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Nanomaterials for ammonia decomposition 

Weiqing Zheng  

Abstract 

        With the aim of developing a high efficient catalyst for COx-free hydrogen production 
from ammonia, a series of well define nanostructured materials were synthesized, 
characterized and evaluated for the catalytic decomposition of ammonia. 
        The ruthenium nanoparticles were deposited on carbon nanotubes (CNTs) and 
graphite with different local geometry and functionalities in order to vary the metal-support 
interaction. The work starts with surface modification of carbon by chemical 
functionalization, exfoliation and thermal annealing. The characterization results reveal that 
the pretreatments can efficiently remove the pyrolytic carbon and vary the oxygen 
functional groups on the surface of carbon. Post characterization of Ru/carbon catalysts 
supports the notion that high reactivity of Ru particles benefits from the high graphitization 
of carbon support leading to a weaker metal-carbon interaction and hence to form larger 
particles. According to the high-resolution TEM images, the local disorder of the support 
induces the local disorder to the Ru particle immobilized on it, and further influence the 
desorption of nitrogen from catalyst surface, which is the most difficult step for ammonia 
decomposition. The direct observation of reaction intermediate (adsorbed dinitrogen) from 
in situ XPS measurement operating at 400 °C and relative high pressure of ammonia, 
efficiently supports the conclusions from the post characterization of the Ru particles on 
carbon materials. 
        Considering the sintering and nitridation of Fe at working conditions, Fe catalyst was 
modified by alloying Co or Ni and supported on CNTs. The homogeneous distributions of 
Fe and Co in the isolated nanoparticles were evidenced by the bulk and surface structural 
and compositional characterization. The stability of iron was significantly improved by 
alloying with cobalt or nickel, and by encapsulated inside the tubular channel of CNTs. 
        About 30 mmol/(gcat·min) constant H2 production rate could be achieved over a high 
surface area molybdenum carbide catalyst in 100 hours. Observed deactivation (in the first 
15 hours) of the molybdenum carbide during reaction was ascribed to considerable 
reduction of specific surface area due to the nitridation of carbide under reaction condition. 
The relatively high rate of reaction is ascribed to the highly energetic sites (twin-
boundaries, stacking faults, steps and defects) which are observed in both the molybdenum 
carbide and nitride samples. The prevalence of such sites in the as-synthesised material 
results in a much higher H2 production rate in comparison with previously reported Mo-
based catalysts. Homogeneous molybdenum nitride nanoparticles dispersed in carbon were 
prepared by using hydrothermal carbonization and ammolysis with proper Mo:C mole 
ratio. With the help of carbon, the individual MoN particles could survive throughout the 
long-term catalytic reaction and offer a constant H2 formation rate (23 mmol/(gcat·min)). 
We herein show that the transition metal carbide and nitride materials have great potential 
to replace Ru as the catalyst for ammonia decomposition. 
        The last part of this work is the reaction kinetic study over the three catalytic systems 
by varying the partial pressures of NH3, N2 and H2 at different temperatures. The kinetic 
results from applying the power-law model show that the reaction behaviors were 
controlled by the domain crystalline size of molybdenum nitride. Lower activation energy 
and strong inhibitive effect of hydrogen were observed on nanostructured molybdenum 
nitride, close to those for supported ruthenium nanoparticles indicates the similar properties 
between nitride and noble metal for the reaction of ammonia decomposition. 
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Nanomaterials for ammonia decomposition 

Zusammenfassung 

        Mit dem Ziel der Entwicklung hocheffizienter Katalysatoren zur COx-freien 
Wasserstoff-Synthese aus Ammoniak wurden eine Reihe wohldefinierter, 
nanostrukturierter Materialien auf Basis von Ruthenium, Eisen und Molybdän dargestellt, 
charakterisiert und hinsichtlich ihrer Eigenschaften für die katalytische Zersetzung von 
Ammoniak untersucht. 
        Ru-Nanopartikel wurden auf Kohlenstoffnanoröhren („CNTs“) und Graphit 
abgeschieden, wobei durch die Verwendung unterschiedlicher Geometrien und 
Funktionalisierungen am Träger eine breite Variation der Metall-Träger-Wechselwirkung 
erreicht wurde. Ex situ Untersuchungen an diesen Katalysatoren deuten darauf hin, dass 
hohe Aktivitäten des Metalls durch größere Partikel erreicht werden, welche bei hoher 
Graphitisierung des Kohlenstoffs und damit schwächeren Metall-Träger-
Wechselwirkungen entstehen.  Hochauflösende TEM-Aufnahmen zeigen, dass lokale 
Fehlordnungen am Träger die Ausbildung lokale Defekte am Metallpartikel bewirken. 
Diese beeinflussen maßgeblich die Desorption von Stickstoff von der Oberfläche als 
geschwindigkeitsbestimmenden Schritt. Die direkte Beobachtung von adsorbiertem 
Distickstoff  an der Metalloberfläche gelang mit Hilfe von in situ XPS-Experimenten, 
welche die Schlussfolgerungen der vorrangegangenen ex situ Untersuchungen weiter 
bekräftigen.  
        Fe/CNT-Katalysatoren konnten hinsichtlich ihrer Stabilität gegenüber Sintern und 
Nitridierung unter Reaktionsbedingungen durch Legieren mit Co und Ni wesentlich 
verbessert werden, wobei die hierbei notwendige Homogenität der Legierungspartikel 
durch verschiedene bulk- und oberflächensensitive Methoden sichergestellt wurde. Die 
Stabilität wird zusätzlich durch die gezielte Immobilisierung der Partikel im Innenraum der 
Kohlenstoffnanoröhren erhöht. 
        Mittels eines Molybdäncarbids mit hoher Oberfläche konnten konstante H2-
Bildungsraten von ca. 30 mmol/(gKat·min) nach 100 Stunden erzielt werden. Eine dabei 
beobachtete 15 Stunden andauernde Deaktivierungsphase zu Beginn der Reaktion wird mit 
der Umsetzung des Metallcarbids zum Metallnitrid und einhergehender deutlicher 
Verringerung der spezifischen Oberfläche begründet. Die dennoch, verglichen mit 
literaturbekannten Mo-Katalysatoren, hohe Reaktionsrate lässt sich auf das 
präparationsbedingte vermehrte Auftreten hochenergetischer Zentren in Form von 
Zwillingsgrenzen, Stufen und Stapelfehlern zurückführen. Desweiteren wurden in 
Kohlenstoff dispergierte Molybdännitrid-Partikel durch Hydrothermalsynthese dargestellt. 
Durch die Anwesenheit des Kohlenstoffs unterliegen die Molybdännitrid-Partikel keinen 
Sintervorgängen unter Reaktionsbedingungen und zeigen eine stabile H2-
Bildungsgeschwindigkeit von 23 mmol/(gKat·min). Diese Ergebnisse verdeutlichen das 
hohe Potential von Metallcarbiden und –nitriden als Katalysatoren für die Zersetzung von 
Ammoniak.  
        Schließlich wurden kinetische Untersuchungen an den beschriebenen 
Katalysatorsystemen durch Änderung der Partialdrücke von NH3, N2 und H2 bei 
verschiedenen Temperaturen vorgenommen. Durch Anwendung des „Power-Law“-Modells 
lässt sich zeigen, dass die katalytischen Eigenschaften des Molybdännitrides durch dessen 
Kristallitgröße bestimmt werden. Die niedrigen Aktivierungsenergien und 
Inhibierungseffekte des H2 des nanostrukturierten Molybdännitrides sind vergleichbar mit 
denen der geträgerten Ru-Nanopartikel und zeugen von den sehr ähnlichen Eigenschaften 
eines Edelmetalls und eines Nitrids als Katalysatoren für die Zersetzung von Ammoniak. 
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Chapter 1: Introduction 

 

1.1 Research background 

1.1.1 Hydrogen production 

Energy shortage and pollution have led global efforts of science and technology researches 

towards clean and efficient energy system. One scenario is hydrogen as the ultra-clean energy 

carrier.[1] The advantages of using H2 as energy are summarized below:  

• Caloric energy of H2 is 1.4E5 kJ/kg, larger than fossil, chemical and biology energy 

sources. 

• There is no pollution in this energy circle, that the only product of this reaction is water. 

Furthermore, water could be dissociated to form hydrogen and oxygen.[2]  

• It could be used not only as heat energy by reacting with oxygen, but also as electronic 

energy by reacting with oxygen atoms, which is well known as Fuel cell application.[3] 

Currently the dominant technology for direct production of hydrogen is steam reforming from 

hydrocarbons. Hydrogen can be also produced from many other methods known including 

electrolysis and thermolysis. On the other hand, the high reactivity with oxygen makes the 

transfer, delivery and storage of hydrogen much more difficult.[4] Nowadays, the exploration of 

the most efficient, economical, and secure procedures and sources to produce hydrogen for fuel 

cell application is still one of the hot topics in this field. There are three technical routes to 

produce hydrogen in fuel cell application: 
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• Large scale H2 production based on conventional reaction of fossil fuels or biomass. 

Although it has high efficiency of H2 production, the cost of storage and transfer of 

hydrogen obstruct the development of this technique 

• On-board H2 production. The development of this technical route was restricted by the 

complicated operating system.  

• On-site H2 production at fueling stations. This route will decrease the cost of delivery and 

storage of hydrogen and predigest the fuel cell system. 

 

1.1.2 Ammonia as hydrogen carrier 

Compared with the conventional chemical processes for hydrogen production (steam reforming, 

partial oxidation, auto-thermal reforming, coal gasification, biomass process, electronic process 

and so on.), ammonia decomposition has several outstanding advantages [5-8]: 

• Ammonia could be easily liquefied and storage.  

• The technique of ammonia synthesis is well established infrastructure, which is well 

known as Haber-Bosch process.[9] 

• COx is absent in the reaction of ammonia decomposition, in which would be beneficent 

for the lifetime of catalyst in fuel cell. Ppm level of COx can poison the catalysts in  

proton exchange membrane fuel cell.[3]  

• The reaction process is convenient, since the thermodynamic equilibrium conversion 

could achieve more than 99% at 400 °C, 1 atm.  

It has been reported that, the group VIII metals (Ru, Fe, Co, Ni, Ir and Rh) and metal 

carbides/nitrides (MoCx/MoNx, VCx/VNx, WCx, etc.) could catalyze the decomposition of 

ammonia to form H2 and N2. Supproted ruthenium clusters (especially on carbon nanotubes) 

have been proven to be the most active catalyst.[10] However, the limited availability of nobel 

metal (ruthenium) and the low catalytic activities of non-precious metals (Fe, Co and Ni) make it 
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necessary to optimize the catalytic system offering a better performance at low temperature over 

the non-precious metals catalysts.  

 

1.2 Aims of this work and thesis structure 

The overall goal of this work is to develop a high performance catalyst for hydrogen production 

from ammonia decomposition. Three catalytic systems (ruthenium, iron/cobalt/nickel and 

molybdenum carbide/nitride) were selected as probe catalyst to understand the structural and 

functional correlations of nanostructured catalytic units in ammonia decomposition. To simplify 

this target it will be broken down into the following parts: 

• To synthesize a series of well-defined  nanostructured catalysts via selective deposition of 

ruthenium nanoparticles on modified carbon surfaces, alloying early transition metals on 

modified carbon nanotubes, and nanosized molybdenum nitrides in carbon 

• To test the catalytic properties of the series of nanostructured catalysts and gain insight 

into the nature and influence of the structure and function 

• To characterize the fresh and post catalysts including in-situ technique to gain the 

intrinsic understanding of the catalytic properties with the relation to those observed for 

the structural-functional properties of ruthenium nanoparticles 

• To investigate the reaction kinetic behaviors of representative catalysts  

 

In this thesis, the realization of the above goals is described over four chapters as follows: 

Chapter Three – Ruthenium nanopaticles on carbon presents the investigation of metal-support 

interaction of ruthenium and carbons. In-situ and post characterizations were carried out over the 

ruthenium catalysts in order to find out the correlation between the chemicophysical properties 

of component and the catalytic performance in ammonia decomposition. 
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Chapter Four – Alloying transition metals on CNTs/CNFs presents the experimental results on 

the binary alloy of group metals (iron, cobalt and nickel) for ammonia decomposition. The role 

of carbon nanotubes as support will be also addressed in this chapter. 

Chapter Five – Molybdenum carbides and nitrides presents the investigations of molybdenum 

carbide and nitride as catalysts for ammonia decomposition. This chapter also contains the 

synthesis of nanostructured molybdenum nitride with the aim to study the size effect towards the 

catalytic performance. 

Chapter Six – Preliminary kinetic study of molybdenum nitride and metal nanoparticles

 

 presents 

the kinetic results of the representative catalysts investigated in previous chapters. This final 

chapter is trying to find the links between noble metal (ruthenium), non-precious metal 

(iron/cobalt) and nitride (molybdenum nitride) with the respect of the reaction mechanism. 

Before presenting all the experimental data including characterizations, catalytic measurements, 

results and discussions in the main chapters, this thesis starts with: 

Chapter One – Introduction contains research background, literature review and explains why 

those three catalytic components (ruthenium, iron/cobalt/nickel alloy and carbide/nitride) were 

selected for the reaction of ammonia decomposition. 

Chapter Two – Experimental and characterization methods

 

 presents the details of catalytic 

measurement apparatuses (reactivity evaluation and kinetic measurement), synthesis of catalysts 

and the characterization techniques used in this work. 
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1.3 Ammonia decomposition 

 

Figure 1-1. R. A. Nelson and C. H. Kunsman with apparatus used for the study of the 

decomposition of ammonia on catalyst surfaces in April 1926. 

 

1.3.1 The reaction 

 

 

 

 

 

 

 

 

Table 1-1. Thermodynamic equilibrium conversion of NH3 decomposition 

Temperature 

(K) 

Reaction pressure (atm) 

1 2 3 4 5 6 

473 52.24 29.68 15.57 5.81 ~0 ~0 

523 80.93 67.08 56.09 47.20 39.82 33.59 

573 92.39 85.81 79.84 74.45 69.56 65.10 

623 96.69 93.64 90.70 87.89 85.23 82.67 

673 99.16 98.34 97.54 96.76 96.02 91.16 

723 99.59 99.13 98.70 98.27 97.86 95.24 

773 99.75 99.50 99.26 99.02 98.78 97.27 

823 99.85 99.70 99.55 99.41 99.26 98.35 

873 99.90 99.81 99.72 99.62 99.53 98.94 

923 99.94 99.87 99.81 99.75 99.68 99.30 
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The ammonia decomposition reaction is endothermic: 

𝑁𝐻3 ⇄  1
2
𝑁2 + 3

2
𝐻2;    ∆𝐻0 = +45.9 𝑘𝐽 𝑚𝑜𝑙−1 

The Gibbs free energy ∆𝐺0 for the reaction is +16.4 kJ mol-1. With these data including the data 

of its reversal reaction, the equilibrium for the “reforming” of ammonia can be estimated, which 

were summarized in Table 1-1. The equilibrium conversions in Table 1-1. show the drastic 

effects of both temperature and pressure. The beneficial low pressure effect means that a change 

in molar volume shifts the equilibrium into the direction of a lower total molar volume. Thus, the 

equilibrium conversion of ammonia decomposition benefits from the high temperature and low 

pressure. These data indicates the possibility of completed conversion of ammonia at relative low 

temperature (400 °C), which imply the large improvement might be needed for the existing 

catalysts systems, even for the Ru-based catalysts. 

 

1.3.2 The catalysts 

 

Figure 1-2. a Activity of metals in the decomposition of ammonia as function of -∆H0
0;             

b Activation energy of the decomposition of ammonia on various metals as a function of -∆H0
0. 

(Figures were taken from Ref. [11]). 

In the literature of ammonia decomposition, a large number of catalysts systems have been 

tested, which are Fe [12-21], Ni [6, 13, 22-28], Pt [10, 29-32], Ir [6, 32-34], Rh [10, 32, 35-38], Pd [10, 32, 35], Ru [6, 10, 

27, 35, 39-60], Ni-Pt [7], W [61, 62], Mo [63], carbides ( MoCx [64], VCx [65], WCx [66], FeCx [67]), nitrides 

(MoNx [68], VNx [69, 70], WNx [61]), and ZrON [71, 72]. Although many proved to be active systems, 
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only iron and ruthenium have been intensively studied with the aims of studying the reverse 

reaction of ammonia synthesis more than 50 years ago and hydrogen production for the hot 

project of fuel cell at the end of last century. Some works from Papapolymerou et al. [32], 

Choudhary et al. [6] and Yin et al. [10] gave the comparisons of the ammonia decomposition 

reactivity among different metals, normally ranking in the order of: Ru > Ir > Rh > Ni > Pt > Pd 

> Fe, which were also reported by Tanaka and Tamaru [11] some 40 years ago (as shown in Fig. 

1-2).  

 

1.3.2.1 Ruthenium 

The early studies on ruthenium catalysts for the ammonia decomposition were focused on the 

investigation of ammonia synthesis. Amano and Taylor reported the higher catalytic activity of 

ruthenium than rhodium and palladium supported on alumina for ammonia decomposition.[35] 

Tsai and Weinberg investigated the steady-state decomposition kinetics of ammonia on 

Ru(001).[40] Their results showed the temperature dependence of the reaction limiting step, that is 

desorption of NH3 and dissociation of N-H bond at high temperatures, and only desorption of 

NH3 at low temperature. This reaction was further investigated on stepped Ru(1110) and flat 

Ru(001) surfaces by Egawa et al.[39] They found that the rate of N2 formation on Ru(1110) is one 

order of magnitude faster than that on Ru(001) for which edge effects have been eliminated. A 

much more open structure of Ru(112�1) surface was also proved to be much more reactive than 

Ru(0001) surface, which were reported by Dietrich et al.[41] 

Those successful works on the single-crystal approach could give us a proposed general concept 

that the steps should be the active sites, and not the low-indexed flat terraces. This suggests that 

the abundance of steps [73] is much larger in morphologically “rough” particles rather than in 

equilibrated flat forms of bulk or well-structured particulate preparations.[9] Of course much 

more precise works were conducted in ammonia synthesis, which focused on the dissociative 

activation of N2, that is the energy barrier should be identical between single crystal and 

nanostructured systems.[5, 73-78] The central step in ammonia synthesis, which is the dissociative 

activation of N2 on a Ru surface was elucidated by Schlögl [9] (in scheme 1-1), that N2 molecule 

adsorbed at an edge site is followed by activation requiring a maximum electron density from the 



8 
 

catalyst to populate the anti-bonding states of the di-nitrogen molecules. According to this 

impression, the reverse reaction, ammonia decomposition, should require two neighboring 

stepped sites to recombinative desorbtion of one N2 molecule. This might be the main reason 

differs the mechanism in the synthesis and decomposition of ammonia, which will be presented 

in Chapter 3. 

 

Scheme 1-1. An artist’s impression of an active site in nitrogen dissociation. (Image was taken 

from Ref. [9]). 

 
At the beginning of this century, due to the requirement of high purity hydrogen for fuel cell 

applications, there was a renewed interest of nanostructured ruthenium catalysts for ammonia 

decomposition.[6] Numerous supports were  selected for deposition of nanostructured Ru 

particles, such as SiO2 [6], Al2O3 [6, 10, 48, 49, 57, 59], ZrO2 [10, 48, 52], TiO2 [10, 49], titanates [60], MgO [10, 

48, 49, 53], MgAl2O4 [46], carbon materials (active carbon [10, 43, 44, 48, 49, 55, 58], ordered mesoporous 

carbon [54, 55], carbon black [55], graphite [51, 55], CNTs [10, 47-49, 55]), and industrial solid waste [56]. 

Most of these researches were trying to correlate the high activity of Ru to the structural and size 

of Ru nanoparticles following the idea that the activity benefited from the abundance of the 

particular step sites allowing the fivefold coordination of nitrogen (B-5 site as shown in Fig. 1-
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3).[79] As shown in Fig.1-3-D, the density of active sites (B-5 site) of Ru particles calculated by 

Wulff construction shows the maximum abundance at about 2.5 nm, which is favorable 

compared to the experimental particle size distribution of practical Ru-based catalyst for 

ammonia synthesis. Garcı´a-Garcı´a et al. [58], Zhang et al. [53] and Zheng et al. [57] reported the 

similar result that the optimum Ru particle size for ammonia decomposition is between 3 and 5 

nm, which are in agreement with the maximum concentration of B-5 site on the Ru particle.  

 

Figure 1-3. (A) TEM image of a supported Ru particle with a step. (B) Particle size distribution 
function obtained from the TEM experiments. d, diameter. (C) A typical calculated Ru particle, 
with an average diameter of 2.9 nm. Atoms that belong to active B5 sites are shown in red. (D) 
Density of active sites as a function of particle diameter, as calculated through analysis of the 
atomistic Wulff construction. (Figures were taken from Ref. [79]) 

 

It was further argued that larger particles are more active in this reaction.[59] Karim et al. 
[59]attributed the high activity on large Ru particle (about 7 nm) to elongated planar structure 

compared to the small Ru particle (1.8-3 nm) with hemispherical morphology. Unfortunately, the 

HRTEM image (Fig. 1-4-a) is difficult to confirm the elongated structure owing to the distortion 

of observing Ru particles, and the morphologies of Ru are not in line with the HADDF-STEM 
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image (Fig. 1-4-b), although the pretreatment of these two samples were different. The metal-

support interaction effect and hydrogen inhibition effect were ignored by authors. 

 

 

Figure 1-4. (a) HRTEM image of 4wt% Ru/Al2O3 catalyst calcined at 500 °C and reduced at 

450 °C; (b) HADDF-STEM image of 4wt%Ru/Al2O3 catalyst reduced at 450 °C, calcined at 

250 °C and reduced again at 450 °C. Both of them were collected after ammonia decomposition 

below 450 °C. (Figures were taken from Ref. [59]). 

 

It is well known that the metal-support interaction could influence the particle size and shape of 

deposited metals. In ammonia decomposition, Raróg-Pilecka et al. [44] reported their results of Ru 

supported on active carbons modified with different pretreatments of supports; Li et al. 

summarized Ru supported on different ordered mesoporous carbons (OMC) [54] and different 

carbons [55]. Unfortunately, the correlations of structures and functions were still missing in the 

study of Ru-carbon system in ammonia decomposition reaction. It should be noticed that, among 

the numerous Ru-based catalyst, the one supported on CNTs seams to be the most active catalyst 
[8, 10, 47-49], which were ascribed to the basicity and conductivity of CNTs as support by authors. 

We believed that the key points of Ru-carbon system in ammonia decomposition are still 

missing, that are: 
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• How does carbon anchor ruthenium particles? How does the local structure of carbon 

influence the structure of ruthenium particles? 

• Direct characterization information of practical Ru particles with different morphologies 

offering different catalytic performances. 

In Chapter 3, we summarized the results on Ru-carbon system in efforts to answer the above 

questions. It is well known that ruthenium system is so sensitive to promotion, both 

electronically and structurally.[5, 9] The promotion effects on ruthenium for ammonia 

decomposition were not mainly discussed in this thesis, due to the complicated interactions 

between Ru, carbon and promoters. 

 

1.3.2.2 Iron, cobalt and nickel 

The early transition metals (Fe, Co and Ni) were also investigated in ammonia decomposition 

with the aim of a better understanding of ammonia synthesis during the early study.[12, 14, 16, 80-82] 

Unlike ruthenium catalysts, the few studies of iron catalysts in ammonia decomposition to 

hydrogen for fuel cell application is due to the poor catalytic performance (activity and stability) 

of iron catalyst, which should be related to the much stronger interaction of Fe-N compared to 

Ru-N.[9] This strong interaction between iron and nitrogen could lead to the formation of 

subnitrides, or even bulk nitrides, which were believed to be the inhibitors for the decomposition 

of ammonia described in earlier studies.[83, 84] In order to achieve high activity of iron catalyst, 

high energy is needed to overcome the large energy barrier of nitrogen desorption, which leads 

much higher reaction temperature on iron catalyst compared to ruthenium one. The consequence 

of high reaction temperature is the sintering of of iron particles, leading to the deactivation of 

reactivity owing to the lost of active surface. 

At the beginning of this century, both experimental [85-88] and theoretical [89-91] works reported a 

similar non-ruthenium catalyst, that is binary catalytic components following the quite old idea 

to optimize the performance of those elements on the slope of the curve (Fig. 1-2, or the re-

plotted curve in Ref. [92]) which react either too little or too vigorously with nitrogen. The 

volcano curve in figure 1-5 (similar tendency can be found in earlier study [92]) shows the 
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correlation between computed TOFs and calculated relative heats of chemisorptions of activated 

nitrogen. In general, the idea is combining two metals: one with too high adsorption energy and 

one with too low adsorption energy of nitrogen interaction, which could achieve the optimum 

electronic structure for activation of di-nitrogen.  

 

Figure 1-5. Calculated turnover frequencies for ammonia synthesis as a function of the 

adsorption energy of nitrogen. (Figure were taken from Ref. [89]). 

 

We believe that, following the mentioned idea of combining two metallic elements should also 

work in the reverse reaction, ammonia decomposition. It should be additionally noticed that, the 

interaction between H and iron metal is much weaker compared to ruthenium, which could not 

lead to such a strong effect of hydrogen inhibition as Ru catalyst. In chapter 4, the modification 

of electronic structure of iron by cobalt and nickel will be investigated. 

 

1.3.2.3 Carbide and nitride 

It is well known that transition metal carbide and nitride exhibit similar electronic properties as 

noble metals, which was mainly inspired by the pioneer work of Levy and Boudart,[93] that the 

tungsten carbide showed the similar behavior as platinum in hydrogenolysis and isomerization of 

2,2-dimethylpropane. Along the history of ammonia, one of the important issues is the formation 
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of nitride, like iron catalyst, which was named “ammonia iron” by Schlögl,[94] who drew an 

intensively roadmap of catalytic iron for ammonia synthesis.[9] Nitrides of group IVB and VIIB, 

and of Fe, Co and Ni are interstitial compounds. Those of Fe, Co and Ni are only formed from 

NH3 and not N2.  

