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Abstract

We obtain sufficient conditions for stability of switched linear sys-
tems described by differential algebraic equations. Our results can be
used to address a number of important problems related to switched
systems, particularly in situations where purely numerical approaches
fail. We address the problem of stability analysis of a Nitrifying Trick-
ling Filter (NTF). We also address the related problems of designing
controllers that ensure robustness against arbitrary combinations of
sensor or actuator failure.

1 Introduction

In this report we address the problem of stability analysis of switched linear
systems described by high order differential algebraic equations. Switched
linear systems are a special class of the so called “Hybrid systems”. Hy-
brid systems have gained widespread importance in the recent years, since
these provide a conceptually appealing framework for modelling of compli-
cated physical systems, combining both continuous and symbolic dynamics.
Dynamical systems of this class can be found in various fields of engineering
applications and control problems such as aircraft control [2], traffic control
[4], power systems [11] and others. Switched linear systems are characterized
by a set of linear time-invariant systems that act on the same state-space and
some switching regime providing the interaction between them. However, this
switching mechanism induces complex nonlinear dynamics that leads to phe-
nomena beyond the realms of linear systems theory. For instance, it is well
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known that switching among a finite number of stable linear systems may
still result in unstable solutions. Despite extensively investigations yielding
remarkable results in the recent past [6, 3, 23] only few methods for the sta-
bility analysis are known that are readily applicable in engineering practice.

In this report we consider the case of arbitrary switching, i.e. there are no
restrictions on the switching sequence such that the system dynamics may
change arbitrarily within the given set of LTI systems. This case is practically
relevant when a switching sequence is a priori unknown, or too complicated
to enable a detailed specific analysis or simulation. Most results available
on stability analysis of switched systems are of a numerical nature. The few
theoretical results that are available are mostly sufficient conditions and only
consider first order state space systems having a special structure. We show
that there are practically important problems where numerical approaches
fail, and therefore there exists a strong case for a deeper investigation of
stability theory for switched systems. We develop a detailed theory for sta-
bility analysis which succeeds in relaxing some of the assumptions commonly
made in this area. Our results are not only theoretically appealing but also
practically relevant and useful: we use them to also address some important
system theoretic problems related to stability under switching conditions.

This report is a continuation of the work presented in [14, 15] and is or-
ganized as follows: In Section 2 we summarize the Notation used throughout
the report. This is followed by a concise Problem Statement and literature
overview in Section 3. In Section 4 we introduce a practical stability analysis
problem for a trickling filter for which commonly available numerical algo-
rithms fail. Section 5 introduces some of the tools and concepts necessary
for the analytical treatment presented in this report. Section 6 is the main
section of the report. We revisit the trickling filter in Section 7 and show
how our results help us obtain an insight into the nature of the problem.
Section 8 discusses further applications of our results – especially, design-
ing controllers that ensure stability under arbitrary combinations of sensor /
actuator failure.

2 Notation

We denote the field of real numbers by R, and that of complex numbers by
C. Rm denotes the set of column vectors over R having m rows. Im and 0m
denote the m× m Identity, and Zero matrices, respectively. Rq×m denotes the
set of q × m matrices over R. Rq×m[D] denotes the set of q × m polynomial
matrices over R in the indeterminate D and Rq×p[ζ, η] denotes the set of q×p

polynomial matrices in the indeterminates ζ and η. Rq×•[ζ, η] denotes the
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set of polynomial matrices in ζ, η having q rows and an unspecified number
of columns. Given Q ∈ Rq×m[D] :=

∑d
i=0 QiD

i, Qi ∈ Rq×m, with Qd a nonzero
matrix, d is called the degree of Q and is denoted by deg Q. Further, if
Qd is nonsingular, Q is called a regular polynomial matrix. If Qd = I, Q is
called monic. If all roots of det Q = 0 lie in the open left half complex plane,
Q is called Hurwitz. Given two vector spaces V1,V2 and a linear operator
K : V1 → V2, KerK denotes the kernel of K while ImK denotes the image of
K.

3 Problem statement and literature review

Consider a linear MIMO system defined by a proper rational function G =
PQ−1, where P and Q are polynomial matrices, with deg Q − deg P = d.
Consider a set of admissible feedbacks, K , of polynomial differential opera-
tors of degree at most d, and define:

QK = {Q +KP |K ∈ K } (1)

The dynamical system

ΣQK
:= Q(t)(

d

dt
)w = 0,Q(t) ∈ QK

is called a switched linear system. Q(t) can be thought of as a map from
the set of non-negative real numbers R+ to the space of polynomial matrices
having degree deg Q. The points of discontinuity of Q are called the “switch-
ing instances” and systems Q( d

dt
)w = 0 with Q ∈ QK are called component

systems of ΣQK
. . The central problem that we address in this report is;

“Obtain a parametrization for K such that the equilibrium state 0 in the
switched system ΣQK

