Vt(s)
are the learners estimates of the Q function and V function at time t:

Qt+1(st, at) = Qt(st, at) + αt(st, at)[cst(at) + γVt(st+1)−Qt(st, at)] (8)

The difference between Qt and Qt+1 is called temporal difference. The ob-
jective now therefore is to denote conditions under which an arbitrary Q0

24

converges to the optimal action-value-mapping Q∗ when applying this tem-
poral difference learning algorithm and to give an elaborated proof of this.

To do so, we use the following theorem stated in [10]:

Theorem 1 A random iterative process ∆n+1(x) = (1− αn(x))∆n(x) + βn(x)Fn(x)
converges to zero w.p.1 under the following assumptions:

1. The state space is finite

2. ∑︁
n

αn(x) = ∞,
∑︁
n

α2
n(x) < ∞,

∑︁
n

βn(x) = ∞,
∑︁
n

β2
n(x) < ∞, and

E{βn(x) | Pn} ≤ E{αn(x) | Pn} uniformly w.p.1

3. || E{Fn(x) | Pn} ||W < γ || ∆n ||W , where γ ∈ (0, 1)

4. V ar{Fn(x) | Pn} ≤ C(1+ || ∆n ||W)2

We want to apply this theorem to our Q-learning algorithm. For this, we
reorganize the iteration term to

Qt+1(st, at) = (1− αt(st, at))Qt(st, at) + αt(st, at)[cst(at) + γVt(st+1)]

Furthermore, we mark that the optimal Q∗ function is a fixpoint of the
following contraction operator H, defined for a generic function
q : S ×A ↦→ R [12] as

Hq(s, a) :=
∑︂
s′∈S

ρss′(a)[cs(a) + γ min
a′∈A

q(s′, a′)]

since

HQ∗(s, a) =
∑︂
s′∈S

ρss′(a)[cs(a) + γ min
a′∈A

Q∗(s′, a′)]

=
∑︂
s′∈S

ρss′(a)[cs(a) + γV ∗(s′)] = Q∗(s, a)

H is indeed a contraction operator in the sup-norm:

25

|| Hq1 −Hq2 ||∞
= max

(s,a)
|

∑︂
s′∈S

ρss′(a)[cs(a) + γ min
a′∈A

q1(s′, a)− cs(a)− γ min
a′∈A

q2(s′, a′)] |

= max
(s,a)

γ |
∑︂
s′∈S

ρss′(a)[min
a′∈A

q1(s′, a′)− min
a′∈A

q2(s′, a′)] |

≤ max
(s,a)

γ
∑︂
s′∈S

ρss′(a) | min
a′∈A

q1(s′, a′)− min
a′∈A

q2(s′, a′) |

= max
(s,a)

γ
∑︂
s′∈S

ρss′(a) | −max
a′∈A
−q1(s′, a′) + max

a′∈A
−q2(s′, a′) |

≤ max
(s,a)

γ
∑︂
s′∈S

ρss′(a) max
(i,a′)

| q1(i, a′)− q2(i, a′) |

= max
(s,a)

γ
∑︂
s′∈S

ρss′(a) || q1 − q2 ||∞

= γ || q1 − q2 ||∞

Finally, the following theorem of [10] determines conditions under which
convergence is garantueed for our Q-learning relaxation algorithm:

Theorem 2 The Q-learning algorithm given by

Qt+1(st, at) = (1− αt(st, at))Qt(st, at) + αt(st, at)[cst(at) + γVt(st+1)]

converges to the optimal Q∗(s, a) values if:

1. The state and action space is finite

2. ∑︁
n

αn(x) =∞,
∑︁
n

α2
n(x) <∞ uniformly w.p.1

3. V ar{cs(a)} is bounded

4. If γ = 1 all policies lead to a cost free terminal state w.p.1

Proof.
To proof this theorem, we have to bring our algorithm into the form of
Theorem 1 to be able to aply it. For this, we do the following:

• substract Q∗(s, a) from both sides

26

• define ∆t(s, a) := Qt(s, a)−Q∗(s, a)

• define Ft(s, a) := cs(a) + γ min
a′∈A

Qt(snext, a′)−Q∗(s, a)

• define βt(s, a) := αt(s, a)

So finally, we get:

∆t+1(s, a) = (1− αt(s, a))∆t(s, a) + βt(s, a)Ft(s, a)

With this, the first and second condition of Theorem 1 are fullfilled given
the assumptions 1. and 2. of Theorem 2. With our knowledge about H we
can show now that the third and fourth condition of Theorem 1 are fullfilled
as well [10, 12].

E{Ft(s, a) | Pt}

=
∑︂
s′∈S

ρss′(a)[cs(a) + γ min
a′∈A(s′)

Qt(s′, a′)]−Q∗(s, a)

= (HQt)(s, a)−Q∗(s, a)

= (HQt)(s, a)− (HQ∗)(s, a)

Since H is a contraction mapping, we get:

|| E{Ft(s, a) | Pt} ||∞=|| (HQt)− (HQ∗) ||∞

≤ γ || Qt −Q∗ ||∞= γ || ∆t ||∞

In the undiscounted case, where γ = 1, if the chain is absorbing and all
policies lead to the terminal state w.p.1., there still exists a weighted max-
imum norm that gives us the desired contraction mapping property.

For the variance of Ft we conclude:

27

V ar{Ft(s, a) | Pt}

= E[Ft(s, a)− E{Ft(s, a) | Pt}]2

= E[cs(a) + γ min
a′∈A

Qt(snext, a′)−Q∗(s, a)− (HQt)(s, a) + Q∗(s, a)]2

= E[cs(a) + γ min
a′∈A

Qt(snext, a′)− (HQt)(s, a)]2

= V ar{cs(a) + γ min
a′∈A

Qt(snext, a′)}

We know by condition that V ar{cs(a)} is bounded and from the properties
of the variance itself we also know that:

V ar{γ min
a′∈A

Qt(snext, a′)}

≤ E[γ min
a′∈A

Qt(snext, a′)−Q∗(s, a)]2

≤ E[γ || Qt −Q∗ ||∞]2

Considering this, we finally get that there exists a C ∈ R>0 such that:

V ar{cs(a) + γ min
a′∈A

Qt(snext, a′)} ≤ C(1+ || ∆t ||∞)2

3.3 Deep Q-learning

Since we have proven the convergence property of the temporal difference
learning algorithm from (8), we know that we have found the true action-
value for the state st and the action at given by Q∗(st, at) as soon as Qt(st, at)
equals its temporal difference target Qt+1(st, at). To compute both these val-
ues, we need a policy π that decides which action at to take for state st at
step t of the iteration, as well as a policy µt that is applied from state st+1 on
to compute Vt(st+1). So µt is called the target policy, a greedy-policy derived
from the currently learned estimator Qt of Q∗ and therefore a learned estim-
ator itself of the optimal policy µ∗, while π is called the behaviour policy and

28

is used only during the temporal difference learning algorithm to find this
true action-value mapping Q∗ by determining the probability distribution of
the actions at ∼ π(st) for st [13]. Algorithms that use the target policy also
as behaviour policy are denoted as on-policy-algorithms, otherwise refered
to as off-policy-algorithms. To learn these state-action-values Q∗(s, a) by
applying (8), every state-action-combination has to be experienced several
times. Since the number of possible combinations increases exponentially,
this can quickly become computationally infeasible, which is especially the
case for NP-hard problems like the problem of Job Scheduling with a higher
number of Jobs and Machines, that to solve is our ultimate goal.

This leads us to the reformulation of the task of constructing Q∗ with the
approximative approach of finding the parameters Θ so that the action-value
mapping Q(·, ·, Θ) minimizes the temporal differences over all states s ∈ S
with regards to the state-dependent probability distribution π(s) over the
action space A. For a given state st, this minimization can therefore be
expressed with the mean-squared-error function

Lϑ(Θ) := Eat∼π(st)[(y
(st)
ϑ (at)−Q(st, at, Θ))2] (9)

with the target values

y
(st)
ϑ (at) := Eat+1∼µ(st+1)[cst(at) + γVt(st+1, at+1, ϑ) | st, at] (10)

whose minimization can be achieved through the common gradient-descent-
method. In Deep Q-learning, these temporal-difference targets yϑ are
estimated by a Target Network, while the Q-values from (7) are predicted
by a Q-Network, both identical in their architecture but not in their weights
ϑ and Θ [14]. The parameters ϑ of the Target Network correspond to a
former version Θi−1 of the parameters of the Q-Network, where i stands for
the next update step. The Target Network itself is therefore identical to a
previous version of the Q-Network and gets updated to the current one after
every k iterations. Figure 2 summarizes this entire approach:

29

Figure 2: Target Network in Deep Q-learning [15]

Using such a time-delayed version of the Q-Network to compute the tem-
poral difference targets yΘi−1 has shown to lead to an improved stability of
the entire model [16].

30

4 Neural Network Architectures of Natural Lan-
guage Processing

As constructed in the previous section, in Deep Reinforcement Learning a
Neural Network takes the role of the agent in order to learn a mapping
from states to their action-values. We therefore are in need of a Network
Architecture that fits the structural challenges induced by embedding Job
Scheduling Problems into such environments. Since we have to deal with
different numbers of Jobs and Machines for different problems and even
within the progressing of a schedule, we require our Network to be able to
deal with input sequences of varying length as well as dynamically sized out-
puts. One field of artificial intelligence whose data often comes with such
properties is Natural Language Processing (NLP). It involves enabling
the computer to deal with human languages like English, German or Span-
ish in a way that certain tasks can be performed and dealt with. These
tasks come from a broad spectrum such as machine translation, speech-to-
text and text-to-speech convertion, text classification, text summarization,
sentiment analysis, text generation, image captioning up until fake news de-
tection [17]. Since Human language on itself is complex, finding a numeric
representation of it that can be computationally implemented while loosing
as little of relevant information as possible is very challenging. Thus, using
Deep Learning became a popular approach, where a Neural Networks gets
trained upon extracting linguistic patterns by using optimizing algorithms
such as gradient descent to minimize a defined loss function, which math-
ematically enforces the desired requirements [18]. Therefore, in this section
we will introduce some Network Architectures of this field that deal with
sequential data of varying dimensionality like senteces or text blocks and
analyze their strenghts and weaknesses to potentially implement them into
our Neural Network later on. We start by explaining how idiomatic corpora
are converted into data of according form.

4.1 Word Embedding

This subsection is based on the original paper [19] as well as on [20], an in
depth mathematical formulation of the belonging structures.
For a Neural Network to be able to interprete given inputs as well as the
targets to which the created outputs shall be compared to, these have to
be passed in a numerical form. In NLP, a common method is to represent
every word or expression with one (or many) vector(s). These vectors should
contain the semantic, syntactic and often also contextual information of that
word or expression within their geometric embedding into the vector space.
This might manifest in words belonging to a group, for example colors, lying
closely together in a subspace, or algebraic operations such as adding and

31

substracting being applicable, for instance something like:

’Berlin’ - ’Germany’ + ’France’ = ’Paris’

where the operation is called on the vector linked to the word. Hence, the
resulting vector of ’Berlin’ - ’Germany’ should resemble the vector of ’capital
city’. Another example would be:

’composer’ - ’Mozart’ + ’Messi’ = ’footballer’

where the difference of the first two words stands for ’profession’.
One possible requirement could also be to understand two words being op-
posite to each other, among other relations:

’high’ - ’low’ + ’old’ = ’young’

For syntactics, recognizing comparatives and superlatives might be desired:

’taller’- ’tall’ + ’nice’ = ’nicer’

Of course, these relations can change depending on the context of the data.

This approach is called Word Embedding, where Deep Learning is applied
to learn these vector representations as well. One well known technique to
do so is Word2Vec, where a Neural Network receives large amounts of text
data for training and iterates over every word in the corpus, trying to either
predict the central word with the surrounding ones (Continuoues Bag of
Words) or to use the current word to name the contextual words around
it (Skip-Gram). Either way results in two vector representations for each
word, a context-word and a center-word representation. Both should meet
the desired requirements listed above.

As shown in figure 3, these embeddings are then used to feed the inputs and
targets to the Neural Network that was designed for a certain task, as well
as to interpret its outputs if any of them are ment to resemble text data.

32

Inputs Embedded
Inputs

Embedded
Outputs Outputs

The

cat

with

the

hat

0.43
−0.64
0.71

⎛⎜⎜⎝
⎞⎟⎟⎠

0.94
0.63
−0.06

⎛⎜⎜⎝
⎞⎟⎟⎠

0.58
0.14
−0.49

⎛⎜⎜⎝
⎞⎟⎟⎠

0.43
−0.64
0.71

⎛⎜⎜⎝
⎞⎟⎟⎠

−0.03
0.37
−0.29

⎛⎜⎜⎝
⎞⎟⎟⎠

Neural Network

−0.83
0.26
0.41

⎛⎜⎜⎝
⎞⎟⎟⎠

−0.55
0.83
0.26

⎛⎜⎜⎝
⎞⎟⎟⎠

0.77
−0.49
−0.52

⎛⎜⎜⎝
⎞⎟⎟⎠

−0.86
0.24
0.43

⎛⎜⎜⎝
⎞⎟⎟⎠

0.92
0.83
−0.17

⎛⎜⎜⎝
⎞⎟⎟⎠

Die

Katze

mit

dem

Hut

Figure 3: Neural Network with Word Embedding

4.2 Recurrent Neural Networks

The purpose of a Neural Network is to resemble a ground-truth mapping
of inputs to outputs given a certain task. In the most basic scenario, every
input and output consist of exactly one element of fixed size. This type of
mapping is called one-to-one, shown in figure 4:

Input Neural Network Output
Rdin Rdout

Figure 4: One-to-One Mapping

In NLP however, the size of each sample often varies within one corpus of
data, since these can contain structures like sentences or paragraphs which

33

may differ in the number of words they consist of. Thus, applying Word
Embedding transforms them into vector-sequences of varying length as seen
in figure 3. Since Neural Networks with a basic architecture like the Mul-
tilayer Perceptron have a fixed number of neurons in every layer, we seem
to be in the need of a more sophisticated approach.

Let in the following x(1), . . . , x(n) ∈ Rd denote a sequence of vectors, where
n is dynamic. A simple way of handling such an input with a static layer
would be to define a maximum permitted sequence length of Ninp/d for any
instance by setting the number of neurons in the input layer of our Neural
Network to Ninp ∈ N and then applying zero-padding [21]. As illustated in
figure 5 (with Ninp = 12, d = 3, n = 3), for every sample we would con-
catenate all n vectors and subsequently add zeros-values until we obtain a
single vector of dimension Ninp.

Inputs
of one

Instance
Concatenation Zero-Padding

0.31

-0.77

0.12

0.86

0.44

0.75

-0.59

0.28

-0.06

0.31

-0.77

0.12

0.86

0.44

0.75

-0.59

0.28

-0.06

0.31

-0.77

0.12

0.86

0.44

0.75

-0.59

0.28

-0.06

0

0

0

Figure 5: Zero-Padding

Analogously, if the output shall be of seqeuntial form as well, we could
create an output layer of fixed size Nout ∈ N and then split the output into

34

a sequence of Nout/d vectors, hence likewise defining a maximum sequence
length. As soon as one of these vectors resembles an end-token, the rest of
these vectors get discarded like in figure 6.

Ouput
of one

Instance
Splitting Stop at

End-Token

0.19

0.88

-0.20

0.58

0.87

0.28

-0.35

-0.13

-0.01

0.33

-0.85

0.42

0.19

0.88

-0.20

0.58

0.87

0.28

-0.35

-0.13

-0.01

0.33

-0.85

0.42

0.19

0.88

-0.20

0.58

0.87

0.28

End-Token

Figure 6: Output Sequence

One obvious downside would be that we could not process any observations
with a sequence longer than the defined maximum.
If, on the other hand, we decide to increase Nin or Nout respectively when
constructing our Network, we would also increase the computational cost for
every instance. We therefore would always have to consider this trade-off.

Another possibility would be to feed each of the n input vectors of an in-
stance separately through the same Network one by one as shown in figure
7. In language translation this would be equivalent to the idea of translating

35

a sentence word by word.

Inputs
of one

Instance
Outputs
of one

Instance

0.31

-0.77

0.12

0.86

0.44

0.75

-0.59

0.28

-0.06

Neural Network

Neural Network

Neural Network

0.54

-0.11

0.02

-0.09

-0.60

-0.32

-0.86

-0.18

0.89

Figure 7: Feeding Network one-by-one

Unfortunately, this approach would be limited in the variability of its struc-
ture, since the output sequence would have to be of the same length as
the input, as well as especially in the amount of contextual information it
could grasp, since the relation between the vectors of one sequence would
be strictly neglected [22]. In NLP however, context is of huge importance,
so the meaning of a word heavily depends on the ones surrounding it.
Furthermore, the order in which words are presented in a sentence has a
decisive impact, too. ’I prefer cats over dogs’ is significantly different from
’I prefer dogs over cats’.
This does not hold true exclusively for translations task at all. In sentiment
analysis for example, the statement ’This is not bad at all, in fact I do like
it!’ should be labeled as positive, in contrast to its word permutation ’This
is bad, in fact I do not like it at all!’. The above mentioned technique, how-
ever, would not be able to distinguish between these two cases.

36

We therefore wish for an architecture that is able to deal with sequences of
varying length while at the same time passing information about the context
and the relation of the vectors to each other in every sequence.

These requirements can be met by interpreting instances of language data,
such as sentences, as dependent time series consisting of a dynamic number
n ∈ N of time steps which then get fed through the Neural Network in a
recurrent way [23].
This means that, starting at the beginning of the series, every time step
iteravely passes the entire Neural Network together with the information
obtained at previous time steps.

Mathematically speaken, if an input consists of n vectors x(1), . . . , x(n), we
want at any given time step t = 1, . . . n our Network f to be of the form:

yt = f(x(t), h(t−1)) (11)

where y(t) is the output at the t-th time step and h(t−1) some information
computed at the previous time step t− 1.