 

Figure 1-6.  Ammonia decomposition reaction rates over vanadium nitride as function of 

temperature with different ammonia partial pressures. (a) ammonia first-order model, (b) 

ammonia second-order model. (Figures were taken from Ref. [70]). 

 

On the other hand, considering the catalytic efficiency of the elements for synthesis and 

decomposition ammonia was correlated with the chemisorption energy of nitrogen, carbides and 

nitrides have been introduced in both synthesis and decomposition of NH3.[95] Oyama showed a 

number of interstitial alloys (molybdenum carbide and nitride), that were more active than 

ruthenium but less active than the doubly-promoted iron catalyst for ammonia synthesis.[96] He 

also reported similar rate parameters of vanadium nitride to those of iron and platinum in 

ammonia decomposition.[70] He found that on vanadium nitride system at high temperature, the 

rate of ammonia decomposition was independent of nitrogen and hydrogen partial pressures, and 

was first order in ammonia partial pressures at low temperatures and zero order at high 

temperatures (as shown in Figure 1-6). The observation suggests that the reaction could follow 
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the Tamaru mechanism, that is the irreversible steps of ammonia decomposition are the 

adsorption of ammonia and desorption of dinitrogen.[97] This finding differs from the earlier 

reported work on ammonia decomposition over vanadium nitride,[69] in which the Temkin-

Pyzhev mechanism was observed, that is nitrogen desorption is the only rate-determining step.[98] 

The preparations of the two mentioned vanadium nitrides are slight different, one was pretreated 

with ammonia at above 1000 °C over V2O5 and the other was with ammonium vanadate. This 

might lead to a different structure of nitrides, which could influence the reaction behavior as 

consequence. With this consideration, a primary comparison of kinetic reaction behaviors was 

investigated over three types of molybdenum nitrides, which are prepared in-situ from high 

surface area molybdenum carbide, molybdenum trioxide and nanosized molybdenum nitride. 

Results will be shown in chapter 6. 

 

Figure 1-7. SEM image of WC catalyst after pretreatment in the presence of a H2-CO mixture. 

(Image was taken from Ref. [66]). 

 

Another aim to develop those three types of nitride/carbide is related to the low performance of 

metal carbides/nitrides for ammonia decomposition in the existing literature. Choi investigated 

vanadium carbide [65] and molybdenum carbide,[64] and Pansare et al. studied tungsten carbide [66] 

for ammonia decomposition. Those materials reported in the literature showed interesting 

performance for ammonia decomposition, unfortunately, none of the catalysts could achieve 

more than 4 mmol/(gcat·min) H2 formation rate, which is likely due to the low surface area of the 

reported materials (representative morphology of those kind of materials  was shown in figure 1-
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7.). Recently, a mesoporous Fe3C was synthesized bz Kraupner et al.[67] using a hard-templating 

approach with carbothermal reduction. Although, a 16-hour constant H2 formation rate of about 

9 could be achieved over this catalyst, the reactivity is still not comparable with Ru-based 

catalyst. In Chapter 5 of this thesis, we will report a high active molybdenum carbide catalyst 

showing a stable performance in 100 hours. 

 

1.3.3 The supports (carbon) 

As mentioned in last section, numerous support materials have been utilized for the catalysts in 

ammonia decomposition. The application of carbon materials as supports has been widely 

reported in catalysis, especially in ammonia synthesis,[9, 94] mostly on activated carbon (AC) 

owing to its high thermal stability, high surface are and cheap and easy recovery of the metal 

catalyst by simple combustion.  

Carbon is a versatile material which, depending on its hybridization and assembly in one-, two- 

or three-dimensional networks, exhibits important electronic and chemical properties with 

countless practical applications. For example, it is found in printer inks, pencils, water 

purification systems, thermal isolation and antistatic materials. More elaborate carbon materials 

such as carbon nanotubes are also employed in nanotechnology, with applications in sensing or 

field emission. Black carbon is cheap, easy to synthesize and to modify. Thus, it is also 

particularly suited as a support for heterogeneous catalysis as both the structure (macroscopic 

shape, porosity) and the surface chemistry can be tailored depending on the target application. 

The most important reason to use carbon as support to deposit metals is related to the structural 

variability and tunable chemical environment of carbon surface given by its tendency to form 

homonuclear bonds in essentially two hydridizations. The inter-nuclear bond length of different 

hybridizations will be different which will have chemical and physical consequences. The basal 

plane of graphite is inert and as strong as diamond, where as the interplanar bonds are very weak 

which gives graphite the soft and lubricant properties. Chemical reactivity is also profoundly 

different for the basal and the prismatic edge planes in graphite.  Combustion in perfect graphite 

for example will preferably start from the prismatic edges. These anisotropies in graphite of 

physical and chemical characters are the result of the trigonal geometry. Thus geometrical 
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change of homonuclear carbon materials eg; vacancies, defects, bending, the presence of 

pentagon- or heptagon- ring within the hexagonal network in graphite will altered these 

properties. In addition the broad possibilities of hetero elements present in carbon materials due 

to the moderate electronegativity of carbon are able to modify the electronic properties. 

 

Figure 1-8. High resolution TEM images of nickel particles deposited on defective 

carbon (a) and graphitic carbon (b). (Images were taken from Ref. [99]). 

 

It is of crucial importance to study how the graphitic character influences the anchoring of the 

nanoparticles and eventually modifies the catalytic activity of the metal. Varying the graphitic 

order might offer new and fascinating possibilities for catalyst design. The direct observation of 

different morphology of metal nanoparticle on different CNTs surface was reported by Rinaldi et 

al..[99] As shown in Figure 1-8-a, the nickel nanoparticles supported on defective carbon are 

polycrystalline, which is in contrast that nickel on graphitic carbon support is well ordered (fig. 

1-8-b). This different morphology of nickel nanoparticles could lead to the different carbon 

filament grown by deposition of C2H4. It should be noted that, the direct evidence from in-situ 

XPS reveals the carbon incorporation that changes the catalytic performance of the nickel 

catalyst, which is a powerful tool to understand the heterogeneous catalytic process. 

Recently, Shao et al. reported a high activity and stable nanocrystalline Pd2Ga intermetallics 

catalyst for selective hydrogenation of alkyne, due to the oxidized vacancies and local double 

bonds on CNTs inhibiting sintering and loss of the Pd2Ga nanoparticles during reactions.[100] 
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Figure 1-9 shows the representative HRTEM image of Pd2Ga nanoparticles supported on CNTs 

surface. 

 

Figure 1-9. Microstructure characterizations of Pd2Ga/CNT. (a) HRTEM image, with 

crystallographic model of Pd2Ga and fast Fourier transform of the local HRTEM image; (b) the 

Wullf constructions of the corresponding Pd2Ga nanoparticle in (a). (Figure was taken from Ref. 

[100]). 

 

Thus, modified graphite and CNTs have been chosen as supports for metallic nanoparticles and 

metal carbide in this study in order to investigate the metal-carbon interaction influence on the 

catalytic decomposition of ammonia. When using CNTs as support, selective deposition of 

catalytic component was also investigated, as it was reported that a “confinement effect” 

originates from the tubular graphitic structure of CNT support.[101-106] Considering the average 

diameter of multi-wall CNTs, which is normally large than 5-10 nm, the catalytic differences 

might directly relate to the local morphology of nanoparticles owing to the bending of graphene 

sheets, but not to the electronic density differences on the walls of CNTs. 
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Chapter 2: 

Experimental and Characterization Methods 

 

2.1 Catalytic performance measurements 

2.1.1 Reactivity evaluations 

 

Figure 2-1. Overview photograph of the fixed bed reactor setup for reactivity evaluation. 

 

The catalytic performance measurements were done at the Department of Heterogeneous 

catalysis at the Max-Planck-Institut für Kohlenforschung, on a tubular fixed bed reactor. The 
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effluent gas was analyzed by an online gas chromatograph (3000A MicroGC, Agilent), equipped 

with two lines, a PLOTU pre-column/Molsieve column combination with Ar as carrier gas for 

N2, H2 and CH4, and a PLOTU column with He as carrier gas for NH3 and CH4. Both lines were 

equipped with TCD detectors. 

 

2.1.2 Kinetic measurements 

The catalytic performance measurements were performed at the Institute for Technical 

Chemistry at Technische Universität Berlin, on a fixed-bed reactor made of silica, shown in Fig. 

2-2, which is known to have no significant influence on the reaction in the examined temperature 

range of 475-630 °C. The catalyst bed consisted of 100 mg catalyst and 500 mg quartz beads 

with the diameter of 200-500 μm, which separated the catalyst from the frit. The carrier gas was 

chosen to be He. NH3, H2, and H2 concentration were varied in order to investigate the reaction 

behaviour. 

 

Figure 2-2. Schematic diagram of the gas lines of the setup for kinetic measurements.  
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2.2 The synthesis of nanostructured materials 

2.2.1 The synthesis of Ru-based catalysts supported on carbon 

2.2.1.1 Surface modification of CNTs 

 

Figure 2-3. Overview photograph of the UTP furnace (up) and the schematic diagram of the gas 

lines (down). The N2 purging chamber is a security measure to avoid O2 from the atmosphere to 

diffuse into the hot zone and the reactor. 
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Commercial multi-wall CNTs (Baytubes, Bayer Material Science C150P) were treated with 

concentrated HNO3 (70%, Sigma Aldrich) at 130oC for 2h to eliminate inorganic impurities. The 

functionalized CNTs were then washed with deionized water and further dried overnight at 60 

oC. The obtained CNTs were ground and annealed in graphite oven (Fig. 2-3 shows the 

photograph of the lab-constructed UTP furnace for thermal pretreatment of samples in inert gas 

atmosphere) with inert gas (He/N2) at 450, 900 and 1500 oC respectively. The HNO3-treated and 

high temperature annealed supports samples are referred as C450, C900 and C1500 (described in 

Table 2-1) (representative TEM images are shown in Fig. 2-4). 

 

 

 

 

 

 

 

 

Figure 2-4. Representative TEM images of C450 (a), C900 (b) and C1500 (c) after HNO3 
functionalization and thermal pretreatment in inert gas. 

 

 

Table 2-1. Sample information 
Sample Database 

number 
Details 

Raw CNTs 3832# Commercial CNTs from Bayer Material Science 

C450 5959# Annealed in He at 450  °C 

C900 5960# Annealed in He at 900  °C 

C1500 5937# Annealed in N2 at 1500  °C 
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2.2.1.2 Preparation of exfoliated graphite 

Commercial graphite (Graphite-AF, Graphit Kropfmühl AG) was intercalated with a 3:1 mixture 

of concentrated H2SO4 and HNO3 for 24h with magnetic stirring in an ice-bath. The intercalated 

graphite was transferred into a pre-heated oven at 800 oC for 1 minute. The obtained sample was 

annealed in He at 450 oC for 4 hrs and labeled as EG for the further applications. In Fig. 2-5, the 

SEM images of Graphite-AF (denoted as G) and exfoliated graphite (EG) were attached. 

 

Figure 2-5. Representative SEM images of graphite-AF (a-b) and Exfoliated graphite (c-d). 

 

2.2.1.3 Selective deposition of Ru nanoparticles on CNTs 

The process of selective deposition of ruthenium nanoparticles on CNTs was elaborated in the 

previous work of our group.[1] 

The inside supported Ru-based catalysts were prepared by a two-step synthesis (Scheme 2-1, a´-

c´): CNTs were first impregnated with an ethanol solution containing the ruthenium 
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nitrosylnitrate (Alfa Aesar). The volume of the solution was set to be lower than the porous 

volume of the CNTs. Because of its low surface tension (22 mN.m-1), the ethanolic solution wets 

the CNT surface and fills the inner channel, as described by the Young-Laplace equation.[2] Pure 

distilled water was then added in a second step. The intrinsic lipophilicity of the CNTs leads to 

lower liquid/solid interface energies for organic solvents than aqueous ones. Therefore the 

aqueous phase is expected to remain outside of CNTs and to displace the thin film of ethanolic 

solution located on the outer surface to the inner channel. The samples were dried at room 

temperature for 10 hrs and at 110 oC overnight and denoted as Ru-in and Ru-out respectively (in 

Table 2-2) 

 

Scheme 2-1. Schematic view of a longitudinal cross section of a carbon nanotube during the 
different steps for the selective deposition of Ru nanoparticles inside/outside CNTs. (Figure was 
taken from Ref. [1]). 

 

 

 

 

 

 

Table 2-2. Sample information 
Sample Database number Sample Database number 

Ru-in-C450 6064# Ru-out-C450 6535# 

Ru-in-C900 6065# Ru-out-C900 6542# 

Ru-in-C1500 6066# Ru-out-C450 6536# 
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2.2.1.4  Impregnation of Ru on graphites 

Commercial graphite (Graphite-AF, Graphit Kropfmühl AG), as-prepared exfoliated graphite 

(EG) and commercial graphite (High-surface-area graphite, HSAG-300, TIMCAL) were selected 

as supports for 2wt% Ru catalyst. The supports, impregnated with ethanol solution containing 

the ruthenium nitrosylnitrate (Alfa Aesar), were dried at room temperature for 10h, and at 100 oC 

in air overnight consecutively. The samples were labeled as Ru-G, Ru-EG and Ru-HSAG 

respectively. 

 

 

 

 

 

2.2.2  The synthesis of metal alloy nanoparticles supported on CNTs 

2.2.2.1  Pretreatment of CNTs/CNFs 

Commercial multi-wall CNTs/CNFs (Applied Science PR24-HHT, Applied Science Inc.) were 

treated with concentrated HNO3 (70%, Sigma Aldrich) at 130oC for 2h. The functionalized 

CNTs were washed with deionized water and further dried overnight at 60 oC. The obtained 

CNTs were ground and annealed in a tubular oven with inert gas (He) at 450oC denoted as HHT-

F for the further applications. 

 

2.2.2.2 Selective deposition of metal alloy nanoparticles on CNTs 

5wt% Fe-Co and Fe-Ni bimetallic nanoparticles with different Fe/Co and Fe/Ni ratios were 

supported on functionalized CNTs respectively. The mixture of Fe-Co and Fe-Ni nitrates 

(Iron(III) nitrate nonahydrate, Merck; Cobalt(II) nitrate hexahydrate, Merck; Nickel(II) nitrate 

hexahydrate, Sigma-Aldrich) solution was dropped on CNTs under continuous stirring, during 

Table 2-3. Sample information 
Support Database number Catalyst Database number 

Graphite 4680# Ru-G 4748# 

Exfoliated graphite 6765# Ru-EG 6993# 

High surface area graphite 5441# Ru-HSAG 7197# 
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which metal precursors are distributed on both inner and outer surfaces. Then, less amounts of 

solvent were dropped over the sample in the same way, and most of the residual metal ions 

adsorbed on the external walls were pulled inside of CNTs channel by the capillary force under 

the assistance of ultrasonic treatment. Finally, the obtained sample was dried at room 

temperature for 10h and 110 oC overnight. After calcinations and H2 reduction, most of the metal 

particles were deposited on the inner walls of CNTs as the procedure shown in Scheme 2-2. A 

representative FeCo outside supported sample was prepared by the same procedure and it is 

described in section 2.2.1.3. 

 

Scheme 2-2. Scheme of syhthesis route to CNTs-supported FeCo/FeNi alloy nanoparticles. 

 

2.2.3 The synthesis of molybdenum carbide and nitride 

2.2.3.1 The synthesis of high surface area molybdenum carbide 

 

 

 

 

 

 

The high surface area molybdenum carbide was prepared by a colleague, Dr. Thomas Cotter at 

the Department of Inorganic Chemistry at the Fritz-Haber-Institut der Max-Planck-Geseschaft. A 

Table 2-4. Sample information 
Sample Database number Details 

Mo2C 7484# fresh sample 

Mo2C-NH3-4h 7825# sample collected after reaction for 4h 

Mo2C-NH3-100h 7824# sample collected after reaction for 100h 
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temperature programmed reduction-carburization method was used to prepare the desired 

material from a lab-prepared h-MoO3 in a flowing mixture of Ar/H2/CH4 under temperature 

ramps to a final hold temperature of 675 °C for two hours.[3] Samples were labeled as described 

in Table 2-4. 

 

2.2.3.2 The synthesis of nanostructured molybdenum nitride by HTC method 

To synthesize the desired samples, a hydrothermal carbonization synthesis and 

amonolysis were adapted to transform the water solution of ammonium heptamolybdate (AHM, 

Merck) and glucose (Sigma) with Mo:C (2:15 and 1:15) ratios. The mixture solution of AHM 

and glucose was added into in an autoclave equipped with Teflon inner reactor. The 

hydrothermal carbonization was operated at 200 oC for 2h. The obtained black powder was 

washed and dried at 110 oC for 10h. The sample was further ground and annealed in a UTP 

furnace (described in Fig. 2-3) in NH3 at 650 oC for 3h. The prepared samples were labeled as 

MoN-HTC-I (10477# in AC database) and MoN-HTC-II (106754# in AC database) respectively. 

 

2.3 Characterization Techniques 

2.3.1 Textural properties 

The analytical methods for the determination of the textural properties, i.e. specific surface area 

and porosity of materials, are based on the physical adsorption/desorption of N2 at the 

condensation temperature (77K). The surface area was calculated from the Brunauer, Emmet and 

Teller method (BET),[4] an extension of Langmuir model applied to multilayer adsorption, could 

obtain the surface area by measuring the amount of monolayer adsorbed gas. Pore size 

distribution was calculated from the desorption branch of N2 isotherm by the Barrett-Joyner-

Halenda method (BJH).[5] The sample was out-gas at 200 oC for 2 hrs in vacuum prior to the 

physical adsorption/desorption of N2 measurement, on a Quantachrome Autosorb-6B KR 

sorptometer.  
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2.3.2 Raman spectroscopy 

 

Figure 2-6. Fitting procedure of Raman spectrum from commercial CNTs (Baytube) and 
exfoliated graphite.  

 

Raman spectroscopy is a sensitive method to study the properties of carbon materials with 

different structure, including crystalline, nanocrystalline and disordering carbons.[6, 7] Fig. 2-6 

shows the typical Raman spectrum of CNTs (Baytube) inserting a representative fitting 
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procedure by using the method in literature.[8] The G-band peak at 1580 cm-1 is assigned to in-

plane vibrations of graphite (sp2-bonded carbon, E2g symmetry); D-band peak at around 1350 

cm-1 is attributed to the disorder-induced band of graphitic carbon (graphene layer deges, A1g 

symmetry). In addition a feature near 1620 cm-1 is seen in most samples, which is assigned to 

disordered graphitic lattice (surface graphene layers, E2g symmetry). The Gaussian peak at 1500 

cm-1 is assigned to amorphous carbon. In particular, the commercial CNTs (Bayertube) used in 

this thesis, the contribution of the D1 and D2 peaks are quite appreciable suggesting that the 

CNT sample very likely contains other carbonaceous materials such as amorphous carbon and 

polyene like material originating from the pyrolysis of hydrocarbons (Fig. 2-6). 

Raman spectroscopy was done on HORIBA Jobin Yvon spectrometer with an excitation line 633 

nm 10x objectives. The spectra were collected at acquisition time of 120 sec. From the fitting 

procedure [8] the ratio of the D and G intensity (ID/IG) was extracted for a semi-quantitative 

analysis of the presence of defective (D1) and graphitic carbon (G) in the sample. 

 

2.3.3 X-ray diffraction 

Powder X-ray diffraction was carried out over all samples using a STOE STADI P 

diffractometer in transmission geometry (primary focusing Ge monochromator, Cu Kα1 

radiation (λ = 1.5406 Å), linear position sensitive detector). 

 

2.3.4 Electron Microscopy techniques 

Electron microscopy techniques are powerful tools for the local information of morphology, 

nanostructure, dispersion, size distribution and electronic properties of solid materials. The 

information is derived from the detection of the signal generated by physical processes occurring 

as consequence of the interaction of the electron beam with observing sample. The elastically 

scattered electrons can be forwarded through the sample or backscattered; the inelastically 

scattered electrons transfer the energy to secondary processes such as Auger electron and x-ray 

emission. Those processes are summarized in Scheme 2-3. 
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In the Scanning Electron Microscope (SEM), the images are formed by the detection of 

secondary electrons and elastically backscattered electrons. The secondary electrons have low 

energy so that they are emerging from the sample with a probing depth of few nanometers, 

depending on the acceleration voltage, that means secondary electrons can provide information 

about the surface morphology. The probability of back scattered electron (BSE) is proportional 

to the atomic mass of the elements, thus images in BSE mode provide information about the 

elemental composition of a samples. Standard SEM instruments are always equipped with EDX 

detector, which gives information about elemental composition by analyzing x-rays emitted in 

the relaxation process that follow the generation of the hole in the core shell due to the 

interaction with electron beam. 

 

Scheme 2-3. Schematic representation of the interaction between electron beam and observing 

specimen. (Image taken from Ref. [9]). 

 

Transmission Electron Microscope (TEM) operates in diffraction mode or in image mode. The 

diffraction mode produces the diffraction pattern of the sample when the electron beam is in 

Bragg condition. The transmitted electron beam forms an image, which is a two-dimensional 
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projection of a three-dimensional object in the direction of the beam. Images formed by the large 

angle elastically scattered electrons are characterized by a contrast which is indicative of 

mass/thickness. The cross section of high angle scattering is proportional to the thickness of the 

sample and the atomic mass of the elements composing the specimen. Thus, assuming the 

thickness constant, the HAADF gives information about the element composition. A TEM can 

be equipped with Electron Energy Loss Spectroscopy (EELS) detector. The EELS is based on 

the detection of the inelastically scattered electrons. The inelastic scattering of the primary 

electron beam originates from interaction in which a part of the energy of the incident electron 

beam is transferred to the process of the ejection of an electron from the ground state to the 

valence band. Thus, the measure of the energy loss of the primary beam gives information about 

the electronic structure of the atoms and bonding states of the elements in the specimen. The 

possibility of coupling all this information output in one instrument makes the electron 

microscopy techniques very powerful and established characterization techniques in catalysis. It 

should be however emphasized that due to the high resolution of the instrument they give only a 

local view of the system under inverstigation. 

The electron microscopes used throughout the work of this thesis are as follows: 

1. A Hitachi S-5200 Scanning Electron Microscope (SEM) coupled with EDX detector for 

elemental analysis was used to investigate the surface morphologies of the studying 

materials. The samples under investigation have been deposited on conduction carbon 

tape. All images were acquired using an acceleration voltage of 3 kV for better resolution 

of surface features, and 15 kV to investigate the inner cavity of the samples. 

2. A TEM equipped with a LaB6 emitter (Philips CM200) operated at 200 kV was used to 

perform overview investigations of particle size and carbon nanofilament (MWCNT) 

microstructure. HRTEM investigations have been performed with a Philips CM200 TEM 

equipped a FEG emitter and a GATAN tridiem for EEL spectroscopy.  

3. For high resolution images were obtained from a Cs-corrected transmission electron 

microscope operated at 80-300 kV (FEI Titan). 
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2.3.5 X-ray photoelectron spectroscopy 

The high-pressure XPS experiments were performed at the ISISS beamline located at the BESSY 

II synchrotron facility in the end station of the FHI-MPG. The as-prepared samples were 

pelletized and transferred into the reaction cell, ~ 2 mm away from an aperture to the 

differentially pumped stages of the lens system of the hemispherical analyser Phoibos 150 

(SPECS). The probe size is ~100 µm× 1 mm. The in-situ measurements were operated at 400oC 

under 0.5 mbar of NH3. All spectra are collected in normal emission geometry at photon energies 

of 585 eV for the C1s and Ru3d, 700eV for the N1s and 830 eV for the O1s region, respectively, 

with a spectral resolution of ~0,3 eV. For these photon energies, the electron mean free path is 9 

Å.[10] Background correction is performed by using a Shirley background. The spectra are fitted 

following the Levenberg-Marquardt algorithm to minimize the χ2. Peak shapes are modeled by 

using asymmetric Doniach-Sunjic functions convoluted with Gaussian profiles. The accuracy of 

the peak position for different fits is ~0.05 eV. 

 

2.4 Density functional theory calculations 

The DFT calculations were done by Dr. Payam kaghazchi and Dr. Timo Jacob at the Institut für 

Elektrochemie, Universität Ulm. The calculations were performed using CASTEP [11] with 

Vanderbilt-type ultrasoft psedopotentials [12] and the generalized gradient approximation (GGA) 

exchange-correlation functional proposed by Perdew, Burke, and Ernzerhof (PBE) [13]. A plane-

wave basis set with an energy cutoff of 380 eV was used for all calculations. The Brillouin zones 

of the (1×1)-surface unit cells of Mo2C (0001) and MoN (0001) were sampled with 6 × 6 

Monkhorst−Pack k-point meshes. The surfaces were modelled with unsymmetric seven-layer 

slabs, where the lowest two layers were fixed at the bulk crystal structure. The geometries of the 

remaining layers were optimized to <0.03eV/Å. 

 

 

 



39 

 

References 

1. Tessonnier, J.-P., et al., Selective Deposition of Metal Nanoparticles Inside or Outside 
Multiwalled Carbon Nanotubes. ACS Nano, 2009. 3(8): p. 2081-2089. 

2. Ebbesen, T.W., Wetting, filling and decorating carbon nanotubes. Journal of Physics and 
Chemistry of Solids. 57(6-8): p. 951-955. 

3. Cotter, T.P., Activation of propane over Mo/V carbide, in Inorganic Chemistry. 2011, Fritz-
Haber-Institut der Max-Planck Gesellschaft: Berlin. 

4. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers. Journal 
of the American Chemical Society, 1938. 60(2): p. 309-319. 

5. Barrett, E.P., L.G. Joyner, and P.P. Halenda, The Determination of Pore Volume and Area 
Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the 
American Chemical Society, 1951. 73(1): p. 373-380. 

6. Tuinstra, F. and J.L. Koenig, Raman Spectrum of Graphite. The Journal of Chemical Physics, 
1970. 53(3): p. 1126-1130. 

7. Dillon, R.O., J.A. Woollam, and V. Katkanant, Use of Raman scattering to investigate disorder 
and crystallite formation in as-deposited and annealed carbon films. Physical Review B, 1984. 
29(6): p. 3482. 

8. Sadezky, A., et al., Raman micro spectroscopy of soot and related carbonaceous materials: 
Spectral analysis and structural information. Carbon, 2005. 43(8): p. 1731-1742. 

9. Williams, D.B. and C.B. Carter, The Transmission Electron Microscope, in Transmission 
Electron Microscopy. 2009, Springer US. p. 3-22. 

10. Somorjai, G.A.L., Yimin, Introduction to Surface Chemistry and Catalysis. 2010, New York: 
Wiley. 

11. Segall, M.D. and et al., First-principles simulation: ideas, illustrations and the CASTEP code. 
Journal of Physics: Condensed Matter, 2002. 14(11): p. 2717. 

12. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. 
Physical Review B, 1990. 41(11): p. 7892. 

13. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. 
Physical Review Letters, 1996. 77(18): p. 3865. 

 

 

 

 

 

 

 

 

 

 



40 

 

 

 



41 
 

 

 

Chapter 3: 

Ruthenium Nanoparticles on Carbon 

 

In this chapter, the metal-support interaction has been focused with the aim to find the 

correlation between the structure and function of Ru-carbon in ammonia decomposition. Carbon 

materials were chosen as supports for ruthenium nanoparticles, as they can exist in different 

forms that exhibit various functionalities, i. e. graphene, fullerene, graphite, carbon nanotubes, 

activated carbon, carbon black, etc. This chapter will be separated into two parts referred to the 

stacking geometry of graphene layers, those are one-dimension stacking graphene layers 

(graphite), and two-dimensional packed graphene sheets (multi-wall CNTs). 

 

3.1 Structure-function correlations for Ru/CNT  

As elucidated in Chapter 1, Ru-based catalysts exhibit promising catalytic performance for both 

ammonia decomposition and synthesis.[1, 2] It was reported that using CNTs as supports for 

ruthenium nanoparticles can achieve the highest dispersion of ruthenium and the highest 

conversion in the decomposition of ammonia. [3] Li et al. found a (semi-quantitative) correlation 

between the ruthenium activity and the graphitic degree of the carbon support.[4] They found that 

the catalytic activity of ruthenium catalysts scales with the graphitization degree of carbon 

supports. Unfortunately, the morphology of ruthenium particles deposited on different carbon 

was not further investigated. 

Recently, an effect of different locations originating from the tubular graphitic structure of CNTs 

supports was reported for some hydrogenation reactions, such as the conversion of 

cinnamaldehyde,[5, 6] the Fischer-Tropsch reaction,[7] and the conversion of syngas to ethanol.[8] 

Selective hydrogenation reactions always involve a specific interaction of one unsaturated bond 
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of the substrate with the active sites. Other hydrogenations suffer from insufficient contact times. 

The spatial restriction of the reaction inside nanometer-scale channels may steer the adsorption 

geometry substrates, thereby prolonging the contact time with the active domain and, thus, 

benefiting slow transformations. In the first section of this chapter, it will present a fundamental 

study on the structural effects of CNTs when used as supports for ruthenium nanoparticles, and 

on the localization of ruthenium nanoparticles for ammonia decomposition. 

 

 

3.1.1 Surface modification of CNTs 

The starting material for this study is the commercial multiwallled CNTs produced by Bayer, 

Germany. The product known simply as Baytubes CNTs has 95wt% carbon purity and average 

outer diameter of 10nm. The impurities of this sample composed mainly of Co and Mn from the 

catalyst. These metal particles are encapsulated with graphitic carbon either at the tip or in the 

channel of the CNTs. Previous study in our group showed that the residual particles have the 

possibility to produce H2 from NH3 cracking.[9] Further, a detail TEM investigation of 

commercial CNTs showed that there is a broad distribution of defects over an individual CNT.[10] 

Some CNTs show there is a broad distribution of straight graphene layers while some show 

curvy textures with defective graphene stacking. Most of the CNTs surface is coated with thin 

layers of pyrolytic carbon, ranging from one to several layers of amorphous carbon. Numerous 

studies have devoted to the purification of CNTs with the aim to remove single or multi layers of 

pyrolytic carbons. The abundant curvature present in pyrolytic carbons allow for their removal 

Table 3-1. Physical and chemical properties of all samples 

Support Diameter 

 (nm) 

BET surface area (m2/g) Average particle 
size (nm) b 

Graphitization 

Support Ru-in a Ru-out a Ru-in Ru-out Raman 
(ID/IG) 

EELS       
(Fsp2) 

C450 10.2 363 348 410 2.0 2.5 1.463 83.1% 

C900 9.8 381 309 338 2.3 2.8 1.390 89.9% 

C1500 10.0 323 271 356 2.6 3.7 1.130 97.6% 

a samples were collected after reaction; 

b Caculated from TEM images with 300 particles of every samples collected after reaction. 
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with selective oxidation[11] approach by variety of oxidants such as CO2
[12-14], air[15-19], HNO3

[20-

24] and H2O2
[25, 26]. The chosen purification method influences the chemical and physical 

properties of CNTs, i.e. they may open CNT caps, induce CNT fragmentation, and functionalize 

the inner and/or outer walls. It has been reported that the high temperature annealing procedures 

can remove some defects on the surface of CNT,[27] since the nanocrystalline graphene 

precursors attached on CNT can be graphitized to parallel alignment of the larger graphene 

layers at around 2800°C.[28] A two steps pre-treatments of commercial CNTs were used to vary 

the surface properties of CNTs, which will be used as support for Ru nanoparticles. 

The experiments for surface modification of CNTs were details in Chapter 2. N2-physiosorption, 

Raman, TEM, EELS and XPS techniques were used to characterize the chemicophysical 

properties of CNTs samples. 

 

3.1.1.1 Textural properties of CNTs 

 

Figure 3-1. Representative TEM images of nitric acid functionalized commercial CNTs calcined at 

different temperatures. (a) C450; (b) C900; (c) C1500. 

 

Figure 3-1 shows the representative TEM images of CNTs samples, which were nitric acid 

functionalized and calcined in inert gas at 450, 900 and 1500 °C respectively. Apparently, the 

pyrolytic carbon attached on CNTs surface could be (partly) removed, and the rough surface of 

CNTs could be graphitized again by high temperature annealing procedure. 
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Figure 3-2. BET analysis of C450, C900 and C1500 CNTs supports. (a) isotherms; (b) BJH-

desorption pores distributions. 

 

The physical properties of the CNT supports were summarized in Table 3-1. The effects of the 

calcinations temperature on the textural characteristics of CNT supports were studied by N2 

physisorption measurements. As shown in Figure 3-2, all samples exhibited type V isotherms 
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with H3 hysteresis loops indicating that the capillary pore structures of the samples. The 

Brunauer-Emmett-Teller (BET) surface area of C1500 was lower than those of C900 and C450, 

which is due to the elimination of structural defects or amorphous fragments roughening the 

CNTs. 

 

3.1.1.2 Graphitization characterization of CNTs 

Raman spectroscopy is a common method to characterize the order of carbon materials.[29-33] 

Raman bands of the samples and the quantitative results are summarized in Figure 3-3 and Table 

3-1. The D band centered at ~1350 cm-1 is usually attributed to defects and pyrolytic carbon 

impurities in the CNT samples; the peak at around 1580 cm-1 is assigned to in-plane vibrations of 

graphite (sp2-bonded carbon).[19, 30, 34] The second-order peak at 2700 cm-1 is associated with 2D 

vibrations of carbon atoms, and its increase with heating temperature is related to the ordering of 

the graphitic structure (G’ band).[35] The intensity ratio of the D and G bands (ID/IG) decreased 

with increasing calcinations temperature, indicating an increased structural ordering of the CNTs 

when treated at higher temperatures. 

 

Figure 3-3. First- and second-order Raman spectra of the CNTs calcined at different temperature. 
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Figure 3-4. EELS analysis of CNTs calcined at different temperatures. (a) ELNES spectra of C450, 

C900 and C1500 samples; (b) normalized EELS spectra. 

 

Figure 3-5. Gaussian deconvolution of EELS spectra for C1500 CNT support. 

 

Energy-loss near-edge structure (ELNES) spectroscopy measurements of the C450, C900 and 

C1500 samples are presented in Figure 3-4. Spectra were obtained from a circular region with 

100 nm diameter including several CNTs perpendicular to the electron beam. The carbon K-edge 
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shows clearly two energy loss features. The first narrow peak at around 285 eV corresponds to 

an electronic transition from carbon 1s to antiboding π states (π*), characteristic of the sp2-

bonded carbon, while the broader structure at 290-310 eV indicates transitions to antibonding σ 

states (σ*).[36, 37] To estimate the relative sp2 hybridization ratio, it is assumed that the ratio of 

integrated areas under π* and σ* peaks is proportional to the ratio of π and σ states. This ratio is 

normalized with respect to the value determined for highly ordered pyrolytic graphite (HOPG); a 

material consisting of only sp2 hydridized carbon. The hybridization ratio was acquired by 

applying a Gauss fit to the spectra (Figure 3-5) and comparing the different areas of the 

respective Gauss curves.[36, 37] This gave the sp2 ratios of the CNT samples in Table 1. As shown 

in Figure 3-4-b (spectra were normalized with the intensities of first σ* peak), the intensity of 

π*peaks increased in the order of C450 < C900 < C1500, thus, the degree of the carbon ordering 

increased with the calcinations temperature, which is consistent with Raman results. 

2

( *)
( * *)
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( * *)

sample
sp

HOPG

area
area
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area

area

π
π σ

π
π σ

 
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= ×
 
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                                              Equation 3-1 

 

3.1.1.3 Surface characterization of CNTs 

Surface functional groups of the Ru/CNT catalysts were analyzed by X-ray photoelectron 

spectroscopy (XPS) with Ru-out-C450 and Ru-out-1500 samples (details of assigning C1s data 

are summarized in Figure 3-6. All sp2 and sp3 C-C and C-H bonds were assigned to the C1s 

signal at 285 eV. The Gaussian peak at 284.8 ± 0.2 eV (sp3 C-C bond) was only observed in Ru-

out-C450 sample, indicating the high temperature pretreatment can improve the CNTs surface 

ordering. The peaks at 286.3 ± 0.2 eV, 287.4 ± 0.2 eV and 288.7 ± 0.2 eV were attributed by C-

OH, C=O and O-C-OH groups on CNTs surface respectively, which corresponds within an error 

bar of 30% with the O1s spectra (Figure 3-5-c) at 532.45 ± 0.2 eV, 531.2 ± 0.2 eV and 533.6 ± 

0.2 eV. The approximate O molar quantities are 4.3% and 2.7% of Ru-out-C450 and Ru-out-

C1500 respectively indicating that parts of CNTs surface functional groups introduced by HNO3 

refluxing could be removed by high temperature pretreatment.  
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Figure 3-6. XPS analysis of Ru-out-C450 and Ru-out-C1500. (a) carbon 1s; (b) Ru 3d; (c) oxygen 1s



49 
 

3.1.2 Selective deposition of Ru nanoparticles on CNTs 

A two-step impregnation method [38] was used to prepare the inside supported Ru catalysts for 

this study. Incipient wetness impregnation is well-known technique used for catalyst 

preparation.[39, 40] A solid catalyst support is brought in contact with a solution containing the 

metal precursor. This technique usually leads to a homogeneous metal deposition with a good 

dispersion and narrow particle size distribution.[41] The synthesis procedure[38] was based on the 

ideas that (1) the CNT has a better affinity for organic solvents; (2) a solvent with a low surface 

tension will easily wet and penetrate inside the CNT; (3) a second, metal-free, solvent will 

remain outside of the nanotube and protect its outer surface from metal deposition if the 

liquid/solid interface energy is higher than the first solvent. The representative TEM images of 

Ru nanoparticles inside CNTs are shown in Figure 3-6 a-c, typical ruthenium nanoparticles are 

labeled with red and blue circles, representing the different locations on CNTs. As shown in the 

figure, most Ru particles were encapsulated inside the channels of the CNTs, except for a small 

amount of Ru on the outer surfaces. Our previous study found that by using this deposition 

technique a significant improvement is achieved compared to the classical incipient wetness 

impregnation method,[38, 42] that is, a 75% filling of nanoparticles located inside the CNT 

channels instead of 50%. Particle size distributions for each sample were calculated from TEM 

images, counting 300 individual particles each while the mean sizes of Ru are summarized in 

Table 3-1. 

Decoration of the outer surface of closed CNTs is an easy task. However, decorating selectively 

only outer surface of opened CNTs is far more challenging.[38] A two-step impregnation method 

was used to prepare the samples outside supported ruthenium catalysts. An incipient wetness 

impregnation was first performed with benzene, which has a low surface tension and 

consequently wets and fills the tubes easily. An aqueous solution which contains Ru precursor is 

then added. Because of its higher liquid/solid interface energy, this solution cannot penetrate the 

CNTs. Thus, the channel remains protected and decoration only happens on the outer surface. In 

previous work,[38] our colleagues tested the solvents with different boiling points and miscibility 

with water, and used 3D-TEM to investigate location of the nanoparticles and their size, as well 

as distinguishing between the inner and outer parts of CNTs in order to estimate the ratio of the 

nanoparticles inserted the tubes.  
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Figure 3-6. TEM images of 2wt% Ru/CNTs catalysts after reaction. (a-c) Ru-in supported on C450, 
C900 and C1500; (d-f) Ru-out supported on C450, C900 and C1500. The red and blue circles 
indicates Ru particles located inside and outside of the CNTs, respectively. All images inserted with 
particle size distributions of Ru nanoparticles calculated from 300 individual Ru particles in TEM 
images.  
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In this work, we tried to identify the location of the selected particles by tilting the angle of the 

sample holder. The representative TEM images of Ru nanoparticles inside CNTs are shown in 

Figure 3-6 e-f, typical ruthenium nanoparticles are labeled with red and blue circles, representing 

the different locations on CNTs. For the outside supported ruuthenium catalysts, nearly no 

ruthenium were found inside the channels, indicating a successful preferential localization (more 

than 90% of the Ru nanoparticles were located outside the CNT walls).  

As shown in Table 3-1, the ruthenium particle size increased with the calcinations temperature of 

the supporting CNTs for both Ru-in and Ru-out samples, indicating a lower site density for 

strong Ru-C interactions with increasing perfection of the support surface. Prior to the 

impregnation stage, the pristine CNTs were functionalized with concentrated nitric acid, 

introducing oxygen species on the surface of the CNTs.[43] Parts of these surface functional 

groups could act as “anchors” for the ruthenium precursor. Compared to Ru-in samples, the 

exterior ruthenium nanoparticles are even more sensitive to the thermally pretreated CNT 

surface. 

The morphology of the ruthenium nanoparticles on the inner and outer walls of the CNTs could 

be identified to a certain extent by high-resolution TEM images. In Figure 3-7 and 3-8 we show 

representative ruthenium nanoparticles supported on the inner and outer walls of C450, C900 and 

C1500 samples, respectively. As shown in the images, the lattice distance were 0.20, 0.21 and 

0.23 nm, which can be attributed to the characteristic values of Ru (101), (002) and (100) planes, 

respectively. The ruthenium particles outside the CNTs were mostly faceted and had a large size, 

while the ruthenium particles inside the CNTs were smaller, less well ordered, and exhibited 

specifically more defects. The average site of metal-support interactions differs in structure for 

the Ru-in and Ru-out samples. For the Ru-in samples, ruthenium tends to sit on local disorder 

sites in the graphene walls whereas in Ru-out samples ruthenium is located in pockets of the 

surface, occurring due to intersections of packets of graphene stacks. This was observed earlier 

with Ru catalysts supported on fullerene black exhibiting a similar local morphology.[44, 45] 
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Figure 3-7. High resolution TEM images of Ru-in samples. 
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Figure 3-8. High resolution TEM images of Ru-out samples. 
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3.1.3 Catalytic NH3 decomposition 

Catalytic NH3 decomposition was performed according to the procedure detailed in the 

experimental section in chapter 2. All the Ru-CNTs samples were evaluated at the same reaction 

conditions (Figure 3-9).  

 

Figure 3-9. Catalytic performances of all samples. Reaction conditions: 50 mg catalyst, 30 ml/min 

pure NH3, 36000 h-1 space velocity, at 450 °C. 

 

Figure 3-10 summarizes the catalytic performance (hydrogen production rate at steady state) 

correlated with structural descriptors. The catalytic activity of Ru nanoparticles scales with their 

size; larger particles exhibit more active sites per particle than small particles, suggesting that no 

relationship between exposed surface and active site density exists for this reaction. 

Extrapolating from ammonia synthesis, being the reverse reaction, this finding is in line with the 

known fact [46] that the reaction is totally dominated by surface steps.[47] The observation that 

large particles are more active in ammonia decomposition was also made earlier.[48, 49] It was 

further argued that special surface sites should occur with high abundance on ruthenium particles 

with sizes between 3 and 5 nm and that support effects may control the Ru particle sizes at 
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constant loading.[50] The present findings support this notion: a higher degree of graphitization 

leads to a weaker metal carbon interaction and hence to larger particles, as also seen in the TEM 

data of figures. Ru-in particles are inherently smaller than Ru-out particles and therefore no 

positive confinement effect is observed in this reaction. It seems, however, that Ru-in particles 

are inherently less well ordered and exhibit specifically more defects, which is in line with the 

trend seen in Fig. 3-10 that Ru-in particles of the same size are more active than Ru-out particles. 

Most Ru-out particles exhibit a shape with faces and, hence, are probably pure metallic; the Ru-

in particles exhibit many internal effects that are likely stabilized by heteroatoms originating 

either from synthesis or from the support (carbon). 

 

Figure 3-10. Correlation of steady catalytic performance with structural descriptors for the support 

and for the active mass. 

 

At high conversions and on large surface facets inhibition of activity occurs by adsorbed 

hydrogen,[51] as also indicated by the leveling off in the particle-size-activity curve of Ru-out in 
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Fig. 3-10. This adverse effect is in line with the faceted shape seen in the TEM images, 

producing many large flat terraces with a low density of high-energy sites. An explanation of the 

clear finding from Fig. 3-10 that high support ordering and large particles of Ru offer the best 

performance steps from the requirement that the most active site unites high electron density and 

high under-coordination; in the small particles of Ru-in, which are rough and therefore offer high 

under-coordination, the stabilizing heteroatoms limit the electron density and hence deactive the 

rough sites. The different local geometry of the support is also not beneficial for Ru-in as for 

those particles the accessibility to the π electron system of graphene units is inhibited most due to 

the local disorder of the carbon. It is speculative that the local disorder of support induces also 

covalent interaction or in directly through delivery of stabilizing carbon atoms dissolving into the 

ruthenium particle grain boundaries. The Ru-in system may benefit from alkali promotion[51, 52] 

and then offer not only better long-term stability but also better utilization of the active mass. 

Ammonia decomposition requires the difficult step of N-N recombination through surface 

diffusion from two sites of ammonia cleavage on weakly adsorbing sites (terraces).[53] This 

dictates that an active site for ammonia decomposition is a larger ensemble than that for the 

forward reaction of ammonia synthesis, which can occur on a single step site as required 

hydrogen is populating on all Ru sites in highly mobile form. 

 

3.2 Structure-function correlations for Ru/graphite 

In this section, a detail investigation of Ru-carbon interactions was studied by using 

combinational characterization methods including high-resolution TEM and in-situ XPS 

measurements. 

As mentioned in last section, Ru-based catalysts exhibit promising catalytic properties both in 

the ammonia decomposition and synthesis.[1, 2] By acknowledging the findings in ammonia 

synthesis, the active sites for this reaction are the step atoms of ruthenium particle.[53, 54] 

According to the DFT calculations, this reaction is primarily happening on B5-type sites on Ru 

(shown in Fig. 1-3 in Chapter 1),[55] whose density could be determined by the morphology (size 

and shape) of Ru particles.[56] Single crystal studies and DFT calculations revealed that the 

maximum probability for B5-type appeared for particles of 1.5 – 2.5 nm.[56, 57] Aside from 
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theoretical estimates, there have been several experimental studies on the effect of Ru particle 

size on catalytic performance in ammonia synthesis and decomposition.[58] Our study of Ru on 

CNTs showed that the catalytic activity of ammonia decomposition scales with the particle size 

of ruthenium nanoparticles supported on either outside or inside wall of carnon nanotubes. This 

observation that large particles are more active in ammonia decomposition was also made 

earlier.[48, 49] It was further argued that special surface sites should occur with high abundance on 

ruthenium particles with sizes between 3 and 5 nm and that support effects may control the Ru 

particle sizes at constant loading.[50] A.M. Karim etal. investigated the shape and polydispersity 

of Ru particles supported on γ-Al2O3. They found the Ru activity for ammonia decomposition 

increased by almost 2 times as the particle size increased from 0.8 nm to over 7 nm. In spite of 

the different crystallinities and metal-support interactions, authors attributed the low activity of 

small particles to the polydispersity rather than activity on terraces. “only when a series of 

chemically identically and completely monodisperse Ru particles on the same support, and with 

the same number density were be compared, might one be expected to find a clear structure 

sensitivity as expression of the site density as function of particle morphology”.[53] “It is 

remarkable that the theoretical concept,[59] which does not take into account the practically most 

relevant mesoscopic structuring of metastable forms of the elements, arrives at experimentally 

correct predictions. It can only be concluded that it is not the mesoscopic structure by itself but 

rather a local electronic property arising from the nanostructure that constitutes the tuning factor 

for the few active site atoms that form part of the complex surface of a promoted catalyst with 

many local geometries and substantial chemical variability.”[53] 

In present study, we will report a fundamental study on the structural effects of graphite when 

used as supports for ruthenium nanoparticles, especially focus on the local geometry of 

ruthenium nanoparticles, which could probably influence the subsurface N-species. In addition to 

questions about the elementary steps of the reaction and the importance of the real structure and 

subnitrides for the catalyst. 

 

3.2.1 Characterizations of the supports  

3.2.1.1 Textural properties of graphite samples 
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Table 3-2. Physical properties of samples 

Support  Scale of graphitic unit a BET b 

(m2 g-1) 

ID/IG c Catalyst H2 production rate d 

mmolH2/(gRu·min) Diameter Thickness 

High-surface area graphite 

Graphite 

Exfoliated graphite 

30-200 nm 

4-20 µm 

4-20 µm 

20-50 nm 

0.3-3 µm 

5-20 nm 

348.66 

11.04 

15.07 

0.43 

0.27 

0.39 

Ru-HSAG 

Ru-G 

Ru-EG 

217 

422 

159 

a Measured from SEM images. 

b N2 physisorption. 

c Intensity ratios of D- and G-band measured from Raman. 

d steady states at 450 °C, with 36000 h-1 space velocity. 

 

 

Figure 3-11. N2-adsorption/desorption isotherms of different graphite samples. 
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The physical properties of the graphite supports were summarized in Table 3-2. The specific 

surfaces of graphite with different scale of unit were measured from N2-physisorption technique. 

The diameters and thicknesses of graphite were estimated based on SEM and TEM analysis. The 

“high-surface-area graphite” (HSAG-300) exhibited the highest BET surface area, which is 

around 350 m2/g. The isotherms of the support samples were shown in Fig. 3-11, with a similar 

adsorption isotherm of type III, suggesting the strong cohesion force between adsorbate N2 

molecular and graphite. 

 

3.2.1.2 Graphitization characterization of graphite samples 

The graphitic structures of different graphite were studied by Raman spectroscopy, which is a 

common method to characterize the order of carbon materials.[29-33] The Raman spectra of the 

samples and the quantitative results are summarized in Fig. 3-12 and Table 3-2. The D band 

centered at ~1350 cm-1 is usually attributed to defects and pyrolytic carbon impurities in carbon 

material; the peak at around 1580 cm-1 is assigned to in-plane vibrations of graphite (sp2-bonded 

carbon).[19, 30, 34]  

In order to quantify the disorder of carbon materials, the intensity ration of D- and G-bands 

(ID/IG) was calculated based on the mathematical fitting procedures for the Raman spectra.[33, 60] 

In this study, we used a mathematical fitting procedure to fit the carbon band combinations for 

the Raman spectra.[29] In principle, the Raman spectra of carbon could be attributed to five 

different bands: G, around 1580 cm-1 is the ideal graphitic lattice (E2g-symmetry); D1, around 

1350 cm-1 is disordered graphitic lattice (graphene layer edges, A1g-symmetry); D2, around 1620 

cm-1 is the disordered graphitic lattice (surface graphene layers, E2g-symmetry); D3, around 1500 

cm-1 is amorphous carbon; D4, around 1200 cm-1 is disordered graphitic lattice (A1g-symmetry), 

polyenes and ionic impurities. As shown in Fig. 3-12, the D3 and D4 bands could not be 

observed in graphite and exfoliated graphite samples indicates that the amorphous carbons are 

absent on the surface of G and EG samples. The increased ID/IG ratio of exfoliated graphite is 

due to the increasing density of graphene edges. This phenomenon could also be ascribed to the 

rough surface of exfoliated graphite caused by the strong acidic pretreatment and oxidation 

processes. The Raman spectra of HSAG sample showed all 5 bands of carbon combinations, 
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indicates the disorder structure of carbon. The TEM analysis showed the morphology of high-

surface-area graphite, which has bend graphene layers stacking as same as soot but with some 

disorder or dislocated graphene layers. 