, remains aymptotically stable under arbitrary switch-
ing”. With some abuse of notation we say that ΣQK

is asymptotically stable
if the equilibrium state 0 is asymptotically stable. Note that it is of course
necessary for the stability of ΣQK

that every component system ΣQ be stable.
Stability of every component system is however not sufficient to guarantee
that the equilibrium in ΣQK

is stable under arbitrary switching.
Notice that when every matrix Q ∈ QK is a regular first order polynomial,

ΣQK
defines a switched state space system of the type:

ΣS : ẋ(t) = A(t)x(t), A(t) ∈ A = {AQ} (2)

where AQ defines a state space representation for Q( d
dt

)w = 0, Q ∈ QK .
Stability of switched state space systems of the type ΣS has been extensively
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studied. Molachanov and Pyatnitskiy [7] show that uniform exponential sta-
bility of the equilibrium in ΣS is equivalent to the existence of a common
Lyapunov function V (x) for the component systems ΣAQ , and specify a num-
ber of properties of this function. However, such non-constructive converse
theorems are not directly applicable to check stability for a given system ΣS.
In the last decade many conditions have been derived that guarantee the
existence of a common Lyapunov function for a set of LTI systems [6, 3, 23].
The majority of such conditions consider the existence of a common quadratic
Lyapunov function (CQLF) V (x) = xT Lx with L = LT > 0 such that the
linear matrix inequalities (LMIs) AT

QL + LAQ < 0 ∀Q ∈ QK . Convex op-
timization tools can be used to check the feasibility of such a set of LMIs.
However, this numerical approach fails to give much insight into the stability
or instability mechanisms of the system and does not supply any guidelines
for designing stable switched systems. Further, as we shall show in this re-
port, there are problems of practical importance where this LMI test fails
to establish both the existence, or inexistence of a CQLF, and is therefore
useless in such situations.

A number of analytic conditions for the existence of a CQLF for several
sub-classes of switched systems have been derived in the recent past. If the
component systems have some special structure, e.g. if all system matrices
AQ are upper triangular (or simultaneously triangularizable) [8, 20], or they
commute pairwise [9] then they have a CQLF. Slightly relaxed conditions can
be found in [22] where stability is proven for switched systems with matrices
that are pair-wise simultaneously transformable to upper triangular form.
Though important and interesting, all these results suffer from the short-
coming that the property of simultaneous triangularizability is not robust,
and is satisfied for only a small class of systems. Pairwise commutativity
poses similar problems.

For switched systems with only two component systems more general
results are known: if two matrices A1 and A2 satisfy rank(A1 − A2) = 1,
necessary and sufficient conditions are given in [21]. Further, if system
matrices Ai ∈ R2×2, necessary and sufficient conditions, without requiring
rank(A1 − A2) = 1 are known [19]. Apart from the rank-difference require-
ment in the former, and the restriction to dimension two in the latter result,
both conditions suffer from the fact that stability of switched systems with
only two subsystems (and of course their non-negative combination) can be
established.

The contributions of this report are twofold: first, and foremost, we pro-
vide an algorithmic method construct a family of differential algebraic sys-
tems that share a quadratic Lyapunov function. Results here build on our
earlier results [?] where we obtained a characterization for a cone of matrices
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that have a CQLF. This parametrization was obtained as a sufficient con-
dition in terms of certain constant matrices. We extend these results here
and enlarge the parametrized set by also allowing a certain type of poly-
nomial matrices. The second contribution of our report is an investigation
of several important system theoretic problems that can be formulated as
stability problems for switched systems. Specifically we consider design of
controllers that ensure stability against arbitrary sensor/actuator failure, ver-
ification tests for controllers that guarantee stability, and a design procedure
for switched controllers. Our results are not only theoretically powerful, but
also suitable for numerical computation. We show that the characterization
can be used in practice by solving an associated LMI.

4 Motivating Example – Nitrifying Trickling

Filter

Stability analysis of switched systems has been mainly studied from a com-
putational point of view e.g. [5]. Many stability criteria are formulated as
LMIs that can be solved efficiently, thanks to recent developments in convex
optimization. However, there are examples of practical concern where purely
numerical approaches do not work, and hence an analytical investigation
becomes imperative. The following example demonstrates that LMI based
conditions for checking existence of CQLFs could fail even in apparently
simple situations.