This is exactly the way in which a Recurrent Neural Network (RNN)
operates [24]. After receiving an initial hidden state h(0) together with the
input sequence x(1), . . . , x(n), it iteravely computes all y(t) by considering
the previous, so called hidden state h(t−1) and repeatedly applying (11).

37

Input
Layer

Hidden
Layer

Output
Layer

x(1)

x(2)

x(3)

...

x(n)

h(0)

h(1)

h(2)

h(3)

...

h(n)

y(1)

y(2)

y(3)

...

y(n)

Wx

Wx

Wx

Wx

Wy

Wy

Wy

Wy

Wh

Wh

Wh

Wh

Wh

Figure 8: Simple Recurrent Neural Network

Figure 8 is the groundlaying architecture of a Simple Recurrent Neural
Network (Simple RNN) [25]. The calculation of the hidden states ht

in the blue blox as well as the weight matrices Wx, Wh, Wy remain the
same throughout every time step t = 1, . . . , n. There are also bias vectors
bh and by that get added in the hidden layer and output layer respectively,
ommited in the figure for sake of clarity. Terminologywise, from here on,
the computation that happens in one line of figure 8 will be called a cell of
the RNN.
The activation function for the hidden states is usually chosen to be a sig-
moid or the tanh [26], where the latter tends to perform more stable during
backpropagation for reasons we will see in the next subsection about van-

38

ishing and exploding gradients.
Depending on the task, the final output is then given either by the last out-
put y(n) as in sentiment analysis [27] or, as in language translation tasks, by
the entire sequence y(1), . . . , y(n) [26]. If the i-th entry of the output layer
shall represent the probabilty that said output corresponds to the i-th word
of a dictionary, softmax usually gets chosen as outer activation funtion and
therefore applied to every output vector y(t) [28].
To perform a Logistic Regression, the loss at time step t is naturally given
by

Lt(y(t), y
(t)
true) = y

(t)
truelog(y(t))

Since we need to consider the losses throughout all time steps, we derive the
cumulated Loss function

L(Y, Ytrue) = −
n∑︂
t

Lt(y(t), y
(t)
true) (12)

= −
n∑︂
t

y
(t)
truelog(y(t)) (13)

where y
(t)
true is the target vector at time step t, Y the matrix consisting of all

y(1), . . . , y(n) and Ytrue the matrix consisting of all y
(t)
true respectively [29].

Other combinations of sequence lengths regarding input and output are pos-
sible, too. In image description for example, the structure is reversed: Our
input is a single image that we want to describe with a sequence of words
[30]. To use the presented RNN architecture, we could define our input
sequence as x(t) := x and to be of the same length as the desired output se-
quence by repeating the single input vector x accordingly many times if the
length is known beforehand or until an output resembles a predefined end-
token. Another approach is to feed the input x to a Convolutional Neural
Network first and use its output for the Recurrent Neural Network. [31].
In general, input and output sequence may differ in length. For instance,
a translated sentence may not consist of the same amount of words as the
original one. A popular solution is to use an Endcoder-Decoder structure,
where the input sequence gets fed in an RNN denoted to be the Encoder.
The last hidden state is then passed to initialize another RNN, the De-
coder, which then uses its own previous output as input for any current
time step [32]. Nevertheless, since we will not encounter these scenarios in
Job Scheduling Problems, we will refrain from a more detailed explanation
at this point.

One big disadvantage of the time-dependent-series approach is that whenever
a RNN is seeing the t-th input x(t) of its input sequence, it has already seen

39

the inputs of all preceding time steps, yet none of the succeeding. The
context of a word, however, is not only defined by the previous ones in a
sentence, but also by the ones following it. To integrate this into our ar-
chitecture and improve the ability of our Neural Network to interprete the
context of each input step, we can use a Bidirectional Wrapper for our RNN
as in figure 9:

Output
Layer

←−−−
RNN

−−−→
RNN

Input
Layer

y(t−1) y(1) y(t+1)

· · · h
←−−−
(t−1) h

←−
(t) h

←−−−
(t+1) · · ·

· · · h
−−−→
(t−1) h

−→
(t) h

−−−→
(t+1) · · ·

x(t−1) x(t) x(t+1)

Figure 9: Bidirectional RNN

Here, the input sequence x(1), . . . , x(n) gets fed into our RNN normally, cre-
ating the forward hidden states h

−→1 , . . . , h
−→n . In addition, the same input se-

quence gets fed parallely into the same RNN in reversed order x(n), . . . , x(1),
thus chronologically creating the backward hidden states h

←−n , . . . , h
←−1 . All

hidden states get then multiplied by Wy as in figure 8, resulting in the
forward output sequence y

−→1 , . . . , y
−→n and the backward output sequence

y
←−n , . . . , y

←−1 . By concatening the according vectors, i.e. by defining

y(t) := concat(y
−→
t , y
←−
t) (14)

for every time step t = 1, . . . , n, we obtain the resulting output sequence

40

y(1), . . . , y(n) [33].

Another way of providing the Neural Network with more context about each
time step of the input sequence is to stack RNNs onto each other [34]. Here,
the hidden states h(1), . . . , h(n) of one bottom RNN are fed as input sequence
to a second top one. Figure 10 illustrates this architecture:

Output
Layer

Top
RNN

Bottom
RNN

Input
Layer

y(t−1) y(1) y(t+1)

· · · h
(t−1)
T h

(t)
T h

(t+1)
T · · ·

· · · h
(t−1)
B h

(t)
B h

(t+1)
B · · ·

x(t−1) x(t) x(t+1)

Figure 10: Stacked RNN

An arbitrary amount of RNNs can be stacked. This has the advantage that
every input from the second RNN on has already be computed by consid-
ering the entire input sequence, hence providing it with some context from
the start. A similiar approach would be to use the original input sequence
for every stacked RNN as well, but set its initiate hidden state to be equal
to the final hidden state of the preceding one.
Naturally, to take advantage of both approaches, one can combine them by
stacking Bidirectional RNNs onto each other. Nevertheless, one mayor struc-
tural disadvantage remains for Simple RNNs due to their learning process,
as will be discussed in the following subsection.

41

4.3 Vanishing/Exploding Gradients

We will now take a more technical look at how the Simple RNNs learn, which
will confront us with the problem of the vanishing/exploding gradient [35]
and, as a result, lead us to the improved architecture of Long Short-Term
Memory (LSTM) cells that will be presented as a solution subsequently.

Let us first further split the equation (11) into two parts:

y(t) = fy(h(t)) = ϕy(Wy ∗ h(t) + by) (15)
h(t) = fh(x(t), h(t−1)) = ϕh(Wx ∗ x(t) + Wh ∗ h(t−1) + bh) (16)

Here, ϕy is the activation function in the output layer, usually a softmax,
and ϕh the activation function for the hidden layer, usually chosen to be
tanh or the sigmoid-function.

To understand how the Network learns, we have to take a look at its back-
propagation. We will focus on the gradients for the weights of Wh.

Due to equation (12), we have:

∂L(Y, Ytrue)
∂Wh

= −
n∑︂
t

∂Lt(y(t), y
(t)
true)

∂Wh

For better readability, in the following we will write Lt short for Lt(y(t), y
(t)
true).

If we further look at the gradient of the t + 1-th time step, we get:

∂Lt+1
∂Wh

= ∂Lt+1
∂y(t+1)

∂y(t+1)

∂h(t+1)
∂h(t+1)

∂Wh

The hidden state h(t+1), however, also depends on the previous hidden state
h(t) due to the recursive structure of the Neural Network. Hence, applying
the chain rule gives us:

∂Lt+1
∂Wh

= ∂Lt+1
∂y(t+1)

∂y(t+1)

∂h(t+1)
∂h(t+1)

∂h(t)
∂h(t)

∂Wh

Repeating this for every foregoing time step produces the equation

∂Lt

∂Wh
=

t∑︂
k

∂Lt+1
∂y(t+1)

∂y(t+1)

∂h(t+1)
∂h(t+1)

∂h(k)
h(k)

Wh

Again due to the recursive dependency of the hidden states and the chain
rule, we can rewrite the term ∂h(t+1)

∂h(k) as:

42

∂h(t+1)

∂h(k) =
t∏︂

j=k

∂h(j+1)

∂h(j)

This leaves us with the expression:

∂Lt

∂Wh
=

t∑︂
k

∂Lt+1
∂y(t+1)

∂y(t+1)

∂h(t+1) (
t∏︂

j=k

∂h(j+1)

∂h(j))h(k)

Wh

The part of this term that will therefore make the gradient vanish or explode
by exponentially decreasing or growing is ∏︁t

j=k
∂h(j+1)

∂h(j) . Due to equation (16)
we can rewrite this as:

t∏︂
j=k

∂h(j+1)

∂h(j) =
t∏︂

j=k

diag(ϕ′
h(h(j)) ∗Wh (17)

Let us now take a look at the norms of the Jacobian Matrices of equation
(17). We denote λ to be the greatest eigenvalue of Wh. If we assume its
norm to be upper bounded by a γj ∈ R+ for every j = k, . . . , t, i.e.

|| diag(ϕ′
h(h(j)) || ≤ γj (18)

we can give an upper bound to the entire term:

||
t∏︂

j=k

∂h(j+1)

∂h(j) || ≤
t∏︂

j=k

|| ∂h(j+1)

∂h(j) || (19)

≤
t∏︂

j=k

|| diag(ϕ′
h(h(j)) || ∗ ||Wh || (20)

≤
t∏︂

j=k

γj ∗ λ (21)

≤ (γ ∗ λ)t−k (22)

for γ := maxj(γj). If now λ < 1
γ , its upper bound of (22) and therefore

the term || ∏︁t
j=k

∂h(j+1)

∂h(j) || itself converges to zero, resulting in a vanishing
gradient for any sequence long enough.

As mentioned, ϕh usually gets chosen to be tanh or sigmoid. The derivative
of tanh is given by

∂tanh(z)
∂z

= 1− tanh(z)

43

and its absolute value therefore upper bounded by 1.
For sigmoid, the absolute value is even already upper bounded by 0.25, since
its derivative is given by:

∂sigmoid(z)
∂z

= sigmoid(z) ∗ (1− sigmoid(z))

Therefore, the assumption of (18) would be fulfilled in both cases and the
vanishing of the gradient would be ensured in case that λ < 1 for tanh and
λ < 0.25 for sigmoid, thus making sigmoid the less stable choice for an ac-
tivation function in regards to this problem.

Reversing this proof gives the necessary condition of λ > 1
γ for the gradient

to explode. However, vanishing gradients are the bigger issue for Simple
RNNs. Also, gradient clipping provides a stable solution to exploding gradi-
ents by taking the minimum of a fixed value and the calculated gradient for
any gradient descent step (hence clipping it above a certain value) [36].

4.4 Long Short-Term Memory

As seen in the prvious subsection, Simple RNNs struggle with the problem
of vanishing gradients when it comes to parameter optimization for longer
sequences and may therefore fail to give a correct context in NLP applica-
tions for words that are far apart from each other. Lets take a look at the
following sentence:

"The student, which already put a lot of thought into how to explain the
challenges and solutionary architectures needed for the master thesis in an

illustrative way, still found himself struggling to think of a random
examplary sentence."

and compare it to:

"The students, which already put a lot of thought into how to explain the
challenges and solutionary architectures needed for the master thesis in an

illustrative way, still found themselves struggling to think of a random
examplary sentence."

These are identical but for two words: In the first sentence, the singular
of student is used, while the subject of the second one is the plural form.
Because of this, the reflexive pronoun "himself/themselves" gets conjugated
differently towards the end of the sentence (or more precisely, after the in-
serted subordinate clause). Hence, the Neural Network has to remember
the numerical order of the object from the beginning of the sentence to

44

chose the right persona for the reflexive pronoun towards the end of it. This
can be challenging for Simple RNNs due to the mentioned problem of the
vanishing gradients. To use more intuitive expressions, they rather rely on
a kind of short-term memory due to their tendency to focus stronger on
parts of the input sequence recently seen before, while having trouble to
remember connections from longer ago [37]. We therefore might wish for
some modifications in the architecture to implement additional information
that tends to resemble some kind of long-term memory as well. This is were
Neural Networks called Long-Short-Term-Memory (LSTM) come into
play. These are an extension of RNNs, designed to tackle the mentioned
problem of vanishing (and also exploding) gradients and therefore enabling
the processing of larger sequences. The following information is based on
[38].

Just like Simple RNNs, the LSTM is a type of recurrent Neural Network,
consisting of one unit, refered to as the memory unit or the LSTM unit in
the literature, that gets run through iteratively by every part of an input
sequence, while also taking in some information created at the previous time
step (which again depends on information of the foregoing time step etc).
The difference to Simple RNNs is that these only receive the hidden state
h(t−1) as additional input from the previous time step. In an LSTM how-
ever, there also is a vector c(t−1) that gets fed to the LSTM unit at time
step t, in addition to the hidden state h(t−1) and the input x(t). This addi-
tional vector is called the cell state and is meant to resemble some type of
long-term memory that gets passed along and modified at every time step.
Lets now take a look at how these LSTM units are constructed in detail:

45

Memory
c(t−1)

Hidden State
h(t−1)

c(t)

h(t)

x(t)

Input

Forget
Gate

Input
Gate

Candidate
Memory

Ouput
Gate

∗ +

∗ ∗

tanh

σ σ tanh σ

Figure 11: LSTM Unit

Figure 11 shows that an LSTM unit takes c(t−1), h(t−1) and x(t) as inputs
and is built of 3 gates and a Candidate Memory. The gates gate how much
information should be let through, while the Candidate Memory is a po-
tential addition to the already existing information based on the current
time step. Each of these are Feedforward Neural Networks on their own,
consisting of an activation function ϕi and two trainable weight matrices Wi

and Vi, i = 1, 2, 3, 4. Any of these Networks takes h(t−1) and x(t) as inputs,
multiplies them by Wi or Vi respectively, sums up the two resulting vectors
and then applies the activation function ϕi:

(x(t), h(t−1)) ↦→ ϕi(Wix
(t) + Vih

(t−1))

We will now go through each of these gates, one at a time, to explain their
function in the unit. To better illustrate the idea behind the architecture,
we often will use the more intuitive terms long-term memory and short-term
memory instead of the technical terms cell state and hidden state.

First, there is the Forget Gate of figure 12:

46

Memory
c(t−1)

Hidden State
h(t−1)

c(t)

h(t)

x(t)

Input

Forget
Gate

Input
Gate

Candidate
Memory

Ouput
Gate

∗ +

∗ ∗

tanh

σ σ tanh σ

Figure 12: Forget Gate

Its activation function is sigmoid, therefore it outputs a vector with values
ranging between 0 and 1. These values then get multiplied entrywise with
the cell state c(t−1). Hence, the Forget Gate determines what percentage
of each entry of the long-term memory shall be remembered (and therefore
how much should be "forgotten").

Now we want to update our remaining long-term memory with the inform-
ation of the current time step:

Memory
c(t−1)

Hidden State
h(t−1)

c(t)

h(t)

x(t)

Input

Forget
Gate

Input
Gate

Candidate
Memory

Ouput
Gate

∗ +

∗ ∗

tanh

σ σ tanh σ

Figure 13: Input Gate and Candidate Memory

47

The Candiate Memory of figure 13 resembles this information. Since its
activation function is tanh, it will output a vector with values between
−1 and 1. Before adding them to the long-term memory, these values get
multiplied with the ones produced by the Input Gate. Having a sigmoid as
activation function, it therefore decides what percentage of each information
of the current time step shall be added to the long-term memory.
The vector that we obtain for the long-term memory after applying these
operations will be the updated long-term memory, the cell state c(t). Regard-
ing this new context, we now also want to update our short-term memory
h(t−1):

Memory
c(t−1)

Hidden State
h(t−1)

c(t)

h(t)

x(t)

Input

Forget
Gate

Input
Gate

Candidate
Memory

Ouput
Gate

∗ +

∗ ∗

tanh

σ σ tanh σ

Figure 14: Output Gate

For this, we apply tanh to c(t) as shown in figure 14, receiving a vector ran-
ging between −1 and 1, therefore being the Candidate Memory for the new
short-term memory. Having a sigmoid as activation function, the Output
Gate then decides what percentage of these values shall be outputted to
be the updated short-term memory h(t) based on the previous short-term
memory h(t−1) and the new information x(t), revealed at the current time
step t.

The advantage of these gates is that they enable the LSTM to learn how
to control the flow of information. When applying the backpropagation
through time in the gradient descent method, the ratio of growth ∂c(t)

∂c(t−1)

between consecutive cell states are part of the chain of factors of derivates
created by the chain rule, acting as learnable scalings to the other factors
[39]. Thus, they work as controlling instances to the growth of the gradients,
preventing them from vanishing or exploding for larger sequences. As a con-

48

sequence, LSTMs are able to process instances of a sequence not only based
mainly on information from inputs seen shortly before, but by considering
parts of the sequence that has been fed to it at time steps longer ago as well,
therefore also exhibiting long-term memory-based behaviours [28].
Just like Simple RNNs, LSTMs can be integrated into bidirectional wrappers
or stacked onto each other as well [40]. Note that in this case in addition
to the final hidden state h(n), the final cell state c(n) gets passed to initiate
the succeeding LSTM, too.

4.5 Attention

With the presented architectures to this point, we are now able to implement
context in the form of short-term and long-term memory. These represent-
ations of context are a result of all the information that the Neural Network
has seen up to the present time step, of which it is independent of. However,
certain parts of the input sequence may be more important than others to
determine the context for the current instance, while the others might be
more significant at a different time step. Let us say we want to translate
the sentence:

"I am measuring the length of my bathroom to know how many feet of
carpet I should buy."

