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Summary. During the last 15 years, there have been proposed many solution meth-
ods for the important task of constructing periodic timetables for public transporta-
tion companies. We first point out the importance of an objective function, where we
observe that in particular a linear objective function turns out to be a good compro-
mise between essential practical requirements and computational tractability. Then,
we enter into a detailed empirical analysis of various Mixed Integer Programming
procedures — such using nodes variables and such using arcs variables — genetic al-
gorithms, simulated annealing and constraint programming. To our knowledge, this
is the first comparison of five conceptually different solution approaches.

On rather small instances, an arc-based MIP formulation behaves best, when
refined by additional valid inequalities. On bigger instances, the solutions obtained
by a genetic algorithm are competitive to the solutions CPLEX was investigating
until it reached a time or memory limit. For Deutsche Bahn AG, the genetic algo-
rithm was most convincing on their various data sets, and it will become the first
automated timetable optimization software in use.

1 Introduction

The central task in the planning process of a large public transport company
is timetabling. So far this is done mostly manual, using computers mostly as
clever editors. The amount of people and time spent on this task is enourmous,
e.g. some hundreds of people at the Deutsche Bahn are working on it around
the year. At least part of this work will be automated in the near future, i.e.
within the next few years. Roughly spoken the timetabling task discussed here
consists in finding periodical completely regular timetables (no exceptions on
weekends, in the night, on the borders, etc.) given the infrastructure, a line

* Supported by the DFG Research Center “Mathematics for key technologies”
in Berlin



2 C. Liebchen, M. Proksch, F.H. Wagner

system, and the amount of changing travellers between the lines ([5]). The
optimization goals are minimizing the travel times and the amount of rolling
stock needed, i.e. satisfying the needs of the customers and the company.

Various approaches were tried out so far on this hard problem, on the
occasion of selecting such a procedure for the Deutsche Bahn we compared
a major part of them in a real-world setting. Two things were essential in
performing this task: On one hand the versatile data modell we use to de-
scribe the problem, that will be described in detail in the next chapter, on
the other hand the existence of a very comfortable optimization workbench
named prosim Ezrpress, that has been developed beforehand in order to deal
with optimization tasks within the Deutsche Bahn. This basic idea of prosim
Express is to have a toolbox of general purpose optimization algorithms and
combine them with a problem specific part making it easy to tackle a problem
with different algorithms.

For the timetable optimization problem the Genetic Algorithm and the
Simulated Annealing offered by prosim Express were used. Further tests we
effected with several MIP formulations, as they will be presented in section 3.
Notice that even the best performing formulations are so challenging that the
latest version of the MIPLIB [17] contains two such mixed integer programs.
Finally, we have a short look at a constraint programming algorithm. We
are aware, that such algorithms are not originally designed for optimization.
Hence, we will primarily analyze the time for generating a first feasible so-
lution. But since we are convinced that a linear objective function is really
essential, we will also have a look at the the objective values being attained
when our time limits apply.

2 Modeling Periodic Railway Timetables

In 1989, Serafini and Ukovich[30] introduced the periodic event scheduling
problem (PESP), by which instances of periodic timetabling may be for-
mulated in a very compact way. Since then, this model has been widely
used ([31],[22],[20]). In the Periodic Event Scheduling Problem (PESP), we
are given a period time T and a set V of events, where an event models ei-
ther the arrival or the departure of a directed traffic line at a certain station.
Furthermore, we are given a set of constraints A. Every constraint a = (4, j)
relates a pair of events i, j by a lower bound ¢, and an upper bound u,.
A solution of a PESP instance is a node assignment 7 : V — [0,T") that
satisfies
(mj —my — L) mod T < ug — 4o, Va= (4,j) € A, (1)

or mj —m; € [{q,uq]r for short. Notice that we may assume w.l.o.g that 0 <
by < T and u, — £, < T. The PESP is N'P-complete, since it obviously
generalizes Vertex Coloring[27]. We just orient the edges of a Coloring instance
arbitrarily and assign feasible periodic intervals [1,T — 1] to each of them.
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At the end of this chapter, we will give several motivations why we consider
an objective function to be important. On the one hand, a linear objective
function is rich enough to model the most important features. On the other
hand, a linear objective function permits to include powerful MIP solvers, in
particular CPLEX®, into our study. Hence, we add a linear objective function
of the form

Z Cq - (mj —m; —4y) mod T
a=(1,j)€EA

with costs c,.

The PESP yields the capability to model manifold practical requirements aris-
ing in periodic railway timetabling. To name just a few, we will give only three
examples. We model a trip of ¢ time units of a directed line from station D to
station A by requiring m,—mg € [t, t]7. To separate two lines sharing a common
track by a safety distance of d time units, we require 74, — 74, € [d,T —d]r. Fi-
nally, we are going to model the quality of changeovers. Notice that a timetable
is still feasible from an operational point of view, even though it may offer
very long waiting times for changeovers. Hence, we only introduce “loose con-
straints”, i.e. we set ug := €, + (T — 1), where £, models the minimal amount
of time required for changing trains. By setting the cost coefficient of such
a loose constraint to the number of passengers on that specific connection,
we are able to guarantee good timetables by minimizing the total changeover
waiting time. For further practical requirements, we refer to [25].

But there are even two more interesting modeling features not having a
special practical background. Serafini and Ukovich[30] observed that disjunc-
tive constraints are covered by the PESP. More precisely, for 0 < /1 < u1 <
ly < ug < T, we have

T — T € [61,U2]T N [€Q,T+U1} & T — T € [51,U1]TU [ﬁz,uﬂ.

Furthermore, Nachtigall[23] models soft constraints by two antiparallel loose
PESP constraints with identical positive cost coefficient.

In our dialogue with practitioners of both, national railway companies and
urban transportation companies, the following three features turned out to
be important:

e simultaneous minimization of the amount of rolling stock required to op-
erate the timetable ([25] and [19])

e minimization of passenger waiting time with no risk of overdetermining
the system by the definition of maximal changeover times which are too
tight

e maximization of the number of connections not exceeding a certain waiting
time by making use of soft constraints.

Fortunately, all these can easily be expressed by means of a linear objective
function.
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Whereas the way of modeling changeover activities can be seen to depend
only on the flavor of each individual company, almost all companies have in
common that they want to minimize the amount of rolling stock. In fact, this
requirement has to be seen as an input for timetabling, because the quality of
the vehicle schedule, being the next planning step in the classical hierarchical
approach, is largely determined by the timetable. For example, during the
weak traffic time, in which still a 10 minutes frequency is offered, the Berlin
Underground strictly rejects timetables which require 75 trains or even more,
because only 68 are technically necessary and the salaries form a considerable
portion of the operational costs. In order to get an acceptable situation for
changing passengers, about 70 trains suffice.

We will analyze in which special cases pure PESP constraints are able
to control the number of trains required. After that, we show that a linear
objective function covers many more of the relevant practical cases.

Proposition 1 (Nachtigall[25]). Consider a fized traffic line with period
time T. If we assume trains always to serve only this line, and if we do not
allow to insert additional stopping time, then there exist upper bounds u for
the turnover activities, such that the only feasible timetables are those which
can be operated with the minimal amount of trains.

Proof. We present a proof of this simple fact, both in order to provide the
notation used in the following paragraphs, and because it avoids modulo-
notation.

Denote the endpoints of the line by A and B. Let ¢ 45 denote the minimal
travel time from A to B, i.e. the sum of the minimal stopping and running
times of the activities of this directed traffic line. Moreover, denote by /g
the minimal amount of time a train has to stay in endpoint B between two
consecutive trips.