We consider a model for a nitrifying trickling filter (NTF) proposed by
Torsten and Breitholtz [29] . This filter oxidizes ammonium in wastewater
into nitrate. The transfer function from inlet to outlet nitrate concentrations
is given by

G1(s) =

(
0.435

1 + 1.0796s
+

0.548

1 + 0.3124s
+ 0.016

)10

Feedback control schemes are used in order to achieve a desired nitrate con-
centration at the outlet. To keep things simple, we consider a unity feedback
and define

G2(s) =
G1

1 + G1

and investigate whether the autonomous dynamics associated with G1 and
G2 remain stable under arbitrary switching. This is a practically relevant
scenario since it investigates whether the control loop remains stable under
intermittant or permanent sensor and/or actuator failure. Thus, the problem

5



TU Berlin - Forschungsberichte der Fakultät IV - 2007/17

of stability analysis under sensor failure is reduced to one of stability analysis
of switched autonomous dynamical systems. Notice that the requirement of
the individual systems being stable is necessary, but not sufficient that they
remain stable under arbitrary switching.

Let ẋ = A1x and ẋ = A2x be state space descriptions for the autonomous
dynamics of G1 and G2. Both A1 and A2 are Hurwitz. We search for a CQLF
for the two systems. It is known from convex optimization theory, exactly
one of the following must hold [1]

1. There exists L = LT > 0 such that AT
i L + LAi < 0, i = 1, 2

2. There exist Ri = RT
i > 0 such that

∑2
i=1 AiRi + RiA

T
i > 0.

That is, if (1) holds, we know there exists a CQLF, and if (2) holds we know
there does not exist a CQLF. However, it is seen that the commonly available
LMI solver [10] is unable to solve either of the two LMIs, and therefore the
LMI condition fails to answer the question whether there exists a CQLF for
the two system, or there doesn’t.

Thus there is a case for analytical results for answering the question of
existence or inexistence of CQLFs. In the remaining sections of the report,
we develop analytical results that establish sufficient conditions for a finite
number of autonomous linear systems to have an asymptotically stable equi-
librium under arbitrary switching. We then use our results to re-address the
Example considered above and show how our method yields insights into
analysis of switched systems.

5 Behavioral theory

In recent years, the behavioral theory of dynamical systems has emerged as an
alternative to input-output (transfer function or state-space) based system
analysis. Tools and ideas from the behavioral approach have been used to
address problems in a number of different domains: distributed systems [12],
H∞ control [25], absolute stability [13], supervisory control of hybrid systems
[17], to name a few. An introduction to behavioral systems theory can be
found in [16].

5.1 Linear Differential Systems

A behavior is, broadly speaking, a collection of trajectories in a pre-defined
function space (e.g. the space of locally integrable functions), characterized
by certain laws. If these laws are linear and time-invariant, the corresponding
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behavior is called Linear, Time-invariant (LTI). A linear differential behavior
is one in which the behavior can be characterized as the solution set of
a family of Ordinary Differential Equations (ODEs). A cornerstone of the
behavioral approach is an image representation: a LTI system Σ with external
variables (“inputs” and “outputs”) (u, y) is controllable if and only if it can
be represented as the image of a linear differential operator acting on free
variables in an appropriate space:

[
u
y

]
=

[
Q( d

dt
)

P ( d
dt

)

]
` (3)

where Q ∈ Rq×q[D], and P ∈ Rp×q[D] are polynomial differential operators.
The indeterminate “D” denotes symbolic differentiation. The free variable
`, also called a latent variable, is stipulated to lie in Lloc

1 (R,Rq), the space
of locally integrable functions from R to Rq. Since ` is free, one can assume
Q and P to be right coprime without loss of generality. The partition of the
system variables as (u, y) in Equation (3) is called an input-output partition,
with inputs u and outputs y if Q is square and nonsingular, and the rational
function PQ−1 is proper.

A system can be given by several representations, in terms of inputs,
outputs and internal variables. Internal variables that satisfy an “axiom of
state”[18] are called “states”, and system representations in terms of these
variables are called state representations. A representation is a state repre-
sentation if and only if it is first-order in terms of states, and zeroth order in
terms of inputs and outputs. Given a controllable system, having behavior
B as defined in Equation (3), one can construct a polynomial differential
operator X( d

dt
) such that variables x defined as

x = X(
d

dt
)

[
u
y

]
, (u, y) ∈ B (4)

are state variables. The operator X( d
dt

) is called a state map. With (u, y)

an input-output partition of a behavior

[
u
y

]
=

[
Q( d

dt
)

P ( d
dt

)

]
`, Q ∈ Rq×q[D],

the span of rows of the polynomial matrix X(D) (over R) is precisely the
span of rows ri (over R) such that riQ

−1 is strictly proper. In particular
if Q(D) =

∑d
i=0 QiD

i is regular, X( d
dt

) can be defined by the polynomial
differential operator

X(
d

dt
) =




I
I d

dt
...

I dd−1

dtd−1


 (5)
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It is easy to see that the above state map transforms the system with image

representation

[
Q( d

dt
)

P ( d
dt

)

]
` into a “block-companion” form, and further this

state representation is minimal in terms of the number of states among all
possible state representations.