 

Figure 3-12. Raman spectra of different graphite. All spectra were fitted following the procedure in 

literature. Ref. [29] 

 

3.2.1.3 Surface analysis of graphite 

The surface properties of different graphite samples were analysised by X-ray photoelectron 

spectroscopy, which could identify the chemical configuration on the surface of carbon 

materials. Figure 3-13 summarized the C1s and O1s XPS spectra of Ru-G, Ru-EG and Ru-

HSAG catalysts obtained at 400 °C in vacuum including the details of assigning C1s and O1s 

features. All sp2 and sp3 C-C and C-H bonds were assigned to the C1s signal at 285 eV. The 

Gaussian peak at 284.8 ± 0.2 eV (sp3 C-C bond) was only observed in high surface area 

graphite. The only visible functional group on graphite sample is at 288.95 ± 0.2 eV, which is 



61 
 

probably carboxyl, anhydride, ester, etc. These findings indicate the high graphitic structure and 

relative clean surface on graphite sample. 

 

Figure 3-13. XPS analysis of different samples operated at 400 °C in vacuum. 

 

It can be seen that the functional group with C-O bonds are appearing on exfoliated graphite 

sample, which were formed during the chemical exfoliation procedure. Due to the low amount of 

those groups on both graphite and exfoliated graphite samples, it is difficult to deconvolute all 
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the peaks of O1s spectra, but the two peaks corresponding to singly and doubly bound oxygen 

can be observed at 531.2 ± 0.2 eV and 533.6 ± 0.2 eV. Similar results were found over oxidized 

carbon nanotubes samples.[61] Both the C1s and O1s spectra of high surface area graphite sample 

show the much more oxygen containing groups compared to the other two graphite. The 

approximate O molar quantities scale with the order of HSAG > EG > G. It was reported that the 

dispersed oxidized vacancies on the surface of carbon materials can be used in bonding 

nanoparticles.[62] Thus the different metal-support interactions will be expected when depositing 

ruthenium nanoparticles on these three types of graphite.  

 

3.2.2 Catalytic performance of ruthenium samples 

Figure 3-14 shows the ammonia conversion of Ru-G sample as function of reaction time. At 450 

°C, the steady H2 production rates of Ru-G, Ru-EG and Ru-HSAG catalysts are 422, 159 and 

217 mmolH2/(gRu·min) which are listed in Tab. 3-2. The highest reactivity was observed on 

ruthenium particles supported on a clean and highly graphitic graphite. 

 

Figure 3-14. Catalytic performance of Ru-G (2wt% Ru supported on graphite) sample at 450 and 600 

°C. Reaction condition: 50 mg sample, pure NH3 with space velocity of 36000 h-1. 
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3.2.3 Morphology of Ru nanoparticles on different graphite 

The depositions of Ru nanoparticles on different graphite samples were operated with incipient 

wetness impregnation method, which detailed in Chapter 2. The prepared catalysts were dried at 

110 °C overnight, and pretreated with NH3 in the catalytic bed of the reactor at 450 °C. After 

catalytic performance measurements, samples were collected under inert gas, and transferred inti 

a sealed bottle for further characterizations (due to technical problem, samples could not be 

100% oxygen-proof). 

The morphology of ruthenium nanoparticles supported on different graphite samples was studied 

by transmission electron microscopy (TEM). The lattice distance of observing ruthenium 

particles in all images of all catalysts are 0.20, 0.21 and 0.23 nm, which can be attributed to the 

characteristic values of Ru (101), (002) and (100) planes, respectively.  

 

Figure 3-15. Representative TEM images of Ru nanoparticles supported on different graphite 

(samples were collected after reaction). The particle mean size distributions were calculated with 

more than 500 individual counting particles. 
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Figure 3-16. Representative high resolution TEM images of Ru nanoparticles supported on different 

graphite (samples were collected after reaction). 
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The representative TEM images (inserted with particle mean size distributions calculated with 

more than 500 individual counting particles) and high resolution TEM (HRTEM) images of three 

catalysts are shown in Figure 3-15 and 3-16. The ruthenium particles on a clean graphite surface 

were mostly faceted and had a large size (2.5 nm), while the Ru particles on relative rough 

graphite surface (exfoliated graphite) were smaller (2.0 nm), less well ordered, and exhibited 

specifically more defects. This finding is in good agreement with our previous study of 

ruthenium particles on CNTs[63], that high support ordering leads to a weaker metal-carbon 

interaction and hence to larger particles. Ammonia decomposition requires the difficult step of 

N-N recombination through surface diffusion from two sites of ammonia cleavage on weakly 

adsorbing sites (terraces)[53]. This dictates that an active site for ammonia decomposition is a 

larger ensemble than that for the reverse reaction of ammonia synthesis, which can occur on a 

single step site as required hydrogen is populating on all ruthenium sites in highly mobile form. 

At high conversions and on large surface facets inhibition of activity occurs by adsorbed 

hydrogen[51], as also indicated by the adverse relationship between ruthenium particle size and 

catalytic conversion of Ru-G and Ru-EG catalysts. These results are in line with the faceted 

shape seen in the HRTEM images (Fig. 3-16), producing many large flat terraces with a low 

density of high-energy sites.  

 

Scheme 3-1. NH3 decomposition over different size of Ru nanoparticles supported on carbon 

material. 

Compared to Ru-G catalyst, Ru-HSAG exhibited larger size (3.3 nm) with broader distribution 

of Ru particles, and lower reactivity of ammonia decomposition. The high density of oxygen 
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species on the surface (XPS O1s in Fig 3-13), the low degree of graphitization (Raman spectra in 

Fig. 3-12) and the local geometry of the curved graphene layers lead to the broad distribution of 

ruthenium particles deposited on high surface area graphite. Rinaldi et al. reported the 

disordering structure of supporting metal particles originates from the local disordering structure 

of carbon support.[64] They presented the HRTEM images of different nickel particles supported 

on disordering and ordering carbon supports (as shown in Fig. 1-8 in Chapter 1). Unfortunately, 

due to the “knock on” effect and beam damage during the observation with TEM at 300 kV, it is 

difficult to investigate the interface on the boundary of carbon material and nanosized ruthenium 

particles, which is most likely the direct proof to explain the differences in catalytic activity 

observed for metals supported on various carbons. [64]  

In Fig. 3-16 (a) to (c), a series of ruthenium atomic clusters with size lower than 2 nm could be 

observed in Ru-EG and Ru-HSAG catalysts but invisible in Ru-G catalyst. These atomic 

ruthenium clusters anchored by the dispersed oxidized vacancies on carbon surface has much 

higher density of high energy sites (defects), but the turnover frequency of NH3 molecule should 

be extremely low owing to the strong interaction of Ru-N bond and the shortage of sites for H 

atoms. This process could be described as Scheme 3-1. Ruthenium atoms are immobilized on the 

dispersed oxidized vacancies on the surface of graphite, and tend to sit on local disorder sites in 

the graphene layers. Similar results were also observed earlier with Ru catalysts supported on 

fullerene black [44, 45]. The disordering carbon where ruthenium sits on has tendency to be 

dissolved in ruthenium particles to form carbides at the boundary. This incorporation of carbon 

from the support could lead the disordering structure of ruthenium particles, and further 

influence the catalytic performance for ammonia decomposition as consequence. It is known 

that, Ru can catalyze the methanation of carbon in a H2 rich environment, which could inhibit the 

formation of hydrogen under the reaction condition for ammonia decomposition. On a clean and 

high graphitic carbon surface, due to the low interaction between ruthenium particle and carbon, 

ruthenium particles trend to keep the well-ordered structure and lead to the formation of large 

flat of terraces, which are beneficial for the re-combinative desorption of N and H atoms. An 

explanation of the clear finding from the HRTEM images and catalytic conversion, that the high 

performance of ruthenium nanoparticles supported on carbon materials must stem from either the 

large size or the well ordering structure of Ru originated from the high ordering structure of 

carbon supports. 
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3.2.4 In-situ XPS measurements of the working system 

 

Figure 3-17. Core-level photoelectron spectrum of Ru3d5/2 and N1s of all catalysts measured in 0.5 

mbar NH3 at 400 °C on an in situ XPS instrument performed at the ISISS beamline located at the 

BESSY II synchrotron. 
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To investigate the reactants’ behavior on different ruthenium surfaces, three catalysts were 

characterized by means of in situ X-ray photoelectron spectroscopy (XPS) measured at 400 °C 

and 0.5 mbar NH3, which is close to the practical reaction condition of ammonia decomposition. 

The Ru3d5/2 spectra in Fig. 3-17 show that the ruthenium is mainly in the metallic states at the 

working conditions. The formation of ruthenium nitride or subnitride on the three samples could 

not be observed by this highly sensitive in situ technique, which is probably due to the low 

density of these species. The binding energy of Ru3d5/2 peak over Ru-G sample is 0.1 eV 

smaller compared to the other two spectra of Ru-EG and Ru-HSAG catalysts, indicates that at 

the reaction condition the electron density on ruthenium surface could be alternated by Ru-

carbon interaction. The high performance of ammonia decomposition on Ru benefits from the 

high electron density on ruthenium surface, which could accelerate the recombinative desorption 

of N-atoms (the rate determining step),[53] and increase the forward turnover frequency.  

After normalization of C1s peak, the intensity of ruthenium peak increased with the increasing 

disorder structure of graphite support. The high intensity of ruthenium on disordered graphite 

support should be attributed to the small atomic clusters anchored on the disordered graphite. 

These findings suggest that not all the ruthenium atoms exposed on the surface should be 

ascribed to the active sites for ammonia decomposition, which is in good agreement with the 

HRTEM analysis. 

The core-level photoelectron N1s spectra (Fig. 3-17-right) of all samples operated at 400 °C in 

0.5 mbar NH3 show a mixture of N states. The sharp and narrow peak at 400.9 eV is the gas 

phase peak of ammonia. The strongest component is found at 398.4 eV, which in this case is 

most likely the adsorbed NH3 and some N-C species. It was reported earlier that the adsorption 

of N2 on iron surface could be assigned to a molecularly adsorbed N2 (400.2 eV) , liner N2 (405.3 

eV) species,[65] and the atomic N (397 eV).[66] These observations were further energetically 

corresponded very well to the experiment on a pretreated ruthenium crystal in 10-6 mbar N2 at 

300 K (shown in Figure 3-18).[54] As mentioned before, the recombinative desorption of N atoms 

from the surface of catalyst is the rate determining step of ammonia decomposition. This 

suggests that the desorption of N2 from the catalysts surface plays the important role to the 

reaction of ammonia decomposition. In Fig. 3-17-right, the N1s peak at 400 eV of Ru-G sample 

is nearly invisible, indicates a low coverage of N2 molecular on the large and ordering Ru 
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nanoparticles, which should be responsible for the high turnover frequency of ammonia 

decomposition. The high intensities of this dinitrogen peak on the small (Ru-EG) or disorder 

(Ru-HSAG) ruthenium nanoparticles indicate the high coverage of N2 molecular, which should 

be ascribed to either the high energy density of small ruthenium clusters or the disordered 

ruthenium surface. The difficulties of N2 desorption from the small/disordering ruthenium 

particles lead to the low turnover frequency of NH3 molecular and low catalytic conversion as 

consequence. 

 

 

Figure 3-18. Core-level photoelectron spectrum of the N1s level of molecular adsorbed nitrogen. The 
measurement was taken with Mgk excitation and with a sample temperature of 300 K and a 
background pressure of 10-6 mbar N2.The inset shows an atomic force microscopy (AFM) image of 
the microstructure of the sample surface in air. (Figure taken from Ref.[54].) 
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3.3 Chapter conclusions 

3.3.1 Ru-CNTs 

In this section, we reported a structure-function correlation for ruthenium nanoparticles on 

CNTs. The observed trend is counter-intuitive to the general notion about a beneficial effect of 

reduced particle size for better activity in a nonselective reaction. The fact that the support offers 

different sites for Ru-in and Ru-out masks the possible beneficial effect of the enhanced electron 

density of thermally annealed CNTs. The size of ruthenium particles can be controlled 

effectively by a combination of modifying the site density of defects on the support and by 

localization of the active metal inside or outside of the mesopores of the CNT. At the inside of 

the CNTs it was not possible to sufficiently enhance the electron density of the support to 

strongly activate the rough and small metal particles. It remains to be seen if the intrinsic 

difference in curvature between convex (outer) and concave (inner) has an effect on the metal-

support interaction. 

 

3.3.2 Ru-graphite 

These work leads to the following major conclusions. First, it is clear that the catalytic activity of 

metals supported on carbon materials can be partially explained by the metal-carbon interaction 

originating from the local order of carbons (carbon incorporation). Similar conclusions were 

observed from carbons growth on Ni supported on carbon with different graphitization 

structure,[64] and hydrogenation reaction on Pd-Ga intermetallic nanoparticle supported on 

CNTs.[62] Second, with the help of high resolution transmission electron microscopy, the detail 

morphology of small Ru atomic particles could be observed and correlated to the reaction 

performance with the particle size and shape (ordering structure). Third, the highly sensitive in 

situ surface characterization technique could offer the direct crucial information of the 

nanoparticles in practically relevant catalysts at the working state. In summary, the combinative 

characterizations can lead to a direct conclusion, that the different catalytic performances of 

carbon supported ruthenium catalysts for the reaction of ammonia decomposition is dependent 

on the local graphitic order of carbon supports. The high graphitic carbon support can benefit for 
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the formation of well ordered Ru nanoparticles with large terraces for H2 desorption and steps as 

active sites for NH3 molecular. It remains to be seen the direct evidence of the formation of metal 

surface nitrides or subsurface nitrides play the most important factor in this reaction. 
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Chapter 4: 

Alloying transition metal nanaoparticles on CNTs 

 

Carbon nanotubes supported transition metal nanoparticles have attracted intensive 

interests in several important interdisciplinary research fields. CNTs have a hollow tubular 

channel and provide an extremely high mechanical strength of carbon walls to encapsulate 

magnetic nanowires or nanorods [1] up to micrometers in length. The graphitic wall as protective 

shell is expected to prevent the sintering of nanoparticles during the shaping process and to avoid 

the dipolar relaxation between two neighboring magnetic centres, which are major drawbacks of 

traditional spinel nanoparticles.[1] As a novel carbon material, CNTs have been employed as 

supports for active metals in heterogeneous catalysis. Compared with traditional oxide supports, 

CNTs have high thermal and electronic conductivities, good resistance to acidic/basic chemicals 

at high temperature, controllable porosity, and tuneable surface properties.[2] 

Alloys (or bimetals) are proved to have superior catalytic properties with respect to the reactivity 

as compared with pure metals.[3] Mixtures of transition metals are particular interest in a number 

of reactions, including the Fischer-Tropsch reaction,[4] carbon nanotube growth,[5] water gas shift 

reaction,[6] NH3 synthesis [7] , etc.  Synergic improvement of the catalytic activity is expected for 

ammonia synthesis by alloying two active metals (Fe, Co, Ni, Mo, etc.).[8, 9] Because of the 

similarity in limiting factors of rate-determining steps, that is, dissociative adsorption of the N2 

molecule and combinative desorption of surface N* atoms for synthesis and decomposition 

respectively, bimetallic or alloy catalysts have been thought to be the main stream trend to 

optimal solution of decomposition catalysts. However, previous experimental attempts have been 

restricted in using the metal oxides as support.[10] During the thermal pretreatment or reaction at 

high temperature, the oxidic support can partially transform the metallic alloy into the less 

reducible ternary oxide with spinel structure (e.g., Ni-Al, Co-Al, Fe-Al and Co-Si). The observed 
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variance in activity probably arises from the change in reducibility and thus active sites over the 

surface. In literature, the enhanced performance is often ascribed to the special electronic and/or 

structural effects of the alloying process. However, it is not convincing to conclude this since 

there is always a lack of direct evaluations of the alloying status in individual nanoparticles. In 

this work, we investigated the NH3 decomposition reaction over Fe-Co and Fe-Ni bimetallic 

nanoparticles and employed CNTs to support metallic clusters.  

 

4.1 Textural property of support CNTs 

 

Figure 4-1. SEM and TEM images of The CNTs sample. (a) and (b) overview and high-resolution 

SEM images; (c) and (d) overview and high-resolution TEM images. 
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The textural properties of CNTs used as support were investigated by N2 physisorption and 

electron microscopy. The pecific surface area of the support CNTs is 31.77 m2/g, which is much 

smaller than the one of Baytubes (in Chapter 3). This observation is in agreement with previous 

work of Peigney et al. who showed the correlation between the specific surface area, the carbon 

nanotube diameter and number of walls.[11]  The isotherm of the CNTs showed almost no 

hysteresis  indicating that it is mainly macroporous with pores larger than 50 nm.  

The low magnification SEM image (Fig. 4-1-a) shows the agglomerate size is generally 10 to 

100 μm indicating densely packed CNTs originated from the post-synthesis debulking method 

used by Pyrograf products. The debulking process results in decreasing the diameter of the fiber 

clumps.[12] under high magnification SEM image (Fig. 4-1-b) mainly fibers with polygonal cross 

sections can be observed, owing to the high temperature treated procedure during the synthesis 

(3000 °C). It appears that after graphitization above 2800 °C the graphene sheets parallel to the 

fiber axis get reorganized and the overall structure recrystallizes to form a fiber made of 

conically stacked highly graphitic crystallites.[12] 

The representative TEM and HRTEM images of the CNTs are shown in Fig. 4-1. Both the inner 

and the outer core are well graphitized. Each graphene sheet can easily be followed from the 

central tubule to the interface between the two wall layers. Oberlin studied the graphitization 

process of carbon,[13] and reported that in the range of 1000-2000°C, small graphitic domains 

appear that connect to form large wrinkled graphene layers when raising the temperature. These 

layers untwist and straighten out at temperatures above 2000°C, when carbon atoms start to 

become mobile. This straightening of the graphene sheets has been clearly observed for the 

CNTs, which have been post-treated at 3000°C. The carbon atoms are mobile enough to 

reorganize completely around the core of the fiber. The graphene layers then form large conical 

structure that stack along the main axis of the fiber. The edges of these cones are separated 

enough to be seen in the SEM images as small lines perpendicular to the main axis of the CNTs 

(CNFs). These cones eventually sinter further and recrystallize into large prismatic domains. 
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4.2 Characterizations of metal alloy nanoparticles on CNTs/CNFs 

CNTs encapsulated metal alloy nanoparticles were produced on the basis of the capillary 

phenomenon in the channel of CNTs, as depicted in chapter 2.1.2. In order to investigate the 

effect of the addition of secondary transition metal (cobalt or nickel) to iron catalyst, Co/Ni 

nitrates were added into Fe nitrate precursor solution with M(Co,Ni)/Fe ratios of 1, 0.5 and 0.2 

respectively. 

 

Figure 4-2. XRD patterns of fresh CNTs/CNFs supported Fe-Co catalysts. 

 

Powder X-ray diffraction (XRD) data of the fresh Fe-Co samples were shown in Figure 4-2, in 

which no signals corresponding to single metallic or metal oxide phases were observed. All 

characteristic patterns could be ascribed to graphite and metallic Fe-Co alloy phases. As the 

Co/Fe ratio decreased, the peak of the alloy gradually shifted from 44.7 to 45.1°. Deconvolution 

of each peak revealed the coexistence of several typical alloy phases with different Fe/Co ratio, 

for example, Fe3Co7, FeCo and Fe7Co3, regardless of the nominal composition, which is 

essentially related to the intrinsic properties of Fe and Co metals to form continuous solid-

solution series. 
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Figure 4-3. TEM characterization results of CNTs supported Fe-Co catalysts. EELS elemental 

mapping of fresh samples. (a) 5% Co2Fe/CNTs; (b) 5%CoFe/CNTs; (c) 5%CoFe5/CNTs; (d) EELS 

spectra of fresh samples. (Images taken by Dr. J.-O. Müller. Ref. [14].) 

 

Elemental maps obtained by the energy filtered transmission electron microscopy (EFTEM) of 

the fresh Fe-Co samples were presented in Fig. 4-3. It can be seen, that every metal particle 

contains both Fe and Co atoms with homogeneous distributions, suggesting a high alloying 

extent throughout the nanoparticles. The used samples after the NH3 decomposition reaction 

maintained their well mixed structure. As shown in Fig. 4-3, Co-K and Fe-K profiles as a 

function of the distance along the line scans revealed the homogeneous distributions of Co and 

Fe in each individual nanoparticle. Fig. 4-3-d showed the Fe-L23 ionization edge at 708 eV and 

the Co-L23 ionization edge at 779 eV. With reduction of the Co/Fe ratio from 2.0 to 0.2, the Co 
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signal decreased while the Fe signal increased. A significant signal from oxygen (O-K ionization 

edge around 530 eV) was also recorded by EELS, which mainly arose from the surface oxidation 

due to air exposure. 

 

Figure 4-3. Elemental composition of nanoparticles inside the used 5%CoFe/CNTs. (left) dark-field 

STEM image; (right) line scan EDX spectra of typical nanoparticles. (Images taken by Dr. J.-O. 

Müller. Ref. [14].) 

 

Figure 4-4. TEM analysis of a representative Fe-Co nanoparticle. (a) HRTEM image of the used 

5%CoFe/CNTs; (b) the observing Co-Fe particle; (c) oxygen map of the corresponding image of (b). 

(Images taken by Dr. J.-O. Müller. Ref. [14].) 
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Figure 4-5. Microscopic characterizations of the catalysts after reaction. (a) elemental mapping of Fe 

and Co in used catalysts; (b) HRTEM image of 5%Co2Fe/CNTs; (c) HRTEM image of 

5%CoFe/CNTs; (d) HRTEM image of 5%CoFe5/CNTs. (Images taken by Dr. J.-O. Müller. Ref. 

[14].) 

 

The metallic-oxide core-shell structure could be identified by high-resolution TEM image and 

oxygen mapping of representative alloy particles in the used samples, shown in Fig. 4-4. The 

lattice distance of core and shell were 0.20 and 0.25 nm, respectively, which could be attributed 

to the characteristic of Fe-Co alloy (110) and CoFe2O4 (311) planes. This evidence agreed with 

the measurements of EFTEM and EELS. AS shown in the insert of Fig. 4-4-a, the thickness of 

the oxide shell was close to 10 atomic layers, being thus too thin to be detected by the XRD 

technique. The existence of such an oxide shell was always observed and independent of the 

location of the particles. Statistic evaluation of 150 particles for each sample revealed a similar 
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average particle size of 13±2 nm. It was confirmed, that after reaction, no change in the alloying 

extent between Fe and Co could be found (in Fig. 4-5). This is different from the pure Fe 

catalyst, in which an iron nitride phase was formed as active sites during the reaction,[15] no 

nitrogen signal could be identified in the Fe-Co samples, indicating the active phase is the 

metallic alloy. 

 

Figure 4-6. Co2p and Fe2p XPS spectra of used catalysts. Samples were exposed to air during the 

transportation and preparation of pellet for XPS measurements. 

 

The chemical state and relative abundance of Co and/or Fe were determined by X-ray photon 

spectroscopy analysis. As shown in Fig. 4-6, the signal corresponding to Co can be resolved into 

two components, that is, Co3+ ions in an octahedral environment (Eβ =780.0-780.4 eV) and Co2+ 

ions in tetrahedral sites (Eβ =782.3-782.6 eV). The XPS spectra of Fe 2p3/2 displayed two 

components, that is, Fe3+ (Fe2O3, 710.6-710.8 eV) and Fe2+ (FeO, 708.8 eV).[16, 17] With 

increasing Co/Fe ratio, part of the Co shifted from lower oxidation state to higher oxidation state 

(𝐼𝐶𝑜3+/𝐼𝐶𝑜2+ increased), while Fe signal shifted from higher oxidation state to lower oxidation 

state (𝐼𝐹𝑒3+/𝐼𝐹𝑒2+  decreased). This indicates an electron transfer between Co and Fe and the 

near-distance interaction between the two metal atoms, indicating the Fe-Co alloy phase might 
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form on the surface during reaction. The stability of the Fe-Co alloy phase over the surface can 

be related to their negative segregation energy and positive mixing energy.[18] Quantitative 

analysis of the XPS data showed the accordance in Fe/Co ratios between surface and bulk of 

each sample, which agreed with the good homogeneity in each individual nanoparticle 

determined by the microscopic techniques. It should be noted that the derived concentration of 

surface metals from XPS spectra ranged at 1.3±0.5 wt%, which was less than the bulk 

concentration, that is, 5wt%. Signals were contributed from particles (1) at the tip of tubes, (2) 

inside CNTs which were parallel to the beam line, and (3) outside CNTs/CNFs with the amount 

around 0.2wt% of nanoparticles. 