The minimal number N of trains required to operate this line is precisely

N VAB-%fB;gBA—FgA—"

Notice that from the cycle periodicity property (8) we will deduce that every
feasible timetable z fulfills

rap + 7B +xpa+za=2T, (2)
for some z € Z. Hence, we must ensure z = N. To that end, consider the slack
s:=NT — (lap+lp+Lpa+La)

of this traffic line, implying (x4 — €4) + (x5 — ) = s. But since s < T, by
setting
ug i =L0a+ s (3)

we even ensure ap + g +Tpa +xa < (N + 1)T, q.e.d. |
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Let us now analyze the case in which additional stopping times may be
inserted, i.e. uap > £ap. We will show that together with the constraints (3),
some timetables which require an additional train may become feasible.

On the one hand, consider a timetable for which we have x = /¢ for all activ-
ities, except for the turnover time in one endpoint. Obviously, this timetable
can still be operated with the minimal number of trains, showing that de-
creasing the value (3) for u4 would cut off timetables we seek for.

On the other hand, assume xap = uap and xpa = upa. If

(uaB —€aB) + (upa —¥€Ba) +s > T, (4)

then we can extend z to a timetable that still respects (3), but which requires
at least one additional train. For instance, if inequality (4) holds with equality,
then x = u yields xap + g + xpa + x4 = (N + 1)T.

The above dilemma is our main motivation for the need of an objective func-
tion, at least for a linear one. Such a function takes advantage of equation (2):
By assigning a value M to the arcs modeling a traffic line, every additional train
pays MT' to the objective function value. If the value for M is chosen relatively
large compared to the passenger weights, the objective function essentially
models the piecewise constant behavior of the cost of the rolling stock for
operating the train network.

From a more local perspective, we just penalize idle time of train. But this
can even be done without knowing a priori the circulation plan of the trains.
Although an exact model involves a quadratic objective function, Liebchen
and Peeters[19] report that a linear relaxation yields results of high quality.

But there is even another problem with forcing lines to be operated with
the minimal number of trains. In Berlin, for instance, the two underground
lines U6 and U7 are required to meet at Mehringdamm, because there, they
share a common platform. But due to the existing running times, turnover
times, and minimal changeover times, this simple requirement yields an in-
consistent constraint system, as long as we require both lines to be operated
with the minimal number of trains. However, we do not want to take the de-
cision in advance, for which line to add the extra train. Hence, every feasible
constraint system must contain timetables which require an additional train
for both lines. Whereas the pure PESP has to fail, already by the means of a
linear objective function we are able to prefer timetables which require only
one extra train in total.

3 Problem Formulations

Recall the initial definition (1) of the PESP in the previous chapter. We can
interpret the variables m as a node potential, which periodically satisfies the
given constraints. Notice that if we omit the modulo operator in (1), we obtain
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the more restrictive Feasible Differential Problem (FDP), which can be solved
easily by network flow techniques.

The initial formulation (1) will immediately serve as input for the Con-
straint Programming formulation, as well as for the local search procedures
we are going to examine.

But in order to get to an MIP formulation, we must resolve the modulo
operator by integer variables. An original constraint (1) translates to

Ly §7rj_7ri+puT§Ua7

where p, is required to be integer. Here, the integer variables permit to shift
potential differences into the target interval [¢,, u,], where the pure aperiodic
difference fails. We obtain the first MIP formulation:
min = Y, ¢q-(mj —m +plT)
a=(i,j)EA
st. < Bin+pT <u (5)
peZA
e 0,T)V,

where B denotes the node-arc incidence matrix of the directed (multi-) graph
D = (V, A). Notice that for every feasible solution, we are able to guarantee
Pa € [0,Pa] N Z, with

(6)

Obviously, for a fixed vector p, the feasible region of (5) is precisely the FDP,
showing that indeed the integer variables form the core of the model. Notice
that for a fixed spanning tree H, we may fix p, = 0 for every a € H, if we
relax 7 € Q" [30], which yields formulation (5a).

— (1,ifu.<T,
Pa = 2, otherwise.

Another perspective of periodic scheduling can be obtained by considering
tensions instead of potentials. In a straightforward way, define for a given
node potential 7 its tension

Zq :=m; —m, Ya = (i,7) € A.

Recall that a vector Z is a tension, if and only if for an arbitrary cycle basis C,
yoi# = 0 for every cycle C' € C with with incidence vector yo € {—1,0, 1}4.
This yields the second MIP formulation:

min c!(& + pT) min clx

st. I'e=0 st. I'e—pT) =0
(<z+pT <u or {<x<u (7)
pEZA, peZAa

where I' € {—1,0, 1}(IAI=IVIFDXIAl denotes the cycle-arc incidence matrix (cy-
cle matriz) of some cycle basis C of the graph D. Of course, the box con-
straints (6) apply to formulation (7) as well.
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We are able to reduce the number of integer variables from |A| down to |A| —
|[V| + 1, by introducing periodic tensions. For a given node potential 7, we
define the corresponding periodic tension x as

Tij = (ﬂ'j — T — &J) mod T + Z”
Periodic tensions can be characterized similarly to classic aperiodic tensions.

Lemma 1 (Cycle Periodicity Property). A vector x € Q4 is a periodic
tension, if and only if for every cycle C with incidence vector yo € {—1,0,1}4,
there exists some z¢ € 7, such that

vyox = zcT. (8)

By extending an approach of Nachtigall[22], Liebchen and Peeters[18] proved
that it suffices to ensure equation (8) only for the elements of an integral cycle
basis of the directed graph, which leads to the third MIP formulation

t

min c'z
st. I'w=2z2T
{<zx<u ©)

2 e ZIAI=IVI+T

Here, I" denotes the cycle matrix of an integral cycle basis. By defining slack
variables T, := x, — {,, we obtain formulation (9a), which turns out to be
slightly easier to solve for CPLEX®.

But there is even a problem with formulation (9a): its LP-relaxation has
minimal value 0, because a fractional vector z is always able to compensate
any vector Z,, thus in particular £ = 0. Hence, additional valid inequalities
are essential for obtaining good lower bounds.

Theorem 1 (0dijk[27]). An integer vector p allows a feasible solution for
the MIP (7), if and only if for every oriented cycle C' of the constraint graph,
the following cycle inequalities hold

[gz Lo Y uaﬂ <Y me s {%@ TED> mJ, (1)

acCt acC— acCt acC— acCt acC—
where C* and C~ denote the forward and the backward arcs of the cycle C.

Of course, there is a reformulation of the valid inequalities (10), such that
they apply to formulations (9) and (9a) as well. There, they immediately yield
box constraints z < z¢ < Z¢ for every integer variable z¢, when applied to
the corresponding cycle C' of the cycle matrix in the problem formulation.
Defining Z¢ := z¢ — z¢ provides formulation (9b), in which we may declare
certain variables to be binary, which MIP solvers seem to like as well.

Furthermore, for a fixed cycle C, the span between lower and upper bound
of a pair of cycle inequalities (10) behaves much similar to the value
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Z(Ua - ga)'

acC

In order to have only few choices for the integer variables, we are looking for
an integral cycle basis C, which minimizes

S da, (11)

ceCacC

where we define d, := u, — ¢, to be the span of arc a. More precisely,
Liebchen[16] reports a correlation of about 0.5 between the width

H (Zo —z¢ +1) (12)

ceC

and the solution time of CPLEX® on formulation (9b).

But minimizing (11) for arbitrary cycle bases is just the minimal cycle basis
problem (MCB), for which Horton[11] designed a polynomial time algorithm.
However, the complexity of minimizing (11) only for integral cycle bases is
unknown to the authors. Finding minimal strictly fundamental cycle bases —
which are a very special subclass of integral cycle bases — has recently been
proven to be MAXSNP-hard[10]. Anyway, there are powerful heuristics avail-
able for constructing both, short strictly fundamental cycle bases and short
integral cycle bases[8][7][16].