To output the correct translation for "bathroom", the Neural Network mainly
has to consider the word itself, while the information of what is being done
in there can most completely be neglected. However, when it comes to
translating "feet", it does have to take into account that the context is given
by "measuring" and "length", so it does not output the translation of the
respective body part. Hence, every instance should pay Attention to dif-
ferent parts of the input sequence to gather the needed context. We therefore
would like to expand our recurrent architecture by some type of attention-
mechanism that tells the Network on which of the presented information
it should focus given the current input to correctly and efficiently grasp its
context. Since, typicial for Deep Learning Problems, we do not know before-
hand which values should ideally trigger which attention-response to which
extend, we want to constrcut the general architecture, but make the precise
weighting of the parameters a part of the learning process of the Neural
Network.

The general idea is to implement such an attention-mechanism based on the
structure of a query request [41]. Traditionally, these work the following
way: We have a query q ∈ Rdq and a dictionary of keys k1, . . . , kn ∈ Rdk

with associated values v1, . . . , vn ∈ Rdv . We check which key fits the query
best and output the corresponding value.

49

The difference now is that we do not decide for the best fitting key, but
instead score every key by how well it fits the given query.
There are different ways to do so. Here, we will use the one presented in
the paper [42], which has been a milestone in the field of NLP. To do so,
we need two weight matrices Wq and Wk. The attention scores u ∈ Rn are
then computed proportionally to the mathematical similarity of the weighted
query and the weighted keys, scaled by the square root of their dimension√

dk:

ui := < Wq ∗ q, Wk ∗ ki >√
dk

(23)

These weight matrices are the learnable parameters for the Neural Net-
work. Next, we apply softmax to these scores to obtain a distribution
a ∈ D

′({k1, . . . , kn}) of the attention over the keys, corresponding to how
fitting any of them is compared to the others regarding the current query:

a := softmax(u) (24)

Consequently, for every key ki, its entry for the attention distribution ai

indicates how much the associated value vi should contribute to the final
value z ∈ Rdv , which therefore will be the weighted sum:

z :=
n∑︂

i=1
ai ∗ vi (25)

In the environment of NLP, the keys usually are identical to their values
(i.e. ki = vi) and correspond to the information available for the Network
to define the context of the current query.
In case that the query is an element of this sequence q ∈ {v1, . . . , vn}, too,
we call this procedure Self-Attention. Self-Attention can be used to de-
termine the meaning of a word within the context of its sentence like in our
example stated above [43].
Otherwise, we are applying Cross-Attention. If, for example, we have a
label for a sentence as query in sentiment analysis, the attention score can
indicate the importance of each word of the sentence for the Neural Network
in deciding for said label [44].

Attention can also be integrated when stacking RNNs or when using an
Encoder-Decoder architecture [45]. For instance, Self-Attention can be ap-
plied to the sequence of hidden states h

(1)
B , . . . , h

(n)
B from figure 10 that gets

passed from one Network to the next one, while a succeeding LSTM can
be initiated with the vector obtained by using the final hidden state or cell
of the preceding one as query and applying Cross-Attention over the input

50

sequence x(1), . . . , x(n). A slight variation of the latter technique will be the
central aspect of the following subsection.

4.6 Pointer Networks

We already have analyzed multi-variate mapping problems and how to use
the RNN architecture to create output sequences of dynamic lengths in
this section. Yet, every vector of this output sequence still has to be of
a predefined, fixed dimension. When softmax is used as outer activation
function in the RNN, the i-th entry of any of its outputs usually denotes the
probability to chose the corresponding dictionary entry. So this architecture
suffices when working with static dictionaries, meaning the vocabulary that
the Neural Network can map to consists of exactly N elements for any given
input.

However, we might want to expand the set of mapping problems we can
address by those requiring a dynamic dictionary size, where the vocabulary
does depend on the respective input. Let us postulate that we have a se-
quence of words and want to point to the one which does not fit the others
like in figure 15:

cat

dog

car

parrot

Pointer Network

0

0

1

0

Figure 15: Pointer Network

In this case, the vocabulary would be equal to the input sequence whose
length would therefore define the dictionary size. Consequently, if input se-
quences differ in the number of words they consist of, the size of our output
vector has to as well. Using Attention enables us to implement such an
architecture:

51

As usual, we run our input sequence through our RNN time step by time
step, until we receive the overarching context in form of our final hidden
state h(n). We now use h(n) as query and the instances of the input se-
quence x(1), . . . , x(n) as keys to apply Cross-Attention. To create the scores
û ∈ Rn of the keys, the paper [46], being the one that originally introduced
this approach, uses a computation method slightly different to (23). It com-
pletely omits to assign associated value vectors v(1), . . . , v(n) and therefore to
compute the final weighted sum of (25). Instead, it introduces a single value
vector v ∈ Rdv , consisting of dv learnable parameters, suiting the dimensions
of the weight matrices Wq ∈ Rdv×dq and Wk ∈ Rdv×dk . By applying tanh to
the sum of the weighted vectors Wq ∗ q and Wk ∗ ki, the resulting term indic-
ates how much of each entry of v should be added or substracted to obtain
the corresponding attention score:

ûi :=< v, tanh(Wq ∗ q + Wk ∗ ki) > (26)

The attention distribution â ∈ D
′({k1, . . . , kn}) is then computed analog-

ously to (24):

â := softmax(û) (27)

Since we chose our keys to be equal to the input sequence, in particular
â ∈ D

′({x1, . . . , xn}) is a probability distribution over the instances of the
input sequence. Hence, by defining the output y ∈ Rn of the Neural Network
to be

yi := âi (28)

we created an architecture in which it maps back to the input sequence by
pointing at its instances. Neural Networks with this kind of achitecture are
therefore refered to as Pointer Networks. Due to our RNN being able to
process input sequences of dynamic length, the corresponding vocabulary is
now dynamic in size and content as well, thus fulfilling our stated require-
ments. This architecture does not work exclusively with RNNs but also with
other, non-recurrent Neural Networks that are able to process sequences as
input like the Transformer, which will be introduced in the next subsection.

Stated as motivation in their creation in [46], Pointer Networks can in par-
ticular be used for tasks in which there are several possible actions and the
Neural Network shall decide which one to take. The input sequence is then
the sequence of (feasible) actions and the output points towards which of
them may be optimal with regards to a certain objective. Therefore, they
also get called Action-Pointers. We will take advantage of this property

52

in our task of scheduling Jobs by applying such an Action-Pointer to a se-
quence of numerical representations of the Jobs to map to the set of actions
of feasible Job assignments to the currently free machine, appended by the
action of turning it off. From this mapping we will then deduce a schedule
by taking the action it estimates to be optimal, being the one corresponding
to the entry with the highest probability/attention.

4.7 Transformers

In the previous subsections, we have explained how to implement the atten-
tion mechanism of the paper [42] from 2017 into Neural Networks that are
constructed based on a recurrent architecture to improve their interpretation
of the individual context of instances to which it is applied. However, one
decisive disadvantage of RNNs remains, since any output y(t) depends on all
the previous hidden states h(1), . . . , h(t−1), which consequently first have to
be sequentially computed. The same paper therefore had a big impact on the
further development of the field of NLP by presenting the Transformer for
language translation, an Attention based Neural Network where during the
training phase all instances of the output sequence are created independently
from each other, hence allowing for much faster computation by making use
of parallelization instead of relying on recurrent processing. They typically
consist of an Encoder and a Decoder. We will now analyze the composure
of all their layers in detail, starting with the Encoder, illustrated in figure 16:

53

Figure 16: Encoder of Transformer [47]

The Encoder consists of several so called Attention-Heads. Their exact
number H ∈ N is set to 8 in the mentioned paper, however any number is
possible. The entire input sequence x(1), . . . , x(n) gets fed to the Encoder,
where each of the Attention-Heads separately applies Self-Attention to every
instance of this sequence, producing the sequences z

(1)
h , . . . , z

(n)
h , with h be-

ing the index of the respective Attention-Head. Therefore, any of these z
(t)
h

for h = 1, . . . , H is an encoding of the associated word x(t) with regards
to its meaning in the context of all words x(1), . . . , x(n) from the input se-
quence. Since it uses several Attention-Heads initialized to distinct values,
the Transformer can encode different aspects of the contextual meaning of
every word. Note that all the computations within an Attention-Head as
well as inbetween them happen in parallel, since they do not depend on each
other.

54

After applying Self-Attention, for every t = 1, . . . , n we concatenate all H re-
spective vectors z

(t)
1 , . . . , z

(t)
H and apply a learnable weight matrix W0 ∈ Rdx×(H∗dz),

where dx is the dimension of any input instance x(t) and dz of any z
(t)
h re-

spectively, so that

z
(t)
att := W0 ∗

⎛⎜⎜⎝
z

(t)
1
...

z
(t)
H

⎞⎟⎟⎠ (29)

is of dimension dx again. To enhance the stability of the learning process,
a Residual Connection is added by summing x(t) and z

(t)
att and then Layer

Normalization is applied:

z(1)
norm, . . . , z(n)

norm := LayerNorm(x(1) + z
(1)
att , . . . , x(n) + z

(n)
att) (30)

Subsequently, the normalized vectors get fed parallely into the same Feed-
Forward layer FF , consisting of an inner Weight matrix Win with an activ-
ation funtion ϕF , usually the Rectified Linear Unit (ReLU), and an outer
weight matrix Wout as well as bias vectors bout and bin:

z
(t)
forw := FF (z(t)

norm) = Wout ∗ ϕF (Win ∗ z(t)
norm + bin) + bout (31)

Afterwards, another Residual Connection and Layer Normalization is added:

z(1), . . . , z(n) := LayerNorm(z(1)
norm + z

(1)
forw, . . . , z(n)

norm + z
(n)
forw) (32)

These z(1), . . . , z(n) are the final output sequence of the Encoder. They can
then be passed to the Decoder or to the next Encoder, in case we have several
of them stacked onto each other, analogously to the way we stacked RNNs
in figure 10. All Encoders would then be identical in their architecture, yet
not share weights. The first (or bottom) Encoder would receive the input
sequence x(1), . . . , x(n), while the latter ones would use the output sequence
z(1), . . . , z(n) of the former Encoder as input, until the final (or top) Encoder
sends its output sequence to the Decoder. In case that there is a stack of
Decoders as well, said sequence is send to all of them, while the output of
any Decoder is used as input for the following one. Figure 17 illustrates the
entire architecture of such a Transformer:

55

Figure 17: Transformer [47]

It is worth mentioning that, due to construction, the ordering of the in-
stances of the input sequence does not matter anymore, which is why a
positional encoding gets added to the embedded representation of any word
before passing them to the bottom Encoder. Since this is not relevant for
our task, we will not focus further on it.

We will now analyze the Decoder. As figure 17 shows, architecturewise it
is similiar to the Encoder, but with one more Attention layer added. Ana-
logous to the Encoder, after every Attention and Feed-Forward layer there
will be applied a Residual Connection, which sums the vector representation
from before that layer with the one obtained after it, and subsequently a
Layer Normalization.

To define the input of the Decoder, we first have to look at what its output
is supposed to look like. The output of the top Decoder passes a Linear layer
before finally softmax gets applied to it as outer activation function. The
final output of the Transformer is hence a probability distribution over the
vocabulary dictionary, indicating which entry it estimates to be the correct
one. In language translation, the desired output often is a sentence, therefore
a sequence of length N ∈ N of these distributions over all possible words. To
produce the correct word for any given time step T = 1, . . . , N , we ideally
want to use as much information about its context as possible. That means
taking into account not only the encoded input sequence z(1), . . . , z(n) passed
by the Encoder, but also the previous words of the translated sentence, mak-

56

ing their vector representation a natural choice as inputs for the Decoder.
However, this would result in a recurrent structure again, for which in order
to compute the estimate y(T +1) of the next word we would first need to have
created all antecedant estimates y(1), . . . , y(T). To get rid of this sequential
dependency in the training phase, as well as to speed it up by providing the
Transformer with additional information, there is often something applied
called Teacher Forcing. This means that instead of feeding the sequence
of previous estimates as input to the Decoder, its input is set to be the
desired output, i.e. the target vectors y

(1)
target, . . . , y

(N)
target, provided by the

training data. So if we are dealing with a language translation task from
English to German and the input sequence x(1), . . . , x(n) of the Encoder is
the embedding of the sentence

"What do you want to do?"

the sentence we want to obtain as a translation would be:

"Was möchtest du machen?"

The embedding of this translated sentence is the sequence we would there-
fore use as input for the Decoder, shifted by one time step (therefore "Was"
would be the input for the Decoder at time step T = 2), with the very first
input being an initialization token. This allows the Transformer to compute
all outputs y(1), . . . , y(N) in parallel during its training phase. So in order
to create y(T +1), T = 1, . . . , N − 1 (y(1) is always set to be the initialization
token), in the Self-Attention layer of the Decoder we define y

(T)
target as query

and the sequence of targets y
(1)
target, . . . , y

(N)
target as keys and values. Since with

this architecture we want to mimic that y(T +1) depends on the previous out-
puts y(1), . . . , y(T), yet not on the future ones y(T +2), . . . , y(N), we have to
annulate the influence of the targets y

(T +1)
target , . . . , y

(N)
target. In other words, we

do not want the query to pay any Attention to them at all. We achieve this
by applying a mask. This mask replaces all attention scores u

(T +1)
i of (23)

for any subsequent target y
(i)
target with i > T by − inf, so that when applying

softmax in (24) their attention values a
(T +1)
i will be equal to zero.

The vector caclulated by the Masked Self-Attention layer in the Decoder
at time step T + 1 embeds the last preceding target y

(T)
target into the context

of all antecedant targets y
(1)
target, . . . , y

(T)
target. This vector is used as query in

the second Attention layer of the Decoder. Being a Cross-Attention layer,
the keys and values here are the outputs z(1), . . . , z(n) of the Encoder. Its
context therefore gets extended by the context given by the encoded input,
which in turn is the embedding of the input sequence x(1), . . . , x(n) into its

57

own context. The keys and values therefore remain the same for any out-
put creation step of the Decoder and are equivalent to the meaning of the
sentence that shall be translated in tasks of language translation.

When testing the Transformer or when applying it in the real world, there
will not be any target translations given anymore to be used as input for
the Decoder. Therefore, it will use its own predictions, forcing it again
into a recurrent structure. Since, however, the computation time is signi-
ficantly more important during training than during testing or application,
the Transformer Architecture holds a speed advantage inherent in its struc-
ture over any conventional RNN architecture, while also taking advantage
of the attention mechanism to create Attention based contexts throughout
its process.

Transformers have been implemented originally with the task of language
translation in mind. When it comes to time series however, one advantage
of the memory-mimicing properties of LSTMs becomes relevant: the ability
to incorporate static, time-invariant meta-information about the instances
of a sequence in its initial hidden state h(0) and cell state c(0). In fact,
many state-of-the-art models like Google´s Temporal Fusion Transformer
[48] or Amazon´s DeepAR [49] consist of a combination of the architecture
of a Transformer and integrated LSTMs. For our task we will make use of
the advantages of the different presented Network types from this section
by using an LSTM to embed the static data of our Jobs and Machines, a
Transformer-related architecture to put them into context and an Action-
Pointer to output a decision of how to proceed the schedule based on this
processed information. Therefore, in the next section we will see how to
embed our problem enviroment so that we can apply such a Neural Network
to it.

58

5 Problem Embedding

Job Scheduling Problems on parallel Machines are almost always NP-hard
to solve and even approximation algorithms are difficult to find as soon
as the objective functions becomes slightly more complex [1, p. 106]. In
the real world, several factors often have to be considered to evaluate how
good a schedule is. Moreover, it is desirable to have a polyvalent approach
that can flexibly be applied to somewhat modified versions of the problem,
too, without having to change the entire basic structure of the algorithm
everytime some information gets added or substracted from the objective
function. To find a solution more suitable to these circumstances, we will
make use of the theoretical and mathematical background of Job Schedul-
ing Problems and Deep Reinforcement Learning introduced in the previous
sections so far, utilising the presented Network architectures from Natural
Language Processing to implement the latter.

The goal is to create a Neural Network that, after being trained on some
Job Scheduling Problems, can allocate a value to every possible action of
assigning a Job to an available Machine or to turn the same off that cor-
relates with the thereby inflicted scheduling costs. Schedules can then be
created efficiently by repeatedly converting the current situation of the Job
Scheduling Problem into a readable form for the Neural Network, comput-
ing its output and taking the action associated with the estimated optimal
value whenver a Machine becomes free.

Another advantage is that when the objective function gets modified or more
conditions get added to the Jobs or Machines, one might be able to train a
new and suitable Neural Network by creating data according to these new
requirements with just very little and intuitive changes to the architecture.

To create such action-values, we make use of the structure of Deep Re-
inforcement Learning. We therefore will represent any situation in which
the need for a decision of which Job to apply to a free Machine emerges as a
state s, so that we can apply the Bellman-Equation to estimate the Q-values
from (7) and with that the corresponding scheduling costs for every action.
Hence, every action will be associated with a value estimating the immedi-
ate costs of taking said action and transitioning to the associated successor
state together with the future costs of continuing the schedule according to
some target policy µ from there. This policy is derived from the Target Net-
work by greedily choosing the action which it estimates to have the lowest
costs. During the learning process these estimated costs should approxim-
ate the Q-values, so that µ converges to the optimal policy µ∗. To apply
this approach we therefore need to embed the structure of Job Scheduling

59

Problems into a Q-learning environment. We will start by explaining how
to create the states.