5.2 Dissipative Systems

We first introduce the concept of Quadratic Differential Forms (QDFs) that
central to the discussion in this section. In Lyapunov theory, optimal control
etc., we often encounter quadratic functionals of variables and their deriva-
tives (e.g., Lyapunov function, the cost functional, the Lagrangian etc.). In
[28] a two variable polynomial matrix was used to represent such quadratic
functionals. Let R•×•[ζ, η] denote the set of real polynomial matrices in the
indeterminates ζ and η. An element Φ in this set is given by

Φ(ζ, η) =
∑

k,l

Φk,lζ
kηl (6)

where the sum ranges over non-negative integers k, l and this sum is assumed
finite (i.e. only a finite number of Φkl are nonzero). Such a Φ induces a
quadratic differential form (QDF) defined by

(QΦ(w))(t) =
∑

k,l

(
dkw(t)

dtk
)T Φkl(

dlw(t)

dtl
). (7)

where the derivative is in the sense of locally integrable functions. Due to the
quadratic nature of QΦ, differentiability requirements may impose additional
structural restrictions on Φ in order to ensure that QΦ(w) is also locally
integrable.

We review basic properties of dissipative systems in this section. The ab-
stract theory of dissipative systems was introduced by Willems, who in 1972
wrote two seminal papers on the subject [26, 27]. The ideas in these papers
have been singularly successful in tieing together concepts from network the-
ory, mechanical systems, thermodynamics, and feedback control theory. The
dissipation hypothesis which distinguishes dissipative systems from general
dynamical systems results in a fundamental constraint on their dynamical

behavior. Consider a system

[
u
y

]
=

[
Q( d

dt
)

P ( d
dt

)

]
` having behavior B, with

Q ∈ Rq×q[D], P ∈ Rp×q[D]. Define m := q+ p. Consider Φ ∈ Rm×m[ζ, η]. B is
called Φ-dissipative if

∫ ∞

−∞
QΦ(u, y)dt ≥ 0 ∀(u, y) ∈ B ∩ D(R,Rm). (8)

8
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In the above inequality D(R,Rm) denotes the space of compactly supported

locally integrable functions from R to Rm. A system

[
u
y

]
=

[
Q( d

dt
)

P ( d
dt

)

]
` is

Φ-dissipative if and only if

[
QT (−iω) P T (−iω)

]
Φ(−iω, iω)

[
Q(iω)
P (iω)

]
≥ 0 ∀ω ∈ R

The function QΦ is called a “supply function” and is a measure of the gener-
alized power supplied. Also associated with a dissipative system is a function
QΨ, called a “storage function”, that satisfies the so called “dissipation in-
equality”:

d

dt
QΨ(u, y) ≤ QΦ(u, y)

Note that there may exist nonzero trajectories along which d
dt

QΨ(u, y) exactly
equals the supply QΦ. This is undesirable in some problems, especially in
stability analysis. Therefore, we define a set of “strictly” dissipative systems:

Definition 5.1 Let G = PQ−1 with P ∈ Rp×q[D], Q ∈ Rq×q[D] regu-
lar. With m = p + q, consider Φ ∈ Rm×m[ζ, η]. The behavior B defined as

Im

[
Q( d

dt
)

P ( d
dt

)

]
is called strictly Φ-dissipative if ∃ε > 0 such that B is (Φ−εIm)-

dissipative

Note that along every nonzero trajectory in a strictly Φ-dissipative system,
there exists QΨ such that d

dt
QΨ is strictly less than QΦ.

In the sequel, we consider supply functions QΦ, that have the following
structure:

Φ =

[
Θ11 ΘT

12(η)
Θ12(ζ) 0p

]
(9)

Θ11 ∈ Rq×q > 0q , and Θ12(D) ∈ Rp×q[D]. The choice of this structure
is motivated by the stability problem considered in this report. Note in
particular that QΦ(0, y) = 0 for all y ∈ Rp. In order to ensure that QΦ is well
defined along a behavior, we only consider those behaviors associated with
the proper rational function PQ−1 such that deg Θ12 ≤ deg Q− deg P . This
is a standing assumption we make throughout the report, unless otherwise
stated.

The following theorem investigates under what conditions do there exist
positive definite storage functions for strictly Φ-dissipative systems.

Theorem 5.2 Let Φ =

[
Θ11 ΘT

12(η)
Θ12(ζ) 0p

]
∈ Rq+p×q+p[ζ, η] . Let B defined

as Im

[
Q( d

dt
)

P ( d
dt

)

]
, PQ−1 proper, be strictly Φ-dissipative with. If all roots of

9



TU Berlin - Forschungsberichte der Fakultät IV - 2007/17

det Q = 0 lie in the open left half complex plane, every storage function of B
with respect to QΦ is a positive definite state function.