We propose to use a variant of the cycle inequalities (10) as well. From for-
mulation (9), one can see that the integer variables can be expressed by sums
of tension variables. After only a few elementary transformations, an origi-
nal cycle inequality (10) in terms of the integer variables z becomes a valid
inequality (10a) in terms of the tension variables. Nachtigall[23] introduced
further inequalities in terms of the tension variables.

Theorem 2 (Nachtigall[23]). For every elementary cycle C, define b :=
(> aco-ta =D acct ta) mod T If b > 0, then

(T=b)( D #a)+b( Y #a) > b(T —1) (13)
acCt acC—

is a facet defining inequality for the polyhedra defined by the mized integer
linear programs (9a) and (9b), in terms of slack variables.

4 Exhausting the Problem Formulations
In any of the MIP formulations, we have to decide for which cycles to add their

cycle inequalities (10), occasionally in their tension variant (10a). In addition,
we may add change cycle inequalities (13) to formulations (7) and (9b). Of
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course, problem formulation (9b) is most challenging, because there we may
even choose an integral cycle basis. However, this choice makes it very difficult
to compare formulation (9b) for different cycle bases, in particular if we add
cycle inequalities (13), as their formulation essentially depends on the integer
variables being available in the specific formulations.

After occasionally having added some valid inequalities, we transfer the
instance to the MIP solver of CPLEX® (Cut and Branch).

Since there are no polynomial separation algorithms available for the valid
inequalities that we consider, and since both kinds of valid inequalities are
defined for oriented cycles of the directed graph, we heuristically generate
cycles. Apart from the fundamental cycles of minimal spanning trees subject
to random edge weights, we use the following four heuristics:

e fundamental cycles of minimal spanning trees subject to the values z* in
an optimal solution of the current LP relaxation,

e fundamental cycles of minimal spanning trees subject to the integral gap
|pz — round(p})| in an optimal solution of the current LP relaxation?,

e theup to |A|-|V] candidate cycles of Horton’s polynomial MCB algorithm|[11]
subject to the integral gap in an optimal solution of the current LP relax-
ation, and

e theup to |A|-|V] candidate cycles of Horton’s polynomial MCB algorithm|[11]
subject to the arc spans d.

The cycle bases that we consider in formulation (9b) are

1. MST span: the fundamental cycles of an MST subject to edge weights d,,

2. MST nspan: the fundamental cycles of an MST subject to edge weights
T- daa

3. NT: the fundamental cycles obtained by the NT heuristic (non-tree edges)
of Deo et al[7],

4. UV one: the fundamental cycles obtained by the UV heuristic (unexplored
vertices) of Deo et al[7],

5. UV span: the fundamental cycles obtained by the UV heuristic, in which
we introduced the values d, as edge weights,

6. UV nspan: the fundamental cycles obtained by the UV heuristic, in which
we introduced the values T'— d, as edge weights, and

7. Horton: the minimal cycle basis obtained by Horton’s algorithm, given
that it produces an integral cycle basis.

To any of the heuristics (1) to (6), we apply fundamental improvements[16],
as they have been proposed by Berger.

For the genetic algorithm approach we are going to follow, Nachtigall and
Voget[26] proposed to encode a timetable by storing for each event 4, at which
point of time 7; € {0,...,T—1} it should take place. Moreover, they proposed

4 In formulation (9b), it makes only sense to identify the components of p* with
the (non-tree) arcs of the digraph, if we use strictly fundamental cycle bases.
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to apply a local improvement heuristic to every new individual, which has been
obtained by a mutation or a crossover operation. In this local improvement
step, they subsequently consider every event 7, and compute for every point of
time t € {0,...,T — 1} the (local) objective value along the arcs in the cutset
induced by node %, and set 7; such that the minimum is attained. Notice that
this procedure depends heavily on the time precision that was chosen for the
computation.

We propose two modifications which make this approach more efficient.
First, in our practical data sets, there are several arcs a = (4,7) with ug —
{, < T, in particular stopping activities. Since in such a situation, only few
pairs (m;,m;) € {0,...,T—1} x{0,...,T — 1} satisfy constraint a, we propose
to encode for event j only its offset relatively to m;. Second, we profit from the
fact that we only consider linear objective functions. Hence, for every feasible
timetable 7, there exists a timetable 7’ having objective value not bigger
than 7, but in that for every node 7, there exists an arc a = (4, ) € 6°"*(i) or
an arc b = (k,i) € 6™ (i), such that 7 € {m + £y, 7}, + up, 7 — L, Tj — g} Mod
T. Using this property, we propose to consider only these tightening values
during the local improvement step. Doing so, the running time of the local
improvement step becomes independent from the time precision, i.e. it makes
no more a big difference, whether one time unit represents 60 seconds (T =
120), or only 6 seconds (7" = 1200), where only the latter is the standard for
tactical internal documents of Deutsche Bahn.

In order to help the constraint programming approach in the optimization
context, we strengthen some constraints with large span and big objective
value. In more detail, for the 15 arcs a with biggest objective value and d, > %,
we set ul, := lg+ % But we also try to prevent the problem from getting over-
determined. Hence, we effect this strengthening only if for every cycle of the
constraint graph the sum of the spans of its arcs remains at least once the
period time T'[14].

5 Computational Results

For each of the three data sets on which we performed the computations, we
first give a short description of the real-world problem. Then, we will report
the behavior of the algorithms, where we start each time with the various
MIP formulations.

There, besides problem specific parameters, out of the huge number of
CPLEX® parameters we followed suggestions of Bixby[4] and varied the fol-
lowing ones:

e variable selection strategy
default or strong branching|6]
e MIP emphasis|6]
default, integer feasibility, or optimality
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e MIP cuts
default or aggressive cut generation
e user cuts
add valid inequalities as full constraints or only as user cuts|6]

All computations which involve CPLEX® were carried out on Intel Pentium 4
machines with 2.8 GHz and 1024MB RAM.

In contrast to solving LPs, we did not use well known standard software for
local search. Therefore we should spend some more words on this topic. For the
tests of the genetic algorithm we used a very simple version of the algorithm
with only a few parameter (p,g € N*,m € R"):

1. Create an initial population of p random individuals.
2. Repeat g times:

a) Pair the p individuals randomly to |p/2] pairs. Create 2 children from
every couple by recombination.

b) Create [m-p| mutants of the p individuals by the mutation operator.
This is done by first creating |m| mutants from every individual.
Afterwards [m-p| —|m]-p individuals are randomly selected to create
another mutant each.

¢) Remove duplicate individuals.

d) Compute the cost function for all individuals (given generation, chil-
dren and mutants). Select the p best individuals to form the new
generation.

3. Select the best individual of the last generation as the result of the algo-
rithm.

This and some more elaborated versions of the genetic algorithm are dis-
cussed in [21].

Please note that best individual of every generation is better or equal
to the one of the previous generation. Therefore this version of the genetic
algorithm implements an improvement only strategy.

Since the algorithmic behaviour of our simple genetic algorithm does not
change over the generations, the total number of generations ¢ is not an inter-
esting parameter. The result of any test with a large number of generations can
be used to analyse a smaller one, just by cutting off the appropriate number
of generations.

The two remaining parameters, the population size p and the mutation
intensity m, were subject of our test runs. Since both parameters affect the
number of produced individuals per generation and thus the run time, we
coordinated them to get almost the same number of individuals in every test
run.

In contrast to the other two approaches, local search procedures like the
genetic algorithm and simulated annealing are randomised algorithms, which
cannot be judged by a single run. Thus, we always started a number on runs
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with identical parameter settings and averaged their results. Such a group of
singe runs is named “test run” in the further text.