5.1 States and Actions

We recall that we have J Jobs that can be assigned to M Machines. Our
conditions of (5) are that every Job j and every Machine m has a deadline
dj or δm and a weight wj or ωm respectively. All Machines are unrelated, so
every Machine m has an individual processing time pjm for every job j and
the scheduling does neither allow for preemptiveness nor for idleness, since
the latter would always be suboptimal compared to assigning the next Job
immediately. Any situation in which a Machine becomes free and therefore
needs an assignment will be transformed into a state. If more than one Ma-
chines become free at the same time, this leads to a separate state for each
of them that get handled one after another. Deciding to not assign any Job
to a Machine and to shut it down instead is always a feasible action in a
state as long as there is at least one more operating Machine. Since we want
to apply Reinforcment Learning, the states need to be markovian, so that
the information about any current state does not depend on the previous
ones. So in contrast to the Jobs, every Machine but one starts with an initial
occupation, whose processing time rm ranges from zero up to a predefined
maximum value. This holds the additional advantage of making sequential
states indistinguishable from initial ones and therefore also enabling us to
embed smaller scheduling problems into bigger ones, because every state can
be interpreted as initial, hence as its own complete scheduling environment,
and every initial state could be embedded into the process of foregoing states
of a larger scheduling environment. This will also allow us to flexibly address
to an even more general set of Job Scheduling Problems.

To define a state, we wish to identify it with a mathematical representation
that can be fed into a Neural Network. So for a given Job Scheduling
Problem, let s denote an occuring state within a schedule at a moment in
which a Machine ms becomes unoccupied, t(s) the units of time that have
passed until this point and r(s) ∈ RM the current remaining runtimes of all
the Machines.
Let further M (s) be the number of Machines that have not been turned off
yet and J (s) the number of Jobs that have yet to be assigned. Likewise
to our comparative list scheduling algorithm 1, these remaining Jobs get
sorted by Πms as in the sorting algorithm of 2. Moreover, the Machines
that are still operarting get ordered as well. They get sorted by the shorter
remaining processing time r

(s)
m , consequently making the first Machine of

the list the one that is free and shall get an assignment. If two Machines are

60

equal regarding this rule, analogous to Πm they get sorted for their weights
in descending order or, if these are equal as well, by the earlier deadline. We
define this permutation as the mapping

Π : {1, . . . , M} ↦→ {1, . . . , M} (33)

The subsequent indexing refers to these sorted lists of Jobs and Machines.

For every still operating Machine m we create a vector sMachines
m ∈ R3 of

dimension 3, consisting of the values of its remaining occupation time r
(s)
m ,

its weight ωm and the remaining time until its deadline, i.e. its earliness

ϵ(s)
m := max(0, δm − t(s))

For every remaining Job j we create a vector sJobs
j ∈ RM(s)+2 with the pro-

cessing times pjm on each of the M (s) operating Machines m, as well as its
weight wj and its earliness, expressly the time until its deadline exceeds

e
(s)
j := max(0, dj − t(s))

So if in state s we still have M (s) operating Machines and J (s) remaining
Jobs, we receive M (s) vectors of dimension 3 for the Machines and J (s)

vectors of dimension M (s) + 2 for the Jobs. Define the matrices

[sMachines] := [sMachines
1 , . . . , sMachines

M(s)]T ∈ RM(s)×3

[sJobs] := [sJobs
1 , . . . , sJobs

J(s)]T ∈ RJ(s)×(M(s)+2)

Any state s can now mathematically be identified as the 2-tupel

s := ([sMachines], [sJobs])

An examplary illustration of how to extract the data from a state is given
by the following figure 18:

61

pjm Job 1 Job 2 Job 3 Job 4 Job 5 r
(s)
m ϵ

(s)
m ωm

Machine 1 2 5 5 7 7 0 4 3
Machine 2 6 4 4 2 12 3 0 6
Machine 3 10 1 5 2 8 5 2 1

e
(s)
j 5 6 0 1 4

wj 9 6 3 2 2

M
ac

hi
ne

1

0

4

3

M
ac

hi
ne

2

3

0

6

M
ac

hi
ne

3

5

2

1

Job 1

2

6

10

5

9

Job 2

5

4

1

6

6

Job 3

5

4

5

0

3

Job 4

7

2

2

1

2

Job 5

7

12

8

4

2

Figure 18: State to Data

If in s a Machine became free but there are no remaining Jobs anymore, this
state is considered to be final. When such a final state is reached, all the
Machines naturally get turned off as soon as they become free from their
last occupation. Since no action can or has to be taken in a final state, we
do not need to extract any data from it for our Neural Network. Hence, let
in the following all regarded states be non-final.
On the other hand, the environment of the Job Scheduling Problem can
be identified with its initial state s1. Starting in this initial state s1, there
exists a discrete number of possible schedulings. The mathematical set of
non-final states S is therefore derived by the corresponding 2-tuples of any
moment in which a Machines becomes free and that requires a decision by
following any of these schedulings.
The mathematical set of actions is then given by:

A := {1, . . . , J + 1}

where action a ∈ A stands for assigning Job a = 1, . . . , J to the currently
free Machine or corresponds to the act of turning it off if a = J + 1. Let
furthermore for any state s ∈ S the subset A(s) of A consist of all feasible

62

actions in s. An action a = 1, . . . , J is feasible in a state s if Job a has not
been assigned in any previous state yet. The action a = J + 1 is feasible if
there is still more than one Machine operating, i.e. if M (s) > 1.
By choosing a feasible action a ∈ A(s) in a state s we therefore transition to
a successor state s′ ∈ S, representing the next moment a Machine becomes
free. Due to its new occupation, the post-decision runtime of Machine ms

in state s is given as

r(s,a)
ms

:=
{︄

pams if a = 1,. . . , J ∈ A(s)
0 if a = J+1 ∈ A(s)

being either its processing time for the assigned Job a or 0 if it got shut
down. The occupation of all other Machines did not change post-decision,
so r

(s,a)
m := r

(s)
m for m ̸= ms. Hence, by combining these values to the vec-

tor r(s,a) ∈ RM , the time that will pass until the next moment a Machine
becomes free (and therefore until s′ occurs) is equal to the shortest post-
decision occupation time of any of the working Machines:

t
(s,a)
∆ := min

m
{r(s,a)

m | Machine m still works} (34)

Since the processing times are deterministic, the successor state s′ is as well
and therefore given in form of the deterministic output

s′ := tr(s, a)

of the transition function tr : S ×A ↦→ S. Let as be the row of [sJobs] cor-
responding to Job a. To update the matrices [sMachines] and [sJobs] to
the 2-tupel that identifies s′, we have to update the occupation times r(s′)

of the Machines as well as the earlinesses e(s′) and ϵ(s′) to the time point
t(s′) = t(s) + t

(s,a)
∆ at which the next Machine becomes free in state s′. We

also have to eliminate either the assigend Job a or respectively the Machine
ms in case it got turned off by taking action a in state s. The processing
times as well as the weights remain unchanged. Hence, the transition func-
tion tr is defined by the following algorithm 3:

63

Algorithm 3: State Transition Function
Input : state s

action a
Output: successor state s′

1 for m = 1, . . . , M (s) do // update Machine time values
2 sMachines

m,rm
= r

(s,a)
m − t

(s,a)
∆ ; // r

(s′)
m

3 sMachines
m,ϵm

= max(0, ϵ
(s)
m − t

(s,a)
∆) ; // ϵ

(s′)
m

4 for j = 1, . . . , J (s) do // update Job time values
5 sJobs

j,ej
= max(0, e

(s)
j − t

(s,a)
∆) ; // e

(s′)
j

6 if a = J + 1 then
7 delete row 1 of [sMachines] ; // Machine shut down
8 else
9 delete row as of [sJobs] ; // or Job assigned

10 apply Π to [sMachines] ; // sort Machines by r(s,a)

11 identify ms′ with sMachines
1 ; // next free Machine

12 apply Πms′ to [sJobs] ; // sort Jobs by pjms′

13 return ([sMachines], [sJobs]) ; // successor state s′

Note that we do not pass the times t(s) or t(s′) as the earlinesses have received
the equivalent recursive time-independent definition:

e
(s′)
j = max(0, e

(s)
j − t

(s,a)
∆)

ϵ(s′)
m = max(0, ϵ(s)

m − t
(s,a)
∆)

with their initial values e
(s1)
j = dj and ϵ

(s1)
m = δm being equal to the respect-

ive deadlines.

5.2 Policies

To be able to associate a policy µ with a scheduling algorithm, we need
to prove that every policy induces a feasible schedule as well as that every
scheduling algorithm is representable as a policy for any given Job Schedul-
ing Problem of our kind.

Theorem 3 Let µ : S ↦→ A be a policy and all of its actions µ(s) ∈ A(s) be
feasible for every state s ∈ S. For a Job Scheduling Problem represented by
the initial state s1 ∈ S, define the sequence of states

si+1 := tr(si, µ(si)) (35)

for i = 1, . . . , n − 1 with n being the index of a state sn with J (sn) = 1 and

64

µ(sn) = 1, . . . , J , thus of the state where the last remaining Job µ(sn) gets
assigned.
Let further ij denote the unique index of the state sij in which Job j gets
assigned on Machine mj := msij

for j = 1, . . . , J . A feasible schedule is then
given by the sequence:

((t(si1), m1), . . . , (t(siJ
), mJ))

Proof. It is

stj = t(sij
) (36)

pjmj = r
(sij

,j)
mj

due to construction. Since per definition Cj = stj + pjmj , it directly follows
that:

Cj = t(sij
) + r

(sij
,j)

mj (37)

We can now proof all three feasibility requirements of (2), (3) and (4):

(2): Each Machine m becomes free the first time at rm. If there are no
Jobs remaining, it gets turned off naturally and ζm = rm.
Otherwise it results in a state si, i = 1, . . . , n, with t(si) = rm.
If µ(si) = J + 1, then ζm = rm.
If on the other hand µ(si) = 1, . . . , J , then sij = si with mj = m and
the tuple (t(sij

), mj) is the j-th element of the schedule.

(3): Let m = 1, . . . , M . Then, for every j1 ∈ Am = {j | mj = m} there
exists a state sij1

, ij1 = 1, . . . , n, at time t
(sij1

) with µ(sij1
) = j1.

Thus from (37) follows that

Cj1 = t
(sij1

) + r
(sij1

,j1)
m

Hence, Cj1 denotes the next time at which an action is taken on Ma-
chine m

Cj1 = min({t(sij2
) ≥ t

(sij1
)|j2 ̸= j1 ∈ Am} ∪ {ζm})

and, due to (36), coincides with the earliest time the processing of
another remaining Job j2 could start on it, consequently implying
that

̸ ∃j2 ̸= j1 ∈ Am : stj1 ≤ stj2 < Cj1

(4): Analogously, if there are no Jobs remaining at Cj1 , Machine m gets
turned off naturally and ζm = Cj1 .

65

Otherwise there exists a state si, i = 1, . . . , n, with t(si) = Cj1 .
If µ(si) = J + 1, then ζm = Cj1 .
If on the other hand j2 := µ(si) = 1, . . . , J , then sij2

= si exists and
(t(sij2

)
, m) is the j2-th element of the schedule, thus j2 ∈ Am and

Cj1 = t
(sij2

) = stj2

Reversely, a scheduling algorithm is a mathematical mapping which receives
as input the processing times, deadlines, weights and current occupation
times of the remaing Jobs and Machines respectively. It is applied as soon
as one Machine becomes free and shall induce a feasible schedule, so if it
decides to assign a remaining Job j to Machine m at time t, its output impli-
citely or explicitely contains the information of the tuple (t, m) as well as j,
since that will be its index in the scheduling-sequence. In case that there is
at least one additional Machine on duty, it can also decide to turn Machine
m off, which has to be unambiguously deducable by its output somehow
deviating from the previous form.
Therefore, due to the construction of our Deep Reinforcement Learning En-
vironment, its input can be described as a state s ∈ S and its outputs by
either j = 1, . . . , J in case of an assignment or by J + 1 in case of a Machine
shut down.
Hence, every scheduling algorithm can be rewritten as a policy µ : S ↦→ A
mapping exclusively to feasible actions µ(s) ∈ A(s) for every state s ∈ S.

5.3 Action Values

We now have to show that the Value function Vµ of a policy µ is equal
to the costs of the objective function produced by the associated schedule.
The objective function represents the accumulation of the costs over the
entire duration of a schedule for a given Job Scheduling Problem. To as-
sign immediate costs cs(a) to the action a ∈ A(s) taken at any state s ∈ S,
we therefore need to distribute this entirety of scheduling costs onto the
state-action-pairs, so that the sum of immediate costs of an action sequence
producing states equivalent to a schedule equals (1). Using property (37),
we will now construct such a state-action-related implementation of the ob-
jective function by looking at the makespan related costs, the Job related
costs and the Machine related costs successively.

For this purpose, let in the following for a given Job Scheduling Problem s1
with J Jobs and M Machines s1, . . . , sn ∈ S be a sequence of states asso-
ciated with a feasible schedule (t(s1), m1), . . . , t(sJ), mJ) with mi := msi . Let
them be derived from a policy µ : S ↦→ A with feasible actions ai := µ(si) ∈ A(s),

66

so si+1 = tr(si, ai) with an = 1, . . . , J ∈ A(sn) corresponding to the action
of the last Job assignment, meaning that sn is the last non-final state.

Makespan

We will first split Cmax into a sum over the states by dividing it into the
times that passes inbetween them. However, to do so we have to consider
the time until the last Job finishes, not only until the last Job an is assigned.
In the previous subsections we made the limitation for all states s ∈ S to be
non-final, including any successor state tr(s, a), a ∈ A(s), since due to the
absence of a need to take a decision we do not have to extract data from
final states for our Neural Network. Nevertheless, this means that we have
to expand the definition of the time difference between two subsequent states
(34) by the case that the successor state would be final. As mentioned, we
do want to consider the time until the last Job finishes and consequently
the last Machine gets shut, down which equals precisely its post-decision
runtime. Therefore, we set:

t
(sn,an)
∆ := max

m
r(sn,an)

m (38)

This leads us to the well-defined state-action-dependent definition of the
makespan:

Cmax =
n∑︂

i=1
t
(si,ai)
∆

Weighted Tardiness of Jobs

For the part of the weighted tardiness of the Jobs, for every state si we look
at how much of the time t

(si,ai)
∆ that will pass until the successor state si+1

is an exceedence to the deadline of any Job. Thus, for every remaining Job
j in state si, we define the state-action-related Job tardiness as

T
(si,ai)
j := max(0, t

(si,ai)
∆ − e

(si)
j) j ̸∈ {a1, . . . , ai}

Aditionally, if a Job ai gets assigned at the current state si, we take all the
(possibly additional) exceedence to its deadline up to its completion time:

T
(si,ai)
j := max(0, pjmsi

− e
(si)
j) j = ai

In case that Job j had been assigned at a former state already, all costs
related to the exceedence of its deadline have already been considered in
former states, hence

67

T
(si,ai)
j := 0 j ∈ {a1, . . . , ai−1}

Taking the sum over all state-action-pairs therefore results in

Tj =
n∑︂

i=1
T

(si,ai)
j

Consequently, we get

J∑︂
j=1

wjTj =
J∑︂

j=1
wj

n∑︂
i=1

T
(si,ai)
j

=
n∑︂

i=1

J∑︂
j=1

wjT
(si,ai)
j

Weighted Tardiness of Machines

With regards to the weighted tardiness of the Machines, in every state si we
consider all the additional deadline exceedence of the currently free Machine
mi at once that emerges by assigning Job ai to it:

τ (si,ai)
mi

:= max(0, paimi − ϵ(si)
mi

) ai ̸= J + 1

If no Job gets assigned in si because ai = J +1 denotes the action of turning
Machine mi off, no additional costs arise due to its deadline:

τ (si,J+1)
mi

:= 0

Hence, all the other Machines do not produce any additional deadline related
costs at this state either:

τ (si,ai)
m := 0 m ̸= mi

Note that some initial deadline exceedence costs can occur due to the initial
machine occupation, hence we need to consider

τ (0)
m := max(0, rm − δm)

Therefore, we get

68

τm = τ (0)
m +

n∑︂
i=1

τ (si,ai)
m

and consequently the reformulation

M∑︂
m=1

ωmτm =
M∑︂

m=1
ωm(τ (0)

m +
n∑︂

i=1
τ (si,ai)

m)

=
M∑︂

m=1
ωmτ (0)

m +
n∑︂

i=1

M∑︂
m=1

ωmτ (si,ai)
m

= τ (0) +
n∑︂

i=1

M∑︂
m=1

ωmτ (si,ai)
m

with τ (0) := ∑︁M
m=1 τ

(0)
m being the sum over all costs arising by initial occu-

pations of Machines exceeding their deadlines.

Objective Function

Putting all of the above results together, we can rewrite the objective func-
tion of our associated schedule as sum over our sequence of state-action-
pairs:

Cmax +
J∑︂

j=1
wjTj +

M∑︂
m=1

ωmτm (39)

=
n∑︂

i=1
t
(si,ai)
∆ +

n∑︂
i=1

J∑︂
j=1

wjT
(si,ai)
j +

n∑︂
s=1

M∑︂
m=1

ωmτ (si,ai)
m + τ (0) (40)

=
n∑︂

i=1
[t(si,ai)

∆ +
J∑︂

j=1
wjT

(si,ai)
j +

M∑︂
m=1

ωmτ (si,ai)
m] + τ (0) (41)

Thus, we can now define and embed immediate transition costs for any state
s ∈ S and feasible action a ∈ A(s):

cs(a) := t
(s,a)
∆ +

J∑︂
j=1

wjT
(s,a)
j +

M∑︂
m=1

ωmτ (s,a)
m (42)

These costs do not depend on previous states, fulfilling the markovian re-
quirements. Inserting their definition in (41) leads us to the Value function
related expression of our objective function:

69

Cmax +
J∑︂

j=1
wjTj +

M∑︂
m=1

ωmτm

= τ (0) +
n∑︂

i=1
csi(ai)

= τ (0) + Vµ(s1)

Due to the the Machine deadline related initial costs τ (0), the scheduling
costs defined by the objective function (1) for a Job Scheduling Problem s1
of following a policy µ do actually not equal its Value function Vµ(s1). Since,
however, τ (0) is independent of the choosen policy µ, a policy that minimizes
Vµ(s1) produces an associated feasable schedule that minimzes the objective
function of (1). So by setting the Machine deadlines δm := max(δm, rm) for
m = 1, . . . , M , we create a problem environment which is equivalent in its
Q-values and therefore in terms of finding the optimal policy µ∗ with regards
to the scheduling costs. This guarantees that the Value function Vµ(s1) of
policy µ is equal to the objective function of its associated schedule:

Vµ(s1) = Cmax +
J∑︂

j=1
wjTj +

M∑︂
m=1

ωmτm

Moreover, since we constructed the state-action related tardiness of Ma-
chines τ

(s,a)
ms depending on the non-negative earlinesses ϵ

(s)
m ≥ 0 of the Ma-

chines instead of their deadlines dm, every state s ∈ S can then be inter-
preted as initial state of its own Job Scheduling Problem with initial costs
of zero. Consequently, our environment of Job Scheduling Problems is well-
defined within the markovian structure.