 

4.3 Catalytic decomposition of NH3 on CNT-supported metal alloy nanoparticles 

Catalytic NH3 decomposition was conducted according to the experimental procedures in 

Chapter 2. For each reaction run, the outlet gas mixture only comprised N2, H3 and NH3, without 

CH4 that might form in the methanation of the carbon support.[19] Fig. 4-7-a compared the 

steady-state H2 productivity and the activation energies of Fe-Co alloy samples. At 550°C, the 

conversion over pure Co was 2.7 times that of pure Fe. However, the high activity of Co was 

kept over Fe-Co alloys with the Co/Fe ratio widely ranging from 0.2 to 2.0. Substituting Co by 

Fe resulted in an increase in the overall activation energy of NH3 decomposition from 79 to 105-

109 kJ/mol, which is still lower than that over pure Fe, that is, 147 kJ/mol. The highest barrier of 

Fe can be related with the high coverage of nitrogen over the reconstructed surface due to the 

very strong binding of nitrogen species on Fe.[20, 21] Since the recombinative desorption of 

surface nitrogen atoms acts as the rate-limiting step,[21, 22] one would expect the lowest activity of 

pure Fe for NH3 decomposition. Co has one more d band electron than Fe, and thus the electron 

density of Fe might benefit from the formation of a surface Fe-Co bond. The modified electronic 

properties of Fe are expected to assist the absorbed nitrogen atoms to desorb from surface, thus 

leading to a decrease in the activation barrier. As compared with such a pronounced electron 

donating from Co and Fe in the near distance, the electronic charge from a domain of one alkali 

metal oxide (e.g. K2O) to a Fe particle seems to be far inefficient, which can well explain the 

absence of the promotion effect of K on a fused Fe catalyst in previous studies.[23]  
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Figure 4-7. Catalytic performance CNT-supported metal alloy catalysts for NH3 decomposition. (a) 

Steady-state activities of Fe-Co catalysts at 550°C and activation energy (450-550°C, 36000 

mLNH3/(g·h)); (b) normalized catalytic stabilities of Fe-Co catalysts (600°C, 36000 mLNH3/(g·h)); (c) 

catalytic stabilities of Fe-Ni catalysts (600°C, 36000 mLNH3/(g·h)). 

 

Fig. 4-7-b showed the relative activity of each catalyst with the same weight loading of metal 

along with reaction time. Significant deactivation was clearly seen over Co and Fe monometallic 

catalysts. Especially for Fe, only 45% of the initial activity remained after reaction after 1000 

min. All tested bimetallic catalysts were much more stable than monometallic ones, and the 

stability increased with increasing fraction of Fe in alloys. Considering the absence of a bulk 

metal carbide or nitride phase, one can attribute the loss in activity mainly to the sintering of 

nanoparticles. It is therefore concluded that the significantly enhanced stability originated from 

the suppressing agglomeration and coalescence via atomic and/or crystallite migration by alloy 

formation. The tendencies on activity and stability agreed well with the morphological analysis. 

 

4.4 Selective deposition of metal alloy nanoparticles on CNTs/CNFs 

Selective deposition of metal alloy nanoparticles on different locations of CNTs was also 

investigated in this study. A CoFe5-out-CNT sample was synthesized as described in Chapter 2. 

The location of nanoparticles on CNTs was confirmed by tilting the sample holder in TEM, as 

shown in Figure 4-8. Morphological analyses of fresh CoFe5-out-CNT and CoFe5-in-CNT 

samples did not reveal any observable differences, as evidenced by the similar size distribution 

in Fig. 4-9. CoFe5-out-CNT approached the steady state after 400 min and finally displayed a 

NH3 conversion of 24%, which was less than that over CoFe5-in-CNT, that is, 48%. Significant 

sintering of outside particles was observed on CoFe5-out-CNT, and the mean size increased from 

14.8 to 29.6 nm, resulting in a sharp decrease in the ratio of exposed metal atoms according to its 

reciprocal proportion to the mean particle size. On the contrary, the mean size in CoFe5-in-CNT 

remained almost unchanged, that is, 13.7-14.7 nm. The calculated metal dispersion of CoFe5-in-

CNT was 6.8%, which was twice that of CoFe5-out-CNT. By normalization of the conversion to 

metal dispersion it can be concluded that both catalysts displayed nearly the same turnover rate, 
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that is, 5.4±0.1 molH2/(site·s). The activation energy, 116±5 kJ/mol, was also not influenced by 

the location of alloy particles. Therefore, we can expect that the higher conversion over inside 

particles may originate from their thermal stability. To confirm this, we compared the sintering 

behaviors of particles inside and outside of CNTs by heating the samples in a TEM chamber in 

vacuum. Fig. 4-9-a showed the overview images of nanoparticles outside of CNTs at room 

temperature. The location of the selected particles was confirmed by tilting the sample from -20° 

to 25°. There was no observable change as the temperature was increased to 550°C (Fig. 4-9-b-

d). However, when the temperature approached 600°C, the outside particles immediately 

aggregated into bigger entities, which explains the inferior performance of CoFe5-out-CNT from 

the beginning of the reaction. 

 

 

Figure 4-8. TEM images of CoFe5-in-CNT and CoFe5-out-CNT samples. (a-c) tilting the sample 

holder of CoFe5-in-CNT with the angels of ±25°. Sticks: particles inside; circles: particles outside. 

(d-f) representative images of the CoFe5-out-CNT sample in tilting experiments. Yellow: particles 

outside; red: particles inside. 
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Figure 4-9. Characterization of the thermal stability of CoFe5/CNT. (a) TEM images observed by 

tilting the sample holder from -20° to 25°; (b-f) representative images of the sample observed at 

different temperatures. 

 

4.5 Chapter conclusions 

In summary, this chapter reported the combinative characterization of transition metal alloy 

nanoparticles located within CNTs. The high-extent alloying of Fe and Co was confirmed by 

elemental analysis, XRD and XPSmeasurements. In ammonia decomposition, a high catalytic 

activity can be achieved by alloying iron with little amount of cobalt or nickel. The resulting 

nanoparticles benefit from the thermal stability. The effect of CNTs supports was found to be an 

improvement of the thermal stability of the alloy particles encapsulated inside channel, rather 

than a change in the turnover rate of the catalytic components. 
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Chapter 5: 

Molybdenum Carbides and Nitrides 

 

Carbides and nitrides of early transition metals have been the focus of much attention 

following the pioneering work of Levy and Boudart,[1] who showed that tungsten carbides 

display Pt-like behavior in several catalytic reactions. It has been subsequently demonstrated that 

transition metal carbides and nitrides that typically utilized group VIII noble metals as catalysts, 

including hydrogenation,[2] dehydrogenation,[3] hydrogenolysis,[4] isomerization [1, 5, 6] and 

methane to syngas,[7] in which the catalytic activities approached or surpassed those of noble 

metals.  

As described in previous chapters, the metal nitrogen interactions play important role in both 

synthesis and decomposition of ammonia, since the adsorption and desorption of nitrogen are 

reaction determining steps of ammonia synthesis and decomposition respectively.[8, 9]  

Considering that the catalytic efficiency of the elements for synthesis and decomposition of 

ammonia has been correlated with the chemisorption energy of nitrogen, transition metal 

carbides and nitrides have been applied in both the catalytic synthesis and decomposition of 

NH3.[10] Oyama showed a number of interstitial alloys (molybdenum carbide and nitride), that 

were more active than ruthenium but less active than the doubly-promoted iron catalyst for 

ammonia synthesis.[11] He also reported similar rate parameters for vanadium nitride to those of 

iron and platinum in ammonia decomposition.[12] Choi investigated vanadium carbide [13] and 

molybdenum carbide,[14] and Pansare et al. studied tungsten carbide [15] for ammonia 

decomposition. Those materials reported in the literature showed interesting performance for 

ammonia decomposition, unfortunately, none of the catalysts could achieve more than 3 

mmol/(gcat·min) H2 formation rate, which is likely due to the low surface area of the reported 

materials.  
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In this study, both bulk and nanostructured molybdenum carbide/nitride materials will be 

investigated as catalysts for ammonia decomposition.  

 

5.1 Bulk system of Mo carbides and nitrides 

One of the most facile routs to high surface area transition metal carbides can be attributed to 

Lee et al.[16] who developed a temperature-programmed reduction method which allows the 

formation of carbide materials from precursor oxides under a wide range of conditions. In this 

study, we prepared high surface area molybdenum carbide (labeled as Mo2C, #7484 in AC 

database) from h-MoO3 metal oxide precursor using a temperature-programmed reduction-

carburisation under a flowing atmosphere of H2 and CH4.[17] This was applied in the catalytic 

decomposition of ammonia and exhibited high performance in H2 production. 

 

5.1.1 Catalytic performance of high surface area Mo carbide 

Catalytic ammonia decomposition was conducted according to the procedure detailed in 

experimental section. The performance of high surface area molybdenum carbide (Mo2C) over 

100h on stream at 600 °C is shown in Fig. 5-1. Here the NH3 conversion of Mo2C decreases 

from 85% to 71% over 15 hours, and subsequently stabilizes at a constant H2 formation rate  

about 30 mmol/(gcat·min). The catalytic activity of 2wt%Ru/graphite is also shown in Fig. 5-1 for 

comparison, showing an H2 formation rate of about 37 mmol/(gcat·min) under the same 

conditions. The apparent activation energy over Mo2C sample is about 89 kJ/mol, which is close 

to 2wt%Ru supported on different carbon materials (75-85 kJ/mol). These findings imply that the 

high surface area transition metal carbides have potential to replace noble metal in the 

application for COx-free H2 production from ammonia. 

In the following sections, we will focus on the characterization information of the fresh, 4-hour 

used (labeled as Mo2C-NH3-4h, #7825 in AC database), and 100-hour used (labeled as Mo2C-

NH3-100h, #7824 in AC database) samples. 
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Figure 5-1. Catalytic activity and stability of Mo carbide for NH3 decomposition. Reaction condition: 

50 mg sample, NH3 space velocity is 36,000 ml/(gcat·min), reaction temperature 600°C. Triangle: 

catalytic performance of 2wt%Ru/graphite with same condition at 600°C and 450°C respectively. 

 

5.1.2 Textural properties of fresh and used Mo carbides 

Table 5-1. Physical properties of samples 

Sample BET surface area a 

(m2/g) 

Pore Volume b 

(cm3/g) 

Phase structure c 

Mo2C 

Mo2C-NH3-4h 

Mo2C-NH3-100h 

47.72 

6.00 

4.83 

8.923 E-2 

4.634 E-2 

2.604 E-2 

Hexagonal Mo2C 

Hexagonal Mo2C and MoN 

Hexagonal MoN 

a calculated from N2 adsorption and desorption analysis 

b total pore Volume 

c determined from XRD and TEM analysis 
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Figure 5-2. N2-adsorption/desorption analysis. (a) isotherms; (b) pore size distribution form BJH 

desorption. 

The results of the physicostructural characterizations of the fresh and used catalysts are 

summarized in Table 5-1. Figure 5-2 shows the N2-physisorption isotherms [18]and BJH pore size 

distributions [19] for the desorption branch of all samples. The isotherm of fresh molybdenum 

carbide sample is intermediate between type II and type IV with an H-3 hysteresis loop 

indicating slit-like mesopore structure. As shown in Fig. 5-2-b, two different pore-size 

distributions (2-4 nm and 10-11 nm) were observed on the fresh Mo2C sample. Following 

ammonia decomposition for 4 hours at 600 °C, the mesopores between 2-4 nm were not 
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observed, and the isotherm changed to a typical type II shape indicating the disappearance of 

mesopore structure. This resulted in a considerable drop of surface area from 50 to 6 m2/g. The 

surface area and mesopore structures further decreased with time-on-stream (TOS). After 100 

hours of reaction, there was about 90% loss of surface area. However, the loss of lose of catalytic 

activity was only about 15%. Therefore, in order to find an agreement between the solid 

materials and catalytic performance, further characterization of the fresh Mo2C, Mo2C-NH3-4h 

and Mo2C-NH3-100h samples were carried out. 

 

Figure 5-3. TEM images and EELS spectra of fresh and 4-h and 100-h used Mo carbide/nitride 

samples. (a) Mo2C-fresh; (b) Mo2C-NH3-4h; (c) Mo2C-NH3-100h; (d) Mo M-edge, C and N K-edge 

EELS spectra of the samples. 
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Figure 5-4. SEM images of Mo carbide samples. (a) and (d) Mo2C-fresh; (b) and (e) Mo2C-NH3-4h; 

(c) and (f) Mo2C-NH3-100h. 

 

The morphologies of all the samples were investigated by transmission/scanning electron 

microscopy (SEM/TEM). Figure 5-3 shows the representative TEM images of the three samples. 
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As shown in Fig. 5-3-a, the fresh Mo2C sample has a homogeneous mesopore structure giving 

the uniform distribution of the bright regions in the TEM image. After reaction for 4 hours, the 

catalyst appears to lose the porosity (TEM image of Fig. 5-3-b). Further, very few mesopores can 

be observed in the sample of Mo2C-NH3-100h (in Fig. 5-3-c), which has increased in apparent 

density by comparison with the fresh sample. These observations are in good agreement with the 

results obtained from N2-physisorption. The representative SEM images with different 

magnifications of all samples shown in Fig. 5-4. also agree with the findings that after reaction of 

ammonia decomposition, the catalyst became more compact solid structure with lower specific 

surface area. 

 

5.1.3 Phase identifications of fresh and used Mo carbides 

Before correlated the textural properties of fresh and used molybdenum carbide with the catalytic 

performances it must be noted that the majority of published literature with these materials deals 

with the synthesis and characterization of molybdenum carbides and nitrides, which regards to 

the various phases of them. For molybdenum carbide, they are α-Mo2C (orthorhombic), β-Mo2C 

(hexagonal), η-MoC1-x (hexagonal), δ-MoC1-x (cubic), γ-MoC (hexagonal) and γ´MoC1-x 

(hexagonal);[20] for molybdenum nitride, they are β-Mo2N (tetragonal), γ-Mo2N (cubic), δ-MoN 

(hexagonal), and ζ-MoN (cubic).[21] In this study, both powder XRD and high resolution TEM 

techniques were used to identify the phase of the fresh and used materials. Figure 5-5 shows the 

XRD patterns of the fresh and used samples. The XRD pattern of fresh Mo2C sample indicates a 

hexagonal closed packed structure (β-Mo2C), which was compared the reference pattern of 

JCPD-00-035-0787 Mo2C (34.4° (100), 38.0°(002), 39.4°(101), 61.5° (103) and 74.6° (112)). 

The XRD pattern of used molybdenum carbide collected after 100 hours indicated a hexagonal 

MoN structure by comparing with JCPD-01-089-5024 MoN (31.8° (002), 36.1° (200), 48.8° 

(202), 64.9° (220), 78.0° (204) and 85.3° (402)). Both β-Mo2C and δ-MoN diffraction peaks can 

be observed in pattern of Mo2C-NH3-4h, which indicates nitridation of Mo2C during the 

ammonia decomposition reaction. The XRD pattern of Mo2C-NH3-4h exhibited broader and 

lower intensity compared to Mo2C-fresh and Mo2C-NH3-100h, indicates smaller volume 

crystallites and that the nitridation of the carbide involves the formation of dislocation structures 

in the primary carbide crystallites. 
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Figure 5-5. XRD patterns of fresh, 4h- and 100h- used Mo carbide samples. square: JCPD-00-035-

0787 Mo2C; circle: JCPD-01-089-5024 MoN. All used samples were collected after ammonia 

decomposition reaction and sealed under the protection of inert gas (it could not be prevented against 

exposing to air when prepared the samples for charactirizations). 

 

Figure 5-6 shows the high resolution TEM images of the fresh and used catalysts revealing the 

polycrystalline structures of all samples. Lattice fringe analysis confirmed that, there is only one 

phase in either fresh or 100h used sample, that is β-Mo2C (in fresh Mo2C sample) and δ-MoN (in 

Mo2C-NH3-100h sample) respectively; both of these two structures can be observed co-existing 

in Mo2C-NH3-4h sample (Fig. 5-6-b). In addition, a large number of twin-boundaries, stacking 

faults, steps, and defects could be observed among the high-resolution images of all the 

observing samples, which can be recognized as highly energetic sites in these samples.[22] 
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Figure 5-6. High resolution images of fresh and used molybdenum carbide samples indexing with 

different lattice orientations. (a) Mo2C-fresh; (b) Mo2C-NH3-4h; (c) Mo2C-NH3-100h. 
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In a catalytic cycle which involves several elementary steps, the step which is not in 

thermodynamic equilibrium, is the rate-determining step. In ammonia synthesis this step is the 

adsorption of nitrogen.[23] In the reverse reaction, ammonia decomposition, this step is the 

recombinative desorption of di-nitrogen atoms from the surface. It was reported [9], that in 

ammonia synthesis the active site might occur on a single step edge, as the required hydrogen 

populates on metal particles all sites in highly mobile form. The active site for the reverse 

reaction, ammonia decomposition, is a larger ensemble than that for synthesis. As a bulk solid 

system, the carbide and nitride in this study are not as same as the supported nanoparticles of 

metals, which have much more specific surface area, by which to provide surface sites exposed 

to the reactants. Nor is the model catalyst or single crystal for surface science, which could only 

offer one or several coordination structures. We believe that the observed high energy sites 

related to dislocation defects and crystal twinning which are observed in these carbide and nitride 

samples could be the active sites for ammonia decomposition in this case. This may explain why 

the significant drop of the specific surface area did not cause a dramatic decrease in catalytic 

performance. Unfortunately, the density of these high energy sites could not be measured from 

the electron microscopy technique. 

 

5.1.4 Electronic properties of fresh and used Mo carbide and nitride samples 

The electronic property of catalyst is the one of the most important factors in heterogeneous 

catalytic reaction.[22] Electron energy-loss spectroscopy (EELS) is the favored technique for the 

chemical analysis of transition metal carbides and nitrides.[24] Unfortunately, however the Mo 

M4,5-edge (at ca. 227 eV) and M2,3-edge (doublet peaks at ca. 410 eV and 392 eV respectively) 

overlap with the C K-edge (at ca. 284 eV) and N K-edge (at ca. 401 eV), causing difficulty in the 

standard procedure for EELS analysis.[25] Figure 5-3-d summarized the EELS spectra of all 

samples. In the spectra of Mo2C-fresh, the Mo M-edge is broad and has small feature at ca. 227, 

393 and 410 eV respectively. A large peak was observed for the C K-edge which is indicative of 

the presence of sp2-bonded carbon.  
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Figure 5-7. EELS spectra of Mo2C-NH3-4h sample with two different selective areas (a); (b) TEM 

image of Mo2C-NH3-4h sample labeled with two probe areas for EELS measurements; (c) and (d) 

reference spectra of carbon K-edge and molybdenum M4,5-edge, nitrogen K-edge and molybdenum 

M3,2-edge respectively. 

After 4 hours reaction, the intensity of carbon peak decreases while the formation of N K-edge at 

ca. 401 eV is observed, consistent with the formation of molybdenum nitride. After 100 hours, 

nearly no carbon edge is observed indicating the complete nitridation of molybdenum carbide. In 
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ammonia synthesis, the dissociative adsorption of nitrogen on metallic surfaces leads to a state of 

adsorbed nitrogen atoms sometimes referred to as “nitride”, the dissolved nitrogen can not only 

recombine and desorb but also be dissolved in subsurface and form a solid solution.[9] In 

ammonia decomposition, after cleavage of N-H bond, the adsorbed N atoms may also undergo 

the same phenomena as seen in ammonia synthesis to form the “surface” and “subsurface” 

nitride and further form the bulk nitride. At the same time, the adsorbed H atoms can not only 

recombine and desorb but also react with carbon atoms in solid solution to form C-H bonds and 

eventually desorb from the surface as CH4. In Fig. 5-7-a, the EELS spectra of Mo2C-NH3-4h 

sample is shown, which has both Mo2C and MoN structures confirmed by XRD and TEM 

analysis. Two representative areas were selected to measure the EELS spectra. One is on the 

outer region of the selected particle, which more or less could be regarded as the “surface” of the 

sample; the other is in the centre of the selected particle, which is close to “bulk” region. The 

intensity of carbon features of the “bulk” area is much more pronounced than the “surface” part, 

which contains nearly no C signal. These results indicated the nitridation of Mo2C during 

ammonia decomposition starting from the surface to the bulk, which is in good agreement with 

previous characterizations and also with the literature.[9] 

 

5.1.5 Density functional theory calculations 

We first determined the heats of formation of different Mo-C-N bulk compounds. Besides the 

experimentally known hexa-Mo2C [space group: P63/mmc (194)] [26] and δ1-MoN (space group: 

P−6m2 (187)) [27] structures we constructed Mo2C2, Mo2CN, and Mo2N2 by adding C and N 

atoms to interstitial sites of hexa-Mo2C. As can be seen in Figure 5-8, both molybdenum 

carbide/nitride and molybdenum nitride are more stable than Molybdenum carbide structures by 

roughly 0.2 eV per unitcell, showing that there is a driving force for molybdenum carbide to 

convert into a nitride in a nitrogen atmosphere. Although we find that a mixed Mo2CN crystal 

phase should even be more stable than Mo2N2 and MoN, its formation might be kinetically 

hindered since it would involve a substantial atomic rearrangement within the crystal. 
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Figure 5-8. Calculated heat formation of different unit cells of proposed molybdenum carbide and 

nitride structures. (DFT Calculations were done by Dr. P. Kaghazchi and Dr. T. Jacob, Universität 

Ulm) 

As discussed former section, both the rate-limiting steps for the synthesis (N2 dissociation) and 

decomposition (recombinative desorption of N atoms) of ammonia are related to the interaction 

between N and active surface sites of the catalyst. Also, it was reported that, the computed TOFs 

of ammonia synthesis could be perfectly correlated with the computed relative heats of 

chemisorptions of activated nitrogen by the link between the kinetic parameters of a reaction 

with the thermodynamic parameters of bond strengths of adsorbates.[9, 28, 29] Therefore, we 

concentrated on the bond strength between N and the catalyst surface, which should play the 

dominant role in both the synthesis and decomposition of ammonia. We conducted a series of 

calculations for nitrogen adsorption on stepped hexa-Mo2C (0001) and δ1-MoN (0001), which 

are comparable to the catalysts’ structures proposed by the experimental findings. Both surfaces 

were modelled as stepped surfaces with six atom-wide terraces of (0001) orientation, separated 

by double-atomic steps in case of Mo2C (0001) and mono-atomic steps in case of δ1-MoN(0001). 

Non-equivalent bridge (b-) and hollow (h-) sites near the step edge (yellow circles in Fig. 5-9) or 

on the terrace (red circles in Fig. 5-9) are considered. The surface layers was relaxed and 

converged to obtain the total energy.  
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Figure 5-9. Calculated nitrogen adsorption energies (binding energy (eV) referenced to ½ N2 

molecule) at hollow/bridge sites on the proposed step and terrace surface of Mo2C (0001) and MoN 

(0001). (DFT Calculations were done by Dr. P. Kaghazchi and Dr. T. Jacob, Universität Ulm) 

 

The binding energies were calculated by subtracting the total energy of the clean surface and half 

of the N2 in gas phase from the total energy of the surface with nitrogen and compared in Fig. 5-
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9. On both stepped surfaces, N prefers binding at the step edges, where the calculated binding 

energies are 0.81 and 0.35eV larger on Mo2C (0001) and δ1-MoN (0001) as compared to terrace 

sites. This can be understood by the fact that nitrogen atoms have three unpaired electrons and 

prefer high coordination sites. Following the previous discussion on the role of the binding 

energies, the higher heats of chemisorption of N at steps may thus indicate an increased activity 

for ammonia decomposition. Moreover, the binding energy at the step edge of MoN(0001) is 

~0.4 eV higher (more strongly bound) than at the edge of Mo2C (0001), indicating an even 

higher activity on Molybdenum nitride surfaces. While the previous studies already show the 

general activity trend, it will be the aim of future work to elucidate the full reaction mechanism 

on the different surfaces to allow for quantitative conclusions of their activities. 

 

5.1.6 Carbon coating on high surface area molybdenum carbide 

In last section, we showed that the observed deactivation of the high surface area Mo2C was 

related to the considerable drop of the specific surface area with the ammonia decomposition 

reaction. The inner mesopores were destroyed due to the nitridation of Mo2C with adsorbed 

ammonia. In this section, we will attempt to stabilize the mesopores structure of high surface 

area Mo2C catalyst against collapse by a mechanical force from coating molecular layers on the 

surface of Mo2C catalyst.  

 

Scheme 5-1. Catalysts design to keep molybdenum stable for ammonia decomposition. 

 

Molybdenum carbide was believed have the similar chemio-physio properties as noble metals.[1] 

In literature, the reactions of alkane substrates over molybdenum carbides have been studied for 

methane activation,[7, 30] dehydrogenation of propane [31]/ butane [4] and isomerisation of 
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pentane/hexane/heptanes. Among these reactions related with hydrocarbon reactants, the coke of 

carbon on the surface of catalyst is one of the important deactivation factors influences the 

stability of carbide and the further applications. On the other hand, as an inert reactant to the 

reaction of ammonia decomposition, graphitic carbon could be a perfect sketch for molybdenum 

carbide to stabilize the mesopores structure. It has been reported that the graphitic carbon coating 

has been used in lithium batteries and other electron chemistry.[32, 33] In this study, we used 

ethylene (C2H4) as carbon resource for coating high surface area Mo2C. 

 

 

Figure 5-10. TEM images of high-surface-area Mo2C coated with carbon layers at different 

conditions. (a) pure C2H4 at 600°C; (b) 15%C2H4-Ar at 600°C; (c) pure C2H4 at 500°C; (d) pure C2H4 

at 400°C. 

 

Fig. 5-10 showed the representative TEM images of coated Mo2C with different reaction 

conditions. 5 to 10 graphitic carbon layers were observed in Fig. 5-10-a, which was pretreated 

with pure ethylene at 600°C for 3 hrs. Although the mesopores were still available as denoted in 
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the bright and dark region in the figure, the mesopores were almost fully filled with deposited 

carbon, which can not only block the mesopores, but also block the active sites for ammonia 

decomposition. In order to optimize the coating layers of carbon, we varied the reaction 

temperatures and reactant concentrations. Fig. 5-10-b shows the TEM image of high surface area 

Mo2C reacted with 15%C2H4-Ar mixture at 600°C for 3 hrs. Fig. 5-10-b&c shows the TEM 

images of high surface area Mo2C pretreated with pure C2H4 at 500°C and 400°C respectively. 