The deviation of the results within one test run turned out to be very high,
especially on ICE small. When dealing with large deviations on randomised
algorithms, a promising idea is to start a couple of those algorithms and take
the best result as the output of the whole process. In the special case of
genetic algorithms, the selection of the best result can be done by collecting
the individuals of all runs to a common population, on which a final collecting
run is started. In doing so the genetic algorithm has the chance to combine
different good solutions to a possibly better one. We tried this approach on
U Berlin and ICE small. In addition we tested two different versions of this
approach on ICE small, which will be described there.

In [9] and [29] we successfully used MIR on Simulated Annealing for the
airline crew scheduling problem. Here we tried MIR on U Berlinand ICE small.
In addition we tested two different versions of it on ICE small, which will be
described there.

We further tested the simulated annealing algorithm with the geometric
cooling schedule. Since the results were rather poor, we do not present pa-
rameter studies, but only some numbers.

All computations for genetic algorithms and simulated annealing were car-
ried out on the same machine as those for CPLEX (Intel Pentium 4, 2.8 GHz
and 1024MB RAM).

The constraint programming parameters we are going to play with, are the
variable selection strategy and the domain reduction policy. Other experimen-
tal studies[14] showed that for timetable optimization instances, the forward
checking (FC) policy[1] and the so-called “look ahead” (LA) policy[1] perform
best. Moreover, it seems to be worth trying to proceed with the variable having
minimal current domain. Unfortunately, an ILOG Solver license is available
to us only on a SUN UltraSPARC-IIi with 333 MHz.

5.1 Solving U Berlin

The first data set models the Berlin Underground. In the evening hours and
on weekends, the period length is T' = 10 minutes. During this weak traffic
time, with only one small exception, each of the nine lines is operated on its
own track. The only safety conditions to be obeyed are crossings of tracks in
front of terminal stations, in case that no depot is located behind the station.

There are several objectives to pursue. First, if different lines share a plat-
form, then a good cross-wise correspondence has to be ensured. Second, the
number of trains required to operate the network has to be minimized. Third,
out of the about 170 changeover relations®, the 48 TOP connections must
not offer effective waiting time of more than five minutes. Forth, out of the

5 These relations include ten important connections to the fast train network, which
we assume to be fixed.
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next 36 relations, for a maximal number of connections the five minutes cri-
terion should hold as well. Finally, the minimal average changeover waiting
time has to be minimized. To that end, we allow to insert additional stop-
ping times at the eight most important correspondence stations, which involve
34 stopping activities in total.

After redundancies have been eliminated, the contracted digraph has
40 nodes and 240 arcs. There are 157 arcs with d, = T — 1, and 40 arcs
with d, < 0.2-T. The average span is 73.25%.

MIP Formulations

Among the three types of MIP formulations, we start with the integral cycle
basis formulation (9b). Since this formulation will allow very short solution
times for most integral cycle bases and CPLEX® parameter settings, we only
give a very compact summary in Table 1.

First, for every integral cycle basis, we give its width (12) and the optimal
value of the LP relaxation of system (9b) (relatively to the optimal value)
with cycle inequalities (10) added as box constraints on the integer variables.
We added up to 250 further valid inequalities or none, and varied the two
CPLEX® parameters variable selection and MIP emphasis.

Table 1. Solution times on U Berlin for various cycle bases

Tree MST MST uv NT uv UV  |Horton
Weight nspan span one one span nspan span
Improve no yes no yes| no yes no yes| no yes no yes —
Width 10"% 10" 10°° 10*°[10™ 10*® 10™ 10*¥[10™ 10% 107" 10*®] 10™
LP relax (%)| 8.025.1 18.9 24.5| 7.9 25.5 8.126.1| 6.724.9 17.7 35.7| 24.7
Min time (s) 25 1 i 1 1 1 1 14 1 1 1 1 1
Min param (1) div. div. div.|div. div. div. div.|div. div. div. div.| div.
Max time (s)|tilim 11 9 20 2 2 2 3 4 T 2 3 1
Max param | div. (2) (2) (2)| (2) div. div. div.| (2) (2) (2) (2)| div.
(1): strong branching, emphasize optimization

(2): no additional inequalities, emphasize integer feasibility

Table 1 shows that on our smallest instance, we may use almost every inte-
gral cycle basis in formulation (9b). Only if we put the arcs with largest spans
into a spanning tree, we really get a significantly worse problem formulation.
However, there are parameter settings, for which even this formulation can
be solved. In particular, strong branching and an emphasis on optimization
were a good choice, after we have added additional valid inequalities which
pushed the LP relaxation up to 67.8% of the optimal value. For any of the
other formulations, the longest solution times were attained when we did not
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add additional valid inequalities, did not activate strong branching, but put
an emphasis on integer feasibility.

But switching to the node-oriented formulation (5) or to the arc-oriented for-
mulation (7), the picture changes completely. Table 2 shows very impressively

Table 2. Solution times on U Berlin for formulations (5) and (7)

Formulation 5) B) Ga)l (M (M) (M)
Valid inequalities none (10) none| none (10) all
LP relaxation (%) 0 82.6 87.7

Solution time defaults (s)| 181 2155 3329((28%) (86%) 340
Solution time other (s) 295 146 7190((22%) (90%) 1538

that neither formulation (5) nor formulation (7) are able to attain a solution
behavior which would be competitive to reasonable formulations in terms of
integral cycle bases (9b), as they can be found in Table 1. Although after
at most 90 minutes an optimal solution has been found with formulation (7)
even when no cuts have been added, the lower bound was less than 30% when
the memory limit of 512 MB has been reached. We may only summarize that
among these formulations, the node-oriented variant (5) behaves least bad,
and it profits from the addition of cycle inequalities in their pure form (10).

As in some spot tests on instance ICE small we observed a much simi-
lar behavior, we do not follow these alternative formulations in our further
considerations.

Local Search Procedures

For evaluating the genetic algorithm on U Berlin, we started a number of
test runs with different parameter settings for the population size and the
mutation intensity.

Consider Figure 1. Every function plot represents the cost function by the
runtime, averaged over 30 single runs of the genetic algorithm on a certain
parameter set. For every single run the cost function of the best individual
and the run time is taken after every generation. The run times after every
generation were averaged among the 30 runs to get the x”=value. The cost
function as the y”=value is not the average, but the median of the corre-
sponding values. See the discussion below.

For every used parameter setting, the cost function reaches 12% above
optimum within the first 40 seconds, on settings with small mutation intensity
and bigger population size even faster. On the two settings (pop 100, mut 0)
and (pop 50, mut 1) a de facto optimum (about 0.02% above optimum) is
reached after 64 resp. 84 seconds. The other settings perform worse. While
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Fig. 1. Runtime behaviour of the genetic algorithm on U Berlin. Every plot is
averaged over 30 singe runs.

(pop 2, mut 49) stays at about 9.2% above optimum within the given runtime,
the remaining two settings reach about 1.2% above optimum.

We conclude that a small mutation intensity in connection with a large
population size performs best on this data set. De facto optimal solutions can
be obtained on those settings with high probability in a short runtime.

Since the feasibility of a solution is relaxed as a part of a cost function,
finding a feasible solution can not be guaranteed. While among all of the
above runs only one did not satisfy all technical constraints, a small number
of solutions with violated service constraints can be found in almost every
test run. Those infeasibilities are penalised with a high cost value (577% of
the optimum for every infeasibility) and hence have a strong influence on an
averaged cost value. Since one infeasible solution more or less in each test
run changes the average cost dramatically, those averaged values have no
significance. Using the median instead solves that problem.

Constraint Programming

On U Berlin, also the third class of algorithms is able to construct a (de facto)
minimal solution. For the strengthened instance, the ILOG Solver did not
exceed the time limit of one hour and thus provided an optimality proof.

Table 3 shows that our heuristic of tightening ten heavy constraints sup-
ports the work of the solver considerably. However, notice that after the
strengthening operation has been applied, the optimal solution value increases
slightly, from 1732571 to 1732708.