Proof: Note that the partion (u, y) is an input-output partition. Consider
a minimal state realization (A,B,C, D) of B. It can be shown that every
storage function for B with respect to QΦ is a state function [24]. Thus there
exists a matrix L such that, d

dt
QL(x) < QΦ(u, y) along all (x, u, y) that satisfy

the realization. Note that A is Hurwitz since Q has all singularities in the
open left half complex plane. Then along u = 0 we get

d

dt
QL(x) < QΦ(0, y)

along all x and y such that ẋ = Ax, y = Cx. Since QΦ(0, y) = 0 ∀y ∈ Rp it
follows that QL(x) > 0. ¤

6 Switched autonomous systems

We now address the problem of constructing switched linear systems (2)
whose component systems have a CQLF. We characterize the component
systems in terms of a image representation of a associated strictly dissipative
system. This approach, as we shall show, has many advantages. We need
several results in order to obtain the characterization mentioned above.

Lemma 6.1 Let Φ =

[
Θ11 ΘT

12(η)
Θ12(ζ) 0p

]
. Consider a strictly Φ-dissipative

behavior B be defined by

[
u
y

]
=

[
Q( d

dt
)

P ( d
dt

)

]
`, Q regular and Hurwitz, with

deg Θ12 ≤ deg Q−deg P . Let Ph the highest degree coefficients of P and Θ12h

be the coefficient of the term ζdeg Q−deg P in Θ12(ζ) (possibly zero). Then,
Θ11 + ΘT

12hPh + PT
h Θ12h > 0.

Proof Q can be assumed to be monic without loss of generality. Since B is
strictly Φ-dissipative:

Π(ω) := QT (−iω)Θ11Q(iω) + QT (−iω)ΘT
12(iω)P (iω) +

P T (−iω)Θ12(−iω)Q(iω) ≥ ε(QT (−iω)Q(iω) + P T (−iω)P (iω))

for all ω ∈ R and some ε > 0. Since by assumption deg Θ12 ≤ deg Q−deg P ,
Π(ω) has degree atmost 2 deg Q. Dividing left, and right hand sides of the
inequality by ω2 deg Q and taking the limit as ω → ∞ shows that Θ11 +
ΘT

12hPh + PT
h Θ12h > 0. ¤

Given a supply function QΦ, the following Lemma provides for the con-
struction of another associated supply function that will be used in the sequel:

10



TU Berlin - Forschungsberichte der Fakultät IV - 2007/17

Lemma 6.2 Let Φ1 =

[
Θ11 ΘT

12(η)
Θ12(ζ) 0p

]
and S(D) =

[
Iq K(D)
0 Ip

]
with

K(D) ∈ Rq×p[D] such that there exists a polynomial matrix R(D) ∈ Rp×•[D]

satisfying
[

KT (ζ) Ip
] [ −Θ11 ΘT

12(η)
Θ12(ζ) 0p

] [
K(η)

Ip

]
= RT (ζ)R(η). Define

Φ2 = S−T (ζ)Φ1S
−1(η). Then QΦ2(0, y) ≤ 0 for all y ∈ Rp.

Proof We explicitly write out Φ2 in terms of Θ1j, j ∈ {1, 2} and K :

Φ2 =

[
Θ11 −Θ11K(η) + ΘT

12(η)
−KT (ζ)Θ11 + Θ12(ζ) KT (ζ)Θ11K(η)−KT (ζ)ΘT

12(η)−Θ12(ζ)K(η)

]

Since
[

KT (ζ) Ip
] [ −Θ11 ΘT

12(η)
Θ12(ζ) 0p

] [
K(η)

Ip

]
= RT (ζ)R(η) it follows

that QΦ2(0, y) ≤ 0 ∀y ∈ Rm ¤
We need an intermediate lemma that gives bounds on the degree of K(D)

in lemma 6.2

Lemma 6.3 Consider K(D) as defined in Lemma 6.2. Then, deg K ≤
deg Θ12.

Proof: Suppose deg K > deg Θ12: Note that Γ(λ) := −KT (λ̄)Θ11K(λ) +
KT (λ̄)ΘT

12(λ)+Θ12(λ̄)K(λ) ≥ 0 ∀λ ∈ C. Since Θ11 > 0 by assumption, there
exists λ ∈ C such that Γ(λ) 6≥ 0 which contradicts the condition in Lemma
6.2. ¤

Consider a supply function QΦ1 and a Φ1-dissipative behavior B1. Using
the construction of the supply function QΦ2 in Lemma 6.2, we construct a
Φ2-dissipative behavior having the same storage functions as B1 with respect
to QΦ1 :

Theorem 6.4 Let Φ1 and Φ2 be such that they satisfy conditions in Lemma

6.2. Let B1 =

[
Q1(

d
dt

)
P1(

d
dt

)

]
`, with Q1 regular and Hurwitz, P1Q

−1
1 proper, be

strictly Φ1-dissipative . Define B2 =

[
Q2(

d
dt

)
P2(

d
dt

)

]
` where

[
Q2(D)
P2(D)

]
= S ·

[
Q1(D)
P1(D)

]

Then, B2 has the following properties:

1. Q2 is regular and deg Q2 = deg Q1.

2. Q2, P2 are right coprime.

11
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3. B2 is strictly Φ2-dissipative.