One or two layers of graphene layers could be coated on the high surface area Mo2C by reaction 

a t low temperature. 

 

Figure 5-11. Catalytic performances of all catalysts. Reaction condition: 50 mg sample, NH3 space 

velocity is 36,000 h-1, reaction temperature 600°C. 
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The catalytic performances (steady state reactivity and stability) of carbon coated catalysts were 

summarized in Fig. 5-11. Although the stability (Fig. 5-11-a) was improved by introducing 

carbon layers coated on the surface of molybdenum carbide, the activities of dropped 

significantly (Fig. 5-11-b) with the increasing graphitic carbon layers, which is due to the block 

of active sites by graphene layers. 

 

5.2 Nanostructured molybdenum nitride  

5.2.1 CNT/CNFs supported molybdenum carbide 

In order to synthesis the nanoparticles of molybdenum carbide, we have employed hollow vapor-

grown nanotubes and nanofibers (CNT/CNFs) as support material for molybdenum carbide 

species used as catalysts for the reaction of ammonia decomposition. As mentioned in Chapter 4, 

carbon nanotubes and nanofibers are progressively employed as catalyst support for many 

reactions. Compared to other supports, they are chemically stable in most aggressive media, they 

show a high thermal conductivity and offer the possibility to chemically modify their surface.[34] 

The thermal stability of metal nanoparticles encapsulated in CNTs channel, which was observed 

in Charpter 4, could also work for carbide nanoparticles for the same reaction. 

High dispersion of MoOx on common supports such as alumina, silica or even activated carbon is 

typically achieved by impregnation with an aqueous solution of ammonium heptamolybdate at a 

pH below the point of zero charge of the support (PZC).[35, 36] In this case, the surface of the 

support becomes positively charged and attracts the metal oxide anions. Nitric acid 

functionalized CNT/CNFs contain oxygen species that enhance their interaction with water and 

help to disperse and anchor transition metal ions.[37, 38] However, the important amount of 

carboxyl groups renders the support acidic and thus negatively charged when in contact with an 

aqueous solution. Zeta potential measurement showed that the isoelectric point of functionalized 

CNT/CNFs is around pH 5. In this study, the functionalized CNFs were impregnated using the 

incipient wetness technique via an aqueous solution of ammonium heptamolybdate 

((NH3)6Mo7O24·4H2O) with the acidity adjusted to PH=3 with nitric acid. After deposition, the 

sample was slowly dried at room temperature for 10 hrs. During drying, the proton concentration 

(H+) slowly increased and condensation of Mo7O24
6- is expected to take place in the liquid film, 
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near the surface of the CNT/CNFs, thus leads to a high dispersion of molybdenum precursors. 

Then, the sample was dried at 100°C for 5 hrs and subsequently calcined at 350°C for 2 h. 

 

Figure 5-12. Zeta potential measurement of nitric acid functionalized CNFs/CNTs 

The further carburisation procedure is similar to the preparation of high surface area 

molybdenum carbide.[17] Fig. 5-13 showed the TEM image of fresh Mo2C-CNF catalyst at a 

selected region (on the tip of one single CNF). In this region molybdenum carbide nanoparticles 

were well depersed on the surface of CNF with homogeneous size distribution. As shown in Fig. 

5-13-b, the lattice distance of molybdenum carbide could be observed and confirm the hexagonal 

structure of Mo2C nanoparticles.  

 

Figure 5-13. TEM image of fresh Mo2C-CNFs catalyst at a selected region. (a) tip of one single 

CNF; (b) high resolution TEM image indexing with lattice distance of hexagonal Mo2C. 
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Unfortunately, this kind of Mo2C nanoparticles is not the only part of the catalyst, large particles 

were also observed inside CNT/CNFs channel (in Fig. 5-14). The large molybdenum carbide 

particles inside CNF (Fig. 5-14-a) exhibited similar morphology as the high surface area Mo2C 

bulk system in this chapter. The typical mesopores structures could also be observed on the large 

Mo2C particles inside the CNFs channel (Fig. 5-14-c). The N2 physisorption isotherms of 

functionalized CNFs, Mo2C-CNF-fresh and Mo2C-CNF-used are shown in Fig. 5-15. All 

isotherms of the samples exhibited type III shape and almost no hysteresis, indicates that they are 

mainly macroporous with pores larger than 50nm, which is probably due to the contribution of 

CNFs. 

 

 

Figure 5-14. TEM images of fresh Mo2C-CNF catalyst. 
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Figure 5-15. N2 adsorption/desorption isotherms of support and Mo2C supported on CNTs/CNFs 

before and after reaction. 

Although the morphology and crystallographic structure of molybdenum carbide could be 

identified by TEM techniques, the short of average information could be supplied by the powder 

X-ray diffraction technique. Fig. 5-16 showed the XRD patterns of samples before and after 

carbonization and after reaction of ammonia decomposition. The diffraction peaks of carbon 

(observed over all samples) is owing to the thick and high graphitic layers of staking graphene 

sheets. For Mo2C-CNF-fresh sample, very weak diffraction patterns of hexagonal structure 

(Mo2C) were observed (similar assignment as bulk molybdenum carbide, JCPD-00-035-0787 

Mo2C (34.4° (100), 38.0°(002), 39.4°(101), 61.5° (103) and 74.6° (112)), indicates either the low 

crystallinity of Mo2C particles or the thick graphene layers of CNFs block the signal of Mo2C. 

For Mo2C-CNF-used sample, the diffraction patterns of hexagonal MoN were observed (JCPD-

01-089-5024 MoN (31.8° (002), 36.1° (200), 48.8° (202), 64.9° (220), 78.0° (204) and 85.3° 

(402)). The intensity of MoN diffraction patterns in Mo2C-CNF-used catalyst is relative stronger 

than those of Mo2C-CNF-fresh, indicated the better crystallinity of MoN nanoparticles. The 

Mo2C diffraction peaks could not be observed in the catalyst collected after reaction. This 

finding agrees with the result of bulk Mo2C, which is due to the nitridation of Mo2C under the 

reaction of ammonia decomposition. 



114 
 

 

Figure 5-16. XRD pattern of MoO3-CNF, Mo2C-CNF-fresh and Mo2C-CNF-used samples. star: 

diffraction peaks of carbon; circle: diffraction peaks of hexagonal Mo2C; square: diffraction peaks of 

hexagonal MoN. 

 

Figure 5-17.  Catalytic performance of Mo2C and supported Mo2C (10wt%). Reaction condition: 50 mg 

sample, NH3 space velocity is 36000 h-1, reaction temperature 600°C. 
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The catalytic performance of CNT/CNFs supported Mo2C (10wt%) sample were shown in 

Figure 5-17. There is no significant enhancement of stability on Mo2C supported on CNT/CNFs 

compared with the bulk system of molybdenum carbide, which is due to the poor distribution of 

Mo2C clusters located on the inner and outer surfaces of CNT/CNFs 

 

5.2.2 Hydrothermal carbonization preparing nanostructured molybdenum nitride 

The two methods we tried to maintain the mesopores structure of Mo2C during ammonia 

decomposition were not successfully working. The complex surface properties of CNT/CNFs 

could lead a low dispersion of molybdenum precursor on CNT/CNFs surface. The coating of 

carbon layers on the surface of Mo2C can stabilize the nanostructure, but block the active sites of 

the catalyst. We believe the mechanic force of second component (carbon) should be further 

considered but in an opposite way, that is, using carbon material to isolate molybdenum 

nanoparticles. The addition of carbon material should be operated before the nucleation of 

molybdenum precursor, otherwise the growth of large particles could not be prevented. In this 

case, a special fast carbonization method must be applied to introduce carbon material into the 

MoN system. Among the countless literature for carbon formation from carbohydrates with 

faster chemical processes, hydrothermal carbonization (HTC) seems to be especially 

promising.[39] Hydrothermal carbonization process can be operated at comparatively moderate 

condition (normally under 200°C [40, 41]). Under this condition, most carbohydrates could be 

carbonized into different forms of solid carbonaceous materials.[42] This technique is extremely 

valuable for preparing our designed catalyst. Before carbonization, carbonaceous and 

molybdenum precursors could be mixed with high homogeneity. The details of the preparation 

were summarized in Chapter 2. After hydrothermal carbonisation, samples were washed and 

dried at 110°C overnight, and further calcined in ammonia at 650°C for 24 hrs. The prepared 

samples were labeled as MoN-HTC-I and MoN-HTC-II with 2:15 and 1:15 ratios of Mo:C.  

 

5.2.2.1 Characterizations of nanosized Mo-based particles 
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Figure 5-19 shows the X-ray diffraction patterns of MoN-HTC-I and MoN-HTC-II samples with 

Mo:C ratio of 2:15 and 1:15 respectively. Both hexagonal β-Mo2C (JCPD-00-035-0787) and δ-

MoN (JCPD-01-089-5024) diffraction patterns could be clearly observed on MoN-HTC-I sample 

(less loading of carbon precursor) indicates the high crystallinity of the molybdenum 

carbide/nitride nanoparticles. The formation of molybdenum carbide can occur in the process of 

either HTC or the ammolysis, since it was reported that the presence of metal ions can 

effectively accelerate the hydrothermal carbonization.[43] In the process of ammolysis at 650 °C, 

the molybdenum species (nitrate or oxide) might be reduced by the H atoms from the 

dissociation of ammonia molecule. At the same time, the molecular or amorphous carbon could 

dissolve [44] into the metallic molybdenum lead the formation of carbide. There is no diffraction 

information of molybdenum carbide/nitride was observed in MoN-HTC-II sample (higher 

loading of carbon precursor), suggesting either the poor crystallinity of molybdenum-based 

particles, or the narrow distribution of well dispersed Mo2C/MoN nano-particles. 

 

Figure 5-19. XRD patterns of MoN-HTC-I and MoN-HTC-II samples. Blue and pink bars present 

JCPD-00-035-0787 Mo2C and JCPD-01-089-5024 MoN respectively. 
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Figure 5-20. TEM analysis of prepared molybdenum nitride samples. (a) and (b) are the 

representative TEM images MoN-HTC-I and MoN-HTC-II samples, inserted with SAED images. (c) 

and (d) HADDF images of MoN-HTC-II sample. 

 

Figure 5-20 (a) and (b) show the representative overview TEM images of the prepared catalysts. 

The particles (molybdenum-based materials) of MoN-HTC-I sample are in the range of 

micrometers without porous structures. This is probably due to the high loading amount of 

molybdenum, which had much more chance to sinter or aggregate into large particles. As shown 

in the selected area electron diffraction (SAED) image of Fig. 5-20–a, the spots of diffraction 

patterns of molybdenum carbide/nitride indicated the high crystallinity of high molybdenum 

loading sample, which is in agreement with XRD result. On the opposite, when increasing the 
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addition of carbon precursor (D-glucose), the carbonaceous species would dominate in the 

system, the molybdenum precursors were separated by the carbonaceous species and do not 

aggregate into large particles. The representative overview TEM image (Fig. 5-20-b) revealed a 

different morphology compared with that of MoN-HTC-I sample, that is, the material exhibits 

similar structure as solid carbon but with homogeneously dispersed dark dots, which are 

probably Mo-based components. The SAED image of MoN-HTC-II sample inserted in Fig. 5-

20–b shows only the diffraction ring of carbon indicates the amorphous structures of carbon. In 

accordance with XRD result, the missing of SAED information of MoN-HTC-II sample might be 

ascribed to the small or amorphous structure of Mo-based particles with poor crystallinity. 

High-angle annular dark-field image in the scanning transmission electron microscope (HAADF-

STEM) is possible to directly image the atomic configuration of small nanoparticles. The 

contrast of HAADF images is strongly dependent on the average atomic number of the scatterer 

encountered by the incident probe. Fig. 5-20-c&d show the HAADF images of MoN-HTC-II 

sample. The size range of bright dots (present the heavier Mo atoms compared with C and N 

atoms) is not in accordance with the size range of black dots observing in TEM image, which is 

due to the mixture distribution of N and C atoms in both of Mo-based clusters and carbon 

materials from the hydrothermal carbonization of glucose. Since it is known that,[45] carbide and 

nitride materials have the typical binary “interstitial alloy” structures with carbon or nitrogen 

atoms dissolved in metal replacing metal atoms with different metal:C/N stoichiometries. 

Representative high resolution TEM (HRTEM) images of the catalysts are shown in Figure 5-21. 

The large Mo2C/MoN particles with high crystallinity could be clearly identified in the sample 

with high Mo:C ratio. As shown in Fig. 5-21-a, two square areas were indexed with lattice 

distances of MoN (002) and (202) planes, which were further confirmed by the analysis of Fast 

Furier Transform (FFT) of the selected area. The HRTEM image in Fig. 5-21-b shows a 

representative area of MoN-HTC-II sample. On the edge of the observing sample, several layers 

with disordering stacks, bend curvature and defects, probably are the solid carbon materials 

formed either in the hydrothermal carbonization process or in the ammonlysis at high 

temperature. In the middle of the observing area dispersed several dark spots with the 

homogeneous distribution of radius, which are probably the Mo-based components, since the 

TEM image is a 2-dimentional projection of a 3-dimentional material,[46] the contrast of the 
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image can present either the thickness difference of the observing sample or the mixture of 

different components with different transparent intensities. The dark spots were further identified 

by high resolution images indexing with Mo2C and MoN lattice distances shown in the inserted 

images of Fig. 5-21-b. 

 

Figure 5-21. High resolution TEM images of the catalysts. (a) MoN-HTC-I, red and blue squares 

were chosen to acquire Fast Fourier Transform (FFT); (b) MoN-HTC-II, red and blue squares were 

chosen to acquire HRTEM images out of focus, yellow circles labeled the area which are probably 

the molybdenum carbide/nitride nanoparticles. 
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Figure 5-22. EELS spectra of MoN-HTC-I and MoN-HTC-II catalysts . (a) carbon K-edge and 

molybdenum M4,5-edge; (b) nitrogen K-edge and molybdenum M2,3-edge. 

 

Electron energy-loss spectroscopy (EELS) is the favored technique for the chemical analysis of 

carbide/nitride properties.[24] Unfortunately, the Mo M4,5-edge (at ca. 227 eV) and M2,3-edge 
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(doublet peaks at around 400 eV) overlap with the C K-edge (at around 285-310 eV) and N K-

edge (at ca. 401 eV), causing difficulty in the standard procedure for EELS analysis.[25] Figure 5-

22 shows Mo 3d, C 1s and N 1s energy-loss near edge structure (ELNES) spectra of the two 

prepared samples. The peak at around 286 eV corresponds to an electronic transition from C 1s 

to the anti-bonding π* states, indicating the existence of sp2-bonded carbon in both MoN-HTC-I 

and MoN-HTC-II samples. The broader structure at 290-310 eV indicates transitions to anti-

bonding σ* states.[47]  

Fig. 5-22-b shows the Mo M2,3-edge and N K-edge spectra of the two catalysts. The doublet 

peaks of molybdenum around 400 eV (transition of Mo 3p electrons to the unoccupied 4d states) 

can be clearly observed on MoN-HTC-I sample with higher ratio of Mo:C during hydrothermal 

carbonization process. The EELS spectrum of MoN-HTC-II with higher carbon loading shows a 

dominate peak at about 403 eV with a tiny shoulder peak at 397 eV, which were assigned to N 

K-edge and Mo M3-edge respectively according the EELS spectra. These findings revealed that 

the catalyst MoN-HTC-II with smaller particle size of molybdenum carbide/nitride is nitrogen-

rich compared with the large carbide/nitride particle of MoN-HTC-I sample. This suggests that 

the small Mo-based particles are much easily to be nitrided compared with large particles. It was 

reported that the adsorbed nitrogen atoms, from the dissociative adsorption of either nitrogen or 

ammonia, sometime referred to as “nitride”, the dissolved nitrogen can not only recombine and 

desorb, but also be dissolved into subsurface and form a solid solution.[48] In the process of 

ammonia nitridation, the dissociated NH3 molecule will probably follow the similar pathway to 

form the nitride from surface, subsurface and deeper down into the core of the material. It should 

be noticed that, the N information observed from EELS analysis could also be attributed to the N 

species on the surface of carbon, which were introduced by amination of carbon with NH3 at 

high temperature.[49] 

 

5.2.2.2 Catalytic measurements of nanosized Mo-based particles 

Catalytic performances of NH3 decomposition over the two prepared catalysts with different Mo-

carbide/nitride domain size were conducted according to the procedure detailed in experimental 

section. The catalytic performances (in form of ammonia conversions) of MoN-HTC-I and 
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MoN-HTC-II catalysts in Figure 5-23 show the stable activities of both catalysts in 20 hrs 

reaction at 600 °C. The steady-state hydrogen production rates of catalysts were summarized in 

Table 5-2 with the catalytic data of carbide and nitride catalysts reported in literature. 

 

Figure 5-23. Catalytic stability measurements of MoN-HTC-I and MoN-HTC-II catalysts at 600 °C, 

via different weight hourly space velocities (diamond: 72000 h-1, square: 60000 h-1, cycle: 36000 h-1 

and triangle 18000 h-1). 

 

At 600 °C, MoN-HTC-I sample offered about 3 mmol/(gcat·min) hydrogen production rate in 20 

hrs, which is in the range of H2 producibility of molybdenum carbide reported in the literature 

(the comparison of steady-state H2 production rate in Tab. 5-2).[14] The representative overview 

TEM image in Figure 5-21-a shows the relative huge Mo-based crystals, which exhibits nearly 

no pore-structure indicating the extremely low porosity (The specific surface area of MoN-HTC-

I sample could not be measured by N2-adsorption/desorption technique). It should be noticed 

that, some core-shell structures (Mo-based particles covered by solid carbon with thickness 

around 5-10 nm) are existing in MoN-HTC-I sample (Fig. 5-20-a), which could also lead to the 

low catalytic activity due to the blockage of catalytic component. The catalytic activity of MoN-
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HTC-II catalyst is about 10 times higher (23 mmol/(gcat·min) hydrogen production rate in 20 

hours) than MoN-HTC-I catalyst operated at the same reaction condition. This reactivity is close 

to the performance of bulk material of high surface area molybdenum carbide (reported in this 

charpter). The high performance of MoN-HTC-II catalyst benefits from the relative small 

nanosize molybdenum carbide/nitride particles. In MoN-HTC-II catalyst, the carbon materials 

could act as the “spacers”, which can isolate the individual molybdenum carbide and nitride 

particles, and stabilize them during the long-term ammonia decomposition at 600 °C as 

consequence. 

 

Table 5-2. Catalytic NH3 decomposition: comparison with literature data in terms of steady-state 
H2 production rate. 

Catalyst Structure a BET 
(m2/g) 

Reaction 
Temp. 
(°C) 

H2 production rate 
(mmol/gcat/min) 

Reference 

MoN-HTC-I 

MoN-HTC-II 

MoC 

MoNx/α-Al2O3 

WC 

FeCx  

β-Mo2C & δ-MoN 

β-Mo2C & δ-MoN 

Mo2C (β) 

- 

α -WC 

Fe3C 

- b 

- b 

16 

- 

1.5 

415 

600 

600 

550 

650 

500 

600 

~ 3 

23 

~ 4 

1.4 

~ 0.2 

9.2 

This work 

This work 

[14] 

[50] 

[15] 

[51] 

a based on XRD 

b could not be measured by N2 adsorption/desorption. 
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5.3 Chapter conclusions 

5.3.1 Bulk system of Mo carbide and nitride  

In this section, we reported a high performance ammonia decomposition catalyst of high surface 

area molybdenum carbide, which could achieve about 30 mmol/(gcat·min) constant H2 production 

rate. The comprehensive characterization of fresh and used samples showed that the high surface 

area Mo2C can not only crack the NH3 molecule, but also has a tendency to form MoN under 

pure ammonia atmosphere at high temperature (600 °C), causing a significant drop of specific 

surface area (from about 50 m2/g to about 5 m2/g). Theoretical calculation showed that under 

pure ammonia atmosphere, N-atoms tend to diffuse to the subsurface positions of Mo2C and the 

molybdenum nitride is progressively formed. This result is in agreement with the EELS analysis 

over the sample collected after 4 hrs reaction, that is, MoN is dominant on the surface compared 

to the bulk. 

In 100 hours of catalytic measurement the activity was observed to drop by about 15% 

over the first 15 hrs before stabilizing. This drop in activity is not proportional to the drop in 

specific surface area, indicating that the molybdenum nitride may be more active for ammonia 

decomposition compared to molybdenum carbide. The opposite order was observed by S. Oyama 

over β-Mo2C and γ-Mo2N for ammonia synthesis at 400 °C.[11] We believe that the abundance of 

high energy sites (twin-boundaries, stacking faults, steps and defects) observed on molybdenum 

nitride should be the sites for cracking ammonia, since this reaction requires high electron 

density as well as under-coordinated sites to proceed. The observation of N-catalyst interactions 

over the terrace and step locations of Mo2C and MoN showed the importance of high energy 

sites for ammonia decomposition, in agreement with earlier studies in the literature.[52] N atoms 

tend to more strongly bound (0.4 eV higher) to the step edge on MoN (0001) than Mo2C (0001), 

which likely benefits for the difficult step of N-N recombination through surface diffusion from 

two sites of ammonia cleavage on weakly adsorbing sites (terraces).[9] 

Further, we tried to stabilize the mesopore structure of high surface area Mo2C catalyst 

against collapse by a mechanical force from coating molecular layers on the surface of Mo2C 

catalyst. The carbon layers introduced by reacted with C2H4 at high temperatures can mechanical 

improve the thermal stabilities of Mo2C catalysts in the reaction of ammonia decomposition at 
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600 °C, unfortunately, the catalytic activities are not promising due to the blockage of active site 

on the catalysts surface. 

  

5.3.2 Nanosizing Mo carbide and nitride catalysts 

The hollow vapor-grown carbon nanotubes and nanofibers have been used as supports for Mo-

based carbide and nitride catalysts. Unfortunately, due to the complicated surface properties of 

CNT/CNFs, the dispersion of Mo carbide and nitride are far away from the homogeneous 

nanosized particles. Although the slight enhancement of the catalytic stabilities over the 

supported catalysts was observed, it is difficult to distinguish the contribution from the nanosized 

particles or the improvement of thermal stability encapsulated inside CNT/CNFs channel. 

Further work should be focused on the optimization of modification of CNT/CNFs surface, 

which will be benefiicial for the homogeneous despersion of metals, metal oxides and 

carbide/nitrides on the different locations of CNT/CNFs. 

In the last part of this chapter, we reported a simple preparation method to prepare homogeneous 

molybdenum carbide/nitride nanoparticles dispersed in carbon, which benefits from the relative 

mild carbonization process of hydrothermal carbonization [39, 42, 43] of glucose and ammonium 

heptamolybdate with proper Mo:C mole ratio. The characterization results of XRD and electron 

microscopy (TEM/HRTEM/SAED/HAADF/EELS) techniques identify the existences of 

molybdenum carbide and nitride in the prepared catalysts. With the help of “spacers”, carbon, 

the individual MoN nanoparticles could survive throughout the long-term catalytic 

decomposition of ammonia at high temperature and offer a constant H2 formation rate (about 23 

mmol/(gcat·min)), which is comparable with the high performance bulk material of high surface 

area molybdenum carbide, and even with the noble metal, Ru-based catalysts for clean hydrogen 

production. Future works might focus on the considerations concerning the mechanism of the 

formation of metal carbide and nitride during the whole procedure including hydrothermal 

carbonization and ammolysis, which could lead to the optimization of catalysts for the beneficial 

applications in not only the hydrogen production from ammonia decomposition, but also in other 

heterogeneous catalytic reactions. 
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Chapter 6: 

Preliminary kinetic study of ammonia decomposition over 

molybdenum nitrides and metal nanoparticles 

 

The kinetic study of ammonia decomposition was first investigated with the interest of 

understanding its reverse reaction, ammonia synthesis [1, 2]. The ammonia decomposition reaction 

is endothermic: 

2𝑁𝐻3 ⇄  𝑁2 + 3𝐻2;    ∆𝐻0 = +45.9 𝑘𝐽 𝑚𝑜𝑙−1 

The Gibbs free energy ∆𝐺0 for the reaction is +16.4 kJ mol-1, indicates the reaction benefits from 

the high temperature and low pressure. With these data including the data of its reversal reaction, 

the equilibrium for the “reforming” of ammonia can be estimated, which were summarized in 

Table 1-1 (Chapter 1).  

At the beginning of last century, after the establishment of the Haber-Bosch process (high-

pressure, high-temperature synthesis of ammonia) people were trying to understand the reaction 

mechanism for both the synthesis and decomposition of ammonia. First experiments were 

performed over iron catalysts in static system with pure ammonia.[3, 4] Later, Winter [5] reported 

the kinetic experiments over alumina supported iron catalysts, and he found the rate of ammonia 

decomposition was proportional to 𝑃𝑁𝐻3 / (𝑃𝐻2)1.5 . He suggested the following reactions to 

express the kinetics of ammonia decomposition: 

𝑁𝐻3 𝑔𝑎𝑠  + 𝑐𝑎𝑡 ⇄  𝑁𝐻3 𝑎𝑑𝑠.                                                                       (1) 

𝐻2 𝑔𝑎𝑠 +  2𝑐𝑎𝑡 ⇄  2𝐻 𝑎𝑑𝑠.                                                                          (2) 

𝑁𝐻3 𝑎𝑑𝑠. +  𝑐𝑎𝑡 ⇄  𝑁 𝑎𝑑𝑠. +  3𝐻 𝑎𝑑𝑠.                                                           (3) 
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2𝑁 𝑎𝑑𝑠.  →  𝑁2 𝑔𝑎𝑠 +  2𝑐𝑎𝑡                                                                            (4) 

2𝐻 𝑎𝑑𝑠.  ⇄  𝐻2 𝑔𝑎𝑠 +  2𝑐𝑎𝑡                                                                            (5) 

The equilibrium constant for reaction (3) is: 

𝐾 =  
[𝑁 𝑎𝑑𝑠.][𝐻 𝑎𝑑𝑠.]3

[𝑁𝐻3 𝑎𝑑𝑠.]
 

and, consequently 

[𝑁 𝑎𝑑𝑠.] = 𝐾′ �𝑁𝐻3 𝑔𝑎𝑠�

�𝐻2 𝑔𝑎𝑠�
1.5  

With the assumption that the slow step in the decomposition of ammonia is the reaction (4), the 

rate of ammonia decomposition can be expected to be proportional to 𝑃𝑁𝐻3/(𝑃𝐻2)1.5. 