If we do not expect the constraint programming algorithm to terminate
with an optimality proof, then on our smallest instance there exist parameter
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Table 3. Solution times on U Berlin for constraint programming

Strengthening no yes

Propagation LA LA FC LA LA FC
Variable Selection| stand. MinDom MinDom| stand. MinDom MinDom
First solution (s) <1 <1 - <1 <1 224
First solution (%)[116.1% 125.5% -1101.2% 100.1% 100.1%
Best solution (s) 1745 889 - 21 <1 230
Best solution (%) [100.0% 110.5% -{100.0% 100.0% 100.0%
Total time tilim tilim tilim 603 172 1603

settings such that it is really competitive to the other algorithms — even

though optimization is conceptually out of scope for constraint programming.

5.2 Solving ICE small

The data sets ICE small and ICE big share the same basic network. In particu-
lar, ICE small is a subset of ICE big, resulting from the deletion of certain traffic
lines. In turn, the lines contained in ICE big are a subset of a strategic planning
scenario of Deutsche Bahn AG. Beyond the 31 pairs of directed two-hourly
traffic lines which are contained in ICE big, it consists of seven more pairs of
two-hourly lines, as well as several four-hourly variants. Hence, ICE small and
ICE big share large parts of their structure. Thus, we give the classification
numbers for both data sets together already at this point. However, since
the underlying infrastructure has the same capacity for the two scenarios, it
shall be easier to construct a feasible timetable for ICE smallthan for ICE big.
ICE small is designed such that most parameter settings for CPLEX® yield a
provably optimal solution within a reasonable time limit. In contrast, ICE big
is designed such that even with the best parameter combinations that we in-
vestigate, CPLEX® will not be able to prove optimality of a solution. But
notice that even this data set is not yet a complete practical scenario.

The real-world instances are described in Table 4. Notice that two lines,
which shall be synchronized to a frequency of % are synchronized explicitly at
every station, where an extension of minimal stopping time is allowed. Thus,
there are still some lines in ICE small, which are not synchronized with any
other line.

We obtain our data by some train network planning and analysis software.
Naturally, there are many redundancies in the resulting digraph associated
with the PESP instance. These can be eliminated in a preprocessing phase
that “contracts” the graph. For example, nodes with degree at most one as
well as arcs with span equal to zero can be contracted. Table 5 describes the
effect of this contraction step for the digraphs. Let us mention that the size
of the initial digraphs essentially depends on how safety arcs are generated.
They are needed to ensure a safety distance between two consecutive trains.
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Table 4. Classification numbers of the real-world problems

|Quantity |ICE small ICE big|
Pairs of traffic lines 11 31
Change activities 30 101
Stopping activities with extension

of minimal stopping time allowed 80 164
Number of pairs of directed lines

synchronized to a frequency of % 40 56
Number of sets of four lines

synchronized to a frequency of % 8 8
Number of pairs of lines

coupled on some track 2 8
Turnover activities 22 62

Table 5. Classification numbers of the digraphs

|Quantity |ICE small ICE big|
Original Digraph

Nodes 6592 14516
Arcs 7571 17836
Run/stop arcs 6570 14454
safety arcs 488 1660
Contracted Digraph

Nodes 69 173
Arcs 347 1234
—withd;; =T -1 43 132
—with d;; >09-T 256 1016
—with d;; <0.1-T 59 137
average span 76.7% 84.2%

If two trains share five consecutive tracks, this could be translated into five
safety arcs. However, our preprocessing method only creates one single safety
arc in this case.

Compared to the timetab-instances[17] of the latest MIPLIB, it might seem
that already ICE small has a complexity comparable to the bigger instance time-
tab2. However, it appears that CPLEX® has even less difficulties in solving
ICE small than in solving the smaller MIPLIB instance timetab1l.

We suppose that this is due to the fact that in ICE small there are much
fewer change activities and turnover activities than in timetab1l. Since these
are typically the only arcs with non-negative objective value — apart from
stopping activities — this might be a significant simplification for CPLEX®©.
Anyway, the instance ICE big is apparently at least as difficult to solve for
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CPLEX®, as timetab2, for which so far no solution has been proven to be
optimal.

MIP Formulations

The instance ICE small poses more difficulties even to the cycle basis formula-
tion (9b). Hence, we have to analyze the influence of the three main ingredients
for CPLEX®:

Which cycle basis shall we use?
Which and how many valid inequalities shall we add to the problem for-
mulation?

e  Which parameter settings shall we select for CPLEX©?

Obviously, it is not reasonable to consider combinations of each possible choice
for the above settings. Hence, we decided to proceed as follows.

First, we computed the width (12) of the 13 integral cycle bases we consider
throughout this paper, as well as the objective values of their LP relaxations.
In order to get already a more precise feeling for the different cycle bases, we
added to any of the formulations fixed sets of change cycle inequalities (13)
in their original formulation. For every cycle basis, we solved the original
formulation, as well as the refined ones.

Next, we put the focus on the types of valid inequalities to add. To the
three most promising cycle bases, we added up to 1000 valid inequalities in
any combination of the available types, in order to obtain the most powerful
lower bounds.

Then, we investigated how many valid inequalities are necessary, again in
order to get very good lower bounds. We performed these tests with three
different parameter settings for the cutting plane pool and for any of the
13 integral cycle bases.

Finally, we ran CPLEX® with different values for its MIP emphasis, its
variable selection strategy, and its strategies for cuts, both user cuts and
CPLEX® MIP cuts[6]. These experiments have been performed for the cycle
bases with smallest search space, shortest solution times in the previous cycle
basis test, and for the cycle bases with biggest lower bound after the previous
phase.

Which cycle basis? We start by computing the integral cycle bases for any of
the heuristics that we mentioned in Section 4. Furthermore, we ran our cutting
plane algorithm, in order to detect good sets of valid change cycle inequali-
ties (13), i.e. sets which induce big lower bounds. This has been performed
nine times each for different sizes of the cutting plane pool.

The overall best set of change cycle inequalities has cardinality 243. Besides
this, we considered the best sets of change cycle inequalities having 100 and
200 cuts, respectively. Notice that we constructed these sets such that every
valid inequality is tight for the LP relaxation.
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We added these three fixed sets of valid inequalities — as well as the
empty set — to formulation (9b), for each of the 13 integral cycle bases.
These formulations have been solved by CPLEX® with strong branching as
variable selection strategy and with a time limit of 2.5 hours. Notice that we
did add the three non-empty fixed sets of valid inequalities as pure constraints,
as well as user cuts. Hence, for each of the 13 cycle bases, we performed seven
runs of the MIP solver.

Table 6 shows that only for the cycle bases induced by a minimal spanning
tree subject to the arcs’ spans, and for a minimal cycle basis, CPLEX® is
able to solve ICE small to optimality for any of the seven settings for valid

Table 6. Solution times on ICE small for cycle bases and valid inequalities

Tree MST MST uv NT uv UV  |Hort
Weight nspan span one one span nspan [span
Improve Nno yes no yes| no yes no yes| no yes no yes| —
Width 10710771022 1079110 107° 1077 10721072 1072 102 107 [ 10°7
LP relax (%)| 5.323.3 2.126.3] 15435 5.2 321 14 100 4.219.2|37.9
# opt 0 2 77 1 2 0 1 0 2 0o 2 7
Min time (s)|tilim 880 258 178| 4748 697 tilim 5831|tilim 1355 tilim 365| 161
Min cuts —© 0 O © 1 @ O @ 1O 1 0 ©0
(0): best 243 change cycle inequalities as additional rows

(1): best 243 change cycle inequalities as user cuts

(2): 100 change cycle inequalities as additional rows

inequalities. Apart from these cycle bases, CPLEX® has only been able to
solve the UV formulation to optimality, if we turned off the fundamental
improvements to spanning trees. Notice that this cycle basis has smallest
width among the strictly fundamental cycle bases, but implies only a very
poor LP relaxation.