4. Every storage function (on states) of B2 with respect to QΦ2 is also a
storage function (on states) of B1 with respect to QΦ1.

Proof

1. Without loss of generality Q1 can be assumed monic. It follows from
Lemma 6.3 and the definition of QΦ (9) that deg K ≤ deg Q − deg P .
The case where deg K < deg Q − deg P is obvious. Consider the case
deg K = deg Q − deg P . Let Q2h, P1h and Kh be the highest degree
coefficients of Q2 and P1 and K respectively. Then, Q2h = I + KhP1h

since Q1 is monic by assumption. Suppose Q2 is not regular. Then
there exists nonzero v ∈ Rq such that

(Iq + KhP1h)v = 0

or v = −KhP1hv. Since by assumption

[
KT (ζ) Ip

] [ −Θ11 ΘT
12(η)

Θ12(ζ) 0p

] [
K(η)

Ip

]
= RT (ζ)R(η)

we have:

vTPT
1d(−KT

h Θ11Kh + KT
h ΘT

12h + Θ12hKh)P1hv ≥ 0

where Θ12h is the coefficient of the term ζdeg Q−deg P in Θ12(ζ) (possibly
zero). Therefore −vT (Θ11 + ΘT

12hP1h + PT
1hΘ1h)v ≥ 0. However, from

Lemma 6.1, (Θ11 + ΘT
12hP1h + PT

1hΘ12h) > 0, and therefore v = 0, which
is a contradiction. Hence, Q2h = I + KhP1h is nonsingular.

2. We show that if Q2 and P2 are not right coprime, S is singular, which is
a contradiction. First note that S(λ) is nonsingular for all λ ∈ C. If Q2

and P2 are not right coprime, there exists λ ∈ C and nonzero v ∈ Cq

such that

[
Q2(λ)
P2(λ)

]
v = 0. Since Q1, P1 can be taken to be right

coprime without loss of generality, it follows that
[

QT
1 (λ) P T

1 (λ)
]T

has full column rank. Further,
[

Q2(λ)
P2(λ)

]
v = S(λ)

[
Q1(λ)
P1(λ)

]
v = 0

which shows that S is singular. This is a contradiction to the assump-
tions in the theorem. Hence, Q2 and P2 are right coprime.

12
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3. Note that ST Φ2S = Φ1. By definition, B2 = S( d
dt

) · (B1). Since B1 is
strictly Φ1-dissipative, B2 is strictly Φ2-dissipative.

4. We can show that QΦ1 along B1 and QΦ2 along B2 are equal on a suit-
ably chosen latent variable `. Define the following polynomial matrices
in two variables:

Φ′
2 =

[
QT

2 (ζ) P T
2 (ζ)

]
Φ2(ζ, η)

[
Q2(η)
P2(η)

]
(10)

and Φ′
1 =

[
QT

1 (ζ) P T
1 (ζ)

]
Φ1(ζ, η)

[
Q1(η)
P1(η)

]

Since Φ′
1 = Φ′

2 it follows that QΦ′1(`) = QΦ′2(`) ∀` ∈ Lloc
1 (R,Rq). Since

B1 is strictly Φ1-dissipative it follows that there exists a storage function
QΨ:

d

dt
QΨ(`) < QΦ′1(`), (11)

and therefore also
d

dt
QΨ(`) < QΦ′2(`)

Since deg Q2 = deg Q1 and Q2 is regular, it follows that minimal
state representations of both B2 and B1 have the same dimension. Let
deg Q2 = d. Define

X(
d

dt
) =




Im
Im

d
dt
...

Im
dd−1

dtd−1




Then, x = X( d
dt

)` defines a minimal set of states for both B2 and
B1. Since QΨ is a state function of B1 it can be written as QΨ(`) =
(X( d

dt
)`)T LX( d

dt
)` where L = LT ∈ Rd×d. This shows that L defines a

storage function on states for B1 with respect to QΦ1 and also for B2

with respect to QΦ2 .

¤
Having established the existence of a common storage function we now present
the following stability theorem:

Theorem 6.5 Let Φ =

[
Θ11 ΘT

12(η)
Θ12(ζ) 0p

]
∈ Rq+p×q+p[ζ, η]. Consider a

strictly Φ-dissipative behavior B = Im

[
Q( d

dt
)

P ( d
dt

)

]
, Q regular and Hurwitz.

13
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Define QK(D) =
[

Iq K(D)
] [

Q1(D)
P1(D)

]
where K satisfies

[
KT (ζ) Ip

] [ −Θ11 ΘT
12(η)

Θ12(ζ) 0p

] [
K(η)

Ip

]
= RT (ζ)R(η). (12)

for some R(D) ∈ Rp×•[D] Define ΣQ := Q d
dt

(t)w = 0 with Q(D) ∈ {QK}.
Then, the equilibrium state 0 in ΣQ is uniformly exponentially stable under
arbitrary switching.