5.4 Target Values

Since our states are markovian and therefore any state s ∈ S can be defined
to be initial, we will aliviate the notation for the rest of this section by
using J and M instead of J (s) and M (s) and assume that the indices of
the (remaining) Jobs and Machines are ordered accordingly to the sorting
algorithms Πms and Π used in the creation of the state related data in figure
18.

Being able to assign immediate costs cs(a) to every feasible action a ∈ A(s)
of any state s ∈ S, corresponding to assigning Job a ̸= J + 1 to the free
Machine ms or to turning it off for a = J + 1, we can now calculate the
accumulated future costs for any corresponding successor state s′ := tr(s, a),

70

given by the Value function Vµϑ
(s′) and arising by following the target policy

µϑ. Combining both, the transition and the future costs, we obtain the
temporal difference targets from (10):

Q(s, a, ϑ) := cs(a) + γVµϑ
(s′) (43)

as an estimation of the Q-values of (7) which we want to incorporate into our
target values y

(s)
ϑ ∈ RJ+1, so that our Neural Network can use them to learn

how to deduct an optimal policy µ∗ leading to the optimal schedule to any
given Job Scheduling Problem. Since future costs are equally as important
as immediate costs, we set γ := 1.

A simple approach to this would be to treat every state s as a multiclass
classification problem, where the classes are associated with the feasible ac-
tions. The target vector would then be a one-hot-vector of dimension J + 1
with an entry for every possible Job assignment plus one for the option
of deactivating the Machine in case that M > 1. The index of the single
1-value would then indicate the optimal action to take in that state. An in-
tuitive loss function for that approach would therefore be the cross-entropy.
However, we might loose some information by this implementation: even if
not optimal, some actions can be better than others by producing smaller
costs.
Thus, we decide to apply a regression instead and choose the mean-squared-
error to be our loss function and the target vector to be the temporal dif-
ference target of (10), whose entries y

(s)
ϑ (a) consist of the estimations of the

Q-values Q(s, a, ϑ) associated with every possible action a = 1, . . . , J + 1.
These are composed of the known immediate transition costs cs(a) and the
future costs Vµϑ

(s′) estimating V ∗(s′) from(6). Here, the target policy µϑ

is greedily derived from the estimations of the Q-values as in (43) by the
Target Network with parameters ϑ:

µϑ(s′) = arg min
a′∈A(s′)

Q(s′, a′, ϑ) (44)

As we will see in section 7, due to our computationally advantageous con-
struction it will actually be feasible to calculate the error for each action
a ∈ A(s) instead of having a probabilty distribution over them as behaviour
policy π like in (9). This gives us the loss function

Lϑ(Θ) :=
J+1∑︂
a=1

[(y(s)
ϑ (a)−Q(s, a, Θ))2]

for a given state s ∈ S, where Q(s, a, Θ) is the estimation of the Q-values
from our Q-Network with parameters Θ.

71

5.5 Normalization

To make the learning process faster and more stable, we have to normalize
our data. We start by accordingly redefining the target values y

(s)
ϑ (a), which

we have set to be the estimation of the Q-values from (7) by the Target
Network given ϑ as its parameters.

Targets

One possible way to normalize these values would be to divide each of them
by the highest occuring target entry

Qmax
ϑ := max

a∈A(s)
Q(s, a, ϑ)

associated with the action estimated to be most costly. This, however, would
put an emphasis on this supposedly worst action, since every other action
value would be scaled in its regard. Let aϑ ∈ A(s) be the index associated
with the action predicted to be optimal by the target policy µϑ:

Qmin
ϑ := Q(s, aϑ, ϑ) = min

a∈A(s)
Q(s, a, ϑ)

If then, for instance, Qmax
ϑ is 10 times as high as Qmin

ϑ , the Neural Network
has to predict 0.1 as target value for entry aϑ. If, however, Qmax

ϑ is 100
times as costly, the Q-Network would need to predict 0.01. Hence, it would
be necessary for it to precisely learn how bad the worst action is to correctly
compare all the others to it.
Furthermore, if the second best action is twice as costly as the optimal one,
its target value would be 0.02. Therefore, misspredicting the second best
value min

a̸=aϑ

Q(s, a, ϑ) to be the optimal one or vice versa would not have a
big contribution to the regression error given by the loss function, leading
the Q-Network to neglect to learn how to differentiate them precisely. If
there is another bad action estimated to produce costs 80 times as high as
the optimal action would, the Q-Network should predict 0.8. The differ-
ence between the normalized target values associated with these suboptimal
actions, i.e. 0.8 to 1, would therefore contribute much more strongly, con-
sequently forcing the Network to mainly focus on distinguishing how bad
the worst actions are when compared to each other.
We, on the other hand, are more interested in gathering knowledge about
the best options and do not really care to know which of the bad actions
is worse by how much, knowing that they are far from optimal is enough
for us. Predefining a maximum cost beforehand as a scaling factor for the
target vectors of all states would yield the same problem, together with the
additional limitation that we would somehow need to know that no action
in any state is ever going to surpass said value.

72

To solve this dilemma, we decide to instead scale each of the costs by Qmin
ϑ ,

the supposedly smallest Q-value corresponding to the action aϑ, estimated
to be optimal by the Target Network, and then inverting each of these res-
ulting values:

Q(s, aϑ, ϑ)
Q(s, a, ϑ) ∈ [0, 1]

To put even further emphasis on the comparision between good actions, we
apply a softmax to the normalized target values in the end. Hence, the
normalized target value for taking action a in state s ranges between 0 and
1 and is given by:

y
(s)
ϑ (a) := softmax(Q(s, aϑ, ϑ)

Q(s, a, ϑ)) ∈ [0, 1] (45)

This way, the Neural Network is specifically incentivised to learn how to
correctly distinguish between the actions estimated to be the best, while
neglecting bad actions the more the worse they are. The following figure 19
sums this process up:

targets

20

5

10

90

75

scaled

4

1

2

18

15

inverted

1⁄4

1

1⁄2

1⁄18

1⁄15

softmax

0.17

0.35

0.21

0.13

0.14

Figure 19: Normalization of Target Values

Note that the action aϑ corresponding to the Q-value estimated to be the
smallest now indexes the greatest entry in the normalized target vector y

(s)
ϑ

produced by our Target Network. Hence, after normalization we equivalently
redefine our target policy µϑ from (44) to:

73

µϑ(s) := arg max
a∈A(s)

y
(s)
ϑ (a)

= arg max
a∈A(s)

softmax(Q(s, aϑ, ϑ)
Q(s, a, ϑ))

= arg max
a∈A(s)

Q(s, aϑ, ϑ)
Q(s, a, ϑ)

= aϑ

Inputs

For the input, we will need to scale two types of features: the weights as well
as the time-related values. For the weights, we define a maximum weight
wmax by which we divide all Job and Machine weights wj and ωm to scale
them to a value between zero and one. For the time-related values, we
will apply a dynamical scaling, so for every state s ∈ S we will divide all
processing times pjm, earlinesses e

(s)
j , ϵ(s) and machine occupations r

(s)
m by

the maximum time occuring in a remaining Job or an operating Machine in
that state. So the factor by which we scale is given by:

t(s)
max = max

j,m
max(pjm, ej , ϵm, r(s)

m)

The following figure 20 demonstrates how to normalize the values used for
the input of figure 18 with a maximum weight set to wmax = 10 and a
deduced maximum time of t

(s)
max = 12:

M
ac

hi
ne

1

0⁄12

4⁄12

3⁄10

M
ac

hi
ne

2

3⁄12

0⁄12

6⁄10

M
ac

hi
ne

3

5⁄12

2⁄12

1⁄10

Job 1

2⁄12

6⁄12

10⁄12

5⁄12

9⁄10

Job 2

5⁄12

4⁄12

1⁄12

6⁄12

6⁄10

Job 3

5⁄12

4⁄12

5⁄12

0⁄12

3⁄10

Job 4

7⁄12

2⁄12

2⁄12

1⁄12

2⁄10

Job 5

7⁄12

12⁄12

8⁄12

4⁄12

2⁄10

Figure 20: Normalization of Data

While for the static scaling of the weights wj and ωm the Q-Network learns
the relation of the scaling through the data it receives since it remains the
same for all instances, the dynamic scaling of the times changes for every

74

state. We therefore have to check now whether the Q-Network receives
enough information to theoretically be able to predict the normalized tar-
get values for any given state. These correlate with the estimated Q-values
which are equivalent to the policy costs of taking the respective feasible ac-
tion and subsequently following the target policy from the successor state on.

So let s1, . . . , sn be the sequence of states for following an arbitrary feasible
policy µ from some state s1 ∈ S. Then, due to the definition of the transition
costs of (42), the policy costs are given by

Vµ(s1) =
n∑︂

i=1
[t(si,ai)

∆ +
J∑︂

j=1
wjT

(si,ai)
j +

M∑︂
m=1

ωmτ (si,ai)
m]

Let now φ(s1) be the mapping that divides every time-related value of the
matrices of any state s = ([sMachines], [sJobs]) ∈ S by the factor t

(s1)
max, result-

ing in ŝ := φ(s1)(s). Since

r(ŝ,a)
m = r

(s,a)
m

t
(s1)
max

it directly follows that

t
(ŝ,a)
∆ = t

(s,a)
∆

t
(s1)
max

Due to the definition of the transition function tr in algorithm 3, this implies
that

tr(φ(s1)(s), a) = φ(s1)(tr(s, a))

Consequently, for the sequence ŝ1, . . . , ŝn of scaled states ŝi := φ(s1)(si), it
holds true that ŝi+1 := tr(ŝi, ai) for every i = 1, . . . , n− 1. Therefore, by
extending our policy with µ(sî) := µ(si), we obtain the policy costs:

75

Vµ(ŝ1) =
n∑︂

i=1
[t(ŝi,ai)

∆ +
J∑︂

j=1
wjT

(ŝi,ai)
j +

M∑︂
m=1

ωmτ (ŝi,ai)
m]

=
n∑︂

i=1
[t

(si,ai)
∆

t
(s1)
max

+
J∑︂

j=1
wj

T
(si,ai)
j

t
(s1)
max

+
M∑︂

m=1
ωm

τ
(si,ai)
m

t
(s1)
max

]

= 1
t
(s1)
max

n∑︂
i=1

[t(si,ai)
∆ +

J∑︂
j=1

wjT
(si,ai)
j +

M∑︂
m=1

ωmτ (si,ai)
m]

= 1
t
(s1)
max

Vµ(s1)

Since µ and s1 ∈ S were arbitrary, our Q-Network might therefore be able
to predict

1
t
(s)
max

Q(s, a, ϑ) = Q(ŝ, a, ϑ)

for any state s ∈ S with ŝ := φ(s)(s) and feasible action a ∈ A(s) = A(ŝ),
but because there is no way for it to deduct t

(s)
max, neither from the data

nor from the normalized input, it cannot learn the pre-normalized targets
Q(s, a, ϑ). However, by defining its output y

(s)
Θ to predict the quotient of

the costs Q(ŝ, aϑ, ϑ) and Q(ŝ, a, ϑ) with an applied softmax instead, it can
estimate the normalized target values y

(s)
ϑ of (45):

softmax(Q(ŝ, aϑ, a)
Q(ŝ, a, ϑ)) (46)

=softmax(
1

tmax
∗Q(s, aϑ, ϑ)

1
tmax

∗Q(s, a, ϑ)
)

=softmax(Q(s, aϑ, ϑ)
Q(s, a, ϑ))

=y
(s)
ϑ

Hence, normalizing the input together with the targets as constructed does
not inherently inhibit the learning ability of the Q-Network. Therefore, the
output y

(s)
Θ from (46) of our Q-Network serves as an estimation for

softmax(Q∗(s, µ∗(s))
Q∗(s, a))

consequently enabling it to estimate the optimal action for any state s ∈ S:

76

arg max
a∈A(s)

softmax(Q∗(s, µ∗(s))
Q∗(s, a))

= arg max
a∈A(s)

Q∗(s, µ∗(s))
Q∗(s, a)

= arg min
a∈A(s)

Q∗(s, a)

=µ∗(s)

By doing so, we can then use these outputs y
(s)
Θ to induce the policy

µΘ(s) = arg max
a∈A(s)

y
(s)
Θ (a) (47)

as our estimation of the optimal policy µ∗.

77

6 Network Architecture

Based on the architectures introduced in the section 4 about Natural Lan-
guage Processing, we will now present our Neural Network whose structure
is meant to counter the challenges arising by embedding Job Scheduling
Problems into data for a Deep Reinforcement Learning environment. So the
input will be a state, while the output will induce an action of which Job to
assign to the currently free Machine or to turn the same off. The following
is an overview of our model.

6.1 Overview

Our Neural Network receives the data representing a state s ∈ S as input,
consisting of the information about the J (s) Jobs and M (s) Machines which
are ordered according to the permutation Πms from the sorting algorithm 2
and Π from (33) respectively as explained in the previous section.

Its architecture is built of 3 successive parts, of which the first two heavily
take advantage of parallelization:

1. Sequential Embedding

2. Transformer Encoder

3. Action-Pointer Decoder

The output will then be a vector y ∈ RJ(s)+1 corresponding to a probability
distribution over the J (s) + 1 feasible actions with yΠms (j) denoting the ac-
tion of assigning Job j to Machine ms for Πms(j) = 1, . . . , J (s) and yJ(s)+1
standing for the action of shutting the free Machine ms of state s down.

In total, our Neural Network consists of 117.292 parameters, all trainable.
The next subsections will disclose how they are distributed among the differ-
ent parts of the model. In these, we will go through its architecture in detail
and step by step, starting with how to preprocess the data of our states to
bring them into the desired form. Since every state can be interpreted as
initial state of its own Job Scheduling Problem, we will aliviate the notation
throughout this section by assuming that J (s) = J , M (s) = M and that the
Jobs and Machines are already listed in the desired order, hence j = Πms(j)
for j = 1, . . . , J and m = Π(m) for m = 1, . . . , M .

6.2 Preprocessing

We recall that the information about a state s is derived as in figure 18
and normalized as explained in the last section and illustrated in figure

78

20. Thus, it is given in form of M vectors sMachines
1 , . . . , sMachines

M ∈ R3 for
the Machines, each consisting of their remaining occupation time r

(s)
m , their

earliness ϵ
(s)
m and their weight ωm, and J vectors sJobs

1 , . . . , sJobs
J ∈ RM+2 for

the Jobs, each consisting of 2 entries for their earliness e
(s)
j and their weight

wj and the remaining M for the processing times pjm on the respective Ma-
chine m.

We want to embed our data into a vector space from which we obtain one
vector representation of fixed dimension for each Job. The state environ-
ment, i.e. the information about the Machines, should be geometrically
integrated within this vector space. However, the number of Machines M
and Jobs J varies for every state. So not only the amount of input vectors
depends on the state, but also the dimension of these vectors for the Jobs.
We will therefore use the architectures introduced in the section 4 about
Natural Language Processing that are capable to process inputs of dynamic
size to process our input as well.

First, we handle the variability of Machine numbers M . Split the informa-
tion about job earliness e

(s)
j and weight wj from every vector sJobs

j of figure
18 apart from its processing times pj1,, . . . , pjM . Then incorporate the meta-
data of the Machines by concatening the vector sMachines

m of each Machine m
to the respective processing time pjm, m = 1, . . . , M . Thus, the information
about any Job j gets split into two parts:

• A vector x
(j)
urg := [e(s)

j , wj]T ∈ R2, resembling the urgency of processing
the respective Job j.

• A matrix X
(j)
res := [x(j)

1 , . . . , x
(j)
M]T ∈ RM×4, consisting of the sequence

of vectors x
(j)
m := [pjm, r

(s)
m , ϵ

(s)
m , ωm]T ∈ R4 for m = 1, . . . , M . This se-

quence represents a time-series of resources in form of Machines to
process said Job j that successively become available.

The following figure 21 demonstrates this process on an exemplary Job:

79

Job

0.3

0.9

0.5

0.3

0.4

pj1

pj2

pj3

ej

wj

0 0.4 0.7 Machine 1

0.2 0.5 1 Machine 2

0.6 1 0.1 Machine 3

r
(s)
m ϵ

(s)
m

ωm

x
(j)
1

x
(j)
2

x
(j)
3

x(j)
urg

Figure 21: Data to Input

6.3 Input

By preprocessing every Job j = 1, . . . , J and Machine m = 1, . . . , M as ex-
plained above, the input for the Neural Network will consist of two elements
of variable dimensions:

• A matrix [x(1)
urg, . . . , x

(J)
urg]T ∈ RJ×2 whose rows denote the sequence of

vectors of urgencies of the Jobs.

• A cube [X(1)
res, . . . , X

(J)
res]T ∈ RJ×M×4 standing for the sequence of re-

source related matrices of the Jobs. Each of these matrices has all the
static Machine data immanent, defining the context of resources.