After having applied the fundamental improvement heuristic, for every
such cycle basis there has been a parameter setting such that CPLEX® has
been able to solve that formulation to optimality. In most cases, the quickest
solution times were attained by adding our best set of valid inequalities as
pure constraints to the original formulation.

Notice that the pure MIP formulation, i.e. without any valid inequality
added, has only be solved for those cycle bases, which have been solved for
any set of additional inequalities. Moreover, in all of these three cases, the
solution time for the pure formulation has been longer than those for the
formulations with 200 or our best set of 243 valid inequalities added.

Which cuts? In order to analyze which types of cuts contribute a sufficient
benefit to formulation (9b), we ran the cutting plane algorithm for three
very promising integral cycle bases: MST span with and without fundamental
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improvements because in the previous step, each of the seven runs has been
successful, and UV one with fundamental improvements because this yields
the best LP relaxation.

For these three cycle bases and any combination of classes of valid in-
equalities (10), (10a), and (13), we launched the cutting plane algorithm nine
times. In any of these runs, we held up to 1000 valid inequalities in the pool,
in every iteration up to 100 inequalities could have been added, and after
every iteration, weak cuts were deleted, if the cutting plane pool was full.
Table 7 presents average and extremal values for the lower bounds of the re-

Table 7. Lower bounds on ICE small for classes of valid inequalities

Tree MST span MST span UV one
Improve no yes yes
Cuts (10) (10a) (13) | (10a) (13) | (10a) (13)

Minimum (%) | 444 50.8 43.8 | 55.6 72.6 | 55.6  80.7
Average (%) 494 579 55.1 | 593 73.0| 61.1 815
Maximum (%) | 60.0 66.0 57.6 | 66.1 73.2 | 68.6 82.1

fined LP relaxations, when only one type of cuts has been added. Notice that
we only add cycle inequalities in their original formulation (10) to strictly
fundamental cycle bases.

Whereas for different cycle bases, the lower bounds do not differ much
for cycle inequalities (10a), the lower bounds attained by change cycle in-
equalities(13) seem to depend essentially on the cycle bases: The better the
LP relaxation of the cycle basis, the better the LP relaxation after adding
cuts (13).

Our explanation for these phenomena is the following. On the one hand,
the initial LP relaxation is only different from zero, because we add box con-
straints of type (10) on the integer variables. As the box constraints are only
a fixed number of constraints, it is very important to select a very good set of
cycles to contribute their cycle inequalities, i.e. to select a very short cycle ba-
sis, in order to obtain a big objective value for the initial LP relaxation. But if
we are free to add to the problem formulation any other cycle inequality that
we are able to separate, there is no more need to have chosen the best cycles
already for the cycle basis. Hence, it is plausible that although the initial LP
relaxations of the three cycle bases differed much, after having added further
cycle inequalities (10a), similar lower bounds have been attained.

On the other hand, adding change cycle inequalities (13) provides com-
pletely new information to the problem, since these inequalities can be consid-
ered to be complementary to cycle inequalities[18]. Hence, roughly speaking,
the headstart of short cycle bases is kept when adding change cycle inequali-
ties.
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In Table 8, we consider combinations of types of valid inequalities to be
added. One can observe that the best lower bounds were achieved, when at

Table 8. Lower bounds on ICE small for combinations of classes of inequalities

Tree MST span MST span|UV one
Improve no yes yes
Cuts not (10) not (10a) not (13) all | not (10) |not (10)

Minimum (%) | 84.0 80.4 43.9 79.4| 83.6 85.4
Average (%) 84.8 83.1 57.3 84.3| 84.2 86.6
Maximum (%)| 89.3 84.6 66.4 88.2| 85.0 89.1

most the cycle inequalities in their original formulation (10) were excluded.
Moreover, the levels of the final LP relaxations approach each other.

Finally, it is interesting that if we omit change cycle inequalities (13), then
it makes no big difference, whether we add only the tension formulation (10a)
of the cycle inequalities, or their original counterpart as well. However, it
is somehow surprising to us that formulation (10a) is slightly — but still
significantly — superior to formulation (10).

How many cuts? At this point, we want to investigate how many valid
inequalities we should separate both in total and in every iteration of the
cutting plane algorithm, in order to obtain the best lower bounds. To that end,
we ran the cutting plane algorithm for each of the 13 cycle bases we consider,
nine times for each of the following parameter settings: We considered pool
sizes of 200, 350, 500, 650, and 800 cuts. Moreover, we separated 10 or 100
cuts per iteration. Finally, when adding only 10 cuts per iteration, we (dis-)
allowed old cuts to be removed from the current LP, if they are no more tight.

The by far best results were attained by adding up to 100 valid inequalities
per iteration, and hence, by removing weak cuts. The best lower bounds were
attained with pool sizes of 500 or more, which is approximately twice the
number of rows of the initial MIP formulation.

For each of the different cycle bases, their three best runs yield similar
lower bounds: The NT cycle basis with fundamental improvements applied
achieved the three worst lower bounds (85.0%-85.1%). The UV one cycle
basis with fundamental improvements applied as well, lead to three out of the
four best lower bounds (89.2%-89.5%). For strictly fundamental cycle bases,
the best lower bound was 89.4%, which has been attained with the UV nspan
basis. But it is somehow interesting that there are ten cycle bases whose best
lower bounds were superior to the best lower bound computed with a minimal
cycle basis.

Which CPLEX® parameters? Based on observations of the previous tests,
we are now ready to examine under which parameter settings CPLEX® be-
haves best for periodic timetabling instances. We will perform runs on a min-
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imal cycle basis and on the two bases stemming from a minimal spanning
tree subject to the arcs’ spans, because CPLEX® behaved already good on
those bases, see Table 6. Furthermore, we consider the improved UV one ba-
sis, because it yields the best initial lower bound. Finally, the UV nspan tree
is considered, because after adding valid inequalities it allowed the best lower
bound for a strictly fundamental cycle basis. We added the specific sets of
cuts, which lead to the biggest lower bounds in our previous experiments.

With a time limit of six hours, we solved ICE small for any of the five cycle
bases and any of the 24 combinations for the parameters we analyze, cf. Sec-
tion 5. There has been only one combination, where the memory limit of
512MB applied after 1.5h (basis UV span, user cuts, emphasis on optimiza-
tion, and aggressive cut generation), and the best solution still has objective
value 109% of the minimal solution.

In Table 9, we report the average and the extremal running times for any
of the nine fixed parameter values, and the three other parameters take the
eight or twelve possible combinations. Furthermore, the number of outliers
is given, i.e. the number of runs whose running times fell below/exceeded a
50% radius around the average solution time. These solution times give a first
hint that strong branching yields an enormous benefit. Furthermore, it can be
observed, that user cuts only help for rather long runs of CPLEX®. Finally,
a MIP emphasis on optimization seems to help.

Table 10 puts another perspective on the 600 computations, leading to
another conclusion in particular concerning the last point: We consider the
parameter settings which lead to the three shortest solution times for the five
cycle bases. Here, one can see that only for MST span a MIP emphasis on
optimization entered the best three runs. Rather, a combination of strong
branching together with a MIP emphasis on integer feasibility provides one
of the three shortest solution times for any of the five cycle bases which we
considered here.

Although we did not put a focus on quickly finding (good) first feasible
solutions, let us present the best results of the 120 computations. In only
eight of them, the first feasible solution has been found after less than one
second of CPU timeS. Both, the quickest and the best first solution have been
attained using a minimal cycle basis: With user cuts activated, and the other
parameters as defaults, after 0.33s a solution of objective value 156% was
found. With a MIP emphasis on optimization and an aggressive generation of
MIP cuts, after 1.22s a solution with value 100.5% has been constructed.