Proof Define SK =

[
Iq K(η)
0 Ip

]
. Then, S is nonsingular. Define ΦK =

S−T Φ1S
−1. Let PK(D) = P (D). Then, BK defined as Im

[
QK( d

dt
)

PK( d
dt

)

]
is

strictly ΦK-dissipative and has the following properties (Theorem 6.4):

1. QK is regular, and deg QK = deg Q.

2. QK and PK are right coprime.

3. Every storage function (on states) of BK with respect to QΦK
is also a

storage function (on states) of B with respect to QΦ.

Since Q is Hurwitz and B is strictly Φ dissipative, it follows from Theorem
5.2 that there exists QL(x) > 0 that satisfies:

d

dt
QL(x) < QΦ(u, y) (13)

along all (x, u, y) corresponding to a minimal state representation of B, say,
(A,B, C, F ). It also follows from Theorem 6.4 that QL also satisfies

d

dt
QL(x) < QΦK

(uK , yK) (14)

along all (x, uK , yK) corresponding to a minimal state representation of BK ,
say (AK , BK , CK , FK), obtained using the same state map as (A,B,C, F ) in
inequality (13). We now consider the autonomous part of state representa-
tions for BK and B by setting uK = 0 and u = 0. We get:

d

dt
QL(x) < QΦ(0, y)

along ẋ = Ax, y = Cx and

d

dt
QL(x) < QΦK

(0, yK)

14
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along ẋ = AKx, yK = CKx. By construction QΦ(0, y) = 0 and QΦK
(0, yK)

is negative-semidefinite (Lemma 6.2). Hence QL(x) = xT Lx is a CQLF for
ΣQ. ¤

Remark 6.6 Theorem 6.5 not only gives a characterization of stabilizing
feedback controllers but also suggests a computationally feasible scheme to

compute these controllers. Consider Φ =

[
Θ11 ΘT

12

Θ12 0p

]
∈ Rq+p×q+p. The

inequality
[

KT Ip
]
Φ

[
K
Ip

]
> 0 (15)

is quadratic in K. However, using the Schur complement we can re-write
(15) as a linear inequality in K. Indeed, (15) holds if and only if

[
Θ−1

11 K
KT KT ΘT

12 + Θ12K

]
> 0 (16)

Inequality (16) can be solved as an LMI to determine a feasible K. Further
constraints may be imposed on K as required.

7 Example – Nitrifying Trickling Filter revis-

ited

We now reconsider the example in Section 4 and use results obtained so far to
address the problem of designing output feedback controllers that are robust
against arbitrary switching, caused by sensor or actuator failure. First, we
identify a supply function for the system defined by G1. In the SISO case,
the Nyquist Plot of G1 can be used to obtain the supply function

Φ =

[
1 1
1 0

]
.

From Theorem 6.5 we observe that with

[
k 1

] [ −1 1
1 0

] [
k
1

]
≥ 0

the autonomous dynamics associated with G1 and G1

1+kG1
remain stable under

arbitrary switching. Thus, k ∈ [0, 2] stabilizes G1 and also ensures that the
closed loop remains stable under sensor/actuator failure. Hence, the unity
feedback scheme considered in Section 4 satisfies the property that the open
and closed loop systems remain stable under arbitrary switching.

15
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8 Further applications

In this section we list further applications of Theorem 6.5. These applications
serve to demonstrate the flexibility of our approach.

8.1 Sensor/Actuator Failure

Evaluation of controller robustness against sensor/actuator failure is of im-
mense interest. Instability could result because of not only high feedforward
gain, but also because of switching between nominally stable systems, corre-
sponding to each failure scenario. Thus the problem of analysing stability of
a closed loop system under sensor/actuator failure can be formulated as one
of analysing stability of a switched system with several components.

As already demonstrated in Sections 4 and 7, an immediate application
of Theorem 6.5 is that it guarantees stability under loop disruptions caused
by sensor failure. Note that Theorem 6.5 also holds for K = 0. Thus, the
open loop system and the closed loop system remain stable under arbitrary
switching provided K satisfies conditions in Theorem 6.5.

Stronger results may be obtained when special structure is imposed on

the feedback controllers. Let the open loop plant B =

[
Q( d

dt
)

P ( d
dt

)

]
`, with

P, Q ∈ Rq×q[D] be (strictly) dissipative with respect to

Φ =

[
Γ Iq
Iq 0q

]
(17)

with Γ = diag(γ1, . . . , γq). It can be shown for every PQ−1 proper, there
exists a Γ such that B is Φ-dissipative.