6.4 Sequential Embedding

The dimension (J ×M × 4) of the second element of our input is variable
in two sizes, J and M . As anounced, we now want to embed our input
so that its dimension does not depend on the variable M of number of
Machines anymore. Therefore, we need to embed the resource conditions
X

(j)
res ∈ RM×4 of any Job j into a fixed size vector. We do so by interpreting

the corresponding sequence x
(j)
1 , . . . , x

(j)
M as a time series, feeding each of

these rows, illustrated in figure 21, to an LSTM of dimension 16. By doing
this bidirectionally as in figure 9, we obtain an embedding x

(j)
res ∈ R32 of

fixed dimension 32 for the resource environment of Job j. The sequential
embedding process is demonstrated in the following figure 22:

80

pjm r
(s)
m ϵ

(s)
m

ωm

x
(j)
1 0.3 0 0.4 0.7

x
(j)
2 0.9 0.2 0.5 1

x
(j)
3 0.5 0.6 1 0.1

LSTM
(bidirect.)

static size
Embedding

−→x (j)
res

←−x (j)
res

x(j)
res

Figure 22: Sequential Embedding of a Job’s Machine Resource Environment

The vector x
(j)
res is then further processed by passing it through a Feed For-

ward layer FFres as in (31) with the inner activation function ϕF being
Leaky ReLU with constant gradient α = 0.1, as it will be for every Feed
Forward layer in our Neural Network, and both dimensions set to 16, hence
producing:

x̃(j)
res = FFres(x(j)

res) ∈ R16

We repeat this process for every Job j = 1, . . . , J separately, so that we
receive the sequence x̃

(1)
res, . . . , x̃

(J)
res ∈ R16. Alternatively, one could also feed

the M Machine vectors to an RNN and use its output to initialize the cell
and hidden state of this LSTM whose inputs would then consist only of the
processing times of any Job.

The urgency of a Job is not defined only by its own deadline and weight,
but always depends on the deadlines and weights of all the other Jobs as
well. Therefore, we also wish to embed every x

(j)
urg, j = 1, . . . , J , by finding a

vector representation of its relative urgency considering the entire sequence
x

(1)
urg, . . . , x

(J)
urg.

First, for every Job j we offset its deadline and weight by passing x
(j)
urg

through a Feed Forward layer FF
(1)
urg with dimensions equal to 4. To then

give a sense of how important it would be to terminate that Job compared
to the other ones, we need to know how much Attention we should pay to
any of them. Therefore, we subsequently apply a Self-Attention layer with
2 heads and a key-dimension of 8. Afterwards, we run them each through
another Feed Forward layer FF

(2)
urg of dimensions 4, resulting in the sequence

x̃
(1)
urg, . . . , x̃

(J)
urg ∈ R4 of relative Job urgencies as shown in the figure 23:

81

x(1)

...

x(J)

Self-Attention

x̃(1)

...

x̃(J)

FF (1)
urg

FF (1)
urg

FF (2)
urg

FF (2)
urg

Figure 23: Embed Urgencies of Jobs

Now, to merge both of the embedded data information of every Job j = 1, . . . , J ,
we concatenate x̃

(j)
res ∈ R16 and x̃

(j)
urg ∈ R4 to

x̃(j) = concat(x̃(j)
res, x̃(j)

urg) ∈ R20

and then apply a Feed Forward layer FFemb whose dimensions are both
equal to 16:

x
(j)
emb = FFemb(x̃(j)) ∈ R16

The resulting sequence defines the embedded input

Xemb := [x(1)
emb, . . . , x

(J)
emb]

T ∈ RJ×16

We have successfully eliminated the variable M from its dimension by em-
bedding every Job j into a vector space. Its elements intrinsically rep-
resent the given set of Machines together with the Job’s processing times
pj1, . . . , pjM on them and the Jobs’s contextual urgency relative to the other
given Jobs. The following table 1 resumes the layers involved in this em-
bedding process:

82

Layer Parameters
(total = 4476)

Output
Dimension

Embedding Resources
Bidirectional LSTM

2688 32 (2× 16)

FFres 800 16
FF

(1)
urg 32 4

Embedding Urgencies
Self -Attention

308 4

FF
(2)
urg 40 4

Concatenate Inputs 0 20
FFemb 608 16

Table 1: Embedding Layers

Note that each of these layers is run through by each of the J different
Jobs in parallel, permitting for a significantly reduced computation time.
Moreover, embedding inputs with an LSTM before processing them with a
Transformer Encoder has shown itself benefical with regards to permance in
some applications as in [50].

6.5 Transformer Encoder

The sequence x
(1)
emb, . . . , x

(J)
emb of embedded vector representations is now run

through a Transformer Encoder as in figure 16, successively consisting of:

1. A Self-Attention layer with 4 heads and key dimension 32

2. A Residual Summation

3. A Feed Forward layer of dimensions 16

4. Another Residual Summation

We do, however, without a layer related normalization, since it will not prove
itself necessary.

Every Job has already been embedded into the context of how important
finishing it is compared to the other ones as well as into the given set of
Machines and how long each of them would need to process it. However,
its vector representation x

(s)
emb contains no information about how long they

would need to process any of these other Jobs. This information is added
in the Self-Attention layer of the Encoder. The resulting output sequence
of the Encoder

z(1), . . . , z(J) ∈ R16

83

is therefore an encoding of the corresponding vector representation x
(j)
emb of

each Job j into the context defined by the entire set of J embedded Jobs.
Hence, z(j) is the encoding of Job j into the complete environment of the
given state of our Job Scheduling Problem. The layers of the Encoder are
summarized in the following table 2:

Layer Parameters
(total = 9136)

Output
Dimension

Self -Attention Encoder 8592 16
Residual Connection 1 0 16
FFenc 544 16
Residual Connection 2 0 16

Table 2: Encoder Layers

Again, each of these layers processes all of the J different Jobs in parallel.
Next, we need to make a decision about which of them to assign or whether
we should shut down the currently free Machine.

6.6 Action-Pointer Decoder

For the Decoder, we do not use a Transformer related architecture, since we
only want one single output - a distribution over the feasible actions - annu-
lating many of its otherwise immanent advantages. Moreover, the technique
of Teacher Forcing for Deep Reinforcement Learning tasks has not been
explored by the literature as much as for supervised tasks yet, with some
papers discouraging its unmodified use as in [51].
Moreover, the desired shape of the output confronts us with another dy-
namic dimension problem as we aim to have precisely one entry for each of
the J remaining Jobs, along with one for the option of deactivating the Ma-
chine. As a result, the dimensionality of the output requires to be variable,
too. We therefore will use a Decoder based on an Action-Pointer, analogous
to the one of figure 15.

The encoded sequence z(1), . . . , z(J) gets fed into a bidirectionally wrapped
LSTM of dimension 2× 32, which will be our bottom LSTM, producing the
hidden states

h
(1)
B , . . . , h

(J)
B ∈ R64

These now do not represent the Jobs anymore but the corresponding action
of assigning each of them to the currently free Machine. Nevertheless, we
cannot point to them yet, since we need a further hidden state representing
the action of turning the Machine off. An indication for this depends on

84

the entirety of all remaining Jobs, so to create such a vector with sufficient
information, it has to be the result of the processing of the entire encoded
sequence z(1), . . . , z(J). This holds true for the final hidden state h

(J)
B , which

we therefore pass through a Feed Forward layer FFshut of dimensions 64.
The purpose of this layer is to deduct a meaningful representation

h
(J+1)
B ∈ R64

for the action of deactivating the Machine, considering the whole context of
the given state. An easier, yet less insightful alternative would be to append
a zero-vector to the output sequence of the Encoder.

The final hidden state h
(J)
B ∈ R64 and the final cell state c

(J)
B ∈ R64 of our

bottom LSTM consist each of the final forward and backward hidden state−→
h

(J)
B ,
←−
h

(J)
B ∈ R32 and −→c (J)

B ,←−c (J)
B ∈ R32 respectively. Each of these 4 vectors

is run through its own Feed Forward Layer of dimensions 32, resulting in
the vectors of processed memory states:

• −→h (0)
T = FF−→

h
(−→h (J)

B) ∈ R32

• ←−h (0)
T = FF←−

h
(←−h (J)

B) ∈ R32

• −→c (0)
T = FF−→c (−→c (J)

B) ∈ R32

• ←−c (0)
T = FF←−c (←−c (J)

B) ∈ R32

Consequently, by using these processed memory states to initialize its for-
ward and backward hidden and cell states, we stack a second bidirectional
LSTM of dimension 2× 32 onto it, being our top LSTM similiar to figure 10.
The key difference is that its input will be the sequence of hidden states of
the bottom LSTM expanded by h

(J+1)
B . This LSTM is our Action-Pointer,

so its input sequence h
(1)
B , . . . , h

(J)
B , h

(J+1)
B ∈ R64 will serve as keys. Its final

hidden state h
(J+1)
T ∈ R64 gets passed through a final Feed Forward layer

FFq of dimensions 128 to create the query vector

q = FFq(h(J+1)
T) ∈ R128

The final output y of our Neural Network is then defined as

y = â ∈ [0, 1]J+1

and therefore equivalent to the attention distribution over the feasible J + 1
actions that we compute using the Attention mechanism of Pointer Networks
from (26) and (26). Figure 24 resumes the architecture of the Decoder:

85

Output
y

Pointer
Bi-LSTM

Bidirect.
LSTM

Encoded
Inputs

â1 · · · âJ âJ+1 q

h
(1)
T · · · h

(J)
T h

(J+1)
T

FFq

h
(1)
B · · · h

(J)
B

FFshut h
(J+1)
B

z(1) · · · z(J)

Attention

h
(0)
Tc

(0)
T

Figure 24: Action-Pointer Decoder

All layers of the Decoder are listed in the following table 3:

86

Layer Parameters
(total = 103680)

Output
Dimension

Decoder Bottom
Bidirectional LSTM

12544 J × 64(2× 32)

FFshut 8320 64
Concatenate h

(J+1)
B

to Sequence
0 J + 1× 64

FF−→
h

2112 32
FF←−

h
2112 32

FF−→c 2112 32
FF←−c 2112 32
Action-Pointer:
Decoder Top
Bidirectional LSTM

24832 J + 1× 64(2× 32)

FFq 24832 128
Action-Pointer:
Cross-Attention

24704 J + 1

Table 3: Decoder Layers

The Decoder consists of the most parameters by far. This is due to the fact
that the Embedding part of the model as well as its Encoder processes each
Job in parallel, applying the same parameters to each of them. The Decoder
on the other hand combines the encoded vector representations of the Jobs,
processing them sequentially in the bottom LSTM and the top LSTM.
Moreover, the inter-contextual information that the vector representation
of each feasible action has to have immanent is successively augmented
throughout the Neural Network, creating the need for higher dimensions
in later layers, therefore increasing their required amount of parameters. So
while the attention scores âj , j = 1, . . . , J +1, of the output y are computed
in parallel by the Action-Pointer, it still significantly contributes to the total
number of parameters due to it being the highest layer.

87

7 Data Creation

Having implemented our Neural Network, we now want to train it to solve
Job Scheduling Problems and subsequently test and evaluate its perform-
ance. To do so, we need data. The learning process will be separated into
two stages. The first stage will be supervised, where we will create the data
by computing the ground-true Q-values to every state and use them as tar-
gets after normalizing them accordingly to figure 19. In the second stage,
we will then make use of the techniques of Deep Reinforcement Learning
by using our supervisedly pre-trained Neural Network as Target Network
to estimate the Q-values. These estimations will be the target values to
create training data for scheduling problems with higher Job numbers. We
then initialize a Q-Network with the parameters of the Target Network and
train it on the augmented data set. Subsequently, the Target Network gets
updated and we iteratively repeat this process until we reached the desired
number of Jobs.

7.1 Supervised Job Scheduling Problems

To train our Neural Network, we first need to simulate Job Scheduling Prob-
lems as learning environments. For this, we have to define the environmental
parameters of how many Jobs and Machines a problem shall consist of, in
what value range their deadlines and weights as well as the processing times
should be and what the longest initial occupation time for any Machine can
be.
In this supervised learning process, the ground-true Q-values for every Job
Scheduling Problem will be calculated by creating the entire state space S.
Hence, if s1 is the initial state of a Job Scheduling Problem, we compute
the set of all successor states

{tr(s1, a) | a ∈ A(s)}

For every element of this set, we compute the set of all its successors states
again. We successively repeat this process for every non-final state that we
created in the previous step. The conjunction of all these sets is then the
entire state space S. Therefore, in this approach we compute all possible
schedulings. Due to the structure of this approach being equivalent to a
directed tree, we can identify every state as a node with the leaves corres-
ponding to the final states. The feasible action space of these final states is
the empty set, so by setting

min
a′∈∅

Q(s′, a′) := 0 (48)

and backtracking from their parents, we can recursively calculate

88

Q(s, a) := cs(a) + min
a′∈A(s)

Q(tr(s, a), a′) (49)

for all states s ∈ S in runtime O(J ∗M). Since for the creation of this master
thesis only very limited computational power is availalbe, we have to decide
for a relatively small number of Jobs and Machines. By having access to
better resources, this number could be increased significantly.
We decide for the following maximal values:

• Jobs: J = 8

• Machines: M = 4

• weight: wmax = 10

• deadline: dmax = 30

• processing time: pmax ∈ [1
3dmax, 3

2dmax]

• initial machine runtime: r
(init)
max ∈ [1

3pmax, pmax]

We decided for a maximal deadline dmax of 30 to resemble an entire month
represented by its days. For every Job Scheduling Problem, the maximal
processing time and the maximal initial machine runtime are randomly
drawn from the given interval. The interval for pmax is chosen in a way
for the optimal costs to be dominated neither by the makespan nor by the
deadlines. The maximal initial runtime is meant to loosely resemble the
average machine occupation times in any subsequent state, making it in-
terpretable as initial state of their own Job Scheduling Problem as well
withouth diverging too much from the distribution of hyperparameters of
the initial environment. Note that the maximal weight wmax also serves as
scaling factor when normalizing the data. Therefore, we can now extract
the data for our Neural Network from any given state s ∈ S by constructing
and normalizing the input as in figure 18 and 20 and analogously to (45)
defining the normalized target values as

y
(s)
∗ (a) := softmax(Q∗(s, a∗)

Q∗(s, a)) (50)

with a∗ := µ∗(s) = arg min
a∈A(s)

Q∗(s, a) being the true optimal action in state
s.

To simulate Job Scheduling Problems compatible with the declared con-
ditions, every Job j = 1, . . . , J and Machine m= 1, . . . , M gets randomly
assigned processing times, deadlines, weights and initial runtimes according
to these maximal values:

89

• pjm = 1, . . . , pmax

• dj = 0, . . . , dmax

• δm = 0, . . . , dmax

• wj = 1, . . . , wmax

• ωm = 1, . . . , wmax

• r
(init)
m = 0, . . . , r

(init)
max

If no machine got assigned 0 as initial runtime, choose one random Machine
and reassign its initial runtime to 0.

Coherent to the stated specifications, we simulate 120.000 indepedent Job
Scheduling Problems. We allocate them to 3 sets:

• Training: 100.000

• Validation: 10.000

• Test: 10.000

The Jobs of any state s will be sorted by Πms for our Neural Network
to receive at its input. However, this permutation might already induce
a reasonable estimator of the optimal policy µ∗ in form of the scheduling
algorithm defined by always assigning the Job that is placed first. We aim
to prevent our Neural Network from only concentrating on the majority
of cases where one of the Jobs from the start of the ordered list will be
optimal. Instead, we want to further encourage it to also focus on learning
how to distuingish the optimal actions in supposedly less likely scenarios,
where one of the Jobs with a higher runtime on the currently free Machine
or deactivating the same might be the optimal action. In strive to boost
its performance we will therefore balance our training data. Thus, for every
Job Scheduling Problem of the training set, divide the state Space S into
18 subsets of the form

SĴ ,M̂ := {s ∈ S | J (s) = Ĵ ∧M (s) = M̂} (51)

associated with the respective pairs of remaining Job and Machine numbers.
Ignore states with J (s) = 1, 2 or M (s) = 1, since these are so simple to solve
that a straight forward computation of their Q-values makes more sense.
Next, divide each of these subsets of states into further (Ĵ + 1) sub-subsets,
each of which is defined by the optimal action of all its states being equal
to the respective â for â = 1, . . . , J (s), J + 1:

90

SĴ ,M̂ (â) := {s ∈ SĴ ,M̂ | arg min Q(s, a) = â}

Finally, for each of the 18 subsets SĴ ,M̂ , pick an action-index â = 1, . . . , J +
1 at random and then uniformally sample over the immanent states of
SĴ ,M̂ (â). By repeating this for every Job Scheduling Problem, we receive a
balanced training set of 100.000 ∗ 18 data points.

The validation and test set also get divided into 18 subsets of the form SĴ ,M̂

each, defined by the amount of remaining Jobs Ĵ = 3, . . . , 8 and still work-
ing Machines M̂ = 2, 3, 4 of the corresponding states. However, we do not
balance them for their optimal action, so for every state space S we just
uniformally draw one random state from every subset, leaving us with a
validation and test set of 10.000 ∗ 18 data points each.

7.2 Deeply Reinforced Job Scheduling Problems

To use our Neural Network on Job Scheduling Problems with a higher num-
ber J of Jobs, we need to train it on data from such environments. How-
ever, due to the computation complexity of the Q-values being in the order
of O(J ∗M), calculating the exact target values of (50) might exceed our
computational resources. Thus, we will estimate them instead by applying
the techniques of Deep Reinforcement Learning.