MIP Summary. The most definitive result of our study is that it is essen-
tial to add valid inequalities to the problem formulation. Here, one should
consider both cycle inequalities and change cycle inequalities. It seems to be
advantageous to add many valid inequalities in every iteration of the cutting
plane algorithm, and then remove such inequalities which are no more tight

5 We multiplied the total solution time with the ratio of the first feasible B&B node
divided by the total number of B&B nodes investigated.



Table 9. Solution times on ICE small for various CPLEX® parameter settings
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Tree MST span UV one UV nspan Horton
Improve no yes yes no -
LP relax (%) 88.4 87.6 89.5 89.3 86.6
Additional valid inequalities as pure rows

Min (s) 63 86 83 482 68
Average (s) 249 907 3262 4184 365
Max (s) 607 3849 21600 21600 987
# Outliers 5/3 7/3 8/3 6/1 4/3
Additional valid inequalities as user cuts

Min (s) 36 83 106 578 82
Average (s) 316 1097 2988 3626 1115
Max (s) 972 3658 12652 10984 6620
# Outliers 4/2 7/4 6/3 4/4 8/3
Default variable selection strategy

Min (s) 36 134 1126 1306 199
Average (s) 353 1859 6009 5925 1340
Max (s) 972 3849 21600 21600 6620
# Outliers 3/3 4/4 5/2 4/2 7/2
Strong branching variable selection strategy

Min (s) 63 83 83 482 68
Average (s) 211 144 241 1884 141
Max (s) 471 303 437 5598 308
# Outliers 4/2 0/2 2/3 6/3 1/1
Default MIP cut generation

Min (s) 36 83 83 482 68
Average (s) 120 845 3305 1503 493
Max (s) 272 3849 12652 4115 2612
# Outliers 1/3 8/3 7/4 6/3 7/2
Aggressive MIP cut generation

Min (s) 199 94 151 985 82
Average (s) 444 1159 2945 6306 987
Max (s) 972 3658 21600 21600 6620
# Outliers 1/2 7/3 7/1 3/2 8/2
Default MIP emphasis

Min (s) 90 93 139 482 84
Average (s) 327 973 1883 5938 1363
Max (s) 972 3658 7593 21600 6620
# Outliers 3/2 6/2 4/2 3/2 5/2
Integer feasibility MIP emphasis

Min (s) 63 83 83 486 68
Average (s) 271 1275 5466 2510 564
Max (s) 837 3849 21600 6614 2000
# Outliers 2/1 4/2 5/2 3/2 3/2
Optimization MIP emphasis

Min (s) 36 106 196 633 127
Average (s) 249 758 2026 3266 292
Max (s) 471 2861 6166 6132 786
# Outliers 3/3 4/1 4/2 2/3 2/1
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in subsequent iterations. Furthermore, our computations on ICE small suggest
that about twice the number of rows of the initial MIP suffice as additional

inequalities.

For the few CPLEX® parameters we investigated, we suggest emphatically

to use strong branching and to put the MIP emphasis on integer feasibility.
Possibly, the positive effect of strong branching can even be intensified by mod-
ifying the related CPLEX® parameters, which control the strong branching
limits[6]. In any case, aggressive MIP cut generation should only be activated
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Table 10. Solution times on ICE small for best CPLEX® parameter settings

Tree MST span UV one UV nspan | Horton
Improve no yes yes no -
Solution time (s) | 36 63 63| 83 86 93| 83 106 139|482 486 578| 68 82 84
User cuts TP - -1 -1 - 1 1f - - 11 - 1 1
Strong branching| - - 1 1t 1 1 1 13 1 1 14 1 1 1
Aggressive cuts - - - - - - - = - - = - - 11
MIP Emphasis 2 2 141 1 - 1 1 —- - 1 1 1 1 -
—: default setting

1: feature activated / MIP emphasis on integer feasibility

2: MIP emphasis on optimality

if long running times are expected, in particular if the size of the branch and
bound tree has to be limited.

For the choice of the integral cycle basis to use in problem formulation (9b),
Table 6 indicates that shorter cycle bases allow shorter solution times, even
after having added identical sets of valid inequalities. However, the cycle basis
MST span does seem to have something magic in it being resistant against
our classification numbers “width of the cycle basis” and “objective value of
the LP relaxation,” but which has an extremely positive effect on the MIP
solver of CPLEX®.

Local Search Procedures

In contrast to U Berlin the genetic algorithm has no problems with satisfying
constraints on ICE small. Typically within the first 3 to 5 generations a feasible
solution is found and the solutions stay feasible in subsequent generations.
Thus there is no need to use the median when comparing the cost function
between test runs.

Figure 2 shows test runs on 5 different settings for the population size
and the mutation intensity. Every plot represents 20 runs on one parameter
set. Within the given runtime of about 15 minutes, the test runs reached
an average cost value of 34-38% above the optimum. On a longer test run
(without plot) an average cost value of 26% above the optimum was reached
after about 75 minutes.

This time (again in contrast to U Berlin) no clear result about the best
parameter set can be obtained. The apparently best runs are (pop 2, mut 49)
and (pop 10, mut 9), while the run (pop 3, mut 33), whose parameter set is
“between” the best ones, seems to be worst. But the difference between these
plots is small in comparison with the associated standard deviation, which
can be seen in Figure 3. Thus the plots of Figure 2 should be considered as
being identical.

When dealing with large deviations on randomised algorithms, a promising
idea is to start a couple of those algorithms and take the best result as the
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output of the whole process. In the special case of genetic algorithms, the
selection of the best result can be done by collecting the individuals of all runs
to a common population, on which a final collecting run is started. In doing
so the genetic algorithm has the chance to combine different good solutions
to a possibly better one.

We used two different strategies to test this approach:
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e Multiple long GA: To stay close to the initial idea of just selecting the
best solution, the collecting run is kept short. We started 5 runs of 35
generations each and used a collecting run of only 25 generations.

e Multiple short GA: To focus on the aspect of combining solutions in
the collecting run, we extended it to 100 generations. In return, the initial
runs had to be shortened to 20 generations each.

In both cases we used a large population size in the collecting run to avoid a
fast domination of certain individuals while mutation was turned off. Figure 4
shows the result of those two strategies in comparison with the simple genetic
algorithm. For illustrative purpose we only used the best and the worst plot
of Figure 2.
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Fig. 4. Runtime behaviour of multiple genetic algorithms on ICE small. Every plot
is averaged over 20 singe runs.

Both plots of the multiple genetic algorithms show a sawtooth pattern in
their first phase, when the 5 independent genetic algorithms are performed. In
the second phase the cost function drops down to the minimum of the initial
runs. Further improvement is made in the second phase by the collecting
run. The results generated by the “multiple long GA” strategy are at 34%
above optimum and thus between the two given references, tending towards
the better one. The “multiple short GA” reaches with 31% above optimum a
better result than the simple genetic algorithms. But due to the high variance
on all these results, this should not be interpreted as a clear advantage of this
strategy. The standard deviation of “multiple short GA” in the last phase is
about 13% of the optimal value, while the standard deviation of “multiple
long GA” is still about 8%.
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These plots also show another interessting effect: The collecting run of the
“multiple short GA” starts with cost values, that are compareable to or even
a litte worse than those of the reference plots at the same runtime. But in
the remaining runtime it is able to improve much faster than the references.
A possible explaination for the effect could be, that the collecting run gains
from combining a number of good but very different solutions. In a regular
run of a genetic algorithm the individuals of a population tend to be more
and more similar, due to the domination of the best.