It was further studied by Temkin and Pyzhev,[2] who suggested that the “rate of escape of 

nitrogen molecules from the surface of the catalyst depends very strongly on the fraction of the 

surface covered by adsorbed nitrogen”. The two important assumptions applied by them are: (1) 

the adsorption of nitrogen on iron in the presence of an NH3-H2 mixture will be the same as it 

would be at equilibrium with the partial pressure of nitrogen equivalent to the existing partial 

pressure of NH3 and H2 in the gas mixture; (2) the slow step in the decomposition is the rate of 

escape of nitrogen molecules from the surface of the catalysts. As the consequence, the rate of 

ammonia decomposition can be expressed as: 

             𝑟 = 𝑘 �
𝑃𝑁𝐻3

2

𝑃𝐻2
3 �

𝛽
                                                                                           (6) 

Later, these assumptions and equation were applied in most kinetic studies for ammonia 

decomposition. For example, Love and Emmett [6] investigated the kinetics of ammonia 

decomposition over three Fe-based catalysts. Their data was re-investigated by Takezawa and 

Mezaki using Langmuir-Temkin-Pyzhev model, which was proved to be reliable for the 

description of reaction rate data.[7] 

It was further argued with the reaction rate determining step for ammonia decomposition, which 

should be both of the adsorption of ammonia and the desorption of dinitrogen.[8-11] These kinetic 
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measurements were taken over polycrystalline Pt wires [9], iron wires [8], molybdenum foil[11], 

and tungsten foil[10], which exhibit relative low surface area and are far away from the practical 

catalysts. Takezawa and Toyoshima reported the temperature dependent rate determining steps 

of ammonia decomposition over an ammonia synthetic catalyst, those are the desorption of 

adsorbed nitrogen at low temperature and dehydrogenation of the adsorbed amino radical at high 

temperature. It was further proposed a relative new mechanism [12] by Shindo et al.,[10] who 

investigated the mechanism of ammonia decomposition on a “clean” tungsten surface 

(5.3×83×0.025 mm3 tungsten foil) in the temperature range of 500-1200 °C under ammonia 

pressure of 10-6-10-3 Pa. They found that the order of ammonia changed with temperature from 

first order to fractional at 1200 and 500 °C. The hydrogen partial pressure had no effect on either 

the reaction rate or on the amount of surface nitrogen. Thus, they proposed that there is a 

“dynamic balance” between two rate-determining steps, which are reaction (3) and (4), that is 

corresponding to the supply and desorption of chemisorbed nitrogen. It should be noticed that the 

surface of metal foil might not be “clean”, the roughness on the surface might be even worse 

when treated with ammonia at high temperature. This Tamaru mechanism, or so called “W-type 

mechanism” was applied over a vanadium nitride catalyst by Oyama.[13] As shown in Figure 1-6 

(in Chapter 1), the rate of ammonia decomposition on vanadium nitride is zero order in ammonia 

partial pressure at low temperature and first order at high temperature. The reaction rate was 

independent with the partial pressures of hydrogen and nitrogen indicated the Tamaru 

mechanism. 

Egawa et al. investigated on stepped Ru(1110) and flat Ru(001) surfaces for ammonia 

decomposition.[14] They found that the rate of N2 formation on Ru(1110) is one order of 

magnitude faster than that on Ru(001) for which edge effects have been eliminated. A much 

more open structure of Ru(112�1)) surface was also proved to be more reactive than Ru(0001) 

surface, which were reported by Dietrich et al.[15] A detail study of kinetic of ammonia 

dissocation over Ru (001) plane was reported by Tsai and Weiberg,[16] who suggested the rate-

determining step changed with temperature and established a reaction expression under the 

hypothesis that both recombinative desorption of N atoms as the most abundant reactive 

intermediate and the initial N-H bond cleavage are slow elementary steps. Since the end of last 

century, due to the renewed interest of hydrogen production from ammonia, several kinetic 

studies of supported ruthenium catalysts for ammonia decomposition were reported. Bradford et 
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al. studied the ruthenium particles supported on carbon and reported that the decomposition of 

NH3 is around 0.7 order in NH3 and -2 order in H2, and both the initial N-H cleavage and 

recombinative nitrogen desorption are slow kinetic steps.[17] Their results could apparently 

explain the H2 inhibition effect at low reaction temperature (less than 400 °C) on the small (1-2 

nm) Ru crastallites. The later investigations were focused to correlate the particle size and shape 

of ruthenium supported system following the propose that both synthesis and decomposition of 

ammonia should be structure sensitive reactions, that the reactivity benefits from the abundance 

of the particular step sites allowing the fivefold coordination of nitrogen (B-5 site).[18, 19] The 

density of active sites (B-5 site) of Ru particles calculated by Wulff construction shows the 

maximum abundance at about 2.5 nm, which is favorable compared to the experimental particle 

size distribution of practical Ru-based catalyst for ammonia synthesis. Garcı´a-Garcı´a et al. [20], 

Zhang et al. [21] and Zheng et al. [22] reported the similar result that the optimum Ru particle size 

for ammonia decomposition is between 3 and 5 nm, which are in agreement with the maximum 

concentration of B-5 site on the Ru particle. It was further argued that larger particles are more 

active in this reaction.[23] Karim et al. [23]attributed the high activity on large Ru particle (about 7 

nm) to elongated planar structure compared to the small Ru particle (1.8-3 nm) with 

hemispherical morphology. 

The findings in this work (Chapter 3) shows that the larger ruthenium particles supported on 

clean and ordering carbon surface can offer a better performance for ammonia decomposition. 

The local disorder of the carbon support introduces the local disorder to the metal particle, and 

leads to a strong interaction between metal and reaction intermediates observing by in-situ XPS 

measurement. We believe that there might be not enough evidence to correlate the morphology 

to the performance either with the B-5 site abundances on small particles or with the “elongated 

planar structure” on large particles. 

In this chapter, the preliminary study will start from kinetic measurements of three types of 

molybdenum nitrides, that are MoN-Mo2C (“Mo2C-fresh” sample in Chapter 5), MoN-MoO3 

(prepared from MoO3) and MoN-HTC (“MoN-HTC-II” sample in Chapter 5), which were in-situ 

activated in ammonia at 600 °C overnight. 
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6.1 Kinetics results of molybdenum nitrides 

6.1.1 Kinetic results of MoN-Mo2C 

Reactivity measurements were carried out at different temperatures shown in Figure 6-1. The 

activation energy was calculated using the Arrhenius equation: 

 𝐸𝑎 = −𝑅[𝜕𝑙𝑛𝑘
𝜕(1𝑇)

]𝑃                                                                                        (7) 

in the temperature region of 400 to 525 °C. The apparent activation energy of MoN-Mo2C 

sample is about 183 kJ/mol, which is close to the vanadium nitride catalysts reported by McGill 

et al. [24] and Oyama [13]. 

 

 

Figure 6-1. Arrhenius plots of the rate of ammonia decomposition at atmospheric pressure over three 

molybdenum nitrides catalysts. 
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Figure 6-2. Variations of NH3, N2 and H2 partial pressures using argon as balance. 
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The reaction orders for NH3, H2 and N2 were determined from a fit of the experimental data to a 

power law equation: 

 𝑟 = 𝑘𝑃𝑁𝐻3
𝛼 𝑃𝐻2

𝛽 𝑃𝑁2
𝛾                                                                                        (8) 

the variations of partial pressure of NH3, H2, and N2 were measured at different temperatures 

(400, 425, 450, 475, and 500 °C) with at least five different residence times, which were shown 

in figure 6-2. 

 

Figure 6-3. Ammonia reaction order as function of temperature. Reaction temperature: (circle) 1050 

K, (triangle) 1000 K, (square) 970 K. (Figure taken from Ref. [13].)  

 

The values of γ (Fig. 6-2-b) are close to zero at five working temperatures (400 to 500 °C) 

indicates that the rate of ammonia decomposition does not depend on the partial pressures of 

nitrogen. Thus, the power law equation for the rate expression can be written as: 

𝑟 = 𝑘′𝑃𝑁𝐻3
𝛼 𝑃𝐻2

𝛽                                                                                            (9) 

At the operating conditions, the value of α was found to be slightly sensitive to temperature; i.e., 

it was 0.38 at 400 °C, 0.2～0.3 at 425 and 450 °C, and around 0.15 at 475 and 500 °C. These 
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relative low values of NH3 order, compared with those of vanadium nitrides reported by McGill 

et al. [24] and Oyama [13] (0.5 and close to 1, respectively) indicates the low influence of ammonia 

partial pressure to the reaction rate probably originates from the smaller crystalline and 

abundance of high energetic sites (steps, defects, stacking faults and twin-boundaries) on the 

surface of molybdenum nitrides (observed by HRTEM and shown in Chapter 5). Oyama found 

that at low temperatures the rate is zero order in ammonia partial pressure, while at high 

temperatures the rate approaches 1 order, as shown in Figure 6-3. The findings in this study 

showing the reverse tendency of the ammonia orders as the function of temperature. 

The values of the H2 order (β) for MoN-Mo2C sample were negative, indicates the existence of 

the inhibition effect of hydrogen to ammonia decomposition over molybdenum nitride catalyst. 

This behavior differs from the results of Oyama [13] who found that the rate of ammonia 

decomposition does not depend on the partial pressure of hydrogen, and hydrogen is not 

chemisorbed on vanadium nitride at about 500 to 900 °C. It is generally accepted that H2 has an 

inhibitive effect on the NH3 decomposition rate while H2 was co-fed along with NH3, 

particularly at high H2 partial pressure and low temperature on noble metal ruthenium 

catalysts.[14, 15, 17, 22, 24] As shown in Fig. 6-2-c and Table 6-1, the values of β are about -0.75 at 

500 and 475 °C, -1.4 at 450 °C, and -1.6 at 400 °C. This indicates the similarity of reaction 

behaviors between molybdenum nitride and ruthenium for the reaction of ammonia 

decomposition. 

We believe that the different reaction behaviors between molybdenum nitride in this study and 

the vanadium nitrides reported by McGill et al. and Oyama should be ascribed to the different 

structural properties of these nitride materials. As elucidated in their papers, the vanadium 

nitrides were prepared from ammonium vanadate and vanadium(V) oxide with pure ammonia at 

1100 and 1000 °C. The high temperature of nitridation process could lead to the sintering of 

crystalline, and lose the density of high energetic sites on the surface of catalysts. Volpe and 

Boudart reported the “topotactic transformation” of the oxide precursor in the nitride production 

in ammonia was reasonable to form high surface area molybdenum nitride.[25] It was further 

reported by Jaggers et al. that using ammonium molybdate as precursors could prepare even 

higher surface area of molybdenum nitride owing to the high mobility of ammonia in these 

precursor leads to a homogeneously nitridation.[26] These findings suggest that the different 
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reaction behaviors of vanadium nitrides between McGill et al. and Oyama might be owing to the 

different crystalline size of their materials. The absence of hydrogen inhibition effect should be 

ascribed to the large crystalline of their vanadium nitride catalyst, which can offer enough weak 

sites (terraces) for the desorption of hydrogen from the surface of nitride. 

 

6.1.2 Kinetic results of MoN-MoO3 and MoN-HTC 

In order to investigate the correlation between the reaction behavior and the structural properties 

of catalytic units, we measured two more types of molybdenum nitrides with different crystalline 

size. MoN-MoO3 sample was prepared from h-MoO3 (the same precursor as MoN-Mo2C), and 

used the same thermal pretreatment, but in the mixture of ammonia and hydrogen instead of the 

carburization condition. Similar phase structure of MoN-MoO3 was observed from XRD and 

TEM analysis compared with MoN-Mo2C catalyst, in spite of a little bit larger crystalline size 

(XRD information) and particle size (TEM information). MoN-HTC stands for the “MoN-HTC-

II” sample reported in Chapter 5, which prepared by the combination of hydrothermal 

carbonization and ammonia nitridation. The nanostructured molybdenum nitride particles are 

around 2-5 nm and isolated by carbon materials. 

Table 6-1. Reaction parameters estimated from the 
power law equation for ammonia cracking 

Temp. 

°C 

MoN-Mo2C MoN-MoO3 MoN-HTC 

NH3 H2 NH3 H2 NH3 H2 

425 

450 

475 

500 

0.23 

0.29 

0.17 

0.14 

-1.7 

-1.4 

-0.75 

-0.72 

0.64 

0.72 

0.40 

n 

-0.38 

-0.46 

-0.45 

n 

-0.03 

-0.09 

-0.11 

n 

-2.12 

-1.25 

-0.98 

n 

(n) stands for not measured. 

 

The Arrhenius plots of the two catalysts are shown in Fig. 6-1. The activation energy of MoN-

MoO3 is about 172 kJ/mol, close to the value of MoN-Mo2C catalyst. A lower energy barrier was 
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observed on the nanosized molybdenum nitride catalyst (MoN-HTC), which is 120 kJ/mol. It is 

known that the nanostructured particles would be more active than the same material in the form 

of bulk system, which is owing to the abundance of active surface. 

The variations of partial pressures of NH3, N2 and H2 over MoN-MoO3 and MoN-HTC catalysts 

were also investigated as the same procedure for MoN-Mo2C. There was also no influence of 

nitrogen partial pressure to the rate of ammonia decomposition for these two catalysts. Both 

values of α and β at different temperatures were summarized in Table 6-1. The α values of MoN-

MoO3 are larger than those of MoN-Mo2C, and more than half order at low temperature closing 

the values reported by McGill et al. [24] and Oyama.[13]  The values of H2 orders are still negative, 

and higher than the ones of MoN-Mo2C sample indicates the less inhibition effect of hydrogen. 

Since the existence of the inhibition of hydrogen, and there is no influence of nitrogen partial 

pressure, the following 2-step model can represent the reaction of ammonia decomposition 

assuming the adsorbed N is the most abundant reactive intermediate: 

𝑁𝐻3 𝑔𝑎𝑠  + 𝑐𝑎𝑡 ⇄  3
2
𝐻2 𝑔𝑎𝑠 + 𝑁𝑎𝑑𝑠.                                                               (10) 

2𝑁 𝑎𝑑𝑠.  →  𝑁2 𝑔𝑎𝑠 +  2𝑐𝑎𝑡                                                                                  (4) 

The reaction (10) is a single quasi-equilibrated reaction combining the steps (1)-(3) and (5). 

After dissociative adsorption of ammonia, the adsorbed hydrogen would retard the overall rate 

by driving the equilibrium for the formation of adsorbed nitrogen backward, while the gas-phase 

dinitrogen could not retard the rate of step (4), which is an irreversible elemental step. 

In table 6-1, the α values of MoN-HTC are closing to zero, indicates nearly no effect of ammonia 

partial pressure to the reaction rate. It is impossible that ammonia cannot adsorb on the surface of 

the catalyst. It is also impossible that the surface of the catalyst is saturated by the adsorbed 

ammonia molecules. On the opposite, ammonia can easily adsorb on the surface of 

nanostructured molybdenum nitride particles, and the N-H bonds would be cracked as soon as 

possible. Thus the partial pressure of ammonia has slight influence to the overall rate of 

ammonia decomposition. It should be further noticed that the much more negative values of 

hydrogen orders indicates a much stronger influence of hydrogen on the nanostructured nitride 

particles compared with bulk systems. 
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6.2 Kinetics results of ruthenium and iron-cobalt alloy catalysts 

The kinetic study of ammonia decomposition was also investigated over the other catalytic 

components, i. e. 2wt%Ru supported on graphite (Ru-G sample in Chapter 3), and 5wt%FeCo 

encapsulated inside CNTs channel (CoFe5-in-CNT in Chapter 4). 

 

6.2.1 Kinetic results of FeCo-CNTs 

The post characterization of FeCo-CNTs (CoFe5-in-CNTs) was reported in Chapter 4. The 

average mean size of iron-cobalt alloy particles encapsulated in CNTs channel is about 15 nm 

after the reaction of ammonia decomposition at 600 °C. The kinetic measurement was carried out 

at a steady state after the pretreatment of pure ammonia at 600 °C overnight.  
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Figure 6-4. Variation of NH3 partial pressure to the rate of ammonia decomposition (argon as 

balance). 

Table 6-2. Reaction parameters of FeCo-CNTs catalyst estimated from 
the power law equation 

Temp. °C NH3  Temp. °C N2  Temp. °C H2 

500 

480 

460 

440 

420 

0.38 

0.47 

0.46 

0.33 

0.29 

 475 

450 

425 

-0.23 

-0.16 

-0.30 

 580 

560 

540 

520 

500 

-0.13 

-0.23 

-0.36 

-0.47 

-0.93 

 

 

The apparent activation energy of FeCo-CNTs calculated from Arrhenius equation is about 140 

kJ/mol. The variations of NH3, N2 and H2 partial pressures were measured at different 

temperatures. Not like molybdenum nitrides catalysts, the N2 orders are negative, which are 

around -0.2 at the temperature region from 425 to 475 °C. This might be due to the formation of 



141 
 

surface iron nitride species under the relative low temperature reaction condition, which relates 

to the much stronger interaction of Fe-N compared to ruthenium and other metals or 

carbides/nitrides.[27] In fact, the formation of metal subnitrides and their efficacy as inhibitors for 

the decomposition of ammonia was described before.[27, 28] Kraupner et al. investigated bulk iron 

carbide for ammonia decomposition, and found the fully nitridation of iron carbide after 16-h 

reaction.[29] Unfortunately, we did not observe the formation of nitride on the surface of iron or 

iron-cobalt particles (in Chapter 4). Since the post characterization could not prevent the 

oxidation of iron nitride, which is highly pyloric to air. It is also possible that the formation of 

nitride would only occur on the surface or subsurface of the metal particles, which could not be 

observed by TEM and XRD techniques. The positive orders of ammonia on FeCo-CNTs catalyst 

(in Figure 6-4) are nearly insensitive to temperature and around half order. This behavior differs 

from the low pressure results of Tsai et al. [16] and Egawa et al. [14] whose ammonia order 

increased and approached unity with increased temperature over ruthenium single crystals. This 

might be also due to the formation of iron nitride species, which were formed between metallic 

iron and adsorbed nitrogen atoms after cleavage of ammonia. 

The inhibitive influence of hydrogen on the reaction rate was also observed on FeCo-CNTs 

catalyst, but less effective compared to the nanostructured molybdenum nitride and ruthenium 

particles. This is due to the lower interaction between Fe and H atoms compared to Ru-H.  

 

6.2.2 Kinetic results of Ru-graphite 

The post characterization of Ru-graphite (Ru-G) was reported in Chapter 3. The average mean 

size of ruthenium nanoparticles supported on the clean and highly graphitic graphite is about 2.5 

nm, which has well ordering ruthenium crystallite with steps and terraces (HRTEM image in Fig. 

3-16-a’, Chapter 3). The kinetic measurement was carried out at a steady state after the 

pretreatment of pure ammonia at 450 °C overnight. 

The activation energy of Ru-graphite sample estimated from the Arrhenius plot is about 113 

kJ/mol, which is close to the values of supported ruthenium catalysts reported in literature.[17, 21-

23] This lowest apparent Ea observed in this study confirms that ruthenium is the most active 

element for the decomposition of ammonia, even over the relative low loading (2 wt%) of 
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ruthenium. Thus, the kinetic measurements on Ru-graphite catalyst were carried out at lower 

temperature compared to the other catalysts. 

 

 

Figure 6-5. Variations of NH3 and H2 partial pressures to the rate of ammonia decomposition (argon 

as balance). 



143 
 

There is no partial pressure dependence on nitrogen to the reaction rate of ammonia 

decomposition. Both NH3 and H2 partial pressure variations at different temperature were 

summarized in Figure 6-5. Clearly, the dependence of temperature on both NH3 and H2 orders 

were found similar to the findings of Tsai et al. [16] and Egawa et al. [14] on ruthenium single 

crystals, and the vanadium nitride reported by Oyama (Fig.6-2).[13] 

 

Table 6-3. Reaction parameters of Ru-graphite catalyst estimated 
from the power law equation 

Reaction 
oders 

Reaction temperature (°C) 

440 420 400 380 360 340 320 

NH3 

H2 

0.58 

-0.24 

0.50 

-0.30 

0.43 

-0.42 

0.36 

n 

0.35 

n 

0.31 

n 

0.26 

n 

(n) stands for not measured. 

 

The inhibitive influence of hydrogen to the reaction rate on Ru-graphite catalyst was not as 

strong as expected, and was intermediate between the values of nanostructured molybdenum 

nitride and iron-cobalt-alloy particles. As elucidated in Chapter 3, the ruthenium particles 

supported on the clean and highly graphitic graphite exhibit well ordering structure, which 

contain abundant high energetic sites (steps) and low energetic sites (terraces). The cooperation 

of these two-type sites benefits for the desorptions both of nitrogen and hydrogen. Since the most 

difficult step of ammonia cracking is desorption of nitrogen, which need a larger ensemble steps. 

While the adsorption of ammonia and the desorption of hydrogen take place on the weak sites in 

a relative flat terrace. The inhibitive effect of hydrogen might be much more pronounced on a 

small (less than 2 nm) or a disordering ruthenium nanoparticle, owing to the low density of the 

terraces. Bradord et al. reported a strong hydrogen inhibition effect on the ruthenium particles 

supported on carbon black, but structural characterizations were not presented.[17] The larger 

ruthenium particles could offer a better ammonia decomposition reactivity were reported earlier, 

i. e. Karim et al. reported the optimal mean size of ruthenium particle supported on alumina for 

ammonia decomposition should be around 7 nm.[23] They emphasized the importance of B-5 sites 



144 
 

and the structural shape on ruthenium clusters. In Chapter 3, we found that the morphology (size, 

shape/ordering) of ruthenium particles indeed differs in the reactivity of ammonia 

decomposition. Direct information from HRTEM and in-situ XPS confirm that the disordering 

and small particles could lead to the strong interaction with adsorbed reactants (observations of 

reaction intermediate of adsorbed nitrogen), as shown in Fig. 3-18. The kinetic results based on 

the simple power law model are in agreement with the characterization information of Ru-

graphite. 

 

6.3 Comparison of kinetic measurements 

 

Figure 6-6. Reaction orders (around 450 °C) of NH3, H2 and N2 as function of estimated mean size of 

catalytic component.  

Figure 6-6 shows the preliminary comparison of reaction behaviors of ammonia 

decomposition (at around 450 °C) between different catalytic components. The mean size 

of catalytic unit was estimated from TEM and XRD results. For iron and molybdenum 

nitride catalyst, with the increasing mean size of catalytic unit, the reaction rate of 
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ammonia decomposition is more dependent on the partial pressure of ammonia and less 

effective by the partial pressure of hydrogen. The high energetic sites (steps) are probably 

deficient on the surface of a large crystal with high crystallinity, leading to the shortage 

of active sites for the desorption of dinitrogen. On the other hand, the abundance of low 

energy sites (terrace) on the large crystal will benefit for the desorption of hydrogen. The 

nanostructured ruthenium catalyst is not in line with the preliminary relationship over the 

other catalysts. The high efficiency of cracking NH3 molecule, the mediate interaction 

with N atom, and the ordering structure of ruthenium particles can be correlated to the 

high turnover frequency and the less inhibitive effect of hydrogen in the reaction of 

ammonia decomposition. 
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6.4 Chapter conclusions and outlook 

6.4.1 Chapter conclusions 

In summary, this chapter investigated the kinetic reaction behaviors of three catalytic systems 

reported in this thesis for the reaction of ammonia decomposition. The preliminary kinetic results 

following the simple power-law mode could draw the conclusions as follows:  

For molybdenum nitride catalysts, the reaction behaviors are controlled by the domain crystalline 

size of molybdenum nitride. Compared with bulk molybdenum nitride (MoN-Mo2C and MoN-

MoO3) lower activation energy and stronger hydrogen inhibitive effect were observed on the 

nanostructured molybdenum nitride catalyst (MoN-HTC). These can be ascribed to the 

abundance of high density of high energetic sites of catalytic unit, and the low density of “weak” 

sites (terraces) on the nanostructured molybdenum particles. Both of the activation energy and 

reaction orders of nanostructured molybdenum are close the ones of ruthenium catalyst indicates 

the similar chemicophysical properties between metal nitride and noble metal. 

For nanostructured ruthenium catalyst, the strong inhibition of hydrogen was not observed in this 

study. This is probably due to the well ordered and relative large ruthenium facets, which can 

offer high energetic sites of step facilitating the desorption of nitrogen and low energetic sites of 

terrace for the adsorption of ammonia and the desorption of hydrogen. 

For iron-cobalt alloy catalyst, the negative nitrogen orders observed in this study indicates the 

nitridation of iron metal should be the inhibitors for ammonia decomposition. The relative less 

hydrogen inhibitive effect is due to the lower interaction between hydrogen and iron compared 

with nanostructured ruthenium and molybdenum nitride catalysts. 