So far we have generated 100.000 Job Scheduling Problems, from each of
which we have extracted one state for every combination of numbers of
remaining Jobs from 3 to 8 and 2,3 or 4 operating Machines. With the as-
sociated data of these states we have trained our Neural Network, resulting
in the parameters ϑ, to which we therefore initialize our Q-Network and
Target Network. Our goal is now to continue training our Neural Network
on data of successively increasing numbers of Jobs. Hence, anagolous to
the supervised learning part of the previous subsection and starting with
J0 := 8, in every iteration step i ∈ N we simualte another set of 100.000 in-
dependent Job Scheduling Problems consisting of Ji := Ji−1 + 1 Jobs and
M = 4 Machines. From each we want to extract 3 states for the respective
combinations (Ji, 4), (Ji, 3) and (Ji, 2) of reamining Jobs and operating Ma-
chines. Naturally, if a Job Scheduling Problem is represented by the initial
state s4M and the induced state space S, the only possible states are:

(Ji, 4)→ s4M

(Ji, 3)→ s3M := tr(s4M , Ji + 1)
(Ji, 2)→ s2M := tr(s3M , Ji + 1)

91

For each of these states s ∈ {s4M , s3M , s2M}, the action space of feasible ac-
tions is the entire action space A(s) = A = {1, . . . , Ji + 1}. Thus, to trans-
form these states to data that we can use to further train our Neural Net-
work, we now need to estimate all the corresponding Q-values Q∗(s, a). Per
definition (7), these are the sum of the immediate costs cs(a) from (42) and
the minimal future costs Vµ∗(s′) of the Bellmann Equation (6), arising by
following the optimal policy µ∗ from the successor state s′ := tr(s, a) on.

For the case that the taken action a = 1, . . . , Ji corresponds to a Job as-
signment, in the successor state s′ only J (s′) = Ji − 1 = Ji−1 Jobs remain.
Hence, we can use our Target Network with the parameters θi−1 derived from
the previous iteration step i− 1 to induce the policy µθi−1 that estimates
µ∗. Consequently, Vµθi−1

(s′) is a trained estimator of Vµ∗(s′). Let s1, . . . , sn

be the sequence of states created by following µθi−1 as in (35), starting in
s1 := s′, and let ϑ be the paremters obtained from the supervised learning
part. Since therefore µϑ is the result of supervisedly and balancedly train-
ing our Neural Network on the ground-true Q-values of states with up to
J0 remaining Jobs, we want to use it as the estimator of the optimal policy
µ∗ for any state sk, k = 1, . . . , n, with J (sk) ≤ J0. So to preserve the ac-
cording parameters ϑ and consequently also further improve the stability
of the learning process of the Q-Network, we decide to introduce a second
set of parameters ϑi−1 for the Target Network to use for any state with sk

with J (sk) > J0. So while we keep ϑ static, ϑi−1 will get updated in every
iteration step. Therefore, we define

µθi−1(sk) :=
{︄

µϑi−1 J (sk) > J0

µϑ,opt J (sk) ≤ J0
(52)

with ϑ0 := ϑ. The additive opt denotes that the actual optimal action µ∗(sk)
gets chosen by computing the ground-true Q-values Q∗(sk, a) for any state
sk with less than three Jobs remaining or only one Machine operating in
case that also less than J0 Jobs remain. This will be explained in greater
detail in the next section. Consequently, we obtain the estimations

Q(s, a, θi−1) = cs(a) + Vµθi−1
(s′) (53)

of the Q-values Q∗(s, a) for every a = 1, . . . , Ji.

To estimate the Q-values Q∗(s, Ji + 1), corresponding to the action Ji + 1
of turning the Machine ms off, we additionally create the successor state
s1M := tr(s2M , Ji + 1). Shutting down the last operating Machine before
terminating all Jobs is not a feasible action. Therefore, its space of feasible
actions is given by A(s1M) = {1, . . . , Ji}. By once again estimating all the

92

Q-values Q∗(s1M , a) of every job assignment a = 1, . . . , Ji as in (53), we can
now recursively calculate the estimated values of:

1. Q(s2M , J + 1, θi−1) := cs2M (Ji + 1) + min
a′=1,...,Ji

Q(s1M , a′, θi−1)

2. Q(s3M , Ji + 1, θi−1) := cs3M (Ji + 1) + min
a′=1,...,Ji

Q(s2M , a′, θi−1)

3. Q(s4M , Ji + 1, θi−1) := cs4M (Ji + 1) + min
a′=1,...,Ji

Q(s3M , a′, θi−1)

Finally, the estimated normalized target values are now exactly the ones of
(45):

y
(s)
θi−1

(a) := softmax(
Q(s, aθi−1 , θi−1)

Q(s, a, θi−1)) (54)

with aθi−1 := arg min
a=1,...,Ji

Q(s, a, θi−1).
Note that due to our construction, for each of the states s4M , s3M , s2M , s1M

we are able to inexpensively compute (54) for every action

a ∈ A(s4M) = A(s3M) = A(s2M) = {1, . . . , Ji, Ji + 1}

and feasible action a ∈ A(s1M) = {1, . . . , Ji}, instead of having to apply a
behaviour policy π which would only explore some of them.

These 100.000 ∗ 3 data points with estimated normalized target values can
now be used to train the Q-Network analogously to the previous subsection,
with the difference that it is already initialized with the parameters ϑi−1.
The resulting set of parameters is our updated ϑi, as it has been illustrated in
figure 2. Therefore, the policy µθi

induced by our Target Network is updated
as well and can then legitimely be applied to Job Scheduling Problems with
up to Ji = J0 + i Jobs. This concludes one iteration step. Subsequently, we
increase the number of Jobs Ji by one to Ji+1 = Ji + 1 and repeat.

Theoretically, we could arbitrarily continue this process. One problem that
we however might run into at later iteration steps is that when we simu-
late Job Scheduling Problems with significantly higher Job numbers than
J0 and then apply our target policy to create the sequence of successor
states s1, . . . , sn to estimate the corresponding Q-values as we did above,
the distribution of deadlines and machine occupation times might at some
point deviate significantly for these states from the ones used to simulate
Job Scheduling Problems in the supervised subsection. This can likely be
managed by creating Job Scheduling Problems of the desired maximal num-
ber of Jobs Jmax and taking the actions recommended by policy µsched of the

93

scheduling algorithm that we will compare our results to (or any other such
decision rule) until reaching a state sk where only J (sk) = J0 Jobs are left.
Then, we compute the ground-true Q-values of these states and train our
Network in a supervised maneer on the resulting data instead of simulating
Job Scheduling Problems that initially start with J0 Jobs and therefore fol-
low the distribution of deadlines and initial Machine-occupations defined at
the beginning of this section.

94

8 Training and Testing

8.1 Supervised Training

To supervisedly train our Neural Network, we will use an Adam-Optimizer
with a learning rate of 0.001 and the mean-squared-error as loss function.
In one training epoch, we only consider one of the 18 subsets SĴ ,M̂ of (51).
In the next epoch, we then consider the next of these (Ĵ ,M̂)-related subsets,
so we need 18 epochs to see the entire training data set. Their ordering is
random and after having completed an entire data loop, we shuffle their se-
quence again. In each of these epochs, we split the set into random batches
of 128 data points. In total, we train for 30 ∗ 18 epochs.
Since we have computed the true Q-values, we can define a useful cus-
tom metric ∆Q, dividing the ground-true Q-value of the suggested action
aϑ = µϑ(s) from (47) of our Network by the one of the true optimal action
a∗ = µ∗(s) and substracting 1:

∆Q(s, aϑ) := Q∗(s, aϑ)
Q∗(s, a∗) − 1 = Q∗(s, aϑ)−Q∗(s, a∗)

Q∗(s, a∗) (55)

This metric denotes the relative deviation from the Q-value of the optimal
action µ∗(s) in state s that arises by taking the action µϑ(s) proposed by
our Neural Network instead. By printing its average over every data point,
we obtain the results of the following table 4 for the training, validation and
test data respectively after having finished the last epoch:

95

Jobs Machines training
loss [10−3]

validation
loss [10−3]

test
loss [10−3]

training
∆Q [%]

validation
∆Q [%]

test
∆Q [%]

2 0.27 1.43 1.44 0.45 0.14 0.15
3 3 0.34 0.99 0.98 0.33 0.26 0.23

4 1.06 1.54 1.58 0.36 0.46 0.45
2 1.58 0.79 0.79 0.63 0.16 0.13

4 3 0.18 0.34 0.34 0.51 0.15 0.21
4 1.38 0.52 0.51 0.24 0.31 0.32
2 0.26 0.54 0.54 0.58 0.17 0.17

5 3 0.21 0.21 0.22 0.60 0.22 0.24
4 0.24 0.24 0.25 0.53 0.31 0.31
2 0.36 0.41 0.41 0.28 0.20 0.21

6 3 0.54 0.19 0.20 0.47 0.28 0.32
4 0.21 0.17 0.17 0.45 0.32 0.35
2 0.71 0.33 0.33 0.31 0.20 0.19

7 3 0.53 0.21 0.21 0.45 0.40 0.43
4 0.42 0.18 0.18 0.45 0.41 0.40
2 0.21 0.31 0.31 0.34 0.32 0.32

8 3 0.31 0.25 0.25 0.30 0.60 0.57
4 0.18 0.21 0.22 0.45 0.63 0.63

Table 4: Data Results of Supervised Learning

All losses in this table have been multiplied by 103 for better readability.
Note that they tend to be lower in some cases and the metric ∆Q is lower
in general for the validation and test data compared to the training data.
This is because only the latter has been balanced and is therefore harder to
predict.
The values of the ∆Q-metric are less than 1% for every row of all three data
sets. Hence, on average the action µϑ(s) produces costs that deviate less
than 1% from the minimal costs arising by following the optimal policy µ∗

for any state s ∈ S of any of the state spaces S of the related Job Scheduling
Problem.

8.2 Supervised Testing

Now, we want to see how well our Network compares to the scheduling
algorithm of 1, whose induced policy will be denoted by µsched. We use two
different versions of the Neural Network and the scheduling algorithm. One
time we follow their policy for the entire scheduling, the other time we stop
as soon as only two or less Jobs remain to be assigned or only one Machine
is active:

µϑ,opt(s) :=
{︄

µϑ(s) (J (s) ≥ 3 ∧M (s) ≥ 2) ∨ J (s) > 8
µ∗(s) else

(56)

96

µsched,opt is defined analogously. We do this due to the fact that we have
not trained our Neural Network for these cases, since they can be computed
very inexpensively.
We create another 10.000 Job Scheduling Problems, each associated with
an initial state s1 in the same range of environmental values as stated in
the beginning of the previous section, and calculate their optimal scheduling
costs Vµ∗(s1). We then divide the costs Vµ(s1) created by any of the other
policies µ by these optimal costs and subtract 1 to know how much additional
relativ costs

∆Vµ(s1) := Vµ(s1)
Vµ∗(s1) − 1 =

Vµ(s1)− Vµ∗(s1)
Vµ∗(s1)

(57)

we have to pay for following each of them. By taking their average over all
10.000 scheduling problems, we obtain the results of the following table 8.2:

Algorithm Policy ∆Vµ [%]
Neural Network
with optimal end µϑ,opt 2.51

Neural Network µϑ 4.47
Scheduling Algorithm
with optimal end µsched,opt 34.46

Scheduling Algorithm µsched 45.33

Table 5: Policy Cost Results from Supervised Learning

We can see that our Neural Network massively outperforms the comparative
scheduling algorithm, producing less than 10% of its additional costs and
values very close to the optimal ones, with especially µϑ,opt seeming to be a
great estimator of µ∗.

8.3 Deeply Reinforced Training

We now want to see if we can use the techniques of Deep Reinforcement
Learning presented in the previous section to adapt our Neural Network to
Job Scheduling Problems with greater numbers of Jobs Ji in every iteration
i ∈ N. Analogously to the previous subsection, we use an Adam-Optimizer
with a learning rate of 0.001, the mean-squarred-error as loss function and
only one of the 3 (Ji, 2), (Ji, 3), (Ji, 4) combinations of numbers of remain-
ing Jobs and Machines in every epoch. However, this time we do not shuffle
them but loop through them in ascending order regarding their amount of
active Machines 2, 3 and 4. Again, in each of these epochs we split each set
into random batches of 128 data points. At every iteration step, we initialize
the Q-Network with parameters θi−1 and loop 5 times through the newly es-

97

timated data of Ji Jobs, hence training it for 5 ∗ 3 epochs. Afterwards, from
the second iteration on, we train it again on the entirety of so far estimated
data of J1 up to Ji Jobs. We therefore need 3 ∗ i epochs for one data loop.
We do 3 loops in the second iteration i = 2, 4 loops in the third i = 3 and
5 loops in the fourth i = 4, resulting in another 3i ∗ (i + 1) training epochs
for i ≥ 2. After finishing the last epoch, we obtain the updated parameters
θi, producing the training losses displayed in the following table 6:

Jobs Machines θ1
loss [10−3]

θ2
loss [10−3]

θ3
loss [10−3]

θ4
loss [10−3]

θ1
∆Q1 [%]

θ2
∆Q2 [%]

θ3
∆Q3 [%]

θ4
∆Q4 [%]

2 1.65 1.42 1.59 1.65 0.36 0.32 0.33 0.34
9 3 1.27 1.01 1.08 1.26 0.68 0.64 0.66 0.72

4 1.46 1.58 1.69 2.09 0.90 0.94 1.01 1.16
2 1.21 1.29 1.31 0.31 0.31 0.30

10 3 0.87 0.84 0.86 0.67 0.68 0.69
4 1.12 1.15 1.30 0.96 1.01 1.09
2 1.13 1.12 0.32 0.30

11 3 0.75 0.68 0.72 0.70
4 0.93 0.93 1.07 1.10
2 0.98 0.28

12 3 0.58 0.68
4 0.74 1.12

Table 6: Data Results of Deep Reinforcement Learning

Here, due to the true Q-values being unkwon, we used the estimation of the
∆Q-metric of (55):

∆Qi :=
Q(s, aθi

, θi)−Q(s, aθi−1 , θi−1)
Q(s, aθi−1 , θi−1)

Similiar to the promising results from table 4, the values of the ∆Qi-metric
are at most sligthly above 1% for every row of every set of parameters θi,
i = 1, 2, 3, 4. Hence, on average the action µϑi

(s) produces estimated costs
that deviate at most marginally more than 1% from the estimated minimal
costs Q(s, aθi−1 , θi−1) for any state s ∈ {s4M , s3M , s2M} of any of the related
Job Scheduling Problems.

8.4 Deeply Reinforced Testing

We now want to compare these augmented policies to µϑ,opt, the one of our
supervisedly trained Neural Network with parameters ϑ, to see if we were
able to further improve its performance on higher numbers of Jobs. For this,
we simulate 10.000 independent Job Scheduling Problems, each associated
with an initial state s4M , in the same range of environmental values as stated
in the beginning of the previous section and with Ji Jobs and 4 Machines.
We then calculate the average of the quotient ∆V (i)(s) of the scheduling
costs for following µθi

and the scheduling costs arising by adhering to µϑ,opt:

98

∆V (i)(s4M) :=
Vµθi

(s4M)
Vµϑ,opt(s4M)

Note that in both cases we use the actual optimal policy µ∗ by computing
the ground-true Q-values as soon as less than 3 Jobs remain or only one
Machine continues operating while not more than 8 Jobs remain. This leads
us to the quotients of the following table 8.4:

Iteration Policy Ji ∆V (i)

1 µθ1 9 1.02
2 µθ2 10 1.03
3 µθ3 11 1.04
4 µθ4 12 1.04

Table 7: Comparing Policy Costs from Supervised Learning to DRL

Unfortunately, the scheduling costs produced by following the policy θi in
iteration i of the DRL process is 2 to 4 percent higher than the one pro-
duced by µϑ,opt. Therefore, we will continue using the set of parameters ϑ
for our Neural Network and the corresponding policy µϑ,opt, both obtained
by supervised learning.

99

9 Results

We will now test how well our scheduling policy µϑ,opt, derived from our
Neural Network with parameters ϑ, compares to the heuristic policy µsched,opt,
defined in (56) and induced by the comparative scheduling algorithm of 1,
with the addition of using µ∗ as soon as less than 3 Jobs remain or only
one Machine keeps operating while not more than 8 Jobs remain. We wish
to test on a great variety of numbers of Jobs and Machines. For each such
(J ,M)-combination, we simualte 10.000 independent Job Scheduling Prob-
lems, each associated with an initial state s1 in the same range of environ-
mental values as stated in the beginning of the previous section and with J
Jobs and M Machines. The entries of the following table 9 then denote the
quotient

Vµsched,opt
(s1)− Vµϑ,opt

(s1)
Vµϑ,opt

(s1)

of the additional relative costs in percent [%] arising from using the schedul-
ing algorithm compared to applying our Neural Network with parameters
ϑ:
HHH

HHHJ
M 2 3 4 5 6 8 10 12 15

8 19.57 27.47 31.17 32.09 29.79 18.13 08.32 1.47 -06.52
9 21.11 25.38 32.39 33.79 32.44 20.22 9.38 -1.44 -6.42
10 20.09 25.62 32.26 35.43 34.43 23.02 11.09 00.29 -07.04
11 18.02 26.86 33.03 36.21 35.88 25.22 11.65 02.04 -06.57
12 18.83 26.33 32.43 36.53 37.09 26.36 12.61 02.90 -07.07
15 17.98 22.07 30.30 36.99 38.27 29.24 15.17 03.48 -07.62
20 15.14 21.29 26.90 34.23 38.14 31.53 17.09 04.87 -07.57
30 13.36 16.73 21.20 27.74 32.62 31.72 18.04 04.39 -08.51
50 10.65 12.52 14.94 18.56 23.40 26.13 16.36 04.13 -08.14
75 09.91 10.09 10.56 12.69 14.97 18.02 12.68 03.72 -07.24
100 09.94 08.96 07.97 07.59 08.45 11.15 09.10 03.27 -05.46

Table 8: Comparing Policy Costs from NN to Scheduling Algorithm

We see that our Neural Network significantly outperforms the comparative
scheduling algorithm for up to 100 Jobs and 10 Machines, while the results
seem to break even around 12 Machines. Increrasing the number of Machines
seems to have a higher negative impact on the comparative performance of
our Neural Network than to increase the number of Jobs. Interestingly, it
does not hold the biggest advantage on Job Scheduling Problems with 8
Jobs and 4 Machines, even though this is the scenario it has primarily been
trained on, but instead it appears to have the highest edge at the range of 8

100

to 20 Jobs and 4 to 6 Machines as well as 15 to 30 Jobs and 5 to 8 Machines.
Nevertheless, the difference being slightly smaller for 2 and 3 Machines does
not necessarily indicate that it performs worse there, but that the schedul-
ing algorithm might just perform relatively better than under the mentioned
circumstances.