On this data set we also tried the simulated annealing algorithm. We used
the geometric cooling schedule with an initial acceptance ratio of 40%, a stop
acceptance ratio of 0.1%, and with at least 6 levels after the last improvement.
But the results were rather bad. Within a runtime of 60 minutes we reached
only an average cost value of 68.3% above optimum (averaged over 30 single
runs). The standard deviation is with 23.7% of the optimum even higher than
at the genetic algorithms.

For this data set we conclude that all used approaches of the genetic al-
gorithm can solve the problem to an average cost value of 30-40% above the
optimum within a runtime of 15 minutes. Better values can be achieved on
longer runs. Simulated annealing performed much worse than the genetic al-
gorithm.

Constraint Programming

Unfortunately, on ICE small our heuristic of strengthening some constraints
makes the problem infeasible. However, for the original formulation the first
feasible solution has been found in less than half a second on a SUN Ultra-
SPARC-IIi with 333 MHz. After one minute, the best objective value has
been attained by standard variable selection combined with the look ahead
propagation rule (202.1%). Six hours later, this value has only been reduced
to 200.7%. Here, choosing the variable with minimal domain behaves slightly
better (196.8%), although after 60s it had only an objective value of 226.2%.

Summarizing, the time needed to construct a feasible solution — which is
the original application of constraint programming — is indeed fully compet-
itive to CPLEX®, and much superior to local search procedures. Anyway, for
minimizing a linear objective over a PESP instance, the constraint program-
ming approach does not seem to help much.

5.3 Solving ICE big
MIP Formulations

Since solving the much bigger instance ICE big will yield much longer solu-
tion times, we will concentrate on the best (generalized) fundamental cycle
basis (Horton) and on the best strictly fundamental cycle basis (MST span).
Moreover, we no more vary the parameters of the cutting plane algorithm.
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Rather, we will always add up to 2000 valid (change) cycle inequalities. Under
these fixed settings, we will analyze the impact of the CPLEX® parameters,
where we omit the value “optimization” for the parameter MIP emphasis.

The first observation is that out of the eight following parameter com-
binations, only in one case CPLEX® has been able to construct a feasible
solution with a minimal cycle basis chosen in the most promising problem
formulation (9b):

all parameters at their default values

precisely one parameter at its non-default value

MIP emphasis on integer feasibility

strong branching (after 42888s, first feasible solution with value 1075421)
e precisely two parameters at their non-default values

MIP emphasis on integer feasibility and user cuts

MIP emphasis on integer feasibility and strong branching
e precisely one parameter at its default value

no aggressive MIP cut generation

no user cuts
e all four parameters at their non-default values.

Nevertheless, the best lower bounds were achieved with a minimal cycle basis.
In runs, where strong branching has not been activated, the memory limit of
512 MB has been reached after between six and sixteen hours. Otherwise, the
time limit of 48 hours applied. With all four parameters at their non-default
values, the value 735385 has been proven as a lower bound. Notice that if
the 741 user cuts are added as pure valid inequalities, then the LP relaxation
has an optimal value of 654906, and if no cuts are added, the LP relaxation
already yields 383074.

Fortunately, with the cycle basis MST span, CPLEX® is able to construct
feasible periodic timetables for ICE big very reliably. More precisely, in any
of the eight parameter combinations we investigated, a feasible solution has
been found within a time limit of 24 hours, cf. Table 11. Complementing the

Table 11. Solution times on ICE big

User cuts — 1 — — — - 1
Strong branching 1 1 1 1
Aggressive cuts 1 1 1
MIP Emphasis 1 1 1 1
First solution (s) 295 515 230 3074 782 49 7743 455
First solution value [1342529|1583975 1142024 1630884 2021758|1030613 1480226 |1567532
Best solution (s) 295 515 74817 16613 11769| 65207 73658 35234
Best solution value 1342529|1583975 1057918 1445637 1317983| 934630 922262| 977034
% above best solution| 45.6%| 71.7% 14.7% 56.7% 42.9% 1.3% 0.0% 5.9%
Final Lower bound 667887| 605373 700002 666708 604029 697970 696135|708796
% below best solution| 27.6%| 34.4% 24.1% 27.7% 34.5%| 24.3% 24.5%| 23.1%

—: default setting 1: feature activated
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analysis of CPLEX® on ICE big, we give a more detailed impression of the
solution process leading to the best timetable in Figure 5. There it can be
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Fig. 5. Generation of best solution for ICE big

seen that the optimal value of the LP relaxation with cuts refined is 584692.
What cannot be seen is that without the 1332 valid inequalities added, a lower
bound of only 59432 can be achieved.

Summarizing, even with the most promising parameter settings, CPLEX®
is not able to terminate with an optimality proof for ICE big. Although a
minimal cycle basis yields the second best solution times on ICE small, there
are obviously only few parameter combinations for CPLEX® to detect feasible
solution on ICE big with such cycle bases.

Rather, one should choose the MST span cycle basis. Moreover it is very
important to choose strong branching as variable selection strategy, because
otherwise the quality of the solution is much worse, in our examples by at
least 25%. Much similar to ICE small, the best solution behavior is seen when
(at least) both strong branching and a MIP emphasis on integer feasibility
are combined.

Local Search Procedures

On ICE bigit seems to be diffcult again to produce feasible solutions. On both
test runs we started, one out of 10 single runs was not able to find a feasible
solution within the given runtime of about 8 hours. While most of the runs
found their first feasible solution within the first 20 minutes, it took some
other more than 2 hours. Due to this problem, we used the median again
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for the analysis. Since we do not know the optimal cost value of ICE big, we
measure the cost function in percent above the upper bound, i.e. the best
known solution.

Consider Figure 6. It shows the median of the two test runs we made.
Again we varied the population size and mutation intensity to get almost the
same runtime per generation. Both plots reach a cost value of 60% above the
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Fig. 6. Runtime behaviour of the genetic algorithm on ICE big. Every represents is
the median of 10 single runs.

upper bound within the first 50 minutes. During the remaining runtime both
make further improvements and reach 33.97% (pop 30, mut 4) and 35.65%
(pop 50, mut 2). If we ignore the infeasible run in every test run, the standard
deviation is with about 5% of the upper bound much smaller than on ICE
small. On this background we see a small advantage of (pop 30, mut 4), whose
plot is below the one of (pop 50, mut 2) during the whole runtime. But this
advantage vanishes towards the end of the runtime.

Constraint Programming

A really interesting fact about Constraint Programming is that even on the
largest instance, it takes less than half a second to construct a first feasible
solution. Only if we choose standard variable selection in combination with
look ahead propagation, no solution has been found even after six hours.
Anyway, comparing these times to the ones achieved by CPLEX®| recall that
we did not really tune CPLEX® in order to quickly find some first feasible
solution.
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Furthermore, the quality of the solutions is rather poor. Selecting the
variable with minimal domain and performing forward checking, after 60s a
solution with objective value 2007630 has been available. In the next six hours,
this decreased only down to 1989110.

After all, our heuristic of strengthening some constraints in advance pro-
vides significantly better solutions for the same CP strategies: after one
minute, we already obtain 1795830. But the improvements attained during
the next six hours are again only marginal (1755060). In total, CP solutions
are already considerably worse than feasible solutions obtained by both, our
genetic algorithm and CPLEX® only with its standard parameter settings.

6 Conclusion

Overall we can state, that given the current state of methods and machines,
it is possible to calculate the timetable for the complete (long distance) net-
work of one of the largest railways in a very satisfying way, with respect to
the production time and to the quality of the results. The comparison of var-
ious methods, that we report on in this paper, was one the hand the basis
for selecting the genetic algorithm as the method of choice for the Deutsche
Bahn. The genetic algorithm turned out to be the most stable solution proce-
dure, although the others are serious competitors, and depending on further
developments this picture can change. On the other hand, we think that this
comparison is an important and helpful step towards really understanding
the timetabling problem. This is an ongoing process, so this in a report on
work-in-progress.
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