 

6.4.2 Outlook 

The simple power law model could always facilitate the investigation of the effects of the 

different operation variables on the reactions. However, it is insufficient to investigate the 

intrinsic reaction mechanism of ammonia decomposition. In order to give a relative precise rate 

expression, the elemental steps of ammonia decomposition will be re-written as follow: 
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               𝑁𝐻3 (𝑔)  + ∗ 
𝐾1⇔ ∗ 𝑁𝐻3                                                                                (1’) 

 ∗ 𝑁𝐻3  + ∗ 
𝐾2⇔ ∗ 𝑁𝐻2 + ∗ 𝐻                                                                        (2’) 

 ∗ 𝑁𝐻2  + ∗ 
𝐾3⇔ ∗ 𝑁𝐻 + ∗ 𝐻                                                                          (3’) 

 ∗ 𝑁𝐻 + ∗ 
𝐾4⇔ ∗ 𝑁 + ∗ 𝐻                                                                              (4’) 

 2 ∗ 𝑁 
𝑘5→  𝑁2(𝑔) +  2 ∗                                                                                 (5’) 

              2 ∗ 𝐻 
𝐾6⇔  𝐻2(𝑔) +  2 ∗                                                                                (6’) 

where ki is the reaction rate constant; Ki stands for the equilibrium constant of individual 

elemental step; * is denoted as single active site on the surface of catalyst. Considering the 

results from fitting the power law model, we will use Temkin-Pyzhev mechanism to integrate all 

the data of kinetic measurements. The Temkin-Pyzhev mechanism, which supposes the 

associative desorption of N atoms (step 5’) as the rate-determining step, and adsorbed N is the 

most abundant reaction intermediate.[30] Since steps (1’)-(4’) and (6’) are all in equilibrium, the 

reaction of ammonia decomposition could be written as: 

             𝑁𝐻3 (𝑔)  + ∗ 
𝐾7⇔∗ 𝑁 +  3

2
𝐻2(𝑔)                                                                    (7’) 

             2 ∗ 𝑁 
𝑘5→  𝑁2(𝑔) +  2 ∗                                                                                (5’) 

following the Langmuir-Hinshelwood mechanism, the ammonia decomposition rate can be 

expressed as: 

 𝑟𝑁𝐻3 =  
𝑘5[CS]2𝐾72𝑃𝑁𝐻3

2

𝑃𝐻2
3 (1+

𝐾7𝑃𝑁𝐻3
𝑃𝐻2
3/2 )2

=  
𝑘′𝑃𝑁𝐻3

2

(𝑃𝐻2
3/2+𝐾7𝑃𝑁𝐻3)2

                                       (11) 

in which [CS] ([CS]=[*]+ [*N]) stands for the total number of active sites per gram in the 

catalyst; K7=K1K2K3K4K6
3/2. 
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To estimate the equilibrium and rate constants, the differential equations of NH3 consumption 

and H2 formation are established and numerically solved via “Berkeley Madonna” using 

equation: 

 
𝑑(𝑃𝑁𝐻3)
𝑑(𝜏∗)

= −2𝑟𝑁𝐻3
𝑑(𝑃𝐻2)
𝑑(𝜏∗)

= 3𝑟𝑁𝐻3                                                            (12) 

The modified residence time τ* is obtained by the inverse volume flow multiplied with a 

temperature coefficient and the catalyst weight. 

In order to integrate all the experimental data to the proposed model, the surface sites of the 

catalysts should be quantified, which are unfortunately still missing in this work. In the future, 

the quantitative surface sites of catalytic components over all catalysts in this study will be 

measured by a temperature programmed desorption of ammonia (NH3-TPD). The turn-over 

frequency will be modified by the density of surface sites assuming the surface is uniform, that 

all the sites which could chemisorb ammonia will be regarded as active sites. Although the early 

findings in this study indicates that the decomposition of ammonia on the nanostructured catalyst 

is probably nonunifrom reaction, that is the recombinative dissociative desorption of nitrogen 

occurs on the steps while the cleavage of ammonia and desorption of hydrogen will happen on 

weakly adsorbing sites (terraces). Unfortunately, there is no method so far could sufficiently and 

simply measure the density of steps or terraces on the nanostructured metal or carbide/nitride 

particles. 

 

 

 

 

 

 

 



149 
 

References 

1. Emmett, P.H. and S. Brunauer, The Adsorption of Nitrogen by Iron Synthetic Ammonia Catalysts. 
Journal of the American Chemical Society, 1934. 56(1): p. 35-41. 

2. Temkin, M. and V. Pyzhev, Kinetic of ammonia synthesis on promoted iron catalysts. Acta 
Physicochimica Urss, 1940. 12(3): p. 327-356. 

3. Kunsman, C.H., E.S. Lamar, and W.E. Deming, XCIII. Rates and temperature coefficients of the 
catalytic decomposition of ammonia over molybdenum, tungsten, and promoted iron. 
Philosophical Magazine Series 7, 1930. 10(67): p. 1015-1037. 

4. Kunsman, C.H., The Decomposition of Ammonia on Iron Catalysts. Science, 1927. 65(1691): p. 
527-528. 

5. Winter, E., Der Katalytische Ammoniakzerfall an Eisen. Z. physikal. Chem. , 1931. B13: p. 401-
424. 

6. Love, K.S. and P.H. Emmett, The Catalytic Decomposition of Ammonia over Iron Synthetic 
Ammonia Catalysts. Journal of the American Chemical Society, 1941. 63(12): p. 3297-3308. 

7. Takezawa, N. and R. Mezaki, Langmuir-temkin-pyzhev rate models for ammonia decomposition 
reaction. The Canadian Journal of Chemical Engineering, 1970. 48(4): p. 428-431. 

8. Löffler, D.G. and L.D. Schmidt, Kinetics of NH3 Decomposition on Iron at High Temperatures. 
Journal of Catalysis, 1976. 44(2): p. 244-258. 

9. Löffler, D.G. and L.D. Schmidt, Kinetics of NH3 Decomposition on Polycrystalline Pt. Journal of 
Catalysis, 1976. 41(3): p. 440-454. 

10. Shindo, H., et al., Reaction Mechanism of Ammonia Decomposition on Tungsten. Journal of the 
Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980. 76: p. 
280-290. 

11. Boudart, M., et al., Nitrogen Adsorption and Ammonia Decomposition on Polycrystalline 
Molybdenum. Journal de Chimie Physique et de Physico-Chimie Biologique, 1981. 78(11-12). 

12. Tamaru, K., A "New" General Mechanism of Ammonia Synthesis and Decomposition on 
Transition Metals. Accounts of Chemical Research, 1988. 21(2): p. 88-94. 

13. Oyama, S.T., Kinetics of Ammonia Decomposition on Vanadium Nitride. Journal of Catalysis, 
1992. 133(2): p. 358-369. 

14. Egawa, C., et al., Ammonia Decomposition on (1 1 10) and (0 0 1) Surfaces of Ruthenium. Journal 
of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984. 
80(6): p. 1595-1604. 

15. Dietrich, H., K. Jacobi, and G. Ertl, Decomposition of NH3 on Ru(111). Surface Science, 1996. 352-
354: p. 138-141. 

16. Tsai, W. and W.H. Weinberg, Steady-State Decomposition of Ammonia on the Ruthenium(001) 
Surface. The Journal of Physical Chemistry, 1987. 91(20): p. 5302-5307. 

17. Bradford, M.C.J., P.E. Fanning, and M.A. Vannice, Kinetics of NH3 Decomposition Over Well 
Dispersed Ru. Journal of Catalysis, 1997. 172(2): p. 479-484. 

18. Honkala, K., Ammonia Synthesis from First-Principles Calculations. Science, 2005. 307(5709): p. 
555-558. 

19. Jacobsen, C.J.H., et al., Structure sensitivity of supported ruthenium catalysts for ammonia 
synthesis. Journal of Molecular Catalysis A: Chemical, 2000. 163(1-2): p. 19-26. 

20. García-García, F., A. Guerrero-Ruiz, and I. Rodríguez-Ramos, Role of B5-Type Sites in Ru Catalysts 
Used for the NH3 Decomposition Reaction. Topics in Catalysis, 2009. 52(6): p. 758-764. 

21. Zhang, J., et al., Highly Efficient Ru/MgO Catalysts for NH3 Decomposition: Synthesis, 
Characterization and Promoter Effect. Catalysis Communications, 2006. 7(3): p. 148-152. 



150 
 

22. Zheng, W., et al., NH3 Decomposition Kinetics on Supported Ru Clusters: Morphology and 
Particle Size Effect. Catalysis Letters, 2007. 119(3-4): p. 311-318. 

23. Karim, A.M., et al., Correlating Particle Size and Shape of Supported Ru/γ-Al2O3 Catalysts with 
NH3 Decomposition Activity. Journal of the American Chemical Society, 2009. 131(34): p. 12230-
12239. 

24. McGill, W.J. and F. Sebba, The Kinetics of Ammonia Decomposition over Vanadium Nitride. 
Journal of Catalysis, 1963. 2(2): p. 104-108. 

25. Volpe, L. and M. Boudart, Compounds of molybdenum and tungsten with high specific surface 
area : I. Nitrides. Journal of Solid State Chemistry, 1985. 59(3): p. 332-347. 

26. Jaggers, C.H., J.N. Michaels, and A.M. Stacy, Preparation of high-surface-area transition-metal 
nitrides: molybdenum nitrides, Mo2N and MoN. Chemistry of Materials, 1990. 2(2): p. 150-157. 

27. Schlögl, R., Ammonia Synthesis, in Handbook of Heterogeneous Catalysis, G. Ertl, et al., Editors. 
2008, Wiley-VCH Verlag GmbH & Co. KGaA. 

28. Mittasch, A. and W. Frankenburg, Early Studies of Multicomponent Catalysts, in Advances in 
Catalysis, V.I.K. W.G. Frankenburg and E.K. Rideal, Editors. 1950, Academic Press. p. 81-104. 

29. Kraupner, A., et al., Mesoporous Fe3C Sponges as Magnetic Supports and as Heterogeneous 
Catalyst. Journal of Materials Chemistry, 2010. 20(29): p. 6019-6022. 

30. Temkin, M. and V. Pyzhev, Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta 
Physicochimica Urss, 1940. 12(3): p. 327-356. 

 

 



a 
 

Personal Information 
 
Family name: 

 
Zheng 

 

First name: Weiqing 
Date of birth: 18th May 1980 
Place of birth: Dalian, China 
Marriage: Married in May 2006 

with Xiaolin Zhang 
 

 

Education 
 
02.2008 ~ present Doctoral Thesis 

 
Fritz-Haber-Institut der Max-Planck-Gesellschaft 
Department of Inorganic Chemistry 
Faradayweg 4-6,14195, Berlin, Deutschland 
Supervisor: Prof. Dr. Robert Schlögl 
Subject: Heterogeneous Catalysis, Chemical Engineering 
Thesis: “Nanomaterials for Ammonia Decomposition” 
 

09.2004 ~ 11.2007 Master’s Degree 
 

09.2004 ~ 08.2005 Graduate University of the Chinese Academy of Sciences 
College of Chemistry and Chemical Engineering 
19A Yuquanlu, 100049, Beijing, China 
 

09.2005 ~ 11.2007 Dalian Institute of Chemical Physics, CAS 
Laboratory of Applied Catalysis 
457 Zhongshan Road, 116023, Dalian, China 
Supervisor: Prof. Dr. Hengyong Xu 
Subject: Heterogeneous Catalysis, Chemical Engineering 
Thesis: “The Study of Ni-based Catalyst and Its Catalytic Performance 
for Ammonia Decomposition” 
 

09.1999 ~ 07.2003 Bachelor’s Degree 
 

09.1999 ~ 08.2001 Dalian University of Techology 
School of Chemical Engineering 
 

09.2001 ~ 08.2003 Dalian University of Technology 
State Key Laboratory of Fine Chemicals 
158 Zhongshan Road, 116012, Dalian, China 
Supervisor: Prof. Dr. Zongshi Li 
Subject: Applied Chemistry, Fine Chemical Engineering 
Thesis: “The Synthesis and Properties of Alkyl Methyl-naphthalene 
Sulfonate Surfactant for Tertiary Recovery” 



b 
 

 

 



c 

 

Acknowledgements 
 
The work presented in this thesis was carried out at the Department of Inorganic 
Chemistry at the Fritz Haber Institute of Max Planck Society in Berlin. Herein I would 
like to give thanks to numerous people who helped me to make it possible in my studies. 

First and foremost I would like to thank Professor Dr. Robert Schlögl for giving me the 
opportunity to carry out my study and for sharing his vision and great knowledge in the 
field of catalysis. I would also like to thank my supervisor, Professor Dr. Dang Sheng Su, 
for his continuing support for my work and life. Their excellent supervision and 
enthusiasm have helped in building my practical and intellectual skills. 

I would like also to thank the thesis committee Prof. Reinhard Schomäcker, Prof. Klaus 
Rademann and Prof. Thorsten Ressler for their inputs and patience. 

I would like thank to Professor Dr. Jian Zhang who has immensely contributed to 
development of my scientific journey in the Fritz Haber Institute. 

I would like to thank all my collaborators, Prof. Ferdi Schüth and Klaus Schlichte in 
MPI-Mülheim, Otremba Torsten in TU-Berlin Dr. Payam Kaghazchi and Dr. Timo Jacob 
in Ulm University for the measurements and fruitful discussions. 

My sincere gratitude is also extended to all the researchers, lab technicians in and fellow 
students in Inorganic Chemistry of The Fritz-Haber Institute. I would like to 
acknowledge the following people for the technical assistance: Raoul Blume, Lide Yao, 
Gisela Weinberg, Wei Zhang, Bingsen Zhang, Yonglai Zhang, Gisela Lorenz, Edith 
Kitzelmann, Frank Girgsdies, Olaf Timpe. Special thanks for Tom Cotter who offered his 
fancy materials and helped me to a deep understand of carbide and nitride. 

I would like to acknowledge the members of the old carbon group for their kindness help; 
Rosa Arrigo, Manfred Schuster, Benjamin Frank, Lidong Shao, Bo Zhu, Aihua Zhang, 
Wiebke Frandsen, Achim Klein-Hoffmann, Norbert Pfänder, Julian Tornow, Yuchen Du, 
Alberto Villa, Qiang Zhang, Xiaochen Zhao and Chengmeng Chen. Special thanks to my 
officemates, Sylvia Reiche and Jean-Phillippe Tessonier, and to my roommates, Di Wang 
and Ali Rinaldi. 

I would like to thank my wife, Xiaolin, without her support and sacrifice that I could not 
manage to survive through my stay in Berlin. 

Finally I would like to thank my parents, who raised me, supported me, and always 
believed in me. 


	1. Frontpage.pdf
	2. Abstract English
	3. Abstract Deutsch
	4. Table of content
	Chapter 1
	Chapter 1: Introduction
	1.1 Research background
	1.2 Aims of this work and thesis structure
	1.4 Publication declaration

	Chapter 2
	Chapter 3
	Chapter 3:
	Ruthenium Nanoparticles on Carbon
	3.1 Structure-function correlations for Ru/CNT
	3.1.1 Surface modification of CNTs
	The starting material for this study is the commercial multiwallled CNTs produced by Bayer, Germany. The product known simply as Baytubes CNTs has 95wt% carbon purity and average outer diameter of 10nm. The impurities of this sample composed mainly of...
	3.1.1.1 Textural properties of CNTs
	/
	Figure 3-1. Representative TEM images of nitric acid functionalized commercial CNTs calcined at different temperatures. (a) C450; (b) C900; (c) C1500.
	//
	Figure 3-2. BET analysis of C450, C900 and C1500 CNTs supports. (a) isotherms; (b) BJH-desorption pores distributions.
	3.1.1.2 Graphitization characterization of CNTs
	Raman spectroscopy is a common method to characterize the order of carbon materials.[29-33] Raman bands of the samples and the quantitative results are summarized in Figure 3-3 and Table 3-1. The D band centered at ~1350 cm-1 is usually attributed to ...
	/
	Figure 3-3. First- and second-order Raman spectra of the CNTs calcined at different temperature.
	/
	Figure 3-4. EELS analysis of CNTs calcined at different temperatures. (a) ELNES spectra of C450, C900 and C1500 samples; (b) normalized EELS spectra.
	Energy-loss near-edge structure (ELNES) spectroscopy measurements of the C450, C900 and C1500 samples are presented in Figure 3-4. Spectra were obtained from a circular region with 100 nm diameter including several CNTs perpendicular to the electron b...
	3.1.1.3 Surface characterization of CNTs
	Surface functional groups of the Ru/CNT catalysts were analyzed by X-ray photoelectron spectroscopy (XPS) with Ru-out-C450 and Ru-out-1500 samples (details of assigning C1s data are summarized in Figure 3-6. All sp2 and sp3 C-C and C-H bonds were assi...
	3.1.2 Selective deposition of Ru nanoparticles on CNTs
	A two-step impregnation method [38] was used to prepare the inside supported Ru catalysts for this study. Incipient wetness impregnation is well-known technique used for catalyst preparation.[39, 40] A solid catalyst support is brought in contact with...
	Decoration of the outer surface of closed CNTs is an easy task. However, decorating selectively only outer surface of opened CNTs is far more challenging.[38] A two-step impregnation method was used to prepare the samples outside supported ruthenium c...
	In this work, we tried to identify the location of the selected particles by tilting the angle of the sample holder. The representative TEM images of Ru nanoparticles inside CNTs are shown in Figure 3-6 e-f, typical ruthenium nanoparticles are labeled...
	As shown in Table 3-1, the ruthenium particle size increased with the calcinations temperature of the supporting CNTs for both Ru-in and Ru-out samples, indicating a lower site density for strong Ru-C interactions with increasing perfection of the sup...
	The morphology of the ruthenium nanoparticles on the inner and outer walls of the CNTs could be identified to a certain extent by high-resolution TEM images. In Figure 3-7 and 3-8 we show representative ruthenium nanoparticles supported on the inner a...
	3.1.3 Catalytic NH3 decomposition
	Catalytic NH3 decomposition was performed according to the procedure detailed in the experimental section in chapter 2. All the Ru-CNTs samples were evaluated at the same reaction conditions (Figure 3-9).
	/
	Figure 3-9. Catalytic performances of all samples. Reaction conditions: 50 mg catalyst, 30 ml/min pure NH3, 36000 h-1 space velocity, at 450  C.
	Figure 3-10 summarizes the catalytic performance (hydrogen production rate at steady state) correlated with structural descriptors. The catalytic activity of Ru nanoparticles scales with their size; larger particles exhibit more active sites per parti...
	/
	Figure 3-10. Correlation of steady catalytic performance with structural descriptors for the support and for the active mass.
	At high conversions and on large surface facets inhibition of activity occurs by adsorbed hydrogen,[51] as also indicated by the leveling off in the particle-size-activity curve of Ru-out in Fig. 3-10. This adverse effect is in line with the faceted s...
	3.2 Structure-function correlations for Ru/graphite
	In this section, a detail investigation of Ru-carbon interactions was studied by using combinational characterization methods including high-resolution TEM and in-situ XPS measurements.
	As mentioned in last section, Ru-based catalysts exhibit promising catalytic properties both in the ammonia decomposition and synthesis.[1, 2] By acknowledging the findings in ammonia synthesis, the active sites for this reaction are the step atoms of...
	In present study, we will report a fundamental study on the structural effects of graphite when used as supports for ruthenium nanoparticles, especially focus on the local geometry of ruthenium nanoparticles, which could probably influence the subsurf...
	3.2.1 Characterizations of the supports
	3.2.1.1 Textural properties of graphite samples
	/
	Figure 3-11. N2-adsorption/desorption isotherms of different graphite samples.
	The physical properties of the graphite supports were summarized in Table 3-2. The specific surfaces of graphite with different scale of unit were measured from N2-physisorption technique. The diameters and thicknesses of graphite were estimated based...
	3.2.1.2 Graphitization characterization of graphite samples
	The graphitic structures of different graphite were studied by Raman spectroscopy, which is a common method to characterize the order of carbon materials.[29-33] The Raman spectra of the samples and the quantitative results are summarized in Fig. 3-12...
	In order to quantify the disorder of carbon materials, the intensity ration of D- and G-bands (ID/IG) was calculated based on the mathematical fitting procedures for the Raman spectra.[33, 60] In this study, we used a mathematical fitting procedure to...
	/
	Figure 3-12. Raman spectra of different graphite. All spectra were fitted following the procedure in literature. Ref. [29]
	3.2.1.3 Surface analysis of graphite
	The surface properties of different graphite samples were analysised by X-ray photoelectron spectroscopy, which could identify the chemical configuration on the surface of carbon materials. Figure 3-13 summarized the C1s and O1s XPS spectra of Ru-G, R...
	/
	Figure 3-13. XPS analysis of different samples operated at 400  C in vacuum.
	It can be seen that the functional group with C-O bonds are appearing on exfoliated graphite sample, which were formed during the chemical exfoliation procedure. Due to the low amount of those groups on both graphite and exfoliated graphite samples, i...
	3.2.2 Catalytic performance of ruthenium samples
	Figure 3-14 shows the ammonia conversion of Ru-G sample as function of reaction time. At 450  C, the steady H2 production rates of Ru-G, Ru-EG and Ru-HSAG catalysts are 422, 159 and 217 mmolH2/(gRu min) which are listed in Tab. 3-2. The highest reacti...
	/
	Figure 3-14. Catalytic performance of Ru-G (2wt% Ru supported on graphite) sample at 450 and 600  C. Reaction condition: 50 mg sample, pure NH3 with space velocity of 36000 h-1.
	3.2.3 Morphology of Ru nanoparticles on different graphite
	The depositions of Ru nanoparticles on different graphite samples were operated with incipient wetness impregnation method, which detailed in Chapter 2. The prepared catalysts were dried at 110  C overnight, and pretreated with NH3 in the catalytic be...
	The morphology of ruthenium nanoparticles supported on different graphite samples was studied by transmission electron microscopy (TEM). The lattice distance of observing ruthenium particles in all images of all catalysts are 0.20, 0.21 and 0.23 nm, w...
	/
	Figure 3-15. Representative TEM images of Ru nanoparticles supported on different graphite (samples were collected after reaction). The particle mean size distributions were calculated with more than 500 individual counting particles.
	/
	Figure 3-16. Representative high resolution TEM images of Ru nanoparticles supported on different graphite (samples were collected after reaction).
	The representative TEM images (inserted with particle mean size distributions calculated with more than 500 individual counting particles) and high resolution TEM (HRTEM) images of three catalysts are shown in Figure 3-15 and 3-16. The ruthenium parti...
	/
	Scheme 3-1. NH3 decomposition over different size of Ru nanoparticles supported on carbon material.
	Compared to Ru-G catalyst, Ru-HSAG exhibited larger size (3.3 nm) with broader distribution of Ru particles, and lower reactivity of ammonia decomposition. The high density of oxygen species on the surface (XPS O1s in Fig 3-13), the low degree of grap...
	In Fig. 3-16 (a) to (c), a series of ruthenium atomic clusters with size lower than 2 nm could be observed in Ru-EG and Ru-HSAG catalysts but invisible in Ru-G catalyst. These atomic ruthenium clusters anchored by the dispersed oxidized vacancies on c...
	3.2.4 In-situ XPS measurements of the working system
	/
	Figure 3-17. Core-level photoelectron spectrum of Ru3d5/2 and N1s of all catalysts measured in 0.5 mbar NH3 at 400  C on an in situ XPS instrument performed at the ISISS beamline located at the BESSY II synchrotron.
	To investigate the reactants’ behavior on different ruthenium surfaces, three catalysts were characterized by means of in situ X-ray photoelectron spectroscopy (XPS) measured at 400  C and 0.5 mbar NH3, which is close to the practical reaction conditi...
	After normalization of C1s peak, the intensity of ruthenium peak increased with the increasing disorder structure of graphite support. The high intensity of ruthenium on disordered graphite support should be attributed to the small atomic clusters anc...
	The core-level photoelectron N1s spectra (Fig. 3-17-right) of all samples operated at 400  C in 0.5 mbar NH3 show a mixture of N states. The sharp and narrow peak at 400.9 eV is the gas phase peak of ammonia. The strongest component is found at 398.4 ...
	/
	3.3 Chapter conclusions
	3.3.1 Ru-CNTs
	In this section, we reported a structure-function correlation for ruthenium nanoparticles on CNTs. The observed trend is counter-intuitive to the general notion about a beneficial effect of reduced particle size for better activity in a nonselective r...
	3.3.2 Ru-graphite
	These work leads to the following major conclusions. First, it is clear that the catalytic activity of metals supported on carbon materials can be partially explained by the metal-carbon interaction originating from the local order of carbons (carbon ...

	Chapter 4
	Chapter 4:
	Alloying transition metal nanaoparticles on CNTs
	4.1 Textural property of support CNTs
	4.2 Characterizations of metal alloy nanoparticles on CNTs/CNFs
	4.3 Catalytic decomposition of NH3 on CNT-supported metal alloy nanoparticles
	4.4 Selective deposition of metal alloy nanoparticles on CNTs/CNFs
	4.5 Chapter conclusions

	Chapter 5
	Chapter 5:
	Molybdenum Carbides and Nitrides
	5.1 Bulk system of Mo carbides and nitrides
	5.1.2 Textural properties of fresh and used Mo carbides
	5.1.3 Phase identifications of fresh and used Mo carbides
	5.1.4 Electronic properties of fresh and used Mo carbide and nitride samples
	5.1.6 Carbon coating on high surface area molybdenum carbide
	5.2 Nanostructured molybdenum nitride
	5.2.1 CNT/CNFs supported molybdenum carbide
	5.2.2 Hydrothermal carbonization preparing nanostructured molybdenum nitride

	Chapter 6
	Chapter 6:
	Preliminary kinetic study of ammonia decomposition over molybdenum nitrides and metal nanoparticles

	5. CV
	6. Acknoledgement