In every constellation but two with up to 30 Jobs and between 3 and 8 Ma-
chines, the scheduling algorithm create costs that are at least 20% higher
than the ones our Neural Network would incur, in most cases even over
30%. This especially becomes vast when relating it to the 2.51% of addi-
tional scheduling costs ∆Vµϑ,opt

(57) that following µϑ,opt produced when
compared to optimal schedules for 8 Jobs and 4 Machines in table 8.2. We
can reasonably assume that higher numbers of Jobs or Machines tendencially
also lead to relatively higher mean additional scheduling costs. So while we
do not know how much these grow for our Neural Network, we can deduce
that any such relative increase that stems from augmenting the number of
Jobs or Machines within these margins is on average 20% to 40% higher for
µsched,opt than for µϑ,opt as well. This indicates that on this set of problems,
even though it has been trained only on the specific environment of those
starting with 8 Jobs and 4 Machines, our Neural Network generalizes better
than the heuristic algorithm, while also starting from a much better baseline
of 2.51% additional costs in contrast to the 34.46%. This becomes evident
from the same table 8.2, too, when comparing the rise from ∆Vµϑ,opt

to
∆Vµϑ

and ∆Vµsched,opt
to ∆Vµsched

for not computing the optimal policy as
soon as less than 3 Jobs remain or only 1 Machine continues operating while
not more than 8 Jobs remain. The Neural Network has not been trained
on these instances, yet its respective increase is less than 2%, whereas it is
higher than 10% for the scheduling algorithm.

Based on these results, one can conclude that our Neural Network does per-
form and generalize outstandingly well, especially with regards to higher Job
numbers, deeming it superior to the heuristic scheduling algorithm within
the range of 100 Jobs and 10 Machines. They suggest that especially for
Job Scheduling Problems with up to 30 Jobs and 8 Machines suited to our
defined problem environment, the policy µϑ,opt induced by our Neural Net-
work is an excellent estimator of the optimal policy µ∗ and therefore of the
least-cost producing schedule.

101

10 Conclusion and Future Work

We have embedded our specific type of Job Scheduling Problems defined in
(5) into a Reinforcement Learning environment, associating every scheduling
decision with a state. We have proven that we can identify any scheduling
with a policy, so that our objective function (1) is equivalent to the policy
costs. We were able to convert these states to normalized data without
loosing any information. Our normalization of the time-related input val-
ues allows for the processing of states without predefined limitations for
these values. Prospective studies might investigate giving a weight to the
makespan Cmax as well. Consequently, the weights of every state could be
normalized by dividing them by the highest occuring weight in that state,
yielding the same benefit of not having to predefine a maximum allowed
weight implicit in the data set, therefore capacitating the Neural Network
to be applied on an even broader range of Job Scheduling Problems without
the need of retraining it first.

We have introduced Neural Network Architectures from Natural Language
Processing to handle the challenges immanent in the data of varying num-
bers of Jobs and Machines. By interpreting the set of Jobs and Machines
as an ordered time series and combining the architectures of LSTMs, Trans-
formers and Attention based Action-Pointers to our needs, we constructed a
Neural Network able to process an arbitrary amount of Jobs and Machines.
Future work could explore the possibility of either adding an equivariant
permutation layer as base, as presented in [52], or implementing the archi-
tecture of the permutation-invariant Set Transformer introduced in [53] to
dispose the need of such an ordering.

We have derived the feasible policy µθ,opt in (47) from the output of our
Neural Network as an seemingly well performing estimator of the optimal
policy µ∗, capable of proposing any feasible action. For any possible schedul-
ing situation of any of our Job Scheduling Problems, it creates a schedule
that estimates the optimal one.

Identifying scheduling costs with the structure of a directed tree enabled
us to compute them for every possible schedule of 100.000 independent Job
Scheduling Problems of 8 Jobs and 4 Machines. The resulting data gave us
the capacity to supervisedly and efficiently train our Neural Network, using
only little computational power. With access to more elaborate resources,
future studies could extend this approach to decidedly higher numbers of
Jobs and Machines. We then have tested the Neural Network on another
10.000 simulated Job Scheduling Problems of 8 Jobs and 4 Machines and
compared it to the competetive heuristic algorithm of 1. The schedules in-

102

duced by our Neural Network only created 2.51% additional costs relative to
the theoretical optimal schedules, while the scheduling algorithm produced
relative additional costs of 34.46%, more than 10 times as much.

By initializing the Target Network to these learned parameters ϑ, we have in-
troduced an approach that uses techniques from Deep Reinforcement Learn-
ing and tested the resulting Q-Network on Job Scheduling Problems with 9
to 12 Jobs and 4 Machines. Unfortunately, the performance of the Neural
Network did not improve. This may be due to the fact that we have bal-
anced the training data when training supervisedly, while for this extension
of our approach we have not. Further research could therefore build on this
method by balancing the training data for the Q-Network in every iteration
step.

Finally, we have analyzed how well our Neural Network generalizes to Job
Scheduling Problems of different numbers of Jobs and Machines. For each
constellation, we have compared it to our heuristic algorithm for 100.000
Job Scheduling Problems ranging from 8 to 100 Jobs and 2 to 15 Machines.
Our Neural Network was able to significantly outperform the scheduling al-
gorithm for up to the entirety of 100 Jobs and 10 Machines, while breaking
even at around 12 Machines. In general, it was also able to vastly outper-
form the scheduling algorithm in the margin of 3 to 8 Machines and up to 30
Jobs. Under these conditions, the costs incured by the latter were almost al-
ways at least 20% higher, in most cases even more than 30%. It seems viable
to assume that the additionally incured costs relative to optimal schedule
costs tend to increase when augmenting the numbers of Jobs or Machines.
That would imply that our Neural Network also generalizes better within
these ranges due to the average cost increments consequently being smaller.
Further exploration of its performance under differing constraints would be
helpful to fully understand its capability and potential as well as its weak-
nesses and limitations.

In light of these findings, our approach seems to be valuable and warrants
further investigation. The results indicate that our created Neural Network
may potentially achieve state-of-the-art results for Job Scheduling Problems
that meet the required criteria, given that they are already extremly hard to
solve with traditional approaches in an environment of about 5 machines and
30 Jobs, even for the case of scheduling on Uniform Machines [1, p. 143].
Future directions may include the attempt to take advantage of the flex-
ibile nature of Neural Network Architectures, especially when compared to
more monovalently predisposed and especialized approximation algorithms,
as well as to analyze how well they generalize to Job Scheduling Problems
with similiar, yet deviating constraints, such as differing distributions of

103

processing times, deadlines, weights and initial machine occupation times.
It would especially be intriguing to examine how our Neural Network would
perform on Stochastic Job Scheduling Problems, by feeding it the expected
processing time on every respective Machine instead of a deterministic one.

104

11 References
[1] Michael L Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer

Publishing Company, Incorporated, 2008.
[2] Vaibhav Kumar, Siddhant Bhambri and Prashant Giridhar Shambharkar.

“Multiple resource management and burst time prediction using deep
reinforcement learning”. In: Eighth International Conference on Ad-
vances in Computing, Communication and Information Technology
(CCIT). 2019, p. 8.

[3] Hongzi Mao et al. “Resource management with deep reinforcement
learning”. In: Proceedings of the 15th ACM workshop on hot topics in
networks. 2016, pp. 50–56.

[4] Pierre Tassel, Martin Gebser and Konstantin Schekotihin. “A rein-
forcement learning environment for job-shop scheduling”. In: arXiv
preprint arXiv:2104.03760 (2021).

[5] David P Williamson and David B Shmoys. The Design of Approxim-
ation Algorithms. Cambridge university press, 2010.

[6] Diego de Oliveira Hitzges. Dieguinho1612/Job-Scheduling-Deep-Reinforcement-
Learning. Version v1.0.0. Apr. 2023. doi: 10.5281/zenodo.7872658.
url: https://github.com/Dieguinho1612/Job-Scheduling-Deep-
Reinforcement-Learning.

[7] José Verschae and Andreas Wiese. “On the configuration-LP for schedul-
ing on unrelated machines”. In: Journal of Scheduling 17 (2014), pp. 371–
383.

[8] Jan Karel Lenstra, David B Shmoys and Éva Tardos. “Approximation
algorithms for scheduling unrelated parallel machines”. In: Mathem-
atical programming 46 (1990), pp. 259–271.

[9] Hong Zhou, Zhengdao Li and Xuejing Wu. “Scheduling unrelated par-
allel machine to minimize total weighted tardiness using ant colony
optimization”. In: 2007 IEEE international conference on automation
and logistics. IEEE. 2007, pp. 132–136.

[10] Tommi Jaakkola, Michael Jordan and Satinder Singh. “Convergence of
stochastic iterative dynamic programming algorithms”. In: Advances
in neural information processing systems 6 (1994), pp. 703–710.

[11] Tommi Jaakkola, Michael Jordan and Satinder Singh. “On the con-
vergence of stochastic iterative dynamic programming algorithms”. In:
Neural Computation (1993).

[12] Francisco S Melo. “Convergence of Q-learning: A simple proof”. In:
Institute Of Systems and Robotics, Tech. Rep (2001), pp. 1–4.

105

https://doi.org/10.5281/zenodo.7872658
https://github.com/Dieguinho1612/Job-Scheduling-Deep-Reinforcement-Learning
https://github.com/Dieguinho1612/Job-Scheduling-Deep-Reinforcement-Learning

[13] Pieter Abbeel and John Schulman. “Deep reinforcement learning through
policy optimization”. In: Tutorial at Neural Information Processing
Systems (2016).

[14] Timothy P Lillicrap et al. “Continuous control with deep reinforce-
ment learning”. In: arXiv preprint arXiv:1509.02971 (2015).

[15] Artem Oppermann. Deep Q-Learning. [Online; accessed March 06,
2023]. 2021. url: https : / / artemoppermann . com / de / deep - q -
learning/.

[16] Guang Yang et al. “DHQN: a Stable Approach to Remove Target Net-
work from Deep Q-learning Network”. In: 2021 IEEE 33rd Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI). IEEE.
2021, pp. 1474–1479.

[17] KR1442 Chowdhary and KR Chowdhary. “Natural language processing”.
In: Fundamentals of artificial intelligence (2020), pp. 603–649.

[18] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[19] Tomas Mikolov et al. “Efficient estimation of word representations in
vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[20] Diego de Oliveira Hitzges. “Worteinbettung für Machine Learning in
der Sprache”. BA thesis. Technical University of Berlin, 2019.

[21] Maite Gimenez, Javier Palanca and Vicent Botti. “Semantic-based
padding in convolutional neural networks for improving the perform-
ance in natural language processing. A case of study in sentiment
analysis”. In: Neurocomputing 378 (2020), pp. 315–323.

[22] Graham Neubig. “Neural machine translation and sequence-to-sequence
models: A tutorial”. In: arXiv preprint arXiv:1703.01619 (2017).

[23] Ilya Sutskever, Oriol Vinyals and Quoc V Le. “Sequence to sequence
learning with neural networks”. In: Advances in neural information
processing systems 27 (2014).

[24] Mikael Boden. “A guide to recurrent neural networks and backpropaga-
tion”. In: the Dallas project 2.2 (2002), pp. 1–10.

[25] Jeffrey L Elman. “Finding structure in time”. In: Cognitive science
14.2 (1990), pp. 179–211.

[26] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. “Neural ma-
chine translation by jointly learning to align and translate”. In: arXiv
preprint arXiv:1409.0473 (2014).

[27] Leila Arras et al. “Explaining recurrent neural network predictions in
sentiment analysis”. In: arXiv preprint arXiv:1706.07206 (2017).

106

https://artemoppermann.com/de/deep-q-learning/
https://artemoppermann.com/de/deep-q-learning/
http://www.deeplearningbook.org

[28] Zachary C Lipton, John Berkowitz and Charles Elkan. “A critical
review of recurrent neural networks for sequence learning”. In: arXiv
preprint arXiv:1506.00019 (2015).

[29] Prakash M Nadkarni, Lucila Ohno-Machado and Wendy W Chap-
man. “Natural language processing: an introduction”. In: Journal of
the American Medical Informatics Association 18.5 (2011), pp. 544–
551.

[30] Abby A Goodrum. “Image information retrieval: An overview of cur-
rent research”. In: Informing Science 3 (2000), p. 63.

[31] Wenhao Jiang et al. “Recurrent fusion network for image caption-
ing”. In: Proceedings of the European conference on computer vision
(ECCV). 2018, pp. 499–515.

[32] Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

[33] Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton. “Speech
recognition with deep recurrent neural networks”. In: 2013 IEEE in-
ternational conference on acoustics, speech and signal processing. Ieee.
2013, pp. 6645–6649.

[34] Razvan Pascanu et al. “How to construct deep recurrent neural net-
works”. In: arXiv preprint arXiv:1312.6026 (2013).

[35] Razvan Pascanu, Tomas Mikolov and Yoshua Bengio. “On the diffi-
culty of training recurrent neural networks”. In: International confer-
ence on machine learning. Pmlr. 2013, pp. 1310–1318.

[36] Jingzhao Zhang et al. “Why gradient clipping accelerates training: A
theoretical justification for adaptivity”. In: arXiv preprint arXiv:1905.11881
(2019).

[37] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural
networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555
(2014).

[38] Ralf C Staudemeyer and Eric Rothstein Morris. “Understanding LSTM–
a tutorial into long short-term memory recurrent neural networks”. In:
arXiv preprint arXiv:1909.09586 (2019).

[39] Gang Chen. “A gentle tutorial of recurrent neural network with error
backpropagation”. In: arXiv preprint arXiv:1610.02583 (2016).

[40] Hasim Sak, Andrew W Senior and Françoise Beaufays. “Long short-
term memory recurrent neural network architectures for large scale
acoustic modeling”. In: (2014).

107

[41] Andrea Galassi, Marco Lippi and Paolo Torroni. “Attention in natural
language processing”. In: IEEE transactions on neural networks and
learning systems 32.10 (2020), pp. 4291–4308.

[42] Ashish Vaswani et al. “Attention is all you need”. In: Advances in
neural information processing systems 30 (2017).

[43] Baosong Yang et al. “Context-aware self-attention networks”. In: Pro-
ceedings of the AAAI conference on artificial intelligence. Vol. 33. 01.
2019, pp. 387–394.

[44] Ming Jiang and Shaoxiong Ji. “Cross-Modality Gated Attention Fu-
sion for Multimodal Sentiment Analysis”. In: arXiv preprint arXiv:2208.11893
(2022).

[45] Yuan Yuan et al. “Using an attention-based LSTM encoder–decoder
network for near real-time disturbance detection”. In: IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing
13 (2020), pp. 1819–1832.

[46] Oriol Vinyals, Meire Fortunato and Navdeep Jaitly. “Pointer net-
works”. In: Advances in neural information processing systems 28 (2015).

[47] Jay Alammar. The Illustrated Transformer. [Online; accessed March
06, 2023]. 2018. url: https://jalammar.github.io/illustrated-
transformer/.

[48] Bryan Lim et al. “Temporal fusion transformers for interpretable multi-
horizon time series forecasting”. In: International Journal of Forecast-
ing 37.4 (2021), pp. 1748–1764.

[49] David Salinas et al. “DeepAR: Probabilistic forecasting with autore-
gressive recurrent networks”. In: International Journal of Forecasting
36.3 (2020), pp. 1181–1191.

[50] Albert Zeyer et al. “A comparison of transformer and lstm encoder
decoder models for asr”. In: 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU). IEEE. 2019, pp. 8–15.

[51] Alex M Lamb et al. “Professor forcing: A new algorithm for training
recurrent networks”. In: Advances in neural information processing
systems 29 (2016).

[52] Nicholas Guttenberg et al. “Permutation-equivariant neural networks
applied to dynamics prediction”. In: arXiv preprint arXiv:1612.04530
(2016).

[53] Juho Lee et al. “Set transformer: A framework for attention-based
permutation-invariant neural networks”. In: International conference
on machine learning. PMLR. 2019, pp. 3744–3753.

108

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

	Title Page
	Contents
	List of Figures
	List of Tables
	Zusammenfassung
	Abstract
	1 Introduction
	2 Job Scheduling Problems
	2.1 Problem formulation
	2.2 Related Work
	2.3 Our Approach

	3 Deep Reinforcement Learning
	3.1 Markovian decision problems
	3.2 Q-learning and its convergence
	3.3 Deep Q-learning

	4 Neural Network Architectures of Natural Language Processing
	4.1 Word Embedding
	4.2 Recurrent Neural Networks
	4.3 Vanishing/Exploding Gradients
	4.4 Long Short-Term Memory
	4.5 Attention
	4.6 Pointer Networks
	4.7 Transformers

	5 Problem Embedding
	5.1 States and Actions
	5.2 Policies
	5.3 Action Values
	5.4 Target Values
	5.5 Normalization

	6 Network Architecture
	6.1 Overview
	6.2 Preprocessing
	6.3 Input
	6.4 Sequential Embedding
	6.5 Transformer Encoder
	6.6 Action-Pointer Decoder

	7 Data Creation
	7.1 Supervised Job Scheduling Problems
	7.2 Deeply Reinforced Job Scheduling Problems

	8 Training and Testing
	8.1 Supervised Training
	8.2 Supervised Testing
	8.3 Deeply Reinforced Training
	8.4 Deeply Reinforced Testing

	9 Results
	10 Conclusion and Future Work
	11 References