Application of Theorem 6.5 results in the following condition that a feed-
backs K must satisfy in order that Ker Q( d

dt
) and Ker (Q( d

dt
) + KP ( d

dt
))

remain stable under arbitrary switching:

−KT ΓK + K + KT ≥ 0 (18)

Consider a nominal K = diag[α1, . . . , αq] that satisfies (18), i.e. αi ∈
[0, 2/γi], i = 1, . . . , q. Under these conditions, the closed loop remains stable
under arbitrary combinations of sensor or actuator failure since the condition
(18) still holds true when some of the αis are replaced by 0. Thus we have
obtained bounds on the feedback gains αi which ensures that the autonomous
dynamics remains stable under arbitrary sensor or actuator failure.

In the special case when some γi = 0, there is no upper bound on αis, i.e.
arbitrary negative feedback between the ith output and input still ensures

16
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that the switched system remains asymptotically stable under actuator or
sensor failures.

Analysing the problem of stability under sensor/actuator failure by solv-
ing a family of LMIs for a CQLF is quite inefficient. Clearly, with K =
diag(α1, . . . , αq) there exist 2q failure scenarios, and hence also 2q LMIs which
need be solved simultaneously. This is a computationally difficult problem
for large q

The problem of controller design is as follows: one desires controllers
Ki, i = 1, . . . N that satisfy certain specifications and ensure stability under
arbitrary switching. In order to obtain such controllers, we first obtain a
supply function QΦ such that the open loop plant defined by G is strictly
Φ-dissipative. It is shown in (16) that Kis may be determined by solving an
LMIs. The interesting aspect of this condition is that structural conditions
that are difficult to handle analytically may now be imposed on K. For
example, one can search for a diagonal K which satisfies the conditions in
Theorem 6.5. In the light of Section 8.1, one may also want to design con-
trollers that render the open loop plant dissipative with respect to “special”
supply functions, for instance (17). Such designs ensure robustness against
arbitrary combinations of sensor and actuator failure. We demonstrate this
application in the simple example below. In [?], Page 93, a simplified model
for a distillation column is proposed:

G(s) =
1

75s + 1

[
87.8 −86.4
108.2 −109.6

]
.

We design a output feedback controller in order to have a certain desired pole
location. We would in addition like this controller to ensure stability against

actuator failure. With Q = diag(1+75s, 1+75s) and P =

[
87.8 −86.4
108.2 −109.6

]
,

it can be seen that the behavior B associated with y = Gu is dissipative with
respect to QΦ with

Φ(ζ, η) =




5 0 0 1
0 5 −1 −η
0 −1 0 0
1 −ζ 0 0


.

We note that K(D) =

[
0 0.4

−0.4 −0.4D

]
meets the conditions in Theorem

6.5 with R = 02. Indeed it can be verified that with an output feedback
defined by K( d

dt
), the closed loop poles move from {−0.0133,−0.0133} to

{−0.005,−0.67}.

17
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Note that the output feedbacks given by K0 = 02, K1 =

[
0 0

−0.4 −0.4D

]

and K2 =

[
0 0.4
0 0

]
represent possible actuator failure scenarios. Under

these conditions, Ki(D), i = 0 . . . , 2 still satisfy the condition in Theo-
rem 6.5. Therefore the autonomous dynamics KerQ( d

dt
), Ker(Q+K1P )( d

dt
),

Ker(Q + K2P )( d
dt

) and Ker(Q + KP )( d
dt

) remain stable under arbitrary
switching. LMI tests in fact show that there also exists a CQLF, as already
predicted in Theorem 6.5:

L =

[
0.4657 −0.4543
−0.4543 0.5342

]

is a CQLF for KerQ( d
dt

), Ker(Q+K1P )( d
dt

), Ker(Q+K2P )( d
dt

) and Ker(Q+
KP )( d

dt
). Thus, the closed loop system with output feedback defined by

K( d
dt

) not only ensures closed loop stability, but also ensures robustness
against arbitrary actuator failure.

9 Conclusion

In this report we propose a parametrization for a set of autonomous differ-
ential algebraic systems that have a common quadratic Lyapunov function.
A switched system having component systems from this set has a uniformly
exponentially stable equilibrium under arbitrary switching. This set is con-
structed from an associated dissipative dynamical system and the parame-
trizations can be efficiently computed by solving an LMI.

The approach presented here extends previous stability results on switched
systems in several directions: firstly, the component systems may be of arbi-
trary finite order without further structural restrictions (e.g. the restriction
of being triangular, or in companion form); secondly, we present a method
to construct a cone of matrices with more than two generators such that all
matrices inside the cone satisfy a CQLF.

Our results can be used even where commonly available numerical ap-
proaches apparently fail, as demonstrated by the Trickling Nitrifying Filter
example. We also show address applications of our results such as the sta-
bility under arbitrary sensor/actuator failure and demonstrate how to design
a suitable controller for a simplified distillation column control using the
proposed method.
